1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq * 74 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 75 struct lpfc_iocbq *rspiocbq); 76 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 77 struct hbq_dmabuf *); 78 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 79 struct hbq_dmabuf *dmabuf); 80 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 81 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 82 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 83 int); 84 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 85 struct lpfc_queue *eq, 86 struct lpfc_eqe *eqe); 87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 89 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 90 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 91 struct lpfc_queue *cq, 92 struct lpfc_cqe *cqe); 93 static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, 94 struct lpfc_iocbq *pwqeq, 95 struct lpfc_sglq *sglq); 96 97 union lpfc_wqe128 lpfc_iread_cmd_template; 98 union lpfc_wqe128 lpfc_iwrite_cmd_template; 99 union lpfc_wqe128 lpfc_icmnd_cmd_template; 100 101 /* Setup WQE templates for IOs */ 102 void lpfc_wqe_cmd_template(void) 103 { 104 union lpfc_wqe128 *wqe; 105 106 /* IREAD template */ 107 wqe = &lpfc_iread_cmd_template; 108 memset(wqe, 0, sizeof(union lpfc_wqe128)); 109 110 /* Word 0, 1, 2 - BDE is variable */ 111 112 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 113 114 /* Word 4 - total_xfer_len is variable */ 115 116 /* Word 5 - is zero */ 117 118 /* Word 6 - ctxt_tag, xri_tag is variable */ 119 120 /* Word 7 */ 121 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 122 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 123 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 124 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 125 126 /* Word 8 - abort_tag is variable */ 127 128 /* Word 9 - reqtag is variable */ 129 130 /* Word 10 - dbde, wqes is variable */ 131 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 132 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 133 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 134 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 135 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 136 137 /* Word 11 - pbde is variable */ 138 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 139 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 140 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 141 142 /* Word 12 - is zero */ 143 144 /* Word 13, 14, 15 - PBDE is variable */ 145 146 /* IWRITE template */ 147 wqe = &lpfc_iwrite_cmd_template; 148 memset(wqe, 0, sizeof(union lpfc_wqe128)); 149 150 /* Word 0, 1, 2 - BDE is variable */ 151 152 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 153 154 /* Word 4 - total_xfer_len is variable */ 155 156 /* Word 5 - initial_xfer_len is variable */ 157 158 /* Word 6 - ctxt_tag, xri_tag is variable */ 159 160 /* Word 7 */ 161 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 162 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 163 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 164 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 165 166 /* Word 8 - abort_tag is variable */ 167 168 /* Word 9 - reqtag is variable */ 169 170 /* Word 10 - dbde, wqes is variable */ 171 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 172 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 173 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 174 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 175 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 176 177 /* Word 11 - pbde is variable */ 178 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 179 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 180 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 181 182 /* Word 12 - is zero */ 183 184 /* Word 13, 14, 15 - PBDE is variable */ 185 186 /* ICMND template */ 187 wqe = &lpfc_icmnd_cmd_template; 188 memset(wqe, 0, sizeof(union lpfc_wqe128)); 189 190 /* Word 0, 1, 2 - BDE is variable */ 191 192 /* Word 3 - payload_offset_len is variable */ 193 194 /* Word 4, 5 - is zero */ 195 196 /* Word 6 - ctxt_tag, xri_tag is variable */ 197 198 /* Word 7 */ 199 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 200 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 201 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 202 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 203 204 /* Word 8 - abort_tag is variable */ 205 206 /* Word 9 - reqtag is variable */ 207 208 /* Word 10 - dbde, wqes is variable */ 209 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 210 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 211 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 212 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 213 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 214 215 /* Word 11 */ 216 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 217 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 218 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 219 220 /* Word 12, 13, 14, 15 - is zero */ 221 } 222 223 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 224 /** 225 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 226 * @srcp: Source memory pointer. 227 * @destp: Destination memory pointer. 228 * @cnt: Number of words required to be copied. 229 * Must be a multiple of sizeof(uint64_t) 230 * 231 * This function is used for copying data between driver memory 232 * and the SLI WQ. This function also changes the endianness 233 * of each word if native endianness is different from SLI 234 * endianness. This function can be called with or without 235 * lock. 236 **/ 237 static void 238 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 239 { 240 uint64_t *src = srcp; 241 uint64_t *dest = destp; 242 int i; 243 244 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 245 *dest++ = *src++; 246 } 247 #else 248 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 249 #endif 250 251 /** 252 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 253 * @q: The Work Queue to operate on. 254 * @wqe: The work Queue Entry to put on the Work queue. 255 * 256 * This routine will copy the contents of @wqe to the next available entry on 257 * the @q. This function will then ring the Work Queue Doorbell to signal the 258 * HBA to start processing the Work Queue Entry. This function returns 0 if 259 * successful. If no entries are available on @q then this function will return 260 * -ENOMEM. 261 * The caller is expected to hold the hbalock when calling this routine. 262 **/ 263 static int 264 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 265 { 266 union lpfc_wqe *temp_wqe; 267 struct lpfc_register doorbell; 268 uint32_t host_index; 269 uint32_t idx; 270 uint32_t i = 0; 271 uint8_t *tmp; 272 u32 if_type; 273 274 /* sanity check on queue memory */ 275 if (unlikely(!q)) 276 return -ENOMEM; 277 278 temp_wqe = lpfc_sli4_qe(q, q->host_index); 279 280 /* If the host has not yet processed the next entry then we are done */ 281 idx = ((q->host_index + 1) % q->entry_count); 282 if (idx == q->hba_index) { 283 q->WQ_overflow++; 284 return -EBUSY; 285 } 286 q->WQ_posted++; 287 /* set consumption flag every once in a while */ 288 if (!((q->host_index + 1) % q->notify_interval)) 289 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 290 else 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 292 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 293 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 294 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 295 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 296 /* write to DPP aperture taking advatage of Combined Writes */ 297 tmp = (uint8_t *)temp_wqe; 298 #ifdef __raw_writeq 299 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 300 __raw_writeq(*((uint64_t *)(tmp + i)), 301 q->dpp_regaddr + i); 302 #else 303 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 304 __raw_writel(*((uint32_t *)(tmp + i)), 305 q->dpp_regaddr + i); 306 #endif 307 } 308 /* ensure WQE bcopy and DPP flushed before doorbell write */ 309 wmb(); 310 311 /* Update the host index before invoking device */ 312 host_index = q->host_index; 313 314 q->host_index = idx; 315 316 /* Ring Doorbell */ 317 doorbell.word0 = 0; 318 if (q->db_format == LPFC_DB_LIST_FORMAT) { 319 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 320 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 321 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 322 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 323 q->dpp_id); 324 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 325 q->queue_id); 326 } else { 327 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 328 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 329 330 /* Leave bits <23:16> clear for if_type 6 dpp */ 331 if_type = bf_get(lpfc_sli_intf_if_type, 332 &q->phba->sli4_hba.sli_intf); 333 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 334 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 335 host_index); 336 } 337 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 338 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 339 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 340 } else { 341 return -EINVAL; 342 } 343 writel(doorbell.word0, q->db_regaddr); 344 345 return 0; 346 } 347 348 /** 349 * lpfc_sli4_wq_release - Updates internal hba index for WQ 350 * @q: The Work Queue to operate on. 351 * @index: The index to advance the hba index to. 352 * 353 * This routine will update the HBA index of a queue to reflect consumption of 354 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 355 * an entry the host calls this function to update the queue's internal 356 * pointers. 357 **/ 358 static void 359 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 360 { 361 /* sanity check on queue memory */ 362 if (unlikely(!q)) 363 return; 364 365 q->hba_index = index; 366 } 367 368 /** 369 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 370 * @q: The Mailbox Queue to operate on. 371 * @mqe: The Mailbox Queue Entry to put on the Work queue. 372 * 373 * This routine will copy the contents of @mqe to the next available entry on 374 * the @q. This function will then ring the Work Queue Doorbell to signal the 375 * HBA to start processing the Work Queue Entry. This function returns 0 if 376 * successful. If no entries are available on @q then this function will return 377 * -ENOMEM. 378 * The caller is expected to hold the hbalock when calling this routine. 379 **/ 380 static uint32_t 381 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 382 { 383 struct lpfc_mqe *temp_mqe; 384 struct lpfc_register doorbell; 385 386 /* sanity check on queue memory */ 387 if (unlikely(!q)) 388 return -ENOMEM; 389 temp_mqe = lpfc_sli4_qe(q, q->host_index); 390 391 /* If the host has not yet processed the next entry then we are done */ 392 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 393 return -ENOMEM; 394 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 395 /* Save off the mailbox pointer for completion */ 396 q->phba->mbox = (MAILBOX_t *)temp_mqe; 397 398 /* Update the host index before invoking device */ 399 q->host_index = ((q->host_index + 1) % q->entry_count); 400 401 /* Ring Doorbell */ 402 doorbell.word0 = 0; 403 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 404 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 405 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 406 return 0; 407 } 408 409 /** 410 * lpfc_sli4_mq_release - Updates internal hba index for MQ 411 * @q: The Mailbox Queue to operate on. 412 * 413 * This routine will update the HBA index of a queue to reflect consumption of 414 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 415 * an entry the host calls this function to update the queue's internal 416 * pointers. This routine returns the number of entries that were consumed by 417 * the HBA. 418 **/ 419 static uint32_t 420 lpfc_sli4_mq_release(struct lpfc_queue *q) 421 { 422 /* sanity check on queue memory */ 423 if (unlikely(!q)) 424 return 0; 425 426 /* Clear the mailbox pointer for completion */ 427 q->phba->mbox = NULL; 428 q->hba_index = ((q->hba_index + 1) % q->entry_count); 429 return 1; 430 } 431 432 /** 433 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 434 * @q: The Event Queue to get the first valid EQE from 435 * 436 * This routine will get the first valid Event Queue Entry from @q, update 437 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 438 * the Queue (no more work to do), or the Queue is full of EQEs that have been 439 * processed, but not popped back to the HBA then this routine will return NULL. 440 **/ 441 static struct lpfc_eqe * 442 lpfc_sli4_eq_get(struct lpfc_queue *q) 443 { 444 struct lpfc_eqe *eqe; 445 446 /* sanity check on queue memory */ 447 if (unlikely(!q)) 448 return NULL; 449 eqe = lpfc_sli4_qe(q, q->host_index); 450 451 /* If the next EQE is not valid then we are done */ 452 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 453 return NULL; 454 455 /* 456 * insert barrier for instruction interlock : data from the hardware 457 * must have the valid bit checked before it can be copied and acted 458 * upon. Speculative instructions were allowing a bcopy at the start 459 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 460 * after our return, to copy data before the valid bit check above 461 * was done. As such, some of the copied data was stale. The barrier 462 * ensures the check is before any data is copied. 463 */ 464 mb(); 465 return eqe; 466 } 467 468 /** 469 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 470 * @q: The Event Queue to disable interrupts 471 * 472 **/ 473 void 474 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 475 { 476 struct lpfc_register doorbell; 477 478 doorbell.word0 = 0; 479 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 480 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 481 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 482 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 483 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 484 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 485 } 486 487 /** 488 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 489 * @q: The Event Queue to disable interrupts 490 * 491 **/ 492 void 493 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 494 { 495 struct lpfc_register doorbell; 496 497 doorbell.word0 = 0; 498 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 499 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 500 } 501 502 /** 503 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 504 * @phba: adapter with EQ 505 * @q: The Event Queue that the host has completed processing for. 506 * @count: Number of elements that have been consumed 507 * @arm: Indicates whether the host wants to arms this CQ. 508 * 509 * This routine will notify the HBA, by ringing the doorbell, that count 510 * number of EQEs have been processed. The @arm parameter indicates whether 511 * the queue should be rearmed when ringing the doorbell. 512 **/ 513 void 514 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 515 uint32_t count, bool arm) 516 { 517 struct lpfc_register doorbell; 518 519 /* sanity check on queue memory */ 520 if (unlikely(!q || (count == 0 && !arm))) 521 return; 522 523 /* ring doorbell for number popped */ 524 doorbell.word0 = 0; 525 if (arm) { 526 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 527 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 528 } 529 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 530 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 531 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 532 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 533 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 534 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 535 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 536 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 537 readl(q->phba->sli4_hba.EQDBregaddr); 538 } 539 540 /** 541 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 542 * @phba: adapter with EQ 543 * @q: The Event Queue that the host has completed processing for. 544 * @count: Number of elements that have been consumed 545 * @arm: Indicates whether the host wants to arms this CQ. 546 * 547 * This routine will notify the HBA, by ringing the doorbell, that count 548 * number of EQEs have been processed. The @arm parameter indicates whether 549 * the queue should be rearmed when ringing the doorbell. 550 **/ 551 void 552 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 553 uint32_t count, bool arm) 554 { 555 struct lpfc_register doorbell; 556 557 /* sanity check on queue memory */ 558 if (unlikely(!q || (count == 0 && !arm))) 559 return; 560 561 /* ring doorbell for number popped */ 562 doorbell.word0 = 0; 563 if (arm) 564 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 565 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 566 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 567 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 568 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 569 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 570 readl(q->phba->sli4_hba.EQDBregaddr); 571 } 572 573 static void 574 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 575 struct lpfc_eqe *eqe) 576 { 577 if (!phba->sli4_hba.pc_sli4_params.eqav) 578 bf_set_le32(lpfc_eqe_valid, eqe, 0); 579 580 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 581 582 /* if the index wrapped around, toggle the valid bit */ 583 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 584 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 585 } 586 587 static void 588 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 589 { 590 struct lpfc_eqe *eqe = NULL; 591 u32 eq_count = 0, cq_count = 0; 592 struct lpfc_cqe *cqe = NULL; 593 struct lpfc_queue *cq = NULL, *childq = NULL; 594 int cqid = 0; 595 596 /* walk all the EQ entries and drop on the floor */ 597 eqe = lpfc_sli4_eq_get(eq); 598 while (eqe) { 599 /* Get the reference to the corresponding CQ */ 600 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 601 cq = NULL; 602 603 list_for_each_entry(childq, &eq->child_list, list) { 604 if (childq->queue_id == cqid) { 605 cq = childq; 606 break; 607 } 608 } 609 /* If CQ is valid, iterate through it and drop all the CQEs */ 610 if (cq) { 611 cqe = lpfc_sli4_cq_get(cq); 612 while (cqe) { 613 __lpfc_sli4_consume_cqe(phba, cq, cqe); 614 cq_count++; 615 cqe = lpfc_sli4_cq_get(cq); 616 } 617 /* Clear and re-arm the CQ */ 618 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 619 LPFC_QUEUE_REARM); 620 cq_count = 0; 621 } 622 __lpfc_sli4_consume_eqe(phba, eq, eqe); 623 eq_count++; 624 eqe = lpfc_sli4_eq_get(eq); 625 } 626 627 /* Clear and re-arm the EQ */ 628 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 629 } 630 631 static int 632 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 633 uint8_t rearm) 634 { 635 struct lpfc_eqe *eqe; 636 int count = 0, consumed = 0; 637 638 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 639 goto rearm_and_exit; 640 641 eqe = lpfc_sli4_eq_get(eq); 642 while (eqe) { 643 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 644 __lpfc_sli4_consume_eqe(phba, eq, eqe); 645 646 consumed++; 647 if (!(++count % eq->max_proc_limit)) 648 break; 649 650 if (!(count % eq->notify_interval)) { 651 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 652 LPFC_QUEUE_NOARM); 653 consumed = 0; 654 } 655 656 eqe = lpfc_sli4_eq_get(eq); 657 } 658 eq->EQ_processed += count; 659 660 /* Track the max number of EQEs processed in 1 intr */ 661 if (count > eq->EQ_max_eqe) 662 eq->EQ_max_eqe = count; 663 664 xchg(&eq->queue_claimed, 0); 665 666 rearm_and_exit: 667 /* Always clear the EQ. */ 668 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 669 670 return count; 671 } 672 673 /** 674 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 675 * @q: The Completion Queue to get the first valid CQE from 676 * 677 * This routine will get the first valid Completion Queue Entry from @q, update 678 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 679 * the Queue (no more work to do), or the Queue is full of CQEs that have been 680 * processed, but not popped back to the HBA then this routine will return NULL. 681 **/ 682 static struct lpfc_cqe * 683 lpfc_sli4_cq_get(struct lpfc_queue *q) 684 { 685 struct lpfc_cqe *cqe; 686 687 /* sanity check on queue memory */ 688 if (unlikely(!q)) 689 return NULL; 690 cqe = lpfc_sli4_qe(q, q->host_index); 691 692 /* If the next CQE is not valid then we are done */ 693 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 694 return NULL; 695 696 /* 697 * insert barrier for instruction interlock : data from the hardware 698 * must have the valid bit checked before it can be copied and acted 699 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 700 * instructions allowing action on content before valid bit checked, 701 * add barrier here as well. May not be needed as "content" is a 702 * single 32-bit entity here (vs multi word structure for cq's). 703 */ 704 mb(); 705 return cqe; 706 } 707 708 static void 709 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 710 struct lpfc_cqe *cqe) 711 { 712 if (!phba->sli4_hba.pc_sli4_params.cqav) 713 bf_set_le32(lpfc_cqe_valid, cqe, 0); 714 715 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 716 717 /* if the index wrapped around, toggle the valid bit */ 718 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 719 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 720 } 721 722 /** 723 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 724 * @phba: the adapter with the CQ 725 * @q: The Completion Queue that the host has completed processing for. 726 * @count: the number of elements that were consumed 727 * @arm: Indicates whether the host wants to arms this CQ. 728 * 729 * This routine will notify the HBA, by ringing the doorbell, that the 730 * CQEs have been processed. The @arm parameter specifies whether the 731 * queue should be rearmed when ringing the doorbell. 732 **/ 733 void 734 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 735 uint32_t count, bool arm) 736 { 737 struct lpfc_register doorbell; 738 739 /* sanity check on queue memory */ 740 if (unlikely(!q || (count == 0 && !arm))) 741 return; 742 743 /* ring doorbell for number popped */ 744 doorbell.word0 = 0; 745 if (arm) 746 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 747 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 748 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 749 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 750 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 751 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 752 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 753 } 754 755 /** 756 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 757 * @phba: the adapter with the CQ 758 * @q: The Completion Queue that the host has completed processing for. 759 * @count: the number of elements that were consumed 760 * @arm: Indicates whether the host wants to arms this CQ. 761 * 762 * This routine will notify the HBA, by ringing the doorbell, that the 763 * CQEs have been processed. The @arm parameter specifies whether the 764 * queue should be rearmed when ringing the doorbell. 765 **/ 766 void 767 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 768 uint32_t count, bool arm) 769 { 770 struct lpfc_register doorbell; 771 772 /* sanity check on queue memory */ 773 if (unlikely(!q || (count == 0 && !arm))) 774 return; 775 776 /* ring doorbell for number popped */ 777 doorbell.word0 = 0; 778 if (arm) 779 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 780 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 781 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 782 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 783 } 784 785 /* 786 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 787 * 788 * This routine will copy the contents of @wqe to the next available entry on 789 * the @q. This function will then ring the Receive Queue Doorbell to signal the 790 * HBA to start processing the Receive Queue Entry. This function returns the 791 * index that the rqe was copied to if successful. If no entries are available 792 * on @q then this function will return -ENOMEM. 793 * The caller is expected to hold the hbalock when calling this routine. 794 **/ 795 int 796 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 797 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 798 { 799 struct lpfc_rqe *temp_hrqe; 800 struct lpfc_rqe *temp_drqe; 801 struct lpfc_register doorbell; 802 int hq_put_index; 803 int dq_put_index; 804 805 /* sanity check on queue memory */ 806 if (unlikely(!hq) || unlikely(!dq)) 807 return -ENOMEM; 808 hq_put_index = hq->host_index; 809 dq_put_index = dq->host_index; 810 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 811 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 812 813 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 814 return -EINVAL; 815 if (hq_put_index != dq_put_index) 816 return -EINVAL; 817 /* If the host has not yet processed the next entry then we are done */ 818 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 819 return -EBUSY; 820 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 821 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 822 823 /* Update the host index to point to the next slot */ 824 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 825 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 826 hq->RQ_buf_posted++; 827 828 /* Ring The Header Receive Queue Doorbell */ 829 if (!(hq->host_index % hq->notify_interval)) { 830 doorbell.word0 = 0; 831 if (hq->db_format == LPFC_DB_RING_FORMAT) { 832 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 833 hq->notify_interval); 834 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 835 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 836 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 837 hq->notify_interval); 838 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 839 hq->host_index); 840 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 841 } else { 842 return -EINVAL; 843 } 844 writel(doorbell.word0, hq->db_regaddr); 845 } 846 return hq_put_index; 847 } 848 849 /* 850 * lpfc_sli4_rq_release - Updates internal hba index for RQ 851 * 852 * This routine will update the HBA index of a queue to reflect consumption of 853 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 854 * consumed an entry the host calls this function to update the queue's 855 * internal pointers. This routine returns the number of entries that were 856 * consumed by the HBA. 857 **/ 858 static uint32_t 859 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 860 { 861 /* sanity check on queue memory */ 862 if (unlikely(!hq) || unlikely(!dq)) 863 return 0; 864 865 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 866 return 0; 867 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 868 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 869 return 1; 870 } 871 872 /** 873 * lpfc_cmd_iocb - Get next command iocb entry in the ring 874 * @phba: Pointer to HBA context object. 875 * @pring: Pointer to driver SLI ring object. 876 * 877 * This function returns pointer to next command iocb entry 878 * in the command ring. The caller must hold hbalock to prevent 879 * other threads consume the next command iocb. 880 * SLI-2/SLI-3 provide different sized iocbs. 881 **/ 882 static inline IOCB_t * 883 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 884 { 885 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 886 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 887 } 888 889 /** 890 * lpfc_resp_iocb - Get next response iocb entry in the ring 891 * @phba: Pointer to HBA context object. 892 * @pring: Pointer to driver SLI ring object. 893 * 894 * This function returns pointer to next response iocb entry 895 * in the response ring. The caller must hold hbalock to make sure 896 * that no other thread consume the next response iocb. 897 * SLI-2/SLI-3 provide different sized iocbs. 898 **/ 899 static inline IOCB_t * 900 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 901 { 902 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 903 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 904 } 905 906 /** 907 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 908 * @phba: Pointer to HBA context object. 909 * 910 * This function is called with hbalock held. This function 911 * allocates a new driver iocb object from the iocb pool. If the 912 * allocation is successful, it returns pointer to the newly 913 * allocated iocb object else it returns NULL. 914 **/ 915 struct lpfc_iocbq * 916 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 917 { 918 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 919 struct lpfc_iocbq * iocbq = NULL; 920 921 lockdep_assert_held(&phba->hbalock); 922 923 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 924 if (iocbq) 925 phba->iocb_cnt++; 926 if (phba->iocb_cnt > phba->iocb_max) 927 phba->iocb_max = phba->iocb_cnt; 928 return iocbq; 929 } 930 931 /** 932 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 933 * @phba: Pointer to HBA context object. 934 * @xritag: XRI value. 935 * 936 * This function clears the sglq pointer from the array of active 937 * sglq's. The xritag that is passed in is used to index into the 938 * array. Before the xritag can be used it needs to be adjusted 939 * by subtracting the xribase. 940 * 941 * Returns sglq ponter = success, NULL = Failure. 942 **/ 943 struct lpfc_sglq * 944 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 945 { 946 struct lpfc_sglq *sglq; 947 948 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 949 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 950 return sglq; 951 } 952 953 /** 954 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 955 * @phba: Pointer to HBA context object. 956 * @xritag: XRI value. 957 * 958 * This function returns the sglq pointer from the array of active 959 * sglq's. The xritag that is passed in is used to index into the 960 * array. Before the xritag can be used it needs to be adjusted 961 * by subtracting the xribase. 962 * 963 * Returns sglq ponter = success, NULL = Failure. 964 **/ 965 struct lpfc_sglq * 966 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 967 { 968 struct lpfc_sglq *sglq; 969 970 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 971 return sglq; 972 } 973 974 /** 975 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 976 * @phba: Pointer to HBA context object. 977 * @xritag: xri used in this exchange. 978 * @rrq: The RRQ to be cleared. 979 * 980 **/ 981 void 982 lpfc_clr_rrq_active(struct lpfc_hba *phba, 983 uint16_t xritag, 984 struct lpfc_node_rrq *rrq) 985 { 986 struct lpfc_nodelist *ndlp = NULL; 987 988 /* Lookup did to verify if did is still active on this vport */ 989 if (rrq->vport) 990 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 991 992 if (!ndlp) 993 goto out; 994 995 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 996 rrq->send_rrq = 0; 997 rrq->xritag = 0; 998 rrq->rrq_stop_time = 0; 999 } 1000 out: 1001 mempool_free(rrq, phba->rrq_pool); 1002 } 1003 1004 /** 1005 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1006 * @phba: Pointer to HBA context object. 1007 * 1008 * This function is called with hbalock held. This function 1009 * Checks if stop_time (ratov from setting rrq active) has 1010 * been reached, if it has and the send_rrq flag is set then 1011 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1012 * then it will just call the routine to clear the rrq and 1013 * free the rrq resource. 1014 * The timer is set to the next rrq that is going to expire before 1015 * leaving the routine. 1016 * 1017 **/ 1018 void 1019 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1020 { 1021 struct lpfc_node_rrq *rrq; 1022 struct lpfc_node_rrq *nextrrq; 1023 unsigned long next_time; 1024 unsigned long iflags; 1025 LIST_HEAD(send_rrq); 1026 1027 spin_lock_irqsave(&phba->hbalock, iflags); 1028 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1029 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1030 list_for_each_entry_safe(rrq, nextrrq, 1031 &phba->active_rrq_list, list) { 1032 if (time_after(jiffies, rrq->rrq_stop_time)) 1033 list_move(&rrq->list, &send_rrq); 1034 else if (time_before(rrq->rrq_stop_time, next_time)) 1035 next_time = rrq->rrq_stop_time; 1036 } 1037 spin_unlock_irqrestore(&phba->hbalock, iflags); 1038 if ((!list_empty(&phba->active_rrq_list)) && 1039 (!(phba->pport->load_flag & FC_UNLOADING))) 1040 mod_timer(&phba->rrq_tmr, next_time); 1041 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1042 list_del(&rrq->list); 1043 if (!rrq->send_rrq) { 1044 /* this call will free the rrq */ 1045 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1046 } else if (lpfc_send_rrq(phba, rrq)) { 1047 /* if we send the rrq then the completion handler 1048 * will clear the bit in the xribitmap. 1049 */ 1050 lpfc_clr_rrq_active(phba, rrq->xritag, 1051 rrq); 1052 } 1053 } 1054 } 1055 1056 /** 1057 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1058 * @vport: Pointer to vport context object. 1059 * @xri: The xri used in the exchange. 1060 * @did: The targets DID for this exchange. 1061 * 1062 * returns NULL = rrq not found in the phba->active_rrq_list. 1063 * rrq = rrq for this xri and target. 1064 **/ 1065 struct lpfc_node_rrq * 1066 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1067 { 1068 struct lpfc_hba *phba = vport->phba; 1069 struct lpfc_node_rrq *rrq; 1070 struct lpfc_node_rrq *nextrrq; 1071 unsigned long iflags; 1072 1073 if (phba->sli_rev != LPFC_SLI_REV4) 1074 return NULL; 1075 spin_lock_irqsave(&phba->hbalock, iflags); 1076 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1077 if (rrq->vport == vport && rrq->xritag == xri && 1078 rrq->nlp_DID == did){ 1079 list_del(&rrq->list); 1080 spin_unlock_irqrestore(&phba->hbalock, iflags); 1081 return rrq; 1082 } 1083 } 1084 spin_unlock_irqrestore(&phba->hbalock, iflags); 1085 return NULL; 1086 } 1087 1088 /** 1089 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1090 * @vport: Pointer to vport context object. 1091 * @ndlp: Pointer to the lpfc_node_list structure. 1092 * If ndlp is NULL Remove all active RRQs for this vport from the 1093 * phba->active_rrq_list and clear the rrq. 1094 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1095 **/ 1096 void 1097 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1098 1099 { 1100 struct lpfc_hba *phba = vport->phba; 1101 struct lpfc_node_rrq *rrq; 1102 struct lpfc_node_rrq *nextrrq; 1103 unsigned long iflags; 1104 LIST_HEAD(rrq_list); 1105 1106 if (phba->sli_rev != LPFC_SLI_REV4) 1107 return; 1108 if (!ndlp) { 1109 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1110 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1111 } 1112 spin_lock_irqsave(&phba->hbalock, iflags); 1113 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1114 if (rrq->vport != vport) 1115 continue; 1116 1117 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1118 list_move(&rrq->list, &rrq_list); 1119 1120 } 1121 spin_unlock_irqrestore(&phba->hbalock, iflags); 1122 1123 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1124 list_del(&rrq->list); 1125 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1126 } 1127 } 1128 1129 /** 1130 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1131 * @phba: Pointer to HBA context object. 1132 * @ndlp: Targets nodelist pointer for this exchange. 1133 * @xritag: the xri in the bitmap to test. 1134 * 1135 * This function returns: 1136 * 0 = rrq not active for this xri 1137 * 1 = rrq is valid for this xri. 1138 **/ 1139 int 1140 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1141 uint16_t xritag) 1142 { 1143 if (!ndlp) 1144 return 0; 1145 if (!ndlp->active_rrqs_xri_bitmap) 1146 return 0; 1147 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1148 return 1; 1149 else 1150 return 0; 1151 } 1152 1153 /** 1154 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1155 * @phba: Pointer to HBA context object. 1156 * @ndlp: nodelist pointer for this target. 1157 * @xritag: xri used in this exchange. 1158 * @rxid: Remote Exchange ID. 1159 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1160 * 1161 * This function takes the hbalock. 1162 * The active bit is always set in the active rrq xri_bitmap even 1163 * if there is no slot avaiable for the other rrq information. 1164 * 1165 * returns 0 rrq actived for this xri 1166 * < 0 No memory or invalid ndlp. 1167 **/ 1168 int 1169 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1170 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1171 { 1172 unsigned long iflags; 1173 struct lpfc_node_rrq *rrq; 1174 int empty; 1175 1176 if (!ndlp) 1177 return -EINVAL; 1178 1179 if (!phba->cfg_enable_rrq) 1180 return -EINVAL; 1181 1182 spin_lock_irqsave(&phba->hbalock, iflags); 1183 if (phba->pport->load_flag & FC_UNLOADING) { 1184 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1185 goto out; 1186 } 1187 1188 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1189 goto out; 1190 1191 if (!ndlp->active_rrqs_xri_bitmap) 1192 goto out; 1193 1194 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1195 goto out; 1196 1197 spin_unlock_irqrestore(&phba->hbalock, iflags); 1198 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1199 if (!rrq) { 1200 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1201 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1202 " DID:0x%x Send:%d\n", 1203 xritag, rxid, ndlp->nlp_DID, send_rrq); 1204 return -EINVAL; 1205 } 1206 if (phba->cfg_enable_rrq == 1) 1207 rrq->send_rrq = send_rrq; 1208 else 1209 rrq->send_rrq = 0; 1210 rrq->xritag = xritag; 1211 rrq->rrq_stop_time = jiffies + 1212 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1213 rrq->nlp_DID = ndlp->nlp_DID; 1214 rrq->vport = ndlp->vport; 1215 rrq->rxid = rxid; 1216 spin_lock_irqsave(&phba->hbalock, iflags); 1217 empty = list_empty(&phba->active_rrq_list); 1218 list_add_tail(&rrq->list, &phba->active_rrq_list); 1219 phba->hba_flag |= HBA_RRQ_ACTIVE; 1220 if (empty) 1221 lpfc_worker_wake_up(phba); 1222 spin_unlock_irqrestore(&phba->hbalock, iflags); 1223 return 0; 1224 out: 1225 spin_unlock_irqrestore(&phba->hbalock, iflags); 1226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1227 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1228 " DID:0x%x Send:%d\n", 1229 xritag, rxid, ndlp->nlp_DID, send_rrq); 1230 return -EINVAL; 1231 } 1232 1233 /** 1234 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1235 * @phba: Pointer to HBA context object. 1236 * @piocbq: Pointer to the iocbq. 1237 * 1238 * The driver calls this function with either the nvme ls ring lock 1239 * or the fc els ring lock held depending on the iocb usage. This function 1240 * gets a new driver sglq object from the sglq list. If the list is not empty 1241 * then it is successful, it returns pointer to the newly allocated sglq 1242 * object else it returns NULL. 1243 **/ 1244 static struct lpfc_sglq * 1245 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1246 { 1247 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1248 struct lpfc_sglq *sglq = NULL; 1249 struct lpfc_sglq *start_sglq = NULL; 1250 struct lpfc_io_buf *lpfc_cmd; 1251 struct lpfc_nodelist *ndlp; 1252 int found = 0; 1253 u8 cmnd; 1254 1255 cmnd = get_job_cmnd(phba, piocbq); 1256 1257 if (piocbq->cmd_flag & LPFC_IO_FCP) { 1258 lpfc_cmd = piocbq->io_buf; 1259 ndlp = lpfc_cmd->rdata->pnode; 1260 } else if ((cmnd == CMD_GEN_REQUEST64_CR) && 1261 !(piocbq->cmd_flag & LPFC_IO_LIBDFC)) { 1262 ndlp = piocbq->ndlp; 1263 } else if (piocbq->cmd_flag & LPFC_IO_LIBDFC) { 1264 if (piocbq->cmd_flag & LPFC_IO_LOOPBACK) 1265 ndlp = NULL; 1266 else 1267 ndlp = piocbq->ndlp; 1268 } else { 1269 ndlp = piocbq->ndlp; 1270 } 1271 1272 spin_lock(&phba->sli4_hba.sgl_list_lock); 1273 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1274 start_sglq = sglq; 1275 while (!found) { 1276 if (!sglq) 1277 break; 1278 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1279 test_bit(sglq->sli4_lxritag, 1280 ndlp->active_rrqs_xri_bitmap)) { 1281 /* This xri has an rrq outstanding for this DID. 1282 * put it back in the list and get another xri. 1283 */ 1284 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1285 sglq = NULL; 1286 list_remove_head(lpfc_els_sgl_list, sglq, 1287 struct lpfc_sglq, list); 1288 if (sglq == start_sglq) { 1289 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1290 sglq = NULL; 1291 break; 1292 } else 1293 continue; 1294 } 1295 sglq->ndlp = ndlp; 1296 found = 1; 1297 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1298 sglq->state = SGL_ALLOCATED; 1299 } 1300 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1301 return sglq; 1302 } 1303 1304 /** 1305 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1306 * @phba: Pointer to HBA context object. 1307 * @piocbq: Pointer to the iocbq. 1308 * 1309 * This function is called with the sgl_list lock held. This function 1310 * gets a new driver sglq object from the sglq list. If the 1311 * list is not empty then it is successful, it returns pointer to the newly 1312 * allocated sglq object else it returns NULL. 1313 **/ 1314 struct lpfc_sglq * 1315 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1316 { 1317 struct list_head *lpfc_nvmet_sgl_list; 1318 struct lpfc_sglq *sglq = NULL; 1319 1320 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1321 1322 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1323 1324 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1325 if (!sglq) 1326 return NULL; 1327 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1328 sglq->state = SGL_ALLOCATED; 1329 return sglq; 1330 } 1331 1332 /** 1333 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1334 * @phba: Pointer to HBA context object. 1335 * 1336 * This function is called with no lock held. This function 1337 * allocates a new driver iocb object from the iocb pool. If the 1338 * allocation is successful, it returns pointer to the newly 1339 * allocated iocb object else it returns NULL. 1340 **/ 1341 struct lpfc_iocbq * 1342 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1343 { 1344 struct lpfc_iocbq * iocbq = NULL; 1345 unsigned long iflags; 1346 1347 spin_lock_irqsave(&phba->hbalock, iflags); 1348 iocbq = __lpfc_sli_get_iocbq(phba); 1349 spin_unlock_irqrestore(&phba->hbalock, iflags); 1350 return iocbq; 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called to release the driver iocb object 1359 * to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 * The sqlq structure that holds the xritag and phys and virtual 1363 * mappings for the scatter gather list is retrieved from the 1364 * active array of sglq. The get of the sglq pointer also clears 1365 * the entry in the array. If the status of the IO indiactes that 1366 * this IO was aborted then the sglq entry it put on the 1367 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1368 * IO has good status or fails for any other reason then the sglq 1369 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1370 * asserted held in the code path calling this routine. 1371 **/ 1372 static void 1373 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1374 { 1375 struct lpfc_sglq *sglq; 1376 size_t start_clean = offsetof(struct lpfc_iocbq, wqe); 1377 unsigned long iflag = 0; 1378 struct lpfc_sli_ring *pring; 1379 1380 if (iocbq->sli4_xritag == NO_XRI) 1381 sglq = NULL; 1382 else 1383 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1384 1385 1386 if (sglq) { 1387 if (iocbq->cmd_flag & LPFC_IO_NVMET) { 1388 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1389 iflag); 1390 sglq->state = SGL_FREED; 1391 sglq->ndlp = NULL; 1392 list_add_tail(&sglq->list, 1393 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1394 spin_unlock_irqrestore( 1395 &phba->sli4_hba.sgl_list_lock, iflag); 1396 goto out; 1397 } 1398 1399 if ((iocbq->cmd_flag & LPFC_EXCHANGE_BUSY) && 1400 (!(unlikely(pci_channel_offline(phba->pcidev)))) && 1401 sglq->state != SGL_XRI_ABORTED) { 1402 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1403 iflag); 1404 1405 /* Check if we can get a reference on ndlp */ 1406 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1407 sglq->ndlp = NULL; 1408 1409 list_add(&sglq->list, 1410 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1411 spin_unlock_irqrestore( 1412 &phba->sli4_hba.sgl_list_lock, iflag); 1413 } else { 1414 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1415 iflag); 1416 sglq->state = SGL_FREED; 1417 sglq->ndlp = NULL; 1418 list_add_tail(&sglq->list, 1419 &phba->sli4_hba.lpfc_els_sgl_list); 1420 spin_unlock_irqrestore( 1421 &phba->sli4_hba.sgl_list_lock, iflag); 1422 pring = lpfc_phba_elsring(phba); 1423 /* Check if TXQ queue needs to be serviced */ 1424 if (pring && (!list_empty(&pring->txq))) 1425 lpfc_worker_wake_up(phba); 1426 } 1427 } 1428 1429 out: 1430 /* 1431 * Clean all volatile data fields, preserve iotag and node struct. 1432 */ 1433 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1434 iocbq->sli4_lxritag = NO_XRI; 1435 iocbq->sli4_xritag = NO_XRI; 1436 iocbq->cmd_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | 1437 LPFC_IO_NVME_LS); 1438 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1439 } 1440 1441 1442 /** 1443 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1444 * @phba: Pointer to HBA context object. 1445 * @iocbq: Pointer to driver iocb object. 1446 * 1447 * This function is called to release the driver iocb object to the 1448 * iocb pool. The iotag in the iocb object does not change for each 1449 * use of the iocb object. This function clears all other fields of 1450 * the iocb object when it is freed. The hbalock is asserted held in 1451 * the code path calling this routine. 1452 **/ 1453 static void 1454 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1455 { 1456 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1457 1458 /* 1459 * Clean all volatile data fields, preserve iotag and node struct. 1460 */ 1461 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1462 iocbq->sli4_xritag = NO_XRI; 1463 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1464 } 1465 1466 /** 1467 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1468 * @phba: Pointer to HBA context object. 1469 * @iocbq: Pointer to driver iocb object. 1470 * 1471 * This function is called with hbalock held to release driver 1472 * iocb object to the iocb pool. The iotag in the iocb object 1473 * does not change for each use of the iocb object. This function 1474 * clears all other fields of the iocb object when it is freed. 1475 **/ 1476 static void 1477 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1478 { 1479 lockdep_assert_held(&phba->hbalock); 1480 1481 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1482 phba->iocb_cnt--; 1483 } 1484 1485 /** 1486 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1487 * @phba: Pointer to HBA context object. 1488 * @iocbq: Pointer to driver iocb object. 1489 * 1490 * This function is called with no lock held to release the iocb to 1491 * iocb pool. 1492 **/ 1493 void 1494 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1495 { 1496 unsigned long iflags; 1497 1498 /* 1499 * Clean all volatile data fields, preserve iotag and node struct. 1500 */ 1501 spin_lock_irqsave(&phba->hbalock, iflags); 1502 __lpfc_sli_release_iocbq(phba, iocbq); 1503 spin_unlock_irqrestore(&phba->hbalock, iflags); 1504 } 1505 1506 /** 1507 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1508 * @phba: Pointer to HBA context object. 1509 * @iocblist: List of IOCBs. 1510 * @ulpstatus: ULP status in IOCB command field. 1511 * @ulpWord4: ULP word-4 in IOCB command field. 1512 * 1513 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1514 * on the list by invoking the complete callback function associated with the 1515 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1516 * fields. 1517 **/ 1518 void 1519 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1520 uint32_t ulpstatus, uint32_t ulpWord4) 1521 { 1522 struct lpfc_iocbq *piocb; 1523 1524 while (!list_empty(iocblist)) { 1525 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1526 if (piocb->cmd_cmpl) { 1527 if (piocb->cmd_flag & LPFC_IO_NVME) { 1528 lpfc_nvme_cancel_iocb(phba, piocb, 1529 ulpstatus, ulpWord4); 1530 } else { 1531 if (phba->sli_rev == LPFC_SLI_REV4) { 1532 bf_set(lpfc_wcqe_c_status, 1533 &piocb->wcqe_cmpl, ulpstatus); 1534 piocb->wcqe_cmpl.parameter = ulpWord4; 1535 } else { 1536 piocb->iocb.ulpStatus = ulpstatus; 1537 piocb->iocb.un.ulpWord[4] = ulpWord4; 1538 } 1539 (piocb->cmd_cmpl) (phba, piocb, piocb); 1540 } 1541 } else { 1542 lpfc_sli_release_iocbq(phba, piocb); 1543 } 1544 } 1545 return; 1546 } 1547 1548 /** 1549 * lpfc_sli_iocb_cmd_type - Get the iocb type 1550 * @iocb_cmnd: iocb command code. 1551 * 1552 * This function is called by ring event handler function to get the iocb type. 1553 * This function translates the iocb command to an iocb command type used to 1554 * decide the final disposition of each completed IOCB. 1555 * The function returns 1556 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1557 * LPFC_SOL_IOCB if it is a solicited iocb completion 1558 * LPFC_ABORT_IOCB if it is an abort iocb 1559 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1560 * 1561 * The caller is not required to hold any lock. 1562 **/ 1563 static lpfc_iocb_type 1564 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1565 { 1566 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1567 1568 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1569 return 0; 1570 1571 switch (iocb_cmnd) { 1572 case CMD_XMIT_SEQUENCE_CR: 1573 case CMD_XMIT_SEQUENCE_CX: 1574 case CMD_XMIT_BCAST_CN: 1575 case CMD_XMIT_BCAST_CX: 1576 case CMD_ELS_REQUEST_CR: 1577 case CMD_ELS_REQUEST_CX: 1578 case CMD_CREATE_XRI_CR: 1579 case CMD_CREATE_XRI_CX: 1580 case CMD_GET_RPI_CN: 1581 case CMD_XMIT_ELS_RSP_CX: 1582 case CMD_GET_RPI_CR: 1583 case CMD_FCP_IWRITE_CR: 1584 case CMD_FCP_IWRITE_CX: 1585 case CMD_FCP_IREAD_CR: 1586 case CMD_FCP_IREAD_CX: 1587 case CMD_FCP_ICMND_CR: 1588 case CMD_FCP_ICMND_CX: 1589 case CMD_FCP_TSEND_CX: 1590 case CMD_FCP_TRSP_CX: 1591 case CMD_FCP_TRECEIVE_CX: 1592 case CMD_FCP_AUTO_TRSP_CX: 1593 case CMD_ADAPTER_MSG: 1594 case CMD_ADAPTER_DUMP: 1595 case CMD_XMIT_SEQUENCE64_CR: 1596 case CMD_XMIT_SEQUENCE64_CX: 1597 case CMD_XMIT_BCAST64_CN: 1598 case CMD_XMIT_BCAST64_CX: 1599 case CMD_ELS_REQUEST64_CR: 1600 case CMD_ELS_REQUEST64_CX: 1601 case CMD_FCP_IWRITE64_CR: 1602 case CMD_FCP_IWRITE64_CX: 1603 case CMD_FCP_IREAD64_CR: 1604 case CMD_FCP_IREAD64_CX: 1605 case CMD_FCP_ICMND64_CR: 1606 case CMD_FCP_ICMND64_CX: 1607 case CMD_FCP_TSEND64_CX: 1608 case CMD_FCP_TRSP64_CX: 1609 case CMD_FCP_TRECEIVE64_CX: 1610 case CMD_GEN_REQUEST64_CR: 1611 case CMD_GEN_REQUEST64_CX: 1612 case CMD_XMIT_ELS_RSP64_CX: 1613 case DSSCMD_IWRITE64_CR: 1614 case DSSCMD_IWRITE64_CX: 1615 case DSSCMD_IREAD64_CR: 1616 case DSSCMD_IREAD64_CX: 1617 case CMD_SEND_FRAME: 1618 type = LPFC_SOL_IOCB; 1619 break; 1620 case CMD_ABORT_XRI_CN: 1621 case CMD_ABORT_XRI_CX: 1622 case CMD_CLOSE_XRI_CN: 1623 case CMD_CLOSE_XRI_CX: 1624 case CMD_XRI_ABORTED_CX: 1625 case CMD_ABORT_MXRI64_CN: 1626 case CMD_XMIT_BLS_RSP64_CX: 1627 type = LPFC_ABORT_IOCB; 1628 break; 1629 case CMD_RCV_SEQUENCE_CX: 1630 case CMD_RCV_ELS_REQ_CX: 1631 case CMD_RCV_SEQUENCE64_CX: 1632 case CMD_RCV_ELS_REQ64_CX: 1633 case CMD_ASYNC_STATUS: 1634 case CMD_IOCB_RCV_SEQ64_CX: 1635 case CMD_IOCB_RCV_ELS64_CX: 1636 case CMD_IOCB_RCV_CONT64_CX: 1637 case CMD_IOCB_RET_XRI64_CX: 1638 type = LPFC_UNSOL_IOCB; 1639 break; 1640 case CMD_IOCB_XMIT_MSEQ64_CR: 1641 case CMD_IOCB_XMIT_MSEQ64_CX: 1642 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1643 case CMD_IOCB_RCV_ELS_LIST64_CX: 1644 case CMD_IOCB_CLOSE_EXTENDED_CN: 1645 case CMD_IOCB_ABORT_EXTENDED_CN: 1646 case CMD_IOCB_RET_HBQE64_CN: 1647 case CMD_IOCB_FCP_IBIDIR64_CR: 1648 case CMD_IOCB_FCP_IBIDIR64_CX: 1649 case CMD_IOCB_FCP_ITASKMGT64_CX: 1650 case CMD_IOCB_LOGENTRY_CN: 1651 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1652 printk("%s - Unhandled SLI-3 Command x%x\n", 1653 __func__, iocb_cmnd); 1654 type = LPFC_UNKNOWN_IOCB; 1655 break; 1656 default: 1657 type = LPFC_UNKNOWN_IOCB; 1658 break; 1659 } 1660 1661 return type; 1662 } 1663 1664 /** 1665 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1666 * @phba: Pointer to HBA context object. 1667 * 1668 * This function is called from SLI initialization code 1669 * to configure every ring of the HBA's SLI interface. The 1670 * caller is not required to hold any lock. This function issues 1671 * a config_ring mailbox command for each ring. 1672 * This function returns zero if successful else returns a negative 1673 * error code. 1674 **/ 1675 static int 1676 lpfc_sli_ring_map(struct lpfc_hba *phba) 1677 { 1678 struct lpfc_sli *psli = &phba->sli; 1679 LPFC_MBOXQ_t *pmb; 1680 MAILBOX_t *pmbox; 1681 int i, rc, ret = 0; 1682 1683 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1684 if (!pmb) 1685 return -ENOMEM; 1686 pmbox = &pmb->u.mb; 1687 phba->link_state = LPFC_INIT_MBX_CMDS; 1688 for (i = 0; i < psli->num_rings; i++) { 1689 lpfc_config_ring(phba, i, pmb); 1690 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1691 if (rc != MBX_SUCCESS) { 1692 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1693 "0446 Adapter failed to init (%d), " 1694 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1695 "ring %d\n", 1696 rc, pmbox->mbxCommand, 1697 pmbox->mbxStatus, i); 1698 phba->link_state = LPFC_HBA_ERROR; 1699 ret = -ENXIO; 1700 break; 1701 } 1702 } 1703 mempool_free(pmb, phba->mbox_mem_pool); 1704 return ret; 1705 } 1706 1707 /** 1708 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1709 * @phba: Pointer to HBA context object. 1710 * @pring: Pointer to driver SLI ring object. 1711 * @piocb: Pointer to the driver iocb object. 1712 * 1713 * The driver calls this function with the hbalock held for SLI3 ports or 1714 * the ring lock held for SLI4 ports. The function adds the 1715 * new iocb to txcmplq of the given ring. This function always returns 1716 * 0. If this function is called for ELS ring, this function checks if 1717 * there is a vport associated with the ELS command. This function also 1718 * starts els_tmofunc timer if this is an ELS command. 1719 **/ 1720 static int 1721 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1722 struct lpfc_iocbq *piocb) 1723 { 1724 u32 ulp_command = 0; 1725 1726 BUG_ON(!piocb); 1727 ulp_command = get_job_cmnd(phba, piocb); 1728 1729 list_add_tail(&piocb->list, &pring->txcmplq); 1730 piocb->cmd_flag |= LPFC_IO_ON_TXCMPLQ; 1731 pring->txcmplq_cnt++; 1732 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1733 (ulp_command != CMD_ABORT_XRI_WQE) && 1734 (ulp_command != CMD_ABORT_XRI_CN) && 1735 (ulp_command != CMD_CLOSE_XRI_CN)) { 1736 BUG_ON(!piocb->vport); 1737 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1738 mod_timer(&piocb->vport->els_tmofunc, 1739 jiffies + 1740 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1741 } 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * lpfc_sli_ringtx_get - Get first element of the txq 1748 * @phba: Pointer to HBA context object. 1749 * @pring: Pointer to driver SLI ring object. 1750 * 1751 * This function is called with hbalock held to get next 1752 * iocb in txq of the given ring. If there is any iocb in 1753 * the txq, the function returns first iocb in the list after 1754 * removing the iocb from the list, else it returns NULL. 1755 **/ 1756 struct lpfc_iocbq * 1757 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1758 { 1759 struct lpfc_iocbq *cmd_iocb; 1760 1761 lockdep_assert_held(&phba->hbalock); 1762 1763 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1764 return cmd_iocb; 1765 } 1766 1767 /** 1768 * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl 1769 * @phba: Pointer to HBA context object. 1770 * @cmdiocb: Pointer to driver command iocb object. 1771 * @rspiocb: Pointer to driver response iocb object. 1772 * 1773 * This routine will inform the driver of any BW adjustments we need 1774 * to make. These changes will be picked up during the next CMF 1775 * timer interrupt. In addition, any BW changes will be logged 1776 * with LOG_CGN_MGMT. 1777 **/ 1778 static void 1779 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 1780 struct lpfc_iocbq *rspiocb) 1781 { 1782 union lpfc_wqe128 *wqe; 1783 uint32_t status, info; 1784 struct lpfc_wcqe_complete *wcqe = &rspiocb->wcqe_cmpl; 1785 uint64_t bw, bwdif, slop; 1786 uint64_t pcent, bwpcent; 1787 int asig, afpin, sigcnt, fpincnt; 1788 int wsigmax, wfpinmax, cg, tdp; 1789 char *s; 1790 1791 /* First check for error */ 1792 status = bf_get(lpfc_wcqe_c_status, wcqe); 1793 if (status) { 1794 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1795 "6211 CMF_SYNC_WQE Error " 1796 "req_tag x%x status x%x hwstatus x%x " 1797 "tdatap x%x parm x%x\n", 1798 bf_get(lpfc_wcqe_c_request_tag, wcqe), 1799 bf_get(lpfc_wcqe_c_status, wcqe), 1800 bf_get(lpfc_wcqe_c_hw_status, wcqe), 1801 wcqe->total_data_placed, 1802 wcqe->parameter); 1803 goto out; 1804 } 1805 1806 /* Gather congestion information on a successful cmpl */ 1807 info = wcqe->parameter; 1808 phba->cmf_active_info = info; 1809 1810 /* See if firmware info count is valid or has changed */ 1811 if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) 1812 info = 0; 1813 else 1814 phba->cmf_info_per_interval = info; 1815 1816 tdp = bf_get(lpfc_wcqe_c_cmf_bw, wcqe); 1817 cg = bf_get(lpfc_wcqe_c_cmf_cg, wcqe); 1818 1819 /* Get BW requirement from firmware */ 1820 bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; 1821 if (!bw) { 1822 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1823 "6212 CMF_SYNC_WQE x%x: NULL bw\n", 1824 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 1825 goto out; 1826 } 1827 1828 /* Gather information needed for logging if a BW change is required */ 1829 wqe = &cmdiocb->wqe; 1830 asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); 1831 afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); 1832 fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); 1833 sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); 1834 if (phba->cmf_max_bytes_per_interval != bw || 1835 (asig || afpin || sigcnt || fpincnt)) { 1836 /* Are we increasing or decreasing BW */ 1837 if (phba->cmf_max_bytes_per_interval < bw) { 1838 bwdif = bw - phba->cmf_max_bytes_per_interval; 1839 s = "Increase"; 1840 } else { 1841 bwdif = phba->cmf_max_bytes_per_interval - bw; 1842 s = "Decrease"; 1843 } 1844 1845 /* What is the change percentage */ 1846 slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ 1847 pcent = div64_u64(bwdif * 100 + slop, 1848 phba->cmf_link_byte_count); 1849 bwpcent = div64_u64(bw * 100 + slop, 1850 phba->cmf_link_byte_count); 1851 if (asig) { 1852 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1853 "6237 BW Threshold %lld%% (%lld): " 1854 "%lld%% %s: Signal Alarm: cg:%d " 1855 "Info:%u\n", 1856 bwpcent, bw, pcent, s, cg, 1857 phba->cmf_active_info); 1858 } else if (afpin) { 1859 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1860 "6238 BW Threshold %lld%% (%lld): " 1861 "%lld%% %s: FPIN Alarm: cg:%d " 1862 "Info:%u\n", 1863 bwpcent, bw, pcent, s, cg, 1864 phba->cmf_active_info); 1865 } else if (sigcnt) { 1866 wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); 1867 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1868 "6239 BW Threshold %lld%% (%lld): " 1869 "%lld%% %s: Signal Warning: " 1870 "Cnt %d Max %d: cg:%d Info:%u\n", 1871 bwpcent, bw, pcent, s, sigcnt, 1872 wsigmax, cg, phba->cmf_active_info); 1873 } else if (fpincnt) { 1874 wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); 1875 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1876 "6240 BW Threshold %lld%% (%lld): " 1877 "%lld%% %s: FPIN Warning: " 1878 "Cnt %d Max %d: cg:%d Info:%u\n", 1879 bwpcent, bw, pcent, s, fpincnt, 1880 wfpinmax, cg, phba->cmf_active_info); 1881 } else { 1882 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1883 "6241 BW Threshold %lld%% (%lld): " 1884 "CMF %lld%% %s: cg:%d Info:%u\n", 1885 bwpcent, bw, pcent, s, cg, 1886 phba->cmf_active_info); 1887 } 1888 } else if (info) { 1889 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1890 "6246 Info Threshold %u\n", info); 1891 } 1892 1893 /* Save BW change to be picked up during next timer interrupt */ 1894 phba->cmf_last_sync_bw = bw; 1895 out: 1896 lpfc_sli_release_iocbq(phba, cmdiocb); 1897 } 1898 1899 /** 1900 * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE 1901 * @phba: Pointer to HBA context object. 1902 * @ms: ms to set in WQE interval, 0 means use init op 1903 * @total: Total rcv bytes for this interval 1904 * 1905 * This routine is called every CMF timer interrupt. Its purpose is 1906 * to issue a CMF_SYNC_WQE to the firmware to inform it of any events 1907 * that may indicate we have congestion (FPINs or Signals). Upon 1908 * completion, the firmware will indicate any BW restrictions the 1909 * driver may need to take. 1910 **/ 1911 int 1912 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) 1913 { 1914 union lpfc_wqe128 *wqe; 1915 struct lpfc_iocbq *sync_buf; 1916 unsigned long iflags; 1917 u32 ret_val; 1918 u32 atot, wtot, max; 1919 1920 /* First address any alarm / warning activity */ 1921 atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); 1922 wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); 1923 1924 /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ 1925 if (phba->cmf_active_mode != LPFC_CFG_MANAGED || 1926 phba->link_state == LPFC_LINK_DOWN) 1927 return 0; 1928 1929 spin_lock_irqsave(&phba->hbalock, iflags); 1930 sync_buf = __lpfc_sli_get_iocbq(phba); 1931 if (!sync_buf) { 1932 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, 1933 "6213 No available WQEs for CMF_SYNC_WQE\n"); 1934 ret_val = ENOMEM; 1935 goto out_unlock; 1936 } 1937 1938 wqe = &sync_buf->wqe; 1939 1940 /* WQEs are reused. Clear stale data and set key fields to zero */ 1941 memset(wqe, 0, sizeof(*wqe)); 1942 1943 /* If this is the very first CMF_SYNC_WQE, issue an init operation */ 1944 if (!ms) { 1945 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 1946 "6441 CMF Init %d - CMF_SYNC_WQE\n", 1947 phba->fc_eventTag); 1948 bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ 1949 bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); 1950 goto initpath; 1951 } 1952 1953 bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ 1954 bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); 1955 1956 /* Check for alarms / warnings */ 1957 if (atot) { 1958 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1959 /* We hit an Signal alarm condition */ 1960 bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); 1961 } else { 1962 /* We hit a FPIN alarm condition */ 1963 bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); 1964 } 1965 } else if (wtot) { 1966 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || 1967 phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 1968 /* We hit an Signal warning condition */ 1969 max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * 1970 lpfc_acqe_cgn_frequency; 1971 bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); 1972 bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); 1973 } else { 1974 /* We hit a FPIN warning condition */ 1975 bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); 1976 bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); 1977 } 1978 } 1979 1980 /* Update total read blocks during previous timer interval */ 1981 wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); 1982 1983 initpath: 1984 bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); 1985 wqe->cmf_sync.event_tag = phba->fc_eventTag; 1986 bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); 1987 1988 /* Setup reqtag to match the wqe completion. */ 1989 bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); 1990 1991 bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); 1992 1993 bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); 1994 bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); 1995 bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); 1996 1997 sync_buf->vport = phba->pport; 1998 sync_buf->cmd_cmpl = lpfc_cmf_sync_cmpl; 1999 sync_buf->cmd_dmabuf = NULL; 2000 sync_buf->rsp_dmabuf = NULL; 2001 sync_buf->bpl_dmabuf = NULL; 2002 sync_buf->sli4_xritag = NO_XRI; 2003 2004 sync_buf->cmd_flag |= LPFC_IO_CMF; 2005 ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); 2006 if (ret_val) 2007 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 2008 "6214 Cannot issue CMF_SYNC_WQE: x%x\n", 2009 ret_val); 2010 out_unlock: 2011 spin_unlock_irqrestore(&phba->hbalock, iflags); 2012 return ret_val; 2013 } 2014 2015 /** 2016 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 2017 * @phba: Pointer to HBA context object. 2018 * @pring: Pointer to driver SLI ring object. 2019 * 2020 * This function is called with hbalock held and the caller must post the 2021 * iocb without releasing the lock. If the caller releases the lock, 2022 * iocb slot returned by the function is not guaranteed to be available. 2023 * The function returns pointer to the next available iocb slot if there 2024 * is available slot in the ring, else it returns NULL. 2025 * If the get index of the ring is ahead of the put index, the function 2026 * will post an error attention event to the worker thread to take the 2027 * HBA to offline state. 2028 **/ 2029 static IOCB_t * 2030 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2031 { 2032 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2033 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 2034 2035 lockdep_assert_held(&phba->hbalock); 2036 2037 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 2038 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 2039 pring->sli.sli3.next_cmdidx = 0; 2040 2041 if (unlikely(pring->sli.sli3.local_getidx == 2042 pring->sli.sli3.next_cmdidx)) { 2043 2044 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 2045 2046 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 2047 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2048 "0315 Ring %d issue: portCmdGet %d " 2049 "is bigger than cmd ring %d\n", 2050 pring->ringno, 2051 pring->sli.sli3.local_getidx, 2052 max_cmd_idx); 2053 2054 phba->link_state = LPFC_HBA_ERROR; 2055 /* 2056 * All error attention handlers are posted to 2057 * worker thread 2058 */ 2059 phba->work_ha |= HA_ERATT; 2060 phba->work_hs = HS_FFER3; 2061 2062 lpfc_worker_wake_up(phba); 2063 2064 return NULL; 2065 } 2066 2067 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 2068 return NULL; 2069 } 2070 2071 return lpfc_cmd_iocb(phba, pring); 2072 } 2073 2074 /** 2075 * lpfc_sli_next_iotag - Get an iotag for the iocb 2076 * @phba: Pointer to HBA context object. 2077 * @iocbq: Pointer to driver iocb object. 2078 * 2079 * This function gets an iotag for the iocb. If there is no unused iotag and 2080 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 2081 * array and assigns a new iotag. 2082 * The function returns the allocated iotag if successful, else returns zero. 2083 * Zero is not a valid iotag. 2084 * The caller is not required to hold any lock. 2085 **/ 2086 uint16_t 2087 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 2088 { 2089 struct lpfc_iocbq **new_arr; 2090 struct lpfc_iocbq **old_arr; 2091 size_t new_len; 2092 struct lpfc_sli *psli = &phba->sli; 2093 uint16_t iotag; 2094 2095 spin_lock_irq(&phba->hbalock); 2096 iotag = psli->last_iotag; 2097 if(++iotag < psli->iocbq_lookup_len) { 2098 psli->last_iotag = iotag; 2099 psli->iocbq_lookup[iotag] = iocbq; 2100 spin_unlock_irq(&phba->hbalock); 2101 iocbq->iotag = iotag; 2102 return iotag; 2103 } else if (psli->iocbq_lookup_len < (0xffff 2104 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 2105 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 2106 spin_unlock_irq(&phba->hbalock); 2107 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 2108 GFP_KERNEL); 2109 if (new_arr) { 2110 spin_lock_irq(&phba->hbalock); 2111 old_arr = psli->iocbq_lookup; 2112 if (new_len <= psli->iocbq_lookup_len) { 2113 /* highly unprobable case */ 2114 kfree(new_arr); 2115 iotag = psli->last_iotag; 2116 if(++iotag < psli->iocbq_lookup_len) { 2117 psli->last_iotag = iotag; 2118 psli->iocbq_lookup[iotag] = iocbq; 2119 spin_unlock_irq(&phba->hbalock); 2120 iocbq->iotag = iotag; 2121 return iotag; 2122 } 2123 spin_unlock_irq(&phba->hbalock); 2124 return 0; 2125 } 2126 if (psli->iocbq_lookup) 2127 memcpy(new_arr, old_arr, 2128 ((psli->last_iotag + 1) * 2129 sizeof (struct lpfc_iocbq *))); 2130 psli->iocbq_lookup = new_arr; 2131 psli->iocbq_lookup_len = new_len; 2132 psli->last_iotag = iotag; 2133 psli->iocbq_lookup[iotag] = iocbq; 2134 spin_unlock_irq(&phba->hbalock); 2135 iocbq->iotag = iotag; 2136 kfree(old_arr); 2137 return iotag; 2138 } 2139 } else 2140 spin_unlock_irq(&phba->hbalock); 2141 2142 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2143 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 2144 psli->last_iotag); 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 2151 * @phba: Pointer to HBA context object. 2152 * @pring: Pointer to driver SLI ring object. 2153 * @iocb: Pointer to iocb slot in the ring. 2154 * @nextiocb: Pointer to driver iocb object which need to be 2155 * posted to firmware. 2156 * 2157 * This function is called to post a new iocb to the firmware. This 2158 * function copies the new iocb to ring iocb slot and updates the 2159 * ring pointers. It adds the new iocb to txcmplq if there is 2160 * a completion call back for this iocb else the function will free the 2161 * iocb object. The hbalock is asserted held in the code path calling 2162 * this routine. 2163 **/ 2164 static void 2165 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2166 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 2167 { 2168 /* 2169 * Set up an iotag 2170 */ 2171 nextiocb->iocb.ulpIoTag = (nextiocb->cmd_cmpl) ? nextiocb->iotag : 0; 2172 2173 2174 if (pring->ringno == LPFC_ELS_RING) { 2175 lpfc_debugfs_slow_ring_trc(phba, 2176 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 2177 *(((uint32_t *) &nextiocb->iocb) + 4), 2178 *(((uint32_t *) &nextiocb->iocb) + 6), 2179 *(((uint32_t *) &nextiocb->iocb) + 7)); 2180 } 2181 2182 /* 2183 * Issue iocb command to adapter 2184 */ 2185 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 2186 wmb(); 2187 pring->stats.iocb_cmd++; 2188 2189 /* 2190 * If there is no completion routine to call, we can release the 2191 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 2192 * that have no rsp ring completion, cmd_cmpl MUST be NULL. 2193 */ 2194 if (nextiocb->cmd_cmpl) 2195 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 2196 else 2197 __lpfc_sli_release_iocbq(phba, nextiocb); 2198 2199 /* 2200 * Let the HBA know what IOCB slot will be the next one the 2201 * driver will put a command into. 2202 */ 2203 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 2204 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 2205 } 2206 2207 /** 2208 * lpfc_sli_update_full_ring - Update the chip attention register 2209 * @phba: Pointer to HBA context object. 2210 * @pring: Pointer to driver SLI ring object. 2211 * 2212 * The caller is not required to hold any lock for calling this function. 2213 * This function updates the chip attention bits for the ring to inform firmware 2214 * that there are pending work to be done for this ring and requests an 2215 * interrupt when there is space available in the ring. This function is 2216 * called when the driver is unable to post more iocbs to the ring due 2217 * to unavailability of space in the ring. 2218 **/ 2219 static void 2220 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2221 { 2222 int ringno = pring->ringno; 2223 2224 pring->flag |= LPFC_CALL_RING_AVAILABLE; 2225 2226 wmb(); 2227 2228 /* 2229 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 2230 * The HBA will tell us when an IOCB entry is available. 2231 */ 2232 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 2233 readl(phba->CAregaddr); /* flush */ 2234 2235 pring->stats.iocb_cmd_full++; 2236 } 2237 2238 /** 2239 * lpfc_sli_update_ring - Update chip attention register 2240 * @phba: Pointer to HBA context object. 2241 * @pring: Pointer to driver SLI ring object. 2242 * 2243 * This function updates the chip attention register bit for the 2244 * given ring to inform HBA that there is more work to be done 2245 * in this ring. The caller is not required to hold any lock. 2246 **/ 2247 static void 2248 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2249 { 2250 int ringno = pring->ringno; 2251 2252 /* 2253 * Tell the HBA that there is work to do in this ring. 2254 */ 2255 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2256 wmb(); 2257 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2258 readl(phba->CAregaddr); /* flush */ 2259 } 2260 } 2261 2262 /** 2263 * lpfc_sli_resume_iocb - Process iocbs in the txq 2264 * @phba: Pointer to HBA context object. 2265 * @pring: Pointer to driver SLI ring object. 2266 * 2267 * This function is called with hbalock held to post pending iocbs 2268 * in the txq to the firmware. This function is called when driver 2269 * detects space available in the ring. 2270 **/ 2271 static void 2272 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2273 { 2274 IOCB_t *iocb; 2275 struct lpfc_iocbq *nextiocb; 2276 2277 lockdep_assert_held(&phba->hbalock); 2278 2279 /* 2280 * Check to see if: 2281 * (a) there is anything on the txq to send 2282 * (b) link is up 2283 * (c) link attention events can be processed (fcp ring only) 2284 * (d) IOCB processing is not blocked by the outstanding mbox command. 2285 */ 2286 2287 if (lpfc_is_link_up(phba) && 2288 (!list_empty(&pring->txq)) && 2289 (pring->ringno != LPFC_FCP_RING || 2290 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2291 2292 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2293 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2294 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2295 2296 if (iocb) 2297 lpfc_sli_update_ring(phba, pring); 2298 else 2299 lpfc_sli_update_full_ring(phba, pring); 2300 } 2301 2302 return; 2303 } 2304 2305 /** 2306 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2307 * @phba: Pointer to HBA context object. 2308 * @hbqno: HBQ number. 2309 * 2310 * This function is called with hbalock held to get the next 2311 * available slot for the given HBQ. If there is free slot 2312 * available for the HBQ it will return pointer to the next available 2313 * HBQ entry else it will return NULL. 2314 **/ 2315 static struct lpfc_hbq_entry * 2316 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2317 { 2318 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2319 2320 lockdep_assert_held(&phba->hbalock); 2321 2322 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2323 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2324 hbqp->next_hbqPutIdx = 0; 2325 2326 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2327 uint32_t raw_index = phba->hbq_get[hbqno]; 2328 uint32_t getidx = le32_to_cpu(raw_index); 2329 2330 hbqp->local_hbqGetIdx = getidx; 2331 2332 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2333 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2334 "1802 HBQ %d: local_hbqGetIdx " 2335 "%u is > than hbqp->entry_count %u\n", 2336 hbqno, hbqp->local_hbqGetIdx, 2337 hbqp->entry_count); 2338 2339 phba->link_state = LPFC_HBA_ERROR; 2340 return NULL; 2341 } 2342 2343 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2344 return NULL; 2345 } 2346 2347 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2348 hbqp->hbqPutIdx; 2349 } 2350 2351 /** 2352 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2353 * @phba: Pointer to HBA context object. 2354 * 2355 * This function is called with no lock held to free all the 2356 * hbq buffers while uninitializing the SLI interface. It also 2357 * frees the HBQ buffers returned by the firmware but not yet 2358 * processed by the upper layers. 2359 **/ 2360 void 2361 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2362 { 2363 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2364 struct hbq_dmabuf *hbq_buf; 2365 unsigned long flags; 2366 int i, hbq_count; 2367 2368 hbq_count = lpfc_sli_hbq_count(); 2369 /* Return all memory used by all HBQs */ 2370 spin_lock_irqsave(&phba->hbalock, flags); 2371 for (i = 0; i < hbq_count; ++i) { 2372 list_for_each_entry_safe(dmabuf, next_dmabuf, 2373 &phba->hbqs[i].hbq_buffer_list, list) { 2374 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2375 list_del(&hbq_buf->dbuf.list); 2376 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2377 } 2378 phba->hbqs[i].buffer_count = 0; 2379 } 2380 2381 /* Mark the HBQs not in use */ 2382 phba->hbq_in_use = 0; 2383 spin_unlock_irqrestore(&phba->hbalock, flags); 2384 } 2385 2386 /** 2387 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2388 * @phba: Pointer to HBA context object. 2389 * @hbqno: HBQ number. 2390 * @hbq_buf: Pointer to HBQ buffer. 2391 * 2392 * This function is called with the hbalock held to post a 2393 * hbq buffer to the firmware. If the function finds an empty 2394 * slot in the HBQ, it will post the buffer. The function will return 2395 * pointer to the hbq entry if it successfully post the buffer 2396 * else it will return NULL. 2397 **/ 2398 static int 2399 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2400 struct hbq_dmabuf *hbq_buf) 2401 { 2402 lockdep_assert_held(&phba->hbalock); 2403 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2404 } 2405 2406 /** 2407 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2408 * @phba: Pointer to HBA context object. 2409 * @hbqno: HBQ number. 2410 * @hbq_buf: Pointer to HBQ buffer. 2411 * 2412 * This function is called with the hbalock held to post a hbq buffer to the 2413 * firmware. If the function finds an empty slot in the HBQ, it will post the 2414 * buffer and place it on the hbq_buffer_list. The function will return zero if 2415 * it successfully post the buffer else it will return an error. 2416 **/ 2417 static int 2418 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2419 struct hbq_dmabuf *hbq_buf) 2420 { 2421 struct lpfc_hbq_entry *hbqe; 2422 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2423 2424 lockdep_assert_held(&phba->hbalock); 2425 /* Get next HBQ entry slot to use */ 2426 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2427 if (hbqe) { 2428 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2429 2430 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2431 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2432 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2433 hbqe->bde.tus.f.bdeFlags = 0; 2434 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2435 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2436 /* Sync SLIM */ 2437 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2438 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2439 /* flush */ 2440 readl(phba->hbq_put + hbqno); 2441 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2442 return 0; 2443 } else 2444 return -ENOMEM; 2445 } 2446 2447 /** 2448 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2449 * @phba: Pointer to HBA context object. 2450 * @hbqno: HBQ number. 2451 * @hbq_buf: Pointer to HBQ buffer. 2452 * 2453 * This function is called with the hbalock held to post an RQE to the SLI4 2454 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2455 * the hbq_buffer_list and return zero, otherwise it will return an error. 2456 **/ 2457 static int 2458 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2459 struct hbq_dmabuf *hbq_buf) 2460 { 2461 int rc; 2462 struct lpfc_rqe hrqe; 2463 struct lpfc_rqe drqe; 2464 struct lpfc_queue *hrq; 2465 struct lpfc_queue *drq; 2466 2467 if (hbqno != LPFC_ELS_HBQ) 2468 return 1; 2469 hrq = phba->sli4_hba.hdr_rq; 2470 drq = phba->sli4_hba.dat_rq; 2471 2472 lockdep_assert_held(&phba->hbalock); 2473 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2474 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2475 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2476 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2477 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2478 if (rc < 0) 2479 return rc; 2480 hbq_buf->tag = (rc | (hbqno << 16)); 2481 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2482 return 0; 2483 } 2484 2485 /* HBQ for ELS and CT traffic. */ 2486 static struct lpfc_hbq_init lpfc_els_hbq = { 2487 .rn = 1, 2488 .entry_count = 256, 2489 .mask_count = 0, 2490 .profile = 0, 2491 .ring_mask = (1 << LPFC_ELS_RING), 2492 .buffer_count = 0, 2493 .init_count = 40, 2494 .add_count = 40, 2495 }; 2496 2497 /* Array of HBQs */ 2498 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2499 &lpfc_els_hbq, 2500 }; 2501 2502 /** 2503 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2504 * @phba: Pointer to HBA context object. 2505 * @hbqno: HBQ number. 2506 * @count: Number of HBQ buffers to be posted. 2507 * 2508 * This function is called with no lock held to post more hbq buffers to the 2509 * given HBQ. The function returns the number of HBQ buffers successfully 2510 * posted. 2511 **/ 2512 static int 2513 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2514 { 2515 uint32_t i, posted = 0; 2516 unsigned long flags; 2517 struct hbq_dmabuf *hbq_buffer; 2518 LIST_HEAD(hbq_buf_list); 2519 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2520 return 0; 2521 2522 if ((phba->hbqs[hbqno].buffer_count + count) > 2523 lpfc_hbq_defs[hbqno]->entry_count) 2524 count = lpfc_hbq_defs[hbqno]->entry_count - 2525 phba->hbqs[hbqno].buffer_count; 2526 if (!count) 2527 return 0; 2528 /* Allocate HBQ entries */ 2529 for (i = 0; i < count; i++) { 2530 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2531 if (!hbq_buffer) 2532 break; 2533 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2534 } 2535 /* Check whether HBQ is still in use */ 2536 spin_lock_irqsave(&phba->hbalock, flags); 2537 if (!phba->hbq_in_use) 2538 goto err; 2539 while (!list_empty(&hbq_buf_list)) { 2540 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2541 dbuf.list); 2542 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2543 (hbqno << 16)); 2544 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2545 phba->hbqs[hbqno].buffer_count++; 2546 posted++; 2547 } else 2548 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2549 } 2550 spin_unlock_irqrestore(&phba->hbalock, flags); 2551 return posted; 2552 err: 2553 spin_unlock_irqrestore(&phba->hbalock, flags); 2554 while (!list_empty(&hbq_buf_list)) { 2555 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2556 dbuf.list); 2557 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2558 } 2559 return 0; 2560 } 2561 2562 /** 2563 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2564 * @phba: Pointer to HBA context object. 2565 * @qno: HBQ number. 2566 * 2567 * This function posts more buffers to the HBQ. This function 2568 * is called with no lock held. The function returns the number of HBQ entries 2569 * successfully allocated. 2570 **/ 2571 int 2572 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2573 { 2574 if (phba->sli_rev == LPFC_SLI_REV4) 2575 return 0; 2576 else 2577 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2578 lpfc_hbq_defs[qno]->add_count); 2579 } 2580 2581 /** 2582 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2583 * @phba: Pointer to HBA context object. 2584 * @qno: HBQ queue number. 2585 * 2586 * This function is called from SLI initialization code path with 2587 * no lock held to post initial HBQ buffers to firmware. The 2588 * function returns the number of HBQ entries successfully allocated. 2589 **/ 2590 static int 2591 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2592 { 2593 if (phba->sli_rev == LPFC_SLI_REV4) 2594 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2595 lpfc_hbq_defs[qno]->entry_count); 2596 else 2597 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2598 lpfc_hbq_defs[qno]->init_count); 2599 } 2600 2601 /* 2602 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2603 * 2604 * This function removes the first hbq buffer on an hbq list and returns a 2605 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2606 **/ 2607 static struct hbq_dmabuf * 2608 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2609 { 2610 struct lpfc_dmabuf *d_buf; 2611 2612 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2613 if (!d_buf) 2614 return NULL; 2615 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2616 } 2617 2618 /** 2619 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2620 * @phba: Pointer to HBA context object. 2621 * @hrq: HBQ number. 2622 * 2623 * This function removes the first RQ buffer on an RQ buffer list and returns a 2624 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2625 **/ 2626 static struct rqb_dmabuf * 2627 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2628 { 2629 struct lpfc_dmabuf *h_buf; 2630 struct lpfc_rqb *rqbp; 2631 2632 rqbp = hrq->rqbp; 2633 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2634 struct lpfc_dmabuf, list); 2635 if (!h_buf) 2636 return NULL; 2637 rqbp->buffer_count--; 2638 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2639 } 2640 2641 /** 2642 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2643 * @phba: Pointer to HBA context object. 2644 * @tag: Tag of the hbq buffer. 2645 * 2646 * This function searches for the hbq buffer associated with the given tag in 2647 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2648 * otherwise it returns NULL. 2649 **/ 2650 static struct hbq_dmabuf * 2651 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2652 { 2653 struct lpfc_dmabuf *d_buf; 2654 struct hbq_dmabuf *hbq_buf; 2655 uint32_t hbqno; 2656 2657 hbqno = tag >> 16; 2658 if (hbqno >= LPFC_MAX_HBQS) 2659 return NULL; 2660 2661 spin_lock_irq(&phba->hbalock); 2662 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2663 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2664 if (hbq_buf->tag == tag) { 2665 spin_unlock_irq(&phba->hbalock); 2666 return hbq_buf; 2667 } 2668 } 2669 spin_unlock_irq(&phba->hbalock); 2670 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2671 "1803 Bad hbq tag. Data: x%x x%x\n", 2672 tag, phba->hbqs[tag >> 16].buffer_count); 2673 return NULL; 2674 } 2675 2676 /** 2677 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2678 * @phba: Pointer to HBA context object. 2679 * @hbq_buffer: Pointer to HBQ buffer. 2680 * 2681 * This function is called with hbalock. This function gives back 2682 * the hbq buffer to firmware. If the HBQ does not have space to 2683 * post the buffer, it will free the buffer. 2684 **/ 2685 void 2686 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2687 { 2688 uint32_t hbqno; 2689 2690 if (hbq_buffer) { 2691 hbqno = hbq_buffer->tag >> 16; 2692 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2693 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2694 } 2695 } 2696 2697 /** 2698 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2699 * @mbxCommand: mailbox command code. 2700 * 2701 * This function is called by the mailbox event handler function to verify 2702 * that the completed mailbox command is a legitimate mailbox command. If the 2703 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2704 * and the mailbox event handler will take the HBA offline. 2705 **/ 2706 static int 2707 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2708 { 2709 uint8_t ret; 2710 2711 switch (mbxCommand) { 2712 case MBX_LOAD_SM: 2713 case MBX_READ_NV: 2714 case MBX_WRITE_NV: 2715 case MBX_WRITE_VPARMS: 2716 case MBX_RUN_BIU_DIAG: 2717 case MBX_INIT_LINK: 2718 case MBX_DOWN_LINK: 2719 case MBX_CONFIG_LINK: 2720 case MBX_CONFIG_RING: 2721 case MBX_RESET_RING: 2722 case MBX_READ_CONFIG: 2723 case MBX_READ_RCONFIG: 2724 case MBX_READ_SPARM: 2725 case MBX_READ_STATUS: 2726 case MBX_READ_RPI: 2727 case MBX_READ_XRI: 2728 case MBX_READ_REV: 2729 case MBX_READ_LNK_STAT: 2730 case MBX_REG_LOGIN: 2731 case MBX_UNREG_LOGIN: 2732 case MBX_CLEAR_LA: 2733 case MBX_DUMP_MEMORY: 2734 case MBX_DUMP_CONTEXT: 2735 case MBX_RUN_DIAGS: 2736 case MBX_RESTART: 2737 case MBX_UPDATE_CFG: 2738 case MBX_DOWN_LOAD: 2739 case MBX_DEL_LD_ENTRY: 2740 case MBX_RUN_PROGRAM: 2741 case MBX_SET_MASK: 2742 case MBX_SET_VARIABLE: 2743 case MBX_UNREG_D_ID: 2744 case MBX_KILL_BOARD: 2745 case MBX_CONFIG_FARP: 2746 case MBX_BEACON: 2747 case MBX_LOAD_AREA: 2748 case MBX_RUN_BIU_DIAG64: 2749 case MBX_CONFIG_PORT: 2750 case MBX_READ_SPARM64: 2751 case MBX_READ_RPI64: 2752 case MBX_REG_LOGIN64: 2753 case MBX_READ_TOPOLOGY: 2754 case MBX_WRITE_WWN: 2755 case MBX_SET_DEBUG: 2756 case MBX_LOAD_EXP_ROM: 2757 case MBX_ASYNCEVT_ENABLE: 2758 case MBX_REG_VPI: 2759 case MBX_UNREG_VPI: 2760 case MBX_HEARTBEAT: 2761 case MBX_PORT_CAPABILITIES: 2762 case MBX_PORT_IOV_CONTROL: 2763 case MBX_SLI4_CONFIG: 2764 case MBX_SLI4_REQ_FTRS: 2765 case MBX_REG_FCFI: 2766 case MBX_UNREG_FCFI: 2767 case MBX_REG_VFI: 2768 case MBX_UNREG_VFI: 2769 case MBX_INIT_VPI: 2770 case MBX_INIT_VFI: 2771 case MBX_RESUME_RPI: 2772 case MBX_READ_EVENT_LOG_STATUS: 2773 case MBX_READ_EVENT_LOG: 2774 case MBX_SECURITY_MGMT: 2775 case MBX_AUTH_PORT: 2776 case MBX_ACCESS_VDATA: 2777 ret = mbxCommand; 2778 break; 2779 default: 2780 ret = MBX_SHUTDOWN; 2781 break; 2782 } 2783 return ret; 2784 } 2785 2786 /** 2787 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2788 * @phba: Pointer to HBA context object. 2789 * @pmboxq: Pointer to mailbox command. 2790 * 2791 * This is completion handler function for mailbox commands issued from 2792 * lpfc_sli_issue_mbox_wait function. This function is called by the 2793 * mailbox event handler function with no lock held. This function 2794 * will wake up thread waiting on the wait queue pointed by context1 2795 * of the mailbox. 2796 **/ 2797 void 2798 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2799 { 2800 unsigned long drvr_flag; 2801 struct completion *pmbox_done; 2802 2803 /* 2804 * If pmbox_done is empty, the driver thread gave up waiting and 2805 * continued running. 2806 */ 2807 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2808 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2809 pmbox_done = (struct completion *)pmboxq->context3; 2810 if (pmbox_done) 2811 complete(pmbox_done); 2812 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2813 return; 2814 } 2815 2816 static void 2817 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2818 { 2819 unsigned long iflags; 2820 2821 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2822 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2823 spin_lock_irqsave(&ndlp->lock, iflags); 2824 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2825 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2826 spin_unlock_irqrestore(&ndlp->lock, iflags); 2827 } 2828 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2829 } 2830 2831 void 2832 lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2833 { 2834 __lpfc_sli_rpi_release(vport, ndlp); 2835 } 2836 2837 /** 2838 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2839 * @phba: Pointer to HBA context object. 2840 * @pmb: Pointer to mailbox object. 2841 * 2842 * This function is the default mailbox completion handler. It 2843 * frees the memory resources associated with the completed mailbox 2844 * command. If the completed command is a REG_LOGIN mailbox command, 2845 * this function will issue a UREG_LOGIN to re-claim the RPI. 2846 **/ 2847 void 2848 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2849 { 2850 struct lpfc_vport *vport = pmb->vport; 2851 struct lpfc_nodelist *ndlp; 2852 struct Scsi_Host *shost; 2853 uint16_t rpi, vpi; 2854 int rc; 2855 2856 /* 2857 * If a REG_LOGIN succeeded after node is destroyed or node 2858 * is in re-discovery driver need to cleanup the RPI. 2859 */ 2860 if (!(phba->pport->load_flag & FC_UNLOADING) && 2861 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2862 !pmb->u.mb.mbxStatus) { 2863 rpi = pmb->u.mb.un.varWords[0]; 2864 vpi = pmb->u.mb.un.varRegLogin.vpi; 2865 if (phba->sli_rev == LPFC_SLI_REV4) 2866 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2867 lpfc_unreg_login(phba, vpi, rpi, pmb); 2868 pmb->vport = vport; 2869 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2870 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2871 if (rc != MBX_NOT_FINISHED) 2872 return; 2873 } 2874 2875 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2876 !(phba->pport->load_flag & FC_UNLOADING) && 2877 !pmb->u.mb.mbxStatus) { 2878 shost = lpfc_shost_from_vport(vport); 2879 spin_lock_irq(shost->host_lock); 2880 vport->vpi_state |= LPFC_VPI_REGISTERED; 2881 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2882 spin_unlock_irq(shost->host_lock); 2883 } 2884 2885 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2886 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2887 lpfc_nlp_put(ndlp); 2888 } 2889 2890 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2891 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2892 2893 /* Check to see if there are any deferred events to process */ 2894 if (ndlp) { 2895 lpfc_printf_vlog( 2896 vport, 2897 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2898 "1438 UNREG cmpl deferred mbox x%x " 2899 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2900 ndlp->nlp_rpi, ndlp->nlp_DID, 2901 ndlp->nlp_flag, ndlp->nlp_defer_did, 2902 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2903 2904 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2905 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2906 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2907 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2908 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2909 } else { 2910 __lpfc_sli_rpi_release(vport, ndlp); 2911 } 2912 2913 /* The unreg_login mailbox is complete and had a 2914 * reference that has to be released. The PLOGI 2915 * got its own ref. 2916 */ 2917 lpfc_nlp_put(ndlp); 2918 pmb->ctx_ndlp = NULL; 2919 } 2920 } 2921 2922 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2923 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2924 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2925 lpfc_nlp_put(ndlp); 2926 } 2927 2928 /* Check security permission status on INIT_LINK mailbox command */ 2929 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2930 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2931 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2932 "2860 SLI authentication is required " 2933 "for INIT_LINK but has not done yet\n"); 2934 2935 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2936 lpfc_sli4_mbox_cmd_free(phba, pmb); 2937 else 2938 lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); 2939 } 2940 /** 2941 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2942 * @phba: Pointer to HBA context object. 2943 * @pmb: Pointer to mailbox object. 2944 * 2945 * This function is the unreg rpi mailbox completion handler. It 2946 * frees the memory resources associated with the completed mailbox 2947 * command. An additional reference is put on the ndlp to prevent 2948 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2949 * the unreg mailbox command completes, this routine puts the 2950 * reference back. 2951 * 2952 **/ 2953 void 2954 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2955 { 2956 struct lpfc_vport *vport = pmb->vport; 2957 struct lpfc_nodelist *ndlp; 2958 2959 ndlp = pmb->ctx_ndlp; 2960 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2961 if (phba->sli_rev == LPFC_SLI_REV4 && 2962 (bf_get(lpfc_sli_intf_if_type, 2963 &phba->sli4_hba.sli_intf) >= 2964 LPFC_SLI_INTF_IF_TYPE_2)) { 2965 if (ndlp) { 2966 lpfc_printf_vlog( 2967 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2968 "0010 UNREG_LOGIN vpi:%x " 2969 "rpi:%x DID:%x defer x%x flg x%x " 2970 "x%px\n", 2971 vport->vpi, ndlp->nlp_rpi, 2972 ndlp->nlp_DID, ndlp->nlp_defer_did, 2973 ndlp->nlp_flag, 2974 ndlp); 2975 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2976 2977 /* Check to see if there are any deferred 2978 * events to process 2979 */ 2980 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2981 (ndlp->nlp_defer_did != 2982 NLP_EVT_NOTHING_PENDING)) { 2983 lpfc_printf_vlog( 2984 vport, KERN_INFO, LOG_DISCOVERY, 2985 "4111 UNREG cmpl deferred " 2986 "clr x%x on " 2987 "NPort x%x Data: x%x x%px\n", 2988 ndlp->nlp_rpi, ndlp->nlp_DID, 2989 ndlp->nlp_defer_did, ndlp); 2990 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2991 ndlp->nlp_defer_did = 2992 NLP_EVT_NOTHING_PENDING; 2993 lpfc_issue_els_plogi( 2994 vport, ndlp->nlp_DID, 0); 2995 } else { 2996 __lpfc_sli_rpi_release(vport, ndlp); 2997 } 2998 lpfc_nlp_put(ndlp); 2999 } 3000 } 3001 } 3002 3003 mempool_free(pmb, phba->mbox_mem_pool); 3004 } 3005 3006 /** 3007 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 3008 * @phba: Pointer to HBA context object. 3009 * 3010 * This function is called with no lock held. This function processes all 3011 * the completed mailbox commands and gives it to upper layers. The interrupt 3012 * service routine processes mailbox completion interrupt and adds completed 3013 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 3014 * Worker thread call lpfc_sli_handle_mb_event, which will return the 3015 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 3016 * function returns the mailbox commands to the upper layer by calling the 3017 * completion handler function of each mailbox. 3018 **/ 3019 int 3020 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 3021 { 3022 MAILBOX_t *pmbox; 3023 LPFC_MBOXQ_t *pmb; 3024 int rc; 3025 LIST_HEAD(cmplq); 3026 3027 phba->sli.slistat.mbox_event++; 3028 3029 /* Get all completed mailboxe buffers into the cmplq */ 3030 spin_lock_irq(&phba->hbalock); 3031 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 3032 spin_unlock_irq(&phba->hbalock); 3033 3034 /* Get a Mailbox buffer to setup mailbox commands for callback */ 3035 do { 3036 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 3037 if (pmb == NULL) 3038 break; 3039 3040 pmbox = &pmb->u.mb; 3041 3042 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 3043 if (pmb->vport) { 3044 lpfc_debugfs_disc_trc(pmb->vport, 3045 LPFC_DISC_TRC_MBOX_VPORT, 3046 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 3047 (uint32_t)pmbox->mbxCommand, 3048 pmbox->un.varWords[0], 3049 pmbox->un.varWords[1]); 3050 } 3051 else { 3052 lpfc_debugfs_disc_trc(phba->pport, 3053 LPFC_DISC_TRC_MBOX, 3054 "MBOX cmpl: cmd:x%x mb:x%x x%x", 3055 (uint32_t)pmbox->mbxCommand, 3056 pmbox->un.varWords[0], 3057 pmbox->un.varWords[1]); 3058 } 3059 } 3060 3061 /* 3062 * It is a fatal error if unknown mbox command completion. 3063 */ 3064 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 3065 MBX_SHUTDOWN) { 3066 /* Unknown mailbox command compl */ 3067 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3068 "(%d):0323 Unknown Mailbox command " 3069 "x%x (x%x/x%x) Cmpl\n", 3070 pmb->vport ? pmb->vport->vpi : 3071 LPFC_VPORT_UNKNOWN, 3072 pmbox->mbxCommand, 3073 lpfc_sli_config_mbox_subsys_get(phba, 3074 pmb), 3075 lpfc_sli_config_mbox_opcode_get(phba, 3076 pmb)); 3077 phba->link_state = LPFC_HBA_ERROR; 3078 phba->work_hs = HS_FFER3; 3079 lpfc_handle_eratt(phba); 3080 continue; 3081 } 3082 3083 if (pmbox->mbxStatus) { 3084 phba->sli.slistat.mbox_stat_err++; 3085 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 3086 /* Mbox cmd cmpl error - RETRYing */ 3087 lpfc_printf_log(phba, KERN_INFO, 3088 LOG_MBOX | LOG_SLI, 3089 "(%d):0305 Mbox cmd cmpl " 3090 "error - RETRYing Data: x%x " 3091 "(x%x/x%x) x%x x%x x%x\n", 3092 pmb->vport ? pmb->vport->vpi : 3093 LPFC_VPORT_UNKNOWN, 3094 pmbox->mbxCommand, 3095 lpfc_sli_config_mbox_subsys_get(phba, 3096 pmb), 3097 lpfc_sli_config_mbox_opcode_get(phba, 3098 pmb), 3099 pmbox->mbxStatus, 3100 pmbox->un.varWords[0], 3101 pmb->vport ? pmb->vport->port_state : 3102 LPFC_VPORT_UNKNOWN); 3103 pmbox->mbxStatus = 0; 3104 pmbox->mbxOwner = OWN_HOST; 3105 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 3106 if (rc != MBX_NOT_FINISHED) 3107 continue; 3108 } 3109 } 3110 3111 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 3112 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 3113 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 3114 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 3115 "x%x x%x x%x\n", 3116 pmb->vport ? pmb->vport->vpi : 0, 3117 pmbox->mbxCommand, 3118 lpfc_sli_config_mbox_subsys_get(phba, pmb), 3119 lpfc_sli_config_mbox_opcode_get(phba, pmb), 3120 pmb->mbox_cmpl, 3121 *((uint32_t *) pmbox), 3122 pmbox->un.varWords[0], 3123 pmbox->un.varWords[1], 3124 pmbox->un.varWords[2], 3125 pmbox->un.varWords[3], 3126 pmbox->un.varWords[4], 3127 pmbox->un.varWords[5], 3128 pmbox->un.varWords[6], 3129 pmbox->un.varWords[7], 3130 pmbox->un.varWords[8], 3131 pmbox->un.varWords[9], 3132 pmbox->un.varWords[10]); 3133 3134 if (pmb->mbox_cmpl) 3135 pmb->mbox_cmpl(phba,pmb); 3136 } while (1); 3137 return 0; 3138 } 3139 3140 /** 3141 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 3142 * @phba: Pointer to HBA context object. 3143 * @pring: Pointer to driver SLI ring object. 3144 * @tag: buffer tag. 3145 * 3146 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 3147 * is set in the tag the buffer is posted for a particular exchange, 3148 * the function will return the buffer without replacing the buffer. 3149 * If the buffer is for unsolicited ELS or CT traffic, this function 3150 * returns the buffer and also posts another buffer to the firmware. 3151 **/ 3152 static struct lpfc_dmabuf * 3153 lpfc_sli_get_buff(struct lpfc_hba *phba, 3154 struct lpfc_sli_ring *pring, 3155 uint32_t tag) 3156 { 3157 struct hbq_dmabuf *hbq_entry; 3158 3159 if (tag & QUE_BUFTAG_BIT) 3160 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 3161 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 3162 if (!hbq_entry) 3163 return NULL; 3164 return &hbq_entry->dbuf; 3165 } 3166 3167 /** 3168 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 3169 * containing a NVME LS request. 3170 * @phba: pointer to lpfc hba data structure. 3171 * @piocb: pointer to the iocbq struct representing the sequence starting 3172 * frame. 3173 * 3174 * This routine initially validates the NVME LS, validates there is a login 3175 * with the port that sent the LS, and then calls the appropriate nvme host 3176 * or target LS request handler. 3177 **/ 3178 static void 3179 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 3180 { 3181 struct lpfc_nodelist *ndlp; 3182 struct lpfc_dmabuf *d_buf; 3183 struct hbq_dmabuf *nvmebuf; 3184 struct fc_frame_header *fc_hdr; 3185 struct lpfc_async_xchg_ctx *axchg = NULL; 3186 char *failwhy = NULL; 3187 uint32_t oxid, sid, did, fctl, size; 3188 int ret = 1; 3189 3190 d_buf = piocb->cmd_dmabuf; 3191 3192 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 3193 fc_hdr = nvmebuf->hbuf.virt; 3194 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 3195 sid = sli4_sid_from_fc_hdr(fc_hdr); 3196 did = sli4_did_from_fc_hdr(fc_hdr); 3197 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 3198 fc_hdr->fh_f_ctl[1] << 8 | 3199 fc_hdr->fh_f_ctl[2]); 3200 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 3201 3202 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 3203 oxid, size, sid); 3204 3205 if (phba->pport->load_flag & FC_UNLOADING) { 3206 failwhy = "Driver Unloading"; 3207 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 3208 failwhy = "NVME FC4 Disabled"; 3209 } else if (!phba->nvmet_support && !phba->pport->localport) { 3210 failwhy = "No Localport"; 3211 } else if (phba->nvmet_support && !phba->targetport) { 3212 failwhy = "No Targetport"; 3213 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 3214 failwhy = "Bad NVME LS R_CTL"; 3215 } else if (unlikely((fctl & 0x00FF0000) != 3216 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 3217 failwhy = "Bad NVME LS F_CTL"; 3218 } else { 3219 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 3220 if (!axchg) 3221 failwhy = "No CTX memory"; 3222 } 3223 3224 if (unlikely(failwhy)) { 3225 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3226 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 3227 sid, oxid, failwhy); 3228 goto out_fail; 3229 } 3230 3231 /* validate the source of the LS is logged in */ 3232 ndlp = lpfc_findnode_did(phba->pport, sid); 3233 if (!ndlp || 3234 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3235 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3236 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 3237 "6216 NVME Unsol rcv: No ndlp: " 3238 "NPort_ID x%x oxid x%x\n", 3239 sid, oxid); 3240 goto out_fail; 3241 } 3242 3243 axchg->phba = phba; 3244 axchg->ndlp = ndlp; 3245 axchg->size = size; 3246 axchg->oxid = oxid; 3247 axchg->sid = sid; 3248 axchg->wqeq = NULL; 3249 axchg->state = LPFC_NVME_STE_LS_RCV; 3250 axchg->entry_cnt = 1; 3251 axchg->rqb_buffer = (void *)nvmebuf; 3252 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3253 axchg->payload = nvmebuf->dbuf.virt; 3254 INIT_LIST_HEAD(&axchg->list); 3255 3256 if (phba->nvmet_support) { 3257 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3258 spin_lock_irq(&ndlp->lock); 3259 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3260 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3261 spin_unlock_irq(&ndlp->lock); 3262 3263 /* This reference is a single occurrence to hold the 3264 * node valid until the nvmet transport calls 3265 * host_release. 3266 */ 3267 if (!lpfc_nlp_get(ndlp)) 3268 goto out_fail; 3269 3270 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3271 "6206 NVMET unsol ls_req ndlp x%px " 3272 "DID x%x xflags x%x refcnt %d\n", 3273 ndlp, ndlp->nlp_DID, 3274 ndlp->fc4_xpt_flags, 3275 kref_read(&ndlp->kref)); 3276 } else { 3277 spin_unlock_irq(&ndlp->lock); 3278 } 3279 } else { 3280 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3281 } 3282 3283 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3284 if (!ret) 3285 return; 3286 3287 out_fail: 3288 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3289 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3290 "NVMe%s handler failed %d\n", 3291 did, sid, oxid, 3292 (phba->nvmet_support) ? "T" : "I", ret); 3293 3294 /* recycle receive buffer */ 3295 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3296 3297 /* If start of new exchange, abort it */ 3298 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3299 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3300 3301 if (ret) 3302 kfree(axchg); 3303 } 3304 3305 /** 3306 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3307 * @phba: Pointer to HBA context object. 3308 * @pring: Pointer to driver SLI ring object. 3309 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3310 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3311 * @fch_type: the type for the first frame of the sequence. 3312 * 3313 * This function is called with no lock held. This function uses the r_ctl and 3314 * type of the received sequence to find the correct callback function to call 3315 * to process the sequence. 3316 **/ 3317 static int 3318 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3319 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3320 uint32_t fch_type) 3321 { 3322 int i; 3323 3324 switch (fch_type) { 3325 case FC_TYPE_NVME: 3326 lpfc_nvme_unsol_ls_handler(phba, saveq); 3327 return 1; 3328 default: 3329 break; 3330 } 3331 3332 /* unSolicited Responses */ 3333 if (pring->prt[0].profile) { 3334 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3335 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3336 saveq); 3337 return 1; 3338 } 3339 /* We must search, based on rctl / type 3340 for the right routine */ 3341 for (i = 0; i < pring->num_mask; i++) { 3342 if ((pring->prt[i].rctl == fch_r_ctl) && 3343 (pring->prt[i].type == fch_type)) { 3344 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3345 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3346 (phba, pring, saveq); 3347 return 1; 3348 } 3349 } 3350 return 0; 3351 } 3352 3353 static void 3354 lpfc_sli_prep_unsol_wqe(struct lpfc_hba *phba, 3355 struct lpfc_iocbq *saveq) 3356 { 3357 IOCB_t *irsp; 3358 union lpfc_wqe128 *wqe; 3359 u16 i = 0; 3360 3361 irsp = &saveq->iocb; 3362 wqe = &saveq->wqe; 3363 3364 /* Fill wcqe with the IOCB status fields */ 3365 bf_set(lpfc_wcqe_c_status, &saveq->wcqe_cmpl, irsp->ulpStatus); 3366 saveq->wcqe_cmpl.word3 = irsp->ulpBdeCount; 3367 saveq->wcqe_cmpl.parameter = irsp->un.ulpWord[4]; 3368 saveq->wcqe_cmpl.total_data_placed = irsp->unsli3.rcvsli3.acc_len; 3369 3370 /* Source ID */ 3371 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, irsp->un.rcvels.parmRo); 3372 3373 /* rx-id of the response frame */ 3374 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, irsp->ulpContext); 3375 3376 /* ox-id of the frame */ 3377 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 3378 irsp->unsli3.rcvsli3.ox_id); 3379 3380 /* DID */ 3381 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 3382 irsp->un.rcvels.remoteID); 3383 3384 /* unsol data len */ 3385 for (i = 0; i < irsp->ulpBdeCount; i++) { 3386 struct lpfc_hbq_entry *hbqe = NULL; 3387 3388 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3389 if (i == 0) { 3390 hbqe = (struct lpfc_hbq_entry *) 3391 &irsp->un.ulpWord[0]; 3392 saveq->wqe.gen_req.bde.tus.f.bdeSize = 3393 hbqe->bde.tus.f.bdeSize; 3394 } else if (i == 1) { 3395 hbqe = (struct lpfc_hbq_entry *) 3396 &irsp->unsli3.sli3Words[4]; 3397 saveq->unsol_rcv_len = hbqe->bde.tus.f.bdeSize; 3398 } 3399 } 3400 } 3401 } 3402 3403 /** 3404 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3405 * @phba: Pointer to HBA context object. 3406 * @pring: Pointer to driver SLI ring object. 3407 * @saveq: Pointer to the unsolicited iocb. 3408 * 3409 * This function is called with no lock held by the ring event handler 3410 * when there is an unsolicited iocb posted to the response ring by the 3411 * firmware. This function gets the buffer associated with the iocbs 3412 * and calls the event handler for the ring. This function handles both 3413 * qring buffers and hbq buffers. 3414 * When the function returns 1 the caller can free the iocb object otherwise 3415 * upper layer functions will free the iocb objects. 3416 **/ 3417 static int 3418 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3419 struct lpfc_iocbq *saveq) 3420 { 3421 IOCB_t * irsp; 3422 WORD5 * w5p; 3423 dma_addr_t paddr; 3424 uint32_t Rctl, Type; 3425 struct lpfc_iocbq *iocbq; 3426 struct lpfc_dmabuf *dmzbuf; 3427 3428 irsp = &saveq->iocb; 3429 saveq->vport = phba->pport; 3430 3431 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3432 if (pring->lpfc_sli_rcv_async_status) 3433 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3434 else 3435 lpfc_printf_log(phba, 3436 KERN_WARNING, 3437 LOG_SLI, 3438 "0316 Ring %d handler: unexpected " 3439 "ASYNC_STATUS iocb received evt_code " 3440 "0x%x\n", 3441 pring->ringno, 3442 irsp->un.asyncstat.evt_code); 3443 return 1; 3444 } 3445 3446 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3447 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3448 if (irsp->ulpBdeCount > 0) { 3449 dmzbuf = lpfc_sli_get_buff(phba, pring, 3450 irsp->un.ulpWord[3]); 3451 lpfc_in_buf_free(phba, dmzbuf); 3452 } 3453 3454 if (irsp->ulpBdeCount > 1) { 3455 dmzbuf = lpfc_sli_get_buff(phba, pring, 3456 irsp->unsli3.sli3Words[3]); 3457 lpfc_in_buf_free(phba, dmzbuf); 3458 } 3459 3460 if (irsp->ulpBdeCount > 2) { 3461 dmzbuf = lpfc_sli_get_buff(phba, pring, 3462 irsp->unsli3.sli3Words[7]); 3463 lpfc_in_buf_free(phba, dmzbuf); 3464 } 3465 3466 return 1; 3467 } 3468 3469 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3470 if (irsp->ulpBdeCount != 0) { 3471 saveq->cmd_dmabuf = lpfc_sli_get_buff(phba, pring, 3472 irsp->un.ulpWord[3]); 3473 if (!saveq->cmd_dmabuf) 3474 lpfc_printf_log(phba, 3475 KERN_ERR, 3476 LOG_SLI, 3477 "0341 Ring %d Cannot find buffer for " 3478 "an unsolicited iocb. tag 0x%x\n", 3479 pring->ringno, 3480 irsp->un.ulpWord[3]); 3481 } 3482 if (irsp->ulpBdeCount == 2) { 3483 saveq->bpl_dmabuf = lpfc_sli_get_buff(phba, pring, 3484 irsp->unsli3.sli3Words[7]); 3485 if (!saveq->bpl_dmabuf) 3486 lpfc_printf_log(phba, 3487 KERN_ERR, 3488 LOG_SLI, 3489 "0342 Ring %d Cannot find buffer for an" 3490 " unsolicited iocb. tag 0x%x\n", 3491 pring->ringno, 3492 irsp->unsli3.sli3Words[7]); 3493 } 3494 list_for_each_entry(iocbq, &saveq->list, list) { 3495 irsp = &iocbq->iocb; 3496 if (irsp->ulpBdeCount != 0) { 3497 iocbq->cmd_dmabuf = lpfc_sli_get_buff(phba, 3498 pring, 3499 irsp->un.ulpWord[3]); 3500 if (!iocbq->cmd_dmabuf) 3501 lpfc_printf_log(phba, 3502 KERN_ERR, 3503 LOG_SLI, 3504 "0343 Ring %d Cannot find " 3505 "buffer for an unsolicited iocb" 3506 ". tag 0x%x\n", pring->ringno, 3507 irsp->un.ulpWord[3]); 3508 } 3509 if (irsp->ulpBdeCount == 2) { 3510 iocbq->bpl_dmabuf = lpfc_sli_get_buff(phba, 3511 pring, 3512 irsp->unsli3.sli3Words[7]); 3513 if (!iocbq->bpl_dmabuf) 3514 lpfc_printf_log(phba, 3515 KERN_ERR, 3516 LOG_SLI, 3517 "0344 Ring %d Cannot find " 3518 "buffer for an unsolicited " 3519 "iocb. tag 0x%x\n", 3520 pring->ringno, 3521 irsp->unsli3.sli3Words[7]); 3522 } 3523 } 3524 } else { 3525 paddr = getPaddr(irsp->un.cont64[0].addrHigh, 3526 irsp->un.cont64[0].addrLow); 3527 saveq->cmd_dmabuf = lpfc_sli_ringpostbuf_get(phba, pring, 3528 paddr); 3529 if (irsp->ulpBdeCount == 2) { 3530 paddr = getPaddr(irsp->un.cont64[1].addrHigh, 3531 irsp->un.cont64[1].addrLow); 3532 saveq->bpl_dmabuf = lpfc_sli_ringpostbuf_get(phba, 3533 pring, 3534 paddr); 3535 } 3536 } 3537 3538 if (irsp->ulpBdeCount != 0 && 3539 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3540 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3541 int found = 0; 3542 3543 /* search continue save q for same XRI */ 3544 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3545 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3546 saveq->iocb.unsli3.rcvsli3.ox_id) { 3547 list_add_tail(&saveq->list, &iocbq->list); 3548 found = 1; 3549 break; 3550 } 3551 } 3552 if (!found) 3553 list_add_tail(&saveq->clist, 3554 &pring->iocb_continue_saveq); 3555 3556 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3557 list_del_init(&iocbq->clist); 3558 saveq = iocbq; 3559 irsp = &saveq->iocb; 3560 } else { 3561 return 0; 3562 } 3563 } 3564 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3565 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3566 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3567 Rctl = FC_RCTL_ELS_REQ; 3568 Type = FC_TYPE_ELS; 3569 } else { 3570 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3571 Rctl = w5p->hcsw.Rctl; 3572 Type = w5p->hcsw.Type; 3573 3574 /* Firmware Workaround */ 3575 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3576 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3577 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3578 Rctl = FC_RCTL_ELS_REQ; 3579 Type = FC_TYPE_ELS; 3580 w5p->hcsw.Rctl = Rctl; 3581 w5p->hcsw.Type = Type; 3582 } 3583 } 3584 3585 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) && 3586 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX || 3587 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3588 if (irsp->unsli3.rcvsli3.vpi == 0xffff) 3589 saveq->vport = phba->pport; 3590 else 3591 saveq->vport = lpfc_find_vport_by_vpid(phba, 3592 irsp->unsli3.rcvsli3.vpi); 3593 } 3594 3595 /* Prepare WQE with Unsol frame */ 3596 lpfc_sli_prep_unsol_wqe(phba, saveq); 3597 3598 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3599 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3600 "0313 Ring %d handler: unexpected Rctl x%x " 3601 "Type x%x received\n", 3602 pring->ringno, Rctl, Type); 3603 3604 return 1; 3605 } 3606 3607 /** 3608 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3609 * @phba: Pointer to HBA context object. 3610 * @pring: Pointer to driver SLI ring object. 3611 * @prspiocb: Pointer to response iocb object. 3612 * 3613 * This function looks up the iocb_lookup table to get the command iocb 3614 * corresponding to the given response iocb using the iotag of the 3615 * response iocb. The driver calls this function with the hbalock held 3616 * for SLI3 ports or the ring lock held for SLI4 ports. 3617 * This function returns the command iocb object if it finds the command 3618 * iocb else returns NULL. 3619 **/ 3620 static struct lpfc_iocbq * 3621 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3622 struct lpfc_sli_ring *pring, 3623 struct lpfc_iocbq *prspiocb) 3624 { 3625 struct lpfc_iocbq *cmd_iocb = NULL; 3626 u16 iotag; 3627 3628 if (phba->sli_rev == LPFC_SLI_REV4) 3629 iotag = get_wqe_reqtag(prspiocb); 3630 else 3631 iotag = prspiocb->iocb.ulpIoTag; 3632 3633 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3634 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3635 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3636 /* remove from txcmpl queue list */ 3637 list_del_init(&cmd_iocb->list); 3638 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3639 pring->txcmplq_cnt--; 3640 return cmd_iocb; 3641 } 3642 } 3643 3644 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3645 "0317 iotag x%x is out of " 3646 "range: max iotag x%x\n", 3647 iotag, phba->sli.last_iotag); 3648 return NULL; 3649 } 3650 3651 /** 3652 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3653 * @phba: Pointer to HBA context object. 3654 * @pring: Pointer to driver SLI ring object. 3655 * @iotag: IOCB tag. 3656 * 3657 * This function looks up the iocb_lookup table to get the command iocb 3658 * corresponding to the given iotag. The driver calls this function with 3659 * the ring lock held because this function is an SLI4 port only helper. 3660 * This function returns the command iocb object if it finds the command 3661 * iocb else returns NULL. 3662 **/ 3663 static struct lpfc_iocbq * 3664 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3665 struct lpfc_sli_ring *pring, uint16_t iotag) 3666 { 3667 struct lpfc_iocbq *cmd_iocb = NULL; 3668 3669 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3670 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3671 if (cmd_iocb->cmd_flag & LPFC_IO_ON_TXCMPLQ) { 3672 /* remove from txcmpl queue list */ 3673 list_del_init(&cmd_iocb->list); 3674 cmd_iocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 3675 pring->txcmplq_cnt--; 3676 return cmd_iocb; 3677 } 3678 } 3679 3680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3681 "0372 iotag x%x lookup error: max iotag (x%x) " 3682 "cmd_flag x%x\n", 3683 iotag, phba->sli.last_iotag, 3684 cmd_iocb ? cmd_iocb->cmd_flag : 0xffff); 3685 return NULL; 3686 } 3687 3688 /** 3689 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3690 * @phba: Pointer to HBA context object. 3691 * @pring: Pointer to driver SLI ring object. 3692 * @saveq: Pointer to the response iocb to be processed. 3693 * 3694 * This function is called by the ring event handler for non-fcp 3695 * rings when there is a new response iocb in the response ring. 3696 * The caller is not required to hold any locks. This function 3697 * gets the command iocb associated with the response iocb and 3698 * calls the completion handler for the command iocb. If there 3699 * is no completion handler, the function will free the resources 3700 * associated with command iocb. If the response iocb is for 3701 * an already aborted command iocb, the status of the completion 3702 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3703 * This function always returns 1. 3704 **/ 3705 static int 3706 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3707 struct lpfc_iocbq *saveq) 3708 { 3709 struct lpfc_iocbq *cmdiocbp; 3710 unsigned long iflag; 3711 u32 ulp_command, ulp_status, ulp_word4, ulp_context, iotag; 3712 3713 if (phba->sli_rev == LPFC_SLI_REV4) 3714 spin_lock_irqsave(&pring->ring_lock, iflag); 3715 else 3716 spin_lock_irqsave(&phba->hbalock, iflag); 3717 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3718 if (phba->sli_rev == LPFC_SLI_REV4) 3719 spin_unlock_irqrestore(&pring->ring_lock, iflag); 3720 else 3721 spin_unlock_irqrestore(&phba->hbalock, iflag); 3722 3723 ulp_command = get_job_cmnd(phba, saveq); 3724 ulp_status = get_job_ulpstatus(phba, saveq); 3725 ulp_word4 = get_job_word4(phba, saveq); 3726 ulp_context = get_job_ulpcontext(phba, saveq); 3727 if (phba->sli_rev == LPFC_SLI_REV4) 3728 iotag = get_wqe_reqtag(saveq); 3729 else 3730 iotag = saveq->iocb.ulpIoTag; 3731 3732 if (cmdiocbp) { 3733 ulp_command = get_job_cmnd(phba, cmdiocbp); 3734 if (cmdiocbp->cmd_cmpl) { 3735 /* 3736 * If an ELS command failed send an event to mgmt 3737 * application. 3738 */ 3739 if (ulp_status && 3740 (pring->ringno == LPFC_ELS_RING) && 3741 (ulp_command == CMD_ELS_REQUEST64_CR)) 3742 lpfc_send_els_failure_event(phba, 3743 cmdiocbp, saveq); 3744 3745 /* 3746 * Post all ELS completions to the worker thread. 3747 * All other are passed to the completion callback. 3748 */ 3749 if (pring->ringno == LPFC_ELS_RING) { 3750 if ((phba->sli_rev < LPFC_SLI_REV4) && 3751 (cmdiocbp->cmd_flag & 3752 LPFC_DRIVER_ABORTED)) { 3753 spin_lock_irqsave(&phba->hbalock, 3754 iflag); 3755 cmdiocbp->cmd_flag &= 3756 ~LPFC_DRIVER_ABORTED; 3757 spin_unlock_irqrestore(&phba->hbalock, 3758 iflag); 3759 saveq->iocb.ulpStatus = 3760 IOSTAT_LOCAL_REJECT; 3761 saveq->iocb.un.ulpWord[4] = 3762 IOERR_SLI_ABORTED; 3763 3764 /* Firmware could still be in progress 3765 * of DMAing payload, so don't free data 3766 * buffer till after a hbeat. 3767 */ 3768 spin_lock_irqsave(&phba->hbalock, 3769 iflag); 3770 saveq->cmd_flag |= LPFC_DELAY_MEM_FREE; 3771 spin_unlock_irqrestore(&phba->hbalock, 3772 iflag); 3773 } 3774 if (phba->sli_rev == LPFC_SLI_REV4) { 3775 if (saveq->cmd_flag & 3776 LPFC_EXCHANGE_BUSY) { 3777 /* Set cmdiocb flag for the 3778 * exchange busy so sgl (xri) 3779 * will not be released until 3780 * the abort xri is received 3781 * from hba. 3782 */ 3783 spin_lock_irqsave( 3784 &phba->hbalock, iflag); 3785 cmdiocbp->cmd_flag |= 3786 LPFC_EXCHANGE_BUSY; 3787 spin_unlock_irqrestore( 3788 &phba->hbalock, iflag); 3789 } 3790 if (cmdiocbp->cmd_flag & 3791 LPFC_DRIVER_ABORTED) { 3792 /* 3793 * Clear LPFC_DRIVER_ABORTED 3794 * bit in case it was driver 3795 * initiated abort. 3796 */ 3797 spin_lock_irqsave( 3798 &phba->hbalock, iflag); 3799 cmdiocbp->cmd_flag &= 3800 ~LPFC_DRIVER_ABORTED; 3801 spin_unlock_irqrestore( 3802 &phba->hbalock, iflag); 3803 set_job_ulpstatus(cmdiocbp, 3804 IOSTAT_LOCAL_REJECT); 3805 set_job_ulpword4(cmdiocbp, 3806 IOERR_ABORT_REQUESTED); 3807 /* 3808 * For SLI4, irsiocb contains 3809 * NO_XRI in sli_xritag, it 3810 * shall not affect releasing 3811 * sgl (xri) process. 3812 */ 3813 set_job_ulpstatus(saveq, 3814 IOSTAT_LOCAL_REJECT); 3815 set_job_ulpword4(saveq, 3816 IOERR_SLI_ABORTED); 3817 spin_lock_irqsave( 3818 &phba->hbalock, iflag); 3819 saveq->cmd_flag |= 3820 LPFC_DELAY_MEM_FREE; 3821 spin_unlock_irqrestore( 3822 &phba->hbalock, iflag); 3823 } 3824 } 3825 } 3826 (cmdiocbp->cmd_cmpl) (phba, cmdiocbp, saveq); 3827 } else 3828 lpfc_sli_release_iocbq(phba, cmdiocbp); 3829 } else { 3830 /* 3831 * Unknown initiating command based on the response iotag. 3832 * This could be the case on the ELS ring because of 3833 * lpfc_els_abort(). 3834 */ 3835 if (pring->ringno != LPFC_ELS_RING) { 3836 /* 3837 * Ring <ringno> handler: unexpected completion IoTag 3838 * <IoTag> 3839 */ 3840 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3841 "0322 Ring %d handler: " 3842 "unexpected completion IoTag x%x " 3843 "Data: x%x x%x x%x x%x\n", 3844 pring->ringno, iotag, ulp_status, 3845 ulp_word4, ulp_command, ulp_context); 3846 } 3847 } 3848 3849 return 1; 3850 } 3851 3852 /** 3853 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3854 * @phba: Pointer to HBA context object. 3855 * @pring: Pointer to driver SLI ring object. 3856 * 3857 * This function is called from the iocb ring event handlers when 3858 * put pointer is ahead of the get pointer for a ring. This function signal 3859 * an error attention condition to the worker thread and the worker 3860 * thread will transition the HBA to offline state. 3861 **/ 3862 static void 3863 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3864 { 3865 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3866 /* 3867 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3868 * rsp ring <portRspMax> 3869 */ 3870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3871 "0312 Ring %d handler: portRspPut %d " 3872 "is bigger than rsp ring %d\n", 3873 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3874 pring->sli.sli3.numRiocb); 3875 3876 phba->link_state = LPFC_HBA_ERROR; 3877 3878 /* 3879 * All error attention handlers are posted to 3880 * worker thread 3881 */ 3882 phba->work_ha |= HA_ERATT; 3883 phba->work_hs = HS_FFER3; 3884 3885 lpfc_worker_wake_up(phba); 3886 3887 return; 3888 } 3889 3890 /** 3891 * lpfc_poll_eratt - Error attention polling timer timeout handler 3892 * @t: Context to fetch pointer to address of HBA context object from. 3893 * 3894 * This function is invoked by the Error Attention polling timer when the 3895 * timer times out. It will check the SLI Error Attention register for 3896 * possible attention events. If so, it will post an Error Attention event 3897 * and wake up worker thread to process it. Otherwise, it will set up the 3898 * Error Attention polling timer for the next poll. 3899 **/ 3900 void lpfc_poll_eratt(struct timer_list *t) 3901 { 3902 struct lpfc_hba *phba; 3903 uint32_t eratt = 0; 3904 uint64_t sli_intr, cnt; 3905 3906 phba = from_timer(phba, t, eratt_poll); 3907 3908 /* Here we will also keep track of interrupts per sec of the hba */ 3909 sli_intr = phba->sli.slistat.sli_intr; 3910 3911 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3912 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3913 sli_intr); 3914 else 3915 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3916 3917 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3918 do_div(cnt, phba->eratt_poll_interval); 3919 phba->sli.slistat.sli_ips = cnt; 3920 3921 phba->sli.slistat.sli_prev_intr = sli_intr; 3922 3923 /* Check chip HA register for error event */ 3924 eratt = lpfc_sli_check_eratt(phba); 3925 3926 if (eratt) 3927 /* Tell the worker thread there is work to do */ 3928 lpfc_worker_wake_up(phba); 3929 else 3930 /* Restart the timer for next eratt poll */ 3931 mod_timer(&phba->eratt_poll, 3932 jiffies + 3933 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3934 return; 3935 } 3936 3937 3938 /** 3939 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3940 * @phba: Pointer to HBA context object. 3941 * @pring: Pointer to driver SLI ring object. 3942 * @mask: Host attention register mask for this ring. 3943 * 3944 * This function is called from the interrupt context when there is a ring 3945 * event for the fcp ring. The caller does not hold any lock. 3946 * The function processes each response iocb in the response ring until it 3947 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3948 * LE bit set. The function will call the completion handler of the command iocb 3949 * if the response iocb indicates a completion for a command iocb or it is 3950 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3951 * function if this is an unsolicited iocb. 3952 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3953 * to check it explicitly. 3954 */ 3955 int 3956 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3957 struct lpfc_sli_ring *pring, uint32_t mask) 3958 { 3959 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3960 IOCB_t *irsp = NULL; 3961 IOCB_t *entry = NULL; 3962 struct lpfc_iocbq *cmdiocbq = NULL; 3963 struct lpfc_iocbq rspiocbq; 3964 uint32_t status; 3965 uint32_t portRspPut, portRspMax; 3966 int rc = 1; 3967 lpfc_iocb_type type; 3968 unsigned long iflag; 3969 uint32_t rsp_cmpl = 0; 3970 3971 spin_lock_irqsave(&phba->hbalock, iflag); 3972 pring->stats.iocb_event++; 3973 3974 /* 3975 * The next available response entry should never exceed the maximum 3976 * entries. If it does, treat it as an adapter hardware error. 3977 */ 3978 portRspMax = pring->sli.sli3.numRiocb; 3979 portRspPut = le32_to_cpu(pgp->rspPutInx); 3980 if (unlikely(portRspPut >= portRspMax)) { 3981 lpfc_sli_rsp_pointers_error(phba, pring); 3982 spin_unlock_irqrestore(&phba->hbalock, iflag); 3983 return 1; 3984 } 3985 if (phba->fcp_ring_in_use) { 3986 spin_unlock_irqrestore(&phba->hbalock, iflag); 3987 return 1; 3988 } else 3989 phba->fcp_ring_in_use = 1; 3990 3991 rmb(); 3992 while (pring->sli.sli3.rspidx != portRspPut) { 3993 /* 3994 * Fetch an entry off the ring and copy it into a local data 3995 * structure. The copy involves a byte-swap since the 3996 * network byte order and pci byte orders are different. 3997 */ 3998 entry = lpfc_resp_iocb(phba, pring); 3999 phba->last_completion_time = jiffies; 4000 4001 if (++pring->sli.sli3.rspidx >= portRspMax) 4002 pring->sli.sli3.rspidx = 0; 4003 4004 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 4005 (uint32_t *) &rspiocbq.iocb, 4006 phba->iocb_rsp_size); 4007 INIT_LIST_HEAD(&(rspiocbq.list)); 4008 irsp = &rspiocbq.iocb; 4009 4010 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 4011 pring->stats.iocb_rsp++; 4012 rsp_cmpl++; 4013 4014 if (unlikely(irsp->ulpStatus)) { 4015 /* 4016 * If resource errors reported from HBA, reduce 4017 * queuedepths of the SCSI device. 4018 */ 4019 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 4020 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 4021 IOERR_NO_RESOURCES)) { 4022 spin_unlock_irqrestore(&phba->hbalock, iflag); 4023 phba->lpfc_rampdown_queue_depth(phba); 4024 spin_lock_irqsave(&phba->hbalock, iflag); 4025 } 4026 4027 /* Rsp ring <ringno> error: IOCB */ 4028 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4029 "0336 Rsp Ring %d error: IOCB Data: " 4030 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 4031 pring->ringno, 4032 irsp->un.ulpWord[0], 4033 irsp->un.ulpWord[1], 4034 irsp->un.ulpWord[2], 4035 irsp->un.ulpWord[3], 4036 irsp->un.ulpWord[4], 4037 irsp->un.ulpWord[5], 4038 *(uint32_t *)&irsp->un1, 4039 *((uint32_t *)&irsp->un1 + 1)); 4040 } 4041 4042 switch (type) { 4043 case LPFC_ABORT_IOCB: 4044 case LPFC_SOL_IOCB: 4045 /* 4046 * Idle exchange closed via ABTS from port. No iocb 4047 * resources need to be recovered. 4048 */ 4049 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 4050 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4051 "0333 IOCB cmd 0x%x" 4052 " processed. Skipping" 4053 " completion\n", 4054 irsp->ulpCommand); 4055 break; 4056 } 4057 4058 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 4059 &rspiocbq); 4060 if (unlikely(!cmdiocbq)) 4061 break; 4062 if (cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) 4063 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 4064 if (cmdiocbq->cmd_cmpl) { 4065 spin_unlock_irqrestore(&phba->hbalock, iflag); 4066 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, 4067 &rspiocbq); 4068 spin_lock_irqsave(&phba->hbalock, iflag); 4069 } 4070 break; 4071 case LPFC_UNSOL_IOCB: 4072 spin_unlock_irqrestore(&phba->hbalock, iflag); 4073 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 4074 spin_lock_irqsave(&phba->hbalock, iflag); 4075 break; 4076 default: 4077 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 4078 char adaptermsg[LPFC_MAX_ADPTMSG]; 4079 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4080 memcpy(&adaptermsg[0], (uint8_t *) irsp, 4081 MAX_MSG_DATA); 4082 dev_warn(&((phba->pcidev)->dev), 4083 "lpfc%d: %s\n", 4084 phba->brd_no, adaptermsg); 4085 } else { 4086 /* Unknown IOCB command */ 4087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4088 "0334 Unknown IOCB command " 4089 "Data: x%x, x%x x%x x%x x%x\n", 4090 type, irsp->ulpCommand, 4091 irsp->ulpStatus, 4092 irsp->ulpIoTag, 4093 irsp->ulpContext); 4094 } 4095 break; 4096 } 4097 4098 /* 4099 * The response IOCB has been processed. Update the ring 4100 * pointer in SLIM. If the port response put pointer has not 4101 * been updated, sync the pgp->rspPutInx and fetch the new port 4102 * response put pointer. 4103 */ 4104 writel(pring->sli.sli3.rspidx, 4105 &phba->host_gp[pring->ringno].rspGetInx); 4106 4107 if (pring->sli.sli3.rspidx == portRspPut) 4108 portRspPut = le32_to_cpu(pgp->rspPutInx); 4109 } 4110 4111 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 4112 pring->stats.iocb_rsp_full++; 4113 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4114 writel(status, phba->CAregaddr); 4115 readl(phba->CAregaddr); 4116 } 4117 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4118 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4119 pring->stats.iocb_cmd_empty++; 4120 4121 /* Force update of the local copy of cmdGetInx */ 4122 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4123 lpfc_sli_resume_iocb(phba, pring); 4124 4125 if ((pring->lpfc_sli_cmd_available)) 4126 (pring->lpfc_sli_cmd_available) (phba, pring); 4127 4128 } 4129 4130 phba->fcp_ring_in_use = 0; 4131 spin_unlock_irqrestore(&phba->hbalock, iflag); 4132 return rc; 4133 } 4134 4135 /** 4136 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 4137 * @phba: Pointer to HBA context object. 4138 * @pring: Pointer to driver SLI ring object. 4139 * @rspiocbp: Pointer to driver response IOCB object. 4140 * 4141 * This function is called from the worker thread when there is a slow-path 4142 * response IOCB to process. This function chains all the response iocbs until 4143 * seeing the iocb with the LE bit set. The function will call 4144 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 4145 * completion of a command iocb. The function will call the 4146 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 4147 * The function frees the resources or calls the completion handler if this 4148 * iocb is an abort completion. The function returns NULL when the response 4149 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 4150 * this function shall chain the iocb on to the iocb_continueq and return the 4151 * response iocb passed in. 4152 **/ 4153 static struct lpfc_iocbq * 4154 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 4155 struct lpfc_iocbq *rspiocbp) 4156 { 4157 struct lpfc_iocbq *saveq; 4158 struct lpfc_iocbq *cmdiocb; 4159 struct lpfc_iocbq *next_iocb; 4160 IOCB_t *irsp; 4161 uint32_t free_saveq; 4162 u8 cmd_type; 4163 lpfc_iocb_type type; 4164 unsigned long iflag; 4165 u32 ulp_status = get_job_ulpstatus(phba, rspiocbp); 4166 u32 ulp_word4 = get_job_word4(phba, rspiocbp); 4167 u32 ulp_command = get_job_cmnd(phba, rspiocbp); 4168 int rc; 4169 4170 spin_lock_irqsave(&phba->hbalock, iflag); 4171 /* First add the response iocb to the countinueq list */ 4172 list_add_tail(&rspiocbp->list, &pring->iocb_continueq); 4173 pring->iocb_continueq_cnt++; 4174 4175 /* 4176 * By default, the driver expects to free all resources 4177 * associated with this iocb completion. 4178 */ 4179 free_saveq = 1; 4180 saveq = list_get_first(&pring->iocb_continueq, 4181 struct lpfc_iocbq, list); 4182 list_del_init(&pring->iocb_continueq); 4183 pring->iocb_continueq_cnt = 0; 4184 4185 pring->stats.iocb_rsp++; 4186 4187 /* 4188 * If resource errors reported from HBA, reduce 4189 * queuedepths of the SCSI device. 4190 */ 4191 if (ulp_status == IOSTAT_LOCAL_REJECT && 4192 ((ulp_word4 & IOERR_PARAM_MASK) == 4193 IOERR_NO_RESOURCES)) { 4194 spin_unlock_irqrestore(&phba->hbalock, iflag); 4195 phba->lpfc_rampdown_queue_depth(phba); 4196 spin_lock_irqsave(&phba->hbalock, iflag); 4197 } 4198 4199 if (ulp_status) { 4200 /* Rsp ring <ringno> error: IOCB */ 4201 if (phba->sli_rev < LPFC_SLI_REV4) { 4202 irsp = &rspiocbp->iocb; 4203 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4204 "0328 Rsp Ring %d error: ulp_status x%x " 4205 "IOCB Data: " 4206 "x%08x x%08x x%08x x%08x " 4207 "x%08x x%08x x%08x x%08x " 4208 "x%08x x%08x x%08x x%08x " 4209 "x%08x x%08x x%08x x%08x\n", 4210 pring->ringno, ulp_status, 4211 get_job_ulpword(rspiocbp, 0), 4212 get_job_ulpword(rspiocbp, 1), 4213 get_job_ulpword(rspiocbp, 2), 4214 get_job_ulpword(rspiocbp, 3), 4215 get_job_ulpword(rspiocbp, 4), 4216 get_job_ulpword(rspiocbp, 5), 4217 *(((uint32_t *)irsp) + 6), 4218 *(((uint32_t *)irsp) + 7), 4219 *(((uint32_t *)irsp) + 8), 4220 *(((uint32_t *)irsp) + 9), 4221 *(((uint32_t *)irsp) + 10), 4222 *(((uint32_t *)irsp) + 11), 4223 *(((uint32_t *)irsp) + 12), 4224 *(((uint32_t *)irsp) + 13), 4225 *(((uint32_t *)irsp) + 14), 4226 *(((uint32_t *)irsp) + 15)); 4227 } else { 4228 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 4229 "0321 Rsp Ring %d error: " 4230 "IOCB Data: " 4231 "x%x x%x x%x x%x\n", 4232 pring->ringno, 4233 rspiocbp->wcqe_cmpl.word0, 4234 rspiocbp->wcqe_cmpl.total_data_placed, 4235 rspiocbp->wcqe_cmpl.parameter, 4236 rspiocbp->wcqe_cmpl.word3); 4237 } 4238 } 4239 4240 4241 /* 4242 * Fetch the iocb command type and call the correct completion 4243 * routine. Solicited and Unsolicited IOCBs on the ELS ring 4244 * get freed back to the lpfc_iocb_list by the discovery 4245 * kernel thread. 4246 */ 4247 cmd_type = ulp_command & CMD_IOCB_MASK; 4248 type = lpfc_sli_iocb_cmd_type(cmd_type); 4249 switch (type) { 4250 case LPFC_SOL_IOCB: 4251 spin_unlock_irqrestore(&phba->hbalock, iflag); 4252 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 4253 spin_lock_irqsave(&phba->hbalock, iflag); 4254 break; 4255 case LPFC_UNSOL_IOCB: 4256 spin_unlock_irqrestore(&phba->hbalock, iflag); 4257 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 4258 spin_lock_irqsave(&phba->hbalock, iflag); 4259 if (!rc) 4260 free_saveq = 0; 4261 break; 4262 case LPFC_ABORT_IOCB: 4263 cmdiocb = NULL; 4264 if (ulp_command != CMD_XRI_ABORTED_CX) 4265 cmdiocb = lpfc_sli_iocbq_lookup(phba, pring, 4266 saveq); 4267 if (cmdiocb) { 4268 /* Call the specified completion routine */ 4269 if (cmdiocb->cmd_cmpl) { 4270 spin_unlock_irqrestore(&phba->hbalock, iflag); 4271 cmdiocb->cmd_cmpl(phba, cmdiocb, saveq); 4272 spin_lock_irqsave(&phba->hbalock, iflag); 4273 } else { 4274 __lpfc_sli_release_iocbq(phba, cmdiocb); 4275 } 4276 } 4277 break; 4278 case LPFC_UNKNOWN_IOCB: 4279 if (ulp_command == CMD_ADAPTER_MSG) { 4280 char adaptermsg[LPFC_MAX_ADPTMSG]; 4281 4282 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 4283 memcpy(&adaptermsg[0], (uint8_t *)&rspiocbp->wqe, 4284 MAX_MSG_DATA); 4285 dev_warn(&((phba->pcidev)->dev), 4286 "lpfc%d: %s\n", 4287 phba->brd_no, adaptermsg); 4288 } else { 4289 /* Unknown command */ 4290 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4291 "0335 Unknown IOCB " 4292 "command Data: x%x " 4293 "x%x x%x x%x\n", 4294 ulp_command, 4295 ulp_status, 4296 get_wqe_reqtag(rspiocbp), 4297 get_job_ulpcontext(phba, rspiocbp)); 4298 } 4299 break; 4300 } 4301 4302 if (free_saveq) { 4303 list_for_each_entry_safe(rspiocbp, next_iocb, 4304 &saveq->list, list) { 4305 list_del_init(&rspiocbp->list); 4306 __lpfc_sli_release_iocbq(phba, rspiocbp); 4307 } 4308 __lpfc_sli_release_iocbq(phba, saveq); 4309 } 4310 rspiocbp = NULL; 4311 spin_unlock_irqrestore(&phba->hbalock, iflag); 4312 return rspiocbp; 4313 } 4314 4315 /** 4316 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 4317 * @phba: Pointer to HBA context object. 4318 * @pring: Pointer to driver SLI ring object. 4319 * @mask: Host attention register mask for this ring. 4320 * 4321 * This routine wraps the actual slow_ring event process routine from the 4322 * API jump table function pointer from the lpfc_hba struct. 4323 **/ 4324 void 4325 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4326 struct lpfc_sli_ring *pring, uint32_t mask) 4327 { 4328 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4329 } 4330 4331 /** 4332 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4333 * @phba: Pointer to HBA context object. 4334 * @pring: Pointer to driver SLI ring object. 4335 * @mask: Host attention register mask for this ring. 4336 * 4337 * This function is called from the worker thread when there is a ring event 4338 * for non-fcp rings. The caller does not hold any lock. The function will 4339 * remove each response iocb in the response ring and calls the handle 4340 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4341 **/ 4342 static void 4343 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4344 struct lpfc_sli_ring *pring, uint32_t mask) 4345 { 4346 struct lpfc_pgp *pgp; 4347 IOCB_t *entry; 4348 IOCB_t *irsp = NULL; 4349 struct lpfc_iocbq *rspiocbp = NULL; 4350 uint32_t portRspPut, portRspMax; 4351 unsigned long iflag; 4352 uint32_t status; 4353 4354 pgp = &phba->port_gp[pring->ringno]; 4355 spin_lock_irqsave(&phba->hbalock, iflag); 4356 pring->stats.iocb_event++; 4357 4358 /* 4359 * The next available response entry should never exceed the maximum 4360 * entries. If it does, treat it as an adapter hardware error. 4361 */ 4362 portRspMax = pring->sli.sli3.numRiocb; 4363 portRspPut = le32_to_cpu(pgp->rspPutInx); 4364 if (portRspPut >= portRspMax) { 4365 /* 4366 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4367 * rsp ring <portRspMax> 4368 */ 4369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4370 "0303 Ring %d handler: portRspPut %d " 4371 "is bigger than rsp ring %d\n", 4372 pring->ringno, portRspPut, portRspMax); 4373 4374 phba->link_state = LPFC_HBA_ERROR; 4375 spin_unlock_irqrestore(&phba->hbalock, iflag); 4376 4377 phba->work_hs = HS_FFER3; 4378 lpfc_handle_eratt(phba); 4379 4380 return; 4381 } 4382 4383 rmb(); 4384 while (pring->sli.sli3.rspidx != portRspPut) { 4385 /* 4386 * Build a completion list and call the appropriate handler. 4387 * The process is to get the next available response iocb, get 4388 * a free iocb from the list, copy the response data into the 4389 * free iocb, insert to the continuation list, and update the 4390 * next response index to slim. This process makes response 4391 * iocb's in the ring available to DMA as fast as possible but 4392 * pays a penalty for a copy operation. Since the iocb is 4393 * only 32 bytes, this penalty is considered small relative to 4394 * the PCI reads for register values and a slim write. When 4395 * the ulpLe field is set, the entire Command has been 4396 * received. 4397 */ 4398 entry = lpfc_resp_iocb(phba, pring); 4399 4400 phba->last_completion_time = jiffies; 4401 rspiocbp = __lpfc_sli_get_iocbq(phba); 4402 if (rspiocbp == NULL) { 4403 printk(KERN_ERR "%s: out of buffers! Failing " 4404 "completion.\n", __func__); 4405 break; 4406 } 4407 4408 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4409 phba->iocb_rsp_size); 4410 irsp = &rspiocbp->iocb; 4411 4412 if (++pring->sli.sli3.rspidx >= portRspMax) 4413 pring->sli.sli3.rspidx = 0; 4414 4415 if (pring->ringno == LPFC_ELS_RING) { 4416 lpfc_debugfs_slow_ring_trc(phba, 4417 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4418 *(((uint32_t *) irsp) + 4), 4419 *(((uint32_t *) irsp) + 6), 4420 *(((uint32_t *) irsp) + 7)); 4421 } 4422 4423 writel(pring->sli.sli3.rspidx, 4424 &phba->host_gp[pring->ringno].rspGetInx); 4425 4426 spin_unlock_irqrestore(&phba->hbalock, iflag); 4427 /* Handle the response IOCB */ 4428 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4429 spin_lock_irqsave(&phba->hbalock, iflag); 4430 4431 /* 4432 * If the port response put pointer has not been updated, sync 4433 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4434 * response put pointer. 4435 */ 4436 if (pring->sli.sli3.rspidx == portRspPut) { 4437 portRspPut = le32_to_cpu(pgp->rspPutInx); 4438 } 4439 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4440 4441 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4442 /* At least one response entry has been freed */ 4443 pring->stats.iocb_rsp_full++; 4444 /* SET RxRE_RSP in Chip Att register */ 4445 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4446 writel(status, phba->CAregaddr); 4447 readl(phba->CAregaddr); /* flush */ 4448 } 4449 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4450 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4451 pring->stats.iocb_cmd_empty++; 4452 4453 /* Force update of the local copy of cmdGetInx */ 4454 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4455 lpfc_sli_resume_iocb(phba, pring); 4456 4457 if ((pring->lpfc_sli_cmd_available)) 4458 (pring->lpfc_sli_cmd_available) (phba, pring); 4459 4460 } 4461 4462 spin_unlock_irqrestore(&phba->hbalock, iflag); 4463 return; 4464 } 4465 4466 /** 4467 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4468 * @phba: Pointer to HBA context object. 4469 * @pring: Pointer to driver SLI ring object. 4470 * @mask: Host attention register mask for this ring. 4471 * 4472 * This function is called from the worker thread when there is a pending 4473 * ELS response iocb on the driver internal slow-path response iocb worker 4474 * queue. The caller does not hold any lock. The function will remove each 4475 * response iocb from the response worker queue and calls the handle 4476 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4477 **/ 4478 static void 4479 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4480 struct lpfc_sli_ring *pring, uint32_t mask) 4481 { 4482 struct lpfc_iocbq *irspiocbq; 4483 struct hbq_dmabuf *dmabuf; 4484 struct lpfc_cq_event *cq_event; 4485 unsigned long iflag; 4486 int count = 0; 4487 4488 spin_lock_irqsave(&phba->hbalock, iflag); 4489 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4490 spin_unlock_irqrestore(&phba->hbalock, iflag); 4491 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4492 /* Get the response iocb from the head of work queue */ 4493 spin_lock_irqsave(&phba->hbalock, iflag); 4494 list_remove_head(&phba->sli4_hba.sp_queue_event, 4495 cq_event, struct lpfc_cq_event, list); 4496 spin_unlock_irqrestore(&phba->hbalock, iflag); 4497 4498 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4499 case CQE_CODE_COMPL_WQE: 4500 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4501 cq_event); 4502 /* Translate ELS WCQE to response IOCBQ */ 4503 irspiocbq = lpfc_sli4_els_preprocess_rspiocbq(phba, 4504 irspiocbq); 4505 if (irspiocbq) 4506 lpfc_sli_sp_handle_rspiocb(phba, pring, 4507 irspiocbq); 4508 count++; 4509 break; 4510 case CQE_CODE_RECEIVE: 4511 case CQE_CODE_RECEIVE_V1: 4512 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4513 cq_event); 4514 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4515 count++; 4516 break; 4517 default: 4518 break; 4519 } 4520 4521 /* Limit the number of events to 64 to avoid soft lockups */ 4522 if (count == 64) 4523 break; 4524 } 4525 } 4526 4527 /** 4528 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4529 * @phba: Pointer to HBA context object. 4530 * @pring: Pointer to driver SLI ring object. 4531 * 4532 * This function aborts all iocbs in the given ring and frees all the iocb 4533 * objects in txq. This function issues an abort iocb for all the iocb commands 4534 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4535 * the return of this function. The caller is not required to hold any locks. 4536 **/ 4537 void 4538 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4539 { 4540 LIST_HEAD(tx_completions); 4541 LIST_HEAD(txcmplq_completions); 4542 struct lpfc_iocbq *iocb, *next_iocb; 4543 int offline; 4544 4545 if (pring->ringno == LPFC_ELS_RING) { 4546 lpfc_fabric_abort_hba(phba); 4547 } 4548 offline = pci_channel_offline(phba->pcidev); 4549 4550 /* Error everything on txq and txcmplq 4551 * First do the txq. 4552 */ 4553 if (phba->sli_rev >= LPFC_SLI_REV4) { 4554 spin_lock_irq(&pring->ring_lock); 4555 list_splice_init(&pring->txq, &tx_completions); 4556 pring->txq_cnt = 0; 4557 4558 if (offline) { 4559 list_splice_init(&pring->txcmplq, 4560 &txcmplq_completions); 4561 } else { 4562 /* Next issue ABTS for everything on the txcmplq */ 4563 list_for_each_entry_safe(iocb, next_iocb, 4564 &pring->txcmplq, list) 4565 lpfc_sli_issue_abort_iotag(phba, pring, 4566 iocb, NULL); 4567 } 4568 spin_unlock_irq(&pring->ring_lock); 4569 } else { 4570 spin_lock_irq(&phba->hbalock); 4571 list_splice_init(&pring->txq, &tx_completions); 4572 pring->txq_cnt = 0; 4573 4574 if (offline) { 4575 list_splice_init(&pring->txcmplq, &txcmplq_completions); 4576 } else { 4577 /* Next issue ABTS for everything on the txcmplq */ 4578 list_for_each_entry_safe(iocb, next_iocb, 4579 &pring->txcmplq, list) 4580 lpfc_sli_issue_abort_iotag(phba, pring, 4581 iocb, NULL); 4582 } 4583 spin_unlock_irq(&phba->hbalock); 4584 } 4585 4586 if (offline) { 4587 /* Cancel all the IOCBs from the completions list */ 4588 lpfc_sli_cancel_iocbs(phba, &txcmplq_completions, 4589 IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); 4590 } else { 4591 /* Make sure HBA is alive */ 4592 lpfc_issue_hb_tmo(phba); 4593 } 4594 /* Cancel all the IOCBs from the completions list */ 4595 lpfc_sli_cancel_iocbs(phba, &tx_completions, IOSTAT_LOCAL_REJECT, 4596 IOERR_SLI_ABORTED); 4597 } 4598 4599 /** 4600 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4601 * @phba: Pointer to HBA context object. 4602 * 4603 * This function aborts all iocbs in FCP rings and frees all the iocb 4604 * objects in txq. This function issues an abort iocb for all the iocb commands 4605 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4606 * the return of this function. The caller is not required to hold any locks. 4607 **/ 4608 void 4609 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4610 { 4611 struct lpfc_sli *psli = &phba->sli; 4612 struct lpfc_sli_ring *pring; 4613 uint32_t i; 4614 4615 /* Look on all the FCP Rings for the iotag */ 4616 if (phba->sli_rev >= LPFC_SLI_REV4) { 4617 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4618 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4619 lpfc_sli_abort_iocb_ring(phba, pring); 4620 } 4621 } else { 4622 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4623 lpfc_sli_abort_iocb_ring(phba, pring); 4624 } 4625 } 4626 4627 /** 4628 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4629 * @phba: Pointer to HBA context object. 4630 * 4631 * This function flushes all iocbs in the IO ring and frees all the iocb 4632 * objects in txq and txcmplq. This function will not issue abort iocbs 4633 * for all the iocb commands in txcmplq, they will just be returned with 4634 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4635 * slot has been permanently disabled. 4636 **/ 4637 void 4638 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4639 { 4640 LIST_HEAD(txq); 4641 LIST_HEAD(txcmplq); 4642 struct lpfc_sli *psli = &phba->sli; 4643 struct lpfc_sli_ring *pring; 4644 uint32_t i; 4645 struct lpfc_iocbq *piocb, *next_iocb; 4646 4647 spin_lock_irq(&phba->hbalock); 4648 /* Indicate the I/O queues are flushed */ 4649 phba->hba_flag |= HBA_IOQ_FLUSH; 4650 spin_unlock_irq(&phba->hbalock); 4651 4652 /* Look on all the FCP Rings for the iotag */ 4653 if (phba->sli_rev >= LPFC_SLI_REV4) { 4654 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4655 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4656 4657 spin_lock_irq(&pring->ring_lock); 4658 /* Retrieve everything on txq */ 4659 list_splice_init(&pring->txq, &txq); 4660 list_for_each_entry_safe(piocb, next_iocb, 4661 &pring->txcmplq, list) 4662 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4663 /* Retrieve everything on the txcmplq */ 4664 list_splice_init(&pring->txcmplq, &txcmplq); 4665 pring->txq_cnt = 0; 4666 pring->txcmplq_cnt = 0; 4667 spin_unlock_irq(&pring->ring_lock); 4668 4669 /* Flush the txq */ 4670 lpfc_sli_cancel_iocbs(phba, &txq, 4671 IOSTAT_LOCAL_REJECT, 4672 IOERR_SLI_DOWN); 4673 /* Flush the txcmplq */ 4674 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4675 IOSTAT_LOCAL_REJECT, 4676 IOERR_SLI_DOWN); 4677 if (unlikely(pci_channel_offline(phba->pcidev))) 4678 lpfc_sli4_io_xri_aborted(phba, NULL, 0); 4679 } 4680 } else { 4681 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4682 4683 spin_lock_irq(&phba->hbalock); 4684 /* Retrieve everything on txq */ 4685 list_splice_init(&pring->txq, &txq); 4686 list_for_each_entry_safe(piocb, next_iocb, 4687 &pring->txcmplq, list) 4688 piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; 4689 /* Retrieve everything on the txcmplq */ 4690 list_splice_init(&pring->txcmplq, &txcmplq); 4691 pring->txq_cnt = 0; 4692 pring->txcmplq_cnt = 0; 4693 spin_unlock_irq(&phba->hbalock); 4694 4695 /* Flush the txq */ 4696 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4697 IOERR_SLI_DOWN); 4698 /* Flush the txcmpq */ 4699 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4700 IOERR_SLI_DOWN); 4701 } 4702 } 4703 4704 /** 4705 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4706 * @phba: Pointer to HBA context object. 4707 * @mask: Bit mask to be checked. 4708 * 4709 * This function reads the host status register and compares 4710 * with the provided bit mask to check if HBA completed 4711 * the restart. This function will wait in a loop for the 4712 * HBA to complete restart. If the HBA does not restart within 4713 * 15 iterations, the function will reset the HBA again. The 4714 * function returns 1 when HBA fail to restart otherwise returns 4715 * zero. 4716 **/ 4717 static int 4718 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4719 { 4720 uint32_t status; 4721 int i = 0; 4722 int retval = 0; 4723 4724 /* Read the HBA Host Status Register */ 4725 if (lpfc_readl(phba->HSregaddr, &status)) 4726 return 1; 4727 4728 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4729 4730 /* 4731 * Check status register every 100ms for 5 retries, then every 4732 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4733 * every 2.5 sec for 4. 4734 * Break our of the loop if errors occurred during init. 4735 */ 4736 while (((status & mask) != mask) && 4737 !(status & HS_FFERM) && 4738 i++ < 20) { 4739 4740 if (i <= 5) 4741 msleep(10); 4742 else if (i <= 10) 4743 msleep(500); 4744 else 4745 msleep(2500); 4746 4747 if (i == 15) { 4748 /* Do post */ 4749 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4750 lpfc_sli_brdrestart(phba); 4751 } 4752 /* Read the HBA Host Status Register */ 4753 if (lpfc_readl(phba->HSregaddr, &status)) { 4754 retval = 1; 4755 break; 4756 } 4757 } 4758 4759 /* Check to see if any errors occurred during init */ 4760 if ((status & HS_FFERM) || (i >= 20)) { 4761 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4762 "2751 Adapter failed to restart, " 4763 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4764 status, 4765 readl(phba->MBslimaddr + 0xa8), 4766 readl(phba->MBslimaddr + 0xac)); 4767 phba->link_state = LPFC_HBA_ERROR; 4768 retval = 1; 4769 } 4770 4771 return retval; 4772 } 4773 4774 /** 4775 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4776 * @phba: Pointer to HBA context object. 4777 * @mask: Bit mask to be checked. 4778 * 4779 * This function checks the host status register to check if HBA is 4780 * ready. This function will wait in a loop for the HBA to be ready 4781 * If the HBA is not ready , the function will will reset the HBA PCI 4782 * function again. The function returns 1 when HBA fail to be ready 4783 * otherwise returns zero. 4784 **/ 4785 static int 4786 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4787 { 4788 uint32_t status; 4789 int retval = 0; 4790 4791 /* Read the HBA Host Status Register */ 4792 status = lpfc_sli4_post_status_check(phba); 4793 4794 if (status) { 4795 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4796 lpfc_sli_brdrestart(phba); 4797 status = lpfc_sli4_post_status_check(phba); 4798 } 4799 4800 /* Check to see if any errors occurred during init */ 4801 if (status) { 4802 phba->link_state = LPFC_HBA_ERROR; 4803 retval = 1; 4804 } else 4805 phba->sli4_hba.intr_enable = 0; 4806 4807 phba->hba_flag &= ~HBA_SETUP; 4808 return retval; 4809 } 4810 4811 /** 4812 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4813 * @phba: Pointer to HBA context object. 4814 * @mask: Bit mask to be checked. 4815 * 4816 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4817 * from the API jump table function pointer from the lpfc_hba struct. 4818 **/ 4819 int 4820 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4821 { 4822 return phba->lpfc_sli_brdready(phba, mask); 4823 } 4824 4825 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4826 4827 /** 4828 * lpfc_reset_barrier - Make HBA ready for HBA reset 4829 * @phba: Pointer to HBA context object. 4830 * 4831 * This function is called before resetting an HBA. This function is called 4832 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4833 **/ 4834 void lpfc_reset_barrier(struct lpfc_hba *phba) 4835 { 4836 uint32_t __iomem *resp_buf; 4837 uint32_t __iomem *mbox_buf; 4838 volatile struct MAILBOX_word0 mbox; 4839 uint32_t hc_copy, ha_copy, resp_data; 4840 int i; 4841 uint8_t hdrtype; 4842 4843 lockdep_assert_held(&phba->hbalock); 4844 4845 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4846 if (hdrtype != 0x80 || 4847 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4848 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4849 return; 4850 4851 /* 4852 * Tell the other part of the chip to suspend temporarily all 4853 * its DMA activity. 4854 */ 4855 resp_buf = phba->MBslimaddr; 4856 4857 /* Disable the error attention */ 4858 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4859 return; 4860 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4861 readl(phba->HCregaddr); /* flush */ 4862 phba->link_flag |= LS_IGNORE_ERATT; 4863 4864 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4865 return; 4866 if (ha_copy & HA_ERATT) { 4867 /* Clear Chip error bit */ 4868 writel(HA_ERATT, phba->HAregaddr); 4869 phba->pport->stopped = 1; 4870 } 4871 4872 mbox.word0 = 0; 4873 mbox.mbxCommand = MBX_KILL_BOARD; 4874 mbox.mbxOwner = OWN_CHIP; 4875 4876 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4877 mbox_buf = phba->MBslimaddr; 4878 writel(mbox.word0, mbox_buf); 4879 4880 for (i = 0; i < 50; i++) { 4881 if (lpfc_readl((resp_buf + 1), &resp_data)) 4882 return; 4883 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4884 mdelay(1); 4885 else 4886 break; 4887 } 4888 resp_data = 0; 4889 if (lpfc_readl((resp_buf + 1), &resp_data)) 4890 return; 4891 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4892 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4893 phba->pport->stopped) 4894 goto restore_hc; 4895 else 4896 goto clear_errat; 4897 } 4898 4899 mbox.mbxOwner = OWN_HOST; 4900 resp_data = 0; 4901 for (i = 0; i < 500; i++) { 4902 if (lpfc_readl(resp_buf, &resp_data)) 4903 return; 4904 if (resp_data != mbox.word0) 4905 mdelay(1); 4906 else 4907 break; 4908 } 4909 4910 clear_errat: 4911 4912 while (++i < 500) { 4913 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4914 return; 4915 if (!(ha_copy & HA_ERATT)) 4916 mdelay(1); 4917 else 4918 break; 4919 } 4920 4921 if (readl(phba->HAregaddr) & HA_ERATT) { 4922 writel(HA_ERATT, phba->HAregaddr); 4923 phba->pport->stopped = 1; 4924 } 4925 4926 restore_hc: 4927 phba->link_flag &= ~LS_IGNORE_ERATT; 4928 writel(hc_copy, phba->HCregaddr); 4929 readl(phba->HCregaddr); /* flush */ 4930 } 4931 4932 /** 4933 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4934 * @phba: Pointer to HBA context object. 4935 * 4936 * This function issues a kill_board mailbox command and waits for 4937 * the error attention interrupt. This function is called for stopping 4938 * the firmware processing. The caller is not required to hold any 4939 * locks. This function calls lpfc_hba_down_post function to free 4940 * any pending commands after the kill. The function will return 1 when it 4941 * fails to kill the board else will return 0. 4942 **/ 4943 int 4944 lpfc_sli_brdkill(struct lpfc_hba *phba) 4945 { 4946 struct lpfc_sli *psli; 4947 LPFC_MBOXQ_t *pmb; 4948 uint32_t status; 4949 uint32_t ha_copy; 4950 int retval; 4951 int i = 0; 4952 4953 psli = &phba->sli; 4954 4955 /* Kill HBA */ 4956 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4957 "0329 Kill HBA Data: x%x x%x\n", 4958 phba->pport->port_state, psli->sli_flag); 4959 4960 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4961 if (!pmb) 4962 return 1; 4963 4964 /* Disable the error attention */ 4965 spin_lock_irq(&phba->hbalock); 4966 if (lpfc_readl(phba->HCregaddr, &status)) { 4967 spin_unlock_irq(&phba->hbalock); 4968 mempool_free(pmb, phba->mbox_mem_pool); 4969 return 1; 4970 } 4971 status &= ~HC_ERINT_ENA; 4972 writel(status, phba->HCregaddr); 4973 readl(phba->HCregaddr); /* flush */ 4974 phba->link_flag |= LS_IGNORE_ERATT; 4975 spin_unlock_irq(&phba->hbalock); 4976 4977 lpfc_kill_board(phba, pmb); 4978 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4979 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4980 4981 if (retval != MBX_SUCCESS) { 4982 if (retval != MBX_BUSY) 4983 mempool_free(pmb, phba->mbox_mem_pool); 4984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4985 "2752 KILL_BOARD command failed retval %d\n", 4986 retval); 4987 spin_lock_irq(&phba->hbalock); 4988 phba->link_flag &= ~LS_IGNORE_ERATT; 4989 spin_unlock_irq(&phba->hbalock); 4990 return 1; 4991 } 4992 4993 spin_lock_irq(&phba->hbalock); 4994 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4995 spin_unlock_irq(&phba->hbalock); 4996 4997 mempool_free(pmb, phba->mbox_mem_pool); 4998 4999 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 5000 * attention every 100ms for 3 seconds. If we don't get ERATT after 5001 * 3 seconds we still set HBA_ERROR state because the status of the 5002 * board is now undefined. 5003 */ 5004 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5005 return 1; 5006 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 5007 mdelay(100); 5008 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 5009 return 1; 5010 } 5011 5012 del_timer_sync(&psli->mbox_tmo); 5013 if (ha_copy & HA_ERATT) { 5014 writel(HA_ERATT, phba->HAregaddr); 5015 phba->pport->stopped = 1; 5016 } 5017 spin_lock_irq(&phba->hbalock); 5018 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5019 psli->mbox_active = NULL; 5020 phba->link_flag &= ~LS_IGNORE_ERATT; 5021 spin_unlock_irq(&phba->hbalock); 5022 5023 lpfc_hba_down_post(phba); 5024 phba->link_state = LPFC_HBA_ERROR; 5025 5026 return ha_copy & HA_ERATT ? 0 : 1; 5027 } 5028 5029 /** 5030 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 5031 * @phba: Pointer to HBA context object. 5032 * 5033 * This function resets the HBA by writing HC_INITFF to the control 5034 * register. After the HBA resets, this function resets all the iocb ring 5035 * indices. This function disables PCI layer parity checking during 5036 * the reset. 5037 * This function returns 0 always. 5038 * The caller is not required to hold any locks. 5039 **/ 5040 int 5041 lpfc_sli_brdreset(struct lpfc_hba *phba) 5042 { 5043 struct lpfc_sli *psli; 5044 struct lpfc_sli_ring *pring; 5045 uint16_t cfg_value; 5046 int i; 5047 5048 psli = &phba->sli; 5049 5050 /* Reset HBA */ 5051 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5052 "0325 Reset HBA Data: x%x x%x\n", 5053 (phba->pport) ? phba->pport->port_state : 0, 5054 psli->sli_flag); 5055 5056 /* perform board reset */ 5057 phba->fc_eventTag = 0; 5058 phba->link_events = 0; 5059 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5060 if (phba->pport) { 5061 phba->pport->fc_myDID = 0; 5062 phba->pport->fc_prevDID = 0; 5063 } 5064 5065 /* Turn off parity checking and serr during the physical reset */ 5066 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 5067 return -EIO; 5068 5069 pci_write_config_word(phba->pcidev, PCI_COMMAND, 5070 (cfg_value & 5071 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5072 5073 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 5074 5075 /* Now toggle INITFF bit in the Host Control Register */ 5076 writel(HC_INITFF, phba->HCregaddr); 5077 mdelay(1); 5078 readl(phba->HCregaddr); /* flush */ 5079 writel(0, phba->HCregaddr); 5080 readl(phba->HCregaddr); /* flush */ 5081 5082 /* Restore PCI cmd register */ 5083 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5084 5085 /* Initialize relevant SLI info */ 5086 for (i = 0; i < psli->num_rings; i++) { 5087 pring = &psli->sli3_ring[i]; 5088 pring->flag = 0; 5089 pring->sli.sli3.rspidx = 0; 5090 pring->sli.sli3.next_cmdidx = 0; 5091 pring->sli.sli3.local_getidx = 0; 5092 pring->sli.sli3.cmdidx = 0; 5093 pring->missbufcnt = 0; 5094 } 5095 5096 phba->link_state = LPFC_WARM_START; 5097 return 0; 5098 } 5099 5100 /** 5101 * lpfc_sli4_brdreset - Reset a sli-4 HBA 5102 * @phba: Pointer to HBA context object. 5103 * 5104 * This function resets a SLI4 HBA. This function disables PCI layer parity 5105 * checking during resets the device. The caller is not required to hold 5106 * any locks. 5107 * 5108 * This function returns 0 on success else returns negative error code. 5109 **/ 5110 int 5111 lpfc_sli4_brdreset(struct lpfc_hba *phba) 5112 { 5113 struct lpfc_sli *psli = &phba->sli; 5114 uint16_t cfg_value; 5115 int rc = 0; 5116 5117 /* Reset HBA */ 5118 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5119 "0295 Reset HBA Data: x%x x%x x%x\n", 5120 phba->pport->port_state, psli->sli_flag, 5121 phba->hba_flag); 5122 5123 /* perform board reset */ 5124 phba->fc_eventTag = 0; 5125 phba->link_events = 0; 5126 phba->pport->fc_myDID = 0; 5127 phba->pport->fc_prevDID = 0; 5128 phba->hba_flag &= ~HBA_SETUP; 5129 5130 spin_lock_irq(&phba->hbalock); 5131 psli->sli_flag &= ~(LPFC_PROCESS_LA); 5132 phba->fcf.fcf_flag = 0; 5133 spin_unlock_irq(&phba->hbalock); 5134 5135 /* Now physically reset the device */ 5136 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5137 "0389 Performing PCI function reset!\n"); 5138 5139 /* Turn off parity checking and serr during the physical reset */ 5140 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 5141 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5142 "3205 PCI read Config failed\n"); 5143 return -EIO; 5144 } 5145 5146 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 5147 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 5148 5149 /* Perform FCoE PCI function reset before freeing queue memory */ 5150 rc = lpfc_pci_function_reset(phba); 5151 5152 /* Restore PCI cmd register */ 5153 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 5154 5155 return rc; 5156 } 5157 5158 /** 5159 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 5160 * @phba: Pointer to HBA context object. 5161 * 5162 * This function is called in the SLI initialization code path to 5163 * restart the HBA. The caller is not required to hold any lock. 5164 * This function writes MBX_RESTART mailbox command to the SLIM and 5165 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 5166 * function to free any pending commands. The function enables 5167 * POST only during the first initialization. The function returns zero. 5168 * The function does not guarantee completion of MBX_RESTART mailbox 5169 * command before the return of this function. 5170 **/ 5171 static int 5172 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 5173 { 5174 volatile struct MAILBOX_word0 mb; 5175 struct lpfc_sli *psli; 5176 void __iomem *to_slim; 5177 uint32_t hba_aer_enabled; 5178 5179 spin_lock_irq(&phba->hbalock); 5180 5181 /* Take PCIe device Advanced Error Reporting (AER) state */ 5182 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5183 5184 psli = &phba->sli; 5185 5186 /* Restart HBA */ 5187 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5188 "0337 Restart HBA Data: x%x x%x\n", 5189 (phba->pport) ? phba->pport->port_state : 0, 5190 psli->sli_flag); 5191 5192 mb.word0 = 0; 5193 mb.mbxCommand = MBX_RESTART; 5194 mb.mbxHc = 1; 5195 5196 lpfc_reset_barrier(phba); 5197 5198 to_slim = phba->MBslimaddr; 5199 writel(mb.word0, to_slim); 5200 readl(to_slim); /* flush */ 5201 5202 /* Only skip post after fc_ffinit is completed */ 5203 if (phba->pport && phba->pport->port_state) 5204 mb.word0 = 1; /* This is really setting up word1 */ 5205 else 5206 mb.word0 = 0; /* This is really setting up word1 */ 5207 to_slim = phba->MBslimaddr + sizeof (uint32_t); 5208 writel(mb.word0, to_slim); 5209 readl(to_slim); /* flush */ 5210 5211 lpfc_sli_brdreset(phba); 5212 if (phba->pport) 5213 phba->pport->stopped = 0; 5214 phba->link_state = LPFC_INIT_START; 5215 phba->hba_flag = 0; 5216 spin_unlock_irq(&phba->hbalock); 5217 5218 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5219 psli->stats_start = ktime_get_seconds(); 5220 5221 /* Give the INITFF and Post time to settle. */ 5222 mdelay(100); 5223 5224 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5225 if (hba_aer_enabled) 5226 pci_disable_pcie_error_reporting(phba->pcidev); 5227 5228 lpfc_hba_down_post(phba); 5229 5230 return 0; 5231 } 5232 5233 /** 5234 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 5235 * @phba: Pointer to HBA context object. 5236 * 5237 * This function is called in the SLI initialization code path to restart 5238 * a SLI4 HBA. The caller is not required to hold any lock. 5239 * At the end of the function, it calls lpfc_hba_down_post function to 5240 * free any pending commands. 5241 **/ 5242 static int 5243 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 5244 { 5245 struct lpfc_sli *psli = &phba->sli; 5246 uint32_t hba_aer_enabled; 5247 int rc; 5248 5249 /* Restart HBA */ 5250 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5251 "0296 Restart HBA Data: x%x x%x\n", 5252 phba->pport->port_state, psli->sli_flag); 5253 5254 /* Take PCIe device Advanced Error Reporting (AER) state */ 5255 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 5256 5257 rc = lpfc_sli4_brdreset(phba); 5258 if (rc) { 5259 phba->link_state = LPFC_HBA_ERROR; 5260 goto hba_down_queue; 5261 } 5262 5263 spin_lock_irq(&phba->hbalock); 5264 phba->pport->stopped = 0; 5265 phba->link_state = LPFC_INIT_START; 5266 phba->hba_flag = 0; 5267 phba->sli4_hba.fawwpn_flag = 0; 5268 spin_unlock_irq(&phba->hbalock); 5269 5270 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 5271 psli->stats_start = ktime_get_seconds(); 5272 5273 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 5274 if (hba_aer_enabled) 5275 pci_disable_pcie_error_reporting(phba->pcidev); 5276 5277 hba_down_queue: 5278 lpfc_hba_down_post(phba); 5279 lpfc_sli4_queue_destroy(phba); 5280 5281 return rc; 5282 } 5283 5284 /** 5285 * lpfc_sli_brdrestart - Wrapper func for restarting hba 5286 * @phba: Pointer to HBA context object. 5287 * 5288 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 5289 * API jump table function pointer from the lpfc_hba struct. 5290 **/ 5291 int 5292 lpfc_sli_brdrestart(struct lpfc_hba *phba) 5293 { 5294 return phba->lpfc_sli_brdrestart(phba); 5295 } 5296 5297 /** 5298 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 5299 * @phba: Pointer to HBA context object. 5300 * 5301 * This function is called after a HBA restart to wait for successful 5302 * restart of the HBA. Successful restart of the HBA is indicated by 5303 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 5304 * iteration, the function will restart the HBA again. The function returns 5305 * zero if HBA successfully restarted else returns negative error code. 5306 **/ 5307 int 5308 lpfc_sli_chipset_init(struct lpfc_hba *phba) 5309 { 5310 uint32_t status, i = 0; 5311 5312 /* Read the HBA Host Status Register */ 5313 if (lpfc_readl(phba->HSregaddr, &status)) 5314 return -EIO; 5315 5316 /* Check status register to see what current state is */ 5317 i = 0; 5318 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 5319 5320 /* Check every 10ms for 10 retries, then every 100ms for 90 5321 * retries, then every 1 sec for 50 retires for a total of 5322 * ~60 seconds before reset the board again and check every 5323 * 1 sec for 50 retries. The up to 60 seconds before the 5324 * board ready is required by the Falcon FIPS zeroization 5325 * complete, and any reset the board in between shall cause 5326 * restart of zeroization, further delay the board ready. 5327 */ 5328 if (i++ >= 200) { 5329 /* Adapter failed to init, timeout, status reg 5330 <status> */ 5331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5332 "0436 Adapter failed to init, " 5333 "timeout, status reg x%x, " 5334 "FW Data: A8 x%x AC x%x\n", status, 5335 readl(phba->MBslimaddr + 0xa8), 5336 readl(phba->MBslimaddr + 0xac)); 5337 phba->link_state = LPFC_HBA_ERROR; 5338 return -ETIMEDOUT; 5339 } 5340 5341 /* Check to see if any errors occurred during init */ 5342 if (status & HS_FFERM) { 5343 /* ERROR: During chipset initialization */ 5344 /* Adapter failed to init, chipset, status reg 5345 <status> */ 5346 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5347 "0437 Adapter failed to init, " 5348 "chipset, status reg x%x, " 5349 "FW Data: A8 x%x AC x%x\n", status, 5350 readl(phba->MBslimaddr + 0xa8), 5351 readl(phba->MBslimaddr + 0xac)); 5352 phba->link_state = LPFC_HBA_ERROR; 5353 return -EIO; 5354 } 5355 5356 if (i <= 10) 5357 msleep(10); 5358 else if (i <= 100) 5359 msleep(100); 5360 else 5361 msleep(1000); 5362 5363 if (i == 150) { 5364 /* Do post */ 5365 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5366 lpfc_sli_brdrestart(phba); 5367 } 5368 /* Read the HBA Host Status Register */ 5369 if (lpfc_readl(phba->HSregaddr, &status)) 5370 return -EIO; 5371 } 5372 5373 /* Check to see if any errors occurred during init */ 5374 if (status & HS_FFERM) { 5375 /* ERROR: During chipset initialization */ 5376 /* Adapter failed to init, chipset, status reg <status> */ 5377 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5378 "0438 Adapter failed to init, chipset, " 5379 "status reg x%x, " 5380 "FW Data: A8 x%x AC x%x\n", status, 5381 readl(phba->MBslimaddr + 0xa8), 5382 readl(phba->MBslimaddr + 0xac)); 5383 phba->link_state = LPFC_HBA_ERROR; 5384 return -EIO; 5385 } 5386 5387 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5388 5389 /* Clear all interrupt enable conditions */ 5390 writel(0, phba->HCregaddr); 5391 readl(phba->HCregaddr); /* flush */ 5392 5393 /* setup host attn register */ 5394 writel(0xffffffff, phba->HAregaddr); 5395 readl(phba->HAregaddr); /* flush */ 5396 return 0; 5397 } 5398 5399 /** 5400 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5401 * 5402 * This function calculates and returns the number of HBQs required to be 5403 * configured. 5404 **/ 5405 int 5406 lpfc_sli_hbq_count(void) 5407 { 5408 return ARRAY_SIZE(lpfc_hbq_defs); 5409 } 5410 5411 /** 5412 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5413 * 5414 * This function adds the number of hbq entries in every HBQ to get 5415 * the total number of hbq entries required for the HBA and returns 5416 * the total count. 5417 **/ 5418 static int 5419 lpfc_sli_hbq_entry_count(void) 5420 { 5421 int hbq_count = lpfc_sli_hbq_count(); 5422 int count = 0; 5423 int i; 5424 5425 for (i = 0; i < hbq_count; ++i) 5426 count += lpfc_hbq_defs[i]->entry_count; 5427 return count; 5428 } 5429 5430 /** 5431 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5432 * 5433 * This function calculates amount of memory required for all hbq entries 5434 * to be configured and returns the total memory required. 5435 **/ 5436 int 5437 lpfc_sli_hbq_size(void) 5438 { 5439 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5440 } 5441 5442 /** 5443 * lpfc_sli_hbq_setup - configure and initialize HBQs 5444 * @phba: Pointer to HBA context object. 5445 * 5446 * This function is called during the SLI initialization to configure 5447 * all the HBQs and post buffers to the HBQ. The caller is not 5448 * required to hold any locks. This function will return zero if successful 5449 * else it will return negative error code. 5450 **/ 5451 static int 5452 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5453 { 5454 int hbq_count = lpfc_sli_hbq_count(); 5455 LPFC_MBOXQ_t *pmb; 5456 MAILBOX_t *pmbox; 5457 uint32_t hbqno; 5458 uint32_t hbq_entry_index; 5459 5460 /* Get a Mailbox buffer to setup mailbox 5461 * commands for HBA initialization 5462 */ 5463 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5464 5465 if (!pmb) 5466 return -ENOMEM; 5467 5468 pmbox = &pmb->u.mb; 5469 5470 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5471 phba->link_state = LPFC_INIT_MBX_CMDS; 5472 phba->hbq_in_use = 1; 5473 5474 hbq_entry_index = 0; 5475 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5476 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5477 phba->hbqs[hbqno].hbqPutIdx = 0; 5478 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5479 phba->hbqs[hbqno].entry_count = 5480 lpfc_hbq_defs[hbqno]->entry_count; 5481 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5482 hbq_entry_index, pmb); 5483 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5484 5485 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5486 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5487 mbxStatus <status>, ring <num> */ 5488 5489 lpfc_printf_log(phba, KERN_ERR, 5490 LOG_SLI | LOG_VPORT, 5491 "1805 Adapter failed to init. " 5492 "Data: x%x x%x x%x\n", 5493 pmbox->mbxCommand, 5494 pmbox->mbxStatus, hbqno); 5495 5496 phba->link_state = LPFC_HBA_ERROR; 5497 mempool_free(pmb, phba->mbox_mem_pool); 5498 return -ENXIO; 5499 } 5500 } 5501 phba->hbq_count = hbq_count; 5502 5503 mempool_free(pmb, phba->mbox_mem_pool); 5504 5505 /* Initially populate or replenish the HBQs */ 5506 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5507 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5508 return 0; 5509 } 5510 5511 /** 5512 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5513 * @phba: Pointer to HBA context object. 5514 * 5515 * This function is called during the SLI initialization to configure 5516 * all the HBQs and post buffers to the HBQ. The caller is not 5517 * required to hold any locks. This function will return zero if successful 5518 * else it will return negative error code. 5519 **/ 5520 static int 5521 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5522 { 5523 phba->hbq_in_use = 1; 5524 /** 5525 * Specific case when the MDS diagnostics is enabled and supported. 5526 * The receive buffer count is truncated to manage the incoming 5527 * traffic. 5528 **/ 5529 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5530 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5531 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5532 else 5533 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5534 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5535 phba->hbq_count = 1; 5536 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5537 /* Initially populate or replenish the HBQs */ 5538 return 0; 5539 } 5540 5541 /** 5542 * lpfc_sli_config_port - Issue config port mailbox command 5543 * @phba: Pointer to HBA context object. 5544 * @sli_mode: sli mode - 2/3 5545 * 5546 * This function is called by the sli initialization code path 5547 * to issue config_port mailbox command. This function restarts the 5548 * HBA firmware and issues a config_port mailbox command to configure 5549 * the SLI interface in the sli mode specified by sli_mode 5550 * variable. The caller is not required to hold any locks. 5551 * The function returns 0 if successful, else returns negative error 5552 * code. 5553 **/ 5554 int 5555 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5556 { 5557 LPFC_MBOXQ_t *pmb; 5558 uint32_t resetcount = 0, rc = 0, done = 0; 5559 5560 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5561 if (!pmb) { 5562 phba->link_state = LPFC_HBA_ERROR; 5563 return -ENOMEM; 5564 } 5565 5566 phba->sli_rev = sli_mode; 5567 while (resetcount < 2 && !done) { 5568 spin_lock_irq(&phba->hbalock); 5569 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5570 spin_unlock_irq(&phba->hbalock); 5571 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5572 lpfc_sli_brdrestart(phba); 5573 rc = lpfc_sli_chipset_init(phba); 5574 if (rc) 5575 break; 5576 5577 spin_lock_irq(&phba->hbalock); 5578 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5579 spin_unlock_irq(&phba->hbalock); 5580 resetcount++; 5581 5582 /* Call pre CONFIG_PORT mailbox command initialization. A 5583 * value of 0 means the call was successful. Any other 5584 * nonzero value is a failure, but if ERESTART is returned, 5585 * the driver may reset the HBA and try again. 5586 */ 5587 rc = lpfc_config_port_prep(phba); 5588 if (rc == -ERESTART) { 5589 phba->link_state = LPFC_LINK_UNKNOWN; 5590 continue; 5591 } else if (rc) 5592 break; 5593 5594 phba->link_state = LPFC_INIT_MBX_CMDS; 5595 lpfc_config_port(phba, pmb); 5596 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5597 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5598 LPFC_SLI3_HBQ_ENABLED | 5599 LPFC_SLI3_CRP_ENABLED | 5600 LPFC_SLI3_DSS_ENABLED); 5601 if (rc != MBX_SUCCESS) { 5602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5603 "0442 Adapter failed to init, mbxCmd x%x " 5604 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5605 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5606 spin_lock_irq(&phba->hbalock); 5607 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5608 spin_unlock_irq(&phba->hbalock); 5609 rc = -ENXIO; 5610 } else { 5611 /* Allow asynchronous mailbox command to go through */ 5612 spin_lock_irq(&phba->hbalock); 5613 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5614 spin_unlock_irq(&phba->hbalock); 5615 done = 1; 5616 5617 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5618 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5619 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5620 "3110 Port did not grant ASABT\n"); 5621 } 5622 } 5623 if (!done) { 5624 rc = -EINVAL; 5625 goto do_prep_failed; 5626 } 5627 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5628 if (!pmb->u.mb.un.varCfgPort.cMA) { 5629 rc = -ENXIO; 5630 goto do_prep_failed; 5631 } 5632 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5633 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5634 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5635 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5636 phba->max_vpi : phba->max_vports; 5637 5638 } else 5639 phba->max_vpi = 0; 5640 if (pmb->u.mb.un.varCfgPort.gerbm) 5641 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5642 if (pmb->u.mb.un.varCfgPort.gcrp) 5643 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5644 5645 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5646 phba->port_gp = phba->mbox->us.s3_pgp.port; 5647 5648 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5649 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5650 phba->cfg_enable_bg = 0; 5651 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5652 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5653 "0443 Adapter did not grant " 5654 "BlockGuard\n"); 5655 } 5656 } 5657 } else { 5658 phba->hbq_get = NULL; 5659 phba->port_gp = phba->mbox->us.s2.port; 5660 phba->max_vpi = 0; 5661 } 5662 do_prep_failed: 5663 mempool_free(pmb, phba->mbox_mem_pool); 5664 return rc; 5665 } 5666 5667 5668 /** 5669 * lpfc_sli_hba_setup - SLI initialization function 5670 * @phba: Pointer to HBA context object. 5671 * 5672 * This function is the main SLI initialization function. This function 5673 * is called by the HBA initialization code, HBA reset code and HBA 5674 * error attention handler code. Caller is not required to hold any 5675 * locks. This function issues config_port mailbox command to configure 5676 * the SLI, setup iocb rings and HBQ rings. In the end the function 5677 * calls the config_port_post function to issue init_link mailbox 5678 * command and to start the discovery. The function will return zero 5679 * if successful, else it will return negative error code. 5680 **/ 5681 int 5682 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5683 { 5684 uint32_t rc; 5685 int i; 5686 int longs; 5687 5688 /* Enable ISR already does config_port because of config_msi mbx */ 5689 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5690 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5691 if (rc) 5692 return -EIO; 5693 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5694 } 5695 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5696 5697 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5698 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5699 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5700 if (!rc) { 5701 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5702 "2709 This device supports " 5703 "Advanced Error Reporting (AER)\n"); 5704 spin_lock_irq(&phba->hbalock); 5705 phba->hba_flag |= HBA_AER_ENABLED; 5706 spin_unlock_irq(&phba->hbalock); 5707 } else { 5708 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5709 "2708 This device does not support " 5710 "Advanced Error Reporting (AER): %d\n", 5711 rc); 5712 phba->cfg_aer_support = 0; 5713 } 5714 } 5715 5716 if (phba->sli_rev == 3) { 5717 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5718 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5719 } else { 5720 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5721 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5722 phba->sli3_options = 0; 5723 } 5724 5725 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5726 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5727 phba->sli_rev, phba->max_vpi); 5728 rc = lpfc_sli_ring_map(phba); 5729 5730 if (rc) 5731 goto lpfc_sli_hba_setup_error; 5732 5733 /* Initialize VPIs. */ 5734 if (phba->sli_rev == LPFC_SLI_REV3) { 5735 /* 5736 * The VPI bitmask and physical ID array are allocated 5737 * and initialized once only - at driver load. A port 5738 * reset doesn't need to reinitialize this memory. 5739 */ 5740 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5741 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5742 phba->vpi_bmask = kcalloc(longs, 5743 sizeof(unsigned long), 5744 GFP_KERNEL); 5745 if (!phba->vpi_bmask) { 5746 rc = -ENOMEM; 5747 goto lpfc_sli_hba_setup_error; 5748 } 5749 5750 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5751 sizeof(uint16_t), 5752 GFP_KERNEL); 5753 if (!phba->vpi_ids) { 5754 kfree(phba->vpi_bmask); 5755 rc = -ENOMEM; 5756 goto lpfc_sli_hba_setup_error; 5757 } 5758 for (i = 0; i < phba->max_vpi; i++) 5759 phba->vpi_ids[i] = i; 5760 } 5761 } 5762 5763 /* Init HBQs */ 5764 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5765 rc = lpfc_sli_hbq_setup(phba); 5766 if (rc) 5767 goto lpfc_sli_hba_setup_error; 5768 } 5769 spin_lock_irq(&phba->hbalock); 5770 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5771 spin_unlock_irq(&phba->hbalock); 5772 5773 rc = lpfc_config_port_post(phba); 5774 if (rc) 5775 goto lpfc_sli_hba_setup_error; 5776 5777 return rc; 5778 5779 lpfc_sli_hba_setup_error: 5780 phba->link_state = LPFC_HBA_ERROR; 5781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5782 "0445 Firmware initialization failed\n"); 5783 return rc; 5784 } 5785 5786 /** 5787 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5788 * @phba: Pointer to HBA context object. 5789 * 5790 * This function issue a dump mailbox command to read config region 5791 * 23 and parse the records in the region and populate driver 5792 * data structure. 5793 **/ 5794 static int 5795 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5796 { 5797 LPFC_MBOXQ_t *mboxq; 5798 struct lpfc_dmabuf *mp; 5799 struct lpfc_mqe *mqe; 5800 uint32_t data_length; 5801 int rc; 5802 5803 /* Program the default value of vlan_id and fc_map */ 5804 phba->valid_vlan = 0; 5805 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5806 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5807 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5808 5809 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5810 if (!mboxq) 5811 return -ENOMEM; 5812 5813 mqe = &mboxq->u.mqe; 5814 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5815 rc = -ENOMEM; 5816 goto out_free_mboxq; 5817 } 5818 5819 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5820 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5821 5822 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5823 "(%d):2571 Mailbox cmd x%x Status x%x " 5824 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5825 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5826 "CQ: x%x x%x x%x x%x\n", 5827 mboxq->vport ? mboxq->vport->vpi : 0, 5828 bf_get(lpfc_mqe_command, mqe), 5829 bf_get(lpfc_mqe_status, mqe), 5830 mqe->un.mb_words[0], mqe->un.mb_words[1], 5831 mqe->un.mb_words[2], mqe->un.mb_words[3], 5832 mqe->un.mb_words[4], mqe->un.mb_words[5], 5833 mqe->un.mb_words[6], mqe->un.mb_words[7], 5834 mqe->un.mb_words[8], mqe->un.mb_words[9], 5835 mqe->un.mb_words[10], mqe->un.mb_words[11], 5836 mqe->un.mb_words[12], mqe->un.mb_words[13], 5837 mqe->un.mb_words[14], mqe->un.mb_words[15], 5838 mqe->un.mb_words[16], mqe->un.mb_words[50], 5839 mboxq->mcqe.word0, 5840 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5841 mboxq->mcqe.trailer); 5842 5843 if (rc) { 5844 rc = -EIO; 5845 goto out_free_mboxq; 5846 } 5847 data_length = mqe->un.mb_words[5]; 5848 if (data_length > DMP_RGN23_SIZE) { 5849 rc = -EIO; 5850 goto out_free_mboxq; 5851 } 5852 5853 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5854 rc = 0; 5855 5856 out_free_mboxq: 5857 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 5858 return rc; 5859 } 5860 5861 /** 5862 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5863 * @phba: pointer to lpfc hba data structure. 5864 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5865 * @vpd: pointer to the memory to hold resulting port vpd data. 5866 * @vpd_size: On input, the number of bytes allocated to @vpd. 5867 * On output, the number of data bytes in @vpd. 5868 * 5869 * This routine executes a READ_REV SLI4 mailbox command. In 5870 * addition, this routine gets the port vpd data. 5871 * 5872 * Return codes 5873 * 0 - successful 5874 * -ENOMEM - could not allocated memory. 5875 **/ 5876 static int 5877 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5878 uint8_t *vpd, uint32_t *vpd_size) 5879 { 5880 int rc = 0; 5881 uint32_t dma_size; 5882 struct lpfc_dmabuf *dmabuf; 5883 struct lpfc_mqe *mqe; 5884 5885 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5886 if (!dmabuf) 5887 return -ENOMEM; 5888 5889 /* 5890 * Get a DMA buffer for the vpd data resulting from the READ_REV 5891 * mailbox command. 5892 */ 5893 dma_size = *vpd_size; 5894 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5895 &dmabuf->phys, GFP_KERNEL); 5896 if (!dmabuf->virt) { 5897 kfree(dmabuf); 5898 return -ENOMEM; 5899 } 5900 5901 /* 5902 * The SLI4 implementation of READ_REV conflicts at word1, 5903 * bits 31:16 and SLI4 adds vpd functionality not present 5904 * in SLI3. This code corrects the conflicts. 5905 */ 5906 lpfc_read_rev(phba, mboxq); 5907 mqe = &mboxq->u.mqe; 5908 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5909 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5910 mqe->un.read_rev.word1 &= 0x0000FFFF; 5911 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5912 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5913 5914 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5915 if (rc) { 5916 dma_free_coherent(&phba->pcidev->dev, dma_size, 5917 dmabuf->virt, dmabuf->phys); 5918 kfree(dmabuf); 5919 return -EIO; 5920 } 5921 5922 /* 5923 * The available vpd length cannot be bigger than the 5924 * DMA buffer passed to the port. Catch the less than 5925 * case and update the caller's size. 5926 */ 5927 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5928 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5929 5930 memcpy(vpd, dmabuf->virt, *vpd_size); 5931 5932 dma_free_coherent(&phba->pcidev->dev, dma_size, 5933 dmabuf->virt, dmabuf->phys); 5934 kfree(dmabuf); 5935 return 0; 5936 } 5937 5938 /** 5939 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5940 * @phba: pointer to lpfc hba data structure. 5941 * 5942 * This routine retrieves SLI4 device physical port name this PCI function 5943 * is attached to. 5944 * 5945 * Return codes 5946 * 0 - successful 5947 * otherwise - failed to retrieve controller attributes 5948 **/ 5949 static int 5950 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5951 { 5952 LPFC_MBOXQ_t *mboxq; 5953 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5954 struct lpfc_controller_attribute *cntl_attr; 5955 void *virtaddr = NULL; 5956 uint32_t alloclen, reqlen; 5957 uint32_t shdr_status, shdr_add_status; 5958 union lpfc_sli4_cfg_shdr *shdr; 5959 int rc; 5960 5961 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5962 if (!mboxq) 5963 return -ENOMEM; 5964 5965 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5966 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5967 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5968 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5969 LPFC_SLI4_MBX_NEMBED); 5970 5971 if (alloclen < reqlen) { 5972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5973 "3084 Allocated DMA memory size (%d) is " 5974 "less than the requested DMA memory size " 5975 "(%d)\n", alloclen, reqlen); 5976 rc = -ENOMEM; 5977 goto out_free_mboxq; 5978 } 5979 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5980 virtaddr = mboxq->sge_array->addr[0]; 5981 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5982 shdr = &mbx_cntl_attr->cfg_shdr; 5983 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5984 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5985 if (shdr_status || shdr_add_status || rc) { 5986 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5987 "3085 Mailbox x%x (x%x/x%x) failed, " 5988 "rc:x%x, status:x%x, add_status:x%x\n", 5989 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5990 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5991 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5992 rc, shdr_status, shdr_add_status); 5993 rc = -ENXIO; 5994 goto out_free_mboxq; 5995 } 5996 5997 cntl_attr = &mbx_cntl_attr->cntl_attr; 5998 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5999 phba->sli4_hba.lnk_info.lnk_tp = 6000 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 6001 phba->sli4_hba.lnk_info.lnk_no = 6002 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 6003 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 6004 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 6005 6006 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 6007 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 6008 sizeof(phba->BIOSVersion)); 6009 6010 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6011 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 6012 "flash_id: x%02x, asic_rev: x%02x\n", 6013 phba->sli4_hba.lnk_info.lnk_tp, 6014 phba->sli4_hba.lnk_info.lnk_no, 6015 phba->BIOSVersion, phba->sli4_hba.flash_id, 6016 phba->sli4_hba.asic_rev); 6017 out_free_mboxq: 6018 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6019 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6020 else 6021 mempool_free(mboxq, phba->mbox_mem_pool); 6022 return rc; 6023 } 6024 6025 /** 6026 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 6027 * @phba: pointer to lpfc hba data structure. 6028 * 6029 * This routine retrieves SLI4 device physical port name this PCI function 6030 * is attached to. 6031 * 6032 * Return codes 6033 * 0 - successful 6034 * otherwise - failed to retrieve physical port name 6035 **/ 6036 static int 6037 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 6038 { 6039 LPFC_MBOXQ_t *mboxq; 6040 struct lpfc_mbx_get_port_name *get_port_name; 6041 uint32_t shdr_status, shdr_add_status; 6042 union lpfc_sli4_cfg_shdr *shdr; 6043 char cport_name = 0; 6044 int rc; 6045 6046 /* We assume nothing at this point */ 6047 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6048 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 6049 6050 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6051 if (!mboxq) 6052 return -ENOMEM; 6053 /* obtain link type and link number via READ_CONFIG */ 6054 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 6055 lpfc_sli4_read_config(phba); 6056 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 6057 goto retrieve_ppname; 6058 6059 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 6060 rc = lpfc_sli4_get_ctl_attr(phba); 6061 if (rc) 6062 goto out_free_mboxq; 6063 6064 retrieve_ppname: 6065 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 6066 LPFC_MBOX_OPCODE_GET_PORT_NAME, 6067 sizeof(struct lpfc_mbx_get_port_name) - 6068 sizeof(struct lpfc_sli4_cfg_mhdr), 6069 LPFC_SLI4_MBX_EMBED); 6070 get_port_name = &mboxq->u.mqe.un.get_port_name; 6071 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 6072 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 6073 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 6074 phba->sli4_hba.lnk_info.lnk_tp); 6075 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6076 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6077 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6078 if (shdr_status || shdr_add_status || rc) { 6079 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6080 "3087 Mailbox x%x (x%x/x%x) failed: " 6081 "rc:x%x, status:x%x, add_status:x%x\n", 6082 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 6083 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 6084 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 6085 rc, shdr_status, shdr_add_status); 6086 rc = -ENXIO; 6087 goto out_free_mboxq; 6088 } 6089 switch (phba->sli4_hba.lnk_info.lnk_no) { 6090 case LPFC_LINK_NUMBER_0: 6091 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 6092 &get_port_name->u.response); 6093 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6094 break; 6095 case LPFC_LINK_NUMBER_1: 6096 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 6097 &get_port_name->u.response); 6098 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6099 break; 6100 case LPFC_LINK_NUMBER_2: 6101 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 6102 &get_port_name->u.response); 6103 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6104 break; 6105 case LPFC_LINK_NUMBER_3: 6106 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 6107 &get_port_name->u.response); 6108 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 6109 break; 6110 default: 6111 break; 6112 } 6113 6114 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 6115 phba->Port[0] = cport_name; 6116 phba->Port[1] = '\0'; 6117 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6118 "3091 SLI get port name: %s\n", phba->Port); 6119 } 6120 6121 out_free_mboxq: 6122 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 6123 lpfc_sli4_mbox_cmd_free(phba, mboxq); 6124 else 6125 mempool_free(mboxq, phba->mbox_mem_pool); 6126 return rc; 6127 } 6128 6129 /** 6130 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 6131 * @phba: pointer to lpfc hba data structure. 6132 * 6133 * This routine is called to explicitly arm the SLI4 device's completion and 6134 * event queues 6135 **/ 6136 static void 6137 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 6138 { 6139 int qidx; 6140 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 6141 struct lpfc_sli4_hdw_queue *qp; 6142 struct lpfc_queue *eq; 6143 6144 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 6145 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 6146 if (sli4_hba->nvmels_cq) 6147 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 6148 LPFC_QUEUE_REARM); 6149 6150 if (sli4_hba->hdwq) { 6151 /* Loop thru all Hardware Queues */ 6152 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 6153 qp = &sli4_hba->hdwq[qidx]; 6154 /* ARM the corresponding CQ */ 6155 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 6156 LPFC_QUEUE_REARM); 6157 } 6158 6159 /* Loop thru all IRQ vectors */ 6160 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 6161 eq = sli4_hba->hba_eq_hdl[qidx].eq; 6162 /* ARM the corresponding EQ */ 6163 sli4_hba->sli4_write_eq_db(phba, eq, 6164 0, LPFC_QUEUE_REARM); 6165 } 6166 } 6167 6168 if (phba->nvmet_support) { 6169 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 6170 sli4_hba->sli4_write_cq_db(phba, 6171 sli4_hba->nvmet_cqset[qidx], 0, 6172 LPFC_QUEUE_REARM); 6173 } 6174 } 6175 } 6176 6177 /** 6178 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 6179 * @phba: Pointer to HBA context object. 6180 * @type: The resource extent type. 6181 * @extnt_count: buffer to hold port available extent count. 6182 * @extnt_size: buffer to hold element count per extent. 6183 * 6184 * This function calls the port and retrievs the number of available 6185 * extents and their size for a particular extent type. 6186 * 6187 * Returns: 0 if successful. Nonzero otherwise. 6188 **/ 6189 int 6190 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 6191 uint16_t *extnt_count, uint16_t *extnt_size) 6192 { 6193 int rc = 0; 6194 uint32_t length; 6195 uint32_t mbox_tmo; 6196 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 6197 LPFC_MBOXQ_t *mbox; 6198 6199 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6200 if (!mbox) 6201 return -ENOMEM; 6202 6203 /* Find out how many extents are available for this resource type */ 6204 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 6205 sizeof(struct lpfc_sli4_cfg_mhdr)); 6206 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6207 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 6208 length, LPFC_SLI4_MBX_EMBED); 6209 6210 /* Send an extents count of 0 - the GET doesn't use it. */ 6211 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6212 LPFC_SLI4_MBX_EMBED); 6213 if (unlikely(rc)) { 6214 rc = -EIO; 6215 goto err_exit; 6216 } 6217 6218 if (!phba->sli4_hba.intr_enable) 6219 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6220 else { 6221 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6222 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6223 } 6224 if (unlikely(rc)) { 6225 rc = -EIO; 6226 goto err_exit; 6227 } 6228 6229 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 6230 if (bf_get(lpfc_mbox_hdr_status, 6231 &rsrc_info->header.cfg_shdr.response)) { 6232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6233 "2930 Failed to get resource extents " 6234 "Status 0x%x Add'l Status 0x%x\n", 6235 bf_get(lpfc_mbox_hdr_status, 6236 &rsrc_info->header.cfg_shdr.response), 6237 bf_get(lpfc_mbox_hdr_add_status, 6238 &rsrc_info->header.cfg_shdr.response)); 6239 rc = -EIO; 6240 goto err_exit; 6241 } 6242 6243 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 6244 &rsrc_info->u.rsp); 6245 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 6246 &rsrc_info->u.rsp); 6247 6248 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 6249 "3162 Retrieved extents type-%d from port: count:%d, " 6250 "size:%d\n", type, *extnt_count, *extnt_size); 6251 6252 err_exit: 6253 mempool_free(mbox, phba->mbox_mem_pool); 6254 return rc; 6255 } 6256 6257 /** 6258 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 6259 * @phba: Pointer to HBA context object. 6260 * @type: The extent type to check. 6261 * 6262 * This function reads the current available extents from the port and checks 6263 * if the extent count or extent size has changed since the last access. 6264 * Callers use this routine post port reset to understand if there is a 6265 * extent reprovisioning requirement. 6266 * 6267 * Returns: 6268 * -Error: error indicates problem. 6269 * 1: Extent count or size has changed. 6270 * 0: No changes. 6271 **/ 6272 static int 6273 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 6274 { 6275 uint16_t curr_ext_cnt, rsrc_ext_cnt; 6276 uint16_t size_diff, rsrc_ext_size; 6277 int rc = 0; 6278 struct lpfc_rsrc_blks *rsrc_entry; 6279 struct list_head *rsrc_blk_list = NULL; 6280 6281 size_diff = 0; 6282 curr_ext_cnt = 0; 6283 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6284 &rsrc_ext_cnt, 6285 &rsrc_ext_size); 6286 if (unlikely(rc)) 6287 return -EIO; 6288 6289 switch (type) { 6290 case LPFC_RSC_TYPE_FCOE_RPI: 6291 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6292 break; 6293 case LPFC_RSC_TYPE_FCOE_VPI: 6294 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 6295 break; 6296 case LPFC_RSC_TYPE_FCOE_XRI: 6297 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6298 break; 6299 case LPFC_RSC_TYPE_FCOE_VFI: 6300 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6301 break; 6302 default: 6303 break; 6304 } 6305 6306 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 6307 curr_ext_cnt++; 6308 if (rsrc_entry->rsrc_size != rsrc_ext_size) 6309 size_diff++; 6310 } 6311 6312 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 6313 rc = 1; 6314 6315 return rc; 6316 } 6317 6318 /** 6319 * lpfc_sli4_cfg_post_extnts - 6320 * @phba: Pointer to HBA context object. 6321 * @extnt_cnt: number of available extents. 6322 * @type: the extent type (rpi, xri, vfi, vpi). 6323 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 6324 * @mbox: pointer to the caller's allocated mailbox structure. 6325 * 6326 * This function executes the extents allocation request. It also 6327 * takes care of the amount of memory needed to allocate or get the 6328 * allocated extents. It is the caller's responsibility to evaluate 6329 * the response. 6330 * 6331 * Returns: 6332 * -Error: Error value describes the condition found. 6333 * 0: if successful 6334 **/ 6335 static int 6336 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6337 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6338 { 6339 int rc = 0; 6340 uint32_t req_len; 6341 uint32_t emb_len; 6342 uint32_t alloc_len, mbox_tmo; 6343 6344 /* Calculate the total requested length of the dma memory */ 6345 req_len = extnt_cnt * sizeof(uint16_t); 6346 6347 /* 6348 * Calculate the size of an embedded mailbox. The uint32_t 6349 * accounts for extents-specific word. 6350 */ 6351 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6352 sizeof(uint32_t); 6353 6354 /* 6355 * Presume the allocation and response will fit into an embedded 6356 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6357 */ 6358 *emb = LPFC_SLI4_MBX_EMBED; 6359 if (req_len > emb_len) { 6360 req_len = extnt_cnt * sizeof(uint16_t) + 6361 sizeof(union lpfc_sli4_cfg_shdr) + 6362 sizeof(uint32_t); 6363 *emb = LPFC_SLI4_MBX_NEMBED; 6364 } 6365 6366 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6367 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6368 req_len, *emb); 6369 if (alloc_len < req_len) { 6370 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6371 "2982 Allocated DMA memory size (x%x) is " 6372 "less than the requested DMA memory " 6373 "size (x%x)\n", alloc_len, req_len); 6374 return -ENOMEM; 6375 } 6376 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6377 if (unlikely(rc)) 6378 return -EIO; 6379 6380 if (!phba->sli4_hba.intr_enable) 6381 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6382 else { 6383 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6384 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6385 } 6386 6387 if (unlikely(rc)) 6388 rc = -EIO; 6389 return rc; 6390 } 6391 6392 /** 6393 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6394 * @phba: Pointer to HBA context object. 6395 * @type: The resource extent type to allocate. 6396 * 6397 * This function allocates the number of elements for the specified 6398 * resource type. 6399 **/ 6400 static int 6401 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6402 { 6403 bool emb = false; 6404 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6405 uint16_t rsrc_id, rsrc_start, j, k; 6406 uint16_t *ids; 6407 int i, rc; 6408 unsigned long longs; 6409 unsigned long *bmask; 6410 struct lpfc_rsrc_blks *rsrc_blks; 6411 LPFC_MBOXQ_t *mbox; 6412 uint32_t length; 6413 struct lpfc_id_range *id_array = NULL; 6414 void *virtaddr = NULL; 6415 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6416 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6417 struct list_head *ext_blk_list; 6418 6419 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6420 &rsrc_cnt, 6421 &rsrc_size); 6422 if (unlikely(rc)) 6423 return -EIO; 6424 6425 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6427 "3009 No available Resource Extents " 6428 "for resource type 0x%x: Count: 0x%x, " 6429 "Size 0x%x\n", type, rsrc_cnt, 6430 rsrc_size); 6431 return -ENOMEM; 6432 } 6433 6434 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6435 "2903 Post resource extents type-0x%x: " 6436 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6437 6438 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6439 if (!mbox) 6440 return -ENOMEM; 6441 6442 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6443 if (unlikely(rc)) { 6444 rc = -EIO; 6445 goto err_exit; 6446 } 6447 6448 /* 6449 * Figure out where the response is located. Then get local pointers 6450 * to the response data. The port does not guarantee to respond to 6451 * all extents counts request so update the local variable with the 6452 * allocated count from the port. 6453 */ 6454 if (emb == LPFC_SLI4_MBX_EMBED) { 6455 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6456 id_array = &rsrc_ext->u.rsp.id[0]; 6457 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6458 } else { 6459 virtaddr = mbox->sge_array->addr[0]; 6460 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6461 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6462 id_array = &n_rsrc->id; 6463 } 6464 6465 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6466 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6467 6468 /* 6469 * Based on the resource size and count, correct the base and max 6470 * resource values. 6471 */ 6472 length = sizeof(struct lpfc_rsrc_blks); 6473 switch (type) { 6474 case LPFC_RSC_TYPE_FCOE_RPI: 6475 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6476 sizeof(unsigned long), 6477 GFP_KERNEL); 6478 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6479 rc = -ENOMEM; 6480 goto err_exit; 6481 } 6482 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6483 sizeof(uint16_t), 6484 GFP_KERNEL); 6485 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6486 kfree(phba->sli4_hba.rpi_bmask); 6487 rc = -ENOMEM; 6488 goto err_exit; 6489 } 6490 6491 /* 6492 * The next_rpi was initialized with the maximum available 6493 * count but the port may allocate a smaller number. Catch 6494 * that case and update the next_rpi. 6495 */ 6496 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6497 6498 /* Initialize local ptrs for common extent processing later. */ 6499 bmask = phba->sli4_hba.rpi_bmask; 6500 ids = phba->sli4_hba.rpi_ids; 6501 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6502 break; 6503 case LPFC_RSC_TYPE_FCOE_VPI: 6504 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6505 GFP_KERNEL); 6506 if (unlikely(!phba->vpi_bmask)) { 6507 rc = -ENOMEM; 6508 goto err_exit; 6509 } 6510 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6511 GFP_KERNEL); 6512 if (unlikely(!phba->vpi_ids)) { 6513 kfree(phba->vpi_bmask); 6514 rc = -ENOMEM; 6515 goto err_exit; 6516 } 6517 6518 /* Initialize local ptrs for common extent processing later. */ 6519 bmask = phba->vpi_bmask; 6520 ids = phba->vpi_ids; 6521 ext_blk_list = &phba->lpfc_vpi_blk_list; 6522 break; 6523 case LPFC_RSC_TYPE_FCOE_XRI: 6524 phba->sli4_hba.xri_bmask = kcalloc(longs, 6525 sizeof(unsigned long), 6526 GFP_KERNEL); 6527 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6528 rc = -ENOMEM; 6529 goto err_exit; 6530 } 6531 phba->sli4_hba.max_cfg_param.xri_used = 0; 6532 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6533 sizeof(uint16_t), 6534 GFP_KERNEL); 6535 if (unlikely(!phba->sli4_hba.xri_ids)) { 6536 kfree(phba->sli4_hba.xri_bmask); 6537 rc = -ENOMEM; 6538 goto err_exit; 6539 } 6540 6541 /* Initialize local ptrs for common extent processing later. */ 6542 bmask = phba->sli4_hba.xri_bmask; 6543 ids = phba->sli4_hba.xri_ids; 6544 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6545 break; 6546 case LPFC_RSC_TYPE_FCOE_VFI: 6547 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6548 sizeof(unsigned long), 6549 GFP_KERNEL); 6550 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6551 rc = -ENOMEM; 6552 goto err_exit; 6553 } 6554 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6555 sizeof(uint16_t), 6556 GFP_KERNEL); 6557 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6558 kfree(phba->sli4_hba.vfi_bmask); 6559 rc = -ENOMEM; 6560 goto err_exit; 6561 } 6562 6563 /* Initialize local ptrs for common extent processing later. */ 6564 bmask = phba->sli4_hba.vfi_bmask; 6565 ids = phba->sli4_hba.vfi_ids; 6566 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6567 break; 6568 default: 6569 /* Unsupported Opcode. Fail call. */ 6570 id_array = NULL; 6571 bmask = NULL; 6572 ids = NULL; 6573 ext_blk_list = NULL; 6574 goto err_exit; 6575 } 6576 6577 /* 6578 * Complete initializing the extent configuration with the 6579 * allocated ids assigned to this function. The bitmask serves 6580 * as an index into the array and manages the available ids. The 6581 * array just stores the ids communicated to the port via the wqes. 6582 */ 6583 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6584 if ((i % 2) == 0) 6585 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6586 &id_array[k]); 6587 else 6588 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6589 &id_array[k]); 6590 6591 rsrc_blks = kzalloc(length, GFP_KERNEL); 6592 if (unlikely(!rsrc_blks)) { 6593 rc = -ENOMEM; 6594 kfree(bmask); 6595 kfree(ids); 6596 goto err_exit; 6597 } 6598 rsrc_blks->rsrc_start = rsrc_id; 6599 rsrc_blks->rsrc_size = rsrc_size; 6600 list_add_tail(&rsrc_blks->list, ext_blk_list); 6601 rsrc_start = rsrc_id; 6602 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6603 phba->sli4_hba.io_xri_start = rsrc_start + 6604 lpfc_sli4_get_iocb_cnt(phba); 6605 } 6606 6607 while (rsrc_id < (rsrc_start + rsrc_size)) { 6608 ids[j] = rsrc_id; 6609 rsrc_id++; 6610 j++; 6611 } 6612 /* Entire word processed. Get next word.*/ 6613 if ((i % 2) == 1) 6614 k++; 6615 } 6616 err_exit: 6617 lpfc_sli4_mbox_cmd_free(phba, mbox); 6618 return rc; 6619 } 6620 6621 6622 6623 /** 6624 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6625 * @phba: Pointer to HBA context object. 6626 * @type: the extent's type. 6627 * 6628 * This function deallocates all extents of a particular resource type. 6629 * SLI4 does not allow for deallocating a particular extent range. It 6630 * is the caller's responsibility to release all kernel memory resources. 6631 **/ 6632 static int 6633 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6634 { 6635 int rc; 6636 uint32_t length, mbox_tmo = 0; 6637 LPFC_MBOXQ_t *mbox; 6638 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6639 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6640 6641 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6642 if (!mbox) 6643 return -ENOMEM; 6644 6645 /* 6646 * This function sends an embedded mailbox because it only sends the 6647 * the resource type. All extents of this type are released by the 6648 * port. 6649 */ 6650 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6651 sizeof(struct lpfc_sli4_cfg_mhdr)); 6652 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6653 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6654 length, LPFC_SLI4_MBX_EMBED); 6655 6656 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6657 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6658 LPFC_SLI4_MBX_EMBED); 6659 if (unlikely(rc)) { 6660 rc = -EIO; 6661 goto out_free_mbox; 6662 } 6663 if (!phba->sli4_hba.intr_enable) 6664 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6665 else { 6666 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6667 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6668 } 6669 if (unlikely(rc)) { 6670 rc = -EIO; 6671 goto out_free_mbox; 6672 } 6673 6674 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6675 if (bf_get(lpfc_mbox_hdr_status, 6676 &dealloc_rsrc->header.cfg_shdr.response)) { 6677 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6678 "2919 Failed to release resource extents " 6679 "for type %d - Status 0x%x Add'l Status 0x%x. " 6680 "Resource memory not released.\n", 6681 type, 6682 bf_get(lpfc_mbox_hdr_status, 6683 &dealloc_rsrc->header.cfg_shdr.response), 6684 bf_get(lpfc_mbox_hdr_add_status, 6685 &dealloc_rsrc->header.cfg_shdr.response)); 6686 rc = -EIO; 6687 goto out_free_mbox; 6688 } 6689 6690 /* Release kernel memory resources for the specific type. */ 6691 switch (type) { 6692 case LPFC_RSC_TYPE_FCOE_VPI: 6693 kfree(phba->vpi_bmask); 6694 kfree(phba->vpi_ids); 6695 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6696 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6697 &phba->lpfc_vpi_blk_list, list) { 6698 list_del_init(&rsrc_blk->list); 6699 kfree(rsrc_blk); 6700 } 6701 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6702 break; 6703 case LPFC_RSC_TYPE_FCOE_XRI: 6704 kfree(phba->sli4_hba.xri_bmask); 6705 kfree(phba->sli4_hba.xri_ids); 6706 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6707 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6708 list_del_init(&rsrc_blk->list); 6709 kfree(rsrc_blk); 6710 } 6711 break; 6712 case LPFC_RSC_TYPE_FCOE_VFI: 6713 kfree(phba->sli4_hba.vfi_bmask); 6714 kfree(phba->sli4_hba.vfi_ids); 6715 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6716 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6717 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6718 list_del_init(&rsrc_blk->list); 6719 kfree(rsrc_blk); 6720 } 6721 break; 6722 case LPFC_RSC_TYPE_FCOE_RPI: 6723 /* RPI bitmask and physical id array are cleaned up earlier. */ 6724 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6725 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6726 list_del_init(&rsrc_blk->list); 6727 kfree(rsrc_blk); 6728 } 6729 break; 6730 default: 6731 break; 6732 } 6733 6734 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6735 6736 out_free_mbox: 6737 mempool_free(mbox, phba->mbox_mem_pool); 6738 return rc; 6739 } 6740 6741 static void 6742 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6743 uint32_t feature) 6744 { 6745 uint32_t len; 6746 u32 sig_freq = 0; 6747 6748 len = sizeof(struct lpfc_mbx_set_feature) - 6749 sizeof(struct lpfc_sli4_cfg_mhdr); 6750 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6751 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6752 LPFC_SLI4_MBX_EMBED); 6753 6754 switch (feature) { 6755 case LPFC_SET_UE_RECOVERY: 6756 bf_set(lpfc_mbx_set_feature_UER, 6757 &mbox->u.mqe.un.set_feature, 1); 6758 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6759 mbox->u.mqe.un.set_feature.param_len = 8; 6760 break; 6761 case LPFC_SET_MDS_DIAGS: 6762 bf_set(lpfc_mbx_set_feature_mds, 6763 &mbox->u.mqe.un.set_feature, 1); 6764 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6765 &mbox->u.mqe.un.set_feature, 1); 6766 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6767 mbox->u.mqe.un.set_feature.param_len = 8; 6768 break; 6769 case LPFC_SET_CGN_SIGNAL: 6770 if (phba->cmf_active_mode == LPFC_CFG_OFF) 6771 sig_freq = 0; 6772 else 6773 sig_freq = phba->cgn_sig_freq; 6774 6775 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { 6776 bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, 6777 &mbox->u.mqe.un.set_feature, sig_freq); 6778 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6779 &mbox->u.mqe.un.set_feature, sig_freq); 6780 } 6781 6782 if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) 6783 bf_set(lpfc_mbx_set_feature_CGN_warn_freq, 6784 &mbox->u.mqe.un.set_feature, sig_freq); 6785 6786 if (phba->cmf_active_mode == LPFC_CFG_OFF || 6787 phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) 6788 sig_freq = 0; 6789 else 6790 sig_freq = lpfc_acqe_cgn_frequency; 6791 6792 bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, 6793 &mbox->u.mqe.un.set_feature, sig_freq); 6794 6795 mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; 6796 mbox->u.mqe.un.set_feature.param_len = 12; 6797 break; 6798 case LPFC_SET_DUAL_DUMP: 6799 bf_set(lpfc_mbx_set_feature_dd, 6800 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6801 bf_set(lpfc_mbx_set_feature_ddquery, 6802 &mbox->u.mqe.un.set_feature, 0); 6803 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6804 mbox->u.mqe.un.set_feature.param_len = 4; 6805 break; 6806 case LPFC_SET_ENABLE_MI: 6807 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; 6808 mbox->u.mqe.un.set_feature.param_len = 4; 6809 bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, 6810 phba->pport->cfg_lun_queue_depth); 6811 bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, 6812 phba->sli4_hba.pc_sli4_params.mi_ver); 6813 break; 6814 case LPFC_SET_ENABLE_CMF: 6815 bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); 6816 mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; 6817 mbox->u.mqe.un.set_feature.param_len = 4; 6818 bf_set(lpfc_mbx_set_feature_cmf, 6819 &mbox->u.mqe.un.set_feature, 1); 6820 break; 6821 } 6822 return; 6823 } 6824 6825 /** 6826 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6827 * @phba: Pointer to HBA context object. 6828 * 6829 * Disable FW logging into host memory on the adapter. To 6830 * be done before reading logs from the host memory. 6831 **/ 6832 void 6833 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6834 { 6835 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6836 6837 spin_lock_irq(&phba->hbalock); 6838 ras_fwlog->state = INACTIVE; 6839 spin_unlock_irq(&phba->hbalock); 6840 6841 /* Disable FW logging to host memory */ 6842 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6843 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6844 6845 /* Wait 10ms for firmware to stop using DMA buffer */ 6846 usleep_range(10 * 1000, 20 * 1000); 6847 } 6848 6849 /** 6850 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6851 * @phba: Pointer to HBA context object. 6852 * 6853 * This function is called to free memory allocated for RAS FW logging 6854 * support in the driver. 6855 **/ 6856 void 6857 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6858 { 6859 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6860 struct lpfc_dmabuf *dmabuf, *next; 6861 6862 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6863 list_for_each_entry_safe(dmabuf, next, 6864 &ras_fwlog->fwlog_buff_list, 6865 list) { 6866 list_del(&dmabuf->list); 6867 dma_free_coherent(&phba->pcidev->dev, 6868 LPFC_RAS_MAX_ENTRY_SIZE, 6869 dmabuf->virt, dmabuf->phys); 6870 kfree(dmabuf); 6871 } 6872 } 6873 6874 if (ras_fwlog->lwpd.virt) { 6875 dma_free_coherent(&phba->pcidev->dev, 6876 sizeof(uint32_t) * 2, 6877 ras_fwlog->lwpd.virt, 6878 ras_fwlog->lwpd.phys); 6879 ras_fwlog->lwpd.virt = NULL; 6880 } 6881 6882 spin_lock_irq(&phba->hbalock); 6883 ras_fwlog->state = INACTIVE; 6884 spin_unlock_irq(&phba->hbalock); 6885 } 6886 6887 /** 6888 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6889 * @phba: Pointer to HBA context object. 6890 * @fwlog_buff_count: Count of buffers to be created. 6891 * 6892 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6893 * to update FW log is posted to the adapter. 6894 * Buffer count is calculated based on module param ras_fwlog_buffsize 6895 * Size of each buffer posted to FW is 64K. 6896 **/ 6897 6898 static int 6899 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6900 uint32_t fwlog_buff_count) 6901 { 6902 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6903 struct lpfc_dmabuf *dmabuf; 6904 int rc = 0, i = 0; 6905 6906 /* Initialize List */ 6907 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6908 6909 /* Allocate memory for the LWPD */ 6910 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6911 sizeof(uint32_t) * 2, 6912 &ras_fwlog->lwpd.phys, 6913 GFP_KERNEL); 6914 if (!ras_fwlog->lwpd.virt) { 6915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6916 "6185 LWPD Memory Alloc Failed\n"); 6917 6918 return -ENOMEM; 6919 } 6920 6921 ras_fwlog->fw_buffcount = fwlog_buff_count; 6922 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6923 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6924 GFP_KERNEL); 6925 if (!dmabuf) { 6926 rc = -ENOMEM; 6927 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6928 "6186 Memory Alloc failed FW logging"); 6929 goto free_mem; 6930 } 6931 6932 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6933 LPFC_RAS_MAX_ENTRY_SIZE, 6934 &dmabuf->phys, GFP_KERNEL); 6935 if (!dmabuf->virt) { 6936 kfree(dmabuf); 6937 rc = -ENOMEM; 6938 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6939 "6187 DMA Alloc Failed FW logging"); 6940 goto free_mem; 6941 } 6942 dmabuf->buffer_tag = i; 6943 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6944 } 6945 6946 free_mem: 6947 if (rc) 6948 lpfc_sli4_ras_dma_free(phba); 6949 6950 return rc; 6951 } 6952 6953 /** 6954 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6955 * @phba: pointer to lpfc hba data structure. 6956 * @pmb: pointer to the driver internal queue element for mailbox command. 6957 * 6958 * Completion handler for driver's RAS MBX command to the device. 6959 **/ 6960 static void 6961 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6962 { 6963 MAILBOX_t *mb; 6964 union lpfc_sli4_cfg_shdr *shdr; 6965 uint32_t shdr_status, shdr_add_status; 6966 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6967 6968 mb = &pmb->u.mb; 6969 6970 shdr = (union lpfc_sli4_cfg_shdr *) 6971 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6972 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6973 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6974 6975 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6977 "6188 FW LOG mailbox " 6978 "completed with status x%x add_status x%x," 6979 " mbx status x%x\n", 6980 shdr_status, shdr_add_status, mb->mbxStatus); 6981 6982 ras_fwlog->ras_hwsupport = false; 6983 goto disable_ras; 6984 } 6985 6986 spin_lock_irq(&phba->hbalock); 6987 ras_fwlog->state = ACTIVE; 6988 spin_unlock_irq(&phba->hbalock); 6989 mempool_free(pmb, phba->mbox_mem_pool); 6990 6991 return; 6992 6993 disable_ras: 6994 /* Free RAS DMA memory */ 6995 lpfc_sli4_ras_dma_free(phba); 6996 mempool_free(pmb, phba->mbox_mem_pool); 6997 } 6998 6999 /** 7000 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 7001 * @phba: pointer to lpfc hba data structure. 7002 * @fwlog_level: Logging verbosity level. 7003 * @fwlog_enable: Enable/Disable logging. 7004 * 7005 * Initialize memory and post mailbox command to enable FW logging in host 7006 * memory. 7007 **/ 7008 int 7009 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 7010 uint32_t fwlog_level, 7011 uint32_t fwlog_enable) 7012 { 7013 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 7014 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 7015 struct lpfc_dmabuf *dmabuf; 7016 LPFC_MBOXQ_t *mbox; 7017 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 7018 int rc = 0; 7019 7020 spin_lock_irq(&phba->hbalock); 7021 ras_fwlog->state = INACTIVE; 7022 spin_unlock_irq(&phba->hbalock); 7023 7024 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 7025 phba->cfg_ras_fwlog_buffsize); 7026 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 7027 7028 /* 7029 * If re-enabling FW logging support use earlier allocated 7030 * DMA buffers while posting MBX command. 7031 **/ 7032 if (!ras_fwlog->lwpd.virt) { 7033 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 7034 if (rc) { 7035 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 7036 "6189 FW Log Memory Allocation Failed"); 7037 return rc; 7038 } 7039 } 7040 7041 /* Setup Mailbox command */ 7042 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7043 if (!mbox) { 7044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7045 "6190 RAS MBX Alloc Failed"); 7046 rc = -ENOMEM; 7047 goto mem_free; 7048 } 7049 7050 ras_fwlog->fw_loglevel = fwlog_level; 7051 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 7052 sizeof(struct lpfc_sli4_cfg_mhdr)); 7053 7054 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 7055 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 7056 len, LPFC_SLI4_MBX_EMBED); 7057 7058 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 7059 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 7060 fwlog_enable); 7061 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 7062 ras_fwlog->fw_loglevel); 7063 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 7064 ras_fwlog->fw_buffcount); 7065 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 7066 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 7067 7068 /* Update DMA buffer address */ 7069 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 7070 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 7071 7072 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 7073 putPaddrLow(dmabuf->phys); 7074 7075 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 7076 putPaddrHigh(dmabuf->phys); 7077 } 7078 7079 /* Update LPWD address */ 7080 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 7081 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 7082 7083 spin_lock_irq(&phba->hbalock); 7084 ras_fwlog->state = REG_INPROGRESS; 7085 spin_unlock_irq(&phba->hbalock); 7086 mbox->vport = phba->pport; 7087 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 7088 7089 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 7090 7091 if (rc == MBX_NOT_FINISHED) { 7092 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7093 "6191 FW-Log Mailbox failed. " 7094 "status %d mbxStatus : x%x", rc, 7095 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 7096 mempool_free(mbox, phba->mbox_mem_pool); 7097 rc = -EIO; 7098 goto mem_free; 7099 } else 7100 rc = 0; 7101 mem_free: 7102 if (rc) 7103 lpfc_sli4_ras_dma_free(phba); 7104 7105 return rc; 7106 } 7107 7108 /** 7109 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 7110 * @phba: Pointer to HBA context object. 7111 * 7112 * Check if RAS is supported on the adapter and initialize it. 7113 **/ 7114 void 7115 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 7116 { 7117 /* Check RAS FW Log needs to be enabled or not */ 7118 if (lpfc_check_fwlog_support(phba)) 7119 return; 7120 7121 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 7122 LPFC_RAS_ENABLE_LOGGING); 7123 } 7124 7125 /** 7126 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 7127 * @phba: Pointer to HBA context object. 7128 * 7129 * This function allocates all SLI4 resource identifiers. 7130 **/ 7131 int 7132 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 7133 { 7134 int i, rc, error = 0; 7135 uint16_t count, base; 7136 unsigned long longs; 7137 7138 if (!phba->sli4_hba.rpi_hdrs_in_use) 7139 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 7140 if (phba->sli4_hba.extents_in_use) { 7141 /* 7142 * The port supports resource extents. The XRI, VPI, VFI, RPI 7143 * resource extent count must be read and allocated before 7144 * provisioning the resource id arrays. 7145 */ 7146 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7147 LPFC_IDX_RSRC_RDY) { 7148 /* 7149 * Extent-based resources are set - the driver could 7150 * be in a port reset. Figure out if any corrective 7151 * actions need to be taken. 7152 */ 7153 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7154 LPFC_RSC_TYPE_FCOE_VFI); 7155 if (rc != 0) 7156 error++; 7157 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7158 LPFC_RSC_TYPE_FCOE_VPI); 7159 if (rc != 0) 7160 error++; 7161 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7162 LPFC_RSC_TYPE_FCOE_XRI); 7163 if (rc != 0) 7164 error++; 7165 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 7166 LPFC_RSC_TYPE_FCOE_RPI); 7167 if (rc != 0) 7168 error++; 7169 7170 /* 7171 * It's possible that the number of resources 7172 * provided to this port instance changed between 7173 * resets. Detect this condition and reallocate 7174 * resources. Otherwise, there is no action. 7175 */ 7176 if (error) { 7177 lpfc_printf_log(phba, KERN_INFO, 7178 LOG_MBOX | LOG_INIT, 7179 "2931 Detected extent resource " 7180 "change. Reallocating all " 7181 "extents.\n"); 7182 rc = lpfc_sli4_dealloc_extent(phba, 7183 LPFC_RSC_TYPE_FCOE_VFI); 7184 rc = lpfc_sli4_dealloc_extent(phba, 7185 LPFC_RSC_TYPE_FCOE_VPI); 7186 rc = lpfc_sli4_dealloc_extent(phba, 7187 LPFC_RSC_TYPE_FCOE_XRI); 7188 rc = lpfc_sli4_dealloc_extent(phba, 7189 LPFC_RSC_TYPE_FCOE_RPI); 7190 } else 7191 return 0; 7192 } 7193 7194 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7195 if (unlikely(rc)) 7196 goto err_exit; 7197 7198 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7199 if (unlikely(rc)) 7200 goto err_exit; 7201 7202 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7203 if (unlikely(rc)) 7204 goto err_exit; 7205 7206 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7207 if (unlikely(rc)) 7208 goto err_exit; 7209 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7210 LPFC_IDX_RSRC_RDY); 7211 return rc; 7212 } else { 7213 /* 7214 * The port does not support resource extents. The XRI, VPI, 7215 * VFI, RPI resource ids were determined from READ_CONFIG. 7216 * Just allocate the bitmasks and provision the resource id 7217 * arrays. If a port reset is active, the resources don't 7218 * need any action - just exit. 7219 */ 7220 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 7221 LPFC_IDX_RSRC_RDY) { 7222 lpfc_sli4_dealloc_resource_identifiers(phba); 7223 lpfc_sli4_remove_rpis(phba); 7224 } 7225 /* RPIs. */ 7226 count = phba->sli4_hba.max_cfg_param.max_rpi; 7227 if (count <= 0) { 7228 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7229 "3279 Invalid provisioning of " 7230 "rpi:%d\n", count); 7231 rc = -EINVAL; 7232 goto err_exit; 7233 } 7234 base = phba->sli4_hba.max_cfg_param.rpi_base; 7235 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7236 phba->sli4_hba.rpi_bmask = kcalloc(longs, 7237 sizeof(unsigned long), 7238 GFP_KERNEL); 7239 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 7240 rc = -ENOMEM; 7241 goto err_exit; 7242 } 7243 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 7244 GFP_KERNEL); 7245 if (unlikely(!phba->sli4_hba.rpi_ids)) { 7246 rc = -ENOMEM; 7247 goto free_rpi_bmask; 7248 } 7249 7250 for (i = 0; i < count; i++) 7251 phba->sli4_hba.rpi_ids[i] = base + i; 7252 7253 /* VPIs. */ 7254 count = phba->sli4_hba.max_cfg_param.max_vpi; 7255 if (count <= 0) { 7256 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7257 "3280 Invalid provisioning of " 7258 "vpi:%d\n", count); 7259 rc = -EINVAL; 7260 goto free_rpi_ids; 7261 } 7262 base = phba->sli4_hba.max_cfg_param.vpi_base; 7263 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7264 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 7265 GFP_KERNEL); 7266 if (unlikely(!phba->vpi_bmask)) { 7267 rc = -ENOMEM; 7268 goto free_rpi_ids; 7269 } 7270 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 7271 GFP_KERNEL); 7272 if (unlikely(!phba->vpi_ids)) { 7273 rc = -ENOMEM; 7274 goto free_vpi_bmask; 7275 } 7276 7277 for (i = 0; i < count; i++) 7278 phba->vpi_ids[i] = base + i; 7279 7280 /* XRIs. */ 7281 count = phba->sli4_hba.max_cfg_param.max_xri; 7282 if (count <= 0) { 7283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7284 "3281 Invalid provisioning of " 7285 "xri:%d\n", count); 7286 rc = -EINVAL; 7287 goto free_vpi_ids; 7288 } 7289 base = phba->sli4_hba.max_cfg_param.xri_base; 7290 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7291 phba->sli4_hba.xri_bmask = kcalloc(longs, 7292 sizeof(unsigned long), 7293 GFP_KERNEL); 7294 if (unlikely(!phba->sli4_hba.xri_bmask)) { 7295 rc = -ENOMEM; 7296 goto free_vpi_ids; 7297 } 7298 phba->sli4_hba.max_cfg_param.xri_used = 0; 7299 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 7300 GFP_KERNEL); 7301 if (unlikely(!phba->sli4_hba.xri_ids)) { 7302 rc = -ENOMEM; 7303 goto free_xri_bmask; 7304 } 7305 7306 for (i = 0; i < count; i++) 7307 phba->sli4_hba.xri_ids[i] = base + i; 7308 7309 /* VFIs. */ 7310 count = phba->sli4_hba.max_cfg_param.max_vfi; 7311 if (count <= 0) { 7312 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7313 "3282 Invalid provisioning of " 7314 "vfi:%d\n", count); 7315 rc = -EINVAL; 7316 goto free_xri_ids; 7317 } 7318 base = phba->sli4_hba.max_cfg_param.vfi_base; 7319 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 7320 phba->sli4_hba.vfi_bmask = kcalloc(longs, 7321 sizeof(unsigned long), 7322 GFP_KERNEL); 7323 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 7324 rc = -ENOMEM; 7325 goto free_xri_ids; 7326 } 7327 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 7328 GFP_KERNEL); 7329 if (unlikely(!phba->sli4_hba.vfi_ids)) { 7330 rc = -ENOMEM; 7331 goto free_vfi_bmask; 7332 } 7333 7334 for (i = 0; i < count; i++) 7335 phba->sli4_hba.vfi_ids[i] = base + i; 7336 7337 /* 7338 * Mark all resources ready. An HBA reset doesn't need 7339 * to reset the initialization. 7340 */ 7341 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 7342 LPFC_IDX_RSRC_RDY); 7343 return 0; 7344 } 7345 7346 free_vfi_bmask: 7347 kfree(phba->sli4_hba.vfi_bmask); 7348 phba->sli4_hba.vfi_bmask = NULL; 7349 free_xri_ids: 7350 kfree(phba->sli4_hba.xri_ids); 7351 phba->sli4_hba.xri_ids = NULL; 7352 free_xri_bmask: 7353 kfree(phba->sli4_hba.xri_bmask); 7354 phba->sli4_hba.xri_bmask = NULL; 7355 free_vpi_ids: 7356 kfree(phba->vpi_ids); 7357 phba->vpi_ids = NULL; 7358 free_vpi_bmask: 7359 kfree(phba->vpi_bmask); 7360 phba->vpi_bmask = NULL; 7361 free_rpi_ids: 7362 kfree(phba->sli4_hba.rpi_ids); 7363 phba->sli4_hba.rpi_ids = NULL; 7364 free_rpi_bmask: 7365 kfree(phba->sli4_hba.rpi_bmask); 7366 phba->sli4_hba.rpi_bmask = NULL; 7367 err_exit: 7368 return rc; 7369 } 7370 7371 /** 7372 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7373 * @phba: Pointer to HBA context object. 7374 * 7375 * This function allocates the number of elements for the specified 7376 * resource type. 7377 **/ 7378 int 7379 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7380 { 7381 if (phba->sli4_hba.extents_in_use) { 7382 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7383 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7384 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7385 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7386 } else { 7387 kfree(phba->vpi_bmask); 7388 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7389 kfree(phba->vpi_ids); 7390 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7391 kfree(phba->sli4_hba.xri_bmask); 7392 kfree(phba->sli4_hba.xri_ids); 7393 kfree(phba->sli4_hba.vfi_bmask); 7394 kfree(phba->sli4_hba.vfi_ids); 7395 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7396 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7397 } 7398 7399 return 0; 7400 } 7401 7402 /** 7403 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7404 * @phba: Pointer to HBA context object. 7405 * @type: The resource extent type. 7406 * @extnt_cnt: buffer to hold port extent count response 7407 * @extnt_size: buffer to hold port extent size response. 7408 * 7409 * This function calls the port to read the host allocated extents 7410 * for a particular type. 7411 **/ 7412 int 7413 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7414 uint16_t *extnt_cnt, uint16_t *extnt_size) 7415 { 7416 bool emb; 7417 int rc = 0; 7418 uint16_t curr_blks = 0; 7419 uint32_t req_len, emb_len; 7420 uint32_t alloc_len, mbox_tmo; 7421 struct list_head *blk_list_head; 7422 struct lpfc_rsrc_blks *rsrc_blk; 7423 LPFC_MBOXQ_t *mbox; 7424 void *virtaddr = NULL; 7425 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7426 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7427 union lpfc_sli4_cfg_shdr *shdr; 7428 7429 switch (type) { 7430 case LPFC_RSC_TYPE_FCOE_VPI: 7431 blk_list_head = &phba->lpfc_vpi_blk_list; 7432 break; 7433 case LPFC_RSC_TYPE_FCOE_XRI: 7434 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7435 break; 7436 case LPFC_RSC_TYPE_FCOE_VFI: 7437 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7438 break; 7439 case LPFC_RSC_TYPE_FCOE_RPI: 7440 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7441 break; 7442 default: 7443 return -EIO; 7444 } 7445 7446 /* Count the number of extents currently allocatd for this type. */ 7447 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7448 if (curr_blks == 0) { 7449 /* 7450 * The GET_ALLOCATED mailbox does not return the size, 7451 * just the count. The size should be just the size 7452 * stored in the current allocated block and all sizes 7453 * for an extent type are the same so set the return 7454 * value now. 7455 */ 7456 *extnt_size = rsrc_blk->rsrc_size; 7457 } 7458 curr_blks++; 7459 } 7460 7461 /* 7462 * Calculate the size of an embedded mailbox. The uint32_t 7463 * accounts for extents-specific word. 7464 */ 7465 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7466 sizeof(uint32_t); 7467 7468 /* 7469 * Presume the allocation and response will fit into an embedded 7470 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7471 */ 7472 emb = LPFC_SLI4_MBX_EMBED; 7473 req_len = emb_len; 7474 if (req_len > emb_len) { 7475 req_len = curr_blks * sizeof(uint16_t) + 7476 sizeof(union lpfc_sli4_cfg_shdr) + 7477 sizeof(uint32_t); 7478 emb = LPFC_SLI4_MBX_NEMBED; 7479 } 7480 7481 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7482 if (!mbox) 7483 return -ENOMEM; 7484 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7485 7486 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7487 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7488 req_len, emb); 7489 if (alloc_len < req_len) { 7490 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7491 "2983 Allocated DMA memory size (x%x) is " 7492 "less than the requested DMA memory " 7493 "size (x%x)\n", alloc_len, req_len); 7494 rc = -ENOMEM; 7495 goto err_exit; 7496 } 7497 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7498 if (unlikely(rc)) { 7499 rc = -EIO; 7500 goto err_exit; 7501 } 7502 7503 if (!phba->sli4_hba.intr_enable) 7504 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7505 else { 7506 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7507 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7508 } 7509 7510 if (unlikely(rc)) { 7511 rc = -EIO; 7512 goto err_exit; 7513 } 7514 7515 /* 7516 * Figure out where the response is located. Then get local pointers 7517 * to the response data. The port does not guarantee to respond to 7518 * all extents counts request so update the local variable with the 7519 * allocated count from the port. 7520 */ 7521 if (emb == LPFC_SLI4_MBX_EMBED) { 7522 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7523 shdr = &rsrc_ext->header.cfg_shdr; 7524 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7525 } else { 7526 virtaddr = mbox->sge_array->addr[0]; 7527 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7528 shdr = &n_rsrc->cfg_shdr; 7529 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7530 } 7531 7532 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7533 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7534 "2984 Failed to read allocated resources " 7535 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7536 type, 7537 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7538 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7539 rc = -EIO; 7540 goto err_exit; 7541 } 7542 err_exit: 7543 lpfc_sli4_mbox_cmd_free(phba, mbox); 7544 return rc; 7545 } 7546 7547 /** 7548 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7549 * @phba: pointer to lpfc hba data structure. 7550 * @sgl_list: linked link of sgl buffers to post 7551 * @cnt: number of linked list buffers 7552 * 7553 * This routine walks the list of buffers that have been allocated and 7554 * repost them to the port by using SGL block post. This is needed after a 7555 * pci_function_reset/warm_start or start. It attempts to construct blocks 7556 * of buffer sgls which contains contiguous xris and uses the non-embedded 7557 * SGL block post mailbox commands to post them to the port. For single 7558 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7559 * mailbox command for posting. 7560 * 7561 * Returns: 0 = success, non-zero failure. 7562 **/ 7563 static int 7564 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7565 struct list_head *sgl_list, int cnt) 7566 { 7567 struct lpfc_sglq *sglq_entry = NULL; 7568 struct lpfc_sglq *sglq_entry_next = NULL; 7569 struct lpfc_sglq *sglq_entry_first = NULL; 7570 int status, total_cnt; 7571 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7572 int last_xritag = NO_XRI; 7573 LIST_HEAD(prep_sgl_list); 7574 LIST_HEAD(blck_sgl_list); 7575 LIST_HEAD(allc_sgl_list); 7576 LIST_HEAD(post_sgl_list); 7577 LIST_HEAD(free_sgl_list); 7578 7579 spin_lock_irq(&phba->hbalock); 7580 spin_lock(&phba->sli4_hba.sgl_list_lock); 7581 list_splice_init(sgl_list, &allc_sgl_list); 7582 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7583 spin_unlock_irq(&phba->hbalock); 7584 7585 total_cnt = cnt; 7586 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7587 &allc_sgl_list, list) { 7588 list_del_init(&sglq_entry->list); 7589 block_cnt++; 7590 if ((last_xritag != NO_XRI) && 7591 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7592 /* a hole in xri block, form a sgl posting block */ 7593 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7594 post_cnt = block_cnt - 1; 7595 /* prepare list for next posting block */ 7596 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7597 block_cnt = 1; 7598 } else { 7599 /* prepare list for next posting block */ 7600 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7601 /* enough sgls for non-embed sgl mbox command */ 7602 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7603 list_splice_init(&prep_sgl_list, 7604 &blck_sgl_list); 7605 post_cnt = block_cnt; 7606 block_cnt = 0; 7607 } 7608 } 7609 num_posted++; 7610 7611 /* keep track of last sgl's xritag */ 7612 last_xritag = sglq_entry->sli4_xritag; 7613 7614 /* end of repost sgl list condition for buffers */ 7615 if (num_posted == total_cnt) { 7616 if (post_cnt == 0) { 7617 list_splice_init(&prep_sgl_list, 7618 &blck_sgl_list); 7619 post_cnt = block_cnt; 7620 } else if (block_cnt == 1) { 7621 status = lpfc_sli4_post_sgl(phba, 7622 sglq_entry->phys, 0, 7623 sglq_entry->sli4_xritag); 7624 if (!status) { 7625 /* successful, put sgl to posted list */ 7626 list_add_tail(&sglq_entry->list, 7627 &post_sgl_list); 7628 } else { 7629 /* Failure, put sgl to free list */ 7630 lpfc_printf_log(phba, KERN_WARNING, 7631 LOG_SLI, 7632 "3159 Failed to post " 7633 "sgl, xritag:x%x\n", 7634 sglq_entry->sli4_xritag); 7635 list_add_tail(&sglq_entry->list, 7636 &free_sgl_list); 7637 total_cnt--; 7638 } 7639 } 7640 } 7641 7642 /* continue until a nembed page worth of sgls */ 7643 if (post_cnt == 0) 7644 continue; 7645 7646 /* post the buffer list sgls as a block */ 7647 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7648 post_cnt); 7649 7650 if (!status) { 7651 /* success, put sgl list to posted sgl list */ 7652 list_splice_init(&blck_sgl_list, &post_sgl_list); 7653 } else { 7654 /* Failure, put sgl list to free sgl list */ 7655 sglq_entry_first = list_first_entry(&blck_sgl_list, 7656 struct lpfc_sglq, 7657 list); 7658 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7659 "3160 Failed to post sgl-list, " 7660 "xritag:x%x-x%x\n", 7661 sglq_entry_first->sli4_xritag, 7662 (sglq_entry_first->sli4_xritag + 7663 post_cnt - 1)); 7664 list_splice_init(&blck_sgl_list, &free_sgl_list); 7665 total_cnt -= post_cnt; 7666 } 7667 7668 /* don't reset xirtag due to hole in xri block */ 7669 if (block_cnt == 0) 7670 last_xritag = NO_XRI; 7671 7672 /* reset sgl post count for next round of posting */ 7673 post_cnt = 0; 7674 } 7675 7676 /* free the sgls failed to post */ 7677 lpfc_free_sgl_list(phba, &free_sgl_list); 7678 7679 /* push sgls posted to the available list */ 7680 if (!list_empty(&post_sgl_list)) { 7681 spin_lock_irq(&phba->hbalock); 7682 spin_lock(&phba->sli4_hba.sgl_list_lock); 7683 list_splice_init(&post_sgl_list, sgl_list); 7684 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7685 spin_unlock_irq(&phba->hbalock); 7686 } else { 7687 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7688 "3161 Failure to post sgl to port.\n"); 7689 return -EIO; 7690 } 7691 7692 /* return the number of XRIs actually posted */ 7693 return total_cnt; 7694 } 7695 7696 /** 7697 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7698 * @phba: pointer to lpfc hba data structure. 7699 * 7700 * This routine walks the list of nvme buffers that have been allocated and 7701 * repost them to the port by using SGL block post. This is needed after a 7702 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7703 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7704 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7705 * 7706 * Returns: 0 = success, non-zero failure. 7707 **/ 7708 static int 7709 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7710 { 7711 LIST_HEAD(post_nblist); 7712 int num_posted, rc = 0; 7713 7714 /* get all NVME buffers need to repost to a local list */ 7715 lpfc_io_buf_flush(phba, &post_nblist); 7716 7717 /* post the list of nvme buffer sgls to port if available */ 7718 if (!list_empty(&post_nblist)) { 7719 num_posted = lpfc_sli4_post_io_sgl_list( 7720 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7721 /* failed to post any nvme buffer, return error */ 7722 if (num_posted == 0) 7723 rc = -EIO; 7724 } 7725 return rc; 7726 } 7727 7728 static void 7729 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7730 { 7731 uint32_t len; 7732 7733 len = sizeof(struct lpfc_mbx_set_host_data) - 7734 sizeof(struct lpfc_sli4_cfg_mhdr); 7735 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7736 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7737 LPFC_SLI4_MBX_EMBED); 7738 7739 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7740 mbox->u.mqe.un.set_host_data.param_len = 7741 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7742 snprintf(mbox->u.mqe.un.set_host_data.un.data, 7743 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7744 "Linux %s v"LPFC_DRIVER_VERSION, 7745 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7746 } 7747 7748 int 7749 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7750 struct lpfc_queue *drq, int count, int idx) 7751 { 7752 int rc, i; 7753 struct lpfc_rqe hrqe; 7754 struct lpfc_rqe drqe; 7755 struct lpfc_rqb *rqbp; 7756 unsigned long flags; 7757 struct rqb_dmabuf *rqb_buffer; 7758 LIST_HEAD(rqb_buf_list); 7759 7760 rqbp = hrq->rqbp; 7761 for (i = 0; i < count; i++) { 7762 spin_lock_irqsave(&phba->hbalock, flags); 7763 /* IF RQ is already full, don't bother */ 7764 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7765 spin_unlock_irqrestore(&phba->hbalock, flags); 7766 break; 7767 } 7768 spin_unlock_irqrestore(&phba->hbalock, flags); 7769 7770 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7771 if (!rqb_buffer) 7772 break; 7773 rqb_buffer->hrq = hrq; 7774 rqb_buffer->drq = drq; 7775 rqb_buffer->idx = idx; 7776 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7777 } 7778 7779 spin_lock_irqsave(&phba->hbalock, flags); 7780 while (!list_empty(&rqb_buf_list)) { 7781 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7782 hbuf.list); 7783 7784 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7785 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7786 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7787 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7788 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7789 if (rc < 0) { 7790 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7791 "6421 Cannot post to HRQ %d: %x %x %x " 7792 "DRQ %x %x\n", 7793 hrq->queue_id, 7794 hrq->host_index, 7795 hrq->hba_index, 7796 hrq->entry_count, 7797 drq->host_index, 7798 drq->hba_index); 7799 rqbp->rqb_free_buffer(phba, rqb_buffer); 7800 } else { 7801 list_add_tail(&rqb_buffer->hbuf.list, 7802 &rqbp->rqb_buffer_list); 7803 rqbp->buffer_count++; 7804 } 7805 } 7806 spin_unlock_irqrestore(&phba->hbalock, flags); 7807 return 1; 7808 } 7809 7810 static void 7811 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 7812 { 7813 struct lpfc_vport *vport = pmb->vport; 7814 union lpfc_sli4_cfg_shdr *shdr; 7815 u32 shdr_status, shdr_add_status; 7816 u32 sig, acqe; 7817 7818 /* Two outcomes. (1) Set featurs was successul and EDC negotiation 7819 * is done. (2) Mailbox failed and send FPIN support only. 7820 */ 7821 shdr = (union lpfc_sli4_cfg_shdr *) 7822 &pmb->u.mqe.un.sli4_config.header.cfg_shdr; 7823 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 7824 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 7825 if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { 7826 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 7827 "2516 CGN SET_FEATURE mbox failed with " 7828 "status x%x add_status x%x, mbx status x%x " 7829 "Reset Congestion to FPINs only\n", 7830 shdr_status, shdr_add_status, 7831 pmb->u.mb.mbxStatus); 7832 /* If there is a mbox error, move on to RDF */ 7833 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7834 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7835 goto out; 7836 } 7837 7838 /* Zero out Congestion Signal ACQE counter */ 7839 phba->cgn_acqe_cnt = 0; 7840 7841 acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, 7842 &pmb->u.mqe.un.set_feature); 7843 sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, 7844 &pmb->u.mqe.un.set_feature); 7845 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7846 "4620 SET_FEATURES Success: Freq: %ds %dms " 7847 " Reg: x%x x%x\n", acqe, sig, 7848 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7849 out: 7850 mempool_free(pmb, phba->mbox_mem_pool); 7851 7852 /* Register for FPIN events from the fabric now that the 7853 * EDC common_set_features has completed. 7854 */ 7855 lpfc_issue_els_rdf(vport, 0); 7856 } 7857 7858 int 7859 lpfc_config_cgn_signal(struct lpfc_hba *phba) 7860 { 7861 LPFC_MBOXQ_t *mboxq; 7862 u32 rc; 7863 7864 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7865 if (!mboxq) 7866 goto out_rdf; 7867 7868 lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); 7869 mboxq->vport = phba->pport; 7870 mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; 7871 7872 lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, 7873 "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " 7874 "Reg: x%x x%x\n", 7875 phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, 7876 phba->cgn_reg_signal, phba->cgn_reg_fpin); 7877 7878 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 7879 if (rc == MBX_NOT_FINISHED) 7880 goto out; 7881 return 0; 7882 7883 out: 7884 mempool_free(mboxq, phba->mbox_mem_pool); 7885 out_rdf: 7886 /* If there is a mbox error, move on to RDF */ 7887 phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; 7888 phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; 7889 lpfc_issue_els_rdf(phba->pport, 0); 7890 return -EIO; 7891 } 7892 7893 /** 7894 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7895 * @phba: pointer to lpfc hba data structure. 7896 * 7897 * This routine initializes the per-cq idle_stat to dynamically dictate 7898 * polling decisions. 7899 * 7900 * Return codes: 7901 * None 7902 **/ 7903 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7904 { 7905 int i; 7906 struct lpfc_sli4_hdw_queue *hdwq; 7907 struct lpfc_queue *cq; 7908 struct lpfc_idle_stat *idle_stat; 7909 u64 wall; 7910 7911 for_each_present_cpu(i) { 7912 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7913 cq = hdwq->io_cq; 7914 7915 /* Skip if we've already handled this cq's primary CPU */ 7916 if (cq->chann != i) 7917 continue; 7918 7919 idle_stat = &phba->sli4_hba.idle_stat[i]; 7920 7921 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7922 idle_stat->prev_wall = wall; 7923 7924 if (phba->nvmet_support || 7925 phba->cmf_active_mode != LPFC_CFG_OFF) 7926 cq->poll_mode = LPFC_QUEUE_WORK; 7927 else 7928 cq->poll_mode = LPFC_IRQ_POLL; 7929 } 7930 7931 if (!phba->nvmet_support) 7932 schedule_delayed_work(&phba->idle_stat_delay_work, 7933 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7934 } 7935 7936 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7937 { 7938 uint32_t if_type; 7939 7940 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7941 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7942 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7943 struct lpfc_register reg_data; 7944 7945 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7946 ®_data.word0)) 7947 return; 7948 7949 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7950 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7951 "2904 Firmware Dump Image Present" 7952 " on Adapter"); 7953 } 7954 } 7955 7956 /** 7957 * lpfc_cmf_setup - Initialize idle_stat tracking 7958 * @phba: Pointer to HBA context object. 7959 * 7960 * This is called from HBA setup during driver load or when the HBA 7961 * comes online. this does all the initialization to support CMF and MI. 7962 **/ 7963 static int 7964 lpfc_cmf_setup(struct lpfc_hba *phba) 7965 { 7966 LPFC_MBOXQ_t *mboxq; 7967 struct lpfc_dmabuf *mp; 7968 struct lpfc_pc_sli4_params *sli4_params; 7969 int rc, cmf, mi_ver; 7970 7971 rc = lpfc_sli4_refresh_params(phba); 7972 if (unlikely(rc)) 7973 return rc; 7974 7975 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7976 if (!mboxq) 7977 return -ENOMEM; 7978 7979 sli4_params = &phba->sli4_hba.pc_sli4_params; 7980 7981 /* Always try to enable MI feature if we can */ 7982 if (sli4_params->mi_ver) { 7983 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); 7984 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7985 mi_ver = bf_get(lpfc_mbx_set_feature_mi, 7986 &mboxq->u.mqe.un.set_feature); 7987 7988 if (rc == MBX_SUCCESS) { 7989 if (mi_ver) { 7990 lpfc_printf_log(phba, 7991 KERN_WARNING, LOG_CGN_MGMT, 7992 "6215 MI is enabled\n"); 7993 sli4_params->mi_ver = mi_ver; 7994 } else { 7995 lpfc_printf_log(phba, 7996 KERN_WARNING, LOG_CGN_MGMT, 7997 "6338 MI is disabled\n"); 7998 sli4_params->mi_ver = 0; 7999 } 8000 } else { 8001 /* mi_ver is already set from GET_SLI4_PARAMETERS */ 8002 lpfc_printf_log(phba, KERN_INFO, 8003 LOG_CGN_MGMT | LOG_INIT, 8004 "6245 Enable MI Mailbox x%x (x%x/x%x) " 8005 "failed, rc:x%x mi:x%x\n", 8006 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8007 lpfc_sli_config_mbox_subsys_get 8008 (phba, mboxq), 8009 lpfc_sli_config_mbox_opcode_get 8010 (phba, mboxq), 8011 rc, sli4_params->mi_ver); 8012 } 8013 } else { 8014 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8015 "6217 MI is disabled\n"); 8016 } 8017 8018 /* Ensure FDMI is enabled for MI if enable_mi is set */ 8019 if (sli4_params->mi_ver) 8020 phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; 8021 8022 /* Always try to enable CMF feature if we can */ 8023 if (sli4_params->cmf) { 8024 lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); 8025 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8026 cmf = bf_get(lpfc_mbx_set_feature_cmf, 8027 &mboxq->u.mqe.un.set_feature); 8028 if (rc == MBX_SUCCESS && cmf) { 8029 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8030 "6218 CMF is enabled: mode %d\n", 8031 phba->cmf_active_mode); 8032 } else { 8033 lpfc_printf_log(phba, KERN_WARNING, 8034 LOG_CGN_MGMT | LOG_INIT, 8035 "6219 Enable CMF Mailbox x%x (x%x/x%x) " 8036 "failed, rc:x%x dd:x%x\n", 8037 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8038 lpfc_sli_config_mbox_subsys_get 8039 (phba, mboxq), 8040 lpfc_sli_config_mbox_opcode_get 8041 (phba, mboxq), 8042 rc, cmf); 8043 sli4_params->cmf = 0; 8044 phba->cmf_active_mode = LPFC_CFG_OFF; 8045 goto no_cmf; 8046 } 8047 8048 /* Allocate Congestion Information Buffer */ 8049 if (!phba->cgn_i) { 8050 mp = kmalloc(sizeof(*mp), GFP_KERNEL); 8051 if (mp) 8052 mp->virt = dma_alloc_coherent 8053 (&phba->pcidev->dev, 8054 sizeof(struct lpfc_cgn_info), 8055 &mp->phys, GFP_KERNEL); 8056 if (!mp || !mp->virt) { 8057 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8058 "2640 Failed to alloc memory " 8059 "for Congestion Info\n"); 8060 kfree(mp); 8061 sli4_params->cmf = 0; 8062 phba->cmf_active_mode = LPFC_CFG_OFF; 8063 goto no_cmf; 8064 } 8065 phba->cgn_i = mp; 8066 8067 /* initialize congestion buffer info */ 8068 lpfc_init_congestion_buf(phba); 8069 lpfc_init_congestion_stat(phba); 8070 8071 /* Zero out Congestion Signal counters */ 8072 atomic64_set(&phba->cgn_acqe_stat.alarm, 0); 8073 atomic64_set(&phba->cgn_acqe_stat.warn, 0); 8074 } 8075 8076 rc = lpfc_sli4_cgn_params_read(phba); 8077 if (rc < 0) { 8078 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8079 "6242 Error reading Cgn Params (%d)\n", 8080 rc); 8081 /* Ensure CGN Mode is off */ 8082 sli4_params->cmf = 0; 8083 } else if (!rc) { 8084 lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, 8085 "6243 CGN Event empty object.\n"); 8086 /* Ensure CGN Mode is off */ 8087 sli4_params->cmf = 0; 8088 } 8089 } else { 8090 no_cmf: 8091 lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, 8092 "6220 CMF is disabled\n"); 8093 } 8094 8095 /* Only register congestion buffer with firmware if BOTH 8096 * CMF and E2E are enabled. 8097 */ 8098 if (sli4_params->cmf && sli4_params->mi_ver) { 8099 rc = lpfc_reg_congestion_buf(phba); 8100 if (rc) { 8101 dma_free_coherent(&phba->pcidev->dev, 8102 sizeof(struct lpfc_cgn_info), 8103 phba->cgn_i->virt, phba->cgn_i->phys); 8104 kfree(phba->cgn_i); 8105 phba->cgn_i = NULL; 8106 /* Ensure CGN Mode is off */ 8107 phba->cmf_active_mode = LPFC_CFG_OFF; 8108 return 0; 8109 } 8110 } 8111 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8112 "6470 Setup MI version %d CMF %d mode %d\n", 8113 sli4_params->mi_ver, sli4_params->cmf, 8114 phba->cmf_active_mode); 8115 8116 mempool_free(mboxq, phba->mbox_mem_pool); 8117 8118 /* Initialize atomic counters */ 8119 atomic_set(&phba->cgn_fabric_warn_cnt, 0); 8120 atomic_set(&phba->cgn_fabric_alarm_cnt, 0); 8121 atomic_set(&phba->cgn_sync_alarm_cnt, 0); 8122 atomic_set(&phba->cgn_sync_warn_cnt, 0); 8123 atomic_set(&phba->cgn_driver_evt_cnt, 0); 8124 atomic_set(&phba->cgn_latency_evt_cnt, 0); 8125 atomic64_set(&phba->cgn_latency_evt, 0); 8126 8127 phba->cmf_interval_rate = LPFC_CMF_INTERVAL; 8128 8129 /* Allocate RX Monitor Buffer */ 8130 if (!phba->rxtable) { 8131 phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY, 8132 sizeof(struct rxtable_entry), 8133 GFP_KERNEL); 8134 if (!phba->rxtable) { 8135 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8136 "2644 Failed to alloc memory " 8137 "for RX Monitor Buffer\n"); 8138 return -ENOMEM; 8139 } 8140 } 8141 atomic_set(&phba->rxtable_idx_head, 0); 8142 atomic_set(&phba->rxtable_idx_tail, 0); 8143 return 0; 8144 } 8145 8146 static int 8147 lpfc_set_host_tm(struct lpfc_hba *phba) 8148 { 8149 LPFC_MBOXQ_t *mboxq; 8150 uint32_t len, rc; 8151 struct timespec64 cur_time; 8152 struct tm broken; 8153 uint32_t month, day, year; 8154 uint32_t hour, minute, second; 8155 struct lpfc_mbx_set_host_date_time *tm; 8156 8157 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8158 if (!mboxq) 8159 return -ENOMEM; 8160 8161 len = sizeof(struct lpfc_mbx_set_host_data) - 8162 sizeof(struct lpfc_sli4_cfg_mhdr); 8163 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 8164 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 8165 LPFC_SLI4_MBX_EMBED); 8166 8167 mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; 8168 mboxq->u.mqe.un.set_host_data.param_len = 8169 sizeof(struct lpfc_mbx_set_host_date_time); 8170 tm = &mboxq->u.mqe.un.set_host_data.un.tm; 8171 ktime_get_real_ts64(&cur_time); 8172 time64_to_tm(cur_time.tv_sec, 0, &broken); 8173 month = broken.tm_mon + 1; 8174 day = broken.tm_mday; 8175 year = broken.tm_year - 100; 8176 hour = broken.tm_hour; 8177 minute = broken.tm_min; 8178 second = broken.tm_sec; 8179 bf_set(lpfc_mbx_set_host_month, tm, month); 8180 bf_set(lpfc_mbx_set_host_day, tm, day); 8181 bf_set(lpfc_mbx_set_host_year, tm, year); 8182 bf_set(lpfc_mbx_set_host_hour, tm, hour); 8183 bf_set(lpfc_mbx_set_host_min, tm, minute); 8184 bf_set(lpfc_mbx_set_host_sec, tm, second); 8185 8186 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8187 mempool_free(mboxq, phba->mbox_mem_pool); 8188 return rc; 8189 } 8190 8191 /** 8192 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 8193 * @phba: Pointer to HBA context object. 8194 * 8195 * This function is the main SLI4 device initialization PCI function. This 8196 * function is called by the HBA initialization code, HBA reset code and 8197 * HBA error attention handler code. Caller is not required to hold any 8198 * locks. 8199 **/ 8200 int 8201 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 8202 { 8203 int rc, i, cnt, len, dd; 8204 LPFC_MBOXQ_t *mboxq; 8205 struct lpfc_mqe *mqe; 8206 uint8_t *vpd; 8207 uint32_t vpd_size; 8208 uint32_t ftr_rsp = 0; 8209 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 8210 struct lpfc_vport *vport = phba->pport; 8211 struct lpfc_dmabuf *mp; 8212 struct lpfc_rqb *rqbp; 8213 u32 flg; 8214 8215 /* Perform a PCI function reset to start from clean */ 8216 rc = lpfc_pci_function_reset(phba); 8217 if (unlikely(rc)) 8218 return -ENODEV; 8219 8220 /* Check the HBA Host Status Register for readyness */ 8221 rc = lpfc_sli4_post_status_check(phba); 8222 if (unlikely(rc)) 8223 return -ENODEV; 8224 else { 8225 spin_lock_irq(&phba->hbalock); 8226 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 8227 flg = phba->sli.sli_flag; 8228 spin_unlock_irq(&phba->hbalock); 8229 /* Allow a little time after setting SLI_ACTIVE for any polled 8230 * MBX commands to complete via BSG. 8231 */ 8232 for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { 8233 msleep(20); 8234 spin_lock_irq(&phba->hbalock); 8235 flg = phba->sli.sli_flag; 8236 spin_unlock_irq(&phba->hbalock); 8237 } 8238 } 8239 8240 lpfc_sli4_dip(phba); 8241 8242 /* 8243 * Allocate a single mailbox container for initializing the 8244 * port. 8245 */ 8246 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 8247 if (!mboxq) 8248 return -ENOMEM; 8249 8250 /* Issue READ_REV to collect vpd and FW information. */ 8251 vpd_size = SLI4_PAGE_SIZE; 8252 vpd = kzalloc(vpd_size, GFP_KERNEL); 8253 if (!vpd) { 8254 rc = -ENOMEM; 8255 goto out_free_mbox; 8256 } 8257 8258 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 8259 if (unlikely(rc)) { 8260 kfree(vpd); 8261 goto out_free_mbox; 8262 } 8263 8264 mqe = &mboxq->u.mqe; 8265 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 8266 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 8267 phba->hba_flag |= HBA_FCOE_MODE; 8268 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 8269 } else { 8270 phba->hba_flag &= ~HBA_FCOE_MODE; 8271 } 8272 8273 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 8274 LPFC_DCBX_CEE_MODE) 8275 phba->hba_flag |= HBA_FIP_SUPPORT; 8276 else 8277 phba->hba_flag &= ~HBA_FIP_SUPPORT; 8278 8279 phba->hba_flag &= ~HBA_IOQ_FLUSH; 8280 8281 if (phba->sli_rev != LPFC_SLI_REV4) { 8282 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8283 "0376 READ_REV Error. SLI Level %d " 8284 "FCoE enabled %d\n", 8285 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 8286 rc = -EIO; 8287 kfree(vpd); 8288 goto out_free_mbox; 8289 } 8290 8291 rc = lpfc_set_host_tm(phba); 8292 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 8293 "6468 Set host date / time: Status x%x:\n", rc); 8294 8295 /* 8296 * Continue initialization with default values even if driver failed 8297 * to read FCoE param config regions, only read parameters if the 8298 * board is FCoE 8299 */ 8300 if (phba->hba_flag & HBA_FCOE_MODE && 8301 lpfc_sli4_read_fcoe_params(phba)) 8302 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 8303 "2570 Failed to read FCoE parameters\n"); 8304 8305 /* 8306 * Retrieve sli4 device physical port name, failure of doing it 8307 * is considered as non-fatal. 8308 */ 8309 rc = lpfc_sli4_retrieve_pport_name(phba); 8310 if (!rc) 8311 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8312 "3080 Successful retrieving SLI4 device " 8313 "physical port name: %s.\n", phba->Port); 8314 8315 rc = lpfc_sli4_get_ctl_attr(phba); 8316 if (!rc) 8317 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8318 "8351 Successful retrieving SLI4 device " 8319 "CTL ATTR\n"); 8320 8321 /* 8322 * Evaluate the read rev and vpd data. Populate the driver 8323 * state with the results. If this routine fails, the failure 8324 * is not fatal as the driver will use generic values. 8325 */ 8326 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 8327 if (unlikely(!rc)) { 8328 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8329 "0377 Error %d parsing vpd. " 8330 "Using defaults.\n", rc); 8331 rc = 0; 8332 } 8333 kfree(vpd); 8334 8335 /* Save information as VPD data */ 8336 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 8337 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 8338 8339 /* 8340 * This is because first G7 ASIC doesn't support the standard 8341 * 0x5a NVME cmd descriptor type/subtype 8342 */ 8343 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8344 LPFC_SLI_INTF_IF_TYPE_6) && 8345 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 8346 (phba->vpd.rev.smRev == 0) && 8347 (phba->cfg_nvme_embed_cmd == 1)) 8348 phba->cfg_nvme_embed_cmd = 0; 8349 8350 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 8351 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 8352 &mqe->un.read_rev); 8353 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 8354 &mqe->un.read_rev); 8355 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 8356 &mqe->un.read_rev); 8357 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 8358 &mqe->un.read_rev); 8359 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 8360 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 8361 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 8362 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 8363 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 8364 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 8365 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8366 "(%d):0380 READ_REV Status x%x " 8367 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 8368 mboxq->vport ? mboxq->vport->vpi : 0, 8369 bf_get(lpfc_mqe_status, mqe), 8370 phba->vpd.rev.opFwName, 8371 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 8372 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 8373 8374 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 8375 LPFC_SLI_INTF_IF_TYPE_0) { 8376 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 8377 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8378 if (rc == MBX_SUCCESS) { 8379 phba->hba_flag |= HBA_RECOVERABLE_UE; 8380 /* Set 1Sec interval to detect UE */ 8381 phba->eratt_poll_interval = 1; 8382 phba->sli4_hba.ue_to_sr = bf_get( 8383 lpfc_mbx_set_feature_UESR, 8384 &mboxq->u.mqe.un.set_feature); 8385 phba->sli4_hba.ue_to_rp = bf_get( 8386 lpfc_mbx_set_feature_UERP, 8387 &mboxq->u.mqe.un.set_feature); 8388 } 8389 } 8390 8391 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 8392 /* Enable MDS Diagnostics only if the SLI Port supports it */ 8393 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 8394 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8395 if (rc != MBX_SUCCESS) 8396 phba->mds_diags_support = 0; 8397 } 8398 8399 /* 8400 * Discover the port's supported feature set and match it against the 8401 * hosts requests. 8402 */ 8403 lpfc_request_features(phba, mboxq); 8404 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8405 if (unlikely(rc)) { 8406 rc = -EIO; 8407 goto out_free_mbox; 8408 } 8409 8410 /* Disable VMID if app header is not supported */ 8411 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 8412 &mqe->un.req_ftrs))) { 8413 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 8414 phba->cfg_vmid_app_header = 0; 8415 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 8416 "1242 vmid feature not supported\n"); 8417 } 8418 8419 /* 8420 * The port must support FCP initiator mode as this is the 8421 * only mode running in the host. 8422 */ 8423 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 8424 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8425 "0378 No support for fcpi mode.\n"); 8426 ftr_rsp++; 8427 } 8428 8429 /* Performance Hints are ONLY for FCoE */ 8430 if (phba->hba_flag & HBA_FCOE_MODE) { 8431 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 8432 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 8433 else 8434 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 8435 } 8436 8437 /* 8438 * If the port cannot support the host's requested features 8439 * then turn off the global config parameters to disable the 8440 * feature in the driver. This is not a fatal error. 8441 */ 8442 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 8443 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 8444 phba->cfg_enable_bg = 0; 8445 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 8446 ftr_rsp++; 8447 } 8448 } 8449 8450 if (phba->max_vpi && phba->cfg_enable_npiv && 8451 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8452 ftr_rsp++; 8453 8454 if (ftr_rsp) { 8455 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8456 "0379 Feature Mismatch Data: x%08x %08x " 8457 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 8458 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 8459 phba->cfg_enable_npiv, phba->max_vpi); 8460 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 8461 phba->cfg_enable_bg = 0; 8462 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 8463 phba->cfg_enable_npiv = 0; 8464 } 8465 8466 /* These SLI3 features are assumed in SLI4 */ 8467 spin_lock_irq(&phba->hbalock); 8468 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 8469 spin_unlock_irq(&phba->hbalock); 8470 8471 /* Always try to enable dual dump feature if we can */ 8472 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 8473 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8474 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 8475 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 8476 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8477 "6448 Dual Dump is enabled\n"); 8478 else 8479 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 8480 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 8481 "rc:x%x dd:x%x\n", 8482 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8483 lpfc_sli_config_mbox_subsys_get( 8484 phba, mboxq), 8485 lpfc_sli_config_mbox_opcode_get( 8486 phba, mboxq), 8487 rc, dd); 8488 /* 8489 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 8490 * calls depends on these resources to complete port setup. 8491 */ 8492 rc = lpfc_sli4_alloc_resource_identifiers(phba); 8493 if (rc) { 8494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8495 "2920 Failed to alloc Resource IDs " 8496 "rc = x%x\n", rc); 8497 goto out_free_mbox; 8498 } 8499 8500 lpfc_set_host_data(phba, mboxq); 8501 8502 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8503 if (rc) { 8504 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8505 "2134 Failed to set host os driver version %x", 8506 rc); 8507 } 8508 8509 /* Read the port's service parameters. */ 8510 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 8511 if (rc) { 8512 phba->link_state = LPFC_HBA_ERROR; 8513 rc = -ENOMEM; 8514 goto out_free_mbox; 8515 } 8516 8517 mboxq->vport = vport; 8518 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8519 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 8520 if (rc == MBX_SUCCESS) { 8521 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 8522 rc = 0; 8523 } 8524 8525 /* 8526 * This memory was allocated by the lpfc_read_sparam routine but is 8527 * no longer needed. It is released and ctx_buf NULLed to prevent 8528 * unintended pointer access as the mbox is reused. 8529 */ 8530 lpfc_mbuf_free(phba, mp->virt, mp->phys); 8531 kfree(mp); 8532 mboxq->ctx_buf = NULL; 8533 if (unlikely(rc)) { 8534 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8535 "0382 READ_SPARAM command failed " 8536 "status %d, mbxStatus x%x\n", 8537 rc, bf_get(lpfc_mqe_status, mqe)); 8538 phba->link_state = LPFC_HBA_ERROR; 8539 rc = -EIO; 8540 goto out_free_mbox; 8541 } 8542 8543 lpfc_update_vport_wwn(vport); 8544 8545 /* Update the fc_host data structures with new wwn. */ 8546 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 8547 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 8548 8549 /* Create all the SLI4 queues */ 8550 rc = lpfc_sli4_queue_create(phba); 8551 if (rc) { 8552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8553 "3089 Failed to allocate queues\n"); 8554 rc = -ENODEV; 8555 goto out_free_mbox; 8556 } 8557 /* Set up all the queues to the device */ 8558 rc = lpfc_sli4_queue_setup(phba); 8559 if (unlikely(rc)) { 8560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8561 "0381 Error %d during queue setup.\n ", rc); 8562 goto out_stop_timers; 8563 } 8564 /* Initialize the driver internal SLI layer lists. */ 8565 lpfc_sli4_setup(phba); 8566 lpfc_sli4_queue_init(phba); 8567 8568 /* update host els xri-sgl sizes and mappings */ 8569 rc = lpfc_sli4_els_sgl_update(phba); 8570 if (unlikely(rc)) { 8571 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8572 "1400 Failed to update xri-sgl size and " 8573 "mapping: %d\n", rc); 8574 goto out_destroy_queue; 8575 } 8576 8577 /* register the els sgl pool to the port */ 8578 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 8579 phba->sli4_hba.els_xri_cnt); 8580 if (unlikely(rc < 0)) { 8581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8582 "0582 Error %d during els sgl post " 8583 "operation\n", rc); 8584 rc = -ENODEV; 8585 goto out_destroy_queue; 8586 } 8587 phba->sli4_hba.els_xri_cnt = rc; 8588 8589 if (phba->nvmet_support) { 8590 /* update host nvmet xri-sgl sizes and mappings */ 8591 rc = lpfc_sli4_nvmet_sgl_update(phba); 8592 if (unlikely(rc)) { 8593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8594 "6308 Failed to update nvmet-sgl size " 8595 "and mapping: %d\n", rc); 8596 goto out_destroy_queue; 8597 } 8598 8599 /* register the nvmet sgl pool to the port */ 8600 rc = lpfc_sli4_repost_sgl_list( 8601 phba, 8602 &phba->sli4_hba.lpfc_nvmet_sgl_list, 8603 phba->sli4_hba.nvmet_xri_cnt); 8604 if (unlikely(rc < 0)) { 8605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8606 "3117 Error %d during nvmet " 8607 "sgl post\n", rc); 8608 rc = -ENODEV; 8609 goto out_destroy_queue; 8610 } 8611 phba->sli4_hba.nvmet_xri_cnt = rc; 8612 8613 /* We allocate an iocbq for every receive context SGL. 8614 * The additional allocation is for abort and ls handling. 8615 */ 8616 cnt = phba->sli4_hba.nvmet_xri_cnt + 8617 phba->sli4_hba.max_cfg_param.max_xri; 8618 } else { 8619 /* update host common xri-sgl sizes and mappings */ 8620 rc = lpfc_sli4_io_sgl_update(phba); 8621 if (unlikely(rc)) { 8622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8623 "6082 Failed to update nvme-sgl size " 8624 "and mapping: %d\n", rc); 8625 goto out_destroy_queue; 8626 } 8627 8628 /* register the allocated common sgl pool to the port */ 8629 rc = lpfc_sli4_repost_io_sgl_list(phba); 8630 if (unlikely(rc)) { 8631 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8632 "6116 Error %d during nvme sgl post " 8633 "operation\n", rc); 8634 /* Some NVME buffers were moved to abort nvme list */ 8635 /* A pci function reset will repost them */ 8636 rc = -ENODEV; 8637 goto out_destroy_queue; 8638 } 8639 /* Each lpfc_io_buf job structure has an iocbq element. 8640 * This cnt provides for abort, els, ct and ls requests. 8641 */ 8642 cnt = phba->sli4_hba.max_cfg_param.max_xri; 8643 } 8644 8645 if (!phba->sli.iocbq_lookup) { 8646 /* Initialize and populate the iocb list per host */ 8647 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8648 "2821 initialize iocb list with %d entries\n", 8649 cnt); 8650 rc = lpfc_init_iocb_list(phba, cnt); 8651 if (rc) { 8652 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8653 "1413 Failed to init iocb list.\n"); 8654 goto out_destroy_queue; 8655 } 8656 } 8657 8658 if (phba->nvmet_support) 8659 lpfc_nvmet_create_targetport(phba); 8660 8661 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 8662 /* Post initial buffers to all RQs created */ 8663 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 8664 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 8665 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 8666 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 8667 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 8668 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 8669 rqbp->buffer_count = 0; 8670 8671 lpfc_post_rq_buffer( 8672 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 8673 phba->sli4_hba.nvmet_mrq_data[i], 8674 phba->cfg_nvmet_mrq_post, i); 8675 } 8676 } 8677 8678 /* Post the rpi header region to the device. */ 8679 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 8680 if (unlikely(rc)) { 8681 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8682 "0393 Error %d during rpi post operation\n", 8683 rc); 8684 rc = -ENODEV; 8685 goto out_free_iocblist; 8686 } 8687 lpfc_sli4_node_prep(phba); 8688 8689 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 8690 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 8691 /* 8692 * The FC Port needs to register FCFI (index 0) 8693 */ 8694 lpfc_reg_fcfi(phba, mboxq); 8695 mboxq->vport = phba->pport; 8696 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8697 if (rc != MBX_SUCCESS) 8698 goto out_unset_queue; 8699 rc = 0; 8700 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 8701 &mboxq->u.mqe.un.reg_fcfi); 8702 } else { 8703 /* We are a NVME Target mode with MRQ > 1 */ 8704 8705 /* First register the FCFI */ 8706 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8707 mboxq->vport = phba->pport; 8708 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8709 if (rc != MBX_SUCCESS) 8710 goto out_unset_queue; 8711 rc = 0; 8712 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8713 &mboxq->u.mqe.un.reg_fcfi_mrq); 8714 8715 /* Next register the MRQs */ 8716 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8717 mboxq->vport = phba->pport; 8718 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8719 if (rc != MBX_SUCCESS) 8720 goto out_unset_queue; 8721 rc = 0; 8722 } 8723 /* Check if the port is configured to be disabled */ 8724 lpfc_sli_read_link_ste(phba); 8725 } 8726 8727 /* Don't post more new bufs if repost already recovered 8728 * the nvme sgls. 8729 */ 8730 if (phba->nvmet_support == 0) { 8731 if (phba->sli4_hba.io_xri_cnt == 0) { 8732 len = lpfc_new_io_buf( 8733 phba, phba->sli4_hba.io_xri_max); 8734 if (len == 0) { 8735 rc = -ENOMEM; 8736 goto out_unset_queue; 8737 } 8738 8739 if (phba->cfg_xri_rebalancing) 8740 lpfc_create_multixri_pools(phba); 8741 } 8742 } else { 8743 phba->cfg_xri_rebalancing = 0; 8744 } 8745 8746 /* Allow asynchronous mailbox command to go through */ 8747 spin_lock_irq(&phba->hbalock); 8748 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8749 spin_unlock_irq(&phba->hbalock); 8750 8751 /* Post receive buffers to the device */ 8752 lpfc_sli4_rb_setup(phba); 8753 8754 /* Reset HBA FCF states after HBA reset */ 8755 phba->fcf.fcf_flag = 0; 8756 phba->fcf.current_rec.flag = 0; 8757 8758 /* Start the ELS watchdog timer */ 8759 mod_timer(&vport->els_tmofunc, 8760 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8761 8762 /* Start heart beat timer */ 8763 mod_timer(&phba->hb_tmofunc, 8764 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8765 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8766 phba->last_completion_time = jiffies; 8767 8768 /* start eq_delay heartbeat */ 8769 if (phba->cfg_auto_imax) 8770 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8771 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8772 8773 /* start per phba idle_stat_delay heartbeat */ 8774 lpfc_init_idle_stat_hb(phba); 8775 8776 /* Start error attention (ERATT) polling timer */ 8777 mod_timer(&phba->eratt_poll, 8778 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8779 8780 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8781 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8782 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8783 if (!rc) { 8784 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8785 "2829 This device supports " 8786 "Advanced Error Reporting (AER)\n"); 8787 spin_lock_irq(&phba->hbalock); 8788 phba->hba_flag |= HBA_AER_ENABLED; 8789 spin_unlock_irq(&phba->hbalock); 8790 } else { 8791 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8792 "2830 This device does not support " 8793 "Advanced Error Reporting (AER)\n"); 8794 phba->cfg_aer_support = 0; 8795 } 8796 rc = 0; 8797 } 8798 8799 /* 8800 * The port is ready, set the host's link state to LINK_DOWN 8801 * in preparation for link interrupts. 8802 */ 8803 spin_lock_irq(&phba->hbalock); 8804 phba->link_state = LPFC_LINK_DOWN; 8805 8806 /* Check if physical ports are trunked */ 8807 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8808 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8809 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8810 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8811 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8812 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8813 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8814 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8815 spin_unlock_irq(&phba->hbalock); 8816 8817 /* Arm the CQs and then EQs on device */ 8818 lpfc_sli4_arm_cqeq_intr(phba); 8819 8820 /* Indicate device interrupt mode */ 8821 phba->sli4_hba.intr_enable = 1; 8822 8823 /* Setup CMF after HBA is initialized */ 8824 lpfc_cmf_setup(phba); 8825 8826 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8827 (phba->hba_flag & LINK_DISABLED)) { 8828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8829 "3103 Adapter Link is disabled.\n"); 8830 lpfc_down_link(phba, mboxq); 8831 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8832 if (rc != MBX_SUCCESS) { 8833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8834 "3104 Adapter failed to issue " 8835 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8836 goto out_io_buff_free; 8837 } 8838 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8839 /* don't perform init_link on SLI4 FC port loopback test */ 8840 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8841 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8842 if (rc) 8843 goto out_io_buff_free; 8844 } 8845 } 8846 mempool_free(mboxq, phba->mbox_mem_pool); 8847 8848 /* Enable RAS FW log support */ 8849 lpfc_sli4_ras_setup(phba); 8850 8851 phba->hba_flag |= HBA_SETUP; 8852 return rc; 8853 8854 out_io_buff_free: 8855 /* Free allocated IO Buffers */ 8856 lpfc_io_free(phba); 8857 out_unset_queue: 8858 /* Unset all the queues set up in this routine when error out */ 8859 lpfc_sli4_queue_unset(phba); 8860 out_free_iocblist: 8861 lpfc_free_iocb_list(phba); 8862 out_destroy_queue: 8863 lpfc_sli4_queue_destroy(phba); 8864 out_stop_timers: 8865 lpfc_stop_hba_timers(phba); 8866 out_free_mbox: 8867 mempool_free(mboxq, phba->mbox_mem_pool); 8868 return rc; 8869 } 8870 8871 /** 8872 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8873 * @t: Context to fetch pointer to hba structure from. 8874 * 8875 * This is the callback function for mailbox timer. The mailbox 8876 * timer is armed when a new mailbox command is issued and the timer 8877 * is deleted when the mailbox complete. The function is called by 8878 * the kernel timer code when a mailbox does not complete within 8879 * expected time. This function wakes up the worker thread to 8880 * process the mailbox timeout and returns. All the processing is 8881 * done by the worker thread function lpfc_mbox_timeout_handler. 8882 **/ 8883 void 8884 lpfc_mbox_timeout(struct timer_list *t) 8885 { 8886 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8887 unsigned long iflag; 8888 uint32_t tmo_posted; 8889 8890 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8891 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8892 if (!tmo_posted) 8893 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8894 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8895 8896 if (!tmo_posted) 8897 lpfc_worker_wake_up(phba); 8898 return; 8899 } 8900 8901 /** 8902 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8903 * are pending 8904 * @phba: Pointer to HBA context object. 8905 * 8906 * This function checks if any mailbox completions are present on the mailbox 8907 * completion queue. 8908 **/ 8909 static bool 8910 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8911 { 8912 8913 uint32_t idx; 8914 struct lpfc_queue *mcq; 8915 struct lpfc_mcqe *mcqe; 8916 bool pending_completions = false; 8917 uint8_t qe_valid; 8918 8919 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8920 return false; 8921 8922 /* Check for completions on mailbox completion queue */ 8923 8924 mcq = phba->sli4_hba.mbx_cq; 8925 idx = mcq->hba_index; 8926 qe_valid = mcq->qe_valid; 8927 while (bf_get_le32(lpfc_cqe_valid, 8928 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8929 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8930 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8931 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8932 pending_completions = true; 8933 break; 8934 } 8935 idx = (idx + 1) % mcq->entry_count; 8936 if (mcq->hba_index == idx) 8937 break; 8938 8939 /* if the index wrapped around, toggle the valid bit */ 8940 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8941 qe_valid = (qe_valid) ? 0 : 1; 8942 } 8943 return pending_completions; 8944 8945 } 8946 8947 /** 8948 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8949 * that were missed. 8950 * @phba: Pointer to HBA context object. 8951 * 8952 * For sli4, it is possible to miss an interrupt. As such mbox completions 8953 * maybe missed causing erroneous mailbox timeouts to occur. This function 8954 * checks to see if mbox completions are on the mailbox completion queue 8955 * and will process all the completions associated with the eq for the 8956 * mailbox completion queue. 8957 **/ 8958 static bool 8959 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8960 { 8961 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8962 uint32_t eqidx; 8963 struct lpfc_queue *fpeq = NULL; 8964 struct lpfc_queue *eq; 8965 bool mbox_pending; 8966 8967 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8968 return false; 8969 8970 /* Find the EQ associated with the mbox CQ */ 8971 if (sli4_hba->hdwq) { 8972 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8973 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8974 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8975 fpeq = eq; 8976 break; 8977 } 8978 } 8979 } 8980 if (!fpeq) 8981 return false; 8982 8983 /* Turn off interrupts from this EQ */ 8984 8985 sli4_hba->sli4_eq_clr_intr(fpeq); 8986 8987 /* Check to see if a mbox completion is pending */ 8988 8989 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8990 8991 /* 8992 * If a mbox completion is pending, process all the events on EQ 8993 * associated with the mbox completion queue (this could include 8994 * mailbox commands, async events, els commands, receive queue data 8995 * and fcp commands) 8996 */ 8997 8998 if (mbox_pending) 8999 /* process and rearm the EQ */ 9000 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 9001 else 9002 /* Always clear and re-arm the EQ */ 9003 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 9004 9005 return mbox_pending; 9006 9007 } 9008 9009 /** 9010 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 9011 * @phba: Pointer to HBA context object. 9012 * 9013 * This function is called from worker thread when a mailbox command times out. 9014 * The caller is not required to hold any locks. This function will reset the 9015 * HBA and recover all the pending commands. 9016 **/ 9017 void 9018 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 9019 { 9020 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 9021 MAILBOX_t *mb = NULL; 9022 9023 struct lpfc_sli *psli = &phba->sli; 9024 9025 /* If the mailbox completed, process the completion */ 9026 lpfc_sli4_process_missed_mbox_completions(phba); 9027 9028 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 9029 return; 9030 9031 if (pmbox != NULL) 9032 mb = &pmbox->u.mb; 9033 /* Check the pmbox pointer first. There is a race condition 9034 * between the mbox timeout handler getting executed in the 9035 * worklist and the mailbox actually completing. When this 9036 * race condition occurs, the mbox_active will be NULL. 9037 */ 9038 spin_lock_irq(&phba->hbalock); 9039 if (pmbox == NULL) { 9040 lpfc_printf_log(phba, KERN_WARNING, 9041 LOG_MBOX | LOG_SLI, 9042 "0353 Active Mailbox cleared - mailbox timeout " 9043 "exiting\n"); 9044 spin_unlock_irq(&phba->hbalock); 9045 return; 9046 } 9047 9048 /* Mbox cmd <mbxCommand> timeout */ 9049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9050 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 9051 mb->mbxCommand, 9052 phba->pport->port_state, 9053 phba->sli.sli_flag, 9054 phba->sli.mbox_active); 9055 spin_unlock_irq(&phba->hbalock); 9056 9057 /* Setting state unknown so lpfc_sli_abort_iocb_ring 9058 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 9059 * it to fail all outstanding SCSI IO. 9060 */ 9061 spin_lock_irq(&phba->pport->work_port_lock); 9062 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 9063 spin_unlock_irq(&phba->pport->work_port_lock); 9064 spin_lock_irq(&phba->hbalock); 9065 phba->link_state = LPFC_LINK_UNKNOWN; 9066 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 9067 spin_unlock_irq(&phba->hbalock); 9068 9069 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9070 "0345 Resetting board due to mailbox timeout\n"); 9071 9072 /* Reset the HBA device */ 9073 lpfc_reset_hba(phba); 9074 } 9075 9076 /** 9077 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 9078 * @phba: Pointer to HBA context object. 9079 * @pmbox: Pointer to mailbox object. 9080 * @flag: Flag indicating how the mailbox need to be processed. 9081 * 9082 * This function is called by discovery code and HBA management code 9083 * to submit a mailbox command to firmware with SLI-3 interface spec. This 9084 * function gets the hbalock to protect the data structures. 9085 * The mailbox command can be submitted in polling mode, in which case 9086 * this function will wait in a polling loop for the completion of the 9087 * mailbox. 9088 * If the mailbox is submitted in no_wait mode (not polling) the 9089 * function will submit the command and returns immediately without waiting 9090 * for the mailbox completion. The no_wait is supported only when HBA 9091 * is in SLI2/SLI3 mode - interrupts are enabled. 9092 * The SLI interface allows only one mailbox pending at a time. If the 9093 * mailbox is issued in polling mode and there is already a mailbox 9094 * pending, then the function will return an error. If the mailbox is issued 9095 * in NO_WAIT mode and there is a mailbox pending already, the function 9096 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 9097 * The sli layer owns the mailbox object until the completion of mailbox 9098 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 9099 * return codes the caller owns the mailbox command after the return of 9100 * the function. 9101 **/ 9102 static int 9103 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 9104 uint32_t flag) 9105 { 9106 MAILBOX_t *mbx; 9107 struct lpfc_sli *psli = &phba->sli; 9108 uint32_t status, evtctr; 9109 uint32_t ha_copy, hc_copy; 9110 int i; 9111 unsigned long timeout; 9112 unsigned long drvr_flag = 0; 9113 uint32_t word0, ldata; 9114 void __iomem *to_slim; 9115 int processing_queue = 0; 9116 9117 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9118 if (!pmbox) { 9119 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9120 /* processing mbox queue from intr_handler */ 9121 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9122 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9123 return MBX_SUCCESS; 9124 } 9125 processing_queue = 1; 9126 pmbox = lpfc_mbox_get(phba); 9127 if (!pmbox) { 9128 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9129 return MBX_SUCCESS; 9130 } 9131 } 9132 9133 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 9134 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 9135 if(!pmbox->vport) { 9136 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9137 lpfc_printf_log(phba, KERN_ERR, 9138 LOG_MBOX | LOG_VPORT, 9139 "1806 Mbox x%x failed. No vport\n", 9140 pmbox->u.mb.mbxCommand); 9141 dump_stack(); 9142 goto out_not_finished; 9143 } 9144 } 9145 9146 /* If the PCI channel is in offline state, do not post mbox. */ 9147 if (unlikely(pci_channel_offline(phba->pcidev))) { 9148 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9149 goto out_not_finished; 9150 } 9151 9152 /* If HBA has a deferred error attention, fail the iocb. */ 9153 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 9154 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9155 goto out_not_finished; 9156 } 9157 9158 psli = &phba->sli; 9159 9160 mbx = &pmbox->u.mb; 9161 status = MBX_SUCCESS; 9162 9163 if (phba->link_state == LPFC_HBA_ERROR) { 9164 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9165 9166 /* Mbox command <mbxCommand> cannot issue */ 9167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9168 "(%d):0311 Mailbox command x%x cannot " 9169 "issue Data: x%x x%x\n", 9170 pmbox->vport ? pmbox->vport->vpi : 0, 9171 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9172 goto out_not_finished; 9173 } 9174 9175 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 9176 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 9177 !(hc_copy & HC_MBINT_ENA)) { 9178 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9180 "(%d):2528 Mailbox command x%x cannot " 9181 "issue Data: x%x x%x\n", 9182 pmbox->vport ? pmbox->vport->vpi : 0, 9183 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 9184 goto out_not_finished; 9185 } 9186 } 9187 9188 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9189 /* Polling for a mbox command when another one is already active 9190 * is not allowed in SLI. Also, the driver must have established 9191 * SLI2 mode to queue and process multiple mbox commands. 9192 */ 9193 9194 if (flag & MBX_POLL) { 9195 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9196 9197 /* Mbox command <mbxCommand> cannot issue */ 9198 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9199 "(%d):2529 Mailbox command x%x " 9200 "cannot issue Data: x%x x%x\n", 9201 pmbox->vport ? pmbox->vport->vpi : 0, 9202 pmbox->u.mb.mbxCommand, 9203 psli->sli_flag, flag); 9204 goto out_not_finished; 9205 } 9206 9207 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 9208 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9209 /* Mbox command <mbxCommand> cannot issue */ 9210 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9211 "(%d):2530 Mailbox command x%x " 9212 "cannot issue Data: x%x x%x\n", 9213 pmbox->vport ? pmbox->vport->vpi : 0, 9214 pmbox->u.mb.mbxCommand, 9215 psli->sli_flag, flag); 9216 goto out_not_finished; 9217 } 9218 9219 /* Another mailbox command is still being processed, queue this 9220 * command to be processed later. 9221 */ 9222 lpfc_mbox_put(phba, pmbox); 9223 9224 /* Mbox cmd issue - BUSY */ 9225 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9226 "(%d):0308 Mbox cmd issue - BUSY Data: " 9227 "x%x x%x x%x x%x\n", 9228 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 9229 mbx->mbxCommand, 9230 phba->pport ? phba->pport->port_state : 0xff, 9231 psli->sli_flag, flag); 9232 9233 psli->slistat.mbox_busy++; 9234 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9235 9236 if (pmbox->vport) { 9237 lpfc_debugfs_disc_trc(pmbox->vport, 9238 LPFC_DISC_TRC_MBOX_VPORT, 9239 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 9240 (uint32_t)mbx->mbxCommand, 9241 mbx->un.varWords[0], mbx->un.varWords[1]); 9242 } 9243 else { 9244 lpfc_debugfs_disc_trc(phba->pport, 9245 LPFC_DISC_TRC_MBOX, 9246 "MBOX Bsy: cmd:x%x mb:x%x x%x", 9247 (uint32_t)mbx->mbxCommand, 9248 mbx->un.varWords[0], mbx->un.varWords[1]); 9249 } 9250 9251 return MBX_BUSY; 9252 } 9253 9254 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9255 9256 /* If we are not polling, we MUST be in SLI2 mode */ 9257 if (flag != MBX_POLL) { 9258 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 9259 (mbx->mbxCommand != MBX_KILL_BOARD)) { 9260 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9261 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9262 /* Mbox command <mbxCommand> cannot issue */ 9263 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9264 "(%d):2531 Mailbox command x%x " 9265 "cannot issue Data: x%x x%x\n", 9266 pmbox->vport ? pmbox->vport->vpi : 0, 9267 pmbox->u.mb.mbxCommand, 9268 psli->sli_flag, flag); 9269 goto out_not_finished; 9270 } 9271 /* timeout active mbox command */ 9272 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9273 1000); 9274 mod_timer(&psli->mbox_tmo, jiffies + timeout); 9275 } 9276 9277 /* Mailbox cmd <cmd> issue */ 9278 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9279 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 9280 "x%x\n", 9281 pmbox->vport ? pmbox->vport->vpi : 0, 9282 mbx->mbxCommand, 9283 phba->pport ? phba->pport->port_state : 0xff, 9284 psli->sli_flag, flag); 9285 9286 if (mbx->mbxCommand != MBX_HEARTBEAT) { 9287 if (pmbox->vport) { 9288 lpfc_debugfs_disc_trc(pmbox->vport, 9289 LPFC_DISC_TRC_MBOX_VPORT, 9290 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9291 (uint32_t)mbx->mbxCommand, 9292 mbx->un.varWords[0], mbx->un.varWords[1]); 9293 } 9294 else { 9295 lpfc_debugfs_disc_trc(phba->pport, 9296 LPFC_DISC_TRC_MBOX, 9297 "MBOX Send: cmd:x%x mb:x%x x%x", 9298 (uint32_t)mbx->mbxCommand, 9299 mbx->un.varWords[0], mbx->un.varWords[1]); 9300 } 9301 } 9302 9303 psli->slistat.mbox_cmd++; 9304 evtctr = psli->slistat.mbox_event; 9305 9306 /* next set own bit for the adapter and copy over command word */ 9307 mbx->mbxOwner = OWN_CHIP; 9308 9309 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9310 /* Populate mbox extension offset word. */ 9311 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 9312 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9313 = (uint8_t *)phba->mbox_ext 9314 - (uint8_t *)phba->mbox; 9315 } 9316 9317 /* Copy the mailbox extension data */ 9318 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 9319 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 9320 (uint8_t *)phba->mbox_ext, 9321 pmbox->in_ext_byte_len); 9322 } 9323 /* Copy command data to host SLIM area */ 9324 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 9325 } else { 9326 /* Populate mbox extension offset word. */ 9327 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 9328 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 9329 = MAILBOX_HBA_EXT_OFFSET; 9330 9331 /* Copy the mailbox extension data */ 9332 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 9333 lpfc_memcpy_to_slim(phba->MBslimaddr + 9334 MAILBOX_HBA_EXT_OFFSET, 9335 pmbox->ctx_buf, pmbox->in_ext_byte_len); 9336 9337 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9338 /* copy command data into host mbox for cmpl */ 9339 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 9340 MAILBOX_CMD_SIZE); 9341 9342 /* First copy mbox command data to HBA SLIM, skip past first 9343 word */ 9344 to_slim = phba->MBslimaddr + sizeof (uint32_t); 9345 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 9346 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 9347 9348 /* Next copy over first word, with mbxOwner set */ 9349 ldata = *((uint32_t *)mbx); 9350 to_slim = phba->MBslimaddr; 9351 writel(ldata, to_slim); 9352 readl(to_slim); /* flush */ 9353 9354 if (mbx->mbxCommand == MBX_CONFIG_PORT) 9355 /* switch over to host mailbox */ 9356 psli->sli_flag |= LPFC_SLI_ACTIVE; 9357 } 9358 9359 wmb(); 9360 9361 switch (flag) { 9362 case MBX_NOWAIT: 9363 /* Set up reference to mailbox command */ 9364 psli->mbox_active = pmbox; 9365 /* Interrupt board to do it */ 9366 writel(CA_MBATT, phba->CAregaddr); 9367 readl(phba->CAregaddr); /* flush */ 9368 /* Don't wait for it to finish, just return */ 9369 break; 9370 9371 case MBX_POLL: 9372 /* Set up null reference to mailbox command */ 9373 psli->mbox_active = NULL; 9374 /* Interrupt board to do it */ 9375 writel(CA_MBATT, phba->CAregaddr); 9376 readl(phba->CAregaddr); /* flush */ 9377 9378 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9379 /* First read mbox status word */ 9380 word0 = *((uint32_t *)phba->mbox); 9381 word0 = le32_to_cpu(word0); 9382 } else { 9383 /* First read mbox status word */ 9384 if (lpfc_readl(phba->MBslimaddr, &word0)) { 9385 spin_unlock_irqrestore(&phba->hbalock, 9386 drvr_flag); 9387 goto out_not_finished; 9388 } 9389 } 9390 9391 /* Read the HBA Host Attention Register */ 9392 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9393 spin_unlock_irqrestore(&phba->hbalock, 9394 drvr_flag); 9395 goto out_not_finished; 9396 } 9397 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 9398 1000) + jiffies; 9399 i = 0; 9400 /* Wait for command to complete */ 9401 while (((word0 & OWN_CHIP) == OWN_CHIP) || 9402 (!(ha_copy & HA_MBATT) && 9403 (phba->link_state > LPFC_WARM_START))) { 9404 if (time_after(jiffies, timeout)) { 9405 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9406 spin_unlock_irqrestore(&phba->hbalock, 9407 drvr_flag); 9408 goto out_not_finished; 9409 } 9410 9411 /* Check if we took a mbox interrupt while we were 9412 polling */ 9413 if (((word0 & OWN_CHIP) != OWN_CHIP) 9414 && (evtctr != psli->slistat.mbox_event)) 9415 break; 9416 9417 if (i++ > 10) { 9418 spin_unlock_irqrestore(&phba->hbalock, 9419 drvr_flag); 9420 msleep(1); 9421 spin_lock_irqsave(&phba->hbalock, drvr_flag); 9422 } 9423 9424 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9425 /* First copy command data */ 9426 word0 = *((uint32_t *)phba->mbox); 9427 word0 = le32_to_cpu(word0); 9428 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 9429 MAILBOX_t *slimmb; 9430 uint32_t slimword0; 9431 /* Check real SLIM for any errors */ 9432 slimword0 = readl(phba->MBslimaddr); 9433 slimmb = (MAILBOX_t *) & slimword0; 9434 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 9435 && slimmb->mbxStatus) { 9436 psli->sli_flag &= 9437 ~LPFC_SLI_ACTIVE; 9438 word0 = slimword0; 9439 } 9440 } 9441 } else { 9442 /* First copy command data */ 9443 word0 = readl(phba->MBslimaddr); 9444 } 9445 /* Read the HBA Host Attention Register */ 9446 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 9447 spin_unlock_irqrestore(&phba->hbalock, 9448 drvr_flag); 9449 goto out_not_finished; 9450 } 9451 } 9452 9453 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 9454 /* copy results back to user */ 9455 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 9456 MAILBOX_CMD_SIZE); 9457 /* Copy the mailbox extension data */ 9458 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9459 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 9460 pmbox->ctx_buf, 9461 pmbox->out_ext_byte_len); 9462 } 9463 } else { 9464 /* First copy command data */ 9465 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 9466 MAILBOX_CMD_SIZE); 9467 /* Copy the mailbox extension data */ 9468 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 9469 lpfc_memcpy_from_slim( 9470 pmbox->ctx_buf, 9471 phba->MBslimaddr + 9472 MAILBOX_HBA_EXT_OFFSET, 9473 pmbox->out_ext_byte_len); 9474 } 9475 } 9476 9477 writel(HA_MBATT, phba->HAregaddr); 9478 readl(phba->HAregaddr); /* flush */ 9479 9480 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9481 status = mbx->mbxStatus; 9482 } 9483 9484 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 9485 return status; 9486 9487 out_not_finished: 9488 if (processing_queue) { 9489 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 9490 lpfc_mbox_cmpl_put(phba, pmbox); 9491 } 9492 return MBX_NOT_FINISHED; 9493 } 9494 9495 /** 9496 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 9497 * @phba: Pointer to HBA context object. 9498 * 9499 * The function blocks the posting of SLI4 asynchronous mailbox commands from 9500 * the driver internal pending mailbox queue. It will then try to wait out the 9501 * possible outstanding mailbox command before return. 9502 * 9503 * Returns: 9504 * 0 - the outstanding mailbox command completed; otherwise, the wait for 9505 * the outstanding mailbox command timed out. 9506 **/ 9507 static int 9508 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 9509 { 9510 struct lpfc_sli *psli = &phba->sli; 9511 LPFC_MBOXQ_t *mboxq; 9512 int rc = 0; 9513 unsigned long timeout = 0; 9514 u32 sli_flag; 9515 u8 cmd, subsys, opcode; 9516 9517 /* Mark the asynchronous mailbox command posting as blocked */ 9518 spin_lock_irq(&phba->hbalock); 9519 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 9520 /* Determine how long we might wait for the active mailbox 9521 * command to be gracefully completed by firmware. 9522 */ 9523 if (phba->sli.mbox_active) 9524 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 9525 phba->sli.mbox_active) * 9526 1000) + jiffies; 9527 spin_unlock_irq(&phba->hbalock); 9528 9529 /* Make sure the mailbox is really active */ 9530 if (timeout) 9531 lpfc_sli4_process_missed_mbox_completions(phba); 9532 9533 /* Wait for the outstanding mailbox command to complete */ 9534 while (phba->sli.mbox_active) { 9535 /* Check active mailbox complete status every 2ms */ 9536 msleep(2); 9537 if (time_after(jiffies, timeout)) { 9538 /* Timeout, mark the outstanding cmd not complete */ 9539 9540 /* Sanity check sli.mbox_active has not completed or 9541 * cancelled from another context during last 2ms sleep, 9542 * so take hbalock to be sure before logging. 9543 */ 9544 spin_lock_irq(&phba->hbalock); 9545 if (phba->sli.mbox_active) { 9546 mboxq = phba->sli.mbox_active; 9547 cmd = mboxq->u.mb.mbxCommand; 9548 subsys = lpfc_sli_config_mbox_subsys_get(phba, 9549 mboxq); 9550 opcode = lpfc_sli_config_mbox_opcode_get(phba, 9551 mboxq); 9552 sli_flag = psli->sli_flag; 9553 spin_unlock_irq(&phba->hbalock); 9554 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9555 "2352 Mailbox command x%x " 9556 "(x%x/x%x) sli_flag x%x could " 9557 "not complete\n", 9558 cmd, subsys, opcode, 9559 sli_flag); 9560 } else { 9561 spin_unlock_irq(&phba->hbalock); 9562 } 9563 9564 rc = 1; 9565 break; 9566 } 9567 } 9568 9569 /* Can not cleanly block async mailbox command, fails it */ 9570 if (rc) { 9571 spin_lock_irq(&phba->hbalock); 9572 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9573 spin_unlock_irq(&phba->hbalock); 9574 } 9575 return rc; 9576 } 9577 9578 /** 9579 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 9580 * @phba: Pointer to HBA context object. 9581 * 9582 * The function unblocks and resume posting of SLI4 asynchronous mailbox 9583 * commands from the driver internal pending mailbox queue. It makes sure 9584 * that there is no outstanding mailbox command before resuming posting 9585 * asynchronous mailbox commands. If, for any reason, there is outstanding 9586 * mailbox command, it will try to wait it out before resuming asynchronous 9587 * mailbox command posting. 9588 **/ 9589 static void 9590 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 9591 { 9592 struct lpfc_sli *psli = &phba->sli; 9593 9594 spin_lock_irq(&phba->hbalock); 9595 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9596 /* Asynchronous mailbox posting is not blocked, do nothing */ 9597 spin_unlock_irq(&phba->hbalock); 9598 return; 9599 } 9600 9601 /* Outstanding synchronous mailbox command is guaranteed to be done, 9602 * successful or timeout, after timing-out the outstanding mailbox 9603 * command shall always be removed, so just unblock posting async 9604 * mailbox command and resume 9605 */ 9606 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 9607 spin_unlock_irq(&phba->hbalock); 9608 9609 /* wake up worker thread to post asynchronous mailbox command */ 9610 lpfc_worker_wake_up(phba); 9611 } 9612 9613 /** 9614 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 9615 * @phba: Pointer to HBA context object. 9616 * @mboxq: Pointer to mailbox object. 9617 * 9618 * The function waits for the bootstrap mailbox register ready bit from 9619 * port for twice the regular mailbox command timeout value. 9620 * 9621 * 0 - no timeout on waiting for bootstrap mailbox register ready. 9622 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 9623 **/ 9624 static int 9625 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9626 { 9627 uint32_t db_ready; 9628 unsigned long timeout; 9629 struct lpfc_register bmbx_reg; 9630 9631 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 9632 * 1000) + jiffies; 9633 9634 do { 9635 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 9636 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 9637 if (!db_ready) 9638 mdelay(2); 9639 9640 if (time_after(jiffies, timeout)) 9641 return MBXERR_ERROR; 9642 } while (!db_ready); 9643 9644 return 0; 9645 } 9646 9647 /** 9648 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 9649 * @phba: Pointer to HBA context object. 9650 * @mboxq: Pointer to mailbox object. 9651 * 9652 * The function posts a mailbox to the port. The mailbox is expected 9653 * to be comletely filled in and ready for the port to operate on it. 9654 * This routine executes a synchronous completion operation on the 9655 * mailbox by polling for its completion. 9656 * 9657 * The caller must not be holding any locks when calling this routine. 9658 * 9659 * Returns: 9660 * MBX_SUCCESS - mailbox posted successfully 9661 * Any of the MBX error values. 9662 **/ 9663 static int 9664 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 9665 { 9666 int rc = MBX_SUCCESS; 9667 unsigned long iflag; 9668 uint32_t mcqe_status; 9669 uint32_t mbx_cmnd; 9670 struct lpfc_sli *psli = &phba->sli; 9671 struct lpfc_mqe *mb = &mboxq->u.mqe; 9672 struct lpfc_bmbx_create *mbox_rgn; 9673 struct dma_address *dma_address; 9674 9675 /* 9676 * Only one mailbox can be active to the bootstrap mailbox region 9677 * at a time and there is no queueing provided. 9678 */ 9679 spin_lock_irqsave(&phba->hbalock, iflag); 9680 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9681 spin_unlock_irqrestore(&phba->hbalock, iflag); 9682 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9683 "(%d):2532 Mailbox command x%x (x%x/x%x) " 9684 "cannot issue Data: x%x x%x\n", 9685 mboxq->vport ? mboxq->vport->vpi : 0, 9686 mboxq->u.mb.mbxCommand, 9687 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9688 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9689 psli->sli_flag, MBX_POLL); 9690 return MBXERR_ERROR; 9691 } 9692 /* The server grabs the token and owns it until release */ 9693 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9694 phba->sli.mbox_active = mboxq; 9695 spin_unlock_irqrestore(&phba->hbalock, iflag); 9696 9697 /* wait for bootstrap mbox register for readyness */ 9698 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9699 if (rc) 9700 goto exit; 9701 /* 9702 * Initialize the bootstrap memory region to avoid stale data areas 9703 * in the mailbox post. Then copy the caller's mailbox contents to 9704 * the bmbx mailbox region. 9705 */ 9706 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 9707 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 9708 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 9709 sizeof(struct lpfc_mqe)); 9710 9711 /* Post the high mailbox dma address to the port and wait for ready. */ 9712 dma_address = &phba->sli4_hba.bmbx.dma_address; 9713 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9714 9715 /* wait for bootstrap mbox register for hi-address write done */ 9716 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9717 if (rc) 9718 goto exit; 9719 9720 /* Post the low mailbox dma address to the port. */ 9721 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9722 9723 /* wait for bootstrap mbox register for low address write done */ 9724 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9725 if (rc) 9726 goto exit; 9727 9728 /* 9729 * Read the CQ to ensure the mailbox has completed. 9730 * If so, update the mailbox status so that the upper layers 9731 * can complete the request normally. 9732 */ 9733 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9734 sizeof(struct lpfc_mqe)); 9735 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9736 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9737 sizeof(struct lpfc_mcqe)); 9738 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9739 /* 9740 * When the CQE status indicates a failure and the mailbox status 9741 * indicates success then copy the CQE status into the mailbox status 9742 * (and prefix it with x4000). 9743 */ 9744 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9745 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9746 bf_set(lpfc_mqe_status, mb, 9747 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9748 rc = MBXERR_ERROR; 9749 } else 9750 lpfc_sli4_swap_str(phba, mboxq); 9751 9752 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9753 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9754 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9755 " x%x x%x CQ: x%x x%x x%x x%x\n", 9756 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9757 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9758 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9759 bf_get(lpfc_mqe_status, mb), 9760 mb->un.mb_words[0], mb->un.mb_words[1], 9761 mb->un.mb_words[2], mb->un.mb_words[3], 9762 mb->un.mb_words[4], mb->un.mb_words[5], 9763 mb->un.mb_words[6], mb->un.mb_words[7], 9764 mb->un.mb_words[8], mb->un.mb_words[9], 9765 mb->un.mb_words[10], mb->un.mb_words[11], 9766 mb->un.mb_words[12], mboxq->mcqe.word0, 9767 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9768 mboxq->mcqe.trailer); 9769 exit: 9770 /* We are holding the token, no needed for lock when release */ 9771 spin_lock_irqsave(&phba->hbalock, iflag); 9772 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9773 phba->sli.mbox_active = NULL; 9774 spin_unlock_irqrestore(&phba->hbalock, iflag); 9775 return rc; 9776 } 9777 9778 /** 9779 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9780 * @phba: Pointer to HBA context object. 9781 * @mboxq: Pointer to mailbox object. 9782 * @flag: Flag indicating how the mailbox need to be processed. 9783 * 9784 * This function is called by discovery code and HBA management code to submit 9785 * a mailbox command to firmware with SLI-4 interface spec. 9786 * 9787 * Return codes the caller owns the mailbox command after the return of the 9788 * function. 9789 **/ 9790 static int 9791 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9792 uint32_t flag) 9793 { 9794 struct lpfc_sli *psli = &phba->sli; 9795 unsigned long iflags; 9796 int rc; 9797 9798 /* dump from issue mailbox command if setup */ 9799 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9800 9801 rc = lpfc_mbox_dev_check(phba); 9802 if (unlikely(rc)) { 9803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9804 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9805 "cannot issue Data: x%x x%x\n", 9806 mboxq->vport ? mboxq->vport->vpi : 0, 9807 mboxq->u.mb.mbxCommand, 9808 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9809 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9810 psli->sli_flag, flag); 9811 goto out_not_finished; 9812 } 9813 9814 /* Detect polling mode and jump to a handler */ 9815 if (!phba->sli4_hba.intr_enable) { 9816 if (flag == MBX_POLL) 9817 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9818 else 9819 rc = -EIO; 9820 if (rc != MBX_SUCCESS) 9821 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9822 "(%d):2541 Mailbox command x%x " 9823 "(x%x/x%x) failure: " 9824 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9825 "Data: x%x x%x\n", 9826 mboxq->vport ? mboxq->vport->vpi : 0, 9827 mboxq->u.mb.mbxCommand, 9828 lpfc_sli_config_mbox_subsys_get(phba, 9829 mboxq), 9830 lpfc_sli_config_mbox_opcode_get(phba, 9831 mboxq), 9832 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9833 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9834 bf_get(lpfc_mcqe_ext_status, 9835 &mboxq->mcqe), 9836 psli->sli_flag, flag); 9837 return rc; 9838 } else if (flag == MBX_POLL) { 9839 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9840 "(%d):2542 Try to issue mailbox command " 9841 "x%x (x%x/x%x) synchronously ahead of async " 9842 "mailbox command queue: x%x x%x\n", 9843 mboxq->vport ? mboxq->vport->vpi : 0, 9844 mboxq->u.mb.mbxCommand, 9845 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9846 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9847 psli->sli_flag, flag); 9848 /* Try to block the asynchronous mailbox posting */ 9849 rc = lpfc_sli4_async_mbox_block(phba); 9850 if (!rc) { 9851 /* Successfully blocked, now issue sync mbox cmd */ 9852 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9853 if (rc != MBX_SUCCESS) 9854 lpfc_printf_log(phba, KERN_WARNING, 9855 LOG_MBOX | LOG_SLI, 9856 "(%d):2597 Sync Mailbox command " 9857 "x%x (x%x/x%x) failure: " 9858 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9859 "Data: x%x x%x\n", 9860 mboxq->vport ? mboxq->vport->vpi : 0, 9861 mboxq->u.mb.mbxCommand, 9862 lpfc_sli_config_mbox_subsys_get(phba, 9863 mboxq), 9864 lpfc_sli_config_mbox_opcode_get(phba, 9865 mboxq), 9866 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9867 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9868 bf_get(lpfc_mcqe_ext_status, 9869 &mboxq->mcqe), 9870 psli->sli_flag, flag); 9871 /* Unblock the async mailbox posting afterward */ 9872 lpfc_sli4_async_mbox_unblock(phba); 9873 } 9874 return rc; 9875 } 9876 9877 /* Now, interrupt mode asynchronous mailbox command */ 9878 rc = lpfc_mbox_cmd_check(phba, mboxq); 9879 if (rc) { 9880 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9881 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9882 "cannot issue Data: x%x x%x\n", 9883 mboxq->vport ? mboxq->vport->vpi : 0, 9884 mboxq->u.mb.mbxCommand, 9885 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9886 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9887 psli->sli_flag, flag); 9888 goto out_not_finished; 9889 } 9890 9891 /* Put the mailbox command to the driver internal FIFO */ 9892 psli->slistat.mbox_busy++; 9893 spin_lock_irqsave(&phba->hbalock, iflags); 9894 lpfc_mbox_put(phba, mboxq); 9895 spin_unlock_irqrestore(&phba->hbalock, iflags); 9896 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9897 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9898 "x%x (x%x/x%x) x%x x%x x%x\n", 9899 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9900 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9901 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9902 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9903 phba->pport->port_state, 9904 psli->sli_flag, MBX_NOWAIT); 9905 /* Wake up worker thread to transport mailbox command from head */ 9906 lpfc_worker_wake_up(phba); 9907 9908 return MBX_BUSY; 9909 9910 out_not_finished: 9911 return MBX_NOT_FINISHED; 9912 } 9913 9914 /** 9915 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9916 * @phba: Pointer to HBA context object. 9917 * 9918 * This function is called by worker thread to send a mailbox command to 9919 * SLI4 HBA firmware. 9920 * 9921 **/ 9922 int 9923 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9924 { 9925 struct lpfc_sli *psli = &phba->sli; 9926 LPFC_MBOXQ_t *mboxq; 9927 int rc = MBX_SUCCESS; 9928 unsigned long iflags; 9929 struct lpfc_mqe *mqe; 9930 uint32_t mbx_cmnd; 9931 9932 /* Check interrupt mode before post async mailbox command */ 9933 if (unlikely(!phba->sli4_hba.intr_enable)) 9934 return MBX_NOT_FINISHED; 9935 9936 /* Check for mailbox command service token */ 9937 spin_lock_irqsave(&phba->hbalock, iflags); 9938 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9939 spin_unlock_irqrestore(&phba->hbalock, iflags); 9940 return MBX_NOT_FINISHED; 9941 } 9942 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9943 spin_unlock_irqrestore(&phba->hbalock, iflags); 9944 return MBX_NOT_FINISHED; 9945 } 9946 if (unlikely(phba->sli.mbox_active)) { 9947 spin_unlock_irqrestore(&phba->hbalock, iflags); 9948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9949 "0384 There is pending active mailbox cmd\n"); 9950 return MBX_NOT_FINISHED; 9951 } 9952 /* Take the mailbox command service token */ 9953 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9954 9955 /* Get the next mailbox command from head of queue */ 9956 mboxq = lpfc_mbox_get(phba); 9957 9958 /* If no more mailbox command waiting for post, we're done */ 9959 if (!mboxq) { 9960 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9961 spin_unlock_irqrestore(&phba->hbalock, iflags); 9962 return MBX_SUCCESS; 9963 } 9964 phba->sli.mbox_active = mboxq; 9965 spin_unlock_irqrestore(&phba->hbalock, iflags); 9966 9967 /* Check device readiness for posting mailbox command */ 9968 rc = lpfc_mbox_dev_check(phba); 9969 if (unlikely(rc)) 9970 /* Driver clean routine will clean up pending mailbox */ 9971 goto out_not_finished; 9972 9973 /* Prepare the mbox command to be posted */ 9974 mqe = &mboxq->u.mqe; 9975 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9976 9977 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9978 mod_timer(&psli->mbox_tmo, (jiffies + 9979 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9980 9981 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9982 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9983 "x%x x%x\n", 9984 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9985 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9986 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9987 phba->pport->port_state, psli->sli_flag); 9988 9989 if (mbx_cmnd != MBX_HEARTBEAT) { 9990 if (mboxq->vport) { 9991 lpfc_debugfs_disc_trc(mboxq->vport, 9992 LPFC_DISC_TRC_MBOX_VPORT, 9993 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9994 mbx_cmnd, mqe->un.mb_words[0], 9995 mqe->un.mb_words[1]); 9996 } else { 9997 lpfc_debugfs_disc_trc(phba->pport, 9998 LPFC_DISC_TRC_MBOX, 9999 "MBOX Send: cmd:x%x mb:x%x x%x", 10000 mbx_cmnd, mqe->un.mb_words[0], 10001 mqe->un.mb_words[1]); 10002 } 10003 } 10004 psli->slistat.mbox_cmd++; 10005 10006 /* Post the mailbox command to the port */ 10007 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 10008 if (rc != MBX_SUCCESS) { 10009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10010 "(%d):2533 Mailbox command x%x (x%x/x%x) " 10011 "cannot issue Data: x%x x%x\n", 10012 mboxq->vport ? mboxq->vport->vpi : 0, 10013 mboxq->u.mb.mbxCommand, 10014 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 10015 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 10016 psli->sli_flag, MBX_NOWAIT); 10017 goto out_not_finished; 10018 } 10019 10020 return rc; 10021 10022 out_not_finished: 10023 spin_lock_irqsave(&phba->hbalock, iflags); 10024 if (phba->sli.mbox_active) { 10025 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 10026 __lpfc_mbox_cmpl_put(phba, mboxq); 10027 /* Release the token */ 10028 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10029 phba->sli.mbox_active = NULL; 10030 } 10031 spin_unlock_irqrestore(&phba->hbalock, iflags); 10032 10033 return MBX_NOT_FINISHED; 10034 } 10035 10036 /** 10037 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 10038 * @phba: Pointer to HBA context object. 10039 * @pmbox: Pointer to mailbox object. 10040 * @flag: Flag indicating how the mailbox need to be processed. 10041 * 10042 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 10043 * the API jump table function pointer from the lpfc_hba struct. 10044 * 10045 * Return codes the caller owns the mailbox command after the return of the 10046 * function. 10047 **/ 10048 int 10049 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 10050 { 10051 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 10052 } 10053 10054 /** 10055 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 10056 * @phba: The hba struct for which this call is being executed. 10057 * @dev_grp: The HBA PCI-Device group number. 10058 * 10059 * This routine sets up the mbox interface API function jump table in @phba 10060 * struct. 10061 * Returns: 0 - success, -ENODEV - failure. 10062 **/ 10063 int 10064 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10065 { 10066 10067 switch (dev_grp) { 10068 case LPFC_PCI_DEV_LP: 10069 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 10070 phba->lpfc_sli_handle_slow_ring_event = 10071 lpfc_sli_handle_slow_ring_event_s3; 10072 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 10073 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 10074 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 10075 break; 10076 case LPFC_PCI_DEV_OC: 10077 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 10078 phba->lpfc_sli_handle_slow_ring_event = 10079 lpfc_sli_handle_slow_ring_event_s4; 10080 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 10081 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 10082 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 10083 break; 10084 default: 10085 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10086 "1420 Invalid HBA PCI-device group: 0x%x\n", 10087 dev_grp); 10088 return -ENODEV; 10089 } 10090 return 0; 10091 } 10092 10093 /** 10094 * __lpfc_sli_ringtx_put - Add an iocb to the txq 10095 * @phba: Pointer to HBA context object. 10096 * @pring: Pointer to driver SLI ring object. 10097 * @piocb: Pointer to address of newly added command iocb. 10098 * 10099 * This function is called with hbalock held for SLI3 ports or 10100 * the ring lock held for SLI4 ports to add a command 10101 * iocb to the txq when SLI layer cannot submit the command iocb 10102 * to the ring. 10103 **/ 10104 void 10105 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10106 struct lpfc_iocbq *piocb) 10107 { 10108 if (phba->sli_rev == LPFC_SLI_REV4) 10109 lockdep_assert_held(&pring->ring_lock); 10110 else 10111 lockdep_assert_held(&phba->hbalock); 10112 /* Insert the caller's iocb in the txq tail for later processing. */ 10113 list_add_tail(&piocb->list, &pring->txq); 10114 } 10115 10116 /** 10117 * lpfc_sli_next_iocb - Get the next iocb in the txq 10118 * @phba: Pointer to HBA context object. 10119 * @pring: Pointer to driver SLI ring object. 10120 * @piocb: Pointer to address of newly added command iocb. 10121 * 10122 * This function is called with hbalock held before a new 10123 * iocb is submitted to the firmware. This function checks 10124 * txq to flush the iocbs in txq to Firmware before 10125 * submitting new iocbs to the Firmware. 10126 * If there are iocbs in the txq which need to be submitted 10127 * to firmware, lpfc_sli_next_iocb returns the first element 10128 * of the txq after dequeuing it from txq. 10129 * If there is no iocb in the txq then the function will return 10130 * *piocb and *piocb is set to NULL. Caller needs to check 10131 * *piocb to find if there are more commands in the txq. 10132 **/ 10133 static struct lpfc_iocbq * 10134 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10135 struct lpfc_iocbq **piocb) 10136 { 10137 struct lpfc_iocbq * nextiocb; 10138 10139 lockdep_assert_held(&phba->hbalock); 10140 10141 nextiocb = lpfc_sli_ringtx_get(phba, pring); 10142 if (!nextiocb) { 10143 nextiocb = *piocb; 10144 *piocb = NULL; 10145 } 10146 10147 return nextiocb; 10148 } 10149 10150 /** 10151 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 10152 * @phba: Pointer to HBA context object. 10153 * @ring_number: SLI ring number to issue iocb on. 10154 * @piocb: Pointer to command iocb. 10155 * @flag: Flag indicating if this command can be put into txq. 10156 * 10157 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 10158 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 10159 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 10160 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 10161 * this function allows only iocbs for posting buffers. This function finds 10162 * next available slot in the command ring and posts the command to the 10163 * available slot and writes the port attention register to request HBA start 10164 * processing new iocb. If there is no slot available in the ring and 10165 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 10166 * the function returns IOCB_BUSY. 10167 * 10168 * This function is called with hbalock held. The function will return success 10169 * after it successfully submit the iocb to firmware or after adding to the 10170 * txq. 10171 **/ 10172 static int 10173 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 10174 struct lpfc_iocbq *piocb, uint32_t flag) 10175 { 10176 struct lpfc_iocbq *nextiocb; 10177 IOCB_t *iocb; 10178 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 10179 10180 lockdep_assert_held(&phba->hbalock); 10181 10182 if (piocb->cmd_cmpl && (!piocb->vport) && 10183 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 10184 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 10185 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10186 "1807 IOCB x%x failed. No vport\n", 10187 piocb->iocb.ulpCommand); 10188 dump_stack(); 10189 return IOCB_ERROR; 10190 } 10191 10192 10193 /* If the PCI channel is in offline state, do not post iocbs. */ 10194 if (unlikely(pci_channel_offline(phba->pcidev))) 10195 return IOCB_ERROR; 10196 10197 /* If HBA has a deferred error attention, fail the iocb. */ 10198 if (unlikely(phba->hba_flag & DEFER_ERATT)) 10199 return IOCB_ERROR; 10200 10201 /* 10202 * We should never get an IOCB if we are in a < LINK_DOWN state 10203 */ 10204 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 10205 return IOCB_ERROR; 10206 10207 /* 10208 * Check to see if we are blocking IOCB processing because of a 10209 * outstanding event. 10210 */ 10211 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 10212 goto iocb_busy; 10213 10214 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 10215 /* 10216 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 10217 * can be issued if the link is not up. 10218 */ 10219 switch (piocb->iocb.ulpCommand) { 10220 case CMD_GEN_REQUEST64_CR: 10221 case CMD_GEN_REQUEST64_CX: 10222 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 10223 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 10224 FC_RCTL_DD_UNSOL_CMD) || 10225 (piocb->iocb.un.genreq64.w5.hcsw.Type != 10226 MENLO_TRANSPORT_TYPE)) 10227 10228 goto iocb_busy; 10229 break; 10230 case CMD_QUE_RING_BUF_CN: 10231 case CMD_QUE_RING_BUF64_CN: 10232 /* 10233 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 10234 * completion, cmd_cmpl MUST be 0. 10235 */ 10236 if (piocb->cmd_cmpl) 10237 piocb->cmd_cmpl = NULL; 10238 fallthrough; 10239 case CMD_CREATE_XRI_CR: 10240 case CMD_CLOSE_XRI_CN: 10241 case CMD_CLOSE_XRI_CX: 10242 break; 10243 default: 10244 goto iocb_busy; 10245 } 10246 10247 /* 10248 * For FCP commands, we must be in a state where we can process link 10249 * attention events. 10250 */ 10251 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 10252 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 10253 goto iocb_busy; 10254 } 10255 10256 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 10257 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 10258 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 10259 10260 if (iocb) 10261 lpfc_sli_update_ring(phba, pring); 10262 else 10263 lpfc_sli_update_full_ring(phba, pring); 10264 10265 if (!piocb) 10266 return IOCB_SUCCESS; 10267 10268 goto out_busy; 10269 10270 iocb_busy: 10271 pring->stats.iocb_cmd_delay++; 10272 10273 out_busy: 10274 10275 if (!(flag & SLI_IOCB_RET_IOCB)) { 10276 __lpfc_sli_ringtx_put(phba, pring, piocb); 10277 return IOCB_SUCCESS; 10278 } 10279 10280 return IOCB_BUSY; 10281 } 10282 10283 /** 10284 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10285 * @phba: Pointer to HBA context object. 10286 * @ring_number: SLI ring number to issue wqe on. 10287 * @piocb: Pointer to command iocb. 10288 * @flag: Flag indicating if this command can be put into txq. 10289 * 10290 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10291 * send an iocb command to an HBA with SLI-4 interface spec. 10292 * 10293 * This function takes the hbalock before invoking the lockless version. 10294 * The function will return success after it successfully submit the wqe to 10295 * firmware or after adding to the txq. 10296 **/ 10297 static int 10298 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10299 struct lpfc_iocbq *piocb, uint32_t flag) 10300 { 10301 unsigned long iflags; 10302 int rc; 10303 10304 spin_lock_irqsave(&phba->hbalock, iflags); 10305 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10306 spin_unlock_irqrestore(&phba->hbalock, iflags); 10307 10308 return rc; 10309 } 10310 10311 /** 10312 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10313 * @phba: Pointer to HBA context object. 10314 * @ring_number: SLI ring number to issue wqe on. 10315 * @piocb: Pointer to command iocb. 10316 * @flag: Flag indicating if this command can be put into txq. 10317 * 10318 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10319 * an wqe command to an HBA with SLI-4 interface spec. 10320 * 10321 * This function is a lockless version. The function will return success 10322 * after it successfully submit the wqe to firmware or after adding to the 10323 * txq. 10324 **/ 10325 static int 10326 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10327 struct lpfc_iocbq *piocb, uint32_t flag) 10328 { 10329 int rc; 10330 struct lpfc_io_buf *lpfc_cmd = piocb->io_buf; 10331 10332 lpfc_prep_embed_io(phba, lpfc_cmd); 10333 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10334 return rc; 10335 } 10336 10337 void 10338 lpfc_prep_embed_io(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_cmd) 10339 { 10340 struct lpfc_iocbq *piocb = &lpfc_cmd->cur_iocbq; 10341 union lpfc_wqe128 *wqe = &lpfc_cmd->cur_iocbq.wqe; 10342 struct sli4_sge *sgl; 10343 10344 /* 128 byte wqe support here */ 10345 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10346 10347 if (phba->fcp_embed_io) { 10348 struct fcp_cmnd *fcp_cmnd; 10349 u32 *ptr; 10350 10351 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10352 10353 /* Word 0-2 - FCP_CMND */ 10354 wqe->generic.bde.tus.f.bdeFlags = 10355 BUFF_TYPE_BDE_IMMED; 10356 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10357 wqe->generic.bde.addrHigh = 0; 10358 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10359 10360 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10361 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10362 10363 /* Word 22-29 FCP CMND Payload */ 10364 ptr = &wqe->words[22]; 10365 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10366 } else { 10367 /* Word 0-2 - Inline BDE */ 10368 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10369 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10370 wqe->generic.bde.addrHigh = sgl->addr_hi; 10371 wqe->generic.bde.addrLow = sgl->addr_lo; 10372 10373 /* Word 10 */ 10374 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10375 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10376 } 10377 10378 /* add the VMID tags as per switch response */ 10379 if (unlikely(piocb->cmd_flag & LPFC_IO_VMID)) { 10380 if (phba->pport->vmid_flag & LPFC_VMID_TYPE_PRIO) { 10381 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10382 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10383 (piocb->vmid_tag.cs_ctl_vmid)); 10384 } else if (phba->cfg_vmid_app_header) { 10385 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10386 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10387 wqe->words[31] = piocb->vmid_tag.app_id; 10388 } 10389 } 10390 } 10391 10392 /** 10393 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10394 * @phba: Pointer to HBA context object. 10395 * @ring_number: SLI ring number to issue iocb on. 10396 * @piocb: Pointer to command iocb. 10397 * @flag: Flag indicating if this command can be put into txq. 10398 * 10399 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10400 * an iocb command to an HBA with SLI-4 interface spec. 10401 * 10402 * This function is called with ringlock held. The function will return success 10403 * after it successfully submit the iocb to firmware or after adding to the 10404 * txq. 10405 **/ 10406 static int 10407 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10408 struct lpfc_iocbq *piocb, uint32_t flag) 10409 { 10410 struct lpfc_sglq *sglq; 10411 union lpfc_wqe128 *wqe; 10412 struct lpfc_queue *wq; 10413 struct lpfc_sli_ring *pring; 10414 u32 ulp_command = get_job_cmnd(phba, piocb); 10415 10416 /* Get the WQ */ 10417 if ((piocb->cmd_flag & LPFC_IO_FCP) || 10418 (piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10419 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10420 } else { 10421 wq = phba->sli4_hba.els_wq; 10422 } 10423 10424 /* Get corresponding ring */ 10425 pring = wq->pring; 10426 10427 /* 10428 * The WQE can be either 64 or 128 bytes, 10429 */ 10430 10431 lockdep_assert_held(&pring->ring_lock); 10432 wqe = &piocb->wqe; 10433 if (piocb->sli4_xritag == NO_XRI) { 10434 if (ulp_command == CMD_ABORT_XRI_CX) 10435 sglq = NULL; 10436 else { 10437 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10438 if (!sglq) { 10439 if (!(flag & SLI_IOCB_RET_IOCB)) { 10440 __lpfc_sli_ringtx_put(phba, 10441 pring, 10442 piocb); 10443 return IOCB_SUCCESS; 10444 } else { 10445 return IOCB_BUSY; 10446 } 10447 } 10448 } 10449 } else if (piocb->cmd_flag & LPFC_IO_FCP) { 10450 /* These IO's already have an XRI and a mapped sgl. */ 10451 sglq = NULL; 10452 } 10453 else { 10454 /* 10455 * This is a continuation of a commandi,(CX) so this 10456 * sglq is on the active list 10457 */ 10458 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10459 if (!sglq) 10460 return IOCB_ERROR; 10461 } 10462 10463 if (sglq) { 10464 piocb->sli4_lxritag = sglq->sli4_lxritag; 10465 piocb->sli4_xritag = sglq->sli4_xritag; 10466 10467 /* ABTS sent by initiator to CT exchange, the 10468 * RX_ID field will be filled with the newly 10469 * allocated responder XRI. 10470 */ 10471 if (ulp_command == CMD_XMIT_BLS_RSP64_CX && 10472 piocb->abort_bls == LPFC_ABTS_UNSOL_INT) 10473 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10474 piocb->sli4_xritag); 10475 10476 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, 10477 piocb->sli4_xritag); 10478 10479 if (lpfc_wqe_bpl2sgl(phba, piocb, sglq) == NO_XRI) 10480 return IOCB_ERROR; 10481 } 10482 10483 if (lpfc_sli4_wq_put(wq, wqe)) 10484 return IOCB_ERROR; 10485 10486 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10487 10488 return 0; 10489 } 10490 10491 /* 10492 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10493 * 10494 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10495 * or IOCB for sli-3 function. 10496 * pointer from the lpfc_hba struct. 10497 * 10498 * Return codes: 10499 * IOCB_ERROR - Error 10500 * IOCB_SUCCESS - Success 10501 * IOCB_BUSY - Busy 10502 **/ 10503 int 10504 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10505 struct lpfc_iocbq *piocb, uint32_t flag) 10506 { 10507 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10508 } 10509 10510 /* 10511 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10512 * 10513 * This routine wraps the actual lockless version for issusing IOCB function 10514 * pointer from the lpfc_hba struct. 10515 * 10516 * Return codes: 10517 * IOCB_ERROR - Error 10518 * IOCB_SUCCESS - Success 10519 * IOCB_BUSY - Busy 10520 **/ 10521 int 10522 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10523 struct lpfc_iocbq *piocb, uint32_t flag) 10524 { 10525 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10526 } 10527 10528 static void 10529 __lpfc_sli_prep_els_req_rsp_s3(struct lpfc_iocbq *cmdiocbq, 10530 struct lpfc_vport *vport, 10531 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10532 u32 elscmd, u8 tmo, u8 expect_rsp) 10533 { 10534 struct lpfc_hba *phba = vport->phba; 10535 IOCB_t *cmd; 10536 10537 cmd = &cmdiocbq->iocb; 10538 memset(cmd, 0, sizeof(*cmd)); 10539 10540 cmd->un.elsreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10541 cmd->un.elsreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10542 cmd->un.elsreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10543 10544 if (expect_rsp) { 10545 cmd->un.elsreq64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); 10546 cmd->un.elsreq64.remoteID = did; /* DID */ 10547 cmd->ulpCommand = CMD_ELS_REQUEST64_CR; 10548 cmd->ulpTimeout = tmo; 10549 } else { 10550 cmd->un.elsreq64.bdl.bdeSize = sizeof(struct ulp_bde64); 10551 cmd->un.genreq64.xmit_els_remoteID = did; /* DID */ 10552 cmd->ulpCommand = CMD_XMIT_ELS_RSP64_CX; 10553 } 10554 cmd->ulpBdeCount = 1; 10555 cmd->ulpLe = 1; 10556 cmd->ulpClass = CLASS3; 10557 10558 /* If we have NPIV enabled, we want to send ELS traffic by VPI. */ 10559 if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { 10560 if (expect_rsp) { 10561 cmd->un.elsreq64.myID = vport->fc_myDID; 10562 10563 /* For ELS_REQUEST64_CR, use the VPI by default */ 10564 cmd->ulpContext = phba->vpi_ids[vport->vpi]; 10565 } 10566 10567 cmd->ulpCt_h = 0; 10568 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10569 if (elscmd == ELS_CMD_ECHO) 10570 cmd->ulpCt_l = 0; /* context = invalid RPI */ 10571 else 10572 cmd->ulpCt_l = 1; /* context = VPI */ 10573 } 10574 } 10575 10576 static void 10577 __lpfc_sli_prep_els_req_rsp_s4(struct lpfc_iocbq *cmdiocbq, 10578 struct lpfc_vport *vport, 10579 struct lpfc_dmabuf *bmp, u16 cmd_size, u32 did, 10580 u32 elscmd, u8 tmo, u8 expect_rsp) 10581 { 10582 struct lpfc_hba *phba = vport->phba; 10583 union lpfc_wqe128 *wqe; 10584 struct ulp_bde64_le *bde; 10585 u8 els_id; 10586 10587 wqe = &cmdiocbq->wqe; 10588 memset(wqe, 0, sizeof(*wqe)); 10589 10590 /* Word 0 - 2 BDE */ 10591 bde = (struct ulp_bde64_le *)&wqe->generic.bde; 10592 bde->addr_low = cpu_to_le32(putPaddrLow(bmp->phys)); 10593 bde->addr_high = cpu_to_le32(putPaddrHigh(bmp->phys)); 10594 bde->type_size = cpu_to_le32(cmd_size); 10595 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10596 10597 if (expect_rsp) { 10598 bf_set(wqe_cmnd, &wqe->els_req.wqe_com, CMD_ELS_REQUEST64_WQE); 10599 10600 /* Transfer length */ 10601 wqe->els_req.payload_len = cmd_size; 10602 wqe->els_req.max_response_payload_len = FCELSSIZE; 10603 10604 /* DID */ 10605 bf_set(wqe_els_did, &wqe->els_req.wqe_dest, did); 10606 10607 /* Word 11 - ELS_ID */ 10608 switch (elscmd) { 10609 case ELS_CMD_PLOGI: 10610 els_id = LPFC_ELS_ID_PLOGI; 10611 break; 10612 case ELS_CMD_FLOGI: 10613 els_id = LPFC_ELS_ID_FLOGI; 10614 break; 10615 case ELS_CMD_LOGO: 10616 els_id = LPFC_ELS_ID_LOGO; 10617 break; 10618 case ELS_CMD_FDISC: 10619 if (!vport->fc_myDID) { 10620 els_id = LPFC_ELS_ID_FDISC; 10621 break; 10622 } 10623 fallthrough; 10624 default: 10625 els_id = LPFC_ELS_ID_DEFAULT; 10626 break; 10627 } 10628 10629 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 10630 } else { 10631 /* DID */ 10632 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, did); 10633 10634 /* Transfer length */ 10635 wqe->xmit_els_rsp.response_payload_len = cmd_size; 10636 10637 bf_set(wqe_cmnd, &wqe->xmit_els_rsp.wqe_com, 10638 CMD_XMIT_ELS_RSP64_WQE); 10639 } 10640 10641 bf_set(wqe_tmo, &wqe->generic.wqe_com, tmo); 10642 bf_set(wqe_reqtag, &wqe->generic.wqe_com, cmdiocbq->iotag); 10643 bf_set(wqe_class, &wqe->generic.wqe_com, CLASS3); 10644 10645 /* If we have NPIV enabled, we want to send ELS traffic by VPI. 10646 * For SLI4, since the driver controls VPIs we also want to include 10647 * all ELS pt2pt protocol traffic as well. 10648 */ 10649 if ((phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) || 10650 (vport->fc_flag & FC_PT2PT)) { 10651 if (expect_rsp) { 10652 bf_set(els_req64_sid, &wqe->els_req, vport->fc_myDID); 10653 10654 /* For ELS_REQUEST64_WQE, use the VPI by default */ 10655 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 10656 phba->vpi_ids[vport->vpi]); 10657 } 10658 10659 /* The CT field must be 0=INVALID_RPI for the ECHO cmd */ 10660 if (elscmd == ELS_CMD_ECHO) 10661 bf_set(wqe_ct, &wqe->generic.wqe_com, 0); 10662 else 10663 bf_set(wqe_ct, &wqe->generic.wqe_com, 1); 10664 } 10665 } 10666 10667 void 10668 lpfc_sli_prep_els_req_rsp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10669 struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, 10670 u16 cmd_size, u32 did, u32 elscmd, u8 tmo, 10671 u8 expect_rsp) 10672 { 10673 phba->__lpfc_sli_prep_els_req_rsp(cmdiocbq, vport, bmp, cmd_size, did, 10674 elscmd, tmo, expect_rsp); 10675 } 10676 10677 static void 10678 __lpfc_sli_prep_gen_req_s3(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10679 u16 rpi, u32 num_entry, u8 tmo) 10680 { 10681 IOCB_t *cmd; 10682 10683 cmd = &cmdiocbq->iocb; 10684 memset(cmd, 0, sizeof(*cmd)); 10685 10686 cmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10687 cmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); 10688 cmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10689 cmd->un.genreq64.bdl.bdeSize = num_entry * sizeof(struct ulp_bde64); 10690 10691 cmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; 10692 cmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; 10693 cmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); 10694 10695 cmd->ulpContext = rpi; 10696 cmd->ulpClass = CLASS3; 10697 cmd->ulpCommand = CMD_GEN_REQUEST64_CR; 10698 cmd->ulpBdeCount = 1; 10699 cmd->ulpLe = 1; 10700 cmd->ulpOwner = OWN_CHIP; 10701 cmd->ulpTimeout = tmo; 10702 } 10703 10704 static void 10705 __lpfc_sli_prep_gen_req_s4(struct lpfc_iocbq *cmdiocbq, struct lpfc_dmabuf *bmp, 10706 u16 rpi, u32 num_entry, u8 tmo) 10707 { 10708 union lpfc_wqe128 *cmdwqe; 10709 struct ulp_bde64_le *bde, *bpl; 10710 u32 xmit_len = 0, total_len = 0, size, type, i; 10711 10712 cmdwqe = &cmdiocbq->wqe; 10713 memset(cmdwqe, 0, sizeof(*cmdwqe)); 10714 10715 /* Calculate total_len and xmit_len */ 10716 bpl = (struct ulp_bde64_le *)bmp->virt; 10717 for (i = 0; i < num_entry; i++) { 10718 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10719 total_len += size; 10720 } 10721 for (i = 0; i < num_entry; i++) { 10722 size = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_SIZE_MASK; 10723 type = le32_to_cpu(bpl[i].type_size) & ULP_BDE64_TYPE_MASK; 10724 if (type != ULP_BDE64_TYPE_BDE_64) 10725 break; 10726 xmit_len += size; 10727 } 10728 10729 /* Words 0 - 2 */ 10730 bde = (struct ulp_bde64_le *)&cmdwqe->generic.bde; 10731 bde->addr_low = bpl->addr_low; 10732 bde->addr_high = bpl->addr_high; 10733 bde->type_size = cpu_to_le32(xmit_len); 10734 bde->type_size |= cpu_to_le32(ULP_BDE64_TYPE_BDE_64); 10735 10736 /* Word 3 */ 10737 cmdwqe->gen_req.request_payload_len = xmit_len; 10738 10739 /* Word 5 */ 10740 bf_set(wqe_type, &cmdwqe->gen_req.wge_ctl, FC_TYPE_CT); 10741 bf_set(wqe_rctl, &cmdwqe->gen_req.wge_ctl, FC_RCTL_DD_UNSOL_CTL); 10742 bf_set(wqe_si, &cmdwqe->gen_req.wge_ctl, 1); 10743 bf_set(wqe_la, &cmdwqe->gen_req.wge_ctl, 1); 10744 10745 /* Word 6 */ 10746 bf_set(wqe_ctxt_tag, &cmdwqe->gen_req.wqe_com, rpi); 10747 10748 /* Word 7 */ 10749 bf_set(wqe_tmo, &cmdwqe->gen_req.wqe_com, tmo); 10750 bf_set(wqe_class, &cmdwqe->gen_req.wqe_com, CLASS3); 10751 bf_set(wqe_cmnd, &cmdwqe->gen_req.wqe_com, CMD_GEN_REQUEST64_CR); 10752 bf_set(wqe_ct, &cmdwqe->gen_req.wqe_com, SLI4_CT_RPI); 10753 10754 /* Word 12 */ 10755 cmdwqe->gen_req.max_response_payload_len = total_len - xmit_len; 10756 } 10757 10758 void 10759 lpfc_sli_prep_gen_req(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10760 struct lpfc_dmabuf *bmp, u16 rpi, u32 num_entry, u8 tmo) 10761 { 10762 phba->__lpfc_sli_prep_gen_req(cmdiocbq, bmp, rpi, num_entry, tmo); 10763 } 10764 10765 static void 10766 __lpfc_sli_prep_xmit_seq64_s3(struct lpfc_iocbq *cmdiocbq, 10767 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10768 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10769 { 10770 IOCB_t *icmd; 10771 10772 icmd = &cmdiocbq->iocb; 10773 memset(icmd, 0, sizeof(*icmd)); 10774 10775 icmd->un.xseq64.bdl.addrHigh = putPaddrHigh(bmp->phys); 10776 icmd->un.xseq64.bdl.addrLow = putPaddrLow(bmp->phys); 10777 icmd->un.xseq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; 10778 icmd->un.xseq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); 10779 icmd->un.xseq64.w5.hcsw.Fctl = LA; 10780 if (last_seq) 10781 icmd->un.xseq64.w5.hcsw.Fctl |= LS; 10782 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 10783 icmd->un.xseq64.w5.hcsw.Rctl = rctl; 10784 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_CT; 10785 10786 icmd->ulpBdeCount = 1; 10787 icmd->ulpLe = 1; 10788 icmd->ulpClass = CLASS3; 10789 10790 switch (cr_cx_cmd) { 10791 case CMD_XMIT_SEQUENCE64_CR: 10792 icmd->ulpContext = rpi; 10793 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CR; 10794 break; 10795 case CMD_XMIT_SEQUENCE64_CX: 10796 icmd->ulpContext = ox_id; 10797 icmd->ulpCommand = CMD_XMIT_SEQUENCE64_CX; 10798 break; 10799 default: 10800 break; 10801 } 10802 } 10803 10804 static void 10805 __lpfc_sli_prep_xmit_seq64_s4(struct lpfc_iocbq *cmdiocbq, 10806 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10807 u32 full_size, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10808 { 10809 union lpfc_wqe128 *wqe; 10810 struct ulp_bde64 *bpl; 10811 10812 wqe = &cmdiocbq->wqe; 10813 memset(wqe, 0, sizeof(*wqe)); 10814 10815 /* Words 0 - 2 */ 10816 bpl = (struct ulp_bde64 *)bmp->virt; 10817 wqe->xmit_sequence.bde.addrHigh = bpl->addrHigh; 10818 wqe->xmit_sequence.bde.addrLow = bpl->addrLow; 10819 wqe->xmit_sequence.bde.tus.w = bpl->tus.w; 10820 10821 /* Word 5 */ 10822 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, last_seq); 10823 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 1); 10824 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 10825 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, rctl); 10826 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_CT); 10827 10828 /* Word 6 */ 10829 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, rpi); 10830 10831 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 10832 CMD_XMIT_SEQUENCE64_WQE); 10833 10834 /* Word 7 */ 10835 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 10836 10837 /* Word 9 */ 10838 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ox_id); 10839 10840 /* Word 12 */ 10841 if (cmdiocbq->cmd_flag & (LPFC_IO_LIBDFC | LPFC_IO_LOOPBACK)) 10842 wqe->xmit_sequence.xmit_len = full_size; 10843 else 10844 wqe->xmit_sequence.xmit_len = 10845 wqe->xmit_sequence.bde.tus.f.bdeSize; 10846 } 10847 10848 void 10849 lpfc_sli_prep_xmit_seq64(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10850 struct lpfc_dmabuf *bmp, u16 rpi, u16 ox_id, 10851 u32 num_entry, u8 rctl, u8 last_seq, u8 cr_cx_cmd) 10852 { 10853 phba->__lpfc_sli_prep_xmit_seq64(cmdiocbq, bmp, rpi, ox_id, num_entry, 10854 rctl, last_seq, cr_cx_cmd); 10855 } 10856 10857 static void 10858 __lpfc_sli_prep_abort_xri_s3(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10859 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10860 { 10861 IOCB_t *icmd = NULL; 10862 10863 icmd = &cmdiocbq->iocb; 10864 memset(icmd, 0, sizeof(*icmd)); 10865 10866 /* Word 5 */ 10867 icmd->un.acxri.abortContextTag = ulp_context; 10868 icmd->un.acxri.abortIoTag = iotag; 10869 10870 if (ia) { 10871 /* Word 7 */ 10872 icmd->ulpCommand = CMD_CLOSE_XRI_CN; 10873 } else { 10874 /* Word 3 */ 10875 icmd->un.acxri.abortType = ABORT_TYPE_ABTS; 10876 10877 /* Word 7 */ 10878 icmd->ulpClass = ulp_class; 10879 icmd->ulpCommand = CMD_ABORT_XRI_CN; 10880 } 10881 10882 /* Word 7 */ 10883 icmd->ulpLe = 1; 10884 } 10885 10886 static void 10887 __lpfc_sli_prep_abort_xri_s4(struct lpfc_iocbq *cmdiocbq, u16 ulp_context, 10888 u16 iotag, u8 ulp_class, u16 cqid, bool ia) 10889 { 10890 union lpfc_wqe128 *wqe; 10891 10892 wqe = &cmdiocbq->wqe; 10893 memset(wqe, 0, sizeof(*wqe)); 10894 10895 /* Word 3 */ 10896 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10897 if (ia) 10898 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10899 else 10900 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10901 10902 /* Word 7 */ 10903 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_WQE); 10904 10905 /* Word 8 */ 10906 wqe->abort_cmd.wqe_com.abort_tag = ulp_context; 10907 10908 /* Word 9 */ 10909 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, iotag); 10910 10911 /* Word 10 */ 10912 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10913 10914 /* Word 11 */ 10915 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, cqid); 10916 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10917 } 10918 10919 void 10920 lpfc_sli_prep_abort_xri(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, 10921 u16 ulp_context, u16 iotag, u8 ulp_class, u16 cqid, 10922 bool ia) 10923 { 10924 phba->__lpfc_sli_prep_abort_xri(cmdiocbq, ulp_context, iotag, ulp_class, 10925 cqid, ia); 10926 } 10927 10928 /** 10929 * lpfc_sli_api_table_setup - Set up sli api function jump table 10930 * @phba: The hba struct for which this call is being executed. 10931 * @dev_grp: The HBA PCI-Device group number. 10932 * 10933 * This routine sets up the SLI interface API function jump table in @phba 10934 * struct. 10935 * Returns: 0 - success, -ENODEV - failure. 10936 **/ 10937 int 10938 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10939 { 10940 10941 switch (dev_grp) { 10942 case LPFC_PCI_DEV_LP: 10943 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10944 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10945 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10946 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s3; 10947 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s3; 10948 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s3; 10949 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s3; 10950 break; 10951 case LPFC_PCI_DEV_OC: 10952 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10953 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10954 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10955 phba->__lpfc_sli_prep_els_req_rsp = __lpfc_sli_prep_els_req_rsp_s4; 10956 phba->__lpfc_sli_prep_gen_req = __lpfc_sli_prep_gen_req_s4; 10957 phba->__lpfc_sli_prep_xmit_seq64 = __lpfc_sli_prep_xmit_seq64_s4; 10958 phba->__lpfc_sli_prep_abort_xri = __lpfc_sli_prep_abort_xri_s4; 10959 break; 10960 default: 10961 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10962 "1419 Invalid HBA PCI-device group: 0x%x\n", 10963 dev_grp); 10964 return -ENODEV; 10965 } 10966 return 0; 10967 } 10968 10969 /** 10970 * lpfc_sli4_calc_ring - Calculates which ring to use 10971 * @phba: Pointer to HBA context object. 10972 * @piocb: Pointer to command iocb. 10973 * 10974 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10975 * hba_wqidx, thus we need to calculate the corresponding ring. 10976 * Since ABORTS must go on the same WQ of the command they are 10977 * aborting, we use command's hba_wqidx. 10978 */ 10979 struct lpfc_sli_ring * 10980 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10981 { 10982 struct lpfc_io_buf *lpfc_cmd; 10983 10984 if (piocb->cmd_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10985 if (unlikely(!phba->sli4_hba.hdwq)) 10986 return NULL; 10987 /* 10988 * for abort iocb hba_wqidx should already 10989 * be setup based on what work queue we used. 10990 */ 10991 if (!(piocb->cmd_flag & LPFC_USE_FCPWQIDX)) { 10992 lpfc_cmd = piocb->io_buf; 10993 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10994 } 10995 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10996 } else { 10997 if (unlikely(!phba->sli4_hba.els_wq)) 10998 return NULL; 10999 piocb->hba_wqidx = 0; 11000 return phba->sli4_hba.els_wq->pring; 11001 } 11002 } 11003 11004 /** 11005 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 11006 * @phba: Pointer to HBA context object. 11007 * @ring_number: Ring number 11008 * @piocb: Pointer to command iocb. 11009 * @flag: Flag indicating if this command can be put into txq. 11010 * 11011 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 11012 * function. This function gets the hbalock and calls 11013 * __lpfc_sli_issue_iocb function and will return the error returned 11014 * by __lpfc_sli_issue_iocb function. This wrapper is used by 11015 * functions which do not hold hbalock. 11016 **/ 11017 int 11018 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 11019 struct lpfc_iocbq *piocb, uint32_t flag) 11020 { 11021 struct lpfc_sli_ring *pring; 11022 struct lpfc_queue *eq; 11023 unsigned long iflags; 11024 int rc; 11025 11026 /* If the PCI channel is in offline state, do not post iocbs. */ 11027 if (unlikely(pci_channel_offline(phba->pcidev))) 11028 return IOCB_ERROR; 11029 11030 if (phba->sli_rev == LPFC_SLI_REV4) { 11031 lpfc_sli_prep_wqe(phba, piocb); 11032 11033 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 11034 11035 pring = lpfc_sli4_calc_ring(phba, piocb); 11036 if (unlikely(pring == NULL)) 11037 return IOCB_ERROR; 11038 11039 spin_lock_irqsave(&pring->ring_lock, iflags); 11040 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11041 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11042 11043 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 11044 } else { 11045 /* For now, SLI2/3 will still use hbalock */ 11046 spin_lock_irqsave(&phba->hbalock, iflags); 11047 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 11048 spin_unlock_irqrestore(&phba->hbalock, iflags); 11049 } 11050 return rc; 11051 } 11052 11053 /** 11054 * lpfc_extra_ring_setup - Extra ring setup function 11055 * @phba: Pointer to HBA context object. 11056 * 11057 * This function is called while driver attaches with the 11058 * HBA to setup the extra ring. The extra ring is used 11059 * only when driver needs to support target mode functionality 11060 * or IP over FC functionalities. 11061 * 11062 * This function is called with no lock held. SLI3 only. 11063 **/ 11064 static int 11065 lpfc_extra_ring_setup( struct lpfc_hba *phba) 11066 { 11067 struct lpfc_sli *psli; 11068 struct lpfc_sli_ring *pring; 11069 11070 psli = &phba->sli; 11071 11072 /* Adjust cmd/rsp ring iocb entries more evenly */ 11073 11074 /* Take some away from the FCP ring */ 11075 pring = &psli->sli3_ring[LPFC_FCP_RING]; 11076 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11077 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11078 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11079 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11080 11081 /* and give them to the extra ring */ 11082 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 11083 11084 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11085 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11086 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11087 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11088 11089 /* Setup default profile for this ring */ 11090 pring->iotag_max = 4096; 11091 pring->num_mask = 1; 11092 pring->prt[0].profile = 0; /* Mask 0 */ 11093 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 11094 pring->prt[0].type = phba->cfg_multi_ring_type; 11095 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 11096 return 0; 11097 } 11098 11099 static void 11100 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 11101 struct lpfc_nodelist *ndlp) 11102 { 11103 unsigned long iflags; 11104 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 11105 11106 spin_lock_irqsave(&phba->hbalock, iflags); 11107 if (!list_empty(&evtp->evt_listp)) { 11108 spin_unlock_irqrestore(&phba->hbalock, iflags); 11109 return; 11110 } 11111 11112 /* Incrementing the reference count until the queued work is done. */ 11113 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 11114 if (!evtp->evt_arg1) { 11115 spin_unlock_irqrestore(&phba->hbalock, iflags); 11116 return; 11117 } 11118 evtp->evt = LPFC_EVT_RECOVER_PORT; 11119 list_add_tail(&evtp->evt_listp, &phba->work_list); 11120 spin_unlock_irqrestore(&phba->hbalock, iflags); 11121 11122 lpfc_worker_wake_up(phba); 11123 } 11124 11125 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 11126 * @phba: Pointer to HBA context object. 11127 * @iocbq: Pointer to iocb object. 11128 * 11129 * The async_event handler calls this routine when it receives 11130 * an ASYNC_STATUS_CN event from the port. The port generates 11131 * this event when an Abort Sequence request to an rport fails 11132 * twice in succession. The abort could be originated by the 11133 * driver or by the port. The ABTS could have been for an ELS 11134 * or FCP IO. The port only generates this event when an ABTS 11135 * fails to complete after one retry. 11136 */ 11137 static void 11138 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 11139 struct lpfc_iocbq *iocbq) 11140 { 11141 struct lpfc_nodelist *ndlp = NULL; 11142 uint16_t rpi = 0, vpi = 0; 11143 struct lpfc_vport *vport = NULL; 11144 11145 /* The rpi in the ulpContext is vport-sensitive. */ 11146 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 11147 rpi = iocbq->iocb.ulpContext; 11148 11149 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11150 "3092 Port generated ABTS async event " 11151 "on vpi %d rpi %d status 0x%x\n", 11152 vpi, rpi, iocbq->iocb.ulpStatus); 11153 11154 vport = lpfc_find_vport_by_vpid(phba, vpi); 11155 if (!vport) 11156 goto err_exit; 11157 ndlp = lpfc_findnode_rpi(vport, rpi); 11158 if (!ndlp) 11159 goto err_exit; 11160 11161 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 11162 lpfc_sli_abts_recover_port(vport, ndlp); 11163 return; 11164 11165 err_exit: 11166 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11167 "3095 Event Context not found, no " 11168 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 11169 vpi, rpi, iocbq->iocb.ulpStatus, 11170 iocbq->iocb.ulpContext); 11171 } 11172 11173 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 11174 * @phba: pointer to HBA context object. 11175 * @ndlp: nodelist pointer for the impacted rport. 11176 * @axri: pointer to the wcqe containing the failed exchange. 11177 * 11178 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 11179 * port. The port generates this event when an abort exchange request to an 11180 * rport fails twice in succession with no reply. The abort could be originated 11181 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 11182 */ 11183 void 11184 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 11185 struct lpfc_nodelist *ndlp, 11186 struct sli4_wcqe_xri_aborted *axri) 11187 { 11188 uint32_t ext_status = 0; 11189 11190 if (!ndlp) { 11191 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11192 "3115 Node Context not found, driver " 11193 "ignoring abts err event\n"); 11194 return; 11195 } 11196 11197 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 11198 "3116 Port generated FCP XRI ABORT event on " 11199 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 11200 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 11201 bf_get(lpfc_wcqe_xa_xri, axri), 11202 bf_get(lpfc_wcqe_xa_status, axri), 11203 axri->parameter); 11204 11205 /* 11206 * Catch the ABTS protocol failure case. Older OCe FW releases returned 11207 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 11208 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 11209 */ 11210 ext_status = axri->parameter & IOERR_PARAM_MASK; 11211 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 11212 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 11213 lpfc_sli_post_recovery_event(phba, ndlp); 11214 } 11215 11216 /** 11217 * lpfc_sli_async_event_handler - ASYNC iocb handler function 11218 * @phba: Pointer to HBA context object. 11219 * @pring: Pointer to driver SLI ring object. 11220 * @iocbq: Pointer to iocb object. 11221 * 11222 * This function is called by the slow ring event handler 11223 * function when there is an ASYNC event iocb in the ring. 11224 * This function is called with no lock held. 11225 * Currently this function handles only temperature related 11226 * ASYNC events. The function decodes the temperature sensor 11227 * event message and posts events for the management applications. 11228 **/ 11229 static void 11230 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 11231 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 11232 { 11233 IOCB_t *icmd; 11234 uint16_t evt_code; 11235 struct temp_event temp_event_data; 11236 struct Scsi_Host *shost; 11237 uint32_t *iocb_w; 11238 11239 icmd = &iocbq->iocb; 11240 evt_code = icmd->un.asyncstat.evt_code; 11241 11242 switch (evt_code) { 11243 case ASYNC_TEMP_WARN: 11244 case ASYNC_TEMP_SAFE: 11245 temp_event_data.data = (uint32_t) icmd->ulpContext; 11246 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 11247 if (evt_code == ASYNC_TEMP_WARN) { 11248 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 11249 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11250 "0347 Adapter is very hot, please take " 11251 "corrective action. temperature : %d Celsius\n", 11252 (uint32_t) icmd->ulpContext); 11253 } else { 11254 temp_event_data.event_code = LPFC_NORMAL_TEMP; 11255 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11256 "0340 Adapter temperature is OK now. " 11257 "temperature : %d Celsius\n", 11258 (uint32_t) icmd->ulpContext); 11259 } 11260 11261 /* Send temperature change event to applications */ 11262 shost = lpfc_shost_from_vport(phba->pport); 11263 fc_host_post_vendor_event(shost, fc_get_event_number(), 11264 sizeof(temp_event_data), (char *) &temp_event_data, 11265 LPFC_NL_VENDOR_ID); 11266 break; 11267 case ASYNC_STATUS_CN: 11268 lpfc_sli_abts_err_handler(phba, iocbq); 11269 break; 11270 default: 11271 iocb_w = (uint32_t *) icmd; 11272 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11273 "0346 Ring %d handler: unexpected ASYNC_STATUS" 11274 " evt_code 0x%x\n" 11275 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 11276 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 11277 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 11278 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 11279 pring->ringno, icmd->un.asyncstat.evt_code, 11280 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 11281 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 11282 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 11283 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 11284 11285 break; 11286 } 11287 } 11288 11289 11290 /** 11291 * lpfc_sli4_setup - SLI ring setup function 11292 * @phba: Pointer to HBA context object. 11293 * 11294 * lpfc_sli_setup sets up rings of the SLI interface with 11295 * number of iocbs per ring and iotags. This function is 11296 * called while driver attach to the HBA and before the 11297 * interrupts are enabled. So there is no need for locking. 11298 * 11299 * This function always returns 0. 11300 **/ 11301 int 11302 lpfc_sli4_setup(struct lpfc_hba *phba) 11303 { 11304 struct lpfc_sli_ring *pring; 11305 11306 pring = phba->sli4_hba.els_wq->pring; 11307 pring->num_mask = LPFC_MAX_RING_MASK; 11308 pring->prt[0].profile = 0; /* Mask 0 */ 11309 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11310 pring->prt[0].type = FC_TYPE_ELS; 11311 pring->prt[0].lpfc_sli_rcv_unsol_event = 11312 lpfc_els_unsol_event; 11313 pring->prt[1].profile = 0; /* Mask 1 */ 11314 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11315 pring->prt[1].type = FC_TYPE_ELS; 11316 pring->prt[1].lpfc_sli_rcv_unsol_event = 11317 lpfc_els_unsol_event; 11318 pring->prt[2].profile = 0; /* Mask 2 */ 11319 /* NameServer Inquiry */ 11320 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11321 /* NameServer */ 11322 pring->prt[2].type = FC_TYPE_CT; 11323 pring->prt[2].lpfc_sli_rcv_unsol_event = 11324 lpfc_ct_unsol_event; 11325 pring->prt[3].profile = 0; /* Mask 3 */ 11326 /* NameServer response */ 11327 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11328 /* NameServer */ 11329 pring->prt[3].type = FC_TYPE_CT; 11330 pring->prt[3].lpfc_sli_rcv_unsol_event = 11331 lpfc_ct_unsol_event; 11332 return 0; 11333 } 11334 11335 /** 11336 * lpfc_sli_setup - SLI ring setup function 11337 * @phba: Pointer to HBA context object. 11338 * 11339 * lpfc_sli_setup sets up rings of the SLI interface with 11340 * number of iocbs per ring and iotags. This function is 11341 * called while driver attach to the HBA and before the 11342 * interrupts are enabled. So there is no need for locking. 11343 * 11344 * This function always returns 0. SLI3 only. 11345 **/ 11346 int 11347 lpfc_sli_setup(struct lpfc_hba *phba) 11348 { 11349 int i, totiocbsize = 0; 11350 struct lpfc_sli *psli = &phba->sli; 11351 struct lpfc_sli_ring *pring; 11352 11353 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 11354 psli->sli_flag = 0; 11355 11356 psli->iocbq_lookup = NULL; 11357 psli->iocbq_lookup_len = 0; 11358 psli->last_iotag = 0; 11359 11360 for (i = 0; i < psli->num_rings; i++) { 11361 pring = &psli->sli3_ring[i]; 11362 switch (i) { 11363 case LPFC_FCP_RING: /* ring 0 - FCP */ 11364 /* numCiocb and numRiocb are used in config_port */ 11365 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 11366 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 11367 pring->sli.sli3.numCiocb += 11368 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 11369 pring->sli.sli3.numRiocb += 11370 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 11371 pring->sli.sli3.numCiocb += 11372 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 11373 pring->sli.sli3.numRiocb += 11374 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 11375 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11376 SLI3_IOCB_CMD_SIZE : 11377 SLI2_IOCB_CMD_SIZE; 11378 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11379 SLI3_IOCB_RSP_SIZE : 11380 SLI2_IOCB_RSP_SIZE; 11381 pring->iotag_ctr = 0; 11382 pring->iotag_max = 11383 (phba->cfg_hba_queue_depth * 2); 11384 pring->fast_iotag = pring->iotag_max; 11385 pring->num_mask = 0; 11386 break; 11387 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 11388 /* numCiocb and numRiocb are used in config_port */ 11389 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 11390 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 11391 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11392 SLI3_IOCB_CMD_SIZE : 11393 SLI2_IOCB_CMD_SIZE; 11394 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11395 SLI3_IOCB_RSP_SIZE : 11396 SLI2_IOCB_RSP_SIZE; 11397 pring->iotag_max = phba->cfg_hba_queue_depth; 11398 pring->num_mask = 0; 11399 break; 11400 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 11401 /* numCiocb and numRiocb are used in config_port */ 11402 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 11403 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 11404 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 11405 SLI3_IOCB_CMD_SIZE : 11406 SLI2_IOCB_CMD_SIZE; 11407 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 11408 SLI3_IOCB_RSP_SIZE : 11409 SLI2_IOCB_RSP_SIZE; 11410 pring->fast_iotag = 0; 11411 pring->iotag_ctr = 0; 11412 pring->iotag_max = 4096; 11413 pring->lpfc_sli_rcv_async_status = 11414 lpfc_sli_async_event_handler; 11415 pring->num_mask = LPFC_MAX_RING_MASK; 11416 pring->prt[0].profile = 0; /* Mask 0 */ 11417 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 11418 pring->prt[0].type = FC_TYPE_ELS; 11419 pring->prt[0].lpfc_sli_rcv_unsol_event = 11420 lpfc_els_unsol_event; 11421 pring->prt[1].profile = 0; /* Mask 1 */ 11422 pring->prt[1].rctl = FC_RCTL_ELS_REP; 11423 pring->prt[1].type = FC_TYPE_ELS; 11424 pring->prt[1].lpfc_sli_rcv_unsol_event = 11425 lpfc_els_unsol_event; 11426 pring->prt[2].profile = 0; /* Mask 2 */ 11427 /* NameServer Inquiry */ 11428 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11429 /* NameServer */ 11430 pring->prt[2].type = FC_TYPE_CT; 11431 pring->prt[2].lpfc_sli_rcv_unsol_event = 11432 lpfc_ct_unsol_event; 11433 pring->prt[3].profile = 0; /* Mask 3 */ 11434 /* NameServer response */ 11435 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11436 /* NameServer */ 11437 pring->prt[3].type = FC_TYPE_CT; 11438 pring->prt[3].lpfc_sli_rcv_unsol_event = 11439 lpfc_ct_unsol_event; 11440 break; 11441 } 11442 totiocbsize += (pring->sli.sli3.numCiocb * 11443 pring->sli.sli3.sizeCiocb) + 11444 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11445 } 11446 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11447 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11448 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11449 "SLI2 SLIM Data: x%x x%lx\n", 11450 phba->brd_no, totiocbsize, 11451 (unsigned long) MAX_SLIM_IOCB_SIZE); 11452 } 11453 if (phba->cfg_multi_ring_support == 2) 11454 lpfc_extra_ring_setup(phba); 11455 11456 return 0; 11457 } 11458 11459 /** 11460 * lpfc_sli4_queue_init - Queue initialization function 11461 * @phba: Pointer to HBA context object. 11462 * 11463 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11464 * ring. This function also initializes ring indices of each ring. 11465 * This function is called during the initialization of the SLI 11466 * interface of an HBA. 11467 * This function is called with no lock held and always returns 11468 * 1. 11469 **/ 11470 void 11471 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11472 { 11473 struct lpfc_sli *psli; 11474 struct lpfc_sli_ring *pring; 11475 int i; 11476 11477 psli = &phba->sli; 11478 spin_lock_irq(&phba->hbalock); 11479 INIT_LIST_HEAD(&psli->mboxq); 11480 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11481 /* Initialize list headers for txq and txcmplq as double linked lists */ 11482 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11483 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11484 pring->flag = 0; 11485 pring->ringno = LPFC_FCP_RING; 11486 pring->txcmplq_cnt = 0; 11487 INIT_LIST_HEAD(&pring->txq); 11488 INIT_LIST_HEAD(&pring->txcmplq); 11489 INIT_LIST_HEAD(&pring->iocb_continueq); 11490 spin_lock_init(&pring->ring_lock); 11491 } 11492 pring = phba->sli4_hba.els_wq->pring; 11493 pring->flag = 0; 11494 pring->ringno = LPFC_ELS_RING; 11495 pring->txcmplq_cnt = 0; 11496 INIT_LIST_HEAD(&pring->txq); 11497 INIT_LIST_HEAD(&pring->txcmplq); 11498 INIT_LIST_HEAD(&pring->iocb_continueq); 11499 spin_lock_init(&pring->ring_lock); 11500 11501 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11502 pring = phba->sli4_hba.nvmels_wq->pring; 11503 pring->flag = 0; 11504 pring->ringno = LPFC_ELS_RING; 11505 pring->txcmplq_cnt = 0; 11506 INIT_LIST_HEAD(&pring->txq); 11507 INIT_LIST_HEAD(&pring->txcmplq); 11508 INIT_LIST_HEAD(&pring->iocb_continueq); 11509 spin_lock_init(&pring->ring_lock); 11510 } 11511 11512 spin_unlock_irq(&phba->hbalock); 11513 } 11514 11515 /** 11516 * lpfc_sli_queue_init - Queue initialization function 11517 * @phba: Pointer to HBA context object. 11518 * 11519 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11520 * ring. This function also initializes ring indices of each ring. 11521 * This function is called during the initialization of the SLI 11522 * interface of an HBA. 11523 * This function is called with no lock held and always returns 11524 * 1. 11525 **/ 11526 void 11527 lpfc_sli_queue_init(struct lpfc_hba *phba) 11528 { 11529 struct lpfc_sli *psli; 11530 struct lpfc_sli_ring *pring; 11531 int i; 11532 11533 psli = &phba->sli; 11534 spin_lock_irq(&phba->hbalock); 11535 INIT_LIST_HEAD(&psli->mboxq); 11536 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11537 /* Initialize list headers for txq and txcmplq as double linked lists */ 11538 for (i = 0; i < psli->num_rings; i++) { 11539 pring = &psli->sli3_ring[i]; 11540 pring->ringno = i; 11541 pring->sli.sli3.next_cmdidx = 0; 11542 pring->sli.sli3.local_getidx = 0; 11543 pring->sli.sli3.cmdidx = 0; 11544 INIT_LIST_HEAD(&pring->iocb_continueq); 11545 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11546 INIT_LIST_HEAD(&pring->postbufq); 11547 pring->flag = 0; 11548 INIT_LIST_HEAD(&pring->txq); 11549 INIT_LIST_HEAD(&pring->txcmplq); 11550 spin_lock_init(&pring->ring_lock); 11551 } 11552 spin_unlock_irq(&phba->hbalock); 11553 } 11554 11555 /** 11556 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11557 * @phba: Pointer to HBA context object. 11558 * 11559 * This routine flushes the mailbox command subsystem. It will unconditionally 11560 * flush all the mailbox commands in the three possible stages in the mailbox 11561 * command sub-system: pending mailbox command queue; the outstanding mailbox 11562 * command; and completed mailbox command queue. It is caller's responsibility 11563 * to make sure that the driver is in the proper state to flush the mailbox 11564 * command sub-system. Namely, the posting of mailbox commands into the 11565 * pending mailbox command queue from the various clients must be stopped; 11566 * either the HBA is in a state that it will never works on the outstanding 11567 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11568 * mailbox command has been completed. 11569 **/ 11570 static void 11571 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11572 { 11573 LIST_HEAD(completions); 11574 struct lpfc_sli *psli = &phba->sli; 11575 LPFC_MBOXQ_t *pmb; 11576 unsigned long iflag; 11577 11578 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11579 local_bh_disable(); 11580 11581 /* Flush all the mailbox commands in the mbox system */ 11582 spin_lock_irqsave(&phba->hbalock, iflag); 11583 11584 /* The pending mailbox command queue */ 11585 list_splice_init(&phba->sli.mboxq, &completions); 11586 /* The outstanding active mailbox command */ 11587 if (psli->mbox_active) { 11588 list_add_tail(&psli->mbox_active->list, &completions); 11589 psli->mbox_active = NULL; 11590 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11591 } 11592 /* The completed mailbox command queue */ 11593 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11594 spin_unlock_irqrestore(&phba->hbalock, iflag); 11595 11596 /* Enable softirqs again, done with phba->hbalock */ 11597 local_bh_enable(); 11598 11599 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11600 while (!list_empty(&completions)) { 11601 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11602 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11603 if (pmb->mbox_cmpl) 11604 pmb->mbox_cmpl(phba, pmb); 11605 } 11606 } 11607 11608 /** 11609 * lpfc_sli_host_down - Vport cleanup function 11610 * @vport: Pointer to virtual port object. 11611 * 11612 * lpfc_sli_host_down is called to clean up the resources 11613 * associated with a vport before destroying virtual 11614 * port data structures. 11615 * This function does following operations: 11616 * - Free discovery resources associated with this virtual 11617 * port. 11618 * - Free iocbs associated with this virtual port in 11619 * the txq. 11620 * - Send abort for all iocb commands associated with this 11621 * vport in txcmplq. 11622 * 11623 * This function is called with no lock held and always returns 1. 11624 **/ 11625 int 11626 lpfc_sli_host_down(struct lpfc_vport *vport) 11627 { 11628 LIST_HEAD(completions); 11629 struct lpfc_hba *phba = vport->phba; 11630 struct lpfc_sli *psli = &phba->sli; 11631 struct lpfc_queue *qp = NULL; 11632 struct lpfc_sli_ring *pring; 11633 struct lpfc_iocbq *iocb, *next_iocb; 11634 int i; 11635 unsigned long flags = 0; 11636 uint16_t prev_pring_flag; 11637 11638 lpfc_cleanup_discovery_resources(vport); 11639 11640 spin_lock_irqsave(&phba->hbalock, flags); 11641 11642 /* 11643 * Error everything on the txq since these iocbs 11644 * have not been given to the FW yet. 11645 * Also issue ABTS for everything on the txcmplq 11646 */ 11647 if (phba->sli_rev != LPFC_SLI_REV4) { 11648 for (i = 0; i < psli->num_rings; i++) { 11649 pring = &psli->sli3_ring[i]; 11650 prev_pring_flag = pring->flag; 11651 /* Only slow rings */ 11652 if (pring->ringno == LPFC_ELS_RING) { 11653 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11654 /* Set the lpfc data pending flag */ 11655 set_bit(LPFC_DATA_READY, &phba->data_flags); 11656 } 11657 list_for_each_entry_safe(iocb, next_iocb, 11658 &pring->txq, list) { 11659 if (iocb->vport != vport) 11660 continue; 11661 list_move_tail(&iocb->list, &completions); 11662 } 11663 list_for_each_entry_safe(iocb, next_iocb, 11664 &pring->txcmplq, list) { 11665 if (iocb->vport != vport) 11666 continue; 11667 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11668 NULL); 11669 } 11670 pring->flag = prev_pring_flag; 11671 } 11672 } else { 11673 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11674 pring = qp->pring; 11675 if (!pring) 11676 continue; 11677 if (pring == phba->sli4_hba.els_wq->pring) { 11678 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11679 /* Set the lpfc data pending flag */ 11680 set_bit(LPFC_DATA_READY, &phba->data_flags); 11681 } 11682 prev_pring_flag = pring->flag; 11683 spin_lock(&pring->ring_lock); 11684 list_for_each_entry_safe(iocb, next_iocb, 11685 &pring->txq, list) { 11686 if (iocb->vport != vport) 11687 continue; 11688 list_move_tail(&iocb->list, &completions); 11689 } 11690 spin_unlock(&pring->ring_lock); 11691 list_for_each_entry_safe(iocb, next_iocb, 11692 &pring->txcmplq, list) { 11693 if (iocb->vport != vport) 11694 continue; 11695 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11696 NULL); 11697 } 11698 pring->flag = prev_pring_flag; 11699 } 11700 } 11701 spin_unlock_irqrestore(&phba->hbalock, flags); 11702 11703 /* Make sure HBA is alive */ 11704 lpfc_issue_hb_tmo(phba); 11705 11706 /* Cancel all the IOCBs from the completions list */ 11707 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11708 IOERR_SLI_DOWN); 11709 return 1; 11710 } 11711 11712 /** 11713 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11714 * @phba: Pointer to HBA context object. 11715 * 11716 * This function cleans up all iocb, buffers, mailbox commands 11717 * while shutting down the HBA. This function is called with no 11718 * lock held and always returns 1. 11719 * This function does the following to cleanup driver resources: 11720 * - Free discovery resources for each virtual port 11721 * - Cleanup any pending fabric iocbs 11722 * - Iterate through the iocb txq and free each entry 11723 * in the list. 11724 * - Free up any buffer posted to the HBA 11725 * - Free mailbox commands in the mailbox queue. 11726 **/ 11727 int 11728 lpfc_sli_hba_down(struct lpfc_hba *phba) 11729 { 11730 LIST_HEAD(completions); 11731 struct lpfc_sli *psli = &phba->sli; 11732 struct lpfc_queue *qp = NULL; 11733 struct lpfc_sli_ring *pring; 11734 struct lpfc_dmabuf *buf_ptr; 11735 unsigned long flags = 0; 11736 int i; 11737 11738 /* Shutdown the mailbox command sub-system */ 11739 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11740 11741 lpfc_hba_down_prep(phba); 11742 11743 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11744 local_bh_disable(); 11745 11746 lpfc_fabric_abort_hba(phba); 11747 11748 spin_lock_irqsave(&phba->hbalock, flags); 11749 11750 /* 11751 * Error everything on the txq since these iocbs 11752 * have not been given to the FW yet. 11753 */ 11754 if (phba->sli_rev != LPFC_SLI_REV4) { 11755 for (i = 0; i < psli->num_rings; i++) { 11756 pring = &psli->sli3_ring[i]; 11757 /* Only slow rings */ 11758 if (pring->ringno == LPFC_ELS_RING) { 11759 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11760 /* Set the lpfc data pending flag */ 11761 set_bit(LPFC_DATA_READY, &phba->data_flags); 11762 } 11763 list_splice_init(&pring->txq, &completions); 11764 } 11765 } else { 11766 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11767 pring = qp->pring; 11768 if (!pring) 11769 continue; 11770 spin_lock(&pring->ring_lock); 11771 list_splice_init(&pring->txq, &completions); 11772 spin_unlock(&pring->ring_lock); 11773 if (pring == phba->sli4_hba.els_wq->pring) { 11774 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11775 /* Set the lpfc data pending flag */ 11776 set_bit(LPFC_DATA_READY, &phba->data_flags); 11777 } 11778 } 11779 } 11780 spin_unlock_irqrestore(&phba->hbalock, flags); 11781 11782 /* Cancel all the IOCBs from the completions list */ 11783 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11784 IOERR_SLI_DOWN); 11785 11786 spin_lock_irqsave(&phba->hbalock, flags); 11787 list_splice_init(&phba->elsbuf, &completions); 11788 phba->elsbuf_cnt = 0; 11789 phba->elsbuf_prev_cnt = 0; 11790 spin_unlock_irqrestore(&phba->hbalock, flags); 11791 11792 while (!list_empty(&completions)) { 11793 list_remove_head(&completions, buf_ptr, 11794 struct lpfc_dmabuf, list); 11795 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11796 kfree(buf_ptr); 11797 } 11798 11799 /* Enable softirqs again, done with phba->hbalock */ 11800 local_bh_enable(); 11801 11802 /* Return any active mbox cmds */ 11803 del_timer_sync(&psli->mbox_tmo); 11804 11805 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11806 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11807 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11808 11809 return 1; 11810 } 11811 11812 /** 11813 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11814 * @srcp: Source memory pointer. 11815 * @destp: Destination memory pointer. 11816 * @cnt: Number of words required to be copied. 11817 * 11818 * This function is used for copying data between driver memory 11819 * and the SLI memory. This function also changes the endianness 11820 * of each word if native endianness is different from SLI 11821 * endianness. This function can be called with or without 11822 * lock. 11823 **/ 11824 void 11825 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11826 { 11827 uint32_t *src = srcp; 11828 uint32_t *dest = destp; 11829 uint32_t ldata; 11830 int i; 11831 11832 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11833 ldata = *src; 11834 ldata = le32_to_cpu(ldata); 11835 *dest = ldata; 11836 src++; 11837 dest++; 11838 } 11839 } 11840 11841 11842 /** 11843 * lpfc_sli_bemem_bcopy - SLI memory copy function 11844 * @srcp: Source memory pointer. 11845 * @destp: Destination memory pointer. 11846 * @cnt: Number of words required to be copied. 11847 * 11848 * This function is used for copying data between a data structure 11849 * with big endian representation to local endianness. 11850 * This function can be called with or without lock. 11851 **/ 11852 void 11853 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11854 { 11855 uint32_t *src = srcp; 11856 uint32_t *dest = destp; 11857 uint32_t ldata; 11858 int i; 11859 11860 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11861 ldata = *src; 11862 ldata = be32_to_cpu(ldata); 11863 *dest = ldata; 11864 src++; 11865 dest++; 11866 } 11867 } 11868 11869 /** 11870 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11871 * @phba: Pointer to HBA context object. 11872 * @pring: Pointer to driver SLI ring object. 11873 * @mp: Pointer to driver buffer object. 11874 * 11875 * This function is called with no lock held. 11876 * It always return zero after adding the buffer to the postbufq 11877 * buffer list. 11878 **/ 11879 int 11880 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11881 struct lpfc_dmabuf *mp) 11882 { 11883 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11884 later */ 11885 spin_lock_irq(&phba->hbalock); 11886 list_add_tail(&mp->list, &pring->postbufq); 11887 pring->postbufq_cnt++; 11888 spin_unlock_irq(&phba->hbalock); 11889 return 0; 11890 } 11891 11892 /** 11893 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11894 * @phba: Pointer to HBA context object. 11895 * 11896 * When HBQ is enabled, buffers are searched based on tags. This function 11897 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11898 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11899 * does not conflict with tags of buffer posted for unsolicited events. 11900 * The function returns the allocated tag. The function is called with 11901 * no locks held. 11902 **/ 11903 uint32_t 11904 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11905 { 11906 spin_lock_irq(&phba->hbalock); 11907 phba->buffer_tag_count++; 11908 /* 11909 * Always set the QUE_BUFTAG_BIT to distiguish between 11910 * a tag assigned by HBQ. 11911 */ 11912 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11913 spin_unlock_irq(&phba->hbalock); 11914 return phba->buffer_tag_count; 11915 } 11916 11917 /** 11918 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11919 * @phba: Pointer to HBA context object. 11920 * @pring: Pointer to driver SLI ring object. 11921 * @tag: Buffer tag. 11922 * 11923 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11924 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11925 * iocb is posted to the response ring with the tag of the buffer. 11926 * This function searches the pring->postbufq list using the tag 11927 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11928 * iocb. If the buffer is found then lpfc_dmabuf object of the 11929 * buffer is returned to the caller else NULL is returned. 11930 * This function is called with no lock held. 11931 **/ 11932 struct lpfc_dmabuf * 11933 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11934 uint32_t tag) 11935 { 11936 struct lpfc_dmabuf *mp, *next_mp; 11937 struct list_head *slp = &pring->postbufq; 11938 11939 /* Search postbufq, from the beginning, looking for a match on tag */ 11940 spin_lock_irq(&phba->hbalock); 11941 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11942 if (mp->buffer_tag == tag) { 11943 list_del_init(&mp->list); 11944 pring->postbufq_cnt--; 11945 spin_unlock_irq(&phba->hbalock); 11946 return mp; 11947 } 11948 } 11949 11950 spin_unlock_irq(&phba->hbalock); 11951 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11952 "0402 Cannot find virtual addr for buffer tag on " 11953 "ring %d Data x%lx x%px x%px x%x\n", 11954 pring->ringno, (unsigned long) tag, 11955 slp->next, slp->prev, pring->postbufq_cnt); 11956 11957 return NULL; 11958 } 11959 11960 /** 11961 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11962 * @phba: Pointer to HBA context object. 11963 * @pring: Pointer to driver SLI ring object. 11964 * @phys: DMA address of the buffer. 11965 * 11966 * This function searches the buffer list using the dma_address 11967 * of unsolicited event to find the driver's lpfc_dmabuf object 11968 * corresponding to the dma_address. The function returns the 11969 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11970 * This function is called by the ct and els unsolicited event 11971 * handlers to get the buffer associated with the unsolicited 11972 * event. 11973 * 11974 * This function is called with no lock held. 11975 **/ 11976 struct lpfc_dmabuf * 11977 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11978 dma_addr_t phys) 11979 { 11980 struct lpfc_dmabuf *mp, *next_mp; 11981 struct list_head *slp = &pring->postbufq; 11982 11983 /* Search postbufq, from the beginning, looking for a match on phys */ 11984 spin_lock_irq(&phba->hbalock); 11985 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11986 if (mp->phys == phys) { 11987 list_del_init(&mp->list); 11988 pring->postbufq_cnt--; 11989 spin_unlock_irq(&phba->hbalock); 11990 return mp; 11991 } 11992 } 11993 11994 spin_unlock_irq(&phba->hbalock); 11995 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11996 "0410 Cannot find virtual addr for mapped buf on " 11997 "ring %d Data x%llx x%px x%px x%x\n", 11998 pring->ringno, (unsigned long long)phys, 11999 slp->next, slp->prev, pring->postbufq_cnt); 12000 return NULL; 12001 } 12002 12003 /** 12004 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 12005 * @phba: Pointer to HBA context object. 12006 * @cmdiocb: Pointer to driver command iocb object. 12007 * @rspiocb: Pointer to driver response iocb object. 12008 * 12009 * This function is the completion handler for the abort iocbs for 12010 * ELS commands. This function is called from the ELS ring event 12011 * handler with no lock held. This function frees memory resources 12012 * associated with the abort iocb. 12013 **/ 12014 static void 12015 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12016 struct lpfc_iocbq *rspiocb) 12017 { 12018 u32 ulp_status = get_job_ulpstatus(phba, rspiocb); 12019 u32 ulp_word4 = get_job_word4(phba, rspiocb); 12020 u8 cmnd = get_job_cmnd(phba, cmdiocb); 12021 12022 if (ulp_status) { 12023 /* 12024 * Assume that the port already completed and returned, or 12025 * will return the iocb. Just Log the message. 12026 */ 12027 if (phba->sli_rev < LPFC_SLI_REV4) { 12028 if (cmnd == CMD_ABORT_XRI_CX && 12029 ulp_status == IOSTAT_LOCAL_REJECT && 12030 ulp_word4 == IOERR_ABORT_REQUESTED) { 12031 goto release_iocb; 12032 } 12033 } 12034 12035 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 12036 "0327 Cannot abort els iocb x%px " 12037 "with io cmd xri %x abort tag : x%x, " 12038 "abort status %x abort code %x\n", 12039 cmdiocb, get_job_abtsiotag(phba, cmdiocb), 12040 (phba->sli_rev == LPFC_SLI_REV4) ? 12041 get_wqe_reqtag(cmdiocb) : 12042 cmdiocb->iocb.un.acxri.abortContextTag, 12043 ulp_status, ulp_word4); 12044 12045 } 12046 release_iocb: 12047 lpfc_sli_release_iocbq(phba, cmdiocb); 12048 return; 12049 } 12050 12051 /** 12052 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 12053 * @phba: Pointer to HBA context object. 12054 * @cmdiocb: Pointer to driver command iocb object. 12055 * @rspiocb: Pointer to driver response iocb object. 12056 * 12057 * The function is called from SLI ring event handler with no 12058 * lock held. This function is the completion handler for ELS commands 12059 * which are aborted. The function frees memory resources used for 12060 * the aborted ELS commands. 12061 **/ 12062 void 12063 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12064 struct lpfc_iocbq *rspiocb) 12065 { 12066 struct lpfc_nodelist *ndlp = cmdiocb->ndlp; 12067 IOCB_t *irsp; 12068 LPFC_MBOXQ_t *mbox; 12069 u32 ulp_command, ulp_status, ulp_word4, iotag; 12070 12071 ulp_command = get_job_cmnd(phba, cmdiocb); 12072 ulp_status = get_job_ulpstatus(phba, rspiocb); 12073 ulp_word4 = get_job_word4(phba, rspiocb); 12074 12075 if (phba->sli_rev == LPFC_SLI_REV4) { 12076 iotag = get_wqe_reqtag(cmdiocb); 12077 } else { 12078 irsp = &rspiocb->iocb; 12079 iotag = irsp->ulpIoTag; 12080 12081 /* It is possible a PLOGI_RJT for NPIV ports to get aborted. 12082 * The MBX_REG_LOGIN64 mbox command is freed back to the 12083 * mbox_mem_pool here. 12084 */ 12085 if (cmdiocb->context_un.mbox) { 12086 mbox = cmdiocb->context_un.mbox; 12087 lpfc_mbox_rsrc_cleanup(phba, mbox, MBOX_THD_UNLOCKED); 12088 cmdiocb->context_un.mbox = NULL; 12089 } 12090 } 12091 12092 /* ELS cmd tag <ulpIoTag> completes */ 12093 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 12094 "0139 Ignoring ELS cmd code x%x completion Data: " 12095 "x%x x%x x%x x%px\n", 12096 ulp_command, ulp_status, ulp_word4, iotag, 12097 cmdiocb->ndlp); 12098 /* 12099 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 12100 * if exchange is busy. 12101 */ 12102 if (ulp_command == CMD_GEN_REQUEST64_CR) 12103 lpfc_ct_free_iocb(phba, cmdiocb); 12104 else 12105 lpfc_els_free_iocb(phba, cmdiocb); 12106 12107 lpfc_nlp_put(ndlp); 12108 } 12109 12110 /** 12111 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 12112 * @phba: Pointer to HBA context object. 12113 * @pring: Pointer to driver SLI ring object. 12114 * @cmdiocb: Pointer to driver command iocb object. 12115 * @cmpl: completion function. 12116 * 12117 * This function issues an abort iocb for the provided command iocb. In case 12118 * of unloading, the abort iocb will not be issued to commands on the ELS 12119 * ring. Instead, the callback function shall be changed to those commands 12120 * so that nothing happens when them finishes. This function is called with 12121 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 12122 * when the command iocb is an abort request. 12123 * 12124 **/ 12125 int 12126 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 12127 struct lpfc_iocbq *cmdiocb, void *cmpl) 12128 { 12129 struct lpfc_vport *vport = cmdiocb->vport; 12130 struct lpfc_iocbq *abtsiocbp; 12131 int retval = IOCB_ERROR; 12132 unsigned long iflags; 12133 struct lpfc_nodelist *ndlp = NULL; 12134 u32 ulp_command = get_job_cmnd(phba, cmdiocb); 12135 u16 ulp_context, iotag; 12136 bool ia; 12137 12138 /* 12139 * There are certain command types we don't want to abort. And we 12140 * don't want to abort commands that are already in the process of 12141 * being aborted. 12142 */ 12143 if (ulp_command == CMD_ABORT_XRI_WQE || 12144 ulp_command == CMD_ABORT_XRI_CN || 12145 ulp_command == CMD_CLOSE_XRI_CN || 12146 cmdiocb->cmd_flag & LPFC_DRIVER_ABORTED) 12147 return IOCB_ABORTING; 12148 12149 if (!pring) { 12150 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12151 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12152 else 12153 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12154 return retval; 12155 } 12156 12157 /* 12158 * If we're unloading, don't abort iocb on the ELS ring, but change 12159 * the callback so that nothing happens when it finishes. 12160 */ 12161 if ((vport->load_flag & FC_UNLOADING) && 12162 pring->ringno == LPFC_ELS_RING) { 12163 if (cmdiocb->cmd_flag & LPFC_IO_FABRIC) 12164 cmdiocb->fabric_cmd_cmpl = lpfc_ignore_els_cmpl; 12165 else 12166 cmdiocb->cmd_cmpl = lpfc_ignore_els_cmpl; 12167 return retval; 12168 } 12169 12170 /* issue ABTS for this IOCB based on iotag */ 12171 abtsiocbp = __lpfc_sli_get_iocbq(phba); 12172 if (abtsiocbp == NULL) 12173 return IOCB_NORESOURCE; 12174 12175 /* This signals the response to set the correct status 12176 * before calling the completion handler 12177 */ 12178 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 12179 12180 if (phba->sli_rev == LPFC_SLI_REV4) { 12181 ulp_context = cmdiocb->sli4_xritag; 12182 iotag = abtsiocbp->iotag; 12183 } else { 12184 iotag = cmdiocb->iocb.ulpIoTag; 12185 if (pring->ringno == LPFC_ELS_RING) { 12186 ndlp = cmdiocb->ndlp; 12187 ulp_context = ndlp->nlp_rpi; 12188 } else { 12189 ulp_context = cmdiocb->iocb.ulpContext; 12190 } 12191 } 12192 12193 if (phba->link_state < LPFC_LINK_UP || 12194 (phba->sli_rev == LPFC_SLI_REV4 && 12195 phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN) || 12196 (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12197 ia = true; 12198 else 12199 ia = false; 12200 12201 lpfc_sli_prep_abort_xri(phba, abtsiocbp, ulp_context, iotag, 12202 cmdiocb->iocb.ulpClass, 12203 LPFC_WQE_CQ_ID_DEFAULT, ia); 12204 12205 abtsiocbp->vport = vport; 12206 12207 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12208 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 12209 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 12210 abtsiocbp->cmd_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); 12211 12212 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 12213 abtsiocbp->cmd_flag |= LPFC_IO_FOF; 12214 12215 if (cmpl) 12216 abtsiocbp->cmd_cmpl = cmpl; 12217 else 12218 abtsiocbp->cmd_cmpl = lpfc_sli_abort_els_cmpl; 12219 abtsiocbp->vport = vport; 12220 12221 if (phba->sli_rev == LPFC_SLI_REV4) { 12222 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 12223 if (unlikely(pring == NULL)) 12224 goto abort_iotag_exit; 12225 /* Note: both hbalock and ring_lock need to be set here */ 12226 spin_lock_irqsave(&pring->ring_lock, iflags); 12227 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12228 abtsiocbp, 0); 12229 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12230 } else { 12231 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 12232 abtsiocbp, 0); 12233 } 12234 12235 abort_iotag_exit: 12236 12237 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 12238 "0339 Abort IO XRI x%x, Original iotag x%x, " 12239 "abort tag x%x Cmdjob : x%px Abortjob : x%px " 12240 "retval x%x\n", 12241 ulp_context, (phba->sli_rev == LPFC_SLI_REV4) ? 12242 cmdiocb->iotag : iotag, iotag, cmdiocb, abtsiocbp, 12243 retval); 12244 if (retval) { 12245 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 12246 __lpfc_sli_release_iocbq(phba, abtsiocbp); 12247 } 12248 12249 /* 12250 * Caller to this routine should check for IOCB_ERROR 12251 * and handle it properly. This routine no longer removes 12252 * iocb off txcmplq and call compl in case of IOCB_ERROR. 12253 */ 12254 return retval; 12255 } 12256 12257 /** 12258 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 12259 * @phba: pointer to lpfc HBA data structure. 12260 * 12261 * This routine will abort all pending and outstanding iocbs to an HBA. 12262 **/ 12263 void 12264 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 12265 { 12266 struct lpfc_sli *psli = &phba->sli; 12267 struct lpfc_sli_ring *pring; 12268 struct lpfc_queue *qp = NULL; 12269 int i; 12270 12271 if (phba->sli_rev != LPFC_SLI_REV4) { 12272 for (i = 0; i < psli->num_rings; i++) { 12273 pring = &psli->sli3_ring[i]; 12274 lpfc_sli_abort_iocb_ring(phba, pring); 12275 } 12276 return; 12277 } 12278 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 12279 pring = qp->pring; 12280 if (!pring) 12281 continue; 12282 lpfc_sli_abort_iocb_ring(phba, pring); 12283 } 12284 } 12285 12286 /** 12287 * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts 12288 * @iocbq: Pointer to iocb object. 12289 * @vport: Pointer to driver virtual port object. 12290 * 12291 * This function acts as an iocb filter for functions which abort FCP iocbs. 12292 * 12293 * Return values 12294 * -ENODEV, if a null iocb or vport ptr is encountered 12295 * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as 12296 * driver already started the abort process, or is an abort iocb itself 12297 * 0, passes criteria for aborting the FCP I/O iocb 12298 **/ 12299 static int 12300 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, 12301 struct lpfc_vport *vport) 12302 { 12303 u8 ulp_command; 12304 12305 /* No null ptr vports */ 12306 if (!iocbq || iocbq->vport != vport) 12307 return -ENODEV; 12308 12309 /* iocb must be for FCP IO, already exists on the TX cmpl queue, 12310 * can't be premarked as driver aborted, nor be an ABORT iocb itself 12311 */ 12312 ulp_command = get_job_cmnd(vport->phba, iocbq); 12313 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12314 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ) || 12315 (iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12316 (ulp_command == CMD_ABORT_XRI_CN || 12317 ulp_command == CMD_CLOSE_XRI_CN || 12318 ulp_command == CMD_ABORT_XRI_WQE)) 12319 return -EINVAL; 12320 12321 return 0; 12322 } 12323 12324 /** 12325 * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target 12326 * @iocbq: Pointer to driver iocb object. 12327 * @vport: Pointer to driver virtual port object. 12328 * @tgt_id: SCSI ID of the target. 12329 * @lun_id: LUN ID of the scsi device. 12330 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 12331 * 12332 * This function acts as an iocb filter for validating a lun/SCSI target/SCSI 12333 * host. 12334 * 12335 * It will return 12336 * 0 if the filtering criteria is met for the given iocb and will return 12337 * 1 if the filtering criteria is not met. 12338 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 12339 * given iocb is for the SCSI device specified by vport, tgt_id and 12340 * lun_id parameter. 12341 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 12342 * given iocb is for the SCSI target specified by vport and tgt_id 12343 * parameters. 12344 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 12345 * given iocb is for the SCSI host associated with the given vport. 12346 * This function is called with no locks held. 12347 **/ 12348 static int 12349 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 12350 uint16_t tgt_id, uint64_t lun_id, 12351 lpfc_ctx_cmd ctx_cmd) 12352 { 12353 struct lpfc_io_buf *lpfc_cmd; 12354 int rc = 1; 12355 12356 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12357 12358 if (lpfc_cmd->pCmd == NULL) 12359 return rc; 12360 12361 switch (ctx_cmd) { 12362 case LPFC_CTX_LUN: 12363 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12364 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 12365 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 12366 rc = 0; 12367 break; 12368 case LPFC_CTX_TGT: 12369 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 12370 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 12371 rc = 0; 12372 break; 12373 case LPFC_CTX_HOST: 12374 rc = 0; 12375 break; 12376 default: 12377 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 12378 __func__, ctx_cmd); 12379 break; 12380 } 12381 12382 return rc; 12383 } 12384 12385 /** 12386 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 12387 * @vport: Pointer to virtual port. 12388 * @tgt_id: SCSI ID of the target. 12389 * @lun_id: LUN ID of the scsi device. 12390 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12391 * 12392 * This function returns number of FCP commands pending for the vport. 12393 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 12394 * commands pending on the vport associated with SCSI device specified 12395 * by tgt_id and lun_id parameters. 12396 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 12397 * commands pending on the vport associated with SCSI target specified 12398 * by tgt_id parameter. 12399 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 12400 * commands pending on the vport. 12401 * This function returns the number of iocbs which satisfy the filter. 12402 * This function is called without any lock held. 12403 **/ 12404 int 12405 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 12406 lpfc_ctx_cmd ctx_cmd) 12407 { 12408 struct lpfc_hba *phba = vport->phba; 12409 struct lpfc_iocbq *iocbq; 12410 int sum, i; 12411 unsigned long iflags; 12412 u8 ulp_command; 12413 12414 spin_lock_irqsave(&phba->hbalock, iflags); 12415 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 12416 iocbq = phba->sli.iocbq_lookup[i]; 12417 12418 if (!iocbq || iocbq->vport != vport) 12419 continue; 12420 if (!(iocbq->cmd_flag & LPFC_IO_FCP) || 12421 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) 12422 continue; 12423 12424 /* Include counting outstanding aborts */ 12425 ulp_command = get_job_cmnd(phba, iocbq); 12426 if (ulp_command == CMD_ABORT_XRI_CN || 12427 ulp_command == CMD_CLOSE_XRI_CN || 12428 ulp_command == CMD_ABORT_XRI_WQE) { 12429 sum++; 12430 continue; 12431 } 12432 12433 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12434 ctx_cmd) == 0) 12435 sum++; 12436 } 12437 spin_unlock_irqrestore(&phba->hbalock, iflags); 12438 12439 return sum; 12440 } 12441 12442 /** 12443 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 12444 * @phba: Pointer to HBA context object 12445 * @cmdiocb: Pointer to command iocb object. 12446 * @rspiocb: Pointer to response iocb object. 12447 * 12448 * This function is called when an aborted FCP iocb completes. This 12449 * function is called by the ring event handler with no lock held. 12450 * This function frees the iocb. 12451 **/ 12452 void 12453 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 12454 struct lpfc_iocbq *rspiocb) 12455 { 12456 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12457 "3096 ABORT_XRI_CX completing on rpi x%x " 12458 "original iotag x%x, abort cmd iotag x%x " 12459 "status 0x%x, reason 0x%x\n", 12460 (phba->sli_rev == LPFC_SLI_REV4) ? 12461 cmdiocb->sli4_xritag : 12462 cmdiocb->iocb.un.acxri.abortContextTag, 12463 get_job_abtsiotag(phba, cmdiocb), 12464 cmdiocb->iotag, get_job_ulpstatus(phba, rspiocb), 12465 get_job_word4(phba, rspiocb)); 12466 lpfc_sli_release_iocbq(phba, cmdiocb); 12467 return; 12468 } 12469 12470 /** 12471 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12472 * @vport: Pointer to virtual port. 12473 * @tgt_id: SCSI ID of the target. 12474 * @lun_id: LUN ID of the scsi device. 12475 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12476 * 12477 * This function sends an abort command for every SCSI command 12478 * associated with the given virtual port pending on the ring 12479 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12480 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12481 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12482 * followed by lpfc_sli_validate_fcp_iocb. 12483 * 12484 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12485 * FCP iocbs associated with lun specified by tgt_id and lun_id 12486 * parameters 12487 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12488 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12489 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12490 * FCP iocbs associated with virtual port. 12491 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12492 * lpfc_sli4_calc_ring is used. 12493 * This function returns number of iocbs it failed to abort. 12494 * This function is called with no locks held. 12495 **/ 12496 int 12497 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12498 lpfc_ctx_cmd abort_cmd) 12499 { 12500 struct lpfc_hba *phba = vport->phba; 12501 struct lpfc_sli_ring *pring = NULL; 12502 struct lpfc_iocbq *iocbq; 12503 int errcnt = 0, ret_val = 0; 12504 unsigned long iflags; 12505 int i; 12506 12507 /* all I/Os are in process of being flushed */ 12508 if (phba->hba_flag & HBA_IOQ_FLUSH) 12509 return errcnt; 12510 12511 for (i = 1; i <= phba->sli.last_iotag; i++) { 12512 iocbq = phba->sli.iocbq_lookup[i]; 12513 12514 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12515 continue; 12516 12517 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12518 abort_cmd) != 0) 12519 continue; 12520 12521 spin_lock_irqsave(&phba->hbalock, iflags); 12522 if (phba->sli_rev == LPFC_SLI_REV3) { 12523 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12524 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12525 pring = lpfc_sli4_calc_ring(phba, iocbq); 12526 } 12527 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12528 lpfc_sli_abort_fcp_cmpl); 12529 spin_unlock_irqrestore(&phba->hbalock, iflags); 12530 if (ret_val != IOCB_SUCCESS) 12531 errcnt++; 12532 } 12533 12534 return errcnt; 12535 } 12536 12537 /** 12538 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12539 * @vport: Pointer to virtual port. 12540 * @pring: Pointer to driver SLI ring object. 12541 * @tgt_id: SCSI ID of the target. 12542 * @lun_id: LUN ID of the scsi device. 12543 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12544 * 12545 * This function sends an abort command for every SCSI command 12546 * associated with the given virtual port pending on the ring 12547 * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then 12548 * lpfc_sli_validate_fcp_iocb function. The ordering for validation before 12549 * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort 12550 * followed by lpfc_sli_validate_fcp_iocb. 12551 * 12552 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12553 * FCP iocbs associated with lun specified by tgt_id and lun_id 12554 * parameters 12555 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12556 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12557 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12558 * FCP iocbs associated with virtual port. 12559 * This function returns number of iocbs it aborted . 12560 * This function is called with no locks held right after a taskmgmt 12561 * command is sent. 12562 **/ 12563 int 12564 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12565 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12566 { 12567 struct lpfc_hba *phba = vport->phba; 12568 struct lpfc_io_buf *lpfc_cmd; 12569 struct lpfc_iocbq *abtsiocbq; 12570 struct lpfc_nodelist *ndlp = NULL; 12571 struct lpfc_iocbq *iocbq; 12572 int sum, i, ret_val; 12573 unsigned long iflags; 12574 struct lpfc_sli_ring *pring_s4 = NULL; 12575 u16 ulp_context, iotag, cqid = LPFC_WQE_CQ_ID_DEFAULT; 12576 bool ia; 12577 12578 spin_lock_irqsave(&phba->hbalock, iflags); 12579 12580 /* all I/Os are in process of being flushed */ 12581 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12582 spin_unlock_irqrestore(&phba->hbalock, iflags); 12583 return 0; 12584 } 12585 sum = 0; 12586 12587 for (i = 1; i <= phba->sli.last_iotag; i++) { 12588 iocbq = phba->sli.iocbq_lookup[i]; 12589 12590 if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) 12591 continue; 12592 12593 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12594 cmd) != 0) 12595 continue; 12596 12597 /* Guard against IO completion being called at same time */ 12598 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12599 spin_lock(&lpfc_cmd->buf_lock); 12600 12601 if (!lpfc_cmd->pCmd) { 12602 spin_unlock(&lpfc_cmd->buf_lock); 12603 continue; 12604 } 12605 12606 if (phba->sli_rev == LPFC_SLI_REV4) { 12607 pring_s4 = 12608 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12609 if (!pring_s4) { 12610 spin_unlock(&lpfc_cmd->buf_lock); 12611 continue; 12612 } 12613 /* Note: both hbalock and ring_lock must be set here */ 12614 spin_lock(&pring_s4->ring_lock); 12615 } 12616 12617 /* 12618 * If the iocbq is already being aborted, don't take a second 12619 * action, but do count it. 12620 */ 12621 if ((iocbq->cmd_flag & LPFC_DRIVER_ABORTED) || 12622 !(iocbq->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { 12623 if (phba->sli_rev == LPFC_SLI_REV4) 12624 spin_unlock(&pring_s4->ring_lock); 12625 spin_unlock(&lpfc_cmd->buf_lock); 12626 continue; 12627 } 12628 12629 /* issue ABTS for this IOCB based on iotag */ 12630 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12631 if (!abtsiocbq) { 12632 if (phba->sli_rev == LPFC_SLI_REV4) 12633 spin_unlock(&pring_s4->ring_lock); 12634 spin_unlock(&lpfc_cmd->buf_lock); 12635 continue; 12636 } 12637 12638 if (phba->sli_rev == LPFC_SLI_REV4) { 12639 iotag = abtsiocbq->iotag; 12640 ulp_context = iocbq->sli4_xritag; 12641 cqid = lpfc_cmd->hdwq->io_cq_map; 12642 } else { 12643 iotag = iocbq->iocb.ulpIoTag; 12644 if (pring->ringno == LPFC_ELS_RING) { 12645 ndlp = iocbq->ndlp; 12646 ulp_context = ndlp->nlp_rpi; 12647 } else { 12648 ulp_context = iocbq->iocb.ulpContext; 12649 } 12650 } 12651 12652 ndlp = lpfc_cmd->rdata->pnode; 12653 12654 if (lpfc_is_link_up(phba) && 12655 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE) && 12656 !(phba->link_flag & LS_EXTERNAL_LOOPBACK)) 12657 ia = false; 12658 else 12659 ia = true; 12660 12661 lpfc_sli_prep_abort_xri(phba, abtsiocbq, ulp_context, iotag, 12662 iocbq->iocb.ulpClass, cqid, 12663 ia); 12664 12665 abtsiocbq->vport = vport; 12666 12667 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12668 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12669 if (iocbq->cmd_flag & LPFC_IO_FCP) 12670 abtsiocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 12671 if (iocbq->cmd_flag & LPFC_IO_FOF) 12672 abtsiocbq->cmd_flag |= LPFC_IO_FOF; 12673 12674 /* Setup callback routine and issue the command. */ 12675 abtsiocbq->cmd_cmpl = lpfc_sli_abort_fcp_cmpl; 12676 12677 /* 12678 * Indicate the IO is being aborted by the driver and set 12679 * the caller's flag into the aborted IO. 12680 */ 12681 iocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 12682 12683 if (phba->sli_rev == LPFC_SLI_REV4) { 12684 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12685 abtsiocbq, 0); 12686 spin_unlock(&pring_s4->ring_lock); 12687 } else { 12688 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12689 abtsiocbq, 0); 12690 } 12691 12692 spin_unlock(&lpfc_cmd->buf_lock); 12693 12694 if (ret_val == IOCB_ERROR) 12695 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12696 else 12697 sum++; 12698 } 12699 spin_unlock_irqrestore(&phba->hbalock, iflags); 12700 return sum; 12701 } 12702 12703 /** 12704 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12705 * @phba: Pointer to HBA context object. 12706 * @cmdiocbq: Pointer to command iocb. 12707 * @rspiocbq: Pointer to response iocb. 12708 * 12709 * This function is the completion handler for iocbs issued using 12710 * lpfc_sli_issue_iocb_wait function. This function is called by the 12711 * ring event handler function without any lock held. This function 12712 * can be called from both worker thread context and interrupt 12713 * context. This function also can be called from other thread which 12714 * cleans up the SLI layer objects. 12715 * This function copy the contents of the response iocb to the 12716 * response iocb memory object provided by the caller of 12717 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12718 * sleeps for the iocb completion. 12719 **/ 12720 static void 12721 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12722 struct lpfc_iocbq *cmdiocbq, 12723 struct lpfc_iocbq *rspiocbq) 12724 { 12725 wait_queue_head_t *pdone_q; 12726 unsigned long iflags; 12727 struct lpfc_io_buf *lpfc_cmd; 12728 size_t offset = offsetof(struct lpfc_iocbq, wqe); 12729 12730 spin_lock_irqsave(&phba->hbalock, iflags); 12731 if (cmdiocbq->cmd_flag & LPFC_IO_WAKE_TMO) { 12732 12733 /* 12734 * A time out has occurred for the iocb. If a time out 12735 * completion handler has been supplied, call it. Otherwise, 12736 * just free the iocbq. 12737 */ 12738 12739 spin_unlock_irqrestore(&phba->hbalock, iflags); 12740 cmdiocbq->cmd_cmpl = cmdiocbq->wait_cmd_cmpl; 12741 cmdiocbq->wait_cmd_cmpl = NULL; 12742 if (cmdiocbq->cmd_cmpl) 12743 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, NULL); 12744 else 12745 lpfc_sli_release_iocbq(phba, cmdiocbq); 12746 return; 12747 } 12748 12749 /* Copy the contents of the local rspiocb into the caller's buffer. */ 12750 cmdiocbq->cmd_flag |= LPFC_IO_WAKE; 12751 if (cmdiocbq->rsp_iocb && rspiocbq) 12752 memcpy((char *)cmdiocbq->rsp_iocb + offset, 12753 (char *)rspiocbq + offset, sizeof(*rspiocbq) - offset); 12754 12755 /* Set the exchange busy flag for task management commands */ 12756 if ((cmdiocbq->cmd_flag & LPFC_IO_FCP) && 12757 !(cmdiocbq->cmd_flag & LPFC_IO_LIBDFC)) { 12758 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12759 cur_iocbq); 12760 if (rspiocbq && (rspiocbq->cmd_flag & LPFC_EXCHANGE_BUSY)) 12761 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12762 else 12763 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12764 } 12765 12766 pdone_q = cmdiocbq->context_un.wait_queue; 12767 if (pdone_q) 12768 wake_up(pdone_q); 12769 spin_unlock_irqrestore(&phba->hbalock, iflags); 12770 return; 12771 } 12772 12773 /** 12774 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12775 * @phba: Pointer to HBA context object.. 12776 * @piocbq: Pointer to command iocb. 12777 * @flag: Flag to test. 12778 * 12779 * This routine grabs the hbalock and then test the cmd_flag to 12780 * see if the passed in flag is set. 12781 * Returns: 12782 * 1 if flag is set. 12783 * 0 if flag is not set. 12784 **/ 12785 static int 12786 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12787 struct lpfc_iocbq *piocbq, uint32_t flag) 12788 { 12789 unsigned long iflags; 12790 int ret; 12791 12792 spin_lock_irqsave(&phba->hbalock, iflags); 12793 ret = piocbq->cmd_flag & flag; 12794 spin_unlock_irqrestore(&phba->hbalock, iflags); 12795 return ret; 12796 12797 } 12798 12799 /** 12800 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12801 * @phba: Pointer to HBA context object.. 12802 * @ring_number: Ring number 12803 * @piocb: Pointer to command iocb. 12804 * @prspiocbq: Pointer to response iocb. 12805 * @timeout: Timeout in number of seconds. 12806 * 12807 * This function issues the iocb to firmware and waits for the 12808 * iocb to complete. The cmd_cmpl field of the shall be used 12809 * to handle iocbs which time out. If the field is NULL, the 12810 * function shall free the iocbq structure. If more clean up is 12811 * needed, the caller is expected to provide a completion function 12812 * that will provide the needed clean up. If the iocb command is 12813 * not completed within timeout seconds, the function will either 12814 * free the iocbq structure (if cmd_cmpl == NULL) or execute the 12815 * completion function set in the cmd_cmpl field and then return 12816 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12817 * resources if this function returns IOCB_TIMEDOUT. 12818 * The function waits for the iocb completion using an 12819 * non-interruptible wait. 12820 * This function will sleep while waiting for iocb completion. 12821 * So, this function should not be called from any context which 12822 * does not allow sleeping. Due to the same reason, this function 12823 * cannot be called with interrupt disabled. 12824 * This function assumes that the iocb completions occur while 12825 * this function sleep. So, this function cannot be called from 12826 * the thread which process iocb completion for this ring. 12827 * This function clears the cmd_flag of the iocb object before 12828 * issuing the iocb and the iocb completion handler sets this 12829 * flag and wakes this thread when the iocb completes. 12830 * The contents of the response iocb will be copied to prspiocbq 12831 * by the completion handler when the command completes. 12832 * This function returns IOCB_SUCCESS when success. 12833 * This function is called with no lock held. 12834 **/ 12835 int 12836 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12837 uint32_t ring_number, 12838 struct lpfc_iocbq *piocb, 12839 struct lpfc_iocbq *prspiocbq, 12840 uint32_t timeout) 12841 { 12842 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12843 long timeleft, timeout_req = 0; 12844 int retval = IOCB_SUCCESS; 12845 uint32_t creg_val; 12846 struct lpfc_iocbq *iocb; 12847 int txq_cnt = 0; 12848 int txcmplq_cnt = 0; 12849 struct lpfc_sli_ring *pring; 12850 unsigned long iflags; 12851 bool iocb_completed = true; 12852 12853 if (phba->sli_rev >= LPFC_SLI_REV4) { 12854 lpfc_sli_prep_wqe(phba, piocb); 12855 12856 pring = lpfc_sli4_calc_ring(phba, piocb); 12857 } else 12858 pring = &phba->sli.sli3_ring[ring_number]; 12859 /* 12860 * If the caller has provided a response iocbq buffer, then rsp_iocb 12861 * is NULL or its an error. 12862 */ 12863 if (prspiocbq) { 12864 if (piocb->rsp_iocb) 12865 return IOCB_ERROR; 12866 piocb->rsp_iocb = prspiocbq; 12867 } 12868 12869 piocb->wait_cmd_cmpl = piocb->cmd_cmpl; 12870 piocb->cmd_cmpl = lpfc_sli_wake_iocb_wait; 12871 piocb->context_un.wait_queue = &done_q; 12872 piocb->cmd_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12873 12874 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12875 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12876 return IOCB_ERROR; 12877 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12878 writel(creg_val, phba->HCregaddr); 12879 readl(phba->HCregaddr); /* flush */ 12880 } 12881 12882 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12883 SLI_IOCB_RET_IOCB); 12884 if (retval == IOCB_SUCCESS) { 12885 timeout_req = msecs_to_jiffies(timeout * 1000); 12886 timeleft = wait_event_timeout(done_q, 12887 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12888 timeout_req); 12889 spin_lock_irqsave(&phba->hbalock, iflags); 12890 if (!(piocb->cmd_flag & LPFC_IO_WAKE)) { 12891 12892 /* 12893 * IOCB timed out. Inform the wake iocb wait 12894 * completion function and set local status 12895 */ 12896 12897 iocb_completed = false; 12898 piocb->cmd_flag |= LPFC_IO_WAKE_TMO; 12899 } 12900 spin_unlock_irqrestore(&phba->hbalock, iflags); 12901 if (iocb_completed) { 12902 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12903 "0331 IOCB wake signaled\n"); 12904 /* Note: we are not indicating if the IOCB has a success 12905 * status or not - that's for the caller to check. 12906 * IOCB_SUCCESS means just that the command was sent and 12907 * completed. Not that it completed successfully. 12908 * */ 12909 } else if (timeleft == 0) { 12910 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12911 "0338 IOCB wait timeout error - no " 12912 "wake response Data x%x\n", timeout); 12913 retval = IOCB_TIMEDOUT; 12914 } else { 12915 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12916 "0330 IOCB wake NOT set, " 12917 "Data x%x x%lx\n", 12918 timeout, (timeleft / jiffies)); 12919 retval = IOCB_TIMEDOUT; 12920 } 12921 } else if (retval == IOCB_BUSY) { 12922 if (phba->cfg_log_verbose & LOG_SLI) { 12923 list_for_each_entry(iocb, &pring->txq, list) { 12924 txq_cnt++; 12925 } 12926 list_for_each_entry(iocb, &pring->txcmplq, list) { 12927 txcmplq_cnt++; 12928 } 12929 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12930 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12931 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12932 } 12933 return retval; 12934 } else { 12935 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12936 "0332 IOCB wait issue failed, Data x%x\n", 12937 retval); 12938 retval = IOCB_ERROR; 12939 } 12940 12941 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12942 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12943 return IOCB_ERROR; 12944 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12945 writel(creg_val, phba->HCregaddr); 12946 readl(phba->HCregaddr); /* flush */ 12947 } 12948 12949 if (prspiocbq) 12950 piocb->rsp_iocb = NULL; 12951 12952 piocb->context_un.wait_queue = NULL; 12953 piocb->cmd_cmpl = NULL; 12954 return retval; 12955 } 12956 12957 /** 12958 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12959 * @phba: Pointer to HBA context object. 12960 * @pmboxq: Pointer to driver mailbox object. 12961 * @timeout: Timeout in number of seconds. 12962 * 12963 * This function issues the mailbox to firmware and waits for the 12964 * mailbox command to complete. If the mailbox command is not 12965 * completed within timeout seconds, it returns MBX_TIMEOUT. 12966 * The function waits for the mailbox completion using an 12967 * interruptible wait. If the thread is woken up due to a 12968 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12969 * should not free the mailbox resources, if this function returns 12970 * MBX_TIMEOUT. 12971 * This function will sleep while waiting for mailbox completion. 12972 * So, this function should not be called from any context which 12973 * does not allow sleeping. Due to the same reason, this function 12974 * cannot be called with interrupt disabled. 12975 * This function assumes that the mailbox completion occurs while 12976 * this function sleep. So, this function cannot be called from 12977 * the worker thread which processes mailbox completion. 12978 * This function is called in the context of HBA management 12979 * applications. 12980 * This function returns MBX_SUCCESS when successful. 12981 * This function is called with no lock held. 12982 **/ 12983 int 12984 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12985 uint32_t timeout) 12986 { 12987 struct completion mbox_done; 12988 int retval; 12989 unsigned long flag; 12990 12991 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12992 /* setup wake call as IOCB callback */ 12993 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12994 12995 /* setup context3 field to pass wait_queue pointer to wake function */ 12996 init_completion(&mbox_done); 12997 pmboxq->context3 = &mbox_done; 12998 /* now issue the command */ 12999 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 13000 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 13001 wait_for_completion_timeout(&mbox_done, 13002 msecs_to_jiffies(timeout * 1000)); 13003 13004 spin_lock_irqsave(&phba->hbalock, flag); 13005 pmboxq->context3 = NULL; 13006 /* 13007 * if LPFC_MBX_WAKE flag is set the mailbox is completed 13008 * else do not free the resources. 13009 */ 13010 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 13011 retval = MBX_SUCCESS; 13012 } else { 13013 retval = MBX_TIMEOUT; 13014 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13015 } 13016 spin_unlock_irqrestore(&phba->hbalock, flag); 13017 } 13018 return retval; 13019 } 13020 13021 /** 13022 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 13023 * @phba: Pointer to HBA context. 13024 * @mbx_action: Mailbox shutdown options. 13025 * 13026 * This function is called to shutdown the driver's mailbox sub-system. 13027 * It first marks the mailbox sub-system is in a block state to prevent 13028 * the asynchronous mailbox command from issued off the pending mailbox 13029 * command queue. If the mailbox command sub-system shutdown is due to 13030 * HBA error conditions such as EEH or ERATT, this routine shall invoke 13031 * the mailbox sub-system flush routine to forcefully bring down the 13032 * mailbox sub-system. Otherwise, if it is due to normal condition (such 13033 * as with offline or HBA function reset), this routine will wait for the 13034 * outstanding mailbox command to complete before invoking the mailbox 13035 * sub-system flush routine to gracefully bring down mailbox sub-system. 13036 **/ 13037 void 13038 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 13039 { 13040 struct lpfc_sli *psli = &phba->sli; 13041 unsigned long timeout; 13042 13043 if (mbx_action == LPFC_MBX_NO_WAIT) { 13044 /* delay 100ms for port state */ 13045 msleep(100); 13046 lpfc_sli_mbox_sys_flush(phba); 13047 return; 13048 } 13049 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 13050 13051 /* Disable softirqs, including timers from obtaining phba->hbalock */ 13052 local_bh_disable(); 13053 13054 spin_lock_irq(&phba->hbalock); 13055 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 13056 13057 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 13058 /* Determine how long we might wait for the active mailbox 13059 * command to be gracefully completed by firmware. 13060 */ 13061 if (phba->sli.mbox_active) 13062 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 13063 phba->sli.mbox_active) * 13064 1000) + jiffies; 13065 spin_unlock_irq(&phba->hbalock); 13066 13067 /* Enable softirqs again, done with phba->hbalock */ 13068 local_bh_enable(); 13069 13070 while (phba->sli.mbox_active) { 13071 /* Check active mailbox complete status every 2ms */ 13072 msleep(2); 13073 if (time_after(jiffies, timeout)) 13074 /* Timeout, let the mailbox flush routine to 13075 * forcefully release active mailbox command 13076 */ 13077 break; 13078 } 13079 } else { 13080 spin_unlock_irq(&phba->hbalock); 13081 13082 /* Enable softirqs again, done with phba->hbalock */ 13083 local_bh_enable(); 13084 } 13085 13086 lpfc_sli_mbox_sys_flush(phba); 13087 } 13088 13089 /** 13090 * lpfc_sli_eratt_read - read sli-3 error attention events 13091 * @phba: Pointer to HBA context. 13092 * 13093 * This function is called to read the SLI3 device error attention registers 13094 * for possible error attention events. The caller must hold the hostlock 13095 * with spin_lock_irq(). 13096 * 13097 * This function returns 1 when there is Error Attention in the Host Attention 13098 * Register and returns 0 otherwise. 13099 **/ 13100 static int 13101 lpfc_sli_eratt_read(struct lpfc_hba *phba) 13102 { 13103 uint32_t ha_copy; 13104 13105 /* Read chip Host Attention (HA) register */ 13106 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13107 goto unplug_err; 13108 13109 if (ha_copy & HA_ERATT) { 13110 /* Read host status register to retrieve error event */ 13111 if (lpfc_sli_read_hs(phba)) 13112 goto unplug_err; 13113 13114 /* Check if there is a deferred error condition is active */ 13115 if ((HS_FFER1 & phba->work_hs) && 13116 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13117 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 13118 phba->hba_flag |= DEFER_ERATT; 13119 /* Clear all interrupt enable conditions */ 13120 writel(0, phba->HCregaddr); 13121 readl(phba->HCregaddr); 13122 } 13123 13124 /* Set the driver HA work bitmap */ 13125 phba->work_ha |= HA_ERATT; 13126 /* Indicate polling handles this ERATT */ 13127 phba->hba_flag |= HBA_ERATT_HANDLED; 13128 return 1; 13129 } 13130 return 0; 13131 13132 unplug_err: 13133 /* Set the driver HS work bitmap */ 13134 phba->work_hs |= UNPLUG_ERR; 13135 /* Set the driver HA work bitmap */ 13136 phba->work_ha |= HA_ERATT; 13137 /* Indicate polling handles this ERATT */ 13138 phba->hba_flag |= HBA_ERATT_HANDLED; 13139 return 1; 13140 } 13141 13142 /** 13143 * lpfc_sli4_eratt_read - read sli-4 error attention events 13144 * @phba: Pointer to HBA context. 13145 * 13146 * This function is called to read the SLI4 device error attention registers 13147 * for possible error attention events. The caller must hold the hostlock 13148 * with spin_lock_irq(). 13149 * 13150 * This function returns 1 when there is Error Attention in the Host Attention 13151 * Register and returns 0 otherwise. 13152 **/ 13153 static int 13154 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 13155 { 13156 uint32_t uerr_sta_hi, uerr_sta_lo; 13157 uint32_t if_type, portsmphr; 13158 struct lpfc_register portstat_reg; 13159 u32 logmask; 13160 13161 /* 13162 * For now, use the SLI4 device internal unrecoverable error 13163 * registers for error attention. This can be changed later. 13164 */ 13165 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 13166 switch (if_type) { 13167 case LPFC_SLI_INTF_IF_TYPE_0: 13168 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 13169 &uerr_sta_lo) || 13170 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 13171 &uerr_sta_hi)) { 13172 phba->work_hs |= UNPLUG_ERR; 13173 phba->work_ha |= HA_ERATT; 13174 phba->hba_flag |= HBA_ERATT_HANDLED; 13175 return 1; 13176 } 13177 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 13178 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 13179 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13180 "1423 HBA Unrecoverable error: " 13181 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 13182 "ue_mask_lo_reg=0x%x, " 13183 "ue_mask_hi_reg=0x%x\n", 13184 uerr_sta_lo, uerr_sta_hi, 13185 phba->sli4_hba.ue_mask_lo, 13186 phba->sli4_hba.ue_mask_hi); 13187 phba->work_status[0] = uerr_sta_lo; 13188 phba->work_status[1] = uerr_sta_hi; 13189 phba->work_ha |= HA_ERATT; 13190 phba->hba_flag |= HBA_ERATT_HANDLED; 13191 return 1; 13192 } 13193 break; 13194 case LPFC_SLI_INTF_IF_TYPE_2: 13195 case LPFC_SLI_INTF_IF_TYPE_6: 13196 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 13197 &portstat_reg.word0) || 13198 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 13199 &portsmphr)){ 13200 phba->work_hs |= UNPLUG_ERR; 13201 phba->work_ha |= HA_ERATT; 13202 phba->hba_flag |= HBA_ERATT_HANDLED; 13203 return 1; 13204 } 13205 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 13206 phba->work_status[0] = 13207 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 13208 phba->work_status[1] = 13209 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 13210 logmask = LOG_TRACE_EVENT; 13211 if (phba->work_status[0] == 13212 SLIPORT_ERR1_REG_ERR_CODE_2 && 13213 phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) 13214 logmask = LOG_SLI; 13215 lpfc_printf_log(phba, KERN_ERR, logmask, 13216 "2885 Port Status Event: " 13217 "port status reg 0x%x, " 13218 "port smphr reg 0x%x, " 13219 "error 1=0x%x, error 2=0x%x\n", 13220 portstat_reg.word0, 13221 portsmphr, 13222 phba->work_status[0], 13223 phba->work_status[1]); 13224 phba->work_ha |= HA_ERATT; 13225 phba->hba_flag |= HBA_ERATT_HANDLED; 13226 return 1; 13227 } 13228 break; 13229 case LPFC_SLI_INTF_IF_TYPE_1: 13230 default: 13231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13232 "2886 HBA Error Attention on unsupported " 13233 "if type %d.", if_type); 13234 return 1; 13235 } 13236 13237 return 0; 13238 } 13239 13240 /** 13241 * lpfc_sli_check_eratt - check error attention events 13242 * @phba: Pointer to HBA context. 13243 * 13244 * This function is called from timer soft interrupt context to check HBA's 13245 * error attention register bit for error attention events. 13246 * 13247 * This function returns 1 when there is Error Attention in the Host Attention 13248 * Register and returns 0 otherwise. 13249 **/ 13250 int 13251 lpfc_sli_check_eratt(struct lpfc_hba *phba) 13252 { 13253 uint32_t ha_copy; 13254 13255 /* If somebody is waiting to handle an eratt, don't process it 13256 * here. The brdkill function will do this. 13257 */ 13258 if (phba->link_flag & LS_IGNORE_ERATT) 13259 return 0; 13260 13261 /* Check if interrupt handler handles this ERATT */ 13262 spin_lock_irq(&phba->hbalock); 13263 if (phba->hba_flag & HBA_ERATT_HANDLED) { 13264 /* Interrupt handler has handled ERATT */ 13265 spin_unlock_irq(&phba->hbalock); 13266 return 0; 13267 } 13268 13269 /* 13270 * If there is deferred error attention, do not check for error 13271 * attention 13272 */ 13273 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13274 spin_unlock_irq(&phba->hbalock); 13275 return 0; 13276 } 13277 13278 /* If PCI channel is offline, don't process it */ 13279 if (unlikely(pci_channel_offline(phba->pcidev))) { 13280 spin_unlock_irq(&phba->hbalock); 13281 return 0; 13282 } 13283 13284 switch (phba->sli_rev) { 13285 case LPFC_SLI_REV2: 13286 case LPFC_SLI_REV3: 13287 /* Read chip Host Attention (HA) register */ 13288 ha_copy = lpfc_sli_eratt_read(phba); 13289 break; 13290 case LPFC_SLI_REV4: 13291 /* Read device Uncoverable Error (UERR) registers */ 13292 ha_copy = lpfc_sli4_eratt_read(phba); 13293 break; 13294 default: 13295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13296 "0299 Invalid SLI revision (%d)\n", 13297 phba->sli_rev); 13298 ha_copy = 0; 13299 break; 13300 } 13301 spin_unlock_irq(&phba->hbalock); 13302 13303 return ha_copy; 13304 } 13305 13306 /** 13307 * lpfc_intr_state_check - Check device state for interrupt handling 13308 * @phba: Pointer to HBA context. 13309 * 13310 * This inline routine checks whether a device or its PCI slot is in a state 13311 * that the interrupt should be handled. 13312 * 13313 * This function returns 0 if the device or the PCI slot is in a state that 13314 * interrupt should be handled, otherwise -EIO. 13315 */ 13316 static inline int 13317 lpfc_intr_state_check(struct lpfc_hba *phba) 13318 { 13319 /* If the pci channel is offline, ignore all the interrupts */ 13320 if (unlikely(pci_channel_offline(phba->pcidev))) 13321 return -EIO; 13322 13323 /* Update device level interrupt statistics */ 13324 phba->sli.slistat.sli_intr++; 13325 13326 /* Ignore all interrupts during initialization. */ 13327 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 13328 return -EIO; 13329 13330 return 0; 13331 } 13332 13333 /** 13334 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 13335 * @irq: Interrupt number. 13336 * @dev_id: The device context pointer. 13337 * 13338 * This function is directly called from the PCI layer as an interrupt 13339 * service routine when device with SLI-3 interface spec is enabled with 13340 * MSI-X multi-message interrupt mode and there are slow-path events in 13341 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 13342 * interrupt mode, this function is called as part of the device-level 13343 * interrupt handler. When the PCI slot is in error recovery or the HBA 13344 * is undergoing initialization, the interrupt handler will not process 13345 * the interrupt. The link attention and ELS ring attention events are 13346 * handled by the worker thread. The interrupt handler signals the worker 13347 * thread and returns for these events. This function is called without 13348 * any lock held. It gets the hbalock to access and update SLI data 13349 * structures. 13350 * 13351 * This function returns IRQ_HANDLED when interrupt is handled else it 13352 * returns IRQ_NONE. 13353 **/ 13354 irqreturn_t 13355 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 13356 { 13357 struct lpfc_hba *phba; 13358 uint32_t ha_copy, hc_copy; 13359 uint32_t work_ha_copy; 13360 unsigned long status; 13361 unsigned long iflag; 13362 uint32_t control; 13363 13364 MAILBOX_t *mbox, *pmbox; 13365 struct lpfc_vport *vport; 13366 struct lpfc_nodelist *ndlp; 13367 struct lpfc_dmabuf *mp; 13368 LPFC_MBOXQ_t *pmb; 13369 int rc; 13370 13371 /* 13372 * Get the driver's phba structure from the dev_id and 13373 * assume the HBA is not interrupting. 13374 */ 13375 phba = (struct lpfc_hba *)dev_id; 13376 13377 if (unlikely(!phba)) 13378 return IRQ_NONE; 13379 13380 /* 13381 * Stuff needs to be attented to when this function is invoked as an 13382 * individual interrupt handler in MSI-X multi-message interrupt mode 13383 */ 13384 if (phba->intr_type == MSIX) { 13385 /* Check device state for handling interrupt */ 13386 if (lpfc_intr_state_check(phba)) 13387 return IRQ_NONE; 13388 /* Need to read HA REG for slow-path events */ 13389 spin_lock_irqsave(&phba->hbalock, iflag); 13390 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13391 goto unplug_error; 13392 /* If somebody is waiting to handle an eratt don't process it 13393 * here. The brdkill function will do this. 13394 */ 13395 if (phba->link_flag & LS_IGNORE_ERATT) 13396 ha_copy &= ~HA_ERATT; 13397 /* Check the need for handling ERATT in interrupt handler */ 13398 if (ha_copy & HA_ERATT) { 13399 if (phba->hba_flag & HBA_ERATT_HANDLED) 13400 /* ERATT polling has handled ERATT */ 13401 ha_copy &= ~HA_ERATT; 13402 else 13403 /* Indicate interrupt handler handles ERATT */ 13404 phba->hba_flag |= HBA_ERATT_HANDLED; 13405 } 13406 13407 /* 13408 * If there is deferred error attention, do not check for any 13409 * interrupt. 13410 */ 13411 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13412 spin_unlock_irqrestore(&phba->hbalock, iflag); 13413 return IRQ_NONE; 13414 } 13415 13416 /* Clear up only attention source related to slow-path */ 13417 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 13418 goto unplug_error; 13419 13420 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 13421 HC_LAINT_ENA | HC_ERINT_ENA), 13422 phba->HCregaddr); 13423 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 13424 phba->HAregaddr); 13425 writel(hc_copy, phba->HCregaddr); 13426 readl(phba->HAregaddr); /* flush */ 13427 spin_unlock_irqrestore(&phba->hbalock, iflag); 13428 } else 13429 ha_copy = phba->ha_copy; 13430 13431 work_ha_copy = ha_copy & phba->work_ha_mask; 13432 13433 if (work_ha_copy) { 13434 if (work_ha_copy & HA_LATT) { 13435 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 13436 /* 13437 * Turn off Link Attention interrupts 13438 * until CLEAR_LA done 13439 */ 13440 spin_lock_irqsave(&phba->hbalock, iflag); 13441 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 13442 if (lpfc_readl(phba->HCregaddr, &control)) 13443 goto unplug_error; 13444 control &= ~HC_LAINT_ENA; 13445 writel(control, phba->HCregaddr); 13446 readl(phba->HCregaddr); /* flush */ 13447 spin_unlock_irqrestore(&phba->hbalock, iflag); 13448 } 13449 else 13450 work_ha_copy &= ~HA_LATT; 13451 } 13452 13453 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 13454 /* 13455 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 13456 * the only slow ring. 13457 */ 13458 status = (work_ha_copy & 13459 (HA_RXMASK << (4*LPFC_ELS_RING))); 13460 status >>= (4*LPFC_ELS_RING); 13461 if (status & HA_RXMASK) { 13462 spin_lock_irqsave(&phba->hbalock, iflag); 13463 if (lpfc_readl(phba->HCregaddr, &control)) 13464 goto unplug_error; 13465 13466 lpfc_debugfs_slow_ring_trc(phba, 13467 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 13468 control, status, 13469 (uint32_t)phba->sli.slistat.sli_intr); 13470 13471 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 13472 lpfc_debugfs_slow_ring_trc(phba, 13473 "ISR Disable ring:" 13474 "pwork:x%x hawork:x%x wait:x%x", 13475 phba->work_ha, work_ha_copy, 13476 (uint32_t)((unsigned long) 13477 &phba->work_waitq)); 13478 13479 control &= 13480 ~(HC_R0INT_ENA << LPFC_ELS_RING); 13481 writel(control, phba->HCregaddr); 13482 readl(phba->HCregaddr); /* flush */ 13483 } 13484 else { 13485 lpfc_debugfs_slow_ring_trc(phba, 13486 "ISR slow ring: pwork:" 13487 "x%x hawork:x%x wait:x%x", 13488 phba->work_ha, work_ha_copy, 13489 (uint32_t)((unsigned long) 13490 &phba->work_waitq)); 13491 } 13492 spin_unlock_irqrestore(&phba->hbalock, iflag); 13493 } 13494 } 13495 spin_lock_irqsave(&phba->hbalock, iflag); 13496 if (work_ha_copy & HA_ERATT) { 13497 if (lpfc_sli_read_hs(phba)) 13498 goto unplug_error; 13499 /* 13500 * Check if there is a deferred error condition 13501 * is active 13502 */ 13503 if ((HS_FFER1 & phba->work_hs) && 13504 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13505 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13506 phba->work_hs)) { 13507 phba->hba_flag |= DEFER_ERATT; 13508 /* Clear all interrupt enable conditions */ 13509 writel(0, phba->HCregaddr); 13510 readl(phba->HCregaddr); 13511 } 13512 } 13513 13514 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13515 pmb = phba->sli.mbox_active; 13516 pmbox = &pmb->u.mb; 13517 mbox = phba->mbox; 13518 vport = pmb->vport; 13519 13520 /* First check out the status word */ 13521 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13522 if (pmbox->mbxOwner != OWN_HOST) { 13523 spin_unlock_irqrestore(&phba->hbalock, iflag); 13524 /* 13525 * Stray Mailbox Interrupt, mbxCommand <cmd> 13526 * mbxStatus <status> 13527 */ 13528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13529 "(%d):0304 Stray Mailbox " 13530 "Interrupt mbxCommand x%x " 13531 "mbxStatus x%x\n", 13532 (vport ? vport->vpi : 0), 13533 pmbox->mbxCommand, 13534 pmbox->mbxStatus); 13535 /* clear mailbox attention bit */ 13536 work_ha_copy &= ~HA_MBATT; 13537 } else { 13538 phba->sli.mbox_active = NULL; 13539 spin_unlock_irqrestore(&phba->hbalock, iflag); 13540 phba->last_completion_time = jiffies; 13541 del_timer(&phba->sli.mbox_tmo); 13542 if (pmb->mbox_cmpl) { 13543 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13544 MAILBOX_CMD_SIZE); 13545 if (pmb->out_ext_byte_len && 13546 pmb->ctx_buf) 13547 lpfc_sli_pcimem_bcopy( 13548 phba->mbox_ext, 13549 pmb->ctx_buf, 13550 pmb->out_ext_byte_len); 13551 } 13552 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13553 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13554 13555 lpfc_debugfs_disc_trc(vport, 13556 LPFC_DISC_TRC_MBOX_VPORT, 13557 "MBOX dflt rpi: : " 13558 "status:x%x rpi:x%x", 13559 (uint32_t)pmbox->mbxStatus, 13560 pmbox->un.varWords[0], 0); 13561 13562 if (!pmbox->mbxStatus) { 13563 mp = (struct lpfc_dmabuf *) 13564 (pmb->ctx_buf); 13565 ndlp = (struct lpfc_nodelist *) 13566 pmb->ctx_ndlp; 13567 13568 /* Reg_LOGIN of dflt RPI was 13569 * successful. new lets get 13570 * rid of the RPI using the 13571 * same mbox buffer. 13572 */ 13573 lpfc_unreg_login(phba, 13574 vport->vpi, 13575 pmbox->un.varWords[0], 13576 pmb); 13577 pmb->mbox_cmpl = 13578 lpfc_mbx_cmpl_dflt_rpi; 13579 pmb->ctx_buf = mp; 13580 pmb->ctx_ndlp = ndlp; 13581 pmb->vport = vport; 13582 rc = lpfc_sli_issue_mbox(phba, 13583 pmb, 13584 MBX_NOWAIT); 13585 if (rc != MBX_BUSY) 13586 lpfc_printf_log(phba, 13587 KERN_ERR, 13588 LOG_TRACE_EVENT, 13589 "0350 rc should have" 13590 "been MBX_BUSY\n"); 13591 if (rc != MBX_NOT_FINISHED) 13592 goto send_current_mbox; 13593 } 13594 } 13595 spin_lock_irqsave( 13596 &phba->pport->work_port_lock, 13597 iflag); 13598 phba->pport->work_port_events &= 13599 ~WORKER_MBOX_TMO; 13600 spin_unlock_irqrestore( 13601 &phba->pport->work_port_lock, 13602 iflag); 13603 13604 /* Do NOT queue MBX_HEARTBEAT to the worker 13605 * thread for processing. 13606 */ 13607 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13608 /* Process mbox now */ 13609 phba->sli.mbox_active = NULL; 13610 phba->sli.sli_flag &= 13611 ~LPFC_SLI_MBOX_ACTIVE; 13612 if (pmb->mbox_cmpl) 13613 pmb->mbox_cmpl(phba, pmb); 13614 } else { 13615 /* Queue to worker thread to process */ 13616 lpfc_mbox_cmpl_put(phba, pmb); 13617 } 13618 } 13619 } else 13620 spin_unlock_irqrestore(&phba->hbalock, iflag); 13621 13622 if ((work_ha_copy & HA_MBATT) && 13623 (phba->sli.mbox_active == NULL)) { 13624 send_current_mbox: 13625 /* Process next mailbox command if there is one */ 13626 do { 13627 rc = lpfc_sli_issue_mbox(phba, NULL, 13628 MBX_NOWAIT); 13629 } while (rc == MBX_NOT_FINISHED); 13630 if (rc != MBX_SUCCESS) 13631 lpfc_printf_log(phba, KERN_ERR, 13632 LOG_TRACE_EVENT, 13633 "0349 rc should be " 13634 "MBX_SUCCESS\n"); 13635 } 13636 13637 spin_lock_irqsave(&phba->hbalock, iflag); 13638 phba->work_ha |= work_ha_copy; 13639 spin_unlock_irqrestore(&phba->hbalock, iflag); 13640 lpfc_worker_wake_up(phba); 13641 } 13642 return IRQ_HANDLED; 13643 unplug_error: 13644 spin_unlock_irqrestore(&phba->hbalock, iflag); 13645 return IRQ_HANDLED; 13646 13647 } /* lpfc_sli_sp_intr_handler */ 13648 13649 /** 13650 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13651 * @irq: Interrupt number. 13652 * @dev_id: The device context pointer. 13653 * 13654 * This function is directly called from the PCI layer as an interrupt 13655 * service routine when device with SLI-3 interface spec is enabled with 13656 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13657 * ring event in the HBA. However, when the device is enabled with either 13658 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13659 * device-level interrupt handler. When the PCI slot is in error recovery 13660 * or the HBA is undergoing initialization, the interrupt handler will not 13661 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13662 * the intrrupt context. This function is called without any lock held. 13663 * It gets the hbalock to access and update SLI data structures. 13664 * 13665 * This function returns IRQ_HANDLED when interrupt is handled else it 13666 * returns IRQ_NONE. 13667 **/ 13668 irqreturn_t 13669 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13670 { 13671 struct lpfc_hba *phba; 13672 uint32_t ha_copy; 13673 unsigned long status; 13674 unsigned long iflag; 13675 struct lpfc_sli_ring *pring; 13676 13677 /* Get the driver's phba structure from the dev_id and 13678 * assume the HBA is not interrupting. 13679 */ 13680 phba = (struct lpfc_hba *) dev_id; 13681 13682 if (unlikely(!phba)) 13683 return IRQ_NONE; 13684 13685 /* 13686 * Stuff needs to be attented to when this function is invoked as an 13687 * individual interrupt handler in MSI-X multi-message interrupt mode 13688 */ 13689 if (phba->intr_type == MSIX) { 13690 /* Check device state for handling interrupt */ 13691 if (lpfc_intr_state_check(phba)) 13692 return IRQ_NONE; 13693 /* Need to read HA REG for FCP ring and other ring events */ 13694 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13695 return IRQ_HANDLED; 13696 /* Clear up only attention source related to fast-path */ 13697 spin_lock_irqsave(&phba->hbalock, iflag); 13698 /* 13699 * If there is deferred error attention, do not check for 13700 * any interrupt. 13701 */ 13702 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13703 spin_unlock_irqrestore(&phba->hbalock, iflag); 13704 return IRQ_NONE; 13705 } 13706 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13707 phba->HAregaddr); 13708 readl(phba->HAregaddr); /* flush */ 13709 spin_unlock_irqrestore(&phba->hbalock, iflag); 13710 } else 13711 ha_copy = phba->ha_copy; 13712 13713 /* 13714 * Process all events on FCP ring. Take the optimized path for FCP IO. 13715 */ 13716 ha_copy &= ~(phba->work_ha_mask); 13717 13718 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13719 status >>= (4*LPFC_FCP_RING); 13720 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13721 if (status & HA_RXMASK) 13722 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13723 13724 if (phba->cfg_multi_ring_support == 2) { 13725 /* 13726 * Process all events on extra ring. Take the optimized path 13727 * for extra ring IO. 13728 */ 13729 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13730 status >>= (4*LPFC_EXTRA_RING); 13731 if (status & HA_RXMASK) { 13732 lpfc_sli_handle_fast_ring_event(phba, 13733 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13734 status); 13735 } 13736 } 13737 return IRQ_HANDLED; 13738 } /* lpfc_sli_fp_intr_handler */ 13739 13740 /** 13741 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13742 * @irq: Interrupt number. 13743 * @dev_id: The device context pointer. 13744 * 13745 * This function is the HBA device-level interrupt handler to device with 13746 * SLI-3 interface spec, called from the PCI layer when either MSI or 13747 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13748 * requires driver attention. This function invokes the slow-path interrupt 13749 * attention handling function and fast-path interrupt attention handling 13750 * function in turn to process the relevant HBA attention events. This 13751 * function is called without any lock held. It gets the hbalock to access 13752 * and update SLI data structures. 13753 * 13754 * This function returns IRQ_HANDLED when interrupt is handled, else it 13755 * returns IRQ_NONE. 13756 **/ 13757 irqreturn_t 13758 lpfc_sli_intr_handler(int irq, void *dev_id) 13759 { 13760 struct lpfc_hba *phba; 13761 irqreturn_t sp_irq_rc, fp_irq_rc; 13762 unsigned long status1, status2; 13763 uint32_t hc_copy; 13764 13765 /* 13766 * Get the driver's phba structure from the dev_id and 13767 * assume the HBA is not interrupting. 13768 */ 13769 phba = (struct lpfc_hba *) dev_id; 13770 13771 if (unlikely(!phba)) 13772 return IRQ_NONE; 13773 13774 /* Check device state for handling interrupt */ 13775 if (lpfc_intr_state_check(phba)) 13776 return IRQ_NONE; 13777 13778 spin_lock(&phba->hbalock); 13779 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13780 spin_unlock(&phba->hbalock); 13781 return IRQ_HANDLED; 13782 } 13783 13784 if (unlikely(!phba->ha_copy)) { 13785 spin_unlock(&phba->hbalock); 13786 return IRQ_NONE; 13787 } else if (phba->ha_copy & HA_ERATT) { 13788 if (phba->hba_flag & HBA_ERATT_HANDLED) 13789 /* ERATT polling has handled ERATT */ 13790 phba->ha_copy &= ~HA_ERATT; 13791 else 13792 /* Indicate interrupt handler handles ERATT */ 13793 phba->hba_flag |= HBA_ERATT_HANDLED; 13794 } 13795 13796 /* 13797 * If there is deferred error attention, do not check for any interrupt. 13798 */ 13799 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13800 spin_unlock(&phba->hbalock); 13801 return IRQ_NONE; 13802 } 13803 13804 /* Clear attention sources except link and error attentions */ 13805 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13806 spin_unlock(&phba->hbalock); 13807 return IRQ_HANDLED; 13808 } 13809 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13810 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13811 phba->HCregaddr); 13812 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13813 writel(hc_copy, phba->HCregaddr); 13814 readl(phba->HAregaddr); /* flush */ 13815 spin_unlock(&phba->hbalock); 13816 13817 /* 13818 * Invokes slow-path host attention interrupt handling as appropriate. 13819 */ 13820 13821 /* status of events with mailbox and link attention */ 13822 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13823 13824 /* status of events with ELS ring */ 13825 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13826 status2 >>= (4*LPFC_ELS_RING); 13827 13828 if (status1 || (status2 & HA_RXMASK)) 13829 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13830 else 13831 sp_irq_rc = IRQ_NONE; 13832 13833 /* 13834 * Invoke fast-path host attention interrupt handling as appropriate. 13835 */ 13836 13837 /* status of events with FCP ring */ 13838 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13839 status1 >>= (4*LPFC_FCP_RING); 13840 13841 /* status of events with extra ring */ 13842 if (phba->cfg_multi_ring_support == 2) { 13843 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13844 status2 >>= (4*LPFC_EXTRA_RING); 13845 } else 13846 status2 = 0; 13847 13848 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13849 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13850 else 13851 fp_irq_rc = IRQ_NONE; 13852 13853 /* Return device-level interrupt handling status */ 13854 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13855 } /* lpfc_sli_intr_handler */ 13856 13857 /** 13858 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13859 * @phba: pointer to lpfc hba data structure. 13860 * 13861 * This routine is invoked by the worker thread to process all the pending 13862 * SLI4 els abort xri events. 13863 **/ 13864 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13865 { 13866 struct lpfc_cq_event *cq_event; 13867 unsigned long iflags; 13868 13869 /* First, declare the els xri abort event has been handled */ 13870 spin_lock_irqsave(&phba->hbalock, iflags); 13871 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13872 spin_unlock_irqrestore(&phba->hbalock, iflags); 13873 13874 /* Now, handle all the els xri abort events */ 13875 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13876 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13877 /* Get the first event from the head of the event queue */ 13878 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13879 cq_event, struct lpfc_cq_event, list); 13880 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13881 iflags); 13882 /* Notify aborted XRI for ELS work queue */ 13883 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13884 13885 /* Free the event processed back to the free pool */ 13886 lpfc_sli4_cq_event_release(phba, cq_event); 13887 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13888 iflags); 13889 } 13890 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13891 } 13892 13893 /** 13894 * lpfc_sli4_els_preprocess_rspiocbq - Get response iocbq from els wcqe 13895 * @phba: Pointer to HBA context object. 13896 * @irspiocbq: Pointer to work-queue completion queue entry. 13897 * 13898 * This routine handles an ELS work-queue completion event and construct 13899 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13900 * discovery engine to handle. 13901 * 13902 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13903 **/ 13904 static struct lpfc_iocbq * 13905 lpfc_sli4_els_preprocess_rspiocbq(struct lpfc_hba *phba, 13906 struct lpfc_iocbq *irspiocbq) 13907 { 13908 struct lpfc_sli_ring *pring; 13909 struct lpfc_iocbq *cmdiocbq; 13910 struct lpfc_wcqe_complete *wcqe; 13911 unsigned long iflags; 13912 13913 pring = lpfc_phba_elsring(phba); 13914 if (unlikely(!pring)) 13915 return NULL; 13916 13917 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13918 spin_lock_irqsave(&pring->ring_lock, iflags); 13919 pring->stats.iocb_event++; 13920 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13921 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13922 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13923 if (unlikely(!cmdiocbq)) { 13924 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13925 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13926 "0386 ELS complete with no corresponding " 13927 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13928 wcqe->word0, wcqe->total_data_placed, 13929 wcqe->parameter, wcqe->word3); 13930 lpfc_sli_release_iocbq(phba, irspiocbq); 13931 return NULL; 13932 } 13933 13934 memcpy(&irspiocbq->wqe, &cmdiocbq->wqe, sizeof(union lpfc_wqe128)); 13935 memcpy(&irspiocbq->wcqe_cmpl, wcqe, sizeof(*wcqe)); 13936 13937 /* Put the iocb back on the txcmplq */ 13938 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13939 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13940 13941 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13942 spin_lock_irqsave(&phba->hbalock, iflags); 13943 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 13944 spin_unlock_irqrestore(&phba->hbalock, iflags); 13945 } 13946 13947 return irspiocbq; 13948 } 13949 13950 inline struct lpfc_cq_event * 13951 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13952 { 13953 struct lpfc_cq_event *cq_event; 13954 13955 /* Allocate a new internal CQ_EVENT entry */ 13956 cq_event = lpfc_sli4_cq_event_alloc(phba); 13957 if (!cq_event) { 13958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13959 "0602 Failed to alloc CQ_EVENT entry\n"); 13960 return NULL; 13961 } 13962 13963 /* Move the CQE into the event */ 13964 memcpy(&cq_event->cqe, entry, size); 13965 return cq_event; 13966 } 13967 13968 /** 13969 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13970 * @phba: Pointer to HBA context object. 13971 * @mcqe: Pointer to mailbox completion queue entry. 13972 * 13973 * This routine process a mailbox completion queue entry with asynchronous 13974 * event. 13975 * 13976 * Return: true if work posted to worker thread, otherwise false. 13977 **/ 13978 static bool 13979 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13980 { 13981 struct lpfc_cq_event *cq_event; 13982 unsigned long iflags; 13983 13984 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13985 "0392 Async Event: word0:x%x, word1:x%x, " 13986 "word2:x%x, word3:x%x\n", mcqe->word0, 13987 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13988 13989 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13990 if (!cq_event) 13991 return false; 13992 13993 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13994 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13995 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13996 13997 /* Set the async event flag */ 13998 spin_lock_irqsave(&phba->hbalock, iflags); 13999 phba->hba_flag |= ASYNC_EVENT; 14000 spin_unlock_irqrestore(&phba->hbalock, iflags); 14001 14002 return true; 14003 } 14004 14005 /** 14006 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 14007 * @phba: Pointer to HBA context object. 14008 * @mcqe: Pointer to mailbox completion queue entry. 14009 * 14010 * This routine process a mailbox completion queue entry with mailbox 14011 * completion event. 14012 * 14013 * Return: true if work posted to worker thread, otherwise false. 14014 **/ 14015 static bool 14016 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 14017 { 14018 uint32_t mcqe_status; 14019 MAILBOX_t *mbox, *pmbox; 14020 struct lpfc_mqe *mqe; 14021 struct lpfc_vport *vport; 14022 struct lpfc_nodelist *ndlp; 14023 struct lpfc_dmabuf *mp; 14024 unsigned long iflags; 14025 LPFC_MBOXQ_t *pmb; 14026 bool workposted = false; 14027 int rc; 14028 14029 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 14030 if (!bf_get(lpfc_trailer_completed, mcqe)) 14031 goto out_no_mqe_complete; 14032 14033 /* Get the reference to the active mbox command */ 14034 spin_lock_irqsave(&phba->hbalock, iflags); 14035 pmb = phba->sli.mbox_active; 14036 if (unlikely(!pmb)) { 14037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14038 "1832 No pending MBOX command to handle\n"); 14039 spin_unlock_irqrestore(&phba->hbalock, iflags); 14040 goto out_no_mqe_complete; 14041 } 14042 spin_unlock_irqrestore(&phba->hbalock, iflags); 14043 mqe = &pmb->u.mqe; 14044 pmbox = (MAILBOX_t *)&pmb->u.mqe; 14045 mbox = phba->mbox; 14046 vport = pmb->vport; 14047 14048 /* Reset heartbeat timer */ 14049 phba->last_completion_time = jiffies; 14050 del_timer(&phba->sli.mbox_tmo); 14051 14052 /* Move mbox data to caller's mailbox region, do endian swapping */ 14053 if (pmb->mbox_cmpl && mbox) 14054 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 14055 14056 /* 14057 * For mcqe errors, conditionally move a modified error code to 14058 * the mbox so that the error will not be missed. 14059 */ 14060 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 14061 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 14062 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 14063 bf_set(lpfc_mqe_status, mqe, 14064 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 14065 } 14066 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 14067 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 14068 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 14069 "MBOX dflt rpi: status:x%x rpi:x%x", 14070 mcqe_status, 14071 pmbox->un.varWords[0], 0); 14072 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 14073 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 14074 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 14075 14076 /* Reg_LOGIN of dflt RPI was successful. Mark the 14077 * node as having an UNREG_LOGIN in progress to stop 14078 * an unsolicited PLOGI from the same NPortId from 14079 * starting another mailbox transaction. 14080 */ 14081 spin_lock_irqsave(&ndlp->lock, iflags); 14082 ndlp->nlp_flag |= NLP_UNREG_INP; 14083 spin_unlock_irqrestore(&ndlp->lock, iflags); 14084 lpfc_unreg_login(phba, vport->vpi, 14085 pmbox->un.varWords[0], pmb); 14086 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 14087 pmb->ctx_buf = mp; 14088 14089 /* No reference taken here. This is a default 14090 * RPI reg/immediate unreg cycle. The reference was 14091 * taken in the reg rpi path and is released when 14092 * this mailbox completes. 14093 */ 14094 pmb->ctx_ndlp = ndlp; 14095 pmb->vport = vport; 14096 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 14097 if (rc != MBX_BUSY) 14098 lpfc_printf_log(phba, KERN_ERR, 14099 LOG_TRACE_EVENT, 14100 "0385 rc should " 14101 "have been MBX_BUSY\n"); 14102 if (rc != MBX_NOT_FINISHED) 14103 goto send_current_mbox; 14104 } 14105 } 14106 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 14107 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 14108 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 14109 14110 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 14111 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 14112 spin_lock_irqsave(&phba->hbalock, iflags); 14113 /* Release the mailbox command posting token */ 14114 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14115 phba->sli.mbox_active = NULL; 14116 if (bf_get(lpfc_trailer_consumed, mcqe)) 14117 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14118 spin_unlock_irqrestore(&phba->hbalock, iflags); 14119 14120 /* Post the next mbox command, if there is one */ 14121 lpfc_sli4_post_async_mbox(phba); 14122 14123 /* Process cmpl now */ 14124 if (pmb->mbox_cmpl) 14125 pmb->mbox_cmpl(phba, pmb); 14126 return false; 14127 } 14128 14129 /* There is mailbox completion work to queue to the worker thread */ 14130 spin_lock_irqsave(&phba->hbalock, iflags); 14131 __lpfc_mbox_cmpl_put(phba, pmb); 14132 phba->work_ha |= HA_MBATT; 14133 spin_unlock_irqrestore(&phba->hbalock, iflags); 14134 workposted = true; 14135 14136 send_current_mbox: 14137 spin_lock_irqsave(&phba->hbalock, iflags); 14138 /* Release the mailbox command posting token */ 14139 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 14140 /* Setting active mailbox pointer need to be in sync to flag clear */ 14141 phba->sli.mbox_active = NULL; 14142 if (bf_get(lpfc_trailer_consumed, mcqe)) 14143 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14144 spin_unlock_irqrestore(&phba->hbalock, iflags); 14145 /* Wake up worker thread to post the next pending mailbox command */ 14146 lpfc_worker_wake_up(phba); 14147 return workposted; 14148 14149 out_no_mqe_complete: 14150 spin_lock_irqsave(&phba->hbalock, iflags); 14151 if (bf_get(lpfc_trailer_consumed, mcqe)) 14152 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 14153 spin_unlock_irqrestore(&phba->hbalock, iflags); 14154 return false; 14155 } 14156 14157 /** 14158 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 14159 * @phba: Pointer to HBA context object. 14160 * @cq: Pointer to associated CQ 14161 * @cqe: Pointer to mailbox completion queue entry. 14162 * 14163 * This routine process a mailbox completion queue entry, it invokes the 14164 * proper mailbox complete handling or asynchronous event handling routine 14165 * according to the MCQE's async bit. 14166 * 14167 * Return: true if work posted to worker thread, otherwise false. 14168 **/ 14169 static bool 14170 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14171 struct lpfc_cqe *cqe) 14172 { 14173 struct lpfc_mcqe mcqe; 14174 bool workposted; 14175 14176 cq->CQ_mbox++; 14177 14178 /* Copy the mailbox MCQE and convert endian order as needed */ 14179 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 14180 14181 /* Invoke the proper event handling routine */ 14182 if (!bf_get(lpfc_trailer_async, &mcqe)) 14183 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 14184 else 14185 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 14186 return workposted; 14187 } 14188 14189 /** 14190 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 14191 * @phba: Pointer to HBA context object. 14192 * @cq: Pointer to associated CQ 14193 * @wcqe: Pointer to work-queue completion queue entry. 14194 * 14195 * This routine handles an ELS work-queue completion event. 14196 * 14197 * Return: true if work posted to worker thread, otherwise false. 14198 **/ 14199 static bool 14200 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14201 struct lpfc_wcqe_complete *wcqe) 14202 { 14203 struct lpfc_iocbq *irspiocbq; 14204 unsigned long iflags; 14205 struct lpfc_sli_ring *pring = cq->pring; 14206 int txq_cnt = 0; 14207 int txcmplq_cnt = 0; 14208 14209 /* Check for response status */ 14210 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14211 /* Log the error status */ 14212 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14213 "0357 ELS CQE error: status=x%x: " 14214 "CQE: %08x %08x %08x %08x\n", 14215 bf_get(lpfc_wcqe_c_status, wcqe), 14216 wcqe->word0, wcqe->total_data_placed, 14217 wcqe->parameter, wcqe->word3); 14218 } 14219 14220 /* Get an irspiocbq for later ELS response processing use */ 14221 irspiocbq = lpfc_sli_get_iocbq(phba); 14222 if (!irspiocbq) { 14223 if (!list_empty(&pring->txq)) 14224 txq_cnt++; 14225 if (!list_empty(&pring->txcmplq)) 14226 txcmplq_cnt++; 14227 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14228 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 14229 "els_txcmplq_cnt=%d\n", 14230 txq_cnt, phba->iocb_cnt, 14231 txcmplq_cnt); 14232 return false; 14233 } 14234 14235 /* Save off the slow-path queue event for work thread to process */ 14236 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 14237 spin_lock_irqsave(&phba->hbalock, iflags); 14238 list_add_tail(&irspiocbq->cq_event.list, 14239 &phba->sli4_hba.sp_queue_event); 14240 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14241 spin_unlock_irqrestore(&phba->hbalock, iflags); 14242 14243 return true; 14244 } 14245 14246 /** 14247 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 14248 * @phba: Pointer to HBA context object. 14249 * @wcqe: Pointer to work-queue completion queue entry. 14250 * 14251 * This routine handles slow-path WQ entry consumed event by invoking the 14252 * proper WQ release routine to the slow-path WQ. 14253 **/ 14254 static void 14255 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 14256 struct lpfc_wcqe_release *wcqe) 14257 { 14258 /* sanity check on queue memory */ 14259 if (unlikely(!phba->sli4_hba.els_wq)) 14260 return; 14261 /* Check for the slow-path ELS work queue */ 14262 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 14263 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 14264 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14265 else 14266 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14267 "2579 Slow-path wqe consume event carries " 14268 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 14269 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 14270 phba->sli4_hba.els_wq->queue_id); 14271 } 14272 14273 /** 14274 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 14275 * @phba: Pointer to HBA context object. 14276 * @cq: Pointer to a WQ completion queue. 14277 * @wcqe: Pointer to work-queue completion queue entry. 14278 * 14279 * This routine handles an XRI abort event. 14280 * 14281 * Return: true if work posted to worker thread, otherwise false. 14282 **/ 14283 static bool 14284 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 14285 struct lpfc_queue *cq, 14286 struct sli4_wcqe_xri_aborted *wcqe) 14287 { 14288 bool workposted = false; 14289 struct lpfc_cq_event *cq_event; 14290 unsigned long iflags; 14291 14292 switch (cq->subtype) { 14293 case LPFC_IO: 14294 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 14295 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 14296 /* Notify aborted XRI for NVME work queue */ 14297 if (phba->nvmet_support) 14298 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 14299 } 14300 workposted = false; 14301 break; 14302 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 14303 case LPFC_ELS: 14304 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 14305 if (!cq_event) { 14306 workposted = false; 14307 break; 14308 } 14309 cq_event->hdwq = cq->hdwq; 14310 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 14311 iflags); 14312 list_add_tail(&cq_event->list, 14313 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 14314 /* Set the els xri abort event flag */ 14315 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 14316 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 14317 iflags); 14318 workposted = true; 14319 break; 14320 default: 14321 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14322 "0603 Invalid CQ subtype %d: " 14323 "%08x %08x %08x %08x\n", 14324 cq->subtype, wcqe->word0, wcqe->parameter, 14325 wcqe->word2, wcqe->word3); 14326 workposted = false; 14327 break; 14328 } 14329 return workposted; 14330 } 14331 14332 #define FC_RCTL_MDS_DIAGS 0xF4 14333 14334 /** 14335 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 14336 * @phba: Pointer to HBA context object. 14337 * @rcqe: Pointer to receive-queue completion queue entry. 14338 * 14339 * This routine process a receive-queue completion queue entry. 14340 * 14341 * Return: true if work posted to worker thread, otherwise false. 14342 **/ 14343 static bool 14344 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 14345 { 14346 bool workposted = false; 14347 struct fc_frame_header *fc_hdr; 14348 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 14349 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 14350 struct lpfc_nvmet_tgtport *tgtp; 14351 struct hbq_dmabuf *dma_buf; 14352 uint32_t status, rq_id; 14353 unsigned long iflags; 14354 14355 /* sanity check on queue memory */ 14356 if (unlikely(!hrq) || unlikely(!drq)) 14357 return workposted; 14358 14359 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14360 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14361 else 14362 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14363 if (rq_id != hrq->queue_id) 14364 goto out; 14365 14366 status = bf_get(lpfc_rcqe_status, rcqe); 14367 switch (status) { 14368 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14369 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14370 "2537 Receive Frame Truncated!!\n"); 14371 fallthrough; 14372 case FC_STATUS_RQ_SUCCESS: 14373 spin_lock_irqsave(&phba->hbalock, iflags); 14374 lpfc_sli4_rq_release(hrq, drq); 14375 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 14376 if (!dma_buf) { 14377 hrq->RQ_no_buf_found++; 14378 spin_unlock_irqrestore(&phba->hbalock, iflags); 14379 goto out; 14380 } 14381 hrq->RQ_rcv_buf++; 14382 hrq->RQ_buf_posted--; 14383 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14384 14385 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14386 14387 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14388 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14389 spin_unlock_irqrestore(&phba->hbalock, iflags); 14390 /* Handle MDS Loopback frames */ 14391 if (!(phba->pport->load_flag & FC_UNLOADING)) 14392 lpfc_sli4_handle_mds_loopback(phba->pport, 14393 dma_buf); 14394 else 14395 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14396 break; 14397 } 14398 14399 /* save off the frame for the work thread to process */ 14400 list_add_tail(&dma_buf->cq_event.list, 14401 &phba->sli4_hba.sp_queue_event); 14402 /* Frame received */ 14403 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14404 spin_unlock_irqrestore(&phba->hbalock, iflags); 14405 workposted = true; 14406 break; 14407 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14408 if (phba->nvmet_support) { 14409 tgtp = phba->targetport->private; 14410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14411 "6402 RQE Error x%x, posted %d err_cnt " 14412 "%d: %x %x %x\n", 14413 status, hrq->RQ_buf_posted, 14414 hrq->RQ_no_posted_buf, 14415 atomic_read(&tgtp->rcv_fcp_cmd_in), 14416 atomic_read(&tgtp->rcv_fcp_cmd_out), 14417 atomic_read(&tgtp->xmt_fcp_release)); 14418 } 14419 fallthrough; 14420 14421 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14422 hrq->RQ_no_posted_buf++; 14423 /* Post more buffers if possible */ 14424 spin_lock_irqsave(&phba->hbalock, iflags); 14425 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14426 spin_unlock_irqrestore(&phba->hbalock, iflags); 14427 workposted = true; 14428 break; 14429 } 14430 out: 14431 return workposted; 14432 } 14433 14434 /** 14435 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14436 * @phba: Pointer to HBA context object. 14437 * @cq: Pointer to the completion queue. 14438 * @cqe: Pointer to a completion queue entry. 14439 * 14440 * This routine process a slow-path work-queue or receive queue completion queue 14441 * entry. 14442 * 14443 * Return: true if work posted to worker thread, otherwise false. 14444 **/ 14445 static bool 14446 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14447 struct lpfc_cqe *cqe) 14448 { 14449 struct lpfc_cqe cqevt; 14450 bool workposted = false; 14451 14452 /* Copy the work queue CQE and convert endian order if needed */ 14453 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14454 14455 /* Check and process for different type of WCQE and dispatch */ 14456 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14457 case CQE_CODE_COMPL_WQE: 14458 /* Process the WQ/RQ complete event */ 14459 phba->last_completion_time = jiffies; 14460 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14461 (struct lpfc_wcqe_complete *)&cqevt); 14462 break; 14463 case CQE_CODE_RELEASE_WQE: 14464 /* Process the WQ release event */ 14465 lpfc_sli4_sp_handle_rel_wcqe(phba, 14466 (struct lpfc_wcqe_release *)&cqevt); 14467 break; 14468 case CQE_CODE_XRI_ABORTED: 14469 /* Process the WQ XRI abort event */ 14470 phba->last_completion_time = jiffies; 14471 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14472 (struct sli4_wcqe_xri_aborted *)&cqevt); 14473 break; 14474 case CQE_CODE_RECEIVE: 14475 case CQE_CODE_RECEIVE_V1: 14476 /* Process the RQ event */ 14477 phba->last_completion_time = jiffies; 14478 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14479 (struct lpfc_rcqe *)&cqevt); 14480 break; 14481 default: 14482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14483 "0388 Not a valid WCQE code: x%x\n", 14484 bf_get(lpfc_cqe_code, &cqevt)); 14485 break; 14486 } 14487 return workposted; 14488 } 14489 14490 /** 14491 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14492 * @phba: Pointer to HBA context object. 14493 * @eqe: Pointer to fast-path event queue entry. 14494 * @speq: Pointer to slow-path event queue. 14495 * 14496 * This routine process a event queue entry from the slow-path event queue. 14497 * It will check the MajorCode and MinorCode to determine this is for a 14498 * completion event on a completion queue, if not, an error shall be logged 14499 * and just return. Otherwise, it will get to the corresponding completion 14500 * queue and process all the entries on that completion queue, rearm the 14501 * completion queue, and then return. 14502 * 14503 **/ 14504 static void 14505 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14506 struct lpfc_queue *speq) 14507 { 14508 struct lpfc_queue *cq = NULL, *childq; 14509 uint16_t cqid; 14510 int ret = 0; 14511 14512 /* Get the reference to the corresponding CQ */ 14513 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14514 14515 list_for_each_entry(childq, &speq->child_list, list) { 14516 if (childq->queue_id == cqid) { 14517 cq = childq; 14518 break; 14519 } 14520 } 14521 if (unlikely(!cq)) { 14522 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14524 "0365 Slow-path CQ identifier " 14525 "(%d) does not exist\n", cqid); 14526 return; 14527 } 14528 14529 /* Save EQ associated with this CQ */ 14530 cq->assoc_qp = speq; 14531 14532 if (is_kdump_kernel()) 14533 ret = queue_work(phba->wq, &cq->spwork); 14534 else 14535 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14536 14537 if (!ret) 14538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14539 "0390 Cannot schedule queue work " 14540 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14541 cqid, cq->queue_id, raw_smp_processor_id()); 14542 } 14543 14544 /** 14545 * __lpfc_sli4_process_cq - Process elements of a CQ 14546 * @phba: Pointer to HBA context object. 14547 * @cq: Pointer to CQ to be processed 14548 * @handler: Routine to process each cqe 14549 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14550 * @poll_mode: Polling mode we were called from 14551 * 14552 * This routine processes completion queue entries in a CQ. While a valid 14553 * queue element is found, the handler is called. During processing checks 14554 * are made for periodic doorbell writes to let the hardware know of 14555 * element consumption. 14556 * 14557 * If the max limit on cqes to process is hit, or there are no more valid 14558 * entries, the loop stops. If we processed a sufficient number of elements, 14559 * meaning there is sufficient load, rather than rearming and generating 14560 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14561 * indicates no rescheduling. 14562 * 14563 * Returns True if work scheduled, False otherwise. 14564 **/ 14565 static bool 14566 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14567 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14568 struct lpfc_cqe *), unsigned long *delay, 14569 enum lpfc_poll_mode poll_mode) 14570 { 14571 struct lpfc_cqe *cqe; 14572 bool workposted = false; 14573 int count = 0, consumed = 0; 14574 bool arm = true; 14575 14576 /* default - no reschedule */ 14577 *delay = 0; 14578 14579 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14580 goto rearm_and_exit; 14581 14582 /* Process all the entries to the CQ */ 14583 cq->q_flag = 0; 14584 cqe = lpfc_sli4_cq_get(cq); 14585 while (cqe) { 14586 workposted |= handler(phba, cq, cqe); 14587 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14588 14589 consumed++; 14590 if (!(++count % cq->max_proc_limit)) 14591 break; 14592 14593 if (!(count % cq->notify_interval)) { 14594 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14595 LPFC_QUEUE_NOARM); 14596 consumed = 0; 14597 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14598 } 14599 14600 if (count == LPFC_NVMET_CQ_NOTIFY) 14601 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14602 14603 cqe = lpfc_sli4_cq_get(cq); 14604 } 14605 if (count >= phba->cfg_cq_poll_threshold) { 14606 *delay = 1; 14607 arm = false; 14608 } 14609 14610 /* Note: complete the irq_poll softirq before rearming CQ */ 14611 if (poll_mode == LPFC_IRQ_POLL) 14612 irq_poll_complete(&cq->iop); 14613 14614 /* Track the max number of CQEs processed in 1 EQ */ 14615 if (count > cq->CQ_max_cqe) 14616 cq->CQ_max_cqe = count; 14617 14618 cq->assoc_qp->EQ_cqe_cnt += count; 14619 14620 /* Catch the no cq entry condition */ 14621 if (unlikely(count == 0)) 14622 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14623 "0369 No entry from completion queue " 14624 "qid=%d\n", cq->queue_id); 14625 14626 xchg(&cq->queue_claimed, 0); 14627 14628 rearm_and_exit: 14629 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14630 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14631 14632 return workposted; 14633 } 14634 14635 /** 14636 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14637 * @cq: pointer to CQ to process 14638 * 14639 * This routine calls the cq processing routine with a handler specific 14640 * to the type of queue bound to it. 14641 * 14642 * The CQ routine returns two values: the first is the calling status, 14643 * which indicates whether work was queued to the background discovery 14644 * thread. If true, the routine should wakeup the discovery thread; 14645 * the second is the delay parameter. If non-zero, rather than rearming 14646 * the CQ and yet another interrupt, the CQ handler should be queued so 14647 * that it is processed in a subsequent polling action. The value of 14648 * the delay indicates when to reschedule it. 14649 **/ 14650 static void 14651 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14652 { 14653 struct lpfc_hba *phba = cq->phba; 14654 unsigned long delay; 14655 bool workposted = false; 14656 int ret = 0; 14657 14658 /* Process and rearm the CQ */ 14659 switch (cq->type) { 14660 case LPFC_MCQ: 14661 workposted |= __lpfc_sli4_process_cq(phba, cq, 14662 lpfc_sli4_sp_handle_mcqe, 14663 &delay, LPFC_QUEUE_WORK); 14664 break; 14665 case LPFC_WCQ: 14666 if (cq->subtype == LPFC_IO) 14667 workposted |= __lpfc_sli4_process_cq(phba, cq, 14668 lpfc_sli4_fp_handle_cqe, 14669 &delay, LPFC_QUEUE_WORK); 14670 else 14671 workposted |= __lpfc_sli4_process_cq(phba, cq, 14672 lpfc_sli4_sp_handle_cqe, 14673 &delay, LPFC_QUEUE_WORK); 14674 break; 14675 default: 14676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14677 "0370 Invalid completion queue type (%d)\n", 14678 cq->type); 14679 return; 14680 } 14681 14682 if (delay) { 14683 if (is_kdump_kernel()) 14684 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14685 delay); 14686 else 14687 ret = queue_delayed_work_on(cq->chann, phba->wq, 14688 &cq->sched_spwork, delay); 14689 if (!ret) 14690 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14691 "0394 Cannot schedule queue work " 14692 "for cqid=%d on CPU %d\n", 14693 cq->queue_id, cq->chann); 14694 } 14695 14696 /* wake up worker thread if there are works to be done */ 14697 if (workposted) 14698 lpfc_worker_wake_up(phba); 14699 } 14700 14701 /** 14702 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14703 * interrupt 14704 * @work: pointer to work element 14705 * 14706 * translates from the work handler and calls the slow-path handler. 14707 **/ 14708 static void 14709 lpfc_sli4_sp_process_cq(struct work_struct *work) 14710 { 14711 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14712 14713 __lpfc_sli4_sp_process_cq(cq); 14714 } 14715 14716 /** 14717 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14718 * @work: pointer to work element 14719 * 14720 * translates from the work handler and calls the slow-path handler. 14721 **/ 14722 static void 14723 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14724 { 14725 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14726 struct lpfc_queue, sched_spwork); 14727 14728 __lpfc_sli4_sp_process_cq(cq); 14729 } 14730 14731 /** 14732 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14733 * @phba: Pointer to HBA context object. 14734 * @cq: Pointer to associated CQ 14735 * @wcqe: Pointer to work-queue completion queue entry. 14736 * 14737 * This routine process a fast-path work queue completion entry from fast-path 14738 * event queue for FCP command response completion. 14739 **/ 14740 static void 14741 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14742 struct lpfc_wcqe_complete *wcqe) 14743 { 14744 struct lpfc_sli_ring *pring = cq->pring; 14745 struct lpfc_iocbq *cmdiocbq; 14746 unsigned long iflags; 14747 14748 /* Check for response status */ 14749 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14750 /* If resource errors reported from HBA, reduce queue 14751 * depth of the SCSI device. 14752 */ 14753 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14754 IOSTAT_LOCAL_REJECT)) && 14755 ((wcqe->parameter & IOERR_PARAM_MASK) == 14756 IOERR_NO_RESOURCES)) 14757 phba->lpfc_rampdown_queue_depth(phba); 14758 14759 /* Log the cmpl status */ 14760 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14761 "0373 FCP CQE cmpl: status=x%x: " 14762 "CQE: %08x %08x %08x %08x\n", 14763 bf_get(lpfc_wcqe_c_status, wcqe), 14764 wcqe->word0, wcqe->total_data_placed, 14765 wcqe->parameter, wcqe->word3); 14766 } 14767 14768 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14769 spin_lock_irqsave(&pring->ring_lock, iflags); 14770 pring->stats.iocb_event++; 14771 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14772 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14773 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14774 if (unlikely(!cmdiocbq)) { 14775 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14776 "0374 FCP complete with no corresponding " 14777 "cmdiocb: iotag (%d)\n", 14778 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14779 return; 14780 } 14781 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14782 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14783 #endif 14784 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 14785 spin_lock_irqsave(&phba->hbalock, iflags); 14786 cmdiocbq->cmd_flag |= LPFC_EXCHANGE_BUSY; 14787 spin_unlock_irqrestore(&phba->hbalock, iflags); 14788 } 14789 14790 if (cmdiocbq->cmd_cmpl) { 14791 /* For FCP the flag is cleared in cmd_cmpl */ 14792 if (!(cmdiocbq->cmd_flag & LPFC_IO_FCP) && 14793 cmdiocbq->cmd_flag & LPFC_DRIVER_ABORTED) { 14794 spin_lock_irqsave(&phba->hbalock, iflags); 14795 cmdiocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 14796 spin_unlock_irqrestore(&phba->hbalock, iflags); 14797 } 14798 14799 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14800 memcpy(&cmdiocbq->wcqe_cmpl, wcqe, 14801 sizeof(struct lpfc_wcqe_complete)); 14802 (cmdiocbq->cmd_cmpl)(phba, cmdiocbq, cmdiocbq); 14803 } else { 14804 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14805 "0375 FCP cmdiocb not callback function " 14806 "iotag: (%d)\n", 14807 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14808 } 14809 } 14810 14811 /** 14812 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14813 * @phba: Pointer to HBA context object. 14814 * @cq: Pointer to completion queue. 14815 * @wcqe: Pointer to work-queue completion queue entry. 14816 * 14817 * This routine handles an fast-path WQ entry consumed event by invoking the 14818 * proper WQ release routine to the slow-path WQ. 14819 **/ 14820 static void 14821 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14822 struct lpfc_wcqe_release *wcqe) 14823 { 14824 struct lpfc_queue *childwq; 14825 bool wqid_matched = false; 14826 uint16_t hba_wqid; 14827 14828 /* Check for fast-path FCP work queue release */ 14829 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14830 list_for_each_entry(childwq, &cq->child_list, list) { 14831 if (childwq->queue_id == hba_wqid) { 14832 lpfc_sli4_wq_release(childwq, 14833 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14834 if (childwq->q_flag & HBA_NVMET_WQFULL) 14835 lpfc_nvmet_wqfull_process(phba, childwq); 14836 wqid_matched = true; 14837 break; 14838 } 14839 } 14840 /* Report warning log message if no match found */ 14841 if (wqid_matched != true) 14842 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14843 "2580 Fast-path wqe consume event carries " 14844 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14845 } 14846 14847 /** 14848 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14849 * @phba: Pointer to HBA context object. 14850 * @cq: Pointer to completion queue. 14851 * @rcqe: Pointer to receive-queue completion queue entry. 14852 * 14853 * This routine process a receive-queue completion queue entry. 14854 * 14855 * Return: true if work posted to worker thread, otherwise false. 14856 **/ 14857 static bool 14858 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14859 struct lpfc_rcqe *rcqe) 14860 { 14861 bool workposted = false; 14862 struct lpfc_queue *hrq; 14863 struct lpfc_queue *drq; 14864 struct rqb_dmabuf *dma_buf; 14865 struct fc_frame_header *fc_hdr; 14866 struct lpfc_nvmet_tgtport *tgtp; 14867 uint32_t status, rq_id; 14868 unsigned long iflags; 14869 uint32_t fctl, idx; 14870 14871 if ((phba->nvmet_support == 0) || 14872 (phba->sli4_hba.nvmet_cqset == NULL)) 14873 return workposted; 14874 14875 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14876 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14877 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14878 14879 /* sanity check on queue memory */ 14880 if (unlikely(!hrq) || unlikely(!drq)) 14881 return workposted; 14882 14883 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14884 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14885 else 14886 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14887 14888 if ((phba->nvmet_support == 0) || 14889 (rq_id != hrq->queue_id)) 14890 return workposted; 14891 14892 status = bf_get(lpfc_rcqe_status, rcqe); 14893 switch (status) { 14894 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14895 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14896 "6126 Receive Frame Truncated!!\n"); 14897 fallthrough; 14898 case FC_STATUS_RQ_SUCCESS: 14899 spin_lock_irqsave(&phba->hbalock, iflags); 14900 lpfc_sli4_rq_release(hrq, drq); 14901 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14902 if (!dma_buf) { 14903 hrq->RQ_no_buf_found++; 14904 spin_unlock_irqrestore(&phba->hbalock, iflags); 14905 goto out; 14906 } 14907 spin_unlock_irqrestore(&phba->hbalock, iflags); 14908 hrq->RQ_rcv_buf++; 14909 hrq->RQ_buf_posted--; 14910 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14911 14912 /* Just some basic sanity checks on FCP Command frame */ 14913 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14914 fc_hdr->fh_f_ctl[1] << 8 | 14915 fc_hdr->fh_f_ctl[2]); 14916 if (((fctl & 14917 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14918 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14919 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14920 goto drop; 14921 14922 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14923 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14924 lpfc_nvmet_unsol_fcp_event( 14925 phba, idx, dma_buf, cq->isr_timestamp, 14926 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14927 return false; 14928 } 14929 drop: 14930 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14931 break; 14932 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14933 if (phba->nvmet_support) { 14934 tgtp = phba->targetport->private; 14935 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14936 "6401 RQE Error x%x, posted %d err_cnt " 14937 "%d: %x %x %x\n", 14938 status, hrq->RQ_buf_posted, 14939 hrq->RQ_no_posted_buf, 14940 atomic_read(&tgtp->rcv_fcp_cmd_in), 14941 atomic_read(&tgtp->rcv_fcp_cmd_out), 14942 atomic_read(&tgtp->xmt_fcp_release)); 14943 } 14944 fallthrough; 14945 14946 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14947 hrq->RQ_no_posted_buf++; 14948 /* Post more buffers if possible */ 14949 break; 14950 } 14951 out: 14952 return workposted; 14953 } 14954 14955 /** 14956 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14957 * @phba: adapter with cq 14958 * @cq: Pointer to the completion queue. 14959 * @cqe: Pointer to fast-path completion queue entry. 14960 * 14961 * This routine process a fast-path work queue completion entry from fast-path 14962 * event queue for FCP command response completion. 14963 * 14964 * Return: true if work posted to worker thread, otherwise false. 14965 **/ 14966 static bool 14967 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14968 struct lpfc_cqe *cqe) 14969 { 14970 struct lpfc_wcqe_release wcqe; 14971 bool workposted = false; 14972 14973 /* Copy the work queue CQE and convert endian order if needed */ 14974 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14975 14976 /* Check and process for different type of WCQE and dispatch */ 14977 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14978 case CQE_CODE_COMPL_WQE: 14979 case CQE_CODE_NVME_ERSP: 14980 cq->CQ_wq++; 14981 /* Process the WQ complete event */ 14982 phba->last_completion_time = jiffies; 14983 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14984 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14985 (struct lpfc_wcqe_complete *)&wcqe); 14986 break; 14987 case CQE_CODE_RELEASE_WQE: 14988 cq->CQ_release_wqe++; 14989 /* Process the WQ release event */ 14990 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14991 (struct lpfc_wcqe_release *)&wcqe); 14992 break; 14993 case CQE_CODE_XRI_ABORTED: 14994 cq->CQ_xri_aborted++; 14995 /* Process the WQ XRI abort event */ 14996 phba->last_completion_time = jiffies; 14997 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14998 (struct sli4_wcqe_xri_aborted *)&wcqe); 14999 break; 15000 case CQE_CODE_RECEIVE_V1: 15001 case CQE_CODE_RECEIVE: 15002 phba->last_completion_time = jiffies; 15003 if (cq->subtype == LPFC_NVMET) { 15004 workposted = lpfc_sli4_nvmet_handle_rcqe( 15005 phba, cq, (struct lpfc_rcqe *)&wcqe); 15006 } 15007 break; 15008 default: 15009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15010 "0144 Not a valid CQE code: x%x\n", 15011 bf_get(lpfc_wcqe_c_code, &wcqe)); 15012 break; 15013 } 15014 return workposted; 15015 } 15016 15017 /** 15018 * lpfc_sli4_sched_cq_work - Schedules cq work 15019 * @phba: Pointer to HBA context object. 15020 * @cq: Pointer to CQ 15021 * @cqid: CQ ID 15022 * 15023 * This routine checks the poll mode of the CQ corresponding to 15024 * cq->chann, then either schedules a softirq or queue_work to complete 15025 * cq work. 15026 * 15027 * queue_work path is taken if in NVMET mode, or if poll_mode is in 15028 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 15029 * 15030 **/ 15031 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 15032 struct lpfc_queue *cq, uint16_t cqid) 15033 { 15034 int ret = 0; 15035 15036 switch (cq->poll_mode) { 15037 case LPFC_IRQ_POLL: 15038 /* CGN mgmt is mutually exclusive from softirq processing */ 15039 if (phba->cmf_active_mode == LPFC_CFG_OFF) { 15040 irq_poll_sched(&cq->iop); 15041 break; 15042 } 15043 fallthrough; 15044 case LPFC_QUEUE_WORK: 15045 default: 15046 if (is_kdump_kernel()) 15047 ret = queue_work(phba->wq, &cq->irqwork); 15048 else 15049 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 15050 if (!ret) 15051 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15052 "0383 Cannot schedule queue work " 15053 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 15054 cqid, cq->queue_id, 15055 raw_smp_processor_id()); 15056 } 15057 } 15058 15059 /** 15060 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 15061 * @phba: Pointer to HBA context object. 15062 * @eq: Pointer to the queue structure. 15063 * @eqe: Pointer to fast-path event queue entry. 15064 * 15065 * This routine process a event queue entry from the fast-path event queue. 15066 * It will check the MajorCode and MinorCode to determine this is for a 15067 * completion event on a completion queue, if not, an error shall be logged 15068 * and just return. Otherwise, it will get to the corresponding completion 15069 * queue and process all the entries on the completion queue, rearm the 15070 * completion queue, and then return. 15071 **/ 15072 static void 15073 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 15074 struct lpfc_eqe *eqe) 15075 { 15076 struct lpfc_queue *cq = NULL; 15077 uint32_t qidx = eq->hdwq; 15078 uint16_t cqid, id; 15079 15080 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 15081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15082 "0366 Not a valid completion " 15083 "event: majorcode=x%x, minorcode=x%x\n", 15084 bf_get_le32(lpfc_eqe_major_code, eqe), 15085 bf_get_le32(lpfc_eqe_minor_code, eqe)); 15086 return; 15087 } 15088 15089 /* Get the reference to the corresponding CQ */ 15090 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 15091 15092 /* Use the fast lookup method first */ 15093 if (cqid <= phba->sli4_hba.cq_max) { 15094 cq = phba->sli4_hba.cq_lookup[cqid]; 15095 if (cq) 15096 goto work_cq; 15097 } 15098 15099 /* Next check for NVMET completion */ 15100 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 15101 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 15102 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 15103 /* Process NVMET unsol rcv */ 15104 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 15105 goto process_cq; 15106 } 15107 } 15108 15109 if (phba->sli4_hba.nvmels_cq && 15110 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 15111 /* Process NVME unsol rcv */ 15112 cq = phba->sli4_hba.nvmels_cq; 15113 } 15114 15115 /* Otherwise this is a Slow path event */ 15116 if (cq == NULL) { 15117 lpfc_sli4_sp_handle_eqe(phba, eqe, 15118 phba->sli4_hba.hdwq[qidx].hba_eq); 15119 return; 15120 } 15121 15122 process_cq: 15123 if (unlikely(cqid != cq->queue_id)) { 15124 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15125 "0368 Miss-matched fast-path completion " 15126 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 15127 cqid, cq->queue_id); 15128 return; 15129 } 15130 15131 work_cq: 15132 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 15133 if (phba->ktime_on) 15134 cq->isr_timestamp = ktime_get_ns(); 15135 else 15136 cq->isr_timestamp = 0; 15137 #endif 15138 lpfc_sli4_sched_cq_work(phba, cq, cqid); 15139 } 15140 15141 /** 15142 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 15143 * @cq: Pointer to CQ to be processed 15144 * @poll_mode: Enum lpfc_poll_state to determine poll mode 15145 * 15146 * This routine calls the cq processing routine with the handler for 15147 * fast path CQEs. 15148 * 15149 * The CQ routine returns two values: the first is the calling status, 15150 * which indicates whether work was queued to the background discovery 15151 * thread. If true, the routine should wakeup the discovery thread; 15152 * the second is the delay parameter. If non-zero, rather than rearming 15153 * the CQ and yet another interrupt, the CQ handler should be queued so 15154 * that it is processed in a subsequent polling action. The value of 15155 * the delay indicates when to reschedule it. 15156 **/ 15157 static void 15158 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 15159 enum lpfc_poll_mode poll_mode) 15160 { 15161 struct lpfc_hba *phba = cq->phba; 15162 unsigned long delay; 15163 bool workposted = false; 15164 int ret = 0; 15165 15166 /* process and rearm the CQ */ 15167 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 15168 &delay, poll_mode); 15169 15170 if (delay) { 15171 if (is_kdump_kernel()) 15172 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 15173 delay); 15174 else 15175 ret = queue_delayed_work_on(cq->chann, phba->wq, 15176 &cq->sched_irqwork, delay); 15177 if (!ret) 15178 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15179 "0367 Cannot schedule queue work " 15180 "for cqid=%d on CPU %d\n", 15181 cq->queue_id, cq->chann); 15182 } 15183 15184 /* wake up worker thread if there are works to be done */ 15185 if (workposted) 15186 lpfc_worker_wake_up(phba); 15187 } 15188 15189 /** 15190 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 15191 * interrupt 15192 * @work: pointer to work element 15193 * 15194 * translates from the work handler and calls the fast-path handler. 15195 **/ 15196 static void 15197 lpfc_sli4_hba_process_cq(struct work_struct *work) 15198 { 15199 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 15200 15201 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15202 } 15203 15204 /** 15205 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 15206 * @work: pointer to work element 15207 * 15208 * translates from the work handler and calls the fast-path handler. 15209 **/ 15210 static void 15211 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 15212 { 15213 struct lpfc_queue *cq = container_of(to_delayed_work(work), 15214 struct lpfc_queue, sched_irqwork); 15215 15216 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 15217 } 15218 15219 /** 15220 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 15221 * @irq: Interrupt number. 15222 * @dev_id: The device context pointer. 15223 * 15224 * This function is directly called from the PCI layer as an interrupt 15225 * service routine when device with SLI-4 interface spec is enabled with 15226 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 15227 * ring event in the HBA. However, when the device is enabled with either 15228 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 15229 * device-level interrupt handler. When the PCI slot is in error recovery 15230 * or the HBA is undergoing initialization, the interrupt handler will not 15231 * process the interrupt. The SCSI FCP fast-path ring event are handled in 15232 * the intrrupt context. This function is called without any lock held. 15233 * It gets the hbalock to access and update SLI data structures. Note that, 15234 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 15235 * equal to that of FCP CQ index. 15236 * 15237 * The link attention and ELS ring attention events are handled 15238 * by the worker thread. The interrupt handler signals the worker thread 15239 * and returns for these events. This function is called without any lock 15240 * held. It gets the hbalock to access and update SLI data structures. 15241 * 15242 * This function returns IRQ_HANDLED when interrupt is handled else it 15243 * returns IRQ_NONE. 15244 **/ 15245 irqreturn_t 15246 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 15247 { 15248 struct lpfc_hba *phba; 15249 struct lpfc_hba_eq_hdl *hba_eq_hdl; 15250 struct lpfc_queue *fpeq; 15251 unsigned long iflag; 15252 int ecount = 0; 15253 int hba_eqidx; 15254 struct lpfc_eq_intr_info *eqi; 15255 15256 /* Get the driver's phba structure from the dev_id */ 15257 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 15258 phba = hba_eq_hdl->phba; 15259 hba_eqidx = hba_eq_hdl->idx; 15260 15261 if (unlikely(!phba)) 15262 return IRQ_NONE; 15263 if (unlikely(!phba->sli4_hba.hdwq)) 15264 return IRQ_NONE; 15265 15266 /* Get to the EQ struct associated with this vector */ 15267 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 15268 if (unlikely(!fpeq)) 15269 return IRQ_NONE; 15270 15271 /* Check device state for handling interrupt */ 15272 if (unlikely(lpfc_intr_state_check(phba))) { 15273 /* Check again for link_state with lock held */ 15274 spin_lock_irqsave(&phba->hbalock, iflag); 15275 if (phba->link_state < LPFC_LINK_DOWN) 15276 /* Flush, clear interrupt, and rearm the EQ */ 15277 lpfc_sli4_eqcq_flush(phba, fpeq); 15278 spin_unlock_irqrestore(&phba->hbalock, iflag); 15279 return IRQ_NONE; 15280 } 15281 15282 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 15283 eqi->icnt++; 15284 15285 fpeq->last_cpu = raw_smp_processor_id(); 15286 15287 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 15288 fpeq->q_flag & HBA_EQ_DELAY_CHK && 15289 phba->cfg_auto_imax && 15290 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 15291 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 15292 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 15293 15294 /* process and rearm the EQ */ 15295 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 15296 15297 if (unlikely(ecount == 0)) { 15298 fpeq->EQ_no_entry++; 15299 if (phba->intr_type == MSIX) 15300 /* MSI-X treated interrupt served as no EQ share INT */ 15301 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15302 "0358 MSI-X interrupt with no EQE\n"); 15303 else 15304 /* Non MSI-X treated on interrupt as EQ share INT */ 15305 return IRQ_NONE; 15306 } 15307 15308 return IRQ_HANDLED; 15309 } /* lpfc_sli4_hba_intr_handler */ 15310 15311 /** 15312 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 15313 * @irq: Interrupt number. 15314 * @dev_id: The device context pointer. 15315 * 15316 * This function is the device-level interrupt handler to device with SLI-4 15317 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 15318 * interrupt mode is enabled and there is an event in the HBA which requires 15319 * driver attention. This function invokes the slow-path interrupt attention 15320 * handling function and fast-path interrupt attention handling function in 15321 * turn to process the relevant HBA attention events. This function is called 15322 * without any lock held. It gets the hbalock to access and update SLI data 15323 * structures. 15324 * 15325 * This function returns IRQ_HANDLED when interrupt is handled, else it 15326 * returns IRQ_NONE. 15327 **/ 15328 irqreturn_t 15329 lpfc_sli4_intr_handler(int irq, void *dev_id) 15330 { 15331 struct lpfc_hba *phba; 15332 irqreturn_t hba_irq_rc; 15333 bool hba_handled = false; 15334 int qidx; 15335 15336 /* Get the driver's phba structure from the dev_id */ 15337 phba = (struct lpfc_hba *)dev_id; 15338 15339 if (unlikely(!phba)) 15340 return IRQ_NONE; 15341 15342 /* 15343 * Invoke fast-path host attention interrupt handling as appropriate. 15344 */ 15345 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 15346 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 15347 &phba->sli4_hba.hba_eq_hdl[qidx]); 15348 if (hba_irq_rc == IRQ_HANDLED) 15349 hba_handled |= true; 15350 } 15351 15352 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 15353 } /* lpfc_sli4_intr_handler */ 15354 15355 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 15356 { 15357 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 15358 struct lpfc_queue *eq; 15359 int i = 0; 15360 15361 rcu_read_lock(); 15362 15363 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 15364 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 15365 if (!list_empty(&phba->poll_list)) 15366 mod_timer(&phba->cpuhp_poll_timer, 15367 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15368 15369 rcu_read_unlock(); 15370 } 15371 15372 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 15373 { 15374 struct lpfc_hba *phba = eq->phba; 15375 int i = 0; 15376 15377 /* 15378 * Unlocking an irq is one of the entry point to check 15379 * for re-schedule, but we are good for io submission 15380 * path as midlayer does a get_cpu to glue us in. Flush 15381 * out the invalidate queue so we can see the updated 15382 * value for flag. 15383 */ 15384 smp_rmb(); 15385 15386 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15387 /* We will not likely get the completion for the caller 15388 * during this iteration but i guess that's fine. 15389 * Future io's coming on this eq should be able to 15390 * pick it up. As for the case of single io's, they 15391 * will be handled through a sched from polling timer 15392 * function which is currently triggered every 1msec. 15393 */ 15394 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15395 15396 return i; 15397 } 15398 15399 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15400 { 15401 struct lpfc_hba *phba = eq->phba; 15402 15403 /* kickstart slowpath processing if needed */ 15404 if (list_empty(&phba->poll_list)) 15405 mod_timer(&phba->cpuhp_poll_timer, 15406 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15407 15408 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15409 synchronize_rcu(); 15410 } 15411 15412 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15413 { 15414 struct lpfc_hba *phba = eq->phba; 15415 15416 /* Disable slowpath processing for this eq. Kick start the eq 15417 * by RE-ARMING the eq's ASAP 15418 */ 15419 list_del_rcu(&eq->_poll_list); 15420 synchronize_rcu(); 15421 15422 if (list_empty(&phba->poll_list)) 15423 del_timer_sync(&phba->cpuhp_poll_timer); 15424 } 15425 15426 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15427 { 15428 struct lpfc_queue *eq, *next; 15429 15430 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15431 list_del(&eq->_poll_list); 15432 15433 INIT_LIST_HEAD(&phba->poll_list); 15434 synchronize_rcu(); 15435 } 15436 15437 static inline void 15438 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15439 { 15440 if (mode == eq->mode) 15441 return; 15442 /* 15443 * currently this function is only called during a hotplug 15444 * event and the cpu on which this function is executing 15445 * is going offline. By now the hotplug has instructed 15446 * the scheduler to remove this cpu from cpu active mask. 15447 * So we don't need to work about being put aside by the 15448 * scheduler for a high priority process. Yes, the inte- 15449 * rrupts could come but they are known to retire ASAP. 15450 */ 15451 15452 /* Disable polling in the fastpath */ 15453 WRITE_ONCE(eq->mode, mode); 15454 /* flush out the store buffer */ 15455 smp_wmb(); 15456 15457 /* 15458 * Add this eq to the polling list and start polling. For 15459 * a grace period both interrupt handler and poller will 15460 * try to process the eq _but_ that's fine. We have a 15461 * synchronization mechanism in place (queue_claimed) to 15462 * deal with it. This is just a draining phase for int- 15463 * errupt handler (not eq's) as we have guranteed through 15464 * barrier that all the CPUs have seen the new CQ_POLLED 15465 * state. which will effectively disable the REARMING of 15466 * the EQ. The whole idea is eq's die off eventually as 15467 * we are not rearming EQ's anymore. 15468 */ 15469 mode ? lpfc_sli4_add_to_poll_list(eq) : 15470 lpfc_sli4_remove_from_poll_list(eq); 15471 } 15472 15473 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15474 { 15475 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15476 } 15477 15478 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15479 { 15480 struct lpfc_hba *phba = eq->phba; 15481 15482 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15483 15484 /* Kick start for the pending io's in h/w. 15485 * Once we switch back to interrupt processing on a eq 15486 * the io path completion will only arm eq's when it 15487 * receives a completion. But since eq's are in disa- 15488 * rmed state it doesn't receive a completion. This 15489 * creates a deadlock scenaro. 15490 */ 15491 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15492 } 15493 15494 /** 15495 * lpfc_sli4_queue_free - free a queue structure and associated memory 15496 * @queue: The queue structure to free. 15497 * 15498 * This function frees a queue structure and the DMAable memory used for 15499 * the host resident queue. This function must be called after destroying the 15500 * queue on the HBA. 15501 **/ 15502 void 15503 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15504 { 15505 struct lpfc_dmabuf *dmabuf; 15506 15507 if (!queue) 15508 return; 15509 15510 if (!list_empty(&queue->wq_list)) 15511 list_del(&queue->wq_list); 15512 15513 while (!list_empty(&queue->page_list)) { 15514 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15515 list); 15516 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15517 dmabuf->virt, dmabuf->phys); 15518 kfree(dmabuf); 15519 } 15520 if (queue->rqbp) { 15521 lpfc_free_rq_buffer(queue->phba, queue); 15522 kfree(queue->rqbp); 15523 } 15524 15525 if (!list_empty(&queue->cpu_list)) 15526 list_del(&queue->cpu_list); 15527 15528 kfree(queue); 15529 return; 15530 } 15531 15532 /** 15533 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15534 * @phba: The HBA that this queue is being created on. 15535 * @page_size: The size of a queue page 15536 * @entry_size: The size of each queue entry for this queue. 15537 * @entry_count: The number of entries that this queue will handle. 15538 * @cpu: The cpu that will primarily utilize this queue. 15539 * 15540 * This function allocates a queue structure and the DMAable memory used for 15541 * the host resident queue. This function must be called before creating the 15542 * queue on the HBA. 15543 **/ 15544 struct lpfc_queue * 15545 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15546 uint32_t entry_size, uint32_t entry_count, int cpu) 15547 { 15548 struct lpfc_queue *queue; 15549 struct lpfc_dmabuf *dmabuf; 15550 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15551 uint16_t x, pgcnt; 15552 15553 if (!phba->sli4_hba.pc_sli4_params.supported) 15554 hw_page_size = page_size; 15555 15556 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15557 15558 /* If needed, Adjust page count to match the max the adapter supports */ 15559 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15560 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15561 15562 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15563 GFP_KERNEL, cpu_to_node(cpu)); 15564 if (!queue) 15565 return NULL; 15566 15567 INIT_LIST_HEAD(&queue->list); 15568 INIT_LIST_HEAD(&queue->_poll_list); 15569 INIT_LIST_HEAD(&queue->wq_list); 15570 INIT_LIST_HEAD(&queue->wqfull_list); 15571 INIT_LIST_HEAD(&queue->page_list); 15572 INIT_LIST_HEAD(&queue->child_list); 15573 INIT_LIST_HEAD(&queue->cpu_list); 15574 15575 /* Set queue parameters now. If the system cannot provide memory 15576 * resources, the free routine needs to know what was allocated. 15577 */ 15578 queue->page_count = pgcnt; 15579 queue->q_pgs = (void **)&queue[1]; 15580 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15581 queue->entry_size = entry_size; 15582 queue->entry_count = entry_count; 15583 queue->page_size = hw_page_size; 15584 queue->phba = phba; 15585 15586 for (x = 0; x < queue->page_count; x++) { 15587 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15588 dev_to_node(&phba->pcidev->dev)); 15589 if (!dmabuf) 15590 goto out_fail; 15591 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15592 hw_page_size, &dmabuf->phys, 15593 GFP_KERNEL); 15594 if (!dmabuf->virt) { 15595 kfree(dmabuf); 15596 goto out_fail; 15597 } 15598 dmabuf->buffer_tag = x; 15599 list_add_tail(&dmabuf->list, &queue->page_list); 15600 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15601 queue->q_pgs[x] = dmabuf->virt; 15602 } 15603 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15604 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15605 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15606 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15607 15608 /* notify_interval will be set during q creation */ 15609 15610 return queue; 15611 out_fail: 15612 lpfc_sli4_queue_free(queue); 15613 return NULL; 15614 } 15615 15616 /** 15617 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15618 * @phba: HBA structure that indicates port to create a queue on. 15619 * @pci_barset: PCI BAR set flag. 15620 * 15621 * This function shall perform iomap of the specified PCI BAR address to host 15622 * memory address if not already done so and return it. The returned host 15623 * memory address can be NULL. 15624 */ 15625 static void __iomem * 15626 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15627 { 15628 if (!phba->pcidev) 15629 return NULL; 15630 15631 switch (pci_barset) { 15632 case WQ_PCI_BAR_0_AND_1: 15633 return phba->pci_bar0_memmap_p; 15634 case WQ_PCI_BAR_2_AND_3: 15635 return phba->pci_bar2_memmap_p; 15636 case WQ_PCI_BAR_4_AND_5: 15637 return phba->pci_bar4_memmap_p; 15638 default: 15639 break; 15640 } 15641 return NULL; 15642 } 15643 15644 /** 15645 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15646 * @phba: HBA structure that EQs are on. 15647 * @startq: The starting EQ index to modify 15648 * @numq: The number of EQs (consecutive indexes) to modify 15649 * @usdelay: amount of delay 15650 * 15651 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15652 * is set either by writing to a register (if supported by the SLI Port) 15653 * or by mailbox command. The mailbox command allows several EQs to be 15654 * updated at once. 15655 * 15656 * The @phba struct is used to send a mailbox command to HBA. The @startq 15657 * is used to get the starting EQ index to change. The @numq value is 15658 * used to specify how many consecutive EQ indexes, starting at EQ index, 15659 * are to be changed. This function is asynchronous and will wait for any 15660 * mailbox commands to finish before returning. 15661 * 15662 * On success this function will return a zero. If unable to allocate 15663 * enough memory this function will return -ENOMEM. If a mailbox command 15664 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15665 * have had their delay multipler changed. 15666 **/ 15667 void 15668 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15669 uint32_t numq, uint32_t usdelay) 15670 { 15671 struct lpfc_mbx_modify_eq_delay *eq_delay; 15672 LPFC_MBOXQ_t *mbox; 15673 struct lpfc_queue *eq; 15674 int cnt = 0, rc, length; 15675 uint32_t shdr_status, shdr_add_status; 15676 uint32_t dmult; 15677 int qidx; 15678 union lpfc_sli4_cfg_shdr *shdr; 15679 15680 if (startq >= phba->cfg_irq_chann) 15681 return; 15682 15683 if (usdelay > 0xFFFF) { 15684 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15685 "6429 usdelay %d too large. Scaled down to " 15686 "0xFFFF.\n", usdelay); 15687 usdelay = 0xFFFF; 15688 } 15689 15690 /* set values by EQ_DELAY register if supported */ 15691 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15692 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15693 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15694 if (!eq) 15695 continue; 15696 15697 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15698 15699 if (++cnt >= numq) 15700 break; 15701 } 15702 return; 15703 } 15704 15705 /* Otherwise, set values by mailbox cmd */ 15706 15707 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15708 if (!mbox) { 15709 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15710 "6428 Failed allocating mailbox cmd buffer." 15711 " EQ delay was not set.\n"); 15712 return; 15713 } 15714 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15715 sizeof(struct lpfc_sli4_cfg_mhdr)); 15716 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15717 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15718 length, LPFC_SLI4_MBX_EMBED); 15719 eq_delay = &mbox->u.mqe.un.eq_delay; 15720 15721 /* Calculate delay multiper from maximum interrupt per second */ 15722 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15723 if (dmult) 15724 dmult--; 15725 if (dmult > LPFC_DMULT_MAX) 15726 dmult = LPFC_DMULT_MAX; 15727 15728 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15729 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15730 if (!eq) 15731 continue; 15732 eq->q_mode = usdelay; 15733 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15734 eq_delay->u.request.eq[cnt].phase = 0; 15735 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15736 15737 if (++cnt >= numq) 15738 break; 15739 } 15740 eq_delay->u.request.num_eq = cnt; 15741 15742 mbox->vport = phba->pport; 15743 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15744 mbox->ctx_ndlp = NULL; 15745 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15746 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15749 if (shdr_status || shdr_add_status || rc) { 15750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15751 "2512 MODIFY_EQ_DELAY mailbox failed with " 15752 "status x%x add_status x%x, mbx status x%x\n", 15753 shdr_status, shdr_add_status, rc); 15754 } 15755 mempool_free(mbox, phba->mbox_mem_pool); 15756 return; 15757 } 15758 15759 /** 15760 * lpfc_eq_create - Create an Event Queue on the HBA 15761 * @phba: HBA structure that indicates port to create a queue on. 15762 * @eq: The queue structure to use to create the event queue. 15763 * @imax: The maximum interrupt per second limit. 15764 * 15765 * This function creates an event queue, as detailed in @eq, on a port, 15766 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15767 * 15768 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15769 * is used to get the entry count and entry size that are necessary to 15770 * determine the number of pages to allocate and use for this queue. This 15771 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15772 * event queue. This function is asynchronous and will wait for the mailbox 15773 * command to finish before continuing. 15774 * 15775 * On success this function will return a zero. If unable to allocate enough 15776 * memory this function will return -ENOMEM. If the queue create mailbox command 15777 * fails this function will return -ENXIO. 15778 **/ 15779 int 15780 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15781 { 15782 struct lpfc_mbx_eq_create *eq_create; 15783 LPFC_MBOXQ_t *mbox; 15784 int rc, length, status = 0; 15785 struct lpfc_dmabuf *dmabuf; 15786 uint32_t shdr_status, shdr_add_status; 15787 union lpfc_sli4_cfg_shdr *shdr; 15788 uint16_t dmult; 15789 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15790 15791 /* sanity check on queue memory */ 15792 if (!eq) 15793 return -ENODEV; 15794 if (!phba->sli4_hba.pc_sli4_params.supported) 15795 hw_page_size = SLI4_PAGE_SIZE; 15796 15797 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15798 if (!mbox) 15799 return -ENOMEM; 15800 length = (sizeof(struct lpfc_mbx_eq_create) - 15801 sizeof(struct lpfc_sli4_cfg_mhdr)); 15802 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15803 LPFC_MBOX_OPCODE_EQ_CREATE, 15804 length, LPFC_SLI4_MBX_EMBED); 15805 eq_create = &mbox->u.mqe.un.eq_create; 15806 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15807 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15808 eq->page_count); 15809 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15810 LPFC_EQE_SIZE); 15811 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15812 15813 /* Use version 2 of CREATE_EQ if eqav is set */ 15814 if (phba->sli4_hba.pc_sli4_params.eqav) { 15815 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15816 LPFC_Q_CREATE_VERSION_2); 15817 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15818 phba->sli4_hba.pc_sli4_params.eqav); 15819 } 15820 15821 /* don't setup delay multiplier using EQ_CREATE */ 15822 dmult = 0; 15823 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15824 dmult); 15825 switch (eq->entry_count) { 15826 default: 15827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15828 "0360 Unsupported EQ count. (%d)\n", 15829 eq->entry_count); 15830 if (eq->entry_count < 256) { 15831 status = -EINVAL; 15832 goto out; 15833 } 15834 fallthrough; /* otherwise default to smallest count */ 15835 case 256: 15836 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15837 LPFC_EQ_CNT_256); 15838 break; 15839 case 512: 15840 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15841 LPFC_EQ_CNT_512); 15842 break; 15843 case 1024: 15844 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15845 LPFC_EQ_CNT_1024); 15846 break; 15847 case 2048: 15848 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15849 LPFC_EQ_CNT_2048); 15850 break; 15851 case 4096: 15852 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15853 LPFC_EQ_CNT_4096); 15854 break; 15855 } 15856 list_for_each_entry(dmabuf, &eq->page_list, list) { 15857 memset(dmabuf->virt, 0, hw_page_size); 15858 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15859 putPaddrLow(dmabuf->phys); 15860 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15861 putPaddrHigh(dmabuf->phys); 15862 } 15863 mbox->vport = phba->pport; 15864 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15865 mbox->ctx_buf = NULL; 15866 mbox->ctx_ndlp = NULL; 15867 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15868 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15869 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15870 if (shdr_status || shdr_add_status || rc) { 15871 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15872 "2500 EQ_CREATE mailbox failed with " 15873 "status x%x add_status x%x, mbx status x%x\n", 15874 shdr_status, shdr_add_status, rc); 15875 status = -ENXIO; 15876 } 15877 eq->type = LPFC_EQ; 15878 eq->subtype = LPFC_NONE; 15879 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15880 if (eq->queue_id == 0xFFFF) 15881 status = -ENXIO; 15882 eq->host_index = 0; 15883 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15884 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15885 out: 15886 mempool_free(mbox, phba->mbox_mem_pool); 15887 return status; 15888 } 15889 15890 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15891 { 15892 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15893 15894 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15895 15896 return 1; 15897 } 15898 15899 /** 15900 * lpfc_cq_create - Create a Completion Queue on the HBA 15901 * @phba: HBA structure that indicates port to create a queue on. 15902 * @cq: The queue structure to use to create the completion queue. 15903 * @eq: The event queue to bind this completion queue to. 15904 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15905 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15906 * 15907 * This function creates a completion queue, as detailed in @wq, on a port, 15908 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15909 * 15910 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15911 * is used to get the entry count and entry size that are necessary to 15912 * determine the number of pages to allocate and use for this queue. The @eq 15913 * is used to indicate which event queue to bind this completion queue to. This 15914 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15915 * completion queue. This function is asynchronous and will wait for the mailbox 15916 * command to finish before continuing. 15917 * 15918 * On success this function will return a zero. If unable to allocate enough 15919 * memory this function will return -ENOMEM. If the queue create mailbox command 15920 * fails this function will return -ENXIO. 15921 **/ 15922 int 15923 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15924 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15925 { 15926 struct lpfc_mbx_cq_create *cq_create; 15927 struct lpfc_dmabuf *dmabuf; 15928 LPFC_MBOXQ_t *mbox; 15929 int rc, length, status = 0; 15930 uint32_t shdr_status, shdr_add_status; 15931 union lpfc_sli4_cfg_shdr *shdr; 15932 15933 /* sanity check on queue memory */ 15934 if (!cq || !eq) 15935 return -ENODEV; 15936 15937 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15938 if (!mbox) 15939 return -ENOMEM; 15940 length = (sizeof(struct lpfc_mbx_cq_create) - 15941 sizeof(struct lpfc_sli4_cfg_mhdr)); 15942 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15943 LPFC_MBOX_OPCODE_CQ_CREATE, 15944 length, LPFC_SLI4_MBX_EMBED); 15945 cq_create = &mbox->u.mqe.un.cq_create; 15946 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15947 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15948 cq->page_count); 15949 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15950 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15951 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15952 phba->sli4_hba.pc_sli4_params.cqv); 15953 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15954 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15955 (cq->page_size / SLI4_PAGE_SIZE)); 15956 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15957 eq->queue_id); 15958 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15959 phba->sli4_hba.pc_sli4_params.cqav); 15960 } else { 15961 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15962 eq->queue_id); 15963 } 15964 switch (cq->entry_count) { 15965 case 2048: 15966 case 4096: 15967 if (phba->sli4_hba.pc_sli4_params.cqv == 15968 LPFC_Q_CREATE_VERSION_2) { 15969 cq_create->u.request.context.lpfc_cq_context_count = 15970 cq->entry_count; 15971 bf_set(lpfc_cq_context_count, 15972 &cq_create->u.request.context, 15973 LPFC_CQ_CNT_WORD7); 15974 break; 15975 } 15976 fallthrough; 15977 default: 15978 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15979 "0361 Unsupported CQ count: " 15980 "entry cnt %d sz %d pg cnt %d\n", 15981 cq->entry_count, cq->entry_size, 15982 cq->page_count); 15983 if (cq->entry_count < 256) { 15984 status = -EINVAL; 15985 goto out; 15986 } 15987 fallthrough; /* otherwise default to smallest count */ 15988 case 256: 15989 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15990 LPFC_CQ_CNT_256); 15991 break; 15992 case 512: 15993 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15994 LPFC_CQ_CNT_512); 15995 break; 15996 case 1024: 15997 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15998 LPFC_CQ_CNT_1024); 15999 break; 16000 } 16001 list_for_each_entry(dmabuf, &cq->page_list, list) { 16002 memset(dmabuf->virt, 0, cq->page_size); 16003 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16004 putPaddrLow(dmabuf->phys); 16005 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16006 putPaddrHigh(dmabuf->phys); 16007 } 16008 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16009 16010 /* The IOCTL status is embedded in the mailbox subheader. */ 16011 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16012 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16013 if (shdr_status || shdr_add_status || rc) { 16014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16015 "2501 CQ_CREATE mailbox failed with " 16016 "status x%x add_status x%x, mbx status x%x\n", 16017 shdr_status, shdr_add_status, rc); 16018 status = -ENXIO; 16019 goto out; 16020 } 16021 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16022 if (cq->queue_id == 0xFFFF) { 16023 status = -ENXIO; 16024 goto out; 16025 } 16026 /* link the cq onto the parent eq child list */ 16027 list_add_tail(&cq->list, &eq->child_list); 16028 /* Set up completion queue's type and subtype */ 16029 cq->type = type; 16030 cq->subtype = subtype; 16031 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 16032 cq->assoc_qid = eq->queue_id; 16033 cq->assoc_qp = eq; 16034 cq->host_index = 0; 16035 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16036 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 16037 16038 if (cq->queue_id > phba->sli4_hba.cq_max) 16039 phba->sli4_hba.cq_max = cq->queue_id; 16040 16041 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 16042 out: 16043 mempool_free(mbox, phba->mbox_mem_pool); 16044 return status; 16045 } 16046 16047 /** 16048 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 16049 * @phba: HBA structure that indicates port to create a queue on. 16050 * @cqp: The queue structure array to use to create the completion queues. 16051 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 16052 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 16053 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16054 * 16055 * This function creates a set of completion queue, s to support MRQ 16056 * as detailed in @cqp, on a port, 16057 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 16058 * 16059 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16060 * is used to get the entry count and entry size that are necessary to 16061 * determine the number of pages to allocate and use for this queue. The @eq 16062 * is used to indicate which event queue to bind this completion queue to. This 16063 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 16064 * completion queue. This function is asynchronous and will wait for the mailbox 16065 * command to finish before continuing. 16066 * 16067 * On success this function will return a zero. If unable to allocate enough 16068 * memory this function will return -ENOMEM. If the queue create mailbox command 16069 * fails this function will return -ENXIO. 16070 **/ 16071 int 16072 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 16073 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 16074 uint32_t subtype) 16075 { 16076 struct lpfc_queue *cq; 16077 struct lpfc_queue *eq; 16078 struct lpfc_mbx_cq_create_set *cq_set; 16079 struct lpfc_dmabuf *dmabuf; 16080 LPFC_MBOXQ_t *mbox; 16081 int rc, length, alloclen, status = 0; 16082 int cnt, idx, numcq, page_idx = 0; 16083 uint32_t shdr_status, shdr_add_status; 16084 union lpfc_sli4_cfg_shdr *shdr; 16085 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16086 16087 /* sanity check on queue memory */ 16088 numcq = phba->cfg_nvmet_mrq; 16089 if (!cqp || !hdwq || !numcq) 16090 return -ENODEV; 16091 16092 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16093 if (!mbox) 16094 return -ENOMEM; 16095 16096 length = sizeof(struct lpfc_mbx_cq_create_set); 16097 length += ((numcq * cqp[0]->page_count) * 16098 sizeof(struct dma_address)); 16099 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16100 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 16101 LPFC_SLI4_MBX_NEMBED); 16102 if (alloclen < length) { 16103 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16104 "3098 Allocated DMA memory size (%d) is " 16105 "less than the requested DMA memory size " 16106 "(%d)\n", alloclen, length); 16107 status = -ENOMEM; 16108 goto out; 16109 } 16110 cq_set = mbox->sge_array->addr[0]; 16111 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 16112 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 16113 16114 for (idx = 0; idx < numcq; idx++) { 16115 cq = cqp[idx]; 16116 eq = hdwq[idx].hba_eq; 16117 if (!cq || !eq) { 16118 status = -ENOMEM; 16119 goto out; 16120 } 16121 if (!phba->sli4_hba.pc_sli4_params.supported) 16122 hw_page_size = cq->page_size; 16123 16124 switch (idx) { 16125 case 0: 16126 bf_set(lpfc_mbx_cq_create_set_page_size, 16127 &cq_set->u.request, 16128 (hw_page_size / SLI4_PAGE_SIZE)); 16129 bf_set(lpfc_mbx_cq_create_set_num_pages, 16130 &cq_set->u.request, cq->page_count); 16131 bf_set(lpfc_mbx_cq_create_set_evt, 16132 &cq_set->u.request, 1); 16133 bf_set(lpfc_mbx_cq_create_set_valid, 16134 &cq_set->u.request, 1); 16135 bf_set(lpfc_mbx_cq_create_set_cqe_size, 16136 &cq_set->u.request, 0); 16137 bf_set(lpfc_mbx_cq_create_set_num_cq, 16138 &cq_set->u.request, numcq); 16139 bf_set(lpfc_mbx_cq_create_set_autovalid, 16140 &cq_set->u.request, 16141 phba->sli4_hba.pc_sli4_params.cqav); 16142 switch (cq->entry_count) { 16143 case 2048: 16144 case 4096: 16145 if (phba->sli4_hba.pc_sli4_params.cqv == 16146 LPFC_Q_CREATE_VERSION_2) { 16147 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16148 &cq_set->u.request, 16149 cq->entry_count); 16150 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16151 &cq_set->u.request, 16152 LPFC_CQ_CNT_WORD7); 16153 break; 16154 } 16155 fallthrough; 16156 default: 16157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16158 "3118 Bad CQ count. (%d)\n", 16159 cq->entry_count); 16160 if (cq->entry_count < 256) { 16161 status = -EINVAL; 16162 goto out; 16163 } 16164 fallthrough; /* otherwise default to smallest */ 16165 case 256: 16166 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16167 &cq_set->u.request, LPFC_CQ_CNT_256); 16168 break; 16169 case 512: 16170 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16171 &cq_set->u.request, LPFC_CQ_CNT_512); 16172 break; 16173 case 1024: 16174 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 16175 &cq_set->u.request, LPFC_CQ_CNT_1024); 16176 break; 16177 } 16178 bf_set(lpfc_mbx_cq_create_set_eq_id0, 16179 &cq_set->u.request, eq->queue_id); 16180 break; 16181 case 1: 16182 bf_set(lpfc_mbx_cq_create_set_eq_id1, 16183 &cq_set->u.request, eq->queue_id); 16184 break; 16185 case 2: 16186 bf_set(lpfc_mbx_cq_create_set_eq_id2, 16187 &cq_set->u.request, eq->queue_id); 16188 break; 16189 case 3: 16190 bf_set(lpfc_mbx_cq_create_set_eq_id3, 16191 &cq_set->u.request, eq->queue_id); 16192 break; 16193 case 4: 16194 bf_set(lpfc_mbx_cq_create_set_eq_id4, 16195 &cq_set->u.request, eq->queue_id); 16196 break; 16197 case 5: 16198 bf_set(lpfc_mbx_cq_create_set_eq_id5, 16199 &cq_set->u.request, eq->queue_id); 16200 break; 16201 case 6: 16202 bf_set(lpfc_mbx_cq_create_set_eq_id6, 16203 &cq_set->u.request, eq->queue_id); 16204 break; 16205 case 7: 16206 bf_set(lpfc_mbx_cq_create_set_eq_id7, 16207 &cq_set->u.request, eq->queue_id); 16208 break; 16209 case 8: 16210 bf_set(lpfc_mbx_cq_create_set_eq_id8, 16211 &cq_set->u.request, eq->queue_id); 16212 break; 16213 case 9: 16214 bf_set(lpfc_mbx_cq_create_set_eq_id9, 16215 &cq_set->u.request, eq->queue_id); 16216 break; 16217 case 10: 16218 bf_set(lpfc_mbx_cq_create_set_eq_id10, 16219 &cq_set->u.request, eq->queue_id); 16220 break; 16221 case 11: 16222 bf_set(lpfc_mbx_cq_create_set_eq_id11, 16223 &cq_set->u.request, eq->queue_id); 16224 break; 16225 case 12: 16226 bf_set(lpfc_mbx_cq_create_set_eq_id12, 16227 &cq_set->u.request, eq->queue_id); 16228 break; 16229 case 13: 16230 bf_set(lpfc_mbx_cq_create_set_eq_id13, 16231 &cq_set->u.request, eq->queue_id); 16232 break; 16233 case 14: 16234 bf_set(lpfc_mbx_cq_create_set_eq_id14, 16235 &cq_set->u.request, eq->queue_id); 16236 break; 16237 case 15: 16238 bf_set(lpfc_mbx_cq_create_set_eq_id15, 16239 &cq_set->u.request, eq->queue_id); 16240 break; 16241 } 16242 16243 /* link the cq onto the parent eq child list */ 16244 list_add_tail(&cq->list, &eq->child_list); 16245 /* Set up completion queue's type and subtype */ 16246 cq->type = type; 16247 cq->subtype = subtype; 16248 cq->assoc_qid = eq->queue_id; 16249 cq->assoc_qp = eq; 16250 cq->host_index = 0; 16251 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 16252 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 16253 cq->entry_count); 16254 cq->chann = idx; 16255 16256 rc = 0; 16257 list_for_each_entry(dmabuf, &cq->page_list, list) { 16258 memset(dmabuf->virt, 0, hw_page_size); 16259 cnt = page_idx + dmabuf->buffer_tag; 16260 cq_set->u.request.page[cnt].addr_lo = 16261 putPaddrLow(dmabuf->phys); 16262 cq_set->u.request.page[cnt].addr_hi = 16263 putPaddrHigh(dmabuf->phys); 16264 rc++; 16265 } 16266 page_idx += rc; 16267 } 16268 16269 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16270 16271 /* The IOCTL status is embedded in the mailbox subheader. */ 16272 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16273 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16274 if (shdr_status || shdr_add_status || rc) { 16275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16276 "3119 CQ_CREATE_SET mailbox failed with " 16277 "status x%x add_status x%x, mbx status x%x\n", 16278 shdr_status, shdr_add_status, rc); 16279 status = -ENXIO; 16280 goto out; 16281 } 16282 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 16283 if (rc == 0xFFFF) { 16284 status = -ENXIO; 16285 goto out; 16286 } 16287 16288 for (idx = 0; idx < numcq; idx++) { 16289 cq = cqp[idx]; 16290 cq->queue_id = rc + idx; 16291 if (cq->queue_id > phba->sli4_hba.cq_max) 16292 phba->sli4_hba.cq_max = cq->queue_id; 16293 } 16294 16295 out: 16296 lpfc_sli4_mbox_cmd_free(phba, mbox); 16297 return status; 16298 } 16299 16300 /** 16301 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 16302 * @phba: HBA structure that indicates port to create a queue on. 16303 * @mq: The queue structure to use to create the mailbox queue. 16304 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 16305 * @cq: The completion queue to associate with this cq. 16306 * 16307 * This function provides failback (fb) functionality when the 16308 * mq_create_ext fails on older FW generations. It's purpose is identical 16309 * to mq_create_ext otherwise. 16310 * 16311 * This routine cannot fail as all attributes were previously accessed and 16312 * initialized in mq_create_ext. 16313 **/ 16314 static void 16315 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 16316 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 16317 { 16318 struct lpfc_mbx_mq_create *mq_create; 16319 struct lpfc_dmabuf *dmabuf; 16320 int length; 16321 16322 length = (sizeof(struct lpfc_mbx_mq_create) - 16323 sizeof(struct lpfc_sli4_cfg_mhdr)); 16324 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16325 LPFC_MBOX_OPCODE_MQ_CREATE, 16326 length, LPFC_SLI4_MBX_EMBED); 16327 mq_create = &mbox->u.mqe.un.mq_create; 16328 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 16329 mq->page_count); 16330 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 16331 cq->queue_id); 16332 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 16333 switch (mq->entry_count) { 16334 case 16: 16335 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16336 LPFC_MQ_RING_SIZE_16); 16337 break; 16338 case 32: 16339 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16340 LPFC_MQ_RING_SIZE_32); 16341 break; 16342 case 64: 16343 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16344 LPFC_MQ_RING_SIZE_64); 16345 break; 16346 case 128: 16347 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 16348 LPFC_MQ_RING_SIZE_128); 16349 break; 16350 } 16351 list_for_each_entry(dmabuf, &mq->page_list, list) { 16352 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16353 putPaddrLow(dmabuf->phys); 16354 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16355 putPaddrHigh(dmabuf->phys); 16356 } 16357 } 16358 16359 /** 16360 * lpfc_mq_create - Create a mailbox Queue on the HBA 16361 * @phba: HBA structure that indicates port to create a queue on. 16362 * @mq: The queue structure to use to create the mailbox queue. 16363 * @cq: The completion queue to associate with this cq. 16364 * @subtype: The queue's subtype. 16365 * 16366 * This function creates a mailbox queue, as detailed in @mq, on a port, 16367 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 16368 * 16369 * The @phba struct is used to send mailbox command to HBA. The @cq struct 16370 * is used to get the entry count and entry size that are necessary to 16371 * determine the number of pages to allocate and use for this queue. This 16372 * function will send the MQ_CREATE mailbox command to the HBA to setup the 16373 * mailbox queue. This function is asynchronous and will wait for the mailbox 16374 * command to finish before continuing. 16375 * 16376 * On success this function will return a zero. If unable to allocate enough 16377 * memory this function will return -ENOMEM. If the queue create mailbox command 16378 * fails this function will return -ENXIO. 16379 **/ 16380 int32_t 16381 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16382 struct lpfc_queue *cq, uint32_t subtype) 16383 { 16384 struct lpfc_mbx_mq_create *mq_create; 16385 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16386 struct lpfc_dmabuf *dmabuf; 16387 LPFC_MBOXQ_t *mbox; 16388 int rc, length, status = 0; 16389 uint32_t shdr_status, shdr_add_status; 16390 union lpfc_sli4_cfg_shdr *shdr; 16391 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16392 16393 /* sanity check on queue memory */ 16394 if (!mq || !cq) 16395 return -ENODEV; 16396 if (!phba->sli4_hba.pc_sli4_params.supported) 16397 hw_page_size = SLI4_PAGE_SIZE; 16398 16399 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16400 if (!mbox) 16401 return -ENOMEM; 16402 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16403 sizeof(struct lpfc_sli4_cfg_mhdr)); 16404 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16405 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16406 length, LPFC_SLI4_MBX_EMBED); 16407 16408 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16409 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16410 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16411 &mq_create_ext->u.request, mq->page_count); 16412 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16413 &mq_create_ext->u.request, 1); 16414 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16415 &mq_create_ext->u.request, 1); 16416 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16417 &mq_create_ext->u.request, 1); 16418 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16419 &mq_create_ext->u.request, 1); 16420 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16421 &mq_create_ext->u.request, 1); 16422 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16423 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16424 phba->sli4_hba.pc_sli4_params.mqv); 16425 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16426 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16427 cq->queue_id); 16428 else 16429 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16430 cq->queue_id); 16431 switch (mq->entry_count) { 16432 default: 16433 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16434 "0362 Unsupported MQ count. (%d)\n", 16435 mq->entry_count); 16436 if (mq->entry_count < 16) { 16437 status = -EINVAL; 16438 goto out; 16439 } 16440 fallthrough; /* otherwise default to smallest count */ 16441 case 16: 16442 bf_set(lpfc_mq_context_ring_size, 16443 &mq_create_ext->u.request.context, 16444 LPFC_MQ_RING_SIZE_16); 16445 break; 16446 case 32: 16447 bf_set(lpfc_mq_context_ring_size, 16448 &mq_create_ext->u.request.context, 16449 LPFC_MQ_RING_SIZE_32); 16450 break; 16451 case 64: 16452 bf_set(lpfc_mq_context_ring_size, 16453 &mq_create_ext->u.request.context, 16454 LPFC_MQ_RING_SIZE_64); 16455 break; 16456 case 128: 16457 bf_set(lpfc_mq_context_ring_size, 16458 &mq_create_ext->u.request.context, 16459 LPFC_MQ_RING_SIZE_128); 16460 break; 16461 } 16462 list_for_each_entry(dmabuf, &mq->page_list, list) { 16463 memset(dmabuf->virt, 0, hw_page_size); 16464 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16465 putPaddrLow(dmabuf->phys); 16466 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16467 putPaddrHigh(dmabuf->phys); 16468 } 16469 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16470 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16471 &mq_create_ext->u.response); 16472 if (rc != MBX_SUCCESS) { 16473 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16474 "2795 MQ_CREATE_EXT failed with " 16475 "status x%x. Failback to MQ_CREATE.\n", 16476 rc); 16477 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16478 mq_create = &mbox->u.mqe.un.mq_create; 16479 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16480 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16481 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16482 &mq_create->u.response); 16483 } 16484 16485 /* The IOCTL status is embedded in the mailbox subheader. */ 16486 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16487 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16488 if (shdr_status || shdr_add_status || rc) { 16489 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16490 "2502 MQ_CREATE mailbox failed with " 16491 "status x%x add_status x%x, mbx status x%x\n", 16492 shdr_status, shdr_add_status, rc); 16493 status = -ENXIO; 16494 goto out; 16495 } 16496 if (mq->queue_id == 0xFFFF) { 16497 status = -ENXIO; 16498 goto out; 16499 } 16500 mq->type = LPFC_MQ; 16501 mq->assoc_qid = cq->queue_id; 16502 mq->subtype = subtype; 16503 mq->host_index = 0; 16504 mq->hba_index = 0; 16505 16506 /* link the mq onto the parent cq child list */ 16507 list_add_tail(&mq->list, &cq->child_list); 16508 out: 16509 mempool_free(mbox, phba->mbox_mem_pool); 16510 return status; 16511 } 16512 16513 /** 16514 * lpfc_wq_create - Create a Work Queue on the HBA 16515 * @phba: HBA structure that indicates port to create a queue on. 16516 * @wq: The queue structure to use to create the work queue. 16517 * @cq: The completion queue to bind this work queue to. 16518 * @subtype: The subtype of the work queue indicating its functionality. 16519 * 16520 * This function creates a work queue, as detailed in @wq, on a port, described 16521 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16522 * 16523 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16524 * is used to get the entry count and entry size that are necessary to 16525 * determine the number of pages to allocate and use for this queue. The @cq 16526 * is used to indicate which completion queue to bind this work queue to. This 16527 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16528 * work queue. This function is asynchronous and will wait for the mailbox 16529 * command to finish before continuing. 16530 * 16531 * On success this function will return a zero. If unable to allocate enough 16532 * memory this function will return -ENOMEM. If the queue create mailbox command 16533 * fails this function will return -ENXIO. 16534 **/ 16535 int 16536 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16537 struct lpfc_queue *cq, uint32_t subtype) 16538 { 16539 struct lpfc_mbx_wq_create *wq_create; 16540 struct lpfc_dmabuf *dmabuf; 16541 LPFC_MBOXQ_t *mbox; 16542 int rc, length, status = 0; 16543 uint32_t shdr_status, shdr_add_status; 16544 union lpfc_sli4_cfg_shdr *shdr; 16545 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16546 struct dma_address *page; 16547 void __iomem *bar_memmap_p; 16548 uint32_t db_offset; 16549 uint16_t pci_barset; 16550 uint8_t dpp_barset; 16551 uint32_t dpp_offset; 16552 uint8_t wq_create_version; 16553 #ifdef CONFIG_X86 16554 unsigned long pg_addr; 16555 #endif 16556 16557 /* sanity check on queue memory */ 16558 if (!wq || !cq) 16559 return -ENODEV; 16560 if (!phba->sli4_hba.pc_sli4_params.supported) 16561 hw_page_size = wq->page_size; 16562 16563 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16564 if (!mbox) 16565 return -ENOMEM; 16566 length = (sizeof(struct lpfc_mbx_wq_create) - 16567 sizeof(struct lpfc_sli4_cfg_mhdr)); 16568 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16569 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16570 length, LPFC_SLI4_MBX_EMBED); 16571 wq_create = &mbox->u.mqe.un.wq_create; 16572 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16573 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16574 wq->page_count); 16575 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16576 cq->queue_id); 16577 16578 /* wqv is the earliest version supported, NOT the latest */ 16579 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16580 phba->sli4_hba.pc_sli4_params.wqv); 16581 16582 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16583 (wq->page_size > SLI4_PAGE_SIZE)) 16584 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16585 else 16586 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16587 16588 switch (wq_create_version) { 16589 case LPFC_Q_CREATE_VERSION_1: 16590 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16591 wq->entry_count); 16592 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16593 LPFC_Q_CREATE_VERSION_1); 16594 16595 switch (wq->entry_size) { 16596 default: 16597 case 64: 16598 bf_set(lpfc_mbx_wq_create_wqe_size, 16599 &wq_create->u.request_1, 16600 LPFC_WQ_WQE_SIZE_64); 16601 break; 16602 case 128: 16603 bf_set(lpfc_mbx_wq_create_wqe_size, 16604 &wq_create->u.request_1, 16605 LPFC_WQ_WQE_SIZE_128); 16606 break; 16607 } 16608 /* Request DPP by default */ 16609 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16610 bf_set(lpfc_mbx_wq_create_page_size, 16611 &wq_create->u.request_1, 16612 (wq->page_size / SLI4_PAGE_SIZE)); 16613 page = wq_create->u.request_1.page; 16614 break; 16615 default: 16616 page = wq_create->u.request.page; 16617 break; 16618 } 16619 16620 list_for_each_entry(dmabuf, &wq->page_list, list) { 16621 memset(dmabuf->virt, 0, hw_page_size); 16622 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16623 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16624 } 16625 16626 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16627 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16628 16629 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16630 /* The IOCTL status is embedded in the mailbox subheader. */ 16631 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16632 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16633 if (shdr_status || shdr_add_status || rc) { 16634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16635 "2503 WQ_CREATE mailbox failed with " 16636 "status x%x add_status x%x, mbx status x%x\n", 16637 shdr_status, shdr_add_status, rc); 16638 status = -ENXIO; 16639 goto out; 16640 } 16641 16642 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16643 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16644 &wq_create->u.response); 16645 else 16646 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16647 &wq_create->u.response_1); 16648 16649 if (wq->queue_id == 0xFFFF) { 16650 status = -ENXIO; 16651 goto out; 16652 } 16653 16654 wq->db_format = LPFC_DB_LIST_FORMAT; 16655 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16656 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16657 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16658 &wq_create->u.response); 16659 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16660 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16661 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16662 "3265 WQ[%d] doorbell format " 16663 "not supported: x%x\n", 16664 wq->queue_id, wq->db_format); 16665 status = -EINVAL; 16666 goto out; 16667 } 16668 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16669 &wq_create->u.response); 16670 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16671 pci_barset); 16672 if (!bar_memmap_p) { 16673 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16674 "3263 WQ[%d] failed to memmap " 16675 "pci barset:x%x\n", 16676 wq->queue_id, pci_barset); 16677 status = -ENOMEM; 16678 goto out; 16679 } 16680 db_offset = wq_create->u.response.doorbell_offset; 16681 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16682 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16683 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16684 "3252 WQ[%d] doorbell offset " 16685 "not supported: x%x\n", 16686 wq->queue_id, db_offset); 16687 status = -EINVAL; 16688 goto out; 16689 } 16690 wq->db_regaddr = bar_memmap_p + db_offset; 16691 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16692 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16693 "format:x%x\n", wq->queue_id, 16694 pci_barset, db_offset, wq->db_format); 16695 } else 16696 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16697 } else { 16698 /* Check if DPP was honored by the firmware */ 16699 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16700 &wq_create->u.response_1); 16701 if (wq->dpp_enable) { 16702 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16703 &wq_create->u.response_1); 16704 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16705 pci_barset); 16706 if (!bar_memmap_p) { 16707 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16708 "3267 WQ[%d] failed to memmap " 16709 "pci barset:x%x\n", 16710 wq->queue_id, pci_barset); 16711 status = -ENOMEM; 16712 goto out; 16713 } 16714 db_offset = wq_create->u.response_1.doorbell_offset; 16715 wq->db_regaddr = bar_memmap_p + db_offset; 16716 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16717 &wq_create->u.response_1); 16718 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16719 &wq_create->u.response_1); 16720 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16721 dpp_barset); 16722 if (!bar_memmap_p) { 16723 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16724 "3268 WQ[%d] failed to memmap " 16725 "pci barset:x%x\n", 16726 wq->queue_id, dpp_barset); 16727 status = -ENOMEM; 16728 goto out; 16729 } 16730 dpp_offset = wq_create->u.response_1.dpp_offset; 16731 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16732 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16733 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16734 "dpp_id:x%x dpp_barset:x%x " 16735 "dpp_offset:x%x\n", 16736 wq->queue_id, pci_barset, db_offset, 16737 wq->dpp_id, dpp_barset, dpp_offset); 16738 16739 #ifdef CONFIG_X86 16740 /* Enable combined writes for DPP aperture */ 16741 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16742 rc = set_memory_wc(pg_addr, 1); 16743 if (rc) { 16744 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16745 "3272 Cannot setup Combined " 16746 "Write on WQ[%d] - disable DPP\n", 16747 wq->queue_id); 16748 phba->cfg_enable_dpp = 0; 16749 } 16750 #else 16751 phba->cfg_enable_dpp = 0; 16752 #endif 16753 } else 16754 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16755 } 16756 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16757 if (wq->pring == NULL) { 16758 status = -ENOMEM; 16759 goto out; 16760 } 16761 wq->type = LPFC_WQ; 16762 wq->assoc_qid = cq->queue_id; 16763 wq->subtype = subtype; 16764 wq->host_index = 0; 16765 wq->hba_index = 0; 16766 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16767 16768 /* link the wq onto the parent cq child list */ 16769 list_add_tail(&wq->list, &cq->child_list); 16770 out: 16771 mempool_free(mbox, phba->mbox_mem_pool); 16772 return status; 16773 } 16774 16775 /** 16776 * lpfc_rq_create - Create a Receive Queue on the HBA 16777 * @phba: HBA structure that indicates port to create a queue on. 16778 * @hrq: The queue structure to use to create the header receive queue. 16779 * @drq: The queue structure to use to create the data receive queue. 16780 * @cq: The completion queue to bind this work queue to. 16781 * @subtype: The subtype of the work queue indicating its functionality. 16782 * 16783 * This function creates a receive buffer queue pair , as detailed in @hrq and 16784 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16785 * to the HBA. 16786 * 16787 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16788 * struct is used to get the entry count that is necessary to determine the 16789 * number of pages to use for this queue. The @cq is used to indicate which 16790 * completion queue to bind received buffers that are posted to these queues to. 16791 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16792 * receive queue pair. This function is asynchronous and will wait for the 16793 * mailbox command to finish before continuing. 16794 * 16795 * On success this function will return a zero. If unable to allocate enough 16796 * memory this function will return -ENOMEM. If the queue create mailbox command 16797 * fails this function will return -ENXIO. 16798 **/ 16799 int 16800 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16801 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16802 { 16803 struct lpfc_mbx_rq_create *rq_create; 16804 struct lpfc_dmabuf *dmabuf; 16805 LPFC_MBOXQ_t *mbox; 16806 int rc, length, status = 0; 16807 uint32_t shdr_status, shdr_add_status; 16808 union lpfc_sli4_cfg_shdr *shdr; 16809 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16810 void __iomem *bar_memmap_p; 16811 uint32_t db_offset; 16812 uint16_t pci_barset; 16813 16814 /* sanity check on queue memory */ 16815 if (!hrq || !drq || !cq) 16816 return -ENODEV; 16817 if (!phba->sli4_hba.pc_sli4_params.supported) 16818 hw_page_size = SLI4_PAGE_SIZE; 16819 16820 if (hrq->entry_count != drq->entry_count) 16821 return -EINVAL; 16822 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16823 if (!mbox) 16824 return -ENOMEM; 16825 length = (sizeof(struct lpfc_mbx_rq_create) - 16826 sizeof(struct lpfc_sli4_cfg_mhdr)); 16827 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16828 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16829 length, LPFC_SLI4_MBX_EMBED); 16830 rq_create = &mbox->u.mqe.un.rq_create; 16831 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16832 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16833 phba->sli4_hba.pc_sli4_params.rqv); 16834 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16835 bf_set(lpfc_rq_context_rqe_count_1, 16836 &rq_create->u.request.context, 16837 hrq->entry_count); 16838 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16839 bf_set(lpfc_rq_context_rqe_size, 16840 &rq_create->u.request.context, 16841 LPFC_RQE_SIZE_8); 16842 bf_set(lpfc_rq_context_page_size, 16843 &rq_create->u.request.context, 16844 LPFC_RQ_PAGE_SIZE_4096); 16845 } else { 16846 switch (hrq->entry_count) { 16847 default: 16848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16849 "2535 Unsupported RQ count. (%d)\n", 16850 hrq->entry_count); 16851 if (hrq->entry_count < 512) { 16852 status = -EINVAL; 16853 goto out; 16854 } 16855 fallthrough; /* otherwise default to smallest count */ 16856 case 512: 16857 bf_set(lpfc_rq_context_rqe_count, 16858 &rq_create->u.request.context, 16859 LPFC_RQ_RING_SIZE_512); 16860 break; 16861 case 1024: 16862 bf_set(lpfc_rq_context_rqe_count, 16863 &rq_create->u.request.context, 16864 LPFC_RQ_RING_SIZE_1024); 16865 break; 16866 case 2048: 16867 bf_set(lpfc_rq_context_rqe_count, 16868 &rq_create->u.request.context, 16869 LPFC_RQ_RING_SIZE_2048); 16870 break; 16871 case 4096: 16872 bf_set(lpfc_rq_context_rqe_count, 16873 &rq_create->u.request.context, 16874 LPFC_RQ_RING_SIZE_4096); 16875 break; 16876 } 16877 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16878 LPFC_HDR_BUF_SIZE); 16879 } 16880 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16881 cq->queue_id); 16882 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16883 hrq->page_count); 16884 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16885 memset(dmabuf->virt, 0, hw_page_size); 16886 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16887 putPaddrLow(dmabuf->phys); 16888 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16889 putPaddrHigh(dmabuf->phys); 16890 } 16891 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16892 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16893 16894 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16895 /* The IOCTL status is embedded in the mailbox subheader. */ 16896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16898 if (shdr_status || shdr_add_status || rc) { 16899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16900 "2504 RQ_CREATE mailbox failed with " 16901 "status x%x add_status x%x, mbx status x%x\n", 16902 shdr_status, shdr_add_status, rc); 16903 status = -ENXIO; 16904 goto out; 16905 } 16906 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16907 if (hrq->queue_id == 0xFFFF) { 16908 status = -ENXIO; 16909 goto out; 16910 } 16911 16912 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16913 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16914 &rq_create->u.response); 16915 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16916 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16918 "3262 RQ [%d] doorbell format not " 16919 "supported: x%x\n", hrq->queue_id, 16920 hrq->db_format); 16921 status = -EINVAL; 16922 goto out; 16923 } 16924 16925 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16926 &rq_create->u.response); 16927 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16928 if (!bar_memmap_p) { 16929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16930 "3269 RQ[%d] failed to memmap pci " 16931 "barset:x%x\n", hrq->queue_id, 16932 pci_barset); 16933 status = -ENOMEM; 16934 goto out; 16935 } 16936 16937 db_offset = rq_create->u.response.doorbell_offset; 16938 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16939 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16941 "3270 RQ[%d] doorbell offset not " 16942 "supported: x%x\n", hrq->queue_id, 16943 db_offset); 16944 status = -EINVAL; 16945 goto out; 16946 } 16947 hrq->db_regaddr = bar_memmap_p + db_offset; 16948 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16949 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16950 "format:x%x\n", hrq->queue_id, pci_barset, 16951 db_offset, hrq->db_format); 16952 } else { 16953 hrq->db_format = LPFC_DB_RING_FORMAT; 16954 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16955 } 16956 hrq->type = LPFC_HRQ; 16957 hrq->assoc_qid = cq->queue_id; 16958 hrq->subtype = subtype; 16959 hrq->host_index = 0; 16960 hrq->hba_index = 0; 16961 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16962 16963 /* now create the data queue */ 16964 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16965 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16966 length, LPFC_SLI4_MBX_EMBED); 16967 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16968 phba->sli4_hba.pc_sli4_params.rqv); 16969 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16970 bf_set(lpfc_rq_context_rqe_count_1, 16971 &rq_create->u.request.context, hrq->entry_count); 16972 if (subtype == LPFC_NVMET) 16973 rq_create->u.request.context.buffer_size = 16974 LPFC_NVMET_DATA_BUF_SIZE; 16975 else 16976 rq_create->u.request.context.buffer_size = 16977 LPFC_DATA_BUF_SIZE; 16978 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16979 LPFC_RQE_SIZE_8); 16980 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16981 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16982 } else { 16983 switch (drq->entry_count) { 16984 default: 16985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16986 "2536 Unsupported RQ count. (%d)\n", 16987 drq->entry_count); 16988 if (drq->entry_count < 512) { 16989 status = -EINVAL; 16990 goto out; 16991 } 16992 fallthrough; /* otherwise default to smallest count */ 16993 case 512: 16994 bf_set(lpfc_rq_context_rqe_count, 16995 &rq_create->u.request.context, 16996 LPFC_RQ_RING_SIZE_512); 16997 break; 16998 case 1024: 16999 bf_set(lpfc_rq_context_rqe_count, 17000 &rq_create->u.request.context, 17001 LPFC_RQ_RING_SIZE_1024); 17002 break; 17003 case 2048: 17004 bf_set(lpfc_rq_context_rqe_count, 17005 &rq_create->u.request.context, 17006 LPFC_RQ_RING_SIZE_2048); 17007 break; 17008 case 4096: 17009 bf_set(lpfc_rq_context_rqe_count, 17010 &rq_create->u.request.context, 17011 LPFC_RQ_RING_SIZE_4096); 17012 break; 17013 } 17014 if (subtype == LPFC_NVMET) 17015 bf_set(lpfc_rq_context_buf_size, 17016 &rq_create->u.request.context, 17017 LPFC_NVMET_DATA_BUF_SIZE); 17018 else 17019 bf_set(lpfc_rq_context_buf_size, 17020 &rq_create->u.request.context, 17021 LPFC_DATA_BUF_SIZE); 17022 } 17023 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 17024 cq->queue_id); 17025 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 17026 drq->page_count); 17027 list_for_each_entry(dmabuf, &drq->page_list, list) { 17028 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 17029 putPaddrLow(dmabuf->phys); 17030 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 17031 putPaddrHigh(dmabuf->phys); 17032 } 17033 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 17034 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 17035 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17036 /* The IOCTL status is embedded in the mailbox subheader. */ 17037 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 17038 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17039 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17040 if (shdr_status || shdr_add_status || rc) { 17041 status = -ENXIO; 17042 goto out; 17043 } 17044 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17045 if (drq->queue_id == 0xFFFF) { 17046 status = -ENXIO; 17047 goto out; 17048 } 17049 drq->type = LPFC_DRQ; 17050 drq->assoc_qid = cq->queue_id; 17051 drq->subtype = subtype; 17052 drq->host_index = 0; 17053 drq->hba_index = 0; 17054 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17055 17056 /* link the header and data RQs onto the parent cq child list */ 17057 list_add_tail(&hrq->list, &cq->child_list); 17058 list_add_tail(&drq->list, &cq->child_list); 17059 17060 out: 17061 mempool_free(mbox, phba->mbox_mem_pool); 17062 return status; 17063 } 17064 17065 /** 17066 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 17067 * @phba: HBA structure that indicates port to create a queue on. 17068 * @hrqp: The queue structure array to use to create the header receive queues. 17069 * @drqp: The queue structure array to use to create the data receive queues. 17070 * @cqp: The completion queue array to bind these receive queues to. 17071 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 17072 * 17073 * This function creates a receive buffer queue pair , as detailed in @hrq and 17074 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 17075 * to the HBA. 17076 * 17077 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 17078 * struct is used to get the entry count that is necessary to determine the 17079 * number of pages to use for this queue. The @cq is used to indicate which 17080 * completion queue to bind received buffers that are posted to these queues to. 17081 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 17082 * receive queue pair. This function is asynchronous and will wait for the 17083 * mailbox command to finish before continuing. 17084 * 17085 * On success this function will return a zero. If unable to allocate enough 17086 * memory this function will return -ENOMEM. If the queue create mailbox command 17087 * fails this function will return -ENXIO. 17088 **/ 17089 int 17090 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 17091 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 17092 uint32_t subtype) 17093 { 17094 struct lpfc_queue *hrq, *drq, *cq; 17095 struct lpfc_mbx_rq_create_v2 *rq_create; 17096 struct lpfc_dmabuf *dmabuf; 17097 LPFC_MBOXQ_t *mbox; 17098 int rc, length, alloclen, status = 0; 17099 int cnt, idx, numrq, page_idx = 0; 17100 uint32_t shdr_status, shdr_add_status; 17101 union lpfc_sli4_cfg_shdr *shdr; 17102 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 17103 17104 numrq = phba->cfg_nvmet_mrq; 17105 /* sanity check on array memory */ 17106 if (!hrqp || !drqp || !cqp || !numrq) 17107 return -ENODEV; 17108 if (!phba->sli4_hba.pc_sli4_params.supported) 17109 hw_page_size = SLI4_PAGE_SIZE; 17110 17111 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17112 if (!mbox) 17113 return -ENOMEM; 17114 17115 length = sizeof(struct lpfc_mbx_rq_create_v2); 17116 length += ((2 * numrq * hrqp[0]->page_count) * 17117 sizeof(struct dma_address)); 17118 17119 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17120 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 17121 LPFC_SLI4_MBX_NEMBED); 17122 if (alloclen < length) { 17123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17124 "3099 Allocated DMA memory size (%d) is " 17125 "less than the requested DMA memory size " 17126 "(%d)\n", alloclen, length); 17127 status = -ENOMEM; 17128 goto out; 17129 } 17130 17131 17132 17133 rq_create = mbox->sge_array->addr[0]; 17134 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 17135 17136 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 17137 cnt = 0; 17138 17139 for (idx = 0; idx < numrq; idx++) { 17140 hrq = hrqp[idx]; 17141 drq = drqp[idx]; 17142 cq = cqp[idx]; 17143 17144 /* sanity check on queue memory */ 17145 if (!hrq || !drq || !cq) { 17146 status = -ENODEV; 17147 goto out; 17148 } 17149 17150 if (hrq->entry_count != drq->entry_count) { 17151 status = -EINVAL; 17152 goto out; 17153 } 17154 17155 if (idx == 0) { 17156 bf_set(lpfc_mbx_rq_create_num_pages, 17157 &rq_create->u.request, 17158 hrq->page_count); 17159 bf_set(lpfc_mbx_rq_create_rq_cnt, 17160 &rq_create->u.request, (numrq * 2)); 17161 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 17162 1); 17163 bf_set(lpfc_rq_context_base_cq, 17164 &rq_create->u.request.context, 17165 cq->queue_id); 17166 bf_set(lpfc_rq_context_data_size, 17167 &rq_create->u.request.context, 17168 LPFC_NVMET_DATA_BUF_SIZE); 17169 bf_set(lpfc_rq_context_hdr_size, 17170 &rq_create->u.request.context, 17171 LPFC_HDR_BUF_SIZE); 17172 bf_set(lpfc_rq_context_rqe_count_1, 17173 &rq_create->u.request.context, 17174 hrq->entry_count); 17175 bf_set(lpfc_rq_context_rqe_size, 17176 &rq_create->u.request.context, 17177 LPFC_RQE_SIZE_8); 17178 bf_set(lpfc_rq_context_page_size, 17179 &rq_create->u.request.context, 17180 (PAGE_SIZE/SLI4_PAGE_SIZE)); 17181 } 17182 rc = 0; 17183 list_for_each_entry(dmabuf, &hrq->page_list, list) { 17184 memset(dmabuf->virt, 0, hw_page_size); 17185 cnt = page_idx + dmabuf->buffer_tag; 17186 rq_create->u.request.page[cnt].addr_lo = 17187 putPaddrLow(dmabuf->phys); 17188 rq_create->u.request.page[cnt].addr_hi = 17189 putPaddrHigh(dmabuf->phys); 17190 rc++; 17191 } 17192 page_idx += rc; 17193 17194 rc = 0; 17195 list_for_each_entry(dmabuf, &drq->page_list, list) { 17196 memset(dmabuf->virt, 0, hw_page_size); 17197 cnt = page_idx + dmabuf->buffer_tag; 17198 rq_create->u.request.page[cnt].addr_lo = 17199 putPaddrLow(dmabuf->phys); 17200 rq_create->u.request.page[cnt].addr_hi = 17201 putPaddrHigh(dmabuf->phys); 17202 rc++; 17203 } 17204 page_idx += rc; 17205 17206 hrq->db_format = LPFC_DB_RING_FORMAT; 17207 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17208 hrq->type = LPFC_HRQ; 17209 hrq->assoc_qid = cq->queue_id; 17210 hrq->subtype = subtype; 17211 hrq->host_index = 0; 17212 hrq->hba_index = 0; 17213 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17214 17215 drq->db_format = LPFC_DB_RING_FORMAT; 17216 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 17217 drq->type = LPFC_DRQ; 17218 drq->assoc_qid = cq->queue_id; 17219 drq->subtype = subtype; 17220 drq->host_index = 0; 17221 drq->hba_index = 0; 17222 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 17223 17224 list_add_tail(&hrq->list, &cq->child_list); 17225 list_add_tail(&drq->list, &cq->child_list); 17226 } 17227 17228 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17229 /* The IOCTL status is embedded in the mailbox subheader. */ 17230 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17231 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17232 if (shdr_status || shdr_add_status || rc) { 17233 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17234 "3120 RQ_CREATE mailbox failed with " 17235 "status x%x add_status x%x, mbx status x%x\n", 17236 shdr_status, shdr_add_status, rc); 17237 status = -ENXIO; 17238 goto out; 17239 } 17240 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 17241 if (rc == 0xFFFF) { 17242 status = -ENXIO; 17243 goto out; 17244 } 17245 17246 /* Initialize all RQs with associated queue id */ 17247 for (idx = 0; idx < numrq; idx++) { 17248 hrq = hrqp[idx]; 17249 hrq->queue_id = rc + (2 * idx); 17250 drq = drqp[idx]; 17251 drq->queue_id = rc + (2 * idx) + 1; 17252 } 17253 17254 out: 17255 lpfc_sli4_mbox_cmd_free(phba, mbox); 17256 return status; 17257 } 17258 17259 /** 17260 * lpfc_eq_destroy - Destroy an event Queue on the HBA 17261 * @phba: HBA structure that indicates port to destroy a queue on. 17262 * @eq: The queue structure associated with the queue to destroy. 17263 * 17264 * This function destroys a queue, as detailed in @eq by sending an mailbox 17265 * command, specific to the type of queue, to the HBA. 17266 * 17267 * The @eq struct is used to get the queue ID of the queue to destroy. 17268 * 17269 * On success this function will return a zero. If the queue destroy mailbox 17270 * command fails this function will return -ENXIO. 17271 **/ 17272 int 17273 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 17274 { 17275 LPFC_MBOXQ_t *mbox; 17276 int rc, length, status = 0; 17277 uint32_t shdr_status, shdr_add_status; 17278 union lpfc_sli4_cfg_shdr *shdr; 17279 17280 /* sanity check on queue memory */ 17281 if (!eq) 17282 return -ENODEV; 17283 17284 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 17285 if (!mbox) 17286 return -ENOMEM; 17287 length = (sizeof(struct lpfc_mbx_eq_destroy) - 17288 sizeof(struct lpfc_sli4_cfg_mhdr)); 17289 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17290 LPFC_MBOX_OPCODE_EQ_DESTROY, 17291 length, LPFC_SLI4_MBX_EMBED); 17292 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 17293 eq->queue_id); 17294 mbox->vport = eq->phba->pport; 17295 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17296 17297 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 17298 /* The IOCTL status is embedded in the mailbox subheader. */ 17299 shdr = (union lpfc_sli4_cfg_shdr *) 17300 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 17301 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17302 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17303 if (shdr_status || shdr_add_status || rc) { 17304 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17305 "2505 EQ_DESTROY mailbox failed with " 17306 "status x%x add_status x%x, mbx status x%x\n", 17307 shdr_status, shdr_add_status, rc); 17308 status = -ENXIO; 17309 } 17310 17311 /* Remove eq from any list */ 17312 list_del_init(&eq->list); 17313 mempool_free(mbox, eq->phba->mbox_mem_pool); 17314 return status; 17315 } 17316 17317 /** 17318 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 17319 * @phba: HBA structure that indicates port to destroy a queue on. 17320 * @cq: The queue structure associated with the queue to destroy. 17321 * 17322 * This function destroys a queue, as detailed in @cq by sending an mailbox 17323 * command, specific to the type of queue, to the HBA. 17324 * 17325 * The @cq struct is used to get the queue ID of the queue to destroy. 17326 * 17327 * On success this function will return a zero. If the queue destroy mailbox 17328 * command fails this function will return -ENXIO. 17329 **/ 17330 int 17331 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 17332 { 17333 LPFC_MBOXQ_t *mbox; 17334 int rc, length, status = 0; 17335 uint32_t shdr_status, shdr_add_status; 17336 union lpfc_sli4_cfg_shdr *shdr; 17337 17338 /* sanity check on queue memory */ 17339 if (!cq) 17340 return -ENODEV; 17341 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 17342 if (!mbox) 17343 return -ENOMEM; 17344 length = (sizeof(struct lpfc_mbx_cq_destroy) - 17345 sizeof(struct lpfc_sli4_cfg_mhdr)); 17346 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17347 LPFC_MBOX_OPCODE_CQ_DESTROY, 17348 length, LPFC_SLI4_MBX_EMBED); 17349 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 17350 cq->queue_id); 17351 mbox->vport = cq->phba->pport; 17352 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17353 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 17354 /* The IOCTL status is embedded in the mailbox subheader. */ 17355 shdr = (union lpfc_sli4_cfg_shdr *) 17356 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 17357 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17358 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17359 if (shdr_status || shdr_add_status || rc) { 17360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17361 "2506 CQ_DESTROY mailbox failed with " 17362 "status x%x add_status x%x, mbx status x%x\n", 17363 shdr_status, shdr_add_status, rc); 17364 status = -ENXIO; 17365 } 17366 /* Remove cq from any list */ 17367 list_del_init(&cq->list); 17368 mempool_free(mbox, cq->phba->mbox_mem_pool); 17369 return status; 17370 } 17371 17372 /** 17373 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 17374 * @phba: HBA structure that indicates port to destroy a queue on. 17375 * @mq: The queue structure associated with the queue to destroy. 17376 * 17377 * This function destroys a queue, as detailed in @mq by sending an mailbox 17378 * command, specific to the type of queue, to the HBA. 17379 * 17380 * The @mq struct is used to get the queue ID of the queue to destroy. 17381 * 17382 * On success this function will return a zero. If the queue destroy mailbox 17383 * command fails this function will return -ENXIO. 17384 **/ 17385 int 17386 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17387 { 17388 LPFC_MBOXQ_t *mbox; 17389 int rc, length, status = 0; 17390 uint32_t shdr_status, shdr_add_status; 17391 union lpfc_sli4_cfg_shdr *shdr; 17392 17393 /* sanity check on queue memory */ 17394 if (!mq) 17395 return -ENODEV; 17396 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17397 if (!mbox) 17398 return -ENOMEM; 17399 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17400 sizeof(struct lpfc_sli4_cfg_mhdr)); 17401 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17402 LPFC_MBOX_OPCODE_MQ_DESTROY, 17403 length, LPFC_SLI4_MBX_EMBED); 17404 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17405 mq->queue_id); 17406 mbox->vport = mq->phba->pport; 17407 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17408 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17409 /* The IOCTL status is embedded in the mailbox subheader. */ 17410 shdr = (union lpfc_sli4_cfg_shdr *) 17411 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17412 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17413 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17414 if (shdr_status || shdr_add_status || rc) { 17415 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17416 "2507 MQ_DESTROY mailbox failed with " 17417 "status x%x add_status x%x, mbx status x%x\n", 17418 shdr_status, shdr_add_status, rc); 17419 status = -ENXIO; 17420 } 17421 /* Remove mq from any list */ 17422 list_del_init(&mq->list); 17423 mempool_free(mbox, mq->phba->mbox_mem_pool); 17424 return status; 17425 } 17426 17427 /** 17428 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17429 * @phba: HBA structure that indicates port to destroy a queue on. 17430 * @wq: The queue structure associated with the queue to destroy. 17431 * 17432 * This function destroys a queue, as detailed in @wq by sending an mailbox 17433 * command, specific to the type of queue, to the HBA. 17434 * 17435 * The @wq struct is used to get the queue ID of the queue to destroy. 17436 * 17437 * On success this function will return a zero. If the queue destroy mailbox 17438 * command fails this function will return -ENXIO. 17439 **/ 17440 int 17441 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17442 { 17443 LPFC_MBOXQ_t *mbox; 17444 int rc, length, status = 0; 17445 uint32_t shdr_status, shdr_add_status; 17446 union lpfc_sli4_cfg_shdr *shdr; 17447 17448 /* sanity check on queue memory */ 17449 if (!wq) 17450 return -ENODEV; 17451 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17452 if (!mbox) 17453 return -ENOMEM; 17454 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17455 sizeof(struct lpfc_sli4_cfg_mhdr)); 17456 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17457 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17458 length, LPFC_SLI4_MBX_EMBED); 17459 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17460 wq->queue_id); 17461 mbox->vport = wq->phba->pport; 17462 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17463 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17464 shdr = (union lpfc_sli4_cfg_shdr *) 17465 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17466 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17467 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17468 if (shdr_status || shdr_add_status || rc) { 17469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17470 "2508 WQ_DESTROY mailbox failed with " 17471 "status x%x add_status x%x, mbx status x%x\n", 17472 shdr_status, shdr_add_status, rc); 17473 status = -ENXIO; 17474 } 17475 /* Remove wq from any list */ 17476 list_del_init(&wq->list); 17477 kfree(wq->pring); 17478 wq->pring = NULL; 17479 mempool_free(mbox, wq->phba->mbox_mem_pool); 17480 return status; 17481 } 17482 17483 /** 17484 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17485 * @phba: HBA structure that indicates port to destroy a queue on. 17486 * @hrq: The queue structure associated with the queue to destroy. 17487 * @drq: The queue structure associated with the queue to destroy. 17488 * 17489 * This function destroys a queue, as detailed in @rq by sending an mailbox 17490 * command, specific to the type of queue, to the HBA. 17491 * 17492 * The @rq struct is used to get the queue ID of the queue to destroy. 17493 * 17494 * On success this function will return a zero. If the queue destroy mailbox 17495 * command fails this function will return -ENXIO. 17496 **/ 17497 int 17498 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17499 struct lpfc_queue *drq) 17500 { 17501 LPFC_MBOXQ_t *mbox; 17502 int rc, length, status = 0; 17503 uint32_t shdr_status, shdr_add_status; 17504 union lpfc_sli4_cfg_shdr *shdr; 17505 17506 /* sanity check on queue memory */ 17507 if (!hrq || !drq) 17508 return -ENODEV; 17509 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17510 if (!mbox) 17511 return -ENOMEM; 17512 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17513 sizeof(struct lpfc_sli4_cfg_mhdr)); 17514 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17515 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17516 length, LPFC_SLI4_MBX_EMBED); 17517 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17518 hrq->queue_id); 17519 mbox->vport = hrq->phba->pport; 17520 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17521 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17522 /* The IOCTL status is embedded in the mailbox subheader. */ 17523 shdr = (union lpfc_sli4_cfg_shdr *) 17524 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17525 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17526 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17527 if (shdr_status || shdr_add_status || rc) { 17528 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17529 "2509 RQ_DESTROY mailbox failed with " 17530 "status x%x add_status x%x, mbx status x%x\n", 17531 shdr_status, shdr_add_status, rc); 17532 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17533 return -ENXIO; 17534 } 17535 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17536 drq->queue_id); 17537 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17538 shdr = (union lpfc_sli4_cfg_shdr *) 17539 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17540 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17541 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17542 if (shdr_status || shdr_add_status || rc) { 17543 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17544 "2510 RQ_DESTROY mailbox failed with " 17545 "status x%x add_status x%x, mbx status x%x\n", 17546 shdr_status, shdr_add_status, rc); 17547 status = -ENXIO; 17548 } 17549 list_del_init(&hrq->list); 17550 list_del_init(&drq->list); 17551 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17552 return status; 17553 } 17554 17555 /** 17556 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17557 * @phba: The virtual port for which this call being executed. 17558 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17559 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17560 * @xritag: the xritag that ties this io to the SGL pages. 17561 * 17562 * This routine will post the sgl pages for the IO that has the xritag 17563 * that is in the iocbq structure. The xritag is assigned during iocbq 17564 * creation and persists for as long as the driver is loaded. 17565 * if the caller has fewer than 256 scatter gather segments to map then 17566 * pdma_phys_addr1 should be 0. 17567 * If the caller needs to map more than 256 scatter gather segment then 17568 * pdma_phys_addr1 should be a valid physical address. 17569 * physical address for SGLs must be 64 byte aligned. 17570 * If you are going to map 2 SGL's then the first one must have 256 entries 17571 * the second sgl can have between 1 and 256 entries. 17572 * 17573 * Return codes: 17574 * 0 - Success 17575 * -ENXIO, -ENOMEM - Failure 17576 **/ 17577 int 17578 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17579 dma_addr_t pdma_phys_addr0, 17580 dma_addr_t pdma_phys_addr1, 17581 uint16_t xritag) 17582 { 17583 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17584 LPFC_MBOXQ_t *mbox; 17585 int rc; 17586 uint32_t shdr_status, shdr_add_status; 17587 uint32_t mbox_tmo; 17588 union lpfc_sli4_cfg_shdr *shdr; 17589 17590 if (xritag == NO_XRI) { 17591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17592 "0364 Invalid param:\n"); 17593 return -EINVAL; 17594 } 17595 17596 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17597 if (!mbox) 17598 return -ENOMEM; 17599 17600 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17601 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17602 sizeof(struct lpfc_mbx_post_sgl_pages) - 17603 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17604 17605 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17606 &mbox->u.mqe.un.post_sgl_pages; 17607 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17608 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17609 17610 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17611 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17612 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17613 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17614 17615 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17616 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17617 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17618 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17619 if (!phba->sli4_hba.intr_enable) 17620 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17621 else { 17622 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17623 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17624 } 17625 /* The IOCTL status is embedded in the mailbox subheader. */ 17626 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17627 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17628 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17629 if (!phba->sli4_hba.intr_enable) 17630 mempool_free(mbox, phba->mbox_mem_pool); 17631 else if (rc != MBX_TIMEOUT) 17632 mempool_free(mbox, phba->mbox_mem_pool); 17633 if (shdr_status || shdr_add_status || rc) { 17634 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17635 "2511 POST_SGL mailbox failed with " 17636 "status x%x add_status x%x, mbx status x%x\n", 17637 shdr_status, shdr_add_status, rc); 17638 } 17639 return 0; 17640 } 17641 17642 /** 17643 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17644 * @phba: pointer to lpfc hba data structure. 17645 * 17646 * This routine is invoked to post rpi header templates to the 17647 * HBA consistent with the SLI-4 interface spec. This routine 17648 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17649 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17650 * 17651 * Returns 17652 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17653 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17654 **/ 17655 static uint16_t 17656 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17657 { 17658 unsigned long xri; 17659 17660 /* 17661 * Fetch the next logical xri. Because this index is logical, 17662 * the driver starts at 0 each time. 17663 */ 17664 spin_lock_irq(&phba->hbalock); 17665 xri = find_first_zero_bit(phba->sli4_hba.xri_bmask, 17666 phba->sli4_hba.max_cfg_param.max_xri); 17667 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17668 spin_unlock_irq(&phba->hbalock); 17669 return NO_XRI; 17670 } else { 17671 set_bit(xri, phba->sli4_hba.xri_bmask); 17672 phba->sli4_hba.max_cfg_param.xri_used++; 17673 } 17674 spin_unlock_irq(&phba->hbalock); 17675 return xri; 17676 } 17677 17678 /** 17679 * __lpfc_sli4_free_xri - Release an xri for reuse. 17680 * @phba: pointer to lpfc hba data structure. 17681 * @xri: xri to release. 17682 * 17683 * This routine is invoked to release an xri to the pool of 17684 * available rpis maintained by the driver. 17685 **/ 17686 static void 17687 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17688 { 17689 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17690 phba->sli4_hba.max_cfg_param.xri_used--; 17691 } 17692 } 17693 17694 /** 17695 * lpfc_sli4_free_xri - Release an xri for reuse. 17696 * @phba: pointer to lpfc hba data structure. 17697 * @xri: xri to release. 17698 * 17699 * This routine is invoked to release an xri to the pool of 17700 * available rpis maintained by the driver. 17701 **/ 17702 void 17703 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17704 { 17705 spin_lock_irq(&phba->hbalock); 17706 __lpfc_sli4_free_xri(phba, xri); 17707 spin_unlock_irq(&phba->hbalock); 17708 } 17709 17710 /** 17711 * lpfc_sli4_next_xritag - Get an xritag for the io 17712 * @phba: Pointer to HBA context object. 17713 * 17714 * This function gets an xritag for the iocb. If there is no unused xritag 17715 * it will return 0xffff. 17716 * The function returns the allocated xritag if successful, else returns zero. 17717 * Zero is not a valid xritag. 17718 * The caller is not required to hold any lock. 17719 **/ 17720 uint16_t 17721 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17722 { 17723 uint16_t xri_index; 17724 17725 xri_index = lpfc_sli4_alloc_xri(phba); 17726 if (xri_index == NO_XRI) 17727 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17728 "2004 Failed to allocate XRI.last XRITAG is %d" 17729 " Max XRI is %d, Used XRI is %d\n", 17730 xri_index, 17731 phba->sli4_hba.max_cfg_param.max_xri, 17732 phba->sli4_hba.max_cfg_param.xri_used); 17733 return xri_index; 17734 } 17735 17736 /** 17737 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17738 * @phba: pointer to lpfc hba data structure. 17739 * @post_sgl_list: pointer to els sgl entry list. 17740 * @post_cnt: number of els sgl entries on the list. 17741 * 17742 * This routine is invoked to post a block of driver's sgl pages to the 17743 * HBA using non-embedded mailbox command. No Lock is held. This routine 17744 * is only called when the driver is loading and after all IO has been 17745 * stopped. 17746 **/ 17747 static int 17748 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17749 struct list_head *post_sgl_list, 17750 int post_cnt) 17751 { 17752 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17753 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17754 struct sgl_page_pairs *sgl_pg_pairs; 17755 void *viraddr; 17756 LPFC_MBOXQ_t *mbox; 17757 uint32_t reqlen, alloclen, pg_pairs; 17758 uint32_t mbox_tmo; 17759 uint16_t xritag_start = 0; 17760 int rc = 0; 17761 uint32_t shdr_status, shdr_add_status; 17762 union lpfc_sli4_cfg_shdr *shdr; 17763 17764 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17765 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17766 if (reqlen > SLI4_PAGE_SIZE) { 17767 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17768 "2559 Block sgl registration required DMA " 17769 "size (%d) great than a page\n", reqlen); 17770 return -ENOMEM; 17771 } 17772 17773 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17774 if (!mbox) 17775 return -ENOMEM; 17776 17777 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17778 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17779 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17780 LPFC_SLI4_MBX_NEMBED); 17781 17782 if (alloclen < reqlen) { 17783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17784 "0285 Allocated DMA memory size (%d) is " 17785 "less than the requested DMA memory " 17786 "size (%d)\n", alloclen, reqlen); 17787 lpfc_sli4_mbox_cmd_free(phba, mbox); 17788 return -ENOMEM; 17789 } 17790 /* Set up the SGL pages in the non-embedded DMA pages */ 17791 viraddr = mbox->sge_array->addr[0]; 17792 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17793 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17794 17795 pg_pairs = 0; 17796 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17797 /* Set up the sge entry */ 17798 sgl_pg_pairs->sgl_pg0_addr_lo = 17799 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17800 sgl_pg_pairs->sgl_pg0_addr_hi = 17801 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17802 sgl_pg_pairs->sgl_pg1_addr_lo = 17803 cpu_to_le32(putPaddrLow(0)); 17804 sgl_pg_pairs->sgl_pg1_addr_hi = 17805 cpu_to_le32(putPaddrHigh(0)); 17806 17807 /* Keep the first xritag on the list */ 17808 if (pg_pairs == 0) 17809 xritag_start = sglq_entry->sli4_xritag; 17810 sgl_pg_pairs++; 17811 pg_pairs++; 17812 } 17813 17814 /* Complete initialization and perform endian conversion. */ 17815 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17816 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17817 sgl->word0 = cpu_to_le32(sgl->word0); 17818 17819 if (!phba->sli4_hba.intr_enable) 17820 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17821 else { 17822 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17823 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17824 } 17825 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17826 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17827 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17828 if (!phba->sli4_hba.intr_enable) 17829 lpfc_sli4_mbox_cmd_free(phba, mbox); 17830 else if (rc != MBX_TIMEOUT) 17831 lpfc_sli4_mbox_cmd_free(phba, mbox); 17832 if (shdr_status || shdr_add_status || rc) { 17833 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17834 "2513 POST_SGL_BLOCK mailbox command failed " 17835 "status x%x add_status x%x mbx status x%x\n", 17836 shdr_status, shdr_add_status, rc); 17837 rc = -ENXIO; 17838 } 17839 return rc; 17840 } 17841 17842 /** 17843 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17844 * @phba: pointer to lpfc hba data structure. 17845 * @nblist: pointer to nvme buffer list. 17846 * @count: number of scsi buffers on the list. 17847 * 17848 * This routine is invoked to post a block of @count scsi sgl pages from a 17849 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17850 * No Lock is held. 17851 * 17852 **/ 17853 static int 17854 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17855 int count) 17856 { 17857 struct lpfc_io_buf *lpfc_ncmd; 17858 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17859 struct sgl_page_pairs *sgl_pg_pairs; 17860 void *viraddr; 17861 LPFC_MBOXQ_t *mbox; 17862 uint32_t reqlen, alloclen, pg_pairs; 17863 uint32_t mbox_tmo; 17864 uint16_t xritag_start = 0; 17865 int rc = 0; 17866 uint32_t shdr_status, shdr_add_status; 17867 dma_addr_t pdma_phys_bpl1; 17868 union lpfc_sli4_cfg_shdr *shdr; 17869 17870 /* Calculate the requested length of the dma memory */ 17871 reqlen = count * sizeof(struct sgl_page_pairs) + 17872 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17873 if (reqlen > SLI4_PAGE_SIZE) { 17874 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17875 "6118 Block sgl registration required DMA " 17876 "size (%d) great than a page\n", reqlen); 17877 return -ENOMEM; 17878 } 17879 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17880 if (!mbox) { 17881 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17882 "6119 Failed to allocate mbox cmd memory\n"); 17883 return -ENOMEM; 17884 } 17885 17886 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17887 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17888 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17889 reqlen, LPFC_SLI4_MBX_NEMBED); 17890 17891 if (alloclen < reqlen) { 17892 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17893 "6120 Allocated DMA memory size (%d) is " 17894 "less than the requested DMA memory " 17895 "size (%d)\n", alloclen, reqlen); 17896 lpfc_sli4_mbox_cmd_free(phba, mbox); 17897 return -ENOMEM; 17898 } 17899 17900 /* Get the first SGE entry from the non-embedded DMA memory */ 17901 viraddr = mbox->sge_array->addr[0]; 17902 17903 /* Set up the SGL pages in the non-embedded DMA pages */ 17904 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17905 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17906 17907 pg_pairs = 0; 17908 list_for_each_entry(lpfc_ncmd, nblist, list) { 17909 /* Set up the sge entry */ 17910 sgl_pg_pairs->sgl_pg0_addr_lo = 17911 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17912 sgl_pg_pairs->sgl_pg0_addr_hi = 17913 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17914 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17915 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17916 SGL_PAGE_SIZE; 17917 else 17918 pdma_phys_bpl1 = 0; 17919 sgl_pg_pairs->sgl_pg1_addr_lo = 17920 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17921 sgl_pg_pairs->sgl_pg1_addr_hi = 17922 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17923 /* Keep the first xritag on the list */ 17924 if (pg_pairs == 0) 17925 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17926 sgl_pg_pairs++; 17927 pg_pairs++; 17928 } 17929 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17930 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17931 /* Perform endian conversion if necessary */ 17932 sgl->word0 = cpu_to_le32(sgl->word0); 17933 17934 if (!phba->sli4_hba.intr_enable) { 17935 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17936 } else { 17937 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17938 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17939 } 17940 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17941 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17942 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17943 if (!phba->sli4_hba.intr_enable) 17944 lpfc_sli4_mbox_cmd_free(phba, mbox); 17945 else if (rc != MBX_TIMEOUT) 17946 lpfc_sli4_mbox_cmd_free(phba, mbox); 17947 if (shdr_status || shdr_add_status || rc) { 17948 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17949 "6125 POST_SGL_BLOCK mailbox command failed " 17950 "status x%x add_status x%x mbx status x%x\n", 17951 shdr_status, shdr_add_status, rc); 17952 rc = -ENXIO; 17953 } 17954 return rc; 17955 } 17956 17957 /** 17958 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17959 * @phba: pointer to lpfc hba data structure. 17960 * @post_nblist: pointer to the nvme buffer list. 17961 * @sb_count: number of nvme buffers. 17962 * 17963 * This routine walks a list of nvme buffers that was passed in. It attempts 17964 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17965 * uses the non-embedded SGL block post mailbox commands to post to the port. 17966 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17967 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17968 * must be local list, thus no lock is needed when manipulate the list. 17969 * 17970 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17971 **/ 17972 int 17973 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17974 struct list_head *post_nblist, int sb_count) 17975 { 17976 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17977 int status, sgl_size; 17978 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17979 dma_addr_t pdma_phys_sgl1; 17980 int last_xritag = NO_XRI; 17981 int cur_xritag; 17982 LIST_HEAD(prep_nblist); 17983 LIST_HEAD(blck_nblist); 17984 LIST_HEAD(nvme_nblist); 17985 17986 /* sanity check */ 17987 if (sb_count <= 0) 17988 return -EINVAL; 17989 17990 sgl_size = phba->cfg_sg_dma_buf_size; 17991 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17992 list_del_init(&lpfc_ncmd->list); 17993 block_cnt++; 17994 if ((last_xritag != NO_XRI) && 17995 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17996 /* a hole in xri block, form a sgl posting block */ 17997 list_splice_init(&prep_nblist, &blck_nblist); 17998 post_cnt = block_cnt - 1; 17999 /* prepare list for next posting block */ 18000 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18001 block_cnt = 1; 18002 } else { 18003 /* prepare list for next posting block */ 18004 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 18005 /* enough sgls for non-embed sgl mbox command */ 18006 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 18007 list_splice_init(&prep_nblist, &blck_nblist); 18008 post_cnt = block_cnt; 18009 block_cnt = 0; 18010 } 18011 } 18012 num_posting++; 18013 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18014 18015 /* end of repost sgl list condition for NVME buffers */ 18016 if (num_posting == sb_count) { 18017 if (post_cnt == 0) { 18018 /* last sgl posting block */ 18019 list_splice_init(&prep_nblist, &blck_nblist); 18020 post_cnt = block_cnt; 18021 } else if (block_cnt == 1) { 18022 /* last single sgl with non-contiguous xri */ 18023 if (sgl_size > SGL_PAGE_SIZE) 18024 pdma_phys_sgl1 = 18025 lpfc_ncmd->dma_phys_sgl + 18026 SGL_PAGE_SIZE; 18027 else 18028 pdma_phys_sgl1 = 0; 18029 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 18030 status = lpfc_sli4_post_sgl( 18031 phba, lpfc_ncmd->dma_phys_sgl, 18032 pdma_phys_sgl1, cur_xritag); 18033 if (status) { 18034 /* Post error. Buffer unavailable. */ 18035 lpfc_ncmd->flags |= 18036 LPFC_SBUF_NOT_POSTED; 18037 } else { 18038 /* Post success. Bffer available. */ 18039 lpfc_ncmd->flags &= 18040 ~LPFC_SBUF_NOT_POSTED; 18041 lpfc_ncmd->status = IOSTAT_SUCCESS; 18042 num_posted++; 18043 } 18044 /* success, put on NVME buffer sgl list */ 18045 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18046 } 18047 } 18048 18049 /* continue until a nembed page worth of sgls */ 18050 if (post_cnt == 0) 18051 continue; 18052 18053 /* post block of NVME buffer list sgls */ 18054 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 18055 post_cnt); 18056 18057 /* don't reset xirtag due to hole in xri block */ 18058 if (block_cnt == 0) 18059 last_xritag = NO_XRI; 18060 18061 /* reset NVME buffer post count for next round of posting */ 18062 post_cnt = 0; 18063 18064 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 18065 while (!list_empty(&blck_nblist)) { 18066 list_remove_head(&blck_nblist, lpfc_ncmd, 18067 struct lpfc_io_buf, list); 18068 if (status) { 18069 /* Post error. Mark buffer unavailable. */ 18070 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 18071 } else { 18072 /* Post success, Mark buffer available. */ 18073 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 18074 lpfc_ncmd->status = IOSTAT_SUCCESS; 18075 num_posted++; 18076 } 18077 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 18078 } 18079 } 18080 /* Push NVME buffers with sgl posted to the available list */ 18081 lpfc_io_buf_replenish(phba, &nvme_nblist); 18082 18083 return num_posted; 18084 } 18085 18086 /** 18087 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 18088 * @phba: pointer to lpfc_hba struct that the frame was received on 18089 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18090 * 18091 * This function checks the fields in the @fc_hdr to see if the FC frame is a 18092 * valid type of frame that the LPFC driver will handle. This function will 18093 * return a zero if the frame is a valid frame or a non zero value when the 18094 * frame does not pass the check. 18095 **/ 18096 static int 18097 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 18098 { 18099 /* make rctl_names static to save stack space */ 18100 struct fc_vft_header *fc_vft_hdr; 18101 uint32_t *header = (uint32_t *) fc_hdr; 18102 18103 #define FC_RCTL_MDS_DIAGS 0xF4 18104 18105 switch (fc_hdr->fh_r_ctl) { 18106 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 18107 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 18108 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 18109 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 18110 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 18111 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 18112 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 18113 case FC_RCTL_DD_CMD_STATUS: /* command status */ 18114 case FC_RCTL_ELS_REQ: /* extended link services request */ 18115 case FC_RCTL_ELS_REP: /* extended link services reply */ 18116 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 18117 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 18118 case FC_RCTL_BA_ABTS: /* basic link service abort */ 18119 case FC_RCTL_BA_RMC: /* remove connection */ 18120 case FC_RCTL_BA_ACC: /* basic accept */ 18121 case FC_RCTL_BA_RJT: /* basic reject */ 18122 case FC_RCTL_BA_PRMT: 18123 case FC_RCTL_ACK_1: /* acknowledge_1 */ 18124 case FC_RCTL_ACK_0: /* acknowledge_0 */ 18125 case FC_RCTL_P_RJT: /* port reject */ 18126 case FC_RCTL_F_RJT: /* fabric reject */ 18127 case FC_RCTL_P_BSY: /* port busy */ 18128 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 18129 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 18130 case FC_RCTL_LCR: /* link credit reset */ 18131 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 18132 case FC_RCTL_END: /* end */ 18133 break; 18134 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 18135 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18136 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 18137 return lpfc_fc_frame_check(phba, fc_hdr); 18138 case FC_RCTL_BA_NOP: /* basic link service NOP */ 18139 default: 18140 goto drop; 18141 } 18142 18143 switch (fc_hdr->fh_type) { 18144 case FC_TYPE_BLS: 18145 case FC_TYPE_ELS: 18146 case FC_TYPE_FCP: 18147 case FC_TYPE_CT: 18148 case FC_TYPE_NVME: 18149 break; 18150 case FC_TYPE_IP: 18151 case FC_TYPE_ILS: 18152 default: 18153 goto drop; 18154 } 18155 18156 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 18157 "2538 Received frame rctl:x%x, type:x%x, " 18158 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 18159 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 18160 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 18161 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 18162 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 18163 be32_to_cpu(header[6])); 18164 return 0; 18165 drop: 18166 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 18167 "2539 Dropped frame rctl:x%x type:x%x\n", 18168 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18169 return 1; 18170 } 18171 18172 /** 18173 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 18174 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18175 * 18176 * This function processes the FC header to retrieve the VFI from the VF 18177 * header, if one exists. This function will return the VFI if one exists 18178 * or 0 if no VSAN Header exists. 18179 **/ 18180 static uint32_t 18181 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 18182 { 18183 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 18184 18185 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 18186 return 0; 18187 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 18188 } 18189 18190 /** 18191 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 18192 * @phba: Pointer to the HBA structure to search for the vport on 18193 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 18194 * @fcfi: The FC Fabric ID that the frame came from 18195 * @did: Destination ID to match against 18196 * 18197 * This function searches the @phba for a vport that matches the content of the 18198 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 18199 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 18200 * returns the matching vport pointer or NULL if unable to match frame to a 18201 * vport. 18202 **/ 18203 static struct lpfc_vport * 18204 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 18205 uint16_t fcfi, uint32_t did) 18206 { 18207 struct lpfc_vport **vports; 18208 struct lpfc_vport *vport = NULL; 18209 int i; 18210 18211 if (did == Fabric_DID) 18212 return phba->pport; 18213 if ((phba->pport->fc_flag & FC_PT2PT) && 18214 !(phba->link_state == LPFC_HBA_READY)) 18215 return phba->pport; 18216 18217 vports = lpfc_create_vport_work_array(phba); 18218 if (vports != NULL) { 18219 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 18220 if (phba->fcf.fcfi == fcfi && 18221 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 18222 vports[i]->fc_myDID == did) { 18223 vport = vports[i]; 18224 break; 18225 } 18226 } 18227 } 18228 lpfc_destroy_vport_work_array(phba, vports); 18229 return vport; 18230 } 18231 18232 /** 18233 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 18234 * @vport: The vport to work on. 18235 * 18236 * This function updates the receive sequence time stamp for this vport. The 18237 * receive sequence time stamp indicates the time that the last frame of the 18238 * the sequence that has been idle for the longest amount of time was received. 18239 * the driver uses this time stamp to indicate if any received sequences have 18240 * timed out. 18241 **/ 18242 static void 18243 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 18244 { 18245 struct lpfc_dmabuf *h_buf; 18246 struct hbq_dmabuf *dmabuf = NULL; 18247 18248 /* get the oldest sequence on the rcv list */ 18249 h_buf = list_get_first(&vport->rcv_buffer_list, 18250 struct lpfc_dmabuf, list); 18251 if (!h_buf) 18252 return; 18253 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18254 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 18255 } 18256 18257 /** 18258 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 18259 * @vport: The vport that the received sequences were sent to. 18260 * 18261 * This function cleans up all outstanding received sequences. This is called 18262 * by the driver when a link event or user action invalidates all the received 18263 * sequences. 18264 **/ 18265 void 18266 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 18267 { 18268 struct lpfc_dmabuf *h_buf, *hnext; 18269 struct lpfc_dmabuf *d_buf, *dnext; 18270 struct hbq_dmabuf *dmabuf = NULL; 18271 18272 /* start with the oldest sequence on the rcv list */ 18273 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18274 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18275 list_del_init(&dmabuf->hbuf.list); 18276 list_for_each_entry_safe(d_buf, dnext, 18277 &dmabuf->dbuf.list, list) { 18278 list_del_init(&d_buf->list); 18279 lpfc_in_buf_free(vport->phba, d_buf); 18280 } 18281 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18282 } 18283 } 18284 18285 /** 18286 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 18287 * @vport: The vport that the received sequences were sent to. 18288 * 18289 * This function determines whether any received sequences have timed out by 18290 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 18291 * indicates that there is at least one timed out sequence this routine will 18292 * go through the received sequences one at a time from most inactive to most 18293 * active to determine which ones need to be cleaned up. Once it has determined 18294 * that a sequence needs to be cleaned up it will simply free up the resources 18295 * without sending an abort. 18296 **/ 18297 void 18298 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 18299 { 18300 struct lpfc_dmabuf *h_buf, *hnext; 18301 struct lpfc_dmabuf *d_buf, *dnext; 18302 struct hbq_dmabuf *dmabuf = NULL; 18303 unsigned long timeout; 18304 int abort_count = 0; 18305 18306 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18307 vport->rcv_buffer_time_stamp); 18308 if (list_empty(&vport->rcv_buffer_list) || 18309 time_before(jiffies, timeout)) 18310 return; 18311 /* start with the oldest sequence on the rcv list */ 18312 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 18313 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18314 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 18315 dmabuf->time_stamp); 18316 if (time_before(jiffies, timeout)) 18317 break; 18318 abort_count++; 18319 list_del_init(&dmabuf->hbuf.list); 18320 list_for_each_entry_safe(d_buf, dnext, 18321 &dmabuf->dbuf.list, list) { 18322 list_del_init(&d_buf->list); 18323 lpfc_in_buf_free(vport->phba, d_buf); 18324 } 18325 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 18326 } 18327 if (abort_count) 18328 lpfc_update_rcv_time_stamp(vport); 18329 } 18330 18331 /** 18332 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 18333 * @vport: pointer to a vitural port 18334 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 18335 * 18336 * This function searches through the existing incomplete sequences that have 18337 * been sent to this @vport. If the frame matches one of the incomplete 18338 * sequences then the dbuf in the @dmabuf is added to the list of frames that 18339 * make up that sequence. If no sequence is found that matches this frame then 18340 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 18341 * This function returns a pointer to the first dmabuf in the sequence list that 18342 * the frame was linked to. 18343 **/ 18344 static struct hbq_dmabuf * 18345 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18346 { 18347 struct fc_frame_header *new_hdr; 18348 struct fc_frame_header *temp_hdr; 18349 struct lpfc_dmabuf *d_buf; 18350 struct lpfc_dmabuf *h_buf; 18351 struct hbq_dmabuf *seq_dmabuf = NULL; 18352 struct hbq_dmabuf *temp_dmabuf = NULL; 18353 uint8_t found = 0; 18354 18355 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18356 dmabuf->time_stamp = jiffies; 18357 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18358 18359 /* Use the hdr_buf to find the sequence that this frame belongs to */ 18360 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18361 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18362 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18363 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18364 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18365 continue; 18366 /* found a pending sequence that matches this frame */ 18367 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18368 break; 18369 } 18370 if (!seq_dmabuf) { 18371 /* 18372 * This indicates first frame received for this sequence. 18373 * Queue the buffer on the vport's rcv_buffer_list. 18374 */ 18375 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18376 lpfc_update_rcv_time_stamp(vport); 18377 return dmabuf; 18378 } 18379 temp_hdr = seq_dmabuf->hbuf.virt; 18380 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18381 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18382 list_del_init(&seq_dmabuf->hbuf.list); 18383 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18384 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18385 lpfc_update_rcv_time_stamp(vport); 18386 return dmabuf; 18387 } 18388 /* move this sequence to the tail to indicate a young sequence */ 18389 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18390 seq_dmabuf->time_stamp = jiffies; 18391 lpfc_update_rcv_time_stamp(vport); 18392 if (list_empty(&seq_dmabuf->dbuf.list)) { 18393 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18394 return seq_dmabuf; 18395 } 18396 /* find the correct place in the sequence to insert this frame */ 18397 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18398 while (!found) { 18399 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18400 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18401 /* 18402 * If the frame's sequence count is greater than the frame on 18403 * the list then insert the frame right after this frame 18404 */ 18405 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18406 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18407 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18408 found = 1; 18409 break; 18410 } 18411 18412 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18413 break; 18414 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18415 } 18416 18417 if (found) 18418 return seq_dmabuf; 18419 return NULL; 18420 } 18421 18422 /** 18423 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18424 * @vport: pointer to a vitural port 18425 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18426 * 18427 * This function tries to abort from the partially assembed sequence, described 18428 * by the information from basic abbort @dmabuf. It checks to see whether such 18429 * partially assembled sequence held by the driver. If so, it shall free up all 18430 * the frames from the partially assembled sequence. 18431 * 18432 * Return 18433 * true -- if there is matching partially assembled sequence present and all 18434 * the frames freed with the sequence; 18435 * false -- if there is no matching partially assembled sequence present so 18436 * nothing got aborted in the lower layer driver 18437 **/ 18438 static bool 18439 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18440 struct hbq_dmabuf *dmabuf) 18441 { 18442 struct fc_frame_header *new_hdr; 18443 struct fc_frame_header *temp_hdr; 18444 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18445 struct hbq_dmabuf *seq_dmabuf = NULL; 18446 18447 /* Use the hdr_buf to find the sequence that matches this frame */ 18448 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18449 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18450 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18451 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18452 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18453 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18454 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18455 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18456 continue; 18457 /* found a pending sequence that matches this frame */ 18458 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18459 break; 18460 } 18461 18462 /* Free up all the frames from the partially assembled sequence */ 18463 if (seq_dmabuf) { 18464 list_for_each_entry_safe(d_buf, n_buf, 18465 &seq_dmabuf->dbuf.list, list) { 18466 list_del_init(&d_buf->list); 18467 lpfc_in_buf_free(vport->phba, d_buf); 18468 } 18469 return true; 18470 } 18471 return false; 18472 } 18473 18474 /** 18475 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18476 * @vport: pointer to a vitural port 18477 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18478 * 18479 * This function tries to abort from the assembed sequence from upper level 18480 * protocol, described by the information from basic abbort @dmabuf. It 18481 * checks to see whether such pending context exists at upper level protocol. 18482 * If so, it shall clean up the pending context. 18483 * 18484 * Return 18485 * true -- if there is matching pending context of the sequence cleaned 18486 * at ulp; 18487 * false -- if there is no matching pending context of the sequence present 18488 * at ulp. 18489 **/ 18490 static bool 18491 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18492 { 18493 struct lpfc_hba *phba = vport->phba; 18494 int handled; 18495 18496 /* Accepting abort at ulp with SLI4 only */ 18497 if (phba->sli_rev < LPFC_SLI_REV4) 18498 return false; 18499 18500 /* Register all caring upper level protocols to attend abort */ 18501 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18502 if (handled) 18503 return true; 18504 18505 return false; 18506 } 18507 18508 /** 18509 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18510 * @phba: Pointer to HBA context object. 18511 * @cmd_iocbq: pointer to the command iocbq structure. 18512 * @rsp_iocbq: pointer to the response iocbq structure. 18513 * 18514 * This function handles the sequence abort response iocb command complete 18515 * event. It properly releases the memory allocated to the sequence abort 18516 * accept iocb. 18517 **/ 18518 static void 18519 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18520 struct lpfc_iocbq *cmd_iocbq, 18521 struct lpfc_iocbq *rsp_iocbq) 18522 { 18523 if (cmd_iocbq) { 18524 lpfc_nlp_put(cmd_iocbq->ndlp); 18525 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18526 } 18527 18528 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18529 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18531 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18532 get_job_ulpstatus(phba, rsp_iocbq), 18533 get_job_word4(phba, rsp_iocbq)); 18534 } 18535 18536 /** 18537 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18538 * @phba: Pointer to HBA context object. 18539 * @xri: xri id in transaction. 18540 * 18541 * This function validates the xri maps to the known range of XRIs allocated an 18542 * used by the driver. 18543 **/ 18544 uint16_t 18545 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18546 uint16_t xri) 18547 { 18548 uint16_t i; 18549 18550 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18551 if (xri == phba->sli4_hba.xri_ids[i]) 18552 return i; 18553 } 18554 return NO_XRI; 18555 } 18556 18557 /** 18558 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18559 * @vport: pointer to a virtual port. 18560 * @fc_hdr: pointer to a FC frame header. 18561 * @aborted: was the partially assembled receive sequence successfully aborted 18562 * 18563 * This function sends a basic response to a previous unsol sequence abort 18564 * event after aborting the sequence handling. 18565 **/ 18566 void 18567 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18568 struct fc_frame_header *fc_hdr, bool aborted) 18569 { 18570 struct lpfc_hba *phba = vport->phba; 18571 struct lpfc_iocbq *ctiocb = NULL; 18572 struct lpfc_nodelist *ndlp; 18573 uint16_t oxid, rxid, xri, lxri; 18574 uint32_t sid, fctl; 18575 union lpfc_wqe128 *icmd; 18576 int rc; 18577 18578 if (!lpfc_is_link_up(phba)) 18579 return; 18580 18581 sid = sli4_sid_from_fc_hdr(fc_hdr); 18582 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18583 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18584 18585 ndlp = lpfc_findnode_did(vport, sid); 18586 if (!ndlp) { 18587 ndlp = lpfc_nlp_init(vport, sid); 18588 if (!ndlp) { 18589 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18590 "1268 Failed to allocate ndlp for " 18591 "oxid:x%x SID:x%x\n", oxid, sid); 18592 return; 18593 } 18594 /* Put ndlp onto pport node list */ 18595 lpfc_enqueue_node(vport, ndlp); 18596 } 18597 18598 /* Allocate buffer for rsp iocb */ 18599 ctiocb = lpfc_sli_get_iocbq(phba); 18600 if (!ctiocb) 18601 return; 18602 18603 icmd = &ctiocb->wqe; 18604 18605 /* Extract the F_CTL field from FC_HDR */ 18606 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18607 18608 ctiocb->ndlp = lpfc_nlp_get(ndlp); 18609 if (!ctiocb->ndlp) { 18610 lpfc_sli_release_iocbq(phba, ctiocb); 18611 return; 18612 } 18613 18614 ctiocb->vport = phba->pport; 18615 ctiocb->cmd_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18616 ctiocb->sli4_lxritag = NO_XRI; 18617 ctiocb->sli4_xritag = NO_XRI; 18618 ctiocb->abort_rctl = FC_RCTL_BA_ACC; 18619 18620 if (fctl & FC_FC_EX_CTX) 18621 /* Exchange responder sent the abort so we 18622 * own the oxid. 18623 */ 18624 xri = oxid; 18625 else 18626 xri = rxid; 18627 lxri = lpfc_sli4_xri_inrange(phba, xri); 18628 if (lxri != NO_XRI) 18629 lpfc_set_rrq_active(phba, ndlp, lxri, 18630 (xri == oxid) ? rxid : oxid, 0); 18631 /* For BA_ABTS from exchange responder, if the logical xri with 18632 * the oxid maps to the FCP XRI range, the port no longer has 18633 * that exchange context, send a BLS_RJT. Override the IOCB for 18634 * a BA_RJT. 18635 */ 18636 if ((fctl & FC_FC_EX_CTX) && 18637 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18638 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18639 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18640 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18641 FC_BA_RJT_INV_XID); 18642 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18643 FC_BA_RJT_UNABLE); 18644 } 18645 18646 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18647 * the driver no longer has that exchange, send a BLS_RJT. Override 18648 * the IOCB for a BA_RJT. 18649 */ 18650 if (aborted == false) { 18651 ctiocb->abort_rctl = FC_RCTL_BA_RJT; 18652 bf_set(xmit_bls_rsp64_rjt_vspec, &icmd->xmit_bls_rsp, 0); 18653 bf_set(xmit_bls_rsp64_rjt_expc, &icmd->xmit_bls_rsp, 18654 FC_BA_RJT_INV_XID); 18655 bf_set(xmit_bls_rsp64_rjt_rsnc, &icmd->xmit_bls_rsp, 18656 FC_BA_RJT_UNABLE); 18657 } 18658 18659 if (fctl & FC_FC_EX_CTX) { 18660 /* ABTS sent by responder to CT exchange, construction 18661 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18662 * field and RX_ID from ABTS for RX_ID field. 18663 */ 18664 ctiocb->abort_bls = LPFC_ABTS_UNSOL_RSP; 18665 bf_set(xmit_bls_rsp64_rxid, &icmd->xmit_bls_rsp, rxid); 18666 } else { 18667 /* ABTS sent by initiator to CT exchange, construction 18668 * of BA_ACC will need to allocate a new XRI as for the 18669 * XRI_TAG field. 18670 */ 18671 ctiocb->abort_bls = LPFC_ABTS_UNSOL_INT; 18672 } 18673 18674 /* OX_ID is invariable to who sent ABTS to CT exchange */ 18675 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, oxid); 18676 bf_set(xmit_bls_rsp64_oxid, &icmd->xmit_bls_rsp, rxid); 18677 18678 /* Use CT=VPI */ 18679 bf_set(wqe_els_did, &icmd->xmit_bls_rsp.wqe_dest, 18680 ndlp->nlp_DID); 18681 bf_set(xmit_bls_rsp64_temprpi, &icmd->xmit_bls_rsp, 18682 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 18683 bf_set(wqe_cmnd, &icmd->generic.wqe_com, CMD_XMIT_BLS_RSP64_CX); 18684 18685 /* Xmit CT abts response on exchange <xid> */ 18686 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18687 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18688 ctiocb->abort_rctl, oxid, phba->link_state); 18689 18690 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18691 if (rc == IOCB_ERROR) { 18692 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18693 "2925 Failed to issue CT ABTS RSP x%x on " 18694 "xri x%x, Data x%x\n", 18695 ctiocb->abort_rctl, oxid, 18696 phba->link_state); 18697 lpfc_nlp_put(ndlp); 18698 ctiocb->ndlp = NULL; 18699 lpfc_sli_release_iocbq(phba, ctiocb); 18700 } 18701 } 18702 18703 /** 18704 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18705 * @vport: Pointer to the vport on which this sequence was received 18706 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18707 * 18708 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18709 * receive sequence is only partially assembed by the driver, it shall abort 18710 * the partially assembled frames for the sequence. Otherwise, if the 18711 * unsolicited receive sequence has been completely assembled and passed to 18712 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18713 * unsolicited sequence has been aborted. After that, it will issue a basic 18714 * accept to accept the abort. 18715 **/ 18716 static void 18717 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18718 struct hbq_dmabuf *dmabuf) 18719 { 18720 struct lpfc_hba *phba = vport->phba; 18721 struct fc_frame_header fc_hdr; 18722 uint32_t fctl; 18723 bool aborted; 18724 18725 /* Make a copy of fc_hdr before the dmabuf being released */ 18726 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18727 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18728 18729 if (fctl & FC_FC_EX_CTX) { 18730 /* ABTS by responder to exchange, no cleanup needed */ 18731 aborted = true; 18732 } else { 18733 /* ABTS by initiator to exchange, need to do cleanup */ 18734 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18735 if (aborted == false) 18736 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18737 } 18738 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18739 18740 if (phba->nvmet_support) { 18741 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18742 return; 18743 } 18744 18745 /* Respond with BA_ACC or BA_RJT accordingly */ 18746 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18747 } 18748 18749 /** 18750 * lpfc_seq_complete - Indicates if a sequence is complete 18751 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18752 * 18753 * This function checks the sequence, starting with the frame described by 18754 * @dmabuf, to see if all the frames associated with this sequence are present. 18755 * the frames associated with this sequence are linked to the @dmabuf using the 18756 * dbuf list. This function looks for two major things. 1) That the first frame 18757 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18758 * set. 3) That there are no holes in the sequence count. The function will 18759 * return 1 when the sequence is complete, otherwise it will return 0. 18760 **/ 18761 static int 18762 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18763 { 18764 struct fc_frame_header *hdr; 18765 struct lpfc_dmabuf *d_buf; 18766 struct hbq_dmabuf *seq_dmabuf; 18767 uint32_t fctl; 18768 int seq_count = 0; 18769 18770 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18771 /* make sure first fame of sequence has a sequence count of zero */ 18772 if (hdr->fh_seq_cnt != seq_count) 18773 return 0; 18774 fctl = (hdr->fh_f_ctl[0] << 16 | 18775 hdr->fh_f_ctl[1] << 8 | 18776 hdr->fh_f_ctl[2]); 18777 /* If last frame of sequence we can return success. */ 18778 if (fctl & FC_FC_END_SEQ) 18779 return 1; 18780 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18781 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18782 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18783 /* If there is a hole in the sequence count then fail. */ 18784 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18785 return 0; 18786 fctl = (hdr->fh_f_ctl[0] << 16 | 18787 hdr->fh_f_ctl[1] << 8 | 18788 hdr->fh_f_ctl[2]); 18789 /* If last frame of sequence we can return success. */ 18790 if (fctl & FC_FC_END_SEQ) 18791 return 1; 18792 } 18793 return 0; 18794 } 18795 18796 /** 18797 * lpfc_prep_seq - Prep sequence for ULP processing 18798 * @vport: Pointer to the vport on which this sequence was received 18799 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18800 * 18801 * This function takes a sequence, described by a list of frames, and creates 18802 * a list of iocbq structures to describe the sequence. This iocbq list will be 18803 * used to issue to the generic unsolicited sequence handler. This routine 18804 * returns a pointer to the first iocbq in the list. If the function is unable 18805 * to allocate an iocbq then it throw out the received frames that were not 18806 * able to be described and return a pointer to the first iocbq. If unable to 18807 * allocate any iocbqs (including the first) this function will return NULL. 18808 **/ 18809 static struct lpfc_iocbq * 18810 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18811 { 18812 struct hbq_dmabuf *hbq_buf; 18813 struct lpfc_dmabuf *d_buf, *n_buf; 18814 struct lpfc_iocbq *first_iocbq, *iocbq; 18815 struct fc_frame_header *fc_hdr; 18816 uint32_t sid; 18817 uint32_t len, tot_len; 18818 18819 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18820 /* remove from receive buffer list */ 18821 list_del_init(&seq_dmabuf->hbuf.list); 18822 lpfc_update_rcv_time_stamp(vport); 18823 /* get the Remote Port's SID */ 18824 sid = sli4_sid_from_fc_hdr(fc_hdr); 18825 tot_len = 0; 18826 /* Get an iocbq struct to fill in. */ 18827 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18828 if (first_iocbq) { 18829 /* Initialize the first IOCB. */ 18830 first_iocbq->wcqe_cmpl.total_data_placed = 0; 18831 bf_set(lpfc_wcqe_c_status, &first_iocbq->wcqe_cmpl, 18832 IOSTAT_SUCCESS); 18833 first_iocbq->vport = vport; 18834 18835 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18836 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18837 bf_set(els_rsp64_sid, &first_iocbq->wqe.xmit_els_rsp, 18838 sli4_did_from_fc_hdr(fc_hdr)); 18839 } 18840 18841 bf_set(wqe_ctxt_tag, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18842 NO_XRI); 18843 bf_set(wqe_rcvoxid, &first_iocbq->wqe.xmit_els_rsp.wqe_com, 18844 be16_to_cpu(fc_hdr->fh_ox_id)); 18845 18846 /* put the first buffer into the first iocb */ 18847 tot_len = bf_get(lpfc_rcqe_length, 18848 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18849 18850 first_iocbq->cmd_dmabuf = &seq_dmabuf->dbuf; 18851 first_iocbq->bpl_dmabuf = NULL; 18852 /* Keep track of the BDE count */ 18853 first_iocbq->wcqe_cmpl.word3 = 1; 18854 18855 if (tot_len > LPFC_DATA_BUF_SIZE) 18856 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = 18857 LPFC_DATA_BUF_SIZE; 18858 else 18859 first_iocbq->wqe.gen_req.bde.tus.f.bdeSize = tot_len; 18860 18861 first_iocbq->wcqe_cmpl.total_data_placed = tot_len; 18862 bf_set(wqe_els_did, &first_iocbq->wqe.xmit_els_rsp.wqe_dest, 18863 sid); 18864 } 18865 iocbq = first_iocbq; 18866 /* 18867 * Each IOCBq can have two Buffers assigned, so go through the list 18868 * of buffers for this sequence and save two buffers in each IOCBq 18869 */ 18870 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18871 if (!iocbq) { 18872 lpfc_in_buf_free(vport->phba, d_buf); 18873 continue; 18874 } 18875 if (!iocbq->bpl_dmabuf) { 18876 iocbq->bpl_dmabuf = d_buf; 18877 iocbq->wcqe_cmpl.word3++; 18878 /* We need to get the size out of the right CQE */ 18879 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18880 len = bf_get(lpfc_rcqe_length, 18881 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18882 iocbq->unsol_rcv_len = len; 18883 iocbq->wcqe_cmpl.total_data_placed += len; 18884 tot_len += len; 18885 } else { 18886 iocbq = lpfc_sli_get_iocbq(vport->phba); 18887 if (!iocbq) { 18888 if (first_iocbq) { 18889 bf_set(lpfc_wcqe_c_status, 18890 &first_iocbq->wcqe_cmpl, 18891 IOSTAT_SUCCESS); 18892 first_iocbq->wcqe_cmpl.parameter = 18893 IOERR_NO_RESOURCES; 18894 } 18895 lpfc_in_buf_free(vport->phba, d_buf); 18896 continue; 18897 } 18898 /* We need to get the size out of the right CQE */ 18899 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18900 len = bf_get(lpfc_rcqe_length, 18901 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18902 iocbq->cmd_dmabuf = d_buf; 18903 iocbq->bpl_dmabuf = NULL; 18904 iocbq->wcqe_cmpl.word3 = 1; 18905 18906 if (len > LPFC_DATA_BUF_SIZE) 18907 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18908 LPFC_DATA_BUF_SIZE; 18909 else 18910 iocbq->wqe.xmit_els_rsp.bde.tus.f.bdeSize = 18911 len; 18912 18913 tot_len += len; 18914 iocbq->wcqe_cmpl.total_data_placed = tot_len; 18915 bf_set(wqe_els_did, &iocbq->wqe.xmit_els_rsp.wqe_dest, 18916 sid); 18917 list_add_tail(&iocbq->list, &first_iocbq->list); 18918 } 18919 } 18920 /* Free the sequence's header buffer */ 18921 if (!first_iocbq) 18922 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18923 18924 return first_iocbq; 18925 } 18926 18927 static void 18928 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18929 struct hbq_dmabuf *seq_dmabuf) 18930 { 18931 struct fc_frame_header *fc_hdr; 18932 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18933 struct lpfc_hba *phba = vport->phba; 18934 18935 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18936 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18937 if (!iocbq) { 18938 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18939 "2707 Ring %d handler: Failed to allocate " 18940 "iocb Rctl x%x Type x%x received\n", 18941 LPFC_ELS_RING, 18942 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18943 return; 18944 } 18945 if (!lpfc_complete_unsol_iocb(phba, 18946 phba->sli4_hba.els_wq->pring, 18947 iocbq, fc_hdr->fh_r_ctl, 18948 fc_hdr->fh_type)) { 18949 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18950 "2540 Ring %d handler: unexpected Rctl " 18951 "x%x Type x%x received\n", 18952 LPFC_ELS_RING, 18953 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18954 lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); 18955 } 18956 18957 /* Free iocb created in lpfc_prep_seq */ 18958 list_for_each_entry_safe(curr_iocb, next_iocb, 18959 &iocbq->list, list) { 18960 list_del_init(&curr_iocb->list); 18961 lpfc_sli_release_iocbq(phba, curr_iocb); 18962 } 18963 lpfc_sli_release_iocbq(phba, iocbq); 18964 } 18965 18966 static void 18967 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18968 struct lpfc_iocbq *rspiocb) 18969 { 18970 struct lpfc_dmabuf *pcmd = cmdiocb->cmd_dmabuf; 18971 18972 if (pcmd && pcmd->virt) 18973 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18974 kfree(pcmd); 18975 lpfc_sli_release_iocbq(phba, cmdiocb); 18976 lpfc_drain_txq(phba); 18977 } 18978 18979 static void 18980 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18981 struct hbq_dmabuf *dmabuf) 18982 { 18983 struct fc_frame_header *fc_hdr; 18984 struct lpfc_hba *phba = vport->phba; 18985 struct lpfc_iocbq *iocbq = NULL; 18986 union lpfc_wqe128 *pwqe; 18987 struct lpfc_dmabuf *pcmd = NULL; 18988 uint32_t frame_len; 18989 int rc; 18990 unsigned long iflags; 18991 18992 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18993 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18994 18995 /* Send the received frame back */ 18996 iocbq = lpfc_sli_get_iocbq(phba); 18997 if (!iocbq) { 18998 /* Queue cq event and wakeup worker thread to process it */ 18999 spin_lock_irqsave(&phba->hbalock, iflags); 19000 list_add_tail(&dmabuf->cq_event.list, 19001 &phba->sli4_hba.sp_queue_event); 19002 phba->hba_flag |= HBA_SP_QUEUE_EVT; 19003 spin_unlock_irqrestore(&phba->hbalock, iflags); 19004 lpfc_worker_wake_up(phba); 19005 return; 19006 } 19007 19008 /* Allocate buffer for command payload */ 19009 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 19010 if (pcmd) 19011 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 19012 &pcmd->phys); 19013 if (!pcmd || !pcmd->virt) 19014 goto exit; 19015 19016 INIT_LIST_HEAD(&pcmd->list); 19017 19018 /* copyin the payload */ 19019 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 19020 19021 iocbq->cmd_dmabuf = pcmd; 19022 iocbq->vport = vport; 19023 iocbq->cmd_flag &= ~LPFC_FIP_ELS_ID_MASK; 19024 iocbq->cmd_flag |= LPFC_USE_FCPWQIDX; 19025 iocbq->num_bdes = 0; 19026 19027 pwqe = &iocbq->wqe; 19028 /* fill in BDE's for command */ 19029 pwqe->gen_req.bde.addrHigh = putPaddrHigh(pcmd->phys); 19030 pwqe->gen_req.bde.addrLow = putPaddrLow(pcmd->phys); 19031 pwqe->gen_req.bde.tus.f.bdeSize = frame_len; 19032 pwqe->gen_req.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 19033 19034 pwqe->send_frame.frame_len = frame_len; 19035 pwqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((__be32 *)fc_hdr)); 19036 pwqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((__be32 *)fc_hdr + 1)); 19037 pwqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((__be32 *)fc_hdr + 2)); 19038 pwqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((__be32 *)fc_hdr + 3)); 19039 pwqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((__be32 *)fc_hdr + 4)); 19040 pwqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((__be32 *)fc_hdr + 5)); 19041 19042 pwqe->generic.wqe_com.word7 = 0; 19043 pwqe->generic.wqe_com.word10 = 0; 19044 19045 bf_set(wqe_cmnd, &pwqe->generic.wqe_com, CMD_SEND_FRAME); 19046 bf_set(wqe_sof, &pwqe->generic.wqe_com, 0x2E); /* SOF byte */ 19047 bf_set(wqe_eof, &pwqe->generic.wqe_com, 0x41); /* EOF byte */ 19048 bf_set(wqe_lenloc, &pwqe->generic.wqe_com, 1); 19049 bf_set(wqe_xbl, &pwqe->generic.wqe_com, 1); 19050 bf_set(wqe_dbde, &pwqe->generic.wqe_com, 1); 19051 bf_set(wqe_xc, &pwqe->generic.wqe_com, 1); 19052 bf_set(wqe_cmd_type, &pwqe->generic.wqe_com, 0xA); 19053 bf_set(wqe_cqid, &pwqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 19054 bf_set(wqe_xri_tag, &pwqe->generic.wqe_com, iocbq->sli4_xritag); 19055 bf_set(wqe_reqtag, &pwqe->generic.wqe_com, iocbq->iotag); 19056 bf_set(wqe_class, &pwqe->generic.wqe_com, CLASS3); 19057 pwqe->generic.wqe_com.abort_tag = iocbq->iotag; 19058 19059 iocbq->cmd_cmpl = lpfc_sli4_mds_loopback_cmpl; 19060 19061 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 19062 if (rc == IOCB_ERROR) 19063 goto exit; 19064 19065 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19066 return; 19067 19068 exit: 19069 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 19070 "2023 Unable to process MDS loopback frame\n"); 19071 if (pcmd && pcmd->virt) 19072 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 19073 kfree(pcmd); 19074 if (iocbq) 19075 lpfc_sli_release_iocbq(phba, iocbq); 19076 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19077 } 19078 19079 /** 19080 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 19081 * @phba: Pointer to HBA context object. 19082 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 19083 * 19084 * This function is called with no lock held. This function processes all 19085 * the received buffers and gives it to upper layers when a received buffer 19086 * indicates that it is the final frame in the sequence. The interrupt 19087 * service routine processes received buffers at interrupt contexts. 19088 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 19089 * appropriate receive function when the final frame in a sequence is received. 19090 **/ 19091 void 19092 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 19093 struct hbq_dmabuf *dmabuf) 19094 { 19095 struct hbq_dmabuf *seq_dmabuf; 19096 struct fc_frame_header *fc_hdr; 19097 struct lpfc_vport *vport; 19098 uint32_t fcfi; 19099 uint32_t did; 19100 19101 /* Process each received buffer */ 19102 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 19103 19104 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 19105 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 19106 vport = phba->pport; 19107 /* Handle MDS Loopback frames */ 19108 if (!(phba->pport->load_flag & FC_UNLOADING)) 19109 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19110 else 19111 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19112 return; 19113 } 19114 19115 /* check to see if this a valid type of frame */ 19116 if (lpfc_fc_frame_check(phba, fc_hdr)) { 19117 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19118 return; 19119 } 19120 19121 if ((bf_get(lpfc_cqe_code, 19122 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 19123 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 19124 &dmabuf->cq_event.cqe.rcqe_cmpl); 19125 else 19126 fcfi = bf_get(lpfc_rcqe_fcf_id, 19127 &dmabuf->cq_event.cqe.rcqe_cmpl); 19128 19129 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 19130 vport = phba->pport; 19131 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 19132 "2023 MDS Loopback %d bytes\n", 19133 bf_get(lpfc_rcqe_length, 19134 &dmabuf->cq_event.cqe.rcqe_cmpl)); 19135 /* Handle MDS Loopback frames */ 19136 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 19137 return; 19138 } 19139 19140 /* d_id this frame is directed to */ 19141 did = sli4_did_from_fc_hdr(fc_hdr); 19142 19143 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 19144 if (!vport) { 19145 /* throw out the frame */ 19146 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19147 return; 19148 } 19149 19150 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 19151 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 19152 (did != Fabric_DID)) { 19153 /* 19154 * Throw out the frame if we are not pt2pt. 19155 * The pt2pt protocol allows for discovery frames 19156 * to be received without a registered VPI. 19157 */ 19158 if (!(vport->fc_flag & FC_PT2PT) || 19159 (phba->link_state == LPFC_HBA_READY)) { 19160 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19161 return; 19162 } 19163 } 19164 19165 /* Handle the basic abort sequence (BA_ABTS) event */ 19166 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 19167 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 19168 return; 19169 } 19170 19171 /* Link this frame */ 19172 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 19173 if (!seq_dmabuf) { 19174 /* unable to add frame to vport - throw it out */ 19175 lpfc_in_buf_free(phba, &dmabuf->dbuf); 19176 return; 19177 } 19178 /* If not last frame in sequence continue processing frames. */ 19179 if (!lpfc_seq_complete(seq_dmabuf)) 19180 return; 19181 19182 /* Send the complete sequence to the upper layer protocol */ 19183 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 19184 } 19185 19186 /** 19187 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 19188 * @phba: pointer to lpfc hba data structure. 19189 * 19190 * This routine is invoked to post rpi header templates to the 19191 * HBA consistent with the SLI-4 interface spec. This routine 19192 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19193 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19194 * 19195 * This routine does not require any locks. It's usage is expected 19196 * to be driver load or reset recovery when the driver is 19197 * sequential. 19198 * 19199 * Return codes 19200 * 0 - successful 19201 * -EIO - The mailbox failed to complete successfully. 19202 * When this error occurs, the driver is not guaranteed 19203 * to have any rpi regions posted to the device and 19204 * must either attempt to repost the regions or take a 19205 * fatal error. 19206 **/ 19207 int 19208 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 19209 { 19210 struct lpfc_rpi_hdr *rpi_page; 19211 uint32_t rc = 0; 19212 uint16_t lrpi = 0; 19213 19214 /* SLI4 ports that support extents do not require RPI headers. */ 19215 if (!phba->sli4_hba.rpi_hdrs_in_use) 19216 goto exit; 19217 if (phba->sli4_hba.extents_in_use) 19218 return -EIO; 19219 19220 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 19221 /* 19222 * Assign the rpi headers a physical rpi only if the driver 19223 * has not initialized those resources. A port reset only 19224 * needs the headers posted. 19225 */ 19226 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 19227 LPFC_RPI_RSRC_RDY) 19228 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19229 19230 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 19231 if (rc != MBX_SUCCESS) { 19232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19233 "2008 Error %d posting all rpi " 19234 "headers\n", rc); 19235 rc = -EIO; 19236 break; 19237 } 19238 } 19239 19240 exit: 19241 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 19242 LPFC_RPI_RSRC_RDY); 19243 return rc; 19244 } 19245 19246 /** 19247 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 19248 * @phba: pointer to lpfc hba data structure. 19249 * @rpi_page: pointer to the rpi memory region. 19250 * 19251 * This routine is invoked to post a single rpi header to the 19252 * HBA consistent with the SLI-4 interface spec. This memory region 19253 * maps up to 64 rpi context regions. 19254 * 19255 * Return codes 19256 * 0 - successful 19257 * -ENOMEM - No available memory 19258 * -EIO - The mailbox failed to complete successfully. 19259 **/ 19260 int 19261 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 19262 { 19263 LPFC_MBOXQ_t *mboxq; 19264 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 19265 uint32_t rc = 0; 19266 uint32_t shdr_status, shdr_add_status; 19267 union lpfc_sli4_cfg_shdr *shdr; 19268 19269 /* SLI4 ports that support extents do not require RPI headers. */ 19270 if (!phba->sli4_hba.rpi_hdrs_in_use) 19271 return rc; 19272 if (phba->sli4_hba.extents_in_use) 19273 return -EIO; 19274 19275 /* The port is notified of the header region via a mailbox command. */ 19276 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19277 if (!mboxq) { 19278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19279 "2001 Unable to allocate memory for issuing " 19280 "SLI_CONFIG_SPECIAL mailbox command\n"); 19281 return -ENOMEM; 19282 } 19283 19284 /* Post all rpi memory regions to the port. */ 19285 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 19286 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19287 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 19288 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 19289 sizeof(struct lpfc_sli4_cfg_mhdr), 19290 LPFC_SLI4_MBX_EMBED); 19291 19292 19293 /* Post the physical rpi to the port for this rpi header. */ 19294 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 19295 rpi_page->start_rpi); 19296 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 19297 hdr_tmpl, rpi_page->page_count); 19298 19299 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 19300 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 19301 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19302 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 19303 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19304 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19305 mempool_free(mboxq, phba->mbox_mem_pool); 19306 if (shdr_status || shdr_add_status || rc) { 19307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19308 "2514 POST_RPI_HDR mailbox failed with " 19309 "status x%x add_status x%x, mbx status x%x\n", 19310 shdr_status, shdr_add_status, rc); 19311 rc = -ENXIO; 19312 } else { 19313 /* 19314 * The next_rpi stores the next logical module-64 rpi value used 19315 * to post physical rpis in subsequent rpi postings. 19316 */ 19317 spin_lock_irq(&phba->hbalock); 19318 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 19319 spin_unlock_irq(&phba->hbalock); 19320 } 19321 return rc; 19322 } 19323 19324 /** 19325 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 19326 * @phba: pointer to lpfc hba data structure. 19327 * 19328 * This routine is invoked to post rpi header templates to the 19329 * HBA consistent with the SLI-4 interface spec. This routine 19330 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 19331 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 19332 * 19333 * Returns 19334 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 19335 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 19336 **/ 19337 int 19338 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 19339 { 19340 unsigned long rpi; 19341 uint16_t max_rpi, rpi_limit; 19342 uint16_t rpi_remaining, lrpi = 0; 19343 struct lpfc_rpi_hdr *rpi_hdr; 19344 unsigned long iflag; 19345 19346 /* 19347 * Fetch the next logical rpi. Because this index is logical, 19348 * the driver starts at 0 each time. 19349 */ 19350 spin_lock_irqsave(&phba->hbalock, iflag); 19351 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 19352 rpi_limit = phba->sli4_hba.next_rpi; 19353 19354 rpi = find_first_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit); 19355 if (rpi >= rpi_limit) 19356 rpi = LPFC_RPI_ALLOC_ERROR; 19357 else { 19358 set_bit(rpi, phba->sli4_hba.rpi_bmask); 19359 phba->sli4_hba.max_cfg_param.rpi_used++; 19360 phba->sli4_hba.rpi_count++; 19361 } 19362 lpfc_printf_log(phba, KERN_INFO, 19363 LOG_NODE | LOG_DISCOVERY, 19364 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 19365 (int) rpi, max_rpi, rpi_limit); 19366 19367 /* 19368 * Don't try to allocate more rpi header regions if the device limit 19369 * has been exhausted. 19370 */ 19371 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 19372 (phba->sli4_hba.rpi_count >= max_rpi)) { 19373 spin_unlock_irqrestore(&phba->hbalock, iflag); 19374 return rpi; 19375 } 19376 19377 /* 19378 * RPI header postings are not required for SLI4 ports capable of 19379 * extents. 19380 */ 19381 if (!phba->sli4_hba.rpi_hdrs_in_use) { 19382 spin_unlock_irqrestore(&phba->hbalock, iflag); 19383 return rpi; 19384 } 19385 19386 /* 19387 * If the driver is running low on rpi resources, allocate another 19388 * page now. Note that the next_rpi value is used because 19389 * it represents how many are actually in use whereas max_rpi notes 19390 * how many are supported max by the device. 19391 */ 19392 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19393 spin_unlock_irqrestore(&phba->hbalock, iflag); 19394 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19395 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19396 if (!rpi_hdr) { 19397 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19398 "2002 Error Could not grow rpi " 19399 "count\n"); 19400 } else { 19401 lrpi = rpi_hdr->start_rpi; 19402 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19403 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19404 } 19405 } 19406 19407 return rpi; 19408 } 19409 19410 /** 19411 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19412 * @phba: pointer to lpfc hba data structure. 19413 * @rpi: rpi to free 19414 * 19415 * This routine is invoked to release an rpi to the pool of 19416 * available rpis maintained by the driver. 19417 **/ 19418 static void 19419 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19420 { 19421 /* 19422 * if the rpi value indicates a prior unreg has already 19423 * been done, skip the unreg. 19424 */ 19425 if (rpi == LPFC_RPI_ALLOC_ERROR) 19426 return; 19427 19428 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19429 phba->sli4_hba.rpi_count--; 19430 phba->sli4_hba.max_cfg_param.rpi_used--; 19431 } else { 19432 lpfc_printf_log(phba, KERN_INFO, 19433 LOG_NODE | LOG_DISCOVERY, 19434 "2016 rpi %x not inuse\n", 19435 rpi); 19436 } 19437 } 19438 19439 /** 19440 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19441 * @phba: pointer to lpfc hba data structure. 19442 * @rpi: rpi to free 19443 * 19444 * This routine is invoked to release an rpi to the pool of 19445 * available rpis maintained by the driver. 19446 **/ 19447 void 19448 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19449 { 19450 spin_lock_irq(&phba->hbalock); 19451 __lpfc_sli4_free_rpi(phba, rpi); 19452 spin_unlock_irq(&phba->hbalock); 19453 } 19454 19455 /** 19456 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19457 * @phba: pointer to lpfc hba data structure. 19458 * 19459 * This routine is invoked to remove the memory region that 19460 * provided rpi via a bitmask. 19461 **/ 19462 void 19463 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19464 { 19465 kfree(phba->sli4_hba.rpi_bmask); 19466 kfree(phba->sli4_hba.rpi_ids); 19467 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19468 } 19469 19470 /** 19471 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19472 * @ndlp: pointer to lpfc nodelist data structure. 19473 * @cmpl: completion call-back. 19474 * @arg: data to load as MBox 'caller buffer information' 19475 * 19476 * This routine is invoked to remove the memory region that 19477 * provided rpi via a bitmask. 19478 **/ 19479 int 19480 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19481 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19482 { 19483 LPFC_MBOXQ_t *mboxq; 19484 struct lpfc_hba *phba = ndlp->phba; 19485 int rc; 19486 19487 /* The port is notified of the header region via a mailbox command. */ 19488 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19489 if (!mboxq) 19490 return -ENOMEM; 19491 19492 /* If cmpl assigned, then this nlp_get pairs with 19493 * lpfc_mbx_cmpl_resume_rpi. 19494 * 19495 * Else cmpl is NULL, then this nlp_get pairs with 19496 * lpfc_sli_def_mbox_cmpl. 19497 */ 19498 if (!lpfc_nlp_get(ndlp)) { 19499 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19500 "2122 %s: Failed to get nlp ref\n", 19501 __func__); 19502 mempool_free(mboxq, phba->mbox_mem_pool); 19503 return -EIO; 19504 } 19505 19506 /* Post all rpi memory regions to the port. */ 19507 lpfc_resume_rpi(mboxq, ndlp); 19508 if (cmpl) { 19509 mboxq->mbox_cmpl = cmpl; 19510 mboxq->ctx_buf = arg; 19511 } else 19512 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19513 mboxq->ctx_ndlp = ndlp; 19514 mboxq->vport = ndlp->vport; 19515 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19516 if (rc == MBX_NOT_FINISHED) { 19517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19518 "2010 Resume RPI Mailbox failed " 19519 "status %d, mbxStatus x%x\n", rc, 19520 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19521 lpfc_nlp_put(ndlp); 19522 mempool_free(mboxq, phba->mbox_mem_pool); 19523 return -EIO; 19524 } 19525 return 0; 19526 } 19527 19528 /** 19529 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19530 * @vport: Pointer to the vport for which the vpi is being initialized 19531 * 19532 * This routine is invoked to activate a vpi with the port. 19533 * 19534 * Returns: 19535 * 0 success 19536 * -Evalue otherwise 19537 **/ 19538 int 19539 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19540 { 19541 LPFC_MBOXQ_t *mboxq; 19542 int rc = 0; 19543 int retval = MBX_SUCCESS; 19544 uint32_t mbox_tmo; 19545 struct lpfc_hba *phba = vport->phba; 19546 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19547 if (!mboxq) 19548 return -ENOMEM; 19549 lpfc_init_vpi(phba, mboxq, vport->vpi); 19550 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19551 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19552 if (rc != MBX_SUCCESS) { 19553 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19554 "2022 INIT VPI Mailbox failed " 19555 "status %d, mbxStatus x%x\n", rc, 19556 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19557 retval = -EIO; 19558 } 19559 if (rc != MBX_TIMEOUT) 19560 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19561 19562 return retval; 19563 } 19564 19565 /** 19566 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19567 * @phba: pointer to lpfc hba data structure. 19568 * @mboxq: Pointer to mailbox object. 19569 * 19570 * This routine is invoked to manually add a single FCF record. The caller 19571 * must pass a completely initialized FCF_Record. This routine takes 19572 * care of the nonembedded mailbox operations. 19573 **/ 19574 static void 19575 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19576 { 19577 void *virt_addr; 19578 union lpfc_sli4_cfg_shdr *shdr; 19579 uint32_t shdr_status, shdr_add_status; 19580 19581 virt_addr = mboxq->sge_array->addr[0]; 19582 /* The IOCTL status is embedded in the mailbox subheader. */ 19583 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19584 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19585 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19586 19587 if ((shdr_status || shdr_add_status) && 19588 (shdr_status != STATUS_FCF_IN_USE)) 19589 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19590 "2558 ADD_FCF_RECORD mailbox failed with " 19591 "status x%x add_status x%x\n", 19592 shdr_status, shdr_add_status); 19593 19594 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19595 } 19596 19597 /** 19598 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19599 * @phba: pointer to lpfc hba data structure. 19600 * @fcf_record: pointer to the initialized fcf record to add. 19601 * 19602 * This routine is invoked to manually add a single FCF record. The caller 19603 * must pass a completely initialized FCF_Record. This routine takes 19604 * care of the nonembedded mailbox operations. 19605 **/ 19606 int 19607 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19608 { 19609 int rc = 0; 19610 LPFC_MBOXQ_t *mboxq; 19611 uint8_t *bytep; 19612 void *virt_addr; 19613 struct lpfc_mbx_sge sge; 19614 uint32_t alloc_len, req_len; 19615 uint32_t fcfindex; 19616 19617 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19618 if (!mboxq) { 19619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19620 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19621 return -ENOMEM; 19622 } 19623 19624 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19625 sizeof(uint32_t); 19626 19627 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19628 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19629 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19630 req_len, LPFC_SLI4_MBX_NEMBED); 19631 if (alloc_len < req_len) { 19632 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19633 "2523 Allocated DMA memory size (x%x) is " 19634 "less than the requested DMA memory " 19635 "size (x%x)\n", alloc_len, req_len); 19636 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19637 return -ENOMEM; 19638 } 19639 19640 /* 19641 * Get the first SGE entry from the non-embedded DMA memory. This 19642 * routine only uses a single SGE. 19643 */ 19644 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19645 virt_addr = mboxq->sge_array->addr[0]; 19646 /* 19647 * Configure the FCF record for FCFI 0. This is the driver's 19648 * hardcoded default and gets used in nonFIP mode. 19649 */ 19650 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19651 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19652 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19653 19654 /* 19655 * Copy the fcf_index and the FCF Record Data. The data starts after 19656 * the FCoE header plus word10. The data copy needs to be endian 19657 * correct. 19658 */ 19659 bytep += sizeof(uint32_t); 19660 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19661 mboxq->vport = phba->pport; 19662 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19663 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19664 if (rc == MBX_NOT_FINISHED) { 19665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19666 "2515 ADD_FCF_RECORD mailbox failed with " 19667 "status 0x%x\n", rc); 19668 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19669 rc = -EIO; 19670 } else 19671 rc = 0; 19672 19673 return rc; 19674 } 19675 19676 /** 19677 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19678 * @phba: pointer to lpfc hba data structure. 19679 * @fcf_record: pointer to the fcf record to write the default data. 19680 * @fcf_index: FCF table entry index. 19681 * 19682 * This routine is invoked to build the driver's default FCF record. The 19683 * values used are hardcoded. This routine handles memory initialization. 19684 * 19685 **/ 19686 void 19687 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19688 struct fcf_record *fcf_record, 19689 uint16_t fcf_index) 19690 { 19691 memset(fcf_record, 0, sizeof(struct fcf_record)); 19692 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19693 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19694 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19695 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19696 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19697 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19698 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19699 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19700 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19701 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19702 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19703 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19704 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19705 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19706 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19707 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19708 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19709 /* Set the VLAN bit map */ 19710 if (phba->valid_vlan) { 19711 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19712 = 1 << (phba->vlan_id % 8); 19713 } 19714 } 19715 19716 /** 19717 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19718 * @phba: pointer to lpfc hba data structure. 19719 * @fcf_index: FCF table entry offset. 19720 * 19721 * This routine is invoked to scan the entire FCF table by reading FCF 19722 * record and processing it one at a time starting from the @fcf_index 19723 * for initial FCF discovery or fast FCF failover rediscovery. 19724 * 19725 * Return 0 if the mailbox command is submitted successfully, none 0 19726 * otherwise. 19727 **/ 19728 int 19729 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19730 { 19731 int rc = 0, error; 19732 LPFC_MBOXQ_t *mboxq; 19733 19734 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19735 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19736 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19737 if (!mboxq) { 19738 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19739 "2000 Failed to allocate mbox for " 19740 "READ_FCF cmd\n"); 19741 error = -ENOMEM; 19742 goto fail_fcf_scan; 19743 } 19744 /* Construct the read FCF record mailbox command */ 19745 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19746 if (rc) { 19747 error = -EINVAL; 19748 goto fail_fcf_scan; 19749 } 19750 /* Issue the mailbox command asynchronously */ 19751 mboxq->vport = phba->pport; 19752 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19753 19754 spin_lock_irq(&phba->hbalock); 19755 phba->hba_flag |= FCF_TS_INPROG; 19756 spin_unlock_irq(&phba->hbalock); 19757 19758 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19759 if (rc == MBX_NOT_FINISHED) 19760 error = -EIO; 19761 else { 19762 /* Reset eligible FCF count for new scan */ 19763 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19764 phba->fcf.eligible_fcf_cnt = 0; 19765 error = 0; 19766 } 19767 fail_fcf_scan: 19768 if (error) { 19769 if (mboxq) 19770 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19771 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19772 spin_lock_irq(&phba->hbalock); 19773 phba->hba_flag &= ~FCF_TS_INPROG; 19774 spin_unlock_irq(&phba->hbalock); 19775 } 19776 return error; 19777 } 19778 19779 /** 19780 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19781 * @phba: pointer to lpfc hba data structure. 19782 * @fcf_index: FCF table entry offset. 19783 * 19784 * This routine is invoked to read an FCF record indicated by @fcf_index 19785 * and to use it for FLOGI roundrobin FCF failover. 19786 * 19787 * Return 0 if the mailbox command is submitted successfully, none 0 19788 * otherwise. 19789 **/ 19790 int 19791 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19792 { 19793 int rc = 0, error; 19794 LPFC_MBOXQ_t *mboxq; 19795 19796 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19797 if (!mboxq) { 19798 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19799 "2763 Failed to allocate mbox for " 19800 "READ_FCF cmd\n"); 19801 error = -ENOMEM; 19802 goto fail_fcf_read; 19803 } 19804 /* Construct the read FCF record mailbox command */ 19805 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19806 if (rc) { 19807 error = -EINVAL; 19808 goto fail_fcf_read; 19809 } 19810 /* Issue the mailbox command asynchronously */ 19811 mboxq->vport = phba->pport; 19812 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19813 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19814 if (rc == MBX_NOT_FINISHED) 19815 error = -EIO; 19816 else 19817 error = 0; 19818 19819 fail_fcf_read: 19820 if (error && mboxq) 19821 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19822 return error; 19823 } 19824 19825 /** 19826 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19827 * @phba: pointer to lpfc hba data structure. 19828 * @fcf_index: FCF table entry offset. 19829 * 19830 * This routine is invoked to read an FCF record indicated by @fcf_index to 19831 * determine whether it's eligible for FLOGI roundrobin failover list. 19832 * 19833 * Return 0 if the mailbox command is submitted successfully, none 0 19834 * otherwise. 19835 **/ 19836 int 19837 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19838 { 19839 int rc = 0, error; 19840 LPFC_MBOXQ_t *mboxq; 19841 19842 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19843 if (!mboxq) { 19844 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19845 "2758 Failed to allocate mbox for " 19846 "READ_FCF cmd\n"); 19847 error = -ENOMEM; 19848 goto fail_fcf_read; 19849 } 19850 /* Construct the read FCF record mailbox command */ 19851 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19852 if (rc) { 19853 error = -EINVAL; 19854 goto fail_fcf_read; 19855 } 19856 /* Issue the mailbox command asynchronously */ 19857 mboxq->vport = phba->pport; 19858 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19859 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19860 if (rc == MBX_NOT_FINISHED) 19861 error = -EIO; 19862 else 19863 error = 0; 19864 19865 fail_fcf_read: 19866 if (error && mboxq) 19867 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19868 return error; 19869 } 19870 19871 /** 19872 * lpfc_check_next_fcf_pri_level 19873 * @phba: pointer to the lpfc_hba struct for this port. 19874 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19875 * routine when the rr_bmask is empty. The FCF indecies are put into the 19876 * rr_bmask based on their priority level. Starting from the highest priority 19877 * to the lowest. The most likely FCF candidate will be in the highest 19878 * priority group. When this routine is called it searches the fcf_pri list for 19879 * next lowest priority group and repopulates the rr_bmask with only those 19880 * fcf_indexes. 19881 * returns: 19882 * 1=success 0=failure 19883 **/ 19884 static int 19885 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19886 { 19887 uint16_t next_fcf_pri; 19888 uint16_t last_index; 19889 struct lpfc_fcf_pri *fcf_pri; 19890 int rc; 19891 int ret = 0; 19892 19893 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19894 LPFC_SLI4_FCF_TBL_INDX_MAX); 19895 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19896 "3060 Last IDX %d\n", last_index); 19897 19898 /* Verify the priority list has 2 or more entries */ 19899 spin_lock_irq(&phba->hbalock); 19900 if (list_empty(&phba->fcf.fcf_pri_list) || 19901 list_is_singular(&phba->fcf.fcf_pri_list)) { 19902 spin_unlock_irq(&phba->hbalock); 19903 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19904 "3061 Last IDX %d\n", last_index); 19905 return 0; /* Empty rr list */ 19906 } 19907 spin_unlock_irq(&phba->hbalock); 19908 19909 next_fcf_pri = 0; 19910 /* 19911 * Clear the rr_bmask and set all of the bits that are at this 19912 * priority. 19913 */ 19914 memset(phba->fcf.fcf_rr_bmask, 0, 19915 sizeof(*phba->fcf.fcf_rr_bmask)); 19916 spin_lock_irq(&phba->hbalock); 19917 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19918 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19919 continue; 19920 /* 19921 * the 1st priority that has not FLOGI failed 19922 * will be the highest. 19923 */ 19924 if (!next_fcf_pri) 19925 next_fcf_pri = fcf_pri->fcf_rec.priority; 19926 spin_unlock_irq(&phba->hbalock); 19927 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19928 rc = lpfc_sli4_fcf_rr_index_set(phba, 19929 fcf_pri->fcf_rec.fcf_index); 19930 if (rc) 19931 return 0; 19932 } 19933 spin_lock_irq(&phba->hbalock); 19934 } 19935 /* 19936 * if next_fcf_pri was not set above and the list is not empty then 19937 * we have failed flogis on all of them. So reset flogi failed 19938 * and start at the beginning. 19939 */ 19940 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19941 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19942 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19943 /* 19944 * the 1st priority that has not FLOGI failed 19945 * will be the highest. 19946 */ 19947 if (!next_fcf_pri) 19948 next_fcf_pri = fcf_pri->fcf_rec.priority; 19949 spin_unlock_irq(&phba->hbalock); 19950 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19951 rc = lpfc_sli4_fcf_rr_index_set(phba, 19952 fcf_pri->fcf_rec.fcf_index); 19953 if (rc) 19954 return 0; 19955 } 19956 spin_lock_irq(&phba->hbalock); 19957 } 19958 } else 19959 ret = 1; 19960 spin_unlock_irq(&phba->hbalock); 19961 19962 return ret; 19963 } 19964 /** 19965 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19966 * @phba: pointer to lpfc hba data structure. 19967 * 19968 * This routine is to get the next eligible FCF record index in a round 19969 * robin fashion. If the next eligible FCF record index equals to the 19970 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19971 * shall be returned, otherwise, the next eligible FCF record's index 19972 * shall be returned. 19973 **/ 19974 uint16_t 19975 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19976 { 19977 uint16_t next_fcf_index; 19978 19979 initial_priority: 19980 /* Search start from next bit of currently registered FCF index */ 19981 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19982 19983 next_priority: 19984 /* Determine the next fcf index to check */ 19985 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19986 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19987 LPFC_SLI4_FCF_TBL_INDX_MAX, 19988 next_fcf_index); 19989 19990 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19991 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19992 /* 19993 * If we have wrapped then we need to clear the bits that 19994 * have been tested so that we can detect when we should 19995 * change the priority level. 19996 */ 19997 next_fcf_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19998 LPFC_SLI4_FCF_TBL_INDX_MAX); 19999 } 20000 20001 20002 /* Check roundrobin failover list empty condition */ 20003 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 20004 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 20005 /* 20006 * If next fcf index is not found check if there are lower 20007 * Priority level fcf's in the fcf_priority list. 20008 * Set up the rr_bmask with all of the avaiable fcf bits 20009 * at that level and continue the selection process. 20010 */ 20011 if (lpfc_check_next_fcf_pri_level(phba)) 20012 goto initial_priority; 20013 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 20014 "2844 No roundrobin failover FCF available\n"); 20015 20016 return LPFC_FCOE_FCF_NEXT_NONE; 20017 } 20018 20019 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 20020 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 20021 LPFC_FCF_FLOGI_FAILED) { 20022 if (list_is_singular(&phba->fcf.fcf_pri_list)) 20023 return LPFC_FCOE_FCF_NEXT_NONE; 20024 20025 goto next_priority; 20026 } 20027 20028 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20029 "2845 Get next roundrobin failover FCF (x%x)\n", 20030 next_fcf_index); 20031 20032 return next_fcf_index; 20033 } 20034 20035 /** 20036 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 20037 * @phba: pointer to lpfc hba data structure. 20038 * @fcf_index: index into the FCF table to 'set' 20039 * 20040 * This routine sets the FCF record index in to the eligible bmask for 20041 * roundrobin failover search. It checks to make sure that the index 20042 * does not go beyond the range of the driver allocated bmask dimension 20043 * before setting the bit. 20044 * 20045 * Returns 0 if the index bit successfully set, otherwise, it returns 20046 * -EINVAL. 20047 **/ 20048 int 20049 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 20050 { 20051 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20052 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20053 "2610 FCF (x%x) reached driver's book " 20054 "keeping dimension:x%x\n", 20055 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20056 return -EINVAL; 20057 } 20058 /* Set the eligible FCF record index bmask */ 20059 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20060 20061 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20062 "2790 Set FCF (x%x) to roundrobin FCF failover " 20063 "bmask\n", fcf_index); 20064 20065 return 0; 20066 } 20067 20068 /** 20069 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 20070 * @phba: pointer to lpfc hba data structure. 20071 * @fcf_index: index into the FCF table to 'clear' 20072 * 20073 * This routine clears the FCF record index from the eligible bmask for 20074 * roundrobin failover search. It checks to make sure that the index 20075 * does not go beyond the range of the driver allocated bmask dimension 20076 * before clearing the bit. 20077 **/ 20078 void 20079 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 20080 { 20081 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 20082 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 20083 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20084 "2762 FCF (x%x) reached driver's book " 20085 "keeping dimension:x%x\n", 20086 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 20087 return; 20088 } 20089 /* Clear the eligible FCF record index bmask */ 20090 spin_lock_irq(&phba->hbalock); 20091 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 20092 list) { 20093 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 20094 list_del_init(&fcf_pri->list); 20095 break; 20096 } 20097 } 20098 spin_unlock_irq(&phba->hbalock); 20099 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 20100 20101 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20102 "2791 Clear FCF (x%x) from roundrobin failover " 20103 "bmask\n", fcf_index); 20104 } 20105 20106 /** 20107 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 20108 * @phba: pointer to lpfc hba data structure. 20109 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 20110 * 20111 * This routine is the completion routine for the rediscover FCF table mailbox 20112 * command. If the mailbox command returned failure, it will try to stop the 20113 * FCF rediscover wait timer. 20114 **/ 20115 static void 20116 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 20117 { 20118 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20119 uint32_t shdr_status, shdr_add_status; 20120 20121 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20122 20123 shdr_status = bf_get(lpfc_mbox_hdr_status, 20124 &redisc_fcf->header.cfg_shdr.response); 20125 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20126 &redisc_fcf->header.cfg_shdr.response); 20127 if (shdr_status || shdr_add_status) { 20128 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 20129 "2746 Requesting for FCF rediscovery failed " 20130 "status x%x add_status x%x\n", 20131 shdr_status, shdr_add_status); 20132 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 20133 spin_lock_irq(&phba->hbalock); 20134 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 20135 spin_unlock_irq(&phba->hbalock); 20136 /* 20137 * CVL event triggered FCF rediscover request failed, 20138 * last resort to re-try current registered FCF entry. 20139 */ 20140 lpfc_retry_pport_discovery(phba); 20141 } else { 20142 spin_lock_irq(&phba->hbalock); 20143 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 20144 spin_unlock_irq(&phba->hbalock); 20145 /* 20146 * DEAD FCF event triggered FCF rediscover request 20147 * failed, last resort to fail over as a link down 20148 * to FCF registration. 20149 */ 20150 lpfc_sli4_fcf_dead_failthrough(phba); 20151 } 20152 } else { 20153 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 20154 "2775 Start FCF rediscover quiescent timer\n"); 20155 /* 20156 * Start FCF rediscovery wait timer for pending FCF 20157 * before rescan FCF record table. 20158 */ 20159 lpfc_fcf_redisc_wait_start_timer(phba); 20160 } 20161 20162 mempool_free(mbox, phba->mbox_mem_pool); 20163 } 20164 20165 /** 20166 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 20167 * @phba: pointer to lpfc hba data structure. 20168 * 20169 * This routine is invoked to request for rediscovery of the entire FCF table 20170 * by the port. 20171 **/ 20172 int 20173 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 20174 { 20175 LPFC_MBOXQ_t *mbox; 20176 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 20177 int rc, length; 20178 20179 /* Cancel retry delay timers to all vports before FCF rediscover */ 20180 lpfc_cancel_all_vport_retry_delay_timer(phba); 20181 20182 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20183 if (!mbox) { 20184 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20185 "2745 Failed to allocate mbox for " 20186 "requesting FCF rediscover.\n"); 20187 return -ENOMEM; 20188 } 20189 20190 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 20191 sizeof(struct lpfc_sli4_cfg_mhdr)); 20192 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 20193 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 20194 length, LPFC_SLI4_MBX_EMBED); 20195 20196 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 20197 /* Set count to 0 for invalidating the entire FCF database */ 20198 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 20199 20200 /* Issue the mailbox command asynchronously */ 20201 mbox->vport = phba->pport; 20202 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 20203 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 20204 20205 if (rc == MBX_NOT_FINISHED) { 20206 mempool_free(mbox, phba->mbox_mem_pool); 20207 return -EIO; 20208 } 20209 return 0; 20210 } 20211 20212 /** 20213 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 20214 * @phba: pointer to lpfc hba data structure. 20215 * 20216 * This function is the failover routine as a last resort to the FCF DEAD 20217 * event when driver failed to perform fast FCF failover. 20218 **/ 20219 void 20220 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 20221 { 20222 uint32_t link_state; 20223 20224 /* 20225 * Last resort as FCF DEAD event failover will treat this as 20226 * a link down, but save the link state because we don't want 20227 * it to be changed to Link Down unless it is already down. 20228 */ 20229 link_state = phba->link_state; 20230 lpfc_linkdown(phba); 20231 phba->link_state = link_state; 20232 20233 /* Unregister FCF if no devices connected to it */ 20234 lpfc_unregister_unused_fcf(phba); 20235 } 20236 20237 /** 20238 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 20239 * @phba: pointer to lpfc hba data structure. 20240 * @rgn23_data: pointer to configure region 23 data. 20241 * 20242 * This function gets SLI3 port configure region 23 data through memory dump 20243 * mailbox command. When it successfully retrieves data, the size of the data 20244 * will be returned, otherwise, 0 will be returned. 20245 **/ 20246 static uint32_t 20247 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20248 { 20249 LPFC_MBOXQ_t *pmb = NULL; 20250 MAILBOX_t *mb; 20251 uint32_t offset = 0; 20252 int rc; 20253 20254 if (!rgn23_data) 20255 return 0; 20256 20257 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20258 if (!pmb) { 20259 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20260 "2600 failed to allocate mailbox memory\n"); 20261 return 0; 20262 } 20263 mb = &pmb->u.mb; 20264 20265 do { 20266 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 20267 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 20268 20269 if (rc != MBX_SUCCESS) { 20270 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20271 "2601 failed to read config " 20272 "region 23, rc 0x%x Status 0x%x\n", 20273 rc, mb->mbxStatus); 20274 mb->un.varDmp.word_cnt = 0; 20275 } 20276 /* 20277 * dump mem may return a zero when finished or we got a 20278 * mailbox error, either way we are done. 20279 */ 20280 if (mb->un.varDmp.word_cnt == 0) 20281 break; 20282 20283 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 20284 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 20285 20286 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 20287 rgn23_data + offset, 20288 mb->un.varDmp.word_cnt); 20289 offset += mb->un.varDmp.word_cnt; 20290 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 20291 20292 mempool_free(pmb, phba->mbox_mem_pool); 20293 return offset; 20294 } 20295 20296 /** 20297 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 20298 * @phba: pointer to lpfc hba data structure. 20299 * @rgn23_data: pointer to configure region 23 data. 20300 * 20301 * This function gets SLI4 port configure region 23 data through memory dump 20302 * mailbox command. When it successfully retrieves data, the size of the data 20303 * will be returned, otherwise, 0 will be returned. 20304 **/ 20305 static uint32_t 20306 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 20307 { 20308 LPFC_MBOXQ_t *mboxq = NULL; 20309 struct lpfc_dmabuf *mp = NULL; 20310 struct lpfc_mqe *mqe; 20311 uint32_t data_length = 0; 20312 int rc; 20313 20314 if (!rgn23_data) 20315 return 0; 20316 20317 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20318 if (!mboxq) { 20319 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20320 "3105 failed to allocate mailbox memory\n"); 20321 return 0; 20322 } 20323 20324 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 20325 goto out; 20326 mqe = &mboxq->u.mqe; 20327 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 20328 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 20329 if (rc) 20330 goto out; 20331 data_length = mqe->un.mb_words[5]; 20332 if (data_length == 0) 20333 goto out; 20334 if (data_length > DMP_RGN23_SIZE) { 20335 data_length = 0; 20336 goto out; 20337 } 20338 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 20339 out: 20340 lpfc_mbox_rsrc_cleanup(phba, mboxq, MBOX_THD_UNLOCKED); 20341 return data_length; 20342 } 20343 20344 /** 20345 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 20346 * @phba: pointer to lpfc hba data structure. 20347 * 20348 * This function read region 23 and parse TLV for port status to 20349 * decide if the user disaled the port. If the TLV indicates the 20350 * port is disabled, the hba_flag is set accordingly. 20351 **/ 20352 void 20353 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 20354 { 20355 uint8_t *rgn23_data = NULL; 20356 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 20357 uint32_t offset = 0; 20358 20359 /* Get adapter Region 23 data */ 20360 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 20361 if (!rgn23_data) 20362 goto out; 20363 20364 if (phba->sli_rev < LPFC_SLI_REV4) 20365 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 20366 else { 20367 if_type = bf_get(lpfc_sli_intf_if_type, 20368 &phba->sli4_hba.sli_intf); 20369 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 20370 goto out; 20371 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 20372 } 20373 20374 if (!data_size) 20375 goto out; 20376 20377 /* Check the region signature first */ 20378 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 20379 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20380 "2619 Config region 23 has bad signature\n"); 20381 goto out; 20382 } 20383 offset += 4; 20384 20385 /* Check the data structure version */ 20386 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20388 "2620 Config region 23 has bad version\n"); 20389 goto out; 20390 } 20391 offset += 4; 20392 20393 /* Parse TLV entries in the region */ 20394 while (offset < data_size) { 20395 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20396 break; 20397 /* 20398 * If the TLV is not driver specific TLV or driver id is 20399 * not linux driver id, skip the record. 20400 */ 20401 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20402 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20403 (rgn23_data[offset + 3] != 0)) { 20404 offset += rgn23_data[offset + 1] * 4 + 4; 20405 continue; 20406 } 20407 20408 /* Driver found a driver specific TLV in the config region */ 20409 sub_tlv_len = rgn23_data[offset + 1] * 4; 20410 offset += 4; 20411 tlv_offset = 0; 20412 20413 /* 20414 * Search for configured port state sub-TLV. 20415 */ 20416 while ((offset < data_size) && 20417 (tlv_offset < sub_tlv_len)) { 20418 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20419 offset += 4; 20420 tlv_offset += 4; 20421 break; 20422 } 20423 if (rgn23_data[offset] != PORT_STE_TYPE) { 20424 offset += rgn23_data[offset + 1] * 4 + 4; 20425 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20426 continue; 20427 } 20428 20429 /* This HBA contains PORT_STE configured */ 20430 if (!rgn23_data[offset + 2]) 20431 phba->hba_flag |= LINK_DISABLED; 20432 20433 goto out; 20434 } 20435 } 20436 20437 out: 20438 kfree(rgn23_data); 20439 return; 20440 } 20441 20442 /** 20443 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20444 * @phba: pointer to lpfc hba data structure 20445 * @shdr_status: wr_object rsp's status field 20446 * @shdr_add_status: wr_object rsp's add_status field 20447 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20448 * @shdr_change_status: wr_object rsp's change_status field 20449 * @shdr_csf: wr_object rsp's csf bit 20450 * 20451 * This routine is intended to be called after a firmware write completes. 20452 * It will log next action items to be performed by the user to instantiate 20453 * the newly downloaded firmware or reason for incompatibility. 20454 **/ 20455 static void 20456 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20457 u32 shdr_add_status, u32 shdr_add_status_2, 20458 u32 shdr_change_status, u32 shdr_csf) 20459 { 20460 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20461 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20462 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20463 "change_status x%02x, csf %01x\n", __func__, 20464 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20465 shdr_status, shdr_add_status, shdr_add_status_2, 20466 shdr_change_status, shdr_csf); 20467 20468 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20469 switch (shdr_add_status_2) { 20470 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20471 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20472 "4199 Firmware write failed: " 20473 "image incompatible with flash x%02x\n", 20474 phba->sli4_hba.flash_id); 20475 break; 20476 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20477 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20478 "4200 Firmware write failed: " 20479 "image incompatible with ASIC " 20480 "architecture x%02x\n", 20481 phba->sli4_hba.asic_rev); 20482 break; 20483 default: 20484 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20485 "4210 Firmware write failed: " 20486 "add_status_2 x%02x\n", 20487 shdr_add_status_2); 20488 break; 20489 } 20490 } else if (!shdr_status && !shdr_add_status) { 20491 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20492 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20493 if (shdr_csf) 20494 shdr_change_status = 20495 LPFC_CHANGE_STATUS_PCI_RESET; 20496 } 20497 20498 switch (shdr_change_status) { 20499 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20500 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20501 "3198 Firmware write complete: System " 20502 "reboot required to instantiate\n"); 20503 break; 20504 case (LPFC_CHANGE_STATUS_FW_RESET): 20505 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20506 "3199 Firmware write complete: " 20507 "Firmware reset required to " 20508 "instantiate\n"); 20509 break; 20510 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20512 "3200 Firmware write complete: Port " 20513 "Migration or PCI Reset required to " 20514 "instantiate\n"); 20515 break; 20516 case (LPFC_CHANGE_STATUS_PCI_RESET): 20517 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20518 "3201 Firmware write complete: PCI " 20519 "Reset required to instantiate\n"); 20520 break; 20521 default: 20522 break; 20523 } 20524 } 20525 } 20526 20527 /** 20528 * lpfc_wr_object - write an object to the firmware 20529 * @phba: HBA structure that indicates port to create a queue on. 20530 * @dmabuf_list: list of dmabufs to write to the port. 20531 * @size: the total byte value of the objects to write to the port. 20532 * @offset: the current offset to be used to start the transfer. 20533 * 20534 * This routine will create a wr_object mailbox command to send to the port. 20535 * the mailbox command will be constructed using the dma buffers described in 20536 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20537 * BDEs that the imbedded mailbox can support. The @offset variable will be 20538 * used to indicate the starting offset of the transfer and will also return 20539 * the offset after the write object mailbox has completed. @size is used to 20540 * determine the end of the object and whether the eof bit should be set. 20541 * 20542 * Return 0 is successful and offset will contain the the new offset to use 20543 * for the next write. 20544 * Return negative value for error cases. 20545 **/ 20546 int 20547 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20548 uint32_t size, uint32_t *offset) 20549 { 20550 struct lpfc_mbx_wr_object *wr_object; 20551 LPFC_MBOXQ_t *mbox; 20552 int rc = 0, i = 0; 20553 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20554 uint32_t shdr_change_status = 0, shdr_csf = 0; 20555 uint32_t mbox_tmo; 20556 struct lpfc_dmabuf *dmabuf; 20557 uint32_t written = 0; 20558 bool check_change_status = false; 20559 20560 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20561 if (!mbox) 20562 return -ENOMEM; 20563 20564 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20565 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20566 sizeof(struct lpfc_mbx_wr_object) - 20567 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20568 20569 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20570 wr_object->u.request.write_offset = *offset; 20571 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20572 wr_object->u.request.object_name[0] = 20573 cpu_to_le32(wr_object->u.request.object_name[0]); 20574 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20575 list_for_each_entry(dmabuf, dmabuf_list, list) { 20576 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20577 break; 20578 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20579 wr_object->u.request.bde[i].addrHigh = 20580 putPaddrHigh(dmabuf->phys); 20581 if (written + SLI4_PAGE_SIZE >= size) { 20582 wr_object->u.request.bde[i].tus.f.bdeSize = 20583 (size - written); 20584 written += (size - written); 20585 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20586 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20587 check_change_status = true; 20588 } else { 20589 wr_object->u.request.bde[i].tus.f.bdeSize = 20590 SLI4_PAGE_SIZE; 20591 written += SLI4_PAGE_SIZE; 20592 } 20593 i++; 20594 } 20595 wr_object->u.request.bde_count = i; 20596 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20597 if (!phba->sli4_hba.intr_enable) 20598 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20599 else { 20600 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20601 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20602 } 20603 /* The IOCTL status is embedded in the mailbox subheader. */ 20604 shdr_status = bf_get(lpfc_mbox_hdr_status, 20605 &wr_object->header.cfg_shdr.response); 20606 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20607 &wr_object->header.cfg_shdr.response); 20608 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20609 &wr_object->header.cfg_shdr.response); 20610 if (check_change_status) { 20611 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20612 &wr_object->u.response); 20613 shdr_csf = bf_get(lpfc_wr_object_csf, 20614 &wr_object->u.response); 20615 } 20616 20617 if (!phba->sli4_hba.intr_enable) 20618 mempool_free(mbox, phba->mbox_mem_pool); 20619 else if (rc != MBX_TIMEOUT) 20620 mempool_free(mbox, phba->mbox_mem_pool); 20621 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20622 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20623 "3025 Write Object mailbox failed with " 20624 "status x%x add_status x%x, add_status_2 x%x, " 20625 "mbx status x%x\n", 20626 shdr_status, shdr_add_status, shdr_add_status_2, 20627 rc); 20628 rc = -ENXIO; 20629 *offset = shdr_add_status; 20630 } else { 20631 *offset += wr_object->u.response.actual_write_length; 20632 } 20633 20634 if (rc || check_change_status) 20635 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20636 shdr_add_status_2, shdr_change_status, 20637 shdr_csf); 20638 return rc; 20639 } 20640 20641 /** 20642 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20643 * @vport: pointer to vport data structure. 20644 * 20645 * This function iterate through the mailboxq and clean up all REG_LOGIN 20646 * and REG_VPI mailbox commands associated with the vport. This function 20647 * is called when driver want to restart discovery of the vport due to 20648 * a Clear Virtual Link event. 20649 **/ 20650 void 20651 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20652 { 20653 struct lpfc_hba *phba = vport->phba; 20654 LPFC_MBOXQ_t *mb, *nextmb; 20655 struct lpfc_nodelist *ndlp; 20656 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20657 LIST_HEAD(mbox_cmd_list); 20658 uint8_t restart_loop; 20659 20660 /* Clean up internally queued mailbox commands with the vport */ 20661 spin_lock_irq(&phba->hbalock); 20662 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20663 if (mb->vport != vport) 20664 continue; 20665 20666 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20667 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20668 continue; 20669 20670 list_move_tail(&mb->list, &mbox_cmd_list); 20671 } 20672 /* Clean up active mailbox command with the vport */ 20673 mb = phba->sli.mbox_active; 20674 if (mb && (mb->vport == vport)) { 20675 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20676 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20677 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20678 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20679 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20680 20681 /* This reference is local to this routine. The 20682 * reference is removed at routine exit. 20683 */ 20684 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20685 20686 /* Unregister the RPI when mailbox complete */ 20687 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20688 } 20689 } 20690 /* Cleanup any mailbox completions which are not yet processed */ 20691 do { 20692 restart_loop = 0; 20693 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20694 /* 20695 * If this mailox is already processed or it is 20696 * for another vport ignore it. 20697 */ 20698 if ((mb->vport != vport) || 20699 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20700 continue; 20701 20702 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20703 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20704 continue; 20705 20706 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20707 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20708 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20709 /* Unregister the RPI when mailbox complete */ 20710 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20711 restart_loop = 1; 20712 spin_unlock_irq(&phba->hbalock); 20713 spin_lock(&ndlp->lock); 20714 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20715 spin_unlock(&ndlp->lock); 20716 spin_lock_irq(&phba->hbalock); 20717 break; 20718 } 20719 } 20720 } while (restart_loop); 20721 20722 spin_unlock_irq(&phba->hbalock); 20723 20724 /* Release the cleaned-up mailbox commands */ 20725 while (!list_empty(&mbox_cmd_list)) { 20726 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20727 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20728 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20729 mb->ctx_ndlp = NULL; 20730 if (ndlp) { 20731 spin_lock(&ndlp->lock); 20732 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20733 spin_unlock(&ndlp->lock); 20734 lpfc_nlp_put(ndlp); 20735 } 20736 } 20737 lpfc_mbox_rsrc_cleanup(phba, mb, MBOX_THD_UNLOCKED); 20738 } 20739 20740 /* Release the ndlp with the cleaned-up active mailbox command */ 20741 if (act_mbx_ndlp) { 20742 spin_lock(&act_mbx_ndlp->lock); 20743 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20744 spin_unlock(&act_mbx_ndlp->lock); 20745 lpfc_nlp_put(act_mbx_ndlp); 20746 } 20747 } 20748 20749 /** 20750 * lpfc_drain_txq - Drain the txq 20751 * @phba: Pointer to HBA context object. 20752 * 20753 * This function attempt to submit IOCBs on the txq 20754 * to the adapter. For SLI4 adapters, the txq contains 20755 * ELS IOCBs that have been deferred because the there 20756 * are no SGLs. This congestion can occur with large 20757 * vport counts during node discovery. 20758 **/ 20759 20760 uint32_t 20761 lpfc_drain_txq(struct lpfc_hba *phba) 20762 { 20763 LIST_HEAD(completions); 20764 struct lpfc_sli_ring *pring; 20765 struct lpfc_iocbq *piocbq = NULL; 20766 unsigned long iflags = 0; 20767 char *fail_msg = NULL; 20768 uint32_t txq_cnt = 0; 20769 struct lpfc_queue *wq; 20770 int ret = 0; 20771 20772 if (phba->link_flag & LS_MDS_LOOPBACK) { 20773 /* MDS WQE are posted only to first WQ*/ 20774 wq = phba->sli4_hba.hdwq[0].io_wq; 20775 if (unlikely(!wq)) 20776 return 0; 20777 pring = wq->pring; 20778 } else { 20779 wq = phba->sli4_hba.els_wq; 20780 if (unlikely(!wq)) 20781 return 0; 20782 pring = lpfc_phba_elsring(phba); 20783 } 20784 20785 if (unlikely(!pring) || list_empty(&pring->txq)) 20786 return 0; 20787 20788 spin_lock_irqsave(&pring->ring_lock, iflags); 20789 list_for_each_entry(piocbq, &pring->txq, list) { 20790 txq_cnt++; 20791 } 20792 20793 if (txq_cnt > pring->txq_max) 20794 pring->txq_max = txq_cnt; 20795 20796 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20797 20798 while (!list_empty(&pring->txq)) { 20799 spin_lock_irqsave(&pring->ring_lock, iflags); 20800 20801 piocbq = lpfc_sli_ringtx_get(phba, pring); 20802 if (!piocbq) { 20803 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20805 "2823 txq empty and txq_cnt is %d\n ", 20806 txq_cnt); 20807 break; 20808 } 20809 txq_cnt--; 20810 20811 ret = __lpfc_sli_issue_iocb(phba, pring->ringno, piocbq, 0); 20812 20813 if (ret && ret != IOCB_BUSY) { 20814 fail_msg = " - Cannot send IO "; 20815 piocbq->cmd_flag &= ~LPFC_DRIVER_ABORTED; 20816 } 20817 if (fail_msg) { 20818 piocbq->cmd_flag |= LPFC_DRIVER_ABORTED; 20819 /* Failed means we can't issue and need to cancel */ 20820 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20821 "2822 IOCB failed %s iotag 0x%x " 20822 "xri 0x%x %d flg x%x\n", 20823 fail_msg, piocbq->iotag, 20824 piocbq->sli4_xritag, ret, 20825 piocbq->cmd_flag); 20826 list_add_tail(&piocbq->list, &completions); 20827 fail_msg = NULL; 20828 } 20829 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20830 if (txq_cnt == 0 || ret == IOCB_BUSY) 20831 break; 20832 } 20833 /* Cancel all the IOCBs that cannot be issued */ 20834 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20835 IOERR_SLI_ABORTED); 20836 20837 return txq_cnt; 20838 } 20839 20840 /** 20841 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20842 * @phba: Pointer to HBA context object. 20843 * @pwqeq: Pointer to command WQE. 20844 * @sglq: Pointer to the scatter gather queue object. 20845 * 20846 * This routine converts the bpl or bde that is in the WQE 20847 * to a sgl list for the sli4 hardware. The physical address 20848 * of the bpl/bde is converted back to a virtual address. 20849 * If the WQE contains a BPL then the list of BDE's is 20850 * converted to sli4_sge's. If the WQE contains a single 20851 * BDE then it is converted to a single sli_sge. 20852 * The WQE is still in cpu endianness so the contents of 20853 * the bpl can be used without byte swapping. 20854 * 20855 * Returns valid XRI = Success, NO_XRI = Failure. 20856 */ 20857 static uint16_t 20858 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20859 struct lpfc_sglq *sglq) 20860 { 20861 uint16_t xritag = NO_XRI; 20862 struct ulp_bde64 *bpl = NULL; 20863 struct ulp_bde64 bde; 20864 struct sli4_sge *sgl = NULL; 20865 struct lpfc_dmabuf *dmabuf; 20866 union lpfc_wqe128 *wqe; 20867 int numBdes = 0; 20868 int i = 0; 20869 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20870 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20871 uint32_t cmd; 20872 20873 if (!pwqeq || !sglq) 20874 return xritag; 20875 20876 sgl = (struct sli4_sge *)sglq->sgl; 20877 wqe = &pwqeq->wqe; 20878 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20879 20880 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20881 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20882 return sglq->sli4_xritag; 20883 numBdes = pwqeq->num_bdes; 20884 if (numBdes) { 20885 /* The addrHigh and addrLow fields within the WQE 20886 * have not been byteswapped yet so there is no 20887 * need to swap them back. 20888 */ 20889 if (pwqeq->bpl_dmabuf) 20890 dmabuf = pwqeq->bpl_dmabuf; 20891 else 20892 return xritag; 20893 20894 bpl = (struct ulp_bde64 *)dmabuf->virt; 20895 if (!bpl) 20896 return xritag; 20897 20898 for (i = 0; i < numBdes; i++) { 20899 /* Should already be byte swapped. */ 20900 sgl->addr_hi = bpl->addrHigh; 20901 sgl->addr_lo = bpl->addrLow; 20902 20903 sgl->word2 = le32_to_cpu(sgl->word2); 20904 if ((i+1) == numBdes) 20905 bf_set(lpfc_sli4_sge_last, sgl, 1); 20906 else 20907 bf_set(lpfc_sli4_sge_last, sgl, 0); 20908 /* swap the size field back to the cpu so we 20909 * can assign it to the sgl. 20910 */ 20911 bde.tus.w = le32_to_cpu(bpl->tus.w); 20912 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20913 /* The offsets in the sgl need to be accumulated 20914 * separately for the request and reply lists. 20915 * The request is always first, the reply follows. 20916 */ 20917 switch (cmd) { 20918 case CMD_GEN_REQUEST64_WQE: 20919 /* add up the reply sg entries */ 20920 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20921 inbound++; 20922 /* first inbound? reset the offset */ 20923 if (inbound == 1) 20924 offset = 0; 20925 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20926 bf_set(lpfc_sli4_sge_type, sgl, 20927 LPFC_SGE_TYPE_DATA); 20928 offset += bde.tus.f.bdeSize; 20929 break; 20930 case CMD_FCP_TRSP64_WQE: 20931 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20932 bf_set(lpfc_sli4_sge_type, sgl, 20933 LPFC_SGE_TYPE_DATA); 20934 break; 20935 case CMD_FCP_TSEND64_WQE: 20936 case CMD_FCP_TRECEIVE64_WQE: 20937 bf_set(lpfc_sli4_sge_type, sgl, 20938 bpl->tus.f.bdeFlags); 20939 if (i < 3) 20940 offset = 0; 20941 else 20942 offset += bde.tus.f.bdeSize; 20943 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20944 break; 20945 } 20946 sgl->word2 = cpu_to_le32(sgl->word2); 20947 bpl++; 20948 sgl++; 20949 } 20950 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20951 /* The addrHigh and addrLow fields of the BDE have not 20952 * been byteswapped yet so they need to be swapped 20953 * before putting them in the sgl. 20954 */ 20955 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20956 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20957 sgl->word2 = le32_to_cpu(sgl->word2); 20958 bf_set(lpfc_sli4_sge_last, sgl, 1); 20959 sgl->word2 = cpu_to_le32(sgl->word2); 20960 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20961 } 20962 return sglq->sli4_xritag; 20963 } 20964 20965 /** 20966 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20967 * @phba: Pointer to HBA context object. 20968 * @qp: Pointer to HDW queue. 20969 * @pwqe: Pointer to command WQE. 20970 **/ 20971 int 20972 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20973 struct lpfc_iocbq *pwqe) 20974 { 20975 union lpfc_wqe128 *wqe = &pwqe->wqe; 20976 struct lpfc_async_xchg_ctx *ctxp; 20977 struct lpfc_queue *wq; 20978 struct lpfc_sglq *sglq; 20979 struct lpfc_sli_ring *pring; 20980 unsigned long iflags; 20981 uint32_t ret = 0; 20982 20983 /* NVME_LS and NVME_LS ABTS requests. */ 20984 if (pwqe->cmd_flag & LPFC_IO_NVME_LS) { 20985 pring = phba->sli4_hba.nvmels_wq->pring; 20986 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20987 qp, wq_access); 20988 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20989 if (!sglq) { 20990 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20991 return WQE_BUSY; 20992 } 20993 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20994 pwqe->sli4_xritag = sglq->sli4_xritag; 20995 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20996 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20997 return WQE_ERROR; 20998 } 20999 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21000 pwqe->sli4_xritag); 21001 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 21002 if (ret) { 21003 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21004 return ret; 21005 } 21006 21007 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21008 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21009 21010 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21011 return 0; 21012 } 21013 21014 /* NVME_FCREQ and NVME_ABTS requests */ 21015 if (pwqe->cmd_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { 21016 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21017 wq = qp->io_wq; 21018 pring = wq->pring; 21019 21020 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21021 21022 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21023 qp, wq_access); 21024 ret = lpfc_sli4_wq_put(wq, wqe); 21025 if (ret) { 21026 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21027 return ret; 21028 } 21029 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21030 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21031 21032 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21033 return 0; 21034 } 21035 21036 /* NVMET requests */ 21037 if (pwqe->cmd_flag & LPFC_IO_NVMET) { 21038 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 21039 wq = qp->io_wq; 21040 pring = wq->pring; 21041 21042 ctxp = pwqe->context_un.axchg; 21043 sglq = ctxp->ctxbuf->sglq; 21044 if (pwqe->sli4_xritag == NO_XRI) { 21045 pwqe->sli4_lxritag = sglq->sli4_lxritag; 21046 pwqe->sli4_xritag = sglq->sli4_xritag; 21047 } 21048 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 21049 pwqe->sli4_xritag); 21050 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 21051 21052 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 21053 qp, wq_access); 21054 ret = lpfc_sli4_wq_put(wq, wqe); 21055 if (ret) { 21056 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21057 return ret; 21058 } 21059 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 21060 spin_unlock_irqrestore(&pring->ring_lock, iflags); 21061 21062 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 21063 return 0; 21064 } 21065 return WQE_ERROR; 21066 } 21067 21068 /** 21069 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 21070 * @phba: Pointer to HBA context object. 21071 * @cmdiocb: Pointer to driver command iocb object. 21072 * @cmpl: completion function. 21073 * 21074 * Fill the appropriate fields for the abort WQE and call 21075 * internal routine lpfc_sli4_issue_wqe to send the WQE 21076 * This function is called with hbalock held and no ring_lock held. 21077 * 21078 * RETURNS 0 - SUCCESS 21079 **/ 21080 21081 int 21082 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 21083 void *cmpl) 21084 { 21085 struct lpfc_vport *vport = cmdiocb->vport; 21086 struct lpfc_iocbq *abtsiocb = NULL; 21087 union lpfc_wqe128 *abtswqe; 21088 struct lpfc_io_buf *lpfc_cmd; 21089 int retval = IOCB_ERROR; 21090 u16 xritag = cmdiocb->sli4_xritag; 21091 21092 /* 21093 * The scsi command can not be in txq and it is in flight because the 21094 * pCmd is still pointing at the SCSI command we have to abort. There 21095 * is no need to search the txcmplq. Just send an abort to the FW. 21096 */ 21097 21098 abtsiocb = __lpfc_sli_get_iocbq(phba); 21099 if (!abtsiocb) 21100 return WQE_NORESOURCE; 21101 21102 /* Indicate the IO is being aborted by the driver. */ 21103 cmdiocb->cmd_flag |= LPFC_DRIVER_ABORTED; 21104 21105 abtswqe = &abtsiocb->wqe; 21106 memset(abtswqe, 0, sizeof(*abtswqe)); 21107 21108 if (!lpfc_is_link_up(phba) || (phba->link_flag & LS_EXTERNAL_LOOPBACK)) 21109 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 21110 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 21111 abtswqe->abort_cmd.rsrvd5 = 0; 21112 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 21113 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 21114 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 21115 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 21116 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 21117 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 21118 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 21119 21120 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 21121 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 21122 abtsiocb->cmd_flag |= LPFC_USE_FCPWQIDX; 21123 if (cmdiocb->cmd_flag & LPFC_IO_FCP) 21124 abtsiocb->cmd_flag |= LPFC_IO_FCP; 21125 if (cmdiocb->cmd_flag & LPFC_IO_NVME) 21126 abtsiocb->cmd_flag |= LPFC_IO_NVME; 21127 if (cmdiocb->cmd_flag & LPFC_IO_FOF) 21128 abtsiocb->cmd_flag |= LPFC_IO_FOF; 21129 abtsiocb->vport = vport; 21130 abtsiocb->cmd_cmpl = cmpl; 21131 21132 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 21133 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 21134 21135 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21136 "0359 Abort xri x%x, original iotag x%x, " 21137 "abort cmd iotag x%x retval x%x\n", 21138 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 21139 21140 if (retval) { 21141 cmdiocb->cmd_flag &= ~LPFC_DRIVER_ABORTED; 21142 __lpfc_sli_release_iocbq(phba, abtsiocb); 21143 } 21144 21145 return retval; 21146 } 21147 21148 #ifdef LPFC_MXP_STAT 21149 /** 21150 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 21151 * @phba: pointer to lpfc hba data structure. 21152 * @hwqid: belong to which HWQ. 21153 * 21154 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 21155 * 15 seconds after a test case is running. 21156 * 21157 * The user should call lpfc_debugfs_multixripools_write before running a test 21158 * case to clear stat_snapshot_taken. Then the user starts a test case. During 21159 * test case is running, stat_snapshot_taken is incremented by 1 every time when 21160 * this routine is called from heartbeat timer. When stat_snapshot_taken is 21161 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 21162 **/ 21163 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 21164 { 21165 struct lpfc_sli4_hdw_queue *qp; 21166 struct lpfc_multixri_pool *multixri_pool; 21167 struct lpfc_pvt_pool *pvt_pool; 21168 struct lpfc_pbl_pool *pbl_pool; 21169 u32 txcmplq_cnt; 21170 21171 qp = &phba->sli4_hba.hdwq[hwqid]; 21172 multixri_pool = qp->p_multixri_pool; 21173 if (!multixri_pool) 21174 return; 21175 21176 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 21177 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21178 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21179 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21180 21181 multixri_pool->stat_pbl_count = pbl_pool->count; 21182 multixri_pool->stat_pvt_count = pvt_pool->count; 21183 multixri_pool->stat_busy_count = txcmplq_cnt; 21184 } 21185 21186 multixri_pool->stat_snapshot_taken++; 21187 } 21188 #endif 21189 21190 /** 21191 * lpfc_adjust_pvt_pool_count - Adjust private pool count 21192 * @phba: pointer to lpfc hba data structure. 21193 * @hwqid: belong to which HWQ. 21194 * 21195 * This routine moves some XRIs from private to public pool when private pool 21196 * is not busy. 21197 **/ 21198 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 21199 { 21200 struct lpfc_multixri_pool *multixri_pool; 21201 u32 io_req_count; 21202 u32 prev_io_req_count; 21203 21204 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21205 if (!multixri_pool) 21206 return; 21207 io_req_count = multixri_pool->io_req_count; 21208 prev_io_req_count = multixri_pool->prev_io_req_count; 21209 21210 if (prev_io_req_count != io_req_count) { 21211 /* Private pool is busy */ 21212 multixri_pool->prev_io_req_count = io_req_count; 21213 } else { 21214 /* Private pool is not busy. 21215 * Move XRIs from private to public pool. 21216 */ 21217 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 21218 } 21219 } 21220 21221 /** 21222 * lpfc_adjust_high_watermark - Adjust high watermark 21223 * @phba: pointer to lpfc hba data structure. 21224 * @hwqid: belong to which HWQ. 21225 * 21226 * This routine sets high watermark as number of outstanding XRIs, 21227 * but make sure the new value is between xri_limit/2 and xri_limit. 21228 **/ 21229 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 21230 { 21231 u32 new_watermark; 21232 u32 watermark_max; 21233 u32 watermark_min; 21234 u32 xri_limit; 21235 u32 txcmplq_cnt; 21236 u32 abts_io_bufs; 21237 struct lpfc_multixri_pool *multixri_pool; 21238 struct lpfc_sli4_hdw_queue *qp; 21239 21240 qp = &phba->sli4_hba.hdwq[hwqid]; 21241 multixri_pool = qp->p_multixri_pool; 21242 if (!multixri_pool) 21243 return; 21244 xri_limit = multixri_pool->xri_limit; 21245 21246 watermark_max = xri_limit; 21247 watermark_min = xri_limit / 2; 21248 21249 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21250 abts_io_bufs = qp->abts_scsi_io_bufs; 21251 abts_io_bufs += qp->abts_nvme_io_bufs; 21252 21253 new_watermark = txcmplq_cnt + abts_io_bufs; 21254 new_watermark = min(watermark_max, new_watermark); 21255 new_watermark = max(watermark_min, new_watermark); 21256 multixri_pool->pvt_pool.high_watermark = new_watermark; 21257 21258 #ifdef LPFC_MXP_STAT 21259 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 21260 new_watermark); 21261 #endif 21262 } 21263 21264 /** 21265 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 21266 * @phba: pointer to lpfc hba data structure. 21267 * @hwqid: belong to which HWQ. 21268 * 21269 * This routine is called from hearbeat timer when pvt_pool is idle. 21270 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 21271 * The first step moves (all - low_watermark) amount of XRIs. 21272 * The second step moves the rest of XRIs. 21273 **/ 21274 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 21275 { 21276 struct lpfc_pbl_pool *pbl_pool; 21277 struct lpfc_pvt_pool *pvt_pool; 21278 struct lpfc_sli4_hdw_queue *qp; 21279 struct lpfc_io_buf *lpfc_ncmd; 21280 struct lpfc_io_buf *lpfc_ncmd_next; 21281 unsigned long iflag; 21282 struct list_head tmp_list; 21283 u32 tmp_count; 21284 21285 qp = &phba->sli4_hba.hdwq[hwqid]; 21286 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21287 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21288 tmp_count = 0; 21289 21290 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 21291 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 21292 21293 if (pvt_pool->count > pvt_pool->low_watermark) { 21294 /* Step 1: move (all - low_watermark) from pvt_pool 21295 * to pbl_pool 21296 */ 21297 21298 /* Move low watermark of bufs from pvt_pool to tmp_list */ 21299 INIT_LIST_HEAD(&tmp_list); 21300 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21301 &pvt_pool->list, list) { 21302 list_move_tail(&lpfc_ncmd->list, &tmp_list); 21303 tmp_count++; 21304 if (tmp_count >= pvt_pool->low_watermark) 21305 break; 21306 } 21307 21308 /* Move all bufs from pvt_pool to pbl_pool */ 21309 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21310 21311 /* Move all bufs from tmp_list to pvt_pool */ 21312 list_splice(&tmp_list, &pvt_pool->list); 21313 21314 pbl_pool->count += (pvt_pool->count - tmp_count); 21315 pvt_pool->count = tmp_count; 21316 } else { 21317 /* Step 2: move the rest from pvt_pool to pbl_pool */ 21318 list_splice_init(&pvt_pool->list, &pbl_pool->list); 21319 pbl_pool->count += pvt_pool->count; 21320 pvt_pool->count = 0; 21321 } 21322 21323 spin_unlock(&pvt_pool->lock); 21324 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21325 } 21326 21327 /** 21328 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21329 * @phba: pointer to lpfc hba data structure 21330 * @qp: pointer to HDW queue 21331 * @pbl_pool: specified public free XRI pool 21332 * @pvt_pool: specified private free XRI pool 21333 * @count: number of XRIs to move 21334 * 21335 * This routine tries to move some free common bufs from the specified pbl_pool 21336 * to the specified pvt_pool. It might move less than count XRIs if there's not 21337 * enough in public pool. 21338 * 21339 * Return: 21340 * true - if XRIs are successfully moved from the specified pbl_pool to the 21341 * specified pvt_pool 21342 * false - if the specified pbl_pool is empty or locked by someone else 21343 **/ 21344 static bool 21345 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 21346 struct lpfc_pbl_pool *pbl_pool, 21347 struct lpfc_pvt_pool *pvt_pool, u32 count) 21348 { 21349 struct lpfc_io_buf *lpfc_ncmd; 21350 struct lpfc_io_buf *lpfc_ncmd_next; 21351 unsigned long iflag; 21352 int ret; 21353 21354 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 21355 if (ret) { 21356 if (pbl_pool->count) { 21357 /* Move a batch of XRIs from public to private pool */ 21358 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 21359 list_for_each_entry_safe(lpfc_ncmd, 21360 lpfc_ncmd_next, 21361 &pbl_pool->list, 21362 list) { 21363 list_move_tail(&lpfc_ncmd->list, 21364 &pvt_pool->list); 21365 pvt_pool->count++; 21366 pbl_pool->count--; 21367 count--; 21368 if (count == 0) 21369 break; 21370 } 21371 21372 spin_unlock(&pvt_pool->lock); 21373 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21374 return true; 21375 } 21376 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21377 } 21378 21379 return false; 21380 } 21381 21382 /** 21383 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21384 * @phba: pointer to lpfc hba data structure. 21385 * @hwqid: belong to which HWQ. 21386 * @count: number of XRIs to move 21387 * 21388 * This routine tries to find some free common bufs in one of public pools with 21389 * Round Robin method. The search always starts from local hwqid, then the next 21390 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21391 * a batch of free common bufs are moved to private pool on hwqid. 21392 * It might move less than count XRIs if there's not enough in public pool. 21393 **/ 21394 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21395 { 21396 struct lpfc_multixri_pool *multixri_pool; 21397 struct lpfc_multixri_pool *next_multixri_pool; 21398 struct lpfc_pvt_pool *pvt_pool; 21399 struct lpfc_pbl_pool *pbl_pool; 21400 struct lpfc_sli4_hdw_queue *qp; 21401 u32 next_hwqid; 21402 u32 hwq_count; 21403 int ret; 21404 21405 qp = &phba->sli4_hba.hdwq[hwqid]; 21406 multixri_pool = qp->p_multixri_pool; 21407 pvt_pool = &multixri_pool->pvt_pool; 21408 pbl_pool = &multixri_pool->pbl_pool; 21409 21410 /* Check if local pbl_pool is available */ 21411 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21412 if (ret) { 21413 #ifdef LPFC_MXP_STAT 21414 multixri_pool->local_pbl_hit_count++; 21415 #endif 21416 return; 21417 } 21418 21419 hwq_count = phba->cfg_hdw_queue; 21420 21421 /* Get the next hwqid which was found last time */ 21422 next_hwqid = multixri_pool->rrb_next_hwqid; 21423 21424 do { 21425 /* Go to next hwq */ 21426 next_hwqid = (next_hwqid + 1) % hwq_count; 21427 21428 next_multixri_pool = 21429 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21430 pbl_pool = &next_multixri_pool->pbl_pool; 21431 21432 /* Check if the public free xri pool is available */ 21433 ret = _lpfc_move_xri_pbl_to_pvt( 21434 phba, qp, pbl_pool, pvt_pool, count); 21435 21436 /* Exit while-loop if success or all hwqid are checked */ 21437 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21438 21439 /* Starting point for the next time */ 21440 multixri_pool->rrb_next_hwqid = next_hwqid; 21441 21442 if (!ret) { 21443 /* stats: all public pools are empty*/ 21444 multixri_pool->pbl_empty_count++; 21445 } 21446 21447 #ifdef LPFC_MXP_STAT 21448 if (ret) { 21449 if (next_hwqid == hwqid) 21450 multixri_pool->local_pbl_hit_count++; 21451 else 21452 multixri_pool->other_pbl_hit_count++; 21453 } 21454 #endif 21455 } 21456 21457 /** 21458 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21459 * @phba: pointer to lpfc hba data structure. 21460 * @hwqid: belong to which HWQ. 21461 * 21462 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21463 * low watermark. 21464 **/ 21465 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21466 { 21467 struct lpfc_multixri_pool *multixri_pool; 21468 struct lpfc_pvt_pool *pvt_pool; 21469 21470 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21471 pvt_pool = &multixri_pool->pvt_pool; 21472 21473 if (pvt_pool->count < pvt_pool->low_watermark) 21474 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21475 } 21476 21477 /** 21478 * lpfc_release_io_buf - Return one IO buf back to free pool 21479 * @phba: pointer to lpfc hba data structure. 21480 * @lpfc_ncmd: IO buf to be returned. 21481 * @qp: belong to which HWQ. 21482 * 21483 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21484 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21485 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21486 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21487 * lpfc_io_buf_list_put. 21488 **/ 21489 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21490 struct lpfc_sli4_hdw_queue *qp) 21491 { 21492 unsigned long iflag; 21493 struct lpfc_pbl_pool *pbl_pool; 21494 struct lpfc_pvt_pool *pvt_pool; 21495 struct lpfc_epd_pool *epd_pool; 21496 u32 txcmplq_cnt; 21497 u32 xri_owned; 21498 u32 xri_limit; 21499 u32 abts_io_bufs; 21500 21501 /* MUST zero fields if buffer is reused by another protocol */ 21502 lpfc_ncmd->nvmeCmd = NULL; 21503 lpfc_ncmd->cur_iocbq.cmd_cmpl = NULL; 21504 21505 if (phba->cfg_xpsgl && !phba->nvmet_support && 21506 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21507 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21508 21509 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21510 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21511 21512 if (phba->cfg_xri_rebalancing) { 21513 if (lpfc_ncmd->expedite) { 21514 /* Return to expedite pool */ 21515 epd_pool = &phba->epd_pool; 21516 spin_lock_irqsave(&epd_pool->lock, iflag); 21517 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21518 epd_pool->count++; 21519 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21520 return; 21521 } 21522 21523 /* Avoid invalid access if an IO sneaks in and is being rejected 21524 * just _after_ xri pools are destroyed in lpfc_offline. 21525 * Nothing much can be done at this point. 21526 */ 21527 if (!qp->p_multixri_pool) 21528 return; 21529 21530 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21531 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21532 21533 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21534 abts_io_bufs = qp->abts_scsi_io_bufs; 21535 abts_io_bufs += qp->abts_nvme_io_bufs; 21536 21537 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21538 xri_limit = qp->p_multixri_pool->xri_limit; 21539 21540 #ifdef LPFC_MXP_STAT 21541 if (xri_owned <= xri_limit) 21542 qp->p_multixri_pool->below_limit_count++; 21543 else 21544 qp->p_multixri_pool->above_limit_count++; 21545 #endif 21546 21547 /* XRI goes to either public or private free xri pool 21548 * based on watermark and xri_limit 21549 */ 21550 if ((pvt_pool->count < pvt_pool->low_watermark) || 21551 (xri_owned < xri_limit && 21552 pvt_pool->count < pvt_pool->high_watermark)) { 21553 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21554 qp, free_pvt_pool); 21555 list_add_tail(&lpfc_ncmd->list, 21556 &pvt_pool->list); 21557 pvt_pool->count++; 21558 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21559 } else { 21560 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21561 qp, free_pub_pool); 21562 list_add_tail(&lpfc_ncmd->list, 21563 &pbl_pool->list); 21564 pbl_pool->count++; 21565 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21566 } 21567 } else { 21568 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21569 qp, free_xri); 21570 list_add_tail(&lpfc_ncmd->list, 21571 &qp->lpfc_io_buf_list_put); 21572 qp->put_io_bufs++; 21573 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21574 iflag); 21575 } 21576 } 21577 21578 /** 21579 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21580 * @phba: pointer to lpfc hba data structure. 21581 * @qp: pointer to HDW queue 21582 * @pvt_pool: pointer to private pool data structure. 21583 * @ndlp: pointer to lpfc nodelist data structure. 21584 * 21585 * This routine tries to get one free IO buf from private pool. 21586 * 21587 * Return: 21588 * pointer to one free IO buf - if private pool is not empty 21589 * NULL - if private pool is empty 21590 **/ 21591 static struct lpfc_io_buf * 21592 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21593 struct lpfc_sli4_hdw_queue *qp, 21594 struct lpfc_pvt_pool *pvt_pool, 21595 struct lpfc_nodelist *ndlp) 21596 { 21597 struct lpfc_io_buf *lpfc_ncmd; 21598 struct lpfc_io_buf *lpfc_ncmd_next; 21599 unsigned long iflag; 21600 21601 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21602 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21603 &pvt_pool->list, list) { 21604 if (lpfc_test_rrq_active( 21605 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21606 continue; 21607 list_del(&lpfc_ncmd->list); 21608 pvt_pool->count--; 21609 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21610 return lpfc_ncmd; 21611 } 21612 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21613 21614 return NULL; 21615 } 21616 21617 /** 21618 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21619 * @phba: pointer to lpfc hba data structure. 21620 * 21621 * This routine tries to get one free IO buf from expedite pool. 21622 * 21623 * Return: 21624 * pointer to one free IO buf - if expedite pool is not empty 21625 * NULL - if expedite pool is empty 21626 **/ 21627 static struct lpfc_io_buf * 21628 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21629 { 21630 struct lpfc_io_buf *lpfc_ncmd; 21631 struct lpfc_io_buf *lpfc_ncmd_next; 21632 unsigned long iflag; 21633 struct lpfc_epd_pool *epd_pool; 21634 21635 epd_pool = &phba->epd_pool; 21636 lpfc_ncmd = NULL; 21637 21638 spin_lock_irqsave(&epd_pool->lock, iflag); 21639 if (epd_pool->count > 0) { 21640 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21641 &epd_pool->list, list) { 21642 list_del(&lpfc_ncmd->list); 21643 epd_pool->count--; 21644 break; 21645 } 21646 } 21647 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21648 21649 return lpfc_ncmd; 21650 } 21651 21652 /** 21653 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21654 * @phba: pointer to lpfc hba data structure. 21655 * @ndlp: pointer to lpfc nodelist data structure. 21656 * @hwqid: belong to which HWQ 21657 * @expedite: 1 means this request is urgent. 21658 * 21659 * This routine will do the following actions and then return a pointer to 21660 * one free IO buf. 21661 * 21662 * 1. If private free xri count is empty, move some XRIs from public to 21663 * private pool. 21664 * 2. Get one XRI from private free xri pool. 21665 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21666 * get one free xri from expedite pool. 21667 * 21668 * Note: ndlp is only used on SCSI side for RRQ testing. 21669 * The caller should pass NULL for ndlp on NVME side. 21670 * 21671 * Return: 21672 * pointer to one free IO buf - if private pool is not empty 21673 * NULL - if private pool is empty 21674 **/ 21675 static struct lpfc_io_buf * 21676 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21677 struct lpfc_nodelist *ndlp, 21678 int hwqid, int expedite) 21679 { 21680 struct lpfc_sli4_hdw_queue *qp; 21681 struct lpfc_multixri_pool *multixri_pool; 21682 struct lpfc_pvt_pool *pvt_pool; 21683 struct lpfc_io_buf *lpfc_ncmd; 21684 21685 qp = &phba->sli4_hba.hdwq[hwqid]; 21686 lpfc_ncmd = NULL; 21687 if (!qp) { 21688 lpfc_printf_log(phba, KERN_INFO, 21689 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21690 "5556 NULL qp for hwqid x%x\n", hwqid); 21691 return lpfc_ncmd; 21692 } 21693 multixri_pool = qp->p_multixri_pool; 21694 if (!multixri_pool) { 21695 lpfc_printf_log(phba, KERN_INFO, 21696 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21697 "5557 NULL multixri for hwqid x%x\n", hwqid); 21698 return lpfc_ncmd; 21699 } 21700 pvt_pool = &multixri_pool->pvt_pool; 21701 if (!pvt_pool) { 21702 lpfc_printf_log(phba, KERN_INFO, 21703 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21704 "5558 NULL pvt_pool for hwqid x%x\n", hwqid); 21705 return lpfc_ncmd; 21706 } 21707 multixri_pool->io_req_count++; 21708 21709 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21710 if (pvt_pool->count == 0) 21711 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21712 21713 /* Get one XRI from private free xri pool */ 21714 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21715 21716 if (lpfc_ncmd) { 21717 lpfc_ncmd->hdwq = qp; 21718 lpfc_ncmd->hdwq_no = hwqid; 21719 } else if (expedite) { 21720 /* If we fail to get one from pvt_pool and this is an expedite 21721 * request, get one free xri from expedite pool. 21722 */ 21723 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21724 } 21725 21726 return lpfc_ncmd; 21727 } 21728 21729 static inline struct lpfc_io_buf * 21730 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21731 { 21732 struct lpfc_sli4_hdw_queue *qp; 21733 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21734 21735 qp = &phba->sli4_hba.hdwq[idx]; 21736 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21737 &qp->lpfc_io_buf_list_get, list) { 21738 if (lpfc_test_rrq_active(phba, ndlp, 21739 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21740 continue; 21741 21742 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21743 continue; 21744 21745 list_del_init(&lpfc_cmd->list); 21746 qp->get_io_bufs--; 21747 lpfc_cmd->hdwq = qp; 21748 lpfc_cmd->hdwq_no = idx; 21749 return lpfc_cmd; 21750 } 21751 return NULL; 21752 } 21753 21754 /** 21755 * lpfc_get_io_buf - Get one IO buffer from free pool 21756 * @phba: The HBA for which this call is being executed. 21757 * @ndlp: pointer to lpfc nodelist data structure. 21758 * @hwqid: belong to which HWQ 21759 * @expedite: 1 means this request is urgent. 21760 * 21761 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21762 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21763 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21764 * 21765 * Note: ndlp is only used on SCSI side for RRQ testing. 21766 * The caller should pass NULL for ndlp on NVME side. 21767 * 21768 * Return codes: 21769 * NULL - Error 21770 * Pointer to lpfc_io_buf - Success 21771 **/ 21772 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21773 struct lpfc_nodelist *ndlp, 21774 u32 hwqid, int expedite) 21775 { 21776 struct lpfc_sli4_hdw_queue *qp; 21777 unsigned long iflag; 21778 struct lpfc_io_buf *lpfc_cmd; 21779 21780 qp = &phba->sli4_hba.hdwq[hwqid]; 21781 lpfc_cmd = NULL; 21782 if (!qp) { 21783 lpfc_printf_log(phba, KERN_WARNING, 21784 LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 21785 "5555 NULL qp for hwqid x%x\n", hwqid); 21786 return lpfc_cmd; 21787 } 21788 21789 if (phba->cfg_xri_rebalancing) 21790 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21791 phba, ndlp, hwqid, expedite); 21792 else { 21793 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21794 qp, alloc_xri_get); 21795 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21796 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21797 if (!lpfc_cmd) { 21798 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21799 qp, alloc_xri_put); 21800 list_splice(&qp->lpfc_io_buf_list_put, 21801 &qp->lpfc_io_buf_list_get); 21802 qp->get_io_bufs += qp->put_io_bufs; 21803 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21804 qp->put_io_bufs = 0; 21805 spin_unlock(&qp->io_buf_list_put_lock); 21806 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21807 expedite) 21808 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21809 } 21810 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21811 } 21812 21813 return lpfc_cmd; 21814 } 21815 21816 /** 21817 * lpfc_read_object - Retrieve object data from HBA 21818 * @phba: The HBA for which this call is being executed. 21819 * @rdobject: Pathname of object data we want to read. 21820 * @datap: Pointer to where data will be copied to. 21821 * @datasz: size of data area 21822 * 21823 * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. 21824 * The data will be truncated if datasz is not large enough. 21825 * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. 21826 * Returns the actual bytes read from the object. 21827 */ 21828 int 21829 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, 21830 uint32_t datasz) 21831 { 21832 struct lpfc_mbx_read_object *read_object; 21833 LPFC_MBOXQ_t *mbox; 21834 int rc, length, eof, j, byte_cnt = 0; 21835 uint32_t shdr_status, shdr_add_status; 21836 union lpfc_sli4_cfg_shdr *shdr; 21837 struct lpfc_dmabuf *pcmd; 21838 u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; 21839 21840 /* sanity check on queue memory */ 21841 if (!datap) 21842 return -ENODEV; 21843 21844 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 21845 if (!mbox) 21846 return -ENOMEM; 21847 length = (sizeof(struct lpfc_mbx_read_object) - 21848 sizeof(struct lpfc_sli4_cfg_mhdr)); 21849 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 21850 LPFC_MBOX_OPCODE_READ_OBJECT, 21851 length, LPFC_SLI4_MBX_EMBED); 21852 read_object = &mbox->u.mqe.un.read_object; 21853 shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; 21854 21855 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); 21856 bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); 21857 read_object->u.request.rd_object_offset = 0; 21858 read_object->u.request.rd_object_cnt = 1; 21859 21860 memset((void *)read_object->u.request.rd_object_name, 0, 21861 LPFC_OBJ_NAME_SZ); 21862 scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); 21863 for (j = 0; j < strlen(rdobject); j++) 21864 read_object->u.request.rd_object_name[j] = 21865 cpu_to_le32(rd_object_name[j]); 21866 21867 pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); 21868 if (pcmd) 21869 pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); 21870 if (!pcmd || !pcmd->virt) { 21871 kfree(pcmd); 21872 mempool_free(mbox, phba->mbox_mem_pool); 21873 return -ENOMEM; 21874 } 21875 memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); 21876 read_object->u.request.rd_object_hbuf[0].pa_lo = 21877 putPaddrLow(pcmd->phys); 21878 read_object->u.request.rd_object_hbuf[0].pa_hi = 21879 putPaddrHigh(pcmd->phys); 21880 read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; 21881 21882 mbox->vport = phba->pport; 21883 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 21884 mbox->ctx_ndlp = NULL; 21885 21886 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 21887 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 21888 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 21889 21890 if (shdr_status == STATUS_FAILED && 21891 shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { 21892 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21893 "4674 No port cfg file in FW.\n"); 21894 byte_cnt = -ENOENT; 21895 } else if (shdr_status || shdr_add_status || rc) { 21896 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, 21897 "2625 READ_OBJECT mailbox failed with " 21898 "status x%x add_status x%x, mbx status x%x\n", 21899 shdr_status, shdr_add_status, rc); 21900 byte_cnt = -ENXIO; 21901 } else { 21902 /* Success */ 21903 length = read_object->u.response.rd_object_actual_rlen; 21904 eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); 21905 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, 21906 "2626 READ_OBJECT Success len %d:%d, EOF %d\n", 21907 length, datasz, eof); 21908 21909 /* Detect the port config file exists but is empty */ 21910 if (!length && eof) { 21911 byte_cnt = 0; 21912 goto exit; 21913 } 21914 21915 byte_cnt = length; 21916 lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); 21917 } 21918 21919 exit: 21920 /* This is an embedded SLI4 mailbox with an external buffer allocated. 21921 * Free the pcmd and then cleanup with the correct routine. 21922 */ 21923 lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); 21924 kfree(pcmd); 21925 lpfc_sli4_mbox_cmd_free(phba, mbox); 21926 return byte_cnt; 21927 } 21928 21929 /** 21930 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21931 * @phba: The HBA for which this call is being executed. 21932 * @lpfc_buf: IO buf structure to append the SGL chunk 21933 * 21934 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21935 * and will allocate an SGL chunk if the pool is empty. 21936 * 21937 * Return codes: 21938 * NULL - Error 21939 * Pointer to sli4_hybrid_sgl - Success 21940 **/ 21941 struct sli4_hybrid_sgl * 21942 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21943 { 21944 struct sli4_hybrid_sgl *list_entry = NULL; 21945 struct sli4_hybrid_sgl *tmp = NULL; 21946 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21947 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21948 struct list_head *buf_list = &hdwq->sgl_list; 21949 unsigned long iflags; 21950 21951 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21952 21953 if (likely(!list_empty(buf_list))) { 21954 /* break off 1 chunk from the sgl_list */ 21955 list_for_each_entry_safe(list_entry, tmp, 21956 buf_list, list_node) { 21957 list_move_tail(&list_entry->list_node, 21958 &lpfc_buf->dma_sgl_xtra_list); 21959 break; 21960 } 21961 } else { 21962 /* allocate more */ 21963 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21964 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21965 cpu_to_node(hdwq->io_wq->chann)); 21966 if (!tmp) { 21967 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21968 "8353 error kmalloc memory for HDWQ " 21969 "%d %s\n", 21970 lpfc_buf->hdwq_no, __func__); 21971 return NULL; 21972 } 21973 21974 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21975 GFP_ATOMIC, &tmp->dma_phys_sgl); 21976 if (!tmp->dma_sgl) { 21977 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21978 "8354 error pool_alloc memory for HDWQ " 21979 "%d %s\n", 21980 lpfc_buf->hdwq_no, __func__); 21981 kfree(tmp); 21982 return NULL; 21983 } 21984 21985 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21986 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21987 } 21988 21989 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21990 struct sli4_hybrid_sgl, 21991 list_node); 21992 21993 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21994 21995 return allocated_sgl; 21996 } 21997 21998 /** 21999 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 22000 * @phba: The HBA for which this call is being executed. 22001 * @lpfc_buf: IO buf structure with the SGL chunk 22002 * 22003 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 22004 * 22005 * Return codes: 22006 * 0 - Success 22007 * -EINVAL - Error 22008 **/ 22009 int 22010 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 22011 { 22012 int rc = 0; 22013 struct sli4_hybrid_sgl *list_entry = NULL; 22014 struct sli4_hybrid_sgl *tmp = NULL; 22015 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22016 struct list_head *buf_list = &hdwq->sgl_list; 22017 unsigned long iflags; 22018 22019 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22020 22021 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 22022 list_for_each_entry_safe(list_entry, tmp, 22023 &lpfc_buf->dma_sgl_xtra_list, 22024 list_node) { 22025 list_move_tail(&list_entry->list_node, 22026 buf_list); 22027 } 22028 } else { 22029 rc = -EINVAL; 22030 } 22031 22032 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22033 return rc; 22034 } 22035 22036 /** 22037 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 22038 * @phba: phba object 22039 * @hdwq: hdwq to cleanup sgl buff resources on 22040 * 22041 * This routine frees all SGL chunks of hdwq SGL chunk pool. 22042 * 22043 * Return codes: 22044 * None 22045 **/ 22046 void 22047 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 22048 struct lpfc_sli4_hdw_queue *hdwq) 22049 { 22050 struct list_head *buf_list = &hdwq->sgl_list; 22051 struct sli4_hybrid_sgl *list_entry = NULL; 22052 struct sli4_hybrid_sgl *tmp = NULL; 22053 unsigned long iflags; 22054 22055 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22056 22057 /* Free sgl pool */ 22058 list_for_each_entry_safe(list_entry, tmp, 22059 buf_list, list_node) { 22060 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 22061 list_entry->dma_sgl, 22062 list_entry->dma_phys_sgl); 22063 list_del(&list_entry->list_node); 22064 kfree(list_entry); 22065 } 22066 22067 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22068 } 22069 22070 /** 22071 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 22072 * @phba: The HBA for which this call is being executed. 22073 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 22074 * 22075 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 22076 * and will allocate an CMD/RSP buffer if the pool is empty. 22077 * 22078 * Return codes: 22079 * NULL - Error 22080 * Pointer to fcp_cmd_rsp_buf - Success 22081 **/ 22082 struct fcp_cmd_rsp_buf * 22083 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22084 struct lpfc_io_buf *lpfc_buf) 22085 { 22086 struct fcp_cmd_rsp_buf *list_entry = NULL; 22087 struct fcp_cmd_rsp_buf *tmp = NULL; 22088 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 22089 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22090 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22091 unsigned long iflags; 22092 22093 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22094 22095 if (likely(!list_empty(buf_list))) { 22096 /* break off 1 chunk from the list */ 22097 list_for_each_entry_safe(list_entry, tmp, 22098 buf_list, 22099 list_node) { 22100 list_move_tail(&list_entry->list_node, 22101 &lpfc_buf->dma_cmd_rsp_list); 22102 break; 22103 } 22104 } else { 22105 /* allocate more */ 22106 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22107 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 22108 cpu_to_node(hdwq->io_wq->chann)); 22109 if (!tmp) { 22110 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22111 "8355 error kmalloc memory for HDWQ " 22112 "%d %s\n", 22113 lpfc_buf->hdwq_no, __func__); 22114 return NULL; 22115 } 22116 22117 tmp->fcp_cmnd = dma_pool_zalloc(phba->lpfc_cmd_rsp_buf_pool, 22118 GFP_ATOMIC, 22119 &tmp->fcp_cmd_rsp_dma_handle); 22120 22121 if (!tmp->fcp_cmnd) { 22122 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 22123 "8356 error pool_alloc memory for HDWQ " 22124 "%d %s\n", 22125 lpfc_buf->hdwq_no, __func__); 22126 kfree(tmp); 22127 return NULL; 22128 } 22129 22130 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 22131 sizeof(struct fcp_cmnd)); 22132 22133 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22134 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 22135 } 22136 22137 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 22138 struct fcp_cmd_rsp_buf, 22139 list_node); 22140 22141 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22142 22143 return allocated_buf; 22144 } 22145 22146 /** 22147 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 22148 * @phba: The HBA for which this call is being executed. 22149 * @lpfc_buf: IO buf structure with the CMD/RSP buf 22150 * 22151 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 22152 * 22153 * Return codes: 22154 * 0 - Success 22155 * -EINVAL - Error 22156 **/ 22157 int 22158 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22159 struct lpfc_io_buf *lpfc_buf) 22160 { 22161 int rc = 0; 22162 struct fcp_cmd_rsp_buf *list_entry = NULL; 22163 struct fcp_cmd_rsp_buf *tmp = NULL; 22164 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 22165 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22166 unsigned long iflags; 22167 22168 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22169 22170 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 22171 list_for_each_entry_safe(list_entry, tmp, 22172 &lpfc_buf->dma_cmd_rsp_list, 22173 list_node) { 22174 list_move_tail(&list_entry->list_node, 22175 buf_list); 22176 } 22177 } else { 22178 rc = -EINVAL; 22179 } 22180 22181 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22182 return rc; 22183 } 22184 22185 /** 22186 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 22187 * @phba: phba object 22188 * @hdwq: hdwq to cleanup cmd rsp buff resources on 22189 * 22190 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 22191 * 22192 * Return codes: 22193 * None 22194 **/ 22195 void 22196 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 22197 struct lpfc_sli4_hdw_queue *hdwq) 22198 { 22199 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 22200 struct fcp_cmd_rsp_buf *list_entry = NULL; 22201 struct fcp_cmd_rsp_buf *tmp = NULL; 22202 unsigned long iflags; 22203 22204 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 22205 22206 /* Free cmd_rsp buf pool */ 22207 list_for_each_entry_safe(list_entry, tmp, 22208 buf_list, 22209 list_node) { 22210 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 22211 list_entry->fcp_cmnd, 22212 list_entry->fcp_cmd_rsp_dma_handle); 22213 list_del(&list_entry->list_node); 22214 kfree(list_entry); 22215 } 22216 22217 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 22218 } 22219 22220 /** 22221 * lpfc_sli_prep_wqe - Prepare WQE for the command to be posted 22222 * @phba: phba object 22223 * @job: job entry of the command to be posted. 22224 * 22225 * Fill the common fields of the wqe for each of the command. 22226 * 22227 * Return codes: 22228 * None 22229 **/ 22230 void 22231 lpfc_sli_prep_wqe(struct lpfc_hba *phba, struct lpfc_iocbq *job) 22232 { 22233 u8 cmnd; 22234 u32 *pcmd; 22235 u32 if_type = 0; 22236 u32 fip, abort_tag; 22237 struct lpfc_nodelist *ndlp = NULL; 22238 union lpfc_wqe128 *wqe = &job->wqe; 22239 u8 command_type = ELS_COMMAND_NON_FIP; 22240 22241 fip = phba->hba_flag & HBA_FIP_SUPPORT; 22242 /* The fcp commands will set command type */ 22243 if (job->cmd_flag & LPFC_IO_FCP) 22244 command_type = FCP_COMMAND; 22245 else if (fip && (job->cmd_flag & LPFC_FIP_ELS_ID_MASK)) 22246 command_type = ELS_COMMAND_FIP; 22247 else 22248 command_type = ELS_COMMAND_NON_FIP; 22249 22250 abort_tag = job->iotag; 22251 cmnd = bf_get(wqe_cmnd, &wqe->els_req.wqe_com); 22252 22253 switch (cmnd) { 22254 case CMD_ELS_REQUEST64_WQE: 22255 ndlp = job->ndlp; 22256 22257 if_type = bf_get(lpfc_sli_intf_if_type, 22258 &phba->sli4_hba.sli_intf); 22259 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22260 pcmd = (u32 *)job->cmd_dmabuf->virt; 22261 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 22262 *pcmd == ELS_CMD_SCR || 22263 *pcmd == ELS_CMD_RDF || 22264 *pcmd == ELS_CMD_EDC || 22265 *pcmd == ELS_CMD_RSCN_XMT || 22266 *pcmd == ELS_CMD_FDISC || 22267 *pcmd == ELS_CMD_LOGO || 22268 *pcmd == ELS_CMD_QFPA || 22269 *pcmd == ELS_CMD_UVEM || 22270 *pcmd == ELS_CMD_PLOGI)) { 22271 bf_set(els_req64_sp, &wqe->els_req, 1); 22272 bf_set(els_req64_sid, &wqe->els_req, 22273 job->vport->fc_myDID); 22274 22275 if ((*pcmd == ELS_CMD_FLOGI) && 22276 !(phba->fc_topology == 22277 LPFC_TOPOLOGY_LOOP)) 22278 bf_set(els_req64_sid, &wqe->els_req, 0); 22279 22280 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 22281 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22282 phba->vpi_ids[job->vport->vpi]); 22283 } else if (pcmd) { 22284 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 22285 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 22286 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22287 } 22288 } 22289 22290 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 22291 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22292 22293 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 22294 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 22295 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 22296 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22297 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 22298 break; 22299 case CMD_XMIT_ELS_RSP64_WQE: 22300 ndlp = job->ndlp; 22301 22302 /* word4 */ 22303 wqe->xmit_els_rsp.word4 = 0; 22304 22305 if_type = bf_get(lpfc_sli_intf_if_type, 22306 &phba->sli4_hba.sli_intf); 22307 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 22308 if (job->vport->fc_flag & FC_PT2PT) { 22309 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22310 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22311 job->vport->fc_myDID); 22312 if (job->vport->fc_myDID == Fabric_DID) { 22313 bf_set(wqe_els_did, 22314 &wqe->xmit_els_rsp.wqe_dest, 0); 22315 } 22316 } 22317 } 22318 22319 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 22320 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 22321 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 22322 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 22323 LPFC_WQE_LENLOC_WORD3); 22324 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 22325 22326 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 22327 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 22328 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 22329 job->vport->fc_myDID); 22330 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 22331 } 22332 22333 if (phba->sli_rev == LPFC_SLI_REV4) { 22334 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 22335 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 22336 22337 if (bf_get(wqe_ct, &wqe->xmit_els_rsp.wqe_com)) 22338 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 22339 phba->vpi_ids[job->vport->vpi]); 22340 } 22341 command_type = OTHER_COMMAND; 22342 break; 22343 case CMD_GEN_REQUEST64_WQE: 22344 /* Word 10 */ 22345 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 22346 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 22347 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 22348 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 22349 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 22350 command_type = OTHER_COMMAND; 22351 break; 22352 case CMD_XMIT_SEQUENCE64_WQE: 22353 if (phba->link_flag & LS_LOOPBACK_MODE) 22354 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 22355 22356 wqe->xmit_sequence.rsvd3 = 0; 22357 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 22358 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 22359 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 22360 LPFC_WQE_IOD_WRITE); 22361 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 22362 LPFC_WQE_LENLOC_WORD12); 22363 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 22364 command_type = OTHER_COMMAND; 22365 break; 22366 case CMD_XMIT_BLS_RSP64_WQE: 22367 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 22368 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 22369 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 22370 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 22371 phba->vpi_ids[phba->pport->vpi]); 22372 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 22373 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 22374 LPFC_WQE_LENLOC_NONE); 22375 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 22376 command_type = OTHER_COMMAND; 22377 break; 22378 case CMD_FCP_ICMND64_WQE: /* task mgmt commands */ 22379 case CMD_ABORT_XRI_WQE: /* abort iotag */ 22380 case CMD_SEND_FRAME: /* mds loopback */ 22381 /* cases already formatted for sli4 wqe - no chgs necessary */ 22382 return; 22383 default: 22384 dump_stack(); 22385 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 22386 "6207 Invalid command 0x%x\n", 22387 cmnd); 22388 break; 22389 } 22390 22391 wqe->generic.wqe_com.abort_tag = abort_tag; 22392 bf_set(wqe_reqtag, &wqe->generic.wqe_com, job->iotag); 22393 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 22394 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 22395 } 22396