1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 size_t start_clean = offsetof(struct lpfc_iocbq, wqe); 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 if (asig) { 1852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1853 "6237 BW Threshold %lld%% (%lld): " 1854 "%lld%% %s: Signal Alarm: cg:%d " 1855 "Info:%u\n", 1856 bwpcent, bw, pcent, s, cg, 1857 phba->cmf_active_info); 1858 } else if (afpin) { 1859 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1860 "6238 BW Threshold %lld%% (%lld): " 1861 "%lld%% %s: FPIN Alarm: cg:%d " 1862 "Info:%u\n", 1863 bwpcent, bw, pcent, s, cg, 1864 phba->cmf_active_info); 1865 } else if (sigcnt) { 1866 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6239 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Warning: " 1870 "Cnt %d Max %d: cg:%d Info:%u\n", 1871 bwpcent, bw, pcent, s, sigcnt, 1872 wsigmax, cg, phba->cmf_active_info); 1873 } else if (fpincnt) { 1874 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6240 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Warning: " 1878 "Cnt %d Max %d: cg:%d Info:%u\n", 1879 bwpcent, bw, pcent, s, fpincnt, 1880 wfpinmax, cg, phba->cmf_active_info); 1881 } else { 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6241 BW Threshold %lld%% (%lld): " 1884 "CMF %lld%% %s: cg:%d Info:%u\n", 1885 bwpcent, bw, pcent, s, cg, 1886 phba->cmf_active_info); 1887 } 1888 } else if (info) { 1889 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1890 "6246 Info Threshold %u\n", info); 1891 } 1892 1893 /* Save BW change to be picked up during next timer interrupt */ 1894 phba->cmf_last_sync_bw = bw; 1895 out: 1896 lpfc_sli_release_iocbq(phba, cmdiocb); 1897 } 1898 1899 /** 1900 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1901 * @phba: Pointer to HBA context object. 1902 * @ms: ms to set in WQE interval, 0 means use init op 1903 * @total: Total rcv bytes for this interval 1904 * 1905 * This routine is called every CMF timer interrupt. Its purpose is 1906 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1907 * that may indicate we have congestion (FPINs or Signals). Upon 1908 * completion, the firmware will indicate any BW restrictions the 1909 * driver may need to take. 1910 **/ 1911 int 1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1913 { 1914 union lpfc_wqe128 *wqe; 1915 struct lpfc_iocbq *sync_buf; 1916 unsigned long iflags; 1917 u32 ret_val; 1918 u32 atot, wtot, max; 1919 u16 warn_sync_period = 0; 1920 1921 /* First address any alarm / warning activity */ 1922 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1923 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1924 1925 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1926 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1927 phba->link_state == LPFC_LINK_DOWN) 1928 return 0; 1929 1930 spin_lock_irqsave(&phba->hbalock, iflags); 1931 sync_buf = __lpfc_sli_get_iocbq(phba); 1932 if (!sync_buf) { 1933 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1934 "6244 No available WQEs for CMF_SYNC_WQE\n"); 1935 ret_val = ENOMEM; 1936 goto out_unlock; 1937 } 1938 1939 wqe = &sync_buf->wqe; 1940 1941 /* WQEs are reused. Clear stale data and set key fields to zero */ 1942 memset(wqe, 0, sizeof(*wqe)); 1943 1944 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1945 if (!ms) { 1946 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1947 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1948 phba->fc_eventTag); 1949 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1950 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1951 goto initpath; 1952 } 1953 1954 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1955 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1956 1957 /* Check for alarms / warnings */ 1958 if (atot) { 1959 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1960 /* We hit an Signal alarm condition */ 1961 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1962 } else { 1963 /* We hit a FPIN alarm condition */ 1964 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1965 } 1966 } else if (wtot) { 1967 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1968 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1969 /* We hit an Signal warning condition */ 1970 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1971 lpfc_acqe_cgn_frequency; 1972 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1973 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1974 warn_sync_period = lpfc_acqe_cgn_frequency; 1975 } else { 1976 /* We hit a FPIN warning condition */ 1977 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1978 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1979 if (phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) 1980 warn_sync_period = 1981 LPFC_MSECS_TO_SECS(phba->cgn_fpin_frequency); 1982 } 1983 } 1984 1985 /* Update total read blocks during previous timer interval */ 1986 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1987 1988 initpath: 1989 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1990 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1991 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1992 1993 /* Setup reqtag to match the wqe completion. */ 1994 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1995 1996 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1997 bf_set(cmf_sync_period, &wqe->cmf_sync, warn_sync_period); 1998 1999 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 2000 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 2001 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 2002 2003 sync_buf->vport = phba->pport; 2004 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 2005 sync_buf->cmd_dmabuf = NULL; 2006 sync_buf->rsp_dmabuf = NULL; 2007 sync_buf->bpl_dmabuf = NULL; 2008 sync_buf->sli4_xritag = NO_XRI; 2009 2010 sync_buf->cmd_flag |= LPFC_IO_CMF; 2011 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2012 if (ret_val) { 2013 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2014 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2015 ret_val); 2016 __lpfc_sli_release_iocbq(phba, sync_buf); 2017 } 2018 out_unlock: 2019 spin_unlock_irqrestore(&phba->hbalock, iflags); 2020 return ret_val; 2021 } 2022 2023 /** 2024 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2025 * @phba: Pointer to HBA context object. 2026 * @pring: Pointer to driver SLI ring object. 2027 * 2028 * This function is called with hbalock held and the caller must post the 2029 * iocb without releasing the lock. If the caller releases the lock, 2030 * iocb slot returned by the function is not guaranteed to be available. 2031 * The function returns pointer to the next available iocb slot if there 2032 * is available slot in the ring, else it returns NULL. 2033 * If the get index of the ring is ahead of the put index, the function 2034 * will post an error attention event to the worker thread to take the 2035 * HBA to offline state. 2036 **/ 2037 static IOCB_t * 2038 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2039 { 2040 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2041 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2042 2043 lockdep_assert_held(&phba->hbalock); 2044 2045 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2046 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2047 pring->sli.sli3.next_cmdidx = 0; 2048 2049 if (unlikely(pring->sli.sli3.local_getidx == 2050 pring->sli.sli3.next_cmdidx)) { 2051 2052 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2053 2054 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2055 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2056 "0315 Ring %d issue: portCmdGet %d " 2057 "is bigger than cmd ring %d\n", 2058 pring->ringno, 2059 pring->sli.sli3.local_getidx, 2060 max_cmd_idx); 2061 2062 phba->link_state = LPFC_HBA_ERROR; 2063 /* 2064 * All error attention handlers are posted to 2065 * worker thread 2066 */ 2067 phba->work_ha |= HA_ERATT; 2068 phba->work_hs = HS_FFER3; 2069 2070 lpfc_worker_wake_up(phba); 2071 2072 return NULL; 2073 } 2074 2075 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2076 return NULL; 2077 } 2078 2079 return lpfc_cmd_iocb(phba, pring); 2080 } 2081 2082 /** 2083 * lpfc_sli_next_iotag - Get an iotag for the iocb 2084 * @phba: Pointer to HBA context object. 2085 * @iocbq: Pointer to driver iocb object. 2086 * 2087 * This function gets an iotag for the iocb. If there is no unused iotag and 2088 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2089 * array and assigns a new iotag. 2090 * The function returns the allocated iotag if successful, else returns zero. 2091 * Zero is not a valid iotag. 2092 * The caller is not required to hold any lock. 2093 **/ 2094 uint16_t 2095 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2096 { 2097 struct lpfc_iocbq **new_arr; 2098 struct lpfc_iocbq **old_arr; 2099 size_t new_len; 2100 struct lpfc_sli *psli = &phba->sli; 2101 uint16_t iotag; 2102 2103 spin_lock_irq(&phba->hbalock); 2104 iotag = psli->last_iotag; 2105 if(++iotag < psli->iocbq_lookup_len) { 2106 psli->last_iotag = iotag; 2107 psli->iocbq_lookup[iotag] = iocbq; 2108 spin_unlock_irq(&phba->hbalock); 2109 iocbq->iotag = iotag; 2110 return iotag; 2111 } else if (psli->iocbq_lookup_len < (0xffff 2112 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2113 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2114 spin_unlock_irq(&phba->hbalock); 2115 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2116 GFP_KERNEL); 2117 if (new_arr) { 2118 spin_lock_irq(&phba->hbalock); 2119 old_arr = psli->iocbq_lookup; 2120 if (new_len <= psli->iocbq_lookup_len) { 2121 /* highly unprobable case */ 2122 kfree(new_arr); 2123 iotag = psli->last_iotag; 2124 if(++iotag < psli->iocbq_lookup_len) { 2125 psli->last_iotag = iotag; 2126 psli->iocbq_lookup[iotag] = iocbq; 2127 spin_unlock_irq(&phba->hbalock); 2128 iocbq->iotag = iotag; 2129 return iotag; 2130 } 2131 spin_unlock_irq(&phba->hbalock); 2132 return 0; 2133 } 2134 if (psli->iocbq_lookup) 2135 memcpy(new_arr, old_arr, 2136 ((psli->last_iotag + 1) * 2137 sizeof (struct lpfc_iocbq *))); 2138 psli->iocbq_lookup = new_arr; 2139 psli->iocbq_lookup_len = new_len; 2140 psli->last_iotag = iotag; 2141 psli->iocbq_lookup[iotag] = iocbq; 2142 spin_unlock_irq(&phba->hbalock); 2143 iocbq->iotag = iotag; 2144 kfree(old_arr); 2145 return iotag; 2146 } 2147 } else 2148 spin_unlock_irq(&phba->hbalock); 2149 2150 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2151 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2152 psli->last_iotag); 2153 2154 return 0; 2155 } 2156 2157 /** 2158 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2159 * @phba: Pointer to HBA context object. 2160 * @pring: Pointer to driver SLI ring object. 2161 * @iocb: Pointer to iocb slot in the ring. 2162 * @nextiocb: Pointer to driver iocb object which need to be 2163 * posted to firmware. 2164 * 2165 * This function is called to post a new iocb to the firmware. This 2166 * function copies the new iocb to ring iocb slot and updates the 2167 * ring pointers. It adds the new iocb to txcmplq if there is 2168 * a completion call back for this iocb else the function will free the 2169 * iocb object. The hbalock is asserted held in the code path calling 2170 * this routine. 2171 **/ 2172 static void 2173 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2174 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2175 { 2176 /* 2177 * Set up an iotag 2178 */ 2179 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2180 2181 2182 if (pring->ringno == LPFC_ELS_RING) { 2183 lpfc_debugfs_slow_ring_trc(phba, 2184 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2185 *(((uint32_t *) &nextiocb->iocb) + 4), 2186 *(((uint32_t *) &nextiocb->iocb) + 6), 2187 *(((uint32_t *) &nextiocb->iocb) + 7)); 2188 } 2189 2190 /* 2191 * Issue iocb command to adapter 2192 */ 2193 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2194 wmb(); 2195 pring->stats.iocb_cmd++; 2196 2197 /* 2198 * If there is no completion routine to call, we can release the 2199 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2200 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2201 */ 2202 if (nextiocb->cmd_cmpl) 2203 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2204 else 2205 __lpfc_sli_release_iocbq(phba, nextiocb); 2206 2207 /* 2208 * Let the HBA know what IOCB slot will be the next one the 2209 * driver will put a command into. 2210 */ 2211 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2212 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2213 } 2214 2215 /** 2216 * lpfc_sli_update_full_ring - Update the chip attention register 2217 * @phba: Pointer to HBA context object. 2218 * @pring: Pointer to driver SLI ring object. 2219 * 2220 * The caller is not required to hold any lock for calling this function. 2221 * This function updates the chip attention bits for the ring to inform firmware 2222 * that there are pending work to be done for this ring and requests an 2223 * interrupt when there is space available in the ring. This function is 2224 * called when the driver is unable to post more iocbs to the ring due 2225 * to unavailability of space in the ring. 2226 **/ 2227 static void 2228 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2229 { 2230 int ringno = pring->ringno; 2231 2232 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2233 2234 wmb(); 2235 2236 /* 2237 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2238 * The HBA will tell us when an IOCB entry is available. 2239 */ 2240 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2241 readl(phba->CAregaddr); /* flush */ 2242 2243 pring->stats.iocb_cmd_full++; 2244 } 2245 2246 /** 2247 * lpfc_sli_update_ring - Update chip attention register 2248 * @phba: Pointer to HBA context object. 2249 * @pring: Pointer to driver SLI ring object. 2250 * 2251 * This function updates the chip attention register bit for the 2252 * given ring to inform HBA that there is more work to be done 2253 * in this ring. The caller is not required to hold any lock. 2254 **/ 2255 static void 2256 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2257 { 2258 int ringno = pring->ringno; 2259 2260 /* 2261 * Tell the HBA that there is work to do in this ring. 2262 */ 2263 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2264 wmb(); 2265 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2266 readl(phba->CAregaddr); /* flush */ 2267 } 2268 } 2269 2270 /** 2271 * lpfc_sli_resume_iocb - Process iocbs in the txq 2272 * @phba: Pointer to HBA context object. 2273 * @pring: Pointer to driver SLI ring object. 2274 * 2275 * This function is called with hbalock held to post pending iocbs 2276 * in the txq to the firmware. This function is called when driver 2277 * detects space available in the ring. 2278 **/ 2279 static void 2280 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2281 { 2282 IOCB_t *iocb; 2283 struct lpfc_iocbq *nextiocb; 2284 2285 lockdep_assert_held(&phba->hbalock); 2286 2287 /* 2288 * Check to see if: 2289 * (a) there is anything on the txq to send 2290 * (b) link is up 2291 * (c) link attention events can be processed (fcp ring only) 2292 * (d) IOCB processing is not blocked by the outstanding mbox command. 2293 */ 2294 2295 if (lpfc_is_link_up(phba) && 2296 (!list_empty(&pring->txq)) && 2297 (pring->ringno != LPFC_FCP_RING || 2298 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2299 2300 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2301 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2302 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2303 2304 if (iocb) 2305 lpfc_sli_update_ring(phba, pring); 2306 else 2307 lpfc_sli_update_full_ring(phba, pring); 2308 } 2309 2310 return; 2311 } 2312 2313 /** 2314 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2315 * @phba: Pointer to HBA context object. 2316 * @hbqno: HBQ number. 2317 * 2318 * This function is called with hbalock held to get the next 2319 * available slot for the given HBQ. If there is free slot 2320 * available for the HBQ it will return pointer to the next available 2321 * HBQ entry else it will return NULL. 2322 **/ 2323 static struct lpfc_hbq_entry * 2324 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2325 { 2326 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2327 2328 lockdep_assert_held(&phba->hbalock); 2329 2330 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2331 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2332 hbqp->next_hbqPutIdx = 0; 2333 2334 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2335 uint32_t raw_index = phba->hbq_get[hbqno]; 2336 uint32_t getidx = le32_to_cpu(raw_index); 2337 2338 hbqp->local_hbqGetIdx = getidx; 2339 2340 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2341 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2342 "1802 HBQ %d: local_hbqGetIdx " 2343 "%u is > than hbqp->entry_count %u\n", 2344 hbqno, hbqp->local_hbqGetIdx, 2345 hbqp->entry_count); 2346 2347 phba->link_state = LPFC_HBA_ERROR; 2348 return NULL; 2349 } 2350 2351 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2352 return NULL; 2353 } 2354 2355 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2356 hbqp->hbqPutIdx; 2357 } 2358 2359 /** 2360 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2361 * @phba: Pointer to HBA context object. 2362 * 2363 * This function is called with no lock held to free all the 2364 * hbq buffers while uninitializing the SLI interface. It also 2365 * frees the HBQ buffers returned by the firmware but not yet 2366 * processed by the upper layers. 2367 **/ 2368 void 2369 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2370 { 2371 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2372 struct hbq_dmabuf *hbq_buf; 2373 unsigned long flags; 2374 int i, hbq_count; 2375 2376 hbq_count = lpfc_sli_hbq_count(); 2377 /* Return all memory used by all HBQs */ 2378 spin_lock_irqsave(&phba->hbalock, flags); 2379 for (i = 0; i < hbq_count; ++i) { 2380 list_for_each_entry_safe(dmabuf, next_dmabuf, 2381 &phba->hbqs[i].hbq_buffer_list, list) { 2382 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2383 list_del(&hbq_buf->dbuf.list); 2384 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2385 } 2386 phba->hbqs[i].buffer_count = 0; 2387 } 2388 2389 /* Mark the HBQs not in use */ 2390 phba->hbq_in_use = 0; 2391 spin_unlock_irqrestore(&phba->hbalock, flags); 2392 } 2393 2394 /** 2395 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2396 * @phba: Pointer to HBA context object. 2397 * @hbqno: HBQ number. 2398 * @hbq_buf: Pointer to HBQ buffer. 2399 * 2400 * This function is called with the hbalock held to post a 2401 * hbq buffer to the firmware. If the function finds an empty 2402 * slot in the HBQ, it will post the buffer. The function will return 2403 * pointer to the hbq entry if it successfully post the buffer 2404 * else it will return NULL. 2405 **/ 2406 static int 2407 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2408 struct hbq_dmabuf *hbq_buf) 2409 { 2410 lockdep_assert_held(&phba->hbalock); 2411 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2412 } 2413 2414 /** 2415 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2416 * @phba: Pointer to HBA context object. 2417 * @hbqno: HBQ number. 2418 * @hbq_buf: Pointer to HBQ buffer. 2419 * 2420 * This function is called with the hbalock held to post a hbq buffer to the 2421 * firmware. If the function finds an empty slot in the HBQ, it will post the 2422 * buffer and place it on the hbq_buffer_list. The function will return zero if 2423 * it successfully post the buffer else it will return an error. 2424 **/ 2425 static int 2426 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2427 struct hbq_dmabuf *hbq_buf) 2428 { 2429 struct lpfc_hbq_entry *hbqe; 2430 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2431 2432 lockdep_assert_held(&phba->hbalock); 2433 /* Get next HBQ entry slot to use */ 2434 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2435 if (hbqe) { 2436 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2437 2438 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2439 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2440 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2441 hbqe->bde.tus.f.bdeFlags = 0; 2442 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2443 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2444 /* Sync SLIM */ 2445 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2446 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2447 /* flush */ 2448 readl(phba->hbq_put + hbqno); 2449 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2450 return 0; 2451 } else 2452 return -ENOMEM; 2453 } 2454 2455 /** 2456 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2457 * @phba: Pointer to HBA context object. 2458 * @hbqno: HBQ number. 2459 * @hbq_buf: Pointer to HBQ buffer. 2460 * 2461 * This function is called with the hbalock held to post an RQE to the SLI4 2462 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2463 * the hbq_buffer_list and return zero, otherwise it will return an error. 2464 **/ 2465 static int 2466 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2467 struct hbq_dmabuf *hbq_buf) 2468 { 2469 int rc; 2470 struct lpfc_rqe hrqe; 2471 struct lpfc_rqe drqe; 2472 struct lpfc_queue *hrq; 2473 struct lpfc_queue *drq; 2474 2475 if (hbqno != LPFC_ELS_HBQ) 2476 return 1; 2477 hrq = phba->sli4_hba.hdr_rq; 2478 drq = phba->sli4_hba.dat_rq; 2479 2480 lockdep_assert_held(&phba->hbalock); 2481 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2482 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2483 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2484 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2485 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2486 if (rc < 0) 2487 return rc; 2488 hbq_buf->tag = (rc | (hbqno << 16)); 2489 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2490 return 0; 2491 } 2492 2493 /* HBQ for ELS and CT traffic. */ 2494 static struct lpfc_hbq_init lpfc_els_hbq = { 2495 .rn = 1, 2496 .entry_count = 256, 2497 .mask_count = 0, 2498 .profile = 0, 2499 .ring_mask = (1 << LPFC_ELS_RING), 2500 .buffer_count = 0, 2501 .init_count = 40, 2502 .add_count = 40, 2503 }; 2504 2505 /* Array of HBQs */ 2506 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2507 &lpfc_els_hbq, 2508 }; 2509 2510 /** 2511 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2512 * @phba: Pointer to HBA context object. 2513 * @hbqno: HBQ number. 2514 * @count: Number of HBQ buffers to be posted. 2515 * 2516 * This function is called with no lock held to post more hbq buffers to the 2517 * given HBQ. The function returns the number of HBQ buffers successfully 2518 * posted. 2519 **/ 2520 static int 2521 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2522 { 2523 uint32_t i, posted = 0; 2524 unsigned long flags; 2525 struct hbq_dmabuf *hbq_buffer; 2526 LIST_HEAD(hbq_buf_list); 2527 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2528 return 0; 2529 2530 if ((phba->hbqs[hbqno].buffer_count + count) > 2531 lpfc_hbq_defs[hbqno]->entry_count) 2532 count = lpfc_hbq_defs[hbqno]->entry_count - 2533 phba->hbqs[hbqno].buffer_count; 2534 if (!count) 2535 return 0; 2536 /* Allocate HBQ entries */ 2537 for (i = 0; i < count; i++) { 2538 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2539 if (!hbq_buffer) 2540 break; 2541 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2542 } 2543 /* Check whether HBQ is still in use */ 2544 spin_lock_irqsave(&phba->hbalock, flags); 2545 if (!phba->hbq_in_use) 2546 goto err; 2547 while (!list_empty(&hbq_buf_list)) { 2548 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2549 dbuf.list); 2550 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2551 (hbqno << 16)); 2552 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2553 phba->hbqs[hbqno].buffer_count++; 2554 posted++; 2555 } else 2556 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2557 } 2558 spin_unlock_irqrestore(&phba->hbalock, flags); 2559 return posted; 2560 err: 2561 spin_unlock_irqrestore(&phba->hbalock, flags); 2562 while (!list_empty(&hbq_buf_list)) { 2563 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2564 dbuf.list); 2565 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2566 } 2567 return 0; 2568 } 2569 2570 /** 2571 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2572 * @phba: Pointer to HBA context object. 2573 * @qno: HBQ number. 2574 * 2575 * This function posts more buffers to the HBQ. This function 2576 * is called with no lock held. The function returns the number of HBQ entries 2577 * successfully allocated. 2578 **/ 2579 int 2580 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2581 { 2582 if (phba->sli_rev == LPFC_SLI_REV4) 2583 return 0; 2584 else 2585 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2586 lpfc_hbq_defs[qno]->add_count); 2587 } 2588 2589 /** 2590 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2591 * @phba: Pointer to HBA context object. 2592 * @qno: HBQ queue number. 2593 * 2594 * This function is called from SLI initialization code path with 2595 * no lock held to post initial HBQ buffers to firmware. The 2596 * function returns the number of HBQ entries successfully allocated. 2597 **/ 2598 static int 2599 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2600 { 2601 if (phba->sli_rev == LPFC_SLI_REV4) 2602 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2603 lpfc_hbq_defs[qno]->entry_count); 2604 else 2605 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2606 lpfc_hbq_defs[qno]->init_count); 2607 } 2608 2609 /* 2610 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2611 * 2612 * This function removes the first hbq buffer on an hbq list and returns a 2613 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2614 **/ 2615 static struct hbq_dmabuf * 2616 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2617 { 2618 struct lpfc_dmabuf *d_buf; 2619 2620 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2621 if (!d_buf) 2622 return NULL; 2623 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2624 } 2625 2626 /** 2627 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2628 * @phba: Pointer to HBA context object. 2629 * @hrq: HBQ number. 2630 * 2631 * This function removes the first RQ buffer on an RQ buffer list and returns a 2632 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2633 **/ 2634 static struct rqb_dmabuf * 2635 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2636 { 2637 struct lpfc_dmabuf *h_buf; 2638 struct lpfc_rqb *rqbp; 2639 2640 rqbp = hrq->rqbp; 2641 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2642 struct lpfc_dmabuf, list); 2643 if (!h_buf) 2644 return NULL; 2645 rqbp->buffer_count--; 2646 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2647 } 2648 2649 /** 2650 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2651 * @phba: Pointer to HBA context object. 2652 * @tag: Tag of the hbq buffer. 2653 * 2654 * This function searches for the hbq buffer associated with the given tag in 2655 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2656 * otherwise it returns NULL. 2657 **/ 2658 static struct hbq_dmabuf * 2659 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2660 { 2661 struct lpfc_dmabuf *d_buf; 2662 struct hbq_dmabuf *hbq_buf; 2663 uint32_t hbqno; 2664 2665 hbqno = tag >> 16; 2666 if (hbqno >= LPFC_MAX_HBQS) 2667 return NULL; 2668 2669 spin_lock_irq(&phba->hbalock); 2670 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2671 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2672 if (hbq_buf->tag == tag) { 2673 spin_unlock_irq(&phba->hbalock); 2674 return hbq_buf; 2675 } 2676 } 2677 spin_unlock_irq(&phba->hbalock); 2678 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2679 "1803 Bad hbq tag. Data: x%x x%x\n", 2680 tag, phba->hbqs[tag >> 16].buffer_count); 2681 return NULL; 2682 } 2683 2684 /** 2685 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2686 * @phba: Pointer to HBA context object. 2687 * @hbq_buffer: Pointer to HBQ buffer. 2688 * 2689 * This function is called with hbalock. This function gives back 2690 * the hbq buffer to firmware. If the HBQ does not have space to 2691 * post the buffer, it will free the buffer. 2692 **/ 2693 void 2694 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2695 { 2696 uint32_t hbqno; 2697 2698 if (hbq_buffer) { 2699 hbqno = hbq_buffer->tag >> 16; 2700 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2701 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2702 } 2703 } 2704 2705 /** 2706 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2707 * @mbxCommand: mailbox command code. 2708 * 2709 * This function is called by the mailbox event handler function to verify 2710 * that the completed mailbox command is a legitimate mailbox command. If the 2711 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2712 * and the mailbox event handler will take the HBA offline. 2713 **/ 2714 static int 2715 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2716 { 2717 uint8_t ret; 2718 2719 switch (mbxCommand) { 2720 case MBX_LOAD_SM: 2721 case MBX_READ_NV: 2722 case MBX_WRITE_NV: 2723 case MBX_WRITE_VPARMS: 2724 case MBX_RUN_BIU_DIAG: 2725 case MBX_INIT_LINK: 2726 case MBX_DOWN_LINK: 2727 case MBX_CONFIG_LINK: 2728 case MBX_CONFIG_RING: 2729 case MBX_RESET_RING: 2730 case MBX_READ_CONFIG: 2731 case MBX_READ_RCONFIG: 2732 case MBX_READ_SPARM: 2733 case MBX_READ_STATUS: 2734 case MBX_READ_RPI: 2735 case MBX_READ_XRI: 2736 case MBX_READ_REV: 2737 case MBX_READ_LNK_STAT: 2738 case MBX_REG_LOGIN: 2739 case MBX_UNREG_LOGIN: 2740 case MBX_CLEAR_LA: 2741 case MBX_DUMP_MEMORY: 2742 case MBX_DUMP_CONTEXT: 2743 case MBX_RUN_DIAGS: 2744 case MBX_RESTART: 2745 case MBX_UPDATE_CFG: 2746 case MBX_DOWN_LOAD: 2747 case MBX_DEL_LD_ENTRY: 2748 case MBX_RUN_PROGRAM: 2749 case MBX_SET_MASK: 2750 case MBX_SET_VARIABLE: 2751 case MBX_UNREG_D_ID: 2752 case MBX_KILL_BOARD: 2753 case MBX_CONFIG_FARP: 2754 case MBX_BEACON: 2755 case MBX_LOAD_AREA: 2756 case MBX_RUN_BIU_DIAG64: 2757 case MBX_CONFIG_PORT: 2758 case MBX_READ_SPARM64: 2759 case MBX_READ_RPI64: 2760 case MBX_REG_LOGIN64: 2761 case MBX_READ_TOPOLOGY: 2762 case MBX_WRITE_WWN: 2763 case MBX_SET_DEBUG: 2764 case MBX_LOAD_EXP_ROM: 2765 case MBX_ASYNCEVT_ENABLE: 2766 case MBX_REG_VPI: 2767 case MBX_UNREG_VPI: 2768 case MBX_HEARTBEAT: 2769 case MBX_PORT_CAPABILITIES: 2770 case MBX_PORT_IOV_CONTROL: 2771 case MBX_SLI4_CONFIG: 2772 case MBX_SLI4_REQ_FTRS: 2773 case MBX_REG_FCFI: 2774 case MBX_UNREG_FCFI: 2775 case MBX_REG_VFI: 2776 case MBX_UNREG_VFI: 2777 case MBX_INIT_VPI: 2778 case MBX_INIT_VFI: 2779 case MBX_RESUME_RPI: 2780 case MBX_READ_EVENT_LOG_STATUS: 2781 case MBX_READ_EVENT_LOG: 2782 case MBX_SECURITY_MGMT: 2783 case MBX_AUTH_PORT: 2784 case MBX_ACCESS_VDATA: 2785 ret = mbxCommand; 2786 break; 2787 default: 2788 ret = MBX_SHUTDOWN; 2789 break; 2790 } 2791 return ret; 2792 } 2793 2794 /** 2795 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2796 * @phba: Pointer to HBA context object. 2797 * @pmboxq: Pointer to mailbox command. 2798 * 2799 * This is completion handler function for mailbox commands issued from 2800 * lpfc_sli_issue_mbox_wait function. This function is called by the 2801 * mailbox event handler function with no lock held. This function 2802 * will wake up thread waiting on the wait queue pointed by context1 2803 * of the mailbox. 2804 **/ 2805 void 2806 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2807 { 2808 unsigned long drvr_flag; 2809 struct completion *pmbox_done; 2810 2811 /* 2812 * If pmbox_done is empty, the driver thread gave up waiting and 2813 * continued running. 2814 */ 2815 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2816 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2817 pmbox_done = (struct completion *)pmboxq->context3; 2818 if (pmbox_done) 2819 complete(pmbox_done); 2820 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2821 return; 2822 } 2823 2824 static void 2825 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2826 { 2827 unsigned long iflags; 2828 2829 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2830 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2831 spin_lock_irqsave(&ndlp->lock, iflags); 2832 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2833 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2834 spin_unlock_irqrestore(&ndlp->lock, iflags); 2835 } 2836 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2837 } 2838 2839 void 2840 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2841 { 2842 __lpfc_sli_rpi_release(vport, ndlp); 2843 } 2844 2845 /** 2846 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2847 * @phba: Pointer to HBA context object. 2848 * @pmb: Pointer to mailbox object. 2849 * 2850 * This function is the default mailbox completion handler. It 2851 * frees the memory resources associated with the completed mailbox 2852 * command. If the completed command is a REG_LOGIN mailbox command, 2853 * this function will issue a UREG_LOGIN to re-claim the RPI. 2854 **/ 2855 void 2856 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2857 { 2858 struct lpfc_vport *vport = pmb->vport; 2859 struct lpfc_dmabuf *mp; 2860 struct lpfc_nodelist *ndlp; 2861 struct Scsi_Host *shost; 2862 uint16_t rpi, vpi; 2863 int rc; 2864 2865 /* 2866 * If a REG_LOGIN succeeded after node is destroyed or node 2867 * is in re-discovery driver need to cleanup the RPI. 2868 */ 2869 if (!(phba->pport->load_flag & FC_UNLOADING) && 2870 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2871 !pmb->u.mb.mbxStatus) { 2872 mp = (struct lpfc_dmabuf *)pmb->ctx_buf; 2873 if (mp) { 2874 pmb->ctx_buf = NULL; 2875 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2876 kfree(mp); 2877 } 2878 rpi = pmb->u.mb.un.varWords[0]; 2879 vpi = pmb->u.mb.un.varRegLogin.vpi; 2880 if (phba->sli_rev == LPFC_SLI_REV4) 2881 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2882 lpfc_unreg_login(phba, vpi, rpi, pmb); 2883 pmb->vport = vport; 2884 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2885 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2886 if (rc != MBX_NOT_FINISHED) 2887 return; 2888 } 2889 2890 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2891 !(phba->pport->load_flag & FC_UNLOADING) && 2892 !pmb->u.mb.mbxStatus) { 2893 shost = lpfc_shost_from_vport(vport); 2894 spin_lock_irq(shost->host_lock); 2895 vport->vpi_state |= LPFC_VPI_REGISTERED; 2896 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2897 spin_unlock_irq(shost->host_lock); 2898 } 2899 2900 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2901 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2902 lpfc_nlp_put(ndlp); 2903 } 2904 2905 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2906 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2907 2908 /* Check to see if there are any deferred events to process */ 2909 if (ndlp) { 2910 lpfc_printf_vlog( 2911 vport, 2912 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2913 "1438 UNREG cmpl deferred mbox x%x " 2914 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2915 ndlp->nlp_rpi, ndlp->nlp_DID, 2916 ndlp->nlp_flag, ndlp->nlp_defer_did, 2917 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2918 2919 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2920 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2921 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2922 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2923 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2924 } else { 2925 __lpfc_sli_rpi_release(vport, ndlp); 2926 } 2927 2928 /* The unreg_login mailbox is complete and had a 2929 * reference that has to be released. The PLOGI 2930 * got its own ref. 2931 */ 2932 lpfc_nlp_put(ndlp); 2933 pmb->ctx_ndlp = NULL; 2934 } 2935 } 2936 2937 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2938 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2939 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2940 lpfc_nlp_put(ndlp); 2941 } 2942 2943 /* Check security permission status on INIT_LINK mailbox command */ 2944 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2945 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2946 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2947 "2860 SLI authentication is required " 2948 "for INIT_LINK but has not done yet\n"); 2949 2950 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2951 lpfc_sli4_mbox_cmd_free(phba, pmb); 2952 else 2953 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2954 } 2955 /** 2956 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2957 * @phba: Pointer to HBA context object. 2958 * @pmb: Pointer to mailbox object. 2959 * 2960 * This function is the unreg rpi mailbox completion handler. It 2961 * frees the memory resources associated with the completed mailbox 2962 * command. An additional reference is put on the ndlp to prevent 2963 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2964 * the unreg mailbox command completes, this routine puts the 2965 * reference back. 2966 * 2967 **/ 2968 void 2969 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2970 { 2971 struct lpfc_vport *vport = pmb->vport; 2972 struct lpfc_nodelist *ndlp; 2973 2974 ndlp = pmb->ctx_ndlp; 2975 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2976 if (phba->sli_rev == LPFC_SLI_REV4 && 2977 (bf_get(lpfc_sli_intf_if_type, 2978 &phba->sli4_hba.sli_intf) >= 2979 LPFC_SLI_INTF_IF_TYPE_2)) { 2980 if (ndlp) { 2981 lpfc_printf_vlog( 2982 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2983 "0010 UNREG_LOGIN vpi:%x " 2984 "rpi:%x DID:%x defer x%x flg x%x " 2985 "x%px\n", 2986 vport->vpi, ndlp->nlp_rpi, 2987 ndlp->nlp_DID, ndlp->nlp_defer_did, 2988 ndlp->nlp_flag, 2989 ndlp); 2990 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2991 2992 /* Check to see if there are any deferred 2993 * events to process 2994 */ 2995 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2996 (ndlp->nlp_defer_did != 2997 NLP_EVT_NOTHING_PENDING)) { 2998 lpfc_printf_vlog( 2999 vport, KERN_INFO, LOG_DISCOVERY, 3000 "4111 UNREG cmpl deferred " 3001 "clr x%x on " 3002 "NPort x%x Data: x%x x%px\n", 3003 ndlp->nlp_rpi, ndlp->nlp_DID, 3004 ndlp->nlp_defer_did, ndlp); 3005 ndlp->nlp_flag &= ~NLP_UNREG_INP; 3006 ndlp->nlp_defer_did = 3007 NLP_EVT_NOTHING_PENDING; 3008 lpfc_issue_els_plogi( 3009 vport, ndlp->nlp_DID, 0); 3010 } else { 3011 __lpfc_sli_rpi_release(vport, ndlp); 3012 } 3013 lpfc_nlp_put(ndlp); 3014 } 3015 } 3016 } 3017 3018 mempool_free(pmb, phba->mbox_mem_pool); 3019 } 3020 3021 /** 3022 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3023 * @phba: Pointer to HBA context object. 3024 * 3025 * This function is called with no lock held. This function processes all 3026 * the completed mailbox commands and gives it to upper layers. The interrupt 3027 * service routine processes mailbox completion interrupt and adds completed 3028 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3029 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3030 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3031 * function returns the mailbox commands to the upper layer by calling the 3032 * completion handler function of each mailbox. 3033 **/ 3034 int 3035 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3036 { 3037 MAILBOX_t *pmbox; 3038 LPFC_MBOXQ_t *pmb; 3039 int rc; 3040 LIST_HEAD(cmplq); 3041 3042 phba->sli.slistat.mbox_event++; 3043 3044 /* Get all completed mailboxe buffers into the cmplq */ 3045 spin_lock_irq(&phba->hbalock); 3046 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3047 spin_unlock_irq(&phba->hbalock); 3048 3049 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3050 do { 3051 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3052 if (pmb == NULL) 3053 break; 3054 3055 pmbox = &pmb->u.mb; 3056 3057 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3058 if (pmb->vport) { 3059 lpfc_debugfs_disc_trc(pmb->vport, 3060 LPFC_DISC_TRC_MBOX_VPORT, 3061 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3062 (uint32_t)pmbox->mbxCommand, 3063 pmbox->un.varWords[0], 3064 pmbox->un.varWords[1]); 3065 } 3066 else { 3067 lpfc_debugfs_disc_trc(phba->pport, 3068 LPFC_DISC_TRC_MBOX, 3069 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3070 (uint32_t)pmbox->mbxCommand, 3071 pmbox->un.varWords[0], 3072 pmbox->un.varWords[1]); 3073 } 3074 } 3075 3076 /* 3077 * It is a fatal error if unknown mbox command completion. 3078 */ 3079 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3080 MBX_SHUTDOWN) { 3081 /* Unknown mailbox command compl */ 3082 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3083 "(%d):0323 Unknown Mailbox command " 3084 "x%x (x%x/x%x) Cmpl\n", 3085 pmb->vport ? pmb->vport->vpi : 3086 LPFC_VPORT_UNKNOWN, 3087 pmbox->mbxCommand, 3088 lpfc_sli_config_mbox_subsys_get(phba, 3089 pmb), 3090 lpfc_sli_config_mbox_opcode_get(phba, 3091 pmb)); 3092 phba->link_state = LPFC_HBA_ERROR; 3093 phba->work_hs = HS_FFER3; 3094 lpfc_handle_eratt(phba); 3095 continue; 3096 } 3097 3098 if (pmbox->mbxStatus) { 3099 phba->sli.slistat.mbox_stat_err++; 3100 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3101 /* Mbox cmd cmpl error - RETRYing */ 3102 lpfc_printf_log(phba, KERN_INFO, 3103 LOG_MBOX | LOG_SLI, 3104 "(%d):0305 Mbox cmd cmpl " 3105 "error - RETRYing Data: x%x " 3106 "(x%x/x%x) x%x x%x x%x\n", 3107 pmb->vport ? pmb->vport->vpi : 3108 LPFC_VPORT_UNKNOWN, 3109 pmbox->mbxCommand, 3110 lpfc_sli_config_mbox_subsys_get(phba, 3111 pmb), 3112 lpfc_sli_config_mbox_opcode_get(phba, 3113 pmb), 3114 pmbox->mbxStatus, 3115 pmbox->un.varWords[0], 3116 pmb->vport ? pmb->vport->port_state : 3117 LPFC_VPORT_UNKNOWN); 3118 pmbox->mbxStatus = 0; 3119 pmbox->mbxOwner = OWN_HOST; 3120 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3121 if (rc != MBX_NOT_FINISHED) 3122 continue; 3123 } 3124 } 3125 3126 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3127 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3128 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3129 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3130 "x%x x%x x%x\n", 3131 pmb->vport ? pmb->vport->vpi : 0, 3132 pmbox->mbxCommand, 3133 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3134 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3135 pmb->mbox_cmpl, 3136 *((uint32_t *) pmbox), 3137 pmbox->un.varWords[0], 3138 pmbox->un.varWords[1], 3139 pmbox->un.varWords[2], 3140 pmbox->un.varWords[3], 3141 pmbox->un.varWords[4], 3142 pmbox->un.varWords[5], 3143 pmbox->un.varWords[6], 3144 pmbox->un.varWords[7], 3145 pmbox->un.varWords[8], 3146 pmbox->un.varWords[9], 3147 pmbox->un.varWords[10]); 3148 3149 if (pmb->mbox_cmpl) 3150 pmb->mbox_cmpl(phba,pmb); 3151 } while (1); 3152 return 0; 3153 } 3154 3155 /** 3156 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3157 * @phba: Pointer to HBA context object. 3158 * @pring: Pointer to driver SLI ring object. 3159 * @tag: buffer tag. 3160 * 3161 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3162 * is set in the tag the buffer is posted for a particular exchange, 3163 * the function will return the buffer without replacing the buffer. 3164 * If the buffer is for unsolicited ELS or CT traffic, this function 3165 * returns the buffer and also posts another buffer to the firmware. 3166 **/ 3167 static struct lpfc_dmabuf * 3168 lpfc_sli_get_buff(struct lpfc_hba *phba, 3169 struct lpfc_sli_ring *pring, 3170 uint32_t tag) 3171 { 3172 struct hbq_dmabuf *hbq_entry; 3173 3174 if (tag & QUE_BUFTAG_BIT) 3175 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3176 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3177 if (!hbq_entry) 3178 return NULL; 3179 return &hbq_entry->dbuf; 3180 } 3181 3182 /** 3183 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3184 * containing a NVME LS request. 3185 * @phba: pointer to lpfc hba data structure. 3186 * @piocb: pointer to the iocbq struct representing the sequence starting 3187 * frame. 3188 * 3189 * This routine initially validates the NVME LS, validates there is a login 3190 * with the port that sent the LS, and then calls the appropriate nvme host 3191 * or target LS request handler. 3192 **/ 3193 static void 3194 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3195 { 3196 struct lpfc_nodelist *ndlp; 3197 struct lpfc_dmabuf *d_buf; 3198 struct hbq_dmabuf *nvmebuf; 3199 struct fc_frame_header *fc_hdr; 3200 struct lpfc_async_xchg_ctx *axchg = NULL; 3201 char *failwhy = NULL; 3202 uint32_t oxid, sid, did, fctl, size; 3203 int ret = 1; 3204 3205 d_buf = piocb->cmd_dmabuf; 3206 3207 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3208 fc_hdr = nvmebuf->hbuf.virt; 3209 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3210 sid = sli4_sid_from_fc_hdr(fc_hdr); 3211 did = sli4_did_from_fc_hdr(fc_hdr); 3212 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3213 fc_hdr->fh_f_ctl[1] << 8 | 3214 fc_hdr->fh_f_ctl[2]); 3215 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3216 3217 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3218 oxid, size, sid); 3219 3220 if (phba->pport->load_flag & FC_UNLOADING) { 3221 failwhy = "Driver Unloading"; 3222 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3223 failwhy = "NVME FC4 Disabled"; 3224 } else if (!phba->nvmet_support && !phba->pport->localport) { 3225 failwhy = "No Localport"; 3226 } else if (phba->nvmet_support && !phba->targetport) { 3227 failwhy = "No Targetport"; 3228 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3229 failwhy = "Bad NVME LS R_CTL"; 3230 } else if (unlikely((fctl & 0x00FF0000) != 3231 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3232 failwhy = "Bad NVME LS F_CTL"; 3233 } else { 3234 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3235 if (!axchg) 3236 failwhy = "No CTX memory"; 3237 } 3238 3239 if (unlikely(failwhy)) { 3240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3241 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3242 sid, oxid, failwhy); 3243 goto out_fail; 3244 } 3245 3246 /* validate the source of the LS is logged in */ 3247 ndlp = lpfc_findnode_did(phba->pport, sid); 3248 if (!ndlp || 3249 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3250 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3251 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3252 "6216 NVME Unsol rcv: No ndlp: " 3253 "NPort_ID x%x oxid x%x\n", 3254 sid, oxid); 3255 goto out_fail; 3256 } 3257 3258 axchg->phba = phba; 3259 axchg->ndlp = ndlp; 3260 axchg->size = size; 3261 axchg->oxid = oxid; 3262 axchg->sid = sid; 3263 axchg->wqeq = NULL; 3264 axchg->state = LPFC_NVME_STE_LS_RCV; 3265 axchg->entry_cnt = 1; 3266 axchg->rqb_buffer = (void *)nvmebuf; 3267 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3268 axchg->payload = nvmebuf->dbuf.virt; 3269 INIT_LIST_HEAD(&axchg->list); 3270 3271 if (phba->nvmet_support) { 3272 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3273 spin_lock_irq(&ndlp->lock); 3274 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3275 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3276 spin_unlock_irq(&ndlp->lock); 3277 3278 /* This reference is a single occurrence to hold the 3279 * node valid until the nvmet transport calls 3280 * host_release. 3281 */ 3282 if (!lpfc_nlp_get(ndlp)) 3283 goto out_fail; 3284 3285 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3286 "6206 NVMET unsol ls_req ndlp x%px " 3287 "DID x%x xflags x%x refcnt %d\n", 3288 ndlp, ndlp->nlp_DID, 3289 ndlp->fc4_xpt_flags, 3290 kref_read(&ndlp->kref)); 3291 } else { 3292 spin_unlock_irq(&ndlp->lock); 3293 } 3294 } else { 3295 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3296 } 3297 3298 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3299 if (!ret) 3300 return; 3301 3302 out_fail: 3303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3304 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3305 "NVMe%s handler failed %d\n", 3306 did, sid, oxid, 3307 (phba->nvmet_support) ? "T" : "I", ret); 3308 3309 /* recycle receive buffer */ 3310 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3311 3312 /* If start of new exchange, abort it */ 3313 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3314 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3315 3316 if (ret) 3317 kfree(axchg); 3318 } 3319 3320 /** 3321 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3322 * @phba: Pointer to HBA context object. 3323 * @pring: Pointer to driver SLI ring object. 3324 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3325 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3326 * @fch_type: the type for the first frame of the sequence. 3327 * 3328 * This function is called with no lock held. This function uses the r_ctl and 3329 * type of the received sequence to find the correct callback function to call 3330 * to process the sequence. 3331 **/ 3332 static int 3333 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3334 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3335 uint32_t fch_type) 3336 { 3337 int i; 3338 3339 switch (fch_type) { 3340 case FC_TYPE_NVME: 3341 lpfc_nvme_unsol_ls_handler(phba, saveq); 3342 return 1; 3343 default: 3344 break; 3345 } 3346 3347 /* unSolicited Responses */ 3348 if (pring->prt[0].profile) { 3349 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3350 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3351 saveq); 3352 return 1; 3353 } 3354 /* We must search, based on rctl / type 3355 for the right routine */ 3356 for (i = 0; i < pring->num_mask; i++) { 3357 if ((pring->prt[i].rctl == fch_r_ctl) && 3358 (pring->prt[i].type == fch_type)) { 3359 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3360 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3361 (phba, pring, saveq); 3362 return 1; 3363 } 3364 } 3365 return 0; 3366 } 3367 3368 static void 3369 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3370 struct lpfc_iocbq *saveq) 3371 { 3372 IOCB_t *irsp; 3373 union lpfc_wqe128 *wqe; 3374 u16 i = 0; 3375 3376 irsp = &saveq->iocb; 3377 wqe = &saveq->wqe; 3378 3379 /* Fill wcqe with the IOCB status fields */ 3380 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3381 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3382 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3383 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3384 3385 /* Source ID */ 3386 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3387 3388 /* rx-id of the response frame */ 3389 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3390 3391 /* ox-id of the frame */ 3392 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3393 irsp->unsli3.rcvsli3.ox_id); 3394 3395 /* DID */ 3396 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3397 irsp->un.rcvels.remoteID); 3398 3399 /* unsol data len */ 3400 for (i = 0; i < irsp->ulpBdeCount; i++) { 3401 struct lpfc_hbq_entry *hbqe = NULL; 3402 3403 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3404 if (i == 0) { 3405 hbqe = (struct lpfc_hbq_entry *) 3406 &irsp->un.ulpWord[0]; 3407 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3408 hbqe->bde.tus.f.bdeSize; 3409 } else if (i == 1) { 3410 hbqe = (struct lpfc_hbq_entry *) 3411 &irsp->unsli3.sli3Words[4]; 3412 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3413 } 3414 } 3415 } 3416 } 3417 3418 /** 3419 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3420 * @phba: Pointer to HBA context object. 3421 * @pring: Pointer to driver SLI ring object. 3422 * @saveq: Pointer to the unsolicited iocb. 3423 * 3424 * This function is called with no lock held by the ring event handler 3425 * when there is an unsolicited iocb posted to the response ring by the 3426 * firmware. This function gets the buffer associated with the iocbs 3427 * and calls the event handler for the ring. This function handles both 3428 * qring buffers and hbq buffers. 3429 * When the function returns 1 the caller can free the iocb object otherwise 3430 * upper layer functions will free the iocb objects. 3431 **/ 3432 static int 3433 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3434 struct lpfc_iocbq *saveq) 3435 { 3436 IOCB_t * irsp; 3437 WORD5 * w5p; 3438 dma_addr_t paddr; 3439 uint32_t Rctl, Type; 3440 struct lpfc_iocbq *iocbq; 3441 struct lpfc_dmabuf *dmzbuf; 3442 3443 irsp = &saveq->iocb; 3444 saveq->vport = phba->pport; 3445 3446 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3447 if (pring->lpfc_sli_rcv_async_status) 3448 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3449 else 3450 lpfc_printf_log(phba, 3451 KERN_WARNING, 3452 LOG_SLI, 3453 "0316 Ring %d handler: unexpected " 3454 "ASYNC_STATUS iocb received evt_code " 3455 "0x%x\n", 3456 pring->ringno, 3457 irsp->un.asyncstat.evt_code); 3458 return 1; 3459 } 3460 3461 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3462 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3463 if (irsp->ulpBdeCount > 0) { 3464 dmzbuf = lpfc_sli_get_buff(phba, pring, 3465 irsp->un.ulpWord[3]); 3466 lpfc_in_buf_free(phba, dmzbuf); 3467 } 3468 3469 if (irsp->ulpBdeCount > 1) { 3470 dmzbuf = lpfc_sli_get_buff(phba, pring, 3471 irsp->unsli3.sli3Words[3]); 3472 lpfc_in_buf_free(phba, dmzbuf); 3473 } 3474 3475 if (irsp->ulpBdeCount > 2) { 3476 dmzbuf = lpfc_sli_get_buff(phba, pring, 3477 irsp->unsli3.sli3Words[7]); 3478 lpfc_in_buf_free(phba, dmzbuf); 3479 } 3480 3481 return 1; 3482 } 3483 3484 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3485 if (irsp->ulpBdeCount != 0) { 3486 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3487 irsp->un.ulpWord[3]); 3488 if (!saveq->cmd_dmabuf) 3489 lpfc_printf_log(phba, 3490 KERN_ERR, 3491 LOG_SLI, 3492 "0341 Ring %d Cannot find buffer for " 3493 "an unsolicited iocb. tag 0x%x\n", 3494 pring->ringno, 3495 irsp->un.ulpWord[3]); 3496 } 3497 if (irsp->ulpBdeCount == 2) { 3498 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3499 irsp->unsli3.sli3Words[7]); 3500 if (!saveq->bpl_dmabuf) 3501 lpfc_printf_log(phba, 3502 KERN_ERR, 3503 LOG_SLI, 3504 "0342 Ring %d Cannot find buffer for an" 3505 " unsolicited iocb. tag 0x%x\n", 3506 pring->ringno, 3507 irsp->unsli3.sli3Words[7]); 3508 } 3509 list_for_each_entry(iocbq, &saveq->list, list) { 3510 irsp = &iocbq->iocb; 3511 if (irsp->ulpBdeCount != 0) { 3512 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3513 pring, 3514 irsp->un.ulpWord[3]); 3515 if (!iocbq->cmd_dmabuf) 3516 lpfc_printf_log(phba, 3517 KERN_ERR, 3518 LOG_SLI, 3519 "0343 Ring %d Cannot find " 3520 "buffer for an unsolicited iocb" 3521 ". tag 0x%x\n", pring->ringno, 3522 irsp->un.ulpWord[3]); 3523 } 3524 if (irsp->ulpBdeCount == 2) { 3525 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3526 pring, 3527 irsp->unsli3.sli3Words[7]); 3528 if (!iocbq->bpl_dmabuf) 3529 lpfc_printf_log(phba, 3530 KERN_ERR, 3531 LOG_SLI, 3532 "0344 Ring %d Cannot find " 3533 "buffer for an unsolicited " 3534 "iocb. tag 0x%x\n", 3535 pring->ringno, 3536 irsp->unsli3.sli3Words[7]); 3537 } 3538 } 3539 } else { 3540 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3541 irsp->un.cont64[0].addrLow); 3542 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3543 paddr); 3544 if (irsp->ulpBdeCount == 2) { 3545 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3546 irsp->un.cont64[1].addrLow); 3547 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3548 pring, 3549 paddr); 3550 } 3551 } 3552 3553 if (irsp->ulpBdeCount != 0 && 3554 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3555 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3556 int found = 0; 3557 3558 /* search continue save q for same XRI */ 3559 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3560 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3561 saveq->iocb.unsli3.rcvsli3.ox_id) { 3562 list_add_tail(&saveq->list, &iocbq->list); 3563 found = 1; 3564 break; 3565 } 3566 } 3567 if (!found) 3568 list_add_tail(&saveq->clist, 3569 &pring->iocb_continue_saveq); 3570 3571 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3572 list_del_init(&iocbq->clist); 3573 saveq = iocbq; 3574 irsp = &saveq->iocb; 3575 } else { 3576 return 0; 3577 } 3578 } 3579 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3580 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3581 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3582 Rctl = FC_RCTL_ELS_REQ; 3583 Type = FC_TYPE_ELS; 3584 } else { 3585 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3586 Rctl = w5p->hcsw.Rctl; 3587 Type = w5p->hcsw.Type; 3588 3589 /* Firmware Workaround */ 3590 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3591 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3592 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3593 Rctl = FC_RCTL_ELS_REQ; 3594 Type = FC_TYPE_ELS; 3595 w5p->hcsw.Rctl = Rctl; 3596 w5p->hcsw.Type = Type; 3597 } 3598 } 3599 3600 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3601 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3602 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3603 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3604 saveq->vport = phba->pport; 3605 else 3606 saveq->vport = lpfc_find_vport_by_vpid(phba, 3607 irsp->unsli3.rcvsli3.vpi); 3608 } 3609 3610 /* Prepare WQE with Unsol frame */ 3611 lpfc_sli_prep_unsol_wqe(phba, saveq); 3612 3613 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3614 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3615 "0313 Ring %d handler: unexpected Rctl x%x " 3616 "Type x%x received\n", 3617 pring->ringno, Rctl, Type); 3618 3619 return 1; 3620 } 3621 3622 /** 3623 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3624 * @phba: Pointer to HBA context object. 3625 * @pring: Pointer to driver SLI ring object. 3626 * @prspiocb: Pointer to response iocb object. 3627 * 3628 * This function looks up the iocb_lookup table to get the command iocb 3629 * corresponding to the given response iocb using the iotag of the 3630 * response iocb. The driver calls this function with the hbalock held 3631 * for SLI3 ports or the ring lock held for SLI4 ports. 3632 * This function returns the command iocb object if it finds the command 3633 * iocb else returns NULL. 3634 **/ 3635 static struct lpfc_iocbq * 3636 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3637 struct lpfc_sli_ring *pring, 3638 struct lpfc_iocbq *prspiocb) 3639 { 3640 struct lpfc_iocbq *cmd_iocb = NULL; 3641 u16 iotag; 3642 3643 if (phba->sli_rev == LPFC_SLI_REV4) 3644 iotag = get_wqe_reqtag(prspiocb); 3645 else 3646 iotag = prspiocb->iocb.ulpIoTag; 3647 3648 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3649 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3650 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3651 /* remove from txcmpl queue list */ 3652 list_del_init(&cmd_iocb->list); 3653 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3654 pring->txcmplq_cnt--; 3655 return cmd_iocb; 3656 } 3657 } 3658 3659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3660 "0317 iotag x%x is out of " 3661 "range: max iotag x%x\n", 3662 iotag, phba->sli.last_iotag); 3663 return NULL; 3664 } 3665 3666 /** 3667 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3668 * @phba: Pointer to HBA context object. 3669 * @pring: Pointer to driver SLI ring object. 3670 * @iotag: IOCB tag. 3671 * 3672 * This function looks up the iocb_lookup table to get the command iocb 3673 * corresponding to the given iotag. The driver calls this function with 3674 * the ring lock held because this function is an SLI4 port only helper. 3675 * This function returns the command iocb object if it finds the command 3676 * iocb else returns NULL. 3677 **/ 3678 static struct lpfc_iocbq * 3679 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3680 struct lpfc_sli_ring *pring, uint16_t iotag) 3681 { 3682 struct lpfc_iocbq *cmd_iocb = NULL; 3683 3684 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3685 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3686 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3687 /* remove from txcmpl queue list */ 3688 list_del_init(&cmd_iocb->list); 3689 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3690 pring->txcmplq_cnt--; 3691 return cmd_iocb; 3692 } 3693 } 3694 3695 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3696 "0372 iotag x%x lookup error: max iotag (x%x) " 3697 "cmd_flag x%x\n", 3698 iotag, phba->sli.last_iotag, 3699 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3700 return NULL; 3701 } 3702 3703 /** 3704 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3705 * @phba: Pointer to HBA context object. 3706 * @pring: Pointer to driver SLI ring object. 3707 * @saveq: Pointer to the response iocb to be processed. 3708 * 3709 * This function is called by the ring event handler for non-fcp 3710 * rings when there is a new response iocb in the response ring. 3711 * The caller is not required to hold any locks. This function 3712 * gets the command iocb associated with the response iocb and 3713 * calls the completion handler for the command iocb. If there 3714 * is no completion handler, the function will free the resources 3715 * associated with command iocb. If the response iocb is for 3716 * an already aborted command iocb, the status of the completion 3717 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3718 * This function always returns 1. 3719 **/ 3720 static int 3721 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3722 struct lpfc_iocbq *saveq) 3723 { 3724 struct lpfc_iocbq *cmdiocbp; 3725 unsigned long iflag; 3726 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3727 3728 if (phba->sli_rev == LPFC_SLI_REV4) 3729 spin_lock_irqsave(&pring->ring_lock, iflag); 3730 else 3731 spin_lock_irqsave(&phba->hbalock, iflag); 3732 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3733 if (phba->sli_rev == LPFC_SLI_REV4) 3734 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3735 else 3736 spin_unlock_irqrestore(&phba->hbalock, iflag); 3737 3738 ulp_command = get_job_cmnd(phba, saveq); 3739 ulp_status = get_job_ulpstatus(phba, saveq); 3740 ulp_word4 = get_job_word4(phba, saveq); 3741 ulp_context = get_job_ulpcontext(phba, saveq); 3742 if (phba->sli_rev == LPFC_SLI_REV4) 3743 iotag = get_wqe_reqtag(saveq); 3744 else 3745 iotag = saveq->iocb.ulpIoTag; 3746 3747 if (cmdiocbp) { 3748 ulp_command = get_job_cmnd(phba, cmdiocbp); 3749 if (cmdiocbp->cmd_cmpl) { 3750 /* 3751 * If an ELS command failed send an event to mgmt 3752 * application. 3753 */ 3754 if (ulp_status && 3755 (pring->ringno == LPFC_ELS_RING) && 3756 (ulp_command == CMD_ELS_REQUEST64_CR)) 3757 lpfc_send_els_failure_event(phba, 3758 cmdiocbp, saveq); 3759 3760 /* 3761 * Post all ELS completions to the worker thread. 3762 * All other are passed to the completion callback. 3763 */ 3764 if (pring->ringno == LPFC_ELS_RING) { 3765 if ((phba->sli_rev < LPFC_SLI_REV4) && 3766 (cmdiocbp->cmd_flag & 3767 LPFC_DRIVER_ABORTED)) { 3768 spin_lock_irqsave(&phba->hbalock, 3769 iflag); 3770 cmdiocbp->cmd_flag &= 3771 ~LPFC_DRIVER_ABORTED; 3772 spin_unlock_irqrestore(&phba->hbalock, 3773 iflag); 3774 saveq->iocb.ulpStatus = 3775 IOSTAT_LOCAL_REJECT; 3776 saveq->iocb.un.ulpWord[4] = 3777 IOERR_SLI_ABORTED; 3778 3779 /* Firmware could still be in progress 3780 * of DMAing payload, so don't free data 3781 * buffer till after a hbeat. 3782 */ 3783 spin_lock_irqsave(&phba->hbalock, 3784 iflag); 3785 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3786 spin_unlock_irqrestore(&phba->hbalock, 3787 iflag); 3788 } 3789 if (phba->sli_rev == LPFC_SLI_REV4) { 3790 if (saveq->cmd_flag & 3791 LPFC_EXCHANGE_BUSY) { 3792 /* Set cmdiocb flag for the 3793 * exchange busy so sgl (xri) 3794 * will not be released until 3795 * the abort xri is received 3796 * from hba. 3797 */ 3798 spin_lock_irqsave( 3799 &phba->hbalock, iflag); 3800 cmdiocbp->cmd_flag |= 3801 LPFC_EXCHANGE_BUSY; 3802 spin_unlock_irqrestore( 3803 &phba->hbalock, iflag); 3804 } 3805 if (cmdiocbp->cmd_flag & 3806 LPFC_DRIVER_ABORTED) { 3807 /* 3808 * Clear LPFC_DRIVER_ABORTED 3809 * bit in case it was driver 3810 * initiated abort. 3811 */ 3812 spin_lock_irqsave( 3813 &phba->hbalock, iflag); 3814 cmdiocbp->cmd_flag &= 3815 ~LPFC_DRIVER_ABORTED; 3816 spin_unlock_irqrestore( 3817 &phba->hbalock, iflag); 3818 set_job_ulpstatus(cmdiocbp, 3819 IOSTAT_LOCAL_REJECT); 3820 set_job_ulpword4(cmdiocbp, 3821 IOERR_ABORT_REQUESTED); 3822 /* 3823 * For SLI4, irspiocb contains 3824 * NO_XRI in sli_xritag, it 3825 * shall not affect releasing 3826 * sgl (xri) process. 3827 */ 3828 set_job_ulpstatus(saveq, 3829 IOSTAT_LOCAL_REJECT); 3830 set_job_ulpword4(saveq, 3831 IOERR_SLI_ABORTED); 3832 spin_lock_irqsave( 3833 &phba->hbalock, iflag); 3834 saveq->cmd_flag |= 3835 LPFC_DELAY_MEM_FREE; 3836 spin_unlock_irqrestore( 3837 &phba->hbalock, iflag); 3838 } 3839 } 3840 } 3841 cmdiocbp->cmd_cmpl(phba, cmdiocbp, saveq); 3842 } else 3843 lpfc_sli_release_iocbq(phba, cmdiocbp); 3844 } else { 3845 /* 3846 * Unknown initiating command based on the response iotag. 3847 * This could be the case on the ELS ring because of 3848 * lpfc_els_abort(). 3849 */ 3850 if (pring->ringno != LPFC_ELS_RING) { 3851 /* 3852 * Ring <ringno> handler: unexpected completion IoTag 3853 * <IoTag> 3854 */ 3855 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3856 "0322 Ring %d handler: " 3857 "unexpected completion IoTag x%x " 3858 "Data: x%x x%x x%x x%x\n", 3859 pring->ringno, iotag, ulp_status, 3860 ulp_word4, ulp_command, ulp_context); 3861 } 3862 } 3863 3864 return 1; 3865 } 3866 3867 /** 3868 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3869 * @phba: Pointer to HBA context object. 3870 * @pring: Pointer to driver SLI ring object. 3871 * 3872 * This function is called from the iocb ring event handlers when 3873 * put pointer is ahead of the get pointer for a ring. This function signal 3874 * an error attention condition to the worker thread and the worker 3875 * thread will transition the HBA to offline state. 3876 **/ 3877 static void 3878 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3879 { 3880 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3881 /* 3882 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3883 * rsp ring <portRspMax> 3884 */ 3885 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3886 "0312 Ring %d handler: portRspPut %d " 3887 "is bigger than rsp ring %d\n", 3888 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3889 pring->sli.sli3.numRiocb); 3890 3891 phba->link_state = LPFC_HBA_ERROR; 3892 3893 /* 3894 * All error attention handlers are posted to 3895 * worker thread 3896 */ 3897 phba->work_ha |= HA_ERATT; 3898 phba->work_hs = HS_FFER3; 3899 3900 lpfc_worker_wake_up(phba); 3901 3902 return; 3903 } 3904 3905 /** 3906 * lpfc_poll_eratt - Error attention polling timer timeout handler 3907 * @t: Context to fetch pointer to address of HBA context object from. 3908 * 3909 * This function is invoked by the Error Attention polling timer when the 3910 * timer times out. It will check the SLI Error Attention register for 3911 * possible attention events. If so, it will post an Error Attention event 3912 * and wake up worker thread to process it. Otherwise, it will set up the 3913 * Error Attention polling timer for the next poll. 3914 **/ 3915 void lpfc_poll_eratt(struct timer_list *t) 3916 { 3917 struct lpfc_hba *phba; 3918 uint32_t eratt = 0; 3919 uint64_t sli_intr, cnt; 3920 3921 phba = from_timer(phba, t, eratt_poll); 3922 3923 /* Here we will also keep track of interrupts per sec of the hba */ 3924 sli_intr = phba->sli.slistat.sli_intr; 3925 3926 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3927 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3928 sli_intr); 3929 else 3930 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3931 3932 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3933 do_div(cnt, phba->eratt_poll_interval); 3934 phba->sli.slistat.sli_ips = cnt; 3935 3936 phba->sli.slistat.sli_prev_intr = sli_intr; 3937 3938 /* Check chip HA register for error event */ 3939 eratt = lpfc_sli_check_eratt(phba); 3940 3941 if (eratt) 3942 /* Tell the worker thread there is work to do */ 3943 lpfc_worker_wake_up(phba); 3944 else 3945 /* Restart the timer for next eratt poll */ 3946 mod_timer(&phba->eratt_poll, 3947 jiffies + 3948 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3949 return; 3950 } 3951 3952 3953 /** 3954 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3955 * @phba: Pointer to HBA context object. 3956 * @pring: Pointer to driver SLI ring object. 3957 * @mask: Host attention register mask for this ring. 3958 * 3959 * This function is called from the interrupt context when there is a ring 3960 * event for the fcp ring. The caller does not hold any lock. 3961 * The function processes each response iocb in the response ring until it 3962 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3963 * LE bit set. The function will call the completion handler of the command iocb 3964 * if the response iocb indicates a completion for a command iocb or it is 3965 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3966 * function if this is an unsolicited iocb. 3967 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3968 * to check it explicitly. 3969 */ 3970 int 3971 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3972 struct lpfc_sli_ring *pring, uint32_t mask) 3973 { 3974 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3975 IOCB_t *irsp = NULL; 3976 IOCB_t *entry = NULL; 3977 struct lpfc_iocbq *cmdiocbq = NULL; 3978 struct lpfc_iocbq rspiocbq; 3979 uint32_t status; 3980 uint32_t portRspPut, portRspMax; 3981 int rc = 1; 3982 lpfc_iocb_type type; 3983 unsigned long iflag; 3984 uint32_t rsp_cmpl = 0; 3985 3986 spin_lock_irqsave(&phba->hbalock, iflag); 3987 pring->stats.iocb_event++; 3988 3989 /* 3990 * The next available response entry should never exceed the maximum 3991 * entries. If it does, treat it as an adapter hardware error. 3992 */ 3993 portRspMax = pring->sli.sli3.numRiocb; 3994 portRspPut = le32_to_cpu(pgp->rspPutInx); 3995 if (unlikely(portRspPut >= portRspMax)) { 3996 lpfc_sli_rsp_pointers_error(phba, pring); 3997 spin_unlock_irqrestore(&phba->hbalock, iflag); 3998 return 1; 3999 } 4000 if (phba->fcp_ring_in_use) { 4001 spin_unlock_irqrestore(&phba->hbalock, iflag); 4002 return 1; 4003 } else 4004 phba->fcp_ring_in_use = 1; 4005 4006 rmb(); 4007 while (pring->sli.sli3.rspidx != portRspPut) { 4008 /* 4009 * Fetch an entry off the ring and copy it into a local data 4010 * structure. The copy involves a byte-swap since the 4011 * network byte order and pci byte orders are different. 4012 */ 4013 entry = lpfc_resp_iocb(phba, pring); 4014 phba->last_completion_time = jiffies; 4015 4016 if (++pring->sli.sli3.rspidx >= portRspMax) 4017 pring->sli.sli3.rspidx = 0; 4018 4019 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4020 (uint32_t *) &rspiocbq.iocb, 4021 phba->iocb_rsp_size); 4022 INIT_LIST_HEAD(&(rspiocbq.list)); 4023 irsp = &rspiocbq.iocb; 4024 4025 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4026 pring->stats.iocb_rsp++; 4027 rsp_cmpl++; 4028 4029 if (unlikely(irsp->ulpStatus)) { 4030 /* 4031 * If resource errors reported from HBA, reduce 4032 * queuedepths of the SCSI device. 4033 */ 4034 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4035 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4036 IOERR_NO_RESOURCES)) { 4037 spin_unlock_irqrestore(&phba->hbalock, iflag); 4038 phba->lpfc_rampdown_queue_depth(phba); 4039 spin_lock_irqsave(&phba->hbalock, iflag); 4040 } 4041 4042 /* Rsp ring <ringno> error: IOCB */ 4043 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4044 "0336 Rsp Ring %d error: IOCB Data: " 4045 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4046 pring->ringno, 4047 irsp->un.ulpWord[0], 4048 irsp->un.ulpWord[1], 4049 irsp->un.ulpWord[2], 4050 irsp->un.ulpWord[3], 4051 irsp->un.ulpWord[4], 4052 irsp->un.ulpWord[5], 4053 *(uint32_t *)&irsp->un1, 4054 *((uint32_t *)&irsp->un1 + 1)); 4055 } 4056 4057 switch (type) { 4058 case LPFC_ABORT_IOCB: 4059 case LPFC_SOL_IOCB: 4060 /* 4061 * Idle exchange closed via ABTS from port. No iocb 4062 * resources need to be recovered. 4063 */ 4064 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4066 "0333 IOCB cmd 0x%x" 4067 " processed. Skipping" 4068 " completion\n", 4069 irsp->ulpCommand); 4070 break; 4071 } 4072 4073 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4074 &rspiocbq); 4075 if (unlikely(!cmdiocbq)) 4076 break; 4077 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4078 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4079 if (cmdiocbq->cmd_cmpl) { 4080 spin_unlock_irqrestore(&phba->hbalock, iflag); 4081 cmdiocbq->cmd_cmpl(phba, cmdiocbq, &rspiocbq); 4082 spin_lock_irqsave(&phba->hbalock, iflag); 4083 } 4084 break; 4085 case LPFC_UNSOL_IOCB: 4086 spin_unlock_irqrestore(&phba->hbalock, iflag); 4087 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4088 spin_lock_irqsave(&phba->hbalock, iflag); 4089 break; 4090 default: 4091 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4092 char adaptermsg[LPFC_MAX_ADPTMSG]; 4093 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4094 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4095 MAX_MSG_DATA); 4096 dev_warn(&((phba->pcidev)->dev), 4097 "lpfc%d: %s\n", 4098 phba->brd_no, adaptermsg); 4099 } else { 4100 /* Unknown IOCB command */ 4101 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4102 "0334 Unknown IOCB command " 4103 "Data: x%x, x%x x%x x%x x%x\n", 4104 type, irsp->ulpCommand, 4105 irsp->ulpStatus, 4106 irsp->ulpIoTag, 4107 irsp->ulpContext); 4108 } 4109 break; 4110 } 4111 4112 /* 4113 * The response IOCB has been processed. Update the ring 4114 * pointer in SLIM. If the port response put pointer has not 4115 * been updated, sync the pgp->rspPutInx and fetch the new port 4116 * response put pointer. 4117 */ 4118 writel(pring->sli.sli3.rspidx, 4119 &phba->host_gp[pring->ringno].rspGetInx); 4120 4121 if (pring->sli.sli3.rspidx == portRspPut) 4122 portRspPut = le32_to_cpu(pgp->rspPutInx); 4123 } 4124 4125 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4126 pring->stats.iocb_rsp_full++; 4127 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4128 writel(status, phba->CAregaddr); 4129 readl(phba->CAregaddr); 4130 } 4131 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4132 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4133 pring->stats.iocb_cmd_empty++; 4134 4135 /* Force update of the local copy of cmdGetInx */ 4136 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4137 lpfc_sli_resume_iocb(phba, pring); 4138 4139 if ((pring->lpfc_sli_cmd_available)) 4140 (pring->lpfc_sli_cmd_available) (phba, pring); 4141 4142 } 4143 4144 phba->fcp_ring_in_use = 0; 4145 spin_unlock_irqrestore(&phba->hbalock, iflag); 4146 return rc; 4147 } 4148 4149 /** 4150 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4151 * @phba: Pointer to HBA context object. 4152 * @pring: Pointer to driver SLI ring object. 4153 * @rspiocbp: Pointer to driver response IOCB object. 4154 * 4155 * This function is called from the worker thread when there is a slow-path 4156 * response IOCB to process. This function chains all the response iocbs until 4157 * seeing the iocb with the LE bit set. The function will call 4158 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4159 * completion of a command iocb. The function will call the 4160 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4161 * The function frees the resources or calls the completion handler if this 4162 * iocb is an abort completion. The function returns NULL when the response 4163 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4164 * this function shall chain the iocb on to the iocb_continueq and return the 4165 * response iocb passed in. 4166 **/ 4167 static struct lpfc_iocbq * 4168 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4169 struct lpfc_iocbq *rspiocbp) 4170 { 4171 struct lpfc_iocbq *saveq; 4172 struct lpfc_iocbq *cmdiocb; 4173 struct lpfc_iocbq *next_iocb; 4174 IOCB_t *irsp; 4175 uint32_t free_saveq; 4176 u8 cmd_type; 4177 lpfc_iocb_type type; 4178 unsigned long iflag; 4179 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4180 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4181 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4182 int rc; 4183 4184 spin_lock_irqsave(&phba->hbalock, iflag); 4185 /* First add the response iocb to the countinueq list */ 4186 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4187 pring->iocb_continueq_cnt++; 4188 4189 /* 4190 * By default, the driver expects to free all resources 4191 * associated with this iocb completion. 4192 */ 4193 free_saveq = 1; 4194 saveq = list_get_first(&pring->iocb_continueq, 4195 struct lpfc_iocbq, list); 4196 list_del_init(&pring->iocb_continueq); 4197 pring->iocb_continueq_cnt = 0; 4198 4199 pring->stats.iocb_rsp++; 4200 4201 /* 4202 * If resource errors reported from HBA, reduce 4203 * queuedepths of the SCSI device. 4204 */ 4205 if (ulp_status == IOSTAT_LOCAL_REJECT && 4206 ((ulp_word4 & IOERR_PARAM_MASK) == 4207 IOERR_NO_RESOURCES)) { 4208 spin_unlock_irqrestore(&phba->hbalock, iflag); 4209 phba->lpfc_rampdown_queue_depth(phba); 4210 spin_lock_irqsave(&phba->hbalock, iflag); 4211 } 4212 4213 if (ulp_status) { 4214 /* Rsp ring <ringno> error: IOCB */ 4215 if (phba->sli_rev < LPFC_SLI_REV4) { 4216 irsp = &rspiocbp->iocb; 4217 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4218 "0328 Rsp Ring %d error: ulp_status x%x " 4219 "IOCB Data: " 4220 "x%08x x%08x x%08x x%08x " 4221 "x%08x x%08x x%08x x%08x " 4222 "x%08x x%08x x%08x x%08x " 4223 "x%08x x%08x x%08x x%08x\n", 4224 pring->ringno, ulp_status, 4225 get_job_ulpword(rspiocbp, 0), 4226 get_job_ulpword(rspiocbp, 1), 4227 get_job_ulpword(rspiocbp, 2), 4228 get_job_ulpword(rspiocbp, 3), 4229 get_job_ulpword(rspiocbp, 4), 4230 get_job_ulpword(rspiocbp, 5), 4231 *(((uint32_t *)irsp) + 6), 4232 *(((uint32_t *)irsp) + 7), 4233 *(((uint32_t *)irsp) + 8), 4234 *(((uint32_t *)irsp) + 9), 4235 *(((uint32_t *)irsp) + 10), 4236 *(((uint32_t *)irsp) + 11), 4237 *(((uint32_t *)irsp) + 12), 4238 *(((uint32_t *)irsp) + 13), 4239 *(((uint32_t *)irsp) + 14), 4240 *(((uint32_t *)irsp) + 15)); 4241 } else { 4242 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4243 "0321 Rsp Ring %d error: " 4244 "IOCB Data: " 4245 "x%x x%x x%x x%x\n", 4246 pring->ringno, 4247 rspiocbp->wcqe_cmpl.word0, 4248 rspiocbp->wcqe_cmpl.total_data_placed, 4249 rspiocbp->wcqe_cmpl.parameter, 4250 rspiocbp->wcqe_cmpl.word3); 4251 } 4252 } 4253 4254 4255 /* 4256 * Fetch the iocb command type and call the correct completion 4257 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4258 * get freed back to the lpfc_iocb_list by the discovery 4259 * kernel thread. 4260 */ 4261 cmd_type = ulp_command & CMD_IOCB_MASK; 4262 type = lpfc_sli_iocb_cmd_type(cmd_type); 4263 switch (type) { 4264 case LPFC_SOL_IOCB: 4265 spin_unlock_irqrestore(&phba->hbalock, iflag); 4266 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4267 spin_lock_irqsave(&phba->hbalock, iflag); 4268 break; 4269 case LPFC_UNSOL_IOCB: 4270 spin_unlock_irqrestore(&phba->hbalock, iflag); 4271 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4272 spin_lock_irqsave(&phba->hbalock, iflag); 4273 if (!rc) 4274 free_saveq = 0; 4275 break; 4276 case LPFC_ABORT_IOCB: 4277 cmdiocb = NULL; 4278 if (ulp_command != CMD_XRI_ABORTED_CX) 4279 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4280 saveq); 4281 if (cmdiocb) { 4282 /* Call the specified completion routine */ 4283 if (cmdiocb->cmd_cmpl) { 4284 spin_unlock_irqrestore(&phba->hbalock, iflag); 4285 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4286 spin_lock_irqsave(&phba->hbalock, iflag); 4287 } else { 4288 __lpfc_sli_release_iocbq(phba, cmdiocb); 4289 } 4290 } 4291 break; 4292 case LPFC_UNKNOWN_IOCB: 4293 if (ulp_command == CMD_ADAPTER_MSG) { 4294 char adaptermsg[LPFC_MAX_ADPTMSG]; 4295 4296 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4297 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4298 MAX_MSG_DATA); 4299 dev_warn(&((phba->pcidev)->dev), 4300 "lpfc%d: %s\n", 4301 phba->brd_no, adaptermsg); 4302 } else { 4303 /* Unknown command */ 4304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4305 "0335 Unknown IOCB " 4306 "command Data: x%x " 4307 "x%x x%x x%x\n", 4308 ulp_command, 4309 ulp_status, 4310 get_wqe_reqtag(rspiocbp), 4311 get_job_ulpcontext(phba, rspiocbp)); 4312 } 4313 break; 4314 } 4315 4316 if (free_saveq) { 4317 list_for_each_entry_safe(rspiocbp, next_iocb, 4318 &saveq->list, list) { 4319 list_del_init(&rspiocbp->list); 4320 __lpfc_sli_release_iocbq(phba, rspiocbp); 4321 } 4322 __lpfc_sli_release_iocbq(phba, saveq); 4323 } 4324 rspiocbp = NULL; 4325 spin_unlock_irqrestore(&phba->hbalock, iflag); 4326 return rspiocbp; 4327 } 4328 4329 /** 4330 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4331 * @phba: Pointer to HBA context object. 4332 * @pring: Pointer to driver SLI ring object. 4333 * @mask: Host attention register mask for this ring. 4334 * 4335 * This routine wraps the actual slow_ring event process routine from the 4336 * API jump table function pointer from the lpfc_hba struct. 4337 **/ 4338 void 4339 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4340 struct lpfc_sli_ring *pring, uint32_t mask) 4341 { 4342 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4343 } 4344 4345 /** 4346 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4347 * @phba: Pointer to HBA context object. 4348 * @pring: Pointer to driver SLI ring object. 4349 * @mask: Host attention register mask for this ring. 4350 * 4351 * This function is called from the worker thread when there is a ring event 4352 * for non-fcp rings. The caller does not hold any lock. The function will 4353 * remove each response iocb in the response ring and calls the handle 4354 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4355 **/ 4356 static void 4357 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4358 struct lpfc_sli_ring *pring, uint32_t mask) 4359 { 4360 struct lpfc_pgp *pgp; 4361 IOCB_t *entry; 4362 IOCB_t *irsp = NULL; 4363 struct lpfc_iocbq *rspiocbp = NULL; 4364 uint32_t portRspPut, portRspMax; 4365 unsigned long iflag; 4366 uint32_t status; 4367 4368 pgp = &phba->port_gp[pring->ringno]; 4369 spin_lock_irqsave(&phba->hbalock, iflag); 4370 pring->stats.iocb_event++; 4371 4372 /* 4373 * The next available response entry should never exceed the maximum 4374 * entries. If it does, treat it as an adapter hardware error. 4375 */ 4376 portRspMax = pring->sli.sli3.numRiocb; 4377 portRspPut = le32_to_cpu(pgp->rspPutInx); 4378 if (portRspPut >= portRspMax) { 4379 /* 4380 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4381 * rsp ring <portRspMax> 4382 */ 4383 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4384 "0303 Ring %d handler: portRspPut %d " 4385 "is bigger than rsp ring %d\n", 4386 pring->ringno, portRspPut, portRspMax); 4387 4388 phba->link_state = LPFC_HBA_ERROR; 4389 spin_unlock_irqrestore(&phba->hbalock, iflag); 4390 4391 phba->work_hs = HS_FFER3; 4392 lpfc_handle_eratt(phba); 4393 4394 return; 4395 } 4396 4397 rmb(); 4398 while (pring->sli.sli3.rspidx != portRspPut) { 4399 /* 4400 * Build a completion list and call the appropriate handler. 4401 * The process is to get the next available response iocb, get 4402 * a free iocb from the list, copy the response data into the 4403 * free iocb, insert to the continuation list, and update the 4404 * next response index to slim. This process makes response 4405 * iocb's in the ring available to DMA as fast as possible but 4406 * pays a penalty for a copy operation. Since the iocb is 4407 * only 32 bytes, this penalty is considered small relative to 4408 * the PCI reads for register values and a slim write. When 4409 * the ulpLe field is set, the entire Command has been 4410 * received. 4411 */ 4412 entry = lpfc_resp_iocb(phba, pring); 4413 4414 phba->last_completion_time = jiffies; 4415 rspiocbp = __lpfc_sli_get_iocbq(phba); 4416 if (rspiocbp == NULL) { 4417 printk(KERN_ERR "%s: out of buffers! Failing " 4418 "completion.\n", __func__); 4419 break; 4420 } 4421 4422 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4423 phba->iocb_rsp_size); 4424 irsp = &rspiocbp->iocb; 4425 4426 if (++pring->sli.sli3.rspidx >= portRspMax) 4427 pring->sli.sli3.rspidx = 0; 4428 4429 if (pring->ringno == LPFC_ELS_RING) { 4430 lpfc_debugfs_slow_ring_trc(phba, 4431 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4432 *(((uint32_t *) irsp) + 4), 4433 *(((uint32_t *) irsp) + 6), 4434 *(((uint32_t *) irsp) + 7)); 4435 } 4436 4437 writel(pring->sli.sli3.rspidx, 4438 &phba->host_gp[pring->ringno].rspGetInx); 4439 4440 spin_unlock_irqrestore(&phba->hbalock, iflag); 4441 /* Handle the response IOCB */ 4442 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4443 spin_lock_irqsave(&phba->hbalock, iflag); 4444 4445 /* 4446 * If the port response put pointer has not been updated, sync 4447 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4448 * response put pointer. 4449 */ 4450 if (pring->sli.sli3.rspidx == portRspPut) { 4451 portRspPut = le32_to_cpu(pgp->rspPutInx); 4452 } 4453 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4454 4455 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4456 /* At least one response entry has been freed */ 4457 pring->stats.iocb_rsp_full++; 4458 /* SET RxRE_RSP in Chip Att register */ 4459 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4460 writel(status, phba->CAregaddr); 4461 readl(phba->CAregaddr); /* flush */ 4462 } 4463 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4464 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4465 pring->stats.iocb_cmd_empty++; 4466 4467 /* Force update of the local copy of cmdGetInx */ 4468 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4469 lpfc_sli_resume_iocb(phba, pring); 4470 4471 if ((pring->lpfc_sli_cmd_available)) 4472 (pring->lpfc_sli_cmd_available) (phba, pring); 4473 4474 } 4475 4476 spin_unlock_irqrestore(&phba->hbalock, iflag); 4477 return; 4478 } 4479 4480 /** 4481 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4482 * @phba: Pointer to HBA context object. 4483 * @pring: Pointer to driver SLI ring object. 4484 * @mask: Host attention register mask for this ring. 4485 * 4486 * This function is called from the worker thread when there is a pending 4487 * ELS response iocb on the driver internal slow-path response iocb worker 4488 * queue. The caller does not hold any lock. The function will remove each 4489 * response iocb from the response worker queue and calls the handle 4490 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4491 **/ 4492 static void 4493 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4494 struct lpfc_sli_ring *pring, uint32_t mask) 4495 { 4496 struct lpfc_iocbq *irspiocbq; 4497 struct hbq_dmabuf *dmabuf; 4498 struct lpfc_cq_event *cq_event; 4499 unsigned long iflag; 4500 int count = 0; 4501 4502 spin_lock_irqsave(&phba->hbalock, iflag); 4503 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4504 spin_unlock_irqrestore(&phba->hbalock, iflag); 4505 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4506 /* Get the response iocb from the head of work queue */ 4507 spin_lock_irqsave(&phba->hbalock, iflag); 4508 list_remove_head(&phba->sli4_hba.sp_queue_event, 4509 cq_event, struct lpfc_cq_event, list); 4510 spin_unlock_irqrestore(&phba->hbalock, iflag); 4511 4512 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4513 case CQE_CODE_COMPL_WQE: 4514 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4515 cq_event); 4516 /* Translate ELS WCQE to response IOCBQ */ 4517 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4518 irspiocbq); 4519 if (irspiocbq) 4520 lpfc_sli_sp_handle_rspiocb(phba, pring, 4521 irspiocbq); 4522 count++; 4523 break; 4524 case CQE_CODE_RECEIVE: 4525 case CQE_CODE_RECEIVE_V1: 4526 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4527 cq_event); 4528 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4529 count++; 4530 break; 4531 default: 4532 break; 4533 } 4534 4535 /* Limit the number of events to 64 to avoid soft lockups */ 4536 if (count == 64) 4537 break; 4538 } 4539 } 4540 4541 /** 4542 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4543 * @phba: Pointer to HBA context object. 4544 * @pring: Pointer to driver SLI ring object. 4545 * 4546 * This function aborts all iocbs in the given ring and frees all the iocb 4547 * objects in txq. This function issues an abort iocb for all the iocb commands 4548 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4549 * the return of this function. The caller is not required to hold any locks. 4550 **/ 4551 void 4552 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4553 { 4554 LIST_HEAD(tx_completions); 4555 LIST_HEAD(txcmplq_completions); 4556 struct lpfc_iocbq *iocb, *next_iocb; 4557 int offline; 4558 4559 if (pring->ringno == LPFC_ELS_RING) { 4560 lpfc_fabric_abort_hba(phba); 4561 } 4562 offline = pci_channel_offline(phba->pcidev); 4563 4564 /* Error everything on txq and txcmplq 4565 * First do the txq. 4566 */ 4567 if (phba->sli_rev >= LPFC_SLI_REV4) { 4568 spin_lock_irq(&pring->ring_lock); 4569 list_splice_init(&pring->txq, &tx_completions); 4570 pring->txq_cnt = 0; 4571 4572 if (offline) { 4573 list_splice_init(&pring->txcmplq, 4574 &txcmplq_completions); 4575 } else { 4576 /* Next issue ABTS for everything on the txcmplq */ 4577 list_for_each_entry_safe(iocb, next_iocb, 4578 &pring->txcmplq, list) 4579 lpfc_sli_issue_abort_iotag(phba, pring, 4580 iocb, NULL); 4581 } 4582 spin_unlock_irq(&pring->ring_lock); 4583 } else { 4584 spin_lock_irq(&phba->hbalock); 4585 list_splice_init(&pring->txq, &tx_completions); 4586 pring->txq_cnt = 0; 4587 4588 if (offline) { 4589 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4590 } else { 4591 /* Next issue ABTS for everything on the txcmplq */ 4592 list_for_each_entry_safe(iocb, next_iocb, 4593 &pring->txcmplq, list) 4594 lpfc_sli_issue_abort_iotag(phba, pring, 4595 iocb, NULL); 4596 } 4597 spin_unlock_irq(&phba->hbalock); 4598 } 4599 4600 if (offline) { 4601 /* Cancel all the IOCBs from the completions list */ 4602 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4603 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4604 } else { 4605 /* Make sure HBA is alive */ 4606 lpfc_issue_hb_tmo(phba); 4607 } 4608 /* Cancel all the IOCBs from the completions list */ 4609 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4610 IOERR_SLI_ABORTED); 4611 } 4612 4613 /** 4614 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4615 * @phba: Pointer to HBA context object. 4616 * 4617 * This function aborts all iocbs in FCP rings and frees all the iocb 4618 * objects in txq. This function issues an abort iocb for all the iocb commands 4619 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4620 * the return of this function. The caller is not required to hold any locks. 4621 **/ 4622 void 4623 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4624 { 4625 struct lpfc_sli *psli = &phba->sli; 4626 struct lpfc_sli_ring *pring; 4627 uint32_t i; 4628 4629 /* Look on all the FCP Rings for the iotag */ 4630 if (phba->sli_rev >= LPFC_SLI_REV4) { 4631 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4632 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4633 lpfc_sli_abort_iocb_ring(phba, pring); 4634 } 4635 } else { 4636 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4637 lpfc_sli_abort_iocb_ring(phba, pring); 4638 } 4639 } 4640 4641 /** 4642 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4643 * @phba: Pointer to HBA context object. 4644 * 4645 * This function flushes all iocbs in the IO ring and frees all the iocb 4646 * objects in txq and txcmplq. This function will not issue abort iocbs 4647 * for all the iocb commands in txcmplq, they will just be returned with 4648 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4649 * slot has been permanently disabled. 4650 **/ 4651 void 4652 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4653 { 4654 LIST_HEAD(txq); 4655 LIST_HEAD(txcmplq); 4656 struct lpfc_sli *psli = &phba->sli; 4657 struct lpfc_sli_ring *pring; 4658 uint32_t i; 4659 struct lpfc_iocbq *piocb, *next_iocb; 4660 4661 spin_lock_irq(&phba->hbalock); 4662 /* Indicate the I/O queues are flushed */ 4663 phba->hba_flag |= HBA_IOQ_FLUSH; 4664 spin_unlock_irq(&phba->hbalock); 4665 4666 /* Look on all the FCP Rings for the iotag */ 4667 if (phba->sli_rev >= LPFC_SLI_REV4) { 4668 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4669 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4670 4671 spin_lock_irq(&pring->ring_lock); 4672 /* Retrieve everything on txq */ 4673 list_splice_init(&pring->txq, &txq); 4674 list_for_each_entry_safe(piocb, next_iocb, 4675 &pring->txcmplq, list) 4676 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4677 /* Retrieve everything on the txcmplq */ 4678 list_splice_init(&pring->txcmplq, &txcmplq); 4679 pring->txq_cnt = 0; 4680 pring->txcmplq_cnt = 0; 4681 spin_unlock_irq(&pring->ring_lock); 4682 4683 /* Flush the txq */ 4684 lpfc_sli_cancel_iocbs(phba, &txq, 4685 IOSTAT_LOCAL_REJECT, 4686 IOERR_SLI_DOWN); 4687 /* Flush the txcmplq */ 4688 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4689 IOSTAT_LOCAL_REJECT, 4690 IOERR_SLI_DOWN); 4691 if (unlikely(pci_channel_offline(phba->pcidev))) 4692 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4693 } 4694 } else { 4695 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4696 4697 spin_lock_irq(&phba->hbalock); 4698 /* Retrieve everything on txq */ 4699 list_splice_init(&pring->txq, &txq); 4700 list_for_each_entry_safe(piocb, next_iocb, 4701 &pring->txcmplq, list) 4702 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4703 /* Retrieve everything on the txcmplq */ 4704 list_splice_init(&pring->txcmplq, &txcmplq); 4705 pring->txq_cnt = 0; 4706 pring->txcmplq_cnt = 0; 4707 spin_unlock_irq(&phba->hbalock); 4708 4709 /* Flush the txq */ 4710 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4711 IOERR_SLI_DOWN); 4712 /* Flush the txcmpq */ 4713 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4714 IOERR_SLI_DOWN); 4715 } 4716 } 4717 4718 /** 4719 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4720 * @phba: Pointer to HBA context object. 4721 * @mask: Bit mask to be checked. 4722 * 4723 * This function reads the host status register and compares 4724 * with the provided bit mask to check if HBA completed 4725 * the restart. This function will wait in a loop for the 4726 * HBA to complete restart. If the HBA does not restart within 4727 * 15 iterations, the function will reset the HBA again. The 4728 * function returns 1 when HBA fail to restart otherwise returns 4729 * zero. 4730 **/ 4731 static int 4732 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4733 { 4734 uint32_t status; 4735 int i = 0; 4736 int retval = 0; 4737 4738 /* Read the HBA Host Status Register */ 4739 if (lpfc_readl(phba->HSregaddr, &status)) 4740 return 1; 4741 4742 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4743 4744 /* 4745 * Check status register every 100ms for 5 retries, then every 4746 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4747 * every 2.5 sec for 4. 4748 * Break our of the loop if errors occurred during init. 4749 */ 4750 while (((status & mask) != mask) && 4751 !(status & HS_FFERM) && 4752 i++ < 20) { 4753 4754 if (i <= 5) 4755 msleep(10); 4756 else if (i <= 10) 4757 msleep(500); 4758 else 4759 msleep(2500); 4760 4761 if (i == 15) { 4762 /* Do post */ 4763 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4764 lpfc_sli_brdrestart(phba); 4765 } 4766 /* Read the HBA Host Status Register */ 4767 if (lpfc_readl(phba->HSregaddr, &status)) { 4768 retval = 1; 4769 break; 4770 } 4771 } 4772 4773 /* Check to see if any errors occurred during init */ 4774 if ((status & HS_FFERM) || (i >= 20)) { 4775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4776 "2751 Adapter failed to restart, " 4777 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4778 status, 4779 readl(phba->MBslimaddr + 0xa8), 4780 readl(phba->MBslimaddr + 0xac)); 4781 phba->link_state = LPFC_HBA_ERROR; 4782 retval = 1; 4783 } 4784 4785 return retval; 4786 } 4787 4788 /** 4789 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4790 * @phba: Pointer to HBA context object. 4791 * @mask: Bit mask to be checked. 4792 * 4793 * This function checks the host status register to check if HBA is 4794 * ready. This function will wait in a loop for the HBA to be ready 4795 * If the HBA is not ready , the function will will reset the HBA PCI 4796 * function again. The function returns 1 when HBA fail to be ready 4797 * otherwise returns zero. 4798 **/ 4799 static int 4800 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4801 { 4802 uint32_t status; 4803 int retval = 0; 4804 4805 /* Read the HBA Host Status Register */ 4806 status = lpfc_sli4_post_status_check(phba); 4807 4808 if (status) { 4809 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4810 lpfc_sli_brdrestart(phba); 4811 status = lpfc_sli4_post_status_check(phba); 4812 } 4813 4814 /* Check to see if any errors occurred during init */ 4815 if (status) { 4816 phba->link_state = LPFC_HBA_ERROR; 4817 retval = 1; 4818 } else 4819 phba->sli4_hba.intr_enable = 0; 4820 4821 phba->hba_flag &= ~HBA_SETUP; 4822 return retval; 4823 } 4824 4825 /** 4826 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4827 * @phba: Pointer to HBA context object. 4828 * @mask: Bit mask to be checked. 4829 * 4830 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4831 * from the API jump table function pointer from the lpfc_hba struct. 4832 **/ 4833 int 4834 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4835 { 4836 return phba->lpfc_sli_brdready(phba, mask); 4837 } 4838 4839 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4840 4841 /** 4842 * lpfc_reset_barrier - Make HBA ready for HBA reset 4843 * @phba: Pointer to HBA context object. 4844 * 4845 * This function is called before resetting an HBA. This function is called 4846 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4847 **/ 4848 void lpfc_reset_barrier(struct lpfc_hba *phba) 4849 { 4850 uint32_t __iomem *resp_buf; 4851 uint32_t __iomem *mbox_buf; 4852 volatile struct MAILBOX_word0 mbox; 4853 uint32_t hc_copy, ha_copy, resp_data; 4854 int i; 4855 uint8_t hdrtype; 4856 4857 lockdep_assert_held(&phba->hbalock); 4858 4859 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4860 if (hdrtype != 0x80 || 4861 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4862 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4863 return; 4864 4865 /* 4866 * Tell the other part of the chip to suspend temporarily all 4867 * its DMA activity. 4868 */ 4869 resp_buf = phba->MBslimaddr; 4870 4871 /* Disable the error attention */ 4872 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4873 return; 4874 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4875 readl(phba->HCregaddr); /* flush */ 4876 phba->link_flag |= LS_IGNORE_ERATT; 4877 4878 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4879 return; 4880 if (ha_copy & HA_ERATT) { 4881 /* Clear Chip error bit */ 4882 writel(HA_ERATT, phba->HAregaddr); 4883 phba->pport->stopped = 1; 4884 } 4885 4886 mbox.word0 = 0; 4887 mbox.mbxCommand = MBX_KILL_BOARD; 4888 mbox.mbxOwner = OWN_CHIP; 4889 4890 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4891 mbox_buf = phba->MBslimaddr; 4892 writel(mbox.word0, mbox_buf); 4893 4894 for (i = 0; i < 50; i++) { 4895 if (lpfc_readl((resp_buf + 1), &resp_data)) 4896 return; 4897 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4898 mdelay(1); 4899 else 4900 break; 4901 } 4902 resp_data = 0; 4903 if (lpfc_readl((resp_buf + 1), &resp_data)) 4904 return; 4905 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4906 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4907 phba->pport->stopped) 4908 goto restore_hc; 4909 else 4910 goto clear_errat; 4911 } 4912 4913 mbox.mbxOwner = OWN_HOST; 4914 resp_data = 0; 4915 for (i = 0; i < 500; i++) { 4916 if (lpfc_readl(resp_buf, &resp_data)) 4917 return; 4918 if (resp_data != mbox.word0) 4919 mdelay(1); 4920 else 4921 break; 4922 } 4923 4924 clear_errat: 4925 4926 while (++i < 500) { 4927 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4928 return; 4929 if (!(ha_copy & HA_ERATT)) 4930 mdelay(1); 4931 else 4932 break; 4933 } 4934 4935 if (readl(phba->HAregaddr) & HA_ERATT) { 4936 writel(HA_ERATT, phba->HAregaddr); 4937 phba->pport->stopped = 1; 4938 } 4939 4940 restore_hc: 4941 phba->link_flag &= ~LS_IGNORE_ERATT; 4942 writel(hc_copy, phba->HCregaddr); 4943 readl(phba->HCregaddr); /* flush */ 4944 } 4945 4946 /** 4947 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4948 * @phba: Pointer to HBA context object. 4949 * 4950 * This function issues a kill_board mailbox command and waits for 4951 * the error attention interrupt. This function is called for stopping 4952 * the firmware processing. The caller is not required to hold any 4953 * locks. This function calls lpfc_hba_down_post function to free 4954 * any pending commands after the kill. The function will return 1 when it 4955 * fails to kill the board else will return 0. 4956 **/ 4957 int 4958 lpfc_sli_brdkill(struct lpfc_hba *phba) 4959 { 4960 struct lpfc_sli *psli; 4961 LPFC_MBOXQ_t *pmb; 4962 uint32_t status; 4963 uint32_t ha_copy; 4964 int retval; 4965 int i = 0; 4966 4967 psli = &phba->sli; 4968 4969 /* Kill HBA */ 4970 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4971 "0329 Kill HBA Data: x%x x%x\n", 4972 phba->pport->port_state, psli->sli_flag); 4973 4974 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4975 if (!pmb) 4976 return 1; 4977 4978 /* Disable the error attention */ 4979 spin_lock_irq(&phba->hbalock); 4980 if (lpfc_readl(phba->HCregaddr, &status)) { 4981 spin_unlock_irq(&phba->hbalock); 4982 mempool_free(pmb, phba->mbox_mem_pool); 4983 return 1; 4984 } 4985 status &= ~HC_ERINT_ENA; 4986 writel(status, phba->HCregaddr); 4987 readl(phba->HCregaddr); /* flush */ 4988 phba->link_flag |= LS_IGNORE_ERATT; 4989 spin_unlock_irq(&phba->hbalock); 4990 4991 lpfc_kill_board(phba, pmb); 4992 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4993 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4994 4995 if (retval != MBX_SUCCESS) { 4996 if (retval != MBX_BUSY) 4997 mempool_free(pmb, phba->mbox_mem_pool); 4998 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4999 "2752 KILL_BOARD command failed retval %d\n", 5000 retval); 5001 spin_lock_irq(&phba->hbalock); 5002 phba->link_flag &= ~LS_IGNORE_ERATT; 5003 spin_unlock_irq(&phba->hbalock); 5004 return 1; 5005 } 5006 5007 spin_lock_irq(&phba->hbalock); 5008 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 5009 spin_unlock_irq(&phba->hbalock); 5010 5011 mempool_free(pmb, phba->mbox_mem_pool); 5012 5013 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5014 * attention every 100ms for 3 seconds. If we don't get ERATT after 5015 * 3 seconds we still set HBA_ERROR state because the status of the 5016 * board is now undefined. 5017 */ 5018 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5019 return 1; 5020 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5021 mdelay(100); 5022 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5023 return 1; 5024 } 5025 5026 del_timer_sync(&psli->mbox_tmo); 5027 if (ha_copy & HA_ERATT) { 5028 writel(HA_ERATT, phba->HAregaddr); 5029 phba->pport->stopped = 1; 5030 } 5031 spin_lock_irq(&phba->hbalock); 5032 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5033 psli->mbox_active = NULL; 5034 phba->link_flag &= ~LS_IGNORE_ERATT; 5035 spin_unlock_irq(&phba->hbalock); 5036 5037 lpfc_hba_down_post(phba); 5038 phba->link_state = LPFC_HBA_ERROR; 5039 5040 return ha_copy & HA_ERATT ? 0 : 1; 5041 } 5042 5043 /** 5044 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5045 * @phba: Pointer to HBA context object. 5046 * 5047 * This function resets the HBA by writing HC_INITFF to the control 5048 * register. After the HBA resets, this function resets all the iocb ring 5049 * indices. This function disables PCI layer parity checking during 5050 * the reset. 5051 * This function returns 0 always. 5052 * The caller is not required to hold any locks. 5053 **/ 5054 int 5055 lpfc_sli_brdreset(struct lpfc_hba *phba) 5056 { 5057 struct lpfc_sli *psli; 5058 struct lpfc_sli_ring *pring; 5059 uint16_t cfg_value; 5060 int i; 5061 5062 psli = &phba->sli; 5063 5064 /* Reset HBA */ 5065 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5066 "0325 Reset HBA Data: x%x x%x\n", 5067 (phba->pport) ? phba->pport->port_state : 0, 5068 psli->sli_flag); 5069 5070 /* perform board reset */ 5071 phba->fc_eventTag = 0; 5072 phba->link_events = 0; 5073 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5074 if (phba->pport) { 5075 phba->pport->fc_myDID = 0; 5076 phba->pport->fc_prevDID = 0; 5077 } 5078 5079 /* Turn off parity checking and serr during the physical reset */ 5080 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5081 return -EIO; 5082 5083 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5084 (cfg_value & 5085 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5086 5087 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5088 5089 /* Now toggle INITFF bit in the Host Control Register */ 5090 writel(HC_INITFF, phba->HCregaddr); 5091 mdelay(1); 5092 readl(phba->HCregaddr); /* flush */ 5093 writel(0, phba->HCregaddr); 5094 readl(phba->HCregaddr); /* flush */ 5095 5096 /* Restore PCI cmd register */ 5097 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5098 5099 /* Initialize relevant SLI info */ 5100 for (i = 0; i < psli->num_rings; i++) { 5101 pring = &psli->sli3_ring[i]; 5102 pring->flag = 0; 5103 pring->sli.sli3.rspidx = 0; 5104 pring->sli.sli3.next_cmdidx = 0; 5105 pring->sli.sli3.local_getidx = 0; 5106 pring->sli.sli3.cmdidx = 0; 5107 pring->missbufcnt = 0; 5108 } 5109 5110 phba->link_state = LPFC_WARM_START; 5111 return 0; 5112 } 5113 5114 /** 5115 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5116 * @phba: Pointer to HBA context object. 5117 * 5118 * This function resets a SLI4 HBA. This function disables PCI layer parity 5119 * checking during resets the device. The caller is not required to hold 5120 * any locks. 5121 * 5122 * This function returns 0 on success else returns negative error code. 5123 **/ 5124 int 5125 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5126 { 5127 struct lpfc_sli *psli = &phba->sli; 5128 uint16_t cfg_value; 5129 int rc = 0; 5130 5131 /* Reset HBA */ 5132 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5133 "0295 Reset HBA Data: x%x x%x x%x\n", 5134 phba->pport->port_state, psli->sli_flag, 5135 phba->hba_flag); 5136 5137 /* perform board reset */ 5138 phba->fc_eventTag = 0; 5139 phba->link_events = 0; 5140 phba->pport->fc_myDID = 0; 5141 phba->pport->fc_prevDID = 0; 5142 phba->hba_flag &= ~HBA_SETUP; 5143 5144 spin_lock_irq(&phba->hbalock); 5145 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5146 phba->fcf.fcf_flag = 0; 5147 spin_unlock_irq(&phba->hbalock); 5148 5149 /* Now physically reset the device */ 5150 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5151 "0389 Performing PCI function reset!\n"); 5152 5153 /* Turn off parity checking and serr during the physical reset */ 5154 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5155 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5156 "3205 PCI read Config failed\n"); 5157 return -EIO; 5158 } 5159 5160 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5161 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5162 5163 /* Perform FCoE PCI function reset before freeing queue memory */ 5164 rc = lpfc_pci_function_reset(phba); 5165 5166 /* Restore PCI cmd register */ 5167 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5168 5169 return rc; 5170 } 5171 5172 /** 5173 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5174 * @phba: Pointer to HBA context object. 5175 * 5176 * This function is called in the SLI initialization code path to 5177 * restart the HBA. The caller is not required to hold any lock. 5178 * This function writes MBX_RESTART mailbox command to the SLIM and 5179 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5180 * function to free any pending commands. The function enables 5181 * POST only during the first initialization. The function returns zero. 5182 * The function does not guarantee completion of MBX_RESTART mailbox 5183 * command before the return of this function. 5184 **/ 5185 static int 5186 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5187 { 5188 volatile struct MAILBOX_word0 mb; 5189 struct lpfc_sli *psli; 5190 void __iomem *to_slim; 5191 uint32_t hba_aer_enabled; 5192 5193 spin_lock_irq(&phba->hbalock); 5194 5195 /* Take PCIe device Advanced Error Reporting (AER) state */ 5196 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5197 5198 psli = &phba->sli; 5199 5200 /* Restart HBA */ 5201 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5202 "0337 Restart HBA Data: x%x x%x\n", 5203 (phba->pport) ? phba->pport->port_state : 0, 5204 psli->sli_flag); 5205 5206 mb.word0 = 0; 5207 mb.mbxCommand = MBX_RESTART; 5208 mb.mbxHc = 1; 5209 5210 lpfc_reset_barrier(phba); 5211 5212 to_slim = phba->MBslimaddr; 5213 writel(mb.word0, to_slim); 5214 readl(to_slim); /* flush */ 5215 5216 /* Only skip post after fc_ffinit is completed */ 5217 if (phba->pport && phba->pport->port_state) 5218 mb.word0 = 1; /* This is really setting up word1 */ 5219 else 5220 mb.word0 = 0; /* This is really setting up word1 */ 5221 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5222 writel(mb.word0, to_slim); 5223 readl(to_slim); /* flush */ 5224 5225 lpfc_sli_brdreset(phba); 5226 if (phba->pport) 5227 phba->pport->stopped = 0; 5228 phba->link_state = LPFC_INIT_START; 5229 phba->hba_flag = 0; 5230 spin_unlock_irq(&phba->hbalock); 5231 5232 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5233 psli->stats_start = ktime_get_seconds(); 5234 5235 /* Give the INITFF and Post time to settle. */ 5236 mdelay(100); 5237 5238 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5239 if (hba_aer_enabled) 5240 pci_disable_pcie_error_reporting(phba->pcidev); 5241 5242 lpfc_hba_down_post(phba); 5243 5244 return 0; 5245 } 5246 5247 /** 5248 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5249 * @phba: Pointer to HBA context object. 5250 * 5251 * This function is called in the SLI initialization code path to restart 5252 * a SLI4 HBA. The caller is not required to hold any lock. 5253 * At the end of the function, it calls lpfc_hba_down_post function to 5254 * free any pending commands. 5255 **/ 5256 static int 5257 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5258 { 5259 struct lpfc_sli *psli = &phba->sli; 5260 uint32_t hba_aer_enabled; 5261 int rc; 5262 5263 /* Restart HBA */ 5264 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5265 "0296 Restart HBA Data: x%x x%x\n", 5266 phba->pport->port_state, psli->sli_flag); 5267 5268 /* Take PCIe device Advanced Error Reporting (AER) state */ 5269 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5270 5271 rc = lpfc_sli4_brdreset(phba); 5272 if (rc) { 5273 phba->link_state = LPFC_HBA_ERROR; 5274 goto hba_down_queue; 5275 } 5276 5277 spin_lock_irq(&phba->hbalock); 5278 phba->pport->stopped = 0; 5279 phba->link_state = LPFC_INIT_START; 5280 phba->hba_flag = 0; 5281 /* Preserve FA-PWWN expectation */ 5282 phba->sli4_hba.fawwpn_flag &= LPFC_FAWWPN_FABRIC; 5283 spin_unlock_irq(&phba->hbalock); 5284 5285 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5286 psli->stats_start = ktime_get_seconds(); 5287 5288 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5289 if (hba_aer_enabled) 5290 pci_disable_pcie_error_reporting(phba->pcidev); 5291 5292 hba_down_queue: 5293 lpfc_hba_down_post(phba); 5294 lpfc_sli4_queue_destroy(phba); 5295 5296 return rc; 5297 } 5298 5299 /** 5300 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5301 * @phba: Pointer to HBA context object. 5302 * 5303 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5304 * API jump table function pointer from the lpfc_hba struct. 5305 **/ 5306 int 5307 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5308 { 5309 return phba->lpfc_sli_brdrestart(phba); 5310 } 5311 5312 /** 5313 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5314 * @phba: Pointer to HBA context object. 5315 * 5316 * This function is called after a HBA restart to wait for successful 5317 * restart of the HBA. Successful restart of the HBA is indicated by 5318 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5319 * iteration, the function will restart the HBA again. The function returns 5320 * zero if HBA successfully restarted else returns negative error code. 5321 **/ 5322 int 5323 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5324 { 5325 uint32_t status, i = 0; 5326 5327 /* Read the HBA Host Status Register */ 5328 if (lpfc_readl(phba->HSregaddr, &status)) 5329 return -EIO; 5330 5331 /* Check status register to see what current state is */ 5332 i = 0; 5333 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5334 5335 /* Check every 10ms for 10 retries, then every 100ms for 90 5336 * retries, then every 1 sec for 50 retires for a total of 5337 * ~60 seconds before reset the board again and check every 5338 * 1 sec for 50 retries. The up to 60 seconds before the 5339 * board ready is required by the Falcon FIPS zeroization 5340 * complete, and any reset the board in between shall cause 5341 * restart of zeroization, further delay the board ready. 5342 */ 5343 if (i++ >= 200) { 5344 /* Adapter failed to init, timeout, status reg 5345 <status> */ 5346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5347 "0436 Adapter failed to init, " 5348 "timeout, status reg x%x, " 5349 "FW Data: A8 x%x AC x%x\n", status, 5350 readl(phba->MBslimaddr + 0xa8), 5351 readl(phba->MBslimaddr + 0xac)); 5352 phba->link_state = LPFC_HBA_ERROR; 5353 return -ETIMEDOUT; 5354 } 5355 5356 /* Check to see if any errors occurred during init */ 5357 if (status & HS_FFERM) { 5358 /* ERROR: During chipset initialization */ 5359 /* Adapter failed to init, chipset, status reg 5360 <status> */ 5361 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5362 "0437 Adapter failed to init, " 5363 "chipset, status reg x%x, " 5364 "FW Data: A8 x%x AC x%x\n", status, 5365 readl(phba->MBslimaddr + 0xa8), 5366 readl(phba->MBslimaddr + 0xac)); 5367 phba->link_state = LPFC_HBA_ERROR; 5368 return -EIO; 5369 } 5370 5371 if (i <= 10) 5372 msleep(10); 5373 else if (i <= 100) 5374 msleep(100); 5375 else 5376 msleep(1000); 5377 5378 if (i == 150) { 5379 /* Do post */ 5380 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5381 lpfc_sli_brdrestart(phba); 5382 } 5383 /* Read the HBA Host Status Register */ 5384 if (lpfc_readl(phba->HSregaddr, &status)) 5385 return -EIO; 5386 } 5387 5388 /* Check to see if any errors occurred during init */ 5389 if (status & HS_FFERM) { 5390 /* ERROR: During chipset initialization */ 5391 /* Adapter failed to init, chipset, status reg <status> */ 5392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5393 "0438 Adapter failed to init, chipset, " 5394 "status reg x%x, " 5395 "FW Data: A8 x%x AC x%x\n", status, 5396 readl(phba->MBslimaddr + 0xa8), 5397 readl(phba->MBslimaddr + 0xac)); 5398 phba->link_state = LPFC_HBA_ERROR; 5399 return -EIO; 5400 } 5401 5402 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5403 5404 /* Clear all interrupt enable conditions */ 5405 writel(0, phba->HCregaddr); 5406 readl(phba->HCregaddr); /* flush */ 5407 5408 /* setup host attn register */ 5409 writel(0xffffffff, phba->HAregaddr); 5410 readl(phba->HAregaddr); /* flush */ 5411 return 0; 5412 } 5413 5414 /** 5415 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5416 * 5417 * This function calculates and returns the number of HBQs required to be 5418 * configured. 5419 **/ 5420 int 5421 lpfc_sli_hbq_count(void) 5422 { 5423 return ARRAY_SIZE(lpfc_hbq_defs); 5424 } 5425 5426 /** 5427 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5428 * 5429 * This function adds the number of hbq entries in every HBQ to get 5430 * the total number of hbq entries required for the HBA and returns 5431 * the total count. 5432 **/ 5433 static int 5434 lpfc_sli_hbq_entry_count(void) 5435 { 5436 int hbq_count = lpfc_sli_hbq_count(); 5437 int count = 0; 5438 int i; 5439 5440 for (i = 0; i < hbq_count; ++i) 5441 count += lpfc_hbq_defs[i]->entry_count; 5442 return count; 5443 } 5444 5445 /** 5446 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5447 * 5448 * This function calculates amount of memory required for all hbq entries 5449 * to be configured and returns the total memory required. 5450 **/ 5451 int 5452 lpfc_sli_hbq_size(void) 5453 { 5454 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5455 } 5456 5457 /** 5458 * lpfc_sli_hbq_setup - configure and initialize HBQs 5459 * @phba: Pointer to HBA context object. 5460 * 5461 * This function is called during the SLI initialization to configure 5462 * all the HBQs and post buffers to the HBQ. The caller is not 5463 * required to hold any locks. This function will return zero if successful 5464 * else it will return negative error code. 5465 **/ 5466 static int 5467 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5468 { 5469 int hbq_count = lpfc_sli_hbq_count(); 5470 LPFC_MBOXQ_t *pmb; 5471 MAILBOX_t *pmbox; 5472 uint32_t hbqno; 5473 uint32_t hbq_entry_index; 5474 5475 /* Get a Mailbox buffer to setup mailbox 5476 * commands for HBA initialization 5477 */ 5478 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5479 5480 if (!pmb) 5481 return -ENOMEM; 5482 5483 pmbox = &pmb->u.mb; 5484 5485 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5486 phba->link_state = LPFC_INIT_MBX_CMDS; 5487 phba->hbq_in_use = 1; 5488 5489 hbq_entry_index = 0; 5490 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5491 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5492 phba->hbqs[hbqno].hbqPutIdx = 0; 5493 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5494 phba->hbqs[hbqno].entry_count = 5495 lpfc_hbq_defs[hbqno]->entry_count; 5496 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5497 hbq_entry_index, pmb); 5498 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5499 5500 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5501 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5502 mbxStatus <status>, ring <num> */ 5503 5504 lpfc_printf_log(phba, KERN_ERR, 5505 LOG_SLI | LOG_VPORT, 5506 "1805 Adapter failed to init. " 5507 "Data: x%x x%x x%x\n", 5508 pmbox->mbxCommand, 5509 pmbox->mbxStatus, hbqno); 5510 5511 phba->link_state = LPFC_HBA_ERROR; 5512 mempool_free(pmb, phba->mbox_mem_pool); 5513 return -ENXIO; 5514 } 5515 } 5516 phba->hbq_count = hbq_count; 5517 5518 mempool_free(pmb, phba->mbox_mem_pool); 5519 5520 /* Initially populate or replenish the HBQs */ 5521 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5522 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5523 return 0; 5524 } 5525 5526 /** 5527 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5528 * @phba: Pointer to HBA context object. 5529 * 5530 * This function is called during the SLI initialization to configure 5531 * all the HBQs and post buffers to the HBQ. The caller is not 5532 * required to hold any locks. This function will return zero if successful 5533 * else it will return negative error code. 5534 **/ 5535 static int 5536 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5537 { 5538 phba->hbq_in_use = 1; 5539 /** 5540 * Specific case when the MDS diagnostics is enabled and supported. 5541 * The receive buffer count is truncated to manage the incoming 5542 * traffic. 5543 **/ 5544 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5545 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5546 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5547 else 5548 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5549 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5550 phba->hbq_count = 1; 5551 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5552 /* Initially populate or replenish the HBQs */ 5553 return 0; 5554 } 5555 5556 /** 5557 * lpfc_sli_config_port - Issue config port mailbox command 5558 * @phba: Pointer to HBA context object. 5559 * @sli_mode: sli mode - 2/3 5560 * 5561 * This function is called by the sli initialization code path 5562 * to issue config_port mailbox command. This function restarts the 5563 * HBA firmware and issues a config_port mailbox command to configure 5564 * the SLI interface in the sli mode specified by sli_mode 5565 * variable. The caller is not required to hold any locks. 5566 * The function returns 0 if successful, else returns negative error 5567 * code. 5568 **/ 5569 int 5570 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5571 { 5572 LPFC_MBOXQ_t *pmb; 5573 uint32_t resetcount = 0, rc = 0, done = 0; 5574 5575 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5576 if (!pmb) { 5577 phba->link_state = LPFC_HBA_ERROR; 5578 return -ENOMEM; 5579 } 5580 5581 phba->sli_rev = sli_mode; 5582 while (resetcount < 2 && !done) { 5583 spin_lock_irq(&phba->hbalock); 5584 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5585 spin_unlock_irq(&phba->hbalock); 5586 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5587 lpfc_sli_brdrestart(phba); 5588 rc = lpfc_sli_chipset_init(phba); 5589 if (rc) 5590 break; 5591 5592 spin_lock_irq(&phba->hbalock); 5593 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5594 spin_unlock_irq(&phba->hbalock); 5595 resetcount++; 5596 5597 /* Call pre CONFIG_PORT mailbox command initialization. A 5598 * value of 0 means the call was successful. Any other 5599 * nonzero value is a failure, but if ERESTART is returned, 5600 * the driver may reset the HBA and try again. 5601 */ 5602 rc = lpfc_config_port_prep(phba); 5603 if (rc == -ERESTART) { 5604 phba->link_state = LPFC_LINK_UNKNOWN; 5605 continue; 5606 } else if (rc) 5607 break; 5608 5609 phba->link_state = LPFC_INIT_MBX_CMDS; 5610 lpfc_config_port(phba, pmb); 5611 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5612 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5613 LPFC_SLI3_HBQ_ENABLED | 5614 LPFC_SLI3_CRP_ENABLED | 5615 LPFC_SLI3_DSS_ENABLED); 5616 if (rc != MBX_SUCCESS) { 5617 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5618 "0442 Adapter failed to init, mbxCmd x%x " 5619 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5620 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5621 spin_lock_irq(&phba->hbalock); 5622 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5623 spin_unlock_irq(&phba->hbalock); 5624 rc = -ENXIO; 5625 } else { 5626 /* Allow asynchronous mailbox command to go through */ 5627 spin_lock_irq(&phba->hbalock); 5628 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5629 spin_unlock_irq(&phba->hbalock); 5630 done = 1; 5631 5632 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5633 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5634 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5635 "3110 Port did not grant ASABT\n"); 5636 } 5637 } 5638 if (!done) { 5639 rc = -EINVAL; 5640 goto do_prep_failed; 5641 } 5642 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5643 if (!pmb->u.mb.un.varCfgPort.cMA) { 5644 rc = -ENXIO; 5645 goto do_prep_failed; 5646 } 5647 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5648 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5649 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5650 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5651 phba->max_vpi : phba->max_vports; 5652 5653 } else 5654 phba->max_vpi = 0; 5655 if (pmb->u.mb.un.varCfgPort.gerbm) 5656 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5657 if (pmb->u.mb.un.varCfgPort.gcrp) 5658 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5659 5660 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5661 phba->port_gp = phba->mbox->us.s3_pgp.port; 5662 5663 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5664 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5665 phba->cfg_enable_bg = 0; 5666 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5668 "0443 Adapter did not grant " 5669 "BlockGuard\n"); 5670 } 5671 } 5672 } else { 5673 phba->hbq_get = NULL; 5674 phba->port_gp = phba->mbox->us.s2.port; 5675 phba->max_vpi = 0; 5676 } 5677 do_prep_failed: 5678 mempool_free(pmb, phba->mbox_mem_pool); 5679 return rc; 5680 } 5681 5682 5683 /** 5684 * lpfc_sli_hba_setup - SLI initialization function 5685 * @phba: Pointer to HBA context object. 5686 * 5687 * This function is the main SLI initialization function. This function 5688 * is called by the HBA initialization code, HBA reset code and HBA 5689 * error attention handler code. Caller is not required to hold any 5690 * locks. This function issues config_port mailbox command to configure 5691 * the SLI, setup iocb rings and HBQ rings. In the end the function 5692 * calls the config_port_post function to issue init_link mailbox 5693 * command and to start the discovery. The function will return zero 5694 * if successful, else it will return negative error code. 5695 **/ 5696 int 5697 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5698 { 5699 uint32_t rc; 5700 int i; 5701 int longs; 5702 5703 /* Enable ISR already does config_port because of config_msi mbx */ 5704 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5705 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5706 if (rc) 5707 return -EIO; 5708 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5709 } 5710 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5711 5712 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5713 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5714 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5715 if (!rc) { 5716 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5717 "2709 This device supports " 5718 "Advanced Error Reporting (AER)\n"); 5719 spin_lock_irq(&phba->hbalock); 5720 phba->hba_flag |= HBA_AER_ENABLED; 5721 spin_unlock_irq(&phba->hbalock); 5722 } else { 5723 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5724 "2708 This device does not support " 5725 "Advanced Error Reporting (AER): %d\n", 5726 rc); 5727 phba->cfg_aer_support = 0; 5728 } 5729 } 5730 5731 if (phba->sli_rev == 3) { 5732 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5733 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5734 } else { 5735 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5736 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5737 phba->sli3_options = 0; 5738 } 5739 5740 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5741 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5742 phba->sli_rev, phba->max_vpi); 5743 rc = lpfc_sli_ring_map(phba); 5744 5745 if (rc) 5746 goto lpfc_sli_hba_setup_error; 5747 5748 /* Initialize VPIs. */ 5749 if (phba->sli_rev == LPFC_SLI_REV3) { 5750 /* 5751 * The VPI bitmask and physical ID array are allocated 5752 * and initialized once only - at driver load. A port 5753 * reset doesn't need to reinitialize this memory. 5754 */ 5755 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5756 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5757 phba->vpi_bmask = kcalloc(longs, 5758 sizeof(unsigned long), 5759 GFP_KERNEL); 5760 if (!phba->vpi_bmask) { 5761 rc = -ENOMEM; 5762 goto lpfc_sli_hba_setup_error; 5763 } 5764 5765 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5766 sizeof(uint16_t), 5767 GFP_KERNEL); 5768 if (!phba->vpi_ids) { 5769 kfree(phba->vpi_bmask); 5770 rc = -ENOMEM; 5771 goto lpfc_sli_hba_setup_error; 5772 } 5773 for (i = 0; i < phba->max_vpi; i++) 5774 phba->vpi_ids[i] = i; 5775 } 5776 } 5777 5778 /* Init HBQs */ 5779 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5780 rc = lpfc_sli_hbq_setup(phba); 5781 if (rc) 5782 goto lpfc_sli_hba_setup_error; 5783 } 5784 spin_lock_irq(&phba->hbalock); 5785 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5786 spin_unlock_irq(&phba->hbalock); 5787 5788 rc = lpfc_config_port_post(phba); 5789 if (rc) 5790 goto lpfc_sli_hba_setup_error; 5791 5792 return rc; 5793 5794 lpfc_sli_hba_setup_error: 5795 phba->link_state = LPFC_HBA_ERROR; 5796 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5797 "0445 Firmware initialization failed\n"); 5798 return rc; 5799 } 5800 5801 /** 5802 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5803 * @phba: Pointer to HBA context object. 5804 * 5805 * This function issue a dump mailbox command to read config region 5806 * 23 and parse the records in the region and populate driver 5807 * data structure. 5808 **/ 5809 static int 5810 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5811 { 5812 LPFC_MBOXQ_t *mboxq; 5813 struct lpfc_dmabuf *mp; 5814 struct lpfc_mqe *mqe; 5815 uint32_t data_length; 5816 int rc; 5817 5818 /* Program the default value of vlan_id and fc_map */ 5819 phba->valid_vlan = 0; 5820 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5821 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5822 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5823 5824 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5825 if (!mboxq) 5826 return -ENOMEM; 5827 5828 mqe = &mboxq->u.mqe; 5829 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5830 rc = -ENOMEM; 5831 goto out_free_mboxq; 5832 } 5833 5834 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5835 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5836 5837 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5838 "(%d):2571 Mailbox cmd x%x Status x%x " 5839 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5840 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5841 "CQ: x%x x%x x%x x%x\n", 5842 mboxq->vport ? mboxq->vport->vpi : 0, 5843 bf_get(lpfc_mqe_command, mqe), 5844 bf_get(lpfc_mqe_status, mqe), 5845 mqe->un.mb_words[0], mqe->un.mb_words[1], 5846 mqe->un.mb_words[2], mqe->un.mb_words[3], 5847 mqe->un.mb_words[4], mqe->un.mb_words[5], 5848 mqe->un.mb_words[6], mqe->un.mb_words[7], 5849 mqe->un.mb_words[8], mqe->un.mb_words[9], 5850 mqe->un.mb_words[10], mqe->un.mb_words[11], 5851 mqe->un.mb_words[12], mqe->un.mb_words[13], 5852 mqe->un.mb_words[14], mqe->un.mb_words[15], 5853 mqe->un.mb_words[16], mqe->un.mb_words[50], 5854 mboxq->mcqe.word0, 5855 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5856 mboxq->mcqe.trailer); 5857 5858 if (rc) { 5859 rc = -EIO; 5860 goto out_free_mboxq; 5861 } 5862 data_length = mqe->un.mb_words[5]; 5863 if (data_length > DMP_RGN23_SIZE) { 5864 rc = -EIO; 5865 goto out_free_mboxq; 5866 } 5867 5868 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5869 rc = 0; 5870 5871 out_free_mboxq: 5872 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5873 return rc; 5874 } 5875 5876 /** 5877 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5878 * @phba: pointer to lpfc hba data structure. 5879 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5880 * @vpd: pointer to the memory to hold resulting port vpd data. 5881 * @vpd_size: On input, the number of bytes allocated to @vpd. 5882 * On output, the number of data bytes in @vpd. 5883 * 5884 * This routine executes a READ_REV SLI4 mailbox command. In 5885 * addition, this routine gets the port vpd data. 5886 * 5887 * Return codes 5888 * 0 - successful 5889 * -ENOMEM - could not allocated memory. 5890 **/ 5891 static int 5892 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5893 uint8_t *vpd, uint32_t *vpd_size) 5894 { 5895 int rc = 0; 5896 uint32_t dma_size; 5897 struct lpfc_dmabuf *dmabuf; 5898 struct lpfc_mqe *mqe; 5899 5900 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5901 if (!dmabuf) 5902 return -ENOMEM; 5903 5904 /* 5905 * Get a DMA buffer for the vpd data resulting from the READ_REV 5906 * mailbox command. 5907 */ 5908 dma_size = *vpd_size; 5909 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5910 &dmabuf->phys, GFP_KERNEL); 5911 if (!dmabuf->virt) { 5912 kfree(dmabuf); 5913 return -ENOMEM; 5914 } 5915 5916 /* 5917 * The SLI4 implementation of READ_REV conflicts at word1, 5918 * bits 31:16 and SLI4 adds vpd functionality not present 5919 * in SLI3. This code corrects the conflicts. 5920 */ 5921 lpfc_read_rev(phba, mboxq); 5922 mqe = &mboxq->u.mqe; 5923 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5924 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5925 mqe->un.read_rev.word1 &= 0x0000FFFF; 5926 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5927 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5928 5929 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5930 if (rc) { 5931 dma_free_coherent(&phba->pcidev->dev, dma_size, 5932 dmabuf->virt, dmabuf->phys); 5933 kfree(dmabuf); 5934 return -EIO; 5935 } 5936 5937 /* 5938 * The available vpd length cannot be bigger than the 5939 * DMA buffer passed to the port. Catch the less than 5940 * case and update the caller's size. 5941 */ 5942 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5943 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5944 5945 memcpy(vpd, dmabuf->virt, *vpd_size); 5946 5947 dma_free_coherent(&phba->pcidev->dev, dma_size, 5948 dmabuf->virt, dmabuf->phys); 5949 kfree(dmabuf); 5950 return 0; 5951 } 5952 5953 /** 5954 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5955 * @phba: pointer to lpfc hba data structure. 5956 * 5957 * This routine retrieves SLI4 device physical port name this PCI function 5958 * is attached to. 5959 * 5960 * Return codes 5961 * 0 - successful 5962 * otherwise - failed to retrieve controller attributes 5963 **/ 5964 static int 5965 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5966 { 5967 LPFC_MBOXQ_t *mboxq; 5968 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5969 struct lpfc_controller_attribute *cntl_attr; 5970 void *virtaddr = NULL; 5971 uint32_t alloclen, reqlen; 5972 uint32_t shdr_status, shdr_add_status; 5973 union lpfc_sli4_cfg_shdr *shdr; 5974 int rc; 5975 5976 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5977 if (!mboxq) 5978 return -ENOMEM; 5979 5980 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5981 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5982 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5983 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5984 LPFC_SLI4_MBX_NEMBED); 5985 5986 if (alloclen < reqlen) { 5987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5988 "3084 Allocated DMA memory size (%d) is " 5989 "less than the requested DMA memory size " 5990 "(%d)\n", alloclen, reqlen); 5991 rc = -ENOMEM; 5992 goto out_free_mboxq; 5993 } 5994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5995 virtaddr = mboxq->sge_array->addr[0]; 5996 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5997 shdr = &mbx_cntl_attr->cfg_shdr; 5998 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5999 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6000 if (shdr_status || shdr_add_status || rc) { 6001 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6002 "3085 Mailbox x%x (x%x/x%x) failed, " 6003 "rc:x%x, status:x%x, add_status:x%x\n", 6004 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6005 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6006 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6007 rc, shdr_status, shdr_add_status); 6008 rc = -ENXIO; 6009 goto out_free_mboxq; 6010 } 6011 6012 cntl_attr = &mbx_cntl_attr->cntl_attr; 6013 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 6014 phba->sli4_hba.lnk_info.lnk_tp = 6015 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6016 phba->sli4_hba.lnk_info.lnk_no = 6017 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6018 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6019 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6020 6021 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6022 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6023 sizeof(phba->BIOSVersion)); 6024 6025 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6026 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6027 "flash_id: x%02x, asic_rev: x%02x\n", 6028 phba->sli4_hba.lnk_info.lnk_tp, 6029 phba->sli4_hba.lnk_info.lnk_no, 6030 phba->BIOSVersion, phba->sli4_hba.flash_id, 6031 phba->sli4_hba.asic_rev); 6032 out_free_mboxq: 6033 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6034 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6035 else 6036 mempool_free(mboxq, phba->mbox_mem_pool); 6037 return rc; 6038 } 6039 6040 /** 6041 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6042 * @phba: pointer to lpfc hba data structure. 6043 * 6044 * This routine retrieves SLI4 device physical port name this PCI function 6045 * is attached to. 6046 * 6047 * Return codes 6048 * 0 - successful 6049 * otherwise - failed to retrieve physical port name 6050 **/ 6051 static int 6052 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6053 { 6054 LPFC_MBOXQ_t *mboxq; 6055 struct lpfc_mbx_get_port_name *get_port_name; 6056 uint32_t shdr_status, shdr_add_status; 6057 union lpfc_sli4_cfg_shdr *shdr; 6058 char cport_name = 0; 6059 int rc; 6060 6061 /* We assume nothing at this point */ 6062 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6063 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6064 6065 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6066 if (!mboxq) 6067 return -ENOMEM; 6068 /* obtain link type and link number via READ_CONFIG */ 6069 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6070 lpfc_sli4_read_config(phba); 6071 6072 if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) 6073 phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; 6074 6075 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6076 goto retrieve_ppname; 6077 6078 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6079 rc = lpfc_sli4_get_ctl_attr(phba); 6080 if (rc) 6081 goto out_free_mboxq; 6082 6083 retrieve_ppname: 6084 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6085 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6086 sizeof(struct lpfc_mbx_get_port_name) - 6087 sizeof(struct lpfc_sli4_cfg_mhdr), 6088 LPFC_SLI4_MBX_EMBED); 6089 get_port_name = &mboxq->u.mqe.un.get_port_name; 6090 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6091 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6092 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6093 phba->sli4_hba.lnk_info.lnk_tp); 6094 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6095 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6096 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6097 if (shdr_status || shdr_add_status || rc) { 6098 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6099 "3087 Mailbox x%x (x%x/x%x) failed: " 6100 "rc:x%x, status:x%x, add_status:x%x\n", 6101 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6102 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6103 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6104 rc, shdr_status, shdr_add_status); 6105 rc = -ENXIO; 6106 goto out_free_mboxq; 6107 } 6108 switch (phba->sli4_hba.lnk_info.lnk_no) { 6109 case LPFC_LINK_NUMBER_0: 6110 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6111 &get_port_name->u.response); 6112 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6113 break; 6114 case LPFC_LINK_NUMBER_1: 6115 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6116 &get_port_name->u.response); 6117 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6118 break; 6119 case LPFC_LINK_NUMBER_2: 6120 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6121 &get_port_name->u.response); 6122 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6123 break; 6124 case LPFC_LINK_NUMBER_3: 6125 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6126 &get_port_name->u.response); 6127 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6128 break; 6129 default: 6130 break; 6131 } 6132 6133 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6134 phba->Port[0] = cport_name; 6135 phba->Port[1] = '\0'; 6136 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6137 "3091 SLI get port name: %s\n", phba->Port); 6138 } 6139 6140 out_free_mboxq: 6141 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6142 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6143 else 6144 mempool_free(mboxq, phba->mbox_mem_pool); 6145 return rc; 6146 } 6147 6148 /** 6149 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6150 * @phba: pointer to lpfc hba data structure. 6151 * 6152 * This routine is called to explicitly arm the SLI4 device's completion and 6153 * event queues 6154 **/ 6155 static void 6156 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6157 { 6158 int qidx; 6159 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6160 struct lpfc_sli4_hdw_queue *qp; 6161 struct lpfc_queue *eq; 6162 6163 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6164 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6165 if (sli4_hba->nvmels_cq) 6166 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6167 LPFC_QUEUE_REARM); 6168 6169 if (sli4_hba->hdwq) { 6170 /* Loop thru all Hardware Queues */ 6171 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6172 qp = &sli4_hba->hdwq[qidx]; 6173 /* ARM the corresponding CQ */ 6174 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6175 LPFC_QUEUE_REARM); 6176 } 6177 6178 /* Loop thru all IRQ vectors */ 6179 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6180 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6181 /* ARM the corresponding EQ */ 6182 sli4_hba->sli4_write_eq_db(phba, eq, 6183 0, LPFC_QUEUE_REARM); 6184 } 6185 } 6186 6187 if (phba->nvmet_support) { 6188 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6189 sli4_hba->sli4_write_cq_db(phba, 6190 sli4_hba->nvmet_cqset[qidx], 0, 6191 LPFC_QUEUE_REARM); 6192 } 6193 } 6194 } 6195 6196 /** 6197 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6198 * @phba: Pointer to HBA context object. 6199 * @type: The resource extent type. 6200 * @extnt_count: buffer to hold port available extent count. 6201 * @extnt_size: buffer to hold element count per extent. 6202 * 6203 * This function calls the port and retrievs the number of available 6204 * extents and their size for a particular extent type. 6205 * 6206 * Returns: 0 if successful. Nonzero otherwise. 6207 **/ 6208 int 6209 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6210 uint16_t *extnt_count, uint16_t *extnt_size) 6211 { 6212 int rc = 0; 6213 uint32_t length; 6214 uint32_t mbox_tmo; 6215 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6216 LPFC_MBOXQ_t *mbox; 6217 6218 *extnt_count = 0; 6219 *extnt_size = 0; 6220 6221 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6222 if (!mbox) 6223 return -ENOMEM; 6224 6225 /* Find out how many extents are available for this resource type */ 6226 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6227 sizeof(struct lpfc_sli4_cfg_mhdr)); 6228 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6229 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6230 length, LPFC_SLI4_MBX_EMBED); 6231 6232 /* Send an extents count of 0 - the GET doesn't use it. */ 6233 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6234 LPFC_SLI4_MBX_EMBED); 6235 if (unlikely(rc)) { 6236 rc = -EIO; 6237 goto err_exit; 6238 } 6239 6240 if (!phba->sli4_hba.intr_enable) 6241 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6242 else { 6243 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6244 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6245 } 6246 if (unlikely(rc)) { 6247 rc = -EIO; 6248 goto err_exit; 6249 } 6250 6251 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6252 if (bf_get(lpfc_mbox_hdr_status, 6253 &rsrc_info->header.cfg_shdr.response)) { 6254 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6255 "2930 Failed to get resource extents " 6256 "Status 0x%x Add'l Status 0x%x\n", 6257 bf_get(lpfc_mbox_hdr_status, 6258 &rsrc_info->header.cfg_shdr.response), 6259 bf_get(lpfc_mbox_hdr_add_status, 6260 &rsrc_info->header.cfg_shdr.response)); 6261 rc = -EIO; 6262 goto err_exit; 6263 } 6264 6265 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6266 &rsrc_info->u.rsp); 6267 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6268 &rsrc_info->u.rsp); 6269 6270 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6271 "3162 Retrieved extents type-%d from port: count:%d, " 6272 "size:%d\n", type, *extnt_count, *extnt_size); 6273 6274 err_exit: 6275 mempool_free(mbox, phba->mbox_mem_pool); 6276 return rc; 6277 } 6278 6279 /** 6280 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6281 * @phba: Pointer to HBA context object. 6282 * @type: The extent type to check. 6283 * 6284 * This function reads the current available extents from the port and checks 6285 * if the extent count or extent size has changed since the last access. 6286 * Callers use this routine post port reset to understand if there is a 6287 * extent reprovisioning requirement. 6288 * 6289 * Returns: 6290 * -Error: error indicates problem. 6291 * 1: Extent count or size has changed. 6292 * 0: No changes. 6293 **/ 6294 static int 6295 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6296 { 6297 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6298 uint16_t size_diff, rsrc_ext_size; 6299 int rc = 0; 6300 struct lpfc_rsrc_blks *rsrc_entry; 6301 struct list_head *rsrc_blk_list = NULL; 6302 6303 size_diff = 0; 6304 curr_ext_cnt = 0; 6305 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6306 &rsrc_ext_cnt, 6307 &rsrc_ext_size); 6308 if (unlikely(rc)) 6309 return -EIO; 6310 6311 switch (type) { 6312 case LPFC_RSC_TYPE_FCOE_RPI: 6313 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6314 break; 6315 case LPFC_RSC_TYPE_FCOE_VPI: 6316 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6317 break; 6318 case LPFC_RSC_TYPE_FCOE_XRI: 6319 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6320 break; 6321 case LPFC_RSC_TYPE_FCOE_VFI: 6322 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6323 break; 6324 default: 6325 break; 6326 } 6327 6328 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6329 curr_ext_cnt++; 6330 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6331 size_diff++; 6332 } 6333 6334 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6335 rc = 1; 6336 6337 return rc; 6338 } 6339 6340 /** 6341 * lpfc_sli4_cfg_post_extnts - 6342 * @phba: Pointer to HBA context object. 6343 * @extnt_cnt: number of available extents. 6344 * @type: the extent type (rpi, xri, vfi, vpi). 6345 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6346 * @mbox: pointer to the caller's allocated mailbox structure. 6347 * 6348 * This function executes the extents allocation request. It also 6349 * takes care of the amount of memory needed to allocate or get the 6350 * allocated extents. It is the caller's responsibility to evaluate 6351 * the response. 6352 * 6353 * Returns: 6354 * -Error: Error value describes the condition found. 6355 * 0: if successful 6356 **/ 6357 static int 6358 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6359 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6360 { 6361 int rc = 0; 6362 uint32_t req_len; 6363 uint32_t emb_len; 6364 uint32_t alloc_len, mbox_tmo; 6365 6366 /* Calculate the total requested length of the dma memory */ 6367 req_len = extnt_cnt * sizeof(uint16_t); 6368 6369 /* 6370 * Calculate the size of an embedded mailbox. The uint32_t 6371 * accounts for extents-specific word. 6372 */ 6373 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6374 sizeof(uint32_t); 6375 6376 /* 6377 * Presume the allocation and response will fit into an embedded 6378 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6379 */ 6380 *emb = LPFC_SLI4_MBX_EMBED; 6381 if (req_len > emb_len) { 6382 req_len = extnt_cnt * sizeof(uint16_t) + 6383 sizeof(union lpfc_sli4_cfg_shdr) + 6384 sizeof(uint32_t); 6385 *emb = LPFC_SLI4_MBX_NEMBED; 6386 } 6387 6388 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6389 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6390 req_len, *emb); 6391 if (alloc_len < req_len) { 6392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6393 "2982 Allocated DMA memory size (x%x) is " 6394 "less than the requested DMA memory " 6395 "size (x%x)\n", alloc_len, req_len); 6396 return -ENOMEM; 6397 } 6398 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6399 if (unlikely(rc)) 6400 return -EIO; 6401 6402 if (!phba->sli4_hba.intr_enable) 6403 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6404 else { 6405 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6406 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6407 } 6408 6409 if (unlikely(rc)) 6410 rc = -EIO; 6411 return rc; 6412 } 6413 6414 /** 6415 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6416 * @phba: Pointer to HBA context object. 6417 * @type: The resource extent type to allocate. 6418 * 6419 * This function allocates the number of elements for the specified 6420 * resource type. 6421 **/ 6422 static int 6423 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6424 { 6425 bool emb = false; 6426 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6427 uint16_t rsrc_id, rsrc_start, j, k; 6428 uint16_t *ids; 6429 int i, rc; 6430 unsigned long longs; 6431 unsigned long *bmask; 6432 struct lpfc_rsrc_blks *rsrc_blks; 6433 LPFC_MBOXQ_t *mbox; 6434 uint32_t length; 6435 struct lpfc_id_range *id_array = NULL; 6436 void *virtaddr = NULL; 6437 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6438 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6439 struct list_head *ext_blk_list; 6440 6441 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6442 &rsrc_cnt, 6443 &rsrc_size); 6444 if (unlikely(rc)) 6445 return -EIO; 6446 6447 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6448 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6449 "3009 No available Resource Extents " 6450 "for resource type 0x%x: Count: 0x%x, " 6451 "Size 0x%x\n", type, rsrc_cnt, 6452 rsrc_size); 6453 return -ENOMEM; 6454 } 6455 6456 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6457 "2903 Post resource extents type-0x%x: " 6458 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6459 6460 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6461 if (!mbox) 6462 return -ENOMEM; 6463 6464 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6465 if (unlikely(rc)) { 6466 rc = -EIO; 6467 goto err_exit; 6468 } 6469 6470 /* 6471 * Figure out where the response is located. Then get local pointers 6472 * to the response data. The port does not guarantee to respond to 6473 * all extents counts request so update the local variable with the 6474 * allocated count from the port. 6475 */ 6476 if (emb == LPFC_SLI4_MBX_EMBED) { 6477 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6478 id_array = &rsrc_ext->u.rsp.id[0]; 6479 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6480 } else { 6481 virtaddr = mbox->sge_array->addr[0]; 6482 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6483 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6484 id_array = &n_rsrc->id; 6485 } 6486 6487 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6488 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6489 6490 /* 6491 * Based on the resource size and count, correct the base and max 6492 * resource values. 6493 */ 6494 length = sizeof(struct lpfc_rsrc_blks); 6495 switch (type) { 6496 case LPFC_RSC_TYPE_FCOE_RPI: 6497 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6498 sizeof(unsigned long), 6499 GFP_KERNEL); 6500 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6501 rc = -ENOMEM; 6502 goto err_exit; 6503 } 6504 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6505 sizeof(uint16_t), 6506 GFP_KERNEL); 6507 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6508 kfree(phba->sli4_hba.rpi_bmask); 6509 rc = -ENOMEM; 6510 goto err_exit; 6511 } 6512 6513 /* 6514 * The next_rpi was initialized with the maximum available 6515 * count but the port may allocate a smaller number. Catch 6516 * that case and update the next_rpi. 6517 */ 6518 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6519 6520 /* Initialize local ptrs for common extent processing later. */ 6521 bmask = phba->sli4_hba.rpi_bmask; 6522 ids = phba->sli4_hba.rpi_ids; 6523 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6524 break; 6525 case LPFC_RSC_TYPE_FCOE_VPI: 6526 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6527 GFP_KERNEL); 6528 if (unlikely(!phba->vpi_bmask)) { 6529 rc = -ENOMEM; 6530 goto err_exit; 6531 } 6532 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6533 GFP_KERNEL); 6534 if (unlikely(!phba->vpi_ids)) { 6535 kfree(phba->vpi_bmask); 6536 rc = -ENOMEM; 6537 goto err_exit; 6538 } 6539 6540 /* Initialize local ptrs for common extent processing later. */ 6541 bmask = phba->vpi_bmask; 6542 ids = phba->vpi_ids; 6543 ext_blk_list = &phba->lpfc_vpi_blk_list; 6544 break; 6545 case LPFC_RSC_TYPE_FCOE_XRI: 6546 phba->sli4_hba.xri_bmask = kcalloc(longs, 6547 sizeof(unsigned long), 6548 GFP_KERNEL); 6549 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6550 rc = -ENOMEM; 6551 goto err_exit; 6552 } 6553 phba->sli4_hba.max_cfg_param.xri_used = 0; 6554 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6555 sizeof(uint16_t), 6556 GFP_KERNEL); 6557 if (unlikely(!phba->sli4_hba.xri_ids)) { 6558 kfree(phba->sli4_hba.xri_bmask); 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 6563 /* Initialize local ptrs for common extent processing later. */ 6564 bmask = phba->sli4_hba.xri_bmask; 6565 ids = phba->sli4_hba.xri_ids; 6566 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6567 break; 6568 case LPFC_RSC_TYPE_FCOE_VFI: 6569 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6570 sizeof(unsigned long), 6571 GFP_KERNEL); 6572 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6573 rc = -ENOMEM; 6574 goto err_exit; 6575 } 6576 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6577 sizeof(uint16_t), 6578 GFP_KERNEL); 6579 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6580 kfree(phba->sli4_hba.vfi_bmask); 6581 rc = -ENOMEM; 6582 goto err_exit; 6583 } 6584 6585 /* Initialize local ptrs for common extent processing later. */ 6586 bmask = phba->sli4_hba.vfi_bmask; 6587 ids = phba->sli4_hba.vfi_ids; 6588 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6589 break; 6590 default: 6591 /* Unsupported Opcode. Fail call. */ 6592 id_array = NULL; 6593 bmask = NULL; 6594 ids = NULL; 6595 ext_blk_list = NULL; 6596 goto err_exit; 6597 } 6598 6599 /* 6600 * Complete initializing the extent configuration with the 6601 * allocated ids assigned to this function. The bitmask serves 6602 * as an index into the array and manages the available ids. The 6603 * array just stores the ids communicated to the port via the wqes. 6604 */ 6605 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6606 if ((i % 2) == 0) 6607 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6608 &id_array[k]); 6609 else 6610 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6611 &id_array[k]); 6612 6613 rsrc_blks = kzalloc(length, GFP_KERNEL); 6614 if (unlikely(!rsrc_blks)) { 6615 rc = -ENOMEM; 6616 kfree(bmask); 6617 kfree(ids); 6618 goto err_exit; 6619 } 6620 rsrc_blks->rsrc_start = rsrc_id; 6621 rsrc_blks->rsrc_size = rsrc_size; 6622 list_add_tail(&rsrc_blks->list, ext_blk_list); 6623 rsrc_start = rsrc_id; 6624 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6625 phba->sli4_hba.io_xri_start = rsrc_start + 6626 lpfc_sli4_get_iocb_cnt(phba); 6627 } 6628 6629 while (rsrc_id < (rsrc_start + rsrc_size)) { 6630 ids[j] = rsrc_id; 6631 rsrc_id++; 6632 j++; 6633 } 6634 /* Entire word processed. Get next word.*/ 6635 if ((i % 2) == 1) 6636 k++; 6637 } 6638 err_exit: 6639 lpfc_sli4_mbox_cmd_free(phba, mbox); 6640 return rc; 6641 } 6642 6643 6644 6645 /** 6646 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6647 * @phba: Pointer to HBA context object. 6648 * @type: the extent's type. 6649 * 6650 * This function deallocates all extents of a particular resource type. 6651 * SLI4 does not allow for deallocating a particular extent range. It 6652 * is the caller's responsibility to release all kernel memory resources. 6653 **/ 6654 static int 6655 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6656 { 6657 int rc; 6658 uint32_t length, mbox_tmo = 0; 6659 LPFC_MBOXQ_t *mbox; 6660 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6661 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6662 6663 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6664 if (!mbox) 6665 return -ENOMEM; 6666 6667 /* 6668 * This function sends an embedded mailbox because it only sends the 6669 * the resource type. All extents of this type are released by the 6670 * port. 6671 */ 6672 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr)); 6674 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6675 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6676 length, LPFC_SLI4_MBX_EMBED); 6677 6678 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6679 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6680 LPFC_SLI4_MBX_EMBED); 6681 if (unlikely(rc)) { 6682 rc = -EIO; 6683 goto out_free_mbox; 6684 } 6685 if (!phba->sli4_hba.intr_enable) 6686 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6687 else { 6688 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6689 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6690 } 6691 if (unlikely(rc)) { 6692 rc = -EIO; 6693 goto out_free_mbox; 6694 } 6695 6696 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6697 if (bf_get(lpfc_mbox_hdr_status, 6698 &dealloc_rsrc->header.cfg_shdr.response)) { 6699 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6700 "2919 Failed to release resource extents " 6701 "for type %d - Status 0x%x Add'l Status 0x%x. " 6702 "Resource memory not released.\n", 6703 type, 6704 bf_get(lpfc_mbox_hdr_status, 6705 &dealloc_rsrc->header.cfg_shdr.response), 6706 bf_get(lpfc_mbox_hdr_add_status, 6707 &dealloc_rsrc->header.cfg_shdr.response)); 6708 rc = -EIO; 6709 goto out_free_mbox; 6710 } 6711 6712 /* Release kernel memory resources for the specific type. */ 6713 switch (type) { 6714 case LPFC_RSC_TYPE_FCOE_VPI: 6715 kfree(phba->vpi_bmask); 6716 kfree(phba->vpi_ids); 6717 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6718 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6719 &phba->lpfc_vpi_blk_list, list) { 6720 list_del_init(&rsrc_blk->list); 6721 kfree(rsrc_blk); 6722 } 6723 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6724 break; 6725 case LPFC_RSC_TYPE_FCOE_XRI: 6726 kfree(phba->sli4_hba.xri_bmask); 6727 kfree(phba->sli4_hba.xri_ids); 6728 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6729 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6730 list_del_init(&rsrc_blk->list); 6731 kfree(rsrc_blk); 6732 } 6733 break; 6734 case LPFC_RSC_TYPE_FCOE_VFI: 6735 kfree(phba->sli4_hba.vfi_bmask); 6736 kfree(phba->sli4_hba.vfi_ids); 6737 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6738 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6739 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6740 list_del_init(&rsrc_blk->list); 6741 kfree(rsrc_blk); 6742 } 6743 break; 6744 case LPFC_RSC_TYPE_FCOE_RPI: 6745 /* RPI bitmask and physical id array are cleaned up earlier. */ 6746 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6747 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6748 list_del_init(&rsrc_blk->list); 6749 kfree(rsrc_blk); 6750 } 6751 break; 6752 default: 6753 break; 6754 } 6755 6756 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6757 6758 out_free_mbox: 6759 mempool_free(mbox, phba->mbox_mem_pool); 6760 return rc; 6761 } 6762 6763 static void 6764 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6765 uint32_t feature) 6766 { 6767 uint32_t len; 6768 u32 sig_freq = 0; 6769 6770 len = sizeof(struct lpfc_mbx_set_feature) - 6771 sizeof(struct lpfc_sli4_cfg_mhdr); 6772 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6773 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6774 LPFC_SLI4_MBX_EMBED); 6775 6776 switch (feature) { 6777 case LPFC_SET_UE_RECOVERY: 6778 bf_set(lpfc_mbx_set_feature_UER, 6779 &mbox->u.mqe.un.set_feature, 1); 6780 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6781 mbox->u.mqe.un.set_feature.param_len = 8; 6782 break; 6783 case LPFC_SET_MDS_DIAGS: 6784 bf_set(lpfc_mbx_set_feature_mds, 6785 &mbox->u.mqe.un.set_feature, 1); 6786 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6787 &mbox->u.mqe.un.set_feature, 1); 6788 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6789 mbox->u.mqe.un.set_feature.param_len = 8; 6790 break; 6791 case LPFC_SET_CGN_SIGNAL: 6792 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6793 sig_freq = 0; 6794 else 6795 sig_freq = phba->cgn_sig_freq; 6796 6797 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6798 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6799 &mbox->u.mqe.un.set_feature, sig_freq); 6800 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6801 &mbox->u.mqe.un.set_feature, sig_freq); 6802 } 6803 6804 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6805 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6806 &mbox->u.mqe.un.set_feature, sig_freq); 6807 6808 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6809 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6810 sig_freq = 0; 6811 else 6812 sig_freq = lpfc_acqe_cgn_frequency; 6813 6814 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6815 &mbox->u.mqe.un.set_feature, sig_freq); 6816 6817 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6818 mbox->u.mqe.un.set_feature.param_len = 12; 6819 break; 6820 case LPFC_SET_DUAL_DUMP: 6821 bf_set(lpfc_mbx_set_feature_dd, 6822 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6823 bf_set(lpfc_mbx_set_feature_ddquery, 6824 &mbox->u.mqe.un.set_feature, 0); 6825 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6826 mbox->u.mqe.un.set_feature.param_len = 4; 6827 break; 6828 case LPFC_SET_ENABLE_MI: 6829 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6830 mbox->u.mqe.un.set_feature.param_len = 4; 6831 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6832 phba->pport->cfg_lun_queue_depth); 6833 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6834 phba->sli4_hba.pc_sli4_params.mi_ver); 6835 break; 6836 case LPFC_SET_LD_SIGNAL: 6837 mbox->u.mqe.un.set_feature.feature = LPFC_SET_LD_SIGNAL; 6838 mbox->u.mqe.un.set_feature.param_len = 16; 6839 bf_set(lpfc_mbx_set_feature_lds_qry, 6840 &mbox->u.mqe.un.set_feature, LPFC_QUERY_LDS_OP); 6841 break; 6842 case LPFC_SET_ENABLE_CMF: 6843 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6844 mbox->u.mqe.un.set_feature.param_len = 4; 6845 bf_set(lpfc_mbx_set_feature_cmf, 6846 &mbox->u.mqe.un.set_feature, 1); 6847 break; 6848 } 6849 return; 6850 } 6851 6852 /** 6853 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6854 * @phba: Pointer to HBA context object. 6855 * 6856 * Disable FW logging into host memory on the adapter. To 6857 * be done before reading logs from the host memory. 6858 **/ 6859 void 6860 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6861 { 6862 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6863 6864 spin_lock_irq(&phba->hbalock); 6865 ras_fwlog->state = INACTIVE; 6866 spin_unlock_irq(&phba->hbalock); 6867 6868 /* Disable FW logging to host memory */ 6869 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6870 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6871 6872 /* Wait 10ms for firmware to stop using DMA buffer */ 6873 usleep_range(10 * 1000, 20 * 1000); 6874 } 6875 6876 /** 6877 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6878 * @phba: Pointer to HBA context object. 6879 * 6880 * This function is called to free memory allocated for RAS FW logging 6881 * support in the driver. 6882 **/ 6883 void 6884 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6885 { 6886 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6887 struct lpfc_dmabuf *dmabuf, *next; 6888 6889 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6890 list_for_each_entry_safe(dmabuf, next, 6891 &ras_fwlog->fwlog_buff_list, 6892 list) { 6893 list_del(&dmabuf->list); 6894 dma_free_coherent(&phba->pcidev->dev, 6895 LPFC_RAS_MAX_ENTRY_SIZE, 6896 dmabuf->virt, dmabuf->phys); 6897 kfree(dmabuf); 6898 } 6899 } 6900 6901 if (ras_fwlog->lwpd.virt) { 6902 dma_free_coherent(&phba->pcidev->dev, 6903 sizeof(uint32_t) * 2, 6904 ras_fwlog->lwpd.virt, 6905 ras_fwlog->lwpd.phys); 6906 ras_fwlog->lwpd.virt = NULL; 6907 } 6908 6909 spin_lock_irq(&phba->hbalock); 6910 ras_fwlog->state = INACTIVE; 6911 spin_unlock_irq(&phba->hbalock); 6912 } 6913 6914 /** 6915 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6916 * @phba: Pointer to HBA context object. 6917 * @fwlog_buff_count: Count of buffers to be created. 6918 * 6919 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6920 * to update FW log is posted to the adapter. 6921 * Buffer count is calculated based on module param ras_fwlog_buffsize 6922 * Size of each buffer posted to FW is 64K. 6923 **/ 6924 6925 static int 6926 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6927 uint32_t fwlog_buff_count) 6928 { 6929 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6930 struct lpfc_dmabuf *dmabuf; 6931 int rc = 0, i = 0; 6932 6933 /* Initialize List */ 6934 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6935 6936 /* Allocate memory for the LWPD */ 6937 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6938 sizeof(uint32_t) * 2, 6939 &ras_fwlog->lwpd.phys, 6940 GFP_KERNEL); 6941 if (!ras_fwlog->lwpd.virt) { 6942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6943 "6185 LWPD Memory Alloc Failed\n"); 6944 6945 return -ENOMEM; 6946 } 6947 6948 ras_fwlog->fw_buffcount = fwlog_buff_count; 6949 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6950 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6951 GFP_KERNEL); 6952 if (!dmabuf) { 6953 rc = -ENOMEM; 6954 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6955 "6186 Memory Alloc failed FW logging"); 6956 goto free_mem; 6957 } 6958 6959 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6960 LPFC_RAS_MAX_ENTRY_SIZE, 6961 &dmabuf->phys, GFP_KERNEL); 6962 if (!dmabuf->virt) { 6963 kfree(dmabuf); 6964 rc = -ENOMEM; 6965 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6966 "6187 DMA Alloc Failed FW logging"); 6967 goto free_mem; 6968 } 6969 dmabuf->buffer_tag = i; 6970 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6971 } 6972 6973 free_mem: 6974 if (rc) 6975 lpfc_sli4_ras_dma_free(phba); 6976 6977 return rc; 6978 } 6979 6980 /** 6981 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6982 * @phba: pointer to lpfc hba data structure. 6983 * @pmb: pointer to the driver internal queue element for mailbox command. 6984 * 6985 * Completion handler for driver's RAS MBX command to the device. 6986 **/ 6987 static void 6988 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6989 { 6990 MAILBOX_t *mb; 6991 union lpfc_sli4_cfg_shdr *shdr; 6992 uint32_t shdr_status, shdr_add_status; 6993 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6994 6995 mb = &pmb->u.mb; 6996 6997 shdr = (union lpfc_sli4_cfg_shdr *) 6998 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6999 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7000 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7001 7002 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 7003 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7004 "6188 FW LOG mailbox " 7005 "completed with status x%x add_status x%x," 7006 " mbx status x%x\n", 7007 shdr_status, shdr_add_status, mb->mbxStatus); 7008 7009 ras_fwlog->ras_hwsupport = false; 7010 goto disable_ras; 7011 } 7012 7013 spin_lock_irq(&phba->hbalock); 7014 ras_fwlog->state = ACTIVE; 7015 spin_unlock_irq(&phba->hbalock); 7016 mempool_free(pmb, phba->mbox_mem_pool); 7017 7018 return; 7019 7020 disable_ras: 7021 /* Free RAS DMA memory */ 7022 lpfc_sli4_ras_dma_free(phba); 7023 mempool_free(pmb, phba->mbox_mem_pool); 7024 } 7025 7026 /** 7027 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7028 * @phba: pointer to lpfc hba data structure. 7029 * @fwlog_level: Logging verbosity level. 7030 * @fwlog_enable: Enable/Disable logging. 7031 * 7032 * Initialize memory and post mailbox command to enable FW logging in host 7033 * memory. 7034 **/ 7035 int 7036 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7037 uint32_t fwlog_level, 7038 uint32_t fwlog_enable) 7039 { 7040 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7041 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7042 struct lpfc_dmabuf *dmabuf; 7043 LPFC_MBOXQ_t *mbox; 7044 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7045 int rc = 0; 7046 7047 spin_lock_irq(&phba->hbalock); 7048 ras_fwlog->state = INACTIVE; 7049 spin_unlock_irq(&phba->hbalock); 7050 7051 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7052 phba->cfg_ras_fwlog_buffsize); 7053 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7054 7055 /* 7056 * If re-enabling FW logging support use earlier allocated 7057 * DMA buffers while posting MBX command. 7058 **/ 7059 if (!ras_fwlog->lwpd.virt) { 7060 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7061 if (rc) { 7062 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7063 "6189 FW Log Memory Allocation Failed"); 7064 return rc; 7065 } 7066 } 7067 7068 /* Setup Mailbox command */ 7069 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7070 if (!mbox) { 7071 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7072 "6190 RAS MBX Alloc Failed"); 7073 rc = -ENOMEM; 7074 goto mem_free; 7075 } 7076 7077 ras_fwlog->fw_loglevel = fwlog_level; 7078 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7079 sizeof(struct lpfc_sli4_cfg_mhdr)); 7080 7081 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7082 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7083 len, LPFC_SLI4_MBX_EMBED); 7084 7085 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7086 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7087 fwlog_enable); 7088 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7089 ras_fwlog->fw_loglevel); 7090 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7091 ras_fwlog->fw_buffcount); 7092 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7093 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7094 7095 /* Update DMA buffer address */ 7096 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7097 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7098 7099 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7100 putPaddrLow(dmabuf->phys); 7101 7102 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7103 putPaddrHigh(dmabuf->phys); 7104 } 7105 7106 /* Update LPWD address */ 7107 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7108 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7109 7110 spin_lock_irq(&phba->hbalock); 7111 ras_fwlog->state = REG_INPROGRESS; 7112 spin_unlock_irq(&phba->hbalock); 7113 mbox->vport = phba->pport; 7114 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7115 7116 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7117 7118 if (rc == MBX_NOT_FINISHED) { 7119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7120 "6191 FW-Log Mailbox failed. " 7121 "status %d mbxStatus : x%x", rc, 7122 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7123 mempool_free(mbox, phba->mbox_mem_pool); 7124 rc = -EIO; 7125 goto mem_free; 7126 } else 7127 rc = 0; 7128 mem_free: 7129 if (rc) 7130 lpfc_sli4_ras_dma_free(phba); 7131 7132 return rc; 7133 } 7134 7135 /** 7136 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7137 * @phba: Pointer to HBA context object. 7138 * 7139 * Check if RAS is supported on the adapter and initialize it. 7140 **/ 7141 void 7142 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7143 { 7144 /* Check RAS FW Log needs to be enabled or not */ 7145 if (lpfc_check_fwlog_support(phba)) 7146 return; 7147 7148 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7149 LPFC_RAS_ENABLE_LOGGING); 7150 } 7151 7152 /** 7153 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7154 * @phba: Pointer to HBA context object. 7155 * 7156 * This function allocates all SLI4 resource identifiers. 7157 **/ 7158 int 7159 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7160 { 7161 int i, rc, error = 0; 7162 uint16_t count, base; 7163 unsigned long longs; 7164 7165 if (!phba->sli4_hba.rpi_hdrs_in_use) 7166 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7167 if (phba->sli4_hba.extents_in_use) { 7168 /* 7169 * The port supports resource extents. The XRI, VPI, VFI, RPI 7170 * resource extent count must be read and allocated before 7171 * provisioning the resource id arrays. 7172 */ 7173 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7174 LPFC_IDX_RSRC_RDY) { 7175 /* 7176 * Extent-based resources are set - the driver could 7177 * be in a port reset. Figure out if any corrective 7178 * actions need to be taken. 7179 */ 7180 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7181 LPFC_RSC_TYPE_FCOE_VFI); 7182 if (rc != 0) 7183 error++; 7184 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7185 LPFC_RSC_TYPE_FCOE_VPI); 7186 if (rc != 0) 7187 error++; 7188 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7189 LPFC_RSC_TYPE_FCOE_XRI); 7190 if (rc != 0) 7191 error++; 7192 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7193 LPFC_RSC_TYPE_FCOE_RPI); 7194 if (rc != 0) 7195 error++; 7196 7197 /* 7198 * It's possible that the number of resources 7199 * provided to this port instance changed between 7200 * resets. Detect this condition and reallocate 7201 * resources. Otherwise, there is no action. 7202 */ 7203 if (error) { 7204 lpfc_printf_log(phba, KERN_INFO, 7205 LOG_MBOX | LOG_INIT, 7206 "2931 Detected extent resource " 7207 "change. Reallocating all " 7208 "extents.\n"); 7209 rc = lpfc_sli4_dealloc_extent(phba, 7210 LPFC_RSC_TYPE_FCOE_VFI); 7211 rc = lpfc_sli4_dealloc_extent(phba, 7212 LPFC_RSC_TYPE_FCOE_VPI); 7213 rc = lpfc_sli4_dealloc_extent(phba, 7214 LPFC_RSC_TYPE_FCOE_XRI); 7215 rc = lpfc_sli4_dealloc_extent(phba, 7216 LPFC_RSC_TYPE_FCOE_RPI); 7217 } else 7218 return 0; 7219 } 7220 7221 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7222 if (unlikely(rc)) 7223 goto err_exit; 7224 7225 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7226 if (unlikely(rc)) 7227 goto err_exit; 7228 7229 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7230 if (unlikely(rc)) 7231 goto err_exit; 7232 7233 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7234 if (unlikely(rc)) 7235 goto err_exit; 7236 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7237 LPFC_IDX_RSRC_RDY); 7238 return rc; 7239 } else { 7240 /* 7241 * The port does not support resource extents. The XRI, VPI, 7242 * VFI, RPI resource ids were determined from READ_CONFIG. 7243 * Just allocate the bitmasks and provision the resource id 7244 * arrays. If a port reset is active, the resources don't 7245 * need any action - just exit. 7246 */ 7247 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7248 LPFC_IDX_RSRC_RDY) { 7249 lpfc_sli4_dealloc_resource_identifiers(phba); 7250 lpfc_sli4_remove_rpis(phba); 7251 } 7252 /* RPIs. */ 7253 count = phba->sli4_hba.max_cfg_param.max_rpi; 7254 if (count <= 0) { 7255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7256 "3279 Invalid provisioning of " 7257 "rpi:%d\n", count); 7258 rc = -EINVAL; 7259 goto err_exit; 7260 } 7261 base = phba->sli4_hba.max_cfg_param.rpi_base; 7262 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7263 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7264 sizeof(unsigned long), 7265 GFP_KERNEL); 7266 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7267 rc = -ENOMEM; 7268 goto err_exit; 7269 } 7270 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7271 GFP_KERNEL); 7272 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7273 rc = -ENOMEM; 7274 goto free_rpi_bmask; 7275 } 7276 7277 for (i = 0; i < count; i++) 7278 phba->sli4_hba.rpi_ids[i] = base + i; 7279 7280 /* VPIs. */ 7281 count = phba->sli4_hba.max_cfg_param.max_vpi; 7282 if (count <= 0) { 7283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7284 "3280 Invalid provisioning of " 7285 "vpi:%d\n", count); 7286 rc = -EINVAL; 7287 goto free_rpi_ids; 7288 } 7289 base = phba->sli4_hba.max_cfg_param.vpi_base; 7290 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7291 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7292 GFP_KERNEL); 7293 if (unlikely(!phba->vpi_bmask)) { 7294 rc = -ENOMEM; 7295 goto free_rpi_ids; 7296 } 7297 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7298 GFP_KERNEL); 7299 if (unlikely(!phba->vpi_ids)) { 7300 rc = -ENOMEM; 7301 goto free_vpi_bmask; 7302 } 7303 7304 for (i = 0; i < count; i++) 7305 phba->vpi_ids[i] = base + i; 7306 7307 /* XRIs. */ 7308 count = phba->sli4_hba.max_cfg_param.max_xri; 7309 if (count <= 0) { 7310 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7311 "3281 Invalid provisioning of " 7312 "xri:%d\n", count); 7313 rc = -EINVAL; 7314 goto free_vpi_ids; 7315 } 7316 base = phba->sli4_hba.max_cfg_param.xri_base; 7317 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7318 phba->sli4_hba.xri_bmask = kcalloc(longs, 7319 sizeof(unsigned long), 7320 GFP_KERNEL); 7321 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7322 rc = -ENOMEM; 7323 goto free_vpi_ids; 7324 } 7325 phba->sli4_hba.max_cfg_param.xri_used = 0; 7326 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7327 GFP_KERNEL); 7328 if (unlikely(!phba->sli4_hba.xri_ids)) { 7329 rc = -ENOMEM; 7330 goto free_xri_bmask; 7331 } 7332 7333 for (i = 0; i < count; i++) 7334 phba->sli4_hba.xri_ids[i] = base + i; 7335 7336 /* VFIs. */ 7337 count = phba->sli4_hba.max_cfg_param.max_vfi; 7338 if (count <= 0) { 7339 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7340 "3282 Invalid provisioning of " 7341 "vfi:%d\n", count); 7342 rc = -EINVAL; 7343 goto free_xri_ids; 7344 } 7345 base = phba->sli4_hba.max_cfg_param.vfi_base; 7346 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7347 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7348 sizeof(unsigned long), 7349 GFP_KERNEL); 7350 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7351 rc = -ENOMEM; 7352 goto free_xri_ids; 7353 } 7354 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7355 GFP_KERNEL); 7356 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7357 rc = -ENOMEM; 7358 goto free_vfi_bmask; 7359 } 7360 7361 for (i = 0; i < count; i++) 7362 phba->sli4_hba.vfi_ids[i] = base + i; 7363 7364 /* 7365 * Mark all resources ready. An HBA reset doesn't need 7366 * to reset the initialization. 7367 */ 7368 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7369 LPFC_IDX_RSRC_RDY); 7370 return 0; 7371 } 7372 7373 free_vfi_bmask: 7374 kfree(phba->sli4_hba.vfi_bmask); 7375 phba->sli4_hba.vfi_bmask = NULL; 7376 free_xri_ids: 7377 kfree(phba->sli4_hba.xri_ids); 7378 phba->sli4_hba.xri_ids = NULL; 7379 free_xri_bmask: 7380 kfree(phba->sli4_hba.xri_bmask); 7381 phba->sli4_hba.xri_bmask = NULL; 7382 free_vpi_ids: 7383 kfree(phba->vpi_ids); 7384 phba->vpi_ids = NULL; 7385 free_vpi_bmask: 7386 kfree(phba->vpi_bmask); 7387 phba->vpi_bmask = NULL; 7388 free_rpi_ids: 7389 kfree(phba->sli4_hba.rpi_ids); 7390 phba->sli4_hba.rpi_ids = NULL; 7391 free_rpi_bmask: 7392 kfree(phba->sli4_hba.rpi_bmask); 7393 phba->sli4_hba.rpi_bmask = NULL; 7394 err_exit: 7395 return rc; 7396 } 7397 7398 /** 7399 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7400 * @phba: Pointer to HBA context object. 7401 * 7402 * This function allocates the number of elements for the specified 7403 * resource type. 7404 **/ 7405 int 7406 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7407 { 7408 if (phba->sli4_hba.extents_in_use) { 7409 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7410 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7411 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7412 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7413 } else { 7414 kfree(phba->vpi_bmask); 7415 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7416 kfree(phba->vpi_ids); 7417 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7418 kfree(phba->sli4_hba.xri_bmask); 7419 kfree(phba->sli4_hba.xri_ids); 7420 kfree(phba->sli4_hba.vfi_bmask); 7421 kfree(phba->sli4_hba.vfi_ids); 7422 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7423 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7424 } 7425 7426 return 0; 7427 } 7428 7429 /** 7430 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7431 * @phba: Pointer to HBA context object. 7432 * @type: The resource extent type. 7433 * @extnt_cnt: buffer to hold port extent count response 7434 * @extnt_size: buffer to hold port extent size response. 7435 * 7436 * This function calls the port to read the host allocated extents 7437 * for a particular type. 7438 **/ 7439 int 7440 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7441 uint16_t *extnt_cnt, uint16_t *extnt_size) 7442 { 7443 bool emb; 7444 int rc = 0; 7445 uint16_t curr_blks = 0; 7446 uint32_t req_len, emb_len; 7447 uint32_t alloc_len, mbox_tmo; 7448 struct list_head *blk_list_head; 7449 struct lpfc_rsrc_blks *rsrc_blk; 7450 LPFC_MBOXQ_t *mbox; 7451 void *virtaddr = NULL; 7452 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7453 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7454 union lpfc_sli4_cfg_shdr *shdr; 7455 7456 switch (type) { 7457 case LPFC_RSC_TYPE_FCOE_VPI: 7458 blk_list_head = &phba->lpfc_vpi_blk_list; 7459 break; 7460 case LPFC_RSC_TYPE_FCOE_XRI: 7461 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7462 break; 7463 case LPFC_RSC_TYPE_FCOE_VFI: 7464 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7465 break; 7466 case LPFC_RSC_TYPE_FCOE_RPI: 7467 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7468 break; 7469 default: 7470 return -EIO; 7471 } 7472 7473 /* Count the number of extents currently allocatd for this type. */ 7474 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7475 if (curr_blks == 0) { 7476 /* 7477 * The GET_ALLOCATED mailbox does not return the size, 7478 * just the count. The size should be just the size 7479 * stored in the current allocated block and all sizes 7480 * for an extent type are the same so set the return 7481 * value now. 7482 */ 7483 *extnt_size = rsrc_blk->rsrc_size; 7484 } 7485 curr_blks++; 7486 } 7487 7488 /* 7489 * Calculate the size of an embedded mailbox. The uint32_t 7490 * accounts for extents-specific word. 7491 */ 7492 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7493 sizeof(uint32_t); 7494 7495 /* 7496 * Presume the allocation and response will fit into an embedded 7497 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7498 */ 7499 emb = LPFC_SLI4_MBX_EMBED; 7500 req_len = emb_len; 7501 if (req_len > emb_len) { 7502 req_len = curr_blks * sizeof(uint16_t) + 7503 sizeof(union lpfc_sli4_cfg_shdr) + 7504 sizeof(uint32_t); 7505 emb = LPFC_SLI4_MBX_NEMBED; 7506 } 7507 7508 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7509 if (!mbox) 7510 return -ENOMEM; 7511 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7512 7513 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7514 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7515 req_len, emb); 7516 if (alloc_len < req_len) { 7517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7518 "2983 Allocated DMA memory size (x%x) is " 7519 "less than the requested DMA memory " 7520 "size (x%x)\n", alloc_len, req_len); 7521 rc = -ENOMEM; 7522 goto err_exit; 7523 } 7524 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7525 if (unlikely(rc)) { 7526 rc = -EIO; 7527 goto err_exit; 7528 } 7529 7530 if (!phba->sli4_hba.intr_enable) 7531 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7532 else { 7533 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7534 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7535 } 7536 7537 if (unlikely(rc)) { 7538 rc = -EIO; 7539 goto err_exit; 7540 } 7541 7542 /* 7543 * Figure out where the response is located. Then get local pointers 7544 * to the response data. The port does not guarantee to respond to 7545 * all extents counts request so update the local variable with the 7546 * allocated count from the port. 7547 */ 7548 if (emb == LPFC_SLI4_MBX_EMBED) { 7549 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7550 shdr = &rsrc_ext->header.cfg_shdr; 7551 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7552 } else { 7553 virtaddr = mbox->sge_array->addr[0]; 7554 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7555 shdr = &n_rsrc->cfg_shdr; 7556 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7557 } 7558 7559 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7561 "2984 Failed to read allocated resources " 7562 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7563 type, 7564 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7565 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7566 rc = -EIO; 7567 goto err_exit; 7568 } 7569 err_exit: 7570 lpfc_sli4_mbox_cmd_free(phba, mbox); 7571 return rc; 7572 } 7573 7574 /** 7575 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7576 * @phba: pointer to lpfc hba data structure. 7577 * @sgl_list: linked link of sgl buffers to post 7578 * @cnt: number of linked list buffers 7579 * 7580 * This routine walks the list of buffers that have been allocated and 7581 * repost them to the port by using SGL block post. This is needed after a 7582 * pci_function_reset/warm_start or start. It attempts to construct blocks 7583 * of buffer sgls which contains contiguous xris and uses the non-embedded 7584 * SGL block post mailbox commands to post them to the port. For single 7585 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7586 * mailbox command for posting. 7587 * 7588 * Returns: 0 = success, non-zero failure. 7589 **/ 7590 static int 7591 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7592 struct list_head *sgl_list, int cnt) 7593 { 7594 struct lpfc_sglq *sglq_entry = NULL; 7595 struct lpfc_sglq *sglq_entry_next = NULL; 7596 struct lpfc_sglq *sglq_entry_first = NULL; 7597 int status, total_cnt; 7598 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7599 int last_xritag = NO_XRI; 7600 LIST_HEAD(prep_sgl_list); 7601 LIST_HEAD(blck_sgl_list); 7602 LIST_HEAD(allc_sgl_list); 7603 LIST_HEAD(post_sgl_list); 7604 LIST_HEAD(free_sgl_list); 7605 7606 spin_lock_irq(&phba->hbalock); 7607 spin_lock(&phba->sli4_hba.sgl_list_lock); 7608 list_splice_init(sgl_list, &allc_sgl_list); 7609 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7610 spin_unlock_irq(&phba->hbalock); 7611 7612 total_cnt = cnt; 7613 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7614 &allc_sgl_list, list) { 7615 list_del_init(&sglq_entry->list); 7616 block_cnt++; 7617 if ((last_xritag != NO_XRI) && 7618 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7619 /* a hole in xri block, form a sgl posting block */ 7620 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7621 post_cnt = block_cnt - 1; 7622 /* prepare list for next posting block */ 7623 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7624 block_cnt = 1; 7625 } else { 7626 /* prepare list for next posting block */ 7627 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7628 /* enough sgls for non-embed sgl mbox command */ 7629 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7630 list_splice_init(&prep_sgl_list, 7631 &blck_sgl_list); 7632 post_cnt = block_cnt; 7633 block_cnt = 0; 7634 } 7635 } 7636 num_posted++; 7637 7638 /* keep track of last sgl's xritag */ 7639 last_xritag = sglq_entry->sli4_xritag; 7640 7641 /* end of repost sgl list condition for buffers */ 7642 if (num_posted == total_cnt) { 7643 if (post_cnt == 0) { 7644 list_splice_init(&prep_sgl_list, 7645 &blck_sgl_list); 7646 post_cnt = block_cnt; 7647 } else if (block_cnt == 1) { 7648 status = lpfc_sli4_post_sgl(phba, 7649 sglq_entry->phys, 0, 7650 sglq_entry->sli4_xritag); 7651 if (!status) { 7652 /* successful, put sgl to posted list */ 7653 list_add_tail(&sglq_entry->list, 7654 &post_sgl_list); 7655 } else { 7656 /* Failure, put sgl to free list */ 7657 lpfc_printf_log(phba, KERN_WARNING, 7658 LOG_SLI, 7659 "3159 Failed to post " 7660 "sgl, xritag:x%x\n", 7661 sglq_entry->sli4_xritag); 7662 list_add_tail(&sglq_entry->list, 7663 &free_sgl_list); 7664 total_cnt--; 7665 } 7666 } 7667 } 7668 7669 /* continue until a nembed page worth of sgls */ 7670 if (post_cnt == 0) 7671 continue; 7672 7673 /* post the buffer list sgls as a block */ 7674 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7675 post_cnt); 7676 7677 if (!status) { 7678 /* success, put sgl list to posted sgl list */ 7679 list_splice_init(&blck_sgl_list, &post_sgl_list); 7680 } else { 7681 /* Failure, put sgl list to free sgl list */ 7682 sglq_entry_first = list_first_entry(&blck_sgl_list, 7683 struct lpfc_sglq, 7684 list); 7685 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7686 "3160 Failed to post sgl-list, " 7687 "xritag:x%x-x%x\n", 7688 sglq_entry_first->sli4_xritag, 7689 (sglq_entry_first->sli4_xritag + 7690 post_cnt - 1)); 7691 list_splice_init(&blck_sgl_list, &free_sgl_list); 7692 total_cnt -= post_cnt; 7693 } 7694 7695 /* don't reset xirtag due to hole in xri block */ 7696 if (block_cnt == 0) 7697 last_xritag = NO_XRI; 7698 7699 /* reset sgl post count for next round of posting */ 7700 post_cnt = 0; 7701 } 7702 7703 /* free the sgls failed to post */ 7704 lpfc_free_sgl_list(phba, &free_sgl_list); 7705 7706 /* push sgls posted to the available list */ 7707 if (!list_empty(&post_sgl_list)) { 7708 spin_lock_irq(&phba->hbalock); 7709 spin_lock(&phba->sli4_hba.sgl_list_lock); 7710 list_splice_init(&post_sgl_list, sgl_list); 7711 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7712 spin_unlock_irq(&phba->hbalock); 7713 } else { 7714 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7715 "3161 Failure to post sgl to port.\n"); 7716 return -EIO; 7717 } 7718 7719 /* return the number of XRIs actually posted */ 7720 return total_cnt; 7721 } 7722 7723 /** 7724 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7725 * @phba: pointer to lpfc hba data structure. 7726 * 7727 * This routine walks the list of nvme buffers that have been allocated and 7728 * repost them to the port by using SGL block post. This is needed after a 7729 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7730 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7731 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7732 * 7733 * Returns: 0 = success, non-zero failure. 7734 **/ 7735 static int 7736 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7737 { 7738 LIST_HEAD(post_nblist); 7739 int num_posted, rc = 0; 7740 7741 /* get all NVME buffers need to repost to a local list */ 7742 lpfc_io_buf_flush(phba, &post_nblist); 7743 7744 /* post the list of nvme buffer sgls to port if available */ 7745 if (!list_empty(&post_nblist)) { 7746 num_posted = lpfc_sli4_post_io_sgl_list( 7747 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7748 /* failed to post any nvme buffer, return error */ 7749 if (num_posted == 0) 7750 rc = -EIO; 7751 } 7752 return rc; 7753 } 7754 7755 static void 7756 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7757 { 7758 uint32_t len; 7759 7760 len = sizeof(struct lpfc_mbx_set_host_data) - 7761 sizeof(struct lpfc_sli4_cfg_mhdr); 7762 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7763 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7764 LPFC_SLI4_MBX_EMBED); 7765 7766 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7767 mbox->u.mqe.un.set_host_data.param_len = 7768 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7769 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7770 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7771 "Linux %s v"LPFC_DRIVER_VERSION, 7772 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7773 } 7774 7775 int 7776 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7777 struct lpfc_queue *drq, int count, int idx) 7778 { 7779 int rc, i; 7780 struct lpfc_rqe hrqe; 7781 struct lpfc_rqe drqe; 7782 struct lpfc_rqb *rqbp; 7783 unsigned long flags; 7784 struct rqb_dmabuf *rqb_buffer; 7785 LIST_HEAD(rqb_buf_list); 7786 7787 rqbp = hrq->rqbp; 7788 for (i = 0; i < count; i++) { 7789 spin_lock_irqsave(&phba->hbalock, flags); 7790 /* IF RQ is already full, don't bother */ 7791 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7792 spin_unlock_irqrestore(&phba->hbalock, flags); 7793 break; 7794 } 7795 spin_unlock_irqrestore(&phba->hbalock, flags); 7796 7797 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7798 if (!rqb_buffer) 7799 break; 7800 rqb_buffer->hrq = hrq; 7801 rqb_buffer->drq = drq; 7802 rqb_buffer->idx = idx; 7803 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7804 } 7805 7806 spin_lock_irqsave(&phba->hbalock, flags); 7807 while (!list_empty(&rqb_buf_list)) { 7808 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7809 hbuf.list); 7810 7811 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7812 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7813 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7814 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7815 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7816 if (rc < 0) { 7817 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7818 "6421 Cannot post to HRQ %d: %x %x %x " 7819 "DRQ %x %x\n", 7820 hrq->queue_id, 7821 hrq->host_index, 7822 hrq->hba_index, 7823 hrq->entry_count, 7824 drq->host_index, 7825 drq->hba_index); 7826 rqbp->rqb_free_buffer(phba, rqb_buffer); 7827 } else { 7828 list_add_tail(&rqb_buffer->hbuf.list, 7829 &rqbp->rqb_buffer_list); 7830 rqbp->buffer_count++; 7831 } 7832 } 7833 spin_unlock_irqrestore(&phba->hbalock, flags); 7834 return 1; 7835 } 7836 7837 static void 7838 lpfc_mbx_cmpl_read_lds_params(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7839 { 7840 union lpfc_sli4_cfg_shdr *shdr; 7841 u32 shdr_status, shdr_add_status; 7842 7843 shdr = (union lpfc_sli4_cfg_shdr *) 7844 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7845 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7846 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7847 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7848 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT | LOG_MBOX, 7849 "4622 SET_FEATURE (x%x) mbox failed, " 7850 "status x%x add_status x%x, mbx status x%x\n", 7851 LPFC_SET_LD_SIGNAL, shdr_status, 7852 shdr_add_status, pmb->u.mb.mbxStatus); 7853 phba->degrade_activate_threshold = 0; 7854 phba->degrade_deactivate_threshold = 0; 7855 phba->fec_degrade_interval = 0; 7856 goto out; 7857 } 7858 7859 phba->degrade_activate_threshold = pmb->u.mqe.un.set_feature.word7; 7860 phba->degrade_deactivate_threshold = pmb->u.mqe.un.set_feature.word8; 7861 phba->fec_degrade_interval = pmb->u.mqe.un.set_feature.word10; 7862 7863 lpfc_printf_log(phba, KERN_INFO, LOG_LDS_EVENT, 7864 "4624 Success: da x%x dd x%x interval x%x\n", 7865 phba->degrade_activate_threshold, 7866 phba->degrade_deactivate_threshold, 7867 phba->fec_degrade_interval); 7868 out: 7869 mempool_free(pmb, phba->mbox_mem_pool); 7870 } 7871 7872 int 7873 lpfc_read_lds_params(struct lpfc_hba *phba) 7874 { 7875 LPFC_MBOXQ_t *mboxq; 7876 int rc; 7877 7878 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7879 if (!mboxq) 7880 return -ENOMEM; 7881 7882 lpfc_set_features(phba, mboxq, LPFC_SET_LD_SIGNAL); 7883 mboxq->vport = phba->pport; 7884 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_lds_params; 7885 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7886 if (rc == MBX_NOT_FINISHED) { 7887 mempool_free(mboxq, phba->mbox_mem_pool); 7888 return -EIO; 7889 } 7890 return 0; 7891 } 7892 7893 static void 7894 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7895 { 7896 struct lpfc_vport *vport = pmb->vport; 7897 union lpfc_sli4_cfg_shdr *shdr; 7898 u32 shdr_status, shdr_add_status; 7899 u32 sig, acqe; 7900 7901 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7902 * is done. (2) Mailbox failed and send FPIN support only. 7903 */ 7904 shdr = (union lpfc_sli4_cfg_shdr *) 7905 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7906 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7907 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7908 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7909 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7910 "2516 CGN SET_FEATURE mbox failed with " 7911 "status x%x add_status x%x, mbx status x%x " 7912 "Reset Congestion to FPINs only\n", 7913 shdr_status, shdr_add_status, 7914 pmb->u.mb.mbxStatus); 7915 /* If there is a mbox error, move on to RDF */ 7916 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7917 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7918 goto out; 7919 } 7920 7921 /* Zero out Congestion Signal ACQE counter */ 7922 phba->cgn_acqe_cnt = 0; 7923 7924 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7925 &pmb->u.mqe.un.set_feature); 7926 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7927 &pmb->u.mqe.un.set_feature); 7928 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7929 "4620 SET_FEATURES Success: Freq: %ds %dms " 7930 " Reg: x%x x%x\n", acqe, sig, 7931 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7932 out: 7933 mempool_free(pmb, phba->mbox_mem_pool); 7934 7935 /* Register for FPIN events from the fabric now that the 7936 * EDC common_set_features has completed. 7937 */ 7938 lpfc_issue_els_rdf(vport, 0); 7939 } 7940 7941 int 7942 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7943 { 7944 LPFC_MBOXQ_t *mboxq; 7945 u32 rc; 7946 7947 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7948 if (!mboxq) 7949 goto out_rdf; 7950 7951 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7952 mboxq->vport = phba->pport; 7953 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7954 7955 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7956 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7957 "Reg: x%x x%x\n", 7958 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7959 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7960 7961 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7962 if (rc == MBX_NOT_FINISHED) 7963 goto out; 7964 return 0; 7965 7966 out: 7967 mempool_free(mboxq, phba->mbox_mem_pool); 7968 out_rdf: 7969 /* If there is a mbox error, move on to RDF */ 7970 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7971 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7972 lpfc_issue_els_rdf(phba->pport, 0); 7973 return -EIO; 7974 } 7975 7976 /** 7977 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7978 * @phba: pointer to lpfc hba data structure. 7979 * 7980 * This routine initializes the per-cq idle_stat to dynamically dictate 7981 * polling decisions. 7982 * 7983 * Return codes: 7984 * None 7985 **/ 7986 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7987 { 7988 int i; 7989 struct lpfc_sli4_hdw_queue *hdwq; 7990 struct lpfc_queue *cq; 7991 struct lpfc_idle_stat *idle_stat; 7992 u64 wall; 7993 7994 for_each_present_cpu(i) { 7995 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7996 cq = hdwq->io_cq; 7997 7998 /* Skip if we've already handled this cq's primary CPU */ 7999 if (cq->chann != i) 8000 continue; 8001 8002 idle_stat = &phba->sli4_hba.idle_stat[i]; 8003 8004 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 8005 idle_stat->prev_wall = wall; 8006 8007 if (phba->nvmet_support || 8008 phba->cmf_active_mode != LPFC_CFG_OFF) 8009 cq->poll_mode = LPFC_QUEUE_WORK; 8010 else 8011 cq->poll_mode = LPFC_IRQ_POLL; 8012 } 8013 8014 if (!phba->nvmet_support) 8015 schedule_delayed_work(&phba->idle_stat_delay_work, 8016 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 8017 } 8018 8019 static void lpfc_sli4_dip(struct lpfc_hba *phba) 8020 { 8021 uint32_t if_type; 8022 8023 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 8024 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 8025 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 8026 struct lpfc_register reg_data; 8027 8028 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 8029 ®_data.word0)) 8030 return; 8031 8032 if (bf_get(lpfc_sliport_status_dip, ®_data)) 8033 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8034 "2904 Firmware Dump Image Present" 8035 " on Adapter"); 8036 } 8037 } 8038 8039 /** 8040 * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor 8041 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8042 * @entries: Number of rx_info_entry objects to allocate in ring 8043 * 8044 * Return: 8045 * 0 - Success 8046 * ENOMEM - Failure to kmalloc 8047 **/ 8048 int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, 8049 u32 entries) 8050 { 8051 rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), 8052 GFP_KERNEL); 8053 if (!rx_monitor->ring) 8054 return -ENOMEM; 8055 8056 rx_monitor->head_idx = 0; 8057 rx_monitor->tail_idx = 0; 8058 spin_lock_init(&rx_monitor->lock); 8059 rx_monitor->entries = entries; 8060 8061 return 0; 8062 } 8063 8064 /** 8065 * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor 8066 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8067 **/ 8068 void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) 8069 { 8070 spin_lock(&rx_monitor->lock); 8071 kfree(rx_monitor->ring); 8072 rx_monitor->ring = NULL; 8073 rx_monitor->entries = 0; 8074 rx_monitor->head_idx = 0; 8075 rx_monitor->tail_idx = 0; 8076 spin_unlock(&rx_monitor->lock); 8077 } 8078 8079 /** 8080 * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring 8081 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8082 * @entry: Pointer to rx_info_entry 8083 * 8084 * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a 8085 * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. 8086 * 8087 * This is called from lpfc_cmf_timer, which is in timer/softirq context. 8088 * 8089 * In cases of old data overflow, we do a best effort of FIFO order. 8090 **/ 8091 void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, 8092 struct rx_info_entry *entry) 8093 { 8094 struct rx_info_entry *ring = rx_monitor->ring; 8095 u32 *head_idx = &rx_monitor->head_idx; 8096 u32 *tail_idx = &rx_monitor->tail_idx; 8097 spinlock_t *ring_lock = &rx_monitor->lock; 8098 u32 ring_size = rx_monitor->entries; 8099 8100 spin_lock(ring_lock); 8101 memcpy(&ring[*tail_idx], entry, sizeof(*entry)); 8102 *tail_idx = (*tail_idx + 1) % ring_size; 8103 8104 /* Best effort of FIFO saved data */ 8105 if (*tail_idx == *head_idx) 8106 *head_idx = (*head_idx + 1) % ring_size; 8107 8108 spin_unlock(ring_lock); 8109 } 8110 8111 /** 8112 * lpfc_rx_monitor_report - Read out rx_monitor's ring 8113 * @phba: Pointer to lpfc_hba object 8114 * @rx_monitor: Pointer to lpfc_rx_info_monitor object 8115 * @buf: Pointer to char buffer that will contain rx monitor info data 8116 * @buf_len: Length buf including null char 8117 * @max_read_entries: Maximum number of entries to read out of ring 8118 * 8119 * Used to dump/read what's in rx_monitor's ring buffer. 8120 * 8121 * If buf is NULL || buf_len == 0, then it is implied that we want to log the 8122 * information to kmsg instead of filling out buf. 8123 * 8124 * Return: 8125 * Number of entries read out of the ring 8126 **/ 8127 u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, 8128 struct lpfc_rx_info_monitor *rx_monitor, char *buf, 8129 u32 buf_len, u32 max_read_entries) 8130 { 8131 struct rx_info_entry *ring = rx_monitor->ring; 8132 struct rx_info_entry *entry; 8133 u32 *head_idx = &rx_monitor->head_idx; 8134 u32 *tail_idx = &rx_monitor->tail_idx; 8135 spinlock_t *ring_lock = &rx_monitor->lock; 8136 u32 ring_size = rx_monitor->entries; 8137 u32 cnt = 0; 8138 char tmp[DBG_LOG_STR_SZ] = {0}; 8139 bool log_to_kmsg = (!buf || !buf_len) ? true : false; 8140 8141 if (!log_to_kmsg) { 8142 /* clear the buffer to be sure */ 8143 memset(buf, 0, buf_len); 8144 8145 scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" 8146 "%-8s%-8s%-8s%-16s\n", 8147 "MaxBPI", "Tot_Data_CMF", 8148 "Tot_Data_Cmd", "Tot_Data_Cmpl", 8149 "Lat(us)", "Avg_IO", "Max_IO", "Bsy", 8150 "IO_cnt", "Info", "BWutil(ms)"); 8151 } 8152 8153 /* Needs to be _bh because record is called from timer interrupt 8154 * context 8155 */ 8156 spin_lock_bh(ring_lock); 8157 while (*head_idx != *tail_idx) { 8158 entry = &ring[*head_idx]; 8159 8160 /* Read out this entry's data. */ 8161 if (!log_to_kmsg) { 8162 /* If !log_to_kmsg, then store to buf. */ 8163 scnprintf(tmp, sizeof(tmp), 8164 "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" 8165 "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", 8166 *head_idx, entry->max_bytes_per_interval, 8167 entry->cmf_bytes, entry->total_bytes, 8168 entry->rcv_bytes, entry->avg_io_latency, 8169 entry->avg_io_size, entry->max_read_cnt, 8170 entry->cmf_busy, entry->io_cnt, 8171 entry->cmf_info, entry->timer_utilization, 8172 entry->timer_interval); 8173 8174 /* Check for buffer overflow */ 8175 if ((strlen(buf) + strlen(tmp)) >= buf_len) 8176 break; 8177 8178 /* Append entry's data to buffer */ 8179 strlcat(buf, tmp, buf_len); 8180 } else { 8181 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 8182 "4410 %02u: MBPI %llu Xmit %llu " 8183 "Cmpl %llu Lat %llu ASz %llu Info %02u " 8184 "BWUtil %u Int %u slot %u\n", 8185 cnt, entry->max_bytes_per_interval, 8186 entry->total_bytes, entry->rcv_bytes, 8187 entry->avg_io_latency, 8188 entry->avg_io_size, entry->cmf_info, 8189 entry->timer_utilization, 8190 entry->timer_interval, *head_idx); 8191 } 8192 8193 *head_idx = (*head_idx + 1) % ring_size; 8194 8195 /* Don't feed more than max_read_entries */ 8196 cnt++; 8197 if (cnt >= max_read_entries) 8198 break; 8199 } 8200 spin_unlock_bh(ring_lock); 8201 8202 return cnt; 8203 } 8204 8205 /** 8206 * lpfc_cmf_setup - Initialize idle_stat tracking 8207 * @phba: Pointer to HBA context object. 8208 * 8209 * This is called from HBA setup during driver load or when the HBA 8210 * comes online. this does all the initialization to support CMF and MI. 8211 **/ 8212 static int 8213 lpfc_cmf_setup(struct lpfc_hba *phba) 8214 { 8215 LPFC_MBOXQ_t *mboxq; 8216 struct lpfc_dmabuf *mp; 8217 struct lpfc_pc_sli4_params *sli4_params; 8218 int rc, cmf, mi_ver; 8219 8220 rc = lpfc_sli4_refresh_params(phba); 8221 if (unlikely(rc)) 8222 return rc; 8223 8224 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8225 if (!mboxq) 8226 return -ENOMEM; 8227 8228 sli4_params = &phba->sli4_hba.pc_sli4_params; 8229 8230 /* Always try to enable MI feature if we can */ 8231 if (sli4_params->mi_ver) { 8232 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 8233 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8234 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 8235 &mboxq->u.mqe.un.set_feature); 8236 8237 if (rc == MBX_SUCCESS) { 8238 if (mi_ver) { 8239 lpfc_printf_log(phba, 8240 KERN_WARNING, LOG_CGN_MGMT, 8241 "6215 MI is enabled\n"); 8242 sli4_params->mi_ver = mi_ver; 8243 } else { 8244 lpfc_printf_log(phba, 8245 KERN_WARNING, LOG_CGN_MGMT, 8246 "6338 MI is disabled\n"); 8247 sli4_params->mi_ver = 0; 8248 } 8249 } else { 8250 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8251 lpfc_printf_log(phba, KERN_INFO, 8252 LOG_CGN_MGMT | LOG_INIT, 8253 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8254 "failed, rc:x%x mi:x%x\n", 8255 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8256 lpfc_sli_config_mbox_subsys_get 8257 (phba, mboxq), 8258 lpfc_sli_config_mbox_opcode_get 8259 (phba, mboxq), 8260 rc, sli4_params->mi_ver); 8261 } 8262 } else { 8263 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8264 "6217 MI is disabled\n"); 8265 } 8266 8267 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8268 if (sli4_params->mi_ver) 8269 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8270 8271 /* Always try to enable CMF feature if we can */ 8272 if (sli4_params->cmf) { 8273 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8274 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8275 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8276 &mboxq->u.mqe.un.set_feature); 8277 if (rc == MBX_SUCCESS && cmf) { 8278 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8279 "6218 CMF is enabled: mode %d\n", 8280 phba->cmf_active_mode); 8281 } else { 8282 lpfc_printf_log(phba, KERN_WARNING, 8283 LOG_CGN_MGMT | LOG_INIT, 8284 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8285 "failed, rc:x%x dd:x%x\n", 8286 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8287 lpfc_sli_config_mbox_subsys_get 8288 (phba, mboxq), 8289 lpfc_sli_config_mbox_opcode_get 8290 (phba, mboxq), 8291 rc, cmf); 8292 sli4_params->cmf = 0; 8293 phba->cmf_active_mode = LPFC_CFG_OFF; 8294 goto no_cmf; 8295 } 8296 8297 /* Allocate Congestion Information Buffer */ 8298 if (!phba->cgn_i) { 8299 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8300 if (mp) 8301 mp->virt = dma_alloc_coherent 8302 (&phba->pcidev->dev, 8303 sizeof(struct lpfc_cgn_info), 8304 &mp->phys, GFP_KERNEL); 8305 if (!mp || !mp->virt) { 8306 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8307 "2640 Failed to alloc memory " 8308 "for Congestion Info\n"); 8309 kfree(mp); 8310 sli4_params->cmf = 0; 8311 phba->cmf_active_mode = LPFC_CFG_OFF; 8312 goto no_cmf; 8313 } 8314 phba->cgn_i = mp; 8315 8316 /* initialize congestion buffer info */ 8317 lpfc_init_congestion_buf(phba); 8318 lpfc_init_congestion_stat(phba); 8319 8320 /* Zero out Congestion Signal counters */ 8321 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8322 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8323 } 8324 8325 rc = lpfc_sli4_cgn_params_read(phba); 8326 if (rc < 0) { 8327 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8328 "6242 Error reading Cgn Params (%d)\n", 8329 rc); 8330 /* Ensure CGN Mode is off */ 8331 sli4_params->cmf = 0; 8332 } else if (!rc) { 8333 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8334 "6243 CGN Event empty object.\n"); 8335 /* Ensure CGN Mode is off */ 8336 sli4_params->cmf = 0; 8337 } 8338 } else { 8339 no_cmf: 8340 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8341 "6220 CMF is disabled\n"); 8342 } 8343 8344 /* Only register congestion buffer with firmware if BOTH 8345 * CMF and E2E are enabled. 8346 */ 8347 if (sli4_params->cmf && sli4_params->mi_ver) { 8348 rc = lpfc_reg_congestion_buf(phba); 8349 if (rc) { 8350 dma_free_coherent(&phba->pcidev->dev, 8351 sizeof(struct lpfc_cgn_info), 8352 phba->cgn_i->virt, phba->cgn_i->phys); 8353 kfree(phba->cgn_i); 8354 phba->cgn_i = NULL; 8355 /* Ensure CGN Mode is off */ 8356 phba->cmf_active_mode = LPFC_CFG_OFF; 8357 return 0; 8358 } 8359 } 8360 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8361 "6470 Setup MI version %d CMF %d mode %d\n", 8362 sli4_params->mi_ver, sli4_params->cmf, 8363 phba->cmf_active_mode); 8364 8365 mempool_free(mboxq, phba->mbox_mem_pool); 8366 8367 /* Initialize atomic counters */ 8368 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8369 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8370 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8371 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8372 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8373 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8374 atomic64_set(&phba->cgn_latency_evt, 0); 8375 8376 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8377 8378 /* Allocate RX Monitor Buffer */ 8379 if (!phba->rx_monitor) { 8380 phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), 8381 GFP_KERNEL); 8382 8383 if (!phba->rx_monitor) { 8384 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8385 "2644 Failed to alloc memory " 8386 "for RX Monitor Buffer\n"); 8387 return -ENOMEM; 8388 } 8389 8390 /* Instruct the rx_monitor object to instantiate its ring */ 8391 if (lpfc_rx_monitor_create_ring(phba->rx_monitor, 8392 LPFC_MAX_RXMONITOR_ENTRY)) { 8393 kfree(phba->rx_monitor); 8394 phba->rx_monitor = NULL; 8395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8396 "2645 Failed to alloc memory " 8397 "for RX Monitor's Ring\n"); 8398 return -ENOMEM; 8399 } 8400 } 8401 8402 return 0; 8403 } 8404 8405 static int 8406 lpfc_set_host_tm(struct lpfc_hba *phba) 8407 { 8408 LPFC_MBOXQ_t *mboxq; 8409 uint32_t len, rc; 8410 struct timespec64 cur_time; 8411 struct tm broken; 8412 uint32_t month, day, year; 8413 uint32_t hour, minute, second; 8414 struct lpfc_mbx_set_host_date_time *tm; 8415 8416 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8417 if (!mboxq) 8418 return -ENOMEM; 8419 8420 len = sizeof(struct lpfc_mbx_set_host_data) - 8421 sizeof(struct lpfc_sli4_cfg_mhdr); 8422 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8423 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8424 LPFC_SLI4_MBX_EMBED); 8425 8426 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8427 mboxq->u.mqe.un.set_host_data.param_len = 8428 sizeof(struct lpfc_mbx_set_host_date_time); 8429 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8430 ktime_get_real_ts64(&cur_time); 8431 time64_to_tm(cur_time.tv_sec, 0, &broken); 8432 month = broken.tm_mon + 1; 8433 day = broken.tm_mday; 8434 year = broken.tm_year - 100; 8435 hour = broken.tm_hour; 8436 minute = broken.tm_min; 8437 second = broken.tm_sec; 8438 bf_set(lpfc_mbx_set_host_month, tm, month); 8439 bf_set(lpfc_mbx_set_host_day, tm, day); 8440 bf_set(lpfc_mbx_set_host_year, tm, year); 8441 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8442 bf_set(lpfc_mbx_set_host_min, tm, minute); 8443 bf_set(lpfc_mbx_set_host_sec, tm, second); 8444 8445 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8446 mempool_free(mboxq, phba->mbox_mem_pool); 8447 return rc; 8448 } 8449 8450 /** 8451 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8452 * @phba: Pointer to HBA context object. 8453 * 8454 * This function is the main SLI4 device initialization PCI function. This 8455 * function is called by the HBA initialization code, HBA reset code and 8456 * HBA error attention handler code. Caller is not required to hold any 8457 * locks. 8458 **/ 8459 int 8460 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8461 { 8462 int rc, i, cnt, len, dd; 8463 LPFC_MBOXQ_t *mboxq; 8464 struct lpfc_mqe *mqe; 8465 uint8_t *vpd; 8466 uint32_t vpd_size; 8467 uint32_t ftr_rsp = 0; 8468 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8469 struct lpfc_vport *vport = phba->pport; 8470 struct lpfc_dmabuf *mp; 8471 struct lpfc_rqb *rqbp; 8472 u32 flg; 8473 8474 /* Perform a PCI function reset to start from clean */ 8475 rc = lpfc_pci_function_reset(phba); 8476 if (unlikely(rc)) 8477 return -ENODEV; 8478 8479 /* Check the HBA Host Status Register for readyness */ 8480 rc = lpfc_sli4_post_status_check(phba); 8481 if (unlikely(rc)) 8482 return -ENODEV; 8483 else { 8484 spin_lock_irq(&phba->hbalock); 8485 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8486 flg = phba->sli.sli_flag; 8487 spin_unlock_irq(&phba->hbalock); 8488 /* Allow a little time after setting SLI_ACTIVE for any polled 8489 * MBX commands to complete via BSG. 8490 */ 8491 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8492 msleep(20); 8493 spin_lock_irq(&phba->hbalock); 8494 flg = phba->sli.sli_flag; 8495 spin_unlock_irq(&phba->hbalock); 8496 } 8497 } 8498 8499 lpfc_sli4_dip(phba); 8500 8501 /* 8502 * Allocate a single mailbox container for initializing the 8503 * port. 8504 */ 8505 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8506 if (!mboxq) 8507 return -ENOMEM; 8508 8509 /* Issue READ_REV to collect vpd and FW information. */ 8510 vpd_size = SLI4_PAGE_SIZE; 8511 vpd = kzalloc(vpd_size, GFP_KERNEL); 8512 if (!vpd) { 8513 rc = -ENOMEM; 8514 goto out_free_mbox; 8515 } 8516 8517 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8518 if (unlikely(rc)) { 8519 kfree(vpd); 8520 goto out_free_mbox; 8521 } 8522 8523 mqe = &mboxq->u.mqe; 8524 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8525 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8526 phba->hba_flag |= HBA_FCOE_MODE; 8527 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8528 } else { 8529 phba->hba_flag &= ~HBA_FCOE_MODE; 8530 } 8531 8532 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8533 LPFC_DCBX_CEE_MODE) 8534 phba->hba_flag |= HBA_FIP_SUPPORT; 8535 else 8536 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8537 8538 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8539 8540 if (phba->sli_rev != LPFC_SLI_REV4) { 8541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8542 "0376 READ_REV Error. SLI Level %d " 8543 "FCoE enabled %d\n", 8544 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8545 rc = -EIO; 8546 kfree(vpd); 8547 goto out_free_mbox; 8548 } 8549 8550 rc = lpfc_set_host_tm(phba); 8551 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8552 "6468 Set host date / time: Status x%x:\n", rc); 8553 8554 /* 8555 * Continue initialization with default values even if driver failed 8556 * to read FCoE param config regions, only read parameters if the 8557 * board is FCoE 8558 */ 8559 if (phba->hba_flag & HBA_FCOE_MODE && 8560 lpfc_sli4_read_fcoe_params(phba)) 8561 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8562 "2570 Failed to read FCoE parameters\n"); 8563 8564 /* 8565 * Retrieve sli4 device physical port name, failure of doing it 8566 * is considered as non-fatal. 8567 */ 8568 rc = lpfc_sli4_retrieve_pport_name(phba); 8569 if (!rc) 8570 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8571 "3080 Successful retrieving SLI4 device " 8572 "physical port name: %s.\n", phba->Port); 8573 8574 rc = lpfc_sli4_get_ctl_attr(phba); 8575 if (!rc) 8576 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8577 "8351 Successful retrieving SLI4 device " 8578 "CTL ATTR\n"); 8579 8580 /* 8581 * Evaluate the read rev and vpd data. Populate the driver 8582 * state with the results. If this routine fails, the failure 8583 * is not fatal as the driver will use generic values. 8584 */ 8585 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8586 if (unlikely(!rc)) { 8587 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8588 "0377 Error %d parsing vpd. " 8589 "Using defaults.\n", rc); 8590 rc = 0; 8591 } 8592 kfree(vpd); 8593 8594 /* Save information as VPD data */ 8595 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8596 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8597 8598 /* 8599 * This is because first G7 ASIC doesn't support the standard 8600 * 0x5a NVME cmd descriptor type/subtype 8601 */ 8602 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8603 LPFC_SLI_INTF_IF_TYPE_6) && 8604 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8605 (phba->vpd.rev.smRev == 0) && 8606 (phba->cfg_nvme_embed_cmd == 1)) 8607 phba->cfg_nvme_embed_cmd = 0; 8608 8609 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8610 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8611 &mqe->un.read_rev); 8612 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8613 &mqe->un.read_rev); 8614 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8615 &mqe->un.read_rev); 8616 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8617 &mqe->un.read_rev); 8618 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8619 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8620 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8621 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8622 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8623 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8624 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8625 "(%d):0380 READ_REV Status x%x " 8626 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8627 mboxq->vport ? mboxq->vport->vpi : 0, 8628 bf_get(lpfc_mqe_status, mqe), 8629 phba->vpd.rev.opFwName, 8630 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8631 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8632 8633 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8634 LPFC_SLI_INTF_IF_TYPE_0) { 8635 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8636 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8637 if (rc == MBX_SUCCESS) { 8638 phba->hba_flag |= HBA_RECOVERABLE_UE; 8639 /* Set 1Sec interval to detect UE */ 8640 phba->eratt_poll_interval = 1; 8641 phba->sli4_hba.ue_to_sr = bf_get( 8642 lpfc_mbx_set_feature_UESR, 8643 &mboxq->u.mqe.un.set_feature); 8644 phba->sli4_hba.ue_to_rp = bf_get( 8645 lpfc_mbx_set_feature_UERP, 8646 &mboxq->u.mqe.un.set_feature); 8647 } 8648 } 8649 8650 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8651 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8652 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8654 if (rc != MBX_SUCCESS) 8655 phba->mds_diags_support = 0; 8656 } 8657 8658 /* 8659 * Discover the port's supported feature set and match it against the 8660 * hosts requests. 8661 */ 8662 lpfc_request_features(phba, mboxq); 8663 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8664 if (unlikely(rc)) { 8665 rc = -EIO; 8666 goto out_free_mbox; 8667 } 8668 8669 /* Disable VMID if app header is not supported */ 8670 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8671 &mqe->un.req_ftrs))) { 8672 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8673 phba->cfg_vmid_app_header = 0; 8674 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8675 "1242 vmid feature not supported\n"); 8676 } 8677 8678 /* 8679 * The port must support FCP initiator mode as this is the 8680 * only mode running in the host. 8681 */ 8682 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8683 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8684 "0378 No support for fcpi mode.\n"); 8685 ftr_rsp++; 8686 } 8687 8688 /* Performance Hints are ONLY for FCoE */ 8689 if (phba->hba_flag & HBA_FCOE_MODE) { 8690 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8691 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8692 else 8693 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8694 } 8695 8696 /* 8697 * If the port cannot support the host's requested features 8698 * then turn off the global config parameters to disable the 8699 * feature in the driver. This is not a fatal error. 8700 */ 8701 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8702 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8703 phba->cfg_enable_bg = 0; 8704 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8705 ftr_rsp++; 8706 } 8707 } 8708 8709 if (phba->max_vpi && phba->cfg_enable_npiv && 8710 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8711 ftr_rsp++; 8712 8713 if (ftr_rsp) { 8714 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8715 "0379 Feature Mismatch Data: x%08x %08x " 8716 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8717 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8718 phba->cfg_enable_npiv, phba->max_vpi); 8719 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8720 phba->cfg_enable_bg = 0; 8721 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8722 phba->cfg_enable_npiv = 0; 8723 } 8724 8725 /* These SLI3 features are assumed in SLI4 */ 8726 spin_lock_irq(&phba->hbalock); 8727 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8728 spin_unlock_irq(&phba->hbalock); 8729 8730 /* Always try to enable dual dump feature if we can */ 8731 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8732 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8733 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8734 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8735 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8736 "6448 Dual Dump is enabled\n"); 8737 else 8738 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8739 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8740 "rc:x%x dd:x%x\n", 8741 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8742 lpfc_sli_config_mbox_subsys_get( 8743 phba, mboxq), 8744 lpfc_sli_config_mbox_opcode_get( 8745 phba, mboxq), 8746 rc, dd); 8747 /* 8748 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8749 * calls depends on these resources to complete port setup. 8750 */ 8751 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8752 if (rc) { 8753 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8754 "2920 Failed to alloc Resource IDs " 8755 "rc = x%x\n", rc); 8756 goto out_free_mbox; 8757 } 8758 8759 lpfc_set_host_data(phba, mboxq); 8760 8761 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8762 if (rc) { 8763 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8764 "2134 Failed to set host os driver version %x", 8765 rc); 8766 } 8767 8768 /* Read the port's service parameters. */ 8769 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8770 if (rc) { 8771 phba->link_state = LPFC_HBA_ERROR; 8772 rc = -ENOMEM; 8773 goto out_free_mbox; 8774 } 8775 8776 mboxq->vport = vport; 8777 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8778 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8779 if (rc == MBX_SUCCESS) { 8780 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8781 rc = 0; 8782 } 8783 8784 /* 8785 * This memory was allocated by the lpfc_read_sparam routine but is 8786 * no longer needed. It is released and ctx_buf NULLed to prevent 8787 * unintended pointer access as the mbox is reused. 8788 */ 8789 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8790 kfree(mp); 8791 mboxq->ctx_buf = NULL; 8792 if (unlikely(rc)) { 8793 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8794 "0382 READ_SPARAM command failed " 8795 "status %d, mbxStatus x%x\n", 8796 rc, bf_get(lpfc_mqe_status, mqe)); 8797 phba->link_state = LPFC_HBA_ERROR; 8798 rc = -EIO; 8799 goto out_free_mbox; 8800 } 8801 8802 lpfc_update_vport_wwn(vport); 8803 8804 /* Update the fc_host data structures with new wwn. */ 8805 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8806 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8807 8808 /* Create all the SLI4 queues */ 8809 rc = lpfc_sli4_queue_create(phba); 8810 if (rc) { 8811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8812 "3089 Failed to allocate queues\n"); 8813 rc = -ENODEV; 8814 goto out_free_mbox; 8815 } 8816 /* Set up all the queues to the device */ 8817 rc = lpfc_sli4_queue_setup(phba); 8818 if (unlikely(rc)) { 8819 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8820 "0381 Error %d during queue setup.\n ", rc); 8821 goto out_stop_timers; 8822 } 8823 /* Initialize the driver internal SLI layer lists. */ 8824 lpfc_sli4_setup(phba); 8825 lpfc_sli4_queue_init(phba); 8826 8827 /* update host els xri-sgl sizes and mappings */ 8828 rc = lpfc_sli4_els_sgl_update(phba); 8829 if (unlikely(rc)) { 8830 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8831 "1400 Failed to update xri-sgl size and " 8832 "mapping: %d\n", rc); 8833 goto out_destroy_queue; 8834 } 8835 8836 /* register the els sgl pool to the port */ 8837 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8838 phba->sli4_hba.els_xri_cnt); 8839 if (unlikely(rc < 0)) { 8840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8841 "0582 Error %d during els sgl post " 8842 "operation\n", rc); 8843 rc = -ENODEV; 8844 goto out_destroy_queue; 8845 } 8846 phba->sli4_hba.els_xri_cnt = rc; 8847 8848 if (phba->nvmet_support) { 8849 /* update host nvmet xri-sgl sizes and mappings */ 8850 rc = lpfc_sli4_nvmet_sgl_update(phba); 8851 if (unlikely(rc)) { 8852 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8853 "6308 Failed to update nvmet-sgl size " 8854 "and mapping: %d\n", rc); 8855 goto out_destroy_queue; 8856 } 8857 8858 /* register the nvmet sgl pool to the port */ 8859 rc = lpfc_sli4_repost_sgl_list( 8860 phba, 8861 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8862 phba->sli4_hba.nvmet_xri_cnt); 8863 if (unlikely(rc < 0)) { 8864 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8865 "3117 Error %d during nvmet " 8866 "sgl post\n", rc); 8867 rc = -ENODEV; 8868 goto out_destroy_queue; 8869 } 8870 phba->sli4_hba.nvmet_xri_cnt = rc; 8871 8872 /* We allocate an iocbq for every receive context SGL. 8873 * The additional allocation is for abort and ls handling. 8874 */ 8875 cnt = phba->sli4_hba.nvmet_xri_cnt + 8876 phba->sli4_hba.max_cfg_param.max_xri; 8877 } else { 8878 /* update host common xri-sgl sizes and mappings */ 8879 rc = lpfc_sli4_io_sgl_update(phba); 8880 if (unlikely(rc)) { 8881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8882 "6082 Failed to update nvme-sgl size " 8883 "and mapping: %d\n", rc); 8884 goto out_destroy_queue; 8885 } 8886 8887 /* register the allocated common sgl pool to the port */ 8888 rc = lpfc_sli4_repost_io_sgl_list(phba); 8889 if (unlikely(rc)) { 8890 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8891 "6116 Error %d during nvme sgl post " 8892 "operation\n", rc); 8893 /* Some NVME buffers were moved to abort nvme list */ 8894 /* A pci function reset will repost them */ 8895 rc = -ENODEV; 8896 goto out_destroy_queue; 8897 } 8898 /* Each lpfc_io_buf job structure has an iocbq element. 8899 * This cnt provides for abort, els, ct and ls requests. 8900 */ 8901 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8902 } 8903 8904 if (!phba->sli.iocbq_lookup) { 8905 /* Initialize and populate the iocb list per host */ 8906 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8907 "2821 initialize iocb list with %d entries\n", 8908 cnt); 8909 rc = lpfc_init_iocb_list(phba, cnt); 8910 if (rc) { 8911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8912 "1413 Failed to init iocb list.\n"); 8913 goto out_destroy_queue; 8914 } 8915 } 8916 8917 if (phba->nvmet_support) 8918 lpfc_nvmet_create_targetport(phba); 8919 8920 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8921 /* Post initial buffers to all RQs created */ 8922 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8923 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8924 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8925 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8926 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8927 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8928 rqbp->buffer_count = 0; 8929 8930 lpfc_post_rq_buffer( 8931 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8932 phba->sli4_hba.nvmet_mrq_data[i], 8933 phba->cfg_nvmet_mrq_post, i); 8934 } 8935 } 8936 8937 /* Post the rpi header region to the device. */ 8938 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8939 if (unlikely(rc)) { 8940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8941 "0393 Error %d during rpi post operation\n", 8942 rc); 8943 rc = -ENODEV; 8944 goto out_free_iocblist; 8945 } 8946 lpfc_sli4_node_prep(phba); 8947 8948 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8949 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8950 /* 8951 * The FC Port needs to register FCFI (index 0) 8952 */ 8953 lpfc_reg_fcfi(phba, mboxq); 8954 mboxq->vport = phba->pport; 8955 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8956 if (rc != MBX_SUCCESS) 8957 goto out_unset_queue; 8958 rc = 0; 8959 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8960 &mboxq->u.mqe.un.reg_fcfi); 8961 } else { 8962 /* We are a NVME Target mode with MRQ > 1 */ 8963 8964 /* First register the FCFI */ 8965 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8966 mboxq->vport = phba->pport; 8967 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8968 if (rc != MBX_SUCCESS) 8969 goto out_unset_queue; 8970 rc = 0; 8971 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8972 &mboxq->u.mqe.un.reg_fcfi_mrq); 8973 8974 /* Next register the MRQs */ 8975 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8976 mboxq->vport = phba->pport; 8977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8978 if (rc != MBX_SUCCESS) 8979 goto out_unset_queue; 8980 rc = 0; 8981 } 8982 /* Check if the port is configured to be disabled */ 8983 lpfc_sli_read_link_ste(phba); 8984 } 8985 8986 /* Don't post more new bufs if repost already recovered 8987 * the nvme sgls. 8988 */ 8989 if (phba->nvmet_support == 0) { 8990 if (phba->sli4_hba.io_xri_cnt == 0) { 8991 len = lpfc_new_io_buf( 8992 phba, phba->sli4_hba.io_xri_max); 8993 if (len == 0) { 8994 rc = -ENOMEM; 8995 goto out_unset_queue; 8996 } 8997 8998 if (phba->cfg_xri_rebalancing) 8999 lpfc_create_multixri_pools(phba); 9000 } 9001 } else { 9002 phba->cfg_xri_rebalancing = 0; 9003 } 9004 9005 /* Allow asynchronous mailbox command to go through */ 9006 spin_lock_irq(&phba->hbalock); 9007 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9008 spin_unlock_irq(&phba->hbalock); 9009 9010 /* Post receive buffers to the device */ 9011 lpfc_sli4_rb_setup(phba); 9012 9013 /* Reset HBA FCF states after HBA reset */ 9014 phba->fcf.fcf_flag = 0; 9015 phba->fcf.current_rec.flag = 0; 9016 9017 /* Start the ELS watchdog timer */ 9018 mod_timer(&vport->els_tmofunc, 9019 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 9020 9021 /* Start heart beat timer */ 9022 mod_timer(&phba->hb_tmofunc, 9023 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 9024 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 9025 phba->last_completion_time = jiffies; 9026 9027 /* start eq_delay heartbeat */ 9028 if (phba->cfg_auto_imax) 9029 queue_delayed_work(phba->wq, &phba->eq_delay_work, 9030 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 9031 9032 /* start per phba idle_stat_delay heartbeat */ 9033 lpfc_init_idle_stat_hb(phba); 9034 9035 /* Start error attention (ERATT) polling timer */ 9036 mod_timer(&phba->eratt_poll, 9037 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 9038 9039 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 9040 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 9041 rc = pci_enable_pcie_error_reporting(phba->pcidev); 9042 if (!rc) { 9043 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9044 "2829 This device supports " 9045 "Advanced Error Reporting (AER)\n"); 9046 spin_lock_irq(&phba->hbalock); 9047 phba->hba_flag |= HBA_AER_ENABLED; 9048 spin_unlock_irq(&phba->hbalock); 9049 } else { 9050 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 9051 "2830 This device does not support " 9052 "Advanced Error Reporting (AER)\n"); 9053 phba->cfg_aer_support = 0; 9054 } 9055 rc = 0; 9056 } 9057 9058 /* 9059 * The port is ready, set the host's link state to LINK_DOWN 9060 * in preparation for link interrupts. 9061 */ 9062 spin_lock_irq(&phba->hbalock); 9063 phba->link_state = LPFC_LINK_DOWN; 9064 9065 /* Check if physical ports are trunked */ 9066 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 9067 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 9068 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 9069 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 9070 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 9071 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 9072 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 9073 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 9074 spin_unlock_irq(&phba->hbalock); 9075 9076 /* Arm the CQs and then EQs on device */ 9077 lpfc_sli4_arm_cqeq_intr(phba); 9078 9079 /* Indicate device interrupt mode */ 9080 phba->sli4_hba.intr_enable = 1; 9081 9082 /* Setup CMF after HBA is initialized */ 9083 lpfc_cmf_setup(phba); 9084 9085 if (!(phba->hba_flag & HBA_FCOE_MODE) && 9086 (phba->hba_flag & LINK_DISABLED)) { 9087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9088 "3103 Adapter Link is disabled.\n"); 9089 lpfc_down_link(phba, mboxq); 9090 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 9091 if (rc != MBX_SUCCESS) { 9092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9093 "3104 Adapter failed to issue " 9094 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 9095 goto out_io_buff_free; 9096 } 9097 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 9098 /* don't perform init_link on SLI4 FC port loopback test */ 9099 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 9100 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 9101 if (rc) 9102 goto out_io_buff_free; 9103 } 9104 } 9105 mempool_free(mboxq, phba->mbox_mem_pool); 9106 9107 /* Enable RAS FW log support */ 9108 lpfc_sli4_ras_setup(phba); 9109 9110 phba->hba_flag |= HBA_SETUP; 9111 return rc; 9112 9113 out_io_buff_free: 9114 /* Free allocated IO Buffers */ 9115 lpfc_io_free(phba); 9116 out_unset_queue: 9117 /* Unset all the queues set up in this routine when error out */ 9118 lpfc_sli4_queue_unset(phba); 9119 out_free_iocblist: 9120 lpfc_free_iocb_list(phba); 9121 out_destroy_queue: 9122 lpfc_sli4_queue_destroy(phba); 9123 out_stop_timers: 9124 lpfc_stop_hba_timers(phba); 9125 out_free_mbox: 9126 mempool_free(mboxq, phba->mbox_mem_pool); 9127 return rc; 9128 } 9129 9130 /** 9131 * lpfc_mbox_timeout - Timeout call back function for mbox timer 9132 * @t: Context to fetch pointer to hba structure from. 9133 * 9134 * This is the callback function for mailbox timer. The mailbox 9135 * timer is armed when a new mailbox command is issued and the timer 9136 * is deleted when the mailbox complete. The function is called by 9137 * the kernel timer code when a mailbox does not complete within 9138 * expected time. This function wakes up the worker thread to 9139 * process the mailbox timeout and returns. All the processing is 9140 * done by the worker thread function lpfc_mbox_timeout_handler. 9141 **/ 9142 void 9143 lpfc_mbox_timeout(struct timer_list *t) 9144 { 9145 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 9146 unsigned long iflag; 9147 uint32_t tmo_posted; 9148 9149 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 9150 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 9151 if (!tmo_posted) 9152 phba->pport->work_port_events |= WORKER_MBOX_TMO; 9153 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 9154 9155 if (!tmo_posted) 9156 lpfc_worker_wake_up(phba); 9157 return; 9158 } 9159 9160 /** 9161 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 9162 * are pending 9163 * @phba: Pointer to HBA context object. 9164 * 9165 * This function checks if any mailbox completions are present on the mailbox 9166 * completion queue. 9167 **/ 9168 static bool 9169 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 9170 { 9171 9172 uint32_t idx; 9173 struct lpfc_queue *mcq; 9174 struct lpfc_mcqe *mcqe; 9175 bool pending_completions = false; 9176 uint8_t qe_valid; 9177 9178 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9179 return false; 9180 9181 /* Check for completions on mailbox completion queue */ 9182 9183 mcq = phba->sli4_hba.mbx_cq; 9184 idx = mcq->hba_index; 9185 qe_valid = mcq->qe_valid; 9186 while (bf_get_le32(lpfc_cqe_valid, 9187 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 9188 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 9189 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 9190 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 9191 pending_completions = true; 9192 break; 9193 } 9194 idx = (idx + 1) % mcq->entry_count; 9195 if (mcq->hba_index == idx) 9196 break; 9197 9198 /* if the index wrapped around, toggle the valid bit */ 9199 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 9200 qe_valid = (qe_valid) ? 0 : 1; 9201 } 9202 return pending_completions; 9203 9204 } 9205 9206 /** 9207 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 9208 * that were missed. 9209 * @phba: Pointer to HBA context object. 9210 * 9211 * For sli4, it is possible to miss an interrupt. As such mbox completions 9212 * maybe missed causing erroneous mailbox timeouts to occur. This function 9213 * checks to see if mbox completions are on the mailbox completion queue 9214 * and will process all the completions associated with the eq for the 9215 * mailbox completion queue. 9216 **/ 9217 static bool 9218 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 9219 { 9220 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 9221 uint32_t eqidx; 9222 struct lpfc_queue *fpeq = NULL; 9223 struct lpfc_queue *eq; 9224 bool mbox_pending; 9225 9226 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 9227 return false; 9228 9229 /* Find the EQ associated with the mbox CQ */ 9230 if (sli4_hba->hdwq) { 9231 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 9232 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 9233 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 9234 fpeq = eq; 9235 break; 9236 } 9237 } 9238 } 9239 if (!fpeq) 9240 return false; 9241 9242 /* Turn off interrupts from this EQ */ 9243 9244 sli4_hba->sli4_eq_clr_intr(fpeq); 9245 9246 /* Check to see if a mbox completion is pending */ 9247 9248 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 9249 9250 /* 9251 * If a mbox completion is pending, process all the events on EQ 9252 * associated with the mbox completion queue (this could include 9253 * mailbox commands, async events, els commands, receive queue data 9254 * and fcp commands) 9255 */ 9256 9257 if (mbox_pending) 9258 /* process and rearm the EQ */ 9259 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9260 else 9261 /* Always clear and re-arm the EQ */ 9262 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9263 9264 return mbox_pending; 9265 9266 } 9267 9268 /** 9269 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9270 * @phba: Pointer to HBA context object. 9271 * 9272 * This function is called from worker thread when a mailbox command times out. 9273 * The caller is not required to hold any locks. This function will reset the 9274 * HBA and recover all the pending commands. 9275 **/ 9276 void 9277 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9278 { 9279 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9280 MAILBOX_t *mb = NULL; 9281 9282 struct lpfc_sli *psli = &phba->sli; 9283 9284 /* If the mailbox completed, process the completion */ 9285 lpfc_sli4_process_missed_mbox_completions(phba); 9286 9287 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9288 return; 9289 9290 if (pmbox != NULL) 9291 mb = &pmbox->u.mb; 9292 /* Check the pmbox pointer first. There is a race condition 9293 * between the mbox timeout handler getting executed in the 9294 * worklist and the mailbox actually completing. When this 9295 * race condition occurs, the mbox_active will be NULL. 9296 */ 9297 spin_lock_irq(&phba->hbalock); 9298 if (pmbox == NULL) { 9299 lpfc_printf_log(phba, KERN_WARNING, 9300 LOG_MBOX | LOG_SLI, 9301 "0353 Active Mailbox cleared - mailbox timeout " 9302 "exiting\n"); 9303 spin_unlock_irq(&phba->hbalock); 9304 return; 9305 } 9306 9307 /* Mbox cmd <mbxCommand> timeout */ 9308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9309 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9310 mb->mbxCommand, 9311 phba->pport->port_state, 9312 phba->sli.sli_flag, 9313 phba->sli.mbox_active); 9314 spin_unlock_irq(&phba->hbalock); 9315 9316 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9317 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9318 * it to fail all outstanding SCSI IO. 9319 */ 9320 spin_lock_irq(&phba->pport->work_port_lock); 9321 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9322 spin_unlock_irq(&phba->pport->work_port_lock); 9323 spin_lock_irq(&phba->hbalock); 9324 phba->link_state = LPFC_LINK_UNKNOWN; 9325 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9326 spin_unlock_irq(&phba->hbalock); 9327 9328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9329 "0345 Resetting board due to mailbox timeout\n"); 9330 9331 /* Reset the HBA device */ 9332 lpfc_reset_hba(phba); 9333 } 9334 9335 /** 9336 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9337 * @phba: Pointer to HBA context object. 9338 * @pmbox: Pointer to mailbox object. 9339 * @flag: Flag indicating how the mailbox need to be processed. 9340 * 9341 * This function is called by discovery code and HBA management code 9342 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9343 * function gets the hbalock to protect the data structures. 9344 * The mailbox command can be submitted in polling mode, in which case 9345 * this function will wait in a polling loop for the completion of the 9346 * mailbox. 9347 * If the mailbox is submitted in no_wait mode (not polling) the 9348 * function will submit the command and returns immediately without waiting 9349 * for the mailbox completion. The no_wait is supported only when HBA 9350 * is in SLI2/SLI3 mode - interrupts are enabled. 9351 * The SLI interface allows only one mailbox pending at a time. If the 9352 * mailbox is issued in polling mode and there is already a mailbox 9353 * pending, then the function will return an error. If the mailbox is issued 9354 * in NO_WAIT mode and there is a mailbox pending already, the function 9355 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9356 * The sli layer owns the mailbox object until the completion of mailbox 9357 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9358 * return codes the caller owns the mailbox command after the return of 9359 * the function. 9360 **/ 9361 static int 9362 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9363 uint32_t flag) 9364 { 9365 MAILBOX_t *mbx; 9366 struct lpfc_sli *psli = &phba->sli; 9367 uint32_t status, evtctr; 9368 uint32_t ha_copy, hc_copy; 9369 int i; 9370 unsigned long timeout; 9371 unsigned long drvr_flag = 0; 9372 uint32_t word0, ldata; 9373 void __iomem *to_slim; 9374 int processing_queue = 0; 9375 9376 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9377 if (!pmbox) { 9378 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9379 /* processing mbox queue from intr_handler */ 9380 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9381 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9382 return MBX_SUCCESS; 9383 } 9384 processing_queue = 1; 9385 pmbox = lpfc_mbox_get(phba); 9386 if (!pmbox) { 9387 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9388 return MBX_SUCCESS; 9389 } 9390 } 9391 9392 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9393 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9394 if(!pmbox->vport) { 9395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9396 lpfc_printf_log(phba, KERN_ERR, 9397 LOG_MBOX | LOG_VPORT, 9398 "1806 Mbox x%x failed. No vport\n", 9399 pmbox->u.mb.mbxCommand); 9400 dump_stack(); 9401 goto out_not_finished; 9402 } 9403 } 9404 9405 /* If the PCI channel is in offline state, do not post mbox. */ 9406 if (unlikely(pci_channel_offline(phba->pcidev))) { 9407 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9408 goto out_not_finished; 9409 } 9410 9411 /* If HBA has a deferred error attention, fail the iocb. */ 9412 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9413 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9414 goto out_not_finished; 9415 } 9416 9417 psli = &phba->sli; 9418 9419 mbx = &pmbox->u.mb; 9420 status = MBX_SUCCESS; 9421 9422 if (phba->link_state == LPFC_HBA_ERROR) { 9423 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9424 9425 /* Mbox command <mbxCommand> cannot issue */ 9426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9427 "(%d):0311 Mailbox command x%x cannot " 9428 "issue Data: x%x x%x\n", 9429 pmbox->vport ? pmbox->vport->vpi : 0, 9430 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9431 goto out_not_finished; 9432 } 9433 9434 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9435 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9436 !(hc_copy & HC_MBINT_ENA)) { 9437 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9438 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9439 "(%d):2528 Mailbox command x%x cannot " 9440 "issue Data: x%x x%x\n", 9441 pmbox->vport ? pmbox->vport->vpi : 0, 9442 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9443 goto out_not_finished; 9444 } 9445 } 9446 9447 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9448 /* Polling for a mbox command when another one is already active 9449 * is not allowed in SLI. Also, the driver must have established 9450 * SLI2 mode to queue and process multiple mbox commands. 9451 */ 9452 9453 if (flag & MBX_POLL) { 9454 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9455 9456 /* Mbox command <mbxCommand> cannot issue */ 9457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9458 "(%d):2529 Mailbox command x%x " 9459 "cannot issue Data: x%x x%x\n", 9460 pmbox->vport ? pmbox->vport->vpi : 0, 9461 pmbox->u.mb.mbxCommand, 9462 psli->sli_flag, flag); 9463 goto out_not_finished; 9464 } 9465 9466 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9467 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9468 /* Mbox command <mbxCommand> cannot issue */ 9469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9470 "(%d):2530 Mailbox command x%x " 9471 "cannot issue Data: x%x x%x\n", 9472 pmbox->vport ? pmbox->vport->vpi : 0, 9473 pmbox->u.mb.mbxCommand, 9474 psli->sli_flag, flag); 9475 goto out_not_finished; 9476 } 9477 9478 /* Another mailbox command is still being processed, queue this 9479 * command to be processed later. 9480 */ 9481 lpfc_mbox_put(phba, pmbox); 9482 9483 /* Mbox cmd issue - BUSY */ 9484 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9485 "(%d):0308 Mbox cmd issue - BUSY Data: " 9486 "x%x x%x x%x x%x\n", 9487 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9488 mbx->mbxCommand, 9489 phba->pport ? phba->pport->port_state : 0xff, 9490 psli->sli_flag, flag); 9491 9492 psli->slistat.mbox_busy++; 9493 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9494 9495 if (pmbox->vport) { 9496 lpfc_debugfs_disc_trc(pmbox->vport, 9497 LPFC_DISC_TRC_MBOX_VPORT, 9498 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9499 (uint32_t)mbx->mbxCommand, 9500 mbx->un.varWords[0], mbx->un.varWords[1]); 9501 } 9502 else { 9503 lpfc_debugfs_disc_trc(phba->pport, 9504 LPFC_DISC_TRC_MBOX, 9505 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9506 (uint32_t)mbx->mbxCommand, 9507 mbx->un.varWords[0], mbx->un.varWords[1]); 9508 } 9509 9510 return MBX_BUSY; 9511 } 9512 9513 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9514 9515 /* If we are not polling, we MUST be in SLI2 mode */ 9516 if (flag != MBX_POLL) { 9517 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9518 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9519 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9520 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9521 /* Mbox command <mbxCommand> cannot issue */ 9522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9523 "(%d):2531 Mailbox command x%x " 9524 "cannot issue Data: x%x x%x\n", 9525 pmbox->vport ? pmbox->vport->vpi : 0, 9526 pmbox->u.mb.mbxCommand, 9527 psli->sli_flag, flag); 9528 goto out_not_finished; 9529 } 9530 /* timeout active mbox command */ 9531 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9532 1000); 9533 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9534 } 9535 9536 /* Mailbox cmd <cmd> issue */ 9537 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9538 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9539 "x%x\n", 9540 pmbox->vport ? pmbox->vport->vpi : 0, 9541 mbx->mbxCommand, 9542 phba->pport ? phba->pport->port_state : 0xff, 9543 psli->sli_flag, flag); 9544 9545 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9546 if (pmbox->vport) { 9547 lpfc_debugfs_disc_trc(pmbox->vport, 9548 LPFC_DISC_TRC_MBOX_VPORT, 9549 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9550 (uint32_t)mbx->mbxCommand, 9551 mbx->un.varWords[0], mbx->un.varWords[1]); 9552 } 9553 else { 9554 lpfc_debugfs_disc_trc(phba->pport, 9555 LPFC_DISC_TRC_MBOX, 9556 "MBOX Send: cmd:x%x mb:x%x x%x", 9557 (uint32_t)mbx->mbxCommand, 9558 mbx->un.varWords[0], mbx->un.varWords[1]); 9559 } 9560 } 9561 9562 psli->slistat.mbox_cmd++; 9563 evtctr = psli->slistat.mbox_event; 9564 9565 /* next set own bit for the adapter and copy over command word */ 9566 mbx->mbxOwner = OWN_CHIP; 9567 9568 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9569 /* Populate mbox extension offset word. */ 9570 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9571 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9572 = (uint8_t *)phba->mbox_ext 9573 - (uint8_t *)phba->mbox; 9574 } 9575 9576 /* Copy the mailbox extension data */ 9577 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9578 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9579 (uint8_t *)phba->mbox_ext, 9580 pmbox->in_ext_byte_len); 9581 } 9582 /* Copy command data to host SLIM area */ 9583 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9584 } else { 9585 /* Populate mbox extension offset word. */ 9586 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9587 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9588 = MAILBOX_HBA_EXT_OFFSET; 9589 9590 /* Copy the mailbox extension data */ 9591 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9592 lpfc_memcpy_to_slim(phba->MBslimaddr + 9593 MAILBOX_HBA_EXT_OFFSET, 9594 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9595 9596 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9597 /* copy command data into host mbox for cmpl */ 9598 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9599 MAILBOX_CMD_SIZE); 9600 9601 /* First copy mbox command data to HBA SLIM, skip past first 9602 word */ 9603 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9604 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9605 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9606 9607 /* Next copy over first word, with mbxOwner set */ 9608 ldata = *((uint32_t *)mbx); 9609 to_slim = phba->MBslimaddr; 9610 writel(ldata, to_slim); 9611 readl(to_slim); /* flush */ 9612 9613 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9614 /* switch over to host mailbox */ 9615 psli->sli_flag |= LPFC_SLI_ACTIVE; 9616 } 9617 9618 wmb(); 9619 9620 switch (flag) { 9621 case MBX_NOWAIT: 9622 /* Set up reference to mailbox command */ 9623 psli->mbox_active = pmbox; 9624 /* Interrupt board to do it */ 9625 writel(CA_MBATT, phba->CAregaddr); 9626 readl(phba->CAregaddr); /* flush */ 9627 /* Don't wait for it to finish, just return */ 9628 break; 9629 9630 case MBX_POLL: 9631 /* Set up null reference to mailbox command */ 9632 psli->mbox_active = NULL; 9633 /* Interrupt board to do it */ 9634 writel(CA_MBATT, phba->CAregaddr); 9635 readl(phba->CAregaddr); /* flush */ 9636 9637 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9638 /* First read mbox status word */ 9639 word0 = *((uint32_t *)phba->mbox); 9640 word0 = le32_to_cpu(word0); 9641 } else { 9642 /* First read mbox status word */ 9643 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9644 spin_unlock_irqrestore(&phba->hbalock, 9645 drvr_flag); 9646 goto out_not_finished; 9647 } 9648 } 9649 9650 /* Read the HBA Host Attention Register */ 9651 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9652 spin_unlock_irqrestore(&phba->hbalock, 9653 drvr_flag); 9654 goto out_not_finished; 9655 } 9656 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9657 1000) + jiffies; 9658 i = 0; 9659 /* Wait for command to complete */ 9660 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9661 (!(ha_copy & HA_MBATT) && 9662 (phba->link_state > LPFC_WARM_START))) { 9663 if (time_after(jiffies, timeout)) { 9664 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9665 spin_unlock_irqrestore(&phba->hbalock, 9666 drvr_flag); 9667 goto out_not_finished; 9668 } 9669 9670 /* Check if we took a mbox interrupt while we were 9671 polling */ 9672 if (((word0 & OWN_CHIP) != OWN_CHIP) 9673 && (evtctr != psli->slistat.mbox_event)) 9674 break; 9675 9676 if (i++ > 10) { 9677 spin_unlock_irqrestore(&phba->hbalock, 9678 drvr_flag); 9679 msleep(1); 9680 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9681 } 9682 9683 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9684 /* First copy command data */ 9685 word0 = *((uint32_t *)phba->mbox); 9686 word0 = le32_to_cpu(word0); 9687 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9688 MAILBOX_t *slimmb; 9689 uint32_t slimword0; 9690 /* Check real SLIM for any errors */ 9691 slimword0 = readl(phba->MBslimaddr); 9692 slimmb = (MAILBOX_t *) & slimword0; 9693 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9694 && slimmb->mbxStatus) { 9695 psli->sli_flag &= 9696 ~LPFC_SLI_ACTIVE; 9697 word0 = slimword0; 9698 } 9699 } 9700 } else { 9701 /* First copy command data */ 9702 word0 = readl(phba->MBslimaddr); 9703 } 9704 /* Read the HBA Host Attention Register */ 9705 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9706 spin_unlock_irqrestore(&phba->hbalock, 9707 drvr_flag); 9708 goto out_not_finished; 9709 } 9710 } 9711 9712 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9713 /* copy results back to user */ 9714 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9715 MAILBOX_CMD_SIZE); 9716 /* Copy the mailbox extension data */ 9717 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9718 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9719 pmbox->ctx_buf, 9720 pmbox->out_ext_byte_len); 9721 } 9722 } else { 9723 /* First copy command data */ 9724 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9725 MAILBOX_CMD_SIZE); 9726 /* Copy the mailbox extension data */ 9727 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9728 lpfc_memcpy_from_slim( 9729 pmbox->ctx_buf, 9730 phba->MBslimaddr + 9731 MAILBOX_HBA_EXT_OFFSET, 9732 pmbox->out_ext_byte_len); 9733 } 9734 } 9735 9736 writel(HA_MBATT, phba->HAregaddr); 9737 readl(phba->HAregaddr); /* flush */ 9738 9739 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9740 status = mbx->mbxStatus; 9741 } 9742 9743 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9744 return status; 9745 9746 out_not_finished: 9747 if (processing_queue) { 9748 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9749 lpfc_mbox_cmpl_put(phba, pmbox); 9750 } 9751 return MBX_NOT_FINISHED; 9752 } 9753 9754 /** 9755 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9756 * @phba: Pointer to HBA context object. 9757 * 9758 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9759 * the driver internal pending mailbox queue. It will then try to wait out the 9760 * possible outstanding mailbox command before return. 9761 * 9762 * Returns: 9763 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9764 * the outstanding mailbox command timed out. 9765 **/ 9766 static int 9767 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9768 { 9769 struct lpfc_sli *psli = &phba->sli; 9770 LPFC_MBOXQ_t *mboxq; 9771 int rc = 0; 9772 unsigned long timeout = 0; 9773 u32 sli_flag; 9774 u8 cmd, subsys, opcode; 9775 9776 /* Mark the asynchronous mailbox command posting as blocked */ 9777 spin_lock_irq(&phba->hbalock); 9778 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9779 /* Determine how long we might wait for the active mailbox 9780 * command to be gracefully completed by firmware. 9781 */ 9782 if (phba->sli.mbox_active) 9783 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9784 phba->sli.mbox_active) * 9785 1000) + jiffies; 9786 spin_unlock_irq(&phba->hbalock); 9787 9788 /* Make sure the mailbox is really active */ 9789 if (timeout) 9790 lpfc_sli4_process_missed_mbox_completions(phba); 9791 9792 /* Wait for the outstanding mailbox command to complete */ 9793 while (phba->sli.mbox_active) { 9794 /* Check active mailbox complete status every 2ms */ 9795 msleep(2); 9796 if (time_after(jiffies, timeout)) { 9797 /* Timeout, mark the outstanding cmd not complete */ 9798 9799 /* Sanity check sli.mbox_active has not completed or 9800 * cancelled from another context during last 2ms sleep, 9801 * so take hbalock to be sure before logging. 9802 */ 9803 spin_lock_irq(&phba->hbalock); 9804 if (phba->sli.mbox_active) { 9805 mboxq = phba->sli.mbox_active; 9806 cmd = mboxq->u.mb.mbxCommand; 9807 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9808 mboxq); 9809 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9810 mboxq); 9811 sli_flag = psli->sli_flag; 9812 spin_unlock_irq(&phba->hbalock); 9813 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9814 "2352 Mailbox command x%x " 9815 "(x%x/x%x) sli_flag x%x could " 9816 "not complete\n", 9817 cmd, subsys, opcode, 9818 sli_flag); 9819 } else { 9820 spin_unlock_irq(&phba->hbalock); 9821 } 9822 9823 rc = 1; 9824 break; 9825 } 9826 } 9827 9828 /* Can not cleanly block async mailbox command, fails it */ 9829 if (rc) { 9830 spin_lock_irq(&phba->hbalock); 9831 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9832 spin_unlock_irq(&phba->hbalock); 9833 } 9834 return rc; 9835 } 9836 9837 /** 9838 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9839 * @phba: Pointer to HBA context object. 9840 * 9841 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9842 * commands from the driver internal pending mailbox queue. It makes sure 9843 * that there is no outstanding mailbox command before resuming posting 9844 * asynchronous mailbox commands. If, for any reason, there is outstanding 9845 * mailbox command, it will try to wait it out before resuming asynchronous 9846 * mailbox command posting. 9847 **/ 9848 static void 9849 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9850 { 9851 struct lpfc_sli *psli = &phba->sli; 9852 9853 spin_lock_irq(&phba->hbalock); 9854 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9855 /* Asynchronous mailbox posting is not blocked, do nothing */ 9856 spin_unlock_irq(&phba->hbalock); 9857 return; 9858 } 9859 9860 /* Outstanding synchronous mailbox command is guaranteed to be done, 9861 * successful or timeout, after timing-out the outstanding mailbox 9862 * command shall always be removed, so just unblock posting async 9863 * mailbox command and resume 9864 */ 9865 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9866 spin_unlock_irq(&phba->hbalock); 9867 9868 /* wake up worker thread to post asynchronous mailbox command */ 9869 lpfc_worker_wake_up(phba); 9870 } 9871 9872 /** 9873 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9874 * @phba: Pointer to HBA context object. 9875 * @mboxq: Pointer to mailbox object. 9876 * 9877 * The function waits for the bootstrap mailbox register ready bit from 9878 * port for twice the regular mailbox command timeout value. 9879 * 9880 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9881 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9882 **/ 9883 static int 9884 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9885 { 9886 uint32_t db_ready; 9887 unsigned long timeout; 9888 struct lpfc_register bmbx_reg; 9889 9890 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9891 * 1000) + jiffies; 9892 9893 do { 9894 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9895 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9896 if (!db_ready) 9897 mdelay(2); 9898 9899 if (time_after(jiffies, timeout)) 9900 return MBXERR_ERROR; 9901 } while (!db_ready); 9902 9903 return 0; 9904 } 9905 9906 /** 9907 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9908 * @phba: Pointer to HBA context object. 9909 * @mboxq: Pointer to mailbox object. 9910 * 9911 * The function posts a mailbox to the port. The mailbox is expected 9912 * to be comletely filled in and ready for the port to operate on it. 9913 * This routine executes a synchronous completion operation on the 9914 * mailbox by polling for its completion. 9915 * 9916 * The caller must not be holding any locks when calling this routine. 9917 * 9918 * Returns: 9919 * MBX_SUCCESS - mailbox posted successfully 9920 * Any of the MBX error values. 9921 **/ 9922 static int 9923 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9924 { 9925 int rc = MBX_SUCCESS; 9926 unsigned long iflag; 9927 uint32_t mcqe_status; 9928 uint32_t mbx_cmnd; 9929 struct lpfc_sli *psli = &phba->sli; 9930 struct lpfc_mqe *mb = &mboxq->u.mqe; 9931 struct lpfc_bmbx_create *mbox_rgn; 9932 struct dma_address *dma_address; 9933 9934 /* 9935 * Only one mailbox can be active to the bootstrap mailbox region 9936 * at a time and there is no queueing provided. 9937 */ 9938 spin_lock_irqsave(&phba->hbalock, iflag); 9939 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9940 spin_unlock_irqrestore(&phba->hbalock, iflag); 9941 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9942 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9943 "cannot issue Data: x%x x%x\n", 9944 mboxq->vport ? mboxq->vport->vpi : 0, 9945 mboxq->u.mb.mbxCommand, 9946 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9947 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9948 psli->sli_flag, MBX_POLL); 9949 return MBXERR_ERROR; 9950 } 9951 /* The server grabs the token and owns it until release */ 9952 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9953 phba->sli.mbox_active = mboxq; 9954 spin_unlock_irqrestore(&phba->hbalock, iflag); 9955 9956 /* wait for bootstrap mbox register for readyness */ 9957 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9958 if (rc) 9959 goto exit; 9960 /* 9961 * Initialize the bootstrap memory region to avoid stale data areas 9962 * in the mailbox post. Then copy the caller's mailbox contents to 9963 * the bmbx mailbox region. 9964 */ 9965 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9966 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9967 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9968 sizeof(struct lpfc_mqe)); 9969 9970 /* Post the high mailbox dma address to the port and wait for ready. */ 9971 dma_address = &phba->sli4_hba.bmbx.dma_address; 9972 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9973 9974 /* wait for bootstrap mbox register for hi-address write done */ 9975 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9976 if (rc) 9977 goto exit; 9978 9979 /* Post the low mailbox dma address to the port. */ 9980 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9981 9982 /* wait for bootstrap mbox register for low address write done */ 9983 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9984 if (rc) 9985 goto exit; 9986 9987 /* 9988 * Read the CQ to ensure the mailbox has completed. 9989 * If so, update the mailbox status so that the upper layers 9990 * can complete the request normally. 9991 */ 9992 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9993 sizeof(struct lpfc_mqe)); 9994 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9995 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9996 sizeof(struct lpfc_mcqe)); 9997 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9998 /* 9999 * When the CQE status indicates a failure and the mailbox status 10000 * indicates success then copy the CQE status into the mailbox status 10001 * (and prefix it with x4000). 10002 */ 10003 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 10004 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 10005 bf_set(lpfc_mqe_status, mb, 10006 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 10007 rc = MBXERR_ERROR; 10008 } else 10009 lpfc_sli4_swap_str(phba, mboxq); 10010 10011 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10012 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 10013 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 10014 " x%x x%x CQ: x%x x%x x%x x%x\n", 10015 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10016 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10017 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10018 bf_get(lpfc_mqe_status, mb), 10019 mb->un.mb_words[0], mb->un.mb_words[1], 10020 mb->un.mb_words[2], mb->un.mb_words[3], 10021 mb->un.mb_words[4], mb->un.mb_words[5], 10022 mb->un.mb_words[6], mb->un.mb_words[7], 10023 mb->un.mb_words[8], mb->un.mb_words[9], 10024 mb->un.mb_words[10], mb->un.mb_words[11], 10025 mb->un.mb_words[12], mboxq->mcqe.word0, 10026 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 10027 mboxq->mcqe.trailer); 10028 exit: 10029 /* We are holding the token, no needed for lock when release */ 10030 spin_lock_irqsave(&phba->hbalock, iflag); 10031 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10032 phba->sli.mbox_active = NULL; 10033 spin_unlock_irqrestore(&phba->hbalock, iflag); 10034 return rc; 10035 } 10036 10037 /** 10038 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 10039 * @phba: Pointer to HBA context object. 10040 * @mboxq: Pointer to mailbox object. 10041 * @flag: Flag indicating how the mailbox need to be processed. 10042 * 10043 * This function is called by discovery code and HBA management code to submit 10044 * a mailbox command to firmware with SLI-4 interface spec. 10045 * 10046 * Return codes the caller owns the mailbox command after the return of the 10047 * function. 10048 **/ 10049 static int 10050 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 10051 uint32_t flag) 10052 { 10053 struct lpfc_sli *psli = &phba->sli; 10054 unsigned long iflags; 10055 int rc; 10056 10057 /* dump from issue mailbox command if setup */ 10058 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 10059 10060 rc = lpfc_mbox_dev_check(phba); 10061 if (unlikely(rc)) { 10062 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10063 "(%d):2544 Mailbox command x%x (x%x/x%x) " 10064 "cannot issue Data: x%x x%x\n", 10065 mboxq->vport ? mboxq->vport->vpi : 0, 10066 mboxq->u.mb.mbxCommand, 10067 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10068 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10069 psli->sli_flag, flag); 10070 goto out_not_finished; 10071 } 10072 10073 /* Detect polling mode and jump to a handler */ 10074 if (!phba->sli4_hba.intr_enable) { 10075 if (flag == MBX_POLL) 10076 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10077 else 10078 rc = -EIO; 10079 if (rc != MBX_SUCCESS) 10080 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10081 "(%d):2541 Mailbox command x%x " 10082 "(x%x/x%x) failure: " 10083 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10084 "Data: x%x x%x\n", 10085 mboxq->vport ? mboxq->vport->vpi : 0, 10086 mboxq->u.mb.mbxCommand, 10087 lpfc_sli_config_mbox_subsys_get(phba, 10088 mboxq), 10089 lpfc_sli_config_mbox_opcode_get(phba, 10090 mboxq), 10091 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10092 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10093 bf_get(lpfc_mcqe_ext_status, 10094 &mboxq->mcqe), 10095 psli->sli_flag, flag); 10096 return rc; 10097 } else if (flag == MBX_POLL) { 10098 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 10099 "(%d):2542 Try to issue mailbox command " 10100 "x%x (x%x/x%x) synchronously ahead of async " 10101 "mailbox command queue: x%x x%x\n", 10102 mboxq->vport ? mboxq->vport->vpi : 0, 10103 mboxq->u.mb.mbxCommand, 10104 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10105 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10106 psli->sli_flag, flag); 10107 /* Try to block the asynchronous mailbox posting */ 10108 rc = lpfc_sli4_async_mbox_block(phba); 10109 if (!rc) { 10110 /* Successfully blocked, now issue sync mbox cmd */ 10111 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 10112 if (rc != MBX_SUCCESS) 10113 lpfc_printf_log(phba, KERN_WARNING, 10114 LOG_MBOX | LOG_SLI, 10115 "(%d):2597 Sync Mailbox command " 10116 "x%x (x%x/x%x) failure: " 10117 "mqe_sta: x%x mcqe_sta: x%x/x%x " 10118 "Data: x%x x%x\n", 10119 mboxq->vport ? mboxq->vport->vpi : 0, 10120 mboxq->u.mb.mbxCommand, 10121 lpfc_sli_config_mbox_subsys_get(phba, 10122 mboxq), 10123 lpfc_sli_config_mbox_opcode_get(phba, 10124 mboxq), 10125 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 10126 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 10127 bf_get(lpfc_mcqe_ext_status, 10128 &mboxq->mcqe), 10129 psli->sli_flag, flag); 10130 /* Unblock the async mailbox posting afterward */ 10131 lpfc_sli4_async_mbox_unblock(phba); 10132 } 10133 return rc; 10134 } 10135 10136 /* Now, interrupt mode asynchronous mailbox command */ 10137 rc = lpfc_mbox_cmd_check(phba, mboxq); 10138 if (rc) { 10139 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10140 "(%d):2543 Mailbox command x%x (x%x/x%x) " 10141 "cannot issue Data: x%x x%x\n", 10142 mboxq->vport ? mboxq->vport->vpi : 0, 10143 mboxq->u.mb.mbxCommand, 10144 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10145 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10146 psli->sli_flag, flag); 10147 goto out_not_finished; 10148 } 10149 10150 /* Put the mailbox command to the driver internal FIFO */ 10151 psli->slistat.mbox_busy++; 10152 spin_lock_irqsave(&phba->hbalock, iflags); 10153 lpfc_mbox_put(phba, mboxq); 10154 spin_unlock_irqrestore(&phba->hbalock, iflags); 10155 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10156 "(%d):0354 Mbox cmd issue - Enqueue Data: " 10157 "x%x (x%x/x%x) x%x x%x x%x\n", 10158 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 10159 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 10160 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10161 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10162 phba->pport->port_state, 10163 psli->sli_flag, MBX_NOWAIT); 10164 /* Wake up worker thread to transport mailbox command from head */ 10165 lpfc_worker_wake_up(phba); 10166 10167 return MBX_BUSY; 10168 10169 out_not_finished: 10170 return MBX_NOT_FINISHED; 10171 } 10172 10173 /** 10174 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 10175 * @phba: Pointer to HBA context object. 10176 * 10177 * This function is called by worker thread to send a mailbox command to 10178 * SLI4 HBA firmware. 10179 * 10180 **/ 10181 int 10182 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 10183 { 10184 struct lpfc_sli *psli = &phba->sli; 10185 LPFC_MBOXQ_t *mboxq; 10186 int rc = MBX_SUCCESS; 10187 unsigned long iflags; 10188 struct lpfc_mqe *mqe; 10189 uint32_t mbx_cmnd; 10190 10191 /* Check interrupt mode before post async mailbox command */ 10192 if (unlikely(!phba->sli4_hba.intr_enable)) 10193 return MBX_NOT_FINISHED; 10194 10195 /* Check for mailbox command service token */ 10196 spin_lock_irqsave(&phba->hbalock, iflags); 10197 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 10198 spin_unlock_irqrestore(&phba->hbalock, iflags); 10199 return MBX_NOT_FINISHED; 10200 } 10201 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 10202 spin_unlock_irqrestore(&phba->hbalock, iflags); 10203 return MBX_NOT_FINISHED; 10204 } 10205 if (unlikely(phba->sli.mbox_active)) { 10206 spin_unlock_irqrestore(&phba->hbalock, iflags); 10207 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10208 "0384 There is pending active mailbox cmd\n"); 10209 return MBX_NOT_FINISHED; 10210 } 10211 /* Take the mailbox command service token */ 10212 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 10213 10214 /* Get the next mailbox command from head of queue */ 10215 mboxq = lpfc_mbox_get(phba); 10216 10217 /* If no more mailbox command waiting for post, we're done */ 10218 if (!mboxq) { 10219 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10220 spin_unlock_irqrestore(&phba->hbalock, iflags); 10221 return MBX_SUCCESS; 10222 } 10223 phba->sli.mbox_active = mboxq; 10224 spin_unlock_irqrestore(&phba->hbalock, iflags); 10225 10226 /* Check device readiness for posting mailbox command */ 10227 rc = lpfc_mbox_dev_check(phba); 10228 if (unlikely(rc)) 10229 /* Driver clean routine will clean up pending mailbox */ 10230 goto out_not_finished; 10231 10232 /* Prepare the mbox command to be posted */ 10233 mqe = &mboxq->u.mqe; 10234 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 10235 10236 /* Start timer for the mbox_tmo and log some mailbox post messages */ 10237 mod_timer(&psli->mbox_tmo, (jiffies + 10238 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 10239 10240 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 10241 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 10242 "x%x x%x\n", 10243 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 10244 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10245 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10246 phba->pport->port_state, psli->sli_flag); 10247 10248 if (mbx_cmnd != MBX_HEARTBEAT) { 10249 if (mboxq->vport) { 10250 lpfc_debugfs_disc_trc(mboxq->vport, 10251 LPFC_DISC_TRC_MBOX_VPORT, 10252 "MBOX Send vport: cmd:x%x mb:x%x x%x", 10253 mbx_cmnd, mqe->un.mb_words[0], 10254 mqe->un.mb_words[1]); 10255 } else { 10256 lpfc_debugfs_disc_trc(phba->pport, 10257 LPFC_DISC_TRC_MBOX, 10258 "MBOX Send: cmd:x%x mb:x%x x%x", 10259 mbx_cmnd, mqe->un.mb_words[0], 10260 mqe->un.mb_words[1]); 10261 } 10262 } 10263 psli->slistat.mbox_cmd++; 10264 10265 /* Post the mailbox command to the port */ 10266 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10267 if (rc != MBX_SUCCESS) { 10268 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10269 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10270 "cannot issue Data: x%x x%x\n", 10271 mboxq->vport ? mboxq->vport->vpi : 0, 10272 mboxq->u.mb.mbxCommand, 10273 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10274 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10275 psli->sli_flag, MBX_NOWAIT); 10276 goto out_not_finished; 10277 } 10278 10279 return rc; 10280 10281 out_not_finished: 10282 spin_lock_irqsave(&phba->hbalock, iflags); 10283 if (phba->sli.mbox_active) { 10284 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10285 __lpfc_mbox_cmpl_put(phba, mboxq); 10286 /* Release the token */ 10287 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10288 phba->sli.mbox_active = NULL; 10289 } 10290 spin_unlock_irqrestore(&phba->hbalock, iflags); 10291 10292 return MBX_NOT_FINISHED; 10293 } 10294 10295 /** 10296 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10297 * @phba: Pointer to HBA context object. 10298 * @pmbox: Pointer to mailbox object. 10299 * @flag: Flag indicating how the mailbox need to be processed. 10300 * 10301 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10302 * the API jump table function pointer from the lpfc_hba struct. 10303 * 10304 * Return codes the caller owns the mailbox command after the return of the 10305 * function. 10306 **/ 10307 int 10308 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10309 { 10310 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10311 } 10312 10313 /** 10314 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10315 * @phba: The hba struct for which this call is being executed. 10316 * @dev_grp: The HBA PCI-Device group number. 10317 * 10318 * This routine sets up the mbox interface API function jump table in @phba 10319 * struct. 10320 * Returns: 0 - success, -ENODEV - failure. 10321 **/ 10322 int 10323 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10324 { 10325 10326 switch (dev_grp) { 10327 case LPFC_PCI_DEV_LP: 10328 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10329 phba->lpfc_sli_handle_slow_ring_event = 10330 lpfc_sli_handle_slow_ring_event_s3; 10331 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10332 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10333 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10334 break; 10335 case LPFC_PCI_DEV_OC: 10336 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10337 phba->lpfc_sli_handle_slow_ring_event = 10338 lpfc_sli_handle_slow_ring_event_s4; 10339 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10340 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10341 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10342 break; 10343 default: 10344 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10345 "1420 Invalid HBA PCI-device group: 0x%x\n", 10346 dev_grp); 10347 return -ENODEV; 10348 } 10349 return 0; 10350 } 10351 10352 /** 10353 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10354 * @phba: Pointer to HBA context object. 10355 * @pring: Pointer to driver SLI ring object. 10356 * @piocb: Pointer to address of newly added command iocb. 10357 * 10358 * This function is called with hbalock held for SLI3 ports or 10359 * the ring lock held for SLI4 ports to add a command 10360 * iocb to the txq when SLI layer cannot submit the command iocb 10361 * to the ring. 10362 **/ 10363 void 10364 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10365 struct lpfc_iocbq *piocb) 10366 { 10367 if (phba->sli_rev == LPFC_SLI_REV4) 10368 lockdep_assert_held(&pring->ring_lock); 10369 else 10370 lockdep_assert_held(&phba->hbalock); 10371 /* Insert the caller's iocb in the txq tail for later processing. */ 10372 list_add_tail(&piocb->list, &pring->txq); 10373 } 10374 10375 /** 10376 * lpfc_sli_next_iocb - Get the next iocb in the txq 10377 * @phba: Pointer to HBA context object. 10378 * @pring: Pointer to driver SLI ring object. 10379 * @piocb: Pointer to address of newly added command iocb. 10380 * 10381 * This function is called with hbalock held before a new 10382 * iocb is submitted to the firmware. This function checks 10383 * txq to flush the iocbs in txq to Firmware before 10384 * submitting new iocbs to the Firmware. 10385 * If there are iocbs in the txq which need to be submitted 10386 * to firmware, lpfc_sli_next_iocb returns the first element 10387 * of the txq after dequeuing it from txq. 10388 * If there is no iocb in the txq then the function will return 10389 * *piocb and *piocb is set to NULL. Caller needs to check 10390 * *piocb to find if there are more commands in the txq. 10391 **/ 10392 static struct lpfc_iocbq * 10393 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10394 struct lpfc_iocbq **piocb) 10395 { 10396 struct lpfc_iocbq * nextiocb; 10397 10398 lockdep_assert_held(&phba->hbalock); 10399 10400 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10401 if (!nextiocb) { 10402 nextiocb = *piocb; 10403 *piocb = NULL; 10404 } 10405 10406 return nextiocb; 10407 } 10408 10409 /** 10410 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10411 * @phba: Pointer to HBA context object. 10412 * @ring_number: SLI ring number to issue iocb on. 10413 * @piocb: Pointer to command iocb. 10414 * @flag: Flag indicating if this command can be put into txq. 10415 * 10416 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10417 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10418 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10419 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10420 * this function allows only iocbs for posting buffers. This function finds 10421 * next available slot in the command ring and posts the command to the 10422 * available slot and writes the port attention register to request HBA start 10423 * processing new iocb. If there is no slot available in the ring and 10424 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10425 * the function returns IOCB_BUSY. 10426 * 10427 * This function is called with hbalock held. The function will return success 10428 * after it successfully submit the iocb to firmware or after adding to the 10429 * txq. 10430 **/ 10431 static int 10432 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10433 struct lpfc_iocbq *piocb, uint32_t flag) 10434 { 10435 struct lpfc_iocbq *nextiocb; 10436 IOCB_t *iocb; 10437 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10438 10439 lockdep_assert_held(&phba->hbalock); 10440 10441 if (piocb->cmd_cmpl && (!piocb->vport) && 10442 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10443 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10445 "1807 IOCB x%x failed. No vport\n", 10446 piocb->iocb.ulpCommand); 10447 dump_stack(); 10448 return IOCB_ERROR; 10449 } 10450 10451 10452 /* If the PCI channel is in offline state, do not post iocbs. */ 10453 if (unlikely(pci_channel_offline(phba->pcidev))) 10454 return IOCB_ERROR; 10455 10456 /* If HBA has a deferred error attention, fail the iocb. */ 10457 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10458 return IOCB_ERROR; 10459 10460 /* 10461 * We should never get an IOCB if we are in a < LINK_DOWN state 10462 */ 10463 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10464 return IOCB_ERROR; 10465 10466 /* 10467 * Check to see if we are blocking IOCB processing because of a 10468 * outstanding event. 10469 */ 10470 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10471 goto iocb_busy; 10472 10473 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10474 /* 10475 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10476 * can be issued if the link is not up. 10477 */ 10478 switch (piocb->iocb.ulpCommand) { 10479 case CMD_QUE_RING_BUF_CN: 10480 case CMD_QUE_RING_BUF64_CN: 10481 /* 10482 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10483 * completion, cmd_cmpl MUST be 0. 10484 */ 10485 if (piocb->cmd_cmpl) 10486 piocb->cmd_cmpl = NULL; 10487 fallthrough; 10488 case CMD_CREATE_XRI_CR: 10489 case CMD_CLOSE_XRI_CN: 10490 case CMD_CLOSE_XRI_CX: 10491 break; 10492 default: 10493 goto iocb_busy; 10494 } 10495 10496 /* 10497 * For FCP commands, we must be in a state where we can process link 10498 * attention events. 10499 */ 10500 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10501 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10502 goto iocb_busy; 10503 } 10504 10505 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10506 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10507 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10508 10509 if (iocb) 10510 lpfc_sli_update_ring(phba, pring); 10511 else 10512 lpfc_sli_update_full_ring(phba, pring); 10513 10514 if (!piocb) 10515 return IOCB_SUCCESS; 10516 10517 goto out_busy; 10518 10519 iocb_busy: 10520 pring->stats.iocb_cmd_delay++; 10521 10522 out_busy: 10523 10524 if (!(flag & SLI_IOCB_RET_IOCB)) { 10525 __lpfc_sli_ringtx_put(phba, pring, piocb); 10526 return IOCB_SUCCESS; 10527 } 10528 10529 return IOCB_BUSY; 10530 } 10531 10532 /** 10533 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10534 * @phba: Pointer to HBA context object. 10535 * @ring_number: SLI ring number to issue wqe on. 10536 * @piocb: Pointer to command iocb. 10537 * @flag: Flag indicating if this command can be put into txq. 10538 * 10539 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10540 * send an iocb command to an HBA with SLI-3 interface spec. 10541 * 10542 * This function takes the hbalock before invoking the lockless version. 10543 * The function will return success after it successfully submit the wqe to 10544 * firmware or after adding to the txq. 10545 **/ 10546 static int 10547 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10548 struct lpfc_iocbq *piocb, uint32_t flag) 10549 { 10550 unsigned long iflags; 10551 int rc; 10552 10553 spin_lock_irqsave(&phba->hbalock, iflags); 10554 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10555 spin_unlock_irqrestore(&phba->hbalock, iflags); 10556 10557 return rc; 10558 } 10559 10560 /** 10561 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10562 * @phba: Pointer to HBA context object. 10563 * @ring_number: SLI ring number to issue wqe on. 10564 * @piocb: Pointer to command iocb. 10565 * @flag: Flag indicating if this command can be put into txq. 10566 * 10567 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10568 * an wqe command to an HBA with SLI-4 interface spec. 10569 * 10570 * This function is a lockless version. The function will return success 10571 * after it successfully submit the wqe to firmware or after adding to the 10572 * txq. 10573 **/ 10574 static int 10575 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10576 struct lpfc_iocbq *piocb, uint32_t flag) 10577 { 10578 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10579 10580 lpfc_prep_embed_io(phba, lpfc_cmd); 10581 return lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10582 } 10583 10584 void 10585 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10586 { 10587 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10588 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10589 struct sli4_sge *sgl; 10590 10591 /* 128 byte wqe support here */ 10592 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10593 10594 if (phba->fcp_embed_io) { 10595 struct fcp_cmnd *fcp_cmnd; 10596 u32 *ptr; 10597 10598 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10599 10600 /* Word 0-2 - FCP_CMND */ 10601 wqe->generic.bde.tus.f.bdeFlags = 10602 BUFF_TYPE_BDE_IMMED; 10603 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10604 wqe->generic.bde.addrHigh = 0; 10605 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10606 10607 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10608 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10609 10610 /* Word 22-29 FCP CMND Payload */ 10611 ptr = &wqe->words[22]; 10612 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10613 } else { 10614 /* Word 0-2 - Inline BDE */ 10615 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10616 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10617 wqe->generic.bde.addrHigh = sgl->addr_hi; 10618 wqe->generic.bde.addrLow = sgl->addr_lo; 10619 10620 /* Word 10 */ 10621 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10622 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10623 } 10624 10625 /* add the VMID tags as per switch response */ 10626 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10627 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10628 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10629 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10630 (piocb->vmid_tag.cs_ctl_vmid)); 10631 } else if (phba->cfg_vmid_app_header) { 10632 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10633 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10634 wqe->words[31] = piocb->vmid_tag.app_id; 10635 } 10636 } 10637 } 10638 10639 /** 10640 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10641 * @phba: Pointer to HBA context object. 10642 * @ring_number: SLI ring number to issue iocb on. 10643 * @piocb: Pointer to command iocb. 10644 * @flag: Flag indicating if this command can be put into txq. 10645 * 10646 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10647 * an iocb command to an HBA with SLI-4 interface spec. 10648 * 10649 * This function is called with ringlock held. The function will return success 10650 * after it successfully submit the iocb to firmware or after adding to the 10651 * txq. 10652 **/ 10653 static int 10654 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10655 struct lpfc_iocbq *piocb, uint32_t flag) 10656 { 10657 struct lpfc_sglq *sglq; 10658 union lpfc_wqe128 *wqe; 10659 struct lpfc_queue *wq; 10660 struct lpfc_sli_ring *pring; 10661 u32 ulp_command = get_job_cmnd(phba, piocb); 10662 10663 /* Get the WQ */ 10664 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10665 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10666 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10667 } else { 10668 wq = phba->sli4_hba.els_wq; 10669 } 10670 10671 /* Get corresponding ring */ 10672 pring = wq->pring; 10673 10674 /* 10675 * The WQE can be either 64 or 128 bytes, 10676 */ 10677 10678 lockdep_assert_held(&pring->ring_lock); 10679 wqe = &piocb->wqe; 10680 if (piocb->sli4_xritag == NO_XRI) { 10681 if (ulp_command == CMD_ABORT_XRI_CX) 10682 sglq = NULL; 10683 else { 10684 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10685 if (!sglq) { 10686 if (!(flag & SLI_IOCB_RET_IOCB)) { 10687 __lpfc_sli_ringtx_put(phba, 10688 pring, 10689 piocb); 10690 return IOCB_SUCCESS; 10691 } else { 10692 return IOCB_BUSY; 10693 } 10694 } 10695 } 10696 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10697 /* These IO's already have an XRI and a mapped sgl. */ 10698 sglq = NULL; 10699 } 10700 else { 10701 /* 10702 * This is a continuation of a commandi,(CX) so this 10703 * sglq is on the active list 10704 */ 10705 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10706 if (!sglq) 10707 return IOCB_ERROR; 10708 } 10709 10710 if (sglq) { 10711 piocb->sli4_lxritag = sglq->sli4_lxritag; 10712 piocb->sli4_xritag = sglq->sli4_xritag; 10713 10714 /* ABTS sent by initiator to CT exchange, the 10715 * RX_ID field will be filled with the newly 10716 * allocated responder XRI. 10717 */ 10718 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10719 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10720 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10721 piocb->sli4_xritag); 10722 10723 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10724 piocb->sli4_xritag); 10725 10726 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10727 return IOCB_ERROR; 10728 } 10729 10730 if (lpfc_sli4_wq_put(wq, wqe)) 10731 return IOCB_ERROR; 10732 10733 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10734 10735 return 0; 10736 } 10737 10738 /* 10739 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10740 * 10741 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10742 * or IOCB for sli-3 function. 10743 * pointer from the lpfc_hba struct. 10744 * 10745 * Return codes: 10746 * IOCB_ERROR - Error 10747 * IOCB_SUCCESS - Success 10748 * IOCB_BUSY - Busy 10749 **/ 10750 int 10751 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10752 struct lpfc_iocbq *piocb, uint32_t flag) 10753 { 10754 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10755 } 10756 10757 /* 10758 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10759 * 10760 * This routine wraps the actual lockless version for issusing IOCB function 10761 * pointer from the lpfc_hba struct. 10762 * 10763 * Return codes: 10764 * IOCB_ERROR - Error 10765 * IOCB_SUCCESS - Success 10766 * IOCB_BUSY - Busy 10767 **/ 10768 int 10769 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10770 struct lpfc_iocbq *piocb, uint32_t flag) 10771 { 10772 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10773 } 10774 10775 static void 10776 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10777 struct lpfc_vport *vport, 10778 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10779 u32 elscmd, u8 tmo, u8 expect_rsp) 10780 { 10781 struct lpfc_hba *phba = vport->phba; 10782 IOCB_t *cmd; 10783 10784 cmd = &cmdiocbq->iocb; 10785 memset(cmd, 0, sizeof(*cmd)); 10786 10787 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10788 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10789 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10790 10791 if (expect_rsp) { 10792 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10793 cmd->un.elsreq64.remoteID = did; /* DID */ 10794 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10795 cmd->ulpTimeout = tmo; 10796 } else { 10797 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10798 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10799 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10800 cmd->ulpPU = PARM_NPIV_DID; 10801 } 10802 cmd->ulpBdeCount = 1; 10803 cmd->ulpLe = 1; 10804 cmd->ulpClass = CLASS3; 10805 10806 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10807 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10808 if (expect_rsp) { 10809 cmd->un.elsreq64.myID = vport->fc_myDID; 10810 10811 /* For ELS_REQUEST64_CR, use the VPI by default */ 10812 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10813 } 10814 10815 cmd->ulpCt_h = 0; 10816 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10817 if (elscmd == ELS_CMD_ECHO) 10818 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10819 else 10820 cmd->ulpCt_l = 1; /* context = VPI */ 10821 } 10822 } 10823 10824 static void 10825 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10826 struct lpfc_vport *vport, 10827 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10828 u32 elscmd, u8 tmo, u8 expect_rsp) 10829 { 10830 struct lpfc_hba *phba = vport->phba; 10831 union lpfc_wqe128 *wqe; 10832 struct ulp_bde64_le *bde; 10833 u8 els_id; 10834 10835 wqe = &cmdiocbq->wqe; 10836 memset(wqe, 0, sizeof(*wqe)); 10837 10838 /* Word 0 - 2 BDE */ 10839 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10840 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10841 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10842 bde->type_size = cpu_to_le32(cmd_size); 10843 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10844 10845 if (expect_rsp) { 10846 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10847 10848 /* Transfer length */ 10849 wqe->els_req.payload_len = cmd_size; 10850 wqe->els_req.max_response_payload_len = FCELSSIZE; 10851 10852 /* DID */ 10853 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10854 10855 /* Word 11 - ELS_ID */ 10856 switch (elscmd) { 10857 case ELS_CMD_PLOGI: 10858 els_id = LPFC_ELS_ID_PLOGI; 10859 break; 10860 case ELS_CMD_FLOGI: 10861 els_id = LPFC_ELS_ID_FLOGI; 10862 break; 10863 case ELS_CMD_LOGO: 10864 els_id = LPFC_ELS_ID_LOGO; 10865 break; 10866 case ELS_CMD_FDISC: 10867 if (!vport->fc_myDID) { 10868 els_id = LPFC_ELS_ID_FDISC; 10869 break; 10870 } 10871 fallthrough; 10872 default: 10873 els_id = LPFC_ELS_ID_DEFAULT; 10874 break; 10875 } 10876 10877 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10878 } else { 10879 /* DID */ 10880 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10881 10882 /* Transfer length */ 10883 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10884 10885 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10886 CMD_XMIT_ELS_RSP64_WQE); 10887 } 10888 10889 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10890 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10891 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10892 10893 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10894 * For SLI4, since the driver controls VPIs we also want to include 10895 * all ELS pt2pt protocol traffic as well. 10896 */ 10897 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10898 (vport->fc_flag & FC_PT2PT)) { 10899 if (expect_rsp) { 10900 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10901 10902 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10903 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10904 phba->vpi_ids[vport->vpi]); 10905 } 10906 10907 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10908 if (elscmd == ELS_CMD_ECHO) 10909 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10910 else 10911 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10912 } 10913 } 10914 10915 void 10916 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10917 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10918 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10919 u8 expect_rsp) 10920 { 10921 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10922 elscmd, tmo, expect_rsp); 10923 } 10924 10925 static void 10926 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10927 u16 rpi, u32 num_entry, u8 tmo) 10928 { 10929 IOCB_t *cmd; 10930 10931 cmd = &cmdiocbq->iocb; 10932 memset(cmd, 0, sizeof(*cmd)); 10933 10934 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10935 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10936 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10937 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10938 10939 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10940 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10941 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10942 10943 cmd->ulpContext = rpi; 10944 cmd->ulpClass = CLASS3; 10945 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10946 cmd->ulpBdeCount = 1; 10947 cmd->ulpLe = 1; 10948 cmd->ulpOwner = OWN_CHIP; 10949 cmd->ulpTimeout = tmo; 10950 } 10951 10952 static void 10953 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10954 u16 rpi, u32 num_entry, u8 tmo) 10955 { 10956 union lpfc_wqe128 *cmdwqe; 10957 struct ulp_bde64_le *bde, *bpl; 10958 u32 xmit_len = 0, total_len = 0, size, type, i; 10959 10960 cmdwqe = &cmdiocbq->wqe; 10961 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10962 10963 /* Calculate total_len and xmit_len */ 10964 bpl = (struct ulp_bde64_le *)bmp->virt; 10965 for (i = 0; i < num_entry; i++) { 10966 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10967 total_len += size; 10968 } 10969 for (i = 0; i < num_entry; i++) { 10970 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10971 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10972 if (type != ULP_BDE64_TYPE_BDE_64) 10973 break; 10974 xmit_len += size; 10975 } 10976 10977 /* Words 0 - 2 */ 10978 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10979 bde->addr_low = bpl->addr_low; 10980 bde->addr_high = bpl->addr_high; 10981 bde->type_size = cpu_to_le32(xmit_len); 10982 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10983 10984 /* Word 3 */ 10985 cmdwqe->gen_req.request_payload_len = xmit_len; 10986 10987 /* Word 5 */ 10988 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10989 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10990 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10991 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10992 10993 /* Word 6 */ 10994 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10995 10996 /* Word 7 */ 10997 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10998 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10999 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 11000 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 11001 11002 /* Word 12 */ 11003 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 11004 } 11005 11006 void 11007 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11008 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 11009 { 11010 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 11011 } 11012 11013 static void 11014 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 11015 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11016 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11017 { 11018 IOCB_t *icmd; 11019 11020 icmd = &cmdiocbq->iocb; 11021 memset(icmd, 0, sizeof(*icmd)); 11022 11023 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 11024 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 11025 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 11026 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 11027 icmd->un.xseq64.w5.hcsw.Fctl = LA; 11028 if (last_seq) 11029 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 11030 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 11031 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 11032 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 11033 11034 icmd->ulpBdeCount = 1; 11035 icmd->ulpLe = 1; 11036 icmd->ulpClass = CLASS3; 11037 11038 switch (cr_cx_cmd) { 11039 case CMD_XMIT_SEQUENCE64_CR: 11040 icmd->ulpContext = rpi; 11041 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 11042 break; 11043 case CMD_XMIT_SEQUENCE64_CX: 11044 icmd->ulpContext = ox_id; 11045 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 11046 break; 11047 default: 11048 break; 11049 } 11050 } 11051 11052 static void 11053 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 11054 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11055 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11056 { 11057 union lpfc_wqe128 *wqe; 11058 struct ulp_bde64 *bpl; 11059 11060 wqe = &cmdiocbq->wqe; 11061 memset(wqe, 0, sizeof(*wqe)); 11062 11063 /* Words 0 - 2 */ 11064 bpl = (struct ulp_bde64 *)bmp->virt; 11065 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 11066 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 11067 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 11068 11069 /* Word 5 */ 11070 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 11071 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 11072 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 11073 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 11074 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 11075 11076 /* Word 6 */ 11077 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 11078 11079 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 11080 CMD_XMIT_SEQUENCE64_WQE); 11081 11082 /* Word 7 */ 11083 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 11084 11085 /* Word 9 */ 11086 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 11087 11088 /* Word 12 */ 11089 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 11090 wqe->xmit_sequence.xmit_len = full_size; 11091 else 11092 wqe->xmit_sequence.xmit_len = 11093 wqe->xmit_sequence.bde.tus.f.bdeSize; 11094 } 11095 11096 void 11097 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11098 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 11099 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 11100 { 11101 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 11102 rctl, last_seq, cr_cx_cmd); 11103 } 11104 11105 static void 11106 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11107 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11108 bool wqec) 11109 { 11110 IOCB_t *icmd = NULL; 11111 11112 icmd = &cmdiocbq->iocb; 11113 memset(icmd, 0, sizeof(*icmd)); 11114 11115 /* Word 5 */ 11116 icmd->un.acxri.abortContextTag = ulp_context; 11117 icmd->un.acxri.abortIoTag = iotag; 11118 11119 if (ia) { 11120 /* Word 7 */ 11121 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 11122 } else { 11123 /* Word 3 */ 11124 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 11125 11126 /* Word 7 */ 11127 icmd->ulpClass = ulp_class; 11128 icmd->ulpCommand = CMD_ABORT_XRI_CN; 11129 } 11130 11131 /* Word 7 */ 11132 icmd->ulpLe = 1; 11133 } 11134 11135 static void 11136 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 11137 u16 iotag, u8 ulp_class, u16 cqid, bool ia, 11138 bool wqec) 11139 { 11140 union lpfc_wqe128 *wqe; 11141 11142 wqe = &cmdiocbq->wqe; 11143 memset(wqe, 0, sizeof(*wqe)); 11144 11145 /* Word 3 */ 11146 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 11147 if (ia) 11148 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 11149 else 11150 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 11151 11152 /* Word 7 */ 11153 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 11154 11155 /* Word 8 */ 11156 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 11157 11158 /* Word 9 */ 11159 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 11160 11161 /* Word 10 */ 11162 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 11163 11164 /* Word 11 */ 11165 if (wqec) 11166 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 11167 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 11168 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 11169 } 11170 11171 void 11172 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 11173 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 11174 bool ia, bool wqec) 11175 { 11176 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 11177 cqid, ia, wqec); 11178 } 11179 11180 /** 11181 * lpfc_sli_api_table_setup - Set up sli api function jump table 11182 * @phba: The hba struct for which this call is being executed. 11183 * @dev_grp: The HBA PCI-Device group number. 11184 * 11185 * This routine sets up the SLI interface API function jump table in @phba 11186 * struct. 11187 * Returns: 0 - success, -ENODEV - failure. 11188 **/ 11189 int 11190 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 11191 { 11192 11193 switch (dev_grp) { 11194 case LPFC_PCI_DEV_LP: 11195 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 11196 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 11197 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 11198 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 11199 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 11200 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 11201 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 11202 break; 11203 case LPFC_PCI_DEV_OC: 11204 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 11205 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 11206 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 11207 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 11208 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 11209 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 11210 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 11211 break; 11212 default: 11213 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11214 "1419 Invalid HBA PCI-device group: 0x%x\n", 11215 dev_grp); 11216 return -ENODEV; 11217 } 11218 return 0; 11219 } 11220 11221 /** 11222 * lpfc_sli4_calc_ring - Calculates which ring to use 11223 * @phba: Pointer to HBA context object. 11224 * @piocb: Pointer to command iocb. 11225 * 11226 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 11227 * hba_wqidx, thus we need to calculate the corresponding ring. 11228 * Since ABORTS must go on the same WQ of the command they are 11229 * aborting, we use command's hba_wqidx. 11230 */ 11231 struct lpfc_sli_ring * 11232 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 11233 { 11234 struct lpfc_io_buf *lpfc_cmd; 11235 11236 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 11237 if (unlikely(!phba->sli4_hba.hdwq)) 11238 return NULL; 11239 /* 11240 * for abort iocb hba_wqidx should already 11241 * be setup based on what work queue we used. 11242 */ 11243 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 11244 lpfc_cmd = piocb->io_buf; 11245 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 11246 } 11247 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 11248 } else { 11249 if (unlikely(!phba->sli4_hba.els_wq)) 11250 return NULL; 11251 piocb->hba_wqidx = 0; 11252 return phba->sli4_hba.els_wq->pring; 11253 } 11254 } 11255 11256 /** 11257 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11258 * @phba: Pointer to HBA context object. 11259 * @ring_number: Ring number 11260 * @piocb: Pointer to command iocb. 11261 * @flag: Flag indicating if this command can be put into txq. 11262 * 11263 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11264 * function. This function gets the hbalock and calls 11265 * __lpfc_sli_issue_iocb function and will return the error returned 11266 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11267 * functions which do not hold hbalock. 11268 **/ 11269 int 11270 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11271 struct lpfc_iocbq *piocb, uint32_t flag) 11272 { 11273 struct lpfc_sli_ring *pring; 11274 struct lpfc_queue *eq; 11275 unsigned long iflags; 11276 int rc; 11277 11278 /* If the PCI channel is in offline state, do not post iocbs. */ 11279 if (unlikely(pci_channel_offline(phba->pcidev))) 11280 return IOCB_ERROR; 11281 11282 if (phba->sli_rev == LPFC_SLI_REV4) { 11283 lpfc_sli_prep_wqe(phba, piocb); 11284 11285 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11286 11287 pring = lpfc_sli4_calc_ring(phba, piocb); 11288 if (unlikely(pring == NULL)) 11289 return IOCB_ERROR; 11290 11291 spin_lock_irqsave(&pring->ring_lock, iflags); 11292 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11293 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11294 11295 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11296 } else { 11297 /* For now, SLI2/3 will still use hbalock */ 11298 spin_lock_irqsave(&phba->hbalock, iflags); 11299 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11300 spin_unlock_irqrestore(&phba->hbalock, iflags); 11301 } 11302 return rc; 11303 } 11304 11305 /** 11306 * lpfc_extra_ring_setup - Extra ring setup function 11307 * @phba: Pointer to HBA context object. 11308 * 11309 * This function is called while driver attaches with the 11310 * HBA to setup the extra ring. The extra ring is used 11311 * only when driver needs to support target mode functionality 11312 * or IP over FC functionalities. 11313 * 11314 * This function is called with no lock held. SLI3 only. 11315 **/ 11316 static int 11317 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11318 { 11319 struct lpfc_sli *psli; 11320 struct lpfc_sli_ring *pring; 11321 11322 psli = &phba->sli; 11323 11324 /* Adjust cmd/rsp ring iocb entries more evenly */ 11325 11326 /* Take some away from the FCP ring */ 11327 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11328 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11329 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11330 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11331 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11332 11333 /* and give them to the extra ring */ 11334 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11335 11336 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11337 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11338 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11339 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11340 11341 /* Setup default profile for this ring */ 11342 pring->iotag_max = 4096; 11343 pring->num_mask = 1; 11344 pring->prt[0].profile = 0; /* Mask 0 */ 11345 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11346 pring->prt[0].type = phba->cfg_multi_ring_type; 11347 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11348 return 0; 11349 } 11350 11351 static void 11352 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11353 struct lpfc_nodelist *ndlp) 11354 { 11355 unsigned long iflags; 11356 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11357 11358 spin_lock_irqsave(&phba->hbalock, iflags); 11359 if (!list_empty(&evtp->evt_listp)) { 11360 spin_unlock_irqrestore(&phba->hbalock, iflags); 11361 return; 11362 } 11363 11364 /* Incrementing the reference count until the queued work is done. */ 11365 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11366 if (!evtp->evt_arg1) { 11367 spin_unlock_irqrestore(&phba->hbalock, iflags); 11368 return; 11369 } 11370 evtp->evt = LPFC_EVT_RECOVER_PORT; 11371 list_add_tail(&evtp->evt_listp, &phba->work_list); 11372 spin_unlock_irqrestore(&phba->hbalock, iflags); 11373 11374 lpfc_worker_wake_up(phba); 11375 } 11376 11377 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11378 * @phba: Pointer to HBA context object. 11379 * @iocbq: Pointer to iocb object. 11380 * 11381 * The async_event handler calls this routine when it receives 11382 * an ASYNC_STATUS_CN event from the port. The port generates 11383 * this event when an Abort Sequence request to an rport fails 11384 * twice in succession. The abort could be originated by the 11385 * driver or by the port. The ABTS could have been for an ELS 11386 * or FCP IO. The port only generates this event when an ABTS 11387 * fails to complete after one retry. 11388 */ 11389 static void 11390 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11391 struct lpfc_iocbq *iocbq) 11392 { 11393 struct lpfc_nodelist *ndlp = NULL; 11394 uint16_t rpi = 0, vpi = 0; 11395 struct lpfc_vport *vport = NULL; 11396 11397 /* The rpi in the ulpContext is vport-sensitive. */ 11398 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11399 rpi = iocbq->iocb.ulpContext; 11400 11401 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11402 "3092 Port generated ABTS async event " 11403 "on vpi %d rpi %d status 0x%x\n", 11404 vpi, rpi, iocbq->iocb.ulpStatus); 11405 11406 vport = lpfc_find_vport_by_vpid(phba, vpi); 11407 if (!vport) 11408 goto err_exit; 11409 ndlp = lpfc_findnode_rpi(vport, rpi); 11410 if (!ndlp) 11411 goto err_exit; 11412 11413 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11414 lpfc_sli_abts_recover_port(vport, ndlp); 11415 return; 11416 11417 err_exit: 11418 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11419 "3095 Event Context not found, no " 11420 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11421 vpi, rpi, iocbq->iocb.ulpStatus, 11422 iocbq->iocb.ulpContext); 11423 } 11424 11425 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11426 * @phba: pointer to HBA context object. 11427 * @ndlp: nodelist pointer for the impacted rport. 11428 * @axri: pointer to the wcqe containing the failed exchange. 11429 * 11430 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11431 * port. The port generates this event when an abort exchange request to an 11432 * rport fails twice in succession with no reply. The abort could be originated 11433 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11434 */ 11435 void 11436 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11437 struct lpfc_nodelist *ndlp, 11438 struct sli4_wcqe_xri_aborted *axri) 11439 { 11440 uint32_t ext_status = 0; 11441 11442 if (!ndlp) { 11443 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11444 "3115 Node Context not found, driver " 11445 "ignoring abts err event\n"); 11446 return; 11447 } 11448 11449 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11450 "3116 Port generated FCP XRI ABORT event on " 11451 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11452 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11453 bf_get(lpfc_wcqe_xa_xri, axri), 11454 bf_get(lpfc_wcqe_xa_status, axri), 11455 axri->parameter); 11456 11457 /* 11458 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11459 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11460 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11461 */ 11462 ext_status = axri->parameter & IOERR_PARAM_MASK; 11463 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11464 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11465 lpfc_sli_post_recovery_event(phba, ndlp); 11466 } 11467 11468 /** 11469 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11470 * @phba: Pointer to HBA context object. 11471 * @pring: Pointer to driver SLI ring object. 11472 * @iocbq: Pointer to iocb object. 11473 * 11474 * This function is called by the slow ring event handler 11475 * function when there is an ASYNC event iocb in the ring. 11476 * This function is called with no lock held. 11477 * Currently this function handles only temperature related 11478 * ASYNC events. The function decodes the temperature sensor 11479 * event message and posts events for the management applications. 11480 **/ 11481 static void 11482 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11483 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11484 { 11485 IOCB_t *icmd; 11486 uint16_t evt_code; 11487 struct temp_event temp_event_data; 11488 struct Scsi_Host *shost; 11489 uint32_t *iocb_w; 11490 11491 icmd = &iocbq->iocb; 11492 evt_code = icmd->un.asyncstat.evt_code; 11493 11494 switch (evt_code) { 11495 case ASYNC_TEMP_WARN: 11496 case ASYNC_TEMP_SAFE: 11497 temp_event_data.data = (uint32_t) icmd->ulpContext; 11498 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11499 if (evt_code == ASYNC_TEMP_WARN) { 11500 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11502 "0347 Adapter is very hot, please take " 11503 "corrective action. temperature : %d Celsius\n", 11504 (uint32_t) icmd->ulpContext); 11505 } else { 11506 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11508 "0340 Adapter temperature is OK now. " 11509 "temperature : %d Celsius\n", 11510 (uint32_t) icmd->ulpContext); 11511 } 11512 11513 /* Send temperature change event to applications */ 11514 shost = lpfc_shost_from_vport(phba->pport); 11515 fc_host_post_vendor_event(shost, fc_get_event_number(), 11516 sizeof(temp_event_data), (char *) &temp_event_data, 11517 LPFC_NL_VENDOR_ID); 11518 break; 11519 case ASYNC_STATUS_CN: 11520 lpfc_sli_abts_err_handler(phba, iocbq); 11521 break; 11522 default: 11523 iocb_w = (uint32_t *) icmd; 11524 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11525 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11526 " evt_code 0x%x\n" 11527 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11528 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11529 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11530 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11531 pring->ringno, icmd->un.asyncstat.evt_code, 11532 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11533 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11534 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11535 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11536 11537 break; 11538 } 11539 } 11540 11541 11542 /** 11543 * lpfc_sli4_setup - SLI ring setup function 11544 * @phba: Pointer to HBA context object. 11545 * 11546 * lpfc_sli_setup sets up rings of the SLI interface with 11547 * number of iocbs per ring and iotags. This function is 11548 * called while driver attach to the HBA and before the 11549 * interrupts are enabled. So there is no need for locking. 11550 * 11551 * This function always returns 0. 11552 **/ 11553 int 11554 lpfc_sli4_setup(struct lpfc_hba *phba) 11555 { 11556 struct lpfc_sli_ring *pring; 11557 11558 pring = phba->sli4_hba.els_wq->pring; 11559 pring->num_mask = LPFC_MAX_RING_MASK; 11560 pring->prt[0].profile = 0; /* Mask 0 */ 11561 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11562 pring->prt[0].type = FC_TYPE_ELS; 11563 pring->prt[0].lpfc_sli_rcv_unsol_event = 11564 lpfc_els_unsol_event; 11565 pring->prt[1].profile = 0; /* Mask 1 */ 11566 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11567 pring->prt[1].type = FC_TYPE_ELS; 11568 pring->prt[1].lpfc_sli_rcv_unsol_event = 11569 lpfc_els_unsol_event; 11570 pring->prt[2].profile = 0; /* Mask 2 */ 11571 /* NameServer Inquiry */ 11572 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11573 /* NameServer */ 11574 pring->prt[2].type = FC_TYPE_CT; 11575 pring->prt[2].lpfc_sli_rcv_unsol_event = 11576 lpfc_ct_unsol_event; 11577 pring->prt[3].profile = 0; /* Mask 3 */ 11578 /* NameServer response */ 11579 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11580 /* NameServer */ 11581 pring->prt[3].type = FC_TYPE_CT; 11582 pring->prt[3].lpfc_sli_rcv_unsol_event = 11583 lpfc_ct_unsol_event; 11584 return 0; 11585 } 11586 11587 /** 11588 * lpfc_sli_setup - SLI ring setup function 11589 * @phba: Pointer to HBA context object. 11590 * 11591 * lpfc_sli_setup sets up rings of the SLI interface with 11592 * number of iocbs per ring and iotags. This function is 11593 * called while driver attach to the HBA and before the 11594 * interrupts are enabled. So there is no need for locking. 11595 * 11596 * This function always returns 0. SLI3 only. 11597 **/ 11598 int 11599 lpfc_sli_setup(struct lpfc_hba *phba) 11600 { 11601 int i, totiocbsize = 0; 11602 struct lpfc_sli *psli = &phba->sli; 11603 struct lpfc_sli_ring *pring; 11604 11605 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11606 psli->sli_flag = 0; 11607 11608 psli->iocbq_lookup = NULL; 11609 psli->iocbq_lookup_len = 0; 11610 psli->last_iotag = 0; 11611 11612 for (i = 0; i < psli->num_rings; i++) { 11613 pring = &psli->sli3_ring[i]; 11614 switch (i) { 11615 case LPFC_FCP_RING: /* ring 0 - FCP */ 11616 /* numCiocb and numRiocb are used in config_port */ 11617 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11618 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11619 pring->sli.sli3.numCiocb += 11620 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11621 pring->sli.sli3.numRiocb += 11622 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11623 pring->sli.sli3.numCiocb += 11624 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11625 pring->sli.sli3.numRiocb += 11626 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11627 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11628 SLI3_IOCB_CMD_SIZE : 11629 SLI2_IOCB_CMD_SIZE; 11630 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11631 SLI3_IOCB_RSP_SIZE : 11632 SLI2_IOCB_RSP_SIZE; 11633 pring->iotag_ctr = 0; 11634 pring->iotag_max = 11635 (phba->cfg_hba_queue_depth * 2); 11636 pring->fast_iotag = pring->iotag_max; 11637 pring->num_mask = 0; 11638 break; 11639 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11640 /* numCiocb and numRiocb are used in config_port */ 11641 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11642 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11643 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11644 SLI3_IOCB_CMD_SIZE : 11645 SLI2_IOCB_CMD_SIZE; 11646 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11647 SLI3_IOCB_RSP_SIZE : 11648 SLI2_IOCB_RSP_SIZE; 11649 pring->iotag_max = phba->cfg_hba_queue_depth; 11650 pring->num_mask = 0; 11651 break; 11652 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11653 /* numCiocb and numRiocb are used in config_port */ 11654 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11655 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11656 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11657 SLI3_IOCB_CMD_SIZE : 11658 SLI2_IOCB_CMD_SIZE; 11659 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11660 SLI3_IOCB_RSP_SIZE : 11661 SLI2_IOCB_RSP_SIZE; 11662 pring->fast_iotag = 0; 11663 pring->iotag_ctr = 0; 11664 pring->iotag_max = 4096; 11665 pring->lpfc_sli_rcv_async_status = 11666 lpfc_sli_async_event_handler; 11667 pring->num_mask = LPFC_MAX_RING_MASK; 11668 pring->prt[0].profile = 0; /* Mask 0 */ 11669 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11670 pring->prt[0].type = FC_TYPE_ELS; 11671 pring->prt[0].lpfc_sli_rcv_unsol_event = 11672 lpfc_els_unsol_event; 11673 pring->prt[1].profile = 0; /* Mask 1 */ 11674 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11675 pring->prt[1].type = FC_TYPE_ELS; 11676 pring->prt[1].lpfc_sli_rcv_unsol_event = 11677 lpfc_els_unsol_event; 11678 pring->prt[2].profile = 0; /* Mask 2 */ 11679 /* NameServer Inquiry */ 11680 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11681 /* NameServer */ 11682 pring->prt[2].type = FC_TYPE_CT; 11683 pring->prt[2].lpfc_sli_rcv_unsol_event = 11684 lpfc_ct_unsol_event; 11685 pring->prt[3].profile = 0; /* Mask 3 */ 11686 /* NameServer response */ 11687 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11688 /* NameServer */ 11689 pring->prt[3].type = FC_TYPE_CT; 11690 pring->prt[3].lpfc_sli_rcv_unsol_event = 11691 lpfc_ct_unsol_event; 11692 break; 11693 } 11694 totiocbsize += (pring->sli.sli3.numCiocb * 11695 pring->sli.sli3.sizeCiocb) + 11696 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11697 } 11698 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11699 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11700 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11701 "SLI2 SLIM Data: x%x x%lx\n", 11702 phba->brd_no, totiocbsize, 11703 (unsigned long) MAX_SLIM_IOCB_SIZE); 11704 } 11705 if (phba->cfg_multi_ring_support == 2) 11706 lpfc_extra_ring_setup(phba); 11707 11708 return 0; 11709 } 11710 11711 /** 11712 * lpfc_sli4_queue_init - Queue initialization function 11713 * @phba: Pointer to HBA context object. 11714 * 11715 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11716 * ring. This function also initializes ring indices of each ring. 11717 * This function is called during the initialization of the SLI 11718 * interface of an HBA. 11719 * This function is called with no lock held and always returns 11720 * 1. 11721 **/ 11722 void 11723 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11724 { 11725 struct lpfc_sli *psli; 11726 struct lpfc_sli_ring *pring; 11727 int i; 11728 11729 psli = &phba->sli; 11730 spin_lock_irq(&phba->hbalock); 11731 INIT_LIST_HEAD(&psli->mboxq); 11732 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11733 /* Initialize list headers for txq and txcmplq as double linked lists */ 11734 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11735 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11736 pring->flag = 0; 11737 pring->ringno = LPFC_FCP_RING; 11738 pring->txcmplq_cnt = 0; 11739 INIT_LIST_HEAD(&pring->txq); 11740 INIT_LIST_HEAD(&pring->txcmplq); 11741 INIT_LIST_HEAD(&pring->iocb_continueq); 11742 spin_lock_init(&pring->ring_lock); 11743 } 11744 pring = phba->sli4_hba.els_wq->pring; 11745 pring->flag = 0; 11746 pring->ringno = LPFC_ELS_RING; 11747 pring->txcmplq_cnt = 0; 11748 INIT_LIST_HEAD(&pring->txq); 11749 INIT_LIST_HEAD(&pring->txcmplq); 11750 INIT_LIST_HEAD(&pring->iocb_continueq); 11751 spin_lock_init(&pring->ring_lock); 11752 11753 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11754 pring = phba->sli4_hba.nvmels_wq->pring; 11755 pring->flag = 0; 11756 pring->ringno = LPFC_ELS_RING; 11757 pring->txcmplq_cnt = 0; 11758 INIT_LIST_HEAD(&pring->txq); 11759 INIT_LIST_HEAD(&pring->txcmplq); 11760 INIT_LIST_HEAD(&pring->iocb_continueq); 11761 spin_lock_init(&pring->ring_lock); 11762 } 11763 11764 spin_unlock_irq(&phba->hbalock); 11765 } 11766 11767 /** 11768 * lpfc_sli_queue_init - Queue initialization function 11769 * @phba: Pointer to HBA context object. 11770 * 11771 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11772 * ring. This function also initializes ring indices of each ring. 11773 * This function is called during the initialization of the SLI 11774 * interface of an HBA. 11775 * This function is called with no lock held and always returns 11776 * 1. 11777 **/ 11778 void 11779 lpfc_sli_queue_init(struct lpfc_hba *phba) 11780 { 11781 struct lpfc_sli *psli; 11782 struct lpfc_sli_ring *pring; 11783 int i; 11784 11785 psli = &phba->sli; 11786 spin_lock_irq(&phba->hbalock); 11787 INIT_LIST_HEAD(&psli->mboxq); 11788 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11789 /* Initialize list headers for txq and txcmplq as double linked lists */ 11790 for (i = 0; i < psli->num_rings; i++) { 11791 pring = &psli->sli3_ring[i]; 11792 pring->ringno = i; 11793 pring->sli.sli3.next_cmdidx = 0; 11794 pring->sli.sli3.local_getidx = 0; 11795 pring->sli.sli3.cmdidx = 0; 11796 INIT_LIST_HEAD(&pring->iocb_continueq); 11797 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11798 INIT_LIST_HEAD(&pring->postbufq); 11799 pring->flag = 0; 11800 INIT_LIST_HEAD(&pring->txq); 11801 INIT_LIST_HEAD(&pring->txcmplq); 11802 spin_lock_init(&pring->ring_lock); 11803 } 11804 spin_unlock_irq(&phba->hbalock); 11805 } 11806 11807 /** 11808 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11809 * @phba: Pointer to HBA context object. 11810 * 11811 * This routine flushes the mailbox command subsystem. It will unconditionally 11812 * flush all the mailbox commands in the three possible stages in the mailbox 11813 * command sub-system: pending mailbox command queue; the outstanding mailbox 11814 * command; and completed mailbox command queue. It is caller's responsibility 11815 * to make sure that the driver is in the proper state to flush the mailbox 11816 * command sub-system. Namely, the posting of mailbox commands into the 11817 * pending mailbox command queue from the various clients must be stopped; 11818 * either the HBA is in a state that it will never works on the outstanding 11819 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11820 * mailbox command has been completed. 11821 **/ 11822 static void 11823 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11824 { 11825 LIST_HEAD(completions); 11826 struct lpfc_sli *psli = &phba->sli; 11827 LPFC_MBOXQ_t *pmb; 11828 unsigned long iflag; 11829 11830 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11831 local_bh_disable(); 11832 11833 /* Flush all the mailbox commands in the mbox system */ 11834 spin_lock_irqsave(&phba->hbalock, iflag); 11835 11836 /* The pending mailbox command queue */ 11837 list_splice_init(&phba->sli.mboxq, &completions); 11838 /* The outstanding active mailbox command */ 11839 if (psli->mbox_active) { 11840 list_add_tail(&psli->mbox_active->list, &completions); 11841 psli->mbox_active = NULL; 11842 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11843 } 11844 /* The completed mailbox command queue */ 11845 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11846 spin_unlock_irqrestore(&phba->hbalock, iflag); 11847 11848 /* Enable softirqs again, done with phba->hbalock */ 11849 local_bh_enable(); 11850 11851 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11852 while (!list_empty(&completions)) { 11853 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11854 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11855 if (pmb->mbox_cmpl) 11856 pmb->mbox_cmpl(phba, pmb); 11857 } 11858 } 11859 11860 /** 11861 * lpfc_sli_host_down - Vport cleanup function 11862 * @vport: Pointer to virtual port object. 11863 * 11864 * lpfc_sli_host_down is called to clean up the resources 11865 * associated with a vport before destroying virtual 11866 * port data structures. 11867 * This function does following operations: 11868 * - Free discovery resources associated with this virtual 11869 * port. 11870 * - Free iocbs associated with this virtual port in 11871 * the txq. 11872 * - Send abort for all iocb commands associated with this 11873 * vport in txcmplq. 11874 * 11875 * This function is called with no lock held and always returns 1. 11876 **/ 11877 int 11878 lpfc_sli_host_down(struct lpfc_vport *vport) 11879 { 11880 LIST_HEAD(completions); 11881 struct lpfc_hba *phba = vport->phba; 11882 struct lpfc_sli *psli = &phba->sli; 11883 struct lpfc_queue *qp = NULL; 11884 struct lpfc_sli_ring *pring; 11885 struct lpfc_iocbq *iocb, *next_iocb; 11886 int i; 11887 unsigned long flags = 0; 11888 uint16_t prev_pring_flag; 11889 11890 lpfc_cleanup_discovery_resources(vport); 11891 11892 spin_lock_irqsave(&phba->hbalock, flags); 11893 11894 /* 11895 * Error everything on the txq since these iocbs 11896 * have not been given to the FW yet. 11897 * Also issue ABTS for everything on the txcmplq 11898 */ 11899 if (phba->sli_rev != LPFC_SLI_REV4) { 11900 for (i = 0; i < psli->num_rings; i++) { 11901 pring = &psli->sli3_ring[i]; 11902 prev_pring_flag = pring->flag; 11903 /* Only slow rings */ 11904 if (pring->ringno == LPFC_ELS_RING) { 11905 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11906 /* Set the lpfc data pending flag */ 11907 set_bit(LPFC_DATA_READY, &phba->data_flags); 11908 } 11909 list_for_each_entry_safe(iocb, next_iocb, 11910 &pring->txq, list) { 11911 if (iocb->vport != vport) 11912 continue; 11913 list_move_tail(&iocb->list, &completions); 11914 } 11915 list_for_each_entry_safe(iocb, next_iocb, 11916 &pring->txcmplq, list) { 11917 if (iocb->vport != vport) 11918 continue; 11919 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11920 NULL); 11921 } 11922 pring->flag = prev_pring_flag; 11923 } 11924 } else { 11925 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11926 pring = qp->pring; 11927 if (!pring) 11928 continue; 11929 if (pring == phba->sli4_hba.els_wq->pring) { 11930 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11931 /* Set the lpfc data pending flag */ 11932 set_bit(LPFC_DATA_READY, &phba->data_flags); 11933 } 11934 prev_pring_flag = pring->flag; 11935 spin_lock(&pring->ring_lock); 11936 list_for_each_entry_safe(iocb, next_iocb, 11937 &pring->txq, list) { 11938 if (iocb->vport != vport) 11939 continue; 11940 list_move_tail(&iocb->list, &completions); 11941 } 11942 spin_unlock(&pring->ring_lock); 11943 list_for_each_entry_safe(iocb, next_iocb, 11944 &pring->txcmplq, list) { 11945 if (iocb->vport != vport) 11946 continue; 11947 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11948 NULL); 11949 } 11950 pring->flag = prev_pring_flag; 11951 } 11952 } 11953 spin_unlock_irqrestore(&phba->hbalock, flags); 11954 11955 /* Make sure HBA is alive */ 11956 lpfc_issue_hb_tmo(phba); 11957 11958 /* Cancel all the IOCBs from the completions list */ 11959 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11960 IOERR_SLI_DOWN); 11961 return 1; 11962 } 11963 11964 /** 11965 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11966 * @phba: Pointer to HBA context object. 11967 * 11968 * This function cleans up all iocb, buffers, mailbox commands 11969 * while shutting down the HBA. This function is called with no 11970 * lock held and always returns 1. 11971 * This function does the following to cleanup driver resources: 11972 * - Free discovery resources for each virtual port 11973 * - Cleanup any pending fabric iocbs 11974 * - Iterate through the iocb txq and free each entry 11975 * in the list. 11976 * - Free up any buffer posted to the HBA 11977 * - Free mailbox commands in the mailbox queue. 11978 **/ 11979 int 11980 lpfc_sli_hba_down(struct lpfc_hba *phba) 11981 { 11982 LIST_HEAD(completions); 11983 struct lpfc_sli *psli = &phba->sli; 11984 struct lpfc_queue *qp = NULL; 11985 struct lpfc_sli_ring *pring; 11986 struct lpfc_dmabuf *buf_ptr; 11987 unsigned long flags = 0; 11988 int i; 11989 11990 /* Shutdown the mailbox command sub-system */ 11991 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11992 11993 lpfc_hba_down_prep(phba); 11994 11995 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11996 local_bh_disable(); 11997 11998 lpfc_fabric_abort_hba(phba); 11999 12000 spin_lock_irqsave(&phba->hbalock, flags); 12001 12002 /* 12003 * Error everything on the txq since these iocbs 12004 * have not been given to the FW yet. 12005 */ 12006 if (phba->sli_rev != LPFC_SLI_REV4) { 12007 for (i = 0; i < psli->num_rings; i++) { 12008 pring = &psli->sli3_ring[i]; 12009 /* Only slow rings */ 12010 if (pring->ringno == LPFC_ELS_RING) { 12011 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12012 /* Set the lpfc data pending flag */ 12013 set_bit(LPFC_DATA_READY, &phba->data_flags); 12014 } 12015 list_splice_init(&pring->txq, &completions); 12016 } 12017 } else { 12018 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12019 pring = qp->pring; 12020 if (!pring) 12021 continue; 12022 spin_lock(&pring->ring_lock); 12023 list_splice_init(&pring->txq, &completions); 12024 spin_unlock(&pring->ring_lock); 12025 if (pring == phba->sli4_hba.els_wq->pring) { 12026 pring->flag |= LPFC_DEFERRED_RING_EVENT; 12027 /* Set the lpfc data pending flag */ 12028 set_bit(LPFC_DATA_READY, &phba->data_flags); 12029 } 12030 } 12031 } 12032 spin_unlock_irqrestore(&phba->hbalock, flags); 12033 12034 /* Cancel all the IOCBs from the completions list */ 12035 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 12036 IOERR_SLI_DOWN); 12037 12038 spin_lock_irqsave(&phba->hbalock, flags); 12039 list_splice_init(&phba->elsbuf, &completions); 12040 phba->elsbuf_cnt = 0; 12041 phba->elsbuf_prev_cnt = 0; 12042 spin_unlock_irqrestore(&phba->hbalock, flags); 12043 12044 while (!list_empty(&completions)) { 12045 list_remove_head(&completions, buf_ptr, 12046 struct lpfc_dmabuf, list); 12047 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 12048 kfree(buf_ptr); 12049 } 12050 12051 /* Enable softirqs again, done with phba->hbalock */ 12052 local_bh_enable(); 12053 12054 /* Return any active mbox cmds */ 12055 del_timer_sync(&psli->mbox_tmo); 12056 12057 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 12058 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12059 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 12060 12061 return 1; 12062 } 12063 12064 /** 12065 * lpfc_sli_pcimem_bcopy - SLI memory copy function 12066 * @srcp: Source memory pointer. 12067 * @destp: Destination memory pointer. 12068 * @cnt: Number of words required to be copied. 12069 * 12070 * This function is used for copying data between driver memory 12071 * and the SLI memory. This function also changes the endianness 12072 * of each word if native endianness is different from SLI 12073 * endianness. This function can be called with or without 12074 * lock. 12075 **/ 12076 void 12077 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 12078 { 12079 uint32_t *src = srcp; 12080 uint32_t *dest = destp; 12081 uint32_t ldata; 12082 int i; 12083 12084 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 12085 ldata = *src; 12086 ldata = le32_to_cpu(ldata); 12087 *dest = ldata; 12088 src++; 12089 dest++; 12090 } 12091 } 12092 12093 12094 /** 12095 * lpfc_sli_bemem_bcopy - SLI memory copy function 12096 * @srcp: Source memory pointer. 12097 * @destp: Destination memory pointer. 12098 * @cnt: Number of words required to be copied. 12099 * 12100 * This function is used for copying data between a data structure 12101 * with big endian representation to local endianness. 12102 * This function can be called with or without lock. 12103 **/ 12104 void 12105 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 12106 { 12107 uint32_t *src = srcp; 12108 uint32_t *dest = destp; 12109 uint32_t ldata; 12110 int i; 12111 12112 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 12113 ldata = *src; 12114 ldata = be32_to_cpu(ldata); 12115 *dest = ldata; 12116 src++; 12117 dest++; 12118 } 12119 } 12120 12121 /** 12122 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 12123 * @phba: Pointer to HBA context object. 12124 * @pring: Pointer to driver SLI ring object. 12125 * @mp: Pointer to driver buffer object. 12126 * 12127 * This function is called with no lock held. 12128 * It always return zero after adding the buffer to the postbufq 12129 * buffer list. 12130 **/ 12131 int 12132 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12133 struct lpfc_dmabuf *mp) 12134 { 12135 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 12136 later */ 12137 spin_lock_irq(&phba->hbalock); 12138 list_add_tail(&mp->list, &pring->postbufq); 12139 pring->postbufq_cnt++; 12140 spin_unlock_irq(&phba->hbalock); 12141 return 0; 12142 } 12143 12144 /** 12145 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 12146 * @phba: Pointer to HBA context object. 12147 * 12148 * When HBQ is enabled, buffers are searched based on tags. This function 12149 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 12150 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 12151 * does not conflict with tags of buffer posted for unsolicited events. 12152 * The function returns the allocated tag. The function is called with 12153 * no locks held. 12154 **/ 12155 uint32_t 12156 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 12157 { 12158 spin_lock_irq(&phba->hbalock); 12159 phba->buffer_tag_count++; 12160 /* 12161 * Always set the QUE_BUFTAG_BIT to distiguish between 12162 * a tag assigned by HBQ. 12163 */ 12164 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 12165 spin_unlock_irq(&phba->hbalock); 12166 return phba->buffer_tag_count; 12167 } 12168 12169 /** 12170 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 12171 * @phba: Pointer to HBA context object. 12172 * @pring: Pointer to driver SLI ring object. 12173 * @tag: Buffer tag. 12174 * 12175 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 12176 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 12177 * iocb is posted to the response ring with the tag of the buffer. 12178 * This function searches the pring->postbufq list using the tag 12179 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 12180 * iocb. If the buffer is found then lpfc_dmabuf object of the 12181 * buffer is returned to the caller else NULL is returned. 12182 * This function is called with no lock held. 12183 **/ 12184 struct lpfc_dmabuf * 12185 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12186 uint32_t tag) 12187 { 12188 struct lpfc_dmabuf *mp, *next_mp; 12189 struct list_head *slp = &pring->postbufq; 12190 12191 /* Search postbufq, from the beginning, looking for a match on tag */ 12192 spin_lock_irq(&phba->hbalock); 12193 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12194 if (mp->buffer_tag == tag) { 12195 list_del_init(&mp->list); 12196 pring->postbufq_cnt--; 12197 spin_unlock_irq(&phba->hbalock); 12198 return mp; 12199 } 12200 } 12201 12202 spin_unlock_irq(&phba->hbalock); 12203 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12204 "0402 Cannot find virtual addr for buffer tag on " 12205 "ring %d Data x%lx x%px x%px x%x\n", 12206 pring->ringno, (unsigned long) tag, 12207 slp->next, slp->prev, pring->postbufq_cnt); 12208 12209 return NULL; 12210 } 12211 12212 /** 12213 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 12214 * @phba: Pointer to HBA context object. 12215 * @pring: Pointer to driver SLI ring object. 12216 * @phys: DMA address of the buffer. 12217 * 12218 * This function searches the buffer list using the dma_address 12219 * of unsolicited event to find the driver's lpfc_dmabuf object 12220 * corresponding to the dma_address. The function returns the 12221 * lpfc_dmabuf object if a buffer is found else it returns NULL. 12222 * This function is called by the ct and els unsolicited event 12223 * handlers to get the buffer associated with the unsolicited 12224 * event. 12225 * 12226 * This function is called with no lock held. 12227 **/ 12228 struct lpfc_dmabuf * 12229 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12230 dma_addr_t phys) 12231 { 12232 struct lpfc_dmabuf *mp, *next_mp; 12233 struct list_head *slp = &pring->postbufq; 12234 12235 /* Search postbufq, from the beginning, looking for a match on phys */ 12236 spin_lock_irq(&phba->hbalock); 12237 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 12238 if (mp->phys == phys) { 12239 list_del_init(&mp->list); 12240 pring->postbufq_cnt--; 12241 spin_unlock_irq(&phba->hbalock); 12242 return mp; 12243 } 12244 } 12245 12246 spin_unlock_irq(&phba->hbalock); 12247 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12248 "0410 Cannot find virtual addr for mapped buf on " 12249 "ring %d Data x%llx x%px x%px x%x\n", 12250 pring->ringno, (unsigned long long)phys, 12251 slp->next, slp->prev, pring->postbufq_cnt); 12252 return NULL; 12253 } 12254 12255 /** 12256 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12257 * @phba: Pointer to HBA context object. 12258 * @cmdiocb: Pointer to driver command iocb object. 12259 * @rspiocb: Pointer to driver response iocb object. 12260 * 12261 * This function is the completion handler for the abort iocbs for 12262 * ELS commands. This function is called from the ELS ring event 12263 * handler with no lock held. This function frees memory resources 12264 * associated with the abort iocb. 12265 **/ 12266 static void 12267 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12268 struct lpfc_iocbq *rspiocb) 12269 { 12270 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12271 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12272 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12273 12274 if (ulp_status) { 12275 /* 12276 * Assume that the port already completed and returned, or 12277 * will return the iocb. Just Log the message. 12278 */ 12279 if (phba->sli_rev < LPFC_SLI_REV4) { 12280 if (cmnd == CMD_ABORT_XRI_CX && 12281 ulp_status == IOSTAT_LOCAL_REJECT && 12282 ulp_word4 == IOERR_ABORT_REQUESTED) { 12283 goto release_iocb; 12284 } 12285 } 12286 12287 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12288 "0327 Cannot abort els iocb x%px " 12289 "with io cmd xri %x abort tag : x%x, " 12290 "abort status %x abort code %x\n", 12291 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12292 (phba->sli_rev == LPFC_SLI_REV4) ? 12293 get_wqe_reqtag(cmdiocb) : 12294 cmdiocb->iocb.un.acxri.abortContextTag, 12295 ulp_status, ulp_word4); 12296 12297 } 12298 release_iocb: 12299 lpfc_sli_release_iocbq(phba, cmdiocb); 12300 return; 12301 } 12302 12303 /** 12304 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12305 * @phba: Pointer to HBA context object. 12306 * @cmdiocb: Pointer to driver command iocb object. 12307 * @rspiocb: Pointer to driver response iocb object. 12308 * 12309 * The function is called from SLI ring event handler with no 12310 * lock held. This function is the completion handler for ELS commands 12311 * which are aborted. The function frees memory resources used for 12312 * the aborted ELS commands. 12313 **/ 12314 void 12315 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12316 struct lpfc_iocbq *rspiocb) 12317 { 12318 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12319 IOCB_t *irsp; 12320 LPFC_MBOXQ_t *mbox; 12321 u32 ulp_command, ulp_status, ulp_word4, iotag; 12322 12323 ulp_command = get_job_cmnd(phba, cmdiocb); 12324 ulp_status = get_job_ulpstatus(phba, rspiocb); 12325 ulp_word4 = get_job_word4(phba, rspiocb); 12326 12327 if (phba->sli_rev == LPFC_SLI_REV4) { 12328 iotag = get_wqe_reqtag(cmdiocb); 12329 } else { 12330 irsp = &rspiocb->iocb; 12331 iotag = irsp->ulpIoTag; 12332 12333 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12334 * The MBX_REG_LOGIN64 mbox command is freed back to the 12335 * mbox_mem_pool here. 12336 */ 12337 if (cmdiocb->context_un.mbox) { 12338 mbox = cmdiocb->context_un.mbox; 12339 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12340 cmdiocb->context_un.mbox = NULL; 12341 } 12342 } 12343 12344 /* ELS cmd tag <ulpIoTag> completes */ 12345 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12346 "0139 Ignoring ELS cmd code x%x completion Data: " 12347 "x%x x%x x%x x%px\n", 12348 ulp_command, ulp_status, ulp_word4, iotag, 12349 cmdiocb->ndlp); 12350 /* 12351 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12352 * if exchange is busy. 12353 */ 12354 if (ulp_command == CMD_GEN_REQUEST64_CR) 12355 lpfc_ct_free_iocb(phba, cmdiocb); 12356 else 12357 lpfc_els_free_iocb(phba, cmdiocb); 12358 12359 lpfc_nlp_put(ndlp); 12360 } 12361 12362 /** 12363 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12364 * @phba: Pointer to HBA context object. 12365 * @pring: Pointer to driver SLI ring object. 12366 * @cmdiocb: Pointer to driver command iocb object. 12367 * @cmpl: completion function. 12368 * 12369 * This function issues an abort iocb for the provided command iocb. In case 12370 * of unloading, the abort iocb will not be issued to commands on the ELS 12371 * ring. Instead, the callback function shall be changed to those commands 12372 * so that nothing happens when them finishes. This function is called with 12373 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12374 * when the command iocb is an abort request. 12375 * 12376 **/ 12377 int 12378 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12379 struct lpfc_iocbq *cmdiocb, void *cmpl) 12380 { 12381 struct lpfc_vport *vport = cmdiocb->vport; 12382 struct lpfc_iocbq *abtsiocbp; 12383 int retval = IOCB_ERROR; 12384 unsigned long iflags; 12385 struct lpfc_nodelist *ndlp = NULL; 12386 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12387 u16 ulp_context, iotag; 12388 bool ia; 12389 12390 /* 12391 * There are certain command types we don't want to abort. And we 12392 * don't want to abort commands that are already in the process of 12393 * being aborted. 12394 */ 12395 if (ulp_command == CMD_ABORT_XRI_WQE || 12396 ulp_command == CMD_ABORT_XRI_CN || 12397 ulp_command == CMD_CLOSE_XRI_CN || 12398 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12399 return IOCB_ABORTING; 12400 12401 if (!pring) { 12402 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12403 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12404 else 12405 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12406 return retval; 12407 } 12408 12409 /* 12410 * If we're unloading, don't abort iocb on the ELS ring, but change 12411 * the callback so that nothing happens when it finishes. 12412 */ 12413 if ((vport->load_flag & FC_UNLOADING) && 12414 pring->ringno == LPFC_ELS_RING) { 12415 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12416 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12417 else 12418 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12419 return retval; 12420 } 12421 12422 /* issue ABTS for this IOCB based on iotag */ 12423 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12424 if (abtsiocbp == NULL) 12425 return IOCB_NORESOURCE; 12426 12427 /* This signals the response to set the correct status 12428 * before calling the completion handler 12429 */ 12430 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12431 12432 if (phba->sli_rev == LPFC_SLI_REV4) { 12433 ulp_context = cmdiocb->sli4_xritag; 12434 iotag = abtsiocbp->iotag; 12435 } else { 12436 iotag = cmdiocb->iocb.ulpIoTag; 12437 if (pring->ringno == LPFC_ELS_RING) { 12438 ndlp = cmdiocb->ndlp; 12439 ulp_context = ndlp->nlp_rpi; 12440 } else { 12441 ulp_context = cmdiocb->iocb.ulpContext; 12442 } 12443 } 12444 12445 if (phba->link_state < LPFC_LINK_UP || 12446 (phba->sli_rev == LPFC_SLI_REV4 && 12447 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12448 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12449 ia = true; 12450 else 12451 ia = false; 12452 12453 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12454 cmdiocb->iocb.ulpClass, 12455 LPFC_WQE_CQ_ID_DEFAULT, ia, false); 12456 12457 abtsiocbp->vport = vport; 12458 12459 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12460 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12461 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12462 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12463 12464 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12465 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12466 12467 if (cmpl) 12468 abtsiocbp->cmd_cmpl = cmpl; 12469 else 12470 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12471 abtsiocbp->vport = vport; 12472 12473 if (phba->sli_rev == LPFC_SLI_REV4) { 12474 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12475 if (unlikely(pring == NULL)) 12476 goto abort_iotag_exit; 12477 /* Note: both hbalock and ring_lock need to be set here */ 12478 spin_lock_irqsave(&pring->ring_lock, iflags); 12479 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12480 abtsiocbp, 0); 12481 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12482 } else { 12483 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12484 abtsiocbp, 0); 12485 } 12486 12487 abort_iotag_exit: 12488 12489 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12490 "0339 Abort IO XRI x%x, Original iotag x%x, " 12491 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12492 "retval x%x\n", 12493 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12494 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12495 retval); 12496 if (retval) { 12497 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12498 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12499 } 12500 12501 /* 12502 * Caller to this routine should check for IOCB_ERROR 12503 * and handle it properly. This routine no longer removes 12504 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12505 */ 12506 return retval; 12507 } 12508 12509 /** 12510 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12511 * @phba: pointer to lpfc HBA data structure. 12512 * 12513 * This routine will abort all pending and outstanding iocbs to an HBA. 12514 **/ 12515 void 12516 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12517 { 12518 struct lpfc_sli *psli = &phba->sli; 12519 struct lpfc_sli_ring *pring; 12520 struct lpfc_queue *qp = NULL; 12521 int i; 12522 12523 if (phba->sli_rev != LPFC_SLI_REV4) { 12524 for (i = 0; i < psli->num_rings; i++) { 12525 pring = &psli->sli3_ring[i]; 12526 lpfc_sli_abort_iocb_ring(phba, pring); 12527 } 12528 return; 12529 } 12530 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12531 pring = qp->pring; 12532 if (!pring) 12533 continue; 12534 lpfc_sli_abort_iocb_ring(phba, pring); 12535 } 12536 } 12537 12538 /** 12539 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12540 * @iocbq: Pointer to iocb object. 12541 * @vport: Pointer to driver virtual port object. 12542 * 12543 * This function acts as an iocb filter for functions which abort FCP iocbs. 12544 * 12545 * Return values 12546 * -ENODEV, if a null iocb or vport ptr is encountered 12547 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12548 * driver already started the abort process, or is an abort iocb itself 12549 * 0, passes criteria for aborting the FCP I/O iocb 12550 **/ 12551 static int 12552 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12553 struct lpfc_vport *vport) 12554 { 12555 u8 ulp_command; 12556 12557 /* No null ptr vports */ 12558 if (!iocbq || iocbq->vport != vport) 12559 return -ENODEV; 12560 12561 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12562 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12563 */ 12564 ulp_command = get_job_cmnd(vport->phba, iocbq); 12565 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12566 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12567 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12568 (ulp_command == CMD_ABORT_XRI_CN || 12569 ulp_command == CMD_CLOSE_XRI_CN || 12570 ulp_command == CMD_ABORT_XRI_WQE)) 12571 return -EINVAL; 12572 12573 return 0; 12574 } 12575 12576 /** 12577 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12578 * @iocbq: Pointer to driver iocb object. 12579 * @vport: Pointer to driver virtual port object. 12580 * @tgt_id: SCSI ID of the target. 12581 * @lun_id: LUN ID of the scsi device. 12582 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12583 * 12584 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12585 * host. 12586 * 12587 * It will return 12588 * 0 if the filtering criteria is met for the given iocb and will return 12589 * 1 if the filtering criteria is not met. 12590 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12591 * given iocb is for the SCSI device specified by vport, tgt_id and 12592 * lun_id parameter. 12593 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12594 * given iocb is for the SCSI target specified by vport and tgt_id 12595 * parameters. 12596 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12597 * given iocb is for the SCSI host associated with the given vport. 12598 * This function is called with no locks held. 12599 **/ 12600 static int 12601 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12602 uint16_t tgt_id, uint64_t lun_id, 12603 lpfc_ctx_cmd ctx_cmd) 12604 { 12605 struct lpfc_io_buf *lpfc_cmd; 12606 int rc = 1; 12607 12608 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12609 12610 if (lpfc_cmd->pCmd == NULL) 12611 return rc; 12612 12613 switch (ctx_cmd) { 12614 case LPFC_CTX_LUN: 12615 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12616 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12617 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12618 rc = 0; 12619 break; 12620 case LPFC_CTX_TGT: 12621 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12622 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12623 rc = 0; 12624 break; 12625 case LPFC_CTX_HOST: 12626 rc = 0; 12627 break; 12628 default: 12629 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12630 __func__, ctx_cmd); 12631 break; 12632 } 12633 12634 return rc; 12635 } 12636 12637 /** 12638 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12639 * @vport: Pointer to virtual port. 12640 * @tgt_id: SCSI ID of the target. 12641 * @lun_id: LUN ID of the scsi device. 12642 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12643 * 12644 * This function returns number of FCP commands pending for the vport. 12645 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12646 * commands pending on the vport associated with SCSI device specified 12647 * by tgt_id and lun_id parameters. 12648 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12649 * commands pending on the vport associated with SCSI target specified 12650 * by tgt_id parameter. 12651 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12652 * commands pending on the vport. 12653 * This function returns the number of iocbs which satisfy the filter. 12654 * This function is called without any lock held. 12655 **/ 12656 int 12657 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12658 lpfc_ctx_cmd ctx_cmd) 12659 { 12660 struct lpfc_hba *phba = vport->phba; 12661 struct lpfc_iocbq *iocbq; 12662 int sum, i; 12663 unsigned long iflags; 12664 u8 ulp_command; 12665 12666 spin_lock_irqsave(&phba->hbalock, iflags); 12667 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12668 iocbq = phba->sli.iocbq_lookup[i]; 12669 12670 if (!iocbq || iocbq->vport != vport) 12671 continue; 12672 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12673 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12674 continue; 12675 12676 /* Include counting outstanding aborts */ 12677 ulp_command = get_job_cmnd(phba, iocbq); 12678 if (ulp_command == CMD_ABORT_XRI_CN || 12679 ulp_command == CMD_CLOSE_XRI_CN || 12680 ulp_command == CMD_ABORT_XRI_WQE) { 12681 sum++; 12682 continue; 12683 } 12684 12685 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12686 ctx_cmd) == 0) 12687 sum++; 12688 } 12689 spin_unlock_irqrestore(&phba->hbalock, iflags); 12690 12691 return sum; 12692 } 12693 12694 /** 12695 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12696 * @phba: Pointer to HBA context object 12697 * @cmdiocb: Pointer to command iocb object. 12698 * @rspiocb: Pointer to response iocb object. 12699 * 12700 * This function is called when an aborted FCP iocb completes. This 12701 * function is called by the ring event handler with no lock held. 12702 * This function frees the iocb. 12703 **/ 12704 void 12705 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12706 struct lpfc_iocbq *rspiocb) 12707 { 12708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12709 "3096 ABORT_XRI_CX completing on rpi x%x " 12710 "original iotag x%x, abort cmd iotag x%x " 12711 "status 0x%x, reason 0x%x\n", 12712 (phba->sli_rev == LPFC_SLI_REV4) ? 12713 cmdiocb->sli4_xritag : 12714 cmdiocb->iocb.un.acxri.abortContextTag, 12715 get_job_abtsiotag(phba, cmdiocb), 12716 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12717 get_job_word4(phba, rspiocb)); 12718 lpfc_sli_release_iocbq(phba, cmdiocb); 12719 return; 12720 } 12721 12722 /** 12723 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12724 * @vport: Pointer to virtual port. 12725 * @tgt_id: SCSI ID of the target. 12726 * @lun_id: LUN ID of the scsi device. 12727 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12728 * 12729 * This function sends an abort command for every SCSI command 12730 * associated with the given virtual port pending on the ring 12731 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12732 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12733 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12734 * followed by lpfc_sli_validate_fcp_iocb. 12735 * 12736 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12737 * FCP iocbs associated with lun specified by tgt_id and lun_id 12738 * parameters 12739 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12740 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12741 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12742 * FCP iocbs associated with virtual port. 12743 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12744 * lpfc_sli4_calc_ring is used. 12745 * This function returns number of iocbs it failed to abort. 12746 * This function is called with no locks held. 12747 **/ 12748 int 12749 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12750 lpfc_ctx_cmd abort_cmd) 12751 { 12752 struct lpfc_hba *phba = vport->phba; 12753 struct lpfc_sli_ring *pring = NULL; 12754 struct lpfc_iocbq *iocbq; 12755 int errcnt = 0, ret_val = 0; 12756 unsigned long iflags; 12757 int i; 12758 12759 /* all I/Os are in process of being flushed */ 12760 if (phba->hba_flag & HBA_IOQ_FLUSH) 12761 return errcnt; 12762 12763 for (i = 1; i <= phba->sli.last_iotag; i++) { 12764 iocbq = phba->sli.iocbq_lookup[i]; 12765 12766 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12767 continue; 12768 12769 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12770 abort_cmd) != 0) 12771 continue; 12772 12773 spin_lock_irqsave(&phba->hbalock, iflags); 12774 if (phba->sli_rev == LPFC_SLI_REV3) { 12775 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12776 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12777 pring = lpfc_sli4_calc_ring(phba, iocbq); 12778 } 12779 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12780 lpfc_sli_abort_fcp_cmpl); 12781 spin_unlock_irqrestore(&phba->hbalock, iflags); 12782 if (ret_val != IOCB_SUCCESS) 12783 errcnt++; 12784 } 12785 12786 return errcnt; 12787 } 12788 12789 /** 12790 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12791 * @vport: Pointer to virtual port. 12792 * @pring: Pointer to driver SLI ring object. 12793 * @tgt_id: SCSI ID of the target. 12794 * @lun_id: LUN ID of the scsi device. 12795 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12796 * 12797 * This function sends an abort command for every SCSI command 12798 * associated with the given virtual port pending on the ring 12799 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12800 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12801 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12802 * followed by lpfc_sli_validate_fcp_iocb. 12803 * 12804 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12805 * FCP iocbs associated with lun specified by tgt_id and lun_id 12806 * parameters 12807 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12808 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12809 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12810 * FCP iocbs associated with virtual port. 12811 * This function returns number of iocbs it aborted . 12812 * This function is called with no locks held right after a taskmgmt 12813 * command is sent. 12814 **/ 12815 int 12816 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12817 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12818 { 12819 struct lpfc_hba *phba = vport->phba; 12820 struct lpfc_io_buf *lpfc_cmd; 12821 struct lpfc_iocbq *abtsiocbq; 12822 struct lpfc_nodelist *ndlp = NULL; 12823 struct lpfc_iocbq *iocbq; 12824 int sum, i, ret_val; 12825 unsigned long iflags; 12826 struct lpfc_sli_ring *pring_s4 = NULL; 12827 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12828 bool ia; 12829 12830 spin_lock_irqsave(&phba->hbalock, iflags); 12831 12832 /* all I/Os are in process of being flushed */ 12833 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12834 spin_unlock_irqrestore(&phba->hbalock, iflags); 12835 return 0; 12836 } 12837 sum = 0; 12838 12839 for (i = 1; i <= phba->sli.last_iotag; i++) { 12840 iocbq = phba->sli.iocbq_lookup[i]; 12841 12842 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12843 continue; 12844 12845 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12846 cmd) != 0) 12847 continue; 12848 12849 /* Guard against IO completion being called at same time */ 12850 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12851 spin_lock(&lpfc_cmd->buf_lock); 12852 12853 if (!lpfc_cmd->pCmd) { 12854 spin_unlock(&lpfc_cmd->buf_lock); 12855 continue; 12856 } 12857 12858 if (phba->sli_rev == LPFC_SLI_REV4) { 12859 pring_s4 = 12860 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12861 if (!pring_s4) { 12862 spin_unlock(&lpfc_cmd->buf_lock); 12863 continue; 12864 } 12865 /* Note: both hbalock and ring_lock must be set here */ 12866 spin_lock(&pring_s4->ring_lock); 12867 } 12868 12869 /* 12870 * If the iocbq is already being aborted, don't take a second 12871 * action, but do count it. 12872 */ 12873 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12874 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12875 if (phba->sli_rev == LPFC_SLI_REV4) 12876 spin_unlock(&pring_s4->ring_lock); 12877 spin_unlock(&lpfc_cmd->buf_lock); 12878 continue; 12879 } 12880 12881 /* issue ABTS for this IOCB based on iotag */ 12882 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12883 if (!abtsiocbq) { 12884 if (phba->sli_rev == LPFC_SLI_REV4) 12885 spin_unlock(&pring_s4->ring_lock); 12886 spin_unlock(&lpfc_cmd->buf_lock); 12887 continue; 12888 } 12889 12890 if (phba->sli_rev == LPFC_SLI_REV4) { 12891 iotag = abtsiocbq->iotag; 12892 ulp_context = iocbq->sli4_xritag; 12893 cqid = lpfc_cmd->hdwq->io_cq_map; 12894 } else { 12895 iotag = iocbq->iocb.ulpIoTag; 12896 if (pring->ringno == LPFC_ELS_RING) { 12897 ndlp = iocbq->ndlp; 12898 ulp_context = ndlp->nlp_rpi; 12899 } else { 12900 ulp_context = iocbq->iocb.ulpContext; 12901 } 12902 } 12903 12904 ndlp = lpfc_cmd->rdata->pnode; 12905 12906 if (lpfc_is_link_up(phba) && 12907 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12908 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12909 ia = false; 12910 else 12911 ia = true; 12912 12913 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12914 iocbq->iocb.ulpClass, cqid, 12915 ia, false); 12916 12917 abtsiocbq->vport = vport; 12918 12919 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12920 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12921 if (iocbq->cmd_flag & LPFC_IO_FCP) 12922 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12923 if (iocbq->cmd_flag & LPFC_IO_FOF) 12924 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12925 12926 /* Setup callback routine and issue the command. */ 12927 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12928 12929 /* 12930 * Indicate the IO is being aborted by the driver and set 12931 * the caller's flag into the aborted IO. 12932 */ 12933 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12934 12935 if (phba->sli_rev == LPFC_SLI_REV4) { 12936 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12937 abtsiocbq, 0); 12938 spin_unlock(&pring_s4->ring_lock); 12939 } else { 12940 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12941 abtsiocbq, 0); 12942 } 12943 12944 spin_unlock(&lpfc_cmd->buf_lock); 12945 12946 if (ret_val == IOCB_ERROR) 12947 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12948 else 12949 sum++; 12950 } 12951 spin_unlock_irqrestore(&phba->hbalock, iflags); 12952 return sum; 12953 } 12954 12955 /** 12956 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12957 * @phba: Pointer to HBA context object. 12958 * @cmdiocbq: Pointer to command iocb. 12959 * @rspiocbq: Pointer to response iocb. 12960 * 12961 * This function is the completion handler for iocbs issued using 12962 * lpfc_sli_issue_iocb_wait function. This function is called by the 12963 * ring event handler function without any lock held. This function 12964 * can be called from both worker thread context and interrupt 12965 * context. This function also can be called from other thread which 12966 * cleans up the SLI layer objects. 12967 * This function copy the contents of the response iocb to the 12968 * response iocb memory object provided by the caller of 12969 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12970 * sleeps for the iocb completion. 12971 **/ 12972 static void 12973 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12974 struct lpfc_iocbq *cmdiocbq, 12975 struct lpfc_iocbq *rspiocbq) 12976 { 12977 wait_queue_head_t *pdone_q; 12978 unsigned long iflags; 12979 struct lpfc_io_buf *lpfc_cmd; 12980 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12981 12982 spin_lock_irqsave(&phba->hbalock, iflags); 12983 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12984 12985 /* 12986 * A time out has occurred for the iocb. If a time out 12987 * completion handler has been supplied, call it. Otherwise, 12988 * just free the iocbq. 12989 */ 12990 12991 spin_unlock_irqrestore(&phba->hbalock, iflags); 12992 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12993 cmdiocbq->wait_cmd_cmpl = NULL; 12994 if (cmdiocbq->cmd_cmpl) 12995 cmdiocbq->cmd_cmpl(phba, cmdiocbq, NULL); 12996 else 12997 lpfc_sli_release_iocbq(phba, cmdiocbq); 12998 return; 12999 } 13000 13001 /* Copy the contents of the local rspiocb into the caller's buffer. */ 13002 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 13003 if (cmdiocbq->rsp_iocb && rspiocbq) 13004 memcpy((char *)cmdiocbq->rsp_iocb + offset, 13005 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 13006 13007 /* Set the exchange busy flag for task management commands */ 13008 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 13009 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 13010 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 13011 cur_iocbq); 13012 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 13013 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 13014 else 13015 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 13016 } 13017 13018 pdone_q = cmdiocbq->context_un.wait_queue; 13019 if (pdone_q) 13020 wake_up(pdone_q); 13021 spin_unlock_irqrestore(&phba->hbalock, iflags); 13022 return; 13023 } 13024 13025 /** 13026 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 13027 * @phba: Pointer to HBA context object.. 13028 * @piocbq: Pointer to command iocb. 13029 * @flag: Flag to test. 13030 * 13031 * This routine grabs the hbalock and then test the cmd_flag to 13032 * see if the passed in flag is set. 13033 * Returns: 13034 * 1 if flag is set. 13035 * 0 if flag is not set. 13036 **/ 13037 static int 13038 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 13039 struct lpfc_iocbq *piocbq, uint32_t flag) 13040 { 13041 unsigned long iflags; 13042 int ret; 13043 13044 spin_lock_irqsave(&phba->hbalock, iflags); 13045 ret = piocbq->cmd_flag & flag; 13046 spin_unlock_irqrestore(&phba->hbalock, iflags); 13047 return ret; 13048 13049 } 13050 13051 /** 13052 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 13053 * @phba: Pointer to HBA context object.. 13054 * @ring_number: Ring number 13055 * @piocb: Pointer to command iocb. 13056 * @prspiocbq: Pointer to response iocb. 13057 * @timeout: Timeout in number of seconds. 13058 * 13059 * This function issues the iocb to firmware and waits for the 13060 * iocb to complete. The cmd_cmpl field of the shall be used 13061 * to handle iocbs which time out. If the field is NULL, the 13062 * function shall free the iocbq structure. If more clean up is 13063 * needed, the caller is expected to provide a completion function 13064 * that will provide the needed clean up. If the iocb command is 13065 * not completed within timeout seconds, the function will either 13066 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 13067 * completion function set in the cmd_cmpl field and then return 13068 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 13069 * resources if this function returns IOCB_TIMEDOUT. 13070 * The function waits for the iocb completion using an 13071 * non-interruptible wait. 13072 * This function will sleep while waiting for iocb completion. 13073 * So, this function should not be called from any context which 13074 * does not allow sleeping. Due to the same reason, this function 13075 * cannot be called with interrupt disabled. 13076 * This function assumes that the iocb completions occur while 13077 * this function sleep. So, this function cannot be called from 13078 * the thread which process iocb completion for this ring. 13079 * This function clears the cmd_flag of the iocb object before 13080 * issuing the iocb and the iocb completion handler sets this 13081 * flag and wakes this thread when the iocb completes. 13082 * The contents of the response iocb will be copied to prspiocbq 13083 * by the completion handler when the command completes. 13084 * This function returns IOCB_SUCCESS when success. 13085 * This function is called with no lock held. 13086 **/ 13087 int 13088 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 13089 uint32_t ring_number, 13090 struct lpfc_iocbq *piocb, 13091 struct lpfc_iocbq *prspiocbq, 13092 uint32_t timeout) 13093 { 13094 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 13095 long timeleft, timeout_req = 0; 13096 int retval = IOCB_SUCCESS; 13097 uint32_t creg_val; 13098 struct lpfc_iocbq *iocb; 13099 int txq_cnt = 0; 13100 int txcmplq_cnt = 0; 13101 struct lpfc_sli_ring *pring; 13102 unsigned long iflags; 13103 bool iocb_completed = true; 13104 13105 if (phba->sli_rev >= LPFC_SLI_REV4) { 13106 lpfc_sli_prep_wqe(phba, piocb); 13107 13108 pring = lpfc_sli4_calc_ring(phba, piocb); 13109 } else 13110 pring = &phba->sli.sli3_ring[ring_number]; 13111 /* 13112 * If the caller has provided a response iocbq buffer, then rsp_iocb 13113 * is NULL or its an error. 13114 */ 13115 if (prspiocbq) { 13116 if (piocb->rsp_iocb) 13117 return IOCB_ERROR; 13118 piocb->rsp_iocb = prspiocbq; 13119 } 13120 13121 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 13122 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 13123 piocb->context_un.wait_queue = &done_q; 13124 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 13125 13126 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13127 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13128 return IOCB_ERROR; 13129 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 13130 writel(creg_val, phba->HCregaddr); 13131 readl(phba->HCregaddr); /* flush */ 13132 } 13133 13134 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 13135 SLI_IOCB_RET_IOCB); 13136 if (retval == IOCB_SUCCESS) { 13137 timeout_req = msecs_to_jiffies(timeout * 1000); 13138 timeleft = wait_event_timeout(done_q, 13139 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 13140 timeout_req); 13141 spin_lock_irqsave(&phba->hbalock, iflags); 13142 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 13143 13144 /* 13145 * IOCB timed out. Inform the wake iocb wait 13146 * completion function and set local status 13147 */ 13148 13149 iocb_completed = false; 13150 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 13151 } 13152 spin_unlock_irqrestore(&phba->hbalock, iflags); 13153 if (iocb_completed) { 13154 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13155 "0331 IOCB wake signaled\n"); 13156 /* Note: we are not indicating if the IOCB has a success 13157 * status or not - that's for the caller to check. 13158 * IOCB_SUCCESS means just that the command was sent and 13159 * completed. Not that it completed successfully. 13160 * */ 13161 } else if (timeleft == 0) { 13162 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13163 "0338 IOCB wait timeout error - no " 13164 "wake response Data x%x\n", timeout); 13165 retval = IOCB_TIMEDOUT; 13166 } else { 13167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13168 "0330 IOCB wake NOT set, " 13169 "Data x%x x%lx\n", 13170 timeout, (timeleft / jiffies)); 13171 retval = IOCB_TIMEDOUT; 13172 } 13173 } else if (retval == IOCB_BUSY) { 13174 if (phba->cfg_log_verbose & LOG_SLI) { 13175 list_for_each_entry(iocb, &pring->txq, list) { 13176 txq_cnt++; 13177 } 13178 list_for_each_entry(iocb, &pring->txcmplq, list) { 13179 txcmplq_cnt++; 13180 } 13181 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13182 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 13183 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 13184 } 13185 return retval; 13186 } else { 13187 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13188 "0332 IOCB wait issue failed, Data x%x\n", 13189 retval); 13190 retval = IOCB_ERROR; 13191 } 13192 13193 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 13194 if (lpfc_readl(phba->HCregaddr, &creg_val)) 13195 return IOCB_ERROR; 13196 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 13197 writel(creg_val, phba->HCregaddr); 13198 readl(phba->HCregaddr); /* flush */ 13199 } 13200 13201 if (prspiocbq) 13202 piocb->rsp_iocb = NULL; 13203 13204 piocb->context_un.wait_queue = NULL; 13205 piocb->cmd_cmpl = NULL; 13206 return retval; 13207 } 13208 13209 /** 13210 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 13211 * @phba: Pointer to HBA context object. 13212 * @pmboxq: Pointer to driver mailbox object. 13213 * @timeout: Timeout in number of seconds. 13214 * 13215 * This function issues the mailbox to firmware and waits for the 13216 * mailbox command to complete. If the mailbox command is not 13217 * completed within timeout seconds, it returns MBX_TIMEOUT. 13218 * The function waits for the mailbox completion using an 13219 * interruptible wait. If the thread is woken up due to a 13220 * signal, MBX_TIMEOUT error is returned to the caller. Caller 13221 * should not free the mailbox resources, if this function returns 13222 * MBX_TIMEOUT. 13223 * This function will sleep while waiting for mailbox completion. 13224 * So, this function should not be called from any context which 13225 * does not allow sleeping. Due to the same reason, this function 13226 * cannot be called with interrupt disabled. 13227 * This function assumes that the mailbox completion occurs while 13228 * this function sleep. So, this function cannot be called from 13229 * the worker thread which processes mailbox completion. 13230 * This function is called in the context of HBA management 13231 * applications. 13232 * This function returns MBX_SUCCESS when successful. 13233 * This function is called with no lock held. 13234 **/ 13235 int 13236 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 13237 uint32_t timeout) 13238 { 13239 struct completion mbox_done; 13240 int retval; 13241 unsigned long flag; 13242 13243 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 13244 /* setup wake call as IOCB callback */ 13245 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 13246 13247 /* setup context3 field to pass wait_queue pointer to wake function */ 13248 init_completion(&mbox_done); 13249 pmboxq->context3 = &mbox_done; 13250 /* now issue the command */ 13251 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13252 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13253 wait_for_completion_timeout(&mbox_done, 13254 msecs_to_jiffies(timeout * 1000)); 13255 13256 spin_lock_irqsave(&phba->hbalock, flag); 13257 pmboxq->context3 = NULL; 13258 /* 13259 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13260 * else do not free the resources. 13261 */ 13262 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13263 retval = MBX_SUCCESS; 13264 } else { 13265 retval = MBX_TIMEOUT; 13266 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13267 } 13268 spin_unlock_irqrestore(&phba->hbalock, flag); 13269 } 13270 return retval; 13271 } 13272 13273 /** 13274 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13275 * @phba: Pointer to HBA context. 13276 * @mbx_action: Mailbox shutdown options. 13277 * 13278 * This function is called to shutdown the driver's mailbox sub-system. 13279 * It first marks the mailbox sub-system is in a block state to prevent 13280 * the asynchronous mailbox command from issued off the pending mailbox 13281 * command queue. If the mailbox command sub-system shutdown is due to 13282 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13283 * the mailbox sub-system flush routine to forcefully bring down the 13284 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13285 * as with offline or HBA function reset), this routine will wait for the 13286 * outstanding mailbox command to complete before invoking the mailbox 13287 * sub-system flush routine to gracefully bring down mailbox sub-system. 13288 **/ 13289 void 13290 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13291 { 13292 struct lpfc_sli *psli = &phba->sli; 13293 unsigned long timeout; 13294 13295 if (mbx_action == LPFC_MBX_NO_WAIT) { 13296 /* delay 100ms for port state */ 13297 msleep(100); 13298 lpfc_sli_mbox_sys_flush(phba); 13299 return; 13300 } 13301 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13302 13303 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13304 local_bh_disable(); 13305 13306 spin_lock_irq(&phba->hbalock); 13307 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13308 13309 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13310 /* Determine how long we might wait for the active mailbox 13311 * command to be gracefully completed by firmware. 13312 */ 13313 if (phba->sli.mbox_active) 13314 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13315 phba->sli.mbox_active) * 13316 1000) + jiffies; 13317 spin_unlock_irq(&phba->hbalock); 13318 13319 /* Enable softirqs again, done with phba->hbalock */ 13320 local_bh_enable(); 13321 13322 while (phba->sli.mbox_active) { 13323 /* Check active mailbox complete status every 2ms */ 13324 msleep(2); 13325 if (time_after(jiffies, timeout)) 13326 /* Timeout, let the mailbox flush routine to 13327 * forcefully release active mailbox command 13328 */ 13329 break; 13330 } 13331 } else { 13332 spin_unlock_irq(&phba->hbalock); 13333 13334 /* Enable softirqs again, done with phba->hbalock */ 13335 local_bh_enable(); 13336 } 13337 13338 lpfc_sli_mbox_sys_flush(phba); 13339 } 13340 13341 /** 13342 * lpfc_sli_eratt_read - read sli-3 error attention events 13343 * @phba: Pointer to HBA context. 13344 * 13345 * This function is called to read the SLI3 device error attention registers 13346 * for possible error attention events. The caller must hold the hostlock 13347 * with spin_lock_irq(). 13348 * 13349 * This function returns 1 when there is Error Attention in the Host Attention 13350 * Register and returns 0 otherwise. 13351 **/ 13352 static int 13353 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13354 { 13355 uint32_t ha_copy; 13356 13357 /* Read chip Host Attention (HA) register */ 13358 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13359 goto unplug_err; 13360 13361 if (ha_copy & HA_ERATT) { 13362 /* Read host status register to retrieve error event */ 13363 if (lpfc_sli_read_hs(phba)) 13364 goto unplug_err; 13365 13366 /* Check if there is a deferred error condition is active */ 13367 if ((HS_FFER1 & phba->work_hs) && 13368 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13369 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13370 phba->hba_flag |= DEFER_ERATT; 13371 /* Clear all interrupt enable conditions */ 13372 writel(0, phba->HCregaddr); 13373 readl(phba->HCregaddr); 13374 } 13375 13376 /* Set the driver HA work bitmap */ 13377 phba->work_ha |= HA_ERATT; 13378 /* Indicate polling handles this ERATT */ 13379 phba->hba_flag |= HBA_ERATT_HANDLED; 13380 return 1; 13381 } 13382 return 0; 13383 13384 unplug_err: 13385 /* Set the driver HS work bitmap */ 13386 phba->work_hs |= UNPLUG_ERR; 13387 /* Set the driver HA work bitmap */ 13388 phba->work_ha |= HA_ERATT; 13389 /* Indicate polling handles this ERATT */ 13390 phba->hba_flag |= HBA_ERATT_HANDLED; 13391 return 1; 13392 } 13393 13394 /** 13395 * lpfc_sli4_eratt_read - read sli-4 error attention events 13396 * @phba: Pointer to HBA context. 13397 * 13398 * This function is called to read the SLI4 device error attention registers 13399 * for possible error attention events. The caller must hold the hostlock 13400 * with spin_lock_irq(). 13401 * 13402 * This function returns 1 when there is Error Attention in the Host Attention 13403 * Register and returns 0 otherwise. 13404 **/ 13405 static int 13406 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13407 { 13408 uint32_t uerr_sta_hi, uerr_sta_lo; 13409 uint32_t if_type, portsmphr; 13410 struct lpfc_register portstat_reg; 13411 u32 logmask; 13412 13413 /* 13414 * For now, use the SLI4 device internal unrecoverable error 13415 * registers for error attention. This can be changed later. 13416 */ 13417 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13418 switch (if_type) { 13419 case LPFC_SLI_INTF_IF_TYPE_0: 13420 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13421 &uerr_sta_lo) || 13422 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13423 &uerr_sta_hi)) { 13424 phba->work_hs |= UNPLUG_ERR; 13425 phba->work_ha |= HA_ERATT; 13426 phba->hba_flag |= HBA_ERATT_HANDLED; 13427 return 1; 13428 } 13429 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13430 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13431 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13432 "1423 HBA Unrecoverable error: " 13433 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13434 "ue_mask_lo_reg=0x%x, " 13435 "ue_mask_hi_reg=0x%x\n", 13436 uerr_sta_lo, uerr_sta_hi, 13437 phba->sli4_hba.ue_mask_lo, 13438 phba->sli4_hba.ue_mask_hi); 13439 phba->work_status[0] = uerr_sta_lo; 13440 phba->work_status[1] = uerr_sta_hi; 13441 phba->work_ha |= HA_ERATT; 13442 phba->hba_flag |= HBA_ERATT_HANDLED; 13443 return 1; 13444 } 13445 break; 13446 case LPFC_SLI_INTF_IF_TYPE_2: 13447 case LPFC_SLI_INTF_IF_TYPE_6: 13448 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13449 &portstat_reg.word0) || 13450 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13451 &portsmphr)){ 13452 phba->work_hs |= UNPLUG_ERR; 13453 phba->work_ha |= HA_ERATT; 13454 phba->hba_flag |= HBA_ERATT_HANDLED; 13455 return 1; 13456 } 13457 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13458 phba->work_status[0] = 13459 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13460 phba->work_status[1] = 13461 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13462 logmask = LOG_TRACE_EVENT; 13463 if (phba->work_status[0] == 13464 SLIPORT_ERR1_REG_ERR_CODE_2 && 13465 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13466 logmask = LOG_SLI; 13467 lpfc_printf_log(phba, KERN_ERR, logmask, 13468 "2885 Port Status Event: " 13469 "port status reg 0x%x, " 13470 "port smphr reg 0x%x, " 13471 "error 1=0x%x, error 2=0x%x\n", 13472 portstat_reg.word0, 13473 portsmphr, 13474 phba->work_status[0], 13475 phba->work_status[1]); 13476 phba->work_ha |= HA_ERATT; 13477 phba->hba_flag |= HBA_ERATT_HANDLED; 13478 return 1; 13479 } 13480 break; 13481 case LPFC_SLI_INTF_IF_TYPE_1: 13482 default: 13483 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13484 "2886 HBA Error Attention on unsupported " 13485 "if type %d.", if_type); 13486 return 1; 13487 } 13488 13489 return 0; 13490 } 13491 13492 /** 13493 * lpfc_sli_check_eratt - check error attention events 13494 * @phba: Pointer to HBA context. 13495 * 13496 * This function is called from timer soft interrupt context to check HBA's 13497 * error attention register bit for error attention events. 13498 * 13499 * This function returns 1 when there is Error Attention in the Host Attention 13500 * Register and returns 0 otherwise. 13501 **/ 13502 int 13503 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13504 { 13505 uint32_t ha_copy; 13506 13507 /* If somebody is waiting to handle an eratt, don't process it 13508 * here. The brdkill function will do this. 13509 */ 13510 if (phba->link_flag & LS_IGNORE_ERATT) 13511 return 0; 13512 13513 /* Check if interrupt handler handles this ERATT */ 13514 spin_lock_irq(&phba->hbalock); 13515 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13516 /* Interrupt handler has handled ERATT */ 13517 spin_unlock_irq(&phba->hbalock); 13518 return 0; 13519 } 13520 13521 /* 13522 * If there is deferred error attention, do not check for error 13523 * attention 13524 */ 13525 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13526 spin_unlock_irq(&phba->hbalock); 13527 return 0; 13528 } 13529 13530 /* If PCI channel is offline, don't process it */ 13531 if (unlikely(pci_channel_offline(phba->pcidev))) { 13532 spin_unlock_irq(&phba->hbalock); 13533 return 0; 13534 } 13535 13536 switch (phba->sli_rev) { 13537 case LPFC_SLI_REV2: 13538 case LPFC_SLI_REV3: 13539 /* Read chip Host Attention (HA) register */ 13540 ha_copy = lpfc_sli_eratt_read(phba); 13541 break; 13542 case LPFC_SLI_REV4: 13543 /* Read device Uncoverable Error (UERR) registers */ 13544 ha_copy = lpfc_sli4_eratt_read(phba); 13545 break; 13546 default: 13547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13548 "0299 Invalid SLI revision (%d)\n", 13549 phba->sli_rev); 13550 ha_copy = 0; 13551 break; 13552 } 13553 spin_unlock_irq(&phba->hbalock); 13554 13555 return ha_copy; 13556 } 13557 13558 /** 13559 * lpfc_intr_state_check - Check device state for interrupt handling 13560 * @phba: Pointer to HBA context. 13561 * 13562 * This inline routine checks whether a device or its PCI slot is in a state 13563 * that the interrupt should be handled. 13564 * 13565 * This function returns 0 if the device or the PCI slot is in a state that 13566 * interrupt should be handled, otherwise -EIO. 13567 */ 13568 static inline int 13569 lpfc_intr_state_check(struct lpfc_hba *phba) 13570 { 13571 /* If the pci channel is offline, ignore all the interrupts */ 13572 if (unlikely(pci_channel_offline(phba->pcidev))) 13573 return -EIO; 13574 13575 /* Update device level interrupt statistics */ 13576 phba->sli.slistat.sli_intr++; 13577 13578 /* Ignore all interrupts during initialization. */ 13579 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13580 return -EIO; 13581 13582 return 0; 13583 } 13584 13585 /** 13586 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13587 * @irq: Interrupt number. 13588 * @dev_id: The device context pointer. 13589 * 13590 * This function is directly called from the PCI layer as an interrupt 13591 * service routine when device with SLI-3 interface spec is enabled with 13592 * MSI-X multi-message interrupt mode and there are slow-path events in 13593 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13594 * interrupt mode, this function is called as part of the device-level 13595 * interrupt handler. When the PCI slot is in error recovery or the HBA 13596 * is undergoing initialization, the interrupt handler will not process 13597 * the interrupt. The link attention and ELS ring attention events are 13598 * handled by the worker thread. The interrupt handler signals the worker 13599 * thread and returns for these events. This function is called without 13600 * any lock held. It gets the hbalock to access and update SLI data 13601 * structures. 13602 * 13603 * This function returns IRQ_HANDLED when interrupt is handled else it 13604 * returns IRQ_NONE. 13605 **/ 13606 irqreturn_t 13607 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13608 { 13609 struct lpfc_hba *phba; 13610 uint32_t ha_copy, hc_copy; 13611 uint32_t work_ha_copy; 13612 unsigned long status; 13613 unsigned long iflag; 13614 uint32_t control; 13615 13616 MAILBOX_t *mbox, *pmbox; 13617 struct lpfc_vport *vport; 13618 struct lpfc_nodelist *ndlp; 13619 struct lpfc_dmabuf *mp; 13620 LPFC_MBOXQ_t *pmb; 13621 int rc; 13622 13623 /* 13624 * Get the driver's phba structure from the dev_id and 13625 * assume the HBA is not interrupting. 13626 */ 13627 phba = (struct lpfc_hba *)dev_id; 13628 13629 if (unlikely(!phba)) 13630 return IRQ_NONE; 13631 13632 /* 13633 * Stuff needs to be attented to when this function is invoked as an 13634 * individual interrupt handler in MSI-X multi-message interrupt mode 13635 */ 13636 if (phba->intr_type == MSIX) { 13637 /* Check device state for handling interrupt */ 13638 if (lpfc_intr_state_check(phba)) 13639 return IRQ_NONE; 13640 /* Need to read HA REG for slow-path events */ 13641 spin_lock_irqsave(&phba->hbalock, iflag); 13642 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13643 goto unplug_error; 13644 /* If somebody is waiting to handle an eratt don't process it 13645 * here. The brdkill function will do this. 13646 */ 13647 if (phba->link_flag & LS_IGNORE_ERATT) 13648 ha_copy &= ~HA_ERATT; 13649 /* Check the need for handling ERATT in interrupt handler */ 13650 if (ha_copy & HA_ERATT) { 13651 if (phba->hba_flag & HBA_ERATT_HANDLED) 13652 /* ERATT polling has handled ERATT */ 13653 ha_copy &= ~HA_ERATT; 13654 else 13655 /* Indicate interrupt handler handles ERATT */ 13656 phba->hba_flag |= HBA_ERATT_HANDLED; 13657 } 13658 13659 /* 13660 * If there is deferred error attention, do not check for any 13661 * interrupt. 13662 */ 13663 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13664 spin_unlock_irqrestore(&phba->hbalock, iflag); 13665 return IRQ_NONE; 13666 } 13667 13668 /* Clear up only attention source related to slow-path */ 13669 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13670 goto unplug_error; 13671 13672 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13673 HC_LAINT_ENA | HC_ERINT_ENA), 13674 phba->HCregaddr); 13675 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13676 phba->HAregaddr); 13677 writel(hc_copy, phba->HCregaddr); 13678 readl(phba->HAregaddr); /* flush */ 13679 spin_unlock_irqrestore(&phba->hbalock, iflag); 13680 } else 13681 ha_copy = phba->ha_copy; 13682 13683 work_ha_copy = ha_copy & phba->work_ha_mask; 13684 13685 if (work_ha_copy) { 13686 if (work_ha_copy & HA_LATT) { 13687 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13688 /* 13689 * Turn off Link Attention interrupts 13690 * until CLEAR_LA done 13691 */ 13692 spin_lock_irqsave(&phba->hbalock, iflag); 13693 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13694 if (lpfc_readl(phba->HCregaddr, &control)) 13695 goto unplug_error; 13696 control &= ~HC_LAINT_ENA; 13697 writel(control, phba->HCregaddr); 13698 readl(phba->HCregaddr); /* flush */ 13699 spin_unlock_irqrestore(&phba->hbalock, iflag); 13700 } 13701 else 13702 work_ha_copy &= ~HA_LATT; 13703 } 13704 13705 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13706 /* 13707 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13708 * the only slow ring. 13709 */ 13710 status = (work_ha_copy & 13711 (HA_RXMASK << (4*LPFC_ELS_RING))); 13712 status >>= (4*LPFC_ELS_RING); 13713 if (status & HA_RXMASK) { 13714 spin_lock_irqsave(&phba->hbalock, iflag); 13715 if (lpfc_readl(phba->HCregaddr, &control)) 13716 goto unplug_error; 13717 13718 lpfc_debugfs_slow_ring_trc(phba, 13719 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13720 control, status, 13721 (uint32_t)phba->sli.slistat.sli_intr); 13722 13723 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13724 lpfc_debugfs_slow_ring_trc(phba, 13725 "ISR Disable ring:" 13726 "pwork:x%x hawork:x%x wait:x%x", 13727 phba->work_ha, work_ha_copy, 13728 (uint32_t)((unsigned long) 13729 &phba->work_waitq)); 13730 13731 control &= 13732 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13733 writel(control, phba->HCregaddr); 13734 readl(phba->HCregaddr); /* flush */ 13735 } 13736 else { 13737 lpfc_debugfs_slow_ring_trc(phba, 13738 "ISR slow ring: pwork:" 13739 "x%x hawork:x%x wait:x%x", 13740 phba->work_ha, work_ha_copy, 13741 (uint32_t)((unsigned long) 13742 &phba->work_waitq)); 13743 } 13744 spin_unlock_irqrestore(&phba->hbalock, iflag); 13745 } 13746 } 13747 spin_lock_irqsave(&phba->hbalock, iflag); 13748 if (work_ha_copy & HA_ERATT) { 13749 if (lpfc_sli_read_hs(phba)) 13750 goto unplug_error; 13751 /* 13752 * Check if there is a deferred error condition 13753 * is active 13754 */ 13755 if ((HS_FFER1 & phba->work_hs) && 13756 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13757 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13758 phba->work_hs)) { 13759 phba->hba_flag |= DEFER_ERATT; 13760 /* Clear all interrupt enable conditions */ 13761 writel(0, phba->HCregaddr); 13762 readl(phba->HCregaddr); 13763 } 13764 } 13765 13766 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13767 pmb = phba->sli.mbox_active; 13768 pmbox = &pmb->u.mb; 13769 mbox = phba->mbox; 13770 vport = pmb->vport; 13771 13772 /* First check out the status word */ 13773 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13774 if (pmbox->mbxOwner != OWN_HOST) { 13775 spin_unlock_irqrestore(&phba->hbalock, iflag); 13776 /* 13777 * Stray Mailbox Interrupt, mbxCommand <cmd> 13778 * mbxStatus <status> 13779 */ 13780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13781 "(%d):0304 Stray Mailbox " 13782 "Interrupt mbxCommand x%x " 13783 "mbxStatus x%x\n", 13784 (vport ? vport->vpi : 0), 13785 pmbox->mbxCommand, 13786 pmbox->mbxStatus); 13787 /* clear mailbox attention bit */ 13788 work_ha_copy &= ~HA_MBATT; 13789 } else { 13790 phba->sli.mbox_active = NULL; 13791 spin_unlock_irqrestore(&phba->hbalock, iflag); 13792 phba->last_completion_time = jiffies; 13793 del_timer(&phba->sli.mbox_tmo); 13794 if (pmb->mbox_cmpl) { 13795 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13796 MAILBOX_CMD_SIZE); 13797 if (pmb->out_ext_byte_len && 13798 pmb->ctx_buf) 13799 lpfc_sli_pcimem_bcopy( 13800 phba->mbox_ext, 13801 pmb->ctx_buf, 13802 pmb->out_ext_byte_len); 13803 } 13804 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13805 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13806 13807 lpfc_debugfs_disc_trc(vport, 13808 LPFC_DISC_TRC_MBOX_VPORT, 13809 "MBOX dflt rpi: : " 13810 "status:x%x rpi:x%x", 13811 (uint32_t)pmbox->mbxStatus, 13812 pmbox->un.varWords[0], 0); 13813 13814 if (!pmbox->mbxStatus) { 13815 mp = (struct lpfc_dmabuf *) 13816 (pmb->ctx_buf); 13817 ndlp = (struct lpfc_nodelist *) 13818 pmb->ctx_ndlp; 13819 13820 /* Reg_LOGIN of dflt RPI was 13821 * successful. new lets get 13822 * rid of the RPI using the 13823 * same mbox buffer. 13824 */ 13825 lpfc_unreg_login(phba, 13826 vport->vpi, 13827 pmbox->un.varWords[0], 13828 pmb); 13829 pmb->mbox_cmpl = 13830 lpfc_mbx_cmpl_dflt_rpi; 13831 pmb->ctx_buf = mp; 13832 pmb->ctx_ndlp = ndlp; 13833 pmb->vport = vport; 13834 rc = lpfc_sli_issue_mbox(phba, 13835 pmb, 13836 MBX_NOWAIT); 13837 if (rc != MBX_BUSY) 13838 lpfc_printf_log(phba, 13839 KERN_ERR, 13840 LOG_TRACE_EVENT, 13841 "0350 rc should have" 13842 "been MBX_BUSY\n"); 13843 if (rc != MBX_NOT_FINISHED) 13844 goto send_current_mbox; 13845 } 13846 } 13847 spin_lock_irqsave( 13848 &phba->pport->work_port_lock, 13849 iflag); 13850 phba->pport->work_port_events &= 13851 ~WORKER_MBOX_TMO; 13852 spin_unlock_irqrestore( 13853 &phba->pport->work_port_lock, 13854 iflag); 13855 13856 /* Do NOT queue MBX_HEARTBEAT to the worker 13857 * thread for processing. 13858 */ 13859 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13860 /* Process mbox now */ 13861 phba->sli.mbox_active = NULL; 13862 phba->sli.sli_flag &= 13863 ~LPFC_SLI_MBOX_ACTIVE; 13864 if (pmb->mbox_cmpl) 13865 pmb->mbox_cmpl(phba, pmb); 13866 } else { 13867 /* Queue to worker thread to process */ 13868 lpfc_mbox_cmpl_put(phba, pmb); 13869 } 13870 } 13871 } else 13872 spin_unlock_irqrestore(&phba->hbalock, iflag); 13873 13874 if ((work_ha_copy & HA_MBATT) && 13875 (phba->sli.mbox_active == NULL)) { 13876 send_current_mbox: 13877 /* Process next mailbox command if there is one */ 13878 do { 13879 rc = lpfc_sli_issue_mbox(phba, NULL, 13880 MBX_NOWAIT); 13881 } while (rc == MBX_NOT_FINISHED); 13882 if (rc != MBX_SUCCESS) 13883 lpfc_printf_log(phba, KERN_ERR, 13884 LOG_TRACE_EVENT, 13885 "0349 rc should be " 13886 "MBX_SUCCESS\n"); 13887 } 13888 13889 spin_lock_irqsave(&phba->hbalock, iflag); 13890 phba->work_ha |= work_ha_copy; 13891 spin_unlock_irqrestore(&phba->hbalock, iflag); 13892 lpfc_worker_wake_up(phba); 13893 } 13894 return IRQ_HANDLED; 13895 unplug_error: 13896 spin_unlock_irqrestore(&phba->hbalock, iflag); 13897 return IRQ_HANDLED; 13898 13899 } /* lpfc_sli_sp_intr_handler */ 13900 13901 /** 13902 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13903 * @irq: Interrupt number. 13904 * @dev_id: The device context pointer. 13905 * 13906 * This function is directly called from the PCI layer as an interrupt 13907 * service routine when device with SLI-3 interface spec is enabled with 13908 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13909 * ring event in the HBA. However, when the device is enabled with either 13910 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13911 * device-level interrupt handler. When the PCI slot is in error recovery 13912 * or the HBA is undergoing initialization, the interrupt handler will not 13913 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13914 * the intrrupt context. This function is called without any lock held. 13915 * It gets the hbalock to access and update SLI data structures. 13916 * 13917 * This function returns IRQ_HANDLED when interrupt is handled else it 13918 * returns IRQ_NONE. 13919 **/ 13920 irqreturn_t 13921 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13922 { 13923 struct lpfc_hba *phba; 13924 uint32_t ha_copy; 13925 unsigned long status; 13926 unsigned long iflag; 13927 struct lpfc_sli_ring *pring; 13928 13929 /* Get the driver's phba structure from the dev_id and 13930 * assume the HBA is not interrupting. 13931 */ 13932 phba = (struct lpfc_hba *) dev_id; 13933 13934 if (unlikely(!phba)) 13935 return IRQ_NONE; 13936 13937 /* 13938 * Stuff needs to be attented to when this function is invoked as an 13939 * individual interrupt handler in MSI-X multi-message interrupt mode 13940 */ 13941 if (phba->intr_type == MSIX) { 13942 /* Check device state for handling interrupt */ 13943 if (lpfc_intr_state_check(phba)) 13944 return IRQ_NONE; 13945 /* Need to read HA REG for FCP ring and other ring events */ 13946 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13947 return IRQ_HANDLED; 13948 /* Clear up only attention source related to fast-path */ 13949 spin_lock_irqsave(&phba->hbalock, iflag); 13950 /* 13951 * If there is deferred error attention, do not check for 13952 * any interrupt. 13953 */ 13954 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13955 spin_unlock_irqrestore(&phba->hbalock, iflag); 13956 return IRQ_NONE; 13957 } 13958 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13959 phba->HAregaddr); 13960 readl(phba->HAregaddr); /* flush */ 13961 spin_unlock_irqrestore(&phba->hbalock, iflag); 13962 } else 13963 ha_copy = phba->ha_copy; 13964 13965 /* 13966 * Process all events on FCP ring. Take the optimized path for FCP IO. 13967 */ 13968 ha_copy &= ~(phba->work_ha_mask); 13969 13970 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13971 status >>= (4*LPFC_FCP_RING); 13972 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13973 if (status & HA_RXMASK) 13974 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13975 13976 if (phba->cfg_multi_ring_support == 2) { 13977 /* 13978 * Process all events on extra ring. Take the optimized path 13979 * for extra ring IO. 13980 */ 13981 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13982 status >>= (4*LPFC_EXTRA_RING); 13983 if (status & HA_RXMASK) { 13984 lpfc_sli_handle_fast_ring_event(phba, 13985 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13986 status); 13987 } 13988 } 13989 return IRQ_HANDLED; 13990 } /* lpfc_sli_fp_intr_handler */ 13991 13992 /** 13993 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13994 * @irq: Interrupt number. 13995 * @dev_id: The device context pointer. 13996 * 13997 * This function is the HBA device-level interrupt handler to device with 13998 * SLI-3 interface spec, called from the PCI layer when either MSI or 13999 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 14000 * requires driver attention. This function invokes the slow-path interrupt 14001 * attention handling function and fast-path interrupt attention handling 14002 * function in turn to process the relevant HBA attention events. This 14003 * function is called without any lock held. It gets the hbalock to access 14004 * and update SLI data structures. 14005 * 14006 * This function returns IRQ_HANDLED when interrupt is handled, else it 14007 * returns IRQ_NONE. 14008 **/ 14009 irqreturn_t 14010 lpfc_sli_intr_handler(int irq, void *dev_id) 14011 { 14012 struct lpfc_hba *phba; 14013 irqreturn_t sp_irq_rc, fp_irq_rc; 14014 unsigned long status1, status2; 14015 uint32_t hc_copy; 14016 14017 /* 14018 * Get the driver's phba structure from the dev_id and 14019 * assume the HBA is not interrupting. 14020 */ 14021 phba = (struct lpfc_hba *) dev_id; 14022 14023 if (unlikely(!phba)) 14024 return IRQ_NONE; 14025 14026 /* Check device state for handling interrupt */ 14027 if (lpfc_intr_state_check(phba)) 14028 return IRQ_NONE; 14029 14030 spin_lock(&phba->hbalock); 14031 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 14032 spin_unlock(&phba->hbalock); 14033 return IRQ_HANDLED; 14034 } 14035 14036 if (unlikely(!phba->ha_copy)) { 14037 spin_unlock(&phba->hbalock); 14038 return IRQ_NONE; 14039 } else if (phba->ha_copy & HA_ERATT) { 14040 if (phba->hba_flag & HBA_ERATT_HANDLED) 14041 /* ERATT polling has handled ERATT */ 14042 phba->ha_copy &= ~HA_ERATT; 14043 else 14044 /* Indicate interrupt handler handles ERATT */ 14045 phba->hba_flag |= HBA_ERATT_HANDLED; 14046 } 14047 14048 /* 14049 * If there is deferred error attention, do not check for any interrupt. 14050 */ 14051 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 14052 spin_unlock(&phba->hbalock); 14053 return IRQ_NONE; 14054 } 14055 14056 /* Clear attention sources except link and error attentions */ 14057 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 14058 spin_unlock(&phba->hbalock); 14059 return IRQ_HANDLED; 14060 } 14061 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 14062 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 14063 phba->HCregaddr); 14064 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 14065 writel(hc_copy, phba->HCregaddr); 14066 readl(phba->HAregaddr); /* flush */ 14067 spin_unlock(&phba->hbalock); 14068 14069 /* 14070 * Invokes slow-path host attention interrupt handling as appropriate. 14071 */ 14072 14073 /* status of events with mailbox and link attention */ 14074 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 14075 14076 /* status of events with ELS ring */ 14077 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 14078 status2 >>= (4*LPFC_ELS_RING); 14079 14080 if (status1 || (status2 & HA_RXMASK)) 14081 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 14082 else 14083 sp_irq_rc = IRQ_NONE; 14084 14085 /* 14086 * Invoke fast-path host attention interrupt handling as appropriate. 14087 */ 14088 14089 /* status of events with FCP ring */ 14090 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 14091 status1 >>= (4*LPFC_FCP_RING); 14092 14093 /* status of events with extra ring */ 14094 if (phba->cfg_multi_ring_support == 2) { 14095 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 14096 status2 >>= (4*LPFC_EXTRA_RING); 14097 } else 14098 status2 = 0; 14099 14100 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 14101 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 14102 else 14103 fp_irq_rc = IRQ_NONE; 14104 14105 /* Return device-level interrupt handling status */ 14106 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 14107 } /* lpfc_sli_intr_handler */ 14108 14109 /** 14110 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 14111 * @phba: pointer to lpfc hba data structure. 14112 * 14113 * This routine is invoked by the worker thread to process all the pending 14114 * SLI4 els abort xri events. 14115 **/ 14116 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 14117 { 14118 struct lpfc_cq_event *cq_event; 14119 unsigned long iflags; 14120 14121 /* First, declare the els xri abort event has been handled */ 14122 spin_lock_irqsave(&phba->hbalock, iflags); 14123 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 14124 spin_unlock_irqrestore(&phba->hbalock, iflags); 14125 14126 /* Now, handle all the els xri abort events */ 14127 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14128 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 14129 /* Get the first event from the head of the event queue */ 14130 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 14131 cq_event, struct lpfc_cq_event, list); 14132 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14133 iflags); 14134 /* Notify aborted XRI for ELS work queue */ 14135 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 14136 14137 /* Free the event processed back to the free pool */ 14138 lpfc_sli4_cq_event_release(phba, cq_event); 14139 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14140 iflags); 14141 } 14142 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 14143 } 14144 14145 /** 14146 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 14147 * @phba: Pointer to HBA context object. 14148 * @irspiocbq: Pointer to work-queue completion queue entry. 14149 * 14150 * This routine handles an ELS work-queue completion event and construct 14151 * a pseudo response ELS IOCBQ from the SLI4 ELS WCQE for the common 14152 * discovery engine to handle. 14153 * 14154 * Return: Pointer to the receive IOCBQ, NULL otherwise. 14155 **/ 14156 static struct lpfc_iocbq * 14157 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 14158 struct lpfc_iocbq *irspiocbq) 14159 { 14160 struct lpfc_sli_ring *pring; 14161 struct lpfc_iocbq *cmdiocbq; 14162 struct lpfc_wcqe_complete *wcqe; 14163 unsigned long iflags; 14164 14165 pring = lpfc_phba_elsring(phba); 14166 if (unlikely(!pring)) 14167 return NULL; 14168 14169 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 14170 spin_lock_irqsave(&pring->ring_lock, iflags); 14171 pring->stats.iocb_event++; 14172 /* Look up the ELS command IOCB and create pseudo response IOCB */ 14173 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14174 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14175 if (unlikely(!cmdiocbq)) { 14176 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14177 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14178 "0386 ELS complete with no corresponding " 14179 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 14180 wcqe->word0, wcqe->total_data_placed, 14181 wcqe->parameter, wcqe->word3); 14182 lpfc_sli_release_iocbq(phba, irspiocbq); 14183 return NULL; 14184 } 14185 14186 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 14187 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 14188 14189 /* Put the iocb back on the txcmplq */ 14190 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 14191 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14192 14193 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14194 spin_lock_irqsave(&phba->hbalock, iflags); 14195 irspiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14196 spin_unlock_irqrestore(&phba->hbalock, iflags); 14197 } 14198 14199 return irspiocbq; 14200 } 14201 14202 inline struct lpfc_cq_event * 14203 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 14204 { 14205 struct lpfc_cq_event *cq_event; 14206 14207 /* Allocate a new internal CQ_EVENT entry */ 14208 cq_event = lpfc_sli4_cq_event_alloc(phba); 14209 if (!cq_event) { 14210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14211 "0602 Failed to alloc CQ_EVENT entry\n"); 14212 return NULL; 14213 } 14214 14215 /* Move the CQE into the event */ 14216 memcpy(&cq_event->cqe, entry, size); 14217 return cq_event; 14218 } 14219 14220 /** 14221 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 14222 * @phba: Pointer to HBA context object. 14223 * @mcqe: Pointer to mailbox completion queue entry. 14224 * 14225 * This routine process a mailbox completion queue entry with asynchronous 14226 * event. 14227 * 14228 * Return: true if work posted to worker thread, otherwise false. 14229 **/ 14230 static bool 14231 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14232 { 14233 struct lpfc_cq_event *cq_event; 14234 unsigned long iflags; 14235 14236 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14237 "0392 Async Event: word0:x%x, word1:x%x, " 14238 "word2:x%x, word3:x%x\n", mcqe->word0, 14239 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 14240 14241 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 14242 if (!cq_event) 14243 return false; 14244 14245 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 14246 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 14247 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 14248 14249 /* Set the async event flag */ 14250 spin_lock_irqsave(&phba->hbalock, iflags); 14251 phba->hba_flag |= ASYNC_EVENT; 14252 spin_unlock_irqrestore(&phba->hbalock, iflags); 14253 14254 return true; 14255 } 14256 14257 /** 14258 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14259 * @phba: Pointer to HBA context object. 14260 * @mcqe: Pointer to mailbox completion queue entry. 14261 * 14262 * This routine process a mailbox completion queue entry with mailbox 14263 * completion event. 14264 * 14265 * Return: true if work posted to worker thread, otherwise false. 14266 **/ 14267 static bool 14268 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14269 { 14270 uint32_t mcqe_status; 14271 MAILBOX_t *mbox, *pmbox; 14272 struct lpfc_mqe *mqe; 14273 struct lpfc_vport *vport; 14274 struct lpfc_nodelist *ndlp; 14275 struct lpfc_dmabuf *mp; 14276 unsigned long iflags; 14277 LPFC_MBOXQ_t *pmb; 14278 bool workposted = false; 14279 int rc; 14280 14281 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14282 if (!bf_get(lpfc_trailer_completed, mcqe)) 14283 goto out_no_mqe_complete; 14284 14285 /* Get the reference to the active mbox command */ 14286 spin_lock_irqsave(&phba->hbalock, iflags); 14287 pmb = phba->sli.mbox_active; 14288 if (unlikely(!pmb)) { 14289 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14290 "1832 No pending MBOX command to handle\n"); 14291 spin_unlock_irqrestore(&phba->hbalock, iflags); 14292 goto out_no_mqe_complete; 14293 } 14294 spin_unlock_irqrestore(&phba->hbalock, iflags); 14295 mqe = &pmb->u.mqe; 14296 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14297 mbox = phba->mbox; 14298 vport = pmb->vport; 14299 14300 /* Reset heartbeat timer */ 14301 phba->last_completion_time = jiffies; 14302 del_timer(&phba->sli.mbox_tmo); 14303 14304 /* Move mbox data to caller's mailbox region, do endian swapping */ 14305 if (pmb->mbox_cmpl && mbox) 14306 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14307 14308 /* 14309 * For mcqe errors, conditionally move a modified error code to 14310 * the mbox so that the error will not be missed. 14311 */ 14312 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14313 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14314 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14315 bf_set(lpfc_mqe_status, mqe, 14316 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14317 } 14318 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14319 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14320 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14321 "MBOX dflt rpi: status:x%x rpi:x%x", 14322 mcqe_status, 14323 pmbox->un.varWords[0], 0); 14324 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14325 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14326 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14327 14328 /* Reg_LOGIN of dflt RPI was successful. Mark the 14329 * node as having an UNREG_LOGIN in progress to stop 14330 * an unsolicited PLOGI from the same NPortId from 14331 * starting another mailbox transaction. 14332 */ 14333 spin_lock_irqsave(&ndlp->lock, iflags); 14334 ndlp->nlp_flag |= NLP_UNREG_INP; 14335 spin_unlock_irqrestore(&ndlp->lock, iflags); 14336 lpfc_unreg_login(phba, vport->vpi, 14337 pmbox->un.varWords[0], pmb); 14338 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14339 pmb->ctx_buf = mp; 14340 14341 /* No reference taken here. This is a default 14342 * RPI reg/immediate unreg cycle. The reference was 14343 * taken in the reg rpi path and is released when 14344 * this mailbox completes. 14345 */ 14346 pmb->ctx_ndlp = ndlp; 14347 pmb->vport = vport; 14348 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14349 if (rc != MBX_BUSY) 14350 lpfc_printf_log(phba, KERN_ERR, 14351 LOG_TRACE_EVENT, 14352 "0385 rc should " 14353 "have been MBX_BUSY\n"); 14354 if (rc != MBX_NOT_FINISHED) 14355 goto send_current_mbox; 14356 } 14357 } 14358 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14359 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14360 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14361 14362 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14363 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14364 spin_lock_irqsave(&phba->hbalock, iflags); 14365 /* Release the mailbox command posting token */ 14366 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14367 phba->sli.mbox_active = NULL; 14368 if (bf_get(lpfc_trailer_consumed, mcqe)) 14369 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14370 spin_unlock_irqrestore(&phba->hbalock, iflags); 14371 14372 /* Post the next mbox command, if there is one */ 14373 lpfc_sli4_post_async_mbox(phba); 14374 14375 /* Process cmpl now */ 14376 if (pmb->mbox_cmpl) 14377 pmb->mbox_cmpl(phba, pmb); 14378 return false; 14379 } 14380 14381 /* There is mailbox completion work to queue to the worker thread */ 14382 spin_lock_irqsave(&phba->hbalock, iflags); 14383 __lpfc_mbox_cmpl_put(phba, pmb); 14384 phba->work_ha |= HA_MBATT; 14385 spin_unlock_irqrestore(&phba->hbalock, iflags); 14386 workposted = true; 14387 14388 send_current_mbox: 14389 spin_lock_irqsave(&phba->hbalock, iflags); 14390 /* Release the mailbox command posting token */ 14391 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14392 /* Setting active mailbox pointer need to be in sync to flag clear */ 14393 phba->sli.mbox_active = NULL; 14394 if (bf_get(lpfc_trailer_consumed, mcqe)) 14395 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14396 spin_unlock_irqrestore(&phba->hbalock, iflags); 14397 /* Wake up worker thread to post the next pending mailbox command */ 14398 lpfc_worker_wake_up(phba); 14399 return workposted; 14400 14401 out_no_mqe_complete: 14402 spin_lock_irqsave(&phba->hbalock, iflags); 14403 if (bf_get(lpfc_trailer_consumed, mcqe)) 14404 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14405 spin_unlock_irqrestore(&phba->hbalock, iflags); 14406 return false; 14407 } 14408 14409 /** 14410 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14411 * @phba: Pointer to HBA context object. 14412 * @cq: Pointer to associated CQ 14413 * @cqe: Pointer to mailbox completion queue entry. 14414 * 14415 * This routine process a mailbox completion queue entry, it invokes the 14416 * proper mailbox complete handling or asynchronous event handling routine 14417 * according to the MCQE's async bit. 14418 * 14419 * Return: true if work posted to worker thread, otherwise false. 14420 **/ 14421 static bool 14422 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14423 struct lpfc_cqe *cqe) 14424 { 14425 struct lpfc_mcqe mcqe; 14426 bool workposted; 14427 14428 cq->CQ_mbox++; 14429 14430 /* Copy the mailbox MCQE and convert endian order as needed */ 14431 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14432 14433 /* Invoke the proper event handling routine */ 14434 if (!bf_get(lpfc_trailer_async, &mcqe)) 14435 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14436 else 14437 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14438 return workposted; 14439 } 14440 14441 /** 14442 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14443 * @phba: Pointer to HBA context object. 14444 * @cq: Pointer to associated CQ 14445 * @wcqe: Pointer to work-queue completion queue entry. 14446 * 14447 * This routine handles an ELS work-queue completion event. 14448 * 14449 * Return: true if work posted to worker thread, otherwise false. 14450 **/ 14451 static bool 14452 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14453 struct lpfc_wcqe_complete *wcqe) 14454 { 14455 struct lpfc_iocbq *irspiocbq; 14456 unsigned long iflags; 14457 struct lpfc_sli_ring *pring = cq->pring; 14458 int txq_cnt = 0; 14459 int txcmplq_cnt = 0; 14460 14461 /* Check for response status */ 14462 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14463 /* Log the error status */ 14464 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14465 "0357 ELS CQE error: status=x%x: " 14466 "CQE: %08x %08x %08x %08x\n", 14467 bf_get(lpfc_wcqe_c_status, wcqe), 14468 wcqe->word0, wcqe->total_data_placed, 14469 wcqe->parameter, wcqe->word3); 14470 } 14471 14472 /* Get an irspiocbq for later ELS response processing use */ 14473 irspiocbq = lpfc_sli_get_iocbq(phba); 14474 if (!irspiocbq) { 14475 if (!list_empty(&pring->txq)) 14476 txq_cnt++; 14477 if (!list_empty(&pring->txcmplq)) 14478 txcmplq_cnt++; 14479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14480 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14481 "els_txcmplq_cnt=%d\n", 14482 txq_cnt, phba->iocb_cnt, 14483 txcmplq_cnt); 14484 return false; 14485 } 14486 14487 /* Save off the slow-path queue event for work thread to process */ 14488 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14489 spin_lock_irqsave(&phba->hbalock, iflags); 14490 list_add_tail(&irspiocbq->cq_event.list, 14491 &phba->sli4_hba.sp_queue_event); 14492 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14493 spin_unlock_irqrestore(&phba->hbalock, iflags); 14494 14495 return true; 14496 } 14497 14498 /** 14499 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14500 * @phba: Pointer to HBA context object. 14501 * @wcqe: Pointer to work-queue completion queue entry. 14502 * 14503 * This routine handles slow-path WQ entry consumed event by invoking the 14504 * proper WQ release routine to the slow-path WQ. 14505 **/ 14506 static void 14507 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14508 struct lpfc_wcqe_release *wcqe) 14509 { 14510 /* sanity check on queue memory */ 14511 if (unlikely(!phba->sli4_hba.els_wq)) 14512 return; 14513 /* Check for the slow-path ELS work queue */ 14514 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14515 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14516 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14517 else 14518 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14519 "2579 Slow-path wqe consume event carries " 14520 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14521 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14522 phba->sli4_hba.els_wq->queue_id); 14523 } 14524 14525 /** 14526 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14527 * @phba: Pointer to HBA context object. 14528 * @cq: Pointer to a WQ completion queue. 14529 * @wcqe: Pointer to work-queue completion queue entry. 14530 * 14531 * This routine handles an XRI abort event. 14532 * 14533 * Return: true if work posted to worker thread, otherwise false. 14534 **/ 14535 static bool 14536 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14537 struct lpfc_queue *cq, 14538 struct sli4_wcqe_xri_aborted *wcqe) 14539 { 14540 bool workposted = false; 14541 struct lpfc_cq_event *cq_event; 14542 unsigned long iflags; 14543 14544 switch (cq->subtype) { 14545 case LPFC_IO: 14546 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14547 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14548 /* Notify aborted XRI for NVME work queue */ 14549 if (phba->nvmet_support) 14550 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14551 } 14552 workposted = false; 14553 break; 14554 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14555 case LPFC_ELS: 14556 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14557 if (!cq_event) { 14558 workposted = false; 14559 break; 14560 } 14561 cq_event->hdwq = cq->hdwq; 14562 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14563 iflags); 14564 list_add_tail(&cq_event->list, 14565 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14566 /* Set the els xri abort event flag */ 14567 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14568 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14569 iflags); 14570 workposted = true; 14571 break; 14572 default: 14573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14574 "0603 Invalid CQ subtype %d: " 14575 "%08x %08x %08x %08x\n", 14576 cq->subtype, wcqe->word0, wcqe->parameter, 14577 wcqe->word2, wcqe->word3); 14578 workposted = false; 14579 break; 14580 } 14581 return workposted; 14582 } 14583 14584 #define FC_RCTL_MDS_DIAGS 0xF4 14585 14586 /** 14587 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14588 * @phba: Pointer to HBA context object. 14589 * @rcqe: Pointer to receive-queue completion queue entry. 14590 * 14591 * This routine process a receive-queue completion queue entry. 14592 * 14593 * Return: true if work posted to worker thread, otherwise false. 14594 **/ 14595 static bool 14596 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14597 { 14598 bool workposted = false; 14599 struct fc_frame_header *fc_hdr; 14600 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14601 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14602 struct lpfc_nvmet_tgtport *tgtp; 14603 struct hbq_dmabuf *dma_buf; 14604 uint32_t status, rq_id; 14605 unsigned long iflags; 14606 14607 /* sanity check on queue memory */ 14608 if (unlikely(!hrq) || unlikely(!drq)) 14609 return workposted; 14610 14611 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14612 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14613 else 14614 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14615 if (rq_id != hrq->queue_id) 14616 goto out; 14617 14618 status = bf_get(lpfc_rcqe_status, rcqe); 14619 switch (status) { 14620 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14622 "2537 Receive Frame Truncated!!\n"); 14623 fallthrough; 14624 case FC_STATUS_RQ_SUCCESS: 14625 spin_lock_irqsave(&phba->hbalock, iflags); 14626 lpfc_sli4_rq_release(hrq, drq); 14627 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14628 if (!dma_buf) { 14629 hrq->RQ_no_buf_found++; 14630 spin_unlock_irqrestore(&phba->hbalock, iflags); 14631 goto out; 14632 } 14633 hrq->RQ_rcv_buf++; 14634 hrq->RQ_buf_posted--; 14635 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14636 14637 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14638 14639 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14640 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14641 spin_unlock_irqrestore(&phba->hbalock, iflags); 14642 /* Handle MDS Loopback frames */ 14643 if (!(phba->pport->load_flag & FC_UNLOADING)) 14644 lpfc_sli4_handle_mds_loopback(phba->pport, 14645 dma_buf); 14646 else 14647 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14648 break; 14649 } 14650 14651 /* save off the frame for the work thread to process */ 14652 list_add_tail(&dma_buf->cq_event.list, 14653 &phba->sli4_hba.sp_queue_event); 14654 /* Frame received */ 14655 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14656 spin_unlock_irqrestore(&phba->hbalock, iflags); 14657 workposted = true; 14658 break; 14659 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14660 if (phba->nvmet_support) { 14661 tgtp = phba->targetport->private; 14662 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14663 "6402 RQE Error x%x, posted %d err_cnt " 14664 "%d: %x %x %x\n", 14665 status, hrq->RQ_buf_posted, 14666 hrq->RQ_no_posted_buf, 14667 atomic_read(&tgtp->rcv_fcp_cmd_in), 14668 atomic_read(&tgtp->rcv_fcp_cmd_out), 14669 atomic_read(&tgtp->xmt_fcp_release)); 14670 } 14671 fallthrough; 14672 14673 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14674 hrq->RQ_no_posted_buf++; 14675 /* Post more buffers if possible */ 14676 spin_lock_irqsave(&phba->hbalock, iflags); 14677 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14678 spin_unlock_irqrestore(&phba->hbalock, iflags); 14679 workposted = true; 14680 break; 14681 } 14682 out: 14683 return workposted; 14684 } 14685 14686 /** 14687 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14688 * @phba: Pointer to HBA context object. 14689 * @cq: Pointer to the completion queue. 14690 * @cqe: Pointer to a completion queue entry. 14691 * 14692 * This routine process a slow-path work-queue or receive queue completion queue 14693 * entry. 14694 * 14695 * Return: true if work posted to worker thread, otherwise false. 14696 **/ 14697 static bool 14698 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14699 struct lpfc_cqe *cqe) 14700 { 14701 struct lpfc_cqe cqevt; 14702 bool workposted = false; 14703 14704 /* Copy the work queue CQE and convert endian order if needed */ 14705 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14706 14707 /* Check and process for different type of WCQE and dispatch */ 14708 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14709 case CQE_CODE_COMPL_WQE: 14710 /* Process the WQ/RQ complete event */ 14711 phba->last_completion_time = jiffies; 14712 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14713 (struct lpfc_wcqe_complete *)&cqevt); 14714 break; 14715 case CQE_CODE_RELEASE_WQE: 14716 /* Process the WQ release event */ 14717 lpfc_sli4_sp_handle_rel_wcqe(phba, 14718 (struct lpfc_wcqe_release *)&cqevt); 14719 break; 14720 case CQE_CODE_XRI_ABORTED: 14721 /* Process the WQ XRI abort event */ 14722 phba->last_completion_time = jiffies; 14723 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14724 (struct sli4_wcqe_xri_aborted *)&cqevt); 14725 break; 14726 case CQE_CODE_RECEIVE: 14727 case CQE_CODE_RECEIVE_V1: 14728 /* Process the RQ event */ 14729 phba->last_completion_time = jiffies; 14730 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14731 (struct lpfc_rcqe *)&cqevt); 14732 break; 14733 default: 14734 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14735 "0388 Not a valid WCQE code: x%x\n", 14736 bf_get(lpfc_cqe_code, &cqevt)); 14737 break; 14738 } 14739 return workposted; 14740 } 14741 14742 /** 14743 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14744 * @phba: Pointer to HBA context object. 14745 * @eqe: Pointer to fast-path event queue entry. 14746 * @speq: Pointer to slow-path event queue. 14747 * 14748 * This routine process a event queue entry from the slow-path event queue. 14749 * It will check the MajorCode and MinorCode to determine this is for a 14750 * completion event on a completion queue, if not, an error shall be logged 14751 * and just return. Otherwise, it will get to the corresponding completion 14752 * queue and process all the entries on that completion queue, rearm the 14753 * completion queue, and then return. 14754 * 14755 **/ 14756 static void 14757 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14758 struct lpfc_queue *speq) 14759 { 14760 struct lpfc_queue *cq = NULL, *childq; 14761 uint16_t cqid; 14762 int ret = 0; 14763 14764 /* Get the reference to the corresponding CQ */ 14765 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14766 14767 list_for_each_entry(childq, &speq->child_list, list) { 14768 if (childq->queue_id == cqid) { 14769 cq = childq; 14770 break; 14771 } 14772 } 14773 if (unlikely(!cq)) { 14774 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14776 "0365 Slow-path CQ identifier " 14777 "(%d) does not exist\n", cqid); 14778 return; 14779 } 14780 14781 /* Save EQ associated with this CQ */ 14782 cq->assoc_qp = speq; 14783 14784 if (is_kdump_kernel()) 14785 ret = queue_work(phba->wq, &cq->spwork); 14786 else 14787 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14788 14789 if (!ret) 14790 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14791 "0390 Cannot schedule queue work " 14792 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14793 cqid, cq->queue_id, raw_smp_processor_id()); 14794 } 14795 14796 /** 14797 * __lpfc_sli4_process_cq - Process elements of a CQ 14798 * @phba: Pointer to HBA context object. 14799 * @cq: Pointer to CQ to be processed 14800 * @handler: Routine to process each cqe 14801 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14802 * @poll_mode: Polling mode we were called from 14803 * 14804 * This routine processes completion queue entries in a CQ. While a valid 14805 * queue element is found, the handler is called. During processing checks 14806 * are made for periodic doorbell writes to let the hardware know of 14807 * element consumption. 14808 * 14809 * If the max limit on cqes to process is hit, or there are no more valid 14810 * entries, the loop stops. If we processed a sufficient number of elements, 14811 * meaning there is sufficient load, rather than rearming and generating 14812 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14813 * indicates no rescheduling. 14814 * 14815 * Returns True if work scheduled, False otherwise. 14816 **/ 14817 static bool 14818 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14819 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14820 struct lpfc_cqe *), unsigned long *delay, 14821 enum lpfc_poll_mode poll_mode) 14822 { 14823 struct lpfc_cqe *cqe; 14824 bool workposted = false; 14825 int count = 0, consumed = 0; 14826 bool arm = true; 14827 14828 /* default - no reschedule */ 14829 *delay = 0; 14830 14831 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14832 goto rearm_and_exit; 14833 14834 /* Process all the entries to the CQ */ 14835 cq->q_flag = 0; 14836 cqe = lpfc_sli4_cq_get(cq); 14837 while (cqe) { 14838 workposted |= handler(phba, cq, cqe); 14839 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14840 14841 consumed++; 14842 if (!(++count % cq->max_proc_limit)) 14843 break; 14844 14845 if (!(count % cq->notify_interval)) { 14846 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14847 LPFC_QUEUE_NOARM); 14848 consumed = 0; 14849 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14850 } 14851 14852 if (count == LPFC_NVMET_CQ_NOTIFY) 14853 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14854 14855 cqe = lpfc_sli4_cq_get(cq); 14856 } 14857 if (count >= phba->cfg_cq_poll_threshold) { 14858 *delay = 1; 14859 arm = false; 14860 } 14861 14862 /* Note: complete the irq_poll softirq before rearming CQ */ 14863 if (poll_mode == LPFC_IRQ_POLL) 14864 irq_poll_complete(&cq->iop); 14865 14866 /* Track the max number of CQEs processed in 1 EQ */ 14867 if (count > cq->CQ_max_cqe) 14868 cq->CQ_max_cqe = count; 14869 14870 cq->assoc_qp->EQ_cqe_cnt += count; 14871 14872 /* Catch the no cq entry condition */ 14873 if (unlikely(count == 0)) 14874 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14875 "0369 No entry from completion queue " 14876 "qid=%d\n", cq->queue_id); 14877 14878 xchg(&cq->queue_claimed, 0); 14879 14880 rearm_and_exit: 14881 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14882 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14883 14884 return workposted; 14885 } 14886 14887 /** 14888 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14889 * @cq: pointer to CQ to process 14890 * 14891 * This routine calls the cq processing routine with a handler specific 14892 * to the type of queue bound to it. 14893 * 14894 * The CQ routine returns two values: the first is the calling status, 14895 * which indicates whether work was queued to the background discovery 14896 * thread. If true, the routine should wakeup the discovery thread; 14897 * the second is the delay parameter. If non-zero, rather than rearming 14898 * the CQ and yet another interrupt, the CQ handler should be queued so 14899 * that it is processed in a subsequent polling action. The value of 14900 * the delay indicates when to reschedule it. 14901 **/ 14902 static void 14903 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14904 { 14905 struct lpfc_hba *phba = cq->phba; 14906 unsigned long delay; 14907 bool workposted = false; 14908 int ret = 0; 14909 14910 /* Process and rearm the CQ */ 14911 switch (cq->type) { 14912 case LPFC_MCQ: 14913 workposted |= __lpfc_sli4_process_cq(phba, cq, 14914 lpfc_sli4_sp_handle_mcqe, 14915 &delay, LPFC_QUEUE_WORK); 14916 break; 14917 case LPFC_WCQ: 14918 if (cq->subtype == LPFC_IO) 14919 workposted |= __lpfc_sli4_process_cq(phba, cq, 14920 lpfc_sli4_fp_handle_cqe, 14921 &delay, LPFC_QUEUE_WORK); 14922 else 14923 workposted |= __lpfc_sli4_process_cq(phba, cq, 14924 lpfc_sli4_sp_handle_cqe, 14925 &delay, LPFC_QUEUE_WORK); 14926 break; 14927 default: 14928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14929 "0370 Invalid completion queue type (%d)\n", 14930 cq->type); 14931 return; 14932 } 14933 14934 if (delay) { 14935 if (is_kdump_kernel()) 14936 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14937 delay); 14938 else 14939 ret = queue_delayed_work_on(cq->chann, phba->wq, 14940 &cq->sched_spwork, delay); 14941 if (!ret) 14942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14943 "0394 Cannot schedule queue work " 14944 "for cqid=%d on CPU %d\n", 14945 cq->queue_id, cq->chann); 14946 } 14947 14948 /* wake up worker thread if there are works to be done */ 14949 if (workposted) 14950 lpfc_worker_wake_up(phba); 14951 } 14952 14953 /** 14954 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14955 * interrupt 14956 * @work: pointer to work element 14957 * 14958 * translates from the work handler and calls the slow-path handler. 14959 **/ 14960 static void 14961 lpfc_sli4_sp_process_cq(struct work_struct *work) 14962 { 14963 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14964 14965 __lpfc_sli4_sp_process_cq(cq); 14966 } 14967 14968 /** 14969 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14970 * @work: pointer to work element 14971 * 14972 * translates from the work handler and calls the slow-path handler. 14973 **/ 14974 static void 14975 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14976 { 14977 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14978 struct lpfc_queue, sched_spwork); 14979 14980 __lpfc_sli4_sp_process_cq(cq); 14981 } 14982 14983 /** 14984 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14985 * @phba: Pointer to HBA context object. 14986 * @cq: Pointer to associated CQ 14987 * @wcqe: Pointer to work-queue completion queue entry. 14988 * 14989 * This routine process a fast-path work queue completion entry from fast-path 14990 * event queue for FCP command response completion. 14991 **/ 14992 static void 14993 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14994 struct lpfc_wcqe_complete *wcqe) 14995 { 14996 struct lpfc_sli_ring *pring = cq->pring; 14997 struct lpfc_iocbq *cmdiocbq; 14998 unsigned long iflags; 14999 15000 /* Check for response status */ 15001 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 15002 /* If resource errors reported from HBA, reduce queue 15003 * depth of the SCSI device. 15004 */ 15005 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 15006 IOSTAT_LOCAL_REJECT)) && 15007 ((wcqe->parameter & IOERR_PARAM_MASK) == 15008 IOERR_NO_RESOURCES)) 15009 phba->lpfc_rampdown_queue_depth(phba); 15010 15011 /* Log the cmpl status */ 15012 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 15013 "0373 FCP CQE cmpl: status=x%x: " 15014 "CQE: %08x %08x %08x %08x\n", 15015 bf_get(lpfc_wcqe_c_status, wcqe), 15016 wcqe->word0, wcqe->total_data_placed, 15017 wcqe->parameter, wcqe->word3); 15018 } 15019 15020 /* Look up the FCP command IOCB and create pseudo response IOCB */ 15021 spin_lock_irqsave(&pring->ring_lock, iflags); 15022 pring->stats.iocb_event++; 15023 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 15024 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15025 spin_unlock_irqrestore(&pring->ring_lock, iflags); 15026 if (unlikely(!cmdiocbq)) { 15027 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15028 "0374 FCP complete with no corresponding " 15029 "cmdiocb: iotag (%d)\n", 15030 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15031 return; 15032 } 15033 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 15034 cmdiocbq->isr_timestamp = cq->isr_timestamp; 15035 #endif 15036 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 15037 spin_lock_irqsave(&phba->hbalock, iflags); 15038 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 15039 spin_unlock_irqrestore(&phba->hbalock, iflags); 15040 } 15041 15042 if (cmdiocbq->cmd_cmpl) { 15043 /* For FCP the flag is cleared in cmd_cmpl */ 15044 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 15045 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 15046 spin_lock_irqsave(&phba->hbalock, iflags); 15047 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 15048 spin_unlock_irqrestore(&phba->hbalock, iflags); 15049 } 15050 15051 /* Pass the cmd_iocb and the wcqe to the upper layer */ 15052 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 15053 sizeof(struct lpfc_wcqe_complete)); 15054 cmdiocbq->cmd_cmpl(phba, cmdiocbq, cmdiocbq); 15055 } else { 15056 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15057 "0375 FCP cmdiocb not callback function " 15058 "iotag: (%d)\n", 15059 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 15060 } 15061 } 15062 15063 /** 15064 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 15065 * @phba: Pointer to HBA context object. 15066 * @cq: Pointer to completion queue. 15067 * @wcqe: Pointer to work-queue completion queue entry. 15068 * 15069 * This routine handles an fast-path WQ entry consumed event by invoking the 15070 * proper WQ release routine to the slow-path WQ. 15071 **/ 15072 static void 15073 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15074 struct lpfc_wcqe_release *wcqe) 15075 { 15076 struct lpfc_queue *childwq; 15077 bool wqid_matched = false; 15078 uint16_t hba_wqid; 15079 15080 /* Check for fast-path FCP work queue release */ 15081 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 15082 list_for_each_entry(childwq, &cq->child_list, list) { 15083 if (childwq->queue_id == hba_wqid) { 15084 lpfc_sli4_wq_release(childwq, 15085 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 15086 if (childwq->q_flag & HBA_NVMET_WQFULL) 15087 lpfc_nvmet_wqfull_process(phba, childwq); 15088 wqid_matched = true; 15089 break; 15090 } 15091 } 15092 /* Report warning log message if no match found */ 15093 if (wqid_matched != true) 15094 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15095 "2580 Fast-path wqe consume event carries " 15096 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 15097 } 15098 15099 /** 15100 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 15101 * @phba: Pointer to HBA context object. 15102 * @cq: Pointer to completion queue. 15103 * @rcqe: Pointer to receive-queue completion queue entry. 15104 * 15105 * This routine process a receive-queue completion queue entry. 15106 * 15107 * Return: true if work posted to worker thread, otherwise false. 15108 **/ 15109 static bool 15110 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15111 struct lpfc_rcqe *rcqe) 15112 { 15113 bool workposted = false; 15114 struct lpfc_queue *hrq; 15115 struct lpfc_queue *drq; 15116 struct rqb_dmabuf *dma_buf; 15117 struct fc_frame_header *fc_hdr; 15118 struct lpfc_nvmet_tgtport *tgtp; 15119 uint32_t status, rq_id; 15120 unsigned long iflags; 15121 uint32_t fctl, idx; 15122 15123 if ((phba->nvmet_support == 0) || 15124 (phba->sli4_hba.nvmet_cqset == NULL)) 15125 return workposted; 15126 15127 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 15128 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 15129 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 15130 15131 /* sanity check on queue memory */ 15132 if (unlikely(!hrq) || unlikely(!drq)) 15133 return workposted; 15134 15135 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 15136 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 15137 else 15138 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 15139 15140 if ((phba->nvmet_support == 0) || 15141 (rq_id != hrq->queue_id)) 15142 return workposted; 15143 15144 status = bf_get(lpfc_rcqe_status, rcqe); 15145 switch (status) { 15146 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 15147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15148 "6126 Receive Frame Truncated!!\n"); 15149 fallthrough; 15150 case FC_STATUS_RQ_SUCCESS: 15151 spin_lock_irqsave(&phba->hbalock, iflags); 15152 lpfc_sli4_rq_release(hrq, drq); 15153 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 15154 if (!dma_buf) { 15155 hrq->RQ_no_buf_found++; 15156 spin_unlock_irqrestore(&phba->hbalock, iflags); 15157 goto out; 15158 } 15159 spin_unlock_irqrestore(&phba->hbalock, iflags); 15160 hrq->RQ_rcv_buf++; 15161 hrq->RQ_buf_posted--; 15162 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 15163 15164 /* Just some basic sanity checks on FCP Command frame */ 15165 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 15166 fc_hdr->fh_f_ctl[1] << 8 | 15167 fc_hdr->fh_f_ctl[2]); 15168 if (((fctl & 15169 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 15170 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 15171 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 15172 goto drop; 15173 15174 if (fc_hdr->fh_type == FC_TYPE_FCP) { 15175 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 15176 lpfc_nvmet_unsol_fcp_event( 15177 phba, idx, dma_buf, cq->isr_timestamp, 15178 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 15179 return false; 15180 } 15181 drop: 15182 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 15183 break; 15184 case FC_STATUS_INSUFF_BUF_FRM_DISC: 15185 if (phba->nvmet_support) { 15186 tgtp = phba->targetport->private; 15187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15188 "6401 RQE Error x%x, posted %d err_cnt " 15189 "%d: %x %x %x\n", 15190 status, hrq->RQ_buf_posted, 15191 hrq->RQ_no_posted_buf, 15192 atomic_read(&tgtp->rcv_fcp_cmd_in), 15193 atomic_read(&tgtp->rcv_fcp_cmd_out), 15194 atomic_read(&tgtp->xmt_fcp_release)); 15195 } 15196 fallthrough; 15197 15198 case FC_STATUS_INSUFF_BUF_NEED_BUF: 15199 hrq->RQ_no_posted_buf++; 15200 /* Post more buffers if possible */ 15201 break; 15202 } 15203 out: 15204 return workposted; 15205 } 15206 15207 /** 15208 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 15209 * @phba: adapter with cq 15210 * @cq: Pointer to the completion queue. 15211 * @cqe: Pointer to fast-path completion queue entry. 15212 * 15213 * This routine process a fast-path work queue completion entry from fast-path 15214 * event queue for FCP command response completion. 15215 * 15216 * Return: true if work posted to worker thread, otherwise false. 15217 **/ 15218 static bool 15219 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 15220 struct lpfc_cqe *cqe) 15221 { 15222 struct lpfc_wcqe_release wcqe; 15223 bool workposted = false; 15224 15225 /* Copy the work queue CQE and convert endian order if needed */ 15226 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 15227 15228 /* Check and process for different type of WCQE and dispatch */ 15229 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 15230 case CQE_CODE_COMPL_WQE: 15231 case CQE_CODE_NVME_ERSP: 15232 cq->CQ_wq++; 15233 /* Process the WQ complete event */ 15234 phba->last_completion_time = jiffies; 15235 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 15236 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 15237 (struct lpfc_wcqe_complete *)&wcqe); 15238 break; 15239 case CQE_CODE_RELEASE_WQE: 15240 cq->CQ_release_wqe++; 15241 /* Process the WQ release event */ 15242 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 15243 (struct lpfc_wcqe_release *)&wcqe); 15244 break; 15245 case CQE_CODE_XRI_ABORTED: 15246 cq->CQ_xri_aborted++; 15247 /* Process the WQ XRI abort event */ 15248 phba->last_completion_time = jiffies; 15249 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 15250 (struct sli4_wcqe_xri_aborted *)&wcqe); 15251 break; 15252 case CQE_CODE_RECEIVE_V1: 15253 case CQE_CODE_RECEIVE: 15254 phba->last_completion_time = jiffies; 15255 if (cq->subtype == LPFC_NVMET) { 15256 workposted = lpfc_sli4_nvmet_handle_rcqe( 15257 phba, cq, (struct lpfc_rcqe *)&wcqe); 15258 } 15259 break; 15260 default: 15261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15262 "0144 Not a valid CQE code: x%x\n", 15263 bf_get(lpfc_wcqe_c_code, &wcqe)); 15264 break; 15265 } 15266 return workposted; 15267 } 15268 15269 /** 15270 * lpfc_sli4_sched_cq_work - Schedules cq work 15271 * @phba: Pointer to HBA context object. 15272 * @cq: Pointer to CQ 15273 * @cqid: CQ ID 15274 * 15275 * This routine checks the poll mode of the CQ corresponding to 15276 * cq->chann, then either schedules a softirq or queue_work to complete 15277 * cq work. 15278 * 15279 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15280 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15281 * 15282 **/ 15283 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15284 struct lpfc_queue *cq, uint16_t cqid) 15285 { 15286 int ret = 0; 15287 15288 switch (cq->poll_mode) { 15289 case LPFC_IRQ_POLL: 15290 /* CGN mgmt is mutually exclusive from softirq processing */ 15291 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15292 irq_poll_sched(&cq->iop); 15293 break; 15294 } 15295 fallthrough; 15296 case LPFC_QUEUE_WORK: 15297 default: 15298 if (is_kdump_kernel()) 15299 ret = queue_work(phba->wq, &cq->irqwork); 15300 else 15301 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15302 if (!ret) 15303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15304 "0383 Cannot schedule queue work " 15305 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15306 cqid, cq->queue_id, 15307 raw_smp_processor_id()); 15308 } 15309 } 15310 15311 /** 15312 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15313 * @phba: Pointer to HBA context object. 15314 * @eq: Pointer to the queue structure. 15315 * @eqe: Pointer to fast-path event queue entry. 15316 * 15317 * This routine process a event queue entry from the fast-path event queue. 15318 * It will check the MajorCode and MinorCode to determine this is for a 15319 * completion event on a completion queue, if not, an error shall be logged 15320 * and just return. Otherwise, it will get to the corresponding completion 15321 * queue and process all the entries on the completion queue, rearm the 15322 * completion queue, and then return. 15323 **/ 15324 static void 15325 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15326 struct lpfc_eqe *eqe) 15327 { 15328 struct lpfc_queue *cq = NULL; 15329 uint32_t qidx = eq->hdwq; 15330 uint16_t cqid, id; 15331 15332 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15334 "0366 Not a valid completion " 15335 "event: majorcode=x%x, minorcode=x%x\n", 15336 bf_get_le32(lpfc_eqe_major_code, eqe), 15337 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15338 return; 15339 } 15340 15341 /* Get the reference to the corresponding CQ */ 15342 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15343 15344 /* Use the fast lookup method first */ 15345 if (cqid <= phba->sli4_hba.cq_max) { 15346 cq = phba->sli4_hba.cq_lookup[cqid]; 15347 if (cq) 15348 goto work_cq; 15349 } 15350 15351 /* Next check for NVMET completion */ 15352 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15353 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15354 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15355 /* Process NVMET unsol rcv */ 15356 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15357 goto process_cq; 15358 } 15359 } 15360 15361 if (phba->sli4_hba.nvmels_cq && 15362 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15363 /* Process NVME unsol rcv */ 15364 cq = phba->sli4_hba.nvmels_cq; 15365 } 15366 15367 /* Otherwise this is a Slow path event */ 15368 if (cq == NULL) { 15369 lpfc_sli4_sp_handle_eqe(phba, eqe, 15370 phba->sli4_hba.hdwq[qidx].hba_eq); 15371 return; 15372 } 15373 15374 process_cq: 15375 if (unlikely(cqid != cq->queue_id)) { 15376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15377 "0368 Miss-matched fast-path completion " 15378 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15379 cqid, cq->queue_id); 15380 return; 15381 } 15382 15383 work_cq: 15384 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15385 if (phba->ktime_on) 15386 cq->isr_timestamp = ktime_get_ns(); 15387 else 15388 cq->isr_timestamp = 0; 15389 #endif 15390 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15391 } 15392 15393 /** 15394 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15395 * @cq: Pointer to CQ to be processed 15396 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15397 * 15398 * This routine calls the cq processing routine with the handler for 15399 * fast path CQEs. 15400 * 15401 * The CQ routine returns two values: the first is the calling status, 15402 * which indicates whether work was queued to the background discovery 15403 * thread. If true, the routine should wakeup the discovery thread; 15404 * the second is the delay parameter. If non-zero, rather than rearming 15405 * the CQ and yet another interrupt, the CQ handler should be queued so 15406 * that it is processed in a subsequent polling action. The value of 15407 * the delay indicates when to reschedule it. 15408 **/ 15409 static void 15410 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15411 enum lpfc_poll_mode poll_mode) 15412 { 15413 struct lpfc_hba *phba = cq->phba; 15414 unsigned long delay; 15415 bool workposted = false; 15416 int ret = 0; 15417 15418 /* process and rearm the CQ */ 15419 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15420 &delay, poll_mode); 15421 15422 if (delay) { 15423 if (is_kdump_kernel()) 15424 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15425 delay); 15426 else 15427 ret = queue_delayed_work_on(cq->chann, phba->wq, 15428 &cq->sched_irqwork, delay); 15429 if (!ret) 15430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15431 "0367 Cannot schedule queue work " 15432 "for cqid=%d on CPU %d\n", 15433 cq->queue_id, cq->chann); 15434 } 15435 15436 /* wake up worker thread if there are works to be done */ 15437 if (workposted) 15438 lpfc_worker_wake_up(phba); 15439 } 15440 15441 /** 15442 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15443 * interrupt 15444 * @work: pointer to work element 15445 * 15446 * translates from the work handler and calls the fast-path handler. 15447 **/ 15448 static void 15449 lpfc_sli4_hba_process_cq(struct work_struct *work) 15450 { 15451 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15452 15453 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15454 } 15455 15456 /** 15457 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15458 * @work: pointer to work element 15459 * 15460 * translates from the work handler and calls the fast-path handler. 15461 **/ 15462 static void 15463 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15464 { 15465 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15466 struct lpfc_queue, sched_irqwork); 15467 15468 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15469 } 15470 15471 /** 15472 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15473 * @irq: Interrupt number. 15474 * @dev_id: The device context pointer. 15475 * 15476 * This function is directly called from the PCI layer as an interrupt 15477 * service routine when device with SLI-4 interface spec is enabled with 15478 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15479 * ring event in the HBA. However, when the device is enabled with either 15480 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15481 * device-level interrupt handler. When the PCI slot is in error recovery 15482 * or the HBA is undergoing initialization, the interrupt handler will not 15483 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15484 * the intrrupt context. This function is called without any lock held. 15485 * It gets the hbalock to access and update SLI data structures. Note that, 15486 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15487 * equal to that of FCP CQ index. 15488 * 15489 * The link attention and ELS ring attention events are handled 15490 * by the worker thread. The interrupt handler signals the worker thread 15491 * and returns for these events. This function is called without any lock 15492 * held. It gets the hbalock to access and update SLI data structures. 15493 * 15494 * This function returns IRQ_HANDLED when interrupt is handled else it 15495 * returns IRQ_NONE. 15496 **/ 15497 irqreturn_t 15498 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15499 { 15500 struct lpfc_hba *phba; 15501 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15502 struct lpfc_queue *fpeq; 15503 unsigned long iflag; 15504 int ecount = 0; 15505 int hba_eqidx; 15506 struct lpfc_eq_intr_info *eqi; 15507 15508 /* Get the driver's phba structure from the dev_id */ 15509 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15510 phba = hba_eq_hdl->phba; 15511 hba_eqidx = hba_eq_hdl->idx; 15512 15513 if (unlikely(!phba)) 15514 return IRQ_NONE; 15515 if (unlikely(!phba->sli4_hba.hdwq)) 15516 return IRQ_NONE; 15517 15518 /* Get to the EQ struct associated with this vector */ 15519 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15520 if (unlikely(!fpeq)) 15521 return IRQ_NONE; 15522 15523 /* Check device state for handling interrupt */ 15524 if (unlikely(lpfc_intr_state_check(phba))) { 15525 /* Check again for link_state with lock held */ 15526 spin_lock_irqsave(&phba->hbalock, iflag); 15527 if (phba->link_state < LPFC_LINK_DOWN) 15528 /* Flush, clear interrupt, and rearm the EQ */ 15529 lpfc_sli4_eqcq_flush(phba, fpeq); 15530 spin_unlock_irqrestore(&phba->hbalock, iflag); 15531 return IRQ_NONE; 15532 } 15533 15534 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15535 eqi->icnt++; 15536 15537 fpeq->last_cpu = raw_smp_processor_id(); 15538 15539 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15540 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15541 phba->cfg_auto_imax && 15542 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15543 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15544 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15545 15546 /* process and rearm the EQ */ 15547 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15548 15549 if (unlikely(ecount == 0)) { 15550 fpeq->EQ_no_entry++; 15551 if (phba->intr_type == MSIX) 15552 /* MSI-X treated interrupt served as no EQ share INT */ 15553 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15554 "0358 MSI-X interrupt with no EQE\n"); 15555 else 15556 /* Non MSI-X treated on interrupt as EQ share INT */ 15557 return IRQ_NONE; 15558 } 15559 15560 return IRQ_HANDLED; 15561 } /* lpfc_sli4_hba_intr_handler */ 15562 15563 /** 15564 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15565 * @irq: Interrupt number. 15566 * @dev_id: The device context pointer. 15567 * 15568 * This function is the device-level interrupt handler to device with SLI-4 15569 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15570 * interrupt mode is enabled and there is an event in the HBA which requires 15571 * driver attention. This function invokes the slow-path interrupt attention 15572 * handling function and fast-path interrupt attention handling function in 15573 * turn to process the relevant HBA attention events. This function is called 15574 * without any lock held. It gets the hbalock to access and update SLI data 15575 * structures. 15576 * 15577 * This function returns IRQ_HANDLED when interrupt is handled, else it 15578 * returns IRQ_NONE. 15579 **/ 15580 irqreturn_t 15581 lpfc_sli4_intr_handler(int irq, void *dev_id) 15582 { 15583 struct lpfc_hba *phba; 15584 irqreturn_t hba_irq_rc; 15585 bool hba_handled = false; 15586 int qidx; 15587 15588 /* Get the driver's phba structure from the dev_id */ 15589 phba = (struct lpfc_hba *)dev_id; 15590 15591 if (unlikely(!phba)) 15592 return IRQ_NONE; 15593 15594 /* 15595 * Invoke fast-path host attention interrupt handling as appropriate. 15596 */ 15597 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15598 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15599 &phba->sli4_hba.hba_eq_hdl[qidx]); 15600 if (hba_irq_rc == IRQ_HANDLED) 15601 hba_handled |= true; 15602 } 15603 15604 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15605 } /* lpfc_sli4_intr_handler */ 15606 15607 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15608 { 15609 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15610 struct lpfc_queue *eq; 15611 int i = 0; 15612 15613 rcu_read_lock(); 15614 15615 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15616 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15617 if (!list_empty(&phba->poll_list)) 15618 mod_timer(&phba->cpuhp_poll_timer, 15619 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15620 15621 rcu_read_unlock(); 15622 } 15623 15624 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15625 { 15626 struct lpfc_hba *phba = eq->phba; 15627 int i = 0; 15628 15629 /* 15630 * Unlocking an irq is one of the entry point to check 15631 * for re-schedule, but we are good for io submission 15632 * path as midlayer does a get_cpu to glue us in. Flush 15633 * out the invalidate queue so we can see the updated 15634 * value for flag. 15635 */ 15636 smp_rmb(); 15637 15638 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15639 /* We will not likely get the completion for the caller 15640 * during this iteration but i guess that's fine. 15641 * Future io's coming on this eq should be able to 15642 * pick it up. As for the case of single io's, they 15643 * will be handled through a sched from polling timer 15644 * function which is currently triggered every 1msec. 15645 */ 15646 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15647 15648 return i; 15649 } 15650 15651 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15652 { 15653 struct lpfc_hba *phba = eq->phba; 15654 15655 /* kickstart slowpath processing if needed */ 15656 if (list_empty(&phba->poll_list)) 15657 mod_timer(&phba->cpuhp_poll_timer, 15658 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15659 15660 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15661 synchronize_rcu(); 15662 } 15663 15664 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15665 { 15666 struct lpfc_hba *phba = eq->phba; 15667 15668 /* Disable slowpath processing for this eq. Kick start the eq 15669 * by RE-ARMING the eq's ASAP 15670 */ 15671 list_del_rcu(&eq->_poll_list); 15672 synchronize_rcu(); 15673 15674 if (list_empty(&phba->poll_list)) 15675 del_timer_sync(&phba->cpuhp_poll_timer); 15676 } 15677 15678 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15679 { 15680 struct lpfc_queue *eq, *next; 15681 15682 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15683 list_del(&eq->_poll_list); 15684 15685 INIT_LIST_HEAD(&phba->poll_list); 15686 synchronize_rcu(); 15687 } 15688 15689 static inline void 15690 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15691 { 15692 if (mode == eq->mode) 15693 return; 15694 /* 15695 * currently this function is only called during a hotplug 15696 * event and the cpu on which this function is executing 15697 * is going offline. By now the hotplug has instructed 15698 * the scheduler to remove this cpu from cpu active mask. 15699 * So we don't need to work about being put aside by the 15700 * scheduler for a high priority process. Yes, the inte- 15701 * rrupts could come but they are known to retire ASAP. 15702 */ 15703 15704 /* Disable polling in the fastpath */ 15705 WRITE_ONCE(eq->mode, mode); 15706 /* flush out the store buffer */ 15707 smp_wmb(); 15708 15709 /* 15710 * Add this eq to the polling list and start polling. For 15711 * a grace period both interrupt handler and poller will 15712 * try to process the eq _but_ that's fine. We have a 15713 * synchronization mechanism in place (queue_claimed) to 15714 * deal with it. This is just a draining phase for int- 15715 * errupt handler (not eq's) as we have guranteed through 15716 * barrier that all the CPUs have seen the new CQ_POLLED 15717 * state. which will effectively disable the REARMING of 15718 * the EQ. The whole idea is eq's die off eventually as 15719 * we are not rearming EQ's anymore. 15720 */ 15721 mode ? lpfc_sli4_add_to_poll_list(eq) : 15722 lpfc_sli4_remove_from_poll_list(eq); 15723 } 15724 15725 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15726 { 15727 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15728 } 15729 15730 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15731 { 15732 struct lpfc_hba *phba = eq->phba; 15733 15734 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15735 15736 /* Kick start for the pending io's in h/w. 15737 * Once we switch back to interrupt processing on a eq 15738 * the io path completion will only arm eq's when it 15739 * receives a completion. But since eq's are in disa- 15740 * rmed state it doesn't receive a completion. This 15741 * creates a deadlock scenaro. 15742 */ 15743 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15744 } 15745 15746 /** 15747 * lpfc_sli4_queue_free - free a queue structure and associated memory 15748 * @queue: The queue structure to free. 15749 * 15750 * This function frees a queue structure and the DMAable memory used for 15751 * the host resident queue. This function must be called after destroying the 15752 * queue on the HBA. 15753 **/ 15754 void 15755 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15756 { 15757 struct lpfc_dmabuf *dmabuf; 15758 15759 if (!queue) 15760 return; 15761 15762 if (!list_empty(&queue->wq_list)) 15763 list_del(&queue->wq_list); 15764 15765 while (!list_empty(&queue->page_list)) { 15766 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15767 list); 15768 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15769 dmabuf->virt, dmabuf->phys); 15770 kfree(dmabuf); 15771 } 15772 if (queue->rqbp) { 15773 lpfc_free_rq_buffer(queue->phba, queue); 15774 kfree(queue->rqbp); 15775 } 15776 15777 if (!list_empty(&queue->cpu_list)) 15778 list_del(&queue->cpu_list); 15779 15780 kfree(queue); 15781 return; 15782 } 15783 15784 /** 15785 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15786 * @phba: The HBA that this queue is being created on. 15787 * @page_size: The size of a queue page 15788 * @entry_size: The size of each queue entry for this queue. 15789 * @entry_count: The number of entries that this queue will handle. 15790 * @cpu: The cpu that will primarily utilize this queue. 15791 * 15792 * This function allocates a queue structure and the DMAable memory used for 15793 * the host resident queue. This function must be called before creating the 15794 * queue on the HBA. 15795 **/ 15796 struct lpfc_queue * 15797 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15798 uint32_t entry_size, uint32_t entry_count, int cpu) 15799 { 15800 struct lpfc_queue *queue; 15801 struct lpfc_dmabuf *dmabuf; 15802 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15803 uint16_t x, pgcnt; 15804 15805 if (!phba->sli4_hba.pc_sli4_params.supported) 15806 hw_page_size = page_size; 15807 15808 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15809 15810 /* If needed, Adjust page count to match the max the adapter supports */ 15811 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15812 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15813 15814 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15815 GFP_KERNEL, cpu_to_node(cpu)); 15816 if (!queue) 15817 return NULL; 15818 15819 INIT_LIST_HEAD(&queue->list); 15820 INIT_LIST_HEAD(&queue->_poll_list); 15821 INIT_LIST_HEAD(&queue->wq_list); 15822 INIT_LIST_HEAD(&queue->wqfull_list); 15823 INIT_LIST_HEAD(&queue->page_list); 15824 INIT_LIST_HEAD(&queue->child_list); 15825 INIT_LIST_HEAD(&queue->cpu_list); 15826 15827 /* Set queue parameters now. If the system cannot provide memory 15828 * resources, the free routine needs to know what was allocated. 15829 */ 15830 queue->page_count = pgcnt; 15831 queue->q_pgs = (void **)&queue[1]; 15832 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15833 queue->entry_size = entry_size; 15834 queue->entry_count = entry_count; 15835 queue->page_size = hw_page_size; 15836 queue->phba = phba; 15837 15838 for (x = 0; x < queue->page_count; x++) { 15839 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15840 dev_to_node(&phba->pcidev->dev)); 15841 if (!dmabuf) 15842 goto out_fail; 15843 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15844 hw_page_size, &dmabuf->phys, 15845 GFP_KERNEL); 15846 if (!dmabuf->virt) { 15847 kfree(dmabuf); 15848 goto out_fail; 15849 } 15850 dmabuf->buffer_tag = x; 15851 list_add_tail(&dmabuf->list, &queue->page_list); 15852 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15853 queue->q_pgs[x] = dmabuf->virt; 15854 } 15855 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15856 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15857 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15858 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15859 15860 /* notify_interval will be set during q creation */ 15861 15862 return queue; 15863 out_fail: 15864 lpfc_sli4_queue_free(queue); 15865 return NULL; 15866 } 15867 15868 /** 15869 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15870 * @phba: HBA structure that indicates port to create a queue on. 15871 * @pci_barset: PCI BAR set flag. 15872 * 15873 * This function shall perform iomap of the specified PCI BAR address to host 15874 * memory address if not already done so and return it. The returned host 15875 * memory address can be NULL. 15876 */ 15877 static void __iomem * 15878 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15879 { 15880 if (!phba->pcidev) 15881 return NULL; 15882 15883 switch (pci_barset) { 15884 case WQ_PCI_BAR_0_AND_1: 15885 return phba->pci_bar0_memmap_p; 15886 case WQ_PCI_BAR_2_AND_3: 15887 return phba->pci_bar2_memmap_p; 15888 case WQ_PCI_BAR_4_AND_5: 15889 return phba->pci_bar4_memmap_p; 15890 default: 15891 break; 15892 } 15893 return NULL; 15894 } 15895 15896 /** 15897 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15898 * @phba: HBA structure that EQs are on. 15899 * @startq: The starting EQ index to modify 15900 * @numq: The number of EQs (consecutive indexes) to modify 15901 * @usdelay: amount of delay 15902 * 15903 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15904 * is set either by writing to a register (if supported by the SLI Port) 15905 * or by mailbox command. The mailbox command allows several EQs to be 15906 * updated at once. 15907 * 15908 * The @phba struct is used to send a mailbox command to HBA. The @startq 15909 * is used to get the starting EQ index to change. The @numq value is 15910 * used to specify how many consecutive EQ indexes, starting at EQ index, 15911 * are to be changed. This function is asynchronous and will wait for any 15912 * mailbox commands to finish before returning. 15913 * 15914 * On success this function will return a zero. If unable to allocate 15915 * enough memory this function will return -ENOMEM. If a mailbox command 15916 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15917 * have had their delay multipler changed. 15918 **/ 15919 void 15920 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15921 uint32_t numq, uint32_t usdelay) 15922 { 15923 struct lpfc_mbx_modify_eq_delay *eq_delay; 15924 LPFC_MBOXQ_t *mbox; 15925 struct lpfc_queue *eq; 15926 int cnt = 0, rc, length; 15927 uint32_t shdr_status, shdr_add_status; 15928 uint32_t dmult; 15929 int qidx; 15930 union lpfc_sli4_cfg_shdr *shdr; 15931 15932 if (startq >= phba->cfg_irq_chann) 15933 return; 15934 15935 if (usdelay > 0xFFFF) { 15936 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15937 "6429 usdelay %d too large. Scaled down to " 15938 "0xFFFF.\n", usdelay); 15939 usdelay = 0xFFFF; 15940 } 15941 15942 /* set values by EQ_DELAY register if supported */ 15943 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15944 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15945 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15946 if (!eq) 15947 continue; 15948 15949 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15950 15951 if (++cnt >= numq) 15952 break; 15953 } 15954 return; 15955 } 15956 15957 /* Otherwise, set values by mailbox cmd */ 15958 15959 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15960 if (!mbox) { 15961 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15962 "6428 Failed allocating mailbox cmd buffer." 15963 " EQ delay was not set.\n"); 15964 return; 15965 } 15966 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15967 sizeof(struct lpfc_sli4_cfg_mhdr)); 15968 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15969 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15970 length, LPFC_SLI4_MBX_EMBED); 15971 eq_delay = &mbox->u.mqe.un.eq_delay; 15972 15973 /* Calculate delay multiper from maximum interrupt per second */ 15974 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15975 if (dmult) 15976 dmult--; 15977 if (dmult > LPFC_DMULT_MAX) 15978 dmult = LPFC_DMULT_MAX; 15979 15980 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15981 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15982 if (!eq) 15983 continue; 15984 eq->q_mode = usdelay; 15985 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15986 eq_delay->u.request.eq[cnt].phase = 0; 15987 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15988 15989 if (++cnt >= numq) 15990 break; 15991 } 15992 eq_delay->u.request.num_eq = cnt; 15993 15994 mbox->vport = phba->pport; 15995 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15996 mbox->ctx_ndlp = NULL; 15997 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15998 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15999 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16000 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16001 if (shdr_status || shdr_add_status || rc) { 16002 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16003 "2512 MODIFY_EQ_DELAY mailbox failed with " 16004 "status x%x add_status x%x, mbx status x%x\n", 16005 shdr_status, shdr_add_status, rc); 16006 } 16007 mempool_free(mbox, phba->mbox_mem_pool); 16008 return; 16009 } 16010 16011 /** 16012 * lpfc_eq_create - Create an Event Queue on the HBA 16013 * @phba: HBA structure that indicates port to create a queue on. 16014 * @eq: The queue structure to use to create the event queue. 16015 * @imax: The maximum interrupt per second limit. 16016 * 16017 * This function creates an event queue, as detailed in @eq, on a port, 16018 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 16019 * 16020 * The @phba struct is used to send mailbox command to HBA. The @eq struct 16021 * is used to get the entry count and entry size that are necessary to 16022 * determine the number of pages to allocate and use for this queue. This 16023 * function will send the EQ_CREATE mailbox command to the HBA to setup the 16024 * event queue. This function is asynchronous and will wait for the mailbox 16025 * command to finish before continuing. 16026 * 16027 * On success this function will return a zero. If unable to allocate enough 16028 * memory this function will return -ENOMEM. If the queue create mailbox command 16029 * fails this function will return -ENXIO. 16030 **/ 16031 int 16032 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 16033 { 16034 struct lpfc_mbx_eq_create *eq_create; 16035 LPFC_MBOXQ_t *mbox; 16036 int rc, length, status = 0; 16037 struct lpfc_dmabuf *dmabuf; 16038 uint32_t shdr_status, shdr_add_status; 16039 union lpfc_sli4_cfg_shdr *shdr; 16040 uint16_t dmult; 16041 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16042 16043 /* sanity check on queue memory */ 16044 if (!eq) 16045 return -ENODEV; 16046 if (!phba->sli4_hba.pc_sli4_params.supported) 16047 hw_page_size = SLI4_PAGE_SIZE; 16048 16049 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16050 if (!mbox) 16051 return -ENOMEM; 16052 length = (sizeof(struct lpfc_mbx_eq_create) - 16053 sizeof(struct lpfc_sli4_cfg_mhdr)); 16054 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16055 LPFC_MBOX_OPCODE_EQ_CREATE, 16056 length, LPFC_SLI4_MBX_EMBED); 16057 eq_create = &mbox->u.mqe.un.eq_create; 16058 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 16059 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 16060 eq->page_count); 16061 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 16062 LPFC_EQE_SIZE); 16063 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 16064 16065 /* Use version 2 of CREATE_EQ if eqav is set */ 16066 if (phba->sli4_hba.pc_sli4_params.eqav) { 16067 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16068 LPFC_Q_CREATE_VERSION_2); 16069 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 16070 phba->sli4_hba.pc_sli4_params.eqav); 16071 } 16072 16073 /* don't setup delay multiplier using EQ_CREATE */ 16074 dmult = 0; 16075 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 16076 dmult); 16077 switch (eq->entry_count) { 16078 default: 16079 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16080 "0360 Unsupported EQ count. (%d)\n", 16081 eq->entry_count); 16082 if (eq->entry_count < 256) { 16083 status = -EINVAL; 16084 goto out; 16085 } 16086 fallthrough; /* otherwise default to smallest count */ 16087 case 256: 16088 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16089 LPFC_EQ_CNT_256); 16090 break; 16091 case 512: 16092 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16093 LPFC_EQ_CNT_512); 16094 break; 16095 case 1024: 16096 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16097 LPFC_EQ_CNT_1024); 16098 break; 16099 case 2048: 16100 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16101 LPFC_EQ_CNT_2048); 16102 break; 16103 case 4096: 16104 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 16105 LPFC_EQ_CNT_4096); 16106 break; 16107 } 16108 list_for_each_entry(dmabuf, &eq->page_list, list) { 16109 memset(dmabuf->virt, 0, hw_page_size); 16110 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16111 putPaddrLow(dmabuf->phys); 16112 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16113 putPaddrHigh(dmabuf->phys); 16114 } 16115 mbox->vport = phba->pport; 16116 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16117 mbox->ctx_buf = NULL; 16118 mbox->ctx_ndlp = NULL; 16119 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16120 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16121 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16122 if (shdr_status || shdr_add_status || rc) { 16123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16124 "2500 EQ_CREATE mailbox failed with " 16125 "status x%x add_status x%x, mbx status x%x\n", 16126 shdr_status, shdr_add_status, rc); 16127 status = -ENXIO; 16128 } 16129 eq->type = LPFC_EQ; 16130 eq->subtype = LPFC_NONE; 16131 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 16132 if (eq->queue_id == 0xFFFF) 16133 status = -ENXIO; 16134 eq->host_index = 0; 16135 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 16136 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 16137 out: 16138 mempool_free(mbox, phba->mbox_mem_pool); 16139 return status; 16140 } 16141 16142 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 16143 { 16144 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 16145 16146 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 16147 16148 return 1; 16149 } 16150 16151 /** 16152 * lpfc_cq_create - Create a Completion Queue on the HBA 16153 * @phba: HBA structure that indicates port to create a queue on. 16154 * @cq: The queue structure to use to create the completion queue. 16155 * @eq: The event queue to bind this completion queue to. 16156 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16157 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16158 * 16159 * This function creates a completion queue, as detailed in @wq, on a port, 16160 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 16161 * 16162 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16163 * is used to get the entry count and entry size that are necessary to 16164 * determine the number of pages to allocate and use for this queue. The @eq 16165 * is used to indicate which event queue to bind this completion queue to. This 16166 * function will send the CQ_CREATE mailbox command to the HBA to setup the 16167 * completion queue. This function is asynchronous and will wait for the mailbox 16168 * command to finish before continuing. 16169 * 16170 * On success this function will return a zero. If unable to allocate enough 16171 * memory this function will return -ENOMEM. If the queue create mailbox command 16172 * fails this function will return -ENXIO. 16173 **/ 16174 int 16175 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 16176 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 16177 { 16178 struct lpfc_mbx_cq_create *cq_create; 16179 struct lpfc_dmabuf *dmabuf; 16180 LPFC_MBOXQ_t *mbox; 16181 int rc, length, status = 0; 16182 uint32_t shdr_status, shdr_add_status; 16183 union lpfc_sli4_cfg_shdr *shdr; 16184 16185 /* sanity check on queue memory */ 16186 if (!cq || !eq) 16187 return -ENODEV; 16188 16189 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16190 if (!mbox) 16191 return -ENOMEM; 16192 length = (sizeof(struct lpfc_mbx_cq_create) - 16193 sizeof(struct lpfc_sli4_cfg_mhdr)); 16194 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16195 LPFC_MBOX_OPCODE_CQ_CREATE, 16196 length, LPFC_SLI4_MBX_EMBED); 16197 cq_create = &mbox->u.mqe.un.cq_create; 16198 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 16199 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 16200 cq->page_count); 16201 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 16202 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 16203 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16204 phba->sli4_hba.pc_sli4_params.cqv); 16205 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 16206 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 16207 (cq->page_size / SLI4_PAGE_SIZE)); 16208 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 16209 eq->queue_id); 16210 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 16211 phba->sli4_hba.pc_sli4_params.cqav); 16212 } else { 16213 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 16214 eq->queue_id); 16215 } 16216 switch (cq->entry_count) { 16217 case 2048: 16218 case 4096: 16219 if (phba->sli4_hba.pc_sli4_params.cqv == 16220 LPFC_Q_CREATE_VERSION_2) { 16221 cq_create->u.request.context.lpfc_cq_context_count = 16222 cq->entry_count; 16223 bf_set(lpfc_cq_context_count, 16224 &cq_create->u.request.context, 16225 LPFC_CQ_CNT_WORD7); 16226 break; 16227 } 16228 fallthrough; 16229 default: 16230 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16231 "0361 Unsupported CQ count: " 16232 "entry cnt %d sz %d pg cnt %d\n", 16233 cq->entry_count, cq->entry_size, 16234 cq->page_count); 16235 if (cq->entry_count < 256) { 16236 status = -EINVAL; 16237 goto out; 16238 } 16239 fallthrough; /* otherwise default to smallest count */ 16240 case 256: 16241 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16242 LPFC_CQ_CNT_256); 16243 break; 16244 case 512: 16245 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16246 LPFC_CQ_CNT_512); 16247 break; 16248 case 1024: 16249 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 16250 LPFC_CQ_CNT_1024); 16251 break; 16252 } 16253 list_for_each_entry(dmabuf, &cq->page_list, list) { 16254 memset(dmabuf->virt, 0, cq->page_size); 16255 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16256 putPaddrLow(dmabuf->phys); 16257 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16258 putPaddrHigh(dmabuf->phys); 16259 } 16260 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16261 16262 /* The IOCTL status is embedded in the mailbox subheader. */ 16263 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16264 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16265 if (shdr_status || shdr_add_status || rc) { 16266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16267 "2501 CQ_CREATE mailbox failed with " 16268 "status x%x add_status x%x, mbx status x%x\n", 16269 shdr_status, shdr_add_status, rc); 16270 status = -ENXIO; 16271 goto out; 16272 } 16273 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16274 if (cq->queue_id == 0xFFFF) { 16275 status = -ENXIO; 16276 goto out; 16277 } 16278 /* link the cq onto the parent eq child list */ 16279 list_add_tail(&cq->list, &eq->child_list); 16280 /* Set up completion queue's type and subtype */ 16281 cq->type = type; 16282 cq->subtype = subtype; 16283 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16284 cq->assoc_qid = eq->queue_id; 16285 cq->assoc_qp = eq; 16286 cq->host_index = 0; 16287 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16288 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16289 16290 if (cq->queue_id > phba->sli4_hba.cq_max) 16291 phba->sli4_hba.cq_max = cq->queue_id; 16292 16293 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16294 out: 16295 mempool_free(mbox, phba->mbox_mem_pool); 16296 return status; 16297 } 16298 16299 /** 16300 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16301 * @phba: HBA structure that indicates port to create a queue on. 16302 * @cqp: The queue structure array to use to create the completion queues. 16303 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16304 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16305 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16306 * 16307 * This function creates a set of completion queue, s to support MRQ 16308 * as detailed in @cqp, on a port, 16309 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16310 * 16311 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16312 * is used to get the entry count and entry size that are necessary to 16313 * determine the number of pages to allocate and use for this queue. The @eq 16314 * is used to indicate which event queue to bind this completion queue to. This 16315 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16316 * completion queue. This function is asynchronous and will wait for the mailbox 16317 * command to finish before continuing. 16318 * 16319 * On success this function will return a zero. If unable to allocate enough 16320 * memory this function will return -ENOMEM. If the queue create mailbox command 16321 * fails this function will return -ENXIO. 16322 **/ 16323 int 16324 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16325 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16326 uint32_t subtype) 16327 { 16328 struct lpfc_queue *cq; 16329 struct lpfc_queue *eq; 16330 struct lpfc_mbx_cq_create_set *cq_set; 16331 struct lpfc_dmabuf *dmabuf; 16332 LPFC_MBOXQ_t *mbox; 16333 int rc, length, alloclen, status = 0; 16334 int cnt, idx, numcq, page_idx = 0; 16335 uint32_t shdr_status, shdr_add_status; 16336 union lpfc_sli4_cfg_shdr *shdr; 16337 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16338 16339 /* sanity check on queue memory */ 16340 numcq = phba->cfg_nvmet_mrq; 16341 if (!cqp || !hdwq || !numcq) 16342 return -ENODEV; 16343 16344 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16345 if (!mbox) 16346 return -ENOMEM; 16347 16348 length = sizeof(struct lpfc_mbx_cq_create_set); 16349 length += ((numcq * cqp[0]->page_count) * 16350 sizeof(struct dma_address)); 16351 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16352 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16353 LPFC_SLI4_MBX_NEMBED); 16354 if (alloclen < length) { 16355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16356 "3098 Allocated DMA memory size (%d) is " 16357 "less than the requested DMA memory size " 16358 "(%d)\n", alloclen, length); 16359 status = -ENOMEM; 16360 goto out; 16361 } 16362 cq_set = mbox->sge_array->addr[0]; 16363 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16364 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16365 16366 for (idx = 0; idx < numcq; idx++) { 16367 cq = cqp[idx]; 16368 eq = hdwq[idx].hba_eq; 16369 if (!cq || !eq) { 16370 status = -ENOMEM; 16371 goto out; 16372 } 16373 if (!phba->sli4_hba.pc_sli4_params.supported) 16374 hw_page_size = cq->page_size; 16375 16376 switch (idx) { 16377 case 0: 16378 bf_set(lpfc_mbx_cq_create_set_page_size, 16379 &cq_set->u.request, 16380 (hw_page_size / SLI4_PAGE_SIZE)); 16381 bf_set(lpfc_mbx_cq_create_set_num_pages, 16382 &cq_set->u.request, cq->page_count); 16383 bf_set(lpfc_mbx_cq_create_set_evt, 16384 &cq_set->u.request, 1); 16385 bf_set(lpfc_mbx_cq_create_set_valid, 16386 &cq_set->u.request, 1); 16387 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16388 &cq_set->u.request, 0); 16389 bf_set(lpfc_mbx_cq_create_set_num_cq, 16390 &cq_set->u.request, numcq); 16391 bf_set(lpfc_mbx_cq_create_set_autovalid, 16392 &cq_set->u.request, 16393 phba->sli4_hba.pc_sli4_params.cqav); 16394 switch (cq->entry_count) { 16395 case 2048: 16396 case 4096: 16397 if (phba->sli4_hba.pc_sli4_params.cqv == 16398 LPFC_Q_CREATE_VERSION_2) { 16399 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16400 &cq_set->u.request, 16401 cq->entry_count); 16402 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16403 &cq_set->u.request, 16404 LPFC_CQ_CNT_WORD7); 16405 break; 16406 } 16407 fallthrough; 16408 default: 16409 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16410 "3118 Bad CQ count. (%d)\n", 16411 cq->entry_count); 16412 if (cq->entry_count < 256) { 16413 status = -EINVAL; 16414 goto out; 16415 } 16416 fallthrough; /* otherwise default to smallest */ 16417 case 256: 16418 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16419 &cq_set->u.request, LPFC_CQ_CNT_256); 16420 break; 16421 case 512: 16422 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16423 &cq_set->u.request, LPFC_CQ_CNT_512); 16424 break; 16425 case 1024: 16426 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16427 &cq_set->u.request, LPFC_CQ_CNT_1024); 16428 break; 16429 } 16430 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16431 &cq_set->u.request, eq->queue_id); 16432 break; 16433 case 1: 16434 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16435 &cq_set->u.request, eq->queue_id); 16436 break; 16437 case 2: 16438 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16439 &cq_set->u.request, eq->queue_id); 16440 break; 16441 case 3: 16442 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16443 &cq_set->u.request, eq->queue_id); 16444 break; 16445 case 4: 16446 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16447 &cq_set->u.request, eq->queue_id); 16448 break; 16449 case 5: 16450 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16451 &cq_set->u.request, eq->queue_id); 16452 break; 16453 case 6: 16454 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16455 &cq_set->u.request, eq->queue_id); 16456 break; 16457 case 7: 16458 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16459 &cq_set->u.request, eq->queue_id); 16460 break; 16461 case 8: 16462 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16463 &cq_set->u.request, eq->queue_id); 16464 break; 16465 case 9: 16466 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16467 &cq_set->u.request, eq->queue_id); 16468 break; 16469 case 10: 16470 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16471 &cq_set->u.request, eq->queue_id); 16472 break; 16473 case 11: 16474 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16475 &cq_set->u.request, eq->queue_id); 16476 break; 16477 case 12: 16478 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16479 &cq_set->u.request, eq->queue_id); 16480 break; 16481 case 13: 16482 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16483 &cq_set->u.request, eq->queue_id); 16484 break; 16485 case 14: 16486 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16487 &cq_set->u.request, eq->queue_id); 16488 break; 16489 case 15: 16490 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16491 &cq_set->u.request, eq->queue_id); 16492 break; 16493 } 16494 16495 /* link the cq onto the parent eq child list */ 16496 list_add_tail(&cq->list, &eq->child_list); 16497 /* Set up completion queue's type and subtype */ 16498 cq->type = type; 16499 cq->subtype = subtype; 16500 cq->assoc_qid = eq->queue_id; 16501 cq->assoc_qp = eq; 16502 cq->host_index = 0; 16503 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16504 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16505 cq->entry_count); 16506 cq->chann = idx; 16507 16508 rc = 0; 16509 list_for_each_entry(dmabuf, &cq->page_list, list) { 16510 memset(dmabuf->virt, 0, hw_page_size); 16511 cnt = page_idx + dmabuf->buffer_tag; 16512 cq_set->u.request.page[cnt].addr_lo = 16513 putPaddrLow(dmabuf->phys); 16514 cq_set->u.request.page[cnt].addr_hi = 16515 putPaddrHigh(dmabuf->phys); 16516 rc++; 16517 } 16518 page_idx += rc; 16519 } 16520 16521 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16522 16523 /* The IOCTL status is embedded in the mailbox subheader. */ 16524 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16525 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16526 if (shdr_status || shdr_add_status || rc) { 16527 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16528 "3119 CQ_CREATE_SET mailbox failed with " 16529 "status x%x add_status x%x, mbx status x%x\n", 16530 shdr_status, shdr_add_status, rc); 16531 status = -ENXIO; 16532 goto out; 16533 } 16534 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16535 if (rc == 0xFFFF) { 16536 status = -ENXIO; 16537 goto out; 16538 } 16539 16540 for (idx = 0; idx < numcq; idx++) { 16541 cq = cqp[idx]; 16542 cq->queue_id = rc + idx; 16543 if (cq->queue_id > phba->sli4_hba.cq_max) 16544 phba->sli4_hba.cq_max = cq->queue_id; 16545 } 16546 16547 out: 16548 lpfc_sli4_mbox_cmd_free(phba, mbox); 16549 return status; 16550 } 16551 16552 /** 16553 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16554 * @phba: HBA structure that indicates port to create a queue on. 16555 * @mq: The queue structure to use to create the mailbox queue. 16556 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16557 * @cq: The completion queue to associate with this cq. 16558 * 16559 * This function provides failback (fb) functionality when the 16560 * mq_create_ext fails on older FW generations. It's purpose is identical 16561 * to mq_create_ext otherwise. 16562 * 16563 * This routine cannot fail as all attributes were previously accessed and 16564 * initialized in mq_create_ext. 16565 **/ 16566 static void 16567 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16568 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16569 { 16570 struct lpfc_mbx_mq_create *mq_create; 16571 struct lpfc_dmabuf *dmabuf; 16572 int length; 16573 16574 length = (sizeof(struct lpfc_mbx_mq_create) - 16575 sizeof(struct lpfc_sli4_cfg_mhdr)); 16576 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16577 LPFC_MBOX_OPCODE_MQ_CREATE, 16578 length, LPFC_SLI4_MBX_EMBED); 16579 mq_create = &mbox->u.mqe.un.mq_create; 16580 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16581 mq->page_count); 16582 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16583 cq->queue_id); 16584 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16585 switch (mq->entry_count) { 16586 case 16: 16587 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16588 LPFC_MQ_RING_SIZE_16); 16589 break; 16590 case 32: 16591 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16592 LPFC_MQ_RING_SIZE_32); 16593 break; 16594 case 64: 16595 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16596 LPFC_MQ_RING_SIZE_64); 16597 break; 16598 case 128: 16599 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16600 LPFC_MQ_RING_SIZE_128); 16601 break; 16602 } 16603 list_for_each_entry(dmabuf, &mq->page_list, list) { 16604 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16605 putPaddrLow(dmabuf->phys); 16606 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16607 putPaddrHigh(dmabuf->phys); 16608 } 16609 } 16610 16611 /** 16612 * lpfc_mq_create - Create a mailbox Queue on the HBA 16613 * @phba: HBA structure that indicates port to create a queue on. 16614 * @mq: The queue structure to use to create the mailbox queue. 16615 * @cq: The completion queue to associate with this cq. 16616 * @subtype: The queue's subtype. 16617 * 16618 * This function creates a mailbox queue, as detailed in @mq, on a port, 16619 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16620 * 16621 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16622 * is used to get the entry count and entry size that are necessary to 16623 * determine the number of pages to allocate and use for this queue. This 16624 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16625 * mailbox queue. This function is asynchronous and will wait for the mailbox 16626 * command to finish before continuing. 16627 * 16628 * On success this function will return a zero. If unable to allocate enough 16629 * memory this function will return -ENOMEM. If the queue create mailbox command 16630 * fails this function will return -ENXIO. 16631 **/ 16632 int32_t 16633 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16634 struct lpfc_queue *cq, uint32_t subtype) 16635 { 16636 struct lpfc_mbx_mq_create *mq_create; 16637 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16638 struct lpfc_dmabuf *dmabuf; 16639 LPFC_MBOXQ_t *mbox; 16640 int rc, length, status = 0; 16641 uint32_t shdr_status, shdr_add_status; 16642 union lpfc_sli4_cfg_shdr *shdr; 16643 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16644 16645 /* sanity check on queue memory */ 16646 if (!mq || !cq) 16647 return -ENODEV; 16648 if (!phba->sli4_hba.pc_sli4_params.supported) 16649 hw_page_size = SLI4_PAGE_SIZE; 16650 16651 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16652 if (!mbox) 16653 return -ENOMEM; 16654 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16655 sizeof(struct lpfc_sli4_cfg_mhdr)); 16656 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16657 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16658 length, LPFC_SLI4_MBX_EMBED); 16659 16660 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16661 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16662 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16663 &mq_create_ext->u.request, mq->page_count); 16664 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16665 &mq_create_ext->u.request, 1); 16666 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16667 &mq_create_ext->u.request, 1); 16668 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16669 &mq_create_ext->u.request, 1); 16670 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16671 &mq_create_ext->u.request, 1); 16672 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16673 &mq_create_ext->u.request, 1); 16674 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16675 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16676 phba->sli4_hba.pc_sli4_params.mqv); 16677 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16678 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16679 cq->queue_id); 16680 else 16681 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16682 cq->queue_id); 16683 switch (mq->entry_count) { 16684 default: 16685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16686 "0362 Unsupported MQ count. (%d)\n", 16687 mq->entry_count); 16688 if (mq->entry_count < 16) { 16689 status = -EINVAL; 16690 goto out; 16691 } 16692 fallthrough; /* otherwise default to smallest count */ 16693 case 16: 16694 bf_set(lpfc_mq_context_ring_size, 16695 &mq_create_ext->u.request.context, 16696 LPFC_MQ_RING_SIZE_16); 16697 break; 16698 case 32: 16699 bf_set(lpfc_mq_context_ring_size, 16700 &mq_create_ext->u.request.context, 16701 LPFC_MQ_RING_SIZE_32); 16702 break; 16703 case 64: 16704 bf_set(lpfc_mq_context_ring_size, 16705 &mq_create_ext->u.request.context, 16706 LPFC_MQ_RING_SIZE_64); 16707 break; 16708 case 128: 16709 bf_set(lpfc_mq_context_ring_size, 16710 &mq_create_ext->u.request.context, 16711 LPFC_MQ_RING_SIZE_128); 16712 break; 16713 } 16714 list_for_each_entry(dmabuf, &mq->page_list, list) { 16715 memset(dmabuf->virt, 0, hw_page_size); 16716 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16717 putPaddrLow(dmabuf->phys); 16718 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16719 putPaddrHigh(dmabuf->phys); 16720 } 16721 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16722 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16723 &mq_create_ext->u.response); 16724 if (rc != MBX_SUCCESS) { 16725 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16726 "2795 MQ_CREATE_EXT failed with " 16727 "status x%x. Failback to MQ_CREATE.\n", 16728 rc); 16729 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16730 mq_create = &mbox->u.mqe.un.mq_create; 16731 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16732 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16733 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16734 &mq_create->u.response); 16735 } 16736 16737 /* The IOCTL status is embedded in the mailbox subheader. */ 16738 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16739 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16740 if (shdr_status || shdr_add_status || rc) { 16741 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16742 "2502 MQ_CREATE mailbox failed with " 16743 "status x%x add_status x%x, mbx status x%x\n", 16744 shdr_status, shdr_add_status, rc); 16745 status = -ENXIO; 16746 goto out; 16747 } 16748 if (mq->queue_id == 0xFFFF) { 16749 status = -ENXIO; 16750 goto out; 16751 } 16752 mq->type = LPFC_MQ; 16753 mq->assoc_qid = cq->queue_id; 16754 mq->subtype = subtype; 16755 mq->host_index = 0; 16756 mq->hba_index = 0; 16757 16758 /* link the mq onto the parent cq child list */ 16759 list_add_tail(&mq->list, &cq->child_list); 16760 out: 16761 mempool_free(mbox, phba->mbox_mem_pool); 16762 return status; 16763 } 16764 16765 /** 16766 * lpfc_wq_create - Create a Work Queue on the HBA 16767 * @phba: HBA structure that indicates port to create a queue on. 16768 * @wq: The queue structure to use to create the work queue. 16769 * @cq: The completion queue to bind this work queue to. 16770 * @subtype: The subtype of the work queue indicating its functionality. 16771 * 16772 * This function creates a work queue, as detailed in @wq, on a port, described 16773 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16774 * 16775 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16776 * is used to get the entry count and entry size that are necessary to 16777 * determine the number of pages to allocate and use for this queue. The @cq 16778 * is used to indicate which completion queue to bind this work queue to. This 16779 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16780 * work queue. This function is asynchronous and will wait for the mailbox 16781 * command to finish before continuing. 16782 * 16783 * On success this function will return a zero. If unable to allocate enough 16784 * memory this function will return -ENOMEM. If the queue create mailbox command 16785 * fails this function will return -ENXIO. 16786 **/ 16787 int 16788 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16789 struct lpfc_queue *cq, uint32_t subtype) 16790 { 16791 struct lpfc_mbx_wq_create *wq_create; 16792 struct lpfc_dmabuf *dmabuf; 16793 LPFC_MBOXQ_t *mbox; 16794 int rc, length, status = 0; 16795 uint32_t shdr_status, shdr_add_status; 16796 union lpfc_sli4_cfg_shdr *shdr; 16797 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16798 struct dma_address *page; 16799 void __iomem *bar_memmap_p; 16800 uint32_t db_offset; 16801 uint16_t pci_barset; 16802 uint8_t dpp_barset; 16803 uint32_t dpp_offset; 16804 uint8_t wq_create_version; 16805 #ifdef CONFIG_X86 16806 unsigned long pg_addr; 16807 #endif 16808 16809 /* sanity check on queue memory */ 16810 if (!wq || !cq) 16811 return -ENODEV; 16812 if (!phba->sli4_hba.pc_sli4_params.supported) 16813 hw_page_size = wq->page_size; 16814 16815 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16816 if (!mbox) 16817 return -ENOMEM; 16818 length = (sizeof(struct lpfc_mbx_wq_create) - 16819 sizeof(struct lpfc_sli4_cfg_mhdr)); 16820 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16821 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16822 length, LPFC_SLI4_MBX_EMBED); 16823 wq_create = &mbox->u.mqe.un.wq_create; 16824 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16825 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16826 wq->page_count); 16827 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16828 cq->queue_id); 16829 16830 /* wqv is the earliest version supported, NOT the latest */ 16831 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16832 phba->sli4_hba.pc_sli4_params.wqv); 16833 16834 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16835 (wq->page_size > SLI4_PAGE_SIZE)) 16836 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16837 else 16838 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16839 16840 switch (wq_create_version) { 16841 case LPFC_Q_CREATE_VERSION_1: 16842 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16843 wq->entry_count); 16844 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16845 LPFC_Q_CREATE_VERSION_1); 16846 16847 switch (wq->entry_size) { 16848 default: 16849 case 64: 16850 bf_set(lpfc_mbx_wq_create_wqe_size, 16851 &wq_create->u.request_1, 16852 LPFC_WQ_WQE_SIZE_64); 16853 break; 16854 case 128: 16855 bf_set(lpfc_mbx_wq_create_wqe_size, 16856 &wq_create->u.request_1, 16857 LPFC_WQ_WQE_SIZE_128); 16858 break; 16859 } 16860 /* Request DPP by default */ 16861 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16862 bf_set(lpfc_mbx_wq_create_page_size, 16863 &wq_create->u.request_1, 16864 (wq->page_size / SLI4_PAGE_SIZE)); 16865 page = wq_create->u.request_1.page; 16866 break; 16867 default: 16868 page = wq_create->u.request.page; 16869 break; 16870 } 16871 16872 list_for_each_entry(dmabuf, &wq->page_list, list) { 16873 memset(dmabuf->virt, 0, hw_page_size); 16874 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16875 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16876 } 16877 16878 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16879 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16880 16881 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16882 /* The IOCTL status is embedded in the mailbox subheader. */ 16883 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16884 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16885 if (shdr_status || shdr_add_status || rc) { 16886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16887 "2503 WQ_CREATE mailbox failed with " 16888 "status x%x add_status x%x, mbx status x%x\n", 16889 shdr_status, shdr_add_status, rc); 16890 status = -ENXIO; 16891 goto out; 16892 } 16893 16894 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16895 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16896 &wq_create->u.response); 16897 else 16898 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16899 &wq_create->u.response_1); 16900 16901 if (wq->queue_id == 0xFFFF) { 16902 status = -ENXIO; 16903 goto out; 16904 } 16905 16906 wq->db_format = LPFC_DB_LIST_FORMAT; 16907 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16908 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16909 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16910 &wq_create->u.response); 16911 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16912 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16914 "3265 WQ[%d] doorbell format " 16915 "not supported: x%x\n", 16916 wq->queue_id, wq->db_format); 16917 status = -EINVAL; 16918 goto out; 16919 } 16920 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16921 &wq_create->u.response); 16922 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16923 pci_barset); 16924 if (!bar_memmap_p) { 16925 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16926 "3263 WQ[%d] failed to memmap " 16927 "pci barset:x%x\n", 16928 wq->queue_id, pci_barset); 16929 status = -ENOMEM; 16930 goto out; 16931 } 16932 db_offset = wq_create->u.response.doorbell_offset; 16933 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16934 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16936 "3252 WQ[%d] doorbell offset " 16937 "not supported: x%x\n", 16938 wq->queue_id, db_offset); 16939 status = -EINVAL; 16940 goto out; 16941 } 16942 wq->db_regaddr = bar_memmap_p + db_offset; 16943 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16944 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16945 "format:x%x\n", wq->queue_id, 16946 pci_barset, db_offset, wq->db_format); 16947 } else 16948 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16949 } else { 16950 /* Check if DPP was honored by the firmware */ 16951 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16952 &wq_create->u.response_1); 16953 if (wq->dpp_enable) { 16954 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16955 &wq_create->u.response_1); 16956 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16957 pci_barset); 16958 if (!bar_memmap_p) { 16959 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16960 "3267 WQ[%d] failed to memmap " 16961 "pci barset:x%x\n", 16962 wq->queue_id, pci_barset); 16963 status = -ENOMEM; 16964 goto out; 16965 } 16966 db_offset = wq_create->u.response_1.doorbell_offset; 16967 wq->db_regaddr = bar_memmap_p + db_offset; 16968 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16969 &wq_create->u.response_1); 16970 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16971 &wq_create->u.response_1); 16972 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16973 dpp_barset); 16974 if (!bar_memmap_p) { 16975 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16976 "3268 WQ[%d] failed to memmap " 16977 "pci barset:x%x\n", 16978 wq->queue_id, dpp_barset); 16979 status = -ENOMEM; 16980 goto out; 16981 } 16982 dpp_offset = wq_create->u.response_1.dpp_offset; 16983 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16984 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16985 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16986 "dpp_id:x%x dpp_barset:x%x " 16987 "dpp_offset:x%x\n", 16988 wq->queue_id, pci_barset, db_offset, 16989 wq->dpp_id, dpp_barset, dpp_offset); 16990 16991 #ifdef CONFIG_X86 16992 /* Enable combined writes for DPP aperture */ 16993 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16994 rc = set_memory_wc(pg_addr, 1); 16995 if (rc) { 16996 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16997 "3272 Cannot setup Combined " 16998 "Write on WQ[%d] - disable DPP\n", 16999 wq->queue_id); 17000 phba->cfg_enable_dpp = 0; 17001 } 17002 #else 17003 phba->cfg_enable_dpp = 0; 17004 #endif 17005 } else 17006 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 17007 } 17008 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 17009 if (wq->pring == NULL) { 17010 status = -ENOMEM; 17011 goto out; 17012 } 17013 wq->type = LPFC_WQ; 17014 wq->assoc_qid = cq->queue_id; 17015 wq->subtype = subtype; 17016 wq->host_index = 0; 17017 wq->hba_index = 0; 17018 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 17019 17020 /* link the wq onto the parent cq child list */ 17021 list_add_tail(&wq->list, &cq->child_list); 17022 out: 17023 mempool_free(mbox, phba->mbox_mem_pool); 17024 return status; 17025 } 17026 17027 /** 17028 * lpfc_rq_create - Create a Receive Queue on the HBA 17029 * @phba: HBA structure that indicates port to create a queue on. 17030 * @hrq: The queue structure to use to create the header receive queue. 17031 * @drq: The queue structure to use to create the data receive queue. 17032 * @cq: The completion queue to bind this work queue to. 17033 * @subtype: The subtype of the work queue indicating its functionality. 17034 * 17035 * This function creates a receive buffer queue pair , as detailed in @hrq and 17036 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17037 * to the HBA. 17038 * 17039 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17040 * struct is used to get the entry count that is necessary to determine the 17041 * number of pages to use for this queue. The @cq is used to indicate which 17042 * completion queue to bind received buffers that are posted to these queues to. 17043 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17044 * receive queue pair. This function is asynchronous and will wait for the 17045 * mailbox command to finish before continuing. 17046 * 17047 * On success this function will return a zero. If unable to allocate enough 17048 * memory this function will return -ENOMEM. If the queue create mailbox command 17049 * fails this function will return -ENXIO. 17050 **/ 17051 int 17052 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17053 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 17054 { 17055 struct lpfc_mbx_rq_create *rq_create; 17056 struct lpfc_dmabuf *dmabuf; 17057 LPFC_MBOXQ_t *mbox; 17058 int rc, length, status = 0; 17059 uint32_t shdr_status, shdr_add_status; 17060 union lpfc_sli4_cfg_shdr *shdr; 17061 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17062 void __iomem *bar_memmap_p; 17063 uint32_t db_offset; 17064 uint16_t pci_barset; 17065 17066 /* sanity check on queue memory */ 17067 if (!hrq || !drq || !cq) 17068 return -ENODEV; 17069 if (!phba->sli4_hba.pc_sli4_params.supported) 17070 hw_page_size = SLI4_PAGE_SIZE; 17071 17072 if (hrq->entry_count != drq->entry_count) 17073 return -EINVAL; 17074 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17075 if (!mbox) 17076 return -ENOMEM; 17077 length = (sizeof(struct lpfc_mbx_rq_create) - 17078 sizeof(struct lpfc_sli4_cfg_mhdr)); 17079 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17080 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17081 length, LPFC_SLI4_MBX_EMBED); 17082 rq_create = &mbox->u.mqe.un.rq_create; 17083 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17084 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17085 phba->sli4_hba.pc_sli4_params.rqv); 17086 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17087 bf_set(lpfc_rq_context_rqe_count_1, 17088 &rq_create->u.request.context, 17089 hrq->entry_count); 17090 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 17091 bf_set(lpfc_rq_context_rqe_size, 17092 &rq_create->u.request.context, 17093 LPFC_RQE_SIZE_8); 17094 bf_set(lpfc_rq_context_page_size, 17095 &rq_create->u.request.context, 17096 LPFC_RQ_PAGE_SIZE_4096); 17097 } else { 17098 switch (hrq->entry_count) { 17099 default: 17100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17101 "2535 Unsupported RQ count. (%d)\n", 17102 hrq->entry_count); 17103 if (hrq->entry_count < 512) { 17104 status = -EINVAL; 17105 goto out; 17106 } 17107 fallthrough; /* otherwise default to smallest count */ 17108 case 512: 17109 bf_set(lpfc_rq_context_rqe_count, 17110 &rq_create->u.request.context, 17111 LPFC_RQ_RING_SIZE_512); 17112 break; 17113 case 1024: 17114 bf_set(lpfc_rq_context_rqe_count, 17115 &rq_create->u.request.context, 17116 LPFC_RQ_RING_SIZE_1024); 17117 break; 17118 case 2048: 17119 bf_set(lpfc_rq_context_rqe_count, 17120 &rq_create->u.request.context, 17121 LPFC_RQ_RING_SIZE_2048); 17122 break; 17123 case 4096: 17124 bf_set(lpfc_rq_context_rqe_count, 17125 &rq_create->u.request.context, 17126 LPFC_RQ_RING_SIZE_4096); 17127 break; 17128 } 17129 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 17130 LPFC_HDR_BUF_SIZE); 17131 } 17132 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17133 cq->queue_id); 17134 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17135 hrq->page_count); 17136 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17137 memset(dmabuf->virt, 0, hw_page_size); 17138 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17139 putPaddrLow(dmabuf->phys); 17140 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17141 putPaddrHigh(dmabuf->phys); 17142 } 17143 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17144 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17145 17146 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17147 /* The IOCTL status is embedded in the mailbox subheader. */ 17148 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17149 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17150 if (shdr_status || shdr_add_status || rc) { 17151 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17152 "2504 RQ_CREATE mailbox failed with " 17153 "status x%x add_status x%x, mbx status x%x\n", 17154 shdr_status, shdr_add_status, rc); 17155 status = -ENXIO; 17156 goto out; 17157 } 17158 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17159 if (hrq->queue_id == 0xFFFF) { 17160 status = -ENXIO; 17161 goto out; 17162 } 17163 17164 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 17165 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 17166 &rq_create->u.response); 17167 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 17168 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 17169 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17170 "3262 RQ [%d] doorbell format not " 17171 "supported: x%x\n", hrq->queue_id, 17172 hrq->db_format); 17173 status = -EINVAL; 17174 goto out; 17175 } 17176 17177 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 17178 &rq_create->u.response); 17179 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 17180 if (!bar_memmap_p) { 17181 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17182 "3269 RQ[%d] failed to memmap pci " 17183 "barset:x%x\n", hrq->queue_id, 17184 pci_barset); 17185 status = -ENOMEM; 17186 goto out; 17187 } 17188 17189 db_offset = rq_create->u.response.doorbell_offset; 17190 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 17191 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 17192 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17193 "3270 RQ[%d] doorbell offset not " 17194 "supported: x%x\n", hrq->queue_id, 17195 db_offset); 17196 status = -EINVAL; 17197 goto out; 17198 } 17199 hrq->db_regaddr = bar_memmap_p + db_offset; 17200 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 17201 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 17202 "format:x%x\n", hrq->queue_id, pci_barset, 17203 db_offset, hrq->db_format); 17204 } else { 17205 hrq->db_format = LPFC_DB_RING_FORMAT; 17206 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17207 } 17208 hrq->type = LPFC_HRQ; 17209 hrq->assoc_qid = cq->queue_id; 17210 hrq->subtype = subtype; 17211 hrq->host_index = 0; 17212 hrq->hba_index = 0; 17213 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17214 17215 /* now create the data queue */ 17216 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17217 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 17218 length, LPFC_SLI4_MBX_EMBED); 17219 bf_set(lpfc_mbox_hdr_version, &shdr->request, 17220 phba->sli4_hba.pc_sli4_params.rqv); 17221 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 17222 bf_set(lpfc_rq_context_rqe_count_1, 17223 &rq_create->u.request.context, hrq->entry_count); 17224 if (subtype == LPFC_NVMET) 17225 rq_create->u.request.context.buffer_size = 17226 LPFC_NVMET_DATA_BUF_SIZE; 17227 else 17228 rq_create->u.request.context.buffer_size = 17229 LPFC_DATA_BUF_SIZE; 17230 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 17231 LPFC_RQE_SIZE_8); 17232 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 17233 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17234 } else { 17235 switch (drq->entry_count) { 17236 default: 17237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17238 "2536 Unsupported RQ count. (%d)\n", 17239 drq->entry_count); 17240 if (drq->entry_count < 512) { 17241 status = -EINVAL; 17242 goto out; 17243 } 17244 fallthrough; /* otherwise default to smallest count */ 17245 case 512: 17246 bf_set(lpfc_rq_context_rqe_count, 17247 &rq_create->u.request.context, 17248 LPFC_RQ_RING_SIZE_512); 17249 break; 17250 case 1024: 17251 bf_set(lpfc_rq_context_rqe_count, 17252 &rq_create->u.request.context, 17253 LPFC_RQ_RING_SIZE_1024); 17254 break; 17255 case 2048: 17256 bf_set(lpfc_rq_context_rqe_count, 17257 &rq_create->u.request.context, 17258 LPFC_RQ_RING_SIZE_2048); 17259 break; 17260 case 4096: 17261 bf_set(lpfc_rq_context_rqe_count, 17262 &rq_create->u.request.context, 17263 LPFC_RQ_RING_SIZE_4096); 17264 break; 17265 } 17266 if (subtype == LPFC_NVMET) 17267 bf_set(lpfc_rq_context_buf_size, 17268 &rq_create->u.request.context, 17269 LPFC_NVMET_DATA_BUF_SIZE); 17270 else 17271 bf_set(lpfc_rq_context_buf_size, 17272 &rq_create->u.request.context, 17273 LPFC_DATA_BUF_SIZE); 17274 } 17275 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17276 cq->queue_id); 17277 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17278 drq->page_count); 17279 list_for_each_entry(dmabuf, &drq->page_list, list) { 17280 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17281 putPaddrLow(dmabuf->phys); 17282 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17283 putPaddrHigh(dmabuf->phys); 17284 } 17285 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17286 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17287 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17288 /* The IOCTL status is embedded in the mailbox subheader. */ 17289 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17290 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17291 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17292 if (shdr_status || shdr_add_status || rc) { 17293 status = -ENXIO; 17294 goto out; 17295 } 17296 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17297 if (drq->queue_id == 0xFFFF) { 17298 status = -ENXIO; 17299 goto out; 17300 } 17301 drq->type = LPFC_DRQ; 17302 drq->assoc_qid = cq->queue_id; 17303 drq->subtype = subtype; 17304 drq->host_index = 0; 17305 drq->hba_index = 0; 17306 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17307 17308 /* link the header and data RQs onto the parent cq child list */ 17309 list_add_tail(&hrq->list, &cq->child_list); 17310 list_add_tail(&drq->list, &cq->child_list); 17311 17312 out: 17313 mempool_free(mbox, phba->mbox_mem_pool); 17314 return status; 17315 } 17316 17317 /** 17318 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17319 * @phba: HBA structure that indicates port to create a queue on. 17320 * @hrqp: The queue structure array to use to create the header receive queues. 17321 * @drqp: The queue structure array to use to create the data receive queues. 17322 * @cqp: The completion queue array to bind these receive queues to. 17323 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17324 * 17325 * This function creates a receive buffer queue pair , as detailed in @hrq and 17326 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17327 * to the HBA. 17328 * 17329 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17330 * struct is used to get the entry count that is necessary to determine the 17331 * number of pages to use for this queue. The @cq is used to indicate which 17332 * completion queue to bind received buffers that are posted to these queues to. 17333 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17334 * receive queue pair. This function is asynchronous and will wait for the 17335 * mailbox command to finish before continuing. 17336 * 17337 * On success this function will return a zero. If unable to allocate enough 17338 * memory this function will return -ENOMEM. If the queue create mailbox command 17339 * fails this function will return -ENXIO. 17340 **/ 17341 int 17342 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17343 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17344 uint32_t subtype) 17345 { 17346 struct lpfc_queue *hrq, *drq, *cq; 17347 struct lpfc_mbx_rq_create_v2 *rq_create; 17348 struct lpfc_dmabuf *dmabuf; 17349 LPFC_MBOXQ_t *mbox; 17350 int rc, length, alloclen, status = 0; 17351 int cnt, idx, numrq, page_idx = 0; 17352 uint32_t shdr_status, shdr_add_status; 17353 union lpfc_sli4_cfg_shdr *shdr; 17354 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17355 17356 numrq = phba->cfg_nvmet_mrq; 17357 /* sanity check on array memory */ 17358 if (!hrqp || !drqp || !cqp || !numrq) 17359 return -ENODEV; 17360 if (!phba->sli4_hba.pc_sli4_params.supported) 17361 hw_page_size = SLI4_PAGE_SIZE; 17362 17363 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17364 if (!mbox) 17365 return -ENOMEM; 17366 17367 length = sizeof(struct lpfc_mbx_rq_create_v2); 17368 length += ((2 * numrq * hrqp[0]->page_count) * 17369 sizeof(struct dma_address)); 17370 17371 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17372 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17373 LPFC_SLI4_MBX_NEMBED); 17374 if (alloclen < length) { 17375 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17376 "3099 Allocated DMA memory size (%d) is " 17377 "less than the requested DMA memory size " 17378 "(%d)\n", alloclen, length); 17379 status = -ENOMEM; 17380 goto out; 17381 } 17382 17383 17384 17385 rq_create = mbox->sge_array->addr[0]; 17386 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17387 17388 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17389 cnt = 0; 17390 17391 for (idx = 0; idx < numrq; idx++) { 17392 hrq = hrqp[idx]; 17393 drq = drqp[idx]; 17394 cq = cqp[idx]; 17395 17396 /* sanity check on queue memory */ 17397 if (!hrq || !drq || !cq) { 17398 status = -ENODEV; 17399 goto out; 17400 } 17401 17402 if (hrq->entry_count != drq->entry_count) { 17403 status = -EINVAL; 17404 goto out; 17405 } 17406 17407 if (idx == 0) { 17408 bf_set(lpfc_mbx_rq_create_num_pages, 17409 &rq_create->u.request, 17410 hrq->page_count); 17411 bf_set(lpfc_mbx_rq_create_rq_cnt, 17412 &rq_create->u.request, (numrq * 2)); 17413 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17414 1); 17415 bf_set(lpfc_rq_context_base_cq, 17416 &rq_create->u.request.context, 17417 cq->queue_id); 17418 bf_set(lpfc_rq_context_data_size, 17419 &rq_create->u.request.context, 17420 LPFC_NVMET_DATA_BUF_SIZE); 17421 bf_set(lpfc_rq_context_hdr_size, 17422 &rq_create->u.request.context, 17423 LPFC_HDR_BUF_SIZE); 17424 bf_set(lpfc_rq_context_rqe_count_1, 17425 &rq_create->u.request.context, 17426 hrq->entry_count); 17427 bf_set(lpfc_rq_context_rqe_size, 17428 &rq_create->u.request.context, 17429 LPFC_RQE_SIZE_8); 17430 bf_set(lpfc_rq_context_page_size, 17431 &rq_create->u.request.context, 17432 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17433 } 17434 rc = 0; 17435 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17436 memset(dmabuf->virt, 0, hw_page_size); 17437 cnt = page_idx + dmabuf->buffer_tag; 17438 rq_create->u.request.page[cnt].addr_lo = 17439 putPaddrLow(dmabuf->phys); 17440 rq_create->u.request.page[cnt].addr_hi = 17441 putPaddrHigh(dmabuf->phys); 17442 rc++; 17443 } 17444 page_idx += rc; 17445 17446 rc = 0; 17447 list_for_each_entry(dmabuf, &drq->page_list, list) { 17448 memset(dmabuf->virt, 0, hw_page_size); 17449 cnt = page_idx + dmabuf->buffer_tag; 17450 rq_create->u.request.page[cnt].addr_lo = 17451 putPaddrLow(dmabuf->phys); 17452 rq_create->u.request.page[cnt].addr_hi = 17453 putPaddrHigh(dmabuf->phys); 17454 rc++; 17455 } 17456 page_idx += rc; 17457 17458 hrq->db_format = LPFC_DB_RING_FORMAT; 17459 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17460 hrq->type = LPFC_HRQ; 17461 hrq->assoc_qid = cq->queue_id; 17462 hrq->subtype = subtype; 17463 hrq->host_index = 0; 17464 hrq->hba_index = 0; 17465 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17466 17467 drq->db_format = LPFC_DB_RING_FORMAT; 17468 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17469 drq->type = LPFC_DRQ; 17470 drq->assoc_qid = cq->queue_id; 17471 drq->subtype = subtype; 17472 drq->host_index = 0; 17473 drq->hba_index = 0; 17474 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17475 17476 list_add_tail(&hrq->list, &cq->child_list); 17477 list_add_tail(&drq->list, &cq->child_list); 17478 } 17479 17480 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17481 /* The IOCTL status is embedded in the mailbox subheader. */ 17482 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17483 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17484 if (shdr_status || shdr_add_status || rc) { 17485 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17486 "3120 RQ_CREATE mailbox failed with " 17487 "status x%x add_status x%x, mbx status x%x\n", 17488 shdr_status, shdr_add_status, rc); 17489 status = -ENXIO; 17490 goto out; 17491 } 17492 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17493 if (rc == 0xFFFF) { 17494 status = -ENXIO; 17495 goto out; 17496 } 17497 17498 /* Initialize all RQs with associated queue id */ 17499 for (idx = 0; idx < numrq; idx++) { 17500 hrq = hrqp[idx]; 17501 hrq->queue_id = rc + (2 * idx); 17502 drq = drqp[idx]; 17503 drq->queue_id = rc + (2 * idx) + 1; 17504 } 17505 17506 out: 17507 lpfc_sli4_mbox_cmd_free(phba, mbox); 17508 return status; 17509 } 17510 17511 /** 17512 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17513 * @phba: HBA structure that indicates port to destroy a queue on. 17514 * @eq: The queue structure associated with the queue to destroy. 17515 * 17516 * This function destroys a queue, as detailed in @eq by sending an mailbox 17517 * command, specific to the type of queue, to the HBA. 17518 * 17519 * The @eq struct is used to get the queue ID of the queue to destroy. 17520 * 17521 * On success this function will return a zero. If the queue destroy mailbox 17522 * command fails this function will return -ENXIO. 17523 **/ 17524 int 17525 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17526 { 17527 LPFC_MBOXQ_t *mbox; 17528 int rc, length, status = 0; 17529 uint32_t shdr_status, shdr_add_status; 17530 union lpfc_sli4_cfg_shdr *shdr; 17531 17532 /* sanity check on queue memory */ 17533 if (!eq) 17534 return -ENODEV; 17535 17536 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17537 if (!mbox) 17538 return -ENOMEM; 17539 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17540 sizeof(struct lpfc_sli4_cfg_mhdr)); 17541 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17542 LPFC_MBOX_OPCODE_EQ_DESTROY, 17543 length, LPFC_SLI4_MBX_EMBED); 17544 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17545 eq->queue_id); 17546 mbox->vport = eq->phba->pport; 17547 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17548 17549 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17550 /* The IOCTL status is embedded in the mailbox subheader. */ 17551 shdr = (union lpfc_sli4_cfg_shdr *) 17552 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17553 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17554 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17555 if (shdr_status || shdr_add_status || rc) { 17556 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17557 "2505 EQ_DESTROY mailbox failed with " 17558 "status x%x add_status x%x, mbx status x%x\n", 17559 shdr_status, shdr_add_status, rc); 17560 status = -ENXIO; 17561 } 17562 17563 /* Remove eq from any list */ 17564 list_del_init(&eq->list); 17565 mempool_free(mbox, eq->phba->mbox_mem_pool); 17566 return status; 17567 } 17568 17569 /** 17570 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17571 * @phba: HBA structure that indicates port to destroy a queue on. 17572 * @cq: The queue structure associated with the queue to destroy. 17573 * 17574 * This function destroys a queue, as detailed in @cq by sending an mailbox 17575 * command, specific to the type of queue, to the HBA. 17576 * 17577 * The @cq struct is used to get the queue ID of the queue to destroy. 17578 * 17579 * On success this function will return a zero. If the queue destroy mailbox 17580 * command fails this function will return -ENXIO. 17581 **/ 17582 int 17583 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17584 { 17585 LPFC_MBOXQ_t *mbox; 17586 int rc, length, status = 0; 17587 uint32_t shdr_status, shdr_add_status; 17588 union lpfc_sli4_cfg_shdr *shdr; 17589 17590 /* sanity check on queue memory */ 17591 if (!cq) 17592 return -ENODEV; 17593 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17594 if (!mbox) 17595 return -ENOMEM; 17596 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17597 sizeof(struct lpfc_sli4_cfg_mhdr)); 17598 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17599 LPFC_MBOX_OPCODE_CQ_DESTROY, 17600 length, LPFC_SLI4_MBX_EMBED); 17601 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17602 cq->queue_id); 17603 mbox->vport = cq->phba->pport; 17604 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17605 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17606 /* The IOCTL status is embedded in the mailbox subheader. */ 17607 shdr = (union lpfc_sli4_cfg_shdr *) 17608 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17609 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17610 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17611 if (shdr_status || shdr_add_status || rc) { 17612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17613 "2506 CQ_DESTROY mailbox failed with " 17614 "status x%x add_status x%x, mbx status x%x\n", 17615 shdr_status, shdr_add_status, rc); 17616 status = -ENXIO; 17617 } 17618 /* Remove cq from any list */ 17619 list_del_init(&cq->list); 17620 mempool_free(mbox, cq->phba->mbox_mem_pool); 17621 return status; 17622 } 17623 17624 /** 17625 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17626 * @phba: HBA structure that indicates port to destroy a queue on. 17627 * @mq: The queue structure associated with the queue to destroy. 17628 * 17629 * This function destroys a queue, as detailed in @mq by sending an mailbox 17630 * command, specific to the type of queue, to the HBA. 17631 * 17632 * The @mq struct is used to get the queue ID of the queue to destroy. 17633 * 17634 * On success this function will return a zero. If the queue destroy mailbox 17635 * command fails this function will return -ENXIO. 17636 **/ 17637 int 17638 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17639 { 17640 LPFC_MBOXQ_t *mbox; 17641 int rc, length, status = 0; 17642 uint32_t shdr_status, shdr_add_status; 17643 union lpfc_sli4_cfg_shdr *shdr; 17644 17645 /* sanity check on queue memory */ 17646 if (!mq) 17647 return -ENODEV; 17648 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17649 if (!mbox) 17650 return -ENOMEM; 17651 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17652 sizeof(struct lpfc_sli4_cfg_mhdr)); 17653 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17654 LPFC_MBOX_OPCODE_MQ_DESTROY, 17655 length, LPFC_SLI4_MBX_EMBED); 17656 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17657 mq->queue_id); 17658 mbox->vport = mq->phba->pport; 17659 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17660 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17661 /* The IOCTL status is embedded in the mailbox subheader. */ 17662 shdr = (union lpfc_sli4_cfg_shdr *) 17663 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17664 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17665 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17666 if (shdr_status || shdr_add_status || rc) { 17667 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17668 "2507 MQ_DESTROY mailbox failed with " 17669 "status x%x add_status x%x, mbx status x%x\n", 17670 shdr_status, shdr_add_status, rc); 17671 status = -ENXIO; 17672 } 17673 /* Remove mq from any list */ 17674 list_del_init(&mq->list); 17675 mempool_free(mbox, mq->phba->mbox_mem_pool); 17676 return status; 17677 } 17678 17679 /** 17680 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17681 * @phba: HBA structure that indicates port to destroy a queue on. 17682 * @wq: The queue structure associated with the queue to destroy. 17683 * 17684 * This function destroys a queue, as detailed in @wq by sending an mailbox 17685 * command, specific to the type of queue, to the HBA. 17686 * 17687 * The @wq struct is used to get the queue ID of the queue to destroy. 17688 * 17689 * On success this function will return a zero. If the queue destroy mailbox 17690 * command fails this function will return -ENXIO. 17691 **/ 17692 int 17693 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17694 { 17695 LPFC_MBOXQ_t *mbox; 17696 int rc, length, status = 0; 17697 uint32_t shdr_status, shdr_add_status; 17698 union lpfc_sli4_cfg_shdr *shdr; 17699 17700 /* sanity check on queue memory */ 17701 if (!wq) 17702 return -ENODEV; 17703 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17704 if (!mbox) 17705 return -ENOMEM; 17706 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17707 sizeof(struct lpfc_sli4_cfg_mhdr)); 17708 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17709 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17710 length, LPFC_SLI4_MBX_EMBED); 17711 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17712 wq->queue_id); 17713 mbox->vport = wq->phba->pport; 17714 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17715 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17716 shdr = (union lpfc_sli4_cfg_shdr *) 17717 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17718 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17719 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17720 if (shdr_status || shdr_add_status || rc) { 17721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17722 "2508 WQ_DESTROY mailbox failed with " 17723 "status x%x add_status x%x, mbx status x%x\n", 17724 shdr_status, shdr_add_status, rc); 17725 status = -ENXIO; 17726 } 17727 /* Remove wq from any list */ 17728 list_del_init(&wq->list); 17729 kfree(wq->pring); 17730 wq->pring = NULL; 17731 mempool_free(mbox, wq->phba->mbox_mem_pool); 17732 return status; 17733 } 17734 17735 /** 17736 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17737 * @phba: HBA structure that indicates port to destroy a queue on. 17738 * @hrq: The queue structure associated with the queue to destroy. 17739 * @drq: The queue structure associated with the queue to destroy. 17740 * 17741 * This function destroys a queue, as detailed in @rq by sending an mailbox 17742 * command, specific to the type of queue, to the HBA. 17743 * 17744 * The @rq struct is used to get the queue ID of the queue to destroy. 17745 * 17746 * On success this function will return a zero. If the queue destroy mailbox 17747 * command fails this function will return -ENXIO. 17748 **/ 17749 int 17750 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17751 struct lpfc_queue *drq) 17752 { 17753 LPFC_MBOXQ_t *mbox; 17754 int rc, length, status = 0; 17755 uint32_t shdr_status, shdr_add_status; 17756 union lpfc_sli4_cfg_shdr *shdr; 17757 17758 /* sanity check on queue memory */ 17759 if (!hrq || !drq) 17760 return -ENODEV; 17761 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17762 if (!mbox) 17763 return -ENOMEM; 17764 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17765 sizeof(struct lpfc_sli4_cfg_mhdr)); 17766 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17767 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17768 length, LPFC_SLI4_MBX_EMBED); 17769 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17770 hrq->queue_id); 17771 mbox->vport = hrq->phba->pport; 17772 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17773 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17774 /* The IOCTL status is embedded in the mailbox subheader. */ 17775 shdr = (union lpfc_sli4_cfg_shdr *) 17776 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17777 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17778 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17779 if (shdr_status || shdr_add_status || rc) { 17780 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17781 "2509 RQ_DESTROY mailbox failed with " 17782 "status x%x add_status x%x, mbx status x%x\n", 17783 shdr_status, shdr_add_status, rc); 17784 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17785 return -ENXIO; 17786 } 17787 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17788 drq->queue_id); 17789 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17790 shdr = (union lpfc_sli4_cfg_shdr *) 17791 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17792 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17793 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17794 if (shdr_status || shdr_add_status || rc) { 17795 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17796 "2510 RQ_DESTROY mailbox failed with " 17797 "status x%x add_status x%x, mbx status x%x\n", 17798 shdr_status, shdr_add_status, rc); 17799 status = -ENXIO; 17800 } 17801 list_del_init(&hrq->list); 17802 list_del_init(&drq->list); 17803 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17804 return status; 17805 } 17806 17807 /** 17808 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17809 * @phba: The virtual port for which this call being executed. 17810 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17811 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17812 * @xritag: the xritag that ties this io to the SGL pages. 17813 * 17814 * This routine will post the sgl pages for the IO that has the xritag 17815 * that is in the iocbq structure. The xritag is assigned during iocbq 17816 * creation and persists for as long as the driver is loaded. 17817 * if the caller has fewer than 256 scatter gather segments to map then 17818 * pdma_phys_addr1 should be 0. 17819 * If the caller needs to map more than 256 scatter gather segment then 17820 * pdma_phys_addr1 should be a valid physical address. 17821 * physical address for SGLs must be 64 byte aligned. 17822 * If you are going to map 2 SGL's then the first one must have 256 entries 17823 * the second sgl can have between 1 and 256 entries. 17824 * 17825 * Return codes: 17826 * 0 - Success 17827 * -ENXIO, -ENOMEM - Failure 17828 **/ 17829 int 17830 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17831 dma_addr_t pdma_phys_addr0, 17832 dma_addr_t pdma_phys_addr1, 17833 uint16_t xritag) 17834 { 17835 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17836 LPFC_MBOXQ_t *mbox; 17837 int rc; 17838 uint32_t shdr_status, shdr_add_status; 17839 uint32_t mbox_tmo; 17840 union lpfc_sli4_cfg_shdr *shdr; 17841 17842 if (xritag == NO_XRI) { 17843 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17844 "0364 Invalid param:\n"); 17845 return -EINVAL; 17846 } 17847 17848 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17849 if (!mbox) 17850 return -ENOMEM; 17851 17852 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17853 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17854 sizeof(struct lpfc_mbx_post_sgl_pages) - 17855 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17856 17857 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17858 &mbox->u.mqe.un.post_sgl_pages; 17859 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17860 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17861 17862 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17863 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17864 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17865 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17866 17867 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17868 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17869 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17870 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17871 if (!phba->sli4_hba.intr_enable) 17872 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17873 else { 17874 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17875 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17876 } 17877 /* The IOCTL status is embedded in the mailbox subheader. */ 17878 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17879 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17880 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17881 if (!phba->sli4_hba.intr_enable) 17882 mempool_free(mbox, phba->mbox_mem_pool); 17883 else if (rc != MBX_TIMEOUT) 17884 mempool_free(mbox, phba->mbox_mem_pool); 17885 if (shdr_status || shdr_add_status || rc) { 17886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17887 "2511 POST_SGL mailbox failed with " 17888 "status x%x add_status x%x, mbx status x%x\n", 17889 shdr_status, shdr_add_status, rc); 17890 } 17891 return 0; 17892 } 17893 17894 /** 17895 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17896 * @phba: pointer to lpfc hba data structure. 17897 * 17898 * This routine is invoked to post rpi header templates to the 17899 * HBA consistent with the SLI-4 interface spec. This routine 17900 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17901 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17902 * 17903 * Returns 17904 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17905 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17906 **/ 17907 static uint16_t 17908 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17909 { 17910 unsigned long xri; 17911 17912 /* 17913 * Fetch the next logical xri. Because this index is logical, 17914 * the driver starts at 0 each time. 17915 */ 17916 spin_lock_irq(&phba->hbalock); 17917 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17918 phba->sli4_hba.max_cfg_param.max_xri); 17919 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17920 spin_unlock_irq(&phba->hbalock); 17921 return NO_XRI; 17922 } else { 17923 set_bit(xri, phba->sli4_hba.xri_bmask); 17924 phba->sli4_hba.max_cfg_param.xri_used++; 17925 } 17926 spin_unlock_irq(&phba->hbalock); 17927 return xri; 17928 } 17929 17930 /** 17931 * __lpfc_sli4_free_xri - Release an xri for reuse. 17932 * @phba: pointer to lpfc hba data structure. 17933 * @xri: xri to release. 17934 * 17935 * This routine is invoked to release an xri to the pool of 17936 * available rpis maintained by the driver. 17937 **/ 17938 static void 17939 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17940 { 17941 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17942 phba->sli4_hba.max_cfg_param.xri_used--; 17943 } 17944 } 17945 17946 /** 17947 * lpfc_sli4_free_xri - Release an xri for reuse. 17948 * @phba: pointer to lpfc hba data structure. 17949 * @xri: xri to release. 17950 * 17951 * This routine is invoked to release an xri to the pool of 17952 * available rpis maintained by the driver. 17953 **/ 17954 void 17955 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17956 { 17957 spin_lock_irq(&phba->hbalock); 17958 __lpfc_sli4_free_xri(phba, xri); 17959 spin_unlock_irq(&phba->hbalock); 17960 } 17961 17962 /** 17963 * lpfc_sli4_next_xritag - Get an xritag for the io 17964 * @phba: Pointer to HBA context object. 17965 * 17966 * This function gets an xritag for the iocb. If there is no unused xritag 17967 * it will return 0xffff. 17968 * The function returns the allocated xritag if successful, else returns zero. 17969 * Zero is not a valid xritag. 17970 * The caller is not required to hold any lock. 17971 **/ 17972 uint16_t 17973 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17974 { 17975 uint16_t xri_index; 17976 17977 xri_index = lpfc_sli4_alloc_xri(phba); 17978 if (xri_index == NO_XRI) 17979 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17980 "2004 Failed to allocate XRI.last XRITAG is %d" 17981 " Max XRI is %d, Used XRI is %d\n", 17982 xri_index, 17983 phba->sli4_hba.max_cfg_param.max_xri, 17984 phba->sli4_hba.max_cfg_param.xri_used); 17985 return xri_index; 17986 } 17987 17988 /** 17989 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17990 * @phba: pointer to lpfc hba data structure. 17991 * @post_sgl_list: pointer to els sgl entry list. 17992 * @post_cnt: number of els sgl entries on the list. 17993 * 17994 * This routine is invoked to post a block of driver's sgl pages to the 17995 * HBA using non-embedded mailbox command. No Lock is held. This routine 17996 * is only called when the driver is loading and after all IO has been 17997 * stopped. 17998 **/ 17999 static int 18000 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 18001 struct list_head *post_sgl_list, 18002 int post_cnt) 18003 { 18004 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 18005 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18006 struct sgl_page_pairs *sgl_pg_pairs; 18007 void *viraddr; 18008 LPFC_MBOXQ_t *mbox; 18009 uint32_t reqlen, alloclen, pg_pairs; 18010 uint32_t mbox_tmo; 18011 uint16_t xritag_start = 0; 18012 int rc = 0; 18013 uint32_t shdr_status, shdr_add_status; 18014 union lpfc_sli4_cfg_shdr *shdr; 18015 18016 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 18017 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18018 if (reqlen > SLI4_PAGE_SIZE) { 18019 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18020 "2559 Block sgl registration required DMA " 18021 "size (%d) great than a page\n", reqlen); 18022 return -ENOMEM; 18023 } 18024 18025 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18026 if (!mbox) 18027 return -ENOMEM; 18028 18029 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18030 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18031 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 18032 LPFC_SLI4_MBX_NEMBED); 18033 18034 if (alloclen < reqlen) { 18035 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18036 "0285 Allocated DMA memory size (%d) is " 18037 "less than the requested DMA memory " 18038 "size (%d)\n", alloclen, reqlen); 18039 lpfc_sli4_mbox_cmd_free(phba, mbox); 18040 return -ENOMEM; 18041 } 18042 /* Set up the SGL pages in the non-embedded DMA pages */ 18043 viraddr = mbox->sge_array->addr[0]; 18044 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18045 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18046 18047 pg_pairs = 0; 18048 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 18049 /* Set up the sge entry */ 18050 sgl_pg_pairs->sgl_pg0_addr_lo = 18051 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 18052 sgl_pg_pairs->sgl_pg0_addr_hi = 18053 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 18054 sgl_pg_pairs->sgl_pg1_addr_lo = 18055 cpu_to_le32(putPaddrLow(0)); 18056 sgl_pg_pairs->sgl_pg1_addr_hi = 18057 cpu_to_le32(putPaddrHigh(0)); 18058 18059 /* Keep the first xritag on the list */ 18060 if (pg_pairs == 0) 18061 xritag_start = sglq_entry->sli4_xritag; 18062 sgl_pg_pairs++; 18063 pg_pairs++; 18064 } 18065 18066 /* Complete initialization and perform endian conversion. */ 18067 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18068 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 18069 sgl->word0 = cpu_to_le32(sgl->word0); 18070 18071 if (!phba->sli4_hba.intr_enable) 18072 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18073 else { 18074 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18075 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18076 } 18077 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 18078 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18079 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18080 if (!phba->sli4_hba.intr_enable) 18081 lpfc_sli4_mbox_cmd_free(phba, mbox); 18082 else if (rc != MBX_TIMEOUT) 18083 lpfc_sli4_mbox_cmd_free(phba, mbox); 18084 if (shdr_status || shdr_add_status || rc) { 18085 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18086 "2513 POST_SGL_BLOCK mailbox command failed " 18087 "status x%x add_status x%x mbx status x%x\n", 18088 shdr_status, shdr_add_status, rc); 18089 rc = -ENXIO; 18090 } 18091 return rc; 18092 } 18093 18094 /** 18095 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 18096 * @phba: pointer to lpfc hba data structure. 18097 * @nblist: pointer to nvme buffer list. 18098 * @count: number of scsi buffers on the list. 18099 * 18100 * This routine is invoked to post a block of @count scsi sgl pages from a 18101 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 18102 * No Lock is held. 18103 * 18104 **/ 18105 static int 18106 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 18107 int count) 18108 { 18109 struct lpfc_io_buf *lpfc_ncmd; 18110 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 18111 struct sgl_page_pairs *sgl_pg_pairs; 18112 void *viraddr; 18113 LPFC_MBOXQ_t *mbox; 18114 uint32_t reqlen, alloclen, pg_pairs; 18115 uint32_t mbox_tmo; 18116 uint16_t xritag_start = 0; 18117 int rc = 0; 18118 uint32_t shdr_status, shdr_add_status; 18119 dma_addr_t pdma_phys_bpl1; 18120 union lpfc_sli4_cfg_shdr *shdr; 18121 18122 /* Calculate the requested length of the dma memory */ 18123 reqlen = count * sizeof(struct sgl_page_pairs) + 18124 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 18125 if (reqlen > SLI4_PAGE_SIZE) { 18126 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 18127 "6118 Block sgl registration required DMA " 18128 "size (%d) great than a page\n", reqlen); 18129 return -ENOMEM; 18130 } 18131 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18132 if (!mbox) { 18133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18134 "6119 Failed to allocate mbox cmd memory\n"); 18135 return -ENOMEM; 18136 } 18137 18138 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18139 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 18140 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 18141 reqlen, LPFC_SLI4_MBX_NEMBED); 18142 18143 if (alloclen < reqlen) { 18144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18145 "6120 Allocated DMA memory size (%d) is " 18146 "less than the requested DMA memory " 18147 "size (%d)\n", alloclen, reqlen); 18148 lpfc_sli4_mbox_cmd_free(phba, mbox); 18149 return -ENOMEM; 18150 } 18151 18152 /* Get the first SGE entry from the non-embedded DMA memory */ 18153 viraddr = mbox->sge_array->addr[0]; 18154 18155 /* Set up the SGL pages in the non-embedded DMA pages */ 18156 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 18157 sgl_pg_pairs = &sgl->sgl_pg_pairs; 18158 18159 pg_pairs = 0; 18160 list_for_each_entry(lpfc_ncmd, nblist, list) { 18161 /* Set up the sge entry */ 18162 sgl_pg_pairs->sgl_pg0_addr_lo = 18163 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 18164 sgl_pg_pairs->sgl_pg0_addr_hi = 18165 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 18166 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 18167 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 18168 SGL_PAGE_SIZE; 18169 else 18170 pdma_phys_bpl1 = 0; 18171 sgl_pg_pairs->sgl_pg1_addr_lo = 18172 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 18173 sgl_pg_pairs->sgl_pg1_addr_hi = 18174 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 18175 /* Keep the first xritag on the list */ 18176 if (pg_pairs == 0) 18177 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 18178 sgl_pg_pairs++; 18179 pg_pairs++; 18180 } 18181 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 18182 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 18183 /* Perform endian conversion if necessary */ 18184 sgl->word0 = cpu_to_le32(sgl->word0); 18185 18186 if (!phba->sli4_hba.intr_enable) { 18187 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18188 } else { 18189 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18190 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18191 } 18192 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 18193 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18194 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18195 if (!phba->sli4_hba.intr_enable) 18196 lpfc_sli4_mbox_cmd_free(phba, mbox); 18197 else if (rc != MBX_TIMEOUT) 18198 lpfc_sli4_mbox_cmd_free(phba, mbox); 18199 if (shdr_status || shdr_add_status || rc) { 18200 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18201 "6125 POST_SGL_BLOCK mailbox command failed " 18202 "status x%x add_status x%x mbx status x%x\n", 18203 shdr_status, shdr_add_status, rc); 18204 rc = -ENXIO; 18205 } 18206 return rc; 18207 } 18208 18209 /** 18210 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 18211 * @phba: pointer to lpfc hba data structure. 18212 * @post_nblist: pointer to the nvme buffer list. 18213 * @sb_count: number of nvme buffers. 18214 * 18215 * This routine walks a list of nvme buffers that was passed in. It attempts 18216 * to construct blocks of nvme buffer sgls which contains contiguous xris and 18217 * uses the non-embedded SGL block post mailbox commands to post to the port. 18218 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 18219 * embedded SGL post mailbox command for posting. The @post_nblist passed in 18220 * must be local list, thus no lock is needed when manipulate the list. 18221 * 18222 * Returns: 0 = failure, non-zero number of successfully posted buffers. 18223 **/ 18224 int 18225 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 18226 struct list_head *post_nblist, int sb_count) 18227 { 18228 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 18229 int status, sgl_size; 18230 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 18231 dma_addr_t pdma_phys_sgl1; 18232 int last_xritag = NO_XRI; 18233 int cur_xritag; 18234 LIST_HEAD(prep_nblist); 18235 LIST_HEAD(blck_nblist); 18236 LIST_HEAD(nvme_nblist); 18237 18238 /* sanity check */ 18239 if (sb_count <= 0) 18240 return -EINVAL; 18241 18242 sgl_size = phba->cfg_sg_dma_buf_size; 18243 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 18244 list_del_init(&lpfc_ncmd->list); 18245 block_cnt++; 18246 if ((last_xritag != NO_XRI) && 18247 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 18248 /* a hole in xri block, form a sgl posting block */ 18249 list_splice_init(&prep_nblist, &blck_nblist); 18250 post_cnt = block_cnt - 1; 18251 /* prepare list for next posting block */ 18252 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18253 block_cnt = 1; 18254 } else { 18255 /* prepare list for next posting block */ 18256 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18257 /* enough sgls for non-embed sgl mbox command */ 18258 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18259 list_splice_init(&prep_nblist, &blck_nblist); 18260 post_cnt = block_cnt; 18261 block_cnt = 0; 18262 } 18263 } 18264 num_posting++; 18265 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18266 18267 /* end of repost sgl list condition for NVME buffers */ 18268 if (num_posting == sb_count) { 18269 if (post_cnt == 0) { 18270 /* last sgl posting block */ 18271 list_splice_init(&prep_nblist, &blck_nblist); 18272 post_cnt = block_cnt; 18273 } else if (block_cnt == 1) { 18274 /* last single sgl with non-contiguous xri */ 18275 if (sgl_size > SGL_PAGE_SIZE) 18276 pdma_phys_sgl1 = 18277 lpfc_ncmd->dma_phys_sgl + 18278 SGL_PAGE_SIZE; 18279 else 18280 pdma_phys_sgl1 = 0; 18281 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18282 status = lpfc_sli4_post_sgl( 18283 phba, lpfc_ncmd->dma_phys_sgl, 18284 pdma_phys_sgl1, cur_xritag); 18285 if (status) { 18286 /* Post error. Buffer unavailable. */ 18287 lpfc_ncmd->flags |= 18288 LPFC_SBUF_NOT_POSTED; 18289 } else { 18290 /* Post success. Bffer available. */ 18291 lpfc_ncmd->flags &= 18292 ~LPFC_SBUF_NOT_POSTED; 18293 lpfc_ncmd->status = IOSTAT_SUCCESS; 18294 num_posted++; 18295 } 18296 /* success, put on NVME buffer sgl list */ 18297 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18298 } 18299 } 18300 18301 /* continue until a nembed page worth of sgls */ 18302 if (post_cnt == 0) 18303 continue; 18304 18305 /* post block of NVME buffer list sgls */ 18306 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18307 post_cnt); 18308 18309 /* don't reset xirtag due to hole in xri block */ 18310 if (block_cnt == 0) 18311 last_xritag = NO_XRI; 18312 18313 /* reset NVME buffer post count for next round of posting */ 18314 post_cnt = 0; 18315 18316 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18317 while (!list_empty(&blck_nblist)) { 18318 list_remove_head(&blck_nblist, lpfc_ncmd, 18319 struct lpfc_io_buf, list); 18320 if (status) { 18321 /* Post error. Mark buffer unavailable. */ 18322 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18323 } else { 18324 /* Post success, Mark buffer available. */ 18325 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18326 lpfc_ncmd->status = IOSTAT_SUCCESS; 18327 num_posted++; 18328 } 18329 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18330 } 18331 } 18332 /* Push NVME buffers with sgl posted to the available list */ 18333 lpfc_io_buf_replenish(phba, &nvme_nblist); 18334 18335 return num_posted; 18336 } 18337 18338 /** 18339 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18340 * @phba: pointer to lpfc_hba struct that the frame was received on 18341 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18342 * 18343 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18344 * valid type of frame that the LPFC driver will handle. This function will 18345 * return a zero if the frame is a valid frame or a non zero value when the 18346 * frame does not pass the check. 18347 **/ 18348 static int 18349 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18350 { 18351 /* make rctl_names static to save stack space */ 18352 struct fc_vft_header *fc_vft_hdr; 18353 uint32_t *header = (uint32_t *) fc_hdr; 18354 18355 #define FC_RCTL_MDS_DIAGS 0xF4 18356 18357 switch (fc_hdr->fh_r_ctl) { 18358 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18359 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18360 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18361 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18362 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18363 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18364 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18365 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18366 case FC_RCTL_ELS_REQ: /* extended link services request */ 18367 case FC_RCTL_ELS_REP: /* extended link services reply */ 18368 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18369 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18370 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18371 case FC_RCTL_BA_RMC: /* remove connection */ 18372 case FC_RCTL_BA_ACC: /* basic accept */ 18373 case FC_RCTL_BA_RJT: /* basic reject */ 18374 case FC_RCTL_BA_PRMT: 18375 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18376 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18377 case FC_RCTL_P_RJT: /* port reject */ 18378 case FC_RCTL_F_RJT: /* fabric reject */ 18379 case FC_RCTL_P_BSY: /* port busy */ 18380 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18381 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18382 case FC_RCTL_LCR: /* link credit reset */ 18383 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18384 case FC_RCTL_END: /* end */ 18385 break; 18386 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18387 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18388 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18389 return lpfc_fc_frame_check(phba, fc_hdr); 18390 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18391 default: 18392 goto drop; 18393 } 18394 18395 switch (fc_hdr->fh_type) { 18396 case FC_TYPE_BLS: 18397 case FC_TYPE_ELS: 18398 case FC_TYPE_FCP: 18399 case FC_TYPE_CT: 18400 case FC_TYPE_NVME: 18401 break; 18402 case FC_TYPE_IP: 18403 case FC_TYPE_ILS: 18404 default: 18405 goto drop; 18406 } 18407 18408 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18409 "2538 Received frame rctl:x%x, type:x%x, " 18410 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18411 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18412 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18413 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18414 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18415 be32_to_cpu(header[6])); 18416 return 0; 18417 drop: 18418 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18419 "2539 Dropped frame rctl:x%x type:x%x\n", 18420 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18421 return 1; 18422 } 18423 18424 /** 18425 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18426 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18427 * 18428 * This function processes the FC header to retrieve the VFI from the VF 18429 * header, if one exists. This function will return the VFI if one exists 18430 * or 0 if no VSAN Header exists. 18431 **/ 18432 static uint32_t 18433 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18434 { 18435 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18436 18437 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18438 return 0; 18439 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18440 } 18441 18442 /** 18443 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18444 * @phba: Pointer to the HBA structure to search for the vport on 18445 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18446 * @fcfi: The FC Fabric ID that the frame came from 18447 * @did: Destination ID to match against 18448 * 18449 * This function searches the @phba for a vport that matches the content of the 18450 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18451 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18452 * returns the matching vport pointer or NULL if unable to match frame to a 18453 * vport. 18454 **/ 18455 static struct lpfc_vport * 18456 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18457 uint16_t fcfi, uint32_t did) 18458 { 18459 struct lpfc_vport **vports; 18460 struct lpfc_vport *vport = NULL; 18461 int i; 18462 18463 if (did == Fabric_DID) 18464 return phba->pport; 18465 if ((phba->pport->fc_flag & FC_PT2PT) && 18466 !(phba->link_state == LPFC_HBA_READY)) 18467 return phba->pport; 18468 18469 vports = lpfc_create_vport_work_array(phba); 18470 if (vports != NULL) { 18471 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18472 if (phba->fcf.fcfi == fcfi && 18473 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18474 vports[i]->fc_myDID == did) { 18475 vport = vports[i]; 18476 break; 18477 } 18478 } 18479 } 18480 lpfc_destroy_vport_work_array(phba, vports); 18481 return vport; 18482 } 18483 18484 /** 18485 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18486 * @vport: The vport to work on. 18487 * 18488 * This function updates the receive sequence time stamp for this vport. The 18489 * receive sequence time stamp indicates the time that the last frame of the 18490 * the sequence that has been idle for the longest amount of time was received. 18491 * the driver uses this time stamp to indicate if any received sequences have 18492 * timed out. 18493 **/ 18494 static void 18495 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18496 { 18497 struct lpfc_dmabuf *h_buf; 18498 struct hbq_dmabuf *dmabuf = NULL; 18499 18500 /* get the oldest sequence on the rcv list */ 18501 h_buf = list_get_first(&vport->rcv_buffer_list, 18502 struct lpfc_dmabuf, list); 18503 if (!h_buf) 18504 return; 18505 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18506 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18507 } 18508 18509 /** 18510 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18511 * @vport: The vport that the received sequences were sent to. 18512 * 18513 * This function cleans up all outstanding received sequences. This is called 18514 * by the driver when a link event or user action invalidates all the received 18515 * sequences. 18516 **/ 18517 void 18518 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18519 { 18520 struct lpfc_dmabuf *h_buf, *hnext; 18521 struct lpfc_dmabuf *d_buf, *dnext; 18522 struct hbq_dmabuf *dmabuf = NULL; 18523 18524 /* start with the oldest sequence on the rcv list */ 18525 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18526 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18527 list_del_init(&dmabuf->hbuf.list); 18528 list_for_each_entry_safe(d_buf, dnext, 18529 &dmabuf->dbuf.list, list) { 18530 list_del_init(&d_buf->list); 18531 lpfc_in_buf_free(vport->phba, d_buf); 18532 } 18533 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18534 } 18535 } 18536 18537 /** 18538 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18539 * @vport: The vport that the received sequences were sent to. 18540 * 18541 * This function determines whether any received sequences have timed out by 18542 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18543 * indicates that there is at least one timed out sequence this routine will 18544 * go through the received sequences one at a time from most inactive to most 18545 * active to determine which ones need to be cleaned up. Once it has determined 18546 * that a sequence needs to be cleaned up it will simply free up the resources 18547 * without sending an abort. 18548 **/ 18549 void 18550 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18551 { 18552 struct lpfc_dmabuf *h_buf, *hnext; 18553 struct lpfc_dmabuf *d_buf, *dnext; 18554 struct hbq_dmabuf *dmabuf = NULL; 18555 unsigned long timeout; 18556 int abort_count = 0; 18557 18558 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18559 vport->rcv_buffer_time_stamp); 18560 if (list_empty(&vport->rcv_buffer_list) || 18561 time_before(jiffies, timeout)) 18562 return; 18563 /* start with the oldest sequence on the rcv list */ 18564 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18565 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18566 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18567 dmabuf->time_stamp); 18568 if (time_before(jiffies, timeout)) 18569 break; 18570 abort_count++; 18571 list_del_init(&dmabuf->hbuf.list); 18572 list_for_each_entry_safe(d_buf, dnext, 18573 &dmabuf->dbuf.list, list) { 18574 list_del_init(&d_buf->list); 18575 lpfc_in_buf_free(vport->phba, d_buf); 18576 } 18577 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18578 } 18579 if (abort_count) 18580 lpfc_update_rcv_time_stamp(vport); 18581 } 18582 18583 /** 18584 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18585 * @vport: pointer to a vitural port 18586 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18587 * 18588 * This function searches through the existing incomplete sequences that have 18589 * been sent to this @vport. If the frame matches one of the incomplete 18590 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18591 * make up that sequence. If no sequence is found that matches this frame then 18592 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18593 * This function returns a pointer to the first dmabuf in the sequence list that 18594 * the frame was linked to. 18595 **/ 18596 static struct hbq_dmabuf * 18597 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18598 { 18599 struct fc_frame_header *new_hdr; 18600 struct fc_frame_header *temp_hdr; 18601 struct lpfc_dmabuf *d_buf; 18602 struct lpfc_dmabuf *h_buf; 18603 struct hbq_dmabuf *seq_dmabuf = NULL; 18604 struct hbq_dmabuf *temp_dmabuf = NULL; 18605 uint8_t found = 0; 18606 18607 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18608 dmabuf->time_stamp = jiffies; 18609 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18610 18611 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18612 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18613 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18614 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18615 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18616 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18617 continue; 18618 /* found a pending sequence that matches this frame */ 18619 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18620 break; 18621 } 18622 if (!seq_dmabuf) { 18623 /* 18624 * This indicates first frame received for this sequence. 18625 * Queue the buffer on the vport's rcv_buffer_list. 18626 */ 18627 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18628 lpfc_update_rcv_time_stamp(vport); 18629 return dmabuf; 18630 } 18631 temp_hdr = seq_dmabuf->hbuf.virt; 18632 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18633 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18634 list_del_init(&seq_dmabuf->hbuf.list); 18635 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18636 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18637 lpfc_update_rcv_time_stamp(vport); 18638 return dmabuf; 18639 } 18640 /* move this sequence to the tail to indicate a young sequence */ 18641 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18642 seq_dmabuf->time_stamp = jiffies; 18643 lpfc_update_rcv_time_stamp(vport); 18644 if (list_empty(&seq_dmabuf->dbuf.list)) { 18645 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18646 return seq_dmabuf; 18647 } 18648 /* find the correct place in the sequence to insert this frame */ 18649 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18650 while (!found) { 18651 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18652 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18653 /* 18654 * If the frame's sequence count is greater than the frame on 18655 * the list then insert the frame right after this frame 18656 */ 18657 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18658 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18659 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18660 found = 1; 18661 break; 18662 } 18663 18664 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18665 break; 18666 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18667 } 18668 18669 if (found) 18670 return seq_dmabuf; 18671 return NULL; 18672 } 18673 18674 /** 18675 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18676 * @vport: pointer to a vitural port 18677 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18678 * 18679 * This function tries to abort from the partially assembed sequence, described 18680 * by the information from basic abbort @dmabuf. It checks to see whether such 18681 * partially assembled sequence held by the driver. If so, it shall free up all 18682 * the frames from the partially assembled sequence. 18683 * 18684 * Return 18685 * true -- if there is matching partially assembled sequence present and all 18686 * the frames freed with the sequence; 18687 * false -- if there is no matching partially assembled sequence present so 18688 * nothing got aborted in the lower layer driver 18689 **/ 18690 static bool 18691 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18692 struct hbq_dmabuf *dmabuf) 18693 { 18694 struct fc_frame_header *new_hdr; 18695 struct fc_frame_header *temp_hdr; 18696 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18697 struct hbq_dmabuf *seq_dmabuf = NULL; 18698 18699 /* Use the hdr_buf to find the sequence that matches this frame */ 18700 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18701 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18702 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18703 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18704 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18705 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18706 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18707 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18708 continue; 18709 /* found a pending sequence that matches this frame */ 18710 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18711 break; 18712 } 18713 18714 /* Free up all the frames from the partially assembled sequence */ 18715 if (seq_dmabuf) { 18716 list_for_each_entry_safe(d_buf, n_buf, 18717 &seq_dmabuf->dbuf.list, list) { 18718 list_del_init(&d_buf->list); 18719 lpfc_in_buf_free(vport->phba, d_buf); 18720 } 18721 return true; 18722 } 18723 return false; 18724 } 18725 18726 /** 18727 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18728 * @vport: pointer to a vitural port 18729 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18730 * 18731 * This function tries to abort from the assembed sequence from upper level 18732 * protocol, described by the information from basic abbort @dmabuf. It 18733 * checks to see whether such pending context exists at upper level protocol. 18734 * If so, it shall clean up the pending context. 18735 * 18736 * Return 18737 * true -- if there is matching pending context of the sequence cleaned 18738 * at ulp; 18739 * false -- if there is no matching pending context of the sequence present 18740 * at ulp. 18741 **/ 18742 static bool 18743 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18744 { 18745 struct lpfc_hba *phba = vport->phba; 18746 int handled; 18747 18748 /* Accepting abort at ulp with SLI4 only */ 18749 if (phba->sli_rev < LPFC_SLI_REV4) 18750 return false; 18751 18752 /* Register all caring upper level protocols to attend abort */ 18753 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18754 if (handled) 18755 return true; 18756 18757 return false; 18758 } 18759 18760 /** 18761 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18762 * @phba: Pointer to HBA context object. 18763 * @cmd_iocbq: pointer to the command iocbq structure. 18764 * @rsp_iocbq: pointer to the response iocbq structure. 18765 * 18766 * This function handles the sequence abort response iocb command complete 18767 * event. It properly releases the memory allocated to the sequence abort 18768 * accept iocb. 18769 **/ 18770 static void 18771 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18772 struct lpfc_iocbq *cmd_iocbq, 18773 struct lpfc_iocbq *rsp_iocbq) 18774 { 18775 if (cmd_iocbq) { 18776 lpfc_nlp_put(cmd_iocbq->ndlp); 18777 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18778 } 18779 18780 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18781 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18782 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18783 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18784 get_job_ulpstatus(phba, rsp_iocbq), 18785 get_job_word4(phba, rsp_iocbq)); 18786 } 18787 18788 /** 18789 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18790 * @phba: Pointer to HBA context object. 18791 * @xri: xri id in transaction. 18792 * 18793 * This function validates the xri maps to the known range of XRIs allocated an 18794 * used by the driver. 18795 **/ 18796 uint16_t 18797 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18798 uint16_t xri) 18799 { 18800 uint16_t i; 18801 18802 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18803 if (xri == phba->sli4_hba.xri_ids[i]) 18804 return i; 18805 } 18806 return NO_XRI; 18807 } 18808 18809 /** 18810 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18811 * @vport: pointer to a virtual port. 18812 * @fc_hdr: pointer to a FC frame header. 18813 * @aborted: was the partially assembled receive sequence successfully aborted 18814 * 18815 * This function sends a basic response to a previous unsol sequence abort 18816 * event after aborting the sequence handling. 18817 **/ 18818 void 18819 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18820 struct fc_frame_header *fc_hdr, bool aborted) 18821 { 18822 struct lpfc_hba *phba = vport->phba; 18823 struct lpfc_iocbq *ctiocb = NULL; 18824 struct lpfc_nodelist *ndlp; 18825 uint16_t oxid, rxid, xri, lxri; 18826 uint32_t sid, fctl; 18827 union lpfc_wqe128 *icmd; 18828 int rc; 18829 18830 if (!lpfc_is_link_up(phba)) 18831 return; 18832 18833 sid = sli4_sid_from_fc_hdr(fc_hdr); 18834 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18835 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18836 18837 ndlp = lpfc_findnode_did(vport, sid); 18838 if (!ndlp) { 18839 ndlp = lpfc_nlp_init(vport, sid); 18840 if (!ndlp) { 18841 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18842 "1268 Failed to allocate ndlp for " 18843 "oxid:x%x SID:x%x\n", oxid, sid); 18844 return; 18845 } 18846 /* Put ndlp onto pport node list */ 18847 lpfc_enqueue_node(vport, ndlp); 18848 } 18849 18850 /* Allocate buffer for rsp iocb */ 18851 ctiocb = lpfc_sli_get_iocbq(phba); 18852 if (!ctiocb) 18853 return; 18854 18855 icmd = &ctiocb->wqe; 18856 18857 /* Extract the F_CTL field from FC_HDR */ 18858 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18859 18860 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18861 if (!ctiocb->ndlp) { 18862 lpfc_sli_release_iocbq(phba, ctiocb); 18863 return; 18864 } 18865 18866 ctiocb->vport = phba->pport; 18867 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18868 ctiocb->sli4_lxritag = NO_XRI; 18869 ctiocb->sli4_xritag = NO_XRI; 18870 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18871 18872 if (fctl & FC_FC_EX_CTX) 18873 /* Exchange responder sent the abort so we 18874 * own the oxid. 18875 */ 18876 xri = oxid; 18877 else 18878 xri = rxid; 18879 lxri = lpfc_sli4_xri_inrange(phba, xri); 18880 if (lxri != NO_XRI) 18881 lpfc_set_rrq_active(phba, ndlp, lxri, 18882 (xri == oxid) ? rxid : oxid, 0); 18883 /* For BA_ABTS from exchange responder, if the logical xri with 18884 * the oxid maps to the FCP XRI range, the port no longer has 18885 * that exchange context, send a BLS_RJT. Override the IOCB for 18886 * a BA_RJT. 18887 */ 18888 if ((fctl & FC_FC_EX_CTX) && 18889 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18890 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18891 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18892 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18893 FC_BA_RJT_INV_XID); 18894 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18895 FC_BA_RJT_UNABLE); 18896 } 18897 18898 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18899 * the driver no longer has that exchange, send a BLS_RJT. Override 18900 * the IOCB for a BA_RJT. 18901 */ 18902 if (aborted == false) { 18903 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18904 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18905 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18906 FC_BA_RJT_INV_XID); 18907 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18908 FC_BA_RJT_UNABLE); 18909 } 18910 18911 if (fctl & FC_FC_EX_CTX) { 18912 /* ABTS sent by responder to CT exchange, construction 18913 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18914 * field and RX_ID from ABTS for RX_ID field. 18915 */ 18916 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18917 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18918 } else { 18919 /* ABTS sent by initiator to CT exchange, construction 18920 * of BA_ACC will need to allocate a new XRI as for the 18921 * XRI_TAG field. 18922 */ 18923 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18924 } 18925 18926 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18927 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18928 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18929 18930 /* Use CT=VPI */ 18931 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18932 ndlp->nlp_DID); 18933 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18934 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18935 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18936 18937 /* Xmit CT abts response on exchange <xid> */ 18938 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18939 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18940 ctiocb->abort_rctl, oxid, phba->link_state); 18941 18942 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18943 if (rc == IOCB_ERROR) { 18944 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18945 "2925 Failed to issue CT ABTS RSP x%x on " 18946 "xri x%x, Data x%x\n", 18947 ctiocb->abort_rctl, oxid, 18948 phba->link_state); 18949 lpfc_nlp_put(ndlp); 18950 ctiocb->ndlp = NULL; 18951 lpfc_sli_release_iocbq(phba, ctiocb); 18952 } 18953 } 18954 18955 /** 18956 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18957 * @vport: Pointer to the vport on which this sequence was received 18958 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18959 * 18960 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18961 * receive sequence is only partially assembed by the driver, it shall abort 18962 * the partially assembled frames for the sequence. Otherwise, if the 18963 * unsolicited receive sequence has been completely assembled and passed to 18964 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18965 * unsolicited sequence has been aborted. After that, it will issue a basic 18966 * accept to accept the abort. 18967 **/ 18968 static void 18969 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18970 struct hbq_dmabuf *dmabuf) 18971 { 18972 struct lpfc_hba *phba = vport->phba; 18973 struct fc_frame_header fc_hdr; 18974 uint32_t fctl; 18975 bool aborted; 18976 18977 /* Make a copy of fc_hdr before the dmabuf being released */ 18978 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18979 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18980 18981 if (fctl & FC_FC_EX_CTX) { 18982 /* ABTS by responder to exchange, no cleanup needed */ 18983 aborted = true; 18984 } else { 18985 /* ABTS by initiator to exchange, need to do cleanup */ 18986 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18987 if (aborted == false) 18988 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18989 } 18990 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18991 18992 if (phba->nvmet_support) { 18993 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18994 return; 18995 } 18996 18997 /* Respond with BA_ACC or BA_RJT accordingly */ 18998 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18999 } 19000 19001 /** 19002 * lpfc_seq_complete - Indicates if a sequence is complete 19003 * @dmabuf: pointer to a dmabuf that describes the FC sequence 19004 * 19005 * This function checks the sequence, starting with the frame described by 19006 * @dmabuf, to see if all the frames associated with this sequence are present. 19007 * the frames associated with this sequence are linked to the @dmabuf using the 19008 * dbuf list. This function looks for two major things. 1) That the first frame 19009 * has a sequence count of zero. 2) There is a frame with last frame of sequence 19010 * set. 3) That there are no holes in the sequence count. The function will 19011 * return 1 when the sequence is complete, otherwise it will return 0. 19012 **/ 19013 static int 19014 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 19015 { 19016 struct fc_frame_header *hdr; 19017 struct lpfc_dmabuf *d_buf; 19018 struct hbq_dmabuf *seq_dmabuf; 19019 uint32_t fctl; 19020 int seq_count = 0; 19021 19022 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19023 /* make sure first fame of sequence has a sequence count of zero */ 19024 if (hdr->fh_seq_cnt != seq_count) 19025 return 0; 19026 fctl = (hdr->fh_f_ctl[0] << 16 | 19027 hdr->fh_f_ctl[1] << 8 | 19028 hdr->fh_f_ctl[2]); 19029 /* If last frame of sequence we can return success. */ 19030 if (fctl & FC_FC_END_SEQ) 19031 return 1; 19032 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 19033 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19034 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19035 /* If there is a hole in the sequence count then fail. */ 19036 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 19037 return 0; 19038 fctl = (hdr->fh_f_ctl[0] << 16 | 19039 hdr->fh_f_ctl[1] << 8 | 19040 hdr->fh_f_ctl[2]); 19041 /* If last frame of sequence we can return success. */ 19042 if (fctl & FC_FC_END_SEQ) 19043 return 1; 19044 } 19045 return 0; 19046 } 19047 19048 /** 19049 * lpfc_prep_seq - Prep sequence for ULP processing 19050 * @vport: Pointer to the vport on which this sequence was received 19051 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 19052 * 19053 * This function takes a sequence, described by a list of frames, and creates 19054 * a list of iocbq structures to describe the sequence. This iocbq list will be 19055 * used to issue to the generic unsolicited sequence handler. This routine 19056 * returns a pointer to the first iocbq in the list. If the function is unable 19057 * to allocate an iocbq then it throw out the received frames that were not 19058 * able to be described and return a pointer to the first iocbq. If unable to 19059 * allocate any iocbqs (including the first) this function will return NULL. 19060 **/ 19061 static struct lpfc_iocbq * 19062 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 19063 { 19064 struct hbq_dmabuf *hbq_buf; 19065 struct lpfc_dmabuf *d_buf, *n_buf; 19066 struct lpfc_iocbq *first_iocbq, *iocbq; 19067 struct fc_frame_header *fc_hdr; 19068 uint32_t sid; 19069 uint32_t len, tot_len; 19070 19071 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19072 /* remove from receive buffer list */ 19073 list_del_init(&seq_dmabuf->hbuf.list); 19074 lpfc_update_rcv_time_stamp(vport); 19075 /* get the Remote Port's SID */ 19076 sid = sli4_sid_from_fc_hdr(fc_hdr); 19077 tot_len = 0; 19078 /* Get an iocbq struct to fill in. */ 19079 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 19080 if (first_iocbq) { 19081 /* Initialize the first IOCB. */ 19082 first_iocbq->wcqe_cmpl.total_data_placed = 0; 19083 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 19084 IOSTAT_SUCCESS); 19085 first_iocbq->vport = vport; 19086 19087 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 19088 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 19089 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 19090 sli4_did_from_fc_hdr(fc_hdr)); 19091 } 19092 19093 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19094 NO_XRI); 19095 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 19096 be16_to_cpu(fc_hdr->fh_ox_id)); 19097 19098 /* put the first buffer into the first iocb */ 19099 tot_len = bf_get(lpfc_rcqe_length, 19100 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 19101 19102 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 19103 first_iocbq->bpl_dmabuf = NULL; 19104 /* Keep track of the BDE count */ 19105 first_iocbq->wcqe_cmpl.word3 = 1; 19106 19107 if (tot_len > LPFC_DATA_BUF_SIZE) 19108 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 19109 LPFC_DATA_BUF_SIZE; 19110 else 19111 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 19112 19113 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 19114 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 19115 sid); 19116 } 19117 iocbq = first_iocbq; 19118 /* 19119 * Each IOCBq can have two Buffers assigned, so go through the list 19120 * of buffers for this sequence and save two buffers in each IOCBq 19121 */ 19122 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 19123 if (!iocbq) { 19124 lpfc_in_buf_free(vport->phba, d_buf); 19125 continue; 19126 } 19127 if (!iocbq->bpl_dmabuf) { 19128 iocbq->bpl_dmabuf = d_buf; 19129 iocbq->wcqe_cmpl.word3++; 19130 /* We need to get the size out of the right CQE */ 19131 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19132 len = bf_get(lpfc_rcqe_length, 19133 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19134 iocbq->unsol_rcv_len = len; 19135 iocbq->wcqe_cmpl.total_data_placed += len; 19136 tot_len += len; 19137 } else { 19138 iocbq = lpfc_sli_get_iocbq(vport->phba); 19139 if (!iocbq) { 19140 if (first_iocbq) { 19141 bf_set(lpfc_wcqe_c_status, 19142 &first_iocbq->wcqe_cmpl, 19143 IOSTAT_SUCCESS); 19144 first_iocbq->wcqe_cmpl.parameter = 19145 IOERR_NO_RESOURCES; 19146 } 19147 lpfc_in_buf_free(vport->phba, d_buf); 19148 continue; 19149 } 19150 /* We need to get the size out of the right CQE */ 19151 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 19152 len = bf_get(lpfc_rcqe_length, 19153 &hbq_buf->cq_event.cqe.rcqe_cmpl); 19154 iocbq->cmd_dmabuf = d_buf; 19155 iocbq->bpl_dmabuf = NULL; 19156 iocbq->wcqe_cmpl.word3 = 1; 19157 19158 if (len > LPFC_DATA_BUF_SIZE) 19159 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19160 LPFC_DATA_BUF_SIZE; 19161 else 19162 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 19163 len; 19164 19165 tot_len += len; 19166 iocbq->wcqe_cmpl.total_data_placed = tot_len; 19167 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 19168 sid); 19169 list_add_tail(&iocbq->list, &first_iocbq->list); 19170 } 19171 } 19172 /* Free the sequence's header buffer */ 19173 if (!first_iocbq) 19174 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 19175 19176 return first_iocbq; 19177 } 19178 19179 static void 19180 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 19181 struct hbq_dmabuf *seq_dmabuf) 19182 { 19183 struct fc_frame_header *fc_hdr; 19184 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 19185 struct lpfc_hba *phba = vport->phba; 19186 19187 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 19188 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 19189 if (!iocbq) { 19190 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19191 "2707 Ring %d handler: Failed to allocate " 19192 "iocb Rctl x%x Type x%x received\n", 19193 LPFC_ELS_RING, 19194 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19195 return; 19196 } 19197 if (!lpfc_complete_unsol_iocb(phba, 19198 phba->sli4_hba.els_wq->pring, 19199 iocbq, fc_hdr->fh_r_ctl, 19200 fc_hdr->fh_type)) { 19201 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19202 "2540 Ring %d handler: unexpected Rctl " 19203 "x%x Type x%x received\n", 19204 LPFC_ELS_RING, 19205 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 19206 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 19207 } 19208 19209 /* Free iocb created in lpfc_prep_seq */ 19210 list_for_each_entry_safe(curr_iocb, next_iocb, 19211 &iocbq->list, list) { 19212 list_del_init(&curr_iocb->list); 19213 lpfc_sli_release_iocbq(phba, curr_iocb); 19214 } 19215 lpfc_sli_release_iocbq(phba, iocbq); 19216 } 19217 19218 static void 19219 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 19220 struct lpfc_iocbq *rspiocb) 19221 { 19222 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 19223 19224 if (pcmd && pcmd->virt) 19225 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19226 kfree(pcmd); 19227 lpfc_sli_release_iocbq(phba, cmdiocb); 19228 lpfc_drain_txq(phba); 19229 } 19230 19231 static void 19232 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 19233 struct hbq_dmabuf *dmabuf) 19234 { 19235 struct fc_frame_header *fc_hdr; 19236 struct lpfc_hba *phba = vport->phba; 19237 struct lpfc_iocbq *iocbq = NULL; 19238 union lpfc_wqe128 *pwqe; 19239 struct lpfc_dmabuf *pcmd = NULL; 19240 uint32_t frame_len; 19241 int rc; 19242 unsigned long iflags; 19243 19244 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19245 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 19246 19247 /* Send the received frame back */ 19248 iocbq = lpfc_sli_get_iocbq(phba); 19249 if (!iocbq) { 19250 /* Queue cq event and wakeup worker thread to process it */ 19251 spin_lock_irqsave(&phba->hbalock, iflags); 19252 list_add_tail(&dmabuf->cq_event.list, 19253 &phba->sli4_hba.sp_queue_event); 19254 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19255 spin_unlock_irqrestore(&phba->hbalock, iflags); 19256 lpfc_worker_wake_up(phba); 19257 return; 19258 } 19259 19260 /* Allocate buffer for command payload */ 19261 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19262 if (pcmd) 19263 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19264 &pcmd->phys); 19265 if (!pcmd || !pcmd->virt) 19266 goto exit; 19267 19268 INIT_LIST_HEAD(&pcmd->list); 19269 19270 /* copyin the payload */ 19271 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19272 19273 iocbq->cmd_dmabuf = pcmd; 19274 iocbq->vport = vport; 19275 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19276 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19277 iocbq->num_bdes = 0; 19278 19279 pwqe = &iocbq->wqe; 19280 /* fill in BDE's for command */ 19281 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19282 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19283 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19284 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19285 19286 pwqe->send_frame.frame_len = frame_len; 19287 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19288 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19289 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19290 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19291 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19292 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19293 19294 pwqe->generic.wqe_com.word7 = 0; 19295 pwqe->generic.wqe_com.word10 = 0; 19296 19297 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19298 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19299 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19300 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19301 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19302 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19303 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19304 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19305 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19306 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19307 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19308 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19309 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19310 19311 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19312 19313 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19314 if (rc == IOCB_ERROR) 19315 goto exit; 19316 19317 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19318 return; 19319 19320 exit: 19321 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19322 "2023 Unable to process MDS loopback frame\n"); 19323 if (pcmd && pcmd->virt) 19324 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19325 kfree(pcmd); 19326 if (iocbq) 19327 lpfc_sli_release_iocbq(phba, iocbq); 19328 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19329 } 19330 19331 /** 19332 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19333 * @phba: Pointer to HBA context object. 19334 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19335 * 19336 * This function is called with no lock held. This function processes all 19337 * the received buffers and gives it to upper layers when a received buffer 19338 * indicates that it is the final frame in the sequence. The interrupt 19339 * service routine processes received buffers at interrupt contexts. 19340 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19341 * appropriate receive function when the final frame in a sequence is received. 19342 **/ 19343 void 19344 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19345 struct hbq_dmabuf *dmabuf) 19346 { 19347 struct hbq_dmabuf *seq_dmabuf; 19348 struct fc_frame_header *fc_hdr; 19349 struct lpfc_vport *vport; 19350 uint32_t fcfi; 19351 uint32_t did; 19352 19353 /* Process each received buffer */ 19354 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19355 19356 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19357 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19358 vport = phba->pport; 19359 /* Handle MDS Loopback frames */ 19360 if (!(phba->pport->load_flag & FC_UNLOADING)) 19361 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19362 else 19363 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19364 return; 19365 } 19366 19367 /* check to see if this a valid type of frame */ 19368 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19369 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19370 return; 19371 } 19372 19373 if ((bf_get(lpfc_cqe_code, 19374 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19375 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19376 &dmabuf->cq_event.cqe.rcqe_cmpl); 19377 else 19378 fcfi = bf_get(lpfc_rcqe_fcf_id, 19379 &dmabuf->cq_event.cqe.rcqe_cmpl); 19380 19381 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19382 vport = phba->pport; 19383 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19384 "2023 MDS Loopback %d bytes\n", 19385 bf_get(lpfc_rcqe_length, 19386 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19387 /* Handle MDS Loopback frames */ 19388 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19389 return; 19390 } 19391 19392 /* d_id this frame is directed to */ 19393 did = sli4_did_from_fc_hdr(fc_hdr); 19394 19395 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19396 if (!vport) { 19397 /* throw out the frame */ 19398 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19399 return; 19400 } 19401 19402 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19403 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19404 (did != Fabric_DID)) { 19405 /* 19406 * Throw out the frame if we are not pt2pt. 19407 * The pt2pt protocol allows for discovery frames 19408 * to be received without a registered VPI. 19409 */ 19410 if (!(vport->fc_flag & FC_PT2PT) || 19411 (phba->link_state == LPFC_HBA_READY)) { 19412 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19413 return; 19414 } 19415 } 19416 19417 /* Handle the basic abort sequence (BA_ABTS) event */ 19418 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19419 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19420 return; 19421 } 19422 19423 /* Link this frame */ 19424 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19425 if (!seq_dmabuf) { 19426 /* unable to add frame to vport - throw it out */ 19427 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19428 return; 19429 } 19430 /* If not last frame in sequence continue processing frames. */ 19431 if (!lpfc_seq_complete(seq_dmabuf)) 19432 return; 19433 19434 /* Send the complete sequence to the upper layer protocol */ 19435 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19436 } 19437 19438 /** 19439 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19440 * @phba: pointer to lpfc hba data structure. 19441 * 19442 * This routine is invoked to post rpi header templates to the 19443 * HBA consistent with the SLI-4 interface spec. This routine 19444 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19445 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19446 * 19447 * This routine does not require any locks. It's usage is expected 19448 * to be driver load or reset recovery when the driver is 19449 * sequential. 19450 * 19451 * Return codes 19452 * 0 - successful 19453 * -EIO - The mailbox failed to complete successfully. 19454 * When this error occurs, the driver is not guaranteed 19455 * to have any rpi regions posted to the device and 19456 * must either attempt to repost the regions or take a 19457 * fatal error. 19458 **/ 19459 int 19460 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19461 { 19462 struct lpfc_rpi_hdr *rpi_page; 19463 uint32_t rc = 0; 19464 uint16_t lrpi = 0; 19465 19466 /* SLI4 ports that support extents do not require RPI headers. */ 19467 if (!phba->sli4_hba.rpi_hdrs_in_use) 19468 goto exit; 19469 if (phba->sli4_hba.extents_in_use) 19470 return -EIO; 19471 19472 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19473 /* 19474 * Assign the rpi headers a physical rpi only if the driver 19475 * has not initialized those resources. A port reset only 19476 * needs the headers posted. 19477 */ 19478 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19479 LPFC_RPI_RSRC_RDY) 19480 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19481 19482 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19483 if (rc != MBX_SUCCESS) { 19484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19485 "2008 Error %d posting all rpi " 19486 "headers\n", rc); 19487 rc = -EIO; 19488 break; 19489 } 19490 } 19491 19492 exit: 19493 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19494 LPFC_RPI_RSRC_RDY); 19495 return rc; 19496 } 19497 19498 /** 19499 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19500 * @phba: pointer to lpfc hba data structure. 19501 * @rpi_page: pointer to the rpi memory region. 19502 * 19503 * This routine is invoked to post a single rpi header to the 19504 * HBA consistent with the SLI-4 interface spec. This memory region 19505 * maps up to 64 rpi context regions. 19506 * 19507 * Return codes 19508 * 0 - successful 19509 * -ENOMEM - No available memory 19510 * -EIO - The mailbox failed to complete successfully. 19511 **/ 19512 int 19513 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19514 { 19515 LPFC_MBOXQ_t *mboxq; 19516 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19517 uint32_t rc = 0; 19518 uint32_t shdr_status, shdr_add_status; 19519 union lpfc_sli4_cfg_shdr *shdr; 19520 19521 /* SLI4 ports that support extents do not require RPI headers. */ 19522 if (!phba->sli4_hba.rpi_hdrs_in_use) 19523 return rc; 19524 if (phba->sli4_hba.extents_in_use) 19525 return -EIO; 19526 19527 /* The port is notified of the header region via a mailbox command. */ 19528 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19529 if (!mboxq) { 19530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19531 "2001 Unable to allocate memory for issuing " 19532 "SLI_CONFIG_SPECIAL mailbox command\n"); 19533 return -ENOMEM; 19534 } 19535 19536 /* Post all rpi memory regions to the port. */ 19537 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19538 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19539 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19540 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19541 sizeof(struct lpfc_sli4_cfg_mhdr), 19542 LPFC_SLI4_MBX_EMBED); 19543 19544 19545 /* Post the physical rpi to the port for this rpi header. */ 19546 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19547 rpi_page->start_rpi); 19548 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19549 hdr_tmpl, rpi_page->page_count); 19550 19551 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19552 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19553 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19554 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19555 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19556 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19557 mempool_free(mboxq, phba->mbox_mem_pool); 19558 if (shdr_status || shdr_add_status || rc) { 19559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19560 "2514 POST_RPI_HDR mailbox failed with " 19561 "status x%x add_status x%x, mbx status x%x\n", 19562 shdr_status, shdr_add_status, rc); 19563 rc = -ENXIO; 19564 } else { 19565 /* 19566 * The next_rpi stores the next logical module-64 rpi value used 19567 * to post physical rpis in subsequent rpi postings. 19568 */ 19569 spin_lock_irq(&phba->hbalock); 19570 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19571 spin_unlock_irq(&phba->hbalock); 19572 } 19573 return rc; 19574 } 19575 19576 /** 19577 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19578 * @phba: pointer to lpfc hba data structure. 19579 * 19580 * This routine is invoked to post rpi header templates to the 19581 * HBA consistent with the SLI-4 interface spec. This routine 19582 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19583 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19584 * 19585 * Returns 19586 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19587 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19588 **/ 19589 int 19590 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19591 { 19592 unsigned long rpi; 19593 uint16_t max_rpi, rpi_limit; 19594 uint16_t rpi_remaining, lrpi = 0; 19595 struct lpfc_rpi_hdr *rpi_hdr; 19596 unsigned long iflag; 19597 19598 /* 19599 * Fetch the next logical rpi. Because this index is logical, 19600 * the driver starts at 0 each time. 19601 */ 19602 spin_lock_irqsave(&phba->hbalock, iflag); 19603 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19604 rpi_limit = phba->sli4_hba.next_rpi; 19605 19606 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19607 if (rpi >= rpi_limit) 19608 rpi = LPFC_RPI_ALLOC_ERROR; 19609 else { 19610 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19611 phba->sli4_hba.max_cfg_param.rpi_used++; 19612 phba->sli4_hba.rpi_count++; 19613 } 19614 lpfc_printf_log(phba, KERN_INFO, 19615 LOG_NODE | LOG_DISCOVERY, 19616 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19617 (int) rpi, max_rpi, rpi_limit); 19618 19619 /* 19620 * Don't try to allocate more rpi header regions if the device limit 19621 * has been exhausted. 19622 */ 19623 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19624 (phba->sli4_hba.rpi_count >= max_rpi)) { 19625 spin_unlock_irqrestore(&phba->hbalock, iflag); 19626 return rpi; 19627 } 19628 19629 /* 19630 * RPI header postings are not required for SLI4 ports capable of 19631 * extents. 19632 */ 19633 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19634 spin_unlock_irqrestore(&phba->hbalock, iflag); 19635 return rpi; 19636 } 19637 19638 /* 19639 * If the driver is running low on rpi resources, allocate another 19640 * page now. Note that the next_rpi value is used because 19641 * it represents how many are actually in use whereas max_rpi notes 19642 * how many are supported max by the device. 19643 */ 19644 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19645 spin_unlock_irqrestore(&phba->hbalock, iflag); 19646 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19647 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19648 if (!rpi_hdr) { 19649 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19650 "2002 Error Could not grow rpi " 19651 "count\n"); 19652 } else { 19653 lrpi = rpi_hdr->start_rpi; 19654 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19655 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19656 } 19657 } 19658 19659 return rpi; 19660 } 19661 19662 /** 19663 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19664 * @phba: pointer to lpfc hba data structure. 19665 * @rpi: rpi to free 19666 * 19667 * This routine is invoked to release an rpi to the pool of 19668 * available rpis maintained by the driver. 19669 **/ 19670 static void 19671 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19672 { 19673 /* 19674 * if the rpi value indicates a prior unreg has already 19675 * been done, skip the unreg. 19676 */ 19677 if (rpi == LPFC_RPI_ALLOC_ERROR) 19678 return; 19679 19680 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19681 phba->sli4_hba.rpi_count--; 19682 phba->sli4_hba.max_cfg_param.rpi_used--; 19683 } else { 19684 lpfc_printf_log(phba, KERN_INFO, 19685 LOG_NODE | LOG_DISCOVERY, 19686 "2016 rpi %x not inuse\n", 19687 rpi); 19688 } 19689 } 19690 19691 /** 19692 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19693 * @phba: pointer to lpfc hba data structure. 19694 * @rpi: rpi to free 19695 * 19696 * This routine is invoked to release an rpi to the pool of 19697 * available rpis maintained by the driver. 19698 **/ 19699 void 19700 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19701 { 19702 spin_lock_irq(&phba->hbalock); 19703 __lpfc_sli4_free_rpi(phba, rpi); 19704 spin_unlock_irq(&phba->hbalock); 19705 } 19706 19707 /** 19708 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19709 * @phba: pointer to lpfc hba data structure. 19710 * 19711 * This routine is invoked to remove the memory region that 19712 * provided rpi via a bitmask. 19713 **/ 19714 void 19715 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19716 { 19717 kfree(phba->sli4_hba.rpi_bmask); 19718 kfree(phba->sli4_hba.rpi_ids); 19719 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19720 } 19721 19722 /** 19723 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19724 * @ndlp: pointer to lpfc nodelist data structure. 19725 * @cmpl: completion call-back. 19726 * @arg: data to load as MBox 'caller buffer information' 19727 * 19728 * This routine is invoked to remove the memory region that 19729 * provided rpi via a bitmask. 19730 **/ 19731 int 19732 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19733 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19734 { 19735 LPFC_MBOXQ_t *mboxq; 19736 struct lpfc_hba *phba = ndlp->phba; 19737 int rc; 19738 19739 /* The port is notified of the header region via a mailbox command. */ 19740 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19741 if (!mboxq) 19742 return -ENOMEM; 19743 19744 /* If cmpl assigned, then this nlp_get pairs with 19745 * lpfc_mbx_cmpl_resume_rpi. 19746 * 19747 * Else cmpl is NULL, then this nlp_get pairs with 19748 * lpfc_sli_def_mbox_cmpl. 19749 */ 19750 if (!lpfc_nlp_get(ndlp)) { 19751 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19752 "2122 %s: Failed to get nlp ref\n", 19753 __func__); 19754 mempool_free(mboxq, phba->mbox_mem_pool); 19755 return -EIO; 19756 } 19757 19758 /* Post all rpi memory regions to the port. */ 19759 lpfc_resume_rpi(mboxq, ndlp); 19760 if (cmpl) { 19761 mboxq->mbox_cmpl = cmpl; 19762 mboxq->ctx_buf = arg; 19763 } else 19764 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19765 mboxq->ctx_ndlp = ndlp; 19766 mboxq->vport = ndlp->vport; 19767 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19768 if (rc == MBX_NOT_FINISHED) { 19769 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19770 "2010 Resume RPI Mailbox failed " 19771 "status %d, mbxStatus x%x\n", rc, 19772 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19773 lpfc_nlp_put(ndlp); 19774 mempool_free(mboxq, phba->mbox_mem_pool); 19775 return -EIO; 19776 } 19777 return 0; 19778 } 19779 19780 /** 19781 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19782 * @vport: Pointer to the vport for which the vpi is being initialized 19783 * 19784 * This routine is invoked to activate a vpi with the port. 19785 * 19786 * Returns: 19787 * 0 success 19788 * -Evalue otherwise 19789 **/ 19790 int 19791 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19792 { 19793 LPFC_MBOXQ_t *mboxq; 19794 int rc = 0; 19795 int retval = MBX_SUCCESS; 19796 uint32_t mbox_tmo; 19797 struct lpfc_hba *phba = vport->phba; 19798 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19799 if (!mboxq) 19800 return -ENOMEM; 19801 lpfc_init_vpi(phba, mboxq, vport->vpi); 19802 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19803 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19804 if (rc != MBX_SUCCESS) { 19805 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19806 "2022 INIT VPI Mailbox failed " 19807 "status %d, mbxStatus x%x\n", rc, 19808 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19809 retval = -EIO; 19810 } 19811 if (rc != MBX_TIMEOUT) 19812 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19813 19814 return retval; 19815 } 19816 19817 /** 19818 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19819 * @phba: pointer to lpfc hba data structure. 19820 * @mboxq: Pointer to mailbox object. 19821 * 19822 * This routine is invoked to manually add a single FCF record. The caller 19823 * must pass a completely initialized FCF_Record. This routine takes 19824 * care of the nonembedded mailbox operations. 19825 **/ 19826 static void 19827 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19828 { 19829 void *virt_addr; 19830 union lpfc_sli4_cfg_shdr *shdr; 19831 uint32_t shdr_status, shdr_add_status; 19832 19833 virt_addr = mboxq->sge_array->addr[0]; 19834 /* The IOCTL status is embedded in the mailbox subheader. */ 19835 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19836 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19837 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19838 19839 if ((shdr_status || shdr_add_status) && 19840 (shdr_status != STATUS_FCF_IN_USE)) 19841 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19842 "2558 ADD_FCF_RECORD mailbox failed with " 19843 "status x%x add_status x%x\n", 19844 shdr_status, shdr_add_status); 19845 19846 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19847 } 19848 19849 /** 19850 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19851 * @phba: pointer to lpfc hba data structure. 19852 * @fcf_record: pointer to the initialized fcf record to add. 19853 * 19854 * This routine is invoked to manually add a single FCF record. The caller 19855 * must pass a completely initialized FCF_Record. This routine takes 19856 * care of the nonembedded mailbox operations. 19857 **/ 19858 int 19859 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19860 { 19861 int rc = 0; 19862 LPFC_MBOXQ_t *mboxq; 19863 uint8_t *bytep; 19864 void *virt_addr; 19865 struct lpfc_mbx_sge sge; 19866 uint32_t alloc_len, req_len; 19867 uint32_t fcfindex; 19868 19869 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19870 if (!mboxq) { 19871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19872 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19873 return -ENOMEM; 19874 } 19875 19876 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19877 sizeof(uint32_t); 19878 19879 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19880 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19881 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19882 req_len, LPFC_SLI4_MBX_NEMBED); 19883 if (alloc_len < req_len) { 19884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19885 "2523 Allocated DMA memory size (x%x) is " 19886 "less than the requested DMA memory " 19887 "size (x%x)\n", alloc_len, req_len); 19888 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19889 return -ENOMEM; 19890 } 19891 19892 /* 19893 * Get the first SGE entry from the non-embedded DMA memory. This 19894 * routine only uses a single SGE. 19895 */ 19896 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19897 virt_addr = mboxq->sge_array->addr[0]; 19898 /* 19899 * Configure the FCF record for FCFI 0. This is the driver's 19900 * hardcoded default and gets used in nonFIP mode. 19901 */ 19902 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19903 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19904 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19905 19906 /* 19907 * Copy the fcf_index and the FCF Record Data. The data starts after 19908 * the FCoE header plus word10. The data copy needs to be endian 19909 * correct. 19910 */ 19911 bytep += sizeof(uint32_t); 19912 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19913 mboxq->vport = phba->pport; 19914 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19915 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19916 if (rc == MBX_NOT_FINISHED) { 19917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19918 "2515 ADD_FCF_RECORD mailbox failed with " 19919 "status 0x%x\n", rc); 19920 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19921 rc = -EIO; 19922 } else 19923 rc = 0; 19924 19925 return rc; 19926 } 19927 19928 /** 19929 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19930 * @phba: pointer to lpfc hba data structure. 19931 * @fcf_record: pointer to the fcf record to write the default data. 19932 * @fcf_index: FCF table entry index. 19933 * 19934 * This routine is invoked to build the driver's default FCF record. The 19935 * values used are hardcoded. This routine handles memory initialization. 19936 * 19937 **/ 19938 void 19939 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19940 struct fcf_record *fcf_record, 19941 uint16_t fcf_index) 19942 { 19943 memset(fcf_record, 0, sizeof(struct fcf_record)); 19944 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19945 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19946 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19947 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19948 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19949 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19950 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19951 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19952 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19953 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19954 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19955 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19956 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19957 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19958 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19959 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19960 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19961 /* Set the VLAN bit map */ 19962 if (phba->valid_vlan) { 19963 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19964 = 1 << (phba->vlan_id % 8); 19965 } 19966 } 19967 19968 /** 19969 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19970 * @phba: pointer to lpfc hba data structure. 19971 * @fcf_index: FCF table entry offset. 19972 * 19973 * This routine is invoked to scan the entire FCF table by reading FCF 19974 * record and processing it one at a time starting from the @fcf_index 19975 * for initial FCF discovery or fast FCF failover rediscovery. 19976 * 19977 * Return 0 if the mailbox command is submitted successfully, none 0 19978 * otherwise. 19979 **/ 19980 int 19981 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19982 { 19983 int rc = 0, error; 19984 LPFC_MBOXQ_t *mboxq; 19985 19986 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19987 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19988 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19989 if (!mboxq) { 19990 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19991 "2000 Failed to allocate mbox for " 19992 "READ_FCF cmd\n"); 19993 error = -ENOMEM; 19994 goto fail_fcf_scan; 19995 } 19996 /* Construct the read FCF record mailbox command */ 19997 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19998 if (rc) { 19999 error = -EINVAL; 20000 goto fail_fcf_scan; 20001 } 20002 /* Issue the mailbox command asynchronously */ 20003 mboxq->vport = phba->pport; 20004 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 20005 20006 spin_lock_irq(&phba->hbalock); 20007 phba->hba_flag |= FCF_TS_INPROG; 20008 spin_unlock_irq(&phba->hbalock); 20009 20010 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20011 if (rc == MBX_NOT_FINISHED) 20012 error = -EIO; 20013 else { 20014 /* Reset eligible FCF count for new scan */ 20015 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 20016 phba->fcf.eligible_fcf_cnt = 0; 20017 error = 0; 20018 } 20019 fail_fcf_scan: 20020 if (error) { 20021 if (mboxq) 20022 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20023 /* FCF scan failed, clear FCF_TS_INPROG flag */ 20024 spin_lock_irq(&phba->hbalock); 20025 phba->hba_flag &= ~FCF_TS_INPROG; 20026 spin_unlock_irq(&phba->hbalock); 20027 } 20028 return error; 20029 } 20030 20031 /** 20032 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 20033 * @phba: pointer to lpfc hba data structure. 20034 * @fcf_index: FCF table entry offset. 20035 * 20036 * This routine is invoked to read an FCF record indicated by @fcf_index 20037 * and to use it for FLOGI roundrobin FCF failover. 20038 * 20039 * Return 0 if the mailbox command is submitted successfully, none 0 20040 * otherwise. 20041 **/ 20042 int 20043 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20044 { 20045 int rc = 0, error; 20046 LPFC_MBOXQ_t *mboxq; 20047 20048 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20049 if (!mboxq) { 20050 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20051 "2763 Failed to allocate mbox for " 20052 "READ_FCF cmd\n"); 20053 error = -ENOMEM; 20054 goto fail_fcf_read; 20055 } 20056 /* Construct the read FCF record mailbox command */ 20057 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20058 if (rc) { 20059 error = -EINVAL; 20060 goto fail_fcf_read; 20061 } 20062 /* Issue the mailbox command asynchronously */ 20063 mboxq->vport = phba->pport; 20064 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 20065 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20066 if (rc == MBX_NOT_FINISHED) 20067 error = -EIO; 20068 else 20069 error = 0; 20070 20071 fail_fcf_read: 20072 if (error && mboxq) 20073 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20074 return error; 20075 } 20076 20077 /** 20078 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 20079 * @phba: pointer to lpfc hba data structure. 20080 * @fcf_index: FCF table entry offset. 20081 * 20082 * This routine is invoked to read an FCF record indicated by @fcf_index to 20083 * determine whether it's eligible for FLOGI roundrobin failover list. 20084 * 20085 * Return 0 if the mailbox command is submitted successfully, none 0 20086 * otherwise. 20087 **/ 20088 int 20089 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 20090 { 20091 int rc = 0, error; 20092 LPFC_MBOXQ_t *mboxq; 20093 20094 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20095 if (!mboxq) { 20096 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 20097 "2758 Failed to allocate mbox for " 20098 "READ_FCF cmd\n"); 20099 error = -ENOMEM; 20100 goto fail_fcf_read; 20101 } 20102 /* Construct the read FCF record mailbox command */ 20103 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 20104 if (rc) { 20105 error = -EINVAL; 20106 goto fail_fcf_read; 20107 } 20108 /* Issue the mailbox command asynchronously */ 20109 mboxq->vport = phba->pport; 20110 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 20111 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 20112 if (rc == MBX_NOT_FINISHED) 20113 error = -EIO; 20114 else 20115 error = 0; 20116 20117 fail_fcf_read: 20118 if (error && mboxq) 20119 lpfc_sli4_mbox_cmd_free(phba, mboxq); 20120 return error; 20121 } 20122 20123 /** 20124 * lpfc_check_next_fcf_pri_level 20125 * @phba: pointer to the lpfc_hba struct for this port. 20126 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 20127 * routine when the rr_bmask is empty. The FCF indecies are put into the 20128 * rr_bmask based on their priority level. Starting from the highest priority 20129 * to the lowest. The most likely FCF candidate will be in the highest 20130 * priority group. When this routine is called it searches the fcf_pri list for 20131 * next lowest priority group and repopulates the rr_bmask with only those 20132 * fcf_indexes. 20133 * returns: 20134 * 1=success 0=failure 20135 **/ 20136 static int 20137 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 20138 { 20139 uint16_t next_fcf_pri; 20140 uint16_t last_index; 20141 struct lpfc_fcf_pri *fcf_pri; 20142 int rc; 20143 int ret = 0; 20144 20145 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20146 LPFC_SLI4_FCF_TBL_INDX_MAX); 20147 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20148 "3060 Last IDX %d\n", last_index); 20149 20150 /* Verify the priority list has 2 or more entries */ 20151 spin_lock_irq(&phba->hbalock); 20152 if (list_empty(&phba->fcf.fcf_pri_list) || 20153 list_is_singular(&phba->fcf.fcf_pri_list)) { 20154 spin_unlock_irq(&phba->hbalock); 20155 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20156 "3061 Last IDX %d\n", last_index); 20157 return 0; /* Empty rr list */ 20158 } 20159 spin_unlock_irq(&phba->hbalock); 20160 20161 next_fcf_pri = 0; 20162 /* 20163 * Clear the rr_bmask and set all of the bits that are at this 20164 * priority. 20165 */ 20166 memset(phba->fcf.fcf_rr_bmask, 0, 20167 sizeof(*phba->fcf.fcf_rr_bmask)); 20168 spin_lock_irq(&phba->hbalock); 20169 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20170 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 20171 continue; 20172 /* 20173 * the 1st priority that has not FLOGI failed 20174 * will be the highest. 20175 */ 20176 if (!next_fcf_pri) 20177 next_fcf_pri = fcf_pri->fcf_rec.priority; 20178 spin_unlock_irq(&phba->hbalock); 20179 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20180 rc = lpfc_sli4_fcf_rr_index_set(phba, 20181 fcf_pri->fcf_rec.fcf_index); 20182 if (rc) 20183 return 0; 20184 } 20185 spin_lock_irq(&phba->hbalock); 20186 } 20187 /* 20188 * if next_fcf_pri was not set above and the list is not empty then 20189 * we have failed flogis on all of them. So reset flogi failed 20190 * and start at the beginning. 20191 */ 20192 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 20193 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 20194 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 20195 /* 20196 * the 1st priority that has not FLOGI failed 20197 * will be the highest. 20198 */ 20199 if (!next_fcf_pri) 20200 next_fcf_pri = fcf_pri->fcf_rec.priority; 20201 spin_unlock_irq(&phba->hbalock); 20202 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 20203 rc = lpfc_sli4_fcf_rr_index_set(phba, 20204 fcf_pri->fcf_rec.fcf_index); 20205 if (rc) 20206 return 0; 20207 } 20208 spin_lock_irq(&phba->hbalock); 20209 } 20210 } else 20211 ret = 1; 20212 spin_unlock_irq(&phba->hbalock); 20213 20214 return ret; 20215 } 20216 /** 20217 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 20218 * @phba: pointer to lpfc hba data structure. 20219 * 20220 * This routine is to get the next eligible FCF record index in a round 20221 * robin fashion. If the next eligible FCF record index equals to the 20222 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 20223 * shall be returned, otherwise, the next eligible FCF record's index 20224 * shall be returned. 20225 **/ 20226 uint16_t 20227 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 20228 { 20229 uint16_t next_fcf_index; 20230 20231 initial_priority: 20232 /* Search start from next bit of currently registered FCF index */ 20233 next_fcf_index = phba->fcf.current_rec.fcf_indx; 20234 20235 next_priority: 20236 /* Determine the next fcf index to check */ 20237 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 20238 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 20239 LPFC_SLI4_FCF_TBL_INDX_MAX, 20240 next_fcf_index); 20241 20242 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 20243 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20244 /* 20245 * If we have wrapped then we need to clear the bits that 20246 * have been tested so that we can detect when we should 20247 * change the priority level. 20248 */ 20249 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 20250 LPFC_SLI4_FCF_TBL_INDX_MAX); 20251 } 20252 20253 20254 /* Check roundrobin failover list empty condition */ 20255 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20256 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20257 /* 20258 * If next fcf index is not found check if there are lower 20259 * Priority level fcf's in the fcf_priority list. 20260 * Set up the rr_bmask with all of the avaiable fcf bits 20261 * at that level and continue the selection process. 20262 */ 20263 if (lpfc_check_next_fcf_pri_level(phba)) 20264 goto initial_priority; 20265 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20266 "2844 No roundrobin failover FCF available\n"); 20267 20268 return LPFC_FCOE_FCF_NEXT_NONE; 20269 } 20270 20271 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20272 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20273 LPFC_FCF_FLOGI_FAILED) { 20274 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20275 return LPFC_FCOE_FCF_NEXT_NONE; 20276 20277 goto next_priority; 20278 } 20279 20280 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20281 "2845 Get next roundrobin failover FCF (x%x)\n", 20282 next_fcf_index); 20283 20284 return next_fcf_index; 20285 } 20286 20287 /** 20288 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20289 * @phba: pointer to lpfc hba data structure. 20290 * @fcf_index: index into the FCF table to 'set' 20291 * 20292 * This routine sets the FCF record index in to the eligible bmask for 20293 * roundrobin failover search. It checks to make sure that the index 20294 * does not go beyond the range of the driver allocated bmask dimension 20295 * before setting the bit. 20296 * 20297 * Returns 0 if the index bit successfully set, otherwise, it returns 20298 * -EINVAL. 20299 **/ 20300 int 20301 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20302 { 20303 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20304 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20305 "2610 FCF (x%x) reached driver's book " 20306 "keeping dimension:x%x\n", 20307 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20308 return -EINVAL; 20309 } 20310 /* Set the eligible FCF record index bmask */ 20311 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20312 20313 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20314 "2790 Set FCF (x%x) to roundrobin FCF failover " 20315 "bmask\n", fcf_index); 20316 20317 return 0; 20318 } 20319 20320 /** 20321 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20322 * @phba: pointer to lpfc hba data structure. 20323 * @fcf_index: index into the FCF table to 'clear' 20324 * 20325 * This routine clears the FCF record index from the eligible bmask for 20326 * roundrobin failover search. It checks to make sure that the index 20327 * does not go beyond the range of the driver allocated bmask dimension 20328 * before clearing the bit. 20329 **/ 20330 void 20331 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20332 { 20333 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20334 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20335 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20336 "2762 FCF (x%x) reached driver's book " 20337 "keeping dimension:x%x\n", 20338 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20339 return; 20340 } 20341 /* Clear the eligible FCF record index bmask */ 20342 spin_lock_irq(&phba->hbalock); 20343 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20344 list) { 20345 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20346 list_del_init(&fcf_pri->list); 20347 break; 20348 } 20349 } 20350 spin_unlock_irq(&phba->hbalock); 20351 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20352 20353 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20354 "2791 Clear FCF (x%x) from roundrobin failover " 20355 "bmask\n", fcf_index); 20356 } 20357 20358 /** 20359 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20360 * @phba: pointer to lpfc hba data structure. 20361 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20362 * 20363 * This routine is the completion routine for the rediscover FCF table mailbox 20364 * command. If the mailbox command returned failure, it will try to stop the 20365 * FCF rediscover wait timer. 20366 **/ 20367 static void 20368 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20369 { 20370 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20371 uint32_t shdr_status, shdr_add_status; 20372 20373 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20374 20375 shdr_status = bf_get(lpfc_mbox_hdr_status, 20376 &redisc_fcf->header.cfg_shdr.response); 20377 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20378 &redisc_fcf->header.cfg_shdr.response); 20379 if (shdr_status || shdr_add_status) { 20380 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20381 "2746 Requesting for FCF rediscovery failed " 20382 "status x%x add_status x%x\n", 20383 shdr_status, shdr_add_status); 20384 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20385 spin_lock_irq(&phba->hbalock); 20386 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20387 spin_unlock_irq(&phba->hbalock); 20388 /* 20389 * CVL event triggered FCF rediscover request failed, 20390 * last resort to re-try current registered FCF entry. 20391 */ 20392 lpfc_retry_pport_discovery(phba); 20393 } else { 20394 spin_lock_irq(&phba->hbalock); 20395 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20396 spin_unlock_irq(&phba->hbalock); 20397 /* 20398 * DEAD FCF event triggered FCF rediscover request 20399 * failed, last resort to fail over as a link down 20400 * to FCF registration. 20401 */ 20402 lpfc_sli4_fcf_dead_failthrough(phba); 20403 } 20404 } else { 20405 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20406 "2775 Start FCF rediscover quiescent timer\n"); 20407 /* 20408 * Start FCF rediscovery wait timer for pending FCF 20409 * before rescan FCF record table. 20410 */ 20411 lpfc_fcf_redisc_wait_start_timer(phba); 20412 } 20413 20414 mempool_free(mbox, phba->mbox_mem_pool); 20415 } 20416 20417 /** 20418 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20419 * @phba: pointer to lpfc hba data structure. 20420 * 20421 * This routine is invoked to request for rediscovery of the entire FCF table 20422 * by the port. 20423 **/ 20424 int 20425 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20426 { 20427 LPFC_MBOXQ_t *mbox; 20428 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20429 int rc, length; 20430 20431 /* Cancel retry delay timers to all vports before FCF rediscover */ 20432 lpfc_cancel_all_vport_retry_delay_timer(phba); 20433 20434 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20435 if (!mbox) { 20436 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20437 "2745 Failed to allocate mbox for " 20438 "requesting FCF rediscover.\n"); 20439 return -ENOMEM; 20440 } 20441 20442 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20443 sizeof(struct lpfc_sli4_cfg_mhdr)); 20444 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20445 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20446 length, LPFC_SLI4_MBX_EMBED); 20447 20448 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20449 /* Set count to 0 for invalidating the entire FCF database */ 20450 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20451 20452 /* Issue the mailbox command asynchronously */ 20453 mbox->vport = phba->pport; 20454 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20455 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20456 20457 if (rc == MBX_NOT_FINISHED) { 20458 mempool_free(mbox, phba->mbox_mem_pool); 20459 return -EIO; 20460 } 20461 return 0; 20462 } 20463 20464 /** 20465 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20466 * @phba: pointer to lpfc hba data structure. 20467 * 20468 * This function is the failover routine as a last resort to the FCF DEAD 20469 * event when driver failed to perform fast FCF failover. 20470 **/ 20471 void 20472 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20473 { 20474 uint32_t link_state; 20475 20476 /* 20477 * Last resort as FCF DEAD event failover will treat this as 20478 * a link down, but save the link state because we don't want 20479 * it to be changed to Link Down unless it is already down. 20480 */ 20481 link_state = phba->link_state; 20482 lpfc_linkdown(phba); 20483 phba->link_state = link_state; 20484 20485 /* Unregister FCF if no devices connected to it */ 20486 lpfc_unregister_unused_fcf(phba); 20487 } 20488 20489 /** 20490 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20491 * @phba: pointer to lpfc hba data structure. 20492 * @rgn23_data: pointer to configure region 23 data. 20493 * 20494 * This function gets SLI3 port configure region 23 data through memory dump 20495 * mailbox command. When it successfully retrieves data, the size of the data 20496 * will be returned, otherwise, 0 will be returned. 20497 **/ 20498 static uint32_t 20499 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20500 { 20501 LPFC_MBOXQ_t *pmb = NULL; 20502 MAILBOX_t *mb; 20503 uint32_t offset = 0; 20504 int rc; 20505 20506 if (!rgn23_data) 20507 return 0; 20508 20509 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20510 if (!pmb) { 20511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20512 "2600 failed to allocate mailbox memory\n"); 20513 return 0; 20514 } 20515 mb = &pmb->u.mb; 20516 20517 do { 20518 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20519 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20520 20521 if (rc != MBX_SUCCESS) { 20522 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20523 "2601 failed to read config " 20524 "region 23, rc 0x%x Status 0x%x\n", 20525 rc, mb->mbxStatus); 20526 mb->un.varDmp.word_cnt = 0; 20527 } 20528 /* 20529 * dump mem may return a zero when finished or we got a 20530 * mailbox error, either way we are done. 20531 */ 20532 if (mb->un.varDmp.word_cnt == 0) 20533 break; 20534 20535 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20536 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20537 20538 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20539 rgn23_data + offset, 20540 mb->un.varDmp.word_cnt); 20541 offset += mb->un.varDmp.word_cnt; 20542 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20543 20544 mempool_free(pmb, phba->mbox_mem_pool); 20545 return offset; 20546 } 20547 20548 /** 20549 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20550 * @phba: pointer to lpfc hba data structure. 20551 * @rgn23_data: pointer to configure region 23 data. 20552 * 20553 * This function gets SLI4 port configure region 23 data through memory dump 20554 * mailbox command. When it successfully retrieves data, the size of the data 20555 * will be returned, otherwise, 0 will be returned. 20556 **/ 20557 static uint32_t 20558 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20559 { 20560 LPFC_MBOXQ_t *mboxq = NULL; 20561 struct lpfc_dmabuf *mp = NULL; 20562 struct lpfc_mqe *mqe; 20563 uint32_t data_length = 0; 20564 int rc; 20565 20566 if (!rgn23_data) 20567 return 0; 20568 20569 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20570 if (!mboxq) { 20571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20572 "3105 failed to allocate mailbox memory\n"); 20573 return 0; 20574 } 20575 20576 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20577 goto out; 20578 mqe = &mboxq->u.mqe; 20579 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20580 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20581 if (rc) 20582 goto out; 20583 data_length = mqe->un.mb_words[5]; 20584 if (data_length == 0) 20585 goto out; 20586 if (data_length > DMP_RGN23_SIZE) { 20587 data_length = 0; 20588 goto out; 20589 } 20590 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20591 out: 20592 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20593 return data_length; 20594 } 20595 20596 /** 20597 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20598 * @phba: pointer to lpfc hba data structure. 20599 * 20600 * This function read region 23 and parse TLV for port status to 20601 * decide if the user disaled the port. If the TLV indicates the 20602 * port is disabled, the hba_flag is set accordingly. 20603 **/ 20604 void 20605 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20606 { 20607 uint8_t *rgn23_data = NULL; 20608 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20609 uint32_t offset = 0; 20610 20611 /* Get adapter Region 23 data */ 20612 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20613 if (!rgn23_data) 20614 goto out; 20615 20616 if (phba->sli_rev < LPFC_SLI_REV4) 20617 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20618 else { 20619 if_type = bf_get(lpfc_sli_intf_if_type, 20620 &phba->sli4_hba.sli_intf); 20621 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20622 goto out; 20623 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20624 } 20625 20626 if (!data_size) 20627 goto out; 20628 20629 /* Check the region signature first */ 20630 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20632 "2619 Config region 23 has bad signature\n"); 20633 goto out; 20634 } 20635 offset += 4; 20636 20637 /* Check the data structure version */ 20638 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20639 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20640 "2620 Config region 23 has bad version\n"); 20641 goto out; 20642 } 20643 offset += 4; 20644 20645 /* Parse TLV entries in the region */ 20646 while (offset < data_size) { 20647 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20648 break; 20649 /* 20650 * If the TLV is not driver specific TLV or driver id is 20651 * not linux driver id, skip the record. 20652 */ 20653 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20654 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20655 (rgn23_data[offset + 3] != 0)) { 20656 offset += rgn23_data[offset + 1] * 4 + 4; 20657 continue; 20658 } 20659 20660 /* Driver found a driver specific TLV in the config region */ 20661 sub_tlv_len = rgn23_data[offset + 1] * 4; 20662 offset += 4; 20663 tlv_offset = 0; 20664 20665 /* 20666 * Search for configured port state sub-TLV. 20667 */ 20668 while ((offset < data_size) && 20669 (tlv_offset < sub_tlv_len)) { 20670 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20671 offset += 4; 20672 tlv_offset += 4; 20673 break; 20674 } 20675 if (rgn23_data[offset] != PORT_STE_TYPE) { 20676 offset += rgn23_data[offset + 1] * 4 + 4; 20677 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20678 continue; 20679 } 20680 20681 /* This HBA contains PORT_STE configured */ 20682 if (!rgn23_data[offset + 2]) 20683 phba->hba_flag |= LINK_DISABLED; 20684 20685 goto out; 20686 } 20687 } 20688 20689 out: 20690 kfree(rgn23_data); 20691 return; 20692 } 20693 20694 /** 20695 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20696 * @phba: pointer to lpfc hba data structure 20697 * @shdr_status: wr_object rsp's status field 20698 * @shdr_add_status: wr_object rsp's add_status field 20699 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20700 * @shdr_change_status: wr_object rsp's change_status field 20701 * @shdr_csf: wr_object rsp's csf bit 20702 * 20703 * This routine is intended to be called after a firmware write completes. 20704 * It will log next action items to be performed by the user to instantiate 20705 * the newly downloaded firmware or reason for incompatibility. 20706 **/ 20707 static void 20708 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20709 u32 shdr_add_status, u32 shdr_add_status_2, 20710 u32 shdr_change_status, u32 shdr_csf) 20711 { 20712 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20713 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20714 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20715 "change_status x%02x, csf %01x\n", __func__, 20716 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20717 shdr_status, shdr_add_status, shdr_add_status_2, 20718 shdr_change_status, shdr_csf); 20719 20720 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20721 switch (shdr_add_status_2) { 20722 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20723 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20724 "4199 Firmware write failed: " 20725 "image incompatible with flash x%02x\n", 20726 phba->sli4_hba.flash_id); 20727 break; 20728 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20729 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20730 "4200 Firmware write failed: " 20731 "image incompatible with ASIC " 20732 "architecture x%02x\n", 20733 phba->sli4_hba.asic_rev); 20734 break; 20735 default: 20736 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20737 "4210 Firmware write failed: " 20738 "add_status_2 x%02x\n", 20739 shdr_add_status_2); 20740 break; 20741 } 20742 } else if (!shdr_status && !shdr_add_status) { 20743 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20744 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20745 if (shdr_csf) 20746 shdr_change_status = 20747 LPFC_CHANGE_STATUS_PCI_RESET; 20748 } 20749 20750 switch (shdr_change_status) { 20751 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20752 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20753 "3198 Firmware write complete: System " 20754 "reboot required to instantiate\n"); 20755 break; 20756 case (LPFC_CHANGE_STATUS_FW_RESET): 20757 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20758 "3199 Firmware write complete: " 20759 "Firmware reset required to " 20760 "instantiate\n"); 20761 break; 20762 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20763 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20764 "3200 Firmware write complete: Port " 20765 "Migration or PCI Reset required to " 20766 "instantiate\n"); 20767 break; 20768 case (LPFC_CHANGE_STATUS_PCI_RESET): 20769 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20770 "3201 Firmware write complete: PCI " 20771 "Reset required to instantiate\n"); 20772 break; 20773 default: 20774 break; 20775 } 20776 } 20777 } 20778 20779 /** 20780 * lpfc_wr_object - write an object to the firmware 20781 * @phba: HBA structure that indicates port to create a queue on. 20782 * @dmabuf_list: list of dmabufs to write to the port. 20783 * @size: the total byte value of the objects to write to the port. 20784 * @offset: the current offset to be used to start the transfer. 20785 * 20786 * This routine will create a wr_object mailbox command to send to the port. 20787 * the mailbox command will be constructed using the dma buffers described in 20788 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20789 * BDEs that the imbedded mailbox can support. The @offset variable will be 20790 * used to indicate the starting offset of the transfer and will also return 20791 * the offset after the write object mailbox has completed. @size is used to 20792 * determine the end of the object and whether the eof bit should be set. 20793 * 20794 * Return 0 is successful and offset will contain the the new offset to use 20795 * for the next write. 20796 * Return negative value for error cases. 20797 **/ 20798 int 20799 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20800 uint32_t size, uint32_t *offset) 20801 { 20802 struct lpfc_mbx_wr_object *wr_object; 20803 LPFC_MBOXQ_t *mbox; 20804 int rc = 0, i = 0; 20805 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20806 uint32_t shdr_change_status = 0, shdr_csf = 0; 20807 uint32_t mbox_tmo; 20808 struct lpfc_dmabuf *dmabuf; 20809 uint32_t written = 0; 20810 bool check_change_status = false; 20811 20812 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20813 if (!mbox) 20814 return -ENOMEM; 20815 20816 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20817 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20818 sizeof(struct lpfc_mbx_wr_object) - 20819 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20820 20821 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20822 wr_object->u.request.write_offset = *offset; 20823 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20824 wr_object->u.request.object_name[0] = 20825 cpu_to_le32(wr_object->u.request.object_name[0]); 20826 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20827 list_for_each_entry(dmabuf, dmabuf_list, list) { 20828 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20829 break; 20830 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20831 wr_object->u.request.bde[i].addrHigh = 20832 putPaddrHigh(dmabuf->phys); 20833 if (written + SLI4_PAGE_SIZE >= size) { 20834 wr_object->u.request.bde[i].tus.f.bdeSize = 20835 (size - written); 20836 written += (size - written); 20837 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20838 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20839 check_change_status = true; 20840 } else { 20841 wr_object->u.request.bde[i].tus.f.bdeSize = 20842 SLI4_PAGE_SIZE; 20843 written += SLI4_PAGE_SIZE; 20844 } 20845 i++; 20846 } 20847 wr_object->u.request.bde_count = i; 20848 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20849 if (!phba->sli4_hba.intr_enable) 20850 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20851 else { 20852 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20853 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20854 } 20855 /* The IOCTL status is embedded in the mailbox subheader. */ 20856 shdr_status = bf_get(lpfc_mbox_hdr_status, 20857 &wr_object->header.cfg_shdr.response); 20858 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20859 &wr_object->header.cfg_shdr.response); 20860 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20861 &wr_object->header.cfg_shdr.response); 20862 if (check_change_status) { 20863 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20864 &wr_object->u.response); 20865 shdr_csf = bf_get(lpfc_wr_object_csf, 20866 &wr_object->u.response); 20867 } 20868 20869 if (!phba->sli4_hba.intr_enable) 20870 mempool_free(mbox, phba->mbox_mem_pool); 20871 else if (rc != MBX_TIMEOUT) 20872 mempool_free(mbox, phba->mbox_mem_pool); 20873 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20874 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20875 "3025 Write Object mailbox failed with " 20876 "status x%x add_status x%x, add_status_2 x%x, " 20877 "mbx status x%x\n", 20878 shdr_status, shdr_add_status, shdr_add_status_2, 20879 rc); 20880 rc = -ENXIO; 20881 *offset = shdr_add_status; 20882 } else { 20883 *offset += wr_object->u.response.actual_write_length; 20884 } 20885 20886 if (rc || check_change_status) 20887 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20888 shdr_add_status_2, shdr_change_status, 20889 shdr_csf); 20890 return rc; 20891 } 20892 20893 /** 20894 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20895 * @vport: pointer to vport data structure. 20896 * 20897 * This function iterate through the mailboxq and clean up all REG_LOGIN 20898 * and REG_VPI mailbox commands associated with the vport. This function 20899 * is called when driver want to restart discovery of the vport due to 20900 * a Clear Virtual Link event. 20901 **/ 20902 void 20903 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20904 { 20905 struct lpfc_hba *phba = vport->phba; 20906 LPFC_MBOXQ_t *mb, *nextmb; 20907 struct lpfc_nodelist *ndlp; 20908 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20909 LIST_HEAD(mbox_cmd_list); 20910 uint8_t restart_loop; 20911 20912 /* Clean up internally queued mailbox commands with the vport */ 20913 spin_lock_irq(&phba->hbalock); 20914 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20915 if (mb->vport != vport) 20916 continue; 20917 20918 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20919 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20920 continue; 20921 20922 list_move_tail(&mb->list, &mbox_cmd_list); 20923 } 20924 /* Clean up active mailbox command with the vport */ 20925 mb = phba->sli.mbox_active; 20926 if (mb && (mb->vport == vport)) { 20927 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20928 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20929 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20930 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20931 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20932 20933 /* This reference is local to this routine. The 20934 * reference is removed at routine exit. 20935 */ 20936 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20937 20938 /* Unregister the RPI when mailbox complete */ 20939 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20940 } 20941 } 20942 /* Cleanup any mailbox completions which are not yet processed */ 20943 do { 20944 restart_loop = 0; 20945 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20946 /* 20947 * If this mailox is already processed or it is 20948 * for another vport ignore it. 20949 */ 20950 if ((mb->vport != vport) || 20951 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20952 continue; 20953 20954 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20955 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20956 continue; 20957 20958 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20959 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20960 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20961 /* Unregister the RPI when mailbox complete */ 20962 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20963 restart_loop = 1; 20964 spin_unlock_irq(&phba->hbalock); 20965 spin_lock(&ndlp->lock); 20966 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20967 spin_unlock(&ndlp->lock); 20968 spin_lock_irq(&phba->hbalock); 20969 break; 20970 } 20971 } 20972 } while (restart_loop); 20973 20974 spin_unlock_irq(&phba->hbalock); 20975 20976 /* Release the cleaned-up mailbox commands */ 20977 while (!list_empty(&mbox_cmd_list)) { 20978 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20979 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20980 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20981 mb->ctx_ndlp = NULL; 20982 if (ndlp) { 20983 spin_lock(&ndlp->lock); 20984 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20985 spin_unlock(&ndlp->lock); 20986 lpfc_nlp_put(ndlp); 20987 } 20988 } 20989 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 20990 } 20991 20992 /* Release the ndlp with the cleaned-up active mailbox command */ 20993 if (act_mbx_ndlp) { 20994 spin_lock(&act_mbx_ndlp->lock); 20995 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20996 spin_unlock(&act_mbx_ndlp->lock); 20997 lpfc_nlp_put(act_mbx_ndlp); 20998 } 20999 } 21000 21001 /** 21002 * lpfc_drain_txq - Drain the txq 21003 * @phba: Pointer to HBA context object. 21004 * 21005 * This function attempt to submit IOCBs on the txq 21006 * to the adapter. For SLI4 adapters, the txq contains 21007 * ELS IOCBs that have been deferred because the there 21008 * are no SGLs. This congestion can occur with large 21009 * vport counts during node discovery. 21010 **/ 21011 21012 uint32_t 21013 lpfc_drain_txq(struct lpfc_hba *phba) 21014 { 21015 LIST_HEAD(completions); 21016 struct lpfc_sli_ring *pring; 21017 struct lpfc_iocbq *piocbq = NULL; 21018 unsigned long iflags = 0; 21019 char *fail_msg = NULL; 21020 uint32_t txq_cnt = 0; 21021 struct lpfc_queue *wq; 21022 int ret = 0; 21023 21024 if (phba->link_flag & LS_MDS_LOOPBACK) { 21025 /* MDS WQE are posted only to first WQ*/ 21026 wq = phba->sli4_hba.hdwq[0].io_wq; 21027 if (unlikely(!wq)) 21028 return 0; 21029 pring = wq->pring; 21030 } else { 21031 wq = phba->sli4_hba.els_wq; 21032 if (unlikely(!wq)) 21033 return 0; 21034 pring = lpfc_phba_elsring(phba); 21035 } 21036 21037 if (unlikely(!pring) || list_empty(&pring->txq)) 21038 return 0; 21039 21040 spin_lock_irqsave(&pring->ring_lock, iflags); 21041 list_for_each_entry(piocbq, &pring->txq, list) { 21042 txq_cnt++; 21043 } 21044 21045 if (txq_cnt > pring->txq_max) 21046 pring->txq_max = txq_cnt; 21047 21048 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21049 21050 while (!list_empty(&pring->txq)) { 21051 spin_lock_irqsave(&pring->ring_lock, iflags); 21052 21053 piocbq = lpfc_sli_ringtx_get(phba, pring); 21054 if (!piocbq) { 21055 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21056 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21057 "2823 txq empty and txq_cnt is %d\n ", 21058 txq_cnt); 21059 break; 21060 } 21061 txq_cnt--; 21062 21063 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 21064 21065 if (ret && ret != IOCB_BUSY) { 21066 fail_msg = " - Cannot send IO "; 21067 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21068 } 21069 if (fail_msg) { 21070 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 21071 /* Failed means we can't issue and need to cancel */ 21072 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 21073 "2822 IOCB failed %s iotag 0x%x " 21074 "xri 0x%x %d flg x%x\n", 21075 fail_msg, piocbq->iotag, 21076 piocbq->sli4_xritag, ret, 21077 piocbq->cmd_flag); 21078 list_add_tail(&piocbq->list, &completions); 21079 fail_msg = NULL; 21080 } 21081 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21082 if (txq_cnt == 0 || ret == IOCB_BUSY) 21083 break; 21084 } 21085 /* Cancel all the IOCBs that cannot be issued */ 21086 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 21087 IOERR_SLI_ABORTED); 21088 21089 return txq_cnt; 21090 } 21091 21092 /** 21093 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 21094 * @phba: Pointer to HBA context object. 21095 * @pwqeq: Pointer to command WQE. 21096 * @sglq: Pointer to the scatter gather queue object. 21097 * 21098 * This routine converts the bpl or bde that is in the WQE 21099 * to a sgl list for the sli4 hardware. The physical address 21100 * of the bpl/bde is converted back to a virtual address. 21101 * If the WQE contains a BPL then the list of BDE's is 21102 * converted to sli4_sge's. If the WQE contains a single 21103 * BDE then it is converted to a single sli_sge. 21104 * The WQE is still in cpu endianness so the contents of 21105 * the bpl can be used without byte swapping. 21106 * 21107 * Returns valid XRI = Success, NO_XRI = Failure. 21108 */ 21109 static uint16_t 21110 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 21111 struct lpfc_sglq *sglq) 21112 { 21113 uint16_t xritag = NO_XRI; 21114 struct ulp_bde64 *bpl = NULL; 21115 struct ulp_bde64 bde; 21116 struct sli4_sge *sgl = NULL; 21117 struct lpfc_dmabuf *dmabuf; 21118 union lpfc_wqe128 *wqe; 21119 int numBdes = 0; 21120 int i = 0; 21121 uint32_t offset = 0; /* accumulated offset in the sg request list */ 21122 int inbound = 0; /* number of sg reply entries inbound from firmware */ 21123 uint32_t cmd; 21124 21125 if (!pwqeq || !sglq) 21126 return xritag; 21127 21128 sgl = (struct sli4_sge *)sglq->sgl; 21129 wqe = &pwqeq->wqe; 21130 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 21131 21132 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 21133 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 21134 return sglq->sli4_xritag; 21135 numBdes = pwqeq->num_bdes; 21136 if (numBdes) { 21137 /* The addrHigh and addrLow fields within the WQE 21138 * have not been byteswapped yet so there is no 21139 * need to swap them back. 21140 */ 21141 if (pwqeq->bpl_dmabuf) 21142 dmabuf = pwqeq->bpl_dmabuf; 21143 else 21144 return xritag; 21145 21146 bpl = (struct ulp_bde64 *)dmabuf->virt; 21147 if (!bpl) 21148 return xritag; 21149 21150 for (i = 0; i < numBdes; i++) { 21151 /* Should already be byte swapped. */ 21152 sgl->addr_hi = bpl->addrHigh; 21153 sgl->addr_lo = bpl->addrLow; 21154 21155 sgl->word2 = le32_to_cpu(sgl->word2); 21156 if ((i+1) == numBdes) 21157 bf_set(lpfc_sli4_sge_last, sgl, 1); 21158 else 21159 bf_set(lpfc_sli4_sge_last, sgl, 0); 21160 /* swap the size field back to the cpu so we 21161 * can assign it to the sgl. 21162 */ 21163 bde.tus.w = le32_to_cpu(bpl->tus.w); 21164 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 21165 /* The offsets in the sgl need to be accumulated 21166 * separately for the request and reply lists. 21167 * The request is always first, the reply follows. 21168 */ 21169 switch (cmd) { 21170 case CMD_GEN_REQUEST64_WQE: 21171 /* add up the reply sg entries */ 21172 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 21173 inbound++; 21174 /* first inbound? reset the offset */ 21175 if (inbound == 1) 21176 offset = 0; 21177 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21178 bf_set(lpfc_sli4_sge_type, sgl, 21179 LPFC_SGE_TYPE_DATA); 21180 offset += bde.tus.f.bdeSize; 21181 break; 21182 case CMD_FCP_TRSP64_WQE: 21183 bf_set(lpfc_sli4_sge_offset, sgl, 0); 21184 bf_set(lpfc_sli4_sge_type, sgl, 21185 LPFC_SGE_TYPE_DATA); 21186 break; 21187 case CMD_FCP_TSEND64_WQE: 21188 case CMD_FCP_TRECEIVE64_WQE: 21189 bf_set(lpfc_sli4_sge_type, sgl, 21190 bpl->tus.f.bdeFlags); 21191 if (i < 3) 21192 offset = 0; 21193 else 21194 offset += bde.tus.f.bdeSize; 21195 bf_set(lpfc_sli4_sge_offset, sgl, offset); 21196 break; 21197 } 21198 sgl->word2 = cpu_to_le32(sgl->word2); 21199 bpl++; 21200 sgl++; 21201 } 21202 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 21203 /* The addrHigh and addrLow fields of the BDE have not 21204 * been byteswapped yet so they need to be swapped 21205 * before putting them in the sgl. 21206 */ 21207 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 21208 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 21209 sgl->word2 = le32_to_cpu(sgl->word2); 21210 bf_set(lpfc_sli4_sge_last, sgl, 1); 21211 sgl->word2 = cpu_to_le32(sgl->word2); 21212 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 21213 } 21214 return sglq->sli4_xritag; 21215 } 21216 21217 /** 21218 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 21219 * @phba: Pointer to HBA context object. 21220 * @qp: Pointer to HDW queue. 21221 * @pwqe: Pointer to command WQE. 21222 **/ 21223 int 21224 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21225 struct lpfc_iocbq *pwqe) 21226 { 21227 union lpfc_wqe128 *wqe = &pwqe->wqe; 21228 struct lpfc_async_xchg_ctx *ctxp; 21229 struct lpfc_queue *wq; 21230 struct lpfc_sglq *sglq; 21231 struct lpfc_sli_ring *pring; 21232 unsigned long iflags; 21233 uint32_t ret = 0; 21234 21235 /* NVME_LS and NVME_LS ABTS requests. */ 21236 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 21237 pring = phba->sli4_hba.nvmels_wq->pring; 21238 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21239 qp, wq_access); 21240 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 21241 if (!sglq) { 21242 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21243 return WQE_BUSY; 21244 } 21245 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21246 pwqe->sli4_xritag = sglq->sli4_xritag; 21247 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 21248 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21249 return WQE_ERROR; 21250 } 21251 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21252 pwqe->sli4_xritag); 21253 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21254 if (ret) { 21255 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21256 return ret; 21257 } 21258 21259 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21260 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21261 21262 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21263 return 0; 21264 } 21265 21266 /* NVME_FCREQ and NVME_ABTS requests */ 21267 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21268 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21269 wq = qp->io_wq; 21270 pring = wq->pring; 21271 21272 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21273 21274 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21275 qp, wq_access); 21276 ret = lpfc_sli4_wq_put(wq, wqe); 21277 if (ret) { 21278 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21279 return ret; 21280 } 21281 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21282 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21283 21284 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21285 return 0; 21286 } 21287 21288 /* NVMET requests */ 21289 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21290 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21291 wq = qp->io_wq; 21292 pring = wq->pring; 21293 21294 ctxp = pwqe->context_un.axchg; 21295 sglq = ctxp->ctxbuf->sglq; 21296 if (pwqe->sli4_xritag == NO_XRI) { 21297 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21298 pwqe->sli4_xritag = sglq->sli4_xritag; 21299 } 21300 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21301 pwqe->sli4_xritag); 21302 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21303 21304 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21305 qp, wq_access); 21306 ret = lpfc_sli4_wq_put(wq, wqe); 21307 if (ret) { 21308 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21309 return ret; 21310 } 21311 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21312 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21313 21314 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21315 return 0; 21316 } 21317 return WQE_ERROR; 21318 } 21319 21320 /** 21321 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21322 * @phba: Pointer to HBA context object. 21323 * @cmdiocb: Pointer to driver command iocb object. 21324 * @cmpl: completion function. 21325 * 21326 * Fill the appropriate fields for the abort WQE and call 21327 * internal routine lpfc_sli4_issue_wqe to send the WQE 21328 * This function is called with hbalock held and no ring_lock held. 21329 * 21330 * RETURNS 0 - SUCCESS 21331 **/ 21332 21333 int 21334 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21335 void *cmpl) 21336 { 21337 struct lpfc_vport *vport = cmdiocb->vport; 21338 struct lpfc_iocbq *abtsiocb = NULL; 21339 union lpfc_wqe128 *abtswqe; 21340 struct lpfc_io_buf *lpfc_cmd; 21341 int retval = IOCB_ERROR; 21342 u16 xritag = cmdiocb->sli4_xritag; 21343 21344 /* 21345 * The scsi command can not be in txq and it is in flight because the 21346 * pCmd is still pointing at the SCSI command we have to abort. There 21347 * is no need to search the txcmplq. Just send an abort to the FW. 21348 */ 21349 21350 abtsiocb = __lpfc_sli_get_iocbq(phba); 21351 if (!abtsiocb) 21352 return WQE_NORESOURCE; 21353 21354 /* Indicate the IO is being aborted by the driver. */ 21355 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21356 21357 abtswqe = &abtsiocb->wqe; 21358 memset(abtswqe, 0, sizeof(*abtswqe)); 21359 21360 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21361 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21362 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21363 abtswqe->abort_cmd.rsrvd5 = 0; 21364 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21365 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21366 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21367 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21368 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21369 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21370 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21371 21372 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21373 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21374 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21375 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21376 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21377 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21378 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21379 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21380 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21381 abtsiocb->vport = vport; 21382 abtsiocb->cmd_cmpl = cmpl; 21383 21384 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21385 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21386 21387 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21388 "0359 Abort xri x%x, original iotag x%x, " 21389 "abort cmd iotag x%x retval x%x\n", 21390 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21391 21392 if (retval) { 21393 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21394 __lpfc_sli_release_iocbq(phba, abtsiocb); 21395 } 21396 21397 return retval; 21398 } 21399 21400 #ifdef LPFC_MXP_STAT 21401 /** 21402 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21403 * @phba: pointer to lpfc hba data structure. 21404 * @hwqid: belong to which HWQ. 21405 * 21406 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21407 * 15 seconds after a test case is running. 21408 * 21409 * The user should call lpfc_debugfs_multixripools_write before running a test 21410 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21411 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21412 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21413 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21414 **/ 21415 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21416 { 21417 struct lpfc_sli4_hdw_queue *qp; 21418 struct lpfc_multixri_pool *multixri_pool; 21419 struct lpfc_pvt_pool *pvt_pool; 21420 struct lpfc_pbl_pool *pbl_pool; 21421 u32 txcmplq_cnt; 21422 21423 qp = &phba->sli4_hba.hdwq[hwqid]; 21424 multixri_pool = qp->p_multixri_pool; 21425 if (!multixri_pool) 21426 return; 21427 21428 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21429 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21430 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21431 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21432 21433 multixri_pool->stat_pbl_count = pbl_pool->count; 21434 multixri_pool->stat_pvt_count = pvt_pool->count; 21435 multixri_pool->stat_busy_count = txcmplq_cnt; 21436 } 21437 21438 multixri_pool->stat_snapshot_taken++; 21439 } 21440 #endif 21441 21442 /** 21443 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21444 * @phba: pointer to lpfc hba data structure. 21445 * @hwqid: belong to which HWQ. 21446 * 21447 * This routine moves some XRIs from private to public pool when private pool 21448 * is not busy. 21449 **/ 21450 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21451 { 21452 struct lpfc_multixri_pool *multixri_pool; 21453 u32 io_req_count; 21454 u32 prev_io_req_count; 21455 21456 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21457 if (!multixri_pool) 21458 return; 21459 io_req_count = multixri_pool->io_req_count; 21460 prev_io_req_count = multixri_pool->prev_io_req_count; 21461 21462 if (prev_io_req_count != io_req_count) { 21463 /* Private pool is busy */ 21464 multixri_pool->prev_io_req_count = io_req_count; 21465 } else { 21466 /* Private pool is not busy. 21467 * Move XRIs from private to public pool. 21468 */ 21469 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21470 } 21471 } 21472 21473 /** 21474 * lpfc_adjust_high_watermark - Adjust high watermark 21475 * @phba: pointer to lpfc hba data structure. 21476 * @hwqid: belong to which HWQ. 21477 * 21478 * This routine sets high watermark as number of outstanding XRIs, 21479 * but make sure the new value is between xri_limit/2 and xri_limit. 21480 **/ 21481 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21482 { 21483 u32 new_watermark; 21484 u32 watermark_max; 21485 u32 watermark_min; 21486 u32 xri_limit; 21487 u32 txcmplq_cnt; 21488 u32 abts_io_bufs; 21489 struct lpfc_multixri_pool *multixri_pool; 21490 struct lpfc_sli4_hdw_queue *qp; 21491 21492 qp = &phba->sli4_hba.hdwq[hwqid]; 21493 multixri_pool = qp->p_multixri_pool; 21494 if (!multixri_pool) 21495 return; 21496 xri_limit = multixri_pool->xri_limit; 21497 21498 watermark_max = xri_limit; 21499 watermark_min = xri_limit / 2; 21500 21501 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21502 abts_io_bufs = qp->abts_scsi_io_bufs; 21503 abts_io_bufs += qp->abts_nvme_io_bufs; 21504 21505 new_watermark = txcmplq_cnt + abts_io_bufs; 21506 new_watermark = min(watermark_max, new_watermark); 21507 new_watermark = max(watermark_min, new_watermark); 21508 multixri_pool->pvt_pool.high_watermark = new_watermark; 21509 21510 #ifdef LPFC_MXP_STAT 21511 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21512 new_watermark); 21513 #endif 21514 } 21515 21516 /** 21517 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21518 * @phba: pointer to lpfc hba data structure. 21519 * @hwqid: belong to which HWQ. 21520 * 21521 * This routine is called from hearbeat timer when pvt_pool is idle. 21522 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21523 * The first step moves (all - low_watermark) amount of XRIs. 21524 * The second step moves the rest of XRIs. 21525 **/ 21526 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21527 { 21528 struct lpfc_pbl_pool *pbl_pool; 21529 struct lpfc_pvt_pool *pvt_pool; 21530 struct lpfc_sli4_hdw_queue *qp; 21531 struct lpfc_io_buf *lpfc_ncmd; 21532 struct lpfc_io_buf *lpfc_ncmd_next; 21533 unsigned long iflag; 21534 struct list_head tmp_list; 21535 u32 tmp_count; 21536 21537 qp = &phba->sli4_hba.hdwq[hwqid]; 21538 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21539 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21540 tmp_count = 0; 21541 21542 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21543 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21544 21545 if (pvt_pool->count > pvt_pool->low_watermark) { 21546 /* Step 1: move (all - low_watermark) from pvt_pool 21547 * to pbl_pool 21548 */ 21549 21550 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21551 INIT_LIST_HEAD(&tmp_list); 21552 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21553 &pvt_pool->list, list) { 21554 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21555 tmp_count++; 21556 if (tmp_count >= pvt_pool->low_watermark) 21557 break; 21558 } 21559 21560 /* Move all bufs from pvt_pool to pbl_pool */ 21561 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21562 21563 /* Move all bufs from tmp_list to pvt_pool */ 21564 list_splice(&tmp_list, &pvt_pool->list); 21565 21566 pbl_pool->count += (pvt_pool->count - tmp_count); 21567 pvt_pool->count = tmp_count; 21568 } else { 21569 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21570 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21571 pbl_pool->count += pvt_pool->count; 21572 pvt_pool->count = 0; 21573 } 21574 21575 spin_unlock(&pvt_pool->lock); 21576 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21577 } 21578 21579 /** 21580 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21581 * @phba: pointer to lpfc hba data structure 21582 * @qp: pointer to HDW queue 21583 * @pbl_pool: specified public free XRI pool 21584 * @pvt_pool: specified private free XRI pool 21585 * @count: number of XRIs to move 21586 * 21587 * This routine tries to move some free common bufs from the specified pbl_pool 21588 * to the specified pvt_pool. It might move less than count XRIs if there's not 21589 * enough in public pool. 21590 * 21591 * Return: 21592 * true - if XRIs are successfully moved from the specified pbl_pool to the 21593 * specified pvt_pool 21594 * false - if the specified pbl_pool is empty or locked by someone else 21595 **/ 21596 static bool 21597 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21598 struct lpfc_pbl_pool *pbl_pool, 21599 struct lpfc_pvt_pool *pvt_pool, u32 count) 21600 { 21601 struct lpfc_io_buf *lpfc_ncmd; 21602 struct lpfc_io_buf *lpfc_ncmd_next; 21603 unsigned long iflag; 21604 int ret; 21605 21606 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21607 if (ret) { 21608 if (pbl_pool->count) { 21609 /* Move a batch of XRIs from public to private pool */ 21610 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21611 list_for_each_entry_safe(lpfc_ncmd, 21612 lpfc_ncmd_next, 21613 &pbl_pool->list, 21614 list) { 21615 list_move_tail(&lpfc_ncmd->list, 21616 &pvt_pool->list); 21617 pvt_pool->count++; 21618 pbl_pool->count--; 21619 count--; 21620 if (count == 0) 21621 break; 21622 } 21623 21624 spin_unlock(&pvt_pool->lock); 21625 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21626 return true; 21627 } 21628 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21629 } 21630 21631 return false; 21632 } 21633 21634 /** 21635 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21636 * @phba: pointer to lpfc hba data structure. 21637 * @hwqid: belong to which HWQ. 21638 * @count: number of XRIs to move 21639 * 21640 * This routine tries to find some free common bufs in one of public pools with 21641 * Round Robin method. The search always starts from local hwqid, then the next 21642 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21643 * a batch of free common bufs are moved to private pool on hwqid. 21644 * It might move less than count XRIs if there's not enough in public pool. 21645 **/ 21646 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21647 { 21648 struct lpfc_multixri_pool *multixri_pool; 21649 struct lpfc_multixri_pool *next_multixri_pool; 21650 struct lpfc_pvt_pool *pvt_pool; 21651 struct lpfc_pbl_pool *pbl_pool; 21652 struct lpfc_sli4_hdw_queue *qp; 21653 u32 next_hwqid; 21654 u32 hwq_count; 21655 int ret; 21656 21657 qp = &phba->sli4_hba.hdwq[hwqid]; 21658 multixri_pool = qp->p_multixri_pool; 21659 pvt_pool = &multixri_pool->pvt_pool; 21660 pbl_pool = &multixri_pool->pbl_pool; 21661 21662 /* Check if local pbl_pool is available */ 21663 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21664 if (ret) { 21665 #ifdef LPFC_MXP_STAT 21666 multixri_pool->local_pbl_hit_count++; 21667 #endif 21668 return; 21669 } 21670 21671 hwq_count = phba->cfg_hdw_queue; 21672 21673 /* Get the next hwqid which was found last time */ 21674 next_hwqid = multixri_pool->rrb_next_hwqid; 21675 21676 do { 21677 /* Go to next hwq */ 21678 next_hwqid = (next_hwqid + 1) % hwq_count; 21679 21680 next_multixri_pool = 21681 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21682 pbl_pool = &next_multixri_pool->pbl_pool; 21683 21684 /* Check if the public free xri pool is available */ 21685 ret = _lpfc_move_xri_pbl_to_pvt( 21686 phba, qp, pbl_pool, pvt_pool, count); 21687 21688 /* Exit while-loop if success or all hwqid are checked */ 21689 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21690 21691 /* Starting point for the next time */ 21692 multixri_pool->rrb_next_hwqid = next_hwqid; 21693 21694 if (!ret) { 21695 /* stats: all public pools are empty*/ 21696 multixri_pool->pbl_empty_count++; 21697 } 21698 21699 #ifdef LPFC_MXP_STAT 21700 if (ret) { 21701 if (next_hwqid == hwqid) 21702 multixri_pool->local_pbl_hit_count++; 21703 else 21704 multixri_pool->other_pbl_hit_count++; 21705 } 21706 #endif 21707 } 21708 21709 /** 21710 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21711 * @phba: pointer to lpfc hba data structure. 21712 * @hwqid: belong to which HWQ. 21713 * 21714 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21715 * low watermark. 21716 **/ 21717 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21718 { 21719 struct lpfc_multixri_pool *multixri_pool; 21720 struct lpfc_pvt_pool *pvt_pool; 21721 21722 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21723 pvt_pool = &multixri_pool->pvt_pool; 21724 21725 if (pvt_pool->count < pvt_pool->low_watermark) 21726 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21727 } 21728 21729 /** 21730 * lpfc_release_io_buf - Return one IO buf back to free pool 21731 * @phba: pointer to lpfc hba data structure. 21732 * @lpfc_ncmd: IO buf to be returned. 21733 * @qp: belong to which HWQ. 21734 * 21735 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21736 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21737 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21738 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21739 * lpfc_io_buf_list_put. 21740 **/ 21741 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21742 struct lpfc_sli4_hdw_queue *qp) 21743 { 21744 unsigned long iflag; 21745 struct lpfc_pbl_pool *pbl_pool; 21746 struct lpfc_pvt_pool *pvt_pool; 21747 struct lpfc_epd_pool *epd_pool; 21748 u32 txcmplq_cnt; 21749 u32 xri_owned; 21750 u32 xri_limit; 21751 u32 abts_io_bufs; 21752 21753 /* MUST zero fields if buffer is reused by another protocol */ 21754 lpfc_ncmd->nvmeCmd = NULL; 21755 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21756 21757 if (phba->cfg_xpsgl && !phba->nvmet_support && 21758 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21759 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21760 21761 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21762 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21763 21764 if (phba->cfg_xri_rebalancing) { 21765 if (lpfc_ncmd->expedite) { 21766 /* Return to expedite pool */ 21767 epd_pool = &phba->epd_pool; 21768 spin_lock_irqsave(&epd_pool->lock, iflag); 21769 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21770 epd_pool->count++; 21771 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21772 return; 21773 } 21774 21775 /* Avoid invalid access if an IO sneaks in and is being rejected 21776 * just _after_ xri pools are destroyed in lpfc_offline. 21777 * Nothing much can be done at this point. 21778 */ 21779 if (!qp->p_multixri_pool) 21780 return; 21781 21782 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21783 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21784 21785 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21786 abts_io_bufs = qp->abts_scsi_io_bufs; 21787 abts_io_bufs += qp->abts_nvme_io_bufs; 21788 21789 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21790 xri_limit = qp->p_multixri_pool->xri_limit; 21791 21792 #ifdef LPFC_MXP_STAT 21793 if (xri_owned <= xri_limit) 21794 qp->p_multixri_pool->below_limit_count++; 21795 else 21796 qp->p_multixri_pool->above_limit_count++; 21797 #endif 21798 21799 /* XRI goes to either public or private free xri pool 21800 * based on watermark and xri_limit 21801 */ 21802 if ((pvt_pool->count < pvt_pool->low_watermark) || 21803 (xri_owned < xri_limit && 21804 pvt_pool->count < pvt_pool->high_watermark)) { 21805 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21806 qp, free_pvt_pool); 21807 list_add_tail(&lpfc_ncmd->list, 21808 &pvt_pool->list); 21809 pvt_pool->count++; 21810 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21811 } else { 21812 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21813 qp, free_pub_pool); 21814 list_add_tail(&lpfc_ncmd->list, 21815 &pbl_pool->list); 21816 pbl_pool->count++; 21817 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21818 } 21819 } else { 21820 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21821 qp, free_xri); 21822 list_add_tail(&lpfc_ncmd->list, 21823 &qp->lpfc_io_buf_list_put); 21824 qp->put_io_bufs++; 21825 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21826 iflag); 21827 } 21828 } 21829 21830 /** 21831 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21832 * @phba: pointer to lpfc hba data structure. 21833 * @qp: pointer to HDW queue 21834 * @pvt_pool: pointer to private pool data structure. 21835 * @ndlp: pointer to lpfc nodelist data structure. 21836 * 21837 * This routine tries to get one free IO buf from private pool. 21838 * 21839 * Return: 21840 * pointer to one free IO buf - if private pool is not empty 21841 * NULL - if private pool is empty 21842 **/ 21843 static struct lpfc_io_buf * 21844 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21845 struct lpfc_sli4_hdw_queue *qp, 21846 struct lpfc_pvt_pool *pvt_pool, 21847 struct lpfc_nodelist *ndlp) 21848 { 21849 struct lpfc_io_buf *lpfc_ncmd; 21850 struct lpfc_io_buf *lpfc_ncmd_next; 21851 unsigned long iflag; 21852 21853 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21854 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21855 &pvt_pool->list, list) { 21856 if (lpfc_test_rrq_active( 21857 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21858 continue; 21859 list_del(&lpfc_ncmd->list); 21860 pvt_pool->count--; 21861 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21862 return lpfc_ncmd; 21863 } 21864 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21865 21866 return NULL; 21867 } 21868 21869 /** 21870 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21871 * @phba: pointer to lpfc hba data structure. 21872 * 21873 * This routine tries to get one free IO buf from expedite pool. 21874 * 21875 * Return: 21876 * pointer to one free IO buf - if expedite pool is not empty 21877 * NULL - if expedite pool is empty 21878 **/ 21879 static struct lpfc_io_buf * 21880 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21881 { 21882 struct lpfc_io_buf *lpfc_ncmd; 21883 struct lpfc_io_buf *lpfc_ncmd_next; 21884 unsigned long iflag; 21885 struct lpfc_epd_pool *epd_pool; 21886 21887 epd_pool = &phba->epd_pool; 21888 lpfc_ncmd = NULL; 21889 21890 spin_lock_irqsave(&epd_pool->lock, iflag); 21891 if (epd_pool->count > 0) { 21892 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21893 &epd_pool->list, list) { 21894 list_del(&lpfc_ncmd->list); 21895 epd_pool->count--; 21896 break; 21897 } 21898 } 21899 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21900 21901 return lpfc_ncmd; 21902 } 21903 21904 /** 21905 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21906 * @phba: pointer to lpfc hba data structure. 21907 * @ndlp: pointer to lpfc nodelist data structure. 21908 * @hwqid: belong to which HWQ 21909 * @expedite: 1 means this request is urgent. 21910 * 21911 * This routine will do the following actions and then return a pointer to 21912 * one free IO buf. 21913 * 21914 * 1. If private free xri count is empty, move some XRIs from public to 21915 * private pool. 21916 * 2. Get one XRI from private free xri pool. 21917 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21918 * get one free xri from expedite pool. 21919 * 21920 * Note: ndlp is only used on SCSI side for RRQ testing. 21921 * The caller should pass NULL for ndlp on NVME side. 21922 * 21923 * Return: 21924 * pointer to one free IO buf - if private pool is not empty 21925 * NULL - if private pool is empty 21926 **/ 21927 static struct lpfc_io_buf * 21928 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21929 struct lpfc_nodelist *ndlp, 21930 int hwqid, int expedite) 21931 { 21932 struct lpfc_sli4_hdw_queue *qp; 21933 struct lpfc_multixri_pool *multixri_pool; 21934 struct lpfc_pvt_pool *pvt_pool; 21935 struct lpfc_io_buf *lpfc_ncmd; 21936 21937 qp = &phba->sli4_hba.hdwq[hwqid]; 21938 lpfc_ncmd = NULL; 21939 if (!qp) { 21940 lpfc_printf_log(phba, KERN_INFO, 21941 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21942 "5556 NULL qp for hwqid x%x\n", hwqid); 21943 return lpfc_ncmd; 21944 } 21945 multixri_pool = qp->p_multixri_pool; 21946 if (!multixri_pool) { 21947 lpfc_printf_log(phba, KERN_INFO, 21948 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21949 "5557 NULL multixri for hwqid x%x\n", hwqid); 21950 return lpfc_ncmd; 21951 } 21952 pvt_pool = &multixri_pool->pvt_pool; 21953 if (!pvt_pool) { 21954 lpfc_printf_log(phba, KERN_INFO, 21955 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21956 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21957 return lpfc_ncmd; 21958 } 21959 multixri_pool->io_req_count++; 21960 21961 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21962 if (pvt_pool->count == 0) 21963 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21964 21965 /* Get one XRI from private free xri pool */ 21966 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21967 21968 if (lpfc_ncmd) { 21969 lpfc_ncmd->hdwq = qp; 21970 lpfc_ncmd->hdwq_no = hwqid; 21971 } else if (expedite) { 21972 /* If we fail to get one from pvt_pool and this is an expedite 21973 * request, get one free xri from expedite pool. 21974 */ 21975 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21976 } 21977 21978 return lpfc_ncmd; 21979 } 21980 21981 static inline struct lpfc_io_buf * 21982 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21983 { 21984 struct lpfc_sli4_hdw_queue *qp; 21985 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21986 21987 qp = &phba->sli4_hba.hdwq[idx]; 21988 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21989 &qp->lpfc_io_buf_list_get, list) { 21990 if (lpfc_test_rrq_active(phba, ndlp, 21991 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21992 continue; 21993 21994 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21995 continue; 21996 21997 list_del_init(&lpfc_cmd->list); 21998 qp->get_io_bufs--; 21999 lpfc_cmd->hdwq = qp; 22000 lpfc_cmd->hdwq_no = idx; 22001 return lpfc_cmd; 22002 } 22003 return NULL; 22004 } 22005 22006 /** 22007 * lpfc_get_io_buf - Get one IO buffer from free pool 22008 * @phba: The HBA for which this call is being executed. 22009 * @ndlp: pointer to lpfc nodelist data structure. 22010 * @hwqid: belong to which HWQ 22011 * @expedite: 1 means this request is urgent. 22012 * 22013 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 22014 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 22015 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 22016 * 22017 * Note: ndlp is only used on SCSI side for RRQ testing. 22018 * The caller should pass NULL for ndlp on NVME side. 22019 * 22020 * Return codes: 22021 * NULL - Error 22022 * Pointer to lpfc_io_buf - Success 22023 **/ 22024 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 22025 struct lpfc_nodelist *ndlp, 22026 u32 hwqid, int expedite) 22027 { 22028 struct lpfc_sli4_hdw_queue *qp; 22029 unsigned long iflag; 22030 struct lpfc_io_buf *lpfc_cmd; 22031 22032 qp = &phba->sli4_hba.hdwq[hwqid]; 22033 lpfc_cmd = NULL; 22034 if (!qp) { 22035 lpfc_printf_log(phba, KERN_WARNING, 22036 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 22037 "5555 NULL qp for hwqid x%x\n", hwqid); 22038 return lpfc_cmd; 22039 } 22040 22041 if (phba->cfg_xri_rebalancing) 22042 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 22043 phba, ndlp, hwqid, expedite); 22044 else { 22045 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 22046 qp, alloc_xri_get); 22047 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 22048 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22049 if (!lpfc_cmd) { 22050 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 22051 qp, alloc_xri_put); 22052 list_splice(&qp->lpfc_io_buf_list_put, 22053 &qp->lpfc_io_buf_list_get); 22054 qp->get_io_bufs += qp->put_io_bufs; 22055 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 22056 qp->put_io_bufs = 0; 22057 spin_unlock(&qp->io_buf_list_put_lock); 22058 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 22059 expedite) 22060 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 22061 } 22062 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 22063 } 22064 22065 return lpfc_cmd; 22066 } 22067 22068 /** 22069 * lpfc_read_object - Retrieve object data from HBA 22070 * @phba: The HBA for which this call is being executed. 22071 * @rdobject: Pathname of object data we want to read. 22072 * @datap: Pointer to where data will be copied to. 22073 * @datasz: size of data area 22074 * 22075 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 22076 * The data will be truncated if datasz is not large enough. 22077 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 22078 * Returns the actual bytes read from the object. 22079 */ 22080 int 22081 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 22082 uint32_t datasz) 22083 { 22084 struct lpfc_mbx_read_object *read_object; 22085 LPFC_MBOXQ_t *mbox; 22086 int rc, length, eof, j, byte_cnt = 0; 22087 uint32_t shdr_status, shdr_add_status; 22088 union lpfc_sli4_cfg_shdr *shdr; 22089 struct lpfc_dmabuf *pcmd; 22090 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 22091 22092 /* sanity check on queue memory */ 22093 if (!datap) 22094 return -ENODEV; 22095 22096 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 22097 if (!mbox) 22098 return -ENOMEM; 22099 length = (sizeof(struct lpfc_mbx_read_object) - 22100 sizeof(struct lpfc_sli4_cfg_mhdr)); 22101 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 22102 LPFC_MBOX_OPCODE_READ_OBJECT, 22103 length, LPFC_SLI4_MBX_EMBED); 22104 read_object = &mbox->u.mqe.un.read_object; 22105 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 22106 22107 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 22108 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 22109 read_object->u.request.rd_object_offset = 0; 22110 read_object->u.request.rd_object_cnt = 1; 22111 22112 memset((void *)read_object->u.request.rd_object_name, 0, 22113 LPFC_OBJ_NAME_SZ); 22114 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 22115 for (j = 0; j < strlen(rdobject); j++) 22116 read_object->u.request.rd_object_name[j] = 22117 cpu_to_le32(rd_object_name[j]); 22118 22119 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 22120 if (pcmd) 22121 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 22122 if (!pcmd || !pcmd->virt) { 22123 kfree(pcmd); 22124 mempool_free(mbox, phba->mbox_mem_pool); 22125 return -ENOMEM; 22126 } 22127 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 22128 read_object->u.request.rd_object_hbuf[0].pa_lo = 22129 putPaddrLow(pcmd->phys); 22130 read_object->u.request.rd_object_hbuf[0].pa_hi = 22131 putPaddrHigh(pcmd->phys); 22132 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 22133 22134 mbox->vport = phba->pport; 22135 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 22136 mbox->ctx_ndlp = NULL; 22137 22138 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 22139 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 22140 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 22141 22142 if (shdr_status == STATUS_FAILED && 22143 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 22144 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22145 "4674 No port cfg file in FW.\n"); 22146 byte_cnt = -ENOENT; 22147 } else if (shdr_status || shdr_add_status || rc) { 22148 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 22149 "2625 READ_OBJECT mailbox failed with " 22150 "status x%x add_status x%x, mbx status x%x\n", 22151 shdr_status, shdr_add_status, rc); 22152 byte_cnt = -ENXIO; 22153 } else { 22154 /* Success */ 22155 length = read_object->u.response.rd_object_actual_rlen; 22156 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 22157 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 22158 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 22159 length, datasz, eof); 22160 22161 /* Detect the port config file exists but is empty */ 22162 if (!length && eof) { 22163 byte_cnt = 0; 22164 goto exit; 22165 } 22166 22167 byte_cnt = length; 22168 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 22169 } 22170 22171 exit: 22172 /* This is an embedded SLI4 mailbox with an external buffer allocated. 22173 * Free the pcmd and then cleanup with the correct routine. 22174 */ 22175 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 22176 kfree(pcmd); 22177 lpfc_sli4_mbox_cmd_free(phba, mbox); 22178 return byte_cnt; 22179 } 22180 22181 /** 22182 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 22183 * @phba: The HBA for which this call is being executed. 22184 * @lpfc_buf: IO buf structure to append the SGL chunk 22185 * 22186 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 22187 * and will allocate an SGL chunk if the pool is empty. 22188 * 22189 * Return codes: 22190 * NULL - Error 22191 * Pointer to sli4_hybrid_sgl - Success 22192 **/ 22193 struct sli4_hybrid_sgl * 22194 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22195 { 22196 struct sli4_hybrid_sgl *list_entry = NULL; 22197 struct sli4_hybrid_sgl *tmp = NULL; 22198 struct sli4_hybrid_sgl *allocated_sgl = NULL; 22199 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22200 struct list_head *buf_list = &hdwq->sgl_list; 22201 unsigned long iflags; 22202 22203 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22204 22205 if (likely(!list_empty(buf_list))) { 22206 /* break off 1 chunk from the sgl_list */ 22207 list_for_each_entry_safe(list_entry, tmp, 22208 buf_list, list_node) { 22209 list_move_tail(&list_entry->list_node, 22210 &lpfc_buf->dma_sgl_xtra_list); 22211 break; 22212 } 22213 } else { 22214 /* allocate more */ 22215 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22216 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22217 cpu_to_node(hdwq->io_wq->chann)); 22218 if (!tmp) { 22219 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22220 "8353 error kmalloc memory for HDWQ " 22221 "%d %s\n", 22222 lpfc_buf->hdwq_no, __func__); 22223 return NULL; 22224 } 22225 22226 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 22227 GFP_ATOMIC, &tmp->dma_phys_sgl); 22228 if (!tmp->dma_sgl) { 22229 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22230 "8354 error pool_alloc memory for HDWQ " 22231 "%d %s\n", 22232 lpfc_buf->hdwq_no, __func__); 22233 kfree(tmp); 22234 return NULL; 22235 } 22236 22237 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22238 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 22239 } 22240 22241 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 22242 struct sli4_hybrid_sgl, 22243 list_node); 22244 22245 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22246 22247 return allocated_sgl; 22248 } 22249 22250 /** 22251 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22252 * @phba: The HBA for which this call is being executed. 22253 * @lpfc_buf: IO buf structure with the SGL chunk 22254 * 22255 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22256 * 22257 * Return codes: 22258 * 0 - Success 22259 * -EINVAL - Error 22260 **/ 22261 int 22262 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22263 { 22264 int rc = 0; 22265 struct sli4_hybrid_sgl *list_entry = NULL; 22266 struct sli4_hybrid_sgl *tmp = NULL; 22267 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22268 struct list_head *buf_list = &hdwq->sgl_list; 22269 unsigned long iflags; 22270 22271 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22272 22273 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22274 list_for_each_entry_safe(list_entry, tmp, 22275 &lpfc_buf->dma_sgl_xtra_list, 22276 list_node) { 22277 list_move_tail(&list_entry->list_node, 22278 buf_list); 22279 } 22280 } else { 22281 rc = -EINVAL; 22282 } 22283 22284 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22285 return rc; 22286 } 22287 22288 /** 22289 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22290 * @phba: phba object 22291 * @hdwq: hdwq to cleanup sgl buff resources on 22292 * 22293 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22294 * 22295 * Return codes: 22296 * None 22297 **/ 22298 void 22299 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22300 struct lpfc_sli4_hdw_queue *hdwq) 22301 { 22302 struct list_head *buf_list = &hdwq->sgl_list; 22303 struct sli4_hybrid_sgl *list_entry = NULL; 22304 struct sli4_hybrid_sgl *tmp = NULL; 22305 unsigned long iflags; 22306 22307 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22308 22309 /* Free sgl pool */ 22310 list_for_each_entry_safe(list_entry, tmp, 22311 buf_list, list_node) { 22312 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22313 list_entry->dma_sgl, 22314 list_entry->dma_phys_sgl); 22315 list_del(&list_entry->list_node); 22316 kfree(list_entry); 22317 } 22318 22319 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22320 } 22321 22322 /** 22323 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22324 * @phba: The HBA for which this call is being executed. 22325 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22326 * 22327 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22328 * and will allocate an CMD/RSP buffer if the pool is empty. 22329 * 22330 * Return codes: 22331 * NULL - Error 22332 * Pointer to fcp_cmd_rsp_buf - Success 22333 **/ 22334 struct fcp_cmd_rsp_buf * 22335 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22336 struct lpfc_io_buf *lpfc_buf) 22337 { 22338 struct fcp_cmd_rsp_buf *list_entry = NULL; 22339 struct fcp_cmd_rsp_buf *tmp = NULL; 22340 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22341 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22342 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22343 unsigned long iflags; 22344 22345 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22346 22347 if (likely(!list_empty(buf_list))) { 22348 /* break off 1 chunk from the list */ 22349 list_for_each_entry_safe(list_entry, tmp, 22350 buf_list, 22351 list_node) { 22352 list_move_tail(&list_entry->list_node, 22353 &lpfc_buf->dma_cmd_rsp_list); 22354 break; 22355 } 22356 } else { 22357 /* allocate more */ 22358 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22359 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22360 cpu_to_node(hdwq->io_wq->chann)); 22361 if (!tmp) { 22362 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22363 "8355 error kmalloc memory for HDWQ " 22364 "%d %s\n", 22365 lpfc_buf->hdwq_no, __func__); 22366 return NULL; 22367 } 22368 22369 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22370 GFP_ATOMIC, 22371 &tmp->fcp_cmd_rsp_dma_handle); 22372 22373 if (!tmp->fcp_cmnd) { 22374 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22375 "8356 error pool_alloc memory for HDWQ " 22376 "%d %s\n", 22377 lpfc_buf->hdwq_no, __func__); 22378 kfree(tmp); 22379 return NULL; 22380 } 22381 22382 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22383 sizeof(struct fcp_cmnd)); 22384 22385 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22386 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22387 } 22388 22389 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22390 struct fcp_cmd_rsp_buf, 22391 list_node); 22392 22393 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22394 22395 return allocated_buf; 22396 } 22397 22398 /** 22399 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22400 * @phba: The HBA for which this call is being executed. 22401 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22402 * 22403 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22404 * 22405 * Return codes: 22406 * 0 - Success 22407 * -EINVAL - Error 22408 **/ 22409 int 22410 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22411 struct lpfc_io_buf *lpfc_buf) 22412 { 22413 int rc = 0; 22414 struct fcp_cmd_rsp_buf *list_entry = NULL; 22415 struct fcp_cmd_rsp_buf *tmp = NULL; 22416 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22417 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22418 unsigned long iflags; 22419 22420 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22421 22422 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22423 list_for_each_entry_safe(list_entry, tmp, 22424 &lpfc_buf->dma_cmd_rsp_list, 22425 list_node) { 22426 list_move_tail(&list_entry->list_node, 22427 buf_list); 22428 } 22429 } else { 22430 rc = -EINVAL; 22431 } 22432 22433 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22434 return rc; 22435 } 22436 22437 /** 22438 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22439 * @phba: phba object 22440 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22441 * 22442 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22443 * 22444 * Return codes: 22445 * None 22446 **/ 22447 void 22448 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22449 struct lpfc_sli4_hdw_queue *hdwq) 22450 { 22451 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22452 struct fcp_cmd_rsp_buf *list_entry = NULL; 22453 struct fcp_cmd_rsp_buf *tmp = NULL; 22454 unsigned long iflags; 22455 22456 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22457 22458 /* Free cmd_rsp buf pool */ 22459 list_for_each_entry_safe(list_entry, tmp, 22460 buf_list, 22461 list_node) { 22462 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22463 list_entry->fcp_cmnd, 22464 list_entry->fcp_cmd_rsp_dma_handle); 22465 list_del(&list_entry->list_node); 22466 kfree(list_entry); 22467 } 22468 22469 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22470 } 22471 22472 /** 22473 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22474 * @phba: phba object 22475 * @job: job entry of the command to be posted. 22476 * 22477 * Fill the common fields of the wqe for each of the command. 22478 * 22479 * Return codes: 22480 * None 22481 **/ 22482 void 22483 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22484 { 22485 u8 cmnd; 22486 u32 *pcmd; 22487 u32 if_type = 0; 22488 u32 fip, abort_tag; 22489 struct lpfc_nodelist *ndlp = NULL; 22490 union lpfc_wqe128 *wqe = &job->wqe; 22491 u8 command_type = ELS_COMMAND_NON_FIP; 22492 22493 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22494 /* The fcp commands will set command type */ 22495 if (job->cmd_flag & LPFC_IO_FCP) 22496 command_type = FCP_COMMAND; 22497 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22498 command_type = ELS_COMMAND_FIP; 22499 else 22500 command_type = ELS_COMMAND_NON_FIP; 22501 22502 abort_tag = job->iotag; 22503 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22504 22505 switch (cmnd) { 22506 case CMD_ELS_REQUEST64_WQE: 22507 ndlp = job->ndlp; 22508 22509 if_type = bf_get(lpfc_sli_intf_if_type, 22510 &phba->sli4_hba.sli_intf); 22511 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22512 pcmd = (u32 *)job->cmd_dmabuf->virt; 22513 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22514 *pcmd == ELS_CMD_SCR || 22515 *pcmd == ELS_CMD_RDF || 22516 *pcmd == ELS_CMD_EDC || 22517 *pcmd == ELS_CMD_RSCN_XMT || 22518 *pcmd == ELS_CMD_FDISC || 22519 *pcmd == ELS_CMD_LOGO || 22520 *pcmd == ELS_CMD_QFPA || 22521 *pcmd == ELS_CMD_UVEM || 22522 *pcmd == ELS_CMD_PLOGI)) { 22523 bf_set(els_req64_sp, &wqe->els_req, 1); 22524 bf_set(els_req64_sid, &wqe->els_req, 22525 job->vport->fc_myDID); 22526 22527 if ((*pcmd == ELS_CMD_FLOGI) && 22528 !(phba->fc_topology == 22529 LPFC_TOPOLOGY_LOOP)) 22530 bf_set(els_req64_sid, &wqe->els_req, 0); 22531 22532 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22533 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22534 phba->vpi_ids[job->vport->vpi]); 22535 } else if (pcmd) { 22536 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22537 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22538 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22539 } 22540 } 22541 22542 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22543 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22544 22545 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22546 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22547 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22548 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22549 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22550 break; 22551 case CMD_XMIT_ELS_RSP64_WQE: 22552 ndlp = job->ndlp; 22553 22554 /* word4 */ 22555 wqe->xmit_els_rsp.word4 = 0; 22556 22557 if_type = bf_get(lpfc_sli_intf_if_type, 22558 &phba->sli4_hba.sli_intf); 22559 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22560 if (job->vport->fc_flag & FC_PT2PT) { 22561 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22562 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22563 job->vport->fc_myDID); 22564 if (job->vport->fc_myDID == Fabric_DID) { 22565 bf_set(wqe_els_did, 22566 &wqe->xmit_els_rsp.wqe_dest, 0); 22567 } 22568 } 22569 } 22570 22571 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22572 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22573 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22574 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22575 LPFC_WQE_LENLOC_WORD3); 22576 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22577 22578 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22579 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22580 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22581 job->vport->fc_myDID); 22582 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22583 } 22584 22585 if (phba->sli_rev == LPFC_SLI_REV4) { 22586 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22587 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22588 22589 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22590 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22591 phba->vpi_ids[job->vport->vpi]); 22592 } 22593 command_type = OTHER_COMMAND; 22594 break; 22595 case CMD_GEN_REQUEST64_WQE: 22596 /* Word 10 */ 22597 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22598 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22599 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22600 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22601 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22602 command_type = OTHER_COMMAND; 22603 break; 22604 case CMD_XMIT_SEQUENCE64_WQE: 22605 if (phba->link_flag & LS_LOOPBACK_MODE) 22606 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22607 22608 wqe->xmit_sequence.rsvd3 = 0; 22609 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22610 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22611 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22612 LPFC_WQE_IOD_WRITE); 22613 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22614 LPFC_WQE_LENLOC_WORD12); 22615 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22616 command_type = OTHER_COMMAND; 22617 break; 22618 case CMD_XMIT_BLS_RSP64_WQE: 22619 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22620 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22621 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22622 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22623 phba->vpi_ids[phba->pport->vpi]); 22624 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22625 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22626 LPFC_WQE_LENLOC_NONE); 22627 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22628 command_type = OTHER_COMMAND; 22629 break; 22630 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22631 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22632 case CMD_SEND_FRAME: /* mds loopback */ 22633 /* cases already formatted for sli4 wqe - no chgs necessary */ 22634 return; 22635 default: 22636 dump_stack(); 22637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22638 "6207 Invalid command 0x%x\n", 22639 cmnd); 22640 break; 22641 } 22642 22643 wqe->generic.wqe_com.abort_tag = abort_tag; 22644 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22645 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22646 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22647 } 22648