xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
82 				    struct lpfc_cqe *);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_eqe *eqe, uint32_t qidx);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
90 				   struct lpfc_sli_ring *pring,
91 				   struct lpfc_iocbq *cmdiocb);
92 
93 static IOCB_t *
94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
95 {
96 	return &iocbq->iocb;
97 }
98 
99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
100 /**
101  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
102  * @srcp: Source memory pointer.
103  * @destp: Destination memory pointer.
104  * @cnt: Number of words required to be copied.
105  *       Must be a multiple of sizeof(uint64_t)
106  *
107  * This function is used for copying data between driver memory
108  * and the SLI WQ. This function also changes the endianness
109  * of each word if native endianness is different from SLI
110  * endianness. This function can be called with or without
111  * lock.
112  **/
113 void
114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
115 {
116 	uint64_t *src = srcp;
117 	uint64_t *dest = destp;
118 	int i;
119 
120 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
121 		*dest++ = *src++;
122 }
123 #else
124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
125 #endif
126 
127 /**
128  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
129  * @q: The Work Queue to operate on.
130  * @wqe: The work Queue Entry to put on the Work queue.
131  *
132  * This routine will copy the contents of @wqe to the next available entry on
133  * the @q. This function will then ring the Work Queue Doorbell to signal the
134  * HBA to start processing the Work Queue Entry. This function returns 0 if
135  * successful. If no entries are available on @q then this function will return
136  * -ENOMEM.
137  * The caller is expected to hold the hbalock when calling this routine.
138  **/
139 static int
140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
141 {
142 	union lpfc_wqe *temp_wqe;
143 	struct lpfc_register doorbell;
144 	uint32_t host_index;
145 	uint32_t idx;
146 	uint32_t i = 0;
147 	uint8_t *tmp;
148 	u32 if_type;
149 
150 	/* sanity check on queue memory */
151 	if (unlikely(!q))
152 		return -ENOMEM;
153 	temp_wqe = q->qe[q->host_index].wqe;
154 
155 	/* If the host has not yet processed the next entry then we are done */
156 	idx = ((q->host_index + 1) % q->entry_count);
157 	if (idx == q->hba_index) {
158 		q->WQ_overflow++;
159 		return -EBUSY;
160 	}
161 	q->WQ_posted++;
162 	/* set consumption flag every once in a while */
163 	if (!((q->host_index + 1) % q->entry_repost))
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
165 	else
166 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
167 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
168 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
169 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
170 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
171 		/* write to DPP aperture taking advatage of Combined Writes */
172 		tmp = (uint8_t *)temp_wqe;
173 #ifdef __raw_writeq
174 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
175 			__raw_writeq(*((uint64_t *)(tmp + i)),
176 					q->dpp_regaddr + i);
177 #else
178 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
179 			__raw_writel(*((uint32_t *)(tmp + i)),
180 					q->dpp_regaddr + i);
181 #endif
182 	}
183 	/* ensure WQE bcopy and DPP flushed before doorbell write */
184 	wmb();
185 
186 	/* Update the host index before invoking device */
187 	host_index = q->host_index;
188 
189 	q->host_index = idx;
190 
191 	/* Ring Doorbell */
192 	doorbell.word0 = 0;
193 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
194 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
195 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
196 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
197 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
198 			    q->dpp_id);
199 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
200 			    q->queue_id);
201 		} else {
202 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
203 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
204 
205 			/* Leave bits <23:16> clear for if_type 6 dpp */
206 			if_type = bf_get(lpfc_sli_intf_if_type,
207 					 &q->phba->sli4_hba.sli_intf);
208 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
209 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
210 				       host_index);
211 		}
212 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
213 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
214 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
215 	} else {
216 		return -EINVAL;
217 	}
218 	writel(doorbell.word0, q->db_regaddr);
219 
220 	return 0;
221 }
222 
223 /**
224  * lpfc_sli4_wq_release - Updates internal hba index for WQ
225  * @q: The Work Queue to operate on.
226  * @index: The index to advance the hba index to.
227  *
228  * This routine will update the HBA index of a queue to reflect consumption of
229  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
230  * an entry the host calls this function to update the queue's internal
231  * pointers. This routine returns the number of entries that were consumed by
232  * the HBA.
233  **/
234 static uint32_t
235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
236 {
237 	uint32_t released = 0;
238 
239 	/* sanity check on queue memory */
240 	if (unlikely(!q))
241 		return 0;
242 
243 	if (q->hba_index == index)
244 		return 0;
245 	do {
246 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
247 		released++;
248 	} while (q->hba_index != index);
249 	return released;
250 }
251 
252 /**
253  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
254  * @q: The Mailbox Queue to operate on.
255  * @wqe: The Mailbox Queue Entry to put on the Work queue.
256  *
257  * This routine will copy the contents of @mqe to the next available entry on
258  * the @q. This function will then ring the Work Queue Doorbell to signal the
259  * HBA to start processing the Work Queue Entry. This function returns 0 if
260  * successful. If no entries are available on @q then this function will return
261  * -ENOMEM.
262  * The caller is expected to hold the hbalock when calling this routine.
263  **/
264 static uint32_t
265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
266 {
267 	struct lpfc_mqe *temp_mqe;
268 	struct lpfc_register doorbell;
269 
270 	/* sanity check on queue memory */
271 	if (unlikely(!q))
272 		return -ENOMEM;
273 	temp_mqe = q->qe[q->host_index].mqe;
274 
275 	/* If the host has not yet processed the next entry then we are done */
276 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
277 		return -ENOMEM;
278 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
279 	/* Save off the mailbox pointer for completion */
280 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
281 
282 	/* Update the host index before invoking device */
283 	q->host_index = ((q->host_index + 1) % q->entry_count);
284 
285 	/* Ring Doorbell */
286 	doorbell.word0 = 0;
287 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
288 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
289 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
290 	return 0;
291 }
292 
293 /**
294  * lpfc_sli4_mq_release - Updates internal hba index for MQ
295  * @q: The Mailbox Queue to operate on.
296  *
297  * This routine will update the HBA index of a queue to reflect consumption of
298  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
299  * an entry the host calls this function to update the queue's internal
300  * pointers. This routine returns the number of entries that were consumed by
301  * the HBA.
302  **/
303 static uint32_t
304 lpfc_sli4_mq_release(struct lpfc_queue *q)
305 {
306 	/* sanity check on queue memory */
307 	if (unlikely(!q))
308 		return 0;
309 
310 	/* Clear the mailbox pointer for completion */
311 	q->phba->mbox = NULL;
312 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
313 	return 1;
314 }
315 
316 /**
317  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
318  * @q: The Event Queue to get the first valid EQE from
319  *
320  * This routine will get the first valid Event Queue Entry from @q, update
321  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
322  * the Queue (no more work to do), or the Queue is full of EQEs that have been
323  * processed, but not popped back to the HBA then this routine will return NULL.
324  **/
325 static struct lpfc_eqe *
326 lpfc_sli4_eq_get(struct lpfc_queue *q)
327 {
328 	struct lpfc_hba *phba;
329 	struct lpfc_eqe *eqe;
330 	uint32_t idx;
331 
332 	/* sanity check on queue memory */
333 	if (unlikely(!q))
334 		return NULL;
335 	phba = q->phba;
336 	eqe = q->qe[q->hba_index].eqe;
337 
338 	/* If the next EQE is not valid then we are done */
339 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
340 		return NULL;
341 	/* If the host has not yet processed the next entry then we are done */
342 	idx = ((q->hba_index + 1) % q->entry_count);
343 	if (idx == q->host_index)
344 		return NULL;
345 
346 	q->hba_index = idx;
347 	/* if the index wrapped around, toggle the valid bit */
348 	if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index)
349 		q->qe_valid = (q->qe_valid) ? 0 : 1;
350 
351 
352 	/*
353 	 * insert barrier for instruction interlock : data from the hardware
354 	 * must have the valid bit checked before it can be copied and acted
355 	 * upon. Speculative instructions were allowing a bcopy at the start
356 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
357 	 * after our return, to copy data before the valid bit check above
358 	 * was done. As such, some of the copied data was stale. The barrier
359 	 * ensures the check is before any data is copied.
360 	 */
361 	mb();
362 	return eqe;
363 }
364 
365 /**
366  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
367  * @q: The Event Queue to disable interrupts
368  *
369  **/
370 inline void
371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
372 {
373 	struct lpfc_register doorbell;
374 
375 	doorbell.word0 = 0;
376 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
377 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
378 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
379 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
380 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
386  * @q: The Event Queue to disable interrupts
387  *
388  **/
389 inline void
390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
391 {
392 	struct lpfc_register doorbell;
393 
394 	doorbell.word0 = 0;
395 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
396 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
397 }
398 
399 /**
400  * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
401  * @q: The Event Queue that the host has completed processing for.
402  * @arm: Indicates whether the host wants to arms this CQ.
403  *
404  * This routine will mark all Event Queue Entries on @q, from the last
405  * known completed entry to the last entry that was processed, as completed
406  * by clearing the valid bit for each completion queue entry. Then it will
407  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
408  * The internal host index in the @q will be updated by this routine to indicate
409  * that the host has finished processing the entries. The @arm parameter
410  * indicates that the queue should be rearmed when ringing the doorbell.
411  *
412  * This function will return the number of EQEs that were popped.
413  **/
414 uint32_t
415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
416 {
417 	uint32_t released = 0;
418 	struct lpfc_hba *phba;
419 	struct lpfc_eqe *temp_eqe;
420 	struct lpfc_register doorbell;
421 
422 	/* sanity check on queue memory */
423 	if (unlikely(!q))
424 		return 0;
425 	phba = q->phba;
426 
427 	/* while there are valid entries */
428 	while (q->hba_index != q->host_index) {
429 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
430 			temp_eqe = q->qe[q->host_index].eqe;
431 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
432 		}
433 		released++;
434 		q->host_index = ((q->host_index + 1) % q->entry_count);
435 	}
436 	if (unlikely(released == 0 && !arm))
437 		return 0;
438 
439 	/* ring doorbell for number popped */
440 	doorbell.word0 = 0;
441 	if (arm) {
442 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
443 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
444 	}
445 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
446 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
447 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
448 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
449 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
450 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
451 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
452 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
453 		readl(q->phba->sli4_hba.EQDBregaddr);
454 	return released;
455 }
456 
457 /**
458  * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ
459  * @q: The Event Queue that the host has completed processing for.
460  * @arm: Indicates whether the host wants to arms this CQ.
461  *
462  * This routine will mark all Event Queue Entries on @q, from the last
463  * known completed entry to the last entry that was processed, as completed
464  * by clearing the valid bit for each completion queue entry. Then it will
465  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
466  * The internal host index in the @q will be updated by this routine to indicate
467  * that the host has finished processing the entries. The @arm parameter
468  * indicates that the queue should be rearmed when ringing the doorbell.
469  *
470  * This function will return the number of EQEs that were popped.
471  **/
472 uint32_t
473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm)
474 {
475 	uint32_t released = 0;
476 	struct lpfc_hba *phba;
477 	struct lpfc_eqe *temp_eqe;
478 	struct lpfc_register doorbell;
479 
480 	/* sanity check on queue memory */
481 	if (unlikely(!q))
482 		return 0;
483 	phba = q->phba;
484 
485 	/* while there are valid entries */
486 	while (q->hba_index != q->host_index) {
487 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
488 			temp_eqe = q->qe[q->host_index].eqe;
489 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
490 		}
491 		released++;
492 		q->host_index = ((q->host_index + 1) % q->entry_count);
493 	}
494 	if (unlikely(released == 0 && !arm))
495 		return 0;
496 
497 	/* ring doorbell for number popped */
498 	doorbell.word0 = 0;
499 	if (arm)
500 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
501 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released);
502 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
503 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
504 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
505 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
506 		readl(q->phba->sli4_hba.EQDBregaddr);
507 	return released;
508 }
509 
510 /**
511  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
512  * @q: The Completion Queue to get the first valid CQE from
513  *
514  * This routine will get the first valid Completion Queue Entry from @q, update
515  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
516  * the Queue (no more work to do), or the Queue is full of CQEs that have been
517  * processed, but not popped back to the HBA then this routine will return NULL.
518  **/
519 static struct lpfc_cqe *
520 lpfc_sli4_cq_get(struct lpfc_queue *q)
521 {
522 	struct lpfc_hba *phba;
523 	struct lpfc_cqe *cqe;
524 	uint32_t idx;
525 
526 	/* sanity check on queue memory */
527 	if (unlikely(!q))
528 		return NULL;
529 	phba = q->phba;
530 	cqe = q->qe[q->hba_index].cqe;
531 
532 	/* If the next CQE is not valid then we are done */
533 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
534 		return NULL;
535 	/* If the host has not yet processed the next entry then we are done */
536 	idx = ((q->hba_index + 1) % q->entry_count);
537 	if (idx == q->host_index)
538 		return NULL;
539 
540 	q->hba_index = idx;
541 	/* if the index wrapped around, toggle the valid bit */
542 	if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index)
543 		q->qe_valid = (q->qe_valid) ? 0 : 1;
544 
545 	/*
546 	 * insert barrier for instruction interlock : data from the hardware
547 	 * must have the valid bit checked before it can be copied and acted
548 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
549 	 * instructions allowing action on content before valid bit checked,
550 	 * add barrier here as well. May not be needed as "content" is a
551 	 * single 32-bit entity here (vs multi word structure for cq's).
552 	 */
553 	mb();
554 	return cqe;
555 }
556 
557 /**
558  * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
559  * @q: The Completion Queue that the host has completed processing for.
560  * @arm: Indicates whether the host wants to arms this CQ.
561  *
562  * This routine will mark all Completion queue entries on @q, from the last
563  * known completed entry to the last entry that was processed, as completed
564  * by clearing the valid bit for each completion queue entry. Then it will
565  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
566  * The internal host index in the @q will be updated by this routine to indicate
567  * that the host has finished processing the entries. The @arm parameter
568  * indicates that the queue should be rearmed when ringing the doorbell.
569  *
570  * This function will return the number of CQEs that were released.
571  **/
572 uint32_t
573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
574 {
575 	uint32_t released = 0;
576 	struct lpfc_hba *phba;
577 	struct lpfc_cqe *temp_qe;
578 	struct lpfc_register doorbell;
579 
580 	/* sanity check on queue memory */
581 	if (unlikely(!q))
582 		return 0;
583 	phba = q->phba;
584 
585 	/* while there are valid entries */
586 	while (q->hba_index != q->host_index) {
587 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
588 			temp_qe = q->qe[q->host_index].cqe;
589 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
590 		}
591 		released++;
592 		q->host_index = ((q->host_index + 1) % q->entry_count);
593 	}
594 	if (unlikely(released == 0 && !arm))
595 		return 0;
596 
597 	/* ring doorbell for number popped */
598 	doorbell.word0 = 0;
599 	if (arm)
600 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
601 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
602 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
603 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
604 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
605 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
606 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
607 	return released;
608 }
609 
610 /**
611  * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ
612  * @q: The Completion Queue that the host has completed processing for.
613  * @arm: Indicates whether the host wants to arms this CQ.
614  *
615  * This routine will mark all Completion queue entries on @q, from the last
616  * known completed entry to the last entry that was processed, as completed
617  * by clearing the valid bit for each completion queue entry. Then it will
618  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
619  * The internal host index in the @q will be updated by this routine to indicate
620  * that the host has finished processing the entries. The @arm parameter
621  * indicates that the queue should be rearmed when ringing the doorbell.
622  *
623  * This function will return the number of CQEs that were released.
624  **/
625 uint32_t
626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm)
627 {
628 	uint32_t released = 0;
629 	struct lpfc_hba *phba;
630 	struct lpfc_cqe *temp_qe;
631 	struct lpfc_register doorbell;
632 
633 	/* sanity check on queue memory */
634 	if (unlikely(!q))
635 		return 0;
636 	phba = q->phba;
637 
638 	/* while there are valid entries */
639 	while (q->hba_index != q->host_index) {
640 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
641 			temp_qe = q->qe[q->host_index].cqe;
642 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
643 		}
644 		released++;
645 		q->host_index = ((q->host_index + 1) % q->entry_count);
646 	}
647 	if (unlikely(released == 0 && !arm))
648 		return 0;
649 
650 	/* ring doorbell for number popped */
651 	doorbell.word0 = 0;
652 	if (arm)
653 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
654 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released);
655 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
656 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
657 	return released;
658 }
659 
660 /**
661  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
662  * @q: The Header Receive Queue to operate on.
663  * @wqe: The Receive Queue Entry to put on the Receive queue.
664  *
665  * This routine will copy the contents of @wqe to the next available entry on
666  * the @q. This function will then ring the Receive Queue Doorbell to signal the
667  * HBA to start processing the Receive Queue Entry. This function returns the
668  * index that the rqe was copied to if successful. If no entries are available
669  * on @q then this function will return -ENOMEM.
670  * The caller is expected to hold the hbalock when calling this routine.
671  **/
672 int
673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
674 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
675 {
676 	struct lpfc_rqe *temp_hrqe;
677 	struct lpfc_rqe *temp_drqe;
678 	struct lpfc_register doorbell;
679 	int hq_put_index;
680 	int dq_put_index;
681 
682 	/* sanity check on queue memory */
683 	if (unlikely(!hq) || unlikely(!dq))
684 		return -ENOMEM;
685 	hq_put_index = hq->host_index;
686 	dq_put_index = dq->host_index;
687 	temp_hrqe = hq->qe[hq_put_index].rqe;
688 	temp_drqe = dq->qe[dq_put_index].rqe;
689 
690 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
691 		return -EINVAL;
692 	if (hq_put_index != dq_put_index)
693 		return -EINVAL;
694 	/* If the host has not yet processed the next entry then we are done */
695 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
696 		return -EBUSY;
697 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
698 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
699 
700 	/* Update the host index to point to the next slot */
701 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
702 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
703 	hq->RQ_buf_posted++;
704 
705 	/* Ring The Header Receive Queue Doorbell */
706 	if (!(hq->host_index % hq->entry_repost)) {
707 		doorbell.word0 = 0;
708 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
709 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
710 			       hq->entry_repost);
711 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
712 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
713 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
714 			       hq->entry_repost);
715 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
716 			       hq->host_index);
717 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
718 		} else {
719 			return -EINVAL;
720 		}
721 		writel(doorbell.word0, hq->db_regaddr);
722 	}
723 	return hq_put_index;
724 }
725 
726 /**
727  * lpfc_sli4_rq_release - Updates internal hba index for RQ
728  * @q: The Header Receive Queue to operate on.
729  *
730  * This routine will update the HBA index of a queue to reflect consumption of
731  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
732  * consumed an entry the host calls this function to update the queue's
733  * internal pointers. This routine returns the number of entries that were
734  * consumed by the HBA.
735  **/
736 static uint32_t
737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
738 {
739 	/* sanity check on queue memory */
740 	if (unlikely(!hq) || unlikely(!dq))
741 		return 0;
742 
743 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
744 		return 0;
745 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
746 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
747 	return 1;
748 }
749 
750 /**
751  * lpfc_cmd_iocb - Get next command iocb entry in the ring
752  * @phba: Pointer to HBA context object.
753  * @pring: Pointer to driver SLI ring object.
754  *
755  * This function returns pointer to next command iocb entry
756  * in the command ring. The caller must hold hbalock to prevent
757  * other threads consume the next command iocb.
758  * SLI-2/SLI-3 provide different sized iocbs.
759  **/
760 static inline IOCB_t *
761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
762 {
763 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
764 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
765 }
766 
767 /**
768  * lpfc_resp_iocb - Get next response iocb entry in the ring
769  * @phba: Pointer to HBA context object.
770  * @pring: Pointer to driver SLI ring object.
771  *
772  * This function returns pointer to next response iocb entry
773  * in the response ring. The caller must hold hbalock to make sure
774  * that no other thread consume the next response iocb.
775  * SLI-2/SLI-3 provide different sized iocbs.
776  **/
777 static inline IOCB_t *
778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
779 {
780 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
781 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
782 }
783 
784 /**
785  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
786  * @phba: Pointer to HBA context object.
787  *
788  * This function is called with hbalock held. This function
789  * allocates a new driver iocb object from the iocb pool. If the
790  * allocation is successful, it returns pointer to the newly
791  * allocated iocb object else it returns NULL.
792  **/
793 struct lpfc_iocbq *
794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
795 {
796 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
797 	struct lpfc_iocbq * iocbq = NULL;
798 
799 	lockdep_assert_held(&phba->hbalock);
800 
801 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
802 	if (iocbq)
803 		phba->iocb_cnt++;
804 	if (phba->iocb_cnt > phba->iocb_max)
805 		phba->iocb_max = phba->iocb_cnt;
806 	return iocbq;
807 }
808 
809 /**
810  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
811  * @phba: Pointer to HBA context object.
812  * @xritag: XRI value.
813  *
814  * This function clears the sglq pointer from the array of acive
815  * sglq's. The xritag that is passed in is used to index into the
816  * array. Before the xritag can be used it needs to be adjusted
817  * by subtracting the xribase.
818  *
819  * Returns sglq ponter = success, NULL = Failure.
820  **/
821 struct lpfc_sglq *
822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
823 {
824 	struct lpfc_sglq *sglq;
825 
826 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
827 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
828 	return sglq;
829 }
830 
831 /**
832  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
833  * @phba: Pointer to HBA context object.
834  * @xritag: XRI value.
835  *
836  * This function returns the sglq pointer from the array of acive
837  * sglq's. The xritag that is passed in is used to index into the
838  * array. Before the xritag can be used it needs to be adjusted
839  * by subtracting the xribase.
840  *
841  * Returns sglq ponter = success, NULL = Failure.
842  **/
843 struct lpfc_sglq *
844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
845 {
846 	struct lpfc_sglq *sglq;
847 
848 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
849 	return sglq;
850 }
851 
852 /**
853  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
854  * @phba: Pointer to HBA context object.
855  * @xritag: xri used in this exchange.
856  * @rrq: The RRQ to be cleared.
857  *
858  **/
859 void
860 lpfc_clr_rrq_active(struct lpfc_hba *phba,
861 		    uint16_t xritag,
862 		    struct lpfc_node_rrq *rrq)
863 {
864 	struct lpfc_nodelist *ndlp = NULL;
865 
866 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
867 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
868 
869 	/* The target DID could have been swapped (cable swap)
870 	 * we should use the ndlp from the findnode if it is
871 	 * available.
872 	 */
873 	if ((!ndlp) && rrq->ndlp)
874 		ndlp = rrq->ndlp;
875 
876 	if (!ndlp)
877 		goto out;
878 
879 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
880 		rrq->send_rrq = 0;
881 		rrq->xritag = 0;
882 		rrq->rrq_stop_time = 0;
883 	}
884 out:
885 	mempool_free(rrq, phba->rrq_pool);
886 }
887 
888 /**
889  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
890  * @phba: Pointer to HBA context object.
891  *
892  * This function is called with hbalock held. This function
893  * Checks if stop_time (ratov from setting rrq active) has
894  * been reached, if it has and the send_rrq flag is set then
895  * it will call lpfc_send_rrq. If the send_rrq flag is not set
896  * then it will just call the routine to clear the rrq and
897  * free the rrq resource.
898  * The timer is set to the next rrq that is going to expire before
899  * leaving the routine.
900  *
901  **/
902 void
903 lpfc_handle_rrq_active(struct lpfc_hba *phba)
904 {
905 	struct lpfc_node_rrq *rrq;
906 	struct lpfc_node_rrq *nextrrq;
907 	unsigned long next_time;
908 	unsigned long iflags;
909 	LIST_HEAD(send_rrq);
910 
911 	spin_lock_irqsave(&phba->hbalock, iflags);
912 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
913 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
914 	list_for_each_entry_safe(rrq, nextrrq,
915 				 &phba->active_rrq_list, list) {
916 		if (time_after(jiffies, rrq->rrq_stop_time))
917 			list_move(&rrq->list, &send_rrq);
918 		else if (time_before(rrq->rrq_stop_time, next_time))
919 			next_time = rrq->rrq_stop_time;
920 	}
921 	spin_unlock_irqrestore(&phba->hbalock, iflags);
922 	if ((!list_empty(&phba->active_rrq_list)) &&
923 	    (!(phba->pport->load_flag & FC_UNLOADING)))
924 		mod_timer(&phba->rrq_tmr, next_time);
925 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
926 		list_del(&rrq->list);
927 		if (!rrq->send_rrq)
928 			/* this call will free the rrq */
929 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
930 		else if (lpfc_send_rrq(phba, rrq)) {
931 			/* if we send the rrq then the completion handler
932 			*  will clear the bit in the xribitmap.
933 			*/
934 			lpfc_clr_rrq_active(phba, rrq->xritag,
935 					    rrq);
936 		}
937 	}
938 }
939 
940 /**
941  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
942  * @vport: Pointer to vport context object.
943  * @xri: The xri used in the exchange.
944  * @did: The targets DID for this exchange.
945  *
946  * returns NULL = rrq not found in the phba->active_rrq_list.
947  *         rrq = rrq for this xri and target.
948  **/
949 struct lpfc_node_rrq *
950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
951 {
952 	struct lpfc_hba *phba = vport->phba;
953 	struct lpfc_node_rrq *rrq;
954 	struct lpfc_node_rrq *nextrrq;
955 	unsigned long iflags;
956 
957 	if (phba->sli_rev != LPFC_SLI_REV4)
958 		return NULL;
959 	spin_lock_irqsave(&phba->hbalock, iflags);
960 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
961 		if (rrq->vport == vport && rrq->xritag == xri &&
962 				rrq->nlp_DID == did){
963 			list_del(&rrq->list);
964 			spin_unlock_irqrestore(&phba->hbalock, iflags);
965 			return rrq;
966 		}
967 	}
968 	spin_unlock_irqrestore(&phba->hbalock, iflags);
969 	return NULL;
970 }
971 
972 /**
973  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
974  * @vport: Pointer to vport context object.
975  * @ndlp: Pointer to the lpfc_node_list structure.
976  * If ndlp is NULL Remove all active RRQs for this vport from the
977  * phba->active_rrq_list and clear the rrq.
978  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
979  **/
980 void
981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
982 
983 {
984 	struct lpfc_hba *phba = vport->phba;
985 	struct lpfc_node_rrq *rrq;
986 	struct lpfc_node_rrq *nextrrq;
987 	unsigned long iflags;
988 	LIST_HEAD(rrq_list);
989 
990 	if (phba->sli_rev != LPFC_SLI_REV4)
991 		return;
992 	if (!ndlp) {
993 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
994 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
995 	}
996 	spin_lock_irqsave(&phba->hbalock, iflags);
997 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
998 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
999 			list_move(&rrq->list, &rrq_list);
1000 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1001 
1002 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1003 		list_del(&rrq->list);
1004 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1005 	}
1006 }
1007 
1008 /**
1009  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1010  * @phba: Pointer to HBA context object.
1011  * @ndlp: Targets nodelist pointer for this exchange.
1012  * @xritag the xri in the bitmap to test.
1013  *
1014  * This function is called with hbalock held. This function
1015  * returns 0 = rrq not active for this xri
1016  *         1 = rrq is valid for this xri.
1017  **/
1018 int
1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1020 			uint16_t  xritag)
1021 {
1022 	lockdep_assert_held(&phba->hbalock);
1023 	if (!ndlp)
1024 		return 0;
1025 	if (!ndlp->active_rrqs_xri_bitmap)
1026 		return 0;
1027 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1028 			return 1;
1029 	else
1030 		return 0;
1031 }
1032 
1033 /**
1034  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1035  * @phba: Pointer to HBA context object.
1036  * @ndlp: nodelist pointer for this target.
1037  * @xritag: xri used in this exchange.
1038  * @rxid: Remote Exchange ID.
1039  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1040  *
1041  * This function takes the hbalock.
1042  * The active bit is always set in the active rrq xri_bitmap even
1043  * if there is no slot avaiable for the other rrq information.
1044  *
1045  * returns 0 rrq actived for this xri
1046  *         < 0 No memory or invalid ndlp.
1047  **/
1048 int
1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1050 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1051 {
1052 	unsigned long iflags;
1053 	struct lpfc_node_rrq *rrq;
1054 	int empty;
1055 
1056 	if (!ndlp)
1057 		return -EINVAL;
1058 
1059 	if (!phba->cfg_enable_rrq)
1060 		return -EINVAL;
1061 
1062 	spin_lock_irqsave(&phba->hbalock, iflags);
1063 	if (phba->pport->load_flag & FC_UNLOADING) {
1064 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * set the active bit even if there is no mem available.
1070 	 */
1071 	if (NLP_CHK_FREE_REQ(ndlp))
1072 		goto out;
1073 
1074 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1075 		goto out;
1076 
1077 	if (!ndlp->active_rrqs_xri_bitmap)
1078 		goto out;
1079 
1080 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1081 		goto out;
1082 
1083 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1084 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1085 	if (!rrq) {
1086 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1087 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1088 				" DID:0x%x Send:%d\n",
1089 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1090 		return -EINVAL;
1091 	}
1092 	if (phba->cfg_enable_rrq == 1)
1093 		rrq->send_rrq = send_rrq;
1094 	else
1095 		rrq->send_rrq = 0;
1096 	rrq->xritag = xritag;
1097 	rrq->rrq_stop_time = jiffies +
1098 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1099 	rrq->ndlp = ndlp;
1100 	rrq->nlp_DID = ndlp->nlp_DID;
1101 	rrq->vport = ndlp->vport;
1102 	rrq->rxid = rxid;
1103 	spin_lock_irqsave(&phba->hbalock, iflags);
1104 	empty = list_empty(&phba->active_rrq_list);
1105 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1106 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1107 	if (empty)
1108 		lpfc_worker_wake_up(phba);
1109 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1110 	return 0;
1111 out:
1112 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1113 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1114 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1115 			" DID:0x%x Send:%d\n",
1116 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1117 	return -EINVAL;
1118 }
1119 
1120 /**
1121  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1122  * @phba: Pointer to HBA context object.
1123  * @piocb: Pointer to the iocbq.
1124  *
1125  * This function is called with the ring lock held. This function
1126  * gets a new driver sglq object from the sglq list. If the
1127  * list is not empty then it is successful, it returns pointer to the newly
1128  * allocated sglq object else it returns NULL.
1129  **/
1130 static struct lpfc_sglq *
1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1132 {
1133 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1134 	struct lpfc_sglq *sglq = NULL;
1135 	struct lpfc_sglq *start_sglq = NULL;
1136 	struct lpfc_scsi_buf *lpfc_cmd;
1137 	struct lpfc_nodelist *ndlp;
1138 	int found = 0;
1139 
1140 	lockdep_assert_held(&phba->hbalock);
1141 
1142 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1143 		lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
1144 		ndlp = lpfc_cmd->rdata->pnode;
1145 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1146 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1147 		ndlp = piocbq->context_un.ndlp;
1148 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1149 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1150 			ndlp = NULL;
1151 		else
1152 			ndlp = piocbq->context_un.ndlp;
1153 	} else {
1154 		ndlp = piocbq->context1;
1155 	}
1156 
1157 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1158 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1159 	start_sglq = sglq;
1160 	while (!found) {
1161 		if (!sglq)
1162 			break;
1163 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1164 		    test_bit(sglq->sli4_lxritag,
1165 		    ndlp->active_rrqs_xri_bitmap)) {
1166 			/* This xri has an rrq outstanding for this DID.
1167 			 * put it back in the list and get another xri.
1168 			 */
1169 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1170 			sglq = NULL;
1171 			list_remove_head(lpfc_els_sgl_list, sglq,
1172 						struct lpfc_sglq, list);
1173 			if (sglq == start_sglq) {
1174 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1175 				sglq = NULL;
1176 				break;
1177 			} else
1178 				continue;
1179 		}
1180 		sglq->ndlp = ndlp;
1181 		found = 1;
1182 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1183 		sglq->state = SGL_ALLOCATED;
1184 	}
1185 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1186 	return sglq;
1187 }
1188 
1189 /**
1190  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1191  * @phba: Pointer to HBA context object.
1192  * @piocb: Pointer to the iocbq.
1193  *
1194  * This function is called with the sgl_list lock held. This function
1195  * gets a new driver sglq object from the sglq list. If the
1196  * list is not empty then it is successful, it returns pointer to the newly
1197  * allocated sglq object else it returns NULL.
1198  **/
1199 struct lpfc_sglq *
1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1201 {
1202 	struct list_head *lpfc_nvmet_sgl_list;
1203 	struct lpfc_sglq *sglq = NULL;
1204 
1205 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1206 
1207 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1208 
1209 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1210 	if (!sglq)
1211 		return NULL;
1212 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1213 	sglq->state = SGL_ALLOCATED;
1214 	return sglq;
1215 }
1216 
1217 /**
1218  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1219  * @phba: Pointer to HBA context object.
1220  *
1221  * This function is called with no lock held. This function
1222  * allocates a new driver iocb object from the iocb pool. If the
1223  * allocation is successful, it returns pointer to the newly
1224  * allocated iocb object else it returns NULL.
1225  **/
1226 struct lpfc_iocbq *
1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1228 {
1229 	struct lpfc_iocbq * iocbq = NULL;
1230 	unsigned long iflags;
1231 
1232 	spin_lock_irqsave(&phba->hbalock, iflags);
1233 	iocbq = __lpfc_sli_get_iocbq(phba);
1234 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1235 	return iocbq;
1236 }
1237 
1238 /**
1239  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1240  * @phba: Pointer to HBA context object.
1241  * @iocbq: Pointer to driver iocb object.
1242  *
1243  * This function is called with hbalock held to release driver
1244  * iocb object to the iocb pool. The iotag in the iocb object
1245  * does not change for each use of the iocb object. This function
1246  * clears all other fields of the iocb object when it is freed.
1247  * The sqlq structure that holds the xritag and phys and virtual
1248  * mappings for the scatter gather list is retrieved from the
1249  * active array of sglq. The get of the sglq pointer also clears
1250  * the entry in the array. If the status of the IO indiactes that
1251  * this IO was aborted then the sglq entry it put on the
1252  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1253  * IO has good status or fails for any other reason then the sglq
1254  * entry is added to the free list (lpfc_els_sgl_list).
1255  **/
1256 static void
1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1258 {
1259 	struct lpfc_sglq *sglq;
1260 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1261 	unsigned long iflag = 0;
1262 	struct lpfc_sli_ring *pring;
1263 
1264 	lockdep_assert_held(&phba->hbalock);
1265 
1266 	if (iocbq->sli4_xritag == NO_XRI)
1267 		sglq = NULL;
1268 	else
1269 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1270 
1271 
1272 	if (sglq)  {
1273 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1274 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 					  iflag);
1276 			sglq->state = SGL_FREED;
1277 			sglq->ndlp = NULL;
1278 			list_add_tail(&sglq->list,
1279 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1280 			spin_unlock_irqrestore(
1281 				&phba->sli4_hba.sgl_list_lock, iflag);
1282 			goto out;
1283 		}
1284 
1285 		pring = phba->sli4_hba.els_wq->pring;
1286 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1287 			(sglq->state != SGL_XRI_ABORTED)) {
1288 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1289 					  iflag);
1290 			list_add(&sglq->list,
1291 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1292 			spin_unlock_irqrestore(
1293 				&phba->sli4_hba.sgl_list_lock, iflag);
1294 		} else {
1295 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1296 					  iflag);
1297 			sglq->state = SGL_FREED;
1298 			sglq->ndlp = NULL;
1299 			list_add_tail(&sglq->list,
1300 				      &phba->sli4_hba.lpfc_els_sgl_list);
1301 			spin_unlock_irqrestore(
1302 				&phba->sli4_hba.sgl_list_lock, iflag);
1303 
1304 			/* Check if TXQ queue needs to be serviced */
1305 			if (!list_empty(&pring->txq))
1306 				lpfc_worker_wake_up(phba);
1307 		}
1308 	}
1309 
1310 out:
1311 	/*
1312 	 * Clean all volatile data fields, preserve iotag and node struct.
1313 	 */
1314 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1315 	iocbq->sli4_lxritag = NO_XRI;
1316 	iocbq->sli4_xritag = NO_XRI;
1317 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1318 			      LPFC_IO_NVME_LS);
1319 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1320 }
1321 
1322 
1323 /**
1324  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1325  * @phba: Pointer to HBA context object.
1326  * @iocbq: Pointer to driver iocb object.
1327  *
1328  * This function is called with hbalock held to release driver
1329  * iocb object to the iocb pool. The iotag in the iocb object
1330  * does not change for each use of the iocb object. This function
1331  * clears all other fields of the iocb object when it is freed.
1332  **/
1333 static void
1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1335 {
1336 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1337 
1338 	lockdep_assert_held(&phba->hbalock);
1339 
1340 	/*
1341 	 * Clean all volatile data fields, preserve iotag and node struct.
1342 	 */
1343 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1344 	iocbq->sli4_xritag = NO_XRI;
1345 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1346 }
1347 
1348 /**
1349  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1350  * @phba: Pointer to HBA context object.
1351  * @iocbq: Pointer to driver iocb object.
1352  *
1353  * This function is called with hbalock held to release driver
1354  * iocb object to the iocb pool. The iotag in the iocb object
1355  * does not change for each use of the iocb object. This function
1356  * clears all other fields of the iocb object when it is freed.
1357  **/
1358 static void
1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1360 {
1361 	lockdep_assert_held(&phba->hbalock);
1362 
1363 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1364 	phba->iocb_cnt--;
1365 }
1366 
1367 /**
1368  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1369  * @phba: Pointer to HBA context object.
1370  * @iocbq: Pointer to driver iocb object.
1371  *
1372  * This function is called with no lock held to release the iocb to
1373  * iocb pool.
1374  **/
1375 void
1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 	unsigned long iflags;
1379 
1380 	/*
1381 	 * Clean all volatile data fields, preserve iotag and node struct.
1382 	 */
1383 	spin_lock_irqsave(&phba->hbalock, iflags);
1384 	__lpfc_sli_release_iocbq(phba, iocbq);
1385 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1386 }
1387 
1388 /**
1389  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1390  * @phba: Pointer to HBA context object.
1391  * @iocblist: List of IOCBs.
1392  * @ulpstatus: ULP status in IOCB command field.
1393  * @ulpWord4: ULP word-4 in IOCB command field.
1394  *
1395  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1396  * on the list by invoking the complete callback function associated with the
1397  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1398  * fields.
1399  **/
1400 void
1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1402 		      uint32_t ulpstatus, uint32_t ulpWord4)
1403 {
1404 	struct lpfc_iocbq *piocb;
1405 
1406 	while (!list_empty(iocblist)) {
1407 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1408 		if (!piocb->iocb_cmpl)
1409 			lpfc_sli_release_iocbq(phba, piocb);
1410 		else {
1411 			piocb->iocb.ulpStatus = ulpstatus;
1412 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1413 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1414 		}
1415 	}
1416 	return;
1417 }
1418 
1419 /**
1420  * lpfc_sli_iocb_cmd_type - Get the iocb type
1421  * @iocb_cmnd: iocb command code.
1422  *
1423  * This function is called by ring event handler function to get the iocb type.
1424  * This function translates the iocb command to an iocb command type used to
1425  * decide the final disposition of each completed IOCB.
1426  * The function returns
1427  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1428  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1429  * LPFC_ABORT_IOCB   if it is an abort iocb
1430  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1431  *
1432  * The caller is not required to hold any lock.
1433  **/
1434 static lpfc_iocb_type
1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1436 {
1437 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1438 
1439 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1440 		return 0;
1441 
1442 	switch (iocb_cmnd) {
1443 	case CMD_XMIT_SEQUENCE_CR:
1444 	case CMD_XMIT_SEQUENCE_CX:
1445 	case CMD_XMIT_BCAST_CN:
1446 	case CMD_XMIT_BCAST_CX:
1447 	case CMD_ELS_REQUEST_CR:
1448 	case CMD_ELS_REQUEST_CX:
1449 	case CMD_CREATE_XRI_CR:
1450 	case CMD_CREATE_XRI_CX:
1451 	case CMD_GET_RPI_CN:
1452 	case CMD_XMIT_ELS_RSP_CX:
1453 	case CMD_GET_RPI_CR:
1454 	case CMD_FCP_IWRITE_CR:
1455 	case CMD_FCP_IWRITE_CX:
1456 	case CMD_FCP_IREAD_CR:
1457 	case CMD_FCP_IREAD_CX:
1458 	case CMD_FCP_ICMND_CR:
1459 	case CMD_FCP_ICMND_CX:
1460 	case CMD_FCP_TSEND_CX:
1461 	case CMD_FCP_TRSP_CX:
1462 	case CMD_FCP_TRECEIVE_CX:
1463 	case CMD_FCP_AUTO_TRSP_CX:
1464 	case CMD_ADAPTER_MSG:
1465 	case CMD_ADAPTER_DUMP:
1466 	case CMD_XMIT_SEQUENCE64_CR:
1467 	case CMD_XMIT_SEQUENCE64_CX:
1468 	case CMD_XMIT_BCAST64_CN:
1469 	case CMD_XMIT_BCAST64_CX:
1470 	case CMD_ELS_REQUEST64_CR:
1471 	case CMD_ELS_REQUEST64_CX:
1472 	case CMD_FCP_IWRITE64_CR:
1473 	case CMD_FCP_IWRITE64_CX:
1474 	case CMD_FCP_IREAD64_CR:
1475 	case CMD_FCP_IREAD64_CX:
1476 	case CMD_FCP_ICMND64_CR:
1477 	case CMD_FCP_ICMND64_CX:
1478 	case CMD_FCP_TSEND64_CX:
1479 	case CMD_FCP_TRSP64_CX:
1480 	case CMD_FCP_TRECEIVE64_CX:
1481 	case CMD_GEN_REQUEST64_CR:
1482 	case CMD_GEN_REQUEST64_CX:
1483 	case CMD_XMIT_ELS_RSP64_CX:
1484 	case DSSCMD_IWRITE64_CR:
1485 	case DSSCMD_IWRITE64_CX:
1486 	case DSSCMD_IREAD64_CR:
1487 	case DSSCMD_IREAD64_CX:
1488 		type = LPFC_SOL_IOCB;
1489 		break;
1490 	case CMD_ABORT_XRI_CN:
1491 	case CMD_ABORT_XRI_CX:
1492 	case CMD_CLOSE_XRI_CN:
1493 	case CMD_CLOSE_XRI_CX:
1494 	case CMD_XRI_ABORTED_CX:
1495 	case CMD_ABORT_MXRI64_CN:
1496 	case CMD_XMIT_BLS_RSP64_CX:
1497 		type = LPFC_ABORT_IOCB;
1498 		break;
1499 	case CMD_RCV_SEQUENCE_CX:
1500 	case CMD_RCV_ELS_REQ_CX:
1501 	case CMD_RCV_SEQUENCE64_CX:
1502 	case CMD_RCV_ELS_REQ64_CX:
1503 	case CMD_ASYNC_STATUS:
1504 	case CMD_IOCB_RCV_SEQ64_CX:
1505 	case CMD_IOCB_RCV_ELS64_CX:
1506 	case CMD_IOCB_RCV_CONT64_CX:
1507 	case CMD_IOCB_RET_XRI64_CX:
1508 		type = LPFC_UNSOL_IOCB;
1509 		break;
1510 	case CMD_IOCB_XMIT_MSEQ64_CR:
1511 	case CMD_IOCB_XMIT_MSEQ64_CX:
1512 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1513 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1514 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1515 	case CMD_IOCB_ABORT_EXTENDED_CN:
1516 	case CMD_IOCB_RET_HBQE64_CN:
1517 	case CMD_IOCB_FCP_IBIDIR64_CR:
1518 	case CMD_IOCB_FCP_IBIDIR64_CX:
1519 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1520 	case CMD_IOCB_LOGENTRY_CN:
1521 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1522 		printk("%s - Unhandled SLI-3 Command x%x\n",
1523 				__func__, iocb_cmnd);
1524 		type = LPFC_UNKNOWN_IOCB;
1525 		break;
1526 	default:
1527 		type = LPFC_UNKNOWN_IOCB;
1528 		break;
1529 	}
1530 
1531 	return type;
1532 }
1533 
1534 /**
1535  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1536  * @phba: Pointer to HBA context object.
1537  *
1538  * This function is called from SLI initialization code
1539  * to configure every ring of the HBA's SLI interface. The
1540  * caller is not required to hold any lock. This function issues
1541  * a config_ring mailbox command for each ring.
1542  * This function returns zero if successful else returns a negative
1543  * error code.
1544  **/
1545 static int
1546 lpfc_sli_ring_map(struct lpfc_hba *phba)
1547 {
1548 	struct lpfc_sli *psli = &phba->sli;
1549 	LPFC_MBOXQ_t *pmb;
1550 	MAILBOX_t *pmbox;
1551 	int i, rc, ret = 0;
1552 
1553 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1554 	if (!pmb)
1555 		return -ENOMEM;
1556 	pmbox = &pmb->u.mb;
1557 	phba->link_state = LPFC_INIT_MBX_CMDS;
1558 	for (i = 0; i < psli->num_rings; i++) {
1559 		lpfc_config_ring(phba, i, pmb);
1560 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1561 		if (rc != MBX_SUCCESS) {
1562 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1563 					"0446 Adapter failed to init (%d), "
1564 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1565 					"ring %d\n",
1566 					rc, pmbox->mbxCommand,
1567 					pmbox->mbxStatus, i);
1568 			phba->link_state = LPFC_HBA_ERROR;
1569 			ret = -ENXIO;
1570 			break;
1571 		}
1572 	}
1573 	mempool_free(pmb, phba->mbox_mem_pool);
1574 	return ret;
1575 }
1576 
1577 /**
1578  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1579  * @phba: Pointer to HBA context object.
1580  * @pring: Pointer to driver SLI ring object.
1581  * @piocb: Pointer to the driver iocb object.
1582  *
1583  * This function is called with hbalock held. The function adds the
1584  * new iocb to txcmplq of the given ring. This function always returns
1585  * 0. If this function is called for ELS ring, this function checks if
1586  * there is a vport associated with the ELS command. This function also
1587  * starts els_tmofunc timer if this is an ELS command.
1588  **/
1589 static int
1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1591 			struct lpfc_iocbq *piocb)
1592 {
1593 	lockdep_assert_held(&phba->hbalock);
1594 
1595 	BUG_ON(!piocb);
1596 
1597 	list_add_tail(&piocb->list, &pring->txcmplq);
1598 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1599 
1600 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1601 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1602 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1603 		BUG_ON(!piocb->vport);
1604 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1605 			mod_timer(&piocb->vport->els_tmofunc,
1606 				  jiffies +
1607 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * lpfc_sli_ringtx_get - Get first element of the txq
1615  * @phba: Pointer to HBA context object.
1616  * @pring: Pointer to driver SLI ring object.
1617  *
1618  * This function is called with hbalock held to get next
1619  * iocb in txq of the given ring. If there is any iocb in
1620  * the txq, the function returns first iocb in the list after
1621  * removing the iocb from the list, else it returns NULL.
1622  **/
1623 struct lpfc_iocbq *
1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1625 {
1626 	struct lpfc_iocbq *cmd_iocb;
1627 
1628 	lockdep_assert_held(&phba->hbalock);
1629 
1630 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1631 	return cmd_iocb;
1632 }
1633 
1634 /**
1635  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1636  * @phba: Pointer to HBA context object.
1637  * @pring: Pointer to driver SLI ring object.
1638  *
1639  * This function is called with hbalock held and the caller must post the
1640  * iocb without releasing the lock. If the caller releases the lock,
1641  * iocb slot returned by the function is not guaranteed to be available.
1642  * The function returns pointer to the next available iocb slot if there
1643  * is available slot in the ring, else it returns NULL.
1644  * If the get index of the ring is ahead of the put index, the function
1645  * will post an error attention event to the worker thread to take the
1646  * HBA to offline state.
1647  **/
1648 static IOCB_t *
1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1650 {
1651 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1652 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1653 
1654 	lockdep_assert_held(&phba->hbalock);
1655 
1656 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1657 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1658 		pring->sli.sli3.next_cmdidx = 0;
1659 
1660 	if (unlikely(pring->sli.sli3.local_getidx ==
1661 		pring->sli.sli3.next_cmdidx)) {
1662 
1663 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1664 
1665 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1666 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1667 					"0315 Ring %d issue: portCmdGet %d "
1668 					"is bigger than cmd ring %d\n",
1669 					pring->ringno,
1670 					pring->sli.sli3.local_getidx,
1671 					max_cmd_idx);
1672 
1673 			phba->link_state = LPFC_HBA_ERROR;
1674 			/*
1675 			 * All error attention handlers are posted to
1676 			 * worker thread
1677 			 */
1678 			phba->work_ha |= HA_ERATT;
1679 			phba->work_hs = HS_FFER3;
1680 
1681 			lpfc_worker_wake_up(phba);
1682 
1683 			return NULL;
1684 		}
1685 
1686 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1687 			return NULL;
1688 	}
1689 
1690 	return lpfc_cmd_iocb(phba, pring);
1691 }
1692 
1693 /**
1694  * lpfc_sli_next_iotag - Get an iotag for the iocb
1695  * @phba: Pointer to HBA context object.
1696  * @iocbq: Pointer to driver iocb object.
1697  *
1698  * This function gets an iotag for the iocb. If there is no unused iotag and
1699  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1700  * array and assigns a new iotag.
1701  * The function returns the allocated iotag if successful, else returns zero.
1702  * Zero is not a valid iotag.
1703  * The caller is not required to hold any lock.
1704  **/
1705 uint16_t
1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1707 {
1708 	struct lpfc_iocbq **new_arr;
1709 	struct lpfc_iocbq **old_arr;
1710 	size_t new_len;
1711 	struct lpfc_sli *psli = &phba->sli;
1712 	uint16_t iotag;
1713 
1714 	spin_lock_irq(&phba->hbalock);
1715 	iotag = psli->last_iotag;
1716 	if(++iotag < psli->iocbq_lookup_len) {
1717 		psli->last_iotag = iotag;
1718 		psli->iocbq_lookup[iotag] = iocbq;
1719 		spin_unlock_irq(&phba->hbalock);
1720 		iocbq->iotag = iotag;
1721 		return iotag;
1722 	} else if (psli->iocbq_lookup_len < (0xffff
1723 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1724 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1725 		spin_unlock_irq(&phba->hbalock);
1726 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1727 				  GFP_KERNEL);
1728 		if (new_arr) {
1729 			spin_lock_irq(&phba->hbalock);
1730 			old_arr = psli->iocbq_lookup;
1731 			if (new_len <= psli->iocbq_lookup_len) {
1732 				/* highly unprobable case */
1733 				kfree(new_arr);
1734 				iotag = psli->last_iotag;
1735 				if(++iotag < psli->iocbq_lookup_len) {
1736 					psli->last_iotag = iotag;
1737 					psli->iocbq_lookup[iotag] = iocbq;
1738 					spin_unlock_irq(&phba->hbalock);
1739 					iocbq->iotag = iotag;
1740 					return iotag;
1741 				}
1742 				spin_unlock_irq(&phba->hbalock);
1743 				return 0;
1744 			}
1745 			if (psli->iocbq_lookup)
1746 				memcpy(new_arr, old_arr,
1747 				       ((psli->last_iotag  + 1) *
1748 					sizeof (struct lpfc_iocbq *)));
1749 			psli->iocbq_lookup = new_arr;
1750 			psli->iocbq_lookup_len = new_len;
1751 			psli->last_iotag = iotag;
1752 			psli->iocbq_lookup[iotag] = iocbq;
1753 			spin_unlock_irq(&phba->hbalock);
1754 			iocbq->iotag = iotag;
1755 			kfree(old_arr);
1756 			return iotag;
1757 		}
1758 	} else
1759 		spin_unlock_irq(&phba->hbalock);
1760 
1761 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1762 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1763 			psli->last_iotag);
1764 
1765 	return 0;
1766 }
1767 
1768 /**
1769  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1770  * @phba: Pointer to HBA context object.
1771  * @pring: Pointer to driver SLI ring object.
1772  * @iocb: Pointer to iocb slot in the ring.
1773  * @nextiocb: Pointer to driver iocb object which need to be
1774  *            posted to firmware.
1775  *
1776  * This function is called with hbalock held to post a new iocb to
1777  * the firmware. This function copies the new iocb to ring iocb slot and
1778  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1779  * a completion call back for this iocb else the function will free the
1780  * iocb object.
1781  **/
1782 static void
1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1784 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1785 {
1786 	lockdep_assert_held(&phba->hbalock);
1787 	/*
1788 	 * Set up an iotag
1789 	 */
1790 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1791 
1792 
1793 	if (pring->ringno == LPFC_ELS_RING) {
1794 		lpfc_debugfs_slow_ring_trc(phba,
1795 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1796 			*(((uint32_t *) &nextiocb->iocb) + 4),
1797 			*(((uint32_t *) &nextiocb->iocb) + 6),
1798 			*(((uint32_t *) &nextiocb->iocb) + 7));
1799 	}
1800 
1801 	/*
1802 	 * Issue iocb command to adapter
1803 	 */
1804 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1805 	wmb();
1806 	pring->stats.iocb_cmd++;
1807 
1808 	/*
1809 	 * If there is no completion routine to call, we can release the
1810 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1811 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1812 	 */
1813 	if (nextiocb->iocb_cmpl)
1814 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1815 	else
1816 		__lpfc_sli_release_iocbq(phba, nextiocb);
1817 
1818 	/*
1819 	 * Let the HBA know what IOCB slot will be the next one the
1820 	 * driver will put a command into.
1821 	 */
1822 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1823 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1824 }
1825 
1826 /**
1827  * lpfc_sli_update_full_ring - Update the chip attention register
1828  * @phba: Pointer to HBA context object.
1829  * @pring: Pointer to driver SLI ring object.
1830  *
1831  * The caller is not required to hold any lock for calling this function.
1832  * This function updates the chip attention bits for the ring to inform firmware
1833  * that there are pending work to be done for this ring and requests an
1834  * interrupt when there is space available in the ring. This function is
1835  * called when the driver is unable to post more iocbs to the ring due
1836  * to unavailability of space in the ring.
1837  **/
1838 static void
1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1840 {
1841 	int ringno = pring->ringno;
1842 
1843 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1844 
1845 	wmb();
1846 
1847 	/*
1848 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1849 	 * The HBA will tell us when an IOCB entry is available.
1850 	 */
1851 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1852 	readl(phba->CAregaddr); /* flush */
1853 
1854 	pring->stats.iocb_cmd_full++;
1855 }
1856 
1857 /**
1858  * lpfc_sli_update_ring - Update chip attention register
1859  * @phba: Pointer to HBA context object.
1860  * @pring: Pointer to driver SLI ring object.
1861  *
1862  * This function updates the chip attention register bit for the
1863  * given ring to inform HBA that there is more work to be done
1864  * in this ring. The caller is not required to hold any lock.
1865  **/
1866 static void
1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1868 {
1869 	int ringno = pring->ringno;
1870 
1871 	/*
1872 	 * Tell the HBA that there is work to do in this ring.
1873 	 */
1874 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1875 		wmb();
1876 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1877 		readl(phba->CAregaddr); /* flush */
1878 	}
1879 }
1880 
1881 /**
1882  * lpfc_sli_resume_iocb - Process iocbs in the txq
1883  * @phba: Pointer to HBA context object.
1884  * @pring: Pointer to driver SLI ring object.
1885  *
1886  * This function is called with hbalock held to post pending iocbs
1887  * in the txq to the firmware. This function is called when driver
1888  * detects space available in the ring.
1889  **/
1890 static void
1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1892 {
1893 	IOCB_t *iocb;
1894 	struct lpfc_iocbq *nextiocb;
1895 
1896 	lockdep_assert_held(&phba->hbalock);
1897 
1898 	/*
1899 	 * Check to see if:
1900 	 *  (a) there is anything on the txq to send
1901 	 *  (b) link is up
1902 	 *  (c) link attention events can be processed (fcp ring only)
1903 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1904 	 */
1905 
1906 	if (lpfc_is_link_up(phba) &&
1907 	    (!list_empty(&pring->txq)) &&
1908 	    (pring->ringno != LPFC_FCP_RING ||
1909 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1910 
1911 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1912 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1913 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1914 
1915 		if (iocb)
1916 			lpfc_sli_update_ring(phba, pring);
1917 		else
1918 			lpfc_sli_update_full_ring(phba, pring);
1919 	}
1920 
1921 	return;
1922 }
1923 
1924 /**
1925  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1926  * @phba: Pointer to HBA context object.
1927  * @hbqno: HBQ number.
1928  *
1929  * This function is called with hbalock held to get the next
1930  * available slot for the given HBQ. If there is free slot
1931  * available for the HBQ it will return pointer to the next available
1932  * HBQ entry else it will return NULL.
1933  **/
1934 static struct lpfc_hbq_entry *
1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1936 {
1937 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1938 
1939 	lockdep_assert_held(&phba->hbalock);
1940 
1941 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1942 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1943 		hbqp->next_hbqPutIdx = 0;
1944 
1945 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1946 		uint32_t raw_index = phba->hbq_get[hbqno];
1947 		uint32_t getidx = le32_to_cpu(raw_index);
1948 
1949 		hbqp->local_hbqGetIdx = getidx;
1950 
1951 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1952 			lpfc_printf_log(phba, KERN_ERR,
1953 					LOG_SLI | LOG_VPORT,
1954 					"1802 HBQ %d: local_hbqGetIdx "
1955 					"%u is > than hbqp->entry_count %u\n",
1956 					hbqno, hbqp->local_hbqGetIdx,
1957 					hbqp->entry_count);
1958 
1959 			phba->link_state = LPFC_HBA_ERROR;
1960 			return NULL;
1961 		}
1962 
1963 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1964 			return NULL;
1965 	}
1966 
1967 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1968 			hbqp->hbqPutIdx;
1969 }
1970 
1971 /**
1972  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1973  * @phba: Pointer to HBA context object.
1974  *
1975  * This function is called with no lock held to free all the
1976  * hbq buffers while uninitializing the SLI interface. It also
1977  * frees the HBQ buffers returned by the firmware but not yet
1978  * processed by the upper layers.
1979  **/
1980 void
1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1982 {
1983 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1984 	struct hbq_dmabuf *hbq_buf;
1985 	unsigned long flags;
1986 	int i, hbq_count;
1987 
1988 	hbq_count = lpfc_sli_hbq_count();
1989 	/* Return all memory used by all HBQs */
1990 	spin_lock_irqsave(&phba->hbalock, flags);
1991 	for (i = 0; i < hbq_count; ++i) {
1992 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1993 				&phba->hbqs[i].hbq_buffer_list, list) {
1994 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1995 			list_del(&hbq_buf->dbuf.list);
1996 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1997 		}
1998 		phba->hbqs[i].buffer_count = 0;
1999 	}
2000 
2001 	/* Mark the HBQs not in use */
2002 	phba->hbq_in_use = 0;
2003 	spin_unlock_irqrestore(&phba->hbalock, flags);
2004 }
2005 
2006 /**
2007  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2008  * @phba: Pointer to HBA context object.
2009  * @hbqno: HBQ number.
2010  * @hbq_buf: Pointer to HBQ buffer.
2011  *
2012  * This function is called with the hbalock held to post a
2013  * hbq buffer to the firmware. If the function finds an empty
2014  * slot in the HBQ, it will post the buffer. The function will return
2015  * pointer to the hbq entry if it successfully post the buffer
2016  * else it will return NULL.
2017  **/
2018 static int
2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2020 			 struct hbq_dmabuf *hbq_buf)
2021 {
2022 	lockdep_assert_held(&phba->hbalock);
2023 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2024 }
2025 
2026 /**
2027  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2028  * @phba: Pointer to HBA context object.
2029  * @hbqno: HBQ number.
2030  * @hbq_buf: Pointer to HBQ buffer.
2031  *
2032  * This function is called with the hbalock held to post a hbq buffer to the
2033  * firmware. If the function finds an empty slot in the HBQ, it will post the
2034  * buffer and place it on the hbq_buffer_list. The function will return zero if
2035  * it successfully post the buffer else it will return an error.
2036  **/
2037 static int
2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2039 			    struct hbq_dmabuf *hbq_buf)
2040 {
2041 	struct lpfc_hbq_entry *hbqe;
2042 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2043 
2044 	lockdep_assert_held(&phba->hbalock);
2045 	/* Get next HBQ entry slot to use */
2046 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2047 	if (hbqe) {
2048 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2049 
2050 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2051 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2052 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2053 		hbqe->bde.tus.f.bdeFlags = 0;
2054 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2055 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2056 				/* Sync SLIM */
2057 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2058 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2059 				/* flush */
2060 		readl(phba->hbq_put + hbqno);
2061 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2062 		return 0;
2063 	} else
2064 		return -ENOMEM;
2065 }
2066 
2067 /**
2068  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2069  * @phba: Pointer to HBA context object.
2070  * @hbqno: HBQ number.
2071  * @hbq_buf: Pointer to HBQ buffer.
2072  *
2073  * This function is called with the hbalock held to post an RQE to the SLI4
2074  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2075  * the hbq_buffer_list and return zero, otherwise it will return an error.
2076  **/
2077 static int
2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2079 			    struct hbq_dmabuf *hbq_buf)
2080 {
2081 	int rc;
2082 	struct lpfc_rqe hrqe;
2083 	struct lpfc_rqe drqe;
2084 	struct lpfc_queue *hrq;
2085 	struct lpfc_queue *drq;
2086 
2087 	if (hbqno != LPFC_ELS_HBQ)
2088 		return 1;
2089 	hrq = phba->sli4_hba.hdr_rq;
2090 	drq = phba->sli4_hba.dat_rq;
2091 
2092 	lockdep_assert_held(&phba->hbalock);
2093 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2094 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2095 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2096 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2097 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2098 	if (rc < 0)
2099 		return rc;
2100 	hbq_buf->tag = (rc | (hbqno << 16));
2101 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2102 	return 0;
2103 }
2104 
2105 /* HBQ for ELS and CT traffic. */
2106 static struct lpfc_hbq_init lpfc_els_hbq = {
2107 	.rn = 1,
2108 	.entry_count = 256,
2109 	.mask_count = 0,
2110 	.profile = 0,
2111 	.ring_mask = (1 << LPFC_ELS_RING),
2112 	.buffer_count = 0,
2113 	.init_count = 40,
2114 	.add_count = 40,
2115 };
2116 
2117 /* Array of HBQs */
2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2119 	&lpfc_els_hbq,
2120 };
2121 
2122 /**
2123  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2124  * @phba: Pointer to HBA context object.
2125  * @hbqno: HBQ number.
2126  * @count: Number of HBQ buffers to be posted.
2127  *
2128  * This function is called with no lock held to post more hbq buffers to the
2129  * given HBQ. The function returns the number of HBQ buffers successfully
2130  * posted.
2131  **/
2132 static int
2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2134 {
2135 	uint32_t i, posted = 0;
2136 	unsigned long flags;
2137 	struct hbq_dmabuf *hbq_buffer;
2138 	LIST_HEAD(hbq_buf_list);
2139 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2140 		return 0;
2141 
2142 	if ((phba->hbqs[hbqno].buffer_count + count) >
2143 	    lpfc_hbq_defs[hbqno]->entry_count)
2144 		count = lpfc_hbq_defs[hbqno]->entry_count -
2145 					phba->hbqs[hbqno].buffer_count;
2146 	if (!count)
2147 		return 0;
2148 	/* Allocate HBQ entries */
2149 	for (i = 0; i < count; i++) {
2150 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2151 		if (!hbq_buffer)
2152 			break;
2153 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2154 	}
2155 	/* Check whether HBQ is still in use */
2156 	spin_lock_irqsave(&phba->hbalock, flags);
2157 	if (!phba->hbq_in_use)
2158 		goto err;
2159 	while (!list_empty(&hbq_buf_list)) {
2160 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2161 				 dbuf.list);
2162 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2163 				      (hbqno << 16));
2164 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2165 			phba->hbqs[hbqno].buffer_count++;
2166 			posted++;
2167 		} else
2168 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2169 	}
2170 	spin_unlock_irqrestore(&phba->hbalock, flags);
2171 	return posted;
2172 err:
2173 	spin_unlock_irqrestore(&phba->hbalock, flags);
2174 	while (!list_empty(&hbq_buf_list)) {
2175 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2176 				 dbuf.list);
2177 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2178 	}
2179 	return 0;
2180 }
2181 
2182 /**
2183  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2184  * @phba: Pointer to HBA context object.
2185  * @qno: HBQ number.
2186  *
2187  * This function posts more buffers to the HBQ. This function
2188  * is called with no lock held. The function returns the number of HBQ entries
2189  * successfully allocated.
2190  **/
2191 int
2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2193 {
2194 	if (phba->sli_rev == LPFC_SLI_REV4)
2195 		return 0;
2196 	else
2197 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2198 					 lpfc_hbq_defs[qno]->add_count);
2199 }
2200 
2201 /**
2202  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2203  * @phba: Pointer to HBA context object.
2204  * @qno:  HBQ queue number.
2205  *
2206  * This function is called from SLI initialization code path with
2207  * no lock held to post initial HBQ buffers to firmware. The
2208  * function returns the number of HBQ entries successfully allocated.
2209  **/
2210 static int
2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2212 {
2213 	if (phba->sli_rev == LPFC_SLI_REV4)
2214 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2215 					lpfc_hbq_defs[qno]->entry_count);
2216 	else
2217 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2218 					 lpfc_hbq_defs[qno]->init_count);
2219 }
2220 
2221 /**
2222  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2223  * @phba: Pointer to HBA context object.
2224  * @hbqno: HBQ number.
2225  *
2226  * This function removes the first hbq buffer on an hbq list and returns a
2227  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2228  **/
2229 static struct hbq_dmabuf *
2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2231 {
2232 	struct lpfc_dmabuf *d_buf;
2233 
2234 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2235 	if (!d_buf)
2236 		return NULL;
2237 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2238 }
2239 
2240 /**
2241  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2242  * @phba: Pointer to HBA context object.
2243  * @hbqno: HBQ number.
2244  *
2245  * This function removes the first RQ buffer on an RQ buffer list and returns a
2246  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2247  **/
2248 static struct rqb_dmabuf *
2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2250 {
2251 	struct lpfc_dmabuf *h_buf;
2252 	struct lpfc_rqb *rqbp;
2253 
2254 	rqbp = hrq->rqbp;
2255 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2256 			 struct lpfc_dmabuf, list);
2257 	if (!h_buf)
2258 		return NULL;
2259 	rqbp->buffer_count--;
2260 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2261 }
2262 
2263 /**
2264  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2265  * @phba: Pointer to HBA context object.
2266  * @tag: Tag of the hbq buffer.
2267  *
2268  * This function searches for the hbq buffer associated with the given tag in
2269  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2270  * otherwise it returns NULL.
2271  **/
2272 static struct hbq_dmabuf *
2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2274 {
2275 	struct lpfc_dmabuf *d_buf;
2276 	struct hbq_dmabuf *hbq_buf;
2277 	uint32_t hbqno;
2278 
2279 	hbqno = tag >> 16;
2280 	if (hbqno >= LPFC_MAX_HBQS)
2281 		return NULL;
2282 
2283 	spin_lock_irq(&phba->hbalock);
2284 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2285 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2286 		if (hbq_buf->tag == tag) {
2287 			spin_unlock_irq(&phba->hbalock);
2288 			return hbq_buf;
2289 		}
2290 	}
2291 	spin_unlock_irq(&phba->hbalock);
2292 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2293 			"1803 Bad hbq tag. Data: x%x x%x\n",
2294 			tag, phba->hbqs[tag >> 16].buffer_count);
2295 	return NULL;
2296 }
2297 
2298 /**
2299  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2300  * @phba: Pointer to HBA context object.
2301  * @hbq_buffer: Pointer to HBQ buffer.
2302  *
2303  * This function is called with hbalock. This function gives back
2304  * the hbq buffer to firmware. If the HBQ does not have space to
2305  * post the buffer, it will free the buffer.
2306  **/
2307 void
2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2309 {
2310 	uint32_t hbqno;
2311 
2312 	if (hbq_buffer) {
2313 		hbqno = hbq_buffer->tag >> 16;
2314 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2315 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2316 	}
2317 }
2318 
2319 /**
2320  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2321  * @mbxCommand: mailbox command code.
2322  *
2323  * This function is called by the mailbox event handler function to verify
2324  * that the completed mailbox command is a legitimate mailbox command. If the
2325  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2326  * and the mailbox event handler will take the HBA offline.
2327  **/
2328 static int
2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2330 {
2331 	uint8_t ret;
2332 
2333 	switch (mbxCommand) {
2334 	case MBX_LOAD_SM:
2335 	case MBX_READ_NV:
2336 	case MBX_WRITE_NV:
2337 	case MBX_WRITE_VPARMS:
2338 	case MBX_RUN_BIU_DIAG:
2339 	case MBX_INIT_LINK:
2340 	case MBX_DOWN_LINK:
2341 	case MBX_CONFIG_LINK:
2342 	case MBX_CONFIG_RING:
2343 	case MBX_RESET_RING:
2344 	case MBX_READ_CONFIG:
2345 	case MBX_READ_RCONFIG:
2346 	case MBX_READ_SPARM:
2347 	case MBX_READ_STATUS:
2348 	case MBX_READ_RPI:
2349 	case MBX_READ_XRI:
2350 	case MBX_READ_REV:
2351 	case MBX_READ_LNK_STAT:
2352 	case MBX_REG_LOGIN:
2353 	case MBX_UNREG_LOGIN:
2354 	case MBX_CLEAR_LA:
2355 	case MBX_DUMP_MEMORY:
2356 	case MBX_DUMP_CONTEXT:
2357 	case MBX_RUN_DIAGS:
2358 	case MBX_RESTART:
2359 	case MBX_UPDATE_CFG:
2360 	case MBX_DOWN_LOAD:
2361 	case MBX_DEL_LD_ENTRY:
2362 	case MBX_RUN_PROGRAM:
2363 	case MBX_SET_MASK:
2364 	case MBX_SET_VARIABLE:
2365 	case MBX_UNREG_D_ID:
2366 	case MBX_KILL_BOARD:
2367 	case MBX_CONFIG_FARP:
2368 	case MBX_BEACON:
2369 	case MBX_LOAD_AREA:
2370 	case MBX_RUN_BIU_DIAG64:
2371 	case MBX_CONFIG_PORT:
2372 	case MBX_READ_SPARM64:
2373 	case MBX_READ_RPI64:
2374 	case MBX_REG_LOGIN64:
2375 	case MBX_READ_TOPOLOGY:
2376 	case MBX_WRITE_WWN:
2377 	case MBX_SET_DEBUG:
2378 	case MBX_LOAD_EXP_ROM:
2379 	case MBX_ASYNCEVT_ENABLE:
2380 	case MBX_REG_VPI:
2381 	case MBX_UNREG_VPI:
2382 	case MBX_HEARTBEAT:
2383 	case MBX_PORT_CAPABILITIES:
2384 	case MBX_PORT_IOV_CONTROL:
2385 	case MBX_SLI4_CONFIG:
2386 	case MBX_SLI4_REQ_FTRS:
2387 	case MBX_REG_FCFI:
2388 	case MBX_UNREG_FCFI:
2389 	case MBX_REG_VFI:
2390 	case MBX_UNREG_VFI:
2391 	case MBX_INIT_VPI:
2392 	case MBX_INIT_VFI:
2393 	case MBX_RESUME_RPI:
2394 	case MBX_READ_EVENT_LOG_STATUS:
2395 	case MBX_READ_EVENT_LOG:
2396 	case MBX_SECURITY_MGMT:
2397 	case MBX_AUTH_PORT:
2398 	case MBX_ACCESS_VDATA:
2399 		ret = mbxCommand;
2400 		break;
2401 	default:
2402 		ret = MBX_SHUTDOWN;
2403 		break;
2404 	}
2405 	return ret;
2406 }
2407 
2408 /**
2409  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2410  * @phba: Pointer to HBA context object.
2411  * @pmboxq: Pointer to mailbox command.
2412  *
2413  * This is completion handler function for mailbox commands issued from
2414  * lpfc_sli_issue_mbox_wait function. This function is called by the
2415  * mailbox event handler function with no lock held. This function
2416  * will wake up thread waiting on the wait queue pointed by context1
2417  * of the mailbox.
2418  **/
2419 void
2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2421 {
2422 	unsigned long drvr_flag;
2423 	struct completion *pmbox_done;
2424 
2425 	/*
2426 	 * If pmbox_done is empty, the driver thread gave up waiting and
2427 	 * continued running.
2428 	 */
2429 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2430 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2431 	pmbox_done = (struct completion *)pmboxq->context3;
2432 	if (pmbox_done)
2433 		complete(pmbox_done);
2434 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2435 	return;
2436 }
2437 
2438 
2439 /**
2440  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2441  * @phba: Pointer to HBA context object.
2442  * @pmb: Pointer to mailbox object.
2443  *
2444  * This function is the default mailbox completion handler. It
2445  * frees the memory resources associated with the completed mailbox
2446  * command. If the completed command is a REG_LOGIN mailbox command,
2447  * this function will issue a UREG_LOGIN to re-claim the RPI.
2448  **/
2449 void
2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2451 {
2452 	struct lpfc_vport  *vport = pmb->vport;
2453 	struct lpfc_dmabuf *mp;
2454 	struct lpfc_nodelist *ndlp;
2455 	struct Scsi_Host *shost;
2456 	uint16_t rpi, vpi;
2457 	int rc;
2458 
2459 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2460 
2461 	if (mp) {
2462 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2463 		kfree(mp);
2464 	}
2465 
2466 	/*
2467 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2468 	 * is in re-discovery driver need to cleanup the RPI.
2469 	 */
2470 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2471 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2472 	    !pmb->u.mb.mbxStatus) {
2473 		rpi = pmb->u.mb.un.varWords[0];
2474 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2475 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2476 		pmb->vport = vport;
2477 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2478 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2479 		if (rc != MBX_NOT_FINISHED)
2480 			return;
2481 	}
2482 
2483 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2484 		!(phba->pport->load_flag & FC_UNLOADING) &&
2485 		!pmb->u.mb.mbxStatus) {
2486 		shost = lpfc_shost_from_vport(vport);
2487 		spin_lock_irq(shost->host_lock);
2488 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2489 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2490 		spin_unlock_irq(shost->host_lock);
2491 	}
2492 
2493 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2494 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2495 		lpfc_nlp_put(ndlp);
2496 		pmb->ctx_buf = NULL;
2497 		pmb->ctx_ndlp = NULL;
2498 	}
2499 
2500 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2501 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2502 
2503 		/* Check to see if there are any deferred events to process */
2504 		if (ndlp) {
2505 			lpfc_printf_vlog(
2506 				vport,
2507 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2508 				"1438 UNREG cmpl deferred mbox x%x "
2509 				"on NPort x%x Data: x%x x%x %p\n",
2510 				ndlp->nlp_rpi, ndlp->nlp_DID,
2511 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2512 
2513 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2514 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2515 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2516 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2517 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2518 			} else {
2519 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2520 			}
2521 		}
2522 		pmb->ctx_ndlp = NULL;
2523 	}
2524 
2525 	/* Check security permission status on INIT_LINK mailbox command */
2526 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2527 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2528 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2529 				"2860 SLI authentication is required "
2530 				"for INIT_LINK but has not done yet\n");
2531 
2532 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2533 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2534 	else
2535 		mempool_free(pmb, phba->mbox_mem_pool);
2536 }
2537  /**
2538  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2539  * @phba: Pointer to HBA context object.
2540  * @pmb: Pointer to mailbox object.
2541  *
2542  * This function is the unreg rpi mailbox completion handler. It
2543  * frees the memory resources associated with the completed mailbox
2544  * command. An additional refrenece is put on the ndlp to prevent
2545  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2546  * the unreg mailbox command completes, this routine puts the
2547  * reference back.
2548  *
2549  **/
2550 void
2551 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2552 {
2553 	struct lpfc_vport  *vport = pmb->vport;
2554 	struct lpfc_nodelist *ndlp;
2555 
2556 	ndlp = pmb->ctx_ndlp;
2557 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2558 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2559 		    (bf_get(lpfc_sli_intf_if_type,
2560 		     &phba->sli4_hba.sli_intf) >=
2561 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2562 			if (ndlp) {
2563 				lpfc_printf_vlog(
2564 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2565 					 "0010 UNREG_LOGIN vpi:%x "
2566 					 "rpi:%x DID:%x defer x%x flg x%x "
2567 					 "map:%x %p\n",
2568 					 vport->vpi, ndlp->nlp_rpi,
2569 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2570 					 ndlp->nlp_flag,
2571 					 ndlp->nlp_usg_map, ndlp);
2572 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2573 				lpfc_nlp_put(ndlp);
2574 
2575 				/* Check to see if there are any deferred
2576 				 * events to process
2577 				 */
2578 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2579 				    (ndlp->nlp_defer_did !=
2580 				    NLP_EVT_NOTHING_PENDING)) {
2581 					lpfc_printf_vlog(
2582 						vport, KERN_INFO, LOG_DISCOVERY,
2583 						"4111 UNREG cmpl deferred "
2584 						"clr x%x on "
2585 						"NPort x%x Data: x%x %p\n",
2586 						ndlp->nlp_rpi, ndlp->nlp_DID,
2587 						ndlp->nlp_defer_did, ndlp);
2588 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2589 					ndlp->nlp_defer_did =
2590 						NLP_EVT_NOTHING_PENDING;
2591 					lpfc_issue_els_plogi(
2592 						vport, ndlp->nlp_DID, 0);
2593 				} else {
2594 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2595 				}
2596 			}
2597 		}
2598 	}
2599 
2600 	mempool_free(pmb, phba->mbox_mem_pool);
2601 }
2602 
2603 /**
2604  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2605  * @phba: Pointer to HBA context object.
2606  *
2607  * This function is called with no lock held. This function processes all
2608  * the completed mailbox commands and gives it to upper layers. The interrupt
2609  * service routine processes mailbox completion interrupt and adds completed
2610  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2611  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2612  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2613  * function returns the mailbox commands to the upper layer by calling the
2614  * completion handler function of each mailbox.
2615  **/
2616 int
2617 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2618 {
2619 	MAILBOX_t *pmbox;
2620 	LPFC_MBOXQ_t *pmb;
2621 	int rc;
2622 	LIST_HEAD(cmplq);
2623 
2624 	phba->sli.slistat.mbox_event++;
2625 
2626 	/* Get all completed mailboxe buffers into the cmplq */
2627 	spin_lock_irq(&phba->hbalock);
2628 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2629 	spin_unlock_irq(&phba->hbalock);
2630 
2631 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2632 	do {
2633 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2634 		if (pmb == NULL)
2635 			break;
2636 
2637 		pmbox = &pmb->u.mb;
2638 
2639 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2640 			if (pmb->vport) {
2641 				lpfc_debugfs_disc_trc(pmb->vport,
2642 					LPFC_DISC_TRC_MBOX_VPORT,
2643 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2644 					(uint32_t)pmbox->mbxCommand,
2645 					pmbox->un.varWords[0],
2646 					pmbox->un.varWords[1]);
2647 			}
2648 			else {
2649 				lpfc_debugfs_disc_trc(phba->pport,
2650 					LPFC_DISC_TRC_MBOX,
2651 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2652 					(uint32_t)pmbox->mbxCommand,
2653 					pmbox->un.varWords[0],
2654 					pmbox->un.varWords[1]);
2655 			}
2656 		}
2657 
2658 		/*
2659 		 * It is a fatal error if unknown mbox command completion.
2660 		 */
2661 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2662 		    MBX_SHUTDOWN) {
2663 			/* Unknown mailbox command compl */
2664 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2665 					"(%d):0323 Unknown Mailbox command "
2666 					"x%x (x%x/x%x) Cmpl\n",
2667 					pmb->vport ? pmb->vport->vpi : 0,
2668 					pmbox->mbxCommand,
2669 					lpfc_sli_config_mbox_subsys_get(phba,
2670 									pmb),
2671 					lpfc_sli_config_mbox_opcode_get(phba,
2672 									pmb));
2673 			phba->link_state = LPFC_HBA_ERROR;
2674 			phba->work_hs = HS_FFER3;
2675 			lpfc_handle_eratt(phba);
2676 			continue;
2677 		}
2678 
2679 		if (pmbox->mbxStatus) {
2680 			phba->sli.slistat.mbox_stat_err++;
2681 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2682 				/* Mbox cmd cmpl error - RETRYing */
2683 				lpfc_printf_log(phba, KERN_INFO,
2684 					LOG_MBOX | LOG_SLI,
2685 					"(%d):0305 Mbox cmd cmpl "
2686 					"error - RETRYing Data: x%x "
2687 					"(x%x/x%x) x%x x%x x%x\n",
2688 					pmb->vport ? pmb->vport->vpi : 0,
2689 					pmbox->mbxCommand,
2690 					lpfc_sli_config_mbox_subsys_get(phba,
2691 									pmb),
2692 					lpfc_sli_config_mbox_opcode_get(phba,
2693 									pmb),
2694 					pmbox->mbxStatus,
2695 					pmbox->un.varWords[0],
2696 					pmb->vport->port_state);
2697 				pmbox->mbxStatus = 0;
2698 				pmbox->mbxOwner = OWN_HOST;
2699 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2700 				if (rc != MBX_NOT_FINISHED)
2701 					continue;
2702 			}
2703 		}
2704 
2705 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2706 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2707 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2708 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2709 				"x%x x%x x%x\n",
2710 				pmb->vport ? pmb->vport->vpi : 0,
2711 				pmbox->mbxCommand,
2712 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2713 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2714 				pmb->mbox_cmpl,
2715 				*((uint32_t *) pmbox),
2716 				pmbox->un.varWords[0],
2717 				pmbox->un.varWords[1],
2718 				pmbox->un.varWords[2],
2719 				pmbox->un.varWords[3],
2720 				pmbox->un.varWords[4],
2721 				pmbox->un.varWords[5],
2722 				pmbox->un.varWords[6],
2723 				pmbox->un.varWords[7],
2724 				pmbox->un.varWords[8],
2725 				pmbox->un.varWords[9],
2726 				pmbox->un.varWords[10]);
2727 
2728 		if (pmb->mbox_cmpl)
2729 			pmb->mbox_cmpl(phba,pmb);
2730 	} while (1);
2731 	return 0;
2732 }
2733 
2734 /**
2735  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2736  * @phba: Pointer to HBA context object.
2737  * @pring: Pointer to driver SLI ring object.
2738  * @tag: buffer tag.
2739  *
2740  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2741  * is set in the tag the buffer is posted for a particular exchange,
2742  * the function will return the buffer without replacing the buffer.
2743  * If the buffer is for unsolicited ELS or CT traffic, this function
2744  * returns the buffer and also posts another buffer to the firmware.
2745  **/
2746 static struct lpfc_dmabuf *
2747 lpfc_sli_get_buff(struct lpfc_hba *phba,
2748 		  struct lpfc_sli_ring *pring,
2749 		  uint32_t tag)
2750 {
2751 	struct hbq_dmabuf *hbq_entry;
2752 
2753 	if (tag & QUE_BUFTAG_BIT)
2754 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2755 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2756 	if (!hbq_entry)
2757 		return NULL;
2758 	return &hbq_entry->dbuf;
2759 }
2760 
2761 /**
2762  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2763  * @phba: Pointer to HBA context object.
2764  * @pring: Pointer to driver SLI ring object.
2765  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2766  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2767  * @fch_type: the type for the first frame of the sequence.
2768  *
2769  * This function is called with no lock held. This function uses the r_ctl and
2770  * type of the received sequence to find the correct callback function to call
2771  * to process the sequence.
2772  **/
2773 static int
2774 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2775 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2776 			 uint32_t fch_type)
2777 {
2778 	int i;
2779 
2780 	switch (fch_type) {
2781 	case FC_TYPE_NVME:
2782 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2783 		return 1;
2784 	default:
2785 		break;
2786 	}
2787 
2788 	/* unSolicited Responses */
2789 	if (pring->prt[0].profile) {
2790 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2791 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2792 									saveq);
2793 		return 1;
2794 	}
2795 	/* We must search, based on rctl / type
2796 	   for the right routine */
2797 	for (i = 0; i < pring->num_mask; i++) {
2798 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2799 		    (pring->prt[i].type == fch_type)) {
2800 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2801 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2802 						(phba, pring, saveq);
2803 			return 1;
2804 		}
2805 	}
2806 	return 0;
2807 }
2808 
2809 /**
2810  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2811  * @phba: Pointer to HBA context object.
2812  * @pring: Pointer to driver SLI ring object.
2813  * @saveq: Pointer to the unsolicited iocb.
2814  *
2815  * This function is called with no lock held by the ring event handler
2816  * when there is an unsolicited iocb posted to the response ring by the
2817  * firmware. This function gets the buffer associated with the iocbs
2818  * and calls the event handler for the ring. This function handles both
2819  * qring buffers and hbq buffers.
2820  * When the function returns 1 the caller can free the iocb object otherwise
2821  * upper layer functions will free the iocb objects.
2822  **/
2823 static int
2824 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2825 			    struct lpfc_iocbq *saveq)
2826 {
2827 	IOCB_t           * irsp;
2828 	WORD5            * w5p;
2829 	uint32_t           Rctl, Type;
2830 	struct lpfc_iocbq *iocbq;
2831 	struct lpfc_dmabuf *dmzbuf;
2832 
2833 	irsp = &(saveq->iocb);
2834 
2835 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2836 		if (pring->lpfc_sli_rcv_async_status)
2837 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2838 		else
2839 			lpfc_printf_log(phba,
2840 					KERN_WARNING,
2841 					LOG_SLI,
2842 					"0316 Ring %d handler: unexpected "
2843 					"ASYNC_STATUS iocb received evt_code "
2844 					"0x%x\n",
2845 					pring->ringno,
2846 					irsp->un.asyncstat.evt_code);
2847 		return 1;
2848 	}
2849 
2850 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2851 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2852 		if (irsp->ulpBdeCount > 0) {
2853 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2854 					irsp->un.ulpWord[3]);
2855 			lpfc_in_buf_free(phba, dmzbuf);
2856 		}
2857 
2858 		if (irsp->ulpBdeCount > 1) {
2859 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2860 					irsp->unsli3.sli3Words[3]);
2861 			lpfc_in_buf_free(phba, dmzbuf);
2862 		}
2863 
2864 		if (irsp->ulpBdeCount > 2) {
2865 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2866 				irsp->unsli3.sli3Words[7]);
2867 			lpfc_in_buf_free(phba, dmzbuf);
2868 		}
2869 
2870 		return 1;
2871 	}
2872 
2873 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2874 		if (irsp->ulpBdeCount != 0) {
2875 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2876 						irsp->un.ulpWord[3]);
2877 			if (!saveq->context2)
2878 				lpfc_printf_log(phba,
2879 					KERN_ERR,
2880 					LOG_SLI,
2881 					"0341 Ring %d Cannot find buffer for "
2882 					"an unsolicited iocb. tag 0x%x\n",
2883 					pring->ringno,
2884 					irsp->un.ulpWord[3]);
2885 		}
2886 		if (irsp->ulpBdeCount == 2) {
2887 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2888 						irsp->unsli3.sli3Words[7]);
2889 			if (!saveq->context3)
2890 				lpfc_printf_log(phba,
2891 					KERN_ERR,
2892 					LOG_SLI,
2893 					"0342 Ring %d Cannot find buffer for an"
2894 					" unsolicited iocb. tag 0x%x\n",
2895 					pring->ringno,
2896 					irsp->unsli3.sli3Words[7]);
2897 		}
2898 		list_for_each_entry(iocbq, &saveq->list, list) {
2899 			irsp = &(iocbq->iocb);
2900 			if (irsp->ulpBdeCount != 0) {
2901 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2902 							irsp->un.ulpWord[3]);
2903 				if (!iocbq->context2)
2904 					lpfc_printf_log(phba,
2905 						KERN_ERR,
2906 						LOG_SLI,
2907 						"0343 Ring %d Cannot find "
2908 						"buffer for an unsolicited iocb"
2909 						". tag 0x%x\n", pring->ringno,
2910 						irsp->un.ulpWord[3]);
2911 			}
2912 			if (irsp->ulpBdeCount == 2) {
2913 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2914 						irsp->unsli3.sli3Words[7]);
2915 				if (!iocbq->context3)
2916 					lpfc_printf_log(phba,
2917 						KERN_ERR,
2918 						LOG_SLI,
2919 						"0344 Ring %d Cannot find "
2920 						"buffer for an unsolicited "
2921 						"iocb. tag 0x%x\n",
2922 						pring->ringno,
2923 						irsp->unsli3.sli3Words[7]);
2924 			}
2925 		}
2926 	}
2927 	if (irsp->ulpBdeCount != 0 &&
2928 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2929 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2930 		int found = 0;
2931 
2932 		/* search continue save q for same XRI */
2933 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2934 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2935 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2936 				list_add_tail(&saveq->list, &iocbq->list);
2937 				found = 1;
2938 				break;
2939 			}
2940 		}
2941 		if (!found)
2942 			list_add_tail(&saveq->clist,
2943 				      &pring->iocb_continue_saveq);
2944 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2945 			list_del_init(&iocbq->clist);
2946 			saveq = iocbq;
2947 			irsp = &(saveq->iocb);
2948 		} else
2949 			return 0;
2950 	}
2951 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2952 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2953 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2954 		Rctl = FC_RCTL_ELS_REQ;
2955 		Type = FC_TYPE_ELS;
2956 	} else {
2957 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2958 		Rctl = w5p->hcsw.Rctl;
2959 		Type = w5p->hcsw.Type;
2960 
2961 		/* Firmware Workaround */
2962 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2963 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2964 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2965 			Rctl = FC_RCTL_ELS_REQ;
2966 			Type = FC_TYPE_ELS;
2967 			w5p->hcsw.Rctl = Rctl;
2968 			w5p->hcsw.Type = Type;
2969 		}
2970 	}
2971 
2972 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2973 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2974 				"0313 Ring %d handler: unexpected Rctl x%x "
2975 				"Type x%x received\n",
2976 				pring->ringno, Rctl, Type);
2977 
2978 	return 1;
2979 }
2980 
2981 /**
2982  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2983  * @phba: Pointer to HBA context object.
2984  * @pring: Pointer to driver SLI ring object.
2985  * @prspiocb: Pointer to response iocb object.
2986  *
2987  * This function looks up the iocb_lookup table to get the command iocb
2988  * corresponding to the given response iocb using the iotag of the
2989  * response iocb. This function is called with the hbalock held
2990  * for sli3 devices or the ring_lock for sli4 devices.
2991  * This function returns the command iocb object if it finds the command
2992  * iocb else returns NULL.
2993  **/
2994 static struct lpfc_iocbq *
2995 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2996 		      struct lpfc_sli_ring *pring,
2997 		      struct lpfc_iocbq *prspiocb)
2998 {
2999 	struct lpfc_iocbq *cmd_iocb = NULL;
3000 	uint16_t iotag;
3001 	lockdep_assert_held(&phba->hbalock);
3002 
3003 	iotag = prspiocb->iocb.ulpIoTag;
3004 
3005 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3006 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3007 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3008 			/* remove from txcmpl queue list */
3009 			list_del_init(&cmd_iocb->list);
3010 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3011 			return cmd_iocb;
3012 		}
3013 	}
3014 
3015 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3016 			"0317 iotag x%x is out of "
3017 			"range: max iotag x%x wd0 x%x\n",
3018 			iotag, phba->sli.last_iotag,
3019 			*(((uint32_t *) &prspiocb->iocb) + 7));
3020 	return NULL;
3021 }
3022 
3023 /**
3024  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3025  * @phba: Pointer to HBA context object.
3026  * @pring: Pointer to driver SLI ring object.
3027  * @iotag: IOCB tag.
3028  *
3029  * This function looks up the iocb_lookup table to get the command iocb
3030  * corresponding to the given iotag. This function is called with the
3031  * hbalock held.
3032  * This function returns the command iocb object if it finds the command
3033  * iocb else returns NULL.
3034  **/
3035 static struct lpfc_iocbq *
3036 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3037 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3038 {
3039 	struct lpfc_iocbq *cmd_iocb = NULL;
3040 
3041 	lockdep_assert_held(&phba->hbalock);
3042 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3043 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3044 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3045 			/* remove from txcmpl queue list */
3046 			list_del_init(&cmd_iocb->list);
3047 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3048 			return cmd_iocb;
3049 		}
3050 	}
3051 
3052 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3053 			"0372 iotag x%x lookup error: max iotag (x%x) "
3054 			"iocb_flag x%x\n",
3055 			iotag, phba->sli.last_iotag,
3056 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3057 	return NULL;
3058 }
3059 
3060 /**
3061  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3062  * @phba: Pointer to HBA context object.
3063  * @pring: Pointer to driver SLI ring object.
3064  * @saveq: Pointer to the response iocb to be processed.
3065  *
3066  * This function is called by the ring event handler for non-fcp
3067  * rings when there is a new response iocb in the response ring.
3068  * The caller is not required to hold any locks. This function
3069  * gets the command iocb associated with the response iocb and
3070  * calls the completion handler for the command iocb. If there
3071  * is no completion handler, the function will free the resources
3072  * associated with command iocb. If the response iocb is for
3073  * an already aborted command iocb, the status of the completion
3074  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3075  * This function always returns 1.
3076  **/
3077 static int
3078 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3079 			  struct lpfc_iocbq *saveq)
3080 {
3081 	struct lpfc_iocbq *cmdiocbp;
3082 	int rc = 1;
3083 	unsigned long iflag;
3084 
3085 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
3086 	if (phba->sli_rev == LPFC_SLI_REV4)
3087 		spin_lock_irqsave(&pring->ring_lock, iflag);
3088 	else
3089 		spin_lock_irqsave(&phba->hbalock, iflag);
3090 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3091 	if (phba->sli_rev == LPFC_SLI_REV4)
3092 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3093 	else
3094 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3095 
3096 	if (cmdiocbp) {
3097 		if (cmdiocbp->iocb_cmpl) {
3098 			/*
3099 			 * If an ELS command failed send an event to mgmt
3100 			 * application.
3101 			 */
3102 			if (saveq->iocb.ulpStatus &&
3103 			     (pring->ringno == LPFC_ELS_RING) &&
3104 			     (cmdiocbp->iocb.ulpCommand ==
3105 				CMD_ELS_REQUEST64_CR))
3106 				lpfc_send_els_failure_event(phba,
3107 					cmdiocbp, saveq);
3108 
3109 			/*
3110 			 * Post all ELS completions to the worker thread.
3111 			 * All other are passed to the completion callback.
3112 			 */
3113 			if (pring->ringno == LPFC_ELS_RING) {
3114 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3115 				    (cmdiocbp->iocb_flag &
3116 							LPFC_DRIVER_ABORTED)) {
3117 					spin_lock_irqsave(&phba->hbalock,
3118 							  iflag);
3119 					cmdiocbp->iocb_flag &=
3120 						~LPFC_DRIVER_ABORTED;
3121 					spin_unlock_irqrestore(&phba->hbalock,
3122 							       iflag);
3123 					saveq->iocb.ulpStatus =
3124 						IOSTAT_LOCAL_REJECT;
3125 					saveq->iocb.un.ulpWord[4] =
3126 						IOERR_SLI_ABORTED;
3127 
3128 					/* Firmware could still be in progress
3129 					 * of DMAing payload, so don't free data
3130 					 * buffer till after a hbeat.
3131 					 */
3132 					spin_lock_irqsave(&phba->hbalock,
3133 							  iflag);
3134 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3135 					spin_unlock_irqrestore(&phba->hbalock,
3136 							       iflag);
3137 				}
3138 				if (phba->sli_rev == LPFC_SLI_REV4) {
3139 					if (saveq->iocb_flag &
3140 					    LPFC_EXCHANGE_BUSY) {
3141 						/* Set cmdiocb flag for the
3142 						 * exchange busy so sgl (xri)
3143 						 * will not be released until
3144 						 * the abort xri is received
3145 						 * from hba.
3146 						 */
3147 						spin_lock_irqsave(
3148 							&phba->hbalock, iflag);
3149 						cmdiocbp->iocb_flag |=
3150 							LPFC_EXCHANGE_BUSY;
3151 						spin_unlock_irqrestore(
3152 							&phba->hbalock, iflag);
3153 					}
3154 					if (cmdiocbp->iocb_flag &
3155 					    LPFC_DRIVER_ABORTED) {
3156 						/*
3157 						 * Clear LPFC_DRIVER_ABORTED
3158 						 * bit in case it was driver
3159 						 * initiated abort.
3160 						 */
3161 						spin_lock_irqsave(
3162 							&phba->hbalock, iflag);
3163 						cmdiocbp->iocb_flag &=
3164 							~LPFC_DRIVER_ABORTED;
3165 						spin_unlock_irqrestore(
3166 							&phba->hbalock, iflag);
3167 						cmdiocbp->iocb.ulpStatus =
3168 							IOSTAT_LOCAL_REJECT;
3169 						cmdiocbp->iocb.un.ulpWord[4] =
3170 							IOERR_ABORT_REQUESTED;
3171 						/*
3172 						 * For SLI4, irsiocb contains
3173 						 * NO_XRI in sli_xritag, it
3174 						 * shall not affect releasing
3175 						 * sgl (xri) process.
3176 						 */
3177 						saveq->iocb.ulpStatus =
3178 							IOSTAT_LOCAL_REJECT;
3179 						saveq->iocb.un.ulpWord[4] =
3180 							IOERR_SLI_ABORTED;
3181 						spin_lock_irqsave(
3182 							&phba->hbalock, iflag);
3183 						saveq->iocb_flag |=
3184 							LPFC_DELAY_MEM_FREE;
3185 						spin_unlock_irqrestore(
3186 							&phba->hbalock, iflag);
3187 					}
3188 				}
3189 			}
3190 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3191 		} else
3192 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3193 	} else {
3194 		/*
3195 		 * Unknown initiating command based on the response iotag.
3196 		 * This could be the case on the ELS ring because of
3197 		 * lpfc_els_abort().
3198 		 */
3199 		if (pring->ringno != LPFC_ELS_RING) {
3200 			/*
3201 			 * Ring <ringno> handler: unexpected completion IoTag
3202 			 * <IoTag>
3203 			 */
3204 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3205 					 "0322 Ring %d handler: "
3206 					 "unexpected completion IoTag x%x "
3207 					 "Data: x%x x%x x%x x%x\n",
3208 					 pring->ringno,
3209 					 saveq->iocb.ulpIoTag,
3210 					 saveq->iocb.ulpStatus,
3211 					 saveq->iocb.un.ulpWord[4],
3212 					 saveq->iocb.ulpCommand,
3213 					 saveq->iocb.ulpContext);
3214 		}
3215 	}
3216 
3217 	return rc;
3218 }
3219 
3220 /**
3221  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3222  * @phba: Pointer to HBA context object.
3223  * @pring: Pointer to driver SLI ring object.
3224  *
3225  * This function is called from the iocb ring event handlers when
3226  * put pointer is ahead of the get pointer for a ring. This function signal
3227  * an error attention condition to the worker thread and the worker
3228  * thread will transition the HBA to offline state.
3229  **/
3230 static void
3231 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3232 {
3233 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3234 	/*
3235 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3236 	 * rsp ring <portRspMax>
3237 	 */
3238 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3239 			"0312 Ring %d handler: portRspPut %d "
3240 			"is bigger than rsp ring %d\n",
3241 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3242 			pring->sli.sli3.numRiocb);
3243 
3244 	phba->link_state = LPFC_HBA_ERROR;
3245 
3246 	/*
3247 	 * All error attention handlers are posted to
3248 	 * worker thread
3249 	 */
3250 	phba->work_ha |= HA_ERATT;
3251 	phba->work_hs = HS_FFER3;
3252 
3253 	lpfc_worker_wake_up(phba);
3254 
3255 	return;
3256 }
3257 
3258 /**
3259  * lpfc_poll_eratt - Error attention polling timer timeout handler
3260  * @ptr: Pointer to address of HBA context object.
3261  *
3262  * This function is invoked by the Error Attention polling timer when the
3263  * timer times out. It will check the SLI Error Attention register for
3264  * possible attention events. If so, it will post an Error Attention event
3265  * and wake up worker thread to process it. Otherwise, it will set up the
3266  * Error Attention polling timer for the next poll.
3267  **/
3268 void lpfc_poll_eratt(struct timer_list *t)
3269 {
3270 	struct lpfc_hba *phba;
3271 	uint32_t eratt = 0;
3272 	uint64_t sli_intr, cnt;
3273 
3274 	phba = from_timer(phba, t, eratt_poll);
3275 
3276 	/* Here we will also keep track of interrupts per sec of the hba */
3277 	sli_intr = phba->sli.slistat.sli_intr;
3278 
3279 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3280 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3281 			sli_intr);
3282 	else
3283 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3284 
3285 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3286 	do_div(cnt, phba->eratt_poll_interval);
3287 	phba->sli.slistat.sli_ips = cnt;
3288 
3289 	phba->sli.slistat.sli_prev_intr = sli_intr;
3290 
3291 	/* Check chip HA register for error event */
3292 	eratt = lpfc_sli_check_eratt(phba);
3293 
3294 	if (eratt)
3295 		/* Tell the worker thread there is work to do */
3296 		lpfc_worker_wake_up(phba);
3297 	else
3298 		/* Restart the timer for next eratt poll */
3299 		mod_timer(&phba->eratt_poll,
3300 			  jiffies +
3301 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3302 	return;
3303 }
3304 
3305 
3306 /**
3307  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3308  * @phba: Pointer to HBA context object.
3309  * @pring: Pointer to driver SLI ring object.
3310  * @mask: Host attention register mask for this ring.
3311  *
3312  * This function is called from the interrupt context when there is a ring
3313  * event for the fcp ring. The caller does not hold any lock.
3314  * The function processes each response iocb in the response ring until it
3315  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3316  * LE bit set. The function will call the completion handler of the command iocb
3317  * if the response iocb indicates a completion for a command iocb or it is
3318  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3319  * function if this is an unsolicited iocb.
3320  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3321  * to check it explicitly.
3322  */
3323 int
3324 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3325 				struct lpfc_sli_ring *pring, uint32_t mask)
3326 {
3327 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3328 	IOCB_t *irsp = NULL;
3329 	IOCB_t *entry = NULL;
3330 	struct lpfc_iocbq *cmdiocbq = NULL;
3331 	struct lpfc_iocbq rspiocbq;
3332 	uint32_t status;
3333 	uint32_t portRspPut, portRspMax;
3334 	int rc = 1;
3335 	lpfc_iocb_type type;
3336 	unsigned long iflag;
3337 	uint32_t rsp_cmpl = 0;
3338 
3339 	spin_lock_irqsave(&phba->hbalock, iflag);
3340 	pring->stats.iocb_event++;
3341 
3342 	/*
3343 	 * The next available response entry should never exceed the maximum
3344 	 * entries.  If it does, treat it as an adapter hardware error.
3345 	 */
3346 	portRspMax = pring->sli.sli3.numRiocb;
3347 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3348 	if (unlikely(portRspPut >= portRspMax)) {
3349 		lpfc_sli_rsp_pointers_error(phba, pring);
3350 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3351 		return 1;
3352 	}
3353 	if (phba->fcp_ring_in_use) {
3354 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3355 		return 1;
3356 	} else
3357 		phba->fcp_ring_in_use = 1;
3358 
3359 	rmb();
3360 	while (pring->sli.sli3.rspidx != portRspPut) {
3361 		/*
3362 		 * Fetch an entry off the ring and copy it into a local data
3363 		 * structure.  The copy involves a byte-swap since the
3364 		 * network byte order and pci byte orders are different.
3365 		 */
3366 		entry = lpfc_resp_iocb(phba, pring);
3367 		phba->last_completion_time = jiffies;
3368 
3369 		if (++pring->sli.sli3.rspidx >= portRspMax)
3370 			pring->sli.sli3.rspidx = 0;
3371 
3372 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3373 				      (uint32_t *) &rspiocbq.iocb,
3374 				      phba->iocb_rsp_size);
3375 		INIT_LIST_HEAD(&(rspiocbq.list));
3376 		irsp = &rspiocbq.iocb;
3377 
3378 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3379 		pring->stats.iocb_rsp++;
3380 		rsp_cmpl++;
3381 
3382 		if (unlikely(irsp->ulpStatus)) {
3383 			/*
3384 			 * If resource errors reported from HBA, reduce
3385 			 * queuedepths of the SCSI device.
3386 			 */
3387 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3388 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3389 			     IOERR_NO_RESOURCES)) {
3390 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3391 				phba->lpfc_rampdown_queue_depth(phba);
3392 				spin_lock_irqsave(&phba->hbalock, iflag);
3393 			}
3394 
3395 			/* Rsp ring <ringno> error: IOCB */
3396 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3397 					"0336 Rsp Ring %d error: IOCB Data: "
3398 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3399 					pring->ringno,
3400 					irsp->un.ulpWord[0],
3401 					irsp->un.ulpWord[1],
3402 					irsp->un.ulpWord[2],
3403 					irsp->un.ulpWord[3],
3404 					irsp->un.ulpWord[4],
3405 					irsp->un.ulpWord[5],
3406 					*(uint32_t *)&irsp->un1,
3407 					*((uint32_t *)&irsp->un1 + 1));
3408 		}
3409 
3410 		switch (type) {
3411 		case LPFC_ABORT_IOCB:
3412 		case LPFC_SOL_IOCB:
3413 			/*
3414 			 * Idle exchange closed via ABTS from port.  No iocb
3415 			 * resources need to be recovered.
3416 			 */
3417 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3418 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3419 						"0333 IOCB cmd 0x%x"
3420 						" processed. Skipping"
3421 						" completion\n",
3422 						irsp->ulpCommand);
3423 				break;
3424 			}
3425 
3426 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3427 							 &rspiocbq);
3428 			if (unlikely(!cmdiocbq))
3429 				break;
3430 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3431 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3432 			if (cmdiocbq->iocb_cmpl) {
3433 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3434 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3435 						      &rspiocbq);
3436 				spin_lock_irqsave(&phba->hbalock, iflag);
3437 			}
3438 			break;
3439 		case LPFC_UNSOL_IOCB:
3440 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3441 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3442 			spin_lock_irqsave(&phba->hbalock, iflag);
3443 			break;
3444 		default:
3445 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3446 				char adaptermsg[LPFC_MAX_ADPTMSG];
3447 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3448 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3449 				       MAX_MSG_DATA);
3450 				dev_warn(&((phba->pcidev)->dev),
3451 					 "lpfc%d: %s\n",
3452 					 phba->brd_no, adaptermsg);
3453 			} else {
3454 				/* Unknown IOCB command */
3455 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3456 						"0334 Unknown IOCB command "
3457 						"Data: x%x, x%x x%x x%x x%x\n",
3458 						type, irsp->ulpCommand,
3459 						irsp->ulpStatus,
3460 						irsp->ulpIoTag,
3461 						irsp->ulpContext);
3462 			}
3463 			break;
3464 		}
3465 
3466 		/*
3467 		 * The response IOCB has been processed.  Update the ring
3468 		 * pointer in SLIM.  If the port response put pointer has not
3469 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3470 		 * response put pointer.
3471 		 */
3472 		writel(pring->sli.sli3.rspidx,
3473 			&phba->host_gp[pring->ringno].rspGetInx);
3474 
3475 		if (pring->sli.sli3.rspidx == portRspPut)
3476 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3477 	}
3478 
3479 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3480 		pring->stats.iocb_rsp_full++;
3481 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3482 		writel(status, phba->CAregaddr);
3483 		readl(phba->CAregaddr);
3484 	}
3485 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3486 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3487 		pring->stats.iocb_cmd_empty++;
3488 
3489 		/* Force update of the local copy of cmdGetInx */
3490 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3491 		lpfc_sli_resume_iocb(phba, pring);
3492 
3493 		if ((pring->lpfc_sli_cmd_available))
3494 			(pring->lpfc_sli_cmd_available) (phba, pring);
3495 
3496 	}
3497 
3498 	phba->fcp_ring_in_use = 0;
3499 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3500 	return rc;
3501 }
3502 
3503 /**
3504  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3505  * @phba: Pointer to HBA context object.
3506  * @pring: Pointer to driver SLI ring object.
3507  * @rspiocbp: Pointer to driver response IOCB object.
3508  *
3509  * This function is called from the worker thread when there is a slow-path
3510  * response IOCB to process. This function chains all the response iocbs until
3511  * seeing the iocb with the LE bit set. The function will call
3512  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3513  * completion of a command iocb. The function will call the
3514  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3515  * The function frees the resources or calls the completion handler if this
3516  * iocb is an abort completion. The function returns NULL when the response
3517  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3518  * this function shall chain the iocb on to the iocb_continueq and return the
3519  * response iocb passed in.
3520  **/
3521 static struct lpfc_iocbq *
3522 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3523 			struct lpfc_iocbq *rspiocbp)
3524 {
3525 	struct lpfc_iocbq *saveq;
3526 	struct lpfc_iocbq *cmdiocbp;
3527 	struct lpfc_iocbq *next_iocb;
3528 	IOCB_t *irsp = NULL;
3529 	uint32_t free_saveq;
3530 	uint8_t iocb_cmd_type;
3531 	lpfc_iocb_type type;
3532 	unsigned long iflag;
3533 	int rc;
3534 
3535 	spin_lock_irqsave(&phba->hbalock, iflag);
3536 	/* First add the response iocb to the countinueq list */
3537 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3538 	pring->iocb_continueq_cnt++;
3539 
3540 	/* Now, determine whether the list is completed for processing */
3541 	irsp = &rspiocbp->iocb;
3542 	if (irsp->ulpLe) {
3543 		/*
3544 		 * By default, the driver expects to free all resources
3545 		 * associated with this iocb completion.
3546 		 */
3547 		free_saveq = 1;
3548 		saveq = list_get_first(&pring->iocb_continueq,
3549 				       struct lpfc_iocbq, list);
3550 		irsp = &(saveq->iocb);
3551 		list_del_init(&pring->iocb_continueq);
3552 		pring->iocb_continueq_cnt = 0;
3553 
3554 		pring->stats.iocb_rsp++;
3555 
3556 		/*
3557 		 * If resource errors reported from HBA, reduce
3558 		 * queuedepths of the SCSI device.
3559 		 */
3560 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3561 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3562 		     IOERR_NO_RESOURCES)) {
3563 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3564 			phba->lpfc_rampdown_queue_depth(phba);
3565 			spin_lock_irqsave(&phba->hbalock, iflag);
3566 		}
3567 
3568 		if (irsp->ulpStatus) {
3569 			/* Rsp ring <ringno> error: IOCB */
3570 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3571 					"0328 Rsp Ring %d error: "
3572 					"IOCB Data: "
3573 					"x%x x%x x%x x%x "
3574 					"x%x x%x x%x x%x "
3575 					"x%x x%x x%x x%x "
3576 					"x%x x%x x%x x%x\n",
3577 					pring->ringno,
3578 					irsp->un.ulpWord[0],
3579 					irsp->un.ulpWord[1],
3580 					irsp->un.ulpWord[2],
3581 					irsp->un.ulpWord[3],
3582 					irsp->un.ulpWord[4],
3583 					irsp->un.ulpWord[5],
3584 					*(((uint32_t *) irsp) + 6),
3585 					*(((uint32_t *) irsp) + 7),
3586 					*(((uint32_t *) irsp) + 8),
3587 					*(((uint32_t *) irsp) + 9),
3588 					*(((uint32_t *) irsp) + 10),
3589 					*(((uint32_t *) irsp) + 11),
3590 					*(((uint32_t *) irsp) + 12),
3591 					*(((uint32_t *) irsp) + 13),
3592 					*(((uint32_t *) irsp) + 14),
3593 					*(((uint32_t *) irsp) + 15));
3594 		}
3595 
3596 		/*
3597 		 * Fetch the IOCB command type and call the correct completion
3598 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3599 		 * get freed back to the lpfc_iocb_list by the discovery
3600 		 * kernel thread.
3601 		 */
3602 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3603 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3604 		switch (type) {
3605 		case LPFC_SOL_IOCB:
3606 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3607 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3608 			spin_lock_irqsave(&phba->hbalock, iflag);
3609 			break;
3610 
3611 		case LPFC_UNSOL_IOCB:
3612 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3613 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3614 			spin_lock_irqsave(&phba->hbalock, iflag);
3615 			if (!rc)
3616 				free_saveq = 0;
3617 			break;
3618 
3619 		case LPFC_ABORT_IOCB:
3620 			cmdiocbp = NULL;
3621 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3622 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3623 								 saveq);
3624 			if (cmdiocbp) {
3625 				/* Call the specified completion routine */
3626 				if (cmdiocbp->iocb_cmpl) {
3627 					spin_unlock_irqrestore(&phba->hbalock,
3628 							       iflag);
3629 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3630 							      saveq);
3631 					spin_lock_irqsave(&phba->hbalock,
3632 							  iflag);
3633 				} else
3634 					__lpfc_sli_release_iocbq(phba,
3635 								 cmdiocbp);
3636 			}
3637 			break;
3638 
3639 		case LPFC_UNKNOWN_IOCB:
3640 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3641 				char adaptermsg[LPFC_MAX_ADPTMSG];
3642 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3643 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3644 				       MAX_MSG_DATA);
3645 				dev_warn(&((phba->pcidev)->dev),
3646 					 "lpfc%d: %s\n",
3647 					 phba->brd_no, adaptermsg);
3648 			} else {
3649 				/* Unknown IOCB command */
3650 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3651 						"0335 Unknown IOCB "
3652 						"command Data: x%x "
3653 						"x%x x%x x%x\n",
3654 						irsp->ulpCommand,
3655 						irsp->ulpStatus,
3656 						irsp->ulpIoTag,
3657 						irsp->ulpContext);
3658 			}
3659 			break;
3660 		}
3661 
3662 		if (free_saveq) {
3663 			list_for_each_entry_safe(rspiocbp, next_iocb,
3664 						 &saveq->list, list) {
3665 				list_del_init(&rspiocbp->list);
3666 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3667 			}
3668 			__lpfc_sli_release_iocbq(phba, saveq);
3669 		}
3670 		rspiocbp = NULL;
3671 	}
3672 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3673 	return rspiocbp;
3674 }
3675 
3676 /**
3677  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3678  * @phba: Pointer to HBA context object.
3679  * @pring: Pointer to driver SLI ring object.
3680  * @mask: Host attention register mask for this ring.
3681  *
3682  * This routine wraps the actual slow_ring event process routine from the
3683  * API jump table function pointer from the lpfc_hba struct.
3684  **/
3685 void
3686 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3687 				struct lpfc_sli_ring *pring, uint32_t mask)
3688 {
3689 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3690 }
3691 
3692 /**
3693  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3694  * @phba: Pointer to HBA context object.
3695  * @pring: Pointer to driver SLI ring object.
3696  * @mask: Host attention register mask for this ring.
3697  *
3698  * This function is called from the worker thread when there is a ring event
3699  * for non-fcp rings. The caller does not hold any lock. The function will
3700  * remove each response iocb in the response ring and calls the handle
3701  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3702  **/
3703 static void
3704 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3705 				   struct lpfc_sli_ring *pring, uint32_t mask)
3706 {
3707 	struct lpfc_pgp *pgp;
3708 	IOCB_t *entry;
3709 	IOCB_t *irsp = NULL;
3710 	struct lpfc_iocbq *rspiocbp = NULL;
3711 	uint32_t portRspPut, portRspMax;
3712 	unsigned long iflag;
3713 	uint32_t status;
3714 
3715 	pgp = &phba->port_gp[pring->ringno];
3716 	spin_lock_irqsave(&phba->hbalock, iflag);
3717 	pring->stats.iocb_event++;
3718 
3719 	/*
3720 	 * The next available response entry should never exceed the maximum
3721 	 * entries.  If it does, treat it as an adapter hardware error.
3722 	 */
3723 	portRspMax = pring->sli.sli3.numRiocb;
3724 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3725 	if (portRspPut >= portRspMax) {
3726 		/*
3727 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3728 		 * rsp ring <portRspMax>
3729 		 */
3730 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3731 				"0303 Ring %d handler: portRspPut %d "
3732 				"is bigger than rsp ring %d\n",
3733 				pring->ringno, portRspPut, portRspMax);
3734 
3735 		phba->link_state = LPFC_HBA_ERROR;
3736 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3737 
3738 		phba->work_hs = HS_FFER3;
3739 		lpfc_handle_eratt(phba);
3740 
3741 		return;
3742 	}
3743 
3744 	rmb();
3745 	while (pring->sli.sli3.rspidx != portRspPut) {
3746 		/*
3747 		 * Build a completion list and call the appropriate handler.
3748 		 * The process is to get the next available response iocb, get
3749 		 * a free iocb from the list, copy the response data into the
3750 		 * free iocb, insert to the continuation list, and update the
3751 		 * next response index to slim.  This process makes response
3752 		 * iocb's in the ring available to DMA as fast as possible but
3753 		 * pays a penalty for a copy operation.  Since the iocb is
3754 		 * only 32 bytes, this penalty is considered small relative to
3755 		 * the PCI reads for register values and a slim write.  When
3756 		 * the ulpLe field is set, the entire Command has been
3757 		 * received.
3758 		 */
3759 		entry = lpfc_resp_iocb(phba, pring);
3760 
3761 		phba->last_completion_time = jiffies;
3762 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3763 		if (rspiocbp == NULL) {
3764 			printk(KERN_ERR "%s: out of buffers! Failing "
3765 			       "completion.\n", __func__);
3766 			break;
3767 		}
3768 
3769 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3770 				      phba->iocb_rsp_size);
3771 		irsp = &rspiocbp->iocb;
3772 
3773 		if (++pring->sli.sli3.rspidx >= portRspMax)
3774 			pring->sli.sli3.rspidx = 0;
3775 
3776 		if (pring->ringno == LPFC_ELS_RING) {
3777 			lpfc_debugfs_slow_ring_trc(phba,
3778 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3779 				*(((uint32_t *) irsp) + 4),
3780 				*(((uint32_t *) irsp) + 6),
3781 				*(((uint32_t *) irsp) + 7));
3782 		}
3783 
3784 		writel(pring->sli.sli3.rspidx,
3785 			&phba->host_gp[pring->ringno].rspGetInx);
3786 
3787 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3788 		/* Handle the response IOCB */
3789 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3790 		spin_lock_irqsave(&phba->hbalock, iflag);
3791 
3792 		/*
3793 		 * If the port response put pointer has not been updated, sync
3794 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3795 		 * response put pointer.
3796 		 */
3797 		if (pring->sli.sli3.rspidx == portRspPut) {
3798 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3799 		}
3800 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3801 
3802 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3803 		/* At least one response entry has been freed */
3804 		pring->stats.iocb_rsp_full++;
3805 		/* SET RxRE_RSP in Chip Att register */
3806 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3807 		writel(status, phba->CAregaddr);
3808 		readl(phba->CAregaddr); /* flush */
3809 	}
3810 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3811 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3812 		pring->stats.iocb_cmd_empty++;
3813 
3814 		/* Force update of the local copy of cmdGetInx */
3815 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3816 		lpfc_sli_resume_iocb(phba, pring);
3817 
3818 		if ((pring->lpfc_sli_cmd_available))
3819 			(pring->lpfc_sli_cmd_available) (phba, pring);
3820 
3821 	}
3822 
3823 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3824 	return;
3825 }
3826 
3827 /**
3828  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3829  * @phba: Pointer to HBA context object.
3830  * @pring: Pointer to driver SLI ring object.
3831  * @mask: Host attention register mask for this ring.
3832  *
3833  * This function is called from the worker thread when there is a pending
3834  * ELS response iocb on the driver internal slow-path response iocb worker
3835  * queue. The caller does not hold any lock. The function will remove each
3836  * response iocb from the response worker queue and calls the handle
3837  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3838  **/
3839 static void
3840 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3841 				   struct lpfc_sli_ring *pring, uint32_t mask)
3842 {
3843 	struct lpfc_iocbq *irspiocbq;
3844 	struct hbq_dmabuf *dmabuf;
3845 	struct lpfc_cq_event *cq_event;
3846 	unsigned long iflag;
3847 	int count = 0;
3848 
3849 	spin_lock_irqsave(&phba->hbalock, iflag);
3850 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3851 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3852 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3853 		/* Get the response iocb from the head of work queue */
3854 		spin_lock_irqsave(&phba->hbalock, iflag);
3855 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3856 				 cq_event, struct lpfc_cq_event, list);
3857 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3858 
3859 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3860 		case CQE_CODE_COMPL_WQE:
3861 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3862 						 cq_event);
3863 			/* Translate ELS WCQE to response IOCBQ */
3864 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3865 								   irspiocbq);
3866 			if (irspiocbq)
3867 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3868 							   irspiocbq);
3869 			count++;
3870 			break;
3871 		case CQE_CODE_RECEIVE:
3872 		case CQE_CODE_RECEIVE_V1:
3873 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3874 					      cq_event);
3875 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3876 			count++;
3877 			break;
3878 		default:
3879 			break;
3880 		}
3881 
3882 		/* Limit the number of events to 64 to avoid soft lockups */
3883 		if (count == 64)
3884 			break;
3885 	}
3886 }
3887 
3888 /**
3889  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3890  * @phba: Pointer to HBA context object.
3891  * @pring: Pointer to driver SLI ring object.
3892  *
3893  * This function aborts all iocbs in the given ring and frees all the iocb
3894  * objects in txq. This function issues an abort iocb for all the iocb commands
3895  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3896  * the return of this function. The caller is not required to hold any locks.
3897  **/
3898 void
3899 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3900 {
3901 	LIST_HEAD(completions);
3902 	struct lpfc_iocbq *iocb, *next_iocb;
3903 
3904 	if (pring->ringno == LPFC_ELS_RING) {
3905 		lpfc_fabric_abort_hba(phba);
3906 	}
3907 
3908 	/* Error everything on txq and txcmplq
3909 	 * First do the txq.
3910 	 */
3911 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3912 		spin_lock_irq(&pring->ring_lock);
3913 		list_splice_init(&pring->txq, &completions);
3914 		pring->txq_cnt = 0;
3915 		spin_unlock_irq(&pring->ring_lock);
3916 
3917 		spin_lock_irq(&phba->hbalock);
3918 		/* Next issue ABTS for everything on the txcmplq */
3919 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3920 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3921 		spin_unlock_irq(&phba->hbalock);
3922 	} else {
3923 		spin_lock_irq(&phba->hbalock);
3924 		list_splice_init(&pring->txq, &completions);
3925 		pring->txq_cnt = 0;
3926 
3927 		/* Next issue ABTS for everything on the txcmplq */
3928 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3929 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3930 		spin_unlock_irq(&phba->hbalock);
3931 	}
3932 
3933 	/* Cancel all the IOCBs from the completions list */
3934 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3935 			      IOERR_SLI_ABORTED);
3936 }
3937 
3938 /**
3939  * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3940  * @phba: Pointer to HBA context object.
3941  * @pring: Pointer to driver SLI ring object.
3942  *
3943  * This function aborts all iocbs in the given ring and frees all the iocb
3944  * objects in txq. This function issues an abort iocb for all the iocb commands
3945  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3946  * the return of this function. The caller is not required to hold any locks.
3947  **/
3948 void
3949 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3950 {
3951 	LIST_HEAD(completions);
3952 	struct lpfc_iocbq *iocb, *next_iocb;
3953 
3954 	if (pring->ringno == LPFC_ELS_RING)
3955 		lpfc_fabric_abort_hba(phba);
3956 
3957 	spin_lock_irq(&phba->hbalock);
3958 	/* Next issue ABTS for everything on the txcmplq */
3959 	list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3960 		lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3961 	spin_unlock_irq(&phba->hbalock);
3962 }
3963 
3964 
3965 /**
3966  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3967  * @phba: Pointer to HBA context object.
3968  * @pring: Pointer to driver SLI ring object.
3969  *
3970  * This function aborts all iocbs in FCP rings and frees all the iocb
3971  * objects in txq. This function issues an abort iocb for all the iocb commands
3972  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3973  * the return of this function. The caller is not required to hold any locks.
3974  **/
3975 void
3976 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3977 {
3978 	struct lpfc_sli *psli = &phba->sli;
3979 	struct lpfc_sli_ring  *pring;
3980 	uint32_t i;
3981 
3982 	/* Look on all the FCP Rings for the iotag */
3983 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3984 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3985 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3986 			lpfc_sli_abort_iocb_ring(phba, pring);
3987 		}
3988 	} else {
3989 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3990 		lpfc_sli_abort_iocb_ring(phba, pring);
3991 	}
3992 }
3993 
3994 /**
3995  * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3996  * @phba: Pointer to HBA context object.
3997  *
3998  * This function aborts all wqes in NVME rings. This function issues an
3999  * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
4000  * the txcmplq is not guaranteed to complete before the return of this
4001  * function. The caller is not required to hold any locks.
4002  **/
4003 void
4004 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
4005 {
4006 	struct lpfc_sli_ring  *pring;
4007 	uint32_t i;
4008 
4009 	if (phba->sli_rev < LPFC_SLI_REV4)
4010 		return;
4011 
4012 	/* Abort all IO on each NVME ring. */
4013 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
4014 		pring = phba->sli4_hba.nvme_wq[i]->pring;
4015 		lpfc_sli_abort_wqe_ring(phba, pring);
4016 	}
4017 }
4018 
4019 
4020 /**
4021  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
4022  * @phba: Pointer to HBA context object.
4023  *
4024  * This function flushes all iocbs in the fcp ring and frees all the iocb
4025  * objects in txq and txcmplq. This function will not issue abort iocbs
4026  * for all the iocb commands in txcmplq, they will just be returned with
4027  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4028  * slot has been permanently disabled.
4029  **/
4030 void
4031 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
4032 {
4033 	LIST_HEAD(txq);
4034 	LIST_HEAD(txcmplq);
4035 	struct lpfc_sli *psli = &phba->sli;
4036 	struct lpfc_sli_ring  *pring;
4037 	uint32_t i;
4038 	struct lpfc_iocbq *piocb, *next_iocb;
4039 
4040 	spin_lock_irq(&phba->hbalock);
4041 	/* Indicate the I/O queues are flushed */
4042 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
4043 	spin_unlock_irq(&phba->hbalock);
4044 
4045 	/* Look on all the FCP Rings for the iotag */
4046 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4047 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
4048 			pring = phba->sli4_hba.fcp_wq[i]->pring;
4049 
4050 			spin_lock_irq(&pring->ring_lock);
4051 			/* Retrieve everything on txq */
4052 			list_splice_init(&pring->txq, &txq);
4053 			list_for_each_entry_safe(piocb, next_iocb,
4054 						 &pring->txcmplq, list)
4055 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4056 			/* Retrieve everything on the txcmplq */
4057 			list_splice_init(&pring->txcmplq, &txcmplq);
4058 			pring->txq_cnt = 0;
4059 			pring->txcmplq_cnt = 0;
4060 			spin_unlock_irq(&pring->ring_lock);
4061 
4062 			/* Flush the txq */
4063 			lpfc_sli_cancel_iocbs(phba, &txq,
4064 					      IOSTAT_LOCAL_REJECT,
4065 					      IOERR_SLI_DOWN);
4066 			/* Flush the txcmpq */
4067 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4068 					      IOSTAT_LOCAL_REJECT,
4069 					      IOERR_SLI_DOWN);
4070 		}
4071 	} else {
4072 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4073 
4074 		spin_lock_irq(&phba->hbalock);
4075 		/* Retrieve everything on txq */
4076 		list_splice_init(&pring->txq, &txq);
4077 		list_for_each_entry_safe(piocb, next_iocb,
4078 					 &pring->txcmplq, list)
4079 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4080 		/* Retrieve everything on the txcmplq */
4081 		list_splice_init(&pring->txcmplq, &txcmplq);
4082 		pring->txq_cnt = 0;
4083 		pring->txcmplq_cnt = 0;
4084 		spin_unlock_irq(&phba->hbalock);
4085 
4086 		/* Flush the txq */
4087 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4088 				      IOERR_SLI_DOWN);
4089 		/* Flush the txcmpq */
4090 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4091 				      IOERR_SLI_DOWN);
4092 	}
4093 }
4094 
4095 /**
4096  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4097  * @phba: Pointer to HBA context object.
4098  *
4099  * This function flushes all wqes in the nvme rings and frees all resources
4100  * in the txcmplq. This function does not issue abort wqes for the IO
4101  * commands in txcmplq, they will just be returned with
4102  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4103  * slot has been permanently disabled.
4104  **/
4105 void
4106 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4107 {
4108 	LIST_HEAD(txcmplq);
4109 	struct lpfc_sli_ring  *pring;
4110 	uint32_t i;
4111 	struct lpfc_iocbq *piocb, *next_iocb;
4112 
4113 	if (phba->sli_rev < LPFC_SLI_REV4)
4114 		return;
4115 
4116 	/* Hint to other driver operations that a flush is in progress. */
4117 	spin_lock_irq(&phba->hbalock);
4118 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4119 	spin_unlock_irq(&phba->hbalock);
4120 
4121 	/* Cycle through all NVME rings and complete each IO with
4122 	 * a local driver reason code.  This is a flush so no
4123 	 * abort exchange to FW.
4124 	 */
4125 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
4126 		pring = phba->sli4_hba.nvme_wq[i]->pring;
4127 
4128 		spin_lock_irq(&pring->ring_lock);
4129 		list_for_each_entry_safe(piocb, next_iocb,
4130 					 &pring->txcmplq, list)
4131 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4132 		/* Retrieve everything on the txcmplq */
4133 		list_splice_init(&pring->txcmplq, &txcmplq);
4134 		pring->txcmplq_cnt = 0;
4135 		spin_unlock_irq(&pring->ring_lock);
4136 
4137 		/* Flush the txcmpq &&&PAE */
4138 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4139 				      IOSTAT_LOCAL_REJECT,
4140 				      IOERR_SLI_DOWN);
4141 	}
4142 }
4143 
4144 /**
4145  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4146  * @phba: Pointer to HBA context object.
4147  * @mask: Bit mask to be checked.
4148  *
4149  * This function reads the host status register and compares
4150  * with the provided bit mask to check if HBA completed
4151  * the restart. This function will wait in a loop for the
4152  * HBA to complete restart. If the HBA does not restart within
4153  * 15 iterations, the function will reset the HBA again. The
4154  * function returns 1 when HBA fail to restart otherwise returns
4155  * zero.
4156  **/
4157 static int
4158 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4159 {
4160 	uint32_t status;
4161 	int i = 0;
4162 	int retval = 0;
4163 
4164 	/* Read the HBA Host Status Register */
4165 	if (lpfc_readl(phba->HSregaddr, &status))
4166 		return 1;
4167 
4168 	/*
4169 	 * Check status register every 100ms for 5 retries, then every
4170 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4171 	 * every 2.5 sec for 4.
4172 	 * Break our of the loop if errors occurred during init.
4173 	 */
4174 	while (((status & mask) != mask) &&
4175 	       !(status & HS_FFERM) &&
4176 	       i++ < 20) {
4177 
4178 		if (i <= 5)
4179 			msleep(10);
4180 		else if (i <= 10)
4181 			msleep(500);
4182 		else
4183 			msleep(2500);
4184 
4185 		if (i == 15) {
4186 				/* Do post */
4187 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4188 			lpfc_sli_brdrestart(phba);
4189 		}
4190 		/* Read the HBA Host Status Register */
4191 		if (lpfc_readl(phba->HSregaddr, &status)) {
4192 			retval = 1;
4193 			break;
4194 		}
4195 	}
4196 
4197 	/* Check to see if any errors occurred during init */
4198 	if ((status & HS_FFERM) || (i >= 20)) {
4199 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4200 				"2751 Adapter failed to restart, "
4201 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4202 				status,
4203 				readl(phba->MBslimaddr + 0xa8),
4204 				readl(phba->MBslimaddr + 0xac));
4205 		phba->link_state = LPFC_HBA_ERROR;
4206 		retval = 1;
4207 	}
4208 
4209 	return retval;
4210 }
4211 
4212 /**
4213  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4214  * @phba: Pointer to HBA context object.
4215  * @mask: Bit mask to be checked.
4216  *
4217  * This function checks the host status register to check if HBA is
4218  * ready. This function will wait in a loop for the HBA to be ready
4219  * If the HBA is not ready , the function will will reset the HBA PCI
4220  * function again. The function returns 1 when HBA fail to be ready
4221  * otherwise returns zero.
4222  **/
4223 static int
4224 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4225 {
4226 	uint32_t status;
4227 	int retval = 0;
4228 
4229 	/* Read the HBA Host Status Register */
4230 	status = lpfc_sli4_post_status_check(phba);
4231 
4232 	if (status) {
4233 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4234 		lpfc_sli_brdrestart(phba);
4235 		status = lpfc_sli4_post_status_check(phba);
4236 	}
4237 
4238 	/* Check to see if any errors occurred during init */
4239 	if (status) {
4240 		phba->link_state = LPFC_HBA_ERROR;
4241 		retval = 1;
4242 	} else
4243 		phba->sli4_hba.intr_enable = 0;
4244 
4245 	return retval;
4246 }
4247 
4248 /**
4249  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4250  * @phba: Pointer to HBA context object.
4251  * @mask: Bit mask to be checked.
4252  *
4253  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4254  * from the API jump table function pointer from the lpfc_hba struct.
4255  **/
4256 int
4257 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4258 {
4259 	return phba->lpfc_sli_brdready(phba, mask);
4260 }
4261 
4262 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4263 
4264 /**
4265  * lpfc_reset_barrier - Make HBA ready for HBA reset
4266  * @phba: Pointer to HBA context object.
4267  *
4268  * This function is called before resetting an HBA. This function is called
4269  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4270  **/
4271 void lpfc_reset_barrier(struct lpfc_hba *phba)
4272 {
4273 	uint32_t __iomem *resp_buf;
4274 	uint32_t __iomem *mbox_buf;
4275 	volatile uint32_t mbox;
4276 	uint32_t hc_copy, ha_copy, resp_data;
4277 	int  i;
4278 	uint8_t hdrtype;
4279 
4280 	lockdep_assert_held(&phba->hbalock);
4281 
4282 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4283 	if (hdrtype != 0x80 ||
4284 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4285 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4286 		return;
4287 
4288 	/*
4289 	 * Tell the other part of the chip to suspend temporarily all
4290 	 * its DMA activity.
4291 	 */
4292 	resp_buf = phba->MBslimaddr;
4293 
4294 	/* Disable the error attention */
4295 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4296 		return;
4297 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4298 	readl(phba->HCregaddr); /* flush */
4299 	phba->link_flag |= LS_IGNORE_ERATT;
4300 
4301 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4302 		return;
4303 	if (ha_copy & HA_ERATT) {
4304 		/* Clear Chip error bit */
4305 		writel(HA_ERATT, phba->HAregaddr);
4306 		phba->pport->stopped = 1;
4307 	}
4308 
4309 	mbox = 0;
4310 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4311 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4312 
4313 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4314 	mbox_buf = phba->MBslimaddr;
4315 	writel(mbox, mbox_buf);
4316 
4317 	for (i = 0; i < 50; i++) {
4318 		if (lpfc_readl((resp_buf + 1), &resp_data))
4319 			return;
4320 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4321 			mdelay(1);
4322 		else
4323 			break;
4324 	}
4325 	resp_data = 0;
4326 	if (lpfc_readl((resp_buf + 1), &resp_data))
4327 		return;
4328 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4329 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4330 		    phba->pport->stopped)
4331 			goto restore_hc;
4332 		else
4333 			goto clear_errat;
4334 	}
4335 
4336 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4337 	resp_data = 0;
4338 	for (i = 0; i < 500; i++) {
4339 		if (lpfc_readl(resp_buf, &resp_data))
4340 			return;
4341 		if (resp_data != mbox)
4342 			mdelay(1);
4343 		else
4344 			break;
4345 	}
4346 
4347 clear_errat:
4348 
4349 	while (++i < 500) {
4350 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4351 			return;
4352 		if (!(ha_copy & HA_ERATT))
4353 			mdelay(1);
4354 		else
4355 			break;
4356 	}
4357 
4358 	if (readl(phba->HAregaddr) & HA_ERATT) {
4359 		writel(HA_ERATT, phba->HAregaddr);
4360 		phba->pport->stopped = 1;
4361 	}
4362 
4363 restore_hc:
4364 	phba->link_flag &= ~LS_IGNORE_ERATT;
4365 	writel(hc_copy, phba->HCregaddr);
4366 	readl(phba->HCregaddr); /* flush */
4367 }
4368 
4369 /**
4370  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4371  * @phba: Pointer to HBA context object.
4372  *
4373  * This function issues a kill_board mailbox command and waits for
4374  * the error attention interrupt. This function is called for stopping
4375  * the firmware processing. The caller is not required to hold any
4376  * locks. This function calls lpfc_hba_down_post function to free
4377  * any pending commands after the kill. The function will return 1 when it
4378  * fails to kill the board else will return 0.
4379  **/
4380 int
4381 lpfc_sli_brdkill(struct lpfc_hba *phba)
4382 {
4383 	struct lpfc_sli *psli;
4384 	LPFC_MBOXQ_t *pmb;
4385 	uint32_t status;
4386 	uint32_t ha_copy;
4387 	int retval;
4388 	int i = 0;
4389 
4390 	psli = &phba->sli;
4391 
4392 	/* Kill HBA */
4393 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4394 			"0329 Kill HBA Data: x%x x%x\n",
4395 			phba->pport->port_state, psli->sli_flag);
4396 
4397 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4398 	if (!pmb)
4399 		return 1;
4400 
4401 	/* Disable the error attention */
4402 	spin_lock_irq(&phba->hbalock);
4403 	if (lpfc_readl(phba->HCregaddr, &status)) {
4404 		spin_unlock_irq(&phba->hbalock);
4405 		mempool_free(pmb, phba->mbox_mem_pool);
4406 		return 1;
4407 	}
4408 	status &= ~HC_ERINT_ENA;
4409 	writel(status, phba->HCregaddr);
4410 	readl(phba->HCregaddr); /* flush */
4411 	phba->link_flag |= LS_IGNORE_ERATT;
4412 	spin_unlock_irq(&phba->hbalock);
4413 
4414 	lpfc_kill_board(phba, pmb);
4415 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4416 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4417 
4418 	if (retval != MBX_SUCCESS) {
4419 		if (retval != MBX_BUSY)
4420 			mempool_free(pmb, phba->mbox_mem_pool);
4421 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4422 				"2752 KILL_BOARD command failed retval %d\n",
4423 				retval);
4424 		spin_lock_irq(&phba->hbalock);
4425 		phba->link_flag &= ~LS_IGNORE_ERATT;
4426 		spin_unlock_irq(&phba->hbalock);
4427 		return 1;
4428 	}
4429 
4430 	spin_lock_irq(&phba->hbalock);
4431 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4432 	spin_unlock_irq(&phba->hbalock);
4433 
4434 	mempool_free(pmb, phba->mbox_mem_pool);
4435 
4436 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4437 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4438 	 * 3 seconds we still set HBA_ERROR state because the status of the
4439 	 * board is now undefined.
4440 	 */
4441 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4442 		return 1;
4443 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4444 		mdelay(100);
4445 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4446 			return 1;
4447 	}
4448 
4449 	del_timer_sync(&psli->mbox_tmo);
4450 	if (ha_copy & HA_ERATT) {
4451 		writel(HA_ERATT, phba->HAregaddr);
4452 		phba->pport->stopped = 1;
4453 	}
4454 	spin_lock_irq(&phba->hbalock);
4455 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4456 	psli->mbox_active = NULL;
4457 	phba->link_flag &= ~LS_IGNORE_ERATT;
4458 	spin_unlock_irq(&phba->hbalock);
4459 
4460 	lpfc_hba_down_post(phba);
4461 	phba->link_state = LPFC_HBA_ERROR;
4462 
4463 	return ha_copy & HA_ERATT ? 0 : 1;
4464 }
4465 
4466 /**
4467  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4468  * @phba: Pointer to HBA context object.
4469  *
4470  * This function resets the HBA by writing HC_INITFF to the control
4471  * register. After the HBA resets, this function resets all the iocb ring
4472  * indices. This function disables PCI layer parity checking during
4473  * the reset.
4474  * This function returns 0 always.
4475  * The caller is not required to hold any locks.
4476  **/
4477 int
4478 lpfc_sli_brdreset(struct lpfc_hba *phba)
4479 {
4480 	struct lpfc_sli *psli;
4481 	struct lpfc_sli_ring *pring;
4482 	uint16_t cfg_value;
4483 	int i;
4484 
4485 	psli = &phba->sli;
4486 
4487 	/* Reset HBA */
4488 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4489 			"0325 Reset HBA Data: x%x x%x\n",
4490 			(phba->pport) ? phba->pport->port_state : 0,
4491 			psli->sli_flag);
4492 
4493 	/* perform board reset */
4494 	phba->fc_eventTag = 0;
4495 	phba->link_events = 0;
4496 	if (phba->pport) {
4497 		phba->pport->fc_myDID = 0;
4498 		phba->pport->fc_prevDID = 0;
4499 	}
4500 
4501 	/* Turn off parity checking and serr during the physical reset */
4502 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4503 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4504 			      (cfg_value &
4505 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4506 
4507 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4508 
4509 	/* Now toggle INITFF bit in the Host Control Register */
4510 	writel(HC_INITFF, phba->HCregaddr);
4511 	mdelay(1);
4512 	readl(phba->HCregaddr); /* flush */
4513 	writel(0, phba->HCregaddr);
4514 	readl(phba->HCregaddr); /* flush */
4515 
4516 	/* Restore PCI cmd register */
4517 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4518 
4519 	/* Initialize relevant SLI info */
4520 	for (i = 0; i < psli->num_rings; i++) {
4521 		pring = &psli->sli3_ring[i];
4522 		pring->flag = 0;
4523 		pring->sli.sli3.rspidx = 0;
4524 		pring->sli.sli3.next_cmdidx  = 0;
4525 		pring->sli.sli3.local_getidx = 0;
4526 		pring->sli.sli3.cmdidx = 0;
4527 		pring->missbufcnt = 0;
4528 	}
4529 
4530 	phba->link_state = LPFC_WARM_START;
4531 	return 0;
4532 }
4533 
4534 /**
4535  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4536  * @phba: Pointer to HBA context object.
4537  *
4538  * This function resets a SLI4 HBA. This function disables PCI layer parity
4539  * checking during resets the device. The caller is not required to hold
4540  * any locks.
4541  *
4542  * This function returns 0 always.
4543  **/
4544 int
4545 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4546 {
4547 	struct lpfc_sli *psli = &phba->sli;
4548 	uint16_t cfg_value;
4549 	int rc = 0;
4550 
4551 	/* Reset HBA */
4552 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4553 			"0295 Reset HBA Data: x%x x%x x%x\n",
4554 			phba->pport->port_state, psli->sli_flag,
4555 			phba->hba_flag);
4556 
4557 	/* perform board reset */
4558 	phba->fc_eventTag = 0;
4559 	phba->link_events = 0;
4560 	phba->pport->fc_myDID = 0;
4561 	phba->pport->fc_prevDID = 0;
4562 
4563 	spin_lock_irq(&phba->hbalock);
4564 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4565 	phba->fcf.fcf_flag = 0;
4566 	spin_unlock_irq(&phba->hbalock);
4567 
4568 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4569 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4570 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4571 		return rc;
4572 	}
4573 
4574 	/* Now physically reset the device */
4575 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4576 			"0389 Performing PCI function reset!\n");
4577 
4578 	/* Turn off parity checking and serr during the physical reset */
4579 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4580 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4581 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4582 
4583 	/* Perform FCoE PCI function reset before freeing queue memory */
4584 	rc = lpfc_pci_function_reset(phba);
4585 
4586 	/* Restore PCI cmd register */
4587 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4588 
4589 	return rc;
4590 }
4591 
4592 /**
4593  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4594  * @phba: Pointer to HBA context object.
4595  *
4596  * This function is called in the SLI initialization code path to
4597  * restart the HBA. The caller is not required to hold any lock.
4598  * This function writes MBX_RESTART mailbox command to the SLIM and
4599  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4600  * function to free any pending commands. The function enables
4601  * POST only during the first initialization. The function returns zero.
4602  * The function does not guarantee completion of MBX_RESTART mailbox
4603  * command before the return of this function.
4604  **/
4605 static int
4606 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4607 {
4608 	MAILBOX_t *mb;
4609 	struct lpfc_sli *psli;
4610 	volatile uint32_t word0;
4611 	void __iomem *to_slim;
4612 	uint32_t hba_aer_enabled;
4613 
4614 	spin_lock_irq(&phba->hbalock);
4615 
4616 	/* Take PCIe device Advanced Error Reporting (AER) state */
4617 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4618 
4619 	psli = &phba->sli;
4620 
4621 	/* Restart HBA */
4622 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4623 			"0337 Restart HBA Data: x%x x%x\n",
4624 			(phba->pport) ? phba->pport->port_state : 0,
4625 			psli->sli_flag);
4626 
4627 	word0 = 0;
4628 	mb = (MAILBOX_t *) &word0;
4629 	mb->mbxCommand = MBX_RESTART;
4630 	mb->mbxHc = 1;
4631 
4632 	lpfc_reset_barrier(phba);
4633 
4634 	to_slim = phba->MBslimaddr;
4635 	writel(*(uint32_t *) mb, to_slim);
4636 	readl(to_slim); /* flush */
4637 
4638 	/* Only skip post after fc_ffinit is completed */
4639 	if (phba->pport && phba->pport->port_state)
4640 		word0 = 1;	/* This is really setting up word1 */
4641 	else
4642 		word0 = 0;	/* This is really setting up word1 */
4643 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4644 	writel(*(uint32_t *) mb, to_slim);
4645 	readl(to_slim); /* flush */
4646 
4647 	lpfc_sli_brdreset(phba);
4648 	if (phba->pport)
4649 		phba->pport->stopped = 0;
4650 	phba->link_state = LPFC_INIT_START;
4651 	phba->hba_flag = 0;
4652 	spin_unlock_irq(&phba->hbalock);
4653 
4654 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4655 	psli->stats_start = ktime_get_seconds();
4656 
4657 	/* Give the INITFF and Post time to settle. */
4658 	mdelay(100);
4659 
4660 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4661 	if (hba_aer_enabled)
4662 		pci_disable_pcie_error_reporting(phba->pcidev);
4663 
4664 	lpfc_hba_down_post(phba);
4665 
4666 	return 0;
4667 }
4668 
4669 /**
4670  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4671  * @phba: Pointer to HBA context object.
4672  *
4673  * This function is called in the SLI initialization code path to restart
4674  * a SLI4 HBA. The caller is not required to hold any lock.
4675  * At the end of the function, it calls lpfc_hba_down_post function to
4676  * free any pending commands.
4677  **/
4678 static int
4679 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4680 {
4681 	struct lpfc_sli *psli = &phba->sli;
4682 	uint32_t hba_aer_enabled;
4683 	int rc;
4684 
4685 	/* Restart HBA */
4686 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4687 			"0296 Restart HBA Data: x%x x%x\n",
4688 			phba->pport->port_state, psli->sli_flag);
4689 
4690 	/* Take PCIe device Advanced Error Reporting (AER) state */
4691 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4692 
4693 	rc = lpfc_sli4_brdreset(phba);
4694 	if (rc)
4695 		return rc;
4696 
4697 	spin_lock_irq(&phba->hbalock);
4698 	phba->pport->stopped = 0;
4699 	phba->link_state = LPFC_INIT_START;
4700 	phba->hba_flag = 0;
4701 	spin_unlock_irq(&phba->hbalock);
4702 
4703 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4704 	psli->stats_start = ktime_get_seconds();
4705 
4706 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4707 	if (hba_aer_enabled)
4708 		pci_disable_pcie_error_reporting(phba->pcidev);
4709 
4710 	lpfc_hba_down_post(phba);
4711 	lpfc_sli4_queue_destroy(phba);
4712 
4713 	return rc;
4714 }
4715 
4716 /**
4717  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4718  * @phba: Pointer to HBA context object.
4719  *
4720  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4721  * API jump table function pointer from the lpfc_hba struct.
4722 **/
4723 int
4724 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4725 {
4726 	return phba->lpfc_sli_brdrestart(phba);
4727 }
4728 
4729 /**
4730  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4731  * @phba: Pointer to HBA context object.
4732  *
4733  * This function is called after a HBA restart to wait for successful
4734  * restart of the HBA. Successful restart of the HBA is indicated by
4735  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4736  * iteration, the function will restart the HBA again. The function returns
4737  * zero if HBA successfully restarted else returns negative error code.
4738  **/
4739 int
4740 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4741 {
4742 	uint32_t status, i = 0;
4743 
4744 	/* Read the HBA Host Status Register */
4745 	if (lpfc_readl(phba->HSregaddr, &status))
4746 		return -EIO;
4747 
4748 	/* Check status register to see what current state is */
4749 	i = 0;
4750 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4751 
4752 		/* Check every 10ms for 10 retries, then every 100ms for 90
4753 		 * retries, then every 1 sec for 50 retires for a total of
4754 		 * ~60 seconds before reset the board again and check every
4755 		 * 1 sec for 50 retries. The up to 60 seconds before the
4756 		 * board ready is required by the Falcon FIPS zeroization
4757 		 * complete, and any reset the board in between shall cause
4758 		 * restart of zeroization, further delay the board ready.
4759 		 */
4760 		if (i++ >= 200) {
4761 			/* Adapter failed to init, timeout, status reg
4762 			   <status> */
4763 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4764 					"0436 Adapter failed to init, "
4765 					"timeout, status reg x%x, "
4766 					"FW Data: A8 x%x AC x%x\n", status,
4767 					readl(phba->MBslimaddr + 0xa8),
4768 					readl(phba->MBslimaddr + 0xac));
4769 			phba->link_state = LPFC_HBA_ERROR;
4770 			return -ETIMEDOUT;
4771 		}
4772 
4773 		/* Check to see if any errors occurred during init */
4774 		if (status & HS_FFERM) {
4775 			/* ERROR: During chipset initialization */
4776 			/* Adapter failed to init, chipset, status reg
4777 			   <status> */
4778 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4779 					"0437 Adapter failed to init, "
4780 					"chipset, status reg x%x, "
4781 					"FW Data: A8 x%x AC x%x\n", status,
4782 					readl(phba->MBslimaddr + 0xa8),
4783 					readl(phba->MBslimaddr + 0xac));
4784 			phba->link_state = LPFC_HBA_ERROR;
4785 			return -EIO;
4786 		}
4787 
4788 		if (i <= 10)
4789 			msleep(10);
4790 		else if (i <= 100)
4791 			msleep(100);
4792 		else
4793 			msleep(1000);
4794 
4795 		if (i == 150) {
4796 			/* Do post */
4797 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4798 			lpfc_sli_brdrestart(phba);
4799 		}
4800 		/* Read the HBA Host Status Register */
4801 		if (lpfc_readl(phba->HSregaddr, &status))
4802 			return -EIO;
4803 	}
4804 
4805 	/* Check to see if any errors occurred during init */
4806 	if (status & HS_FFERM) {
4807 		/* ERROR: During chipset initialization */
4808 		/* Adapter failed to init, chipset, status reg <status> */
4809 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4810 				"0438 Adapter failed to init, chipset, "
4811 				"status reg x%x, "
4812 				"FW Data: A8 x%x AC x%x\n", status,
4813 				readl(phba->MBslimaddr + 0xa8),
4814 				readl(phba->MBslimaddr + 0xac));
4815 		phba->link_state = LPFC_HBA_ERROR;
4816 		return -EIO;
4817 	}
4818 
4819 	/* Clear all interrupt enable conditions */
4820 	writel(0, phba->HCregaddr);
4821 	readl(phba->HCregaddr); /* flush */
4822 
4823 	/* setup host attn register */
4824 	writel(0xffffffff, phba->HAregaddr);
4825 	readl(phba->HAregaddr); /* flush */
4826 	return 0;
4827 }
4828 
4829 /**
4830  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4831  *
4832  * This function calculates and returns the number of HBQs required to be
4833  * configured.
4834  **/
4835 int
4836 lpfc_sli_hbq_count(void)
4837 {
4838 	return ARRAY_SIZE(lpfc_hbq_defs);
4839 }
4840 
4841 /**
4842  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4843  *
4844  * This function adds the number of hbq entries in every HBQ to get
4845  * the total number of hbq entries required for the HBA and returns
4846  * the total count.
4847  **/
4848 static int
4849 lpfc_sli_hbq_entry_count(void)
4850 {
4851 	int  hbq_count = lpfc_sli_hbq_count();
4852 	int  count = 0;
4853 	int  i;
4854 
4855 	for (i = 0; i < hbq_count; ++i)
4856 		count += lpfc_hbq_defs[i]->entry_count;
4857 	return count;
4858 }
4859 
4860 /**
4861  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4862  *
4863  * This function calculates amount of memory required for all hbq entries
4864  * to be configured and returns the total memory required.
4865  **/
4866 int
4867 lpfc_sli_hbq_size(void)
4868 {
4869 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4870 }
4871 
4872 /**
4873  * lpfc_sli_hbq_setup - configure and initialize HBQs
4874  * @phba: Pointer to HBA context object.
4875  *
4876  * This function is called during the SLI initialization to configure
4877  * all the HBQs and post buffers to the HBQ. The caller is not
4878  * required to hold any locks. This function will return zero if successful
4879  * else it will return negative error code.
4880  **/
4881 static int
4882 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4883 {
4884 	int  hbq_count = lpfc_sli_hbq_count();
4885 	LPFC_MBOXQ_t *pmb;
4886 	MAILBOX_t *pmbox;
4887 	uint32_t hbqno;
4888 	uint32_t hbq_entry_index;
4889 
4890 				/* Get a Mailbox buffer to setup mailbox
4891 				 * commands for HBA initialization
4892 				 */
4893 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4894 
4895 	if (!pmb)
4896 		return -ENOMEM;
4897 
4898 	pmbox = &pmb->u.mb;
4899 
4900 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4901 	phba->link_state = LPFC_INIT_MBX_CMDS;
4902 	phba->hbq_in_use = 1;
4903 
4904 	hbq_entry_index = 0;
4905 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4906 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4907 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4908 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4909 		phba->hbqs[hbqno].entry_count =
4910 			lpfc_hbq_defs[hbqno]->entry_count;
4911 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4912 			hbq_entry_index, pmb);
4913 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4914 
4915 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4916 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4917 			   mbxStatus <status>, ring <num> */
4918 
4919 			lpfc_printf_log(phba, KERN_ERR,
4920 					LOG_SLI | LOG_VPORT,
4921 					"1805 Adapter failed to init. "
4922 					"Data: x%x x%x x%x\n",
4923 					pmbox->mbxCommand,
4924 					pmbox->mbxStatus, hbqno);
4925 
4926 			phba->link_state = LPFC_HBA_ERROR;
4927 			mempool_free(pmb, phba->mbox_mem_pool);
4928 			return -ENXIO;
4929 		}
4930 	}
4931 	phba->hbq_count = hbq_count;
4932 
4933 	mempool_free(pmb, phba->mbox_mem_pool);
4934 
4935 	/* Initially populate or replenish the HBQs */
4936 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4937 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4938 	return 0;
4939 }
4940 
4941 /**
4942  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4943  * @phba: Pointer to HBA context object.
4944  *
4945  * This function is called during the SLI initialization to configure
4946  * all the HBQs and post buffers to the HBQ. The caller is not
4947  * required to hold any locks. This function will return zero if successful
4948  * else it will return negative error code.
4949  **/
4950 static int
4951 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4952 {
4953 	phba->hbq_in_use = 1;
4954 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4955 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4956 	phba->hbq_count = 1;
4957 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4958 	/* Initially populate or replenish the HBQs */
4959 	return 0;
4960 }
4961 
4962 /**
4963  * lpfc_sli_config_port - Issue config port mailbox command
4964  * @phba: Pointer to HBA context object.
4965  * @sli_mode: sli mode - 2/3
4966  *
4967  * This function is called by the sli initialization code path
4968  * to issue config_port mailbox command. This function restarts the
4969  * HBA firmware and issues a config_port mailbox command to configure
4970  * the SLI interface in the sli mode specified by sli_mode
4971  * variable. The caller is not required to hold any locks.
4972  * The function returns 0 if successful, else returns negative error
4973  * code.
4974  **/
4975 int
4976 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4977 {
4978 	LPFC_MBOXQ_t *pmb;
4979 	uint32_t resetcount = 0, rc = 0, done = 0;
4980 
4981 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4982 	if (!pmb) {
4983 		phba->link_state = LPFC_HBA_ERROR;
4984 		return -ENOMEM;
4985 	}
4986 
4987 	phba->sli_rev = sli_mode;
4988 	while (resetcount < 2 && !done) {
4989 		spin_lock_irq(&phba->hbalock);
4990 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4991 		spin_unlock_irq(&phba->hbalock);
4992 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4993 		lpfc_sli_brdrestart(phba);
4994 		rc = lpfc_sli_chipset_init(phba);
4995 		if (rc)
4996 			break;
4997 
4998 		spin_lock_irq(&phba->hbalock);
4999 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5000 		spin_unlock_irq(&phba->hbalock);
5001 		resetcount++;
5002 
5003 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5004 		 * value of 0 means the call was successful.  Any other
5005 		 * nonzero value is a failure, but if ERESTART is returned,
5006 		 * the driver may reset the HBA and try again.
5007 		 */
5008 		rc = lpfc_config_port_prep(phba);
5009 		if (rc == -ERESTART) {
5010 			phba->link_state = LPFC_LINK_UNKNOWN;
5011 			continue;
5012 		} else if (rc)
5013 			break;
5014 
5015 		phba->link_state = LPFC_INIT_MBX_CMDS;
5016 		lpfc_config_port(phba, pmb);
5017 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5018 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5019 					LPFC_SLI3_HBQ_ENABLED |
5020 					LPFC_SLI3_CRP_ENABLED |
5021 					LPFC_SLI3_DSS_ENABLED);
5022 		if (rc != MBX_SUCCESS) {
5023 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5024 				"0442 Adapter failed to init, mbxCmd x%x "
5025 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5026 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5027 			spin_lock_irq(&phba->hbalock);
5028 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5029 			spin_unlock_irq(&phba->hbalock);
5030 			rc = -ENXIO;
5031 		} else {
5032 			/* Allow asynchronous mailbox command to go through */
5033 			spin_lock_irq(&phba->hbalock);
5034 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5035 			spin_unlock_irq(&phba->hbalock);
5036 			done = 1;
5037 
5038 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5039 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5040 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5041 					"3110 Port did not grant ASABT\n");
5042 		}
5043 	}
5044 	if (!done) {
5045 		rc = -EINVAL;
5046 		goto do_prep_failed;
5047 	}
5048 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5049 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5050 			rc = -ENXIO;
5051 			goto do_prep_failed;
5052 		}
5053 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5054 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5055 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5056 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5057 				phba->max_vpi : phba->max_vports;
5058 
5059 		} else
5060 			phba->max_vpi = 0;
5061 		phba->fips_level = 0;
5062 		phba->fips_spec_rev = 0;
5063 		if (pmb->u.mb.un.varCfgPort.gdss) {
5064 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5065 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5066 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5067 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5068 					"2850 Security Crypto Active. FIPS x%d "
5069 					"(Spec Rev: x%d)",
5070 					phba->fips_level, phba->fips_spec_rev);
5071 		}
5072 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5073 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5074 					"2856 Config Port Security Crypto "
5075 					"Error: x%x ",
5076 					pmb->u.mb.un.varCfgPort.sec_err);
5077 		}
5078 		if (pmb->u.mb.un.varCfgPort.gerbm)
5079 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5080 		if (pmb->u.mb.un.varCfgPort.gcrp)
5081 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5082 
5083 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5084 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5085 
5086 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5087 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5088 				phba->cfg_enable_bg = 0;
5089 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5090 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5091 						"0443 Adapter did not grant "
5092 						"BlockGuard\n");
5093 			}
5094 		}
5095 	} else {
5096 		phba->hbq_get = NULL;
5097 		phba->port_gp = phba->mbox->us.s2.port;
5098 		phba->max_vpi = 0;
5099 	}
5100 do_prep_failed:
5101 	mempool_free(pmb, phba->mbox_mem_pool);
5102 	return rc;
5103 }
5104 
5105 
5106 /**
5107  * lpfc_sli_hba_setup - SLI initialization function
5108  * @phba: Pointer to HBA context object.
5109  *
5110  * This function is the main SLI initialization function. This function
5111  * is called by the HBA initialization code, HBA reset code and HBA
5112  * error attention handler code. Caller is not required to hold any
5113  * locks. This function issues config_port mailbox command to configure
5114  * the SLI, setup iocb rings and HBQ rings. In the end the function
5115  * calls the config_port_post function to issue init_link mailbox
5116  * command and to start the discovery. The function will return zero
5117  * if successful, else it will return negative error code.
5118  **/
5119 int
5120 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5121 {
5122 	uint32_t rc;
5123 	int  mode = 3, i;
5124 	int longs;
5125 
5126 	switch (phba->cfg_sli_mode) {
5127 	case 2:
5128 		if (phba->cfg_enable_npiv) {
5129 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5130 				"1824 NPIV enabled: Override sli_mode "
5131 				"parameter (%d) to auto (0).\n",
5132 				phba->cfg_sli_mode);
5133 			break;
5134 		}
5135 		mode = 2;
5136 		break;
5137 	case 0:
5138 	case 3:
5139 		break;
5140 	default:
5141 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5142 				"1819 Unrecognized sli_mode parameter: %d.\n",
5143 				phba->cfg_sli_mode);
5144 
5145 		break;
5146 	}
5147 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5148 
5149 	rc = lpfc_sli_config_port(phba, mode);
5150 
5151 	if (rc && phba->cfg_sli_mode == 3)
5152 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5153 				"1820 Unable to select SLI-3.  "
5154 				"Not supported by adapter.\n");
5155 	if (rc && mode != 2)
5156 		rc = lpfc_sli_config_port(phba, 2);
5157 	else if (rc && mode == 2)
5158 		rc = lpfc_sli_config_port(phba, 3);
5159 	if (rc)
5160 		goto lpfc_sli_hba_setup_error;
5161 
5162 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5163 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5164 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5165 		if (!rc) {
5166 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5167 					"2709 This device supports "
5168 					"Advanced Error Reporting (AER)\n");
5169 			spin_lock_irq(&phba->hbalock);
5170 			phba->hba_flag |= HBA_AER_ENABLED;
5171 			spin_unlock_irq(&phba->hbalock);
5172 		} else {
5173 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5174 					"2708 This device does not support "
5175 					"Advanced Error Reporting (AER): %d\n",
5176 					rc);
5177 			phba->cfg_aer_support = 0;
5178 		}
5179 	}
5180 
5181 	if (phba->sli_rev == 3) {
5182 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5183 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5184 	} else {
5185 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5186 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5187 		phba->sli3_options = 0;
5188 	}
5189 
5190 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5191 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5192 			phba->sli_rev, phba->max_vpi);
5193 	rc = lpfc_sli_ring_map(phba);
5194 
5195 	if (rc)
5196 		goto lpfc_sli_hba_setup_error;
5197 
5198 	/* Initialize VPIs. */
5199 	if (phba->sli_rev == LPFC_SLI_REV3) {
5200 		/*
5201 		 * The VPI bitmask and physical ID array are allocated
5202 		 * and initialized once only - at driver load.  A port
5203 		 * reset doesn't need to reinitialize this memory.
5204 		 */
5205 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5206 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5207 			phba->vpi_bmask = kcalloc(longs,
5208 						  sizeof(unsigned long),
5209 						  GFP_KERNEL);
5210 			if (!phba->vpi_bmask) {
5211 				rc = -ENOMEM;
5212 				goto lpfc_sli_hba_setup_error;
5213 			}
5214 
5215 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5216 						sizeof(uint16_t),
5217 						GFP_KERNEL);
5218 			if (!phba->vpi_ids) {
5219 				kfree(phba->vpi_bmask);
5220 				rc = -ENOMEM;
5221 				goto lpfc_sli_hba_setup_error;
5222 			}
5223 			for (i = 0; i < phba->max_vpi; i++)
5224 				phba->vpi_ids[i] = i;
5225 		}
5226 	}
5227 
5228 	/* Init HBQs */
5229 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5230 		rc = lpfc_sli_hbq_setup(phba);
5231 		if (rc)
5232 			goto lpfc_sli_hba_setup_error;
5233 	}
5234 	spin_lock_irq(&phba->hbalock);
5235 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5236 	spin_unlock_irq(&phba->hbalock);
5237 
5238 	rc = lpfc_config_port_post(phba);
5239 	if (rc)
5240 		goto lpfc_sli_hba_setup_error;
5241 
5242 	return rc;
5243 
5244 lpfc_sli_hba_setup_error:
5245 	phba->link_state = LPFC_HBA_ERROR;
5246 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5247 			"0445 Firmware initialization failed\n");
5248 	return rc;
5249 }
5250 
5251 /**
5252  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5253  * @phba: Pointer to HBA context object.
5254  * @mboxq: mailbox pointer.
5255  * This function issue a dump mailbox command to read config region
5256  * 23 and parse the records in the region and populate driver
5257  * data structure.
5258  **/
5259 static int
5260 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5261 {
5262 	LPFC_MBOXQ_t *mboxq;
5263 	struct lpfc_dmabuf *mp;
5264 	struct lpfc_mqe *mqe;
5265 	uint32_t data_length;
5266 	int rc;
5267 
5268 	/* Program the default value of vlan_id and fc_map */
5269 	phba->valid_vlan = 0;
5270 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5271 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5272 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5273 
5274 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5275 	if (!mboxq)
5276 		return -ENOMEM;
5277 
5278 	mqe = &mboxq->u.mqe;
5279 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5280 		rc = -ENOMEM;
5281 		goto out_free_mboxq;
5282 	}
5283 
5284 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5285 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5286 
5287 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5288 			"(%d):2571 Mailbox cmd x%x Status x%x "
5289 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5290 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5291 			"CQ: x%x x%x x%x x%x\n",
5292 			mboxq->vport ? mboxq->vport->vpi : 0,
5293 			bf_get(lpfc_mqe_command, mqe),
5294 			bf_get(lpfc_mqe_status, mqe),
5295 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5296 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5297 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5298 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5299 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5300 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5301 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5302 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5303 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5304 			mboxq->mcqe.word0,
5305 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5306 			mboxq->mcqe.trailer);
5307 
5308 	if (rc) {
5309 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5310 		kfree(mp);
5311 		rc = -EIO;
5312 		goto out_free_mboxq;
5313 	}
5314 	data_length = mqe->un.mb_words[5];
5315 	if (data_length > DMP_RGN23_SIZE) {
5316 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5317 		kfree(mp);
5318 		rc = -EIO;
5319 		goto out_free_mboxq;
5320 	}
5321 
5322 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5323 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5324 	kfree(mp);
5325 	rc = 0;
5326 
5327 out_free_mboxq:
5328 	mempool_free(mboxq, phba->mbox_mem_pool);
5329 	return rc;
5330 }
5331 
5332 /**
5333  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5334  * @phba: pointer to lpfc hba data structure.
5335  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5336  * @vpd: pointer to the memory to hold resulting port vpd data.
5337  * @vpd_size: On input, the number of bytes allocated to @vpd.
5338  *	      On output, the number of data bytes in @vpd.
5339  *
5340  * This routine executes a READ_REV SLI4 mailbox command.  In
5341  * addition, this routine gets the port vpd data.
5342  *
5343  * Return codes
5344  * 	0 - successful
5345  * 	-ENOMEM - could not allocated memory.
5346  **/
5347 static int
5348 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5349 		    uint8_t *vpd, uint32_t *vpd_size)
5350 {
5351 	int rc = 0;
5352 	uint32_t dma_size;
5353 	struct lpfc_dmabuf *dmabuf;
5354 	struct lpfc_mqe *mqe;
5355 
5356 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5357 	if (!dmabuf)
5358 		return -ENOMEM;
5359 
5360 	/*
5361 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5362 	 * mailbox command.
5363 	 */
5364 	dma_size = *vpd_size;
5365 	dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5366 					   &dmabuf->phys, GFP_KERNEL);
5367 	if (!dmabuf->virt) {
5368 		kfree(dmabuf);
5369 		return -ENOMEM;
5370 	}
5371 
5372 	/*
5373 	 * The SLI4 implementation of READ_REV conflicts at word1,
5374 	 * bits 31:16 and SLI4 adds vpd functionality not present
5375 	 * in SLI3.  This code corrects the conflicts.
5376 	 */
5377 	lpfc_read_rev(phba, mboxq);
5378 	mqe = &mboxq->u.mqe;
5379 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5380 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5381 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5382 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5383 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5384 
5385 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5386 	if (rc) {
5387 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5388 				  dmabuf->virt, dmabuf->phys);
5389 		kfree(dmabuf);
5390 		return -EIO;
5391 	}
5392 
5393 	/*
5394 	 * The available vpd length cannot be bigger than the
5395 	 * DMA buffer passed to the port.  Catch the less than
5396 	 * case and update the caller's size.
5397 	 */
5398 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5399 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5400 
5401 	memcpy(vpd, dmabuf->virt, *vpd_size);
5402 
5403 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5404 			  dmabuf->virt, dmabuf->phys);
5405 	kfree(dmabuf);
5406 	return 0;
5407 }
5408 
5409 /**
5410  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5411  * @phba: pointer to lpfc hba data structure.
5412  *
5413  * This routine retrieves SLI4 device physical port name this PCI function
5414  * is attached to.
5415  *
5416  * Return codes
5417  *      0 - successful
5418  *      otherwise - failed to retrieve physical port name
5419  **/
5420 static int
5421 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5422 {
5423 	LPFC_MBOXQ_t *mboxq;
5424 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5425 	struct lpfc_controller_attribute *cntl_attr;
5426 	struct lpfc_mbx_get_port_name *get_port_name;
5427 	void *virtaddr = NULL;
5428 	uint32_t alloclen, reqlen;
5429 	uint32_t shdr_status, shdr_add_status;
5430 	union lpfc_sli4_cfg_shdr *shdr;
5431 	char cport_name = 0;
5432 	int rc;
5433 
5434 	/* We assume nothing at this point */
5435 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5436 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5437 
5438 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5439 	if (!mboxq)
5440 		return -ENOMEM;
5441 	/* obtain link type and link number via READ_CONFIG */
5442 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5443 	lpfc_sli4_read_config(phba);
5444 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5445 		goto retrieve_ppname;
5446 
5447 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5448 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5449 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5450 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5451 			LPFC_SLI4_MBX_NEMBED);
5452 	if (alloclen < reqlen) {
5453 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5454 				"3084 Allocated DMA memory size (%d) is "
5455 				"less than the requested DMA memory size "
5456 				"(%d)\n", alloclen, reqlen);
5457 		rc = -ENOMEM;
5458 		goto out_free_mboxq;
5459 	}
5460 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5461 	virtaddr = mboxq->sge_array->addr[0];
5462 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5463 	shdr = &mbx_cntl_attr->cfg_shdr;
5464 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5465 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5466 	if (shdr_status || shdr_add_status || rc) {
5467 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5468 				"3085 Mailbox x%x (x%x/x%x) failed, "
5469 				"rc:x%x, status:x%x, add_status:x%x\n",
5470 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5471 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5472 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5473 				rc, shdr_status, shdr_add_status);
5474 		rc = -ENXIO;
5475 		goto out_free_mboxq;
5476 	}
5477 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5478 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5479 	phba->sli4_hba.lnk_info.lnk_tp =
5480 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5481 	phba->sli4_hba.lnk_info.lnk_no =
5482 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5483 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5484 			"3086 lnk_type:%d, lnk_numb:%d\n",
5485 			phba->sli4_hba.lnk_info.lnk_tp,
5486 			phba->sli4_hba.lnk_info.lnk_no);
5487 
5488 retrieve_ppname:
5489 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5490 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5491 		sizeof(struct lpfc_mbx_get_port_name) -
5492 		sizeof(struct lpfc_sli4_cfg_mhdr),
5493 		LPFC_SLI4_MBX_EMBED);
5494 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5495 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5496 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5497 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5498 		phba->sli4_hba.lnk_info.lnk_tp);
5499 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5500 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5501 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5502 	if (shdr_status || shdr_add_status || rc) {
5503 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5504 				"3087 Mailbox x%x (x%x/x%x) failed: "
5505 				"rc:x%x, status:x%x, add_status:x%x\n",
5506 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5507 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5508 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5509 				rc, shdr_status, shdr_add_status);
5510 		rc = -ENXIO;
5511 		goto out_free_mboxq;
5512 	}
5513 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5514 	case LPFC_LINK_NUMBER_0:
5515 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5516 				&get_port_name->u.response);
5517 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5518 		break;
5519 	case LPFC_LINK_NUMBER_1:
5520 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5521 				&get_port_name->u.response);
5522 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5523 		break;
5524 	case LPFC_LINK_NUMBER_2:
5525 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5526 				&get_port_name->u.response);
5527 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5528 		break;
5529 	case LPFC_LINK_NUMBER_3:
5530 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5531 				&get_port_name->u.response);
5532 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5533 		break;
5534 	default:
5535 		break;
5536 	}
5537 
5538 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5539 		phba->Port[0] = cport_name;
5540 		phba->Port[1] = '\0';
5541 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5542 				"3091 SLI get port name: %s\n", phba->Port);
5543 	}
5544 
5545 out_free_mboxq:
5546 	if (rc != MBX_TIMEOUT) {
5547 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5548 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5549 		else
5550 			mempool_free(mboxq, phba->mbox_mem_pool);
5551 	}
5552 	return rc;
5553 }
5554 
5555 /**
5556  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5557  * @phba: pointer to lpfc hba data structure.
5558  *
5559  * This routine is called to explicitly arm the SLI4 device's completion and
5560  * event queues
5561  **/
5562 static void
5563 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5564 {
5565 	int qidx;
5566 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5567 
5568 	sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM);
5569 	sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM);
5570 	if (sli4_hba->nvmels_cq)
5571 		sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq,
5572 						LPFC_QUEUE_REARM);
5573 
5574 	if (sli4_hba->fcp_cq)
5575 		for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5576 			sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx],
5577 						LPFC_QUEUE_REARM);
5578 
5579 	if (sli4_hba->nvme_cq)
5580 		for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5581 			sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx],
5582 						LPFC_QUEUE_REARM);
5583 
5584 	if (phba->cfg_fof)
5585 		sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM);
5586 
5587 	if (sli4_hba->hba_eq)
5588 		for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5589 			sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx],
5590 							LPFC_QUEUE_REARM);
5591 
5592 	if (phba->nvmet_support) {
5593 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5594 			sli4_hba->sli4_cq_release(
5595 				sli4_hba->nvmet_cqset[qidx],
5596 				LPFC_QUEUE_REARM);
5597 		}
5598 	}
5599 
5600 	if (phba->cfg_fof)
5601 		sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM);
5602 }
5603 
5604 /**
5605  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5606  * @phba: Pointer to HBA context object.
5607  * @type: The resource extent type.
5608  * @extnt_count: buffer to hold port available extent count.
5609  * @extnt_size: buffer to hold element count per extent.
5610  *
5611  * This function calls the port and retrievs the number of available
5612  * extents and their size for a particular extent type.
5613  *
5614  * Returns: 0 if successful.  Nonzero otherwise.
5615  **/
5616 int
5617 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5618 			       uint16_t *extnt_count, uint16_t *extnt_size)
5619 {
5620 	int rc = 0;
5621 	uint32_t length;
5622 	uint32_t mbox_tmo;
5623 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5624 	LPFC_MBOXQ_t *mbox;
5625 
5626 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5627 	if (!mbox)
5628 		return -ENOMEM;
5629 
5630 	/* Find out how many extents are available for this resource type */
5631 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5632 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5633 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5634 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5635 			 length, LPFC_SLI4_MBX_EMBED);
5636 
5637 	/* Send an extents count of 0 - the GET doesn't use it. */
5638 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5639 					LPFC_SLI4_MBX_EMBED);
5640 	if (unlikely(rc)) {
5641 		rc = -EIO;
5642 		goto err_exit;
5643 	}
5644 
5645 	if (!phba->sli4_hba.intr_enable)
5646 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5647 	else {
5648 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5649 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5650 	}
5651 	if (unlikely(rc)) {
5652 		rc = -EIO;
5653 		goto err_exit;
5654 	}
5655 
5656 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5657 	if (bf_get(lpfc_mbox_hdr_status,
5658 		   &rsrc_info->header.cfg_shdr.response)) {
5659 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5660 				"2930 Failed to get resource extents "
5661 				"Status 0x%x Add'l Status 0x%x\n",
5662 				bf_get(lpfc_mbox_hdr_status,
5663 				       &rsrc_info->header.cfg_shdr.response),
5664 				bf_get(lpfc_mbox_hdr_add_status,
5665 				       &rsrc_info->header.cfg_shdr.response));
5666 		rc = -EIO;
5667 		goto err_exit;
5668 	}
5669 
5670 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5671 			      &rsrc_info->u.rsp);
5672 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5673 			     &rsrc_info->u.rsp);
5674 
5675 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5676 			"3162 Retrieved extents type-%d from port: count:%d, "
5677 			"size:%d\n", type, *extnt_count, *extnt_size);
5678 
5679 err_exit:
5680 	mempool_free(mbox, phba->mbox_mem_pool);
5681 	return rc;
5682 }
5683 
5684 /**
5685  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5686  * @phba: Pointer to HBA context object.
5687  * @type: The extent type to check.
5688  *
5689  * This function reads the current available extents from the port and checks
5690  * if the extent count or extent size has changed since the last access.
5691  * Callers use this routine post port reset to understand if there is a
5692  * extent reprovisioning requirement.
5693  *
5694  * Returns:
5695  *   -Error: error indicates problem.
5696  *   1: Extent count or size has changed.
5697  *   0: No changes.
5698  **/
5699 static int
5700 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5701 {
5702 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5703 	uint16_t size_diff, rsrc_ext_size;
5704 	int rc = 0;
5705 	struct lpfc_rsrc_blks *rsrc_entry;
5706 	struct list_head *rsrc_blk_list = NULL;
5707 
5708 	size_diff = 0;
5709 	curr_ext_cnt = 0;
5710 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5711 					    &rsrc_ext_cnt,
5712 					    &rsrc_ext_size);
5713 	if (unlikely(rc))
5714 		return -EIO;
5715 
5716 	switch (type) {
5717 	case LPFC_RSC_TYPE_FCOE_RPI:
5718 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5719 		break;
5720 	case LPFC_RSC_TYPE_FCOE_VPI:
5721 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5722 		break;
5723 	case LPFC_RSC_TYPE_FCOE_XRI:
5724 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5725 		break;
5726 	case LPFC_RSC_TYPE_FCOE_VFI:
5727 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5728 		break;
5729 	default:
5730 		break;
5731 	}
5732 
5733 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5734 		curr_ext_cnt++;
5735 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5736 			size_diff++;
5737 	}
5738 
5739 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5740 		rc = 1;
5741 
5742 	return rc;
5743 }
5744 
5745 /**
5746  * lpfc_sli4_cfg_post_extnts -
5747  * @phba: Pointer to HBA context object.
5748  * @extnt_cnt - number of available extents.
5749  * @type - the extent type (rpi, xri, vfi, vpi).
5750  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5751  * @mbox - pointer to the caller's allocated mailbox structure.
5752  *
5753  * This function executes the extents allocation request.  It also
5754  * takes care of the amount of memory needed to allocate or get the
5755  * allocated extents. It is the caller's responsibility to evaluate
5756  * the response.
5757  *
5758  * Returns:
5759  *   -Error:  Error value describes the condition found.
5760  *   0: if successful
5761  **/
5762 static int
5763 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5764 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5765 {
5766 	int rc = 0;
5767 	uint32_t req_len;
5768 	uint32_t emb_len;
5769 	uint32_t alloc_len, mbox_tmo;
5770 
5771 	/* Calculate the total requested length of the dma memory */
5772 	req_len = extnt_cnt * sizeof(uint16_t);
5773 
5774 	/*
5775 	 * Calculate the size of an embedded mailbox.  The uint32_t
5776 	 * accounts for extents-specific word.
5777 	 */
5778 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5779 		sizeof(uint32_t);
5780 
5781 	/*
5782 	 * Presume the allocation and response will fit into an embedded
5783 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5784 	 */
5785 	*emb = LPFC_SLI4_MBX_EMBED;
5786 	if (req_len > emb_len) {
5787 		req_len = extnt_cnt * sizeof(uint16_t) +
5788 			sizeof(union lpfc_sli4_cfg_shdr) +
5789 			sizeof(uint32_t);
5790 		*emb = LPFC_SLI4_MBX_NEMBED;
5791 	}
5792 
5793 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5794 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5795 				     req_len, *emb);
5796 	if (alloc_len < req_len) {
5797 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5798 			"2982 Allocated DMA memory size (x%x) is "
5799 			"less than the requested DMA memory "
5800 			"size (x%x)\n", alloc_len, req_len);
5801 		return -ENOMEM;
5802 	}
5803 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5804 	if (unlikely(rc))
5805 		return -EIO;
5806 
5807 	if (!phba->sli4_hba.intr_enable)
5808 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5809 	else {
5810 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5811 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5812 	}
5813 
5814 	if (unlikely(rc))
5815 		rc = -EIO;
5816 	return rc;
5817 }
5818 
5819 /**
5820  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5821  * @phba: Pointer to HBA context object.
5822  * @type:  The resource extent type to allocate.
5823  *
5824  * This function allocates the number of elements for the specified
5825  * resource type.
5826  **/
5827 static int
5828 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5829 {
5830 	bool emb = false;
5831 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5832 	uint16_t rsrc_id, rsrc_start, j, k;
5833 	uint16_t *ids;
5834 	int i, rc;
5835 	unsigned long longs;
5836 	unsigned long *bmask;
5837 	struct lpfc_rsrc_blks *rsrc_blks;
5838 	LPFC_MBOXQ_t *mbox;
5839 	uint32_t length;
5840 	struct lpfc_id_range *id_array = NULL;
5841 	void *virtaddr = NULL;
5842 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5843 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5844 	struct list_head *ext_blk_list;
5845 
5846 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5847 					    &rsrc_cnt,
5848 					    &rsrc_size);
5849 	if (unlikely(rc))
5850 		return -EIO;
5851 
5852 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5853 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5854 			"3009 No available Resource Extents "
5855 			"for resource type 0x%x: Count: 0x%x, "
5856 			"Size 0x%x\n", type, rsrc_cnt,
5857 			rsrc_size);
5858 		return -ENOMEM;
5859 	}
5860 
5861 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5862 			"2903 Post resource extents type-0x%x: "
5863 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5864 
5865 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5866 	if (!mbox)
5867 		return -ENOMEM;
5868 
5869 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5870 	if (unlikely(rc)) {
5871 		rc = -EIO;
5872 		goto err_exit;
5873 	}
5874 
5875 	/*
5876 	 * Figure out where the response is located.  Then get local pointers
5877 	 * to the response data.  The port does not guarantee to respond to
5878 	 * all extents counts request so update the local variable with the
5879 	 * allocated count from the port.
5880 	 */
5881 	if (emb == LPFC_SLI4_MBX_EMBED) {
5882 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5883 		id_array = &rsrc_ext->u.rsp.id[0];
5884 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5885 	} else {
5886 		virtaddr = mbox->sge_array->addr[0];
5887 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5888 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5889 		id_array = &n_rsrc->id;
5890 	}
5891 
5892 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5893 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5894 
5895 	/*
5896 	 * Based on the resource size and count, correct the base and max
5897 	 * resource values.
5898 	 */
5899 	length = sizeof(struct lpfc_rsrc_blks);
5900 	switch (type) {
5901 	case LPFC_RSC_TYPE_FCOE_RPI:
5902 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5903 						   sizeof(unsigned long),
5904 						   GFP_KERNEL);
5905 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5906 			rc = -ENOMEM;
5907 			goto err_exit;
5908 		}
5909 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5910 						 sizeof(uint16_t),
5911 						 GFP_KERNEL);
5912 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5913 			kfree(phba->sli4_hba.rpi_bmask);
5914 			rc = -ENOMEM;
5915 			goto err_exit;
5916 		}
5917 
5918 		/*
5919 		 * The next_rpi was initialized with the maximum available
5920 		 * count but the port may allocate a smaller number.  Catch
5921 		 * that case and update the next_rpi.
5922 		 */
5923 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5924 
5925 		/* Initialize local ptrs for common extent processing later. */
5926 		bmask = phba->sli4_hba.rpi_bmask;
5927 		ids = phba->sli4_hba.rpi_ids;
5928 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5929 		break;
5930 	case LPFC_RSC_TYPE_FCOE_VPI:
5931 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5932 					  GFP_KERNEL);
5933 		if (unlikely(!phba->vpi_bmask)) {
5934 			rc = -ENOMEM;
5935 			goto err_exit;
5936 		}
5937 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5938 					 GFP_KERNEL);
5939 		if (unlikely(!phba->vpi_ids)) {
5940 			kfree(phba->vpi_bmask);
5941 			rc = -ENOMEM;
5942 			goto err_exit;
5943 		}
5944 
5945 		/* Initialize local ptrs for common extent processing later. */
5946 		bmask = phba->vpi_bmask;
5947 		ids = phba->vpi_ids;
5948 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5949 		break;
5950 	case LPFC_RSC_TYPE_FCOE_XRI:
5951 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5952 						   sizeof(unsigned long),
5953 						   GFP_KERNEL);
5954 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5955 			rc = -ENOMEM;
5956 			goto err_exit;
5957 		}
5958 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5959 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5960 						 sizeof(uint16_t),
5961 						 GFP_KERNEL);
5962 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5963 			kfree(phba->sli4_hba.xri_bmask);
5964 			rc = -ENOMEM;
5965 			goto err_exit;
5966 		}
5967 
5968 		/* Initialize local ptrs for common extent processing later. */
5969 		bmask = phba->sli4_hba.xri_bmask;
5970 		ids = phba->sli4_hba.xri_ids;
5971 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5972 		break;
5973 	case LPFC_RSC_TYPE_FCOE_VFI:
5974 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5975 						   sizeof(unsigned long),
5976 						   GFP_KERNEL);
5977 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5978 			rc = -ENOMEM;
5979 			goto err_exit;
5980 		}
5981 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5982 						 sizeof(uint16_t),
5983 						 GFP_KERNEL);
5984 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5985 			kfree(phba->sli4_hba.vfi_bmask);
5986 			rc = -ENOMEM;
5987 			goto err_exit;
5988 		}
5989 
5990 		/* Initialize local ptrs for common extent processing later. */
5991 		bmask = phba->sli4_hba.vfi_bmask;
5992 		ids = phba->sli4_hba.vfi_ids;
5993 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5994 		break;
5995 	default:
5996 		/* Unsupported Opcode.  Fail call. */
5997 		id_array = NULL;
5998 		bmask = NULL;
5999 		ids = NULL;
6000 		ext_blk_list = NULL;
6001 		goto err_exit;
6002 	}
6003 
6004 	/*
6005 	 * Complete initializing the extent configuration with the
6006 	 * allocated ids assigned to this function.  The bitmask serves
6007 	 * as an index into the array and manages the available ids.  The
6008 	 * array just stores the ids communicated to the port via the wqes.
6009 	 */
6010 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6011 		if ((i % 2) == 0)
6012 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6013 					 &id_array[k]);
6014 		else
6015 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6016 					 &id_array[k]);
6017 
6018 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6019 		if (unlikely(!rsrc_blks)) {
6020 			rc = -ENOMEM;
6021 			kfree(bmask);
6022 			kfree(ids);
6023 			goto err_exit;
6024 		}
6025 		rsrc_blks->rsrc_start = rsrc_id;
6026 		rsrc_blks->rsrc_size = rsrc_size;
6027 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6028 		rsrc_start = rsrc_id;
6029 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6030 			phba->sli4_hba.scsi_xri_start = rsrc_start +
6031 				lpfc_sli4_get_iocb_cnt(phba);
6032 			phba->sli4_hba.nvme_xri_start =
6033 				phba->sli4_hba.scsi_xri_start +
6034 				phba->sli4_hba.scsi_xri_max;
6035 		}
6036 
6037 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6038 			ids[j] = rsrc_id;
6039 			rsrc_id++;
6040 			j++;
6041 		}
6042 		/* Entire word processed.  Get next word.*/
6043 		if ((i % 2) == 1)
6044 			k++;
6045 	}
6046  err_exit:
6047 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6048 	return rc;
6049 }
6050 
6051 
6052 
6053 /**
6054  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6055  * @phba: Pointer to HBA context object.
6056  * @type: the extent's type.
6057  *
6058  * This function deallocates all extents of a particular resource type.
6059  * SLI4 does not allow for deallocating a particular extent range.  It
6060  * is the caller's responsibility to release all kernel memory resources.
6061  **/
6062 static int
6063 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6064 {
6065 	int rc;
6066 	uint32_t length, mbox_tmo = 0;
6067 	LPFC_MBOXQ_t *mbox;
6068 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6069 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6070 
6071 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6072 	if (!mbox)
6073 		return -ENOMEM;
6074 
6075 	/*
6076 	 * This function sends an embedded mailbox because it only sends the
6077 	 * the resource type.  All extents of this type are released by the
6078 	 * port.
6079 	 */
6080 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6081 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6082 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6083 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6084 			 length, LPFC_SLI4_MBX_EMBED);
6085 
6086 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6087 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6088 					LPFC_SLI4_MBX_EMBED);
6089 	if (unlikely(rc)) {
6090 		rc = -EIO;
6091 		goto out_free_mbox;
6092 	}
6093 	if (!phba->sli4_hba.intr_enable)
6094 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6095 	else {
6096 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6097 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6098 	}
6099 	if (unlikely(rc)) {
6100 		rc = -EIO;
6101 		goto out_free_mbox;
6102 	}
6103 
6104 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6105 	if (bf_get(lpfc_mbox_hdr_status,
6106 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6107 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6108 				"2919 Failed to release resource extents "
6109 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6110 				"Resource memory not released.\n",
6111 				type,
6112 				bf_get(lpfc_mbox_hdr_status,
6113 				    &dealloc_rsrc->header.cfg_shdr.response),
6114 				bf_get(lpfc_mbox_hdr_add_status,
6115 				    &dealloc_rsrc->header.cfg_shdr.response));
6116 		rc = -EIO;
6117 		goto out_free_mbox;
6118 	}
6119 
6120 	/* Release kernel memory resources for the specific type. */
6121 	switch (type) {
6122 	case LPFC_RSC_TYPE_FCOE_VPI:
6123 		kfree(phba->vpi_bmask);
6124 		kfree(phba->vpi_ids);
6125 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6126 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6127 				    &phba->lpfc_vpi_blk_list, list) {
6128 			list_del_init(&rsrc_blk->list);
6129 			kfree(rsrc_blk);
6130 		}
6131 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6132 		break;
6133 	case LPFC_RSC_TYPE_FCOE_XRI:
6134 		kfree(phba->sli4_hba.xri_bmask);
6135 		kfree(phba->sli4_hba.xri_ids);
6136 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6137 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6138 			list_del_init(&rsrc_blk->list);
6139 			kfree(rsrc_blk);
6140 		}
6141 		break;
6142 	case LPFC_RSC_TYPE_FCOE_VFI:
6143 		kfree(phba->sli4_hba.vfi_bmask);
6144 		kfree(phba->sli4_hba.vfi_ids);
6145 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6146 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6147 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6148 			list_del_init(&rsrc_blk->list);
6149 			kfree(rsrc_blk);
6150 		}
6151 		break;
6152 	case LPFC_RSC_TYPE_FCOE_RPI:
6153 		/* RPI bitmask and physical id array are cleaned up earlier. */
6154 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6155 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6156 			list_del_init(&rsrc_blk->list);
6157 			kfree(rsrc_blk);
6158 		}
6159 		break;
6160 	default:
6161 		break;
6162 	}
6163 
6164 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6165 
6166  out_free_mbox:
6167 	mempool_free(mbox, phba->mbox_mem_pool);
6168 	return rc;
6169 }
6170 
6171 static void
6172 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6173 		  uint32_t feature)
6174 {
6175 	uint32_t len;
6176 
6177 	len = sizeof(struct lpfc_mbx_set_feature) -
6178 		sizeof(struct lpfc_sli4_cfg_mhdr);
6179 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6180 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6181 			 LPFC_SLI4_MBX_EMBED);
6182 
6183 	switch (feature) {
6184 	case LPFC_SET_UE_RECOVERY:
6185 		bf_set(lpfc_mbx_set_feature_UER,
6186 		       &mbox->u.mqe.un.set_feature, 1);
6187 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6188 		mbox->u.mqe.un.set_feature.param_len = 8;
6189 		break;
6190 	case LPFC_SET_MDS_DIAGS:
6191 		bf_set(lpfc_mbx_set_feature_mds,
6192 		       &mbox->u.mqe.un.set_feature, 1);
6193 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6194 		       &mbox->u.mqe.un.set_feature, 1);
6195 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6196 		mbox->u.mqe.un.set_feature.param_len = 8;
6197 		break;
6198 	}
6199 
6200 	return;
6201 }
6202 
6203 /**
6204  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6205  * @phba: Pointer to HBA context object.
6206  *
6207  * Disable FW logging into host memory on the adapter. To
6208  * be done before reading logs from the host memory.
6209  **/
6210 void
6211 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6212 {
6213 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6214 
6215 	ras_fwlog->ras_active = false;
6216 
6217 	/* Disable FW logging to host memory */
6218 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6219 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6220 }
6221 
6222 /**
6223  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6224  * @phba: Pointer to HBA context object.
6225  *
6226  * This function is called to free memory allocated for RAS FW logging
6227  * support in the driver.
6228  **/
6229 void
6230 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6231 {
6232 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6233 	struct lpfc_dmabuf *dmabuf, *next;
6234 
6235 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6236 		list_for_each_entry_safe(dmabuf, next,
6237 				    &ras_fwlog->fwlog_buff_list,
6238 				    list) {
6239 			list_del(&dmabuf->list);
6240 			dma_free_coherent(&phba->pcidev->dev,
6241 					  LPFC_RAS_MAX_ENTRY_SIZE,
6242 					  dmabuf->virt, dmabuf->phys);
6243 			kfree(dmabuf);
6244 		}
6245 	}
6246 
6247 	if (ras_fwlog->lwpd.virt) {
6248 		dma_free_coherent(&phba->pcidev->dev,
6249 				  sizeof(uint32_t) * 2,
6250 				  ras_fwlog->lwpd.virt,
6251 				  ras_fwlog->lwpd.phys);
6252 		ras_fwlog->lwpd.virt = NULL;
6253 	}
6254 
6255 	ras_fwlog->ras_active = false;
6256 }
6257 
6258 /**
6259  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6260  * @phba: Pointer to HBA context object.
6261  * @fwlog_buff_count: Count of buffers to be created.
6262  *
6263  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6264  * to update FW log is posted to the adapter.
6265  * Buffer count is calculated based on module param ras_fwlog_buffsize
6266  * Size of each buffer posted to FW is 64K.
6267  **/
6268 
6269 static int
6270 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6271 			uint32_t fwlog_buff_count)
6272 {
6273 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6274 	struct lpfc_dmabuf *dmabuf;
6275 	int rc = 0, i = 0;
6276 
6277 	/* Initialize List */
6278 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6279 
6280 	/* Allocate memory for the LWPD */
6281 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6282 					    sizeof(uint32_t) * 2,
6283 					    &ras_fwlog->lwpd.phys,
6284 					    GFP_KERNEL);
6285 	if (!ras_fwlog->lwpd.virt) {
6286 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6287 				"6185 LWPD Memory Alloc Failed\n");
6288 
6289 		return -ENOMEM;
6290 	}
6291 
6292 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6293 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6294 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6295 				 GFP_KERNEL);
6296 		if (!dmabuf) {
6297 			rc = -ENOMEM;
6298 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6299 					"6186 Memory Alloc failed FW logging");
6300 			goto free_mem;
6301 		}
6302 
6303 		dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
6304 						  LPFC_RAS_MAX_ENTRY_SIZE,
6305 						  &dmabuf->phys,
6306 						  GFP_KERNEL);
6307 		if (!dmabuf->virt) {
6308 			kfree(dmabuf);
6309 			rc = -ENOMEM;
6310 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6311 					"6187 DMA Alloc Failed FW logging");
6312 			goto free_mem;
6313 		}
6314 		dmabuf->buffer_tag = i;
6315 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6316 	}
6317 
6318 free_mem:
6319 	if (rc)
6320 		lpfc_sli4_ras_dma_free(phba);
6321 
6322 	return rc;
6323 }
6324 
6325 /**
6326  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6327  * @phba: pointer to lpfc hba data structure.
6328  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6329  *
6330  * Completion handler for driver's RAS MBX command to the device.
6331  **/
6332 static void
6333 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6334 {
6335 	MAILBOX_t *mb;
6336 	union lpfc_sli4_cfg_shdr *shdr;
6337 	uint32_t shdr_status, shdr_add_status;
6338 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6339 
6340 	mb = &pmb->u.mb;
6341 
6342 	shdr = (union lpfc_sli4_cfg_shdr *)
6343 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6344 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6345 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6346 
6347 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6348 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6349 				"6188 FW LOG mailbox "
6350 				"completed with status x%x add_status x%x,"
6351 				" mbx status x%x\n",
6352 				shdr_status, shdr_add_status, mb->mbxStatus);
6353 
6354 		ras_fwlog->ras_hwsupport = false;
6355 		goto disable_ras;
6356 	}
6357 
6358 	ras_fwlog->ras_active = true;
6359 	mempool_free(pmb, phba->mbox_mem_pool);
6360 
6361 	return;
6362 
6363 disable_ras:
6364 	/* Free RAS DMA memory */
6365 	lpfc_sli4_ras_dma_free(phba);
6366 	mempool_free(pmb, phba->mbox_mem_pool);
6367 }
6368 
6369 /**
6370  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6371  * @phba: pointer to lpfc hba data structure.
6372  * @fwlog_level: Logging verbosity level.
6373  * @fwlog_enable: Enable/Disable logging.
6374  *
6375  * Initialize memory and post mailbox command to enable FW logging in host
6376  * memory.
6377  **/
6378 int
6379 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6380 			 uint32_t fwlog_level,
6381 			 uint32_t fwlog_enable)
6382 {
6383 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6384 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6385 	struct lpfc_dmabuf *dmabuf;
6386 	LPFC_MBOXQ_t *mbox;
6387 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6388 	int rc = 0;
6389 
6390 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6391 			  phba->cfg_ras_fwlog_buffsize);
6392 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6393 
6394 	/*
6395 	 * If re-enabling FW logging support use earlier allocated
6396 	 * DMA buffers while posting MBX command.
6397 	 **/
6398 	if (!ras_fwlog->lwpd.virt) {
6399 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6400 		if (rc) {
6401 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6402 					"6189 FW Log Memory Allocation Failed");
6403 			return rc;
6404 		}
6405 	}
6406 
6407 	/* Setup Mailbox command */
6408 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6409 	if (!mbox) {
6410 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6411 				"6190 RAS MBX Alloc Failed");
6412 		rc = -ENOMEM;
6413 		goto mem_free;
6414 	}
6415 
6416 	ras_fwlog->fw_loglevel = fwlog_level;
6417 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6418 		sizeof(struct lpfc_sli4_cfg_mhdr));
6419 
6420 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6421 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6422 			 len, LPFC_SLI4_MBX_EMBED);
6423 
6424 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6425 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6426 	       fwlog_enable);
6427 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6428 	       ras_fwlog->fw_loglevel);
6429 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6430 	       ras_fwlog->fw_buffcount);
6431 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6432 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6433 
6434 	/* Update DMA buffer address */
6435 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6436 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6437 
6438 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6439 			putPaddrLow(dmabuf->phys);
6440 
6441 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6442 			putPaddrHigh(dmabuf->phys);
6443 	}
6444 
6445 	/* Update LPWD address */
6446 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6447 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6448 
6449 	mbox->vport = phba->pport;
6450 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6451 
6452 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6453 
6454 	if (rc == MBX_NOT_FINISHED) {
6455 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6456 				"6191 FW-Log Mailbox failed. "
6457 				"status %d mbxStatus : x%x", rc,
6458 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6459 		mempool_free(mbox, phba->mbox_mem_pool);
6460 		rc = -EIO;
6461 		goto mem_free;
6462 	} else
6463 		rc = 0;
6464 mem_free:
6465 	if (rc)
6466 		lpfc_sli4_ras_dma_free(phba);
6467 
6468 	return rc;
6469 }
6470 
6471 /**
6472  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6473  * @phba: Pointer to HBA context object.
6474  *
6475  * Check if RAS is supported on the adapter and initialize it.
6476  **/
6477 void
6478 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6479 {
6480 	/* Check RAS FW Log needs to be enabled or not */
6481 	if (lpfc_check_fwlog_support(phba))
6482 		return;
6483 
6484 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6485 				 LPFC_RAS_ENABLE_LOGGING);
6486 }
6487 
6488 /**
6489  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6490  * @phba: Pointer to HBA context object.
6491  *
6492  * This function allocates all SLI4 resource identifiers.
6493  **/
6494 int
6495 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6496 {
6497 	int i, rc, error = 0;
6498 	uint16_t count, base;
6499 	unsigned long longs;
6500 
6501 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6502 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6503 	if (phba->sli4_hba.extents_in_use) {
6504 		/*
6505 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6506 		 * resource extent count must be read and allocated before
6507 		 * provisioning the resource id arrays.
6508 		 */
6509 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6510 		    LPFC_IDX_RSRC_RDY) {
6511 			/*
6512 			 * Extent-based resources are set - the driver could
6513 			 * be in a port reset. Figure out if any corrective
6514 			 * actions need to be taken.
6515 			 */
6516 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6517 						 LPFC_RSC_TYPE_FCOE_VFI);
6518 			if (rc != 0)
6519 				error++;
6520 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6521 						 LPFC_RSC_TYPE_FCOE_VPI);
6522 			if (rc != 0)
6523 				error++;
6524 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6525 						 LPFC_RSC_TYPE_FCOE_XRI);
6526 			if (rc != 0)
6527 				error++;
6528 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6529 						 LPFC_RSC_TYPE_FCOE_RPI);
6530 			if (rc != 0)
6531 				error++;
6532 
6533 			/*
6534 			 * It's possible that the number of resources
6535 			 * provided to this port instance changed between
6536 			 * resets.  Detect this condition and reallocate
6537 			 * resources.  Otherwise, there is no action.
6538 			 */
6539 			if (error) {
6540 				lpfc_printf_log(phba, KERN_INFO,
6541 						LOG_MBOX | LOG_INIT,
6542 						"2931 Detected extent resource "
6543 						"change.  Reallocating all "
6544 						"extents.\n");
6545 				rc = lpfc_sli4_dealloc_extent(phba,
6546 						 LPFC_RSC_TYPE_FCOE_VFI);
6547 				rc = lpfc_sli4_dealloc_extent(phba,
6548 						 LPFC_RSC_TYPE_FCOE_VPI);
6549 				rc = lpfc_sli4_dealloc_extent(phba,
6550 						 LPFC_RSC_TYPE_FCOE_XRI);
6551 				rc = lpfc_sli4_dealloc_extent(phba,
6552 						 LPFC_RSC_TYPE_FCOE_RPI);
6553 			} else
6554 				return 0;
6555 		}
6556 
6557 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6558 		if (unlikely(rc))
6559 			goto err_exit;
6560 
6561 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6562 		if (unlikely(rc))
6563 			goto err_exit;
6564 
6565 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6566 		if (unlikely(rc))
6567 			goto err_exit;
6568 
6569 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6570 		if (unlikely(rc))
6571 			goto err_exit;
6572 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6573 		       LPFC_IDX_RSRC_RDY);
6574 		return rc;
6575 	} else {
6576 		/*
6577 		 * The port does not support resource extents.  The XRI, VPI,
6578 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6579 		 * Just allocate the bitmasks and provision the resource id
6580 		 * arrays.  If a port reset is active, the resources don't
6581 		 * need any action - just exit.
6582 		 */
6583 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6584 		    LPFC_IDX_RSRC_RDY) {
6585 			lpfc_sli4_dealloc_resource_identifiers(phba);
6586 			lpfc_sli4_remove_rpis(phba);
6587 		}
6588 		/* RPIs. */
6589 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6590 		if (count <= 0) {
6591 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6592 					"3279 Invalid provisioning of "
6593 					"rpi:%d\n", count);
6594 			rc = -EINVAL;
6595 			goto err_exit;
6596 		}
6597 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6598 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6599 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6600 						   sizeof(unsigned long),
6601 						   GFP_KERNEL);
6602 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6603 			rc = -ENOMEM;
6604 			goto err_exit;
6605 		}
6606 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6607 						 GFP_KERNEL);
6608 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6609 			rc = -ENOMEM;
6610 			goto free_rpi_bmask;
6611 		}
6612 
6613 		for (i = 0; i < count; i++)
6614 			phba->sli4_hba.rpi_ids[i] = base + i;
6615 
6616 		/* VPIs. */
6617 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6618 		if (count <= 0) {
6619 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6620 					"3280 Invalid provisioning of "
6621 					"vpi:%d\n", count);
6622 			rc = -EINVAL;
6623 			goto free_rpi_ids;
6624 		}
6625 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6626 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6627 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6628 					  GFP_KERNEL);
6629 		if (unlikely(!phba->vpi_bmask)) {
6630 			rc = -ENOMEM;
6631 			goto free_rpi_ids;
6632 		}
6633 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6634 					GFP_KERNEL);
6635 		if (unlikely(!phba->vpi_ids)) {
6636 			rc = -ENOMEM;
6637 			goto free_vpi_bmask;
6638 		}
6639 
6640 		for (i = 0; i < count; i++)
6641 			phba->vpi_ids[i] = base + i;
6642 
6643 		/* XRIs. */
6644 		count = phba->sli4_hba.max_cfg_param.max_xri;
6645 		if (count <= 0) {
6646 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6647 					"3281 Invalid provisioning of "
6648 					"xri:%d\n", count);
6649 			rc = -EINVAL;
6650 			goto free_vpi_ids;
6651 		}
6652 		base = phba->sli4_hba.max_cfg_param.xri_base;
6653 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6654 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6655 						   sizeof(unsigned long),
6656 						   GFP_KERNEL);
6657 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6658 			rc = -ENOMEM;
6659 			goto free_vpi_ids;
6660 		}
6661 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6662 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6663 						 GFP_KERNEL);
6664 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6665 			rc = -ENOMEM;
6666 			goto free_xri_bmask;
6667 		}
6668 
6669 		for (i = 0; i < count; i++)
6670 			phba->sli4_hba.xri_ids[i] = base + i;
6671 
6672 		/* VFIs. */
6673 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6674 		if (count <= 0) {
6675 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6676 					"3282 Invalid provisioning of "
6677 					"vfi:%d\n", count);
6678 			rc = -EINVAL;
6679 			goto free_xri_ids;
6680 		}
6681 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6682 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6683 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6684 						   sizeof(unsigned long),
6685 						   GFP_KERNEL);
6686 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6687 			rc = -ENOMEM;
6688 			goto free_xri_ids;
6689 		}
6690 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6691 						 GFP_KERNEL);
6692 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6693 			rc = -ENOMEM;
6694 			goto free_vfi_bmask;
6695 		}
6696 
6697 		for (i = 0; i < count; i++)
6698 			phba->sli4_hba.vfi_ids[i] = base + i;
6699 
6700 		/*
6701 		 * Mark all resources ready.  An HBA reset doesn't need
6702 		 * to reset the initialization.
6703 		 */
6704 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6705 		       LPFC_IDX_RSRC_RDY);
6706 		return 0;
6707 	}
6708 
6709  free_vfi_bmask:
6710 	kfree(phba->sli4_hba.vfi_bmask);
6711 	phba->sli4_hba.vfi_bmask = NULL;
6712  free_xri_ids:
6713 	kfree(phba->sli4_hba.xri_ids);
6714 	phba->sli4_hba.xri_ids = NULL;
6715  free_xri_bmask:
6716 	kfree(phba->sli4_hba.xri_bmask);
6717 	phba->sli4_hba.xri_bmask = NULL;
6718  free_vpi_ids:
6719 	kfree(phba->vpi_ids);
6720 	phba->vpi_ids = NULL;
6721  free_vpi_bmask:
6722 	kfree(phba->vpi_bmask);
6723 	phba->vpi_bmask = NULL;
6724  free_rpi_ids:
6725 	kfree(phba->sli4_hba.rpi_ids);
6726 	phba->sli4_hba.rpi_ids = NULL;
6727  free_rpi_bmask:
6728 	kfree(phba->sli4_hba.rpi_bmask);
6729 	phba->sli4_hba.rpi_bmask = NULL;
6730  err_exit:
6731 	return rc;
6732 }
6733 
6734 /**
6735  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6736  * @phba: Pointer to HBA context object.
6737  *
6738  * This function allocates the number of elements for the specified
6739  * resource type.
6740  **/
6741 int
6742 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6743 {
6744 	if (phba->sli4_hba.extents_in_use) {
6745 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6746 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6747 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6748 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6749 	} else {
6750 		kfree(phba->vpi_bmask);
6751 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6752 		kfree(phba->vpi_ids);
6753 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6754 		kfree(phba->sli4_hba.xri_bmask);
6755 		kfree(phba->sli4_hba.xri_ids);
6756 		kfree(phba->sli4_hba.vfi_bmask);
6757 		kfree(phba->sli4_hba.vfi_ids);
6758 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6759 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6760 	}
6761 
6762 	return 0;
6763 }
6764 
6765 /**
6766  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6767  * @phba: Pointer to HBA context object.
6768  * @type: The resource extent type.
6769  * @extnt_count: buffer to hold port extent count response
6770  * @extnt_size: buffer to hold port extent size response.
6771  *
6772  * This function calls the port to read the host allocated extents
6773  * for a particular type.
6774  **/
6775 int
6776 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6777 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6778 {
6779 	bool emb;
6780 	int rc = 0;
6781 	uint16_t curr_blks = 0;
6782 	uint32_t req_len, emb_len;
6783 	uint32_t alloc_len, mbox_tmo;
6784 	struct list_head *blk_list_head;
6785 	struct lpfc_rsrc_blks *rsrc_blk;
6786 	LPFC_MBOXQ_t *mbox;
6787 	void *virtaddr = NULL;
6788 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6789 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6790 	union  lpfc_sli4_cfg_shdr *shdr;
6791 
6792 	switch (type) {
6793 	case LPFC_RSC_TYPE_FCOE_VPI:
6794 		blk_list_head = &phba->lpfc_vpi_blk_list;
6795 		break;
6796 	case LPFC_RSC_TYPE_FCOE_XRI:
6797 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6798 		break;
6799 	case LPFC_RSC_TYPE_FCOE_VFI:
6800 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6801 		break;
6802 	case LPFC_RSC_TYPE_FCOE_RPI:
6803 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6804 		break;
6805 	default:
6806 		return -EIO;
6807 	}
6808 
6809 	/* Count the number of extents currently allocatd for this type. */
6810 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6811 		if (curr_blks == 0) {
6812 			/*
6813 			 * The GET_ALLOCATED mailbox does not return the size,
6814 			 * just the count.  The size should be just the size
6815 			 * stored in the current allocated block and all sizes
6816 			 * for an extent type are the same so set the return
6817 			 * value now.
6818 			 */
6819 			*extnt_size = rsrc_blk->rsrc_size;
6820 		}
6821 		curr_blks++;
6822 	}
6823 
6824 	/*
6825 	 * Calculate the size of an embedded mailbox.  The uint32_t
6826 	 * accounts for extents-specific word.
6827 	 */
6828 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6829 		sizeof(uint32_t);
6830 
6831 	/*
6832 	 * Presume the allocation and response will fit into an embedded
6833 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6834 	 */
6835 	emb = LPFC_SLI4_MBX_EMBED;
6836 	req_len = emb_len;
6837 	if (req_len > emb_len) {
6838 		req_len = curr_blks * sizeof(uint16_t) +
6839 			sizeof(union lpfc_sli4_cfg_shdr) +
6840 			sizeof(uint32_t);
6841 		emb = LPFC_SLI4_MBX_NEMBED;
6842 	}
6843 
6844 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6845 	if (!mbox)
6846 		return -ENOMEM;
6847 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6848 
6849 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6850 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6851 				     req_len, emb);
6852 	if (alloc_len < req_len) {
6853 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6854 			"2983 Allocated DMA memory size (x%x) is "
6855 			"less than the requested DMA memory "
6856 			"size (x%x)\n", alloc_len, req_len);
6857 		rc = -ENOMEM;
6858 		goto err_exit;
6859 	}
6860 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6861 	if (unlikely(rc)) {
6862 		rc = -EIO;
6863 		goto err_exit;
6864 	}
6865 
6866 	if (!phba->sli4_hba.intr_enable)
6867 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6868 	else {
6869 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6870 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6871 	}
6872 
6873 	if (unlikely(rc)) {
6874 		rc = -EIO;
6875 		goto err_exit;
6876 	}
6877 
6878 	/*
6879 	 * Figure out where the response is located.  Then get local pointers
6880 	 * to the response data.  The port does not guarantee to respond to
6881 	 * all extents counts request so update the local variable with the
6882 	 * allocated count from the port.
6883 	 */
6884 	if (emb == LPFC_SLI4_MBX_EMBED) {
6885 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6886 		shdr = &rsrc_ext->header.cfg_shdr;
6887 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6888 	} else {
6889 		virtaddr = mbox->sge_array->addr[0];
6890 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6891 		shdr = &n_rsrc->cfg_shdr;
6892 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6893 	}
6894 
6895 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6896 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6897 			"2984 Failed to read allocated resources "
6898 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6899 			type,
6900 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6901 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6902 		rc = -EIO;
6903 		goto err_exit;
6904 	}
6905  err_exit:
6906 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6907 	return rc;
6908 }
6909 
6910 /**
6911  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6912  * @phba: pointer to lpfc hba data structure.
6913  * @pring: Pointer to driver SLI ring object.
6914  * @sgl_list: linked link of sgl buffers to post
6915  * @cnt: number of linked list buffers
6916  *
6917  * This routine walks the list of buffers that have been allocated and
6918  * repost them to the port by using SGL block post. This is needed after a
6919  * pci_function_reset/warm_start or start. It attempts to construct blocks
6920  * of buffer sgls which contains contiguous xris and uses the non-embedded
6921  * SGL block post mailbox commands to post them to the port. For single
6922  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6923  * mailbox command for posting.
6924  *
6925  * Returns: 0 = success, non-zero failure.
6926  **/
6927 static int
6928 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6929 			  struct list_head *sgl_list, int cnt)
6930 {
6931 	struct lpfc_sglq *sglq_entry = NULL;
6932 	struct lpfc_sglq *sglq_entry_next = NULL;
6933 	struct lpfc_sglq *sglq_entry_first = NULL;
6934 	int status, total_cnt;
6935 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6936 	int last_xritag = NO_XRI;
6937 	LIST_HEAD(prep_sgl_list);
6938 	LIST_HEAD(blck_sgl_list);
6939 	LIST_HEAD(allc_sgl_list);
6940 	LIST_HEAD(post_sgl_list);
6941 	LIST_HEAD(free_sgl_list);
6942 
6943 	spin_lock_irq(&phba->hbalock);
6944 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6945 	list_splice_init(sgl_list, &allc_sgl_list);
6946 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6947 	spin_unlock_irq(&phba->hbalock);
6948 
6949 	total_cnt = cnt;
6950 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6951 				 &allc_sgl_list, list) {
6952 		list_del_init(&sglq_entry->list);
6953 		block_cnt++;
6954 		if ((last_xritag != NO_XRI) &&
6955 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6956 			/* a hole in xri block, form a sgl posting block */
6957 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6958 			post_cnt = block_cnt - 1;
6959 			/* prepare list for next posting block */
6960 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6961 			block_cnt = 1;
6962 		} else {
6963 			/* prepare list for next posting block */
6964 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6965 			/* enough sgls for non-embed sgl mbox command */
6966 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6967 				list_splice_init(&prep_sgl_list,
6968 						 &blck_sgl_list);
6969 				post_cnt = block_cnt;
6970 				block_cnt = 0;
6971 			}
6972 		}
6973 		num_posted++;
6974 
6975 		/* keep track of last sgl's xritag */
6976 		last_xritag = sglq_entry->sli4_xritag;
6977 
6978 		/* end of repost sgl list condition for buffers */
6979 		if (num_posted == total_cnt) {
6980 			if (post_cnt == 0) {
6981 				list_splice_init(&prep_sgl_list,
6982 						 &blck_sgl_list);
6983 				post_cnt = block_cnt;
6984 			} else if (block_cnt == 1) {
6985 				status = lpfc_sli4_post_sgl(phba,
6986 						sglq_entry->phys, 0,
6987 						sglq_entry->sli4_xritag);
6988 				if (!status) {
6989 					/* successful, put sgl to posted list */
6990 					list_add_tail(&sglq_entry->list,
6991 						      &post_sgl_list);
6992 				} else {
6993 					/* Failure, put sgl to free list */
6994 					lpfc_printf_log(phba, KERN_WARNING,
6995 						LOG_SLI,
6996 						"3159 Failed to post "
6997 						"sgl, xritag:x%x\n",
6998 						sglq_entry->sli4_xritag);
6999 					list_add_tail(&sglq_entry->list,
7000 						      &free_sgl_list);
7001 					total_cnt--;
7002 				}
7003 			}
7004 		}
7005 
7006 		/* continue until a nembed page worth of sgls */
7007 		if (post_cnt == 0)
7008 			continue;
7009 
7010 		/* post the buffer list sgls as a block */
7011 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7012 						 post_cnt);
7013 
7014 		if (!status) {
7015 			/* success, put sgl list to posted sgl list */
7016 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7017 		} else {
7018 			/* Failure, put sgl list to free sgl list */
7019 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7020 							    struct lpfc_sglq,
7021 							    list);
7022 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7023 					"3160 Failed to post sgl-list, "
7024 					"xritag:x%x-x%x\n",
7025 					sglq_entry_first->sli4_xritag,
7026 					(sglq_entry_first->sli4_xritag +
7027 					 post_cnt - 1));
7028 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7029 			total_cnt -= post_cnt;
7030 		}
7031 
7032 		/* don't reset xirtag due to hole in xri block */
7033 		if (block_cnt == 0)
7034 			last_xritag = NO_XRI;
7035 
7036 		/* reset sgl post count for next round of posting */
7037 		post_cnt = 0;
7038 	}
7039 
7040 	/* free the sgls failed to post */
7041 	lpfc_free_sgl_list(phba, &free_sgl_list);
7042 
7043 	/* push sgls posted to the available list */
7044 	if (!list_empty(&post_sgl_list)) {
7045 		spin_lock_irq(&phba->hbalock);
7046 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7047 		list_splice_init(&post_sgl_list, sgl_list);
7048 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7049 		spin_unlock_irq(&phba->hbalock);
7050 	} else {
7051 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7052 				"3161 Failure to post sgl to port.\n");
7053 		return -EIO;
7054 	}
7055 
7056 	/* return the number of XRIs actually posted */
7057 	return total_cnt;
7058 }
7059 
7060 void
7061 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7062 {
7063 	uint32_t len;
7064 
7065 	len = sizeof(struct lpfc_mbx_set_host_data) -
7066 		sizeof(struct lpfc_sli4_cfg_mhdr);
7067 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7068 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7069 			 LPFC_SLI4_MBX_EMBED);
7070 
7071 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7072 	mbox->u.mqe.un.set_host_data.param_len =
7073 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7074 	snprintf(mbox->u.mqe.un.set_host_data.data,
7075 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7076 		 "Linux %s v"LPFC_DRIVER_VERSION,
7077 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7078 }
7079 
7080 int
7081 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7082 		    struct lpfc_queue *drq, int count, int idx)
7083 {
7084 	int rc, i;
7085 	struct lpfc_rqe hrqe;
7086 	struct lpfc_rqe drqe;
7087 	struct lpfc_rqb *rqbp;
7088 	unsigned long flags;
7089 	struct rqb_dmabuf *rqb_buffer;
7090 	LIST_HEAD(rqb_buf_list);
7091 
7092 	spin_lock_irqsave(&phba->hbalock, flags);
7093 	rqbp = hrq->rqbp;
7094 	for (i = 0; i < count; i++) {
7095 		/* IF RQ is already full, don't bother */
7096 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7097 			break;
7098 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7099 		if (!rqb_buffer)
7100 			break;
7101 		rqb_buffer->hrq = hrq;
7102 		rqb_buffer->drq = drq;
7103 		rqb_buffer->idx = idx;
7104 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7105 	}
7106 	while (!list_empty(&rqb_buf_list)) {
7107 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7108 				 hbuf.list);
7109 
7110 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7111 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7112 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7113 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7114 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7115 		if (rc < 0) {
7116 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7117 					"6421 Cannot post to HRQ %d: %x %x %x "
7118 					"DRQ %x %x\n",
7119 					hrq->queue_id,
7120 					hrq->host_index,
7121 					hrq->hba_index,
7122 					hrq->entry_count,
7123 					drq->host_index,
7124 					drq->hba_index);
7125 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7126 		} else {
7127 			list_add_tail(&rqb_buffer->hbuf.list,
7128 				      &rqbp->rqb_buffer_list);
7129 			rqbp->buffer_count++;
7130 		}
7131 	}
7132 	spin_unlock_irqrestore(&phba->hbalock, flags);
7133 	return 1;
7134 }
7135 
7136 /**
7137  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7138  * @phba: Pointer to HBA context object.
7139  *
7140  * This function is the main SLI4 device initialization PCI function. This
7141  * function is called by the HBA initialization code, HBA reset code and
7142  * HBA error attention handler code. Caller is not required to hold any
7143  * locks.
7144  **/
7145 int
7146 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7147 {
7148 	int rc, i, cnt;
7149 	LPFC_MBOXQ_t *mboxq;
7150 	struct lpfc_mqe *mqe;
7151 	uint8_t *vpd;
7152 	uint32_t vpd_size;
7153 	uint32_t ftr_rsp = 0;
7154 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7155 	struct lpfc_vport *vport = phba->pport;
7156 	struct lpfc_dmabuf *mp;
7157 	struct lpfc_rqb *rqbp;
7158 
7159 	/* Perform a PCI function reset to start from clean */
7160 	rc = lpfc_pci_function_reset(phba);
7161 	if (unlikely(rc))
7162 		return -ENODEV;
7163 
7164 	/* Check the HBA Host Status Register for readyness */
7165 	rc = lpfc_sli4_post_status_check(phba);
7166 	if (unlikely(rc))
7167 		return -ENODEV;
7168 	else {
7169 		spin_lock_irq(&phba->hbalock);
7170 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7171 		spin_unlock_irq(&phba->hbalock);
7172 	}
7173 
7174 	/*
7175 	 * Allocate a single mailbox container for initializing the
7176 	 * port.
7177 	 */
7178 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7179 	if (!mboxq)
7180 		return -ENOMEM;
7181 
7182 	/* Issue READ_REV to collect vpd and FW information. */
7183 	vpd_size = SLI4_PAGE_SIZE;
7184 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7185 	if (!vpd) {
7186 		rc = -ENOMEM;
7187 		goto out_free_mbox;
7188 	}
7189 
7190 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7191 	if (unlikely(rc)) {
7192 		kfree(vpd);
7193 		goto out_free_mbox;
7194 	}
7195 
7196 	mqe = &mboxq->u.mqe;
7197 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7198 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7199 		phba->hba_flag |= HBA_FCOE_MODE;
7200 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7201 	} else {
7202 		phba->hba_flag &= ~HBA_FCOE_MODE;
7203 	}
7204 
7205 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7206 		LPFC_DCBX_CEE_MODE)
7207 		phba->hba_flag |= HBA_FIP_SUPPORT;
7208 	else
7209 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7210 
7211 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7212 
7213 	if (phba->sli_rev != LPFC_SLI_REV4) {
7214 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7215 			"0376 READ_REV Error. SLI Level %d "
7216 			"FCoE enabled %d\n",
7217 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7218 		rc = -EIO;
7219 		kfree(vpd);
7220 		goto out_free_mbox;
7221 	}
7222 
7223 	/*
7224 	 * Continue initialization with default values even if driver failed
7225 	 * to read FCoE param config regions, only read parameters if the
7226 	 * board is FCoE
7227 	 */
7228 	if (phba->hba_flag & HBA_FCOE_MODE &&
7229 	    lpfc_sli4_read_fcoe_params(phba))
7230 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7231 			"2570 Failed to read FCoE parameters\n");
7232 
7233 	/*
7234 	 * Retrieve sli4 device physical port name, failure of doing it
7235 	 * is considered as non-fatal.
7236 	 */
7237 	rc = lpfc_sli4_retrieve_pport_name(phba);
7238 	if (!rc)
7239 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7240 				"3080 Successful retrieving SLI4 device "
7241 				"physical port name: %s.\n", phba->Port);
7242 
7243 	/*
7244 	 * Evaluate the read rev and vpd data. Populate the driver
7245 	 * state with the results. If this routine fails, the failure
7246 	 * is not fatal as the driver will use generic values.
7247 	 */
7248 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7249 	if (unlikely(!rc)) {
7250 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7251 				"0377 Error %d parsing vpd. "
7252 				"Using defaults.\n", rc);
7253 		rc = 0;
7254 	}
7255 	kfree(vpd);
7256 
7257 	/* Save information as VPD data */
7258 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7259 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7260 
7261 	/*
7262 	 * This is because first G7 ASIC doesn't support the standard
7263 	 * 0x5a NVME cmd descriptor type/subtype
7264 	 */
7265 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7266 			LPFC_SLI_INTF_IF_TYPE_6) &&
7267 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7268 	    (phba->vpd.rev.smRev == 0) &&
7269 	    (phba->cfg_nvme_embed_cmd == 1))
7270 		phba->cfg_nvme_embed_cmd = 0;
7271 
7272 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7273 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7274 					 &mqe->un.read_rev);
7275 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7276 				       &mqe->un.read_rev);
7277 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7278 					    &mqe->un.read_rev);
7279 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7280 					   &mqe->un.read_rev);
7281 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7282 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7283 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7284 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7285 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7286 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7287 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7288 			"(%d):0380 READ_REV Status x%x "
7289 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7290 			mboxq->vport ? mboxq->vport->vpi : 0,
7291 			bf_get(lpfc_mqe_status, mqe),
7292 			phba->vpd.rev.opFwName,
7293 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7294 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7295 
7296 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7297 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7298 	if (phba->pport->cfg_lun_queue_depth > rc) {
7299 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7300 				"3362 LUN queue depth changed from %d to %d\n",
7301 				phba->pport->cfg_lun_queue_depth, rc);
7302 		phba->pport->cfg_lun_queue_depth = rc;
7303 	}
7304 
7305 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7306 	    LPFC_SLI_INTF_IF_TYPE_0) {
7307 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7308 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7309 		if (rc == MBX_SUCCESS) {
7310 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7311 			/* Set 1Sec interval to detect UE */
7312 			phba->eratt_poll_interval = 1;
7313 			phba->sli4_hba.ue_to_sr = bf_get(
7314 					lpfc_mbx_set_feature_UESR,
7315 					&mboxq->u.mqe.un.set_feature);
7316 			phba->sli4_hba.ue_to_rp = bf_get(
7317 					lpfc_mbx_set_feature_UERP,
7318 					&mboxq->u.mqe.un.set_feature);
7319 		}
7320 	}
7321 
7322 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7323 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7324 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7325 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7326 		if (rc != MBX_SUCCESS)
7327 			phba->mds_diags_support = 0;
7328 	}
7329 
7330 	/*
7331 	 * Discover the port's supported feature set and match it against the
7332 	 * hosts requests.
7333 	 */
7334 	lpfc_request_features(phba, mboxq);
7335 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7336 	if (unlikely(rc)) {
7337 		rc = -EIO;
7338 		goto out_free_mbox;
7339 	}
7340 
7341 	/*
7342 	 * The port must support FCP initiator mode as this is the
7343 	 * only mode running in the host.
7344 	 */
7345 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7346 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7347 				"0378 No support for fcpi mode.\n");
7348 		ftr_rsp++;
7349 	}
7350 
7351 	/* Performance Hints are ONLY for FCoE */
7352 	if (phba->hba_flag & HBA_FCOE_MODE) {
7353 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7354 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7355 		else
7356 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7357 	}
7358 
7359 	/*
7360 	 * If the port cannot support the host's requested features
7361 	 * then turn off the global config parameters to disable the
7362 	 * feature in the driver.  This is not a fatal error.
7363 	 */
7364 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7365 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7366 			phba->cfg_enable_bg = 0;
7367 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7368 			ftr_rsp++;
7369 		}
7370 	}
7371 
7372 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7373 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7374 		ftr_rsp++;
7375 
7376 	if (ftr_rsp) {
7377 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7378 				"0379 Feature Mismatch Data: x%08x %08x "
7379 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7380 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7381 				phba->cfg_enable_npiv, phba->max_vpi);
7382 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7383 			phba->cfg_enable_bg = 0;
7384 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7385 			phba->cfg_enable_npiv = 0;
7386 	}
7387 
7388 	/* These SLI3 features are assumed in SLI4 */
7389 	spin_lock_irq(&phba->hbalock);
7390 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7391 	spin_unlock_irq(&phba->hbalock);
7392 
7393 	/*
7394 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7395 	 * calls depends on these resources to complete port setup.
7396 	 */
7397 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7398 	if (rc) {
7399 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7400 				"2920 Failed to alloc Resource IDs "
7401 				"rc = x%x\n", rc);
7402 		goto out_free_mbox;
7403 	}
7404 
7405 	lpfc_set_host_data(phba, mboxq);
7406 
7407 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7408 	if (rc) {
7409 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7410 				"2134 Failed to set host os driver version %x",
7411 				rc);
7412 	}
7413 
7414 	/* Read the port's service parameters. */
7415 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7416 	if (rc) {
7417 		phba->link_state = LPFC_HBA_ERROR;
7418 		rc = -ENOMEM;
7419 		goto out_free_mbox;
7420 	}
7421 
7422 	mboxq->vport = vport;
7423 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7424 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7425 	if (rc == MBX_SUCCESS) {
7426 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7427 		rc = 0;
7428 	}
7429 
7430 	/*
7431 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7432 	 * it to the mbuf pool.
7433 	 */
7434 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7435 	kfree(mp);
7436 	mboxq->ctx_buf = NULL;
7437 	if (unlikely(rc)) {
7438 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7439 				"0382 READ_SPARAM command failed "
7440 				"status %d, mbxStatus x%x\n",
7441 				rc, bf_get(lpfc_mqe_status, mqe));
7442 		phba->link_state = LPFC_HBA_ERROR;
7443 		rc = -EIO;
7444 		goto out_free_mbox;
7445 	}
7446 
7447 	lpfc_update_vport_wwn(vport);
7448 
7449 	/* Update the fc_host data structures with new wwn. */
7450 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7451 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7452 
7453 	/* Create all the SLI4 queues */
7454 	rc = lpfc_sli4_queue_create(phba);
7455 	if (rc) {
7456 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7457 				"3089 Failed to allocate queues\n");
7458 		rc = -ENODEV;
7459 		goto out_free_mbox;
7460 	}
7461 	/* Set up all the queues to the device */
7462 	rc = lpfc_sli4_queue_setup(phba);
7463 	if (unlikely(rc)) {
7464 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7465 				"0381 Error %d during queue setup.\n ", rc);
7466 		goto out_stop_timers;
7467 	}
7468 	/* Initialize the driver internal SLI layer lists. */
7469 	lpfc_sli4_setup(phba);
7470 	lpfc_sli4_queue_init(phba);
7471 
7472 	/* update host els xri-sgl sizes and mappings */
7473 	rc = lpfc_sli4_els_sgl_update(phba);
7474 	if (unlikely(rc)) {
7475 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7476 				"1400 Failed to update xri-sgl size and "
7477 				"mapping: %d\n", rc);
7478 		goto out_destroy_queue;
7479 	}
7480 
7481 	/* register the els sgl pool to the port */
7482 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7483 				       phba->sli4_hba.els_xri_cnt);
7484 	if (unlikely(rc < 0)) {
7485 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7486 				"0582 Error %d during els sgl post "
7487 				"operation\n", rc);
7488 		rc = -ENODEV;
7489 		goto out_destroy_queue;
7490 	}
7491 	phba->sli4_hba.els_xri_cnt = rc;
7492 
7493 	if (phba->nvmet_support) {
7494 		/* update host nvmet xri-sgl sizes and mappings */
7495 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7496 		if (unlikely(rc)) {
7497 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7498 					"6308 Failed to update nvmet-sgl size "
7499 					"and mapping: %d\n", rc);
7500 			goto out_destroy_queue;
7501 		}
7502 
7503 		/* register the nvmet sgl pool to the port */
7504 		rc = lpfc_sli4_repost_sgl_list(
7505 			phba,
7506 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7507 			phba->sli4_hba.nvmet_xri_cnt);
7508 		if (unlikely(rc < 0)) {
7509 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7510 					"3117 Error %d during nvmet "
7511 					"sgl post\n", rc);
7512 			rc = -ENODEV;
7513 			goto out_destroy_queue;
7514 		}
7515 		phba->sli4_hba.nvmet_xri_cnt = rc;
7516 
7517 		cnt = phba->cfg_iocb_cnt * 1024;
7518 		/* We need 1 iocbq for every SGL, for IO processing */
7519 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7520 	} else {
7521 		/* update host scsi xri-sgl sizes and mappings */
7522 		rc = lpfc_sli4_scsi_sgl_update(phba);
7523 		if (unlikely(rc)) {
7524 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7525 					"6309 Failed to update scsi-sgl size "
7526 					"and mapping: %d\n", rc);
7527 			goto out_destroy_queue;
7528 		}
7529 
7530 		/* update host nvme xri-sgl sizes and mappings */
7531 		rc = lpfc_sli4_nvme_sgl_update(phba);
7532 		if (unlikely(rc)) {
7533 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7534 					"6082 Failed to update nvme-sgl size "
7535 					"and mapping: %d\n", rc);
7536 			goto out_destroy_queue;
7537 		}
7538 
7539 		cnt = phba->cfg_iocb_cnt * 1024;
7540 	}
7541 
7542 	if (!phba->sli.iocbq_lookup) {
7543 		/* Initialize and populate the iocb list per host */
7544 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7545 				"2821 initialize iocb list %d total %d\n",
7546 				phba->cfg_iocb_cnt, cnt);
7547 		rc = lpfc_init_iocb_list(phba, cnt);
7548 		if (rc) {
7549 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7550 					"1413 Failed to init iocb list.\n");
7551 			goto out_destroy_queue;
7552 		}
7553 	}
7554 
7555 	if (phba->nvmet_support)
7556 		lpfc_nvmet_create_targetport(phba);
7557 
7558 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7559 		/* Post initial buffers to all RQs created */
7560 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7561 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7562 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7563 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7564 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7565 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7566 			rqbp->buffer_count = 0;
7567 
7568 			lpfc_post_rq_buffer(
7569 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7570 				phba->sli4_hba.nvmet_mrq_data[i],
7571 				phba->cfg_nvmet_mrq_post, i);
7572 		}
7573 	}
7574 
7575 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
7576 		/* register the allocated scsi sgl pool to the port */
7577 		rc = lpfc_sli4_repost_scsi_sgl_list(phba);
7578 		if (unlikely(rc)) {
7579 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7580 					"0383 Error %d during scsi sgl post "
7581 					"operation\n", rc);
7582 			/* Some Scsi buffers were moved to abort scsi list */
7583 			/* A pci function reset will repost them */
7584 			rc = -ENODEV;
7585 			goto out_destroy_queue;
7586 		}
7587 	}
7588 
7589 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
7590 	    (phba->nvmet_support == 0)) {
7591 
7592 		/* register the allocated nvme sgl pool to the port */
7593 		rc = lpfc_repost_nvme_sgl_list(phba);
7594 		if (unlikely(rc)) {
7595 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7596 					"6116 Error %d during nvme sgl post "
7597 					"operation\n", rc);
7598 			/* Some NVME buffers were moved to abort nvme list */
7599 			/* A pci function reset will repost them */
7600 			rc = -ENODEV;
7601 			goto out_destroy_queue;
7602 		}
7603 	}
7604 
7605 	/* Post the rpi header region to the device. */
7606 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7607 	if (unlikely(rc)) {
7608 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7609 				"0393 Error %d during rpi post operation\n",
7610 				rc);
7611 		rc = -ENODEV;
7612 		goto out_destroy_queue;
7613 	}
7614 	lpfc_sli4_node_prep(phba);
7615 
7616 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7617 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7618 			/*
7619 			 * The FC Port needs to register FCFI (index 0)
7620 			 */
7621 			lpfc_reg_fcfi(phba, mboxq);
7622 			mboxq->vport = phba->pport;
7623 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7624 			if (rc != MBX_SUCCESS)
7625 				goto out_unset_queue;
7626 			rc = 0;
7627 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7628 						&mboxq->u.mqe.un.reg_fcfi);
7629 		} else {
7630 			/* We are a NVME Target mode with MRQ > 1 */
7631 
7632 			/* First register the FCFI */
7633 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7634 			mboxq->vport = phba->pport;
7635 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7636 			if (rc != MBX_SUCCESS)
7637 				goto out_unset_queue;
7638 			rc = 0;
7639 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7640 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7641 
7642 			/* Next register the MRQs */
7643 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7644 			mboxq->vport = phba->pport;
7645 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7646 			if (rc != MBX_SUCCESS)
7647 				goto out_unset_queue;
7648 			rc = 0;
7649 		}
7650 		/* Check if the port is configured to be disabled */
7651 		lpfc_sli_read_link_ste(phba);
7652 	}
7653 
7654 	/* Arm the CQs and then EQs on device */
7655 	lpfc_sli4_arm_cqeq_intr(phba);
7656 
7657 	/* Indicate device interrupt mode */
7658 	phba->sli4_hba.intr_enable = 1;
7659 
7660 	/* Allow asynchronous mailbox command to go through */
7661 	spin_lock_irq(&phba->hbalock);
7662 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7663 	spin_unlock_irq(&phba->hbalock);
7664 
7665 	/* Post receive buffers to the device */
7666 	lpfc_sli4_rb_setup(phba);
7667 
7668 	/* Reset HBA FCF states after HBA reset */
7669 	phba->fcf.fcf_flag = 0;
7670 	phba->fcf.current_rec.flag = 0;
7671 
7672 	/* Start the ELS watchdog timer */
7673 	mod_timer(&vport->els_tmofunc,
7674 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7675 
7676 	/* Start heart beat timer */
7677 	mod_timer(&phba->hb_tmofunc,
7678 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7679 	phba->hb_outstanding = 0;
7680 	phba->last_completion_time = jiffies;
7681 
7682 	/* Start error attention (ERATT) polling timer */
7683 	mod_timer(&phba->eratt_poll,
7684 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7685 
7686 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7687 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7688 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7689 		if (!rc) {
7690 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7691 					"2829 This device supports "
7692 					"Advanced Error Reporting (AER)\n");
7693 			spin_lock_irq(&phba->hbalock);
7694 			phba->hba_flag |= HBA_AER_ENABLED;
7695 			spin_unlock_irq(&phba->hbalock);
7696 		} else {
7697 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7698 					"2830 This device does not support "
7699 					"Advanced Error Reporting (AER)\n");
7700 			phba->cfg_aer_support = 0;
7701 		}
7702 		rc = 0;
7703 	}
7704 
7705 	/*
7706 	 * The port is ready, set the host's link state to LINK_DOWN
7707 	 * in preparation for link interrupts.
7708 	 */
7709 	spin_lock_irq(&phba->hbalock);
7710 	phba->link_state = LPFC_LINK_DOWN;
7711 
7712 	/* Check if physical ports are trunked */
7713 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7714 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7715 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7716 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7717 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7718 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7719 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7720 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7721 	spin_unlock_irq(&phba->hbalock);
7722 
7723 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7724 	    (phba->hba_flag & LINK_DISABLED)) {
7725 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7726 				"3103 Adapter Link is disabled.\n");
7727 		lpfc_down_link(phba, mboxq);
7728 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7729 		if (rc != MBX_SUCCESS) {
7730 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7731 					"3104 Adapter failed to issue "
7732 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7733 			goto out_unset_queue;
7734 		}
7735 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7736 		/* don't perform init_link on SLI4 FC port loopback test */
7737 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7738 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7739 			if (rc)
7740 				goto out_unset_queue;
7741 		}
7742 	}
7743 	mempool_free(mboxq, phba->mbox_mem_pool);
7744 	return rc;
7745 out_unset_queue:
7746 	/* Unset all the queues set up in this routine when error out */
7747 	lpfc_sli4_queue_unset(phba);
7748 out_destroy_queue:
7749 	lpfc_free_iocb_list(phba);
7750 	lpfc_sli4_queue_destroy(phba);
7751 out_stop_timers:
7752 	lpfc_stop_hba_timers(phba);
7753 out_free_mbox:
7754 	mempool_free(mboxq, phba->mbox_mem_pool);
7755 	return rc;
7756 }
7757 
7758 /**
7759  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7760  * @ptr: context object - pointer to hba structure.
7761  *
7762  * This is the callback function for mailbox timer. The mailbox
7763  * timer is armed when a new mailbox command is issued and the timer
7764  * is deleted when the mailbox complete. The function is called by
7765  * the kernel timer code when a mailbox does not complete within
7766  * expected time. This function wakes up the worker thread to
7767  * process the mailbox timeout and returns. All the processing is
7768  * done by the worker thread function lpfc_mbox_timeout_handler.
7769  **/
7770 void
7771 lpfc_mbox_timeout(struct timer_list *t)
7772 {
7773 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7774 	unsigned long iflag;
7775 	uint32_t tmo_posted;
7776 
7777 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7778 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7779 	if (!tmo_posted)
7780 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7781 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7782 
7783 	if (!tmo_posted)
7784 		lpfc_worker_wake_up(phba);
7785 	return;
7786 }
7787 
7788 /**
7789  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7790  *                                    are pending
7791  * @phba: Pointer to HBA context object.
7792  *
7793  * This function checks if any mailbox completions are present on the mailbox
7794  * completion queue.
7795  **/
7796 static bool
7797 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7798 {
7799 
7800 	uint32_t idx;
7801 	struct lpfc_queue *mcq;
7802 	struct lpfc_mcqe *mcqe;
7803 	bool pending_completions = false;
7804 	uint8_t	qe_valid;
7805 
7806 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7807 		return false;
7808 
7809 	/* Check for completions on mailbox completion queue */
7810 
7811 	mcq = phba->sli4_hba.mbx_cq;
7812 	idx = mcq->hba_index;
7813 	qe_valid = mcq->qe_valid;
7814 	while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) {
7815 		mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7816 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7817 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7818 			pending_completions = true;
7819 			break;
7820 		}
7821 		idx = (idx + 1) % mcq->entry_count;
7822 		if (mcq->hba_index == idx)
7823 			break;
7824 
7825 		/* if the index wrapped around, toggle the valid bit */
7826 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7827 			qe_valid = (qe_valid) ? 0 : 1;
7828 	}
7829 	return pending_completions;
7830 
7831 }
7832 
7833 /**
7834  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7835  *					      that were missed.
7836  * @phba: Pointer to HBA context object.
7837  *
7838  * For sli4, it is possible to miss an interrupt. As such mbox completions
7839  * maybe missed causing erroneous mailbox timeouts to occur. This function
7840  * checks to see if mbox completions are on the mailbox completion queue
7841  * and will process all the completions associated with the eq for the
7842  * mailbox completion queue.
7843  **/
7844 bool
7845 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7846 {
7847 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7848 	uint32_t eqidx;
7849 	struct lpfc_queue *fpeq = NULL;
7850 	struct lpfc_eqe *eqe;
7851 	bool mbox_pending;
7852 
7853 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7854 		return false;
7855 
7856 	/* Find the eq associated with the mcq */
7857 
7858 	if (sli4_hba->hba_eq)
7859 		for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7860 			if (sli4_hba->hba_eq[eqidx]->queue_id ==
7861 			    sli4_hba->mbx_cq->assoc_qid) {
7862 				fpeq = sli4_hba->hba_eq[eqidx];
7863 				break;
7864 			}
7865 	if (!fpeq)
7866 		return false;
7867 
7868 	/* Turn off interrupts from this EQ */
7869 
7870 	sli4_hba->sli4_eq_clr_intr(fpeq);
7871 
7872 	/* Check to see if a mbox completion is pending */
7873 
7874 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7875 
7876 	/*
7877 	 * If a mbox completion is pending, process all the events on EQ
7878 	 * associated with the mbox completion queue (this could include
7879 	 * mailbox commands, async events, els commands, receive queue data
7880 	 * and fcp commands)
7881 	 */
7882 
7883 	if (mbox_pending)
7884 		while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7885 			lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7886 			fpeq->EQ_processed++;
7887 		}
7888 
7889 	/* Always clear and re-arm the EQ */
7890 
7891 	sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7892 
7893 	return mbox_pending;
7894 
7895 }
7896 
7897 /**
7898  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7899  * @phba: Pointer to HBA context object.
7900  *
7901  * This function is called from worker thread when a mailbox command times out.
7902  * The caller is not required to hold any locks. This function will reset the
7903  * HBA and recover all the pending commands.
7904  **/
7905 void
7906 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7907 {
7908 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7909 	MAILBOX_t *mb = NULL;
7910 
7911 	struct lpfc_sli *psli = &phba->sli;
7912 
7913 	/* If the mailbox completed, process the completion and return */
7914 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7915 		return;
7916 
7917 	if (pmbox != NULL)
7918 		mb = &pmbox->u.mb;
7919 	/* Check the pmbox pointer first.  There is a race condition
7920 	 * between the mbox timeout handler getting executed in the
7921 	 * worklist and the mailbox actually completing. When this
7922 	 * race condition occurs, the mbox_active will be NULL.
7923 	 */
7924 	spin_lock_irq(&phba->hbalock);
7925 	if (pmbox == NULL) {
7926 		lpfc_printf_log(phba, KERN_WARNING,
7927 				LOG_MBOX | LOG_SLI,
7928 				"0353 Active Mailbox cleared - mailbox timeout "
7929 				"exiting\n");
7930 		spin_unlock_irq(&phba->hbalock);
7931 		return;
7932 	}
7933 
7934 	/* Mbox cmd <mbxCommand> timeout */
7935 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7936 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7937 			mb->mbxCommand,
7938 			phba->pport->port_state,
7939 			phba->sli.sli_flag,
7940 			phba->sli.mbox_active);
7941 	spin_unlock_irq(&phba->hbalock);
7942 
7943 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7944 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7945 	 * it to fail all outstanding SCSI IO.
7946 	 */
7947 	spin_lock_irq(&phba->pport->work_port_lock);
7948 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7949 	spin_unlock_irq(&phba->pport->work_port_lock);
7950 	spin_lock_irq(&phba->hbalock);
7951 	phba->link_state = LPFC_LINK_UNKNOWN;
7952 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7953 	spin_unlock_irq(&phba->hbalock);
7954 
7955 	lpfc_sli_abort_fcp_rings(phba);
7956 
7957 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7958 			"0345 Resetting board due to mailbox timeout\n");
7959 
7960 	/* Reset the HBA device */
7961 	lpfc_reset_hba(phba);
7962 }
7963 
7964 /**
7965  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7966  * @phba: Pointer to HBA context object.
7967  * @pmbox: Pointer to mailbox object.
7968  * @flag: Flag indicating how the mailbox need to be processed.
7969  *
7970  * This function is called by discovery code and HBA management code
7971  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7972  * function gets the hbalock to protect the data structures.
7973  * The mailbox command can be submitted in polling mode, in which case
7974  * this function will wait in a polling loop for the completion of the
7975  * mailbox.
7976  * If the mailbox is submitted in no_wait mode (not polling) the
7977  * function will submit the command and returns immediately without waiting
7978  * for the mailbox completion. The no_wait is supported only when HBA
7979  * is in SLI2/SLI3 mode - interrupts are enabled.
7980  * The SLI interface allows only one mailbox pending at a time. If the
7981  * mailbox is issued in polling mode and there is already a mailbox
7982  * pending, then the function will return an error. If the mailbox is issued
7983  * in NO_WAIT mode and there is a mailbox pending already, the function
7984  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7985  * The sli layer owns the mailbox object until the completion of mailbox
7986  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7987  * return codes the caller owns the mailbox command after the return of
7988  * the function.
7989  **/
7990 static int
7991 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7992 		       uint32_t flag)
7993 {
7994 	MAILBOX_t *mbx;
7995 	struct lpfc_sli *psli = &phba->sli;
7996 	uint32_t status, evtctr;
7997 	uint32_t ha_copy, hc_copy;
7998 	int i;
7999 	unsigned long timeout;
8000 	unsigned long drvr_flag = 0;
8001 	uint32_t word0, ldata;
8002 	void __iomem *to_slim;
8003 	int processing_queue = 0;
8004 
8005 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8006 	if (!pmbox) {
8007 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8008 		/* processing mbox queue from intr_handler */
8009 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8010 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8011 			return MBX_SUCCESS;
8012 		}
8013 		processing_queue = 1;
8014 		pmbox = lpfc_mbox_get(phba);
8015 		if (!pmbox) {
8016 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8017 			return MBX_SUCCESS;
8018 		}
8019 	}
8020 
8021 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8022 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8023 		if(!pmbox->vport) {
8024 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8025 			lpfc_printf_log(phba, KERN_ERR,
8026 					LOG_MBOX | LOG_VPORT,
8027 					"1806 Mbox x%x failed. No vport\n",
8028 					pmbox->u.mb.mbxCommand);
8029 			dump_stack();
8030 			goto out_not_finished;
8031 		}
8032 	}
8033 
8034 	/* If the PCI channel is in offline state, do not post mbox. */
8035 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8036 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8037 		goto out_not_finished;
8038 	}
8039 
8040 	/* If HBA has a deferred error attention, fail the iocb. */
8041 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8042 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8043 		goto out_not_finished;
8044 	}
8045 
8046 	psli = &phba->sli;
8047 
8048 	mbx = &pmbox->u.mb;
8049 	status = MBX_SUCCESS;
8050 
8051 	if (phba->link_state == LPFC_HBA_ERROR) {
8052 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8053 
8054 		/* Mbox command <mbxCommand> cannot issue */
8055 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8056 				"(%d):0311 Mailbox command x%x cannot "
8057 				"issue Data: x%x x%x\n",
8058 				pmbox->vport ? pmbox->vport->vpi : 0,
8059 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8060 		goto out_not_finished;
8061 	}
8062 
8063 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8064 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8065 			!(hc_copy & HC_MBINT_ENA)) {
8066 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8067 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8068 				"(%d):2528 Mailbox command x%x cannot "
8069 				"issue Data: x%x x%x\n",
8070 				pmbox->vport ? pmbox->vport->vpi : 0,
8071 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8072 			goto out_not_finished;
8073 		}
8074 	}
8075 
8076 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8077 		/* Polling for a mbox command when another one is already active
8078 		 * is not allowed in SLI. Also, the driver must have established
8079 		 * SLI2 mode to queue and process multiple mbox commands.
8080 		 */
8081 
8082 		if (flag & MBX_POLL) {
8083 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8084 
8085 			/* Mbox command <mbxCommand> cannot issue */
8086 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8087 					"(%d):2529 Mailbox command x%x "
8088 					"cannot issue Data: x%x x%x\n",
8089 					pmbox->vport ? pmbox->vport->vpi : 0,
8090 					pmbox->u.mb.mbxCommand,
8091 					psli->sli_flag, flag);
8092 			goto out_not_finished;
8093 		}
8094 
8095 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8096 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8097 			/* Mbox command <mbxCommand> cannot issue */
8098 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8099 					"(%d):2530 Mailbox command x%x "
8100 					"cannot issue Data: x%x x%x\n",
8101 					pmbox->vport ? pmbox->vport->vpi : 0,
8102 					pmbox->u.mb.mbxCommand,
8103 					psli->sli_flag, flag);
8104 			goto out_not_finished;
8105 		}
8106 
8107 		/* Another mailbox command is still being processed, queue this
8108 		 * command to be processed later.
8109 		 */
8110 		lpfc_mbox_put(phba, pmbox);
8111 
8112 		/* Mbox cmd issue - BUSY */
8113 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8114 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8115 				"x%x x%x x%x x%x\n",
8116 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8117 				mbx->mbxCommand,
8118 				phba->pport ? phba->pport->port_state : 0xff,
8119 				psli->sli_flag, flag);
8120 
8121 		psli->slistat.mbox_busy++;
8122 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8123 
8124 		if (pmbox->vport) {
8125 			lpfc_debugfs_disc_trc(pmbox->vport,
8126 				LPFC_DISC_TRC_MBOX_VPORT,
8127 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8128 				(uint32_t)mbx->mbxCommand,
8129 				mbx->un.varWords[0], mbx->un.varWords[1]);
8130 		}
8131 		else {
8132 			lpfc_debugfs_disc_trc(phba->pport,
8133 				LPFC_DISC_TRC_MBOX,
8134 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8135 				(uint32_t)mbx->mbxCommand,
8136 				mbx->un.varWords[0], mbx->un.varWords[1]);
8137 		}
8138 
8139 		return MBX_BUSY;
8140 	}
8141 
8142 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8143 
8144 	/* If we are not polling, we MUST be in SLI2 mode */
8145 	if (flag != MBX_POLL) {
8146 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8147 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8148 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8149 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8150 			/* Mbox command <mbxCommand> cannot issue */
8151 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8152 					"(%d):2531 Mailbox command x%x "
8153 					"cannot issue Data: x%x x%x\n",
8154 					pmbox->vport ? pmbox->vport->vpi : 0,
8155 					pmbox->u.mb.mbxCommand,
8156 					psli->sli_flag, flag);
8157 			goto out_not_finished;
8158 		}
8159 		/* timeout active mbox command */
8160 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8161 					   1000);
8162 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8163 	}
8164 
8165 	/* Mailbox cmd <cmd> issue */
8166 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8167 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8168 			"x%x\n",
8169 			pmbox->vport ? pmbox->vport->vpi : 0,
8170 			mbx->mbxCommand,
8171 			phba->pport ? phba->pport->port_state : 0xff,
8172 			psli->sli_flag, flag);
8173 
8174 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8175 		if (pmbox->vport) {
8176 			lpfc_debugfs_disc_trc(pmbox->vport,
8177 				LPFC_DISC_TRC_MBOX_VPORT,
8178 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8179 				(uint32_t)mbx->mbxCommand,
8180 				mbx->un.varWords[0], mbx->un.varWords[1]);
8181 		}
8182 		else {
8183 			lpfc_debugfs_disc_trc(phba->pport,
8184 				LPFC_DISC_TRC_MBOX,
8185 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8186 				(uint32_t)mbx->mbxCommand,
8187 				mbx->un.varWords[0], mbx->un.varWords[1]);
8188 		}
8189 	}
8190 
8191 	psli->slistat.mbox_cmd++;
8192 	evtctr = psli->slistat.mbox_event;
8193 
8194 	/* next set own bit for the adapter and copy over command word */
8195 	mbx->mbxOwner = OWN_CHIP;
8196 
8197 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8198 		/* Populate mbox extension offset word. */
8199 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8200 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8201 				= (uint8_t *)phba->mbox_ext
8202 				  - (uint8_t *)phba->mbox;
8203 		}
8204 
8205 		/* Copy the mailbox extension data */
8206 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8207 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8208 					      (uint8_t *)phba->mbox_ext,
8209 					      pmbox->in_ext_byte_len);
8210 		}
8211 		/* Copy command data to host SLIM area */
8212 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8213 	} else {
8214 		/* Populate mbox extension offset word. */
8215 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8216 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8217 				= MAILBOX_HBA_EXT_OFFSET;
8218 
8219 		/* Copy the mailbox extension data */
8220 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8221 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8222 				MAILBOX_HBA_EXT_OFFSET,
8223 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8224 
8225 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8226 			/* copy command data into host mbox for cmpl */
8227 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8228 					      MAILBOX_CMD_SIZE);
8229 
8230 		/* First copy mbox command data to HBA SLIM, skip past first
8231 		   word */
8232 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8233 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8234 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8235 
8236 		/* Next copy over first word, with mbxOwner set */
8237 		ldata = *((uint32_t *)mbx);
8238 		to_slim = phba->MBslimaddr;
8239 		writel(ldata, to_slim);
8240 		readl(to_slim); /* flush */
8241 
8242 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8243 			/* switch over to host mailbox */
8244 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8245 	}
8246 
8247 	wmb();
8248 
8249 	switch (flag) {
8250 	case MBX_NOWAIT:
8251 		/* Set up reference to mailbox command */
8252 		psli->mbox_active = pmbox;
8253 		/* Interrupt board to do it */
8254 		writel(CA_MBATT, phba->CAregaddr);
8255 		readl(phba->CAregaddr); /* flush */
8256 		/* Don't wait for it to finish, just return */
8257 		break;
8258 
8259 	case MBX_POLL:
8260 		/* Set up null reference to mailbox command */
8261 		psli->mbox_active = NULL;
8262 		/* Interrupt board to do it */
8263 		writel(CA_MBATT, phba->CAregaddr);
8264 		readl(phba->CAregaddr); /* flush */
8265 
8266 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8267 			/* First read mbox status word */
8268 			word0 = *((uint32_t *)phba->mbox);
8269 			word0 = le32_to_cpu(word0);
8270 		} else {
8271 			/* First read mbox status word */
8272 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8273 				spin_unlock_irqrestore(&phba->hbalock,
8274 						       drvr_flag);
8275 				goto out_not_finished;
8276 			}
8277 		}
8278 
8279 		/* Read the HBA Host Attention Register */
8280 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8281 			spin_unlock_irqrestore(&phba->hbalock,
8282 						       drvr_flag);
8283 			goto out_not_finished;
8284 		}
8285 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8286 							1000) + jiffies;
8287 		i = 0;
8288 		/* Wait for command to complete */
8289 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8290 		       (!(ha_copy & HA_MBATT) &&
8291 			(phba->link_state > LPFC_WARM_START))) {
8292 			if (time_after(jiffies, timeout)) {
8293 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8294 				spin_unlock_irqrestore(&phba->hbalock,
8295 						       drvr_flag);
8296 				goto out_not_finished;
8297 			}
8298 
8299 			/* Check if we took a mbox interrupt while we were
8300 			   polling */
8301 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8302 			    && (evtctr != psli->slistat.mbox_event))
8303 				break;
8304 
8305 			if (i++ > 10) {
8306 				spin_unlock_irqrestore(&phba->hbalock,
8307 						       drvr_flag);
8308 				msleep(1);
8309 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8310 			}
8311 
8312 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8313 				/* First copy command data */
8314 				word0 = *((uint32_t *)phba->mbox);
8315 				word0 = le32_to_cpu(word0);
8316 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8317 					MAILBOX_t *slimmb;
8318 					uint32_t slimword0;
8319 					/* Check real SLIM for any errors */
8320 					slimword0 = readl(phba->MBslimaddr);
8321 					slimmb = (MAILBOX_t *) & slimword0;
8322 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8323 					    && slimmb->mbxStatus) {
8324 						psli->sli_flag &=
8325 						    ~LPFC_SLI_ACTIVE;
8326 						word0 = slimword0;
8327 					}
8328 				}
8329 			} else {
8330 				/* First copy command data */
8331 				word0 = readl(phba->MBslimaddr);
8332 			}
8333 			/* Read the HBA Host Attention Register */
8334 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8335 				spin_unlock_irqrestore(&phba->hbalock,
8336 						       drvr_flag);
8337 				goto out_not_finished;
8338 			}
8339 		}
8340 
8341 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8342 			/* copy results back to user */
8343 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8344 						MAILBOX_CMD_SIZE);
8345 			/* Copy the mailbox extension data */
8346 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8347 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8348 						      pmbox->ctx_buf,
8349 						      pmbox->out_ext_byte_len);
8350 			}
8351 		} else {
8352 			/* First copy command data */
8353 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8354 						MAILBOX_CMD_SIZE);
8355 			/* Copy the mailbox extension data */
8356 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8357 				lpfc_memcpy_from_slim(
8358 					pmbox->ctx_buf,
8359 					phba->MBslimaddr +
8360 					MAILBOX_HBA_EXT_OFFSET,
8361 					pmbox->out_ext_byte_len);
8362 			}
8363 		}
8364 
8365 		writel(HA_MBATT, phba->HAregaddr);
8366 		readl(phba->HAregaddr); /* flush */
8367 
8368 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8369 		status = mbx->mbxStatus;
8370 	}
8371 
8372 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8373 	return status;
8374 
8375 out_not_finished:
8376 	if (processing_queue) {
8377 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8378 		lpfc_mbox_cmpl_put(phba, pmbox);
8379 	}
8380 	return MBX_NOT_FINISHED;
8381 }
8382 
8383 /**
8384  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8385  * @phba: Pointer to HBA context object.
8386  *
8387  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8388  * the driver internal pending mailbox queue. It will then try to wait out the
8389  * possible outstanding mailbox command before return.
8390  *
8391  * Returns:
8392  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8393  * 	the outstanding mailbox command timed out.
8394  **/
8395 static int
8396 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8397 {
8398 	struct lpfc_sli *psli = &phba->sli;
8399 	int rc = 0;
8400 	unsigned long timeout = 0;
8401 
8402 	/* Mark the asynchronous mailbox command posting as blocked */
8403 	spin_lock_irq(&phba->hbalock);
8404 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8405 	/* Determine how long we might wait for the active mailbox
8406 	 * command to be gracefully completed by firmware.
8407 	 */
8408 	if (phba->sli.mbox_active)
8409 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8410 						phba->sli.mbox_active) *
8411 						1000) + jiffies;
8412 	spin_unlock_irq(&phba->hbalock);
8413 
8414 	/* Make sure the mailbox is really active */
8415 	if (timeout)
8416 		lpfc_sli4_process_missed_mbox_completions(phba);
8417 
8418 	/* Wait for the outstnading mailbox command to complete */
8419 	while (phba->sli.mbox_active) {
8420 		/* Check active mailbox complete status every 2ms */
8421 		msleep(2);
8422 		if (time_after(jiffies, timeout)) {
8423 			/* Timeout, marked the outstanding cmd not complete */
8424 			rc = 1;
8425 			break;
8426 		}
8427 	}
8428 
8429 	/* Can not cleanly block async mailbox command, fails it */
8430 	if (rc) {
8431 		spin_lock_irq(&phba->hbalock);
8432 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8433 		spin_unlock_irq(&phba->hbalock);
8434 	}
8435 	return rc;
8436 }
8437 
8438 /**
8439  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8440  * @phba: Pointer to HBA context object.
8441  *
8442  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8443  * commands from the driver internal pending mailbox queue. It makes sure
8444  * that there is no outstanding mailbox command before resuming posting
8445  * asynchronous mailbox commands. If, for any reason, there is outstanding
8446  * mailbox command, it will try to wait it out before resuming asynchronous
8447  * mailbox command posting.
8448  **/
8449 static void
8450 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8451 {
8452 	struct lpfc_sli *psli = &phba->sli;
8453 
8454 	spin_lock_irq(&phba->hbalock);
8455 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8456 		/* Asynchronous mailbox posting is not blocked, do nothing */
8457 		spin_unlock_irq(&phba->hbalock);
8458 		return;
8459 	}
8460 
8461 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8462 	 * successful or timeout, after timing-out the outstanding mailbox
8463 	 * command shall always be removed, so just unblock posting async
8464 	 * mailbox command and resume
8465 	 */
8466 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8467 	spin_unlock_irq(&phba->hbalock);
8468 
8469 	/* wake up worker thread to post asynchronlous mailbox command */
8470 	lpfc_worker_wake_up(phba);
8471 }
8472 
8473 /**
8474  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8475  * @phba: Pointer to HBA context object.
8476  * @mboxq: Pointer to mailbox object.
8477  *
8478  * The function waits for the bootstrap mailbox register ready bit from
8479  * port for twice the regular mailbox command timeout value.
8480  *
8481  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8482  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8483  **/
8484 static int
8485 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8486 {
8487 	uint32_t db_ready;
8488 	unsigned long timeout;
8489 	struct lpfc_register bmbx_reg;
8490 
8491 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8492 				   * 1000) + jiffies;
8493 
8494 	do {
8495 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8496 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8497 		if (!db_ready)
8498 			msleep(2);
8499 
8500 		if (time_after(jiffies, timeout))
8501 			return MBXERR_ERROR;
8502 	} while (!db_ready);
8503 
8504 	return 0;
8505 }
8506 
8507 /**
8508  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8509  * @phba: Pointer to HBA context object.
8510  * @mboxq: Pointer to mailbox object.
8511  *
8512  * The function posts a mailbox to the port.  The mailbox is expected
8513  * to be comletely filled in and ready for the port to operate on it.
8514  * This routine executes a synchronous completion operation on the
8515  * mailbox by polling for its completion.
8516  *
8517  * The caller must not be holding any locks when calling this routine.
8518  *
8519  * Returns:
8520  *	MBX_SUCCESS - mailbox posted successfully
8521  *	Any of the MBX error values.
8522  **/
8523 static int
8524 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8525 {
8526 	int rc = MBX_SUCCESS;
8527 	unsigned long iflag;
8528 	uint32_t mcqe_status;
8529 	uint32_t mbx_cmnd;
8530 	struct lpfc_sli *psli = &phba->sli;
8531 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8532 	struct lpfc_bmbx_create *mbox_rgn;
8533 	struct dma_address *dma_address;
8534 
8535 	/*
8536 	 * Only one mailbox can be active to the bootstrap mailbox region
8537 	 * at a time and there is no queueing provided.
8538 	 */
8539 	spin_lock_irqsave(&phba->hbalock, iflag);
8540 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8541 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8542 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8543 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8544 				"cannot issue Data: x%x x%x\n",
8545 				mboxq->vport ? mboxq->vport->vpi : 0,
8546 				mboxq->u.mb.mbxCommand,
8547 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8548 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8549 				psli->sli_flag, MBX_POLL);
8550 		return MBXERR_ERROR;
8551 	}
8552 	/* The server grabs the token and owns it until release */
8553 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8554 	phba->sli.mbox_active = mboxq;
8555 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8556 
8557 	/* wait for bootstrap mbox register for readyness */
8558 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8559 	if (rc)
8560 		goto exit;
8561 
8562 	/*
8563 	 * Initialize the bootstrap memory region to avoid stale data areas
8564 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8565 	 * the bmbx mailbox region.
8566 	 */
8567 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8568 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8569 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8570 			       sizeof(struct lpfc_mqe));
8571 
8572 	/* Post the high mailbox dma address to the port and wait for ready. */
8573 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8574 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8575 
8576 	/* wait for bootstrap mbox register for hi-address write done */
8577 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8578 	if (rc)
8579 		goto exit;
8580 
8581 	/* Post the low mailbox dma address to the port. */
8582 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8583 
8584 	/* wait for bootstrap mbox register for low address write done */
8585 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8586 	if (rc)
8587 		goto exit;
8588 
8589 	/*
8590 	 * Read the CQ to ensure the mailbox has completed.
8591 	 * If so, update the mailbox status so that the upper layers
8592 	 * can complete the request normally.
8593 	 */
8594 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8595 			       sizeof(struct lpfc_mqe));
8596 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8597 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8598 			       sizeof(struct lpfc_mcqe));
8599 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8600 	/*
8601 	 * When the CQE status indicates a failure and the mailbox status
8602 	 * indicates success then copy the CQE status into the mailbox status
8603 	 * (and prefix it with x4000).
8604 	 */
8605 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8606 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8607 			bf_set(lpfc_mqe_status, mb,
8608 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8609 		rc = MBXERR_ERROR;
8610 	} else
8611 		lpfc_sli4_swap_str(phba, mboxq);
8612 
8613 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8614 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8615 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8616 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8617 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8618 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8619 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8620 			bf_get(lpfc_mqe_status, mb),
8621 			mb->un.mb_words[0], mb->un.mb_words[1],
8622 			mb->un.mb_words[2], mb->un.mb_words[3],
8623 			mb->un.mb_words[4], mb->un.mb_words[5],
8624 			mb->un.mb_words[6], mb->un.mb_words[7],
8625 			mb->un.mb_words[8], mb->un.mb_words[9],
8626 			mb->un.mb_words[10], mb->un.mb_words[11],
8627 			mb->un.mb_words[12], mboxq->mcqe.word0,
8628 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8629 			mboxq->mcqe.trailer);
8630 exit:
8631 	/* We are holding the token, no needed for lock when release */
8632 	spin_lock_irqsave(&phba->hbalock, iflag);
8633 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8634 	phba->sli.mbox_active = NULL;
8635 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8636 	return rc;
8637 }
8638 
8639 /**
8640  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8641  * @phba: Pointer to HBA context object.
8642  * @pmbox: Pointer to mailbox object.
8643  * @flag: Flag indicating how the mailbox need to be processed.
8644  *
8645  * This function is called by discovery code and HBA management code to submit
8646  * a mailbox command to firmware with SLI-4 interface spec.
8647  *
8648  * Return codes the caller owns the mailbox command after the return of the
8649  * function.
8650  **/
8651 static int
8652 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8653 		       uint32_t flag)
8654 {
8655 	struct lpfc_sli *psli = &phba->sli;
8656 	unsigned long iflags;
8657 	int rc;
8658 
8659 	/* dump from issue mailbox command if setup */
8660 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8661 
8662 	rc = lpfc_mbox_dev_check(phba);
8663 	if (unlikely(rc)) {
8664 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8665 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8666 				"cannot issue Data: x%x x%x\n",
8667 				mboxq->vport ? mboxq->vport->vpi : 0,
8668 				mboxq->u.mb.mbxCommand,
8669 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8670 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8671 				psli->sli_flag, flag);
8672 		goto out_not_finished;
8673 	}
8674 
8675 	/* Detect polling mode and jump to a handler */
8676 	if (!phba->sli4_hba.intr_enable) {
8677 		if (flag == MBX_POLL)
8678 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8679 		else
8680 			rc = -EIO;
8681 		if (rc != MBX_SUCCESS)
8682 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8683 					"(%d):2541 Mailbox command x%x "
8684 					"(x%x/x%x) failure: "
8685 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8686 					"Data: x%x x%x\n,",
8687 					mboxq->vport ? mboxq->vport->vpi : 0,
8688 					mboxq->u.mb.mbxCommand,
8689 					lpfc_sli_config_mbox_subsys_get(phba,
8690 									mboxq),
8691 					lpfc_sli_config_mbox_opcode_get(phba,
8692 									mboxq),
8693 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8694 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8695 					bf_get(lpfc_mcqe_ext_status,
8696 					       &mboxq->mcqe),
8697 					psli->sli_flag, flag);
8698 		return rc;
8699 	} else if (flag == MBX_POLL) {
8700 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8701 				"(%d):2542 Try to issue mailbox command "
8702 				"x%x (x%x/x%x) synchronously ahead of async "
8703 				"mailbox command queue: x%x x%x\n",
8704 				mboxq->vport ? mboxq->vport->vpi : 0,
8705 				mboxq->u.mb.mbxCommand,
8706 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8707 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8708 				psli->sli_flag, flag);
8709 		/* Try to block the asynchronous mailbox posting */
8710 		rc = lpfc_sli4_async_mbox_block(phba);
8711 		if (!rc) {
8712 			/* Successfully blocked, now issue sync mbox cmd */
8713 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8714 			if (rc != MBX_SUCCESS)
8715 				lpfc_printf_log(phba, KERN_WARNING,
8716 					LOG_MBOX | LOG_SLI,
8717 					"(%d):2597 Sync Mailbox command "
8718 					"x%x (x%x/x%x) failure: "
8719 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8720 					"Data: x%x x%x\n,",
8721 					mboxq->vport ? mboxq->vport->vpi : 0,
8722 					mboxq->u.mb.mbxCommand,
8723 					lpfc_sli_config_mbox_subsys_get(phba,
8724 									mboxq),
8725 					lpfc_sli_config_mbox_opcode_get(phba,
8726 									mboxq),
8727 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8728 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8729 					bf_get(lpfc_mcqe_ext_status,
8730 					       &mboxq->mcqe),
8731 					psli->sli_flag, flag);
8732 			/* Unblock the async mailbox posting afterward */
8733 			lpfc_sli4_async_mbox_unblock(phba);
8734 		}
8735 		return rc;
8736 	}
8737 
8738 	/* Now, interrupt mode asynchrous mailbox command */
8739 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8740 	if (rc) {
8741 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8742 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8743 				"cannot issue Data: x%x x%x\n",
8744 				mboxq->vport ? mboxq->vport->vpi : 0,
8745 				mboxq->u.mb.mbxCommand,
8746 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8747 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8748 				psli->sli_flag, flag);
8749 		goto out_not_finished;
8750 	}
8751 
8752 	/* Put the mailbox command to the driver internal FIFO */
8753 	psli->slistat.mbox_busy++;
8754 	spin_lock_irqsave(&phba->hbalock, iflags);
8755 	lpfc_mbox_put(phba, mboxq);
8756 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8757 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8758 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8759 			"x%x (x%x/x%x) x%x x%x x%x\n",
8760 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8761 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8762 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8763 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8764 			phba->pport->port_state,
8765 			psli->sli_flag, MBX_NOWAIT);
8766 	/* Wake up worker thread to transport mailbox command from head */
8767 	lpfc_worker_wake_up(phba);
8768 
8769 	return MBX_BUSY;
8770 
8771 out_not_finished:
8772 	return MBX_NOT_FINISHED;
8773 }
8774 
8775 /**
8776  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8777  * @phba: Pointer to HBA context object.
8778  *
8779  * This function is called by worker thread to send a mailbox command to
8780  * SLI4 HBA firmware.
8781  *
8782  **/
8783 int
8784 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8785 {
8786 	struct lpfc_sli *psli = &phba->sli;
8787 	LPFC_MBOXQ_t *mboxq;
8788 	int rc = MBX_SUCCESS;
8789 	unsigned long iflags;
8790 	struct lpfc_mqe *mqe;
8791 	uint32_t mbx_cmnd;
8792 
8793 	/* Check interrupt mode before post async mailbox command */
8794 	if (unlikely(!phba->sli4_hba.intr_enable))
8795 		return MBX_NOT_FINISHED;
8796 
8797 	/* Check for mailbox command service token */
8798 	spin_lock_irqsave(&phba->hbalock, iflags);
8799 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8800 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8801 		return MBX_NOT_FINISHED;
8802 	}
8803 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8804 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8805 		return MBX_NOT_FINISHED;
8806 	}
8807 	if (unlikely(phba->sli.mbox_active)) {
8808 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8809 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8810 				"0384 There is pending active mailbox cmd\n");
8811 		return MBX_NOT_FINISHED;
8812 	}
8813 	/* Take the mailbox command service token */
8814 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8815 
8816 	/* Get the next mailbox command from head of queue */
8817 	mboxq = lpfc_mbox_get(phba);
8818 
8819 	/* If no more mailbox command waiting for post, we're done */
8820 	if (!mboxq) {
8821 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8822 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8823 		return MBX_SUCCESS;
8824 	}
8825 	phba->sli.mbox_active = mboxq;
8826 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8827 
8828 	/* Check device readiness for posting mailbox command */
8829 	rc = lpfc_mbox_dev_check(phba);
8830 	if (unlikely(rc))
8831 		/* Driver clean routine will clean up pending mailbox */
8832 		goto out_not_finished;
8833 
8834 	/* Prepare the mbox command to be posted */
8835 	mqe = &mboxq->u.mqe;
8836 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8837 
8838 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8839 	mod_timer(&psli->mbox_tmo, (jiffies +
8840 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8841 
8842 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8843 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8844 			"x%x x%x\n",
8845 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8846 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8847 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8848 			phba->pport->port_state, psli->sli_flag);
8849 
8850 	if (mbx_cmnd != MBX_HEARTBEAT) {
8851 		if (mboxq->vport) {
8852 			lpfc_debugfs_disc_trc(mboxq->vport,
8853 				LPFC_DISC_TRC_MBOX_VPORT,
8854 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8855 				mbx_cmnd, mqe->un.mb_words[0],
8856 				mqe->un.mb_words[1]);
8857 		} else {
8858 			lpfc_debugfs_disc_trc(phba->pport,
8859 				LPFC_DISC_TRC_MBOX,
8860 				"MBOX Send: cmd:x%x mb:x%x x%x",
8861 				mbx_cmnd, mqe->un.mb_words[0],
8862 				mqe->un.mb_words[1]);
8863 		}
8864 	}
8865 	psli->slistat.mbox_cmd++;
8866 
8867 	/* Post the mailbox command to the port */
8868 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8869 	if (rc != MBX_SUCCESS) {
8870 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8871 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8872 				"cannot issue Data: x%x x%x\n",
8873 				mboxq->vport ? mboxq->vport->vpi : 0,
8874 				mboxq->u.mb.mbxCommand,
8875 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8876 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8877 				psli->sli_flag, MBX_NOWAIT);
8878 		goto out_not_finished;
8879 	}
8880 
8881 	return rc;
8882 
8883 out_not_finished:
8884 	spin_lock_irqsave(&phba->hbalock, iflags);
8885 	if (phba->sli.mbox_active) {
8886 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8887 		__lpfc_mbox_cmpl_put(phba, mboxq);
8888 		/* Release the token */
8889 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8890 		phba->sli.mbox_active = NULL;
8891 	}
8892 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8893 
8894 	return MBX_NOT_FINISHED;
8895 }
8896 
8897 /**
8898  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8899  * @phba: Pointer to HBA context object.
8900  * @pmbox: Pointer to mailbox object.
8901  * @flag: Flag indicating how the mailbox need to be processed.
8902  *
8903  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8904  * the API jump table function pointer from the lpfc_hba struct.
8905  *
8906  * Return codes the caller owns the mailbox command after the return of the
8907  * function.
8908  **/
8909 int
8910 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8911 {
8912 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8913 }
8914 
8915 /**
8916  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8917  * @phba: The hba struct for which this call is being executed.
8918  * @dev_grp: The HBA PCI-Device group number.
8919  *
8920  * This routine sets up the mbox interface API function jump table in @phba
8921  * struct.
8922  * Returns: 0 - success, -ENODEV - failure.
8923  **/
8924 int
8925 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8926 {
8927 
8928 	switch (dev_grp) {
8929 	case LPFC_PCI_DEV_LP:
8930 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8931 		phba->lpfc_sli_handle_slow_ring_event =
8932 				lpfc_sli_handle_slow_ring_event_s3;
8933 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8934 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8935 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8936 		break;
8937 	case LPFC_PCI_DEV_OC:
8938 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8939 		phba->lpfc_sli_handle_slow_ring_event =
8940 				lpfc_sli_handle_slow_ring_event_s4;
8941 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8942 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8943 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8944 		break;
8945 	default:
8946 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8947 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8948 				dev_grp);
8949 		return -ENODEV;
8950 		break;
8951 	}
8952 	return 0;
8953 }
8954 
8955 /**
8956  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8957  * @phba: Pointer to HBA context object.
8958  * @pring: Pointer to driver SLI ring object.
8959  * @piocb: Pointer to address of newly added command iocb.
8960  *
8961  * This function is called with hbalock held to add a command
8962  * iocb to the txq when SLI layer cannot submit the command iocb
8963  * to the ring.
8964  **/
8965 void
8966 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8967 		    struct lpfc_iocbq *piocb)
8968 {
8969 	lockdep_assert_held(&phba->hbalock);
8970 	/* Insert the caller's iocb in the txq tail for later processing. */
8971 	list_add_tail(&piocb->list, &pring->txq);
8972 }
8973 
8974 /**
8975  * lpfc_sli_next_iocb - Get the next iocb in the txq
8976  * @phba: Pointer to HBA context object.
8977  * @pring: Pointer to driver SLI ring object.
8978  * @piocb: Pointer to address of newly added command iocb.
8979  *
8980  * This function is called with hbalock held before a new
8981  * iocb is submitted to the firmware. This function checks
8982  * txq to flush the iocbs in txq to Firmware before
8983  * submitting new iocbs to the Firmware.
8984  * If there are iocbs in the txq which need to be submitted
8985  * to firmware, lpfc_sli_next_iocb returns the first element
8986  * of the txq after dequeuing it from txq.
8987  * If there is no iocb in the txq then the function will return
8988  * *piocb and *piocb is set to NULL. Caller needs to check
8989  * *piocb to find if there are more commands in the txq.
8990  **/
8991 static struct lpfc_iocbq *
8992 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8993 		   struct lpfc_iocbq **piocb)
8994 {
8995 	struct lpfc_iocbq * nextiocb;
8996 
8997 	lockdep_assert_held(&phba->hbalock);
8998 
8999 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9000 	if (!nextiocb) {
9001 		nextiocb = *piocb;
9002 		*piocb = NULL;
9003 	}
9004 
9005 	return nextiocb;
9006 }
9007 
9008 /**
9009  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9010  * @phba: Pointer to HBA context object.
9011  * @ring_number: SLI ring number to issue iocb on.
9012  * @piocb: Pointer to command iocb.
9013  * @flag: Flag indicating if this command can be put into txq.
9014  *
9015  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9016  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9017  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9018  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9019  * this function allows only iocbs for posting buffers. This function finds
9020  * next available slot in the command ring and posts the command to the
9021  * available slot and writes the port attention register to request HBA start
9022  * processing new iocb. If there is no slot available in the ring and
9023  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9024  * the function returns IOCB_BUSY.
9025  *
9026  * This function is called with hbalock held. The function will return success
9027  * after it successfully submit the iocb to firmware or after adding to the
9028  * txq.
9029  **/
9030 static int
9031 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9032 		    struct lpfc_iocbq *piocb, uint32_t flag)
9033 {
9034 	struct lpfc_iocbq *nextiocb;
9035 	IOCB_t *iocb;
9036 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9037 
9038 	lockdep_assert_held(&phba->hbalock);
9039 
9040 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9041 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9042 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9043 		lpfc_printf_log(phba, KERN_ERR,
9044 				LOG_SLI | LOG_VPORT,
9045 				"1807 IOCB x%x failed. No vport\n",
9046 				piocb->iocb.ulpCommand);
9047 		dump_stack();
9048 		return IOCB_ERROR;
9049 	}
9050 
9051 
9052 	/* If the PCI channel is in offline state, do not post iocbs. */
9053 	if (unlikely(pci_channel_offline(phba->pcidev)))
9054 		return IOCB_ERROR;
9055 
9056 	/* If HBA has a deferred error attention, fail the iocb. */
9057 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9058 		return IOCB_ERROR;
9059 
9060 	/*
9061 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9062 	 */
9063 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9064 		return IOCB_ERROR;
9065 
9066 	/*
9067 	 * Check to see if we are blocking IOCB processing because of a
9068 	 * outstanding event.
9069 	 */
9070 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9071 		goto iocb_busy;
9072 
9073 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9074 		/*
9075 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9076 		 * can be issued if the link is not up.
9077 		 */
9078 		switch (piocb->iocb.ulpCommand) {
9079 		case CMD_GEN_REQUEST64_CR:
9080 		case CMD_GEN_REQUEST64_CX:
9081 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9082 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9083 					FC_RCTL_DD_UNSOL_CMD) ||
9084 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9085 					MENLO_TRANSPORT_TYPE))
9086 
9087 				goto iocb_busy;
9088 			break;
9089 		case CMD_QUE_RING_BUF_CN:
9090 		case CMD_QUE_RING_BUF64_CN:
9091 			/*
9092 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9093 			 * completion, iocb_cmpl MUST be 0.
9094 			 */
9095 			if (piocb->iocb_cmpl)
9096 				piocb->iocb_cmpl = NULL;
9097 			/*FALLTHROUGH*/
9098 		case CMD_CREATE_XRI_CR:
9099 		case CMD_CLOSE_XRI_CN:
9100 		case CMD_CLOSE_XRI_CX:
9101 			break;
9102 		default:
9103 			goto iocb_busy;
9104 		}
9105 
9106 	/*
9107 	 * For FCP commands, we must be in a state where we can process link
9108 	 * attention events.
9109 	 */
9110 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9111 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9112 		goto iocb_busy;
9113 	}
9114 
9115 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9116 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9117 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9118 
9119 	if (iocb)
9120 		lpfc_sli_update_ring(phba, pring);
9121 	else
9122 		lpfc_sli_update_full_ring(phba, pring);
9123 
9124 	if (!piocb)
9125 		return IOCB_SUCCESS;
9126 
9127 	goto out_busy;
9128 
9129  iocb_busy:
9130 	pring->stats.iocb_cmd_delay++;
9131 
9132  out_busy:
9133 
9134 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9135 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9136 		return IOCB_SUCCESS;
9137 	}
9138 
9139 	return IOCB_BUSY;
9140 }
9141 
9142 /**
9143  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9144  * @phba: Pointer to HBA context object.
9145  * @piocb: Pointer to command iocb.
9146  * @sglq: Pointer to the scatter gather queue object.
9147  *
9148  * This routine converts the bpl or bde that is in the IOCB
9149  * to a sgl list for the sli4 hardware. The physical address
9150  * of the bpl/bde is converted back to a virtual address.
9151  * If the IOCB contains a BPL then the list of BDE's is
9152  * converted to sli4_sge's. If the IOCB contains a single
9153  * BDE then it is converted to a single sli_sge.
9154  * The IOCB is still in cpu endianess so the contents of
9155  * the bpl can be used without byte swapping.
9156  *
9157  * Returns valid XRI = Success, NO_XRI = Failure.
9158 **/
9159 static uint16_t
9160 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9161 		struct lpfc_sglq *sglq)
9162 {
9163 	uint16_t xritag = NO_XRI;
9164 	struct ulp_bde64 *bpl = NULL;
9165 	struct ulp_bde64 bde;
9166 	struct sli4_sge *sgl  = NULL;
9167 	struct lpfc_dmabuf *dmabuf;
9168 	IOCB_t *icmd;
9169 	int numBdes = 0;
9170 	int i = 0;
9171 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9172 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9173 
9174 	if (!piocbq || !sglq)
9175 		return xritag;
9176 
9177 	sgl  = (struct sli4_sge *)sglq->sgl;
9178 	icmd = &piocbq->iocb;
9179 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9180 		return sglq->sli4_xritag;
9181 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9182 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9183 				sizeof(struct ulp_bde64);
9184 		/* The addrHigh and addrLow fields within the IOCB
9185 		 * have not been byteswapped yet so there is no
9186 		 * need to swap them back.
9187 		 */
9188 		if (piocbq->context3)
9189 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9190 		else
9191 			return xritag;
9192 
9193 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9194 		if (!bpl)
9195 			return xritag;
9196 
9197 		for (i = 0; i < numBdes; i++) {
9198 			/* Should already be byte swapped. */
9199 			sgl->addr_hi = bpl->addrHigh;
9200 			sgl->addr_lo = bpl->addrLow;
9201 
9202 			sgl->word2 = le32_to_cpu(sgl->word2);
9203 			if ((i+1) == numBdes)
9204 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9205 			else
9206 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9207 			/* swap the size field back to the cpu so we
9208 			 * can assign it to the sgl.
9209 			 */
9210 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9211 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9212 			/* The offsets in the sgl need to be accumulated
9213 			 * separately for the request and reply lists.
9214 			 * The request is always first, the reply follows.
9215 			 */
9216 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9217 				/* add up the reply sg entries */
9218 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9219 					inbound++;
9220 				/* first inbound? reset the offset */
9221 				if (inbound == 1)
9222 					offset = 0;
9223 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9224 				bf_set(lpfc_sli4_sge_type, sgl,
9225 					LPFC_SGE_TYPE_DATA);
9226 				offset += bde.tus.f.bdeSize;
9227 			}
9228 			sgl->word2 = cpu_to_le32(sgl->word2);
9229 			bpl++;
9230 			sgl++;
9231 		}
9232 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9233 			/* The addrHigh and addrLow fields of the BDE have not
9234 			 * been byteswapped yet so they need to be swapped
9235 			 * before putting them in the sgl.
9236 			 */
9237 			sgl->addr_hi =
9238 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9239 			sgl->addr_lo =
9240 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9241 			sgl->word2 = le32_to_cpu(sgl->word2);
9242 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9243 			sgl->word2 = cpu_to_le32(sgl->word2);
9244 			sgl->sge_len =
9245 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9246 	}
9247 	return sglq->sli4_xritag;
9248 }
9249 
9250 /**
9251  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9252  * @phba: Pointer to HBA context object.
9253  * @piocb: Pointer to command iocb.
9254  * @wqe: Pointer to the work queue entry.
9255  *
9256  * This routine converts the iocb command to its Work Queue Entry
9257  * equivalent. The wqe pointer should not have any fields set when
9258  * this routine is called because it will memcpy over them.
9259  * This routine does not set the CQ_ID or the WQEC bits in the
9260  * wqe.
9261  *
9262  * Returns: 0 = Success, IOCB_ERROR = Failure.
9263  **/
9264 static int
9265 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9266 		union lpfc_wqe128 *wqe)
9267 {
9268 	uint32_t xmit_len = 0, total_len = 0;
9269 	uint8_t ct = 0;
9270 	uint32_t fip;
9271 	uint32_t abort_tag;
9272 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9273 	uint8_t cmnd;
9274 	uint16_t xritag;
9275 	uint16_t abrt_iotag;
9276 	struct lpfc_iocbq *abrtiocbq;
9277 	struct ulp_bde64 *bpl = NULL;
9278 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9279 	int numBdes, i;
9280 	struct ulp_bde64 bde;
9281 	struct lpfc_nodelist *ndlp;
9282 	uint32_t *pcmd;
9283 	uint32_t if_type;
9284 
9285 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9286 	/* The fcp commands will set command type */
9287 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9288 		command_type = FCP_COMMAND;
9289 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9290 		command_type = ELS_COMMAND_FIP;
9291 	else
9292 		command_type = ELS_COMMAND_NON_FIP;
9293 
9294 	if (phba->fcp_embed_io)
9295 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9296 	/* Some of the fields are in the right position already */
9297 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9298 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9299 		/* The ct field has moved so reset */
9300 		wqe->generic.wqe_com.word7 = 0;
9301 		wqe->generic.wqe_com.word10 = 0;
9302 	}
9303 
9304 	abort_tag = (uint32_t) iocbq->iotag;
9305 	xritag = iocbq->sli4_xritag;
9306 	/* words0-2 bpl convert bde */
9307 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9308 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9309 				sizeof(struct ulp_bde64);
9310 		bpl  = (struct ulp_bde64 *)
9311 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9312 		if (!bpl)
9313 			return IOCB_ERROR;
9314 
9315 		/* Should already be byte swapped. */
9316 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9317 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9318 		/* swap the size field back to the cpu so we
9319 		 * can assign it to the sgl.
9320 		 */
9321 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9322 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9323 		total_len = 0;
9324 		for (i = 0; i < numBdes; i++) {
9325 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9326 			total_len += bde.tus.f.bdeSize;
9327 		}
9328 	} else
9329 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9330 
9331 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9332 	cmnd = iocbq->iocb.ulpCommand;
9333 
9334 	switch (iocbq->iocb.ulpCommand) {
9335 	case CMD_ELS_REQUEST64_CR:
9336 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9337 			ndlp = iocbq->context_un.ndlp;
9338 		else
9339 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9340 		if (!iocbq->iocb.ulpLe) {
9341 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9342 				"2007 Only Limited Edition cmd Format"
9343 				" supported 0x%x\n",
9344 				iocbq->iocb.ulpCommand);
9345 			return IOCB_ERROR;
9346 		}
9347 
9348 		wqe->els_req.payload_len = xmit_len;
9349 		/* Els_reguest64 has a TMO */
9350 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9351 			iocbq->iocb.ulpTimeout);
9352 		/* Need a VF for word 4 set the vf bit*/
9353 		bf_set(els_req64_vf, &wqe->els_req, 0);
9354 		/* And a VFID for word 12 */
9355 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9356 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9357 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9358 		       iocbq->iocb.ulpContext);
9359 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9360 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9361 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9362 		if (command_type == ELS_COMMAND_FIP)
9363 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9364 					>> LPFC_FIP_ELS_ID_SHIFT);
9365 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9366 					iocbq->context2)->virt);
9367 		if_type = bf_get(lpfc_sli_intf_if_type,
9368 					&phba->sli4_hba.sli_intf);
9369 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9370 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9371 				*pcmd == ELS_CMD_SCR ||
9372 				*pcmd == ELS_CMD_FDISC ||
9373 				*pcmd == ELS_CMD_LOGO ||
9374 				*pcmd == ELS_CMD_PLOGI)) {
9375 				bf_set(els_req64_sp, &wqe->els_req, 1);
9376 				bf_set(els_req64_sid, &wqe->els_req,
9377 					iocbq->vport->fc_myDID);
9378 				if ((*pcmd == ELS_CMD_FLOGI) &&
9379 					!(phba->fc_topology ==
9380 						LPFC_TOPOLOGY_LOOP))
9381 					bf_set(els_req64_sid, &wqe->els_req, 0);
9382 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9383 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9384 					phba->vpi_ids[iocbq->vport->vpi]);
9385 			} else if (pcmd && iocbq->context1) {
9386 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9387 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9388 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9389 			}
9390 		}
9391 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9392 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9393 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9394 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9395 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9396 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9397 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9398 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9399 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9400 		break;
9401 	case CMD_XMIT_SEQUENCE64_CX:
9402 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9403 		       iocbq->iocb.un.ulpWord[3]);
9404 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9405 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9406 		/* The entire sequence is transmitted for this IOCB */
9407 		xmit_len = total_len;
9408 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9409 		if (phba->link_flag & LS_LOOPBACK_MODE)
9410 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9411 	case CMD_XMIT_SEQUENCE64_CR:
9412 		/* word3 iocb=io_tag32 wqe=reserved */
9413 		wqe->xmit_sequence.rsvd3 = 0;
9414 		/* word4 relative_offset memcpy */
9415 		/* word5 r_ctl/df_ctl memcpy */
9416 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9417 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9418 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9419 		       LPFC_WQE_IOD_WRITE);
9420 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9421 		       LPFC_WQE_LENLOC_WORD12);
9422 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9423 		wqe->xmit_sequence.xmit_len = xmit_len;
9424 		command_type = OTHER_COMMAND;
9425 		break;
9426 	case CMD_XMIT_BCAST64_CN:
9427 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9428 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9429 		/* word4 iocb=rsvd wqe=rsvd */
9430 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9431 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9432 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9433 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9434 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9435 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9436 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9437 		       LPFC_WQE_LENLOC_WORD3);
9438 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9439 		break;
9440 	case CMD_FCP_IWRITE64_CR:
9441 		command_type = FCP_COMMAND_DATA_OUT;
9442 		/* word3 iocb=iotag wqe=payload_offset_len */
9443 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9444 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9445 		       xmit_len + sizeof(struct fcp_rsp));
9446 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9447 		       0);
9448 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9449 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9450 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9451 		       iocbq->iocb.ulpFCP2Rcvy);
9452 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9453 		/* Always open the exchange */
9454 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9455 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9456 		       LPFC_WQE_LENLOC_WORD4);
9457 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9458 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9459 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9460 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9461 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9462 			if (iocbq->priority) {
9463 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9464 				       (iocbq->priority << 1));
9465 			} else {
9466 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9467 				       (phba->cfg_XLanePriority << 1));
9468 			}
9469 		}
9470 		/* Note, word 10 is already initialized to 0 */
9471 
9472 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9473 		if (phba->cfg_enable_pbde)
9474 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9475 		else
9476 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9477 
9478 		if (phba->fcp_embed_io) {
9479 			struct lpfc_scsi_buf *lpfc_cmd;
9480 			struct sli4_sge *sgl;
9481 			struct fcp_cmnd *fcp_cmnd;
9482 			uint32_t *ptr;
9483 
9484 			/* 128 byte wqe support here */
9485 
9486 			lpfc_cmd = iocbq->context1;
9487 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9488 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9489 
9490 			/* Word 0-2 - FCP_CMND */
9491 			wqe->generic.bde.tus.f.bdeFlags =
9492 				BUFF_TYPE_BDE_IMMED;
9493 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9494 			wqe->generic.bde.addrHigh = 0;
9495 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9496 
9497 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9498 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9499 
9500 			/* Word 22-29  FCP CMND Payload */
9501 			ptr = &wqe->words[22];
9502 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9503 		}
9504 		break;
9505 	case CMD_FCP_IREAD64_CR:
9506 		/* word3 iocb=iotag wqe=payload_offset_len */
9507 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9508 		bf_set(payload_offset_len, &wqe->fcp_iread,
9509 		       xmit_len + sizeof(struct fcp_rsp));
9510 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9511 		       0);
9512 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9513 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9514 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9515 		       iocbq->iocb.ulpFCP2Rcvy);
9516 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9517 		/* Always open the exchange */
9518 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9519 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9520 		       LPFC_WQE_LENLOC_WORD4);
9521 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9522 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9523 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9524 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9525 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9526 			if (iocbq->priority) {
9527 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9528 				       (iocbq->priority << 1));
9529 			} else {
9530 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9531 				       (phba->cfg_XLanePriority << 1));
9532 			}
9533 		}
9534 		/* Note, word 10 is already initialized to 0 */
9535 
9536 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9537 		if (phba->cfg_enable_pbde)
9538 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9539 		else
9540 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9541 
9542 		if (phba->fcp_embed_io) {
9543 			struct lpfc_scsi_buf *lpfc_cmd;
9544 			struct sli4_sge *sgl;
9545 			struct fcp_cmnd *fcp_cmnd;
9546 			uint32_t *ptr;
9547 
9548 			/* 128 byte wqe support here */
9549 
9550 			lpfc_cmd = iocbq->context1;
9551 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9552 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9553 
9554 			/* Word 0-2 - FCP_CMND */
9555 			wqe->generic.bde.tus.f.bdeFlags =
9556 				BUFF_TYPE_BDE_IMMED;
9557 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9558 			wqe->generic.bde.addrHigh = 0;
9559 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9560 
9561 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9562 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9563 
9564 			/* Word 22-29  FCP CMND Payload */
9565 			ptr = &wqe->words[22];
9566 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9567 		}
9568 		break;
9569 	case CMD_FCP_ICMND64_CR:
9570 		/* word3 iocb=iotag wqe=payload_offset_len */
9571 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9572 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9573 		       xmit_len + sizeof(struct fcp_rsp));
9574 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9575 		       0);
9576 		/* word3 iocb=IO_TAG wqe=reserved */
9577 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9578 		/* Always open the exchange */
9579 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9580 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9581 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9582 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9583 		       LPFC_WQE_LENLOC_NONE);
9584 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9585 		       iocbq->iocb.ulpFCP2Rcvy);
9586 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9587 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9588 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9589 			if (iocbq->priority) {
9590 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9591 				       (iocbq->priority << 1));
9592 			} else {
9593 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9594 				       (phba->cfg_XLanePriority << 1));
9595 			}
9596 		}
9597 		/* Note, word 10 is already initialized to 0 */
9598 
9599 		if (phba->fcp_embed_io) {
9600 			struct lpfc_scsi_buf *lpfc_cmd;
9601 			struct sli4_sge *sgl;
9602 			struct fcp_cmnd *fcp_cmnd;
9603 			uint32_t *ptr;
9604 
9605 			/* 128 byte wqe support here */
9606 
9607 			lpfc_cmd = iocbq->context1;
9608 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9609 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9610 
9611 			/* Word 0-2 - FCP_CMND */
9612 			wqe->generic.bde.tus.f.bdeFlags =
9613 				BUFF_TYPE_BDE_IMMED;
9614 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9615 			wqe->generic.bde.addrHigh = 0;
9616 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9617 
9618 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9619 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9620 
9621 			/* Word 22-29  FCP CMND Payload */
9622 			ptr = &wqe->words[22];
9623 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9624 		}
9625 		break;
9626 	case CMD_GEN_REQUEST64_CR:
9627 		/* For this command calculate the xmit length of the
9628 		 * request bde.
9629 		 */
9630 		xmit_len = 0;
9631 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9632 			sizeof(struct ulp_bde64);
9633 		for (i = 0; i < numBdes; i++) {
9634 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9635 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9636 				break;
9637 			xmit_len += bde.tus.f.bdeSize;
9638 		}
9639 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9640 		wqe->gen_req.request_payload_len = xmit_len;
9641 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9642 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9643 		/* word6 context tag copied in memcpy */
9644 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9645 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9646 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9647 				"2015 Invalid CT %x command 0x%x\n",
9648 				ct, iocbq->iocb.ulpCommand);
9649 			return IOCB_ERROR;
9650 		}
9651 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9652 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9653 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9654 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9655 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9656 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9657 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9658 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9659 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9660 		command_type = OTHER_COMMAND;
9661 		break;
9662 	case CMD_XMIT_ELS_RSP64_CX:
9663 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9664 		/* words0-2 BDE memcpy */
9665 		/* word3 iocb=iotag32 wqe=response_payload_len */
9666 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9667 		/* word4 */
9668 		wqe->xmit_els_rsp.word4 = 0;
9669 		/* word5 iocb=rsvd wge=did */
9670 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9671 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9672 
9673 		if_type = bf_get(lpfc_sli_intf_if_type,
9674 					&phba->sli4_hba.sli_intf);
9675 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9676 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9677 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9678 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9679 					iocbq->vport->fc_myDID);
9680 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9681 					bf_set(wqe_els_did,
9682 						&wqe->xmit_els_rsp.wqe_dest, 0);
9683 				}
9684 			}
9685 		}
9686 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9687 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9688 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9689 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9690 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9691 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9692 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9693 			       phba->vpi_ids[iocbq->vport->vpi]);
9694 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9695 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9696 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9697 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9698 		       LPFC_WQE_LENLOC_WORD3);
9699 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9700 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9701 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9702 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9703 					iocbq->context2)->virt);
9704 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9705 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9706 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9707 					iocbq->vport->fc_myDID);
9708 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9709 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9710 					phba->vpi_ids[phba->pport->vpi]);
9711 		}
9712 		command_type = OTHER_COMMAND;
9713 		break;
9714 	case CMD_CLOSE_XRI_CN:
9715 	case CMD_ABORT_XRI_CN:
9716 	case CMD_ABORT_XRI_CX:
9717 		/* words 0-2 memcpy should be 0 rserved */
9718 		/* port will send abts */
9719 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9720 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9721 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9722 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9723 		} else
9724 			fip = 0;
9725 
9726 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9727 			/*
9728 			 * The link is down, or the command was ELS_FIP
9729 			 * so the fw does not need to send abts
9730 			 * on the wire.
9731 			 */
9732 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9733 		else
9734 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9735 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9736 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9737 		wqe->abort_cmd.rsrvd5 = 0;
9738 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9739 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9740 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9741 		/*
9742 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9743 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9744 		 */
9745 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9746 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9747 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9748 		       LPFC_WQE_LENLOC_NONE);
9749 		cmnd = CMD_ABORT_XRI_CX;
9750 		command_type = OTHER_COMMAND;
9751 		xritag = 0;
9752 		break;
9753 	case CMD_XMIT_BLS_RSP64_CX:
9754 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9755 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9756 		 * we re-construct this WQE here based on information in
9757 		 * iocbq from scratch.
9758 		 */
9759 		memset(wqe, 0, sizeof(union lpfc_wqe));
9760 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9761 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9762 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9763 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9764 		    LPFC_ABTS_UNSOL_INT) {
9765 			/* ABTS sent by initiator to CT exchange, the
9766 			 * RX_ID field will be filled with the newly
9767 			 * allocated responder XRI.
9768 			 */
9769 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9770 			       iocbq->sli4_xritag);
9771 		} else {
9772 			/* ABTS sent by responder to CT exchange, the
9773 			 * RX_ID field will be filled with the responder
9774 			 * RX_ID from ABTS.
9775 			 */
9776 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9777 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9778 		}
9779 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9780 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9781 
9782 		/* Use CT=VPI */
9783 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9784 			ndlp->nlp_DID);
9785 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9786 			iocbq->iocb.ulpContext);
9787 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9788 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9789 			phba->vpi_ids[phba->pport->vpi]);
9790 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9791 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9792 		       LPFC_WQE_LENLOC_NONE);
9793 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9794 		command_type = OTHER_COMMAND;
9795 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9796 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9797 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9798 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9799 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9800 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9801 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9802 		}
9803 
9804 		break;
9805 	case CMD_SEND_FRAME:
9806 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9807 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9808 		return 0;
9809 	case CMD_XRI_ABORTED_CX:
9810 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9811 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9812 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9813 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9814 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9815 	default:
9816 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9817 				"2014 Invalid command 0x%x\n",
9818 				iocbq->iocb.ulpCommand);
9819 		return IOCB_ERROR;
9820 		break;
9821 	}
9822 
9823 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9824 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9825 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9826 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9827 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9828 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9829 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9830 			      LPFC_IO_DIF_INSERT);
9831 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9832 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9833 	wqe->generic.wqe_com.abort_tag = abort_tag;
9834 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9835 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9836 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9837 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9838 	return 0;
9839 }
9840 
9841 /**
9842  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9843  * @phba: Pointer to HBA context object.
9844  * @ring_number: SLI ring number to issue iocb on.
9845  * @piocb: Pointer to command iocb.
9846  * @flag: Flag indicating if this command can be put into txq.
9847  *
9848  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9849  * an iocb command to an HBA with SLI-4 interface spec.
9850  *
9851  * This function is called with hbalock held. The function will return success
9852  * after it successfully submit the iocb to firmware or after adding to the
9853  * txq.
9854  **/
9855 static int
9856 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9857 			 struct lpfc_iocbq *piocb, uint32_t flag)
9858 {
9859 	struct lpfc_sglq *sglq;
9860 	union lpfc_wqe128 wqe;
9861 	struct lpfc_queue *wq;
9862 	struct lpfc_sli_ring *pring;
9863 
9864 	/* Get the WQ */
9865 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9866 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9867 		if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9868 			wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9869 		else
9870 			wq = phba->sli4_hba.oas_wq;
9871 	} else {
9872 		wq = phba->sli4_hba.els_wq;
9873 	}
9874 
9875 	/* Get corresponding ring */
9876 	pring = wq->pring;
9877 
9878 	/*
9879 	 * The WQE can be either 64 or 128 bytes,
9880 	 */
9881 
9882 	lockdep_assert_held(&phba->hbalock);
9883 
9884 	if (piocb->sli4_xritag == NO_XRI) {
9885 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9886 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9887 			sglq = NULL;
9888 		else {
9889 			if (!list_empty(&pring->txq)) {
9890 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9891 					__lpfc_sli_ringtx_put(phba,
9892 						pring, piocb);
9893 					return IOCB_SUCCESS;
9894 				} else {
9895 					return IOCB_BUSY;
9896 				}
9897 			} else {
9898 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9899 				if (!sglq) {
9900 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9901 						__lpfc_sli_ringtx_put(phba,
9902 								pring,
9903 								piocb);
9904 						return IOCB_SUCCESS;
9905 					} else
9906 						return IOCB_BUSY;
9907 				}
9908 			}
9909 		}
9910 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9911 		/* These IO's already have an XRI and a mapped sgl. */
9912 		sglq = NULL;
9913 	else {
9914 		/*
9915 		 * This is a continuation of a commandi,(CX) so this
9916 		 * sglq is on the active list
9917 		 */
9918 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9919 		if (!sglq)
9920 			return IOCB_ERROR;
9921 	}
9922 
9923 	if (sglq) {
9924 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9925 		piocb->sli4_xritag = sglq->sli4_xritag;
9926 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9927 			return IOCB_ERROR;
9928 	}
9929 
9930 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9931 		return IOCB_ERROR;
9932 
9933 	if (lpfc_sli4_wq_put(wq, &wqe))
9934 		return IOCB_ERROR;
9935 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9936 
9937 	return 0;
9938 }
9939 
9940 /**
9941  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9942  *
9943  * This routine wraps the actual lockless version for issusing IOCB function
9944  * pointer from the lpfc_hba struct.
9945  *
9946  * Return codes:
9947  * IOCB_ERROR - Error
9948  * IOCB_SUCCESS - Success
9949  * IOCB_BUSY - Busy
9950  **/
9951 int
9952 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9953 		struct lpfc_iocbq *piocb, uint32_t flag)
9954 {
9955 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9956 }
9957 
9958 /**
9959  * lpfc_sli_api_table_setup - Set up sli api function jump table
9960  * @phba: The hba struct for which this call is being executed.
9961  * @dev_grp: The HBA PCI-Device group number.
9962  *
9963  * This routine sets up the SLI interface API function jump table in @phba
9964  * struct.
9965  * Returns: 0 - success, -ENODEV - failure.
9966  **/
9967 int
9968 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9969 {
9970 
9971 	switch (dev_grp) {
9972 	case LPFC_PCI_DEV_LP:
9973 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9974 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9975 		break;
9976 	case LPFC_PCI_DEV_OC:
9977 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9978 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9979 		break;
9980 	default:
9981 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9982 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9983 				dev_grp);
9984 		return -ENODEV;
9985 		break;
9986 	}
9987 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9988 	return 0;
9989 }
9990 
9991 /**
9992  * lpfc_sli4_calc_ring - Calculates which ring to use
9993  * @phba: Pointer to HBA context object.
9994  * @piocb: Pointer to command iocb.
9995  *
9996  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9997  * hba_wqidx, thus we need to calculate the corresponding ring.
9998  * Since ABORTS must go on the same WQ of the command they are
9999  * aborting, we use command's hba_wqidx.
10000  */
10001 struct lpfc_sli_ring *
10002 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10003 {
10004 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10005 		if (!(phba->cfg_fof) ||
10006 		    (!(piocb->iocb_flag & LPFC_IO_FOF))) {
10007 			if (unlikely(!phba->sli4_hba.fcp_wq))
10008 				return NULL;
10009 			/*
10010 			 * for abort iocb hba_wqidx should already
10011 			 * be setup based on what work queue we used.
10012 			 */
10013 			if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10014 				piocb->hba_wqidx =
10015 					lpfc_sli4_scmd_to_wqidx_distr(phba,
10016 							      piocb->context1);
10017 				piocb->hba_wqidx = piocb->hba_wqidx %
10018 					phba->cfg_fcp_io_channel;
10019 			}
10020 			return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
10021 		} else {
10022 			if (unlikely(!phba->sli4_hba.oas_wq))
10023 				return NULL;
10024 			piocb->hba_wqidx = 0;
10025 			return phba->sli4_hba.oas_wq->pring;
10026 		}
10027 	} else {
10028 		if (unlikely(!phba->sli4_hba.els_wq))
10029 			return NULL;
10030 		piocb->hba_wqidx = 0;
10031 		return phba->sli4_hba.els_wq->pring;
10032 	}
10033 }
10034 
10035 /**
10036  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10037  * @phba: Pointer to HBA context object.
10038  * @pring: Pointer to driver SLI ring object.
10039  * @piocb: Pointer to command iocb.
10040  * @flag: Flag indicating if this command can be put into txq.
10041  *
10042  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10043  * function. This function gets the hbalock and calls
10044  * __lpfc_sli_issue_iocb function and will return the error returned
10045  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10046  * functions which do not hold hbalock.
10047  **/
10048 int
10049 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10050 		    struct lpfc_iocbq *piocb, uint32_t flag)
10051 {
10052 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
10053 	struct lpfc_sli_ring *pring;
10054 	struct lpfc_queue *fpeq;
10055 	struct lpfc_eqe *eqe;
10056 	unsigned long iflags;
10057 	int rc, idx;
10058 
10059 	if (phba->sli_rev == LPFC_SLI_REV4) {
10060 		pring = lpfc_sli4_calc_ring(phba, piocb);
10061 		if (unlikely(pring == NULL))
10062 			return IOCB_ERROR;
10063 
10064 		spin_lock_irqsave(&pring->ring_lock, iflags);
10065 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10066 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10067 
10068 		if (lpfc_fcp_look_ahead && (piocb->iocb_flag &  LPFC_IO_FCP)) {
10069 			idx = piocb->hba_wqidx;
10070 			hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
10071 
10072 			if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
10073 
10074 				/* Get associated EQ with this index */
10075 				fpeq = phba->sli4_hba.hba_eq[idx];
10076 
10077 				/* Turn off interrupts from this EQ */
10078 				phba->sli4_hba.sli4_eq_clr_intr(fpeq);
10079 
10080 				/*
10081 				 * Process all the events on FCP EQ
10082 				 */
10083 				while ((eqe = lpfc_sli4_eq_get(fpeq))) {
10084 					lpfc_sli4_hba_handle_eqe(phba,
10085 						eqe, idx);
10086 					fpeq->EQ_processed++;
10087 				}
10088 
10089 				/* Always clear and re-arm the EQ */
10090 				phba->sli4_hba.sli4_eq_release(fpeq,
10091 					LPFC_QUEUE_REARM);
10092 			}
10093 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
10094 		}
10095 	} else {
10096 		/* For now, SLI2/3 will still use hbalock */
10097 		spin_lock_irqsave(&phba->hbalock, iflags);
10098 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10099 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10100 	}
10101 	return rc;
10102 }
10103 
10104 /**
10105  * lpfc_extra_ring_setup - Extra ring setup function
10106  * @phba: Pointer to HBA context object.
10107  *
10108  * This function is called while driver attaches with the
10109  * HBA to setup the extra ring. The extra ring is used
10110  * only when driver needs to support target mode functionality
10111  * or IP over FC functionalities.
10112  *
10113  * This function is called with no lock held. SLI3 only.
10114  **/
10115 static int
10116 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10117 {
10118 	struct lpfc_sli *psli;
10119 	struct lpfc_sli_ring *pring;
10120 
10121 	psli = &phba->sli;
10122 
10123 	/* Adjust cmd/rsp ring iocb entries more evenly */
10124 
10125 	/* Take some away from the FCP ring */
10126 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10127 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10128 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10129 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10130 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10131 
10132 	/* and give them to the extra ring */
10133 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10134 
10135 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10136 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10137 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10138 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10139 
10140 	/* Setup default profile for this ring */
10141 	pring->iotag_max = 4096;
10142 	pring->num_mask = 1;
10143 	pring->prt[0].profile = 0;      /* Mask 0 */
10144 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10145 	pring->prt[0].type = phba->cfg_multi_ring_type;
10146 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10147 	return 0;
10148 }
10149 
10150 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10151  * @phba: Pointer to HBA context object.
10152  * @iocbq: Pointer to iocb object.
10153  *
10154  * The async_event handler calls this routine when it receives
10155  * an ASYNC_STATUS_CN event from the port.  The port generates
10156  * this event when an Abort Sequence request to an rport fails
10157  * twice in succession.  The abort could be originated by the
10158  * driver or by the port.  The ABTS could have been for an ELS
10159  * or FCP IO.  The port only generates this event when an ABTS
10160  * fails to complete after one retry.
10161  */
10162 static void
10163 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10164 			  struct lpfc_iocbq *iocbq)
10165 {
10166 	struct lpfc_nodelist *ndlp = NULL;
10167 	uint16_t rpi = 0, vpi = 0;
10168 	struct lpfc_vport *vport = NULL;
10169 
10170 	/* The rpi in the ulpContext is vport-sensitive. */
10171 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10172 	rpi = iocbq->iocb.ulpContext;
10173 
10174 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10175 			"3092 Port generated ABTS async event "
10176 			"on vpi %d rpi %d status 0x%x\n",
10177 			vpi, rpi, iocbq->iocb.ulpStatus);
10178 
10179 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10180 	if (!vport)
10181 		goto err_exit;
10182 	ndlp = lpfc_findnode_rpi(vport, rpi);
10183 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10184 		goto err_exit;
10185 
10186 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10187 		lpfc_sli_abts_recover_port(vport, ndlp);
10188 	return;
10189 
10190  err_exit:
10191 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10192 			"3095 Event Context not found, no "
10193 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10194 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10195 			vpi, rpi);
10196 }
10197 
10198 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10199  * @phba: pointer to HBA context object.
10200  * @ndlp: nodelist pointer for the impacted rport.
10201  * @axri: pointer to the wcqe containing the failed exchange.
10202  *
10203  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10204  * port.  The port generates this event when an abort exchange request to an
10205  * rport fails twice in succession with no reply.  The abort could be originated
10206  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10207  */
10208 void
10209 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10210 			   struct lpfc_nodelist *ndlp,
10211 			   struct sli4_wcqe_xri_aborted *axri)
10212 {
10213 	struct lpfc_vport *vport;
10214 	uint32_t ext_status = 0;
10215 
10216 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10217 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10218 				"3115 Node Context not found, driver "
10219 				"ignoring abts err event\n");
10220 		return;
10221 	}
10222 
10223 	vport = ndlp->vport;
10224 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10225 			"3116 Port generated FCP XRI ABORT event on "
10226 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10227 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10228 			bf_get(lpfc_wcqe_xa_xri, axri),
10229 			bf_get(lpfc_wcqe_xa_status, axri),
10230 			axri->parameter);
10231 
10232 	/*
10233 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10234 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10235 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10236 	 */
10237 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10238 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10239 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10240 		lpfc_sli_abts_recover_port(vport, ndlp);
10241 }
10242 
10243 /**
10244  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10245  * @phba: Pointer to HBA context object.
10246  * @pring: Pointer to driver SLI ring object.
10247  * @iocbq: Pointer to iocb object.
10248  *
10249  * This function is called by the slow ring event handler
10250  * function when there is an ASYNC event iocb in the ring.
10251  * This function is called with no lock held.
10252  * Currently this function handles only temperature related
10253  * ASYNC events. The function decodes the temperature sensor
10254  * event message and posts events for the management applications.
10255  **/
10256 static void
10257 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10258 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10259 {
10260 	IOCB_t *icmd;
10261 	uint16_t evt_code;
10262 	struct temp_event temp_event_data;
10263 	struct Scsi_Host *shost;
10264 	uint32_t *iocb_w;
10265 
10266 	icmd = &iocbq->iocb;
10267 	evt_code = icmd->un.asyncstat.evt_code;
10268 
10269 	switch (evt_code) {
10270 	case ASYNC_TEMP_WARN:
10271 	case ASYNC_TEMP_SAFE:
10272 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10273 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10274 		if (evt_code == ASYNC_TEMP_WARN) {
10275 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10276 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10277 				"0347 Adapter is very hot, please take "
10278 				"corrective action. temperature : %d Celsius\n",
10279 				(uint32_t) icmd->ulpContext);
10280 		} else {
10281 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10282 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10283 				"0340 Adapter temperature is OK now. "
10284 				"temperature : %d Celsius\n",
10285 				(uint32_t) icmd->ulpContext);
10286 		}
10287 
10288 		/* Send temperature change event to applications */
10289 		shost = lpfc_shost_from_vport(phba->pport);
10290 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10291 			sizeof(temp_event_data), (char *) &temp_event_data,
10292 			LPFC_NL_VENDOR_ID);
10293 		break;
10294 	case ASYNC_STATUS_CN:
10295 		lpfc_sli_abts_err_handler(phba, iocbq);
10296 		break;
10297 	default:
10298 		iocb_w = (uint32_t *) icmd;
10299 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10300 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10301 			" evt_code 0x%x\n"
10302 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10303 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10304 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10305 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10306 			pring->ringno, icmd->un.asyncstat.evt_code,
10307 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10308 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10309 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10310 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10311 
10312 		break;
10313 	}
10314 }
10315 
10316 
10317 /**
10318  * lpfc_sli4_setup - SLI ring setup function
10319  * @phba: Pointer to HBA context object.
10320  *
10321  * lpfc_sli_setup sets up rings of the SLI interface with
10322  * number of iocbs per ring and iotags. This function is
10323  * called while driver attach to the HBA and before the
10324  * interrupts are enabled. So there is no need for locking.
10325  *
10326  * This function always returns 0.
10327  **/
10328 int
10329 lpfc_sli4_setup(struct lpfc_hba *phba)
10330 {
10331 	struct lpfc_sli_ring *pring;
10332 
10333 	pring = phba->sli4_hba.els_wq->pring;
10334 	pring->num_mask = LPFC_MAX_RING_MASK;
10335 	pring->prt[0].profile = 0;	/* Mask 0 */
10336 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10337 	pring->prt[0].type = FC_TYPE_ELS;
10338 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10339 	    lpfc_els_unsol_event;
10340 	pring->prt[1].profile = 0;	/* Mask 1 */
10341 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10342 	pring->prt[1].type = FC_TYPE_ELS;
10343 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10344 	    lpfc_els_unsol_event;
10345 	pring->prt[2].profile = 0;	/* Mask 2 */
10346 	/* NameServer Inquiry */
10347 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10348 	/* NameServer */
10349 	pring->prt[2].type = FC_TYPE_CT;
10350 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10351 	    lpfc_ct_unsol_event;
10352 	pring->prt[3].profile = 0;	/* Mask 3 */
10353 	/* NameServer response */
10354 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10355 	/* NameServer */
10356 	pring->prt[3].type = FC_TYPE_CT;
10357 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10358 	    lpfc_ct_unsol_event;
10359 	return 0;
10360 }
10361 
10362 /**
10363  * lpfc_sli_setup - SLI ring setup function
10364  * @phba: Pointer to HBA context object.
10365  *
10366  * lpfc_sli_setup sets up rings of the SLI interface with
10367  * number of iocbs per ring and iotags. This function is
10368  * called while driver attach to the HBA and before the
10369  * interrupts are enabled. So there is no need for locking.
10370  *
10371  * This function always returns 0. SLI3 only.
10372  **/
10373 int
10374 lpfc_sli_setup(struct lpfc_hba *phba)
10375 {
10376 	int i, totiocbsize = 0;
10377 	struct lpfc_sli *psli = &phba->sli;
10378 	struct lpfc_sli_ring *pring;
10379 
10380 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10381 	psli->sli_flag = 0;
10382 
10383 	psli->iocbq_lookup = NULL;
10384 	psli->iocbq_lookup_len = 0;
10385 	psli->last_iotag = 0;
10386 
10387 	for (i = 0; i < psli->num_rings; i++) {
10388 		pring = &psli->sli3_ring[i];
10389 		switch (i) {
10390 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10391 			/* numCiocb and numRiocb are used in config_port */
10392 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10393 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10394 			pring->sli.sli3.numCiocb +=
10395 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10396 			pring->sli.sli3.numRiocb +=
10397 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10398 			pring->sli.sli3.numCiocb +=
10399 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10400 			pring->sli.sli3.numRiocb +=
10401 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10402 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10403 							SLI3_IOCB_CMD_SIZE :
10404 							SLI2_IOCB_CMD_SIZE;
10405 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10406 							SLI3_IOCB_RSP_SIZE :
10407 							SLI2_IOCB_RSP_SIZE;
10408 			pring->iotag_ctr = 0;
10409 			pring->iotag_max =
10410 			    (phba->cfg_hba_queue_depth * 2);
10411 			pring->fast_iotag = pring->iotag_max;
10412 			pring->num_mask = 0;
10413 			break;
10414 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10415 			/* numCiocb and numRiocb are used in config_port */
10416 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10417 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10418 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10419 							SLI3_IOCB_CMD_SIZE :
10420 							SLI2_IOCB_CMD_SIZE;
10421 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10422 							SLI3_IOCB_RSP_SIZE :
10423 							SLI2_IOCB_RSP_SIZE;
10424 			pring->iotag_max = phba->cfg_hba_queue_depth;
10425 			pring->num_mask = 0;
10426 			break;
10427 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10428 			/* numCiocb and numRiocb are used in config_port */
10429 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10430 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10431 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10432 							SLI3_IOCB_CMD_SIZE :
10433 							SLI2_IOCB_CMD_SIZE;
10434 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10435 							SLI3_IOCB_RSP_SIZE :
10436 							SLI2_IOCB_RSP_SIZE;
10437 			pring->fast_iotag = 0;
10438 			pring->iotag_ctr = 0;
10439 			pring->iotag_max = 4096;
10440 			pring->lpfc_sli_rcv_async_status =
10441 				lpfc_sli_async_event_handler;
10442 			pring->num_mask = LPFC_MAX_RING_MASK;
10443 			pring->prt[0].profile = 0;	/* Mask 0 */
10444 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10445 			pring->prt[0].type = FC_TYPE_ELS;
10446 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10447 			    lpfc_els_unsol_event;
10448 			pring->prt[1].profile = 0;	/* Mask 1 */
10449 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10450 			pring->prt[1].type = FC_TYPE_ELS;
10451 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10452 			    lpfc_els_unsol_event;
10453 			pring->prt[2].profile = 0;	/* Mask 2 */
10454 			/* NameServer Inquiry */
10455 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10456 			/* NameServer */
10457 			pring->prt[2].type = FC_TYPE_CT;
10458 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10459 			    lpfc_ct_unsol_event;
10460 			pring->prt[3].profile = 0;	/* Mask 3 */
10461 			/* NameServer response */
10462 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10463 			/* NameServer */
10464 			pring->prt[3].type = FC_TYPE_CT;
10465 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10466 			    lpfc_ct_unsol_event;
10467 			break;
10468 		}
10469 		totiocbsize += (pring->sli.sli3.numCiocb *
10470 			pring->sli.sli3.sizeCiocb) +
10471 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10472 	}
10473 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10474 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10475 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10476 		       "SLI2 SLIM Data: x%x x%lx\n",
10477 		       phba->brd_no, totiocbsize,
10478 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10479 	}
10480 	if (phba->cfg_multi_ring_support == 2)
10481 		lpfc_extra_ring_setup(phba);
10482 
10483 	return 0;
10484 }
10485 
10486 /**
10487  * lpfc_sli4_queue_init - Queue initialization function
10488  * @phba: Pointer to HBA context object.
10489  *
10490  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10491  * ring. This function also initializes ring indices of each ring.
10492  * This function is called during the initialization of the SLI
10493  * interface of an HBA.
10494  * This function is called with no lock held and always returns
10495  * 1.
10496  **/
10497 void
10498 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10499 {
10500 	struct lpfc_sli *psli;
10501 	struct lpfc_sli_ring *pring;
10502 	int i;
10503 
10504 	psli = &phba->sli;
10505 	spin_lock_irq(&phba->hbalock);
10506 	INIT_LIST_HEAD(&psli->mboxq);
10507 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10508 	/* Initialize list headers for txq and txcmplq as double linked lists */
10509 	for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
10510 		pring = phba->sli4_hba.fcp_wq[i]->pring;
10511 		pring->flag = 0;
10512 		pring->ringno = LPFC_FCP_RING;
10513 		INIT_LIST_HEAD(&pring->txq);
10514 		INIT_LIST_HEAD(&pring->txcmplq);
10515 		INIT_LIST_HEAD(&pring->iocb_continueq);
10516 		spin_lock_init(&pring->ring_lock);
10517 	}
10518 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
10519 		pring = phba->sli4_hba.nvme_wq[i]->pring;
10520 		pring->flag = 0;
10521 		pring->ringno = LPFC_FCP_RING;
10522 		INIT_LIST_HEAD(&pring->txq);
10523 		INIT_LIST_HEAD(&pring->txcmplq);
10524 		INIT_LIST_HEAD(&pring->iocb_continueq);
10525 		spin_lock_init(&pring->ring_lock);
10526 	}
10527 	pring = phba->sli4_hba.els_wq->pring;
10528 	pring->flag = 0;
10529 	pring->ringno = LPFC_ELS_RING;
10530 	INIT_LIST_HEAD(&pring->txq);
10531 	INIT_LIST_HEAD(&pring->txcmplq);
10532 	INIT_LIST_HEAD(&pring->iocb_continueq);
10533 	spin_lock_init(&pring->ring_lock);
10534 
10535 	if (phba->cfg_nvme_io_channel) {
10536 		pring = phba->sli4_hba.nvmels_wq->pring;
10537 		pring->flag = 0;
10538 		pring->ringno = LPFC_ELS_RING;
10539 		INIT_LIST_HEAD(&pring->txq);
10540 		INIT_LIST_HEAD(&pring->txcmplq);
10541 		INIT_LIST_HEAD(&pring->iocb_continueq);
10542 		spin_lock_init(&pring->ring_lock);
10543 	}
10544 
10545 	if (phba->cfg_fof) {
10546 		pring = phba->sli4_hba.oas_wq->pring;
10547 		pring->flag = 0;
10548 		pring->ringno = LPFC_FCP_RING;
10549 		INIT_LIST_HEAD(&pring->txq);
10550 		INIT_LIST_HEAD(&pring->txcmplq);
10551 		INIT_LIST_HEAD(&pring->iocb_continueq);
10552 		spin_lock_init(&pring->ring_lock);
10553 	}
10554 
10555 	spin_unlock_irq(&phba->hbalock);
10556 }
10557 
10558 /**
10559  * lpfc_sli_queue_init - Queue initialization function
10560  * @phba: Pointer to HBA context object.
10561  *
10562  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10563  * ring. This function also initializes ring indices of each ring.
10564  * This function is called during the initialization of the SLI
10565  * interface of an HBA.
10566  * This function is called with no lock held and always returns
10567  * 1.
10568  **/
10569 void
10570 lpfc_sli_queue_init(struct lpfc_hba *phba)
10571 {
10572 	struct lpfc_sli *psli;
10573 	struct lpfc_sli_ring *pring;
10574 	int i;
10575 
10576 	psli = &phba->sli;
10577 	spin_lock_irq(&phba->hbalock);
10578 	INIT_LIST_HEAD(&psli->mboxq);
10579 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10580 	/* Initialize list headers for txq and txcmplq as double linked lists */
10581 	for (i = 0; i < psli->num_rings; i++) {
10582 		pring = &psli->sli3_ring[i];
10583 		pring->ringno = i;
10584 		pring->sli.sli3.next_cmdidx  = 0;
10585 		pring->sli.sli3.local_getidx = 0;
10586 		pring->sli.sli3.cmdidx = 0;
10587 		INIT_LIST_HEAD(&pring->iocb_continueq);
10588 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10589 		INIT_LIST_HEAD(&pring->postbufq);
10590 		pring->flag = 0;
10591 		INIT_LIST_HEAD(&pring->txq);
10592 		INIT_LIST_HEAD(&pring->txcmplq);
10593 		spin_lock_init(&pring->ring_lock);
10594 	}
10595 	spin_unlock_irq(&phba->hbalock);
10596 }
10597 
10598 /**
10599  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10600  * @phba: Pointer to HBA context object.
10601  *
10602  * This routine flushes the mailbox command subsystem. It will unconditionally
10603  * flush all the mailbox commands in the three possible stages in the mailbox
10604  * command sub-system: pending mailbox command queue; the outstanding mailbox
10605  * command; and completed mailbox command queue. It is caller's responsibility
10606  * to make sure that the driver is in the proper state to flush the mailbox
10607  * command sub-system. Namely, the posting of mailbox commands into the
10608  * pending mailbox command queue from the various clients must be stopped;
10609  * either the HBA is in a state that it will never works on the outstanding
10610  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10611  * mailbox command has been completed.
10612  **/
10613 static void
10614 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10615 {
10616 	LIST_HEAD(completions);
10617 	struct lpfc_sli *psli = &phba->sli;
10618 	LPFC_MBOXQ_t *pmb;
10619 	unsigned long iflag;
10620 
10621 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10622 	local_bh_disable();
10623 
10624 	/* Flush all the mailbox commands in the mbox system */
10625 	spin_lock_irqsave(&phba->hbalock, iflag);
10626 
10627 	/* The pending mailbox command queue */
10628 	list_splice_init(&phba->sli.mboxq, &completions);
10629 	/* The outstanding active mailbox command */
10630 	if (psli->mbox_active) {
10631 		list_add_tail(&psli->mbox_active->list, &completions);
10632 		psli->mbox_active = NULL;
10633 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10634 	}
10635 	/* The completed mailbox command queue */
10636 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10637 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10638 
10639 	/* Enable softirqs again, done with phba->hbalock */
10640 	local_bh_enable();
10641 
10642 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10643 	while (!list_empty(&completions)) {
10644 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10645 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10646 		if (pmb->mbox_cmpl)
10647 			pmb->mbox_cmpl(phba, pmb);
10648 	}
10649 }
10650 
10651 /**
10652  * lpfc_sli_host_down - Vport cleanup function
10653  * @vport: Pointer to virtual port object.
10654  *
10655  * lpfc_sli_host_down is called to clean up the resources
10656  * associated with a vport before destroying virtual
10657  * port data structures.
10658  * This function does following operations:
10659  * - Free discovery resources associated with this virtual
10660  *   port.
10661  * - Free iocbs associated with this virtual port in
10662  *   the txq.
10663  * - Send abort for all iocb commands associated with this
10664  *   vport in txcmplq.
10665  *
10666  * This function is called with no lock held and always returns 1.
10667  **/
10668 int
10669 lpfc_sli_host_down(struct lpfc_vport *vport)
10670 {
10671 	LIST_HEAD(completions);
10672 	struct lpfc_hba *phba = vport->phba;
10673 	struct lpfc_sli *psli = &phba->sli;
10674 	struct lpfc_queue *qp = NULL;
10675 	struct lpfc_sli_ring *pring;
10676 	struct lpfc_iocbq *iocb, *next_iocb;
10677 	int i;
10678 	unsigned long flags = 0;
10679 	uint16_t prev_pring_flag;
10680 
10681 	lpfc_cleanup_discovery_resources(vport);
10682 
10683 	spin_lock_irqsave(&phba->hbalock, flags);
10684 
10685 	/*
10686 	 * Error everything on the txq since these iocbs
10687 	 * have not been given to the FW yet.
10688 	 * Also issue ABTS for everything on the txcmplq
10689 	 */
10690 	if (phba->sli_rev != LPFC_SLI_REV4) {
10691 		for (i = 0; i < psli->num_rings; i++) {
10692 			pring = &psli->sli3_ring[i];
10693 			prev_pring_flag = pring->flag;
10694 			/* Only slow rings */
10695 			if (pring->ringno == LPFC_ELS_RING) {
10696 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10697 				/* Set the lpfc data pending flag */
10698 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10699 			}
10700 			list_for_each_entry_safe(iocb, next_iocb,
10701 						 &pring->txq, list) {
10702 				if (iocb->vport != vport)
10703 					continue;
10704 				list_move_tail(&iocb->list, &completions);
10705 			}
10706 			list_for_each_entry_safe(iocb, next_iocb,
10707 						 &pring->txcmplq, list) {
10708 				if (iocb->vport != vport)
10709 					continue;
10710 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10711 			}
10712 			pring->flag = prev_pring_flag;
10713 		}
10714 	} else {
10715 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10716 			pring = qp->pring;
10717 			if (!pring)
10718 				continue;
10719 			if (pring == phba->sli4_hba.els_wq->pring) {
10720 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10721 				/* Set the lpfc data pending flag */
10722 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10723 			}
10724 			prev_pring_flag = pring->flag;
10725 			spin_lock_irq(&pring->ring_lock);
10726 			list_for_each_entry_safe(iocb, next_iocb,
10727 						 &pring->txq, list) {
10728 				if (iocb->vport != vport)
10729 					continue;
10730 				list_move_tail(&iocb->list, &completions);
10731 			}
10732 			spin_unlock_irq(&pring->ring_lock);
10733 			list_for_each_entry_safe(iocb, next_iocb,
10734 						 &pring->txcmplq, list) {
10735 				if (iocb->vport != vport)
10736 					continue;
10737 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10738 			}
10739 			pring->flag = prev_pring_flag;
10740 		}
10741 	}
10742 	spin_unlock_irqrestore(&phba->hbalock, flags);
10743 
10744 	/* Cancel all the IOCBs from the completions list */
10745 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10746 			      IOERR_SLI_DOWN);
10747 	return 1;
10748 }
10749 
10750 /**
10751  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10752  * @phba: Pointer to HBA context object.
10753  *
10754  * This function cleans up all iocb, buffers, mailbox commands
10755  * while shutting down the HBA. This function is called with no
10756  * lock held and always returns 1.
10757  * This function does the following to cleanup driver resources:
10758  * - Free discovery resources for each virtual port
10759  * - Cleanup any pending fabric iocbs
10760  * - Iterate through the iocb txq and free each entry
10761  *   in the list.
10762  * - Free up any buffer posted to the HBA
10763  * - Free mailbox commands in the mailbox queue.
10764  **/
10765 int
10766 lpfc_sli_hba_down(struct lpfc_hba *phba)
10767 {
10768 	LIST_HEAD(completions);
10769 	struct lpfc_sli *psli = &phba->sli;
10770 	struct lpfc_queue *qp = NULL;
10771 	struct lpfc_sli_ring *pring;
10772 	struct lpfc_dmabuf *buf_ptr;
10773 	unsigned long flags = 0;
10774 	int i;
10775 
10776 	/* Shutdown the mailbox command sub-system */
10777 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10778 
10779 	lpfc_hba_down_prep(phba);
10780 
10781 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10782 	local_bh_disable();
10783 
10784 	lpfc_fabric_abort_hba(phba);
10785 
10786 	spin_lock_irqsave(&phba->hbalock, flags);
10787 
10788 	/*
10789 	 * Error everything on the txq since these iocbs
10790 	 * have not been given to the FW yet.
10791 	 */
10792 	if (phba->sli_rev != LPFC_SLI_REV4) {
10793 		for (i = 0; i < psli->num_rings; i++) {
10794 			pring = &psli->sli3_ring[i];
10795 			/* Only slow rings */
10796 			if (pring->ringno == LPFC_ELS_RING) {
10797 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10798 				/* Set the lpfc data pending flag */
10799 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10800 			}
10801 			list_splice_init(&pring->txq, &completions);
10802 		}
10803 	} else {
10804 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10805 			pring = qp->pring;
10806 			if (!pring)
10807 				continue;
10808 			spin_lock_irq(&pring->ring_lock);
10809 			list_splice_init(&pring->txq, &completions);
10810 			spin_unlock_irq(&pring->ring_lock);
10811 			if (pring == phba->sli4_hba.els_wq->pring) {
10812 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10813 				/* Set the lpfc data pending flag */
10814 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10815 			}
10816 		}
10817 	}
10818 	spin_unlock_irqrestore(&phba->hbalock, flags);
10819 
10820 	/* Cancel all the IOCBs from the completions list */
10821 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10822 			      IOERR_SLI_DOWN);
10823 
10824 	spin_lock_irqsave(&phba->hbalock, flags);
10825 	list_splice_init(&phba->elsbuf, &completions);
10826 	phba->elsbuf_cnt = 0;
10827 	phba->elsbuf_prev_cnt = 0;
10828 	spin_unlock_irqrestore(&phba->hbalock, flags);
10829 
10830 	while (!list_empty(&completions)) {
10831 		list_remove_head(&completions, buf_ptr,
10832 			struct lpfc_dmabuf, list);
10833 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10834 		kfree(buf_ptr);
10835 	}
10836 
10837 	/* Enable softirqs again, done with phba->hbalock */
10838 	local_bh_enable();
10839 
10840 	/* Return any active mbox cmds */
10841 	del_timer_sync(&psli->mbox_tmo);
10842 
10843 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10844 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10845 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10846 
10847 	return 1;
10848 }
10849 
10850 /**
10851  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10852  * @srcp: Source memory pointer.
10853  * @destp: Destination memory pointer.
10854  * @cnt: Number of words required to be copied.
10855  *
10856  * This function is used for copying data between driver memory
10857  * and the SLI memory. This function also changes the endianness
10858  * of each word if native endianness is different from SLI
10859  * endianness. This function can be called with or without
10860  * lock.
10861  **/
10862 void
10863 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10864 {
10865 	uint32_t *src = srcp;
10866 	uint32_t *dest = destp;
10867 	uint32_t ldata;
10868 	int i;
10869 
10870 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10871 		ldata = *src;
10872 		ldata = le32_to_cpu(ldata);
10873 		*dest = ldata;
10874 		src++;
10875 		dest++;
10876 	}
10877 }
10878 
10879 
10880 /**
10881  * lpfc_sli_bemem_bcopy - SLI memory copy function
10882  * @srcp: Source memory pointer.
10883  * @destp: Destination memory pointer.
10884  * @cnt: Number of words required to be copied.
10885  *
10886  * This function is used for copying data between a data structure
10887  * with big endian representation to local endianness.
10888  * This function can be called with or without lock.
10889  **/
10890 void
10891 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10892 {
10893 	uint32_t *src = srcp;
10894 	uint32_t *dest = destp;
10895 	uint32_t ldata;
10896 	int i;
10897 
10898 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10899 		ldata = *src;
10900 		ldata = be32_to_cpu(ldata);
10901 		*dest = ldata;
10902 		src++;
10903 		dest++;
10904 	}
10905 }
10906 
10907 /**
10908  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10909  * @phba: Pointer to HBA context object.
10910  * @pring: Pointer to driver SLI ring object.
10911  * @mp: Pointer to driver buffer object.
10912  *
10913  * This function is called with no lock held.
10914  * It always return zero after adding the buffer to the postbufq
10915  * buffer list.
10916  **/
10917 int
10918 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10919 			 struct lpfc_dmabuf *mp)
10920 {
10921 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10922 	   later */
10923 	spin_lock_irq(&phba->hbalock);
10924 	list_add_tail(&mp->list, &pring->postbufq);
10925 	pring->postbufq_cnt++;
10926 	spin_unlock_irq(&phba->hbalock);
10927 	return 0;
10928 }
10929 
10930 /**
10931  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10932  * @phba: Pointer to HBA context object.
10933  *
10934  * When HBQ is enabled, buffers are searched based on tags. This function
10935  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10936  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10937  * does not conflict with tags of buffer posted for unsolicited events.
10938  * The function returns the allocated tag. The function is called with
10939  * no locks held.
10940  **/
10941 uint32_t
10942 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10943 {
10944 	spin_lock_irq(&phba->hbalock);
10945 	phba->buffer_tag_count++;
10946 	/*
10947 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10948 	 * a tag assigned by HBQ.
10949 	 */
10950 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10951 	spin_unlock_irq(&phba->hbalock);
10952 	return phba->buffer_tag_count;
10953 }
10954 
10955 /**
10956  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10957  * @phba: Pointer to HBA context object.
10958  * @pring: Pointer to driver SLI ring object.
10959  * @tag: Buffer tag.
10960  *
10961  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10962  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10963  * iocb is posted to the response ring with the tag of the buffer.
10964  * This function searches the pring->postbufq list using the tag
10965  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10966  * iocb. If the buffer is found then lpfc_dmabuf object of the
10967  * buffer is returned to the caller else NULL is returned.
10968  * This function is called with no lock held.
10969  **/
10970 struct lpfc_dmabuf *
10971 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10972 			uint32_t tag)
10973 {
10974 	struct lpfc_dmabuf *mp, *next_mp;
10975 	struct list_head *slp = &pring->postbufq;
10976 
10977 	/* Search postbufq, from the beginning, looking for a match on tag */
10978 	spin_lock_irq(&phba->hbalock);
10979 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10980 		if (mp->buffer_tag == tag) {
10981 			list_del_init(&mp->list);
10982 			pring->postbufq_cnt--;
10983 			spin_unlock_irq(&phba->hbalock);
10984 			return mp;
10985 		}
10986 	}
10987 
10988 	spin_unlock_irq(&phba->hbalock);
10989 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10990 			"0402 Cannot find virtual addr for buffer tag on "
10991 			"ring %d Data x%lx x%p x%p x%x\n",
10992 			pring->ringno, (unsigned long) tag,
10993 			slp->next, slp->prev, pring->postbufq_cnt);
10994 
10995 	return NULL;
10996 }
10997 
10998 /**
10999  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11000  * @phba: Pointer to HBA context object.
11001  * @pring: Pointer to driver SLI ring object.
11002  * @phys: DMA address of the buffer.
11003  *
11004  * This function searches the buffer list using the dma_address
11005  * of unsolicited event to find the driver's lpfc_dmabuf object
11006  * corresponding to the dma_address. The function returns the
11007  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11008  * This function is called by the ct and els unsolicited event
11009  * handlers to get the buffer associated with the unsolicited
11010  * event.
11011  *
11012  * This function is called with no lock held.
11013  **/
11014 struct lpfc_dmabuf *
11015 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11016 			 dma_addr_t phys)
11017 {
11018 	struct lpfc_dmabuf *mp, *next_mp;
11019 	struct list_head *slp = &pring->postbufq;
11020 
11021 	/* Search postbufq, from the beginning, looking for a match on phys */
11022 	spin_lock_irq(&phba->hbalock);
11023 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11024 		if (mp->phys == phys) {
11025 			list_del_init(&mp->list);
11026 			pring->postbufq_cnt--;
11027 			spin_unlock_irq(&phba->hbalock);
11028 			return mp;
11029 		}
11030 	}
11031 
11032 	spin_unlock_irq(&phba->hbalock);
11033 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11034 			"0410 Cannot find virtual addr for mapped buf on "
11035 			"ring %d Data x%llx x%p x%p x%x\n",
11036 			pring->ringno, (unsigned long long)phys,
11037 			slp->next, slp->prev, pring->postbufq_cnt);
11038 	return NULL;
11039 }
11040 
11041 /**
11042  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11043  * @phba: Pointer to HBA context object.
11044  * @cmdiocb: Pointer to driver command iocb object.
11045  * @rspiocb: Pointer to driver response iocb object.
11046  *
11047  * This function is the completion handler for the abort iocbs for
11048  * ELS commands. This function is called from the ELS ring event
11049  * handler with no lock held. This function frees memory resources
11050  * associated with the abort iocb.
11051  **/
11052 static void
11053 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11054 			struct lpfc_iocbq *rspiocb)
11055 {
11056 	IOCB_t *irsp = &rspiocb->iocb;
11057 	uint16_t abort_iotag, abort_context;
11058 	struct lpfc_iocbq *abort_iocb = NULL;
11059 
11060 	if (irsp->ulpStatus) {
11061 
11062 		/*
11063 		 * Assume that the port already completed and returned, or
11064 		 * will return the iocb. Just Log the message.
11065 		 */
11066 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11067 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11068 
11069 		spin_lock_irq(&phba->hbalock);
11070 		if (phba->sli_rev < LPFC_SLI_REV4) {
11071 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11072 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11073 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11074 				spin_unlock_irq(&phba->hbalock);
11075 				goto release_iocb;
11076 			}
11077 			if (abort_iotag != 0 &&
11078 				abort_iotag <= phba->sli.last_iotag)
11079 				abort_iocb =
11080 					phba->sli.iocbq_lookup[abort_iotag];
11081 		} else
11082 			/* For sli4 the abort_tag is the XRI,
11083 			 * so the abort routine puts the iotag  of the iocb
11084 			 * being aborted in the context field of the abort
11085 			 * IOCB.
11086 			 */
11087 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11088 
11089 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11090 				"0327 Cannot abort els iocb %p "
11091 				"with tag %x context %x, abort status %x, "
11092 				"abort code %x\n",
11093 				abort_iocb, abort_iotag, abort_context,
11094 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11095 
11096 		spin_unlock_irq(&phba->hbalock);
11097 	}
11098 release_iocb:
11099 	lpfc_sli_release_iocbq(phba, cmdiocb);
11100 	return;
11101 }
11102 
11103 /**
11104  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11105  * @phba: Pointer to HBA context object.
11106  * @cmdiocb: Pointer to driver command iocb object.
11107  * @rspiocb: Pointer to driver response iocb object.
11108  *
11109  * The function is called from SLI ring event handler with no
11110  * lock held. This function is the completion handler for ELS commands
11111  * which are aborted. The function frees memory resources used for
11112  * the aborted ELS commands.
11113  **/
11114 static void
11115 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11116 		     struct lpfc_iocbq *rspiocb)
11117 {
11118 	IOCB_t *irsp = &rspiocb->iocb;
11119 
11120 	/* ELS cmd tag <ulpIoTag> completes */
11121 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11122 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11123 			"x%x x%x x%x\n",
11124 			irsp->ulpIoTag, irsp->ulpStatus,
11125 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11126 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11127 		lpfc_ct_free_iocb(phba, cmdiocb);
11128 	else
11129 		lpfc_els_free_iocb(phba, cmdiocb);
11130 	return;
11131 }
11132 
11133 /**
11134  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11135  * @phba: Pointer to HBA context object.
11136  * @pring: Pointer to driver SLI ring object.
11137  * @cmdiocb: Pointer to driver command iocb object.
11138  *
11139  * This function issues an abort iocb for the provided command iocb down to
11140  * the port. Other than the case the outstanding command iocb is an abort
11141  * request, this function issues abort out unconditionally. This function is
11142  * called with hbalock held. The function returns 0 when it fails due to
11143  * memory allocation failure or when the command iocb is an abort request.
11144  **/
11145 static int
11146 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11147 			   struct lpfc_iocbq *cmdiocb)
11148 {
11149 	struct lpfc_vport *vport = cmdiocb->vport;
11150 	struct lpfc_iocbq *abtsiocbp;
11151 	IOCB_t *icmd = NULL;
11152 	IOCB_t *iabt = NULL;
11153 	int retval;
11154 	unsigned long iflags;
11155 	struct lpfc_nodelist *ndlp;
11156 
11157 	lockdep_assert_held(&phba->hbalock);
11158 
11159 	/*
11160 	 * There are certain command types we don't want to abort.  And we
11161 	 * don't want to abort commands that are already in the process of
11162 	 * being aborted.
11163 	 */
11164 	icmd = &cmdiocb->iocb;
11165 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11166 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11167 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11168 		return 0;
11169 
11170 	/* issue ABTS for this IOCB based on iotag */
11171 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11172 	if (abtsiocbp == NULL)
11173 		return 0;
11174 
11175 	/* This signals the response to set the correct status
11176 	 * before calling the completion handler
11177 	 */
11178 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11179 
11180 	iabt = &abtsiocbp->iocb;
11181 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11182 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11183 	if (phba->sli_rev == LPFC_SLI_REV4) {
11184 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11185 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11186 	} else {
11187 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11188 		if (pring->ringno == LPFC_ELS_RING) {
11189 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11190 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11191 		}
11192 	}
11193 	iabt->ulpLe = 1;
11194 	iabt->ulpClass = icmd->ulpClass;
11195 
11196 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11197 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11198 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11199 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11200 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11201 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11202 
11203 	if (phba->link_state >= LPFC_LINK_UP)
11204 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11205 	else
11206 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11207 
11208 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11209 	abtsiocbp->vport = vport;
11210 
11211 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11212 			 "0339 Abort xri x%x, original iotag x%x, "
11213 			 "abort cmd iotag x%x\n",
11214 			 iabt->un.acxri.abortIoTag,
11215 			 iabt->un.acxri.abortContextTag,
11216 			 abtsiocbp->iotag);
11217 
11218 	if (phba->sli_rev == LPFC_SLI_REV4) {
11219 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11220 		if (unlikely(pring == NULL))
11221 			return 0;
11222 		/* Note: both hbalock and ring_lock need to be set here */
11223 		spin_lock_irqsave(&pring->ring_lock, iflags);
11224 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11225 			abtsiocbp, 0);
11226 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11227 	} else {
11228 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11229 			abtsiocbp, 0);
11230 	}
11231 
11232 	if (retval)
11233 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11234 
11235 	/*
11236 	 * Caller to this routine should check for IOCB_ERROR
11237 	 * and handle it properly.  This routine no longer removes
11238 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11239 	 */
11240 	return retval;
11241 }
11242 
11243 /**
11244  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11245  * @phba: Pointer to HBA context object.
11246  * @pring: Pointer to driver SLI ring object.
11247  * @cmdiocb: Pointer to driver command iocb object.
11248  *
11249  * This function issues an abort iocb for the provided command iocb. In case
11250  * of unloading, the abort iocb will not be issued to commands on the ELS
11251  * ring. Instead, the callback function shall be changed to those commands
11252  * so that nothing happens when them finishes. This function is called with
11253  * hbalock held. The function returns 0 when the command iocb is an abort
11254  * request.
11255  **/
11256 int
11257 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11258 			   struct lpfc_iocbq *cmdiocb)
11259 {
11260 	struct lpfc_vport *vport = cmdiocb->vport;
11261 	int retval = IOCB_ERROR;
11262 	IOCB_t *icmd = NULL;
11263 
11264 	lockdep_assert_held(&phba->hbalock);
11265 
11266 	/*
11267 	 * There are certain command types we don't want to abort.  And we
11268 	 * don't want to abort commands that are already in the process of
11269 	 * being aborted.
11270 	 */
11271 	icmd = &cmdiocb->iocb;
11272 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11273 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11274 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11275 		return 0;
11276 
11277 	if (!pring) {
11278 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11279 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11280 		else
11281 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11282 		goto abort_iotag_exit;
11283 	}
11284 
11285 	/*
11286 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11287 	 * the callback so that nothing happens when it finishes.
11288 	 */
11289 	if ((vport->load_flag & FC_UNLOADING) &&
11290 	    (pring->ringno == LPFC_ELS_RING)) {
11291 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11292 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11293 		else
11294 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11295 		goto abort_iotag_exit;
11296 	}
11297 
11298 	/* Now, we try to issue the abort to the cmdiocb out */
11299 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11300 
11301 abort_iotag_exit:
11302 	/*
11303 	 * Caller to this routine should check for IOCB_ERROR
11304 	 * and handle it properly.  This routine no longer removes
11305 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11306 	 */
11307 	return retval;
11308 }
11309 
11310 /**
11311  * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
11312  * @phba: Pointer to HBA context object.
11313  * @pring: Pointer to driver SLI ring object.
11314  * @cmdiocb: Pointer to driver command iocb object.
11315  *
11316  * This function issues an abort iocb for the provided command iocb down to
11317  * the port. Other than the case the outstanding command iocb is an abort
11318  * request, this function issues abort out unconditionally. This function is
11319  * called with hbalock held. The function returns 0 when it fails due to
11320  * memory allocation failure or when the command iocb is an abort request.
11321  **/
11322 static int
11323 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11324 			struct lpfc_iocbq *cmdiocb)
11325 {
11326 	struct lpfc_vport *vport = cmdiocb->vport;
11327 	struct lpfc_iocbq *abtsiocbp;
11328 	union lpfc_wqe128 *abts_wqe;
11329 	int retval;
11330 
11331 	/*
11332 	 * There are certain command types we don't want to abort.  And we
11333 	 * don't want to abort commands that are already in the process of
11334 	 * being aborted.
11335 	 */
11336 	if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
11337 	    cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
11338 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11339 		return 0;
11340 
11341 	/* issue ABTS for this io based on iotag */
11342 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11343 	if (abtsiocbp == NULL)
11344 		return 0;
11345 
11346 	/* This signals the response to set the correct status
11347 	 * before calling the completion handler
11348 	 */
11349 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11350 
11351 	/* Complete prepping the abort wqe and issue to the FW. */
11352 	abts_wqe = &abtsiocbp->wqe;
11353 
11354 	/* Clear any stale WQE contents */
11355 	memset(abts_wqe, 0, sizeof(union lpfc_wqe));
11356 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
11357 
11358 	/* word 7 */
11359 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
11360 	bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
11361 	       cmdiocb->iocb.ulpClass);
11362 
11363 	/* word 8 - tell the FW to abort the IO associated with this
11364 	 * outstanding exchange ID.
11365 	 */
11366 	abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
11367 
11368 	/* word 9 - this is the iotag for the abts_wqe completion. */
11369 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
11370 	       abtsiocbp->iotag);
11371 
11372 	/* word 10 */
11373 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
11374 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
11375 
11376 	/* word 11 */
11377 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11378 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
11379 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
11380 
11381 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11382 	abtsiocbp->iocb_flag |= LPFC_IO_NVME;
11383 	abtsiocbp->vport = vport;
11384 	abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
11385 	retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
11386 	if (retval) {
11387 		lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11388 				 "6147 Failed abts issue_wqe with status x%x "
11389 				 "for oxid x%x\n",
11390 				 retval, cmdiocb->sli4_xritag);
11391 		lpfc_sli_release_iocbq(phba, abtsiocbp);
11392 		return retval;
11393 	}
11394 
11395 	lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11396 			 "6148 Drv Abort NVME Request Issued for "
11397 			 "ox_id x%x on reqtag x%x\n",
11398 			 cmdiocb->sli4_xritag,
11399 			 abtsiocbp->iotag);
11400 
11401 	return retval;
11402 }
11403 
11404 /**
11405  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11406  * @phba: pointer to lpfc HBA data structure.
11407  *
11408  * This routine will abort all pending and outstanding iocbs to an HBA.
11409  **/
11410 void
11411 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11412 {
11413 	struct lpfc_sli *psli = &phba->sli;
11414 	struct lpfc_sli_ring *pring;
11415 	struct lpfc_queue *qp = NULL;
11416 	int i;
11417 
11418 	if (phba->sli_rev != LPFC_SLI_REV4) {
11419 		for (i = 0; i < psli->num_rings; i++) {
11420 			pring = &psli->sli3_ring[i];
11421 			lpfc_sli_abort_iocb_ring(phba, pring);
11422 		}
11423 		return;
11424 	}
11425 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11426 		pring = qp->pring;
11427 		if (!pring)
11428 			continue;
11429 		lpfc_sli_abort_iocb_ring(phba, pring);
11430 	}
11431 }
11432 
11433 /**
11434  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11435  * @iocbq: Pointer to driver iocb object.
11436  * @vport: Pointer to driver virtual port object.
11437  * @tgt_id: SCSI ID of the target.
11438  * @lun_id: LUN ID of the scsi device.
11439  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11440  *
11441  * This function acts as an iocb filter for functions which abort or count
11442  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11443  * 0 if the filtering criteria is met for the given iocb and will return
11444  * 1 if the filtering criteria is not met.
11445  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11446  * given iocb is for the SCSI device specified by vport, tgt_id and
11447  * lun_id parameter.
11448  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11449  * given iocb is for the SCSI target specified by vport and tgt_id
11450  * parameters.
11451  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11452  * given iocb is for the SCSI host associated with the given vport.
11453  * This function is called with no locks held.
11454  **/
11455 static int
11456 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11457 			   uint16_t tgt_id, uint64_t lun_id,
11458 			   lpfc_ctx_cmd ctx_cmd)
11459 {
11460 	struct lpfc_scsi_buf *lpfc_cmd;
11461 	int rc = 1;
11462 
11463 	if (iocbq->vport != vport)
11464 		return rc;
11465 
11466 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11467 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11468 		return rc;
11469 
11470 	lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11471 
11472 	if (lpfc_cmd->pCmd == NULL)
11473 		return rc;
11474 
11475 	switch (ctx_cmd) {
11476 	case LPFC_CTX_LUN:
11477 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11478 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11479 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11480 			rc = 0;
11481 		break;
11482 	case LPFC_CTX_TGT:
11483 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11484 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11485 			rc = 0;
11486 		break;
11487 	case LPFC_CTX_HOST:
11488 		rc = 0;
11489 		break;
11490 	default:
11491 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11492 			__func__, ctx_cmd);
11493 		break;
11494 	}
11495 
11496 	return rc;
11497 }
11498 
11499 /**
11500  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11501  * @vport: Pointer to virtual port.
11502  * @tgt_id: SCSI ID of the target.
11503  * @lun_id: LUN ID of the scsi device.
11504  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11505  *
11506  * This function returns number of FCP commands pending for the vport.
11507  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11508  * commands pending on the vport associated with SCSI device specified
11509  * by tgt_id and lun_id parameters.
11510  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11511  * commands pending on the vport associated with SCSI target specified
11512  * by tgt_id parameter.
11513  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11514  * commands pending on the vport.
11515  * This function returns the number of iocbs which satisfy the filter.
11516  * This function is called without any lock held.
11517  **/
11518 int
11519 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11520 		  lpfc_ctx_cmd ctx_cmd)
11521 {
11522 	struct lpfc_hba *phba = vport->phba;
11523 	struct lpfc_iocbq *iocbq;
11524 	int sum, i;
11525 
11526 	spin_lock_irq(&phba->hbalock);
11527 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11528 		iocbq = phba->sli.iocbq_lookup[i];
11529 
11530 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11531 						ctx_cmd) == 0)
11532 			sum++;
11533 	}
11534 	spin_unlock_irq(&phba->hbalock);
11535 
11536 	return sum;
11537 }
11538 
11539 /**
11540  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11541  * @phba: Pointer to HBA context object
11542  * @cmdiocb: Pointer to command iocb object.
11543  * @rspiocb: Pointer to response iocb object.
11544  *
11545  * This function is called when an aborted FCP iocb completes. This
11546  * function is called by the ring event handler with no lock held.
11547  * This function frees the iocb.
11548  **/
11549 void
11550 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11551 			struct lpfc_iocbq *rspiocb)
11552 {
11553 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11554 			"3096 ABORT_XRI_CN completing on rpi x%x "
11555 			"original iotag x%x, abort cmd iotag x%x "
11556 			"status 0x%x, reason 0x%x\n",
11557 			cmdiocb->iocb.un.acxri.abortContextTag,
11558 			cmdiocb->iocb.un.acxri.abortIoTag,
11559 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11560 			rspiocb->iocb.un.ulpWord[4]);
11561 	lpfc_sli_release_iocbq(phba, cmdiocb);
11562 	return;
11563 }
11564 
11565 /**
11566  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11567  * @vport: Pointer to virtual port.
11568  * @pring: Pointer to driver SLI ring object.
11569  * @tgt_id: SCSI ID of the target.
11570  * @lun_id: LUN ID of the scsi device.
11571  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11572  *
11573  * This function sends an abort command for every SCSI command
11574  * associated with the given virtual port pending on the ring
11575  * filtered by lpfc_sli_validate_fcp_iocb function.
11576  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11577  * FCP iocbs associated with lun specified by tgt_id and lun_id
11578  * parameters
11579  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11580  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11581  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11582  * FCP iocbs associated with virtual port.
11583  * This function returns number of iocbs it failed to abort.
11584  * This function is called with no locks held.
11585  **/
11586 int
11587 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11588 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11589 {
11590 	struct lpfc_hba *phba = vport->phba;
11591 	struct lpfc_iocbq *iocbq;
11592 	struct lpfc_iocbq *abtsiocb;
11593 	struct lpfc_sli_ring *pring_s4;
11594 	IOCB_t *cmd = NULL;
11595 	int errcnt = 0, ret_val = 0;
11596 	int i;
11597 
11598 	/* all I/Os are in process of being flushed */
11599 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11600 		return errcnt;
11601 
11602 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11603 		iocbq = phba->sli.iocbq_lookup[i];
11604 
11605 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11606 					       abort_cmd) != 0)
11607 			continue;
11608 
11609 		/*
11610 		 * If the iocbq is already being aborted, don't take a second
11611 		 * action, but do count it.
11612 		 */
11613 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11614 			continue;
11615 
11616 		/* issue ABTS for this IOCB based on iotag */
11617 		abtsiocb = lpfc_sli_get_iocbq(phba);
11618 		if (abtsiocb == NULL) {
11619 			errcnt++;
11620 			continue;
11621 		}
11622 
11623 		/* indicate the IO is being aborted by the driver. */
11624 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11625 
11626 		cmd = &iocbq->iocb;
11627 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11628 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11629 		if (phba->sli_rev == LPFC_SLI_REV4)
11630 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11631 		else
11632 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11633 		abtsiocb->iocb.ulpLe = 1;
11634 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11635 		abtsiocb->vport = vport;
11636 
11637 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11638 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11639 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11640 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11641 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11642 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11643 
11644 		if (lpfc_is_link_up(phba))
11645 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11646 		else
11647 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11648 
11649 		/* Setup callback routine and issue the command. */
11650 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11651 		if (phba->sli_rev == LPFC_SLI_REV4) {
11652 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11653 			if (!pring_s4)
11654 				continue;
11655 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11656 						      abtsiocb, 0);
11657 		} else
11658 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11659 						      abtsiocb, 0);
11660 		if (ret_val == IOCB_ERROR) {
11661 			lpfc_sli_release_iocbq(phba, abtsiocb);
11662 			errcnt++;
11663 			continue;
11664 		}
11665 	}
11666 
11667 	return errcnt;
11668 }
11669 
11670 /**
11671  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11672  * @vport: Pointer to virtual port.
11673  * @pring: Pointer to driver SLI ring object.
11674  * @tgt_id: SCSI ID of the target.
11675  * @lun_id: LUN ID of the scsi device.
11676  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11677  *
11678  * This function sends an abort command for every SCSI command
11679  * associated with the given virtual port pending on the ring
11680  * filtered by lpfc_sli_validate_fcp_iocb function.
11681  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11682  * FCP iocbs associated with lun specified by tgt_id and lun_id
11683  * parameters
11684  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11685  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11686  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11687  * FCP iocbs associated with virtual port.
11688  * This function returns number of iocbs it aborted .
11689  * This function is called with no locks held right after a taskmgmt
11690  * command is sent.
11691  **/
11692 int
11693 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11694 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11695 {
11696 	struct lpfc_hba *phba = vport->phba;
11697 	struct lpfc_scsi_buf *lpfc_cmd;
11698 	struct lpfc_iocbq *abtsiocbq;
11699 	struct lpfc_nodelist *ndlp;
11700 	struct lpfc_iocbq *iocbq;
11701 	IOCB_t *icmd;
11702 	int sum, i, ret_val;
11703 	unsigned long iflags;
11704 	struct lpfc_sli_ring *pring_s4;
11705 
11706 	spin_lock_irqsave(&phba->hbalock, iflags);
11707 
11708 	/* all I/Os are in process of being flushed */
11709 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11710 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11711 		return 0;
11712 	}
11713 	sum = 0;
11714 
11715 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11716 		iocbq = phba->sli.iocbq_lookup[i];
11717 
11718 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11719 					       cmd) != 0)
11720 			continue;
11721 
11722 		/*
11723 		 * If the iocbq is already being aborted, don't take a second
11724 		 * action, but do count it.
11725 		 */
11726 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11727 			continue;
11728 
11729 		/* issue ABTS for this IOCB based on iotag */
11730 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11731 		if (abtsiocbq == NULL)
11732 			continue;
11733 
11734 		icmd = &iocbq->iocb;
11735 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11736 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11737 		if (phba->sli_rev == LPFC_SLI_REV4)
11738 			abtsiocbq->iocb.un.acxri.abortIoTag =
11739 							 iocbq->sli4_xritag;
11740 		else
11741 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11742 		abtsiocbq->iocb.ulpLe = 1;
11743 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11744 		abtsiocbq->vport = vport;
11745 
11746 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11747 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11748 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11749 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11750 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11751 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11752 
11753 		lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11754 		ndlp = lpfc_cmd->rdata->pnode;
11755 
11756 		if (lpfc_is_link_up(phba) &&
11757 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11758 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11759 		else
11760 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11761 
11762 		/* Setup callback routine and issue the command. */
11763 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11764 
11765 		/*
11766 		 * Indicate the IO is being aborted by the driver and set
11767 		 * the caller's flag into the aborted IO.
11768 		 */
11769 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11770 
11771 		if (phba->sli_rev == LPFC_SLI_REV4) {
11772 			pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq);
11773 			if (!pring_s4)
11774 				continue;
11775 			/* Note: both hbalock and ring_lock must be set here */
11776 			spin_lock(&pring_s4->ring_lock);
11777 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11778 							abtsiocbq, 0);
11779 			spin_unlock(&pring_s4->ring_lock);
11780 		} else {
11781 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11782 							abtsiocbq, 0);
11783 		}
11784 
11785 
11786 		if (ret_val == IOCB_ERROR)
11787 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11788 		else
11789 			sum++;
11790 	}
11791 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11792 	return sum;
11793 }
11794 
11795 /**
11796  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11797  * @phba: Pointer to HBA context object.
11798  * @cmdiocbq: Pointer to command iocb.
11799  * @rspiocbq: Pointer to response iocb.
11800  *
11801  * This function is the completion handler for iocbs issued using
11802  * lpfc_sli_issue_iocb_wait function. This function is called by the
11803  * ring event handler function without any lock held. This function
11804  * can be called from both worker thread context and interrupt
11805  * context. This function also can be called from other thread which
11806  * cleans up the SLI layer objects.
11807  * This function copy the contents of the response iocb to the
11808  * response iocb memory object provided by the caller of
11809  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11810  * sleeps for the iocb completion.
11811  **/
11812 static void
11813 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11814 			struct lpfc_iocbq *cmdiocbq,
11815 			struct lpfc_iocbq *rspiocbq)
11816 {
11817 	wait_queue_head_t *pdone_q;
11818 	unsigned long iflags;
11819 	struct lpfc_scsi_buf *lpfc_cmd;
11820 
11821 	spin_lock_irqsave(&phba->hbalock, iflags);
11822 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11823 
11824 		/*
11825 		 * A time out has occurred for the iocb.  If a time out
11826 		 * completion handler has been supplied, call it.  Otherwise,
11827 		 * just free the iocbq.
11828 		 */
11829 
11830 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11831 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11832 		cmdiocbq->wait_iocb_cmpl = NULL;
11833 		if (cmdiocbq->iocb_cmpl)
11834 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11835 		else
11836 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11837 		return;
11838 	}
11839 
11840 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11841 	if (cmdiocbq->context2 && rspiocbq)
11842 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11843 		       &rspiocbq->iocb, sizeof(IOCB_t));
11844 
11845 	/* Set the exchange busy flag for task management commands */
11846 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11847 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11848 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11849 			cur_iocbq);
11850 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11851 	}
11852 
11853 	pdone_q = cmdiocbq->context_un.wait_queue;
11854 	if (pdone_q)
11855 		wake_up(pdone_q);
11856 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11857 	return;
11858 }
11859 
11860 /**
11861  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11862  * @phba: Pointer to HBA context object..
11863  * @piocbq: Pointer to command iocb.
11864  * @flag: Flag to test.
11865  *
11866  * This routine grabs the hbalock and then test the iocb_flag to
11867  * see if the passed in flag is set.
11868  * Returns:
11869  * 1 if flag is set.
11870  * 0 if flag is not set.
11871  **/
11872 static int
11873 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11874 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11875 {
11876 	unsigned long iflags;
11877 	int ret;
11878 
11879 	spin_lock_irqsave(&phba->hbalock, iflags);
11880 	ret = piocbq->iocb_flag & flag;
11881 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11882 	return ret;
11883 
11884 }
11885 
11886 /**
11887  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11888  * @phba: Pointer to HBA context object..
11889  * @pring: Pointer to sli ring.
11890  * @piocb: Pointer to command iocb.
11891  * @prspiocbq: Pointer to response iocb.
11892  * @timeout: Timeout in number of seconds.
11893  *
11894  * This function issues the iocb to firmware and waits for the
11895  * iocb to complete. The iocb_cmpl field of the shall be used
11896  * to handle iocbs which time out. If the field is NULL, the
11897  * function shall free the iocbq structure.  If more clean up is
11898  * needed, the caller is expected to provide a completion function
11899  * that will provide the needed clean up.  If the iocb command is
11900  * not completed within timeout seconds, the function will either
11901  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11902  * completion function set in the iocb_cmpl field and then return
11903  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11904  * resources if this function returns IOCB_TIMEDOUT.
11905  * The function waits for the iocb completion using an
11906  * non-interruptible wait.
11907  * This function will sleep while waiting for iocb completion.
11908  * So, this function should not be called from any context which
11909  * does not allow sleeping. Due to the same reason, this function
11910  * cannot be called with interrupt disabled.
11911  * This function assumes that the iocb completions occur while
11912  * this function sleep. So, this function cannot be called from
11913  * the thread which process iocb completion for this ring.
11914  * This function clears the iocb_flag of the iocb object before
11915  * issuing the iocb and the iocb completion handler sets this
11916  * flag and wakes this thread when the iocb completes.
11917  * The contents of the response iocb will be copied to prspiocbq
11918  * by the completion handler when the command completes.
11919  * This function returns IOCB_SUCCESS when success.
11920  * This function is called with no lock held.
11921  **/
11922 int
11923 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11924 			 uint32_t ring_number,
11925 			 struct lpfc_iocbq *piocb,
11926 			 struct lpfc_iocbq *prspiocbq,
11927 			 uint32_t timeout)
11928 {
11929 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11930 	long timeleft, timeout_req = 0;
11931 	int retval = IOCB_SUCCESS;
11932 	uint32_t creg_val;
11933 	struct lpfc_iocbq *iocb;
11934 	int txq_cnt = 0;
11935 	int txcmplq_cnt = 0;
11936 	struct lpfc_sli_ring *pring;
11937 	unsigned long iflags;
11938 	bool iocb_completed = true;
11939 
11940 	if (phba->sli_rev >= LPFC_SLI_REV4)
11941 		pring = lpfc_sli4_calc_ring(phba, piocb);
11942 	else
11943 		pring = &phba->sli.sli3_ring[ring_number];
11944 	/*
11945 	 * If the caller has provided a response iocbq buffer, then context2
11946 	 * is NULL or its an error.
11947 	 */
11948 	if (prspiocbq) {
11949 		if (piocb->context2)
11950 			return IOCB_ERROR;
11951 		piocb->context2 = prspiocbq;
11952 	}
11953 
11954 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11955 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11956 	piocb->context_un.wait_queue = &done_q;
11957 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11958 
11959 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11960 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11961 			return IOCB_ERROR;
11962 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11963 		writel(creg_val, phba->HCregaddr);
11964 		readl(phba->HCregaddr); /* flush */
11965 	}
11966 
11967 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11968 				     SLI_IOCB_RET_IOCB);
11969 	if (retval == IOCB_SUCCESS) {
11970 		timeout_req = msecs_to_jiffies(timeout * 1000);
11971 		timeleft = wait_event_timeout(done_q,
11972 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11973 				timeout_req);
11974 		spin_lock_irqsave(&phba->hbalock, iflags);
11975 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11976 
11977 			/*
11978 			 * IOCB timed out.  Inform the wake iocb wait
11979 			 * completion function and set local status
11980 			 */
11981 
11982 			iocb_completed = false;
11983 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11984 		}
11985 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11986 		if (iocb_completed) {
11987 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11988 					"0331 IOCB wake signaled\n");
11989 			/* Note: we are not indicating if the IOCB has a success
11990 			 * status or not - that's for the caller to check.
11991 			 * IOCB_SUCCESS means just that the command was sent and
11992 			 * completed. Not that it completed successfully.
11993 			 * */
11994 		} else if (timeleft == 0) {
11995 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11996 					"0338 IOCB wait timeout error - no "
11997 					"wake response Data x%x\n", timeout);
11998 			retval = IOCB_TIMEDOUT;
11999 		} else {
12000 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12001 					"0330 IOCB wake NOT set, "
12002 					"Data x%x x%lx\n",
12003 					timeout, (timeleft / jiffies));
12004 			retval = IOCB_TIMEDOUT;
12005 		}
12006 	} else if (retval == IOCB_BUSY) {
12007 		if (phba->cfg_log_verbose & LOG_SLI) {
12008 			list_for_each_entry(iocb, &pring->txq, list) {
12009 				txq_cnt++;
12010 			}
12011 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12012 				txcmplq_cnt++;
12013 			}
12014 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12015 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12016 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12017 		}
12018 		return retval;
12019 	} else {
12020 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12021 				"0332 IOCB wait issue failed, Data x%x\n",
12022 				retval);
12023 		retval = IOCB_ERROR;
12024 	}
12025 
12026 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12027 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12028 			return IOCB_ERROR;
12029 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12030 		writel(creg_val, phba->HCregaddr);
12031 		readl(phba->HCregaddr); /* flush */
12032 	}
12033 
12034 	if (prspiocbq)
12035 		piocb->context2 = NULL;
12036 
12037 	piocb->context_un.wait_queue = NULL;
12038 	piocb->iocb_cmpl = NULL;
12039 	return retval;
12040 }
12041 
12042 /**
12043  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12044  * @phba: Pointer to HBA context object.
12045  * @pmboxq: Pointer to driver mailbox object.
12046  * @timeout: Timeout in number of seconds.
12047  *
12048  * This function issues the mailbox to firmware and waits for the
12049  * mailbox command to complete. If the mailbox command is not
12050  * completed within timeout seconds, it returns MBX_TIMEOUT.
12051  * The function waits for the mailbox completion using an
12052  * interruptible wait. If the thread is woken up due to a
12053  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12054  * should not free the mailbox resources, if this function returns
12055  * MBX_TIMEOUT.
12056  * This function will sleep while waiting for mailbox completion.
12057  * So, this function should not be called from any context which
12058  * does not allow sleeping. Due to the same reason, this function
12059  * cannot be called with interrupt disabled.
12060  * This function assumes that the mailbox completion occurs while
12061  * this function sleep. So, this function cannot be called from
12062  * the worker thread which processes mailbox completion.
12063  * This function is called in the context of HBA management
12064  * applications.
12065  * This function returns MBX_SUCCESS when successful.
12066  * This function is called with no lock held.
12067  **/
12068 int
12069 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12070 			 uint32_t timeout)
12071 {
12072 	struct completion mbox_done;
12073 	int retval;
12074 	unsigned long flag;
12075 
12076 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12077 	/* setup wake call as IOCB callback */
12078 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12079 
12080 	/* setup context3 field to pass wait_queue pointer to wake function  */
12081 	init_completion(&mbox_done);
12082 	pmboxq->context3 = &mbox_done;
12083 	/* now issue the command */
12084 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12085 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12086 		wait_for_completion_timeout(&mbox_done,
12087 					    msecs_to_jiffies(timeout * 1000));
12088 
12089 		spin_lock_irqsave(&phba->hbalock, flag);
12090 		pmboxq->context3 = NULL;
12091 		/*
12092 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12093 		 * else do not free the resources.
12094 		 */
12095 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12096 			retval = MBX_SUCCESS;
12097 		} else {
12098 			retval = MBX_TIMEOUT;
12099 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12100 		}
12101 		spin_unlock_irqrestore(&phba->hbalock, flag);
12102 	}
12103 	return retval;
12104 }
12105 
12106 /**
12107  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12108  * @phba: Pointer to HBA context.
12109  *
12110  * This function is called to shutdown the driver's mailbox sub-system.
12111  * It first marks the mailbox sub-system is in a block state to prevent
12112  * the asynchronous mailbox command from issued off the pending mailbox
12113  * command queue. If the mailbox command sub-system shutdown is due to
12114  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12115  * the mailbox sub-system flush routine to forcefully bring down the
12116  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12117  * as with offline or HBA function reset), this routine will wait for the
12118  * outstanding mailbox command to complete before invoking the mailbox
12119  * sub-system flush routine to gracefully bring down mailbox sub-system.
12120  **/
12121 void
12122 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12123 {
12124 	struct lpfc_sli *psli = &phba->sli;
12125 	unsigned long timeout;
12126 
12127 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12128 		/* delay 100ms for port state */
12129 		msleep(100);
12130 		lpfc_sli_mbox_sys_flush(phba);
12131 		return;
12132 	}
12133 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12134 
12135 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12136 	local_bh_disable();
12137 
12138 	spin_lock_irq(&phba->hbalock);
12139 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12140 
12141 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12142 		/* Determine how long we might wait for the active mailbox
12143 		 * command to be gracefully completed by firmware.
12144 		 */
12145 		if (phba->sli.mbox_active)
12146 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12147 						phba->sli.mbox_active) *
12148 						1000) + jiffies;
12149 		spin_unlock_irq(&phba->hbalock);
12150 
12151 		/* Enable softirqs again, done with phba->hbalock */
12152 		local_bh_enable();
12153 
12154 		while (phba->sli.mbox_active) {
12155 			/* Check active mailbox complete status every 2ms */
12156 			msleep(2);
12157 			if (time_after(jiffies, timeout))
12158 				/* Timeout, let the mailbox flush routine to
12159 				 * forcefully release active mailbox command
12160 				 */
12161 				break;
12162 		}
12163 	} else {
12164 		spin_unlock_irq(&phba->hbalock);
12165 
12166 		/* Enable softirqs again, done with phba->hbalock */
12167 		local_bh_enable();
12168 	}
12169 
12170 	lpfc_sli_mbox_sys_flush(phba);
12171 }
12172 
12173 /**
12174  * lpfc_sli_eratt_read - read sli-3 error attention events
12175  * @phba: Pointer to HBA context.
12176  *
12177  * This function is called to read the SLI3 device error attention registers
12178  * for possible error attention events. The caller must hold the hostlock
12179  * with spin_lock_irq().
12180  *
12181  * This function returns 1 when there is Error Attention in the Host Attention
12182  * Register and returns 0 otherwise.
12183  **/
12184 static int
12185 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12186 {
12187 	uint32_t ha_copy;
12188 
12189 	/* Read chip Host Attention (HA) register */
12190 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12191 		goto unplug_err;
12192 
12193 	if (ha_copy & HA_ERATT) {
12194 		/* Read host status register to retrieve error event */
12195 		if (lpfc_sli_read_hs(phba))
12196 			goto unplug_err;
12197 
12198 		/* Check if there is a deferred error condition is active */
12199 		if ((HS_FFER1 & phba->work_hs) &&
12200 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12201 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12202 			phba->hba_flag |= DEFER_ERATT;
12203 			/* Clear all interrupt enable conditions */
12204 			writel(0, phba->HCregaddr);
12205 			readl(phba->HCregaddr);
12206 		}
12207 
12208 		/* Set the driver HA work bitmap */
12209 		phba->work_ha |= HA_ERATT;
12210 		/* Indicate polling handles this ERATT */
12211 		phba->hba_flag |= HBA_ERATT_HANDLED;
12212 		return 1;
12213 	}
12214 	return 0;
12215 
12216 unplug_err:
12217 	/* Set the driver HS work bitmap */
12218 	phba->work_hs |= UNPLUG_ERR;
12219 	/* Set the driver HA work bitmap */
12220 	phba->work_ha |= HA_ERATT;
12221 	/* Indicate polling handles this ERATT */
12222 	phba->hba_flag |= HBA_ERATT_HANDLED;
12223 	return 1;
12224 }
12225 
12226 /**
12227  * lpfc_sli4_eratt_read - read sli-4 error attention events
12228  * @phba: Pointer to HBA context.
12229  *
12230  * This function is called to read the SLI4 device error attention registers
12231  * for possible error attention events. The caller must hold the hostlock
12232  * with spin_lock_irq().
12233  *
12234  * This function returns 1 when there is Error Attention in the Host Attention
12235  * Register and returns 0 otherwise.
12236  **/
12237 static int
12238 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12239 {
12240 	uint32_t uerr_sta_hi, uerr_sta_lo;
12241 	uint32_t if_type, portsmphr;
12242 	struct lpfc_register portstat_reg;
12243 
12244 	/*
12245 	 * For now, use the SLI4 device internal unrecoverable error
12246 	 * registers for error attention. This can be changed later.
12247 	 */
12248 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12249 	switch (if_type) {
12250 	case LPFC_SLI_INTF_IF_TYPE_0:
12251 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12252 			&uerr_sta_lo) ||
12253 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12254 			&uerr_sta_hi)) {
12255 			phba->work_hs |= UNPLUG_ERR;
12256 			phba->work_ha |= HA_ERATT;
12257 			phba->hba_flag |= HBA_ERATT_HANDLED;
12258 			return 1;
12259 		}
12260 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12261 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12262 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12263 					"1423 HBA Unrecoverable error: "
12264 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12265 					"ue_mask_lo_reg=0x%x, "
12266 					"ue_mask_hi_reg=0x%x\n",
12267 					uerr_sta_lo, uerr_sta_hi,
12268 					phba->sli4_hba.ue_mask_lo,
12269 					phba->sli4_hba.ue_mask_hi);
12270 			phba->work_status[0] = uerr_sta_lo;
12271 			phba->work_status[1] = uerr_sta_hi;
12272 			phba->work_ha |= HA_ERATT;
12273 			phba->hba_flag |= HBA_ERATT_HANDLED;
12274 			return 1;
12275 		}
12276 		break;
12277 	case LPFC_SLI_INTF_IF_TYPE_2:
12278 	case LPFC_SLI_INTF_IF_TYPE_6:
12279 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12280 			&portstat_reg.word0) ||
12281 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12282 			&portsmphr)){
12283 			phba->work_hs |= UNPLUG_ERR;
12284 			phba->work_ha |= HA_ERATT;
12285 			phba->hba_flag |= HBA_ERATT_HANDLED;
12286 			return 1;
12287 		}
12288 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12289 			phba->work_status[0] =
12290 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12291 			phba->work_status[1] =
12292 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12293 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12294 					"2885 Port Status Event: "
12295 					"port status reg 0x%x, "
12296 					"port smphr reg 0x%x, "
12297 					"error 1=0x%x, error 2=0x%x\n",
12298 					portstat_reg.word0,
12299 					portsmphr,
12300 					phba->work_status[0],
12301 					phba->work_status[1]);
12302 			phba->work_ha |= HA_ERATT;
12303 			phba->hba_flag |= HBA_ERATT_HANDLED;
12304 			return 1;
12305 		}
12306 		break;
12307 	case LPFC_SLI_INTF_IF_TYPE_1:
12308 	default:
12309 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12310 				"2886 HBA Error Attention on unsupported "
12311 				"if type %d.", if_type);
12312 		return 1;
12313 	}
12314 
12315 	return 0;
12316 }
12317 
12318 /**
12319  * lpfc_sli_check_eratt - check error attention events
12320  * @phba: Pointer to HBA context.
12321  *
12322  * This function is called from timer soft interrupt context to check HBA's
12323  * error attention register bit for error attention events.
12324  *
12325  * This function returns 1 when there is Error Attention in the Host Attention
12326  * Register and returns 0 otherwise.
12327  **/
12328 int
12329 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12330 {
12331 	uint32_t ha_copy;
12332 
12333 	/* If somebody is waiting to handle an eratt, don't process it
12334 	 * here. The brdkill function will do this.
12335 	 */
12336 	if (phba->link_flag & LS_IGNORE_ERATT)
12337 		return 0;
12338 
12339 	/* Check if interrupt handler handles this ERATT */
12340 	spin_lock_irq(&phba->hbalock);
12341 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12342 		/* Interrupt handler has handled ERATT */
12343 		spin_unlock_irq(&phba->hbalock);
12344 		return 0;
12345 	}
12346 
12347 	/*
12348 	 * If there is deferred error attention, do not check for error
12349 	 * attention
12350 	 */
12351 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12352 		spin_unlock_irq(&phba->hbalock);
12353 		return 0;
12354 	}
12355 
12356 	/* If PCI channel is offline, don't process it */
12357 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12358 		spin_unlock_irq(&phba->hbalock);
12359 		return 0;
12360 	}
12361 
12362 	switch (phba->sli_rev) {
12363 	case LPFC_SLI_REV2:
12364 	case LPFC_SLI_REV3:
12365 		/* Read chip Host Attention (HA) register */
12366 		ha_copy = lpfc_sli_eratt_read(phba);
12367 		break;
12368 	case LPFC_SLI_REV4:
12369 		/* Read device Uncoverable Error (UERR) registers */
12370 		ha_copy = lpfc_sli4_eratt_read(phba);
12371 		break;
12372 	default:
12373 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12374 				"0299 Invalid SLI revision (%d)\n",
12375 				phba->sli_rev);
12376 		ha_copy = 0;
12377 		break;
12378 	}
12379 	spin_unlock_irq(&phba->hbalock);
12380 
12381 	return ha_copy;
12382 }
12383 
12384 /**
12385  * lpfc_intr_state_check - Check device state for interrupt handling
12386  * @phba: Pointer to HBA context.
12387  *
12388  * This inline routine checks whether a device or its PCI slot is in a state
12389  * that the interrupt should be handled.
12390  *
12391  * This function returns 0 if the device or the PCI slot is in a state that
12392  * interrupt should be handled, otherwise -EIO.
12393  */
12394 static inline int
12395 lpfc_intr_state_check(struct lpfc_hba *phba)
12396 {
12397 	/* If the pci channel is offline, ignore all the interrupts */
12398 	if (unlikely(pci_channel_offline(phba->pcidev)))
12399 		return -EIO;
12400 
12401 	/* Update device level interrupt statistics */
12402 	phba->sli.slistat.sli_intr++;
12403 
12404 	/* Ignore all interrupts during initialization. */
12405 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12406 		return -EIO;
12407 
12408 	return 0;
12409 }
12410 
12411 /**
12412  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12413  * @irq: Interrupt number.
12414  * @dev_id: The device context pointer.
12415  *
12416  * This function is directly called from the PCI layer as an interrupt
12417  * service routine when device with SLI-3 interface spec is enabled with
12418  * MSI-X multi-message interrupt mode and there are slow-path events in
12419  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12420  * interrupt mode, this function is called as part of the device-level
12421  * interrupt handler. When the PCI slot is in error recovery or the HBA
12422  * is undergoing initialization, the interrupt handler will not process
12423  * the interrupt. The link attention and ELS ring attention events are
12424  * handled by the worker thread. The interrupt handler signals the worker
12425  * thread and returns for these events. This function is called without
12426  * any lock held. It gets the hbalock to access and update SLI data
12427  * structures.
12428  *
12429  * This function returns IRQ_HANDLED when interrupt is handled else it
12430  * returns IRQ_NONE.
12431  **/
12432 irqreturn_t
12433 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12434 {
12435 	struct lpfc_hba  *phba;
12436 	uint32_t ha_copy, hc_copy;
12437 	uint32_t work_ha_copy;
12438 	unsigned long status;
12439 	unsigned long iflag;
12440 	uint32_t control;
12441 
12442 	MAILBOX_t *mbox, *pmbox;
12443 	struct lpfc_vport *vport;
12444 	struct lpfc_nodelist *ndlp;
12445 	struct lpfc_dmabuf *mp;
12446 	LPFC_MBOXQ_t *pmb;
12447 	int rc;
12448 
12449 	/*
12450 	 * Get the driver's phba structure from the dev_id and
12451 	 * assume the HBA is not interrupting.
12452 	 */
12453 	phba = (struct lpfc_hba *)dev_id;
12454 
12455 	if (unlikely(!phba))
12456 		return IRQ_NONE;
12457 
12458 	/*
12459 	 * Stuff needs to be attented to when this function is invoked as an
12460 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12461 	 */
12462 	if (phba->intr_type == MSIX) {
12463 		/* Check device state for handling interrupt */
12464 		if (lpfc_intr_state_check(phba))
12465 			return IRQ_NONE;
12466 		/* Need to read HA REG for slow-path events */
12467 		spin_lock_irqsave(&phba->hbalock, iflag);
12468 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12469 			goto unplug_error;
12470 		/* If somebody is waiting to handle an eratt don't process it
12471 		 * here. The brdkill function will do this.
12472 		 */
12473 		if (phba->link_flag & LS_IGNORE_ERATT)
12474 			ha_copy &= ~HA_ERATT;
12475 		/* Check the need for handling ERATT in interrupt handler */
12476 		if (ha_copy & HA_ERATT) {
12477 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12478 				/* ERATT polling has handled ERATT */
12479 				ha_copy &= ~HA_ERATT;
12480 			else
12481 				/* Indicate interrupt handler handles ERATT */
12482 				phba->hba_flag |= HBA_ERATT_HANDLED;
12483 		}
12484 
12485 		/*
12486 		 * If there is deferred error attention, do not check for any
12487 		 * interrupt.
12488 		 */
12489 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12490 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12491 			return IRQ_NONE;
12492 		}
12493 
12494 		/* Clear up only attention source related to slow-path */
12495 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12496 			goto unplug_error;
12497 
12498 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12499 			HC_LAINT_ENA | HC_ERINT_ENA),
12500 			phba->HCregaddr);
12501 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12502 			phba->HAregaddr);
12503 		writel(hc_copy, phba->HCregaddr);
12504 		readl(phba->HAregaddr); /* flush */
12505 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12506 	} else
12507 		ha_copy = phba->ha_copy;
12508 
12509 	work_ha_copy = ha_copy & phba->work_ha_mask;
12510 
12511 	if (work_ha_copy) {
12512 		if (work_ha_copy & HA_LATT) {
12513 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12514 				/*
12515 				 * Turn off Link Attention interrupts
12516 				 * until CLEAR_LA done
12517 				 */
12518 				spin_lock_irqsave(&phba->hbalock, iflag);
12519 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12520 				if (lpfc_readl(phba->HCregaddr, &control))
12521 					goto unplug_error;
12522 				control &= ~HC_LAINT_ENA;
12523 				writel(control, phba->HCregaddr);
12524 				readl(phba->HCregaddr); /* flush */
12525 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12526 			}
12527 			else
12528 				work_ha_copy &= ~HA_LATT;
12529 		}
12530 
12531 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12532 			/*
12533 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12534 			 * the only slow ring.
12535 			 */
12536 			status = (work_ha_copy &
12537 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12538 			status >>= (4*LPFC_ELS_RING);
12539 			if (status & HA_RXMASK) {
12540 				spin_lock_irqsave(&phba->hbalock, iflag);
12541 				if (lpfc_readl(phba->HCregaddr, &control))
12542 					goto unplug_error;
12543 
12544 				lpfc_debugfs_slow_ring_trc(phba,
12545 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12546 				control, status,
12547 				(uint32_t)phba->sli.slistat.sli_intr);
12548 
12549 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12550 					lpfc_debugfs_slow_ring_trc(phba,
12551 						"ISR Disable ring:"
12552 						"pwork:x%x hawork:x%x wait:x%x",
12553 						phba->work_ha, work_ha_copy,
12554 						(uint32_t)((unsigned long)
12555 						&phba->work_waitq));
12556 
12557 					control &=
12558 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12559 					writel(control, phba->HCregaddr);
12560 					readl(phba->HCregaddr); /* flush */
12561 				}
12562 				else {
12563 					lpfc_debugfs_slow_ring_trc(phba,
12564 						"ISR slow ring:   pwork:"
12565 						"x%x hawork:x%x wait:x%x",
12566 						phba->work_ha, work_ha_copy,
12567 						(uint32_t)((unsigned long)
12568 						&phba->work_waitq));
12569 				}
12570 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12571 			}
12572 		}
12573 		spin_lock_irqsave(&phba->hbalock, iflag);
12574 		if (work_ha_copy & HA_ERATT) {
12575 			if (lpfc_sli_read_hs(phba))
12576 				goto unplug_error;
12577 			/*
12578 			 * Check if there is a deferred error condition
12579 			 * is active
12580 			 */
12581 			if ((HS_FFER1 & phba->work_hs) &&
12582 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12583 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12584 				  phba->work_hs)) {
12585 				phba->hba_flag |= DEFER_ERATT;
12586 				/* Clear all interrupt enable conditions */
12587 				writel(0, phba->HCregaddr);
12588 				readl(phba->HCregaddr);
12589 			}
12590 		}
12591 
12592 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12593 			pmb = phba->sli.mbox_active;
12594 			pmbox = &pmb->u.mb;
12595 			mbox = phba->mbox;
12596 			vport = pmb->vport;
12597 
12598 			/* First check out the status word */
12599 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12600 			if (pmbox->mbxOwner != OWN_HOST) {
12601 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12602 				/*
12603 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12604 				 * mbxStatus <status>
12605 				 */
12606 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12607 						LOG_SLI,
12608 						"(%d):0304 Stray Mailbox "
12609 						"Interrupt mbxCommand x%x "
12610 						"mbxStatus x%x\n",
12611 						(vport ? vport->vpi : 0),
12612 						pmbox->mbxCommand,
12613 						pmbox->mbxStatus);
12614 				/* clear mailbox attention bit */
12615 				work_ha_copy &= ~HA_MBATT;
12616 			} else {
12617 				phba->sli.mbox_active = NULL;
12618 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12619 				phba->last_completion_time = jiffies;
12620 				del_timer(&phba->sli.mbox_tmo);
12621 				if (pmb->mbox_cmpl) {
12622 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12623 							MAILBOX_CMD_SIZE);
12624 					if (pmb->out_ext_byte_len &&
12625 						pmb->ctx_buf)
12626 						lpfc_sli_pcimem_bcopy(
12627 						phba->mbox_ext,
12628 						pmb->ctx_buf,
12629 						pmb->out_ext_byte_len);
12630 				}
12631 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12632 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12633 
12634 					lpfc_debugfs_disc_trc(vport,
12635 						LPFC_DISC_TRC_MBOX_VPORT,
12636 						"MBOX dflt rpi: : "
12637 						"status:x%x rpi:x%x",
12638 						(uint32_t)pmbox->mbxStatus,
12639 						pmbox->un.varWords[0], 0);
12640 
12641 					if (!pmbox->mbxStatus) {
12642 						mp = (struct lpfc_dmabuf *)
12643 							(pmb->ctx_buf);
12644 						ndlp = (struct lpfc_nodelist *)
12645 							pmb->ctx_ndlp;
12646 
12647 						/* Reg_LOGIN of dflt RPI was
12648 						 * successful. new lets get
12649 						 * rid of the RPI using the
12650 						 * same mbox buffer.
12651 						 */
12652 						lpfc_unreg_login(phba,
12653 							vport->vpi,
12654 							pmbox->un.varWords[0],
12655 							pmb);
12656 						pmb->mbox_cmpl =
12657 							lpfc_mbx_cmpl_dflt_rpi;
12658 						pmb->ctx_buf = mp;
12659 						pmb->ctx_ndlp = ndlp;
12660 						pmb->vport = vport;
12661 						rc = lpfc_sli_issue_mbox(phba,
12662 								pmb,
12663 								MBX_NOWAIT);
12664 						if (rc != MBX_BUSY)
12665 							lpfc_printf_log(phba,
12666 							KERN_ERR,
12667 							LOG_MBOX | LOG_SLI,
12668 							"0350 rc should have"
12669 							"been MBX_BUSY\n");
12670 						if (rc != MBX_NOT_FINISHED)
12671 							goto send_current_mbox;
12672 					}
12673 				}
12674 				spin_lock_irqsave(
12675 						&phba->pport->work_port_lock,
12676 						iflag);
12677 				phba->pport->work_port_events &=
12678 					~WORKER_MBOX_TMO;
12679 				spin_unlock_irqrestore(
12680 						&phba->pport->work_port_lock,
12681 						iflag);
12682 				lpfc_mbox_cmpl_put(phba, pmb);
12683 			}
12684 		} else
12685 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12686 
12687 		if ((work_ha_copy & HA_MBATT) &&
12688 		    (phba->sli.mbox_active == NULL)) {
12689 send_current_mbox:
12690 			/* Process next mailbox command if there is one */
12691 			do {
12692 				rc = lpfc_sli_issue_mbox(phba, NULL,
12693 							 MBX_NOWAIT);
12694 			} while (rc == MBX_NOT_FINISHED);
12695 			if (rc != MBX_SUCCESS)
12696 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12697 						LOG_SLI, "0349 rc should be "
12698 						"MBX_SUCCESS\n");
12699 		}
12700 
12701 		spin_lock_irqsave(&phba->hbalock, iflag);
12702 		phba->work_ha |= work_ha_copy;
12703 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12704 		lpfc_worker_wake_up(phba);
12705 	}
12706 	return IRQ_HANDLED;
12707 unplug_error:
12708 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12709 	return IRQ_HANDLED;
12710 
12711 } /* lpfc_sli_sp_intr_handler */
12712 
12713 /**
12714  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12715  * @irq: Interrupt number.
12716  * @dev_id: The device context pointer.
12717  *
12718  * This function is directly called from the PCI layer as an interrupt
12719  * service routine when device with SLI-3 interface spec is enabled with
12720  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12721  * ring event in the HBA. However, when the device is enabled with either
12722  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12723  * device-level interrupt handler. When the PCI slot is in error recovery
12724  * or the HBA is undergoing initialization, the interrupt handler will not
12725  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12726  * the intrrupt context. This function is called without any lock held.
12727  * It gets the hbalock to access and update SLI data structures.
12728  *
12729  * This function returns IRQ_HANDLED when interrupt is handled else it
12730  * returns IRQ_NONE.
12731  **/
12732 irqreturn_t
12733 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12734 {
12735 	struct lpfc_hba  *phba;
12736 	uint32_t ha_copy;
12737 	unsigned long status;
12738 	unsigned long iflag;
12739 	struct lpfc_sli_ring *pring;
12740 
12741 	/* Get the driver's phba structure from the dev_id and
12742 	 * assume the HBA is not interrupting.
12743 	 */
12744 	phba = (struct lpfc_hba *) dev_id;
12745 
12746 	if (unlikely(!phba))
12747 		return IRQ_NONE;
12748 
12749 	/*
12750 	 * Stuff needs to be attented to when this function is invoked as an
12751 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12752 	 */
12753 	if (phba->intr_type == MSIX) {
12754 		/* Check device state for handling interrupt */
12755 		if (lpfc_intr_state_check(phba))
12756 			return IRQ_NONE;
12757 		/* Need to read HA REG for FCP ring and other ring events */
12758 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12759 			return IRQ_HANDLED;
12760 		/* Clear up only attention source related to fast-path */
12761 		spin_lock_irqsave(&phba->hbalock, iflag);
12762 		/*
12763 		 * If there is deferred error attention, do not check for
12764 		 * any interrupt.
12765 		 */
12766 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12767 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12768 			return IRQ_NONE;
12769 		}
12770 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12771 			phba->HAregaddr);
12772 		readl(phba->HAregaddr); /* flush */
12773 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12774 	} else
12775 		ha_copy = phba->ha_copy;
12776 
12777 	/*
12778 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12779 	 */
12780 	ha_copy &= ~(phba->work_ha_mask);
12781 
12782 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12783 	status >>= (4*LPFC_FCP_RING);
12784 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12785 	if (status & HA_RXMASK)
12786 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12787 
12788 	if (phba->cfg_multi_ring_support == 2) {
12789 		/*
12790 		 * Process all events on extra ring. Take the optimized path
12791 		 * for extra ring IO.
12792 		 */
12793 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12794 		status >>= (4*LPFC_EXTRA_RING);
12795 		if (status & HA_RXMASK) {
12796 			lpfc_sli_handle_fast_ring_event(phba,
12797 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12798 					status);
12799 		}
12800 	}
12801 	return IRQ_HANDLED;
12802 }  /* lpfc_sli_fp_intr_handler */
12803 
12804 /**
12805  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12806  * @irq: Interrupt number.
12807  * @dev_id: The device context pointer.
12808  *
12809  * This function is the HBA device-level interrupt handler to device with
12810  * SLI-3 interface spec, called from the PCI layer when either MSI or
12811  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12812  * requires driver attention. This function invokes the slow-path interrupt
12813  * attention handling function and fast-path interrupt attention handling
12814  * function in turn to process the relevant HBA attention events. This
12815  * function is called without any lock held. It gets the hbalock to access
12816  * and update SLI data structures.
12817  *
12818  * This function returns IRQ_HANDLED when interrupt is handled, else it
12819  * returns IRQ_NONE.
12820  **/
12821 irqreturn_t
12822 lpfc_sli_intr_handler(int irq, void *dev_id)
12823 {
12824 	struct lpfc_hba  *phba;
12825 	irqreturn_t sp_irq_rc, fp_irq_rc;
12826 	unsigned long status1, status2;
12827 	uint32_t hc_copy;
12828 
12829 	/*
12830 	 * Get the driver's phba structure from the dev_id and
12831 	 * assume the HBA is not interrupting.
12832 	 */
12833 	phba = (struct lpfc_hba *) dev_id;
12834 
12835 	if (unlikely(!phba))
12836 		return IRQ_NONE;
12837 
12838 	/* Check device state for handling interrupt */
12839 	if (lpfc_intr_state_check(phba))
12840 		return IRQ_NONE;
12841 
12842 	spin_lock(&phba->hbalock);
12843 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12844 		spin_unlock(&phba->hbalock);
12845 		return IRQ_HANDLED;
12846 	}
12847 
12848 	if (unlikely(!phba->ha_copy)) {
12849 		spin_unlock(&phba->hbalock);
12850 		return IRQ_NONE;
12851 	} else if (phba->ha_copy & HA_ERATT) {
12852 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12853 			/* ERATT polling has handled ERATT */
12854 			phba->ha_copy &= ~HA_ERATT;
12855 		else
12856 			/* Indicate interrupt handler handles ERATT */
12857 			phba->hba_flag |= HBA_ERATT_HANDLED;
12858 	}
12859 
12860 	/*
12861 	 * If there is deferred error attention, do not check for any interrupt.
12862 	 */
12863 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12864 		spin_unlock(&phba->hbalock);
12865 		return IRQ_NONE;
12866 	}
12867 
12868 	/* Clear attention sources except link and error attentions */
12869 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12870 		spin_unlock(&phba->hbalock);
12871 		return IRQ_HANDLED;
12872 	}
12873 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12874 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12875 		phba->HCregaddr);
12876 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12877 	writel(hc_copy, phba->HCregaddr);
12878 	readl(phba->HAregaddr); /* flush */
12879 	spin_unlock(&phba->hbalock);
12880 
12881 	/*
12882 	 * Invokes slow-path host attention interrupt handling as appropriate.
12883 	 */
12884 
12885 	/* status of events with mailbox and link attention */
12886 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12887 
12888 	/* status of events with ELS ring */
12889 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12890 	status2 >>= (4*LPFC_ELS_RING);
12891 
12892 	if (status1 || (status2 & HA_RXMASK))
12893 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12894 	else
12895 		sp_irq_rc = IRQ_NONE;
12896 
12897 	/*
12898 	 * Invoke fast-path host attention interrupt handling as appropriate.
12899 	 */
12900 
12901 	/* status of events with FCP ring */
12902 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12903 	status1 >>= (4*LPFC_FCP_RING);
12904 
12905 	/* status of events with extra ring */
12906 	if (phba->cfg_multi_ring_support == 2) {
12907 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12908 		status2 >>= (4*LPFC_EXTRA_RING);
12909 	} else
12910 		status2 = 0;
12911 
12912 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12913 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12914 	else
12915 		fp_irq_rc = IRQ_NONE;
12916 
12917 	/* Return device-level interrupt handling status */
12918 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12919 }  /* lpfc_sli_intr_handler */
12920 
12921 /**
12922  * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12923  * @phba: pointer to lpfc hba data structure.
12924  *
12925  * This routine is invoked by the worker thread to process all the pending
12926  * SLI4 FCP abort XRI events.
12927  **/
12928 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12929 {
12930 	struct lpfc_cq_event *cq_event;
12931 
12932 	/* First, declare the fcp xri abort event has been handled */
12933 	spin_lock_irq(&phba->hbalock);
12934 	phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12935 	spin_unlock_irq(&phba->hbalock);
12936 	/* Now, handle all the fcp xri abort events */
12937 	while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12938 		/* Get the first event from the head of the event queue */
12939 		spin_lock_irq(&phba->hbalock);
12940 		list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12941 				 cq_event, struct lpfc_cq_event, list);
12942 		spin_unlock_irq(&phba->hbalock);
12943 		/* Notify aborted XRI for FCP work queue */
12944 		lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12945 		/* Free the event processed back to the free pool */
12946 		lpfc_sli4_cq_event_release(phba, cq_event);
12947 	}
12948 }
12949 
12950 /**
12951  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12952  * @phba: pointer to lpfc hba data structure.
12953  *
12954  * This routine is invoked by the worker thread to process all the pending
12955  * SLI4 els abort xri events.
12956  **/
12957 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12958 {
12959 	struct lpfc_cq_event *cq_event;
12960 
12961 	/* First, declare the els xri abort event has been handled */
12962 	spin_lock_irq(&phba->hbalock);
12963 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12964 	spin_unlock_irq(&phba->hbalock);
12965 	/* Now, handle all the els xri abort events */
12966 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12967 		/* Get the first event from the head of the event queue */
12968 		spin_lock_irq(&phba->hbalock);
12969 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12970 				 cq_event, struct lpfc_cq_event, list);
12971 		spin_unlock_irq(&phba->hbalock);
12972 		/* Notify aborted XRI for ELS work queue */
12973 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12974 		/* Free the event processed back to the free pool */
12975 		lpfc_sli4_cq_event_release(phba, cq_event);
12976 	}
12977 }
12978 
12979 /**
12980  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12981  * @phba: pointer to lpfc hba data structure
12982  * @pIocbIn: pointer to the rspiocbq
12983  * @pIocbOut: pointer to the cmdiocbq
12984  * @wcqe: pointer to the complete wcqe
12985  *
12986  * This routine transfers the fields of a command iocbq to a response iocbq
12987  * by copying all the IOCB fields from command iocbq and transferring the
12988  * completion status information from the complete wcqe.
12989  **/
12990 static void
12991 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12992 			      struct lpfc_iocbq *pIocbIn,
12993 			      struct lpfc_iocbq *pIocbOut,
12994 			      struct lpfc_wcqe_complete *wcqe)
12995 {
12996 	int numBdes, i;
12997 	unsigned long iflags;
12998 	uint32_t status, max_response;
12999 	struct lpfc_dmabuf *dmabuf;
13000 	struct ulp_bde64 *bpl, bde;
13001 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
13002 
13003 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13004 	       sizeof(struct lpfc_iocbq) - offset);
13005 	/* Map WCQE parameters into irspiocb parameters */
13006 	status = bf_get(lpfc_wcqe_c_status, wcqe);
13007 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13008 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13009 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13010 			pIocbIn->iocb.un.fcpi.fcpi_parm =
13011 					pIocbOut->iocb.un.fcpi.fcpi_parm -
13012 					wcqe->total_data_placed;
13013 		else
13014 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13015 	else {
13016 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13017 		switch (pIocbOut->iocb.ulpCommand) {
13018 		case CMD_ELS_REQUEST64_CR:
13019 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13020 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
13021 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13022 			max_response = bde.tus.f.bdeSize;
13023 			break;
13024 		case CMD_GEN_REQUEST64_CR:
13025 			max_response = 0;
13026 			if (!pIocbOut->context3)
13027 				break;
13028 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13029 					sizeof(struct ulp_bde64);
13030 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13031 			bpl = (struct ulp_bde64 *)dmabuf->virt;
13032 			for (i = 0; i < numBdes; i++) {
13033 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13034 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13035 					max_response += bde.tus.f.bdeSize;
13036 			}
13037 			break;
13038 		default:
13039 			max_response = wcqe->total_data_placed;
13040 			break;
13041 		}
13042 		if (max_response < wcqe->total_data_placed)
13043 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13044 		else
13045 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13046 				wcqe->total_data_placed;
13047 	}
13048 
13049 	/* Convert BG errors for completion status */
13050 	if (status == CQE_STATUS_DI_ERROR) {
13051 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13052 
13053 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13054 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13055 		else
13056 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13057 
13058 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13059 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13060 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13061 				BGS_GUARD_ERR_MASK;
13062 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13063 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13064 				BGS_APPTAG_ERR_MASK;
13065 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13066 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13067 				BGS_REFTAG_ERR_MASK;
13068 
13069 		/* Check to see if there was any good data before the error */
13070 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13071 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13072 				BGS_HI_WATER_MARK_PRESENT_MASK;
13073 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13074 				wcqe->total_data_placed;
13075 		}
13076 
13077 		/*
13078 		* Set ALL the error bits to indicate we don't know what
13079 		* type of error it is.
13080 		*/
13081 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13082 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13083 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13084 				BGS_GUARD_ERR_MASK);
13085 	}
13086 
13087 	/* Pick up HBA exchange busy condition */
13088 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13089 		spin_lock_irqsave(&phba->hbalock, iflags);
13090 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13091 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13092 	}
13093 }
13094 
13095 /**
13096  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13097  * @phba: Pointer to HBA context object.
13098  * @wcqe: Pointer to work-queue completion queue entry.
13099  *
13100  * This routine handles an ELS work-queue completion event and construct
13101  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13102  * discovery engine to handle.
13103  *
13104  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13105  **/
13106 static struct lpfc_iocbq *
13107 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13108 			       struct lpfc_iocbq *irspiocbq)
13109 {
13110 	struct lpfc_sli_ring *pring;
13111 	struct lpfc_iocbq *cmdiocbq;
13112 	struct lpfc_wcqe_complete *wcqe;
13113 	unsigned long iflags;
13114 
13115 	pring = lpfc_phba_elsring(phba);
13116 	if (unlikely(!pring))
13117 		return NULL;
13118 
13119 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13120 	spin_lock_irqsave(&pring->ring_lock, iflags);
13121 	pring->stats.iocb_event++;
13122 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13123 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13124 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13125 	if (unlikely(!cmdiocbq)) {
13126 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
13127 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13128 				"0386 ELS complete with no corresponding "
13129 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13130 				wcqe->word0, wcqe->total_data_placed,
13131 				wcqe->parameter, wcqe->word3);
13132 		lpfc_sli_release_iocbq(phba, irspiocbq);
13133 		return NULL;
13134 	}
13135 
13136 	/* Put the iocb back on the txcmplq */
13137 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13138 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13139 
13140 	/* Fake the irspiocbq and copy necessary response information */
13141 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13142 
13143 	return irspiocbq;
13144 }
13145 
13146 inline struct lpfc_cq_event *
13147 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13148 {
13149 	struct lpfc_cq_event *cq_event;
13150 
13151 	/* Allocate a new internal CQ_EVENT entry */
13152 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13153 	if (!cq_event) {
13154 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13155 				"0602 Failed to alloc CQ_EVENT entry\n");
13156 		return NULL;
13157 	}
13158 
13159 	/* Move the CQE into the event */
13160 	memcpy(&cq_event->cqe, entry, size);
13161 	return cq_event;
13162 }
13163 
13164 /**
13165  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13166  * @phba: Pointer to HBA context object.
13167  * @cqe: Pointer to mailbox completion queue entry.
13168  *
13169  * This routine process a mailbox completion queue entry with asynchrous
13170  * event.
13171  *
13172  * Return: true if work posted to worker thread, otherwise false.
13173  **/
13174 static bool
13175 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13176 {
13177 	struct lpfc_cq_event *cq_event;
13178 	unsigned long iflags;
13179 
13180 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13181 			"0392 Async Event: word0:x%x, word1:x%x, "
13182 			"word2:x%x, word3:x%x\n", mcqe->word0,
13183 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13184 
13185 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13186 	if (!cq_event)
13187 		return false;
13188 	spin_lock_irqsave(&phba->hbalock, iflags);
13189 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13190 	/* Set the async event flag */
13191 	phba->hba_flag |= ASYNC_EVENT;
13192 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13193 
13194 	return true;
13195 }
13196 
13197 /**
13198  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13199  * @phba: Pointer to HBA context object.
13200  * @cqe: Pointer to mailbox completion queue entry.
13201  *
13202  * This routine process a mailbox completion queue entry with mailbox
13203  * completion event.
13204  *
13205  * Return: true if work posted to worker thread, otherwise false.
13206  **/
13207 static bool
13208 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13209 {
13210 	uint32_t mcqe_status;
13211 	MAILBOX_t *mbox, *pmbox;
13212 	struct lpfc_mqe *mqe;
13213 	struct lpfc_vport *vport;
13214 	struct lpfc_nodelist *ndlp;
13215 	struct lpfc_dmabuf *mp;
13216 	unsigned long iflags;
13217 	LPFC_MBOXQ_t *pmb;
13218 	bool workposted = false;
13219 	int rc;
13220 
13221 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13222 	if (!bf_get(lpfc_trailer_completed, mcqe))
13223 		goto out_no_mqe_complete;
13224 
13225 	/* Get the reference to the active mbox command */
13226 	spin_lock_irqsave(&phba->hbalock, iflags);
13227 	pmb = phba->sli.mbox_active;
13228 	if (unlikely(!pmb)) {
13229 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13230 				"1832 No pending MBOX command to handle\n");
13231 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13232 		goto out_no_mqe_complete;
13233 	}
13234 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13235 	mqe = &pmb->u.mqe;
13236 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13237 	mbox = phba->mbox;
13238 	vport = pmb->vport;
13239 
13240 	/* Reset heartbeat timer */
13241 	phba->last_completion_time = jiffies;
13242 	del_timer(&phba->sli.mbox_tmo);
13243 
13244 	/* Move mbox data to caller's mailbox region, do endian swapping */
13245 	if (pmb->mbox_cmpl && mbox)
13246 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13247 
13248 	/*
13249 	 * For mcqe errors, conditionally move a modified error code to
13250 	 * the mbox so that the error will not be missed.
13251 	 */
13252 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13253 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13254 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13255 			bf_set(lpfc_mqe_status, mqe,
13256 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13257 	}
13258 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13259 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13260 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13261 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13262 				      mcqe_status,
13263 				      pmbox->un.varWords[0], 0);
13264 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13265 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13266 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13267 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13268 			 * RID of the PPI using the same mbox buffer.
13269 			 */
13270 			lpfc_unreg_login(phba, vport->vpi,
13271 					 pmbox->un.varWords[0], pmb);
13272 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13273 			pmb->ctx_buf = mp;
13274 			pmb->ctx_ndlp = ndlp;
13275 			pmb->vport = vport;
13276 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13277 			if (rc != MBX_BUSY)
13278 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13279 						LOG_SLI, "0385 rc should "
13280 						"have been MBX_BUSY\n");
13281 			if (rc != MBX_NOT_FINISHED)
13282 				goto send_current_mbox;
13283 		}
13284 	}
13285 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13286 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13287 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13288 
13289 	/* There is mailbox completion work to do */
13290 	spin_lock_irqsave(&phba->hbalock, iflags);
13291 	__lpfc_mbox_cmpl_put(phba, pmb);
13292 	phba->work_ha |= HA_MBATT;
13293 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13294 	workposted = true;
13295 
13296 send_current_mbox:
13297 	spin_lock_irqsave(&phba->hbalock, iflags);
13298 	/* Release the mailbox command posting token */
13299 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13300 	/* Setting active mailbox pointer need to be in sync to flag clear */
13301 	phba->sli.mbox_active = NULL;
13302 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13303 	/* Wake up worker thread to post the next pending mailbox command */
13304 	lpfc_worker_wake_up(phba);
13305 out_no_mqe_complete:
13306 	if (bf_get(lpfc_trailer_consumed, mcqe))
13307 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13308 	return workposted;
13309 }
13310 
13311 /**
13312  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13313  * @phba: Pointer to HBA context object.
13314  * @cqe: Pointer to mailbox completion queue entry.
13315  *
13316  * This routine process a mailbox completion queue entry, it invokes the
13317  * proper mailbox complete handling or asynchrous event handling routine
13318  * according to the MCQE's async bit.
13319  *
13320  * Return: true if work posted to worker thread, otherwise false.
13321  **/
13322 static bool
13323 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
13324 {
13325 	struct lpfc_mcqe mcqe;
13326 	bool workposted;
13327 
13328 	/* Copy the mailbox MCQE and convert endian order as needed */
13329 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13330 
13331 	/* Invoke the proper event handling routine */
13332 	if (!bf_get(lpfc_trailer_async, &mcqe))
13333 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13334 	else
13335 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13336 	return workposted;
13337 }
13338 
13339 /**
13340  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13341  * @phba: Pointer to HBA context object.
13342  * @cq: Pointer to associated CQ
13343  * @wcqe: Pointer to work-queue completion queue entry.
13344  *
13345  * This routine handles an ELS work-queue completion event.
13346  *
13347  * Return: true if work posted to worker thread, otherwise false.
13348  **/
13349 static bool
13350 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13351 			     struct lpfc_wcqe_complete *wcqe)
13352 {
13353 	struct lpfc_iocbq *irspiocbq;
13354 	unsigned long iflags;
13355 	struct lpfc_sli_ring *pring = cq->pring;
13356 	int txq_cnt = 0;
13357 	int txcmplq_cnt = 0;
13358 	int fcp_txcmplq_cnt = 0;
13359 
13360 	/* Check for response status */
13361 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13362 		/* Log the error status */
13363 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13364 				"0357 ELS CQE error: status=x%x: "
13365 				"CQE: %08x %08x %08x %08x\n",
13366 				bf_get(lpfc_wcqe_c_status, wcqe),
13367 				wcqe->word0, wcqe->total_data_placed,
13368 				wcqe->parameter, wcqe->word3);
13369 	}
13370 
13371 	/* Get an irspiocbq for later ELS response processing use */
13372 	irspiocbq = lpfc_sli_get_iocbq(phba);
13373 	if (!irspiocbq) {
13374 		if (!list_empty(&pring->txq))
13375 			txq_cnt++;
13376 		if (!list_empty(&pring->txcmplq))
13377 			txcmplq_cnt++;
13378 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13379 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13380 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13381 			txq_cnt, phba->iocb_cnt,
13382 			fcp_txcmplq_cnt,
13383 			txcmplq_cnt);
13384 		return false;
13385 	}
13386 
13387 	/* Save off the slow-path queue event for work thread to process */
13388 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13389 	spin_lock_irqsave(&phba->hbalock, iflags);
13390 	list_add_tail(&irspiocbq->cq_event.list,
13391 		      &phba->sli4_hba.sp_queue_event);
13392 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13393 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13394 
13395 	return true;
13396 }
13397 
13398 /**
13399  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13400  * @phba: Pointer to HBA context object.
13401  * @wcqe: Pointer to work-queue completion queue entry.
13402  *
13403  * This routine handles slow-path WQ entry consumed event by invoking the
13404  * proper WQ release routine to the slow-path WQ.
13405  **/
13406 static void
13407 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13408 			     struct lpfc_wcqe_release *wcqe)
13409 {
13410 	/* sanity check on queue memory */
13411 	if (unlikely(!phba->sli4_hba.els_wq))
13412 		return;
13413 	/* Check for the slow-path ELS work queue */
13414 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13415 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13416 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13417 	else
13418 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13419 				"2579 Slow-path wqe consume event carries "
13420 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13421 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13422 				phba->sli4_hba.els_wq->queue_id);
13423 }
13424 
13425 /**
13426  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13427  * @phba: Pointer to HBA context object.
13428  * @cq: Pointer to a WQ completion queue.
13429  * @wcqe: Pointer to work-queue completion queue entry.
13430  *
13431  * This routine handles an XRI abort event.
13432  *
13433  * Return: true if work posted to worker thread, otherwise false.
13434  **/
13435 static bool
13436 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13437 				   struct lpfc_queue *cq,
13438 				   struct sli4_wcqe_xri_aborted *wcqe)
13439 {
13440 	bool workposted = false;
13441 	struct lpfc_cq_event *cq_event;
13442 	unsigned long iflags;
13443 
13444 	switch (cq->subtype) {
13445 	case LPFC_FCP:
13446 		cq_event = lpfc_cq_event_setup(
13447 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13448 		if (!cq_event)
13449 			return false;
13450 		spin_lock_irqsave(&phba->hbalock, iflags);
13451 		list_add_tail(&cq_event->list,
13452 			      &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
13453 		/* Set the fcp xri abort event flag */
13454 		phba->hba_flag |= FCP_XRI_ABORT_EVENT;
13455 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13456 		workposted = true;
13457 		break;
13458 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13459 	case LPFC_ELS:
13460 		cq_event = lpfc_cq_event_setup(
13461 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13462 		if (!cq_event)
13463 			return false;
13464 		spin_lock_irqsave(&phba->hbalock, iflags);
13465 		list_add_tail(&cq_event->list,
13466 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13467 		/* Set the els xri abort event flag */
13468 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13469 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13470 		workposted = true;
13471 		break;
13472 	case LPFC_NVME:
13473 		/* Notify aborted XRI for NVME work queue */
13474 		if (phba->nvmet_support)
13475 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13476 		else
13477 			lpfc_sli4_nvme_xri_aborted(phba, wcqe);
13478 
13479 		workposted = false;
13480 		break;
13481 	default:
13482 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13483 				"0603 Invalid CQ subtype %d: "
13484 				"%08x %08x %08x %08x\n",
13485 				cq->subtype, wcqe->word0, wcqe->parameter,
13486 				wcqe->word2, wcqe->word3);
13487 		workposted = false;
13488 		break;
13489 	}
13490 	return workposted;
13491 }
13492 
13493 #define FC_RCTL_MDS_DIAGS	0xF4
13494 
13495 /**
13496  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13497  * @phba: Pointer to HBA context object.
13498  * @rcqe: Pointer to receive-queue completion queue entry.
13499  *
13500  * This routine process a receive-queue completion queue entry.
13501  *
13502  * Return: true if work posted to worker thread, otherwise false.
13503  **/
13504 static bool
13505 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13506 {
13507 	bool workposted = false;
13508 	struct fc_frame_header *fc_hdr;
13509 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13510 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13511 	struct lpfc_nvmet_tgtport *tgtp;
13512 	struct hbq_dmabuf *dma_buf;
13513 	uint32_t status, rq_id;
13514 	unsigned long iflags;
13515 
13516 	/* sanity check on queue memory */
13517 	if (unlikely(!hrq) || unlikely(!drq))
13518 		return workposted;
13519 
13520 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13521 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13522 	else
13523 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13524 	if (rq_id != hrq->queue_id)
13525 		goto out;
13526 
13527 	status = bf_get(lpfc_rcqe_status, rcqe);
13528 	switch (status) {
13529 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13530 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13531 				"2537 Receive Frame Truncated!!\n");
13532 	case FC_STATUS_RQ_SUCCESS:
13533 		spin_lock_irqsave(&phba->hbalock, iflags);
13534 		lpfc_sli4_rq_release(hrq, drq);
13535 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13536 		if (!dma_buf) {
13537 			hrq->RQ_no_buf_found++;
13538 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13539 			goto out;
13540 		}
13541 		hrq->RQ_rcv_buf++;
13542 		hrq->RQ_buf_posted--;
13543 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13544 
13545 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13546 
13547 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13548 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13549 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13550 			/* Handle MDS Loopback frames */
13551 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13552 			break;
13553 		}
13554 
13555 		/* save off the frame for the work thread to process */
13556 		list_add_tail(&dma_buf->cq_event.list,
13557 			      &phba->sli4_hba.sp_queue_event);
13558 		/* Frame received */
13559 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13560 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13561 		workposted = true;
13562 		break;
13563 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13564 		if (phba->nvmet_support) {
13565 			tgtp = phba->targetport->private;
13566 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13567 					"6402 RQE Error x%x, posted %d err_cnt "
13568 					"%d: %x %x %x\n",
13569 					status, hrq->RQ_buf_posted,
13570 					hrq->RQ_no_posted_buf,
13571 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13572 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13573 					atomic_read(&tgtp->xmt_fcp_release));
13574 		}
13575 		/* fallthrough */
13576 
13577 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13578 		hrq->RQ_no_posted_buf++;
13579 		/* Post more buffers if possible */
13580 		spin_lock_irqsave(&phba->hbalock, iflags);
13581 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13582 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13583 		workposted = true;
13584 		break;
13585 	}
13586 out:
13587 	return workposted;
13588 }
13589 
13590 /**
13591  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13592  * @phba: Pointer to HBA context object.
13593  * @cq: Pointer to the completion queue.
13594  * @wcqe: Pointer to a completion queue entry.
13595  *
13596  * This routine process a slow-path work-queue or receive queue completion queue
13597  * entry.
13598  *
13599  * Return: true if work posted to worker thread, otherwise false.
13600  **/
13601 static bool
13602 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13603 			 struct lpfc_cqe *cqe)
13604 {
13605 	struct lpfc_cqe cqevt;
13606 	bool workposted = false;
13607 
13608 	/* Copy the work queue CQE and convert endian order if needed */
13609 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13610 
13611 	/* Check and process for different type of WCQE and dispatch */
13612 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13613 	case CQE_CODE_COMPL_WQE:
13614 		/* Process the WQ/RQ complete event */
13615 		phba->last_completion_time = jiffies;
13616 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13617 				(struct lpfc_wcqe_complete *)&cqevt);
13618 		break;
13619 	case CQE_CODE_RELEASE_WQE:
13620 		/* Process the WQ release event */
13621 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13622 				(struct lpfc_wcqe_release *)&cqevt);
13623 		break;
13624 	case CQE_CODE_XRI_ABORTED:
13625 		/* Process the WQ XRI abort event */
13626 		phba->last_completion_time = jiffies;
13627 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13628 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13629 		break;
13630 	case CQE_CODE_RECEIVE:
13631 	case CQE_CODE_RECEIVE_V1:
13632 		/* Process the RQ event */
13633 		phba->last_completion_time = jiffies;
13634 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13635 				(struct lpfc_rcqe *)&cqevt);
13636 		break;
13637 	default:
13638 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13639 				"0388 Not a valid WCQE code: x%x\n",
13640 				bf_get(lpfc_cqe_code, &cqevt));
13641 		break;
13642 	}
13643 	return workposted;
13644 }
13645 
13646 /**
13647  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13648  * @phba: Pointer to HBA context object.
13649  * @eqe: Pointer to fast-path event queue entry.
13650  *
13651  * This routine process a event queue entry from the slow-path event queue.
13652  * It will check the MajorCode and MinorCode to determine this is for a
13653  * completion event on a completion queue, if not, an error shall be logged
13654  * and just return. Otherwise, it will get to the corresponding completion
13655  * queue and process all the entries on that completion queue, rearm the
13656  * completion queue, and then return.
13657  *
13658  **/
13659 static void
13660 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13661 	struct lpfc_queue *speq)
13662 {
13663 	struct lpfc_queue *cq = NULL, *childq;
13664 	uint16_t cqid;
13665 
13666 	/* Get the reference to the corresponding CQ */
13667 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13668 
13669 	list_for_each_entry(childq, &speq->child_list, list) {
13670 		if (childq->queue_id == cqid) {
13671 			cq = childq;
13672 			break;
13673 		}
13674 	}
13675 	if (unlikely(!cq)) {
13676 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13677 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13678 					"0365 Slow-path CQ identifier "
13679 					"(%d) does not exist\n", cqid);
13680 		return;
13681 	}
13682 
13683 	/* Save EQ associated with this CQ */
13684 	cq->assoc_qp = speq;
13685 
13686 	if (!queue_work(phba->wq, &cq->spwork))
13687 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13688 				"0390 Cannot schedule soft IRQ "
13689 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13690 				cqid, cq->queue_id, smp_processor_id());
13691 }
13692 
13693 /**
13694  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13695  * @phba: Pointer to HBA context object.
13696  *
13697  * This routine process a event queue entry from the slow-path event queue.
13698  * It will check the MajorCode and MinorCode to determine this is for a
13699  * completion event on a completion queue, if not, an error shall be logged
13700  * and just return. Otherwise, it will get to the corresponding completion
13701  * queue and process all the entries on that completion queue, rearm the
13702  * completion queue, and then return.
13703  *
13704  **/
13705 static void
13706 lpfc_sli4_sp_process_cq(struct work_struct *work)
13707 {
13708 	struct lpfc_queue *cq =
13709 		container_of(work, struct lpfc_queue, spwork);
13710 	struct lpfc_hba *phba = cq->phba;
13711 	struct lpfc_cqe *cqe;
13712 	bool workposted = false;
13713 	int ccount = 0;
13714 
13715 	/* Process all the entries to the CQ */
13716 	switch (cq->type) {
13717 	case LPFC_MCQ:
13718 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13719 			workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
13720 			if (!(++ccount % cq->entry_repost))
13721 				break;
13722 			cq->CQ_mbox++;
13723 		}
13724 		break;
13725 	case LPFC_WCQ:
13726 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13727 			if (cq->subtype == LPFC_FCP ||
13728 			    cq->subtype == LPFC_NVME) {
13729 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13730 				if (phba->ktime_on)
13731 					cq->isr_timestamp = ktime_get_ns();
13732 				else
13733 					cq->isr_timestamp = 0;
13734 #endif
13735 				workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
13736 								       cqe);
13737 			} else {
13738 				workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
13739 								      cqe);
13740 			}
13741 			if (!(++ccount % cq->entry_repost))
13742 				break;
13743 		}
13744 
13745 		/* Track the max number of CQEs processed in 1 EQ */
13746 		if (ccount > cq->CQ_max_cqe)
13747 			cq->CQ_max_cqe = ccount;
13748 		break;
13749 	default:
13750 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13751 				"0370 Invalid completion queue type (%d)\n",
13752 				cq->type);
13753 		return;
13754 	}
13755 
13756 	/* Catch the no cq entry condition, log an error */
13757 	if (unlikely(ccount == 0))
13758 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13759 				"0371 No entry from the CQ: identifier "
13760 				"(x%x), type (%d)\n", cq->queue_id, cq->type);
13761 
13762 	/* In any case, flash and re-arm the RCQ */
13763 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
13764 
13765 	/* wake up worker thread if there are works to be done */
13766 	if (workposted)
13767 		lpfc_worker_wake_up(phba);
13768 }
13769 
13770 /**
13771  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13772  * @phba: Pointer to HBA context object.
13773  * @cq: Pointer to associated CQ
13774  * @wcqe: Pointer to work-queue completion queue entry.
13775  *
13776  * This routine process a fast-path work queue completion entry from fast-path
13777  * event queue for FCP command response completion.
13778  **/
13779 static void
13780 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13781 			     struct lpfc_wcqe_complete *wcqe)
13782 {
13783 	struct lpfc_sli_ring *pring = cq->pring;
13784 	struct lpfc_iocbq *cmdiocbq;
13785 	struct lpfc_iocbq irspiocbq;
13786 	unsigned long iflags;
13787 
13788 	/* Check for response status */
13789 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13790 		/* If resource errors reported from HBA, reduce queue
13791 		 * depth of the SCSI device.
13792 		 */
13793 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13794 		     IOSTAT_LOCAL_REJECT)) &&
13795 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13796 		     IOERR_NO_RESOURCES))
13797 			phba->lpfc_rampdown_queue_depth(phba);
13798 
13799 		/* Log the error status */
13800 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13801 				"0373 FCP CQE error: status=x%x: "
13802 				"CQE: %08x %08x %08x %08x\n",
13803 				bf_get(lpfc_wcqe_c_status, wcqe),
13804 				wcqe->word0, wcqe->total_data_placed,
13805 				wcqe->parameter, wcqe->word3);
13806 	}
13807 
13808 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13809 	spin_lock_irqsave(&pring->ring_lock, iflags);
13810 	pring->stats.iocb_event++;
13811 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13812 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13813 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13814 	if (unlikely(!cmdiocbq)) {
13815 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13816 				"0374 FCP complete with no corresponding "
13817 				"cmdiocb: iotag (%d)\n",
13818 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13819 		return;
13820 	}
13821 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13822 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13823 #endif
13824 	if (cmdiocbq->iocb_cmpl == NULL) {
13825 		if (cmdiocbq->wqe_cmpl) {
13826 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13827 				spin_lock_irqsave(&phba->hbalock, iflags);
13828 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13829 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13830 			}
13831 
13832 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13833 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13834 			return;
13835 		}
13836 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13837 				"0375 FCP cmdiocb not callback function "
13838 				"iotag: (%d)\n",
13839 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13840 		return;
13841 	}
13842 
13843 	/* Fake the irspiocb and copy necessary response information */
13844 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13845 
13846 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13847 		spin_lock_irqsave(&phba->hbalock, iflags);
13848 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13849 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13850 	}
13851 
13852 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13853 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13854 }
13855 
13856 /**
13857  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13858  * @phba: Pointer to HBA context object.
13859  * @cq: Pointer to completion queue.
13860  * @wcqe: Pointer to work-queue completion queue entry.
13861  *
13862  * This routine handles an fast-path WQ entry consumed event by invoking the
13863  * proper WQ release routine to the slow-path WQ.
13864  **/
13865 static void
13866 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13867 			     struct lpfc_wcqe_release *wcqe)
13868 {
13869 	struct lpfc_queue *childwq;
13870 	bool wqid_matched = false;
13871 	uint16_t hba_wqid;
13872 
13873 	/* Check for fast-path FCP work queue release */
13874 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13875 	list_for_each_entry(childwq, &cq->child_list, list) {
13876 		if (childwq->queue_id == hba_wqid) {
13877 			lpfc_sli4_wq_release(childwq,
13878 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13879 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13880 				lpfc_nvmet_wqfull_process(phba, childwq);
13881 			wqid_matched = true;
13882 			break;
13883 		}
13884 	}
13885 	/* Report warning log message if no match found */
13886 	if (wqid_matched != true)
13887 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13888 				"2580 Fast-path wqe consume event carries "
13889 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13890 }
13891 
13892 /**
13893  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13894  * @phba: Pointer to HBA context object.
13895  * @rcqe: Pointer to receive-queue completion queue entry.
13896  *
13897  * This routine process a receive-queue completion queue entry.
13898  *
13899  * Return: true if work posted to worker thread, otherwise false.
13900  **/
13901 static bool
13902 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13903 			    struct lpfc_rcqe *rcqe)
13904 {
13905 	bool workposted = false;
13906 	struct lpfc_queue *hrq;
13907 	struct lpfc_queue *drq;
13908 	struct rqb_dmabuf *dma_buf;
13909 	struct fc_frame_header *fc_hdr;
13910 	struct lpfc_nvmet_tgtport *tgtp;
13911 	uint32_t status, rq_id;
13912 	unsigned long iflags;
13913 	uint32_t fctl, idx;
13914 
13915 	if ((phba->nvmet_support == 0) ||
13916 	    (phba->sli4_hba.nvmet_cqset == NULL))
13917 		return workposted;
13918 
13919 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13920 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13921 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13922 
13923 	/* sanity check on queue memory */
13924 	if (unlikely(!hrq) || unlikely(!drq))
13925 		return workposted;
13926 
13927 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13928 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13929 	else
13930 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13931 
13932 	if ((phba->nvmet_support == 0) ||
13933 	    (rq_id != hrq->queue_id))
13934 		return workposted;
13935 
13936 	status = bf_get(lpfc_rcqe_status, rcqe);
13937 	switch (status) {
13938 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13939 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13940 				"6126 Receive Frame Truncated!!\n");
13941 		/* Drop thru */
13942 	case FC_STATUS_RQ_SUCCESS:
13943 		spin_lock_irqsave(&phba->hbalock, iflags);
13944 		lpfc_sli4_rq_release(hrq, drq);
13945 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13946 		if (!dma_buf) {
13947 			hrq->RQ_no_buf_found++;
13948 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13949 			goto out;
13950 		}
13951 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13952 		hrq->RQ_rcv_buf++;
13953 		hrq->RQ_buf_posted--;
13954 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13955 
13956 		/* Just some basic sanity checks on FCP Command frame */
13957 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13958 		fc_hdr->fh_f_ctl[1] << 8 |
13959 		fc_hdr->fh_f_ctl[2]);
13960 		if (((fctl &
13961 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13962 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13963 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13964 			goto drop;
13965 
13966 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13967 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
13968 			lpfc_nvmet_unsol_fcp_event(
13969 				phba, idx, dma_buf,
13970 				cq->isr_timestamp);
13971 			return false;
13972 		}
13973 drop:
13974 		lpfc_in_buf_free(phba, &dma_buf->dbuf);
13975 		break;
13976 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13977 		if (phba->nvmet_support) {
13978 			tgtp = phba->targetport->private;
13979 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13980 					"6401 RQE Error x%x, posted %d err_cnt "
13981 					"%d: %x %x %x\n",
13982 					status, hrq->RQ_buf_posted,
13983 					hrq->RQ_no_posted_buf,
13984 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13985 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13986 					atomic_read(&tgtp->xmt_fcp_release));
13987 		}
13988 		/* fallthrough */
13989 
13990 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13991 		hrq->RQ_no_posted_buf++;
13992 		/* Post more buffers if possible */
13993 		break;
13994 	}
13995 out:
13996 	return workposted;
13997 }
13998 
13999 /**
14000  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14001  * @cq: Pointer to the completion queue.
14002  * @eqe: Pointer to fast-path completion queue entry.
14003  *
14004  * This routine process a fast-path work queue completion entry from fast-path
14005  * event queue for FCP command response completion.
14006  **/
14007 static int
14008 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14009 			 struct lpfc_cqe *cqe)
14010 {
14011 	struct lpfc_wcqe_release wcqe;
14012 	bool workposted = false;
14013 
14014 	/* Copy the work queue CQE and convert endian order if needed */
14015 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14016 
14017 	/* Check and process for different type of WCQE and dispatch */
14018 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14019 	case CQE_CODE_COMPL_WQE:
14020 	case CQE_CODE_NVME_ERSP:
14021 		cq->CQ_wq++;
14022 		/* Process the WQ complete event */
14023 		phba->last_completion_time = jiffies;
14024 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
14025 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14026 				(struct lpfc_wcqe_complete *)&wcqe);
14027 		if (cq->subtype == LPFC_NVME_LS)
14028 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14029 				(struct lpfc_wcqe_complete *)&wcqe);
14030 		break;
14031 	case CQE_CODE_RELEASE_WQE:
14032 		cq->CQ_release_wqe++;
14033 		/* Process the WQ release event */
14034 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14035 				(struct lpfc_wcqe_release *)&wcqe);
14036 		break;
14037 	case CQE_CODE_XRI_ABORTED:
14038 		cq->CQ_xri_aborted++;
14039 		/* Process the WQ XRI abort event */
14040 		phba->last_completion_time = jiffies;
14041 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14042 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14043 		break;
14044 	case CQE_CODE_RECEIVE_V1:
14045 	case CQE_CODE_RECEIVE:
14046 		phba->last_completion_time = jiffies;
14047 		if (cq->subtype == LPFC_NVMET) {
14048 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14049 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14050 		}
14051 		break;
14052 	default:
14053 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14054 				"0144 Not a valid CQE code: x%x\n",
14055 				bf_get(lpfc_wcqe_c_code, &wcqe));
14056 		break;
14057 	}
14058 	return workposted;
14059 }
14060 
14061 /**
14062  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14063  * @phba: Pointer to HBA context object.
14064  * @eqe: Pointer to fast-path event queue entry.
14065  *
14066  * This routine process a event queue entry from the fast-path event queue.
14067  * It will check the MajorCode and MinorCode to determine this is for a
14068  * completion event on a completion queue, if not, an error shall be logged
14069  * and just return. Otherwise, it will get to the corresponding completion
14070  * queue and process all the entries on the completion queue, rearm the
14071  * completion queue, and then return.
14072  **/
14073 static void
14074 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14075 			uint32_t qidx)
14076 {
14077 	struct lpfc_queue *cq = NULL;
14078 	uint16_t cqid, id;
14079 
14080 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14081 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14082 				"0366 Not a valid completion "
14083 				"event: majorcode=x%x, minorcode=x%x\n",
14084 				bf_get_le32(lpfc_eqe_major_code, eqe),
14085 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14086 		return;
14087 	}
14088 
14089 	/* Get the reference to the corresponding CQ */
14090 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14091 
14092 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14093 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14094 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14095 			/* Process NVMET unsol rcv */
14096 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14097 			goto  process_cq;
14098 		}
14099 	}
14100 
14101 	if (phba->sli4_hba.nvme_cq_map &&
14102 	    (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
14103 		/* Process NVME / NVMET command completion */
14104 		cq = phba->sli4_hba.nvme_cq[qidx];
14105 		goto  process_cq;
14106 	}
14107 
14108 	if (phba->sli4_hba.fcp_cq_map &&
14109 	    (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
14110 		/* Process FCP command completion */
14111 		cq = phba->sli4_hba.fcp_cq[qidx];
14112 		goto  process_cq;
14113 	}
14114 
14115 	if (phba->sli4_hba.nvmels_cq &&
14116 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14117 		/* Process NVME unsol rcv */
14118 		cq = phba->sli4_hba.nvmels_cq;
14119 	}
14120 
14121 	/* Otherwise this is a Slow path event */
14122 	if (cq == NULL) {
14123 		lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]);
14124 		return;
14125 	}
14126 
14127 process_cq:
14128 	if (unlikely(cqid != cq->queue_id)) {
14129 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14130 				"0368 Miss-matched fast-path completion "
14131 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14132 				cqid, cq->queue_id);
14133 		return;
14134 	}
14135 
14136 	/* Save EQ associated with this CQ */
14137 	cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
14138 
14139 	if (!queue_work(phba->wq, &cq->irqwork))
14140 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14141 				"0363 Cannot schedule soft IRQ "
14142 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14143 				cqid, cq->queue_id, smp_processor_id());
14144 }
14145 
14146 /**
14147  * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14148  * @phba: Pointer to HBA context object.
14149  * @eqe: Pointer to fast-path event queue entry.
14150  *
14151  * This routine process a event queue entry from the fast-path event queue.
14152  * It will check the MajorCode and MinorCode to determine this is for a
14153  * completion event on a completion queue, if not, an error shall be logged
14154  * and just return. Otherwise, it will get to the corresponding completion
14155  * queue and process all the entries on the completion queue, rearm the
14156  * completion queue, and then return.
14157  **/
14158 static void
14159 lpfc_sli4_hba_process_cq(struct work_struct *work)
14160 {
14161 	struct lpfc_queue *cq =
14162 		container_of(work, struct lpfc_queue, irqwork);
14163 	struct lpfc_hba *phba = cq->phba;
14164 	struct lpfc_cqe *cqe;
14165 	bool workposted = false;
14166 	int ccount = 0;
14167 
14168 	/* Process all the entries to the CQ */
14169 	while ((cqe = lpfc_sli4_cq_get(cq))) {
14170 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14171 		if (phba->ktime_on)
14172 			cq->isr_timestamp = ktime_get_ns();
14173 		else
14174 			cq->isr_timestamp = 0;
14175 #endif
14176 		workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
14177 		if (!(++ccount % cq->entry_repost))
14178 			break;
14179 	}
14180 
14181 	/* Track the max number of CQEs processed in 1 EQ */
14182 	if (ccount > cq->CQ_max_cqe)
14183 		cq->CQ_max_cqe = ccount;
14184 	cq->assoc_qp->EQ_cqe_cnt += ccount;
14185 
14186 	/* Catch the no cq entry condition */
14187 	if (unlikely(ccount == 0))
14188 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14189 				"0369 No entry from fast-path completion "
14190 				"queue fcpcqid=%d\n", cq->queue_id);
14191 
14192 	/* In any case, flash and re-arm the CQ */
14193 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
14194 
14195 	/* wake up worker thread if there are works to be done */
14196 	if (workposted)
14197 		lpfc_worker_wake_up(phba);
14198 }
14199 
14200 static void
14201 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
14202 {
14203 	struct lpfc_eqe *eqe;
14204 
14205 	/* walk all the EQ entries and drop on the floor */
14206 	while ((eqe = lpfc_sli4_eq_get(eq)))
14207 		;
14208 
14209 	/* Clear and re-arm the EQ */
14210 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14211 }
14212 
14213 
14214 /**
14215  * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
14216  *			     entry
14217  * @phba: Pointer to HBA context object.
14218  * @eqe: Pointer to fast-path event queue entry.
14219  *
14220  * This routine process a event queue entry from the Flash Optimized Fabric
14221  * event queue.  It will check the MajorCode and MinorCode to determine this
14222  * is for a completion event on a completion queue, if not, an error shall be
14223  * logged and just return. Otherwise, it will get to the corresponding
14224  * completion queue and process all the entries on the completion queue, rearm
14225  * the completion queue, and then return.
14226  **/
14227 static void
14228 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
14229 {
14230 	struct lpfc_queue *cq;
14231 	uint16_t cqid;
14232 
14233 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14234 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14235 				"9147 Not a valid completion "
14236 				"event: majorcode=x%x, minorcode=x%x\n",
14237 				bf_get_le32(lpfc_eqe_major_code, eqe),
14238 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14239 		return;
14240 	}
14241 
14242 	/* Get the reference to the corresponding CQ */
14243 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14244 
14245 	/* Next check for OAS */
14246 	cq = phba->sli4_hba.oas_cq;
14247 	if (unlikely(!cq)) {
14248 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14249 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14250 					"9148 OAS completion queue "
14251 					"does not exist\n");
14252 		return;
14253 	}
14254 
14255 	if (unlikely(cqid != cq->queue_id)) {
14256 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14257 				"9149 Miss-matched fast-path compl "
14258 				"queue id: eqcqid=%d, fcpcqid=%d\n",
14259 				cqid, cq->queue_id);
14260 		return;
14261 	}
14262 
14263 	/* Save EQ associated with this CQ */
14264 	cq->assoc_qp = phba->sli4_hba.fof_eq;
14265 
14266 	/* CQ work will be processed on CPU affinitized to this IRQ */
14267 	if (!queue_work(phba->wq, &cq->irqwork))
14268 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14269 				"0367 Cannot schedule soft IRQ "
14270 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14271 				cqid, cq->queue_id, smp_processor_id());
14272 }
14273 
14274 /**
14275  * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
14276  * @irq: Interrupt number.
14277  * @dev_id: The device context pointer.
14278  *
14279  * This function is directly called from the PCI layer as an interrupt
14280  * service routine when device with SLI-4 interface spec is enabled with
14281  * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
14282  * IOCB ring event in the HBA. However, when the device is enabled with either
14283  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14284  * device-level interrupt handler. When the PCI slot is in error recovery
14285  * or the HBA is undergoing initialization, the interrupt handler will not
14286  * process the interrupt. The Flash Optimized Fabric ring event are handled in
14287  * the intrrupt context. This function is called without any lock held.
14288  * It gets the hbalock to access and update SLI data structures. Note that,
14289  * the EQ to CQ are one-to-one map such that the EQ index is
14290  * equal to that of CQ index.
14291  *
14292  * This function returns IRQ_HANDLED when interrupt is handled else it
14293  * returns IRQ_NONE.
14294  **/
14295 irqreturn_t
14296 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
14297 {
14298 	struct lpfc_hba *phba;
14299 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14300 	struct lpfc_queue *eq;
14301 	struct lpfc_eqe *eqe;
14302 	unsigned long iflag;
14303 	int ecount = 0;
14304 
14305 	/* Get the driver's phba structure from the dev_id */
14306 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14307 	phba = hba_eq_hdl->phba;
14308 
14309 	if (unlikely(!phba))
14310 		return IRQ_NONE;
14311 
14312 	/* Get to the EQ struct associated with this vector */
14313 	eq = phba->sli4_hba.fof_eq;
14314 	if (unlikely(!eq))
14315 		return IRQ_NONE;
14316 
14317 	/* Check device state for handling interrupt */
14318 	if (unlikely(lpfc_intr_state_check(phba))) {
14319 		/* Check again for link_state with lock held */
14320 		spin_lock_irqsave(&phba->hbalock, iflag);
14321 		if (phba->link_state < LPFC_LINK_DOWN)
14322 			/* Flush, clear interrupt, and rearm the EQ */
14323 			lpfc_sli4_eq_flush(phba, eq);
14324 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14325 		return IRQ_NONE;
14326 	}
14327 
14328 	/*
14329 	 * Process all the event on FCP fast-path EQ
14330 	 */
14331 	while ((eqe = lpfc_sli4_eq_get(eq))) {
14332 		lpfc_sli4_fof_handle_eqe(phba, eqe);
14333 		if (!(++ecount % eq->entry_repost))
14334 			break;
14335 		eq->EQ_processed++;
14336 	}
14337 
14338 	/* Track the max number of EQEs processed in 1 intr */
14339 	if (ecount > eq->EQ_max_eqe)
14340 		eq->EQ_max_eqe = ecount;
14341 
14342 
14343 	if (unlikely(ecount == 0)) {
14344 		eq->EQ_no_entry++;
14345 
14346 		if (phba->intr_type == MSIX)
14347 			/* MSI-X treated interrupt served as no EQ share INT */
14348 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14349 					"9145 MSI-X interrupt with no EQE\n");
14350 		else {
14351 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14352 					"9146 ISR interrupt with no EQE\n");
14353 			/* Non MSI-X treated on interrupt as EQ share INT */
14354 			return IRQ_NONE;
14355 		}
14356 	}
14357 	/* Always clear and re-arm the fast-path EQ */
14358 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14359 	return IRQ_HANDLED;
14360 }
14361 
14362 /**
14363  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14364  * @irq: Interrupt number.
14365  * @dev_id: The device context pointer.
14366  *
14367  * This function is directly called from the PCI layer as an interrupt
14368  * service routine when device with SLI-4 interface spec is enabled with
14369  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14370  * ring event in the HBA. However, when the device is enabled with either
14371  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14372  * device-level interrupt handler. When the PCI slot is in error recovery
14373  * or the HBA is undergoing initialization, the interrupt handler will not
14374  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14375  * the intrrupt context. This function is called without any lock held.
14376  * It gets the hbalock to access and update SLI data structures. Note that,
14377  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14378  * equal to that of FCP CQ index.
14379  *
14380  * The link attention and ELS ring attention events are handled
14381  * by the worker thread. The interrupt handler signals the worker thread
14382  * and returns for these events. This function is called without any lock
14383  * held. It gets the hbalock to access and update SLI data structures.
14384  *
14385  * This function returns IRQ_HANDLED when interrupt is handled else it
14386  * returns IRQ_NONE.
14387  **/
14388 irqreturn_t
14389 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14390 {
14391 	struct lpfc_hba *phba;
14392 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14393 	struct lpfc_queue *fpeq;
14394 	struct lpfc_eqe *eqe;
14395 	unsigned long iflag;
14396 	int ecount = 0;
14397 	int hba_eqidx;
14398 
14399 	/* Get the driver's phba structure from the dev_id */
14400 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14401 	phba = hba_eq_hdl->phba;
14402 	hba_eqidx = hba_eq_hdl->idx;
14403 
14404 	if (unlikely(!phba))
14405 		return IRQ_NONE;
14406 	if (unlikely(!phba->sli4_hba.hba_eq))
14407 		return IRQ_NONE;
14408 
14409 	/* Get to the EQ struct associated with this vector */
14410 	fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
14411 	if (unlikely(!fpeq))
14412 		return IRQ_NONE;
14413 
14414 	if (lpfc_fcp_look_ahead) {
14415 		if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
14416 			phba->sli4_hba.sli4_eq_clr_intr(fpeq);
14417 		else {
14418 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14419 			return IRQ_NONE;
14420 		}
14421 	}
14422 
14423 	/* Check device state for handling interrupt */
14424 	if (unlikely(lpfc_intr_state_check(phba))) {
14425 		/* Check again for link_state with lock held */
14426 		spin_lock_irqsave(&phba->hbalock, iflag);
14427 		if (phba->link_state < LPFC_LINK_DOWN)
14428 			/* Flush, clear interrupt, and rearm the EQ */
14429 			lpfc_sli4_eq_flush(phba, fpeq);
14430 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14431 		if (lpfc_fcp_look_ahead)
14432 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14433 		return IRQ_NONE;
14434 	}
14435 
14436 	/*
14437 	 * Process all the event on FCP fast-path EQ
14438 	 */
14439 	while ((eqe = lpfc_sli4_eq_get(fpeq))) {
14440 		lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
14441 		if (!(++ecount % fpeq->entry_repost))
14442 			break;
14443 		fpeq->EQ_processed++;
14444 	}
14445 
14446 	/* Track the max number of EQEs processed in 1 intr */
14447 	if (ecount > fpeq->EQ_max_eqe)
14448 		fpeq->EQ_max_eqe = ecount;
14449 
14450 	/* Always clear and re-arm the fast-path EQ */
14451 	phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
14452 
14453 	if (unlikely(ecount == 0)) {
14454 		fpeq->EQ_no_entry++;
14455 
14456 		if (lpfc_fcp_look_ahead) {
14457 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14458 			return IRQ_NONE;
14459 		}
14460 
14461 		if (phba->intr_type == MSIX)
14462 			/* MSI-X treated interrupt served as no EQ share INT */
14463 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14464 					"0358 MSI-X interrupt with no EQE\n");
14465 		else
14466 			/* Non MSI-X treated on interrupt as EQ share INT */
14467 			return IRQ_NONE;
14468 	}
14469 
14470 	if (lpfc_fcp_look_ahead)
14471 		atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14472 
14473 	return IRQ_HANDLED;
14474 } /* lpfc_sli4_fp_intr_handler */
14475 
14476 /**
14477  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14478  * @irq: Interrupt number.
14479  * @dev_id: The device context pointer.
14480  *
14481  * This function is the device-level interrupt handler to device with SLI-4
14482  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14483  * interrupt mode is enabled and there is an event in the HBA which requires
14484  * driver attention. This function invokes the slow-path interrupt attention
14485  * handling function and fast-path interrupt attention handling function in
14486  * turn to process the relevant HBA attention events. This function is called
14487  * without any lock held. It gets the hbalock to access and update SLI data
14488  * structures.
14489  *
14490  * This function returns IRQ_HANDLED when interrupt is handled, else it
14491  * returns IRQ_NONE.
14492  **/
14493 irqreturn_t
14494 lpfc_sli4_intr_handler(int irq, void *dev_id)
14495 {
14496 	struct lpfc_hba  *phba;
14497 	irqreturn_t hba_irq_rc;
14498 	bool hba_handled = false;
14499 	int qidx;
14500 
14501 	/* Get the driver's phba structure from the dev_id */
14502 	phba = (struct lpfc_hba *)dev_id;
14503 
14504 	if (unlikely(!phba))
14505 		return IRQ_NONE;
14506 
14507 	/*
14508 	 * Invoke fast-path host attention interrupt handling as appropriate.
14509 	 */
14510 	for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
14511 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14512 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14513 		if (hba_irq_rc == IRQ_HANDLED)
14514 			hba_handled |= true;
14515 	}
14516 
14517 	if (phba->cfg_fof) {
14518 		hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
14519 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14520 		if (hba_irq_rc == IRQ_HANDLED)
14521 			hba_handled |= true;
14522 	}
14523 
14524 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14525 } /* lpfc_sli4_intr_handler */
14526 
14527 /**
14528  * lpfc_sli4_queue_free - free a queue structure and associated memory
14529  * @queue: The queue structure to free.
14530  *
14531  * This function frees a queue structure and the DMAable memory used for
14532  * the host resident queue. This function must be called after destroying the
14533  * queue on the HBA.
14534  **/
14535 void
14536 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14537 {
14538 	struct lpfc_dmabuf *dmabuf;
14539 
14540 	if (!queue)
14541 		return;
14542 
14543 	while (!list_empty(&queue->page_list)) {
14544 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14545 				 list);
14546 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14547 				  dmabuf->virt, dmabuf->phys);
14548 		kfree(dmabuf);
14549 	}
14550 	if (queue->rqbp) {
14551 		lpfc_free_rq_buffer(queue->phba, queue);
14552 		kfree(queue->rqbp);
14553 	}
14554 
14555 	if (!list_empty(&queue->wq_list))
14556 		list_del(&queue->wq_list);
14557 
14558 	kfree(queue);
14559 	return;
14560 }
14561 
14562 /**
14563  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14564  * @phba: The HBA that this queue is being created on.
14565  * @page_size: The size of a queue page
14566  * @entry_size: The size of each queue entry for this queue.
14567  * @entry count: The number of entries that this queue will handle.
14568  *
14569  * This function allocates a queue structure and the DMAable memory used for
14570  * the host resident queue. This function must be called before creating the
14571  * queue on the HBA.
14572  **/
14573 struct lpfc_queue *
14574 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14575 		      uint32_t entry_size, uint32_t entry_count)
14576 {
14577 	struct lpfc_queue *queue;
14578 	struct lpfc_dmabuf *dmabuf;
14579 	int x, total_qe_count;
14580 	void *dma_pointer;
14581 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14582 
14583 	if (!phba->sli4_hba.pc_sli4_params.supported)
14584 		hw_page_size = page_size;
14585 
14586 	queue = kzalloc(sizeof(struct lpfc_queue) +
14587 			(sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
14588 	if (!queue)
14589 		return NULL;
14590 	queue->page_count = (ALIGN(entry_size * entry_count,
14591 			hw_page_size))/hw_page_size;
14592 
14593 	/* If needed, Adjust page count to match the max the adapter supports */
14594 	if (phba->sli4_hba.pc_sli4_params.wqpcnt &&
14595 	    (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt))
14596 		queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
14597 
14598 	INIT_LIST_HEAD(&queue->list);
14599 	INIT_LIST_HEAD(&queue->wq_list);
14600 	INIT_LIST_HEAD(&queue->wqfull_list);
14601 	INIT_LIST_HEAD(&queue->page_list);
14602 	INIT_LIST_HEAD(&queue->child_list);
14603 
14604 	/* Set queue parameters now.  If the system cannot provide memory
14605 	 * resources, the free routine needs to know what was allocated.
14606 	 */
14607 	queue->entry_size = entry_size;
14608 	queue->entry_count = entry_count;
14609 	queue->page_size = hw_page_size;
14610 	queue->phba = phba;
14611 
14612 	for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
14613 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
14614 		if (!dmabuf)
14615 			goto out_fail;
14616 		dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
14617 						   hw_page_size, &dmabuf->phys,
14618 						   GFP_KERNEL);
14619 		if (!dmabuf->virt) {
14620 			kfree(dmabuf);
14621 			goto out_fail;
14622 		}
14623 		dmabuf->buffer_tag = x;
14624 		list_add_tail(&dmabuf->list, &queue->page_list);
14625 		/* initialize queue's entry array */
14626 		dma_pointer = dmabuf->virt;
14627 		for (; total_qe_count < entry_count &&
14628 		     dma_pointer < (hw_page_size + dmabuf->virt);
14629 		     total_qe_count++, dma_pointer += entry_size) {
14630 			queue->qe[total_qe_count].address = dma_pointer;
14631 		}
14632 	}
14633 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14634 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14635 
14636 	/* entry_repost will be set during q creation */
14637 
14638 	return queue;
14639 out_fail:
14640 	lpfc_sli4_queue_free(queue);
14641 	return NULL;
14642 }
14643 
14644 /**
14645  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14646  * @phba: HBA structure that indicates port to create a queue on.
14647  * @pci_barset: PCI BAR set flag.
14648  *
14649  * This function shall perform iomap of the specified PCI BAR address to host
14650  * memory address if not already done so and return it. The returned host
14651  * memory address can be NULL.
14652  */
14653 static void __iomem *
14654 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14655 {
14656 	if (!phba->pcidev)
14657 		return NULL;
14658 
14659 	switch (pci_barset) {
14660 	case WQ_PCI_BAR_0_AND_1:
14661 		return phba->pci_bar0_memmap_p;
14662 	case WQ_PCI_BAR_2_AND_3:
14663 		return phba->pci_bar2_memmap_p;
14664 	case WQ_PCI_BAR_4_AND_5:
14665 		return phba->pci_bar4_memmap_p;
14666 	default:
14667 		break;
14668 	}
14669 	return NULL;
14670 }
14671 
14672 /**
14673  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
14674  * @phba: HBA structure that indicates port to create a queue on.
14675  * @startq: The starting FCP EQ to modify
14676  *
14677  * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
14678  * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be
14679  * updated in one mailbox command.
14680  *
14681  * The @phba struct is used to send mailbox command to HBA. The @startq
14682  * is used to get the starting FCP EQ to change.
14683  * This function is asynchronous and will wait for the mailbox
14684  * command to finish before continuing.
14685  *
14686  * On success this function will return a zero. If unable to allocate enough
14687  * memory this function will return -ENOMEM. If the queue create mailbox command
14688  * fails this function will return -ENXIO.
14689  **/
14690 int
14691 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14692 			 uint32_t numq, uint32_t imax)
14693 {
14694 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14695 	LPFC_MBOXQ_t *mbox;
14696 	struct lpfc_queue *eq;
14697 	int cnt, rc, length, status = 0;
14698 	uint32_t shdr_status, shdr_add_status;
14699 	uint32_t result, val;
14700 	int qidx;
14701 	union lpfc_sli4_cfg_shdr *shdr;
14702 	uint16_t dmult;
14703 
14704 	if (startq >= phba->io_channel_irqs)
14705 		return 0;
14706 
14707 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14708 	if (!mbox)
14709 		return -ENOMEM;
14710 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14711 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14712 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14713 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14714 			 length, LPFC_SLI4_MBX_EMBED);
14715 	eq_delay = &mbox->u.mqe.un.eq_delay;
14716 
14717 	/* Calculate delay multiper from maximum interrupt per second */
14718 	result = imax / phba->io_channel_irqs;
14719 	if (result > LPFC_DMULT_CONST || result == 0)
14720 		dmult = 0;
14721 	else
14722 		dmult = LPFC_DMULT_CONST/result - 1;
14723 	if (dmult > LPFC_DMULT_MAX)
14724 		dmult = LPFC_DMULT_MAX;
14725 
14726 	cnt = 0;
14727 	for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
14728 		eq = phba->sli4_hba.hba_eq[qidx];
14729 		if (!eq)
14730 			continue;
14731 		eq->q_mode = imax;
14732 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14733 		eq_delay->u.request.eq[cnt].phase = 0;
14734 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14735 		cnt++;
14736 
14737 		/* q_mode is only used for auto_imax */
14738 		if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14739 			/* Use EQ Delay Register method for q_mode */
14740 
14741 			/* Convert for EQ Delay register */
14742 			val =  phba->cfg_fcp_imax;
14743 			if (val) {
14744 				/* First, interrupts per sec per EQ */
14745 				val = phba->cfg_fcp_imax /
14746 					phba->io_channel_irqs;
14747 
14748 				/* us delay between each interrupt */
14749 				val = LPFC_SEC_TO_USEC / val;
14750 			}
14751 			eq->q_mode = val;
14752 		} else {
14753 			eq->q_mode = imax;
14754 		}
14755 
14756 		if (cnt >= numq)
14757 			break;
14758 	}
14759 	eq_delay->u.request.num_eq = cnt;
14760 
14761 	mbox->vport = phba->pport;
14762 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14763 	mbox->ctx_buf = NULL;
14764 	mbox->ctx_ndlp = NULL;
14765 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14766 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14767 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14768 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14769 	if (shdr_status || shdr_add_status || rc) {
14770 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14771 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14772 				"status x%x add_status x%x, mbx status x%x\n",
14773 				shdr_status, shdr_add_status, rc);
14774 		status = -ENXIO;
14775 	}
14776 	mempool_free(mbox, phba->mbox_mem_pool);
14777 	return status;
14778 }
14779 
14780 /**
14781  * lpfc_eq_create - Create an Event Queue on the HBA
14782  * @phba: HBA structure that indicates port to create a queue on.
14783  * @eq: The queue structure to use to create the event queue.
14784  * @imax: The maximum interrupt per second limit.
14785  *
14786  * This function creates an event queue, as detailed in @eq, on a port,
14787  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14788  *
14789  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14790  * is used to get the entry count and entry size that are necessary to
14791  * determine the number of pages to allocate and use for this queue. This
14792  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14793  * event queue. This function is asynchronous and will wait for the mailbox
14794  * command to finish before continuing.
14795  *
14796  * On success this function will return a zero. If unable to allocate enough
14797  * memory this function will return -ENOMEM. If the queue create mailbox command
14798  * fails this function will return -ENXIO.
14799  **/
14800 int
14801 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14802 {
14803 	struct lpfc_mbx_eq_create *eq_create;
14804 	LPFC_MBOXQ_t *mbox;
14805 	int rc, length, status = 0;
14806 	struct lpfc_dmabuf *dmabuf;
14807 	uint32_t shdr_status, shdr_add_status;
14808 	union lpfc_sli4_cfg_shdr *shdr;
14809 	uint16_t dmult;
14810 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14811 
14812 	/* sanity check on queue memory */
14813 	if (!eq)
14814 		return -ENODEV;
14815 	if (!phba->sli4_hba.pc_sli4_params.supported)
14816 		hw_page_size = SLI4_PAGE_SIZE;
14817 
14818 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14819 	if (!mbox)
14820 		return -ENOMEM;
14821 	length = (sizeof(struct lpfc_mbx_eq_create) -
14822 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14823 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14824 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14825 			 length, LPFC_SLI4_MBX_EMBED);
14826 	eq_create = &mbox->u.mqe.un.eq_create;
14827 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14828 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14829 	       eq->page_count);
14830 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14831 	       LPFC_EQE_SIZE);
14832 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14833 
14834 	/* Use version 2 of CREATE_EQ if eqav is set */
14835 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14836 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14837 		       LPFC_Q_CREATE_VERSION_2);
14838 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14839 		       phba->sli4_hba.pc_sli4_params.eqav);
14840 	}
14841 
14842 	/* don't setup delay multiplier using EQ_CREATE */
14843 	dmult = 0;
14844 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14845 	       dmult);
14846 	switch (eq->entry_count) {
14847 	default:
14848 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14849 				"0360 Unsupported EQ count. (%d)\n",
14850 				eq->entry_count);
14851 		if (eq->entry_count < 256)
14852 			return -EINVAL;
14853 		/* otherwise default to smallest count (drop through) */
14854 	case 256:
14855 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14856 		       LPFC_EQ_CNT_256);
14857 		break;
14858 	case 512:
14859 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14860 		       LPFC_EQ_CNT_512);
14861 		break;
14862 	case 1024:
14863 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14864 		       LPFC_EQ_CNT_1024);
14865 		break;
14866 	case 2048:
14867 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14868 		       LPFC_EQ_CNT_2048);
14869 		break;
14870 	case 4096:
14871 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14872 		       LPFC_EQ_CNT_4096);
14873 		break;
14874 	}
14875 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14876 		memset(dmabuf->virt, 0, hw_page_size);
14877 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14878 					putPaddrLow(dmabuf->phys);
14879 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14880 					putPaddrHigh(dmabuf->phys);
14881 	}
14882 	mbox->vport = phba->pport;
14883 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14884 	mbox->ctx_buf = NULL;
14885 	mbox->ctx_ndlp = NULL;
14886 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14887 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14888 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14889 	if (shdr_status || shdr_add_status || rc) {
14890 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14891 				"2500 EQ_CREATE mailbox failed with "
14892 				"status x%x add_status x%x, mbx status x%x\n",
14893 				shdr_status, shdr_add_status, rc);
14894 		status = -ENXIO;
14895 	}
14896 	eq->type = LPFC_EQ;
14897 	eq->subtype = LPFC_NONE;
14898 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14899 	if (eq->queue_id == 0xFFFF)
14900 		status = -ENXIO;
14901 	eq->host_index = 0;
14902 	eq->hba_index = 0;
14903 	eq->entry_repost = LPFC_EQ_REPOST;
14904 
14905 	mempool_free(mbox, phba->mbox_mem_pool);
14906 	return status;
14907 }
14908 
14909 /**
14910  * lpfc_cq_create - Create a Completion Queue on the HBA
14911  * @phba: HBA structure that indicates port to create a queue on.
14912  * @cq: The queue structure to use to create the completion queue.
14913  * @eq: The event queue to bind this completion queue to.
14914  *
14915  * This function creates a completion queue, as detailed in @wq, on a port,
14916  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14917  *
14918  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14919  * is used to get the entry count and entry size that are necessary to
14920  * determine the number of pages to allocate and use for this queue. The @eq
14921  * is used to indicate which event queue to bind this completion queue to. This
14922  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14923  * completion queue. This function is asynchronous and will wait for the mailbox
14924  * command to finish before continuing.
14925  *
14926  * On success this function will return a zero. If unable to allocate enough
14927  * memory this function will return -ENOMEM. If the queue create mailbox command
14928  * fails this function will return -ENXIO.
14929  **/
14930 int
14931 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14932 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14933 {
14934 	struct lpfc_mbx_cq_create *cq_create;
14935 	struct lpfc_dmabuf *dmabuf;
14936 	LPFC_MBOXQ_t *mbox;
14937 	int rc, length, status = 0;
14938 	uint32_t shdr_status, shdr_add_status;
14939 	union lpfc_sli4_cfg_shdr *shdr;
14940 
14941 	/* sanity check on queue memory */
14942 	if (!cq || !eq)
14943 		return -ENODEV;
14944 
14945 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14946 	if (!mbox)
14947 		return -ENOMEM;
14948 	length = (sizeof(struct lpfc_mbx_cq_create) -
14949 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14950 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14951 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14952 			 length, LPFC_SLI4_MBX_EMBED);
14953 	cq_create = &mbox->u.mqe.un.cq_create;
14954 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14955 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14956 		    cq->page_count);
14957 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14958 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14959 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14960 	       phba->sli4_hba.pc_sli4_params.cqv);
14961 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14962 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14963 		       (cq->page_size / SLI4_PAGE_SIZE));
14964 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14965 		       eq->queue_id);
14966 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14967 		       phba->sli4_hba.pc_sli4_params.cqav);
14968 	} else {
14969 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14970 		       eq->queue_id);
14971 	}
14972 	switch (cq->entry_count) {
14973 	case 2048:
14974 	case 4096:
14975 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14976 		    LPFC_Q_CREATE_VERSION_2) {
14977 			cq_create->u.request.context.lpfc_cq_context_count =
14978 				cq->entry_count;
14979 			bf_set(lpfc_cq_context_count,
14980 			       &cq_create->u.request.context,
14981 			       LPFC_CQ_CNT_WORD7);
14982 			break;
14983 		}
14984 		/* Fall Thru */
14985 	default:
14986 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14987 				"0361 Unsupported CQ count: "
14988 				"entry cnt %d sz %d pg cnt %d\n",
14989 				cq->entry_count, cq->entry_size,
14990 				cq->page_count);
14991 		if (cq->entry_count < 256) {
14992 			status = -EINVAL;
14993 			goto out;
14994 		}
14995 		/* otherwise default to smallest count (drop through) */
14996 	case 256:
14997 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14998 		       LPFC_CQ_CNT_256);
14999 		break;
15000 	case 512:
15001 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15002 		       LPFC_CQ_CNT_512);
15003 		break;
15004 	case 1024:
15005 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15006 		       LPFC_CQ_CNT_1024);
15007 		break;
15008 	}
15009 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15010 		memset(dmabuf->virt, 0, cq->page_size);
15011 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15012 					putPaddrLow(dmabuf->phys);
15013 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15014 					putPaddrHigh(dmabuf->phys);
15015 	}
15016 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15017 
15018 	/* The IOCTL status is embedded in the mailbox subheader. */
15019 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15020 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15021 	if (shdr_status || shdr_add_status || rc) {
15022 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15023 				"2501 CQ_CREATE mailbox failed with "
15024 				"status x%x add_status x%x, mbx status x%x\n",
15025 				shdr_status, shdr_add_status, rc);
15026 		status = -ENXIO;
15027 		goto out;
15028 	}
15029 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15030 	if (cq->queue_id == 0xFFFF) {
15031 		status = -ENXIO;
15032 		goto out;
15033 	}
15034 	/* link the cq onto the parent eq child list */
15035 	list_add_tail(&cq->list, &eq->child_list);
15036 	/* Set up completion queue's type and subtype */
15037 	cq->type = type;
15038 	cq->subtype = subtype;
15039 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15040 	cq->assoc_qid = eq->queue_id;
15041 	cq->host_index = 0;
15042 	cq->hba_index = 0;
15043 	cq->entry_repost = LPFC_CQ_REPOST;
15044 
15045 out:
15046 	mempool_free(mbox, phba->mbox_mem_pool);
15047 	return status;
15048 }
15049 
15050 /**
15051  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15052  * @phba: HBA structure that indicates port to create a queue on.
15053  * @cqp: The queue structure array to use to create the completion queues.
15054  * @eqp: The event queue array to bind these completion queues to.
15055  *
15056  * This function creates a set of  completion queue, s to support MRQ
15057  * as detailed in @cqp, on a port,
15058  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15059  *
15060  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15061  * is used to get the entry count and entry size that are necessary to
15062  * determine the number of pages to allocate and use for this queue. The @eq
15063  * is used to indicate which event queue to bind this completion queue to. This
15064  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15065  * completion queue. This function is asynchronous and will wait for the mailbox
15066  * command to finish before continuing.
15067  *
15068  * On success this function will return a zero. If unable to allocate enough
15069  * memory this function will return -ENOMEM. If the queue create mailbox command
15070  * fails this function will return -ENXIO.
15071  **/
15072 int
15073 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15074 		   struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
15075 {
15076 	struct lpfc_queue *cq;
15077 	struct lpfc_queue *eq;
15078 	struct lpfc_mbx_cq_create_set *cq_set;
15079 	struct lpfc_dmabuf *dmabuf;
15080 	LPFC_MBOXQ_t *mbox;
15081 	int rc, length, alloclen, status = 0;
15082 	int cnt, idx, numcq, page_idx = 0;
15083 	uint32_t shdr_status, shdr_add_status;
15084 	union lpfc_sli4_cfg_shdr *shdr;
15085 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15086 
15087 	/* sanity check on queue memory */
15088 	numcq = phba->cfg_nvmet_mrq;
15089 	if (!cqp || !eqp || !numcq)
15090 		return -ENODEV;
15091 
15092 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15093 	if (!mbox)
15094 		return -ENOMEM;
15095 
15096 	length = sizeof(struct lpfc_mbx_cq_create_set);
15097 	length += ((numcq * cqp[0]->page_count) *
15098 		   sizeof(struct dma_address));
15099 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15100 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15101 			LPFC_SLI4_MBX_NEMBED);
15102 	if (alloclen < length) {
15103 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15104 				"3098 Allocated DMA memory size (%d) is "
15105 				"less than the requested DMA memory size "
15106 				"(%d)\n", alloclen, length);
15107 		status = -ENOMEM;
15108 		goto out;
15109 	}
15110 	cq_set = mbox->sge_array->addr[0];
15111 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15112 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15113 
15114 	for (idx = 0; idx < numcq; idx++) {
15115 		cq = cqp[idx];
15116 		eq = eqp[idx];
15117 		if (!cq || !eq) {
15118 			status = -ENOMEM;
15119 			goto out;
15120 		}
15121 		if (!phba->sli4_hba.pc_sli4_params.supported)
15122 			hw_page_size = cq->page_size;
15123 
15124 		switch (idx) {
15125 		case 0:
15126 			bf_set(lpfc_mbx_cq_create_set_page_size,
15127 			       &cq_set->u.request,
15128 			       (hw_page_size / SLI4_PAGE_SIZE));
15129 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15130 			       &cq_set->u.request, cq->page_count);
15131 			bf_set(lpfc_mbx_cq_create_set_evt,
15132 			       &cq_set->u.request, 1);
15133 			bf_set(lpfc_mbx_cq_create_set_valid,
15134 			       &cq_set->u.request, 1);
15135 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15136 			       &cq_set->u.request, 0);
15137 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15138 			       &cq_set->u.request, numcq);
15139 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15140 			       &cq_set->u.request,
15141 			       phba->sli4_hba.pc_sli4_params.cqav);
15142 			switch (cq->entry_count) {
15143 			case 2048:
15144 			case 4096:
15145 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15146 				    LPFC_Q_CREATE_VERSION_2) {
15147 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15148 					       &cq_set->u.request,
15149 						cq->entry_count);
15150 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15151 					       &cq_set->u.request,
15152 					       LPFC_CQ_CNT_WORD7);
15153 					break;
15154 				}
15155 				/* Fall Thru */
15156 			default:
15157 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15158 						"3118 Bad CQ count. (%d)\n",
15159 						cq->entry_count);
15160 				if (cq->entry_count < 256) {
15161 					status = -EINVAL;
15162 					goto out;
15163 				}
15164 				/* otherwise default to smallest (drop thru) */
15165 			case 256:
15166 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15167 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15168 				break;
15169 			case 512:
15170 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15171 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15172 				break;
15173 			case 1024:
15174 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15175 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15176 				break;
15177 			}
15178 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15179 			       &cq_set->u.request, eq->queue_id);
15180 			break;
15181 		case 1:
15182 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15183 			       &cq_set->u.request, eq->queue_id);
15184 			break;
15185 		case 2:
15186 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15187 			       &cq_set->u.request, eq->queue_id);
15188 			break;
15189 		case 3:
15190 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15191 			       &cq_set->u.request, eq->queue_id);
15192 			break;
15193 		case 4:
15194 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15195 			       &cq_set->u.request, eq->queue_id);
15196 			break;
15197 		case 5:
15198 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15199 			       &cq_set->u.request, eq->queue_id);
15200 			break;
15201 		case 6:
15202 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15203 			       &cq_set->u.request, eq->queue_id);
15204 			break;
15205 		case 7:
15206 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15207 			       &cq_set->u.request, eq->queue_id);
15208 			break;
15209 		case 8:
15210 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15211 			       &cq_set->u.request, eq->queue_id);
15212 			break;
15213 		case 9:
15214 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15215 			       &cq_set->u.request, eq->queue_id);
15216 			break;
15217 		case 10:
15218 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15219 			       &cq_set->u.request, eq->queue_id);
15220 			break;
15221 		case 11:
15222 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15223 			       &cq_set->u.request, eq->queue_id);
15224 			break;
15225 		case 12:
15226 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15227 			       &cq_set->u.request, eq->queue_id);
15228 			break;
15229 		case 13:
15230 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15231 			       &cq_set->u.request, eq->queue_id);
15232 			break;
15233 		case 14:
15234 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15235 			       &cq_set->u.request, eq->queue_id);
15236 			break;
15237 		case 15:
15238 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15239 			       &cq_set->u.request, eq->queue_id);
15240 			break;
15241 		}
15242 
15243 		/* link the cq onto the parent eq child list */
15244 		list_add_tail(&cq->list, &eq->child_list);
15245 		/* Set up completion queue's type and subtype */
15246 		cq->type = type;
15247 		cq->subtype = subtype;
15248 		cq->assoc_qid = eq->queue_id;
15249 		cq->host_index = 0;
15250 		cq->hba_index = 0;
15251 		cq->entry_repost = LPFC_CQ_REPOST;
15252 		cq->chann = idx;
15253 
15254 		rc = 0;
15255 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15256 			memset(dmabuf->virt, 0, hw_page_size);
15257 			cnt = page_idx + dmabuf->buffer_tag;
15258 			cq_set->u.request.page[cnt].addr_lo =
15259 					putPaddrLow(dmabuf->phys);
15260 			cq_set->u.request.page[cnt].addr_hi =
15261 					putPaddrHigh(dmabuf->phys);
15262 			rc++;
15263 		}
15264 		page_idx += rc;
15265 	}
15266 
15267 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15268 
15269 	/* The IOCTL status is embedded in the mailbox subheader. */
15270 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15271 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15272 	if (shdr_status || shdr_add_status || rc) {
15273 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15274 				"3119 CQ_CREATE_SET mailbox failed with "
15275 				"status x%x add_status x%x, mbx status x%x\n",
15276 				shdr_status, shdr_add_status, rc);
15277 		status = -ENXIO;
15278 		goto out;
15279 	}
15280 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15281 	if (rc == 0xFFFF) {
15282 		status = -ENXIO;
15283 		goto out;
15284 	}
15285 
15286 	for (idx = 0; idx < numcq; idx++) {
15287 		cq = cqp[idx];
15288 		cq->queue_id = rc + idx;
15289 	}
15290 
15291 out:
15292 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15293 	return status;
15294 }
15295 
15296 /**
15297  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15298  * @phba: HBA structure that indicates port to create a queue on.
15299  * @mq: The queue structure to use to create the mailbox queue.
15300  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15301  * @cq: The completion queue to associate with this cq.
15302  *
15303  * This function provides failback (fb) functionality when the
15304  * mq_create_ext fails on older FW generations.  It's purpose is identical
15305  * to mq_create_ext otherwise.
15306  *
15307  * This routine cannot fail as all attributes were previously accessed and
15308  * initialized in mq_create_ext.
15309  **/
15310 static void
15311 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15312 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15313 {
15314 	struct lpfc_mbx_mq_create *mq_create;
15315 	struct lpfc_dmabuf *dmabuf;
15316 	int length;
15317 
15318 	length = (sizeof(struct lpfc_mbx_mq_create) -
15319 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15320 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15321 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15322 			 length, LPFC_SLI4_MBX_EMBED);
15323 	mq_create = &mbox->u.mqe.un.mq_create;
15324 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15325 	       mq->page_count);
15326 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15327 	       cq->queue_id);
15328 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15329 	switch (mq->entry_count) {
15330 	case 16:
15331 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15332 		       LPFC_MQ_RING_SIZE_16);
15333 		break;
15334 	case 32:
15335 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15336 		       LPFC_MQ_RING_SIZE_32);
15337 		break;
15338 	case 64:
15339 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15340 		       LPFC_MQ_RING_SIZE_64);
15341 		break;
15342 	case 128:
15343 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15344 		       LPFC_MQ_RING_SIZE_128);
15345 		break;
15346 	}
15347 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15348 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15349 			putPaddrLow(dmabuf->phys);
15350 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15351 			putPaddrHigh(dmabuf->phys);
15352 	}
15353 }
15354 
15355 /**
15356  * lpfc_mq_create - Create a mailbox Queue on the HBA
15357  * @phba: HBA structure that indicates port to create a queue on.
15358  * @mq: The queue structure to use to create the mailbox queue.
15359  * @cq: The completion queue to associate with this cq.
15360  * @subtype: The queue's subtype.
15361  *
15362  * This function creates a mailbox queue, as detailed in @mq, on a port,
15363  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15364  *
15365  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15366  * is used to get the entry count and entry size that are necessary to
15367  * determine the number of pages to allocate and use for this queue. This
15368  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15369  * mailbox queue. This function is asynchronous and will wait for the mailbox
15370  * command to finish before continuing.
15371  *
15372  * On success this function will return a zero. If unable to allocate enough
15373  * memory this function will return -ENOMEM. If the queue create mailbox command
15374  * fails this function will return -ENXIO.
15375  **/
15376 int32_t
15377 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15378 	       struct lpfc_queue *cq, uint32_t subtype)
15379 {
15380 	struct lpfc_mbx_mq_create *mq_create;
15381 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15382 	struct lpfc_dmabuf *dmabuf;
15383 	LPFC_MBOXQ_t *mbox;
15384 	int rc, length, status = 0;
15385 	uint32_t shdr_status, shdr_add_status;
15386 	union lpfc_sli4_cfg_shdr *shdr;
15387 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15388 
15389 	/* sanity check on queue memory */
15390 	if (!mq || !cq)
15391 		return -ENODEV;
15392 	if (!phba->sli4_hba.pc_sli4_params.supported)
15393 		hw_page_size = SLI4_PAGE_SIZE;
15394 
15395 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15396 	if (!mbox)
15397 		return -ENOMEM;
15398 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15399 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15400 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15401 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15402 			 length, LPFC_SLI4_MBX_EMBED);
15403 
15404 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15405 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15406 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15407 	       &mq_create_ext->u.request, mq->page_count);
15408 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15409 	       &mq_create_ext->u.request, 1);
15410 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15411 	       &mq_create_ext->u.request, 1);
15412 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15413 	       &mq_create_ext->u.request, 1);
15414 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15415 	       &mq_create_ext->u.request, 1);
15416 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15417 	       &mq_create_ext->u.request, 1);
15418 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15419 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15420 	       phba->sli4_hba.pc_sli4_params.mqv);
15421 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15422 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15423 		       cq->queue_id);
15424 	else
15425 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15426 		       cq->queue_id);
15427 	switch (mq->entry_count) {
15428 	default:
15429 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15430 				"0362 Unsupported MQ count. (%d)\n",
15431 				mq->entry_count);
15432 		if (mq->entry_count < 16) {
15433 			status = -EINVAL;
15434 			goto out;
15435 		}
15436 		/* otherwise default to smallest count (drop through) */
15437 	case 16:
15438 		bf_set(lpfc_mq_context_ring_size,
15439 		       &mq_create_ext->u.request.context,
15440 		       LPFC_MQ_RING_SIZE_16);
15441 		break;
15442 	case 32:
15443 		bf_set(lpfc_mq_context_ring_size,
15444 		       &mq_create_ext->u.request.context,
15445 		       LPFC_MQ_RING_SIZE_32);
15446 		break;
15447 	case 64:
15448 		bf_set(lpfc_mq_context_ring_size,
15449 		       &mq_create_ext->u.request.context,
15450 		       LPFC_MQ_RING_SIZE_64);
15451 		break;
15452 	case 128:
15453 		bf_set(lpfc_mq_context_ring_size,
15454 		       &mq_create_ext->u.request.context,
15455 		       LPFC_MQ_RING_SIZE_128);
15456 		break;
15457 	}
15458 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15459 		memset(dmabuf->virt, 0, hw_page_size);
15460 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15461 					putPaddrLow(dmabuf->phys);
15462 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15463 					putPaddrHigh(dmabuf->phys);
15464 	}
15465 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15466 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15467 			      &mq_create_ext->u.response);
15468 	if (rc != MBX_SUCCESS) {
15469 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15470 				"2795 MQ_CREATE_EXT failed with "
15471 				"status x%x. Failback to MQ_CREATE.\n",
15472 				rc);
15473 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15474 		mq_create = &mbox->u.mqe.un.mq_create;
15475 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15476 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15477 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15478 				      &mq_create->u.response);
15479 	}
15480 
15481 	/* The IOCTL status is embedded in the mailbox subheader. */
15482 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15483 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15484 	if (shdr_status || shdr_add_status || rc) {
15485 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15486 				"2502 MQ_CREATE mailbox failed with "
15487 				"status x%x add_status x%x, mbx status x%x\n",
15488 				shdr_status, shdr_add_status, rc);
15489 		status = -ENXIO;
15490 		goto out;
15491 	}
15492 	if (mq->queue_id == 0xFFFF) {
15493 		status = -ENXIO;
15494 		goto out;
15495 	}
15496 	mq->type = LPFC_MQ;
15497 	mq->assoc_qid = cq->queue_id;
15498 	mq->subtype = subtype;
15499 	mq->host_index = 0;
15500 	mq->hba_index = 0;
15501 	mq->entry_repost = LPFC_MQ_REPOST;
15502 
15503 	/* link the mq onto the parent cq child list */
15504 	list_add_tail(&mq->list, &cq->child_list);
15505 out:
15506 	mempool_free(mbox, phba->mbox_mem_pool);
15507 	return status;
15508 }
15509 
15510 /**
15511  * lpfc_wq_create - Create a Work Queue on the HBA
15512  * @phba: HBA structure that indicates port to create a queue on.
15513  * @wq: The queue structure to use to create the work queue.
15514  * @cq: The completion queue to bind this work queue to.
15515  * @subtype: The subtype of the work queue indicating its functionality.
15516  *
15517  * This function creates a work queue, as detailed in @wq, on a port, described
15518  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15519  *
15520  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15521  * is used to get the entry count and entry size that are necessary to
15522  * determine the number of pages to allocate and use for this queue. The @cq
15523  * is used to indicate which completion queue to bind this work queue to. This
15524  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15525  * work queue. This function is asynchronous and will wait for the mailbox
15526  * command to finish before continuing.
15527  *
15528  * On success this function will return a zero. If unable to allocate enough
15529  * memory this function will return -ENOMEM. If the queue create mailbox command
15530  * fails this function will return -ENXIO.
15531  **/
15532 int
15533 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15534 	       struct lpfc_queue *cq, uint32_t subtype)
15535 {
15536 	struct lpfc_mbx_wq_create *wq_create;
15537 	struct lpfc_dmabuf *dmabuf;
15538 	LPFC_MBOXQ_t *mbox;
15539 	int rc, length, status = 0;
15540 	uint32_t shdr_status, shdr_add_status;
15541 	union lpfc_sli4_cfg_shdr *shdr;
15542 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15543 	struct dma_address *page;
15544 	void __iomem *bar_memmap_p;
15545 	uint32_t db_offset;
15546 	uint16_t pci_barset;
15547 	uint8_t dpp_barset;
15548 	uint32_t dpp_offset;
15549 	unsigned long pg_addr;
15550 	uint8_t wq_create_version;
15551 
15552 	/* sanity check on queue memory */
15553 	if (!wq || !cq)
15554 		return -ENODEV;
15555 	if (!phba->sli4_hba.pc_sli4_params.supported)
15556 		hw_page_size = wq->page_size;
15557 
15558 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15559 	if (!mbox)
15560 		return -ENOMEM;
15561 	length = (sizeof(struct lpfc_mbx_wq_create) -
15562 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15563 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15564 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15565 			 length, LPFC_SLI4_MBX_EMBED);
15566 	wq_create = &mbox->u.mqe.un.wq_create;
15567 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15568 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15569 		    wq->page_count);
15570 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15571 		    cq->queue_id);
15572 
15573 	/* wqv is the earliest version supported, NOT the latest */
15574 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15575 	       phba->sli4_hba.pc_sli4_params.wqv);
15576 
15577 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15578 	    (wq->page_size > SLI4_PAGE_SIZE))
15579 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15580 	else
15581 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15582 
15583 
15584 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15585 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15586 	else
15587 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15588 
15589 	switch (wq_create_version) {
15590 	case LPFC_Q_CREATE_VERSION_1:
15591 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15592 		       wq->entry_count);
15593 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15594 		       LPFC_Q_CREATE_VERSION_1);
15595 
15596 		switch (wq->entry_size) {
15597 		default:
15598 		case 64:
15599 			bf_set(lpfc_mbx_wq_create_wqe_size,
15600 			       &wq_create->u.request_1,
15601 			       LPFC_WQ_WQE_SIZE_64);
15602 			break;
15603 		case 128:
15604 			bf_set(lpfc_mbx_wq_create_wqe_size,
15605 			       &wq_create->u.request_1,
15606 			       LPFC_WQ_WQE_SIZE_128);
15607 			break;
15608 		}
15609 		/* Request DPP by default */
15610 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15611 		bf_set(lpfc_mbx_wq_create_page_size,
15612 		       &wq_create->u.request_1,
15613 		       (wq->page_size / SLI4_PAGE_SIZE));
15614 		page = wq_create->u.request_1.page;
15615 		break;
15616 	default:
15617 		page = wq_create->u.request.page;
15618 		break;
15619 	}
15620 
15621 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15622 		memset(dmabuf->virt, 0, hw_page_size);
15623 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15624 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15625 	}
15626 
15627 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15628 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15629 
15630 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15631 	/* The IOCTL status is embedded in the mailbox subheader. */
15632 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15633 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15634 	if (shdr_status || shdr_add_status || rc) {
15635 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15636 				"2503 WQ_CREATE mailbox failed with "
15637 				"status x%x add_status x%x, mbx status x%x\n",
15638 				shdr_status, shdr_add_status, rc);
15639 		status = -ENXIO;
15640 		goto out;
15641 	}
15642 
15643 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15644 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15645 					&wq_create->u.response);
15646 	else
15647 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15648 					&wq_create->u.response_1);
15649 
15650 	if (wq->queue_id == 0xFFFF) {
15651 		status = -ENXIO;
15652 		goto out;
15653 	}
15654 
15655 	wq->db_format = LPFC_DB_LIST_FORMAT;
15656 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15657 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15658 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15659 					       &wq_create->u.response);
15660 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15661 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15662 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15663 						"3265 WQ[%d] doorbell format "
15664 						"not supported: x%x\n",
15665 						wq->queue_id, wq->db_format);
15666 				status = -EINVAL;
15667 				goto out;
15668 			}
15669 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15670 					    &wq_create->u.response);
15671 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15672 								   pci_barset);
15673 			if (!bar_memmap_p) {
15674 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15675 						"3263 WQ[%d] failed to memmap "
15676 						"pci barset:x%x\n",
15677 						wq->queue_id, pci_barset);
15678 				status = -ENOMEM;
15679 				goto out;
15680 			}
15681 			db_offset = wq_create->u.response.doorbell_offset;
15682 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15683 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15684 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15685 						"3252 WQ[%d] doorbell offset "
15686 						"not supported: x%x\n",
15687 						wq->queue_id, db_offset);
15688 				status = -EINVAL;
15689 				goto out;
15690 			}
15691 			wq->db_regaddr = bar_memmap_p + db_offset;
15692 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15693 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15694 					"format:x%x\n", wq->queue_id,
15695 					pci_barset, db_offset, wq->db_format);
15696 		} else
15697 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15698 	} else {
15699 		/* Check if DPP was honored by the firmware */
15700 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15701 				    &wq_create->u.response_1);
15702 		if (wq->dpp_enable) {
15703 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15704 					    &wq_create->u.response_1);
15705 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15706 								   pci_barset);
15707 			if (!bar_memmap_p) {
15708 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15709 						"3267 WQ[%d] failed to memmap "
15710 						"pci barset:x%x\n",
15711 						wq->queue_id, pci_barset);
15712 				status = -ENOMEM;
15713 				goto out;
15714 			}
15715 			db_offset = wq_create->u.response_1.doorbell_offset;
15716 			wq->db_regaddr = bar_memmap_p + db_offset;
15717 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15718 					    &wq_create->u.response_1);
15719 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15720 					    &wq_create->u.response_1);
15721 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15722 								   dpp_barset);
15723 			if (!bar_memmap_p) {
15724 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15725 						"3268 WQ[%d] failed to memmap "
15726 						"pci barset:x%x\n",
15727 						wq->queue_id, dpp_barset);
15728 				status = -ENOMEM;
15729 				goto out;
15730 			}
15731 			dpp_offset = wq_create->u.response_1.dpp_offset;
15732 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15733 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15734 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15735 					"dpp_id:x%x dpp_barset:x%x "
15736 					"dpp_offset:x%x\n",
15737 					wq->queue_id, pci_barset, db_offset,
15738 					wq->dpp_id, dpp_barset, dpp_offset);
15739 
15740 			/* Enable combined writes for DPP aperture */
15741 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15742 #ifdef CONFIG_X86
15743 			rc = set_memory_wc(pg_addr, 1);
15744 			if (rc) {
15745 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15746 					"3272 Cannot setup Combined "
15747 					"Write on WQ[%d] - disable DPP\n",
15748 					wq->queue_id);
15749 				phba->cfg_enable_dpp = 0;
15750 			}
15751 #else
15752 			phba->cfg_enable_dpp = 0;
15753 #endif
15754 		} else
15755 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15756 	}
15757 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15758 	if (wq->pring == NULL) {
15759 		status = -ENOMEM;
15760 		goto out;
15761 	}
15762 	wq->type = LPFC_WQ;
15763 	wq->assoc_qid = cq->queue_id;
15764 	wq->subtype = subtype;
15765 	wq->host_index = 0;
15766 	wq->hba_index = 0;
15767 	wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
15768 
15769 	/* link the wq onto the parent cq child list */
15770 	list_add_tail(&wq->list, &cq->child_list);
15771 out:
15772 	mempool_free(mbox, phba->mbox_mem_pool);
15773 	return status;
15774 }
15775 
15776 /**
15777  * lpfc_rq_create - Create a Receive Queue on the HBA
15778  * @phba: HBA structure that indicates port to create a queue on.
15779  * @hrq: The queue structure to use to create the header receive queue.
15780  * @drq: The queue structure to use to create the data receive queue.
15781  * @cq: The completion queue to bind this work queue to.
15782  *
15783  * This function creates a receive buffer queue pair , as detailed in @hrq and
15784  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15785  * to the HBA.
15786  *
15787  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15788  * struct is used to get the entry count that is necessary to determine the
15789  * number of pages to use for this queue. The @cq is used to indicate which
15790  * completion queue to bind received buffers that are posted to these queues to.
15791  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15792  * receive queue pair. This function is asynchronous and will wait for the
15793  * mailbox command to finish before continuing.
15794  *
15795  * On success this function will return a zero. If unable to allocate enough
15796  * memory this function will return -ENOMEM. If the queue create mailbox command
15797  * fails this function will return -ENXIO.
15798  **/
15799 int
15800 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15801 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15802 {
15803 	struct lpfc_mbx_rq_create *rq_create;
15804 	struct lpfc_dmabuf *dmabuf;
15805 	LPFC_MBOXQ_t *mbox;
15806 	int rc, length, status = 0;
15807 	uint32_t shdr_status, shdr_add_status;
15808 	union lpfc_sli4_cfg_shdr *shdr;
15809 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15810 	void __iomem *bar_memmap_p;
15811 	uint32_t db_offset;
15812 	uint16_t pci_barset;
15813 
15814 	/* sanity check on queue memory */
15815 	if (!hrq || !drq || !cq)
15816 		return -ENODEV;
15817 	if (!phba->sli4_hba.pc_sli4_params.supported)
15818 		hw_page_size = SLI4_PAGE_SIZE;
15819 
15820 	if (hrq->entry_count != drq->entry_count)
15821 		return -EINVAL;
15822 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15823 	if (!mbox)
15824 		return -ENOMEM;
15825 	length = (sizeof(struct lpfc_mbx_rq_create) -
15826 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15827 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15828 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15829 			 length, LPFC_SLI4_MBX_EMBED);
15830 	rq_create = &mbox->u.mqe.un.rq_create;
15831 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15832 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15833 	       phba->sli4_hba.pc_sli4_params.rqv);
15834 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15835 		bf_set(lpfc_rq_context_rqe_count_1,
15836 		       &rq_create->u.request.context,
15837 		       hrq->entry_count);
15838 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15839 		bf_set(lpfc_rq_context_rqe_size,
15840 		       &rq_create->u.request.context,
15841 		       LPFC_RQE_SIZE_8);
15842 		bf_set(lpfc_rq_context_page_size,
15843 		       &rq_create->u.request.context,
15844 		       LPFC_RQ_PAGE_SIZE_4096);
15845 	} else {
15846 		switch (hrq->entry_count) {
15847 		default:
15848 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15849 					"2535 Unsupported RQ count. (%d)\n",
15850 					hrq->entry_count);
15851 			if (hrq->entry_count < 512) {
15852 				status = -EINVAL;
15853 				goto out;
15854 			}
15855 			/* otherwise default to smallest count (drop through) */
15856 		case 512:
15857 			bf_set(lpfc_rq_context_rqe_count,
15858 			       &rq_create->u.request.context,
15859 			       LPFC_RQ_RING_SIZE_512);
15860 			break;
15861 		case 1024:
15862 			bf_set(lpfc_rq_context_rqe_count,
15863 			       &rq_create->u.request.context,
15864 			       LPFC_RQ_RING_SIZE_1024);
15865 			break;
15866 		case 2048:
15867 			bf_set(lpfc_rq_context_rqe_count,
15868 			       &rq_create->u.request.context,
15869 			       LPFC_RQ_RING_SIZE_2048);
15870 			break;
15871 		case 4096:
15872 			bf_set(lpfc_rq_context_rqe_count,
15873 			       &rq_create->u.request.context,
15874 			       LPFC_RQ_RING_SIZE_4096);
15875 			break;
15876 		}
15877 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15878 		       LPFC_HDR_BUF_SIZE);
15879 	}
15880 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15881 	       cq->queue_id);
15882 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15883 	       hrq->page_count);
15884 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15885 		memset(dmabuf->virt, 0, hw_page_size);
15886 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15887 					putPaddrLow(dmabuf->phys);
15888 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15889 					putPaddrHigh(dmabuf->phys);
15890 	}
15891 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15892 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15893 
15894 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15895 	/* The IOCTL status is embedded in the mailbox subheader. */
15896 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15897 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15898 	if (shdr_status || shdr_add_status || rc) {
15899 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15900 				"2504 RQ_CREATE mailbox failed with "
15901 				"status x%x add_status x%x, mbx status x%x\n",
15902 				shdr_status, shdr_add_status, rc);
15903 		status = -ENXIO;
15904 		goto out;
15905 	}
15906 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15907 	if (hrq->queue_id == 0xFFFF) {
15908 		status = -ENXIO;
15909 		goto out;
15910 	}
15911 
15912 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15913 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15914 					&rq_create->u.response);
15915 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15916 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15917 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15918 					"3262 RQ [%d] doorbell format not "
15919 					"supported: x%x\n", hrq->queue_id,
15920 					hrq->db_format);
15921 			status = -EINVAL;
15922 			goto out;
15923 		}
15924 
15925 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15926 				    &rq_create->u.response);
15927 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15928 		if (!bar_memmap_p) {
15929 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15930 					"3269 RQ[%d] failed to memmap pci "
15931 					"barset:x%x\n", hrq->queue_id,
15932 					pci_barset);
15933 			status = -ENOMEM;
15934 			goto out;
15935 		}
15936 
15937 		db_offset = rq_create->u.response.doorbell_offset;
15938 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15939 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15940 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15941 					"3270 RQ[%d] doorbell offset not "
15942 					"supported: x%x\n", hrq->queue_id,
15943 					db_offset);
15944 			status = -EINVAL;
15945 			goto out;
15946 		}
15947 		hrq->db_regaddr = bar_memmap_p + db_offset;
15948 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15949 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15950 				"format:x%x\n", hrq->queue_id, pci_barset,
15951 				db_offset, hrq->db_format);
15952 	} else {
15953 		hrq->db_format = LPFC_DB_RING_FORMAT;
15954 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15955 	}
15956 	hrq->type = LPFC_HRQ;
15957 	hrq->assoc_qid = cq->queue_id;
15958 	hrq->subtype = subtype;
15959 	hrq->host_index = 0;
15960 	hrq->hba_index = 0;
15961 	hrq->entry_repost = LPFC_RQ_REPOST;
15962 
15963 	/* now create the data queue */
15964 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15965 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15966 			 length, LPFC_SLI4_MBX_EMBED);
15967 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15968 	       phba->sli4_hba.pc_sli4_params.rqv);
15969 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15970 		bf_set(lpfc_rq_context_rqe_count_1,
15971 		       &rq_create->u.request.context, hrq->entry_count);
15972 		if (subtype == LPFC_NVMET)
15973 			rq_create->u.request.context.buffer_size =
15974 				LPFC_NVMET_DATA_BUF_SIZE;
15975 		else
15976 			rq_create->u.request.context.buffer_size =
15977 				LPFC_DATA_BUF_SIZE;
15978 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15979 		       LPFC_RQE_SIZE_8);
15980 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15981 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15982 	} else {
15983 		switch (drq->entry_count) {
15984 		default:
15985 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15986 					"2536 Unsupported RQ count. (%d)\n",
15987 					drq->entry_count);
15988 			if (drq->entry_count < 512) {
15989 				status = -EINVAL;
15990 				goto out;
15991 			}
15992 			/* otherwise default to smallest count (drop through) */
15993 		case 512:
15994 			bf_set(lpfc_rq_context_rqe_count,
15995 			       &rq_create->u.request.context,
15996 			       LPFC_RQ_RING_SIZE_512);
15997 			break;
15998 		case 1024:
15999 			bf_set(lpfc_rq_context_rqe_count,
16000 			       &rq_create->u.request.context,
16001 			       LPFC_RQ_RING_SIZE_1024);
16002 			break;
16003 		case 2048:
16004 			bf_set(lpfc_rq_context_rqe_count,
16005 			       &rq_create->u.request.context,
16006 			       LPFC_RQ_RING_SIZE_2048);
16007 			break;
16008 		case 4096:
16009 			bf_set(lpfc_rq_context_rqe_count,
16010 			       &rq_create->u.request.context,
16011 			       LPFC_RQ_RING_SIZE_4096);
16012 			break;
16013 		}
16014 		if (subtype == LPFC_NVMET)
16015 			bf_set(lpfc_rq_context_buf_size,
16016 			       &rq_create->u.request.context,
16017 			       LPFC_NVMET_DATA_BUF_SIZE);
16018 		else
16019 			bf_set(lpfc_rq_context_buf_size,
16020 			       &rq_create->u.request.context,
16021 			       LPFC_DATA_BUF_SIZE);
16022 	}
16023 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16024 	       cq->queue_id);
16025 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16026 	       drq->page_count);
16027 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16028 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16029 					putPaddrLow(dmabuf->phys);
16030 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16031 					putPaddrHigh(dmabuf->phys);
16032 	}
16033 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16034 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16035 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16036 	/* The IOCTL status is embedded in the mailbox subheader. */
16037 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16038 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16039 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16040 	if (shdr_status || shdr_add_status || rc) {
16041 		status = -ENXIO;
16042 		goto out;
16043 	}
16044 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16045 	if (drq->queue_id == 0xFFFF) {
16046 		status = -ENXIO;
16047 		goto out;
16048 	}
16049 	drq->type = LPFC_DRQ;
16050 	drq->assoc_qid = cq->queue_id;
16051 	drq->subtype = subtype;
16052 	drq->host_index = 0;
16053 	drq->hba_index = 0;
16054 	drq->entry_repost = LPFC_RQ_REPOST;
16055 
16056 	/* link the header and data RQs onto the parent cq child list */
16057 	list_add_tail(&hrq->list, &cq->child_list);
16058 	list_add_tail(&drq->list, &cq->child_list);
16059 
16060 out:
16061 	mempool_free(mbox, phba->mbox_mem_pool);
16062 	return status;
16063 }
16064 
16065 /**
16066  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16067  * @phba: HBA structure that indicates port to create a queue on.
16068  * @hrqp: The queue structure array to use to create the header receive queues.
16069  * @drqp: The queue structure array to use to create the data receive queues.
16070  * @cqp: The completion queue array to bind these receive queues to.
16071  *
16072  * This function creates a receive buffer queue pair , as detailed in @hrq and
16073  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16074  * to the HBA.
16075  *
16076  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16077  * struct is used to get the entry count that is necessary to determine the
16078  * number of pages to use for this queue. The @cq is used to indicate which
16079  * completion queue to bind received buffers that are posted to these queues to.
16080  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16081  * receive queue pair. This function is asynchronous and will wait for the
16082  * mailbox command to finish before continuing.
16083  *
16084  * On success this function will return a zero. If unable to allocate enough
16085  * memory this function will return -ENOMEM. If the queue create mailbox command
16086  * fails this function will return -ENXIO.
16087  **/
16088 int
16089 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16090 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16091 		uint32_t subtype)
16092 {
16093 	struct lpfc_queue *hrq, *drq, *cq;
16094 	struct lpfc_mbx_rq_create_v2 *rq_create;
16095 	struct lpfc_dmabuf *dmabuf;
16096 	LPFC_MBOXQ_t *mbox;
16097 	int rc, length, alloclen, status = 0;
16098 	int cnt, idx, numrq, page_idx = 0;
16099 	uint32_t shdr_status, shdr_add_status;
16100 	union lpfc_sli4_cfg_shdr *shdr;
16101 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16102 
16103 	numrq = phba->cfg_nvmet_mrq;
16104 	/* sanity check on array memory */
16105 	if (!hrqp || !drqp || !cqp || !numrq)
16106 		return -ENODEV;
16107 	if (!phba->sli4_hba.pc_sli4_params.supported)
16108 		hw_page_size = SLI4_PAGE_SIZE;
16109 
16110 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16111 	if (!mbox)
16112 		return -ENOMEM;
16113 
16114 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16115 	length += ((2 * numrq * hrqp[0]->page_count) *
16116 		   sizeof(struct dma_address));
16117 
16118 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16119 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16120 				    LPFC_SLI4_MBX_NEMBED);
16121 	if (alloclen < length) {
16122 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16123 				"3099 Allocated DMA memory size (%d) is "
16124 				"less than the requested DMA memory size "
16125 				"(%d)\n", alloclen, length);
16126 		status = -ENOMEM;
16127 		goto out;
16128 	}
16129 
16130 
16131 
16132 	rq_create = mbox->sge_array->addr[0];
16133 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16134 
16135 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16136 	cnt = 0;
16137 
16138 	for (idx = 0; idx < numrq; idx++) {
16139 		hrq = hrqp[idx];
16140 		drq = drqp[idx];
16141 		cq  = cqp[idx];
16142 
16143 		/* sanity check on queue memory */
16144 		if (!hrq || !drq || !cq) {
16145 			status = -ENODEV;
16146 			goto out;
16147 		}
16148 
16149 		if (hrq->entry_count != drq->entry_count) {
16150 			status = -EINVAL;
16151 			goto out;
16152 		}
16153 
16154 		if (idx == 0) {
16155 			bf_set(lpfc_mbx_rq_create_num_pages,
16156 			       &rq_create->u.request,
16157 			       hrq->page_count);
16158 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16159 			       &rq_create->u.request, (numrq * 2));
16160 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16161 			       1);
16162 			bf_set(lpfc_rq_context_base_cq,
16163 			       &rq_create->u.request.context,
16164 			       cq->queue_id);
16165 			bf_set(lpfc_rq_context_data_size,
16166 			       &rq_create->u.request.context,
16167 			       LPFC_NVMET_DATA_BUF_SIZE);
16168 			bf_set(lpfc_rq_context_hdr_size,
16169 			       &rq_create->u.request.context,
16170 			       LPFC_HDR_BUF_SIZE);
16171 			bf_set(lpfc_rq_context_rqe_count_1,
16172 			       &rq_create->u.request.context,
16173 			       hrq->entry_count);
16174 			bf_set(lpfc_rq_context_rqe_size,
16175 			       &rq_create->u.request.context,
16176 			       LPFC_RQE_SIZE_8);
16177 			bf_set(lpfc_rq_context_page_size,
16178 			       &rq_create->u.request.context,
16179 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16180 		}
16181 		rc = 0;
16182 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16183 			memset(dmabuf->virt, 0, hw_page_size);
16184 			cnt = page_idx + dmabuf->buffer_tag;
16185 			rq_create->u.request.page[cnt].addr_lo =
16186 					putPaddrLow(dmabuf->phys);
16187 			rq_create->u.request.page[cnt].addr_hi =
16188 					putPaddrHigh(dmabuf->phys);
16189 			rc++;
16190 		}
16191 		page_idx += rc;
16192 
16193 		rc = 0;
16194 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16195 			memset(dmabuf->virt, 0, hw_page_size);
16196 			cnt = page_idx + dmabuf->buffer_tag;
16197 			rq_create->u.request.page[cnt].addr_lo =
16198 					putPaddrLow(dmabuf->phys);
16199 			rq_create->u.request.page[cnt].addr_hi =
16200 					putPaddrHigh(dmabuf->phys);
16201 			rc++;
16202 		}
16203 		page_idx += rc;
16204 
16205 		hrq->db_format = LPFC_DB_RING_FORMAT;
16206 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16207 		hrq->type = LPFC_HRQ;
16208 		hrq->assoc_qid = cq->queue_id;
16209 		hrq->subtype = subtype;
16210 		hrq->host_index = 0;
16211 		hrq->hba_index = 0;
16212 		hrq->entry_repost = LPFC_RQ_REPOST;
16213 
16214 		drq->db_format = LPFC_DB_RING_FORMAT;
16215 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16216 		drq->type = LPFC_DRQ;
16217 		drq->assoc_qid = cq->queue_id;
16218 		drq->subtype = subtype;
16219 		drq->host_index = 0;
16220 		drq->hba_index = 0;
16221 		drq->entry_repost = LPFC_RQ_REPOST;
16222 
16223 		list_add_tail(&hrq->list, &cq->child_list);
16224 		list_add_tail(&drq->list, &cq->child_list);
16225 	}
16226 
16227 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16228 	/* The IOCTL status is embedded in the mailbox subheader. */
16229 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16230 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16231 	if (shdr_status || shdr_add_status || rc) {
16232 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16233 				"3120 RQ_CREATE mailbox failed with "
16234 				"status x%x add_status x%x, mbx status x%x\n",
16235 				shdr_status, shdr_add_status, rc);
16236 		status = -ENXIO;
16237 		goto out;
16238 	}
16239 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16240 	if (rc == 0xFFFF) {
16241 		status = -ENXIO;
16242 		goto out;
16243 	}
16244 
16245 	/* Initialize all RQs with associated queue id */
16246 	for (idx = 0; idx < numrq; idx++) {
16247 		hrq = hrqp[idx];
16248 		hrq->queue_id = rc + (2 * idx);
16249 		drq = drqp[idx];
16250 		drq->queue_id = rc + (2 * idx) + 1;
16251 	}
16252 
16253 out:
16254 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16255 	return status;
16256 }
16257 
16258 /**
16259  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16260  * @eq: The queue structure associated with the queue to destroy.
16261  *
16262  * This function destroys a queue, as detailed in @eq by sending an mailbox
16263  * command, specific to the type of queue, to the HBA.
16264  *
16265  * The @eq struct is used to get the queue ID of the queue to destroy.
16266  *
16267  * On success this function will return a zero. If the queue destroy mailbox
16268  * command fails this function will return -ENXIO.
16269  **/
16270 int
16271 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16272 {
16273 	LPFC_MBOXQ_t *mbox;
16274 	int rc, length, status = 0;
16275 	uint32_t shdr_status, shdr_add_status;
16276 	union lpfc_sli4_cfg_shdr *shdr;
16277 
16278 	/* sanity check on queue memory */
16279 	if (!eq)
16280 		return -ENODEV;
16281 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16282 	if (!mbox)
16283 		return -ENOMEM;
16284 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16285 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16286 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16287 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16288 			 length, LPFC_SLI4_MBX_EMBED);
16289 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16290 	       eq->queue_id);
16291 	mbox->vport = eq->phba->pport;
16292 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16293 
16294 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16295 	/* The IOCTL status is embedded in the mailbox subheader. */
16296 	shdr = (union lpfc_sli4_cfg_shdr *)
16297 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16298 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16299 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16300 	if (shdr_status || shdr_add_status || rc) {
16301 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16302 				"2505 EQ_DESTROY mailbox failed with "
16303 				"status x%x add_status x%x, mbx status x%x\n",
16304 				shdr_status, shdr_add_status, rc);
16305 		status = -ENXIO;
16306 	}
16307 
16308 	/* Remove eq from any list */
16309 	list_del_init(&eq->list);
16310 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16311 	return status;
16312 }
16313 
16314 /**
16315  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16316  * @cq: The queue structure associated with the queue to destroy.
16317  *
16318  * This function destroys a queue, as detailed in @cq by sending an mailbox
16319  * command, specific to the type of queue, to the HBA.
16320  *
16321  * The @cq struct is used to get the queue ID of the queue to destroy.
16322  *
16323  * On success this function will return a zero. If the queue destroy mailbox
16324  * command fails this function will return -ENXIO.
16325  **/
16326 int
16327 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16328 {
16329 	LPFC_MBOXQ_t *mbox;
16330 	int rc, length, status = 0;
16331 	uint32_t shdr_status, shdr_add_status;
16332 	union lpfc_sli4_cfg_shdr *shdr;
16333 
16334 	/* sanity check on queue memory */
16335 	if (!cq)
16336 		return -ENODEV;
16337 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16338 	if (!mbox)
16339 		return -ENOMEM;
16340 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16341 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16342 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16343 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16344 			 length, LPFC_SLI4_MBX_EMBED);
16345 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16346 	       cq->queue_id);
16347 	mbox->vport = cq->phba->pport;
16348 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16349 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16350 	/* The IOCTL status is embedded in the mailbox subheader. */
16351 	shdr = (union lpfc_sli4_cfg_shdr *)
16352 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16353 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16354 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16355 	if (shdr_status || shdr_add_status || rc) {
16356 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16357 				"2506 CQ_DESTROY mailbox failed with "
16358 				"status x%x add_status x%x, mbx status x%x\n",
16359 				shdr_status, shdr_add_status, rc);
16360 		status = -ENXIO;
16361 	}
16362 	/* Remove cq from any list */
16363 	list_del_init(&cq->list);
16364 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16365 	return status;
16366 }
16367 
16368 /**
16369  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16370  * @qm: The queue structure associated with the queue to destroy.
16371  *
16372  * This function destroys a queue, as detailed in @mq by sending an mailbox
16373  * command, specific to the type of queue, to the HBA.
16374  *
16375  * The @mq struct is used to get the queue ID of the queue to destroy.
16376  *
16377  * On success this function will return a zero. If the queue destroy mailbox
16378  * command fails this function will return -ENXIO.
16379  **/
16380 int
16381 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16382 {
16383 	LPFC_MBOXQ_t *mbox;
16384 	int rc, length, status = 0;
16385 	uint32_t shdr_status, shdr_add_status;
16386 	union lpfc_sli4_cfg_shdr *shdr;
16387 
16388 	/* sanity check on queue memory */
16389 	if (!mq)
16390 		return -ENODEV;
16391 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16392 	if (!mbox)
16393 		return -ENOMEM;
16394 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16395 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16396 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16397 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16398 			 length, LPFC_SLI4_MBX_EMBED);
16399 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16400 	       mq->queue_id);
16401 	mbox->vport = mq->phba->pport;
16402 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16403 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16404 	/* The IOCTL status is embedded in the mailbox subheader. */
16405 	shdr = (union lpfc_sli4_cfg_shdr *)
16406 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16407 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16408 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16409 	if (shdr_status || shdr_add_status || rc) {
16410 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16411 				"2507 MQ_DESTROY mailbox failed with "
16412 				"status x%x add_status x%x, mbx status x%x\n",
16413 				shdr_status, shdr_add_status, rc);
16414 		status = -ENXIO;
16415 	}
16416 	/* Remove mq from any list */
16417 	list_del_init(&mq->list);
16418 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16419 	return status;
16420 }
16421 
16422 /**
16423  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16424  * @wq: The queue structure associated with the queue to destroy.
16425  *
16426  * This function destroys a queue, as detailed in @wq by sending an mailbox
16427  * command, specific to the type of queue, to the HBA.
16428  *
16429  * The @wq struct is used to get the queue ID of the queue to destroy.
16430  *
16431  * On success this function will return a zero. If the queue destroy mailbox
16432  * command fails this function will return -ENXIO.
16433  **/
16434 int
16435 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16436 {
16437 	LPFC_MBOXQ_t *mbox;
16438 	int rc, length, status = 0;
16439 	uint32_t shdr_status, shdr_add_status;
16440 	union lpfc_sli4_cfg_shdr *shdr;
16441 
16442 	/* sanity check on queue memory */
16443 	if (!wq)
16444 		return -ENODEV;
16445 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16446 	if (!mbox)
16447 		return -ENOMEM;
16448 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16449 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16450 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16451 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16452 			 length, LPFC_SLI4_MBX_EMBED);
16453 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16454 	       wq->queue_id);
16455 	mbox->vport = wq->phba->pport;
16456 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16457 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16458 	shdr = (union lpfc_sli4_cfg_shdr *)
16459 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16460 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16461 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16462 	if (shdr_status || shdr_add_status || rc) {
16463 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16464 				"2508 WQ_DESTROY mailbox failed with "
16465 				"status x%x add_status x%x, mbx status x%x\n",
16466 				shdr_status, shdr_add_status, rc);
16467 		status = -ENXIO;
16468 	}
16469 	/* Remove wq from any list */
16470 	list_del_init(&wq->list);
16471 	kfree(wq->pring);
16472 	wq->pring = NULL;
16473 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16474 	return status;
16475 }
16476 
16477 /**
16478  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16479  * @rq: The queue structure associated with the queue to destroy.
16480  *
16481  * This function destroys a queue, as detailed in @rq by sending an mailbox
16482  * command, specific to the type of queue, to the HBA.
16483  *
16484  * The @rq struct is used to get the queue ID of the queue to destroy.
16485  *
16486  * On success this function will return a zero. If the queue destroy mailbox
16487  * command fails this function will return -ENXIO.
16488  **/
16489 int
16490 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16491 		struct lpfc_queue *drq)
16492 {
16493 	LPFC_MBOXQ_t *mbox;
16494 	int rc, length, status = 0;
16495 	uint32_t shdr_status, shdr_add_status;
16496 	union lpfc_sli4_cfg_shdr *shdr;
16497 
16498 	/* sanity check on queue memory */
16499 	if (!hrq || !drq)
16500 		return -ENODEV;
16501 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16502 	if (!mbox)
16503 		return -ENOMEM;
16504 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16505 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16506 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16507 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16508 			 length, LPFC_SLI4_MBX_EMBED);
16509 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16510 	       hrq->queue_id);
16511 	mbox->vport = hrq->phba->pport;
16512 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16513 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16514 	/* The IOCTL status is embedded in the mailbox subheader. */
16515 	shdr = (union lpfc_sli4_cfg_shdr *)
16516 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16517 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16518 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16519 	if (shdr_status || shdr_add_status || rc) {
16520 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16521 				"2509 RQ_DESTROY mailbox failed with "
16522 				"status x%x add_status x%x, mbx status x%x\n",
16523 				shdr_status, shdr_add_status, rc);
16524 		if (rc != MBX_TIMEOUT)
16525 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16526 		return -ENXIO;
16527 	}
16528 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16529 	       drq->queue_id);
16530 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16531 	shdr = (union lpfc_sli4_cfg_shdr *)
16532 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16533 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16534 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16535 	if (shdr_status || shdr_add_status || rc) {
16536 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16537 				"2510 RQ_DESTROY mailbox failed with "
16538 				"status x%x add_status x%x, mbx status x%x\n",
16539 				shdr_status, shdr_add_status, rc);
16540 		status = -ENXIO;
16541 	}
16542 	list_del_init(&hrq->list);
16543 	list_del_init(&drq->list);
16544 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16545 	return status;
16546 }
16547 
16548 /**
16549  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16550  * @phba: The virtual port for which this call being executed.
16551  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16552  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16553  * @xritag: the xritag that ties this io to the SGL pages.
16554  *
16555  * This routine will post the sgl pages for the IO that has the xritag
16556  * that is in the iocbq structure. The xritag is assigned during iocbq
16557  * creation and persists for as long as the driver is loaded.
16558  * if the caller has fewer than 256 scatter gather segments to map then
16559  * pdma_phys_addr1 should be 0.
16560  * If the caller needs to map more than 256 scatter gather segment then
16561  * pdma_phys_addr1 should be a valid physical address.
16562  * physical address for SGLs must be 64 byte aligned.
16563  * If you are going to map 2 SGL's then the first one must have 256 entries
16564  * the second sgl can have between 1 and 256 entries.
16565  *
16566  * Return codes:
16567  * 	0 - Success
16568  * 	-ENXIO, -ENOMEM - Failure
16569  **/
16570 int
16571 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16572 		dma_addr_t pdma_phys_addr0,
16573 		dma_addr_t pdma_phys_addr1,
16574 		uint16_t xritag)
16575 {
16576 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16577 	LPFC_MBOXQ_t *mbox;
16578 	int rc;
16579 	uint32_t shdr_status, shdr_add_status;
16580 	uint32_t mbox_tmo;
16581 	union lpfc_sli4_cfg_shdr *shdr;
16582 
16583 	if (xritag == NO_XRI) {
16584 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16585 				"0364 Invalid param:\n");
16586 		return -EINVAL;
16587 	}
16588 
16589 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16590 	if (!mbox)
16591 		return -ENOMEM;
16592 
16593 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16594 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16595 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16596 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16597 
16598 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16599 				&mbox->u.mqe.un.post_sgl_pages;
16600 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16601 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16602 
16603 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16604 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16605 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16606 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16607 
16608 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16609 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16610 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16611 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16612 	if (!phba->sli4_hba.intr_enable)
16613 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16614 	else {
16615 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16616 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16617 	}
16618 	/* The IOCTL status is embedded in the mailbox subheader. */
16619 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16620 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16621 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16622 	if (rc != MBX_TIMEOUT)
16623 		mempool_free(mbox, phba->mbox_mem_pool);
16624 	if (shdr_status || shdr_add_status || rc) {
16625 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16626 				"2511 POST_SGL mailbox failed with "
16627 				"status x%x add_status x%x, mbx status x%x\n",
16628 				shdr_status, shdr_add_status, rc);
16629 	}
16630 	return 0;
16631 }
16632 
16633 /**
16634  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16635  * @phba: pointer to lpfc hba data structure.
16636  *
16637  * This routine is invoked to post rpi header templates to the
16638  * HBA consistent with the SLI-4 interface spec.  This routine
16639  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16640  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16641  *
16642  * Returns
16643  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16644  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16645  **/
16646 static uint16_t
16647 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16648 {
16649 	unsigned long xri;
16650 
16651 	/*
16652 	 * Fetch the next logical xri.  Because this index is logical,
16653 	 * the driver starts at 0 each time.
16654 	 */
16655 	spin_lock_irq(&phba->hbalock);
16656 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16657 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16658 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16659 		spin_unlock_irq(&phba->hbalock);
16660 		return NO_XRI;
16661 	} else {
16662 		set_bit(xri, phba->sli4_hba.xri_bmask);
16663 		phba->sli4_hba.max_cfg_param.xri_used++;
16664 	}
16665 	spin_unlock_irq(&phba->hbalock);
16666 	return xri;
16667 }
16668 
16669 /**
16670  * lpfc_sli4_free_xri - Release an xri for reuse.
16671  * @phba: pointer to lpfc hba data structure.
16672  *
16673  * This routine is invoked to release an xri to the pool of
16674  * available rpis maintained by the driver.
16675  **/
16676 static void
16677 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16678 {
16679 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16680 		phba->sli4_hba.max_cfg_param.xri_used--;
16681 	}
16682 }
16683 
16684 /**
16685  * lpfc_sli4_free_xri - Release an xri for reuse.
16686  * @phba: pointer to lpfc hba data structure.
16687  *
16688  * This routine is invoked to release an xri to the pool of
16689  * available rpis maintained by the driver.
16690  **/
16691 void
16692 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16693 {
16694 	spin_lock_irq(&phba->hbalock);
16695 	__lpfc_sli4_free_xri(phba, xri);
16696 	spin_unlock_irq(&phba->hbalock);
16697 }
16698 
16699 /**
16700  * lpfc_sli4_next_xritag - Get an xritag for the io
16701  * @phba: Pointer to HBA context object.
16702  *
16703  * This function gets an xritag for the iocb. If there is no unused xritag
16704  * it will return 0xffff.
16705  * The function returns the allocated xritag if successful, else returns zero.
16706  * Zero is not a valid xritag.
16707  * The caller is not required to hold any lock.
16708  **/
16709 uint16_t
16710 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16711 {
16712 	uint16_t xri_index;
16713 
16714 	xri_index = lpfc_sli4_alloc_xri(phba);
16715 	if (xri_index == NO_XRI)
16716 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16717 				"2004 Failed to allocate XRI.last XRITAG is %d"
16718 				" Max XRI is %d, Used XRI is %d\n",
16719 				xri_index,
16720 				phba->sli4_hba.max_cfg_param.max_xri,
16721 				phba->sli4_hba.max_cfg_param.xri_used);
16722 	return xri_index;
16723 }
16724 
16725 /**
16726  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16727  * @phba: pointer to lpfc hba data structure.
16728  * @post_sgl_list: pointer to els sgl entry list.
16729  * @count: number of els sgl entries on the list.
16730  *
16731  * This routine is invoked to post a block of driver's sgl pages to the
16732  * HBA using non-embedded mailbox command. No Lock is held. This routine
16733  * is only called when the driver is loading and after all IO has been
16734  * stopped.
16735  **/
16736 static int
16737 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16738 			    struct list_head *post_sgl_list,
16739 			    int post_cnt)
16740 {
16741 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16742 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16743 	struct sgl_page_pairs *sgl_pg_pairs;
16744 	void *viraddr;
16745 	LPFC_MBOXQ_t *mbox;
16746 	uint32_t reqlen, alloclen, pg_pairs;
16747 	uint32_t mbox_tmo;
16748 	uint16_t xritag_start = 0;
16749 	int rc = 0;
16750 	uint32_t shdr_status, shdr_add_status;
16751 	union lpfc_sli4_cfg_shdr *shdr;
16752 
16753 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16754 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16755 	if (reqlen > SLI4_PAGE_SIZE) {
16756 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16757 				"2559 Block sgl registration required DMA "
16758 				"size (%d) great than a page\n", reqlen);
16759 		return -ENOMEM;
16760 	}
16761 
16762 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16763 	if (!mbox)
16764 		return -ENOMEM;
16765 
16766 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16767 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16768 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16769 			 LPFC_SLI4_MBX_NEMBED);
16770 
16771 	if (alloclen < reqlen) {
16772 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16773 				"0285 Allocated DMA memory size (%d) is "
16774 				"less than the requested DMA memory "
16775 				"size (%d)\n", alloclen, reqlen);
16776 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16777 		return -ENOMEM;
16778 	}
16779 	/* Set up the SGL pages in the non-embedded DMA pages */
16780 	viraddr = mbox->sge_array->addr[0];
16781 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16782 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16783 
16784 	pg_pairs = 0;
16785 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16786 		/* Set up the sge entry */
16787 		sgl_pg_pairs->sgl_pg0_addr_lo =
16788 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16789 		sgl_pg_pairs->sgl_pg0_addr_hi =
16790 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16791 		sgl_pg_pairs->sgl_pg1_addr_lo =
16792 				cpu_to_le32(putPaddrLow(0));
16793 		sgl_pg_pairs->sgl_pg1_addr_hi =
16794 				cpu_to_le32(putPaddrHigh(0));
16795 
16796 		/* Keep the first xritag on the list */
16797 		if (pg_pairs == 0)
16798 			xritag_start = sglq_entry->sli4_xritag;
16799 		sgl_pg_pairs++;
16800 		pg_pairs++;
16801 	}
16802 
16803 	/* Complete initialization and perform endian conversion. */
16804 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16805 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16806 	sgl->word0 = cpu_to_le32(sgl->word0);
16807 
16808 	if (!phba->sli4_hba.intr_enable)
16809 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16810 	else {
16811 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16812 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16813 	}
16814 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16815 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16816 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16817 	if (rc != MBX_TIMEOUT)
16818 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16819 	if (shdr_status || shdr_add_status || rc) {
16820 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16821 				"2513 POST_SGL_BLOCK mailbox command failed "
16822 				"status x%x add_status x%x mbx status x%x\n",
16823 				shdr_status, shdr_add_status, rc);
16824 		rc = -ENXIO;
16825 	}
16826 	return rc;
16827 }
16828 
16829 /**
16830  * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
16831  * @phba: pointer to lpfc hba data structure.
16832  * @sblist: pointer to scsi buffer list.
16833  * @count: number of scsi buffers on the list.
16834  *
16835  * This routine is invoked to post a block of @count scsi sgl pages from a
16836  * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
16837  * No Lock is held.
16838  *
16839  **/
16840 int
16841 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
16842 			      struct list_head *sblist,
16843 			      int count)
16844 {
16845 	struct lpfc_scsi_buf *psb;
16846 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16847 	struct sgl_page_pairs *sgl_pg_pairs;
16848 	void *viraddr;
16849 	LPFC_MBOXQ_t *mbox;
16850 	uint32_t reqlen, alloclen, pg_pairs;
16851 	uint32_t mbox_tmo;
16852 	uint16_t xritag_start = 0;
16853 	int rc = 0;
16854 	uint32_t shdr_status, shdr_add_status;
16855 	dma_addr_t pdma_phys_bpl1;
16856 	union lpfc_sli4_cfg_shdr *shdr;
16857 
16858 	/* Calculate the requested length of the dma memory */
16859 	reqlen = count * sizeof(struct sgl_page_pairs) +
16860 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16861 	if (reqlen > SLI4_PAGE_SIZE) {
16862 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16863 				"0217 Block sgl registration required DMA "
16864 				"size (%d) great than a page\n", reqlen);
16865 		return -ENOMEM;
16866 	}
16867 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16868 	if (!mbox) {
16869 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16870 				"0283 Failed to allocate mbox cmd memory\n");
16871 		return -ENOMEM;
16872 	}
16873 
16874 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16875 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16876 				LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16877 				LPFC_SLI4_MBX_NEMBED);
16878 
16879 	if (alloclen < reqlen) {
16880 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16881 				"2561 Allocated DMA memory size (%d) is "
16882 				"less than the requested DMA memory "
16883 				"size (%d)\n", alloclen, reqlen);
16884 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16885 		return -ENOMEM;
16886 	}
16887 
16888 	/* Get the first SGE entry from the non-embedded DMA memory */
16889 	viraddr = mbox->sge_array->addr[0];
16890 
16891 	/* Set up the SGL pages in the non-embedded DMA pages */
16892 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16893 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16894 
16895 	pg_pairs = 0;
16896 	list_for_each_entry(psb, sblist, list) {
16897 		/* Set up the sge entry */
16898 		sgl_pg_pairs->sgl_pg0_addr_lo =
16899 			cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
16900 		sgl_pg_pairs->sgl_pg0_addr_hi =
16901 			cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
16902 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16903 			pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
16904 		else
16905 			pdma_phys_bpl1 = 0;
16906 		sgl_pg_pairs->sgl_pg1_addr_lo =
16907 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16908 		sgl_pg_pairs->sgl_pg1_addr_hi =
16909 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16910 		/* Keep the first xritag on the list */
16911 		if (pg_pairs == 0)
16912 			xritag_start = psb->cur_iocbq.sli4_xritag;
16913 		sgl_pg_pairs++;
16914 		pg_pairs++;
16915 	}
16916 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16917 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16918 	/* Perform endian conversion if necessary */
16919 	sgl->word0 = cpu_to_le32(sgl->word0);
16920 
16921 	if (!phba->sli4_hba.intr_enable)
16922 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16923 	else {
16924 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16925 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16926 	}
16927 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16928 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16929 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16930 	if (rc != MBX_TIMEOUT)
16931 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16932 	if (shdr_status || shdr_add_status || rc) {
16933 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16934 				"2564 POST_SGL_BLOCK mailbox command failed "
16935 				"status x%x add_status x%x mbx status x%x\n",
16936 				shdr_status, shdr_add_status, rc);
16937 		rc = -ENXIO;
16938 	}
16939 	return rc;
16940 }
16941 
16942 /**
16943  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16944  * @phba: pointer to lpfc_hba struct that the frame was received on
16945  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16946  *
16947  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16948  * valid type of frame that the LPFC driver will handle. This function will
16949  * return a zero if the frame is a valid frame or a non zero value when the
16950  * frame does not pass the check.
16951  **/
16952 static int
16953 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16954 {
16955 	/*  make rctl_names static to save stack space */
16956 	struct fc_vft_header *fc_vft_hdr;
16957 	uint32_t *header = (uint32_t *) fc_hdr;
16958 
16959 	switch (fc_hdr->fh_r_ctl) {
16960 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16961 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16962 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16963 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16964 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16965 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16966 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16967 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16968 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16969 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16970 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16971 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16972 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16973 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16974 	case FC_RCTL_BA_RMC: 	/* remove connection */
16975 	case FC_RCTL_BA_ACC:	/* basic accept */
16976 	case FC_RCTL_BA_RJT:	/* basic reject */
16977 	case FC_RCTL_BA_PRMT:
16978 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16979 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16980 	case FC_RCTL_P_RJT:	/* port reject */
16981 	case FC_RCTL_F_RJT:	/* fabric reject */
16982 	case FC_RCTL_P_BSY:	/* port busy */
16983 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16984 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16985 	case FC_RCTL_LCR:	/* link credit reset */
16986 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16987 	case FC_RCTL_END:	/* end */
16988 		break;
16989 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16990 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16991 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16992 		return lpfc_fc_frame_check(phba, fc_hdr);
16993 	default:
16994 		goto drop;
16995 	}
16996 
16997 	switch (fc_hdr->fh_type) {
16998 	case FC_TYPE_BLS:
16999 	case FC_TYPE_ELS:
17000 	case FC_TYPE_FCP:
17001 	case FC_TYPE_CT:
17002 	case FC_TYPE_NVME:
17003 		break;
17004 	case FC_TYPE_IP:
17005 	case FC_TYPE_ILS:
17006 	default:
17007 		goto drop;
17008 	}
17009 
17010 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17011 			"2538 Received frame rctl:x%x, type:x%x, "
17012 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17013 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17014 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17015 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17016 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17017 			be32_to_cpu(header[6]));
17018 	return 0;
17019 drop:
17020 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17021 			"2539 Dropped frame rctl:x%x type:x%x\n",
17022 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17023 	return 1;
17024 }
17025 
17026 /**
17027  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17028  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17029  *
17030  * This function processes the FC header to retrieve the VFI from the VF
17031  * header, if one exists. This function will return the VFI if one exists
17032  * or 0 if no VSAN Header exists.
17033  **/
17034 static uint32_t
17035 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17036 {
17037 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17038 
17039 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17040 		return 0;
17041 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17042 }
17043 
17044 /**
17045  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17046  * @phba: Pointer to the HBA structure to search for the vport on
17047  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17048  * @fcfi: The FC Fabric ID that the frame came from
17049  *
17050  * This function searches the @phba for a vport that matches the content of the
17051  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17052  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17053  * returns the matching vport pointer or NULL if unable to match frame to a
17054  * vport.
17055  **/
17056 static struct lpfc_vport *
17057 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17058 		       uint16_t fcfi, uint32_t did)
17059 {
17060 	struct lpfc_vport **vports;
17061 	struct lpfc_vport *vport = NULL;
17062 	int i;
17063 
17064 	if (did == Fabric_DID)
17065 		return phba->pport;
17066 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17067 		!(phba->link_state == LPFC_HBA_READY))
17068 		return phba->pport;
17069 
17070 	vports = lpfc_create_vport_work_array(phba);
17071 	if (vports != NULL) {
17072 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17073 			if (phba->fcf.fcfi == fcfi &&
17074 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17075 			    vports[i]->fc_myDID == did) {
17076 				vport = vports[i];
17077 				break;
17078 			}
17079 		}
17080 	}
17081 	lpfc_destroy_vport_work_array(phba, vports);
17082 	return vport;
17083 }
17084 
17085 /**
17086  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17087  * @vport: The vport to work on.
17088  *
17089  * This function updates the receive sequence time stamp for this vport. The
17090  * receive sequence time stamp indicates the time that the last frame of the
17091  * the sequence that has been idle for the longest amount of time was received.
17092  * the driver uses this time stamp to indicate if any received sequences have
17093  * timed out.
17094  **/
17095 static void
17096 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17097 {
17098 	struct lpfc_dmabuf *h_buf;
17099 	struct hbq_dmabuf *dmabuf = NULL;
17100 
17101 	/* get the oldest sequence on the rcv list */
17102 	h_buf = list_get_first(&vport->rcv_buffer_list,
17103 			       struct lpfc_dmabuf, list);
17104 	if (!h_buf)
17105 		return;
17106 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17107 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17108 }
17109 
17110 /**
17111  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17112  * @vport: The vport that the received sequences were sent to.
17113  *
17114  * This function cleans up all outstanding received sequences. This is called
17115  * by the driver when a link event or user action invalidates all the received
17116  * sequences.
17117  **/
17118 void
17119 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17120 {
17121 	struct lpfc_dmabuf *h_buf, *hnext;
17122 	struct lpfc_dmabuf *d_buf, *dnext;
17123 	struct hbq_dmabuf *dmabuf = NULL;
17124 
17125 	/* start with the oldest sequence on the rcv list */
17126 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17127 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17128 		list_del_init(&dmabuf->hbuf.list);
17129 		list_for_each_entry_safe(d_buf, dnext,
17130 					 &dmabuf->dbuf.list, list) {
17131 			list_del_init(&d_buf->list);
17132 			lpfc_in_buf_free(vport->phba, d_buf);
17133 		}
17134 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17135 	}
17136 }
17137 
17138 /**
17139  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17140  * @vport: The vport that the received sequences were sent to.
17141  *
17142  * This function determines whether any received sequences have timed out by
17143  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17144  * indicates that there is at least one timed out sequence this routine will
17145  * go through the received sequences one at a time from most inactive to most
17146  * active to determine which ones need to be cleaned up. Once it has determined
17147  * that a sequence needs to be cleaned up it will simply free up the resources
17148  * without sending an abort.
17149  **/
17150 void
17151 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17152 {
17153 	struct lpfc_dmabuf *h_buf, *hnext;
17154 	struct lpfc_dmabuf *d_buf, *dnext;
17155 	struct hbq_dmabuf *dmabuf = NULL;
17156 	unsigned long timeout;
17157 	int abort_count = 0;
17158 
17159 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17160 		   vport->rcv_buffer_time_stamp);
17161 	if (list_empty(&vport->rcv_buffer_list) ||
17162 	    time_before(jiffies, timeout))
17163 		return;
17164 	/* start with the oldest sequence on the rcv list */
17165 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17166 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17167 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17168 			   dmabuf->time_stamp);
17169 		if (time_before(jiffies, timeout))
17170 			break;
17171 		abort_count++;
17172 		list_del_init(&dmabuf->hbuf.list);
17173 		list_for_each_entry_safe(d_buf, dnext,
17174 					 &dmabuf->dbuf.list, list) {
17175 			list_del_init(&d_buf->list);
17176 			lpfc_in_buf_free(vport->phba, d_buf);
17177 		}
17178 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17179 	}
17180 	if (abort_count)
17181 		lpfc_update_rcv_time_stamp(vport);
17182 }
17183 
17184 /**
17185  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17186  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17187  *
17188  * This function searches through the existing incomplete sequences that have
17189  * been sent to this @vport. If the frame matches one of the incomplete
17190  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17191  * make up that sequence. If no sequence is found that matches this frame then
17192  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17193  * This function returns a pointer to the first dmabuf in the sequence list that
17194  * the frame was linked to.
17195  **/
17196 static struct hbq_dmabuf *
17197 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17198 {
17199 	struct fc_frame_header *new_hdr;
17200 	struct fc_frame_header *temp_hdr;
17201 	struct lpfc_dmabuf *d_buf;
17202 	struct lpfc_dmabuf *h_buf;
17203 	struct hbq_dmabuf *seq_dmabuf = NULL;
17204 	struct hbq_dmabuf *temp_dmabuf = NULL;
17205 	uint8_t	found = 0;
17206 
17207 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17208 	dmabuf->time_stamp = jiffies;
17209 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17210 
17211 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17212 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17213 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17214 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17215 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17216 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17217 			continue;
17218 		/* found a pending sequence that matches this frame */
17219 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17220 		break;
17221 	}
17222 	if (!seq_dmabuf) {
17223 		/*
17224 		 * This indicates first frame received for this sequence.
17225 		 * Queue the buffer on the vport's rcv_buffer_list.
17226 		 */
17227 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17228 		lpfc_update_rcv_time_stamp(vport);
17229 		return dmabuf;
17230 	}
17231 	temp_hdr = seq_dmabuf->hbuf.virt;
17232 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17233 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17234 		list_del_init(&seq_dmabuf->hbuf.list);
17235 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17236 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17237 		lpfc_update_rcv_time_stamp(vport);
17238 		return dmabuf;
17239 	}
17240 	/* move this sequence to the tail to indicate a young sequence */
17241 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17242 	seq_dmabuf->time_stamp = jiffies;
17243 	lpfc_update_rcv_time_stamp(vport);
17244 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17245 		temp_hdr = dmabuf->hbuf.virt;
17246 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17247 		return seq_dmabuf;
17248 	}
17249 	/* find the correct place in the sequence to insert this frame */
17250 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17251 	while (!found) {
17252 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17253 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17254 		/*
17255 		 * If the frame's sequence count is greater than the frame on
17256 		 * the list then insert the frame right after this frame
17257 		 */
17258 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17259 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17260 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17261 			found = 1;
17262 			break;
17263 		}
17264 
17265 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17266 			break;
17267 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17268 	}
17269 
17270 	if (found)
17271 		return seq_dmabuf;
17272 	return NULL;
17273 }
17274 
17275 /**
17276  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17277  * @vport: pointer to a vitural port
17278  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17279  *
17280  * This function tries to abort from the partially assembed sequence, described
17281  * by the information from basic abbort @dmabuf. It checks to see whether such
17282  * partially assembled sequence held by the driver. If so, it shall free up all
17283  * the frames from the partially assembled sequence.
17284  *
17285  * Return
17286  * true  -- if there is matching partially assembled sequence present and all
17287  *          the frames freed with the sequence;
17288  * false -- if there is no matching partially assembled sequence present so
17289  *          nothing got aborted in the lower layer driver
17290  **/
17291 static bool
17292 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17293 			    struct hbq_dmabuf *dmabuf)
17294 {
17295 	struct fc_frame_header *new_hdr;
17296 	struct fc_frame_header *temp_hdr;
17297 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17298 	struct hbq_dmabuf *seq_dmabuf = NULL;
17299 
17300 	/* Use the hdr_buf to find the sequence that matches this frame */
17301 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17302 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17303 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17304 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17305 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17306 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17307 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17308 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17309 			continue;
17310 		/* found a pending sequence that matches this frame */
17311 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17312 		break;
17313 	}
17314 
17315 	/* Free up all the frames from the partially assembled sequence */
17316 	if (seq_dmabuf) {
17317 		list_for_each_entry_safe(d_buf, n_buf,
17318 					 &seq_dmabuf->dbuf.list, list) {
17319 			list_del_init(&d_buf->list);
17320 			lpfc_in_buf_free(vport->phba, d_buf);
17321 		}
17322 		return true;
17323 	}
17324 	return false;
17325 }
17326 
17327 /**
17328  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17329  * @vport: pointer to a vitural port
17330  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17331  *
17332  * This function tries to abort from the assembed sequence from upper level
17333  * protocol, described by the information from basic abbort @dmabuf. It
17334  * checks to see whether such pending context exists at upper level protocol.
17335  * If so, it shall clean up the pending context.
17336  *
17337  * Return
17338  * true  -- if there is matching pending context of the sequence cleaned
17339  *          at ulp;
17340  * false -- if there is no matching pending context of the sequence present
17341  *          at ulp.
17342  **/
17343 static bool
17344 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17345 {
17346 	struct lpfc_hba *phba = vport->phba;
17347 	int handled;
17348 
17349 	/* Accepting abort at ulp with SLI4 only */
17350 	if (phba->sli_rev < LPFC_SLI_REV4)
17351 		return false;
17352 
17353 	/* Register all caring upper level protocols to attend abort */
17354 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17355 	if (handled)
17356 		return true;
17357 
17358 	return false;
17359 }
17360 
17361 /**
17362  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17363  * @phba: Pointer to HBA context object.
17364  * @cmd_iocbq: pointer to the command iocbq structure.
17365  * @rsp_iocbq: pointer to the response iocbq structure.
17366  *
17367  * This function handles the sequence abort response iocb command complete
17368  * event. It properly releases the memory allocated to the sequence abort
17369  * accept iocb.
17370  **/
17371 static void
17372 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17373 			     struct lpfc_iocbq *cmd_iocbq,
17374 			     struct lpfc_iocbq *rsp_iocbq)
17375 {
17376 	struct lpfc_nodelist *ndlp;
17377 
17378 	if (cmd_iocbq) {
17379 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17380 		lpfc_nlp_put(ndlp);
17381 		lpfc_nlp_not_used(ndlp);
17382 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17383 	}
17384 
17385 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17386 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17387 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17388 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17389 			rsp_iocbq->iocb.ulpStatus,
17390 			rsp_iocbq->iocb.un.ulpWord[4]);
17391 }
17392 
17393 /**
17394  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17395  * @phba: Pointer to HBA context object.
17396  * @xri: xri id in transaction.
17397  *
17398  * This function validates the xri maps to the known range of XRIs allocated an
17399  * used by the driver.
17400  **/
17401 uint16_t
17402 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17403 		      uint16_t xri)
17404 {
17405 	uint16_t i;
17406 
17407 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17408 		if (xri == phba->sli4_hba.xri_ids[i])
17409 			return i;
17410 	}
17411 	return NO_XRI;
17412 }
17413 
17414 /**
17415  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17416  * @phba: Pointer to HBA context object.
17417  * @fc_hdr: pointer to a FC frame header.
17418  *
17419  * This function sends a basic response to a previous unsol sequence abort
17420  * event after aborting the sequence handling.
17421  **/
17422 void
17423 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17424 			struct fc_frame_header *fc_hdr, bool aborted)
17425 {
17426 	struct lpfc_hba *phba = vport->phba;
17427 	struct lpfc_iocbq *ctiocb = NULL;
17428 	struct lpfc_nodelist *ndlp;
17429 	uint16_t oxid, rxid, xri, lxri;
17430 	uint32_t sid, fctl;
17431 	IOCB_t *icmd;
17432 	int rc;
17433 
17434 	if (!lpfc_is_link_up(phba))
17435 		return;
17436 
17437 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17438 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17439 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17440 
17441 	ndlp = lpfc_findnode_did(vport, sid);
17442 	if (!ndlp) {
17443 		ndlp = lpfc_nlp_init(vport, sid);
17444 		if (!ndlp) {
17445 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17446 					 "1268 Failed to allocate ndlp for "
17447 					 "oxid:x%x SID:x%x\n", oxid, sid);
17448 			return;
17449 		}
17450 		/* Put ndlp onto pport node list */
17451 		lpfc_enqueue_node(vport, ndlp);
17452 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17453 		/* re-setup ndlp without removing from node list */
17454 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17455 		if (!ndlp) {
17456 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17457 					 "3275 Failed to active ndlp found "
17458 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17459 			return;
17460 		}
17461 	}
17462 
17463 	/* Allocate buffer for rsp iocb */
17464 	ctiocb = lpfc_sli_get_iocbq(phba);
17465 	if (!ctiocb)
17466 		return;
17467 
17468 	/* Extract the F_CTL field from FC_HDR */
17469 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17470 
17471 	icmd = &ctiocb->iocb;
17472 	icmd->un.xseq64.bdl.bdeSize = 0;
17473 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17474 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17475 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17476 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17477 
17478 	/* Fill in the rest of iocb fields */
17479 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17480 	icmd->ulpBdeCount = 0;
17481 	icmd->ulpLe = 1;
17482 	icmd->ulpClass = CLASS3;
17483 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17484 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17485 
17486 	ctiocb->iocb_cmpl = NULL;
17487 	ctiocb->vport = phba->pport;
17488 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17489 	ctiocb->sli4_lxritag = NO_XRI;
17490 	ctiocb->sli4_xritag = NO_XRI;
17491 
17492 	if (fctl & FC_FC_EX_CTX)
17493 		/* Exchange responder sent the abort so we
17494 		 * own the oxid.
17495 		 */
17496 		xri = oxid;
17497 	else
17498 		xri = rxid;
17499 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17500 	if (lxri != NO_XRI)
17501 		lpfc_set_rrq_active(phba, ndlp, lxri,
17502 			(xri == oxid) ? rxid : oxid, 0);
17503 	/* For BA_ABTS from exchange responder, if the logical xri with
17504 	 * the oxid maps to the FCP XRI range, the port no longer has
17505 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17506 	 * a BA_RJT.
17507 	 */
17508 	if ((fctl & FC_FC_EX_CTX) &&
17509 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17510 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17511 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17512 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17513 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17514 	}
17515 
17516 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17517 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17518 	 * the IOCB for a BA_RJT.
17519 	 */
17520 	if (aborted == false) {
17521 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17522 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17523 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17524 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17525 	}
17526 
17527 	if (fctl & FC_FC_EX_CTX) {
17528 		/* ABTS sent by responder to CT exchange, construction
17529 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17530 		 * field and RX_ID from ABTS for RX_ID field.
17531 		 */
17532 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17533 	} else {
17534 		/* ABTS sent by initiator to CT exchange, construction
17535 		 * of BA_ACC will need to allocate a new XRI as for the
17536 		 * XRI_TAG field.
17537 		 */
17538 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17539 	}
17540 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17541 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17542 
17543 	/* Xmit CT abts response on exchange <xid> */
17544 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17545 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17546 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17547 
17548 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17549 	if (rc == IOCB_ERROR) {
17550 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17551 				 "2925 Failed to issue CT ABTS RSP x%x on "
17552 				 "xri x%x, Data x%x\n",
17553 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17554 				 phba->link_state);
17555 		lpfc_nlp_put(ndlp);
17556 		ctiocb->context1 = NULL;
17557 		lpfc_sli_release_iocbq(phba, ctiocb);
17558 	}
17559 }
17560 
17561 /**
17562  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17563  * @vport: Pointer to the vport on which this sequence was received
17564  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17565  *
17566  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17567  * receive sequence is only partially assembed by the driver, it shall abort
17568  * the partially assembled frames for the sequence. Otherwise, if the
17569  * unsolicited receive sequence has been completely assembled and passed to
17570  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17571  * unsolicited sequence has been aborted. After that, it will issue a basic
17572  * accept to accept the abort.
17573  **/
17574 static void
17575 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17576 			     struct hbq_dmabuf *dmabuf)
17577 {
17578 	struct lpfc_hba *phba = vport->phba;
17579 	struct fc_frame_header fc_hdr;
17580 	uint32_t fctl;
17581 	bool aborted;
17582 
17583 	/* Make a copy of fc_hdr before the dmabuf being released */
17584 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17585 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17586 
17587 	if (fctl & FC_FC_EX_CTX) {
17588 		/* ABTS by responder to exchange, no cleanup needed */
17589 		aborted = true;
17590 	} else {
17591 		/* ABTS by initiator to exchange, need to do cleanup */
17592 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17593 		if (aborted == false)
17594 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17595 	}
17596 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17597 
17598 	if (phba->nvmet_support) {
17599 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17600 		return;
17601 	}
17602 
17603 	/* Respond with BA_ACC or BA_RJT accordingly */
17604 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17605 }
17606 
17607 /**
17608  * lpfc_seq_complete - Indicates if a sequence is complete
17609  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17610  *
17611  * This function checks the sequence, starting with the frame described by
17612  * @dmabuf, to see if all the frames associated with this sequence are present.
17613  * the frames associated with this sequence are linked to the @dmabuf using the
17614  * dbuf list. This function looks for two major things. 1) That the first frame
17615  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17616  * set. 3) That there are no holes in the sequence count. The function will
17617  * return 1 when the sequence is complete, otherwise it will return 0.
17618  **/
17619 static int
17620 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17621 {
17622 	struct fc_frame_header *hdr;
17623 	struct lpfc_dmabuf *d_buf;
17624 	struct hbq_dmabuf *seq_dmabuf;
17625 	uint32_t fctl;
17626 	int seq_count = 0;
17627 
17628 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17629 	/* make sure first fame of sequence has a sequence count of zero */
17630 	if (hdr->fh_seq_cnt != seq_count)
17631 		return 0;
17632 	fctl = (hdr->fh_f_ctl[0] << 16 |
17633 		hdr->fh_f_ctl[1] << 8 |
17634 		hdr->fh_f_ctl[2]);
17635 	/* If last frame of sequence we can return success. */
17636 	if (fctl & FC_FC_END_SEQ)
17637 		return 1;
17638 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17639 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17640 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17641 		/* If there is a hole in the sequence count then fail. */
17642 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17643 			return 0;
17644 		fctl = (hdr->fh_f_ctl[0] << 16 |
17645 			hdr->fh_f_ctl[1] << 8 |
17646 			hdr->fh_f_ctl[2]);
17647 		/* If last frame of sequence we can return success. */
17648 		if (fctl & FC_FC_END_SEQ)
17649 			return 1;
17650 	}
17651 	return 0;
17652 }
17653 
17654 /**
17655  * lpfc_prep_seq - Prep sequence for ULP processing
17656  * @vport: Pointer to the vport on which this sequence was received
17657  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17658  *
17659  * This function takes a sequence, described by a list of frames, and creates
17660  * a list of iocbq structures to describe the sequence. This iocbq list will be
17661  * used to issue to the generic unsolicited sequence handler. This routine
17662  * returns a pointer to the first iocbq in the list. If the function is unable
17663  * to allocate an iocbq then it throw out the received frames that were not
17664  * able to be described and return a pointer to the first iocbq. If unable to
17665  * allocate any iocbqs (including the first) this function will return NULL.
17666  **/
17667 static struct lpfc_iocbq *
17668 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17669 {
17670 	struct hbq_dmabuf *hbq_buf;
17671 	struct lpfc_dmabuf *d_buf, *n_buf;
17672 	struct lpfc_iocbq *first_iocbq, *iocbq;
17673 	struct fc_frame_header *fc_hdr;
17674 	uint32_t sid;
17675 	uint32_t len, tot_len;
17676 	struct ulp_bde64 *pbde;
17677 
17678 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17679 	/* remove from receive buffer list */
17680 	list_del_init(&seq_dmabuf->hbuf.list);
17681 	lpfc_update_rcv_time_stamp(vport);
17682 	/* get the Remote Port's SID */
17683 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17684 	tot_len = 0;
17685 	/* Get an iocbq struct to fill in. */
17686 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17687 	if (first_iocbq) {
17688 		/* Initialize the first IOCB. */
17689 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17690 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17691 		first_iocbq->vport = vport;
17692 
17693 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17694 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17695 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17696 			first_iocbq->iocb.un.rcvels.parmRo =
17697 				sli4_did_from_fc_hdr(fc_hdr);
17698 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17699 		} else
17700 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17701 		first_iocbq->iocb.ulpContext = NO_XRI;
17702 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17703 			be16_to_cpu(fc_hdr->fh_ox_id);
17704 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17705 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17706 			vport->phba->vpi_ids[vport->vpi];
17707 		/* put the first buffer into the first IOCBq */
17708 		tot_len = bf_get(lpfc_rcqe_length,
17709 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17710 
17711 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17712 		first_iocbq->context3 = NULL;
17713 		first_iocbq->iocb.ulpBdeCount = 1;
17714 		if (tot_len > LPFC_DATA_BUF_SIZE)
17715 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17716 							LPFC_DATA_BUF_SIZE;
17717 		else
17718 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17719 
17720 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17721 
17722 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17723 	}
17724 	iocbq = first_iocbq;
17725 	/*
17726 	 * Each IOCBq can have two Buffers assigned, so go through the list
17727 	 * of buffers for this sequence and save two buffers in each IOCBq
17728 	 */
17729 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17730 		if (!iocbq) {
17731 			lpfc_in_buf_free(vport->phba, d_buf);
17732 			continue;
17733 		}
17734 		if (!iocbq->context3) {
17735 			iocbq->context3 = d_buf;
17736 			iocbq->iocb.ulpBdeCount++;
17737 			/* We need to get the size out of the right CQE */
17738 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17739 			len = bf_get(lpfc_rcqe_length,
17740 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17741 			pbde = (struct ulp_bde64 *)
17742 					&iocbq->iocb.unsli3.sli3Words[4];
17743 			if (len > LPFC_DATA_BUF_SIZE)
17744 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17745 			else
17746 				pbde->tus.f.bdeSize = len;
17747 
17748 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17749 			tot_len += len;
17750 		} else {
17751 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17752 			if (!iocbq) {
17753 				if (first_iocbq) {
17754 					first_iocbq->iocb.ulpStatus =
17755 							IOSTAT_FCP_RSP_ERROR;
17756 					first_iocbq->iocb.un.ulpWord[4] =
17757 							IOERR_NO_RESOURCES;
17758 				}
17759 				lpfc_in_buf_free(vport->phba, d_buf);
17760 				continue;
17761 			}
17762 			/* We need to get the size out of the right CQE */
17763 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17764 			len = bf_get(lpfc_rcqe_length,
17765 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17766 			iocbq->context2 = d_buf;
17767 			iocbq->context3 = NULL;
17768 			iocbq->iocb.ulpBdeCount = 1;
17769 			if (len > LPFC_DATA_BUF_SIZE)
17770 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17771 							LPFC_DATA_BUF_SIZE;
17772 			else
17773 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17774 
17775 			tot_len += len;
17776 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17777 
17778 			iocbq->iocb.un.rcvels.remoteID = sid;
17779 			list_add_tail(&iocbq->list, &first_iocbq->list);
17780 		}
17781 	}
17782 	return first_iocbq;
17783 }
17784 
17785 static void
17786 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17787 			  struct hbq_dmabuf *seq_dmabuf)
17788 {
17789 	struct fc_frame_header *fc_hdr;
17790 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17791 	struct lpfc_hba *phba = vport->phba;
17792 
17793 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17794 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17795 	if (!iocbq) {
17796 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17797 				"2707 Ring %d handler: Failed to allocate "
17798 				"iocb Rctl x%x Type x%x received\n",
17799 				LPFC_ELS_RING,
17800 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17801 		return;
17802 	}
17803 	if (!lpfc_complete_unsol_iocb(phba,
17804 				      phba->sli4_hba.els_wq->pring,
17805 				      iocbq, fc_hdr->fh_r_ctl,
17806 				      fc_hdr->fh_type))
17807 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17808 				"2540 Ring %d handler: unexpected Rctl "
17809 				"x%x Type x%x received\n",
17810 				LPFC_ELS_RING,
17811 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17812 
17813 	/* Free iocb created in lpfc_prep_seq */
17814 	list_for_each_entry_safe(curr_iocb, next_iocb,
17815 		&iocbq->list, list) {
17816 		list_del_init(&curr_iocb->list);
17817 		lpfc_sli_release_iocbq(phba, curr_iocb);
17818 	}
17819 	lpfc_sli_release_iocbq(phba, iocbq);
17820 }
17821 
17822 static void
17823 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17824 			    struct lpfc_iocbq *rspiocb)
17825 {
17826 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17827 
17828 	if (pcmd && pcmd->virt)
17829 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17830 	kfree(pcmd);
17831 	lpfc_sli_release_iocbq(phba, cmdiocb);
17832 	lpfc_drain_txq(phba);
17833 }
17834 
17835 static void
17836 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17837 			      struct hbq_dmabuf *dmabuf)
17838 {
17839 	struct fc_frame_header *fc_hdr;
17840 	struct lpfc_hba *phba = vport->phba;
17841 	struct lpfc_iocbq *iocbq = NULL;
17842 	union  lpfc_wqe *wqe;
17843 	struct lpfc_dmabuf *pcmd = NULL;
17844 	uint32_t frame_len;
17845 	int rc;
17846 	unsigned long iflags;
17847 
17848 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17849 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17850 
17851 	/* Send the received frame back */
17852 	iocbq = lpfc_sli_get_iocbq(phba);
17853 	if (!iocbq) {
17854 		/* Queue cq event and wakeup worker thread to process it */
17855 		spin_lock_irqsave(&phba->hbalock, iflags);
17856 		list_add_tail(&dmabuf->cq_event.list,
17857 			      &phba->sli4_hba.sp_queue_event);
17858 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
17859 		spin_unlock_irqrestore(&phba->hbalock, iflags);
17860 		lpfc_worker_wake_up(phba);
17861 		return;
17862 	}
17863 
17864 	/* Allocate buffer for command payload */
17865 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17866 	if (pcmd)
17867 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17868 					    &pcmd->phys);
17869 	if (!pcmd || !pcmd->virt)
17870 		goto exit;
17871 
17872 	INIT_LIST_HEAD(&pcmd->list);
17873 
17874 	/* copyin the payload */
17875 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17876 
17877 	/* fill in BDE's for command */
17878 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17879 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17880 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17881 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17882 
17883 	iocbq->context2 = pcmd;
17884 	iocbq->vport = vport;
17885 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17886 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17887 
17888 	/*
17889 	 * Setup rest of the iocb as though it were a WQE
17890 	 * Build the SEND_FRAME WQE
17891 	 */
17892 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17893 
17894 	wqe->send_frame.frame_len = frame_len;
17895 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17896 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17897 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17898 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17899 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17900 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17901 
17902 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17903 	iocbq->iocb.ulpLe = 1;
17904 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17905 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17906 	if (rc == IOCB_ERROR)
17907 		goto exit;
17908 
17909 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17910 	return;
17911 
17912 exit:
17913 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17914 			"2023 Unable to process MDS loopback frame\n");
17915 	if (pcmd && pcmd->virt)
17916 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17917 	kfree(pcmd);
17918 	if (iocbq)
17919 		lpfc_sli_release_iocbq(phba, iocbq);
17920 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17921 }
17922 
17923 /**
17924  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17925  * @phba: Pointer to HBA context object.
17926  *
17927  * This function is called with no lock held. This function processes all
17928  * the received buffers and gives it to upper layers when a received buffer
17929  * indicates that it is the final frame in the sequence. The interrupt
17930  * service routine processes received buffers at interrupt contexts.
17931  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17932  * appropriate receive function when the final frame in a sequence is received.
17933  **/
17934 void
17935 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17936 				 struct hbq_dmabuf *dmabuf)
17937 {
17938 	struct hbq_dmabuf *seq_dmabuf;
17939 	struct fc_frame_header *fc_hdr;
17940 	struct lpfc_vport *vport;
17941 	uint32_t fcfi;
17942 	uint32_t did;
17943 
17944 	/* Process each received buffer */
17945 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17946 
17947 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
17948 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
17949 		vport = phba->pport;
17950 		/* Handle MDS Loopback frames */
17951 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17952 		return;
17953 	}
17954 
17955 	/* check to see if this a valid type of frame */
17956 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17957 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17958 		return;
17959 	}
17960 
17961 	if ((bf_get(lpfc_cqe_code,
17962 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17963 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17964 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17965 	else
17966 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17967 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17968 
17969 	/* d_id this frame is directed to */
17970 	did = sli4_did_from_fc_hdr(fc_hdr);
17971 
17972 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17973 	if (!vport) {
17974 		/* throw out the frame */
17975 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17976 		return;
17977 	}
17978 
17979 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17980 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17981 		(did != Fabric_DID)) {
17982 		/*
17983 		 * Throw out the frame if we are not pt2pt.
17984 		 * The pt2pt protocol allows for discovery frames
17985 		 * to be received without a registered VPI.
17986 		 */
17987 		if (!(vport->fc_flag & FC_PT2PT) ||
17988 			(phba->link_state == LPFC_HBA_READY)) {
17989 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17990 			return;
17991 		}
17992 	}
17993 
17994 	/* Handle the basic abort sequence (BA_ABTS) event */
17995 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17996 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17997 		return;
17998 	}
17999 
18000 	/* Link this frame */
18001 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18002 	if (!seq_dmabuf) {
18003 		/* unable to add frame to vport - throw it out */
18004 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18005 		return;
18006 	}
18007 	/* If not last frame in sequence continue processing frames. */
18008 	if (!lpfc_seq_complete(seq_dmabuf))
18009 		return;
18010 
18011 	/* Send the complete sequence to the upper layer protocol */
18012 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18013 }
18014 
18015 /**
18016  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18017  * @phba: pointer to lpfc hba data structure.
18018  *
18019  * This routine is invoked to post rpi header templates to the
18020  * HBA consistent with the SLI-4 interface spec.  This routine
18021  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18022  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18023  *
18024  * This routine does not require any locks.  It's usage is expected
18025  * to be driver load or reset recovery when the driver is
18026  * sequential.
18027  *
18028  * Return codes
18029  * 	0 - successful
18030  *      -EIO - The mailbox failed to complete successfully.
18031  * 	When this error occurs, the driver is not guaranteed
18032  *	to have any rpi regions posted to the device and
18033  *	must either attempt to repost the regions or take a
18034  *	fatal error.
18035  **/
18036 int
18037 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18038 {
18039 	struct lpfc_rpi_hdr *rpi_page;
18040 	uint32_t rc = 0;
18041 	uint16_t lrpi = 0;
18042 
18043 	/* SLI4 ports that support extents do not require RPI headers. */
18044 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18045 		goto exit;
18046 	if (phba->sli4_hba.extents_in_use)
18047 		return -EIO;
18048 
18049 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18050 		/*
18051 		 * Assign the rpi headers a physical rpi only if the driver
18052 		 * has not initialized those resources.  A port reset only
18053 		 * needs the headers posted.
18054 		 */
18055 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18056 		    LPFC_RPI_RSRC_RDY)
18057 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18058 
18059 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18060 		if (rc != MBX_SUCCESS) {
18061 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18062 					"2008 Error %d posting all rpi "
18063 					"headers\n", rc);
18064 			rc = -EIO;
18065 			break;
18066 		}
18067 	}
18068 
18069  exit:
18070 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18071 	       LPFC_RPI_RSRC_RDY);
18072 	return rc;
18073 }
18074 
18075 /**
18076  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18077  * @phba: pointer to lpfc hba data structure.
18078  * @rpi_page:  pointer to the rpi memory region.
18079  *
18080  * This routine is invoked to post a single rpi header to the
18081  * HBA consistent with the SLI-4 interface spec.  This memory region
18082  * maps up to 64 rpi context regions.
18083  *
18084  * Return codes
18085  * 	0 - successful
18086  * 	-ENOMEM - No available memory
18087  *      -EIO - The mailbox failed to complete successfully.
18088  **/
18089 int
18090 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18091 {
18092 	LPFC_MBOXQ_t *mboxq;
18093 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18094 	uint32_t rc = 0;
18095 	uint32_t shdr_status, shdr_add_status;
18096 	union lpfc_sli4_cfg_shdr *shdr;
18097 
18098 	/* SLI4 ports that support extents do not require RPI headers. */
18099 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18100 		return rc;
18101 	if (phba->sli4_hba.extents_in_use)
18102 		return -EIO;
18103 
18104 	/* The port is notified of the header region via a mailbox command. */
18105 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18106 	if (!mboxq) {
18107 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18108 				"2001 Unable to allocate memory for issuing "
18109 				"SLI_CONFIG_SPECIAL mailbox command\n");
18110 		return -ENOMEM;
18111 	}
18112 
18113 	/* Post all rpi memory regions to the port. */
18114 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18115 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18116 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18117 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18118 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18119 			 LPFC_SLI4_MBX_EMBED);
18120 
18121 
18122 	/* Post the physical rpi to the port for this rpi header. */
18123 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18124 	       rpi_page->start_rpi);
18125 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18126 	       hdr_tmpl, rpi_page->page_count);
18127 
18128 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18129 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18130 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18131 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18132 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18133 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18134 	if (rc != MBX_TIMEOUT)
18135 		mempool_free(mboxq, phba->mbox_mem_pool);
18136 	if (shdr_status || shdr_add_status || rc) {
18137 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18138 				"2514 POST_RPI_HDR mailbox failed with "
18139 				"status x%x add_status x%x, mbx status x%x\n",
18140 				shdr_status, shdr_add_status, rc);
18141 		rc = -ENXIO;
18142 	} else {
18143 		/*
18144 		 * The next_rpi stores the next logical module-64 rpi value used
18145 		 * to post physical rpis in subsequent rpi postings.
18146 		 */
18147 		spin_lock_irq(&phba->hbalock);
18148 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18149 		spin_unlock_irq(&phba->hbalock);
18150 	}
18151 	return rc;
18152 }
18153 
18154 /**
18155  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18156  * @phba: pointer to lpfc hba data structure.
18157  *
18158  * This routine is invoked to post rpi header templates to the
18159  * HBA consistent with the SLI-4 interface spec.  This routine
18160  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18161  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18162  *
18163  * Returns
18164  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18165  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18166  **/
18167 int
18168 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18169 {
18170 	unsigned long rpi;
18171 	uint16_t max_rpi, rpi_limit;
18172 	uint16_t rpi_remaining, lrpi = 0;
18173 	struct lpfc_rpi_hdr *rpi_hdr;
18174 	unsigned long iflag;
18175 
18176 	/*
18177 	 * Fetch the next logical rpi.  Because this index is logical,
18178 	 * the  driver starts at 0 each time.
18179 	 */
18180 	spin_lock_irqsave(&phba->hbalock, iflag);
18181 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18182 	rpi_limit = phba->sli4_hba.next_rpi;
18183 
18184 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18185 	if (rpi >= rpi_limit)
18186 		rpi = LPFC_RPI_ALLOC_ERROR;
18187 	else {
18188 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18189 		phba->sli4_hba.max_cfg_param.rpi_used++;
18190 		phba->sli4_hba.rpi_count++;
18191 	}
18192 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18193 			"0001 rpi:%x max:%x lim:%x\n",
18194 			(int) rpi, max_rpi, rpi_limit);
18195 
18196 	/*
18197 	 * Don't try to allocate more rpi header regions if the device limit
18198 	 * has been exhausted.
18199 	 */
18200 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18201 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18202 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18203 		return rpi;
18204 	}
18205 
18206 	/*
18207 	 * RPI header postings are not required for SLI4 ports capable of
18208 	 * extents.
18209 	 */
18210 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18211 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18212 		return rpi;
18213 	}
18214 
18215 	/*
18216 	 * If the driver is running low on rpi resources, allocate another
18217 	 * page now.  Note that the next_rpi value is used because
18218 	 * it represents how many are actually in use whereas max_rpi notes
18219 	 * how many are supported max by the device.
18220 	 */
18221 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18222 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18223 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18224 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18225 		if (!rpi_hdr) {
18226 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18227 					"2002 Error Could not grow rpi "
18228 					"count\n");
18229 		} else {
18230 			lrpi = rpi_hdr->start_rpi;
18231 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18232 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18233 		}
18234 	}
18235 
18236 	return rpi;
18237 }
18238 
18239 /**
18240  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18241  * @phba: pointer to lpfc hba data structure.
18242  *
18243  * This routine is invoked to release an rpi to the pool of
18244  * available rpis maintained by the driver.
18245  **/
18246 static void
18247 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18248 {
18249 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18250 		phba->sli4_hba.rpi_count--;
18251 		phba->sli4_hba.max_cfg_param.rpi_used--;
18252 	}
18253 }
18254 
18255 /**
18256  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18257  * @phba: pointer to lpfc hba data structure.
18258  *
18259  * This routine is invoked to release an rpi to the pool of
18260  * available rpis maintained by the driver.
18261  **/
18262 void
18263 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18264 {
18265 	spin_lock_irq(&phba->hbalock);
18266 	__lpfc_sli4_free_rpi(phba, rpi);
18267 	spin_unlock_irq(&phba->hbalock);
18268 }
18269 
18270 /**
18271  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18272  * @phba: pointer to lpfc hba data structure.
18273  *
18274  * This routine is invoked to remove the memory region that
18275  * provided rpi via a bitmask.
18276  **/
18277 void
18278 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18279 {
18280 	kfree(phba->sli4_hba.rpi_bmask);
18281 	kfree(phba->sli4_hba.rpi_ids);
18282 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18283 }
18284 
18285 /**
18286  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18287  * @phba: pointer to lpfc hba data structure.
18288  *
18289  * This routine is invoked to remove the memory region that
18290  * provided rpi via a bitmask.
18291  **/
18292 int
18293 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18294 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18295 {
18296 	LPFC_MBOXQ_t *mboxq;
18297 	struct lpfc_hba *phba = ndlp->phba;
18298 	int rc;
18299 
18300 	/* The port is notified of the header region via a mailbox command. */
18301 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18302 	if (!mboxq)
18303 		return -ENOMEM;
18304 
18305 	/* Post all rpi memory regions to the port. */
18306 	lpfc_resume_rpi(mboxq, ndlp);
18307 	if (cmpl) {
18308 		mboxq->mbox_cmpl = cmpl;
18309 		mboxq->ctx_buf = arg;
18310 		mboxq->ctx_ndlp = ndlp;
18311 	} else
18312 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18313 	mboxq->vport = ndlp->vport;
18314 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18315 	if (rc == MBX_NOT_FINISHED) {
18316 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18317 				"2010 Resume RPI Mailbox failed "
18318 				"status %d, mbxStatus x%x\n", rc,
18319 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18320 		mempool_free(mboxq, phba->mbox_mem_pool);
18321 		return -EIO;
18322 	}
18323 	return 0;
18324 }
18325 
18326 /**
18327  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18328  * @vport: Pointer to the vport for which the vpi is being initialized
18329  *
18330  * This routine is invoked to activate a vpi with the port.
18331  *
18332  * Returns:
18333  *    0 success
18334  *    -Evalue otherwise
18335  **/
18336 int
18337 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18338 {
18339 	LPFC_MBOXQ_t *mboxq;
18340 	int rc = 0;
18341 	int retval = MBX_SUCCESS;
18342 	uint32_t mbox_tmo;
18343 	struct lpfc_hba *phba = vport->phba;
18344 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18345 	if (!mboxq)
18346 		return -ENOMEM;
18347 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18348 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18349 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18350 	if (rc != MBX_SUCCESS) {
18351 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18352 				"2022 INIT VPI Mailbox failed "
18353 				"status %d, mbxStatus x%x\n", rc,
18354 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18355 		retval = -EIO;
18356 	}
18357 	if (rc != MBX_TIMEOUT)
18358 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18359 
18360 	return retval;
18361 }
18362 
18363 /**
18364  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18365  * @phba: pointer to lpfc hba data structure.
18366  * @mboxq: Pointer to mailbox object.
18367  *
18368  * This routine is invoked to manually add a single FCF record. The caller
18369  * must pass a completely initialized FCF_Record.  This routine takes
18370  * care of the nonembedded mailbox operations.
18371  **/
18372 static void
18373 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18374 {
18375 	void *virt_addr;
18376 	union lpfc_sli4_cfg_shdr *shdr;
18377 	uint32_t shdr_status, shdr_add_status;
18378 
18379 	virt_addr = mboxq->sge_array->addr[0];
18380 	/* The IOCTL status is embedded in the mailbox subheader. */
18381 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18382 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18383 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18384 
18385 	if ((shdr_status || shdr_add_status) &&
18386 		(shdr_status != STATUS_FCF_IN_USE))
18387 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18388 			"2558 ADD_FCF_RECORD mailbox failed with "
18389 			"status x%x add_status x%x\n",
18390 			shdr_status, shdr_add_status);
18391 
18392 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18393 }
18394 
18395 /**
18396  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18397  * @phba: pointer to lpfc hba data structure.
18398  * @fcf_record:  pointer to the initialized fcf record to add.
18399  *
18400  * This routine is invoked to manually add a single FCF record. The caller
18401  * must pass a completely initialized FCF_Record.  This routine takes
18402  * care of the nonembedded mailbox operations.
18403  **/
18404 int
18405 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18406 {
18407 	int rc = 0;
18408 	LPFC_MBOXQ_t *mboxq;
18409 	uint8_t *bytep;
18410 	void *virt_addr;
18411 	struct lpfc_mbx_sge sge;
18412 	uint32_t alloc_len, req_len;
18413 	uint32_t fcfindex;
18414 
18415 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18416 	if (!mboxq) {
18417 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18418 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18419 		return -ENOMEM;
18420 	}
18421 
18422 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18423 		  sizeof(uint32_t);
18424 
18425 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18426 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18427 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18428 				     req_len, LPFC_SLI4_MBX_NEMBED);
18429 	if (alloc_len < req_len) {
18430 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18431 			"2523 Allocated DMA memory size (x%x) is "
18432 			"less than the requested DMA memory "
18433 			"size (x%x)\n", alloc_len, req_len);
18434 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18435 		return -ENOMEM;
18436 	}
18437 
18438 	/*
18439 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18440 	 * routine only uses a single SGE.
18441 	 */
18442 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18443 	virt_addr = mboxq->sge_array->addr[0];
18444 	/*
18445 	 * Configure the FCF record for FCFI 0.  This is the driver's
18446 	 * hardcoded default and gets used in nonFIP mode.
18447 	 */
18448 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18449 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18450 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18451 
18452 	/*
18453 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18454 	 * the FCoE header plus word10. The data copy needs to be endian
18455 	 * correct.
18456 	 */
18457 	bytep += sizeof(uint32_t);
18458 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18459 	mboxq->vport = phba->pport;
18460 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18461 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18462 	if (rc == MBX_NOT_FINISHED) {
18463 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18464 			"2515 ADD_FCF_RECORD mailbox failed with "
18465 			"status 0x%x\n", rc);
18466 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18467 		rc = -EIO;
18468 	} else
18469 		rc = 0;
18470 
18471 	return rc;
18472 }
18473 
18474 /**
18475  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18476  * @phba: pointer to lpfc hba data structure.
18477  * @fcf_record:  pointer to the fcf record to write the default data.
18478  * @fcf_index: FCF table entry index.
18479  *
18480  * This routine is invoked to build the driver's default FCF record.  The
18481  * values used are hardcoded.  This routine handles memory initialization.
18482  *
18483  **/
18484 void
18485 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18486 				struct fcf_record *fcf_record,
18487 				uint16_t fcf_index)
18488 {
18489 	memset(fcf_record, 0, sizeof(struct fcf_record));
18490 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18491 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18492 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18493 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18494 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18495 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18496 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18497 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18498 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18499 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18500 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18501 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18502 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18503 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18504 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18505 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18506 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18507 	/* Set the VLAN bit map */
18508 	if (phba->valid_vlan) {
18509 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18510 			= 1 << (phba->vlan_id % 8);
18511 	}
18512 }
18513 
18514 /**
18515  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18516  * @phba: pointer to lpfc hba data structure.
18517  * @fcf_index: FCF table entry offset.
18518  *
18519  * This routine is invoked to scan the entire FCF table by reading FCF
18520  * record and processing it one at a time starting from the @fcf_index
18521  * for initial FCF discovery or fast FCF failover rediscovery.
18522  *
18523  * Return 0 if the mailbox command is submitted successfully, none 0
18524  * otherwise.
18525  **/
18526 int
18527 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18528 {
18529 	int rc = 0, error;
18530 	LPFC_MBOXQ_t *mboxq;
18531 
18532 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18533 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18534 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18535 	if (!mboxq) {
18536 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18537 				"2000 Failed to allocate mbox for "
18538 				"READ_FCF cmd\n");
18539 		error = -ENOMEM;
18540 		goto fail_fcf_scan;
18541 	}
18542 	/* Construct the read FCF record mailbox command */
18543 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18544 	if (rc) {
18545 		error = -EINVAL;
18546 		goto fail_fcf_scan;
18547 	}
18548 	/* Issue the mailbox command asynchronously */
18549 	mboxq->vport = phba->pport;
18550 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18551 
18552 	spin_lock_irq(&phba->hbalock);
18553 	phba->hba_flag |= FCF_TS_INPROG;
18554 	spin_unlock_irq(&phba->hbalock);
18555 
18556 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18557 	if (rc == MBX_NOT_FINISHED)
18558 		error = -EIO;
18559 	else {
18560 		/* Reset eligible FCF count for new scan */
18561 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18562 			phba->fcf.eligible_fcf_cnt = 0;
18563 		error = 0;
18564 	}
18565 fail_fcf_scan:
18566 	if (error) {
18567 		if (mboxq)
18568 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18569 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18570 		spin_lock_irq(&phba->hbalock);
18571 		phba->hba_flag &= ~FCF_TS_INPROG;
18572 		spin_unlock_irq(&phba->hbalock);
18573 	}
18574 	return error;
18575 }
18576 
18577 /**
18578  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18579  * @phba: pointer to lpfc hba data structure.
18580  * @fcf_index: FCF table entry offset.
18581  *
18582  * This routine is invoked to read an FCF record indicated by @fcf_index
18583  * and to use it for FLOGI roundrobin FCF failover.
18584  *
18585  * Return 0 if the mailbox command is submitted successfully, none 0
18586  * otherwise.
18587  **/
18588 int
18589 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18590 {
18591 	int rc = 0, error;
18592 	LPFC_MBOXQ_t *mboxq;
18593 
18594 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18595 	if (!mboxq) {
18596 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18597 				"2763 Failed to allocate mbox for "
18598 				"READ_FCF cmd\n");
18599 		error = -ENOMEM;
18600 		goto fail_fcf_read;
18601 	}
18602 	/* Construct the read FCF record mailbox command */
18603 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18604 	if (rc) {
18605 		error = -EINVAL;
18606 		goto fail_fcf_read;
18607 	}
18608 	/* Issue the mailbox command asynchronously */
18609 	mboxq->vport = phba->pport;
18610 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18611 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18612 	if (rc == MBX_NOT_FINISHED)
18613 		error = -EIO;
18614 	else
18615 		error = 0;
18616 
18617 fail_fcf_read:
18618 	if (error && mboxq)
18619 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18620 	return error;
18621 }
18622 
18623 /**
18624  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18625  * @phba: pointer to lpfc hba data structure.
18626  * @fcf_index: FCF table entry offset.
18627  *
18628  * This routine is invoked to read an FCF record indicated by @fcf_index to
18629  * determine whether it's eligible for FLOGI roundrobin failover list.
18630  *
18631  * Return 0 if the mailbox command is submitted successfully, none 0
18632  * otherwise.
18633  **/
18634 int
18635 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18636 {
18637 	int rc = 0, error;
18638 	LPFC_MBOXQ_t *mboxq;
18639 
18640 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18641 	if (!mboxq) {
18642 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18643 				"2758 Failed to allocate mbox for "
18644 				"READ_FCF cmd\n");
18645 				error = -ENOMEM;
18646 				goto fail_fcf_read;
18647 	}
18648 	/* Construct the read FCF record mailbox command */
18649 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18650 	if (rc) {
18651 		error = -EINVAL;
18652 		goto fail_fcf_read;
18653 	}
18654 	/* Issue the mailbox command asynchronously */
18655 	mboxq->vport = phba->pport;
18656 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18657 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18658 	if (rc == MBX_NOT_FINISHED)
18659 		error = -EIO;
18660 	else
18661 		error = 0;
18662 
18663 fail_fcf_read:
18664 	if (error && mboxq)
18665 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18666 	return error;
18667 }
18668 
18669 /**
18670  * lpfc_check_next_fcf_pri_level
18671  * phba pointer to the lpfc_hba struct for this port.
18672  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18673  * routine when the rr_bmask is empty. The FCF indecies are put into the
18674  * rr_bmask based on their priority level. Starting from the highest priority
18675  * to the lowest. The most likely FCF candidate will be in the highest
18676  * priority group. When this routine is called it searches the fcf_pri list for
18677  * next lowest priority group and repopulates the rr_bmask with only those
18678  * fcf_indexes.
18679  * returns:
18680  * 1=success 0=failure
18681  **/
18682 static int
18683 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18684 {
18685 	uint16_t next_fcf_pri;
18686 	uint16_t last_index;
18687 	struct lpfc_fcf_pri *fcf_pri;
18688 	int rc;
18689 	int ret = 0;
18690 
18691 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18692 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18693 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18694 			"3060 Last IDX %d\n", last_index);
18695 
18696 	/* Verify the priority list has 2 or more entries */
18697 	spin_lock_irq(&phba->hbalock);
18698 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18699 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18700 		spin_unlock_irq(&phba->hbalock);
18701 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18702 			"3061 Last IDX %d\n", last_index);
18703 		return 0; /* Empty rr list */
18704 	}
18705 	spin_unlock_irq(&phba->hbalock);
18706 
18707 	next_fcf_pri = 0;
18708 	/*
18709 	 * Clear the rr_bmask and set all of the bits that are at this
18710 	 * priority.
18711 	 */
18712 	memset(phba->fcf.fcf_rr_bmask, 0,
18713 			sizeof(*phba->fcf.fcf_rr_bmask));
18714 	spin_lock_irq(&phba->hbalock);
18715 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18716 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18717 			continue;
18718 		/*
18719 		 * the 1st priority that has not FLOGI failed
18720 		 * will be the highest.
18721 		 */
18722 		if (!next_fcf_pri)
18723 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18724 		spin_unlock_irq(&phba->hbalock);
18725 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18726 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18727 						fcf_pri->fcf_rec.fcf_index);
18728 			if (rc)
18729 				return 0;
18730 		}
18731 		spin_lock_irq(&phba->hbalock);
18732 	}
18733 	/*
18734 	 * if next_fcf_pri was not set above and the list is not empty then
18735 	 * we have failed flogis on all of them. So reset flogi failed
18736 	 * and start at the beginning.
18737 	 */
18738 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18739 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18740 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18741 			/*
18742 			 * the 1st priority that has not FLOGI failed
18743 			 * will be the highest.
18744 			 */
18745 			if (!next_fcf_pri)
18746 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18747 			spin_unlock_irq(&phba->hbalock);
18748 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18749 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18750 						fcf_pri->fcf_rec.fcf_index);
18751 				if (rc)
18752 					return 0;
18753 			}
18754 			spin_lock_irq(&phba->hbalock);
18755 		}
18756 	} else
18757 		ret = 1;
18758 	spin_unlock_irq(&phba->hbalock);
18759 
18760 	return ret;
18761 }
18762 /**
18763  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18764  * @phba: pointer to lpfc hba data structure.
18765  *
18766  * This routine is to get the next eligible FCF record index in a round
18767  * robin fashion. If the next eligible FCF record index equals to the
18768  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18769  * shall be returned, otherwise, the next eligible FCF record's index
18770  * shall be returned.
18771  **/
18772 uint16_t
18773 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18774 {
18775 	uint16_t next_fcf_index;
18776 
18777 initial_priority:
18778 	/* Search start from next bit of currently registered FCF index */
18779 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18780 
18781 next_priority:
18782 	/* Determine the next fcf index to check */
18783 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18784 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18785 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18786 				       next_fcf_index);
18787 
18788 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18789 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18790 		/*
18791 		 * If we have wrapped then we need to clear the bits that
18792 		 * have been tested so that we can detect when we should
18793 		 * change the priority level.
18794 		 */
18795 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18796 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18797 	}
18798 
18799 
18800 	/* Check roundrobin failover list empty condition */
18801 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18802 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18803 		/*
18804 		 * If next fcf index is not found check if there are lower
18805 		 * Priority level fcf's in the fcf_priority list.
18806 		 * Set up the rr_bmask with all of the avaiable fcf bits
18807 		 * at that level and continue the selection process.
18808 		 */
18809 		if (lpfc_check_next_fcf_pri_level(phba))
18810 			goto initial_priority;
18811 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18812 				"2844 No roundrobin failover FCF available\n");
18813 
18814 		return LPFC_FCOE_FCF_NEXT_NONE;
18815 	}
18816 
18817 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18818 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18819 		LPFC_FCF_FLOGI_FAILED) {
18820 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18821 			return LPFC_FCOE_FCF_NEXT_NONE;
18822 
18823 		goto next_priority;
18824 	}
18825 
18826 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18827 			"2845 Get next roundrobin failover FCF (x%x)\n",
18828 			next_fcf_index);
18829 
18830 	return next_fcf_index;
18831 }
18832 
18833 /**
18834  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18835  * @phba: pointer to lpfc hba data structure.
18836  *
18837  * This routine sets the FCF record index in to the eligible bmask for
18838  * roundrobin failover search. It checks to make sure that the index
18839  * does not go beyond the range of the driver allocated bmask dimension
18840  * before setting the bit.
18841  *
18842  * Returns 0 if the index bit successfully set, otherwise, it returns
18843  * -EINVAL.
18844  **/
18845 int
18846 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18847 {
18848 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18849 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18850 				"2610 FCF (x%x) reached driver's book "
18851 				"keeping dimension:x%x\n",
18852 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18853 		return -EINVAL;
18854 	}
18855 	/* Set the eligible FCF record index bmask */
18856 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18857 
18858 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18859 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18860 			"bmask\n", fcf_index);
18861 
18862 	return 0;
18863 }
18864 
18865 /**
18866  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18867  * @phba: pointer to lpfc hba data structure.
18868  *
18869  * This routine clears the FCF record index from the eligible bmask for
18870  * roundrobin failover search. It checks to make sure that the index
18871  * does not go beyond the range of the driver allocated bmask dimension
18872  * before clearing the bit.
18873  **/
18874 void
18875 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18876 {
18877 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18878 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18879 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18880 				"2762 FCF (x%x) reached driver's book "
18881 				"keeping dimension:x%x\n",
18882 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18883 		return;
18884 	}
18885 	/* Clear the eligible FCF record index bmask */
18886 	spin_lock_irq(&phba->hbalock);
18887 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18888 				 list) {
18889 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18890 			list_del_init(&fcf_pri->list);
18891 			break;
18892 		}
18893 	}
18894 	spin_unlock_irq(&phba->hbalock);
18895 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18896 
18897 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18898 			"2791 Clear FCF (x%x) from roundrobin failover "
18899 			"bmask\n", fcf_index);
18900 }
18901 
18902 /**
18903  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18904  * @phba: pointer to lpfc hba data structure.
18905  *
18906  * This routine is the completion routine for the rediscover FCF table mailbox
18907  * command. If the mailbox command returned failure, it will try to stop the
18908  * FCF rediscover wait timer.
18909  **/
18910 static void
18911 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18912 {
18913 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18914 	uint32_t shdr_status, shdr_add_status;
18915 
18916 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18917 
18918 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18919 			     &redisc_fcf->header.cfg_shdr.response);
18920 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18921 			     &redisc_fcf->header.cfg_shdr.response);
18922 	if (shdr_status || shdr_add_status) {
18923 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18924 				"2746 Requesting for FCF rediscovery failed "
18925 				"status x%x add_status x%x\n",
18926 				shdr_status, shdr_add_status);
18927 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18928 			spin_lock_irq(&phba->hbalock);
18929 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18930 			spin_unlock_irq(&phba->hbalock);
18931 			/*
18932 			 * CVL event triggered FCF rediscover request failed,
18933 			 * last resort to re-try current registered FCF entry.
18934 			 */
18935 			lpfc_retry_pport_discovery(phba);
18936 		} else {
18937 			spin_lock_irq(&phba->hbalock);
18938 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18939 			spin_unlock_irq(&phba->hbalock);
18940 			/*
18941 			 * DEAD FCF event triggered FCF rediscover request
18942 			 * failed, last resort to fail over as a link down
18943 			 * to FCF registration.
18944 			 */
18945 			lpfc_sli4_fcf_dead_failthrough(phba);
18946 		}
18947 	} else {
18948 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18949 				"2775 Start FCF rediscover quiescent timer\n");
18950 		/*
18951 		 * Start FCF rediscovery wait timer for pending FCF
18952 		 * before rescan FCF record table.
18953 		 */
18954 		lpfc_fcf_redisc_wait_start_timer(phba);
18955 	}
18956 
18957 	mempool_free(mbox, phba->mbox_mem_pool);
18958 }
18959 
18960 /**
18961  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18962  * @phba: pointer to lpfc hba data structure.
18963  *
18964  * This routine is invoked to request for rediscovery of the entire FCF table
18965  * by the port.
18966  **/
18967 int
18968 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18969 {
18970 	LPFC_MBOXQ_t *mbox;
18971 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18972 	int rc, length;
18973 
18974 	/* Cancel retry delay timers to all vports before FCF rediscover */
18975 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18976 
18977 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18978 	if (!mbox) {
18979 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18980 				"2745 Failed to allocate mbox for "
18981 				"requesting FCF rediscover.\n");
18982 		return -ENOMEM;
18983 	}
18984 
18985 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18986 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18987 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18988 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18989 			 length, LPFC_SLI4_MBX_EMBED);
18990 
18991 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18992 	/* Set count to 0 for invalidating the entire FCF database */
18993 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18994 
18995 	/* Issue the mailbox command asynchronously */
18996 	mbox->vport = phba->pport;
18997 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18998 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18999 
19000 	if (rc == MBX_NOT_FINISHED) {
19001 		mempool_free(mbox, phba->mbox_mem_pool);
19002 		return -EIO;
19003 	}
19004 	return 0;
19005 }
19006 
19007 /**
19008  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19009  * @phba: pointer to lpfc hba data structure.
19010  *
19011  * This function is the failover routine as a last resort to the FCF DEAD
19012  * event when driver failed to perform fast FCF failover.
19013  **/
19014 void
19015 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19016 {
19017 	uint32_t link_state;
19018 
19019 	/*
19020 	 * Last resort as FCF DEAD event failover will treat this as
19021 	 * a link down, but save the link state because we don't want
19022 	 * it to be changed to Link Down unless it is already down.
19023 	 */
19024 	link_state = phba->link_state;
19025 	lpfc_linkdown(phba);
19026 	phba->link_state = link_state;
19027 
19028 	/* Unregister FCF if no devices connected to it */
19029 	lpfc_unregister_unused_fcf(phba);
19030 }
19031 
19032 /**
19033  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19034  * @phba: pointer to lpfc hba data structure.
19035  * @rgn23_data: pointer to configure region 23 data.
19036  *
19037  * This function gets SLI3 port configure region 23 data through memory dump
19038  * mailbox command. When it successfully retrieves data, the size of the data
19039  * will be returned, otherwise, 0 will be returned.
19040  **/
19041 static uint32_t
19042 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19043 {
19044 	LPFC_MBOXQ_t *pmb = NULL;
19045 	MAILBOX_t *mb;
19046 	uint32_t offset = 0;
19047 	int rc;
19048 
19049 	if (!rgn23_data)
19050 		return 0;
19051 
19052 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19053 	if (!pmb) {
19054 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19055 				"2600 failed to allocate mailbox memory\n");
19056 		return 0;
19057 	}
19058 	mb = &pmb->u.mb;
19059 
19060 	do {
19061 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19062 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19063 
19064 		if (rc != MBX_SUCCESS) {
19065 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19066 					"2601 failed to read config "
19067 					"region 23, rc 0x%x Status 0x%x\n",
19068 					rc, mb->mbxStatus);
19069 			mb->un.varDmp.word_cnt = 0;
19070 		}
19071 		/*
19072 		 * dump mem may return a zero when finished or we got a
19073 		 * mailbox error, either way we are done.
19074 		 */
19075 		if (mb->un.varDmp.word_cnt == 0)
19076 			break;
19077 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19078 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19079 
19080 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19081 				       rgn23_data + offset,
19082 				       mb->un.varDmp.word_cnt);
19083 		offset += mb->un.varDmp.word_cnt;
19084 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19085 
19086 	mempool_free(pmb, phba->mbox_mem_pool);
19087 	return offset;
19088 }
19089 
19090 /**
19091  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19092  * @phba: pointer to lpfc hba data structure.
19093  * @rgn23_data: pointer to configure region 23 data.
19094  *
19095  * This function gets SLI4 port configure region 23 data through memory dump
19096  * mailbox command. When it successfully retrieves data, the size of the data
19097  * will be returned, otherwise, 0 will be returned.
19098  **/
19099 static uint32_t
19100 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19101 {
19102 	LPFC_MBOXQ_t *mboxq = NULL;
19103 	struct lpfc_dmabuf *mp = NULL;
19104 	struct lpfc_mqe *mqe;
19105 	uint32_t data_length = 0;
19106 	int rc;
19107 
19108 	if (!rgn23_data)
19109 		return 0;
19110 
19111 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19112 	if (!mboxq) {
19113 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19114 				"3105 failed to allocate mailbox memory\n");
19115 		return 0;
19116 	}
19117 
19118 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19119 		goto out;
19120 	mqe = &mboxq->u.mqe;
19121 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19122 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19123 	if (rc)
19124 		goto out;
19125 	data_length = mqe->un.mb_words[5];
19126 	if (data_length == 0)
19127 		goto out;
19128 	if (data_length > DMP_RGN23_SIZE) {
19129 		data_length = 0;
19130 		goto out;
19131 	}
19132 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19133 out:
19134 	mempool_free(mboxq, phba->mbox_mem_pool);
19135 	if (mp) {
19136 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19137 		kfree(mp);
19138 	}
19139 	return data_length;
19140 }
19141 
19142 /**
19143  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19144  * @phba: pointer to lpfc hba data structure.
19145  *
19146  * This function read region 23 and parse TLV for port status to
19147  * decide if the user disaled the port. If the TLV indicates the
19148  * port is disabled, the hba_flag is set accordingly.
19149  **/
19150 void
19151 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19152 {
19153 	uint8_t *rgn23_data = NULL;
19154 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19155 	uint32_t offset = 0;
19156 
19157 	/* Get adapter Region 23 data */
19158 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19159 	if (!rgn23_data)
19160 		goto out;
19161 
19162 	if (phba->sli_rev < LPFC_SLI_REV4)
19163 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19164 	else {
19165 		if_type = bf_get(lpfc_sli_intf_if_type,
19166 				 &phba->sli4_hba.sli_intf);
19167 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19168 			goto out;
19169 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19170 	}
19171 
19172 	if (!data_size)
19173 		goto out;
19174 
19175 	/* Check the region signature first */
19176 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19177 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19178 			"2619 Config region 23 has bad signature\n");
19179 			goto out;
19180 	}
19181 	offset += 4;
19182 
19183 	/* Check the data structure version */
19184 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19185 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19186 			"2620 Config region 23 has bad version\n");
19187 		goto out;
19188 	}
19189 	offset += 4;
19190 
19191 	/* Parse TLV entries in the region */
19192 	while (offset < data_size) {
19193 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19194 			break;
19195 		/*
19196 		 * If the TLV is not driver specific TLV or driver id is
19197 		 * not linux driver id, skip the record.
19198 		 */
19199 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19200 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19201 		    (rgn23_data[offset + 3] != 0)) {
19202 			offset += rgn23_data[offset + 1] * 4 + 4;
19203 			continue;
19204 		}
19205 
19206 		/* Driver found a driver specific TLV in the config region */
19207 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19208 		offset += 4;
19209 		tlv_offset = 0;
19210 
19211 		/*
19212 		 * Search for configured port state sub-TLV.
19213 		 */
19214 		while ((offset < data_size) &&
19215 			(tlv_offset < sub_tlv_len)) {
19216 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19217 				offset += 4;
19218 				tlv_offset += 4;
19219 				break;
19220 			}
19221 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19222 				offset += rgn23_data[offset + 1] * 4 + 4;
19223 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19224 				continue;
19225 			}
19226 
19227 			/* This HBA contains PORT_STE configured */
19228 			if (!rgn23_data[offset + 2])
19229 				phba->hba_flag |= LINK_DISABLED;
19230 
19231 			goto out;
19232 		}
19233 	}
19234 
19235 out:
19236 	kfree(rgn23_data);
19237 	return;
19238 }
19239 
19240 /**
19241  * lpfc_wr_object - write an object to the firmware
19242  * @phba: HBA structure that indicates port to create a queue on.
19243  * @dmabuf_list: list of dmabufs to write to the port.
19244  * @size: the total byte value of the objects to write to the port.
19245  * @offset: the current offset to be used to start the transfer.
19246  *
19247  * This routine will create a wr_object mailbox command to send to the port.
19248  * the mailbox command will be constructed using the dma buffers described in
19249  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19250  * BDEs that the imbedded mailbox can support. The @offset variable will be
19251  * used to indicate the starting offset of the transfer and will also return
19252  * the offset after the write object mailbox has completed. @size is used to
19253  * determine the end of the object and whether the eof bit should be set.
19254  *
19255  * Return 0 is successful and offset will contain the the new offset to use
19256  * for the next write.
19257  * Return negative value for error cases.
19258  **/
19259 int
19260 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19261 	       uint32_t size, uint32_t *offset)
19262 {
19263 	struct lpfc_mbx_wr_object *wr_object;
19264 	LPFC_MBOXQ_t *mbox;
19265 	int rc = 0, i = 0;
19266 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19267 	uint32_t mbox_tmo;
19268 	struct lpfc_dmabuf *dmabuf;
19269 	uint32_t written = 0;
19270 	bool check_change_status = false;
19271 
19272 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19273 	if (!mbox)
19274 		return -ENOMEM;
19275 
19276 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19277 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19278 			sizeof(struct lpfc_mbx_wr_object) -
19279 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19280 
19281 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19282 	wr_object->u.request.write_offset = *offset;
19283 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19284 	wr_object->u.request.object_name[0] =
19285 		cpu_to_le32(wr_object->u.request.object_name[0]);
19286 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19287 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19288 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19289 			break;
19290 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19291 		wr_object->u.request.bde[i].addrHigh =
19292 			putPaddrHigh(dmabuf->phys);
19293 		if (written + SLI4_PAGE_SIZE >= size) {
19294 			wr_object->u.request.bde[i].tus.f.bdeSize =
19295 				(size - written);
19296 			written += (size - written);
19297 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19298 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19299 			check_change_status = true;
19300 		} else {
19301 			wr_object->u.request.bde[i].tus.f.bdeSize =
19302 				SLI4_PAGE_SIZE;
19303 			written += SLI4_PAGE_SIZE;
19304 		}
19305 		i++;
19306 	}
19307 	wr_object->u.request.bde_count = i;
19308 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19309 	if (!phba->sli4_hba.intr_enable)
19310 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19311 	else {
19312 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19313 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19314 	}
19315 	/* The IOCTL status is embedded in the mailbox subheader. */
19316 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19317 			     &wr_object->header.cfg_shdr.response);
19318 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19319 				 &wr_object->header.cfg_shdr.response);
19320 	if (check_change_status) {
19321 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19322 					    &wr_object->u.response);
19323 		switch (shdr_change_status) {
19324 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19325 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19326 					"3198 Firmware write complete: System "
19327 					"reboot required to instantiate\n");
19328 			break;
19329 		case (LPFC_CHANGE_STATUS_FW_RESET):
19330 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19331 					"3199 Firmware write complete: Firmware"
19332 					" reset required to instantiate\n");
19333 			break;
19334 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19335 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19336 					"3200 Firmware write complete: Port "
19337 					"Migration or PCI Reset required to "
19338 					"instantiate\n");
19339 			break;
19340 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19341 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19342 					"3201 Firmware write complete: PCI "
19343 					"Reset required to instantiate\n");
19344 			break;
19345 		default:
19346 			break;
19347 		}
19348 	}
19349 	if (rc != MBX_TIMEOUT)
19350 		mempool_free(mbox, phba->mbox_mem_pool);
19351 	if (shdr_status || shdr_add_status || rc) {
19352 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19353 				"3025 Write Object mailbox failed with "
19354 				"status x%x add_status x%x, mbx status x%x\n",
19355 				shdr_status, shdr_add_status, rc);
19356 		rc = -ENXIO;
19357 		*offset = shdr_add_status;
19358 	} else
19359 		*offset += wr_object->u.response.actual_write_length;
19360 	return rc;
19361 }
19362 
19363 /**
19364  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19365  * @vport: pointer to vport data structure.
19366  *
19367  * This function iterate through the mailboxq and clean up all REG_LOGIN
19368  * and REG_VPI mailbox commands associated with the vport. This function
19369  * is called when driver want to restart discovery of the vport due to
19370  * a Clear Virtual Link event.
19371  **/
19372 void
19373 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19374 {
19375 	struct lpfc_hba *phba = vport->phba;
19376 	LPFC_MBOXQ_t *mb, *nextmb;
19377 	struct lpfc_dmabuf *mp;
19378 	struct lpfc_nodelist *ndlp;
19379 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19380 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19381 	LIST_HEAD(mbox_cmd_list);
19382 	uint8_t restart_loop;
19383 
19384 	/* Clean up internally queued mailbox commands with the vport */
19385 	spin_lock_irq(&phba->hbalock);
19386 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19387 		if (mb->vport != vport)
19388 			continue;
19389 
19390 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19391 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19392 			continue;
19393 
19394 		list_del(&mb->list);
19395 		list_add_tail(&mb->list, &mbox_cmd_list);
19396 	}
19397 	/* Clean up active mailbox command with the vport */
19398 	mb = phba->sli.mbox_active;
19399 	if (mb && (mb->vport == vport)) {
19400 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19401 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19402 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19403 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19404 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19405 			/* Put reference count for delayed processing */
19406 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19407 			/* Unregister the RPI when mailbox complete */
19408 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19409 		}
19410 	}
19411 	/* Cleanup any mailbox completions which are not yet processed */
19412 	do {
19413 		restart_loop = 0;
19414 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19415 			/*
19416 			 * If this mailox is already processed or it is
19417 			 * for another vport ignore it.
19418 			 */
19419 			if ((mb->vport != vport) ||
19420 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19421 				continue;
19422 
19423 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19424 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19425 				continue;
19426 
19427 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19428 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19429 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19430 				/* Unregister the RPI when mailbox complete */
19431 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19432 				restart_loop = 1;
19433 				spin_unlock_irq(&phba->hbalock);
19434 				spin_lock(shost->host_lock);
19435 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19436 				spin_unlock(shost->host_lock);
19437 				spin_lock_irq(&phba->hbalock);
19438 				break;
19439 			}
19440 		}
19441 	} while (restart_loop);
19442 
19443 	spin_unlock_irq(&phba->hbalock);
19444 
19445 	/* Release the cleaned-up mailbox commands */
19446 	while (!list_empty(&mbox_cmd_list)) {
19447 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19448 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19449 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19450 			if (mp) {
19451 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19452 				kfree(mp);
19453 			}
19454 			mb->ctx_buf = NULL;
19455 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19456 			mb->ctx_ndlp = NULL;
19457 			if (ndlp) {
19458 				spin_lock(shost->host_lock);
19459 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19460 				spin_unlock(shost->host_lock);
19461 				lpfc_nlp_put(ndlp);
19462 			}
19463 		}
19464 		mempool_free(mb, phba->mbox_mem_pool);
19465 	}
19466 
19467 	/* Release the ndlp with the cleaned-up active mailbox command */
19468 	if (act_mbx_ndlp) {
19469 		spin_lock(shost->host_lock);
19470 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19471 		spin_unlock(shost->host_lock);
19472 		lpfc_nlp_put(act_mbx_ndlp);
19473 	}
19474 }
19475 
19476 /**
19477  * lpfc_drain_txq - Drain the txq
19478  * @phba: Pointer to HBA context object.
19479  *
19480  * This function attempt to submit IOCBs on the txq
19481  * to the adapter.  For SLI4 adapters, the txq contains
19482  * ELS IOCBs that have been deferred because the there
19483  * are no SGLs.  This congestion can occur with large
19484  * vport counts during node discovery.
19485  **/
19486 
19487 uint32_t
19488 lpfc_drain_txq(struct lpfc_hba *phba)
19489 {
19490 	LIST_HEAD(completions);
19491 	struct lpfc_sli_ring *pring;
19492 	struct lpfc_iocbq *piocbq = NULL;
19493 	unsigned long iflags = 0;
19494 	char *fail_msg = NULL;
19495 	struct lpfc_sglq *sglq;
19496 	union lpfc_wqe128 wqe;
19497 	uint32_t txq_cnt = 0;
19498 	struct lpfc_queue *wq;
19499 
19500 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19501 		/* MDS WQE are posted only to first WQ*/
19502 		wq = phba->sli4_hba.fcp_wq[0];
19503 		if (unlikely(!wq))
19504 			return 0;
19505 		pring = wq->pring;
19506 	} else {
19507 		wq = phba->sli4_hba.els_wq;
19508 		if (unlikely(!wq))
19509 			return 0;
19510 		pring = lpfc_phba_elsring(phba);
19511 	}
19512 
19513 	if (unlikely(!pring) || list_empty(&pring->txq))
19514 		return 0;
19515 
19516 	spin_lock_irqsave(&pring->ring_lock, iflags);
19517 	list_for_each_entry(piocbq, &pring->txq, list) {
19518 		txq_cnt++;
19519 	}
19520 
19521 	if (txq_cnt > pring->txq_max)
19522 		pring->txq_max = txq_cnt;
19523 
19524 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19525 
19526 	while (!list_empty(&pring->txq)) {
19527 		spin_lock_irqsave(&pring->ring_lock, iflags);
19528 
19529 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19530 		if (!piocbq) {
19531 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19532 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19533 				"2823 txq empty and txq_cnt is %d\n ",
19534 				txq_cnt);
19535 			break;
19536 		}
19537 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19538 		if (!sglq) {
19539 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19540 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19541 			break;
19542 		}
19543 		txq_cnt--;
19544 
19545 		/* The xri and iocb resources secured,
19546 		 * attempt to issue request
19547 		 */
19548 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19549 		piocbq->sli4_xritag = sglq->sli4_xritag;
19550 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19551 			fail_msg = "to convert bpl to sgl";
19552 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19553 			fail_msg = "to convert iocb to wqe";
19554 		else if (lpfc_sli4_wq_put(wq, &wqe))
19555 			fail_msg = " - Wq is full";
19556 		else
19557 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19558 
19559 		if (fail_msg) {
19560 			/* Failed means we can't issue and need to cancel */
19561 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19562 					"2822 IOCB failed %s iotag 0x%x "
19563 					"xri 0x%x\n",
19564 					fail_msg,
19565 					piocbq->iotag, piocbq->sli4_xritag);
19566 			list_add_tail(&piocbq->list, &completions);
19567 		}
19568 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19569 	}
19570 
19571 	/* Cancel all the IOCBs that cannot be issued */
19572 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19573 				IOERR_SLI_ABORTED);
19574 
19575 	return txq_cnt;
19576 }
19577 
19578 /**
19579  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19580  * @phba: Pointer to HBA context object.
19581  * @pwqe: Pointer to command WQE.
19582  * @sglq: Pointer to the scatter gather queue object.
19583  *
19584  * This routine converts the bpl or bde that is in the WQE
19585  * to a sgl list for the sli4 hardware. The physical address
19586  * of the bpl/bde is converted back to a virtual address.
19587  * If the WQE contains a BPL then the list of BDE's is
19588  * converted to sli4_sge's. If the WQE contains a single
19589  * BDE then it is converted to a single sli_sge.
19590  * The WQE is still in cpu endianness so the contents of
19591  * the bpl can be used without byte swapping.
19592  *
19593  * Returns valid XRI = Success, NO_XRI = Failure.
19594  */
19595 static uint16_t
19596 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19597 		 struct lpfc_sglq *sglq)
19598 {
19599 	uint16_t xritag = NO_XRI;
19600 	struct ulp_bde64 *bpl = NULL;
19601 	struct ulp_bde64 bde;
19602 	struct sli4_sge *sgl  = NULL;
19603 	struct lpfc_dmabuf *dmabuf;
19604 	union lpfc_wqe128 *wqe;
19605 	int numBdes = 0;
19606 	int i = 0;
19607 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19608 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19609 	uint32_t cmd;
19610 
19611 	if (!pwqeq || !sglq)
19612 		return xritag;
19613 
19614 	sgl  = (struct sli4_sge *)sglq->sgl;
19615 	wqe = &pwqeq->wqe;
19616 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19617 
19618 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19619 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19620 		return sglq->sli4_xritag;
19621 	numBdes = pwqeq->rsvd2;
19622 	if (numBdes) {
19623 		/* The addrHigh and addrLow fields within the WQE
19624 		 * have not been byteswapped yet so there is no
19625 		 * need to swap them back.
19626 		 */
19627 		if (pwqeq->context3)
19628 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19629 		else
19630 			return xritag;
19631 
19632 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19633 		if (!bpl)
19634 			return xritag;
19635 
19636 		for (i = 0; i < numBdes; i++) {
19637 			/* Should already be byte swapped. */
19638 			sgl->addr_hi = bpl->addrHigh;
19639 			sgl->addr_lo = bpl->addrLow;
19640 
19641 			sgl->word2 = le32_to_cpu(sgl->word2);
19642 			if ((i+1) == numBdes)
19643 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19644 			else
19645 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19646 			/* swap the size field back to the cpu so we
19647 			 * can assign it to the sgl.
19648 			 */
19649 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19650 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19651 			/* The offsets in the sgl need to be accumulated
19652 			 * separately for the request and reply lists.
19653 			 * The request is always first, the reply follows.
19654 			 */
19655 			switch (cmd) {
19656 			case CMD_GEN_REQUEST64_WQE:
19657 				/* add up the reply sg entries */
19658 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19659 					inbound++;
19660 				/* first inbound? reset the offset */
19661 				if (inbound == 1)
19662 					offset = 0;
19663 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19664 				bf_set(lpfc_sli4_sge_type, sgl,
19665 					LPFC_SGE_TYPE_DATA);
19666 				offset += bde.tus.f.bdeSize;
19667 				break;
19668 			case CMD_FCP_TRSP64_WQE:
19669 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19670 				bf_set(lpfc_sli4_sge_type, sgl,
19671 					LPFC_SGE_TYPE_DATA);
19672 				break;
19673 			case CMD_FCP_TSEND64_WQE:
19674 			case CMD_FCP_TRECEIVE64_WQE:
19675 				bf_set(lpfc_sli4_sge_type, sgl,
19676 					bpl->tus.f.bdeFlags);
19677 				if (i < 3)
19678 					offset = 0;
19679 				else
19680 					offset += bde.tus.f.bdeSize;
19681 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19682 				break;
19683 			}
19684 			sgl->word2 = cpu_to_le32(sgl->word2);
19685 			bpl++;
19686 			sgl++;
19687 		}
19688 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19689 		/* The addrHigh and addrLow fields of the BDE have not
19690 		 * been byteswapped yet so they need to be swapped
19691 		 * before putting them in the sgl.
19692 		 */
19693 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19694 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19695 		sgl->word2 = le32_to_cpu(sgl->word2);
19696 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19697 		sgl->word2 = cpu_to_le32(sgl->word2);
19698 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19699 	}
19700 	return sglq->sli4_xritag;
19701 }
19702 
19703 /**
19704  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19705  * @phba: Pointer to HBA context object.
19706  * @ring_number: Base sli ring number
19707  * @pwqe: Pointer to command WQE.
19708  **/
19709 int
19710 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
19711 		    struct lpfc_iocbq *pwqe)
19712 {
19713 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19714 	struct lpfc_nvmet_rcv_ctx *ctxp;
19715 	struct lpfc_queue *wq;
19716 	struct lpfc_sglq *sglq;
19717 	struct lpfc_sli_ring *pring;
19718 	unsigned long iflags;
19719 	uint32_t ret = 0;
19720 
19721 	/* NVME_LS and NVME_LS ABTS requests. */
19722 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19723 		pring =  phba->sli4_hba.nvmels_wq->pring;
19724 		spin_lock_irqsave(&pring->ring_lock, iflags);
19725 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19726 		if (!sglq) {
19727 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19728 			return WQE_BUSY;
19729 		}
19730 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19731 		pwqe->sli4_xritag = sglq->sli4_xritag;
19732 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19733 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19734 			return WQE_ERROR;
19735 		}
19736 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19737 		       pwqe->sli4_xritag);
19738 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19739 		if (ret) {
19740 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19741 			return ret;
19742 		}
19743 
19744 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19745 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19746 		return 0;
19747 	}
19748 
19749 	/* NVME_FCREQ and NVME_ABTS requests */
19750 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19751 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19752 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19753 
19754 		spin_lock_irqsave(&pring->ring_lock, iflags);
19755 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19756 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19757 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19758 		ret = lpfc_sli4_wq_put(wq, wqe);
19759 		if (ret) {
19760 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19761 			return ret;
19762 		}
19763 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19764 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19765 		return 0;
19766 	}
19767 
19768 	/* NVMET requests */
19769 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19770 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19771 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19772 
19773 		spin_lock_irqsave(&pring->ring_lock, iflags);
19774 		ctxp = pwqe->context2;
19775 		sglq = ctxp->ctxbuf->sglq;
19776 		if (pwqe->sli4_xritag ==  NO_XRI) {
19777 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19778 			pwqe->sli4_xritag = sglq->sli4_xritag;
19779 		}
19780 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19781 		       pwqe->sli4_xritag);
19782 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19783 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19784 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19785 		ret = lpfc_sli4_wq_put(wq, wqe);
19786 		if (ret) {
19787 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19788 			return ret;
19789 		}
19790 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19791 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19792 		return 0;
19793 	}
19794 	return WQE_ERROR;
19795 }
19796