xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 7b73a9c8)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2019 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
82 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_queue *eq,
87 				     struct lpfc_eqe *eqe);
88 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
89 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
90 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
91 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
92 				    struct lpfc_queue *cq,
93 				    struct lpfc_cqe *cqe);
94 
95 static IOCB_t *
96 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
97 {
98 	return &iocbq->iocb;
99 }
100 
101 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
102 /**
103  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
104  * @srcp: Source memory pointer.
105  * @destp: Destination memory pointer.
106  * @cnt: Number of words required to be copied.
107  *       Must be a multiple of sizeof(uint64_t)
108  *
109  * This function is used for copying data between driver memory
110  * and the SLI WQ. This function also changes the endianness
111  * of each word if native endianness is different from SLI
112  * endianness. This function can be called with or without
113  * lock.
114  **/
115 static void
116 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
117 {
118 	uint64_t *src = srcp;
119 	uint64_t *dest = destp;
120 	int i;
121 
122 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
123 		*dest++ = *src++;
124 }
125 #else
126 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
127 #endif
128 
129 /**
130  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
131  * @q: The Work Queue to operate on.
132  * @wqe: The work Queue Entry to put on the Work queue.
133  *
134  * This routine will copy the contents of @wqe to the next available entry on
135  * the @q. This function will then ring the Work Queue Doorbell to signal the
136  * HBA to start processing the Work Queue Entry. This function returns 0 if
137  * successful. If no entries are available on @q then this function will return
138  * -ENOMEM.
139  * The caller is expected to hold the hbalock when calling this routine.
140  **/
141 static int
142 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
143 {
144 	union lpfc_wqe *temp_wqe;
145 	struct lpfc_register doorbell;
146 	uint32_t host_index;
147 	uint32_t idx;
148 	uint32_t i = 0;
149 	uint8_t *tmp;
150 	u32 if_type;
151 
152 	/* sanity check on queue memory */
153 	if (unlikely(!q))
154 		return -ENOMEM;
155 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
156 
157 	/* If the host has not yet processed the next entry then we are done */
158 	idx = ((q->host_index + 1) % q->entry_count);
159 	if (idx == q->hba_index) {
160 		q->WQ_overflow++;
161 		return -EBUSY;
162 	}
163 	q->WQ_posted++;
164 	/* set consumption flag every once in a while */
165 	if (!((q->host_index + 1) % q->notify_interval))
166 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
167 	else
168 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
169 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
170 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
171 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
172 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
173 		/* write to DPP aperture taking advatage of Combined Writes */
174 		tmp = (uint8_t *)temp_wqe;
175 #ifdef __raw_writeq
176 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
177 			__raw_writeq(*((uint64_t *)(tmp + i)),
178 					q->dpp_regaddr + i);
179 #else
180 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
181 			__raw_writel(*((uint32_t *)(tmp + i)),
182 					q->dpp_regaddr + i);
183 #endif
184 	}
185 	/* ensure WQE bcopy and DPP flushed before doorbell write */
186 	wmb();
187 
188 	/* Update the host index before invoking device */
189 	host_index = q->host_index;
190 
191 	q->host_index = idx;
192 
193 	/* Ring Doorbell */
194 	doorbell.word0 = 0;
195 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
196 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
197 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
198 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
199 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
200 			    q->dpp_id);
201 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
202 			    q->queue_id);
203 		} else {
204 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
205 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
206 
207 			/* Leave bits <23:16> clear for if_type 6 dpp */
208 			if_type = bf_get(lpfc_sli_intf_if_type,
209 					 &q->phba->sli4_hba.sli_intf);
210 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
211 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
212 				       host_index);
213 		}
214 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
215 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
216 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
217 	} else {
218 		return -EINVAL;
219 	}
220 	writel(doorbell.word0, q->db_regaddr);
221 
222 	return 0;
223 }
224 
225 /**
226  * lpfc_sli4_wq_release - Updates internal hba index for WQ
227  * @q: The Work Queue to operate on.
228  * @index: The index to advance the hba index to.
229  *
230  * This routine will update the HBA index of a queue to reflect consumption of
231  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
232  * an entry the host calls this function to update the queue's internal
233  * pointers. This routine returns the number of entries that were consumed by
234  * the HBA.
235  **/
236 static uint32_t
237 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
238 {
239 	uint32_t released = 0;
240 
241 	/* sanity check on queue memory */
242 	if (unlikely(!q))
243 		return 0;
244 
245 	if (q->hba_index == index)
246 		return 0;
247 	do {
248 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
249 		released++;
250 	} while (q->hba_index != index);
251 	return released;
252 }
253 
254 /**
255  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
256  * @q: The Mailbox Queue to operate on.
257  * @wqe: The Mailbox Queue Entry to put on the Work queue.
258  *
259  * This routine will copy the contents of @mqe to the next available entry on
260  * the @q. This function will then ring the Work Queue Doorbell to signal the
261  * HBA to start processing the Work Queue Entry. This function returns 0 if
262  * successful. If no entries are available on @q then this function will return
263  * -ENOMEM.
264  * The caller is expected to hold the hbalock when calling this routine.
265  **/
266 static uint32_t
267 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
268 {
269 	struct lpfc_mqe *temp_mqe;
270 	struct lpfc_register doorbell;
271 
272 	/* sanity check on queue memory */
273 	if (unlikely(!q))
274 		return -ENOMEM;
275 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
276 
277 	/* If the host has not yet processed the next entry then we are done */
278 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
279 		return -ENOMEM;
280 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
281 	/* Save off the mailbox pointer for completion */
282 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
283 
284 	/* Update the host index before invoking device */
285 	q->host_index = ((q->host_index + 1) % q->entry_count);
286 
287 	/* Ring Doorbell */
288 	doorbell.word0 = 0;
289 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
290 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
291 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
292 	return 0;
293 }
294 
295 /**
296  * lpfc_sli4_mq_release - Updates internal hba index for MQ
297  * @q: The Mailbox Queue to operate on.
298  *
299  * This routine will update the HBA index of a queue to reflect consumption of
300  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
301  * an entry the host calls this function to update the queue's internal
302  * pointers. This routine returns the number of entries that were consumed by
303  * the HBA.
304  **/
305 static uint32_t
306 lpfc_sli4_mq_release(struct lpfc_queue *q)
307 {
308 	/* sanity check on queue memory */
309 	if (unlikely(!q))
310 		return 0;
311 
312 	/* Clear the mailbox pointer for completion */
313 	q->phba->mbox = NULL;
314 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
315 	return 1;
316 }
317 
318 /**
319  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
320  * @q: The Event Queue to get the first valid EQE from
321  *
322  * This routine will get the first valid Event Queue Entry from @q, update
323  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
324  * the Queue (no more work to do), or the Queue is full of EQEs that have been
325  * processed, but not popped back to the HBA then this routine will return NULL.
326  **/
327 static struct lpfc_eqe *
328 lpfc_sli4_eq_get(struct lpfc_queue *q)
329 {
330 	struct lpfc_eqe *eqe;
331 
332 	/* sanity check on queue memory */
333 	if (unlikely(!q))
334 		return NULL;
335 	eqe = lpfc_sli4_qe(q, q->host_index);
336 
337 	/* If the next EQE is not valid then we are done */
338 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
339 		return NULL;
340 
341 	/*
342 	 * insert barrier for instruction interlock : data from the hardware
343 	 * must have the valid bit checked before it can be copied and acted
344 	 * upon. Speculative instructions were allowing a bcopy at the start
345 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
346 	 * after our return, to copy data before the valid bit check above
347 	 * was done. As such, some of the copied data was stale. The barrier
348 	 * ensures the check is before any data is copied.
349 	 */
350 	mb();
351 	return eqe;
352 }
353 
354 /**
355  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
356  * @q: The Event Queue to disable interrupts
357  *
358  **/
359 void
360 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
361 {
362 	struct lpfc_register doorbell;
363 
364 	doorbell.word0 = 0;
365 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
366 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
367 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
368 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
369 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
370 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
371 }
372 
373 /**
374  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
375  * @q: The Event Queue to disable interrupts
376  *
377  **/
378 void
379 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
380 {
381 	struct lpfc_register doorbell;
382 
383 	doorbell.word0 = 0;
384 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
385 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
386 }
387 
388 /**
389  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
390  * @phba: adapter with EQ
391  * @q: The Event Queue that the host has completed processing for.
392  * @count: Number of elements that have been consumed
393  * @arm: Indicates whether the host wants to arms this CQ.
394  *
395  * This routine will notify the HBA, by ringing the doorbell, that count
396  * number of EQEs have been processed. The @arm parameter indicates whether
397  * the queue should be rearmed when ringing the doorbell.
398  **/
399 void
400 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
401 		     uint32_t count, bool arm)
402 {
403 	struct lpfc_register doorbell;
404 
405 	/* sanity check on queue memory */
406 	if (unlikely(!q || (count == 0 && !arm)))
407 		return;
408 
409 	/* ring doorbell for number popped */
410 	doorbell.word0 = 0;
411 	if (arm) {
412 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
413 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
414 	}
415 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
416 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
417 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
418 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
419 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
420 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
421 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
422 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
423 		readl(q->phba->sli4_hba.EQDBregaddr);
424 }
425 
426 /**
427  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
428  * @phba: adapter with EQ
429  * @q: The Event Queue that the host has completed processing for.
430  * @count: Number of elements that have been consumed
431  * @arm: Indicates whether the host wants to arms this CQ.
432  *
433  * This routine will notify the HBA, by ringing the doorbell, that count
434  * number of EQEs have been processed. The @arm parameter indicates whether
435  * the queue should be rearmed when ringing the doorbell.
436  **/
437 void
438 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
439 			  uint32_t count, bool arm)
440 {
441 	struct lpfc_register doorbell;
442 
443 	/* sanity check on queue memory */
444 	if (unlikely(!q || (count == 0 && !arm)))
445 		return;
446 
447 	/* ring doorbell for number popped */
448 	doorbell.word0 = 0;
449 	if (arm)
450 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
451 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
452 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
453 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
454 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
455 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
456 		readl(q->phba->sli4_hba.EQDBregaddr);
457 }
458 
459 static void
460 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
461 			struct lpfc_eqe *eqe)
462 {
463 	if (!phba->sli4_hba.pc_sli4_params.eqav)
464 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
465 
466 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
467 
468 	/* if the index wrapped around, toggle the valid bit */
469 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
470 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
471 }
472 
473 static void
474 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
475 {
476 	struct lpfc_eqe *eqe = NULL;
477 	u32 eq_count = 0, cq_count = 0;
478 	struct lpfc_cqe *cqe = NULL;
479 	struct lpfc_queue *cq = NULL, *childq = NULL;
480 	int cqid = 0;
481 
482 	/* walk all the EQ entries and drop on the floor */
483 	eqe = lpfc_sli4_eq_get(eq);
484 	while (eqe) {
485 		/* Get the reference to the corresponding CQ */
486 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
487 		cq = NULL;
488 
489 		list_for_each_entry(childq, &eq->child_list, list) {
490 			if (childq->queue_id == cqid) {
491 				cq = childq;
492 				break;
493 			}
494 		}
495 		/* If CQ is valid, iterate through it and drop all the CQEs */
496 		if (cq) {
497 			cqe = lpfc_sli4_cq_get(cq);
498 			while (cqe) {
499 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
500 				cq_count++;
501 				cqe = lpfc_sli4_cq_get(cq);
502 			}
503 			/* Clear and re-arm the CQ */
504 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
505 			    LPFC_QUEUE_REARM);
506 			cq_count = 0;
507 		}
508 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
509 		eq_count++;
510 		eqe = lpfc_sli4_eq_get(eq);
511 	}
512 
513 	/* Clear and re-arm the EQ */
514 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
515 }
516 
517 static int
518 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
519 		     uint8_t rearm)
520 {
521 	struct lpfc_eqe *eqe;
522 	int count = 0, consumed = 0;
523 
524 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
525 		goto rearm_and_exit;
526 
527 	eqe = lpfc_sli4_eq_get(eq);
528 	while (eqe) {
529 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
530 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
531 
532 		consumed++;
533 		if (!(++count % eq->max_proc_limit))
534 			break;
535 
536 		if (!(count % eq->notify_interval)) {
537 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
538 							LPFC_QUEUE_NOARM);
539 			consumed = 0;
540 		}
541 
542 		eqe = lpfc_sli4_eq_get(eq);
543 	}
544 	eq->EQ_processed += count;
545 
546 	/* Track the max number of EQEs processed in 1 intr */
547 	if (count > eq->EQ_max_eqe)
548 		eq->EQ_max_eqe = count;
549 
550 	eq->queue_claimed = 0;
551 
552 rearm_and_exit:
553 	/* Always clear the EQ. */
554 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
555 
556 	return count;
557 }
558 
559 /**
560  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
561  * @q: The Completion Queue to get the first valid CQE from
562  *
563  * This routine will get the first valid Completion Queue Entry from @q, update
564  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
565  * the Queue (no more work to do), or the Queue is full of CQEs that have been
566  * processed, but not popped back to the HBA then this routine will return NULL.
567  **/
568 static struct lpfc_cqe *
569 lpfc_sli4_cq_get(struct lpfc_queue *q)
570 {
571 	struct lpfc_cqe *cqe;
572 
573 	/* sanity check on queue memory */
574 	if (unlikely(!q))
575 		return NULL;
576 	cqe = lpfc_sli4_qe(q, q->host_index);
577 
578 	/* If the next CQE is not valid then we are done */
579 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
580 		return NULL;
581 
582 	/*
583 	 * insert barrier for instruction interlock : data from the hardware
584 	 * must have the valid bit checked before it can be copied and acted
585 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
586 	 * instructions allowing action on content before valid bit checked,
587 	 * add barrier here as well. May not be needed as "content" is a
588 	 * single 32-bit entity here (vs multi word structure for cq's).
589 	 */
590 	mb();
591 	return cqe;
592 }
593 
594 static void
595 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
596 			struct lpfc_cqe *cqe)
597 {
598 	if (!phba->sli4_hba.pc_sli4_params.cqav)
599 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
600 
601 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
602 
603 	/* if the index wrapped around, toggle the valid bit */
604 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
605 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
606 }
607 
608 /**
609  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
610  * @phba: the adapter with the CQ
611  * @q: The Completion Queue that the host has completed processing for.
612  * @count: the number of elements that were consumed
613  * @arm: Indicates whether the host wants to arms this CQ.
614  *
615  * This routine will notify the HBA, by ringing the doorbell, that the
616  * CQEs have been processed. The @arm parameter specifies whether the
617  * queue should be rearmed when ringing the doorbell.
618  **/
619 void
620 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
621 		     uint32_t count, bool arm)
622 {
623 	struct lpfc_register doorbell;
624 
625 	/* sanity check on queue memory */
626 	if (unlikely(!q || (count == 0 && !arm)))
627 		return;
628 
629 	/* ring doorbell for number popped */
630 	doorbell.word0 = 0;
631 	if (arm)
632 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
633 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
634 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
635 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
636 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
637 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
638 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
639 }
640 
641 /**
642  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
643  * @phba: the adapter with the CQ
644  * @q: The Completion Queue that the host has completed processing for.
645  * @count: the number of elements that were consumed
646  * @arm: Indicates whether the host wants to arms this CQ.
647  *
648  * This routine will notify the HBA, by ringing the doorbell, that the
649  * CQEs have been processed. The @arm parameter specifies whether the
650  * queue should be rearmed when ringing the doorbell.
651  **/
652 void
653 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
654 			 uint32_t count, bool arm)
655 {
656 	struct lpfc_register doorbell;
657 
658 	/* sanity check on queue memory */
659 	if (unlikely(!q || (count == 0 && !arm)))
660 		return;
661 
662 	/* ring doorbell for number popped */
663 	doorbell.word0 = 0;
664 	if (arm)
665 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
666 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
667 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
668 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
669 }
670 
671 /**
672  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
673  * @q: The Header Receive Queue to operate on.
674  * @wqe: The Receive Queue Entry to put on the Receive queue.
675  *
676  * This routine will copy the contents of @wqe to the next available entry on
677  * the @q. This function will then ring the Receive Queue Doorbell to signal the
678  * HBA to start processing the Receive Queue Entry. This function returns the
679  * index that the rqe was copied to if successful. If no entries are available
680  * on @q then this function will return -ENOMEM.
681  * The caller is expected to hold the hbalock when calling this routine.
682  **/
683 int
684 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
685 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
686 {
687 	struct lpfc_rqe *temp_hrqe;
688 	struct lpfc_rqe *temp_drqe;
689 	struct lpfc_register doorbell;
690 	int hq_put_index;
691 	int dq_put_index;
692 
693 	/* sanity check on queue memory */
694 	if (unlikely(!hq) || unlikely(!dq))
695 		return -ENOMEM;
696 	hq_put_index = hq->host_index;
697 	dq_put_index = dq->host_index;
698 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
699 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
700 
701 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
702 		return -EINVAL;
703 	if (hq_put_index != dq_put_index)
704 		return -EINVAL;
705 	/* If the host has not yet processed the next entry then we are done */
706 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
707 		return -EBUSY;
708 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
709 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
710 
711 	/* Update the host index to point to the next slot */
712 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
713 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
714 	hq->RQ_buf_posted++;
715 
716 	/* Ring The Header Receive Queue Doorbell */
717 	if (!(hq->host_index % hq->notify_interval)) {
718 		doorbell.word0 = 0;
719 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
720 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
721 			       hq->notify_interval);
722 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
723 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
724 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
725 			       hq->notify_interval);
726 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
727 			       hq->host_index);
728 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
729 		} else {
730 			return -EINVAL;
731 		}
732 		writel(doorbell.word0, hq->db_regaddr);
733 	}
734 	return hq_put_index;
735 }
736 
737 /**
738  * lpfc_sli4_rq_release - Updates internal hba index for RQ
739  * @q: The Header Receive Queue to operate on.
740  *
741  * This routine will update the HBA index of a queue to reflect consumption of
742  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
743  * consumed an entry the host calls this function to update the queue's
744  * internal pointers. This routine returns the number of entries that were
745  * consumed by the HBA.
746  **/
747 static uint32_t
748 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
749 {
750 	/* sanity check on queue memory */
751 	if (unlikely(!hq) || unlikely(!dq))
752 		return 0;
753 
754 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
755 		return 0;
756 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
757 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
758 	return 1;
759 }
760 
761 /**
762  * lpfc_cmd_iocb - Get next command iocb entry in the ring
763  * @phba: Pointer to HBA context object.
764  * @pring: Pointer to driver SLI ring object.
765  *
766  * This function returns pointer to next command iocb entry
767  * in the command ring. The caller must hold hbalock to prevent
768  * other threads consume the next command iocb.
769  * SLI-2/SLI-3 provide different sized iocbs.
770  **/
771 static inline IOCB_t *
772 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
773 {
774 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
775 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
776 }
777 
778 /**
779  * lpfc_resp_iocb - Get next response iocb entry in the ring
780  * @phba: Pointer to HBA context object.
781  * @pring: Pointer to driver SLI ring object.
782  *
783  * This function returns pointer to next response iocb entry
784  * in the response ring. The caller must hold hbalock to make sure
785  * that no other thread consume the next response iocb.
786  * SLI-2/SLI-3 provide different sized iocbs.
787  **/
788 static inline IOCB_t *
789 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
790 {
791 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
792 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
793 }
794 
795 /**
796  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
797  * @phba: Pointer to HBA context object.
798  *
799  * This function is called with hbalock held. This function
800  * allocates a new driver iocb object from the iocb pool. If the
801  * allocation is successful, it returns pointer to the newly
802  * allocated iocb object else it returns NULL.
803  **/
804 struct lpfc_iocbq *
805 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
806 {
807 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
808 	struct lpfc_iocbq * iocbq = NULL;
809 
810 	lockdep_assert_held(&phba->hbalock);
811 
812 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
813 	if (iocbq)
814 		phba->iocb_cnt++;
815 	if (phba->iocb_cnt > phba->iocb_max)
816 		phba->iocb_max = phba->iocb_cnt;
817 	return iocbq;
818 }
819 
820 /**
821  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
822  * @phba: Pointer to HBA context object.
823  * @xritag: XRI value.
824  *
825  * This function clears the sglq pointer from the array of acive
826  * sglq's. The xritag that is passed in is used to index into the
827  * array. Before the xritag can be used it needs to be adjusted
828  * by subtracting the xribase.
829  *
830  * Returns sglq ponter = success, NULL = Failure.
831  **/
832 struct lpfc_sglq *
833 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
834 {
835 	struct lpfc_sglq *sglq;
836 
837 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
838 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
839 	return sglq;
840 }
841 
842 /**
843  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
844  * @phba: Pointer to HBA context object.
845  * @xritag: XRI value.
846  *
847  * This function returns the sglq pointer from the array of acive
848  * sglq's. The xritag that is passed in is used to index into the
849  * array. Before the xritag can be used it needs to be adjusted
850  * by subtracting the xribase.
851  *
852  * Returns sglq ponter = success, NULL = Failure.
853  **/
854 struct lpfc_sglq *
855 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
856 {
857 	struct lpfc_sglq *sglq;
858 
859 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
860 	return sglq;
861 }
862 
863 /**
864  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
865  * @phba: Pointer to HBA context object.
866  * @xritag: xri used in this exchange.
867  * @rrq: The RRQ to be cleared.
868  *
869  **/
870 void
871 lpfc_clr_rrq_active(struct lpfc_hba *phba,
872 		    uint16_t xritag,
873 		    struct lpfc_node_rrq *rrq)
874 {
875 	struct lpfc_nodelist *ndlp = NULL;
876 
877 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
878 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
879 
880 	/* The target DID could have been swapped (cable swap)
881 	 * we should use the ndlp from the findnode if it is
882 	 * available.
883 	 */
884 	if ((!ndlp) && rrq->ndlp)
885 		ndlp = rrq->ndlp;
886 
887 	if (!ndlp)
888 		goto out;
889 
890 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
891 		rrq->send_rrq = 0;
892 		rrq->xritag = 0;
893 		rrq->rrq_stop_time = 0;
894 	}
895 out:
896 	mempool_free(rrq, phba->rrq_pool);
897 }
898 
899 /**
900  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
901  * @phba: Pointer to HBA context object.
902  *
903  * This function is called with hbalock held. This function
904  * Checks if stop_time (ratov from setting rrq active) has
905  * been reached, if it has and the send_rrq flag is set then
906  * it will call lpfc_send_rrq. If the send_rrq flag is not set
907  * then it will just call the routine to clear the rrq and
908  * free the rrq resource.
909  * The timer is set to the next rrq that is going to expire before
910  * leaving the routine.
911  *
912  **/
913 void
914 lpfc_handle_rrq_active(struct lpfc_hba *phba)
915 {
916 	struct lpfc_node_rrq *rrq;
917 	struct lpfc_node_rrq *nextrrq;
918 	unsigned long next_time;
919 	unsigned long iflags;
920 	LIST_HEAD(send_rrq);
921 
922 	spin_lock_irqsave(&phba->hbalock, iflags);
923 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
924 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
925 	list_for_each_entry_safe(rrq, nextrrq,
926 				 &phba->active_rrq_list, list) {
927 		if (time_after(jiffies, rrq->rrq_stop_time))
928 			list_move(&rrq->list, &send_rrq);
929 		else if (time_before(rrq->rrq_stop_time, next_time))
930 			next_time = rrq->rrq_stop_time;
931 	}
932 	spin_unlock_irqrestore(&phba->hbalock, iflags);
933 	if ((!list_empty(&phba->active_rrq_list)) &&
934 	    (!(phba->pport->load_flag & FC_UNLOADING)))
935 		mod_timer(&phba->rrq_tmr, next_time);
936 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
937 		list_del(&rrq->list);
938 		if (!rrq->send_rrq) {
939 			/* this call will free the rrq */
940 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
941 		} else if (lpfc_send_rrq(phba, rrq)) {
942 			/* if we send the rrq then the completion handler
943 			*  will clear the bit in the xribitmap.
944 			*/
945 			lpfc_clr_rrq_active(phba, rrq->xritag,
946 					    rrq);
947 		}
948 	}
949 }
950 
951 /**
952  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
953  * @vport: Pointer to vport context object.
954  * @xri: The xri used in the exchange.
955  * @did: The targets DID for this exchange.
956  *
957  * returns NULL = rrq not found in the phba->active_rrq_list.
958  *         rrq = rrq for this xri and target.
959  **/
960 struct lpfc_node_rrq *
961 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
962 {
963 	struct lpfc_hba *phba = vport->phba;
964 	struct lpfc_node_rrq *rrq;
965 	struct lpfc_node_rrq *nextrrq;
966 	unsigned long iflags;
967 
968 	if (phba->sli_rev != LPFC_SLI_REV4)
969 		return NULL;
970 	spin_lock_irqsave(&phba->hbalock, iflags);
971 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
972 		if (rrq->vport == vport && rrq->xritag == xri &&
973 				rrq->nlp_DID == did){
974 			list_del(&rrq->list);
975 			spin_unlock_irqrestore(&phba->hbalock, iflags);
976 			return rrq;
977 		}
978 	}
979 	spin_unlock_irqrestore(&phba->hbalock, iflags);
980 	return NULL;
981 }
982 
983 /**
984  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
985  * @vport: Pointer to vport context object.
986  * @ndlp: Pointer to the lpfc_node_list structure.
987  * If ndlp is NULL Remove all active RRQs for this vport from the
988  * phba->active_rrq_list and clear the rrq.
989  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
990  **/
991 void
992 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
993 
994 {
995 	struct lpfc_hba *phba = vport->phba;
996 	struct lpfc_node_rrq *rrq;
997 	struct lpfc_node_rrq *nextrrq;
998 	unsigned long iflags;
999 	LIST_HEAD(rrq_list);
1000 
1001 	if (phba->sli_rev != LPFC_SLI_REV4)
1002 		return;
1003 	if (!ndlp) {
1004 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1005 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1006 	}
1007 	spin_lock_irqsave(&phba->hbalock, iflags);
1008 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
1009 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
1010 			list_move(&rrq->list, &rrq_list);
1011 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1012 
1013 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1014 		list_del(&rrq->list);
1015 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1016 	}
1017 }
1018 
1019 /**
1020  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1021  * @phba: Pointer to HBA context object.
1022  * @ndlp: Targets nodelist pointer for this exchange.
1023  * @xritag the xri in the bitmap to test.
1024  *
1025  * This function returns:
1026  * 0 = rrq not active for this xri
1027  * 1 = rrq is valid for this xri.
1028  **/
1029 int
1030 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1031 			uint16_t  xritag)
1032 {
1033 	if (!ndlp)
1034 		return 0;
1035 	if (!ndlp->active_rrqs_xri_bitmap)
1036 		return 0;
1037 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1038 		return 1;
1039 	else
1040 		return 0;
1041 }
1042 
1043 /**
1044  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1045  * @phba: Pointer to HBA context object.
1046  * @ndlp: nodelist pointer for this target.
1047  * @xritag: xri used in this exchange.
1048  * @rxid: Remote Exchange ID.
1049  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1050  *
1051  * This function takes the hbalock.
1052  * The active bit is always set in the active rrq xri_bitmap even
1053  * if there is no slot avaiable for the other rrq information.
1054  *
1055  * returns 0 rrq actived for this xri
1056  *         < 0 No memory or invalid ndlp.
1057  **/
1058 int
1059 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1060 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1061 {
1062 	unsigned long iflags;
1063 	struct lpfc_node_rrq *rrq;
1064 	int empty;
1065 
1066 	if (!ndlp)
1067 		return -EINVAL;
1068 
1069 	if (!phba->cfg_enable_rrq)
1070 		return -EINVAL;
1071 
1072 	spin_lock_irqsave(&phba->hbalock, iflags);
1073 	if (phba->pport->load_flag & FC_UNLOADING) {
1074 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1075 		goto out;
1076 	}
1077 
1078 	/*
1079 	 * set the active bit even if there is no mem available.
1080 	 */
1081 	if (NLP_CHK_FREE_REQ(ndlp))
1082 		goto out;
1083 
1084 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1085 		goto out;
1086 
1087 	if (!ndlp->active_rrqs_xri_bitmap)
1088 		goto out;
1089 
1090 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1091 		goto out;
1092 
1093 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1094 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1095 	if (!rrq) {
1096 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1097 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1098 				" DID:0x%x Send:%d\n",
1099 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1100 		return -EINVAL;
1101 	}
1102 	if (phba->cfg_enable_rrq == 1)
1103 		rrq->send_rrq = send_rrq;
1104 	else
1105 		rrq->send_rrq = 0;
1106 	rrq->xritag = xritag;
1107 	rrq->rrq_stop_time = jiffies +
1108 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1109 	rrq->ndlp = ndlp;
1110 	rrq->nlp_DID = ndlp->nlp_DID;
1111 	rrq->vport = ndlp->vport;
1112 	rrq->rxid = rxid;
1113 	spin_lock_irqsave(&phba->hbalock, iflags);
1114 	empty = list_empty(&phba->active_rrq_list);
1115 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1116 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1117 	if (empty)
1118 		lpfc_worker_wake_up(phba);
1119 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1120 	return 0;
1121 out:
1122 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1123 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1124 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1125 			" DID:0x%x Send:%d\n",
1126 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1127 	return -EINVAL;
1128 }
1129 
1130 /**
1131  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1132  * @phba: Pointer to HBA context object.
1133  * @piocb: Pointer to the iocbq.
1134  *
1135  * The driver calls this function with either the nvme ls ring lock
1136  * or the fc els ring lock held depending on the iocb usage.  This function
1137  * gets a new driver sglq object from the sglq list. If the list is not empty
1138  * then it is successful, it returns pointer to the newly allocated sglq
1139  * object else it returns NULL.
1140  **/
1141 static struct lpfc_sglq *
1142 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1143 {
1144 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1145 	struct lpfc_sglq *sglq = NULL;
1146 	struct lpfc_sglq *start_sglq = NULL;
1147 	struct lpfc_io_buf *lpfc_cmd;
1148 	struct lpfc_nodelist *ndlp;
1149 	struct lpfc_sli_ring *pring = NULL;
1150 	int found = 0;
1151 
1152 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1153 		pring =  phba->sli4_hba.nvmels_wq->pring;
1154 	else
1155 		pring = lpfc_phba_elsring(phba);
1156 
1157 	lockdep_assert_held(&pring->ring_lock);
1158 
1159 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1160 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1161 		ndlp = lpfc_cmd->rdata->pnode;
1162 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1163 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1164 		ndlp = piocbq->context_un.ndlp;
1165 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1166 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1167 			ndlp = NULL;
1168 		else
1169 			ndlp = piocbq->context_un.ndlp;
1170 	} else {
1171 		ndlp = piocbq->context1;
1172 	}
1173 
1174 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1175 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1176 	start_sglq = sglq;
1177 	while (!found) {
1178 		if (!sglq)
1179 			break;
1180 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1181 		    test_bit(sglq->sli4_lxritag,
1182 		    ndlp->active_rrqs_xri_bitmap)) {
1183 			/* This xri has an rrq outstanding for this DID.
1184 			 * put it back in the list and get another xri.
1185 			 */
1186 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1187 			sglq = NULL;
1188 			list_remove_head(lpfc_els_sgl_list, sglq,
1189 						struct lpfc_sglq, list);
1190 			if (sglq == start_sglq) {
1191 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1192 				sglq = NULL;
1193 				break;
1194 			} else
1195 				continue;
1196 		}
1197 		sglq->ndlp = ndlp;
1198 		found = 1;
1199 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1200 		sglq->state = SGL_ALLOCATED;
1201 	}
1202 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1203 	return sglq;
1204 }
1205 
1206 /**
1207  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1208  * @phba: Pointer to HBA context object.
1209  * @piocb: Pointer to the iocbq.
1210  *
1211  * This function is called with the sgl_list lock held. This function
1212  * gets a new driver sglq object from the sglq list. If the
1213  * list is not empty then it is successful, it returns pointer to the newly
1214  * allocated sglq object else it returns NULL.
1215  **/
1216 struct lpfc_sglq *
1217 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1218 {
1219 	struct list_head *lpfc_nvmet_sgl_list;
1220 	struct lpfc_sglq *sglq = NULL;
1221 
1222 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1223 
1224 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1225 
1226 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1227 	if (!sglq)
1228 		return NULL;
1229 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1230 	sglq->state = SGL_ALLOCATED;
1231 	return sglq;
1232 }
1233 
1234 /**
1235  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1236  * @phba: Pointer to HBA context object.
1237  *
1238  * This function is called with no lock held. This function
1239  * allocates a new driver iocb object from the iocb pool. If the
1240  * allocation is successful, it returns pointer to the newly
1241  * allocated iocb object else it returns NULL.
1242  **/
1243 struct lpfc_iocbq *
1244 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1245 {
1246 	struct lpfc_iocbq * iocbq = NULL;
1247 	unsigned long iflags;
1248 
1249 	spin_lock_irqsave(&phba->hbalock, iflags);
1250 	iocbq = __lpfc_sli_get_iocbq(phba);
1251 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1252 	return iocbq;
1253 }
1254 
1255 /**
1256  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1257  * @phba: Pointer to HBA context object.
1258  * @iocbq: Pointer to driver iocb object.
1259  *
1260  * This function is called with hbalock held to release driver
1261  * iocb object to the iocb pool. The iotag in the iocb object
1262  * does not change for each use of the iocb object. This function
1263  * clears all other fields of the iocb object when it is freed.
1264  * The sqlq structure that holds the xritag and phys and virtual
1265  * mappings for the scatter gather list is retrieved from the
1266  * active array of sglq. The get of the sglq pointer also clears
1267  * the entry in the array. If the status of the IO indiactes that
1268  * this IO was aborted then the sglq entry it put on the
1269  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1270  * IO has good status or fails for any other reason then the sglq
1271  * entry is added to the free list (lpfc_els_sgl_list).
1272  **/
1273 static void
1274 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1275 {
1276 	struct lpfc_sglq *sglq;
1277 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1278 	unsigned long iflag = 0;
1279 	struct lpfc_sli_ring *pring;
1280 
1281 	lockdep_assert_held(&phba->hbalock);
1282 
1283 	if (iocbq->sli4_xritag == NO_XRI)
1284 		sglq = NULL;
1285 	else
1286 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1287 
1288 
1289 	if (sglq)  {
1290 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1291 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1292 					  iflag);
1293 			sglq->state = SGL_FREED;
1294 			sglq->ndlp = NULL;
1295 			list_add_tail(&sglq->list,
1296 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1297 			spin_unlock_irqrestore(
1298 				&phba->sli4_hba.sgl_list_lock, iflag);
1299 			goto out;
1300 		}
1301 
1302 		pring = phba->sli4_hba.els_wq->pring;
1303 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1304 			(sglq->state != SGL_XRI_ABORTED)) {
1305 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1306 					  iflag);
1307 			list_add(&sglq->list,
1308 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1309 			spin_unlock_irqrestore(
1310 				&phba->sli4_hba.sgl_list_lock, iflag);
1311 		} else {
1312 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1313 					  iflag);
1314 			sglq->state = SGL_FREED;
1315 			sglq->ndlp = NULL;
1316 			list_add_tail(&sglq->list,
1317 				      &phba->sli4_hba.lpfc_els_sgl_list);
1318 			spin_unlock_irqrestore(
1319 				&phba->sli4_hba.sgl_list_lock, iflag);
1320 
1321 			/* Check if TXQ queue needs to be serviced */
1322 			if (!list_empty(&pring->txq))
1323 				lpfc_worker_wake_up(phba);
1324 		}
1325 	}
1326 
1327 out:
1328 	/*
1329 	 * Clean all volatile data fields, preserve iotag and node struct.
1330 	 */
1331 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1332 	iocbq->sli4_lxritag = NO_XRI;
1333 	iocbq->sli4_xritag = NO_XRI;
1334 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1335 			      LPFC_IO_NVME_LS);
1336 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1337 }
1338 
1339 
1340 /**
1341  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1342  * @phba: Pointer to HBA context object.
1343  * @iocbq: Pointer to driver iocb object.
1344  *
1345  * This function is called with hbalock held to release driver
1346  * iocb object to the iocb pool. The iotag in the iocb object
1347  * does not change for each use of the iocb object. This function
1348  * clears all other fields of the iocb object when it is freed.
1349  **/
1350 static void
1351 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1352 {
1353 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1354 
1355 	lockdep_assert_held(&phba->hbalock);
1356 
1357 	/*
1358 	 * Clean all volatile data fields, preserve iotag and node struct.
1359 	 */
1360 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1361 	iocbq->sli4_xritag = NO_XRI;
1362 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1363 }
1364 
1365 /**
1366  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1367  * @phba: Pointer to HBA context object.
1368  * @iocbq: Pointer to driver iocb object.
1369  *
1370  * This function is called with hbalock held to release driver
1371  * iocb object to the iocb pool. The iotag in the iocb object
1372  * does not change for each use of the iocb object. This function
1373  * clears all other fields of the iocb object when it is freed.
1374  **/
1375 static void
1376 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 	lockdep_assert_held(&phba->hbalock);
1379 
1380 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1381 	phba->iocb_cnt--;
1382 }
1383 
1384 /**
1385  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1386  * @phba: Pointer to HBA context object.
1387  * @iocbq: Pointer to driver iocb object.
1388  *
1389  * This function is called with no lock held to release the iocb to
1390  * iocb pool.
1391  **/
1392 void
1393 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1394 {
1395 	unsigned long iflags;
1396 
1397 	/*
1398 	 * Clean all volatile data fields, preserve iotag and node struct.
1399 	 */
1400 	spin_lock_irqsave(&phba->hbalock, iflags);
1401 	__lpfc_sli_release_iocbq(phba, iocbq);
1402 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1403 }
1404 
1405 /**
1406  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1407  * @phba: Pointer to HBA context object.
1408  * @iocblist: List of IOCBs.
1409  * @ulpstatus: ULP status in IOCB command field.
1410  * @ulpWord4: ULP word-4 in IOCB command field.
1411  *
1412  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1413  * on the list by invoking the complete callback function associated with the
1414  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1415  * fields.
1416  **/
1417 void
1418 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1419 		      uint32_t ulpstatus, uint32_t ulpWord4)
1420 {
1421 	struct lpfc_iocbq *piocb;
1422 
1423 	while (!list_empty(iocblist)) {
1424 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1425 		if (!piocb->iocb_cmpl) {
1426 			if (piocb->iocb_flag & LPFC_IO_NVME)
1427 				lpfc_nvme_cancel_iocb(phba, piocb);
1428 			else
1429 				lpfc_sli_release_iocbq(phba, piocb);
1430 		} else {
1431 			piocb->iocb.ulpStatus = ulpstatus;
1432 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1433 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1434 		}
1435 	}
1436 	return;
1437 }
1438 
1439 /**
1440  * lpfc_sli_iocb_cmd_type - Get the iocb type
1441  * @iocb_cmnd: iocb command code.
1442  *
1443  * This function is called by ring event handler function to get the iocb type.
1444  * This function translates the iocb command to an iocb command type used to
1445  * decide the final disposition of each completed IOCB.
1446  * The function returns
1447  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1448  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1449  * LPFC_ABORT_IOCB   if it is an abort iocb
1450  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1451  *
1452  * The caller is not required to hold any lock.
1453  **/
1454 static lpfc_iocb_type
1455 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1456 {
1457 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1458 
1459 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1460 		return 0;
1461 
1462 	switch (iocb_cmnd) {
1463 	case CMD_XMIT_SEQUENCE_CR:
1464 	case CMD_XMIT_SEQUENCE_CX:
1465 	case CMD_XMIT_BCAST_CN:
1466 	case CMD_XMIT_BCAST_CX:
1467 	case CMD_ELS_REQUEST_CR:
1468 	case CMD_ELS_REQUEST_CX:
1469 	case CMD_CREATE_XRI_CR:
1470 	case CMD_CREATE_XRI_CX:
1471 	case CMD_GET_RPI_CN:
1472 	case CMD_XMIT_ELS_RSP_CX:
1473 	case CMD_GET_RPI_CR:
1474 	case CMD_FCP_IWRITE_CR:
1475 	case CMD_FCP_IWRITE_CX:
1476 	case CMD_FCP_IREAD_CR:
1477 	case CMD_FCP_IREAD_CX:
1478 	case CMD_FCP_ICMND_CR:
1479 	case CMD_FCP_ICMND_CX:
1480 	case CMD_FCP_TSEND_CX:
1481 	case CMD_FCP_TRSP_CX:
1482 	case CMD_FCP_TRECEIVE_CX:
1483 	case CMD_FCP_AUTO_TRSP_CX:
1484 	case CMD_ADAPTER_MSG:
1485 	case CMD_ADAPTER_DUMP:
1486 	case CMD_XMIT_SEQUENCE64_CR:
1487 	case CMD_XMIT_SEQUENCE64_CX:
1488 	case CMD_XMIT_BCAST64_CN:
1489 	case CMD_XMIT_BCAST64_CX:
1490 	case CMD_ELS_REQUEST64_CR:
1491 	case CMD_ELS_REQUEST64_CX:
1492 	case CMD_FCP_IWRITE64_CR:
1493 	case CMD_FCP_IWRITE64_CX:
1494 	case CMD_FCP_IREAD64_CR:
1495 	case CMD_FCP_IREAD64_CX:
1496 	case CMD_FCP_ICMND64_CR:
1497 	case CMD_FCP_ICMND64_CX:
1498 	case CMD_FCP_TSEND64_CX:
1499 	case CMD_FCP_TRSP64_CX:
1500 	case CMD_FCP_TRECEIVE64_CX:
1501 	case CMD_GEN_REQUEST64_CR:
1502 	case CMD_GEN_REQUEST64_CX:
1503 	case CMD_XMIT_ELS_RSP64_CX:
1504 	case DSSCMD_IWRITE64_CR:
1505 	case DSSCMD_IWRITE64_CX:
1506 	case DSSCMD_IREAD64_CR:
1507 	case DSSCMD_IREAD64_CX:
1508 		type = LPFC_SOL_IOCB;
1509 		break;
1510 	case CMD_ABORT_XRI_CN:
1511 	case CMD_ABORT_XRI_CX:
1512 	case CMD_CLOSE_XRI_CN:
1513 	case CMD_CLOSE_XRI_CX:
1514 	case CMD_XRI_ABORTED_CX:
1515 	case CMD_ABORT_MXRI64_CN:
1516 	case CMD_XMIT_BLS_RSP64_CX:
1517 		type = LPFC_ABORT_IOCB;
1518 		break;
1519 	case CMD_RCV_SEQUENCE_CX:
1520 	case CMD_RCV_ELS_REQ_CX:
1521 	case CMD_RCV_SEQUENCE64_CX:
1522 	case CMD_RCV_ELS_REQ64_CX:
1523 	case CMD_ASYNC_STATUS:
1524 	case CMD_IOCB_RCV_SEQ64_CX:
1525 	case CMD_IOCB_RCV_ELS64_CX:
1526 	case CMD_IOCB_RCV_CONT64_CX:
1527 	case CMD_IOCB_RET_XRI64_CX:
1528 		type = LPFC_UNSOL_IOCB;
1529 		break;
1530 	case CMD_IOCB_XMIT_MSEQ64_CR:
1531 	case CMD_IOCB_XMIT_MSEQ64_CX:
1532 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1533 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1534 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1535 	case CMD_IOCB_ABORT_EXTENDED_CN:
1536 	case CMD_IOCB_RET_HBQE64_CN:
1537 	case CMD_IOCB_FCP_IBIDIR64_CR:
1538 	case CMD_IOCB_FCP_IBIDIR64_CX:
1539 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1540 	case CMD_IOCB_LOGENTRY_CN:
1541 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1542 		printk("%s - Unhandled SLI-3 Command x%x\n",
1543 				__func__, iocb_cmnd);
1544 		type = LPFC_UNKNOWN_IOCB;
1545 		break;
1546 	default:
1547 		type = LPFC_UNKNOWN_IOCB;
1548 		break;
1549 	}
1550 
1551 	return type;
1552 }
1553 
1554 /**
1555  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1556  * @phba: Pointer to HBA context object.
1557  *
1558  * This function is called from SLI initialization code
1559  * to configure every ring of the HBA's SLI interface. The
1560  * caller is not required to hold any lock. This function issues
1561  * a config_ring mailbox command for each ring.
1562  * This function returns zero if successful else returns a negative
1563  * error code.
1564  **/
1565 static int
1566 lpfc_sli_ring_map(struct lpfc_hba *phba)
1567 {
1568 	struct lpfc_sli *psli = &phba->sli;
1569 	LPFC_MBOXQ_t *pmb;
1570 	MAILBOX_t *pmbox;
1571 	int i, rc, ret = 0;
1572 
1573 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1574 	if (!pmb)
1575 		return -ENOMEM;
1576 	pmbox = &pmb->u.mb;
1577 	phba->link_state = LPFC_INIT_MBX_CMDS;
1578 	for (i = 0; i < psli->num_rings; i++) {
1579 		lpfc_config_ring(phba, i, pmb);
1580 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1581 		if (rc != MBX_SUCCESS) {
1582 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1583 					"0446 Adapter failed to init (%d), "
1584 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1585 					"ring %d\n",
1586 					rc, pmbox->mbxCommand,
1587 					pmbox->mbxStatus, i);
1588 			phba->link_state = LPFC_HBA_ERROR;
1589 			ret = -ENXIO;
1590 			break;
1591 		}
1592 	}
1593 	mempool_free(pmb, phba->mbox_mem_pool);
1594 	return ret;
1595 }
1596 
1597 /**
1598  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1599  * @phba: Pointer to HBA context object.
1600  * @pring: Pointer to driver SLI ring object.
1601  * @piocb: Pointer to the driver iocb object.
1602  *
1603  * The driver calls this function with the hbalock held for SLI3 ports or
1604  * the ring lock held for SLI4 ports. The function adds the
1605  * new iocb to txcmplq of the given ring. This function always returns
1606  * 0. If this function is called for ELS ring, this function checks if
1607  * there is a vport associated with the ELS command. This function also
1608  * starts els_tmofunc timer if this is an ELS command.
1609  **/
1610 static int
1611 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1612 			struct lpfc_iocbq *piocb)
1613 {
1614 	if (phba->sli_rev == LPFC_SLI_REV4)
1615 		lockdep_assert_held(&pring->ring_lock);
1616 	else
1617 		lockdep_assert_held(&phba->hbalock);
1618 
1619 	BUG_ON(!piocb);
1620 
1621 	list_add_tail(&piocb->list, &pring->txcmplq);
1622 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1623 	pring->txcmplq_cnt++;
1624 
1625 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1626 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1627 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1628 		BUG_ON(!piocb->vport);
1629 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1630 			mod_timer(&piocb->vport->els_tmofunc,
1631 				  jiffies +
1632 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * lpfc_sli_ringtx_get - Get first element of the txq
1640  * @phba: Pointer to HBA context object.
1641  * @pring: Pointer to driver SLI ring object.
1642  *
1643  * This function is called with hbalock held to get next
1644  * iocb in txq of the given ring. If there is any iocb in
1645  * the txq, the function returns first iocb in the list after
1646  * removing the iocb from the list, else it returns NULL.
1647  **/
1648 struct lpfc_iocbq *
1649 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1650 {
1651 	struct lpfc_iocbq *cmd_iocb;
1652 
1653 	lockdep_assert_held(&phba->hbalock);
1654 
1655 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1656 	return cmd_iocb;
1657 }
1658 
1659 /**
1660  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1661  * @phba: Pointer to HBA context object.
1662  * @pring: Pointer to driver SLI ring object.
1663  *
1664  * This function is called with hbalock held and the caller must post the
1665  * iocb without releasing the lock. If the caller releases the lock,
1666  * iocb slot returned by the function is not guaranteed to be available.
1667  * The function returns pointer to the next available iocb slot if there
1668  * is available slot in the ring, else it returns NULL.
1669  * If the get index of the ring is ahead of the put index, the function
1670  * will post an error attention event to the worker thread to take the
1671  * HBA to offline state.
1672  **/
1673 static IOCB_t *
1674 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1675 {
1676 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1677 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1678 
1679 	lockdep_assert_held(&phba->hbalock);
1680 
1681 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1682 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1683 		pring->sli.sli3.next_cmdidx = 0;
1684 
1685 	if (unlikely(pring->sli.sli3.local_getidx ==
1686 		pring->sli.sli3.next_cmdidx)) {
1687 
1688 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1689 
1690 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1691 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1692 					"0315 Ring %d issue: portCmdGet %d "
1693 					"is bigger than cmd ring %d\n",
1694 					pring->ringno,
1695 					pring->sli.sli3.local_getidx,
1696 					max_cmd_idx);
1697 
1698 			phba->link_state = LPFC_HBA_ERROR;
1699 			/*
1700 			 * All error attention handlers are posted to
1701 			 * worker thread
1702 			 */
1703 			phba->work_ha |= HA_ERATT;
1704 			phba->work_hs = HS_FFER3;
1705 
1706 			lpfc_worker_wake_up(phba);
1707 
1708 			return NULL;
1709 		}
1710 
1711 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1712 			return NULL;
1713 	}
1714 
1715 	return lpfc_cmd_iocb(phba, pring);
1716 }
1717 
1718 /**
1719  * lpfc_sli_next_iotag - Get an iotag for the iocb
1720  * @phba: Pointer to HBA context object.
1721  * @iocbq: Pointer to driver iocb object.
1722  *
1723  * This function gets an iotag for the iocb. If there is no unused iotag and
1724  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1725  * array and assigns a new iotag.
1726  * The function returns the allocated iotag if successful, else returns zero.
1727  * Zero is not a valid iotag.
1728  * The caller is not required to hold any lock.
1729  **/
1730 uint16_t
1731 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1732 {
1733 	struct lpfc_iocbq **new_arr;
1734 	struct lpfc_iocbq **old_arr;
1735 	size_t new_len;
1736 	struct lpfc_sli *psli = &phba->sli;
1737 	uint16_t iotag;
1738 
1739 	spin_lock_irq(&phba->hbalock);
1740 	iotag = psli->last_iotag;
1741 	if(++iotag < psli->iocbq_lookup_len) {
1742 		psli->last_iotag = iotag;
1743 		psli->iocbq_lookup[iotag] = iocbq;
1744 		spin_unlock_irq(&phba->hbalock);
1745 		iocbq->iotag = iotag;
1746 		return iotag;
1747 	} else if (psli->iocbq_lookup_len < (0xffff
1748 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1749 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1750 		spin_unlock_irq(&phba->hbalock);
1751 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1752 				  GFP_KERNEL);
1753 		if (new_arr) {
1754 			spin_lock_irq(&phba->hbalock);
1755 			old_arr = psli->iocbq_lookup;
1756 			if (new_len <= psli->iocbq_lookup_len) {
1757 				/* highly unprobable case */
1758 				kfree(new_arr);
1759 				iotag = psli->last_iotag;
1760 				if(++iotag < psli->iocbq_lookup_len) {
1761 					psli->last_iotag = iotag;
1762 					psli->iocbq_lookup[iotag] = iocbq;
1763 					spin_unlock_irq(&phba->hbalock);
1764 					iocbq->iotag = iotag;
1765 					return iotag;
1766 				}
1767 				spin_unlock_irq(&phba->hbalock);
1768 				return 0;
1769 			}
1770 			if (psli->iocbq_lookup)
1771 				memcpy(new_arr, old_arr,
1772 				       ((psli->last_iotag  + 1) *
1773 					sizeof (struct lpfc_iocbq *)));
1774 			psli->iocbq_lookup = new_arr;
1775 			psli->iocbq_lookup_len = new_len;
1776 			psli->last_iotag = iotag;
1777 			psli->iocbq_lookup[iotag] = iocbq;
1778 			spin_unlock_irq(&phba->hbalock);
1779 			iocbq->iotag = iotag;
1780 			kfree(old_arr);
1781 			return iotag;
1782 		}
1783 	} else
1784 		spin_unlock_irq(&phba->hbalock);
1785 
1786 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1787 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1788 			psli->last_iotag);
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1795  * @phba: Pointer to HBA context object.
1796  * @pring: Pointer to driver SLI ring object.
1797  * @iocb: Pointer to iocb slot in the ring.
1798  * @nextiocb: Pointer to driver iocb object which need to be
1799  *            posted to firmware.
1800  *
1801  * This function is called with hbalock held to post a new iocb to
1802  * the firmware. This function copies the new iocb to ring iocb slot and
1803  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1804  * a completion call back for this iocb else the function will free the
1805  * iocb object.
1806  **/
1807 static void
1808 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1809 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1810 {
1811 	lockdep_assert_held(&phba->hbalock);
1812 	/*
1813 	 * Set up an iotag
1814 	 */
1815 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1816 
1817 
1818 	if (pring->ringno == LPFC_ELS_RING) {
1819 		lpfc_debugfs_slow_ring_trc(phba,
1820 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1821 			*(((uint32_t *) &nextiocb->iocb) + 4),
1822 			*(((uint32_t *) &nextiocb->iocb) + 6),
1823 			*(((uint32_t *) &nextiocb->iocb) + 7));
1824 	}
1825 
1826 	/*
1827 	 * Issue iocb command to adapter
1828 	 */
1829 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1830 	wmb();
1831 	pring->stats.iocb_cmd++;
1832 
1833 	/*
1834 	 * If there is no completion routine to call, we can release the
1835 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1836 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1837 	 */
1838 	if (nextiocb->iocb_cmpl)
1839 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1840 	else
1841 		__lpfc_sli_release_iocbq(phba, nextiocb);
1842 
1843 	/*
1844 	 * Let the HBA know what IOCB slot will be the next one the
1845 	 * driver will put a command into.
1846 	 */
1847 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1848 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1849 }
1850 
1851 /**
1852  * lpfc_sli_update_full_ring - Update the chip attention register
1853  * @phba: Pointer to HBA context object.
1854  * @pring: Pointer to driver SLI ring object.
1855  *
1856  * The caller is not required to hold any lock for calling this function.
1857  * This function updates the chip attention bits for the ring to inform firmware
1858  * that there are pending work to be done for this ring and requests an
1859  * interrupt when there is space available in the ring. This function is
1860  * called when the driver is unable to post more iocbs to the ring due
1861  * to unavailability of space in the ring.
1862  **/
1863 static void
1864 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1865 {
1866 	int ringno = pring->ringno;
1867 
1868 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1869 
1870 	wmb();
1871 
1872 	/*
1873 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1874 	 * The HBA will tell us when an IOCB entry is available.
1875 	 */
1876 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1877 	readl(phba->CAregaddr); /* flush */
1878 
1879 	pring->stats.iocb_cmd_full++;
1880 }
1881 
1882 /**
1883  * lpfc_sli_update_ring - Update chip attention register
1884  * @phba: Pointer to HBA context object.
1885  * @pring: Pointer to driver SLI ring object.
1886  *
1887  * This function updates the chip attention register bit for the
1888  * given ring to inform HBA that there is more work to be done
1889  * in this ring. The caller is not required to hold any lock.
1890  **/
1891 static void
1892 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1893 {
1894 	int ringno = pring->ringno;
1895 
1896 	/*
1897 	 * Tell the HBA that there is work to do in this ring.
1898 	 */
1899 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1900 		wmb();
1901 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1902 		readl(phba->CAregaddr); /* flush */
1903 	}
1904 }
1905 
1906 /**
1907  * lpfc_sli_resume_iocb - Process iocbs in the txq
1908  * @phba: Pointer to HBA context object.
1909  * @pring: Pointer to driver SLI ring object.
1910  *
1911  * This function is called with hbalock held to post pending iocbs
1912  * in the txq to the firmware. This function is called when driver
1913  * detects space available in the ring.
1914  **/
1915 static void
1916 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1917 {
1918 	IOCB_t *iocb;
1919 	struct lpfc_iocbq *nextiocb;
1920 
1921 	lockdep_assert_held(&phba->hbalock);
1922 
1923 	/*
1924 	 * Check to see if:
1925 	 *  (a) there is anything on the txq to send
1926 	 *  (b) link is up
1927 	 *  (c) link attention events can be processed (fcp ring only)
1928 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1929 	 */
1930 
1931 	if (lpfc_is_link_up(phba) &&
1932 	    (!list_empty(&pring->txq)) &&
1933 	    (pring->ringno != LPFC_FCP_RING ||
1934 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1935 
1936 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1937 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1938 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1939 
1940 		if (iocb)
1941 			lpfc_sli_update_ring(phba, pring);
1942 		else
1943 			lpfc_sli_update_full_ring(phba, pring);
1944 	}
1945 
1946 	return;
1947 }
1948 
1949 /**
1950  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1951  * @phba: Pointer to HBA context object.
1952  * @hbqno: HBQ number.
1953  *
1954  * This function is called with hbalock held to get the next
1955  * available slot for the given HBQ. If there is free slot
1956  * available for the HBQ it will return pointer to the next available
1957  * HBQ entry else it will return NULL.
1958  **/
1959 static struct lpfc_hbq_entry *
1960 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1961 {
1962 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1963 
1964 	lockdep_assert_held(&phba->hbalock);
1965 
1966 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1967 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1968 		hbqp->next_hbqPutIdx = 0;
1969 
1970 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1971 		uint32_t raw_index = phba->hbq_get[hbqno];
1972 		uint32_t getidx = le32_to_cpu(raw_index);
1973 
1974 		hbqp->local_hbqGetIdx = getidx;
1975 
1976 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1977 			lpfc_printf_log(phba, KERN_ERR,
1978 					LOG_SLI | LOG_VPORT,
1979 					"1802 HBQ %d: local_hbqGetIdx "
1980 					"%u is > than hbqp->entry_count %u\n",
1981 					hbqno, hbqp->local_hbqGetIdx,
1982 					hbqp->entry_count);
1983 
1984 			phba->link_state = LPFC_HBA_ERROR;
1985 			return NULL;
1986 		}
1987 
1988 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1989 			return NULL;
1990 	}
1991 
1992 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1993 			hbqp->hbqPutIdx;
1994 }
1995 
1996 /**
1997  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1998  * @phba: Pointer to HBA context object.
1999  *
2000  * This function is called with no lock held to free all the
2001  * hbq buffers while uninitializing the SLI interface. It also
2002  * frees the HBQ buffers returned by the firmware but not yet
2003  * processed by the upper layers.
2004  **/
2005 void
2006 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2007 {
2008 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2009 	struct hbq_dmabuf *hbq_buf;
2010 	unsigned long flags;
2011 	int i, hbq_count;
2012 
2013 	hbq_count = lpfc_sli_hbq_count();
2014 	/* Return all memory used by all HBQs */
2015 	spin_lock_irqsave(&phba->hbalock, flags);
2016 	for (i = 0; i < hbq_count; ++i) {
2017 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2018 				&phba->hbqs[i].hbq_buffer_list, list) {
2019 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2020 			list_del(&hbq_buf->dbuf.list);
2021 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2022 		}
2023 		phba->hbqs[i].buffer_count = 0;
2024 	}
2025 
2026 	/* Mark the HBQs not in use */
2027 	phba->hbq_in_use = 0;
2028 	spin_unlock_irqrestore(&phba->hbalock, flags);
2029 }
2030 
2031 /**
2032  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2033  * @phba: Pointer to HBA context object.
2034  * @hbqno: HBQ number.
2035  * @hbq_buf: Pointer to HBQ buffer.
2036  *
2037  * This function is called with the hbalock held to post a
2038  * hbq buffer to the firmware. If the function finds an empty
2039  * slot in the HBQ, it will post the buffer. The function will return
2040  * pointer to the hbq entry if it successfully post the buffer
2041  * else it will return NULL.
2042  **/
2043 static int
2044 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2045 			 struct hbq_dmabuf *hbq_buf)
2046 {
2047 	lockdep_assert_held(&phba->hbalock);
2048 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2049 }
2050 
2051 /**
2052  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2053  * @phba: Pointer to HBA context object.
2054  * @hbqno: HBQ number.
2055  * @hbq_buf: Pointer to HBQ buffer.
2056  *
2057  * This function is called with the hbalock held to post a hbq buffer to the
2058  * firmware. If the function finds an empty slot in the HBQ, it will post the
2059  * buffer and place it on the hbq_buffer_list. The function will return zero if
2060  * it successfully post the buffer else it will return an error.
2061  **/
2062 static int
2063 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2064 			    struct hbq_dmabuf *hbq_buf)
2065 {
2066 	struct lpfc_hbq_entry *hbqe;
2067 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2068 
2069 	lockdep_assert_held(&phba->hbalock);
2070 	/* Get next HBQ entry slot to use */
2071 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2072 	if (hbqe) {
2073 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2074 
2075 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2076 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2077 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2078 		hbqe->bde.tus.f.bdeFlags = 0;
2079 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2080 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2081 				/* Sync SLIM */
2082 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2083 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2084 				/* flush */
2085 		readl(phba->hbq_put + hbqno);
2086 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2087 		return 0;
2088 	} else
2089 		return -ENOMEM;
2090 }
2091 
2092 /**
2093  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2094  * @phba: Pointer to HBA context object.
2095  * @hbqno: HBQ number.
2096  * @hbq_buf: Pointer to HBQ buffer.
2097  *
2098  * This function is called with the hbalock held to post an RQE to the SLI4
2099  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2100  * the hbq_buffer_list and return zero, otherwise it will return an error.
2101  **/
2102 static int
2103 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2104 			    struct hbq_dmabuf *hbq_buf)
2105 {
2106 	int rc;
2107 	struct lpfc_rqe hrqe;
2108 	struct lpfc_rqe drqe;
2109 	struct lpfc_queue *hrq;
2110 	struct lpfc_queue *drq;
2111 
2112 	if (hbqno != LPFC_ELS_HBQ)
2113 		return 1;
2114 	hrq = phba->sli4_hba.hdr_rq;
2115 	drq = phba->sli4_hba.dat_rq;
2116 
2117 	lockdep_assert_held(&phba->hbalock);
2118 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2119 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2120 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2121 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2122 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2123 	if (rc < 0)
2124 		return rc;
2125 	hbq_buf->tag = (rc | (hbqno << 16));
2126 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2127 	return 0;
2128 }
2129 
2130 /* HBQ for ELS and CT traffic. */
2131 static struct lpfc_hbq_init lpfc_els_hbq = {
2132 	.rn = 1,
2133 	.entry_count = 256,
2134 	.mask_count = 0,
2135 	.profile = 0,
2136 	.ring_mask = (1 << LPFC_ELS_RING),
2137 	.buffer_count = 0,
2138 	.init_count = 40,
2139 	.add_count = 40,
2140 };
2141 
2142 /* Array of HBQs */
2143 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2144 	&lpfc_els_hbq,
2145 };
2146 
2147 /**
2148  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2149  * @phba: Pointer to HBA context object.
2150  * @hbqno: HBQ number.
2151  * @count: Number of HBQ buffers to be posted.
2152  *
2153  * This function is called with no lock held to post more hbq buffers to the
2154  * given HBQ. The function returns the number of HBQ buffers successfully
2155  * posted.
2156  **/
2157 static int
2158 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2159 {
2160 	uint32_t i, posted = 0;
2161 	unsigned long flags;
2162 	struct hbq_dmabuf *hbq_buffer;
2163 	LIST_HEAD(hbq_buf_list);
2164 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2165 		return 0;
2166 
2167 	if ((phba->hbqs[hbqno].buffer_count + count) >
2168 	    lpfc_hbq_defs[hbqno]->entry_count)
2169 		count = lpfc_hbq_defs[hbqno]->entry_count -
2170 					phba->hbqs[hbqno].buffer_count;
2171 	if (!count)
2172 		return 0;
2173 	/* Allocate HBQ entries */
2174 	for (i = 0; i < count; i++) {
2175 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2176 		if (!hbq_buffer)
2177 			break;
2178 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2179 	}
2180 	/* Check whether HBQ is still in use */
2181 	spin_lock_irqsave(&phba->hbalock, flags);
2182 	if (!phba->hbq_in_use)
2183 		goto err;
2184 	while (!list_empty(&hbq_buf_list)) {
2185 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2186 				 dbuf.list);
2187 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2188 				      (hbqno << 16));
2189 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2190 			phba->hbqs[hbqno].buffer_count++;
2191 			posted++;
2192 		} else
2193 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2194 	}
2195 	spin_unlock_irqrestore(&phba->hbalock, flags);
2196 	return posted;
2197 err:
2198 	spin_unlock_irqrestore(&phba->hbalock, flags);
2199 	while (!list_empty(&hbq_buf_list)) {
2200 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2201 				 dbuf.list);
2202 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2203 	}
2204 	return 0;
2205 }
2206 
2207 /**
2208  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2209  * @phba: Pointer to HBA context object.
2210  * @qno: HBQ number.
2211  *
2212  * This function posts more buffers to the HBQ. This function
2213  * is called with no lock held. The function returns the number of HBQ entries
2214  * successfully allocated.
2215  **/
2216 int
2217 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2218 {
2219 	if (phba->sli_rev == LPFC_SLI_REV4)
2220 		return 0;
2221 	else
2222 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2223 					 lpfc_hbq_defs[qno]->add_count);
2224 }
2225 
2226 /**
2227  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2228  * @phba: Pointer to HBA context object.
2229  * @qno:  HBQ queue number.
2230  *
2231  * This function is called from SLI initialization code path with
2232  * no lock held to post initial HBQ buffers to firmware. The
2233  * function returns the number of HBQ entries successfully allocated.
2234  **/
2235 static int
2236 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2237 {
2238 	if (phba->sli_rev == LPFC_SLI_REV4)
2239 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2240 					lpfc_hbq_defs[qno]->entry_count);
2241 	else
2242 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2243 					 lpfc_hbq_defs[qno]->init_count);
2244 }
2245 
2246 /**
2247  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2248  * @phba: Pointer to HBA context object.
2249  * @hbqno: HBQ number.
2250  *
2251  * This function removes the first hbq buffer on an hbq list and returns a
2252  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2253  **/
2254 static struct hbq_dmabuf *
2255 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2256 {
2257 	struct lpfc_dmabuf *d_buf;
2258 
2259 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2260 	if (!d_buf)
2261 		return NULL;
2262 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2263 }
2264 
2265 /**
2266  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2267  * @phba: Pointer to HBA context object.
2268  * @hbqno: HBQ number.
2269  *
2270  * This function removes the first RQ buffer on an RQ buffer list and returns a
2271  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2272  **/
2273 static struct rqb_dmabuf *
2274 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2275 {
2276 	struct lpfc_dmabuf *h_buf;
2277 	struct lpfc_rqb *rqbp;
2278 
2279 	rqbp = hrq->rqbp;
2280 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2281 			 struct lpfc_dmabuf, list);
2282 	if (!h_buf)
2283 		return NULL;
2284 	rqbp->buffer_count--;
2285 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2286 }
2287 
2288 /**
2289  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2290  * @phba: Pointer to HBA context object.
2291  * @tag: Tag of the hbq buffer.
2292  *
2293  * This function searches for the hbq buffer associated with the given tag in
2294  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2295  * otherwise it returns NULL.
2296  **/
2297 static struct hbq_dmabuf *
2298 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2299 {
2300 	struct lpfc_dmabuf *d_buf;
2301 	struct hbq_dmabuf *hbq_buf;
2302 	uint32_t hbqno;
2303 
2304 	hbqno = tag >> 16;
2305 	if (hbqno >= LPFC_MAX_HBQS)
2306 		return NULL;
2307 
2308 	spin_lock_irq(&phba->hbalock);
2309 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2310 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2311 		if (hbq_buf->tag == tag) {
2312 			spin_unlock_irq(&phba->hbalock);
2313 			return hbq_buf;
2314 		}
2315 	}
2316 	spin_unlock_irq(&phba->hbalock);
2317 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2318 			"1803 Bad hbq tag. Data: x%x x%x\n",
2319 			tag, phba->hbqs[tag >> 16].buffer_count);
2320 	return NULL;
2321 }
2322 
2323 /**
2324  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2325  * @phba: Pointer to HBA context object.
2326  * @hbq_buffer: Pointer to HBQ buffer.
2327  *
2328  * This function is called with hbalock. This function gives back
2329  * the hbq buffer to firmware. If the HBQ does not have space to
2330  * post the buffer, it will free the buffer.
2331  **/
2332 void
2333 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2334 {
2335 	uint32_t hbqno;
2336 
2337 	if (hbq_buffer) {
2338 		hbqno = hbq_buffer->tag >> 16;
2339 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2340 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2341 	}
2342 }
2343 
2344 /**
2345  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2346  * @mbxCommand: mailbox command code.
2347  *
2348  * This function is called by the mailbox event handler function to verify
2349  * that the completed mailbox command is a legitimate mailbox command. If the
2350  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2351  * and the mailbox event handler will take the HBA offline.
2352  **/
2353 static int
2354 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2355 {
2356 	uint8_t ret;
2357 
2358 	switch (mbxCommand) {
2359 	case MBX_LOAD_SM:
2360 	case MBX_READ_NV:
2361 	case MBX_WRITE_NV:
2362 	case MBX_WRITE_VPARMS:
2363 	case MBX_RUN_BIU_DIAG:
2364 	case MBX_INIT_LINK:
2365 	case MBX_DOWN_LINK:
2366 	case MBX_CONFIG_LINK:
2367 	case MBX_CONFIG_RING:
2368 	case MBX_RESET_RING:
2369 	case MBX_READ_CONFIG:
2370 	case MBX_READ_RCONFIG:
2371 	case MBX_READ_SPARM:
2372 	case MBX_READ_STATUS:
2373 	case MBX_READ_RPI:
2374 	case MBX_READ_XRI:
2375 	case MBX_READ_REV:
2376 	case MBX_READ_LNK_STAT:
2377 	case MBX_REG_LOGIN:
2378 	case MBX_UNREG_LOGIN:
2379 	case MBX_CLEAR_LA:
2380 	case MBX_DUMP_MEMORY:
2381 	case MBX_DUMP_CONTEXT:
2382 	case MBX_RUN_DIAGS:
2383 	case MBX_RESTART:
2384 	case MBX_UPDATE_CFG:
2385 	case MBX_DOWN_LOAD:
2386 	case MBX_DEL_LD_ENTRY:
2387 	case MBX_RUN_PROGRAM:
2388 	case MBX_SET_MASK:
2389 	case MBX_SET_VARIABLE:
2390 	case MBX_UNREG_D_ID:
2391 	case MBX_KILL_BOARD:
2392 	case MBX_CONFIG_FARP:
2393 	case MBX_BEACON:
2394 	case MBX_LOAD_AREA:
2395 	case MBX_RUN_BIU_DIAG64:
2396 	case MBX_CONFIG_PORT:
2397 	case MBX_READ_SPARM64:
2398 	case MBX_READ_RPI64:
2399 	case MBX_REG_LOGIN64:
2400 	case MBX_READ_TOPOLOGY:
2401 	case MBX_WRITE_WWN:
2402 	case MBX_SET_DEBUG:
2403 	case MBX_LOAD_EXP_ROM:
2404 	case MBX_ASYNCEVT_ENABLE:
2405 	case MBX_REG_VPI:
2406 	case MBX_UNREG_VPI:
2407 	case MBX_HEARTBEAT:
2408 	case MBX_PORT_CAPABILITIES:
2409 	case MBX_PORT_IOV_CONTROL:
2410 	case MBX_SLI4_CONFIG:
2411 	case MBX_SLI4_REQ_FTRS:
2412 	case MBX_REG_FCFI:
2413 	case MBX_UNREG_FCFI:
2414 	case MBX_REG_VFI:
2415 	case MBX_UNREG_VFI:
2416 	case MBX_INIT_VPI:
2417 	case MBX_INIT_VFI:
2418 	case MBX_RESUME_RPI:
2419 	case MBX_READ_EVENT_LOG_STATUS:
2420 	case MBX_READ_EVENT_LOG:
2421 	case MBX_SECURITY_MGMT:
2422 	case MBX_AUTH_PORT:
2423 	case MBX_ACCESS_VDATA:
2424 		ret = mbxCommand;
2425 		break;
2426 	default:
2427 		ret = MBX_SHUTDOWN;
2428 		break;
2429 	}
2430 	return ret;
2431 }
2432 
2433 /**
2434  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2435  * @phba: Pointer to HBA context object.
2436  * @pmboxq: Pointer to mailbox command.
2437  *
2438  * This is completion handler function for mailbox commands issued from
2439  * lpfc_sli_issue_mbox_wait function. This function is called by the
2440  * mailbox event handler function with no lock held. This function
2441  * will wake up thread waiting on the wait queue pointed by context1
2442  * of the mailbox.
2443  **/
2444 void
2445 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2446 {
2447 	unsigned long drvr_flag;
2448 	struct completion *pmbox_done;
2449 
2450 	/*
2451 	 * If pmbox_done is empty, the driver thread gave up waiting and
2452 	 * continued running.
2453 	 */
2454 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2455 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2456 	pmbox_done = (struct completion *)pmboxq->context3;
2457 	if (pmbox_done)
2458 		complete(pmbox_done);
2459 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2460 	return;
2461 }
2462 
2463 static void
2464 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2465 {
2466 	unsigned long iflags;
2467 
2468 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2469 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2470 		spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2471 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2472 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2473 		spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2474 	}
2475 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2476 }
2477 
2478 /**
2479  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2480  * @phba: Pointer to HBA context object.
2481  * @pmb: Pointer to mailbox object.
2482  *
2483  * This function is the default mailbox completion handler. It
2484  * frees the memory resources associated with the completed mailbox
2485  * command. If the completed command is a REG_LOGIN mailbox command,
2486  * this function will issue a UREG_LOGIN to re-claim the RPI.
2487  **/
2488 void
2489 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2490 {
2491 	struct lpfc_vport  *vport = pmb->vport;
2492 	struct lpfc_dmabuf *mp;
2493 	struct lpfc_nodelist *ndlp;
2494 	struct Scsi_Host *shost;
2495 	uint16_t rpi, vpi;
2496 	int rc;
2497 
2498 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2499 
2500 	if (mp) {
2501 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2502 		kfree(mp);
2503 	}
2504 
2505 	/*
2506 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2507 	 * is in re-discovery driver need to cleanup the RPI.
2508 	 */
2509 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2510 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2511 	    !pmb->u.mb.mbxStatus) {
2512 		rpi = pmb->u.mb.un.varWords[0];
2513 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2514 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2515 		pmb->vport = vport;
2516 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2517 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2518 		if (rc != MBX_NOT_FINISHED)
2519 			return;
2520 	}
2521 
2522 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2523 		!(phba->pport->load_flag & FC_UNLOADING) &&
2524 		!pmb->u.mb.mbxStatus) {
2525 		shost = lpfc_shost_from_vport(vport);
2526 		spin_lock_irq(shost->host_lock);
2527 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2528 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2529 		spin_unlock_irq(shost->host_lock);
2530 	}
2531 
2532 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2533 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2534 		lpfc_nlp_put(ndlp);
2535 		pmb->ctx_buf = NULL;
2536 		pmb->ctx_ndlp = NULL;
2537 	}
2538 
2539 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2540 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2541 
2542 		/* Check to see if there are any deferred events to process */
2543 		if (ndlp) {
2544 			lpfc_printf_vlog(
2545 				vport,
2546 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2547 				"1438 UNREG cmpl deferred mbox x%x "
2548 				"on NPort x%x Data: x%x x%x %px\n",
2549 				ndlp->nlp_rpi, ndlp->nlp_DID,
2550 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2551 
2552 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2553 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2554 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2555 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2556 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2557 			} else {
2558 				__lpfc_sli_rpi_release(vport, ndlp);
2559 			}
2560 			if (vport->load_flag & FC_UNLOADING)
2561 				lpfc_nlp_put(ndlp);
2562 			pmb->ctx_ndlp = NULL;
2563 		}
2564 	}
2565 
2566 	/* Check security permission status on INIT_LINK mailbox command */
2567 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2568 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2569 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2570 				"2860 SLI authentication is required "
2571 				"for INIT_LINK but has not done yet\n");
2572 
2573 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2574 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2575 	else
2576 		mempool_free(pmb, phba->mbox_mem_pool);
2577 }
2578  /**
2579  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2580  * @phba: Pointer to HBA context object.
2581  * @pmb: Pointer to mailbox object.
2582  *
2583  * This function is the unreg rpi mailbox completion handler. It
2584  * frees the memory resources associated with the completed mailbox
2585  * command. An additional refrenece is put on the ndlp to prevent
2586  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2587  * the unreg mailbox command completes, this routine puts the
2588  * reference back.
2589  *
2590  **/
2591 void
2592 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2593 {
2594 	struct lpfc_vport  *vport = pmb->vport;
2595 	struct lpfc_nodelist *ndlp;
2596 
2597 	ndlp = pmb->ctx_ndlp;
2598 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2599 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2600 		    (bf_get(lpfc_sli_intf_if_type,
2601 		     &phba->sli4_hba.sli_intf) >=
2602 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2603 			if (ndlp) {
2604 				lpfc_printf_vlog(
2605 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2606 					 "0010 UNREG_LOGIN vpi:%x "
2607 					 "rpi:%x DID:%x defer x%x flg x%x "
2608 					 "map:%x %px\n",
2609 					 vport->vpi, ndlp->nlp_rpi,
2610 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2611 					 ndlp->nlp_flag,
2612 					 ndlp->nlp_usg_map, ndlp);
2613 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2614 				lpfc_nlp_put(ndlp);
2615 
2616 				/* Check to see if there are any deferred
2617 				 * events to process
2618 				 */
2619 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2620 				    (ndlp->nlp_defer_did !=
2621 				    NLP_EVT_NOTHING_PENDING)) {
2622 					lpfc_printf_vlog(
2623 						vport, KERN_INFO, LOG_DISCOVERY,
2624 						"4111 UNREG cmpl deferred "
2625 						"clr x%x on "
2626 						"NPort x%x Data: x%x x%px\n",
2627 						ndlp->nlp_rpi, ndlp->nlp_DID,
2628 						ndlp->nlp_defer_did, ndlp);
2629 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2630 					ndlp->nlp_defer_did =
2631 						NLP_EVT_NOTHING_PENDING;
2632 					lpfc_issue_els_plogi(
2633 						vport, ndlp->nlp_DID, 0);
2634 				} else {
2635 					__lpfc_sli_rpi_release(vport, ndlp);
2636 				}
2637 			}
2638 		}
2639 	}
2640 
2641 	mempool_free(pmb, phba->mbox_mem_pool);
2642 }
2643 
2644 /**
2645  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2646  * @phba: Pointer to HBA context object.
2647  *
2648  * This function is called with no lock held. This function processes all
2649  * the completed mailbox commands and gives it to upper layers. The interrupt
2650  * service routine processes mailbox completion interrupt and adds completed
2651  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2652  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2653  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2654  * function returns the mailbox commands to the upper layer by calling the
2655  * completion handler function of each mailbox.
2656  **/
2657 int
2658 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2659 {
2660 	MAILBOX_t *pmbox;
2661 	LPFC_MBOXQ_t *pmb;
2662 	int rc;
2663 	LIST_HEAD(cmplq);
2664 
2665 	phba->sli.slistat.mbox_event++;
2666 
2667 	/* Get all completed mailboxe buffers into the cmplq */
2668 	spin_lock_irq(&phba->hbalock);
2669 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2670 	spin_unlock_irq(&phba->hbalock);
2671 
2672 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2673 	do {
2674 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2675 		if (pmb == NULL)
2676 			break;
2677 
2678 		pmbox = &pmb->u.mb;
2679 
2680 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2681 			if (pmb->vport) {
2682 				lpfc_debugfs_disc_trc(pmb->vport,
2683 					LPFC_DISC_TRC_MBOX_VPORT,
2684 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2685 					(uint32_t)pmbox->mbxCommand,
2686 					pmbox->un.varWords[0],
2687 					pmbox->un.varWords[1]);
2688 			}
2689 			else {
2690 				lpfc_debugfs_disc_trc(phba->pport,
2691 					LPFC_DISC_TRC_MBOX,
2692 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2693 					(uint32_t)pmbox->mbxCommand,
2694 					pmbox->un.varWords[0],
2695 					pmbox->un.varWords[1]);
2696 			}
2697 		}
2698 
2699 		/*
2700 		 * It is a fatal error if unknown mbox command completion.
2701 		 */
2702 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2703 		    MBX_SHUTDOWN) {
2704 			/* Unknown mailbox command compl */
2705 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2706 					"(%d):0323 Unknown Mailbox command "
2707 					"x%x (x%x/x%x) Cmpl\n",
2708 					pmb->vport ? pmb->vport->vpi :
2709 					LPFC_VPORT_UNKNOWN,
2710 					pmbox->mbxCommand,
2711 					lpfc_sli_config_mbox_subsys_get(phba,
2712 									pmb),
2713 					lpfc_sli_config_mbox_opcode_get(phba,
2714 									pmb));
2715 			phba->link_state = LPFC_HBA_ERROR;
2716 			phba->work_hs = HS_FFER3;
2717 			lpfc_handle_eratt(phba);
2718 			continue;
2719 		}
2720 
2721 		if (pmbox->mbxStatus) {
2722 			phba->sli.slistat.mbox_stat_err++;
2723 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2724 				/* Mbox cmd cmpl error - RETRYing */
2725 				lpfc_printf_log(phba, KERN_INFO,
2726 					LOG_MBOX | LOG_SLI,
2727 					"(%d):0305 Mbox cmd cmpl "
2728 					"error - RETRYing Data: x%x "
2729 					"(x%x/x%x) x%x x%x x%x\n",
2730 					pmb->vport ? pmb->vport->vpi :
2731 					LPFC_VPORT_UNKNOWN,
2732 					pmbox->mbxCommand,
2733 					lpfc_sli_config_mbox_subsys_get(phba,
2734 									pmb),
2735 					lpfc_sli_config_mbox_opcode_get(phba,
2736 									pmb),
2737 					pmbox->mbxStatus,
2738 					pmbox->un.varWords[0],
2739 					pmb->vport ? pmb->vport->port_state :
2740 					LPFC_VPORT_UNKNOWN);
2741 				pmbox->mbxStatus = 0;
2742 				pmbox->mbxOwner = OWN_HOST;
2743 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2744 				if (rc != MBX_NOT_FINISHED)
2745 					continue;
2746 			}
2747 		}
2748 
2749 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2750 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2751 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2752 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2753 				"x%x x%x x%x\n",
2754 				pmb->vport ? pmb->vport->vpi : 0,
2755 				pmbox->mbxCommand,
2756 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2757 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2758 				pmb->mbox_cmpl,
2759 				*((uint32_t *) pmbox),
2760 				pmbox->un.varWords[0],
2761 				pmbox->un.varWords[1],
2762 				pmbox->un.varWords[2],
2763 				pmbox->un.varWords[3],
2764 				pmbox->un.varWords[4],
2765 				pmbox->un.varWords[5],
2766 				pmbox->un.varWords[6],
2767 				pmbox->un.varWords[7],
2768 				pmbox->un.varWords[8],
2769 				pmbox->un.varWords[9],
2770 				pmbox->un.varWords[10]);
2771 
2772 		if (pmb->mbox_cmpl)
2773 			pmb->mbox_cmpl(phba,pmb);
2774 	} while (1);
2775 	return 0;
2776 }
2777 
2778 /**
2779  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2780  * @phba: Pointer to HBA context object.
2781  * @pring: Pointer to driver SLI ring object.
2782  * @tag: buffer tag.
2783  *
2784  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2785  * is set in the tag the buffer is posted for a particular exchange,
2786  * the function will return the buffer without replacing the buffer.
2787  * If the buffer is for unsolicited ELS or CT traffic, this function
2788  * returns the buffer and also posts another buffer to the firmware.
2789  **/
2790 static struct lpfc_dmabuf *
2791 lpfc_sli_get_buff(struct lpfc_hba *phba,
2792 		  struct lpfc_sli_ring *pring,
2793 		  uint32_t tag)
2794 {
2795 	struct hbq_dmabuf *hbq_entry;
2796 
2797 	if (tag & QUE_BUFTAG_BIT)
2798 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2799 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2800 	if (!hbq_entry)
2801 		return NULL;
2802 	return &hbq_entry->dbuf;
2803 }
2804 
2805 /**
2806  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2807  * @phba: Pointer to HBA context object.
2808  * @pring: Pointer to driver SLI ring object.
2809  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2810  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2811  * @fch_type: the type for the first frame of the sequence.
2812  *
2813  * This function is called with no lock held. This function uses the r_ctl and
2814  * type of the received sequence to find the correct callback function to call
2815  * to process the sequence.
2816  **/
2817 static int
2818 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2819 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2820 			 uint32_t fch_type)
2821 {
2822 	int i;
2823 
2824 	switch (fch_type) {
2825 	case FC_TYPE_NVME:
2826 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2827 		return 1;
2828 	default:
2829 		break;
2830 	}
2831 
2832 	/* unSolicited Responses */
2833 	if (pring->prt[0].profile) {
2834 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2835 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2836 									saveq);
2837 		return 1;
2838 	}
2839 	/* We must search, based on rctl / type
2840 	   for the right routine */
2841 	for (i = 0; i < pring->num_mask; i++) {
2842 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2843 		    (pring->prt[i].type == fch_type)) {
2844 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2845 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2846 						(phba, pring, saveq);
2847 			return 1;
2848 		}
2849 	}
2850 	return 0;
2851 }
2852 
2853 /**
2854  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2855  * @phba: Pointer to HBA context object.
2856  * @pring: Pointer to driver SLI ring object.
2857  * @saveq: Pointer to the unsolicited iocb.
2858  *
2859  * This function is called with no lock held by the ring event handler
2860  * when there is an unsolicited iocb posted to the response ring by the
2861  * firmware. This function gets the buffer associated with the iocbs
2862  * and calls the event handler for the ring. This function handles both
2863  * qring buffers and hbq buffers.
2864  * When the function returns 1 the caller can free the iocb object otherwise
2865  * upper layer functions will free the iocb objects.
2866  **/
2867 static int
2868 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2869 			    struct lpfc_iocbq *saveq)
2870 {
2871 	IOCB_t           * irsp;
2872 	WORD5            * w5p;
2873 	uint32_t           Rctl, Type;
2874 	struct lpfc_iocbq *iocbq;
2875 	struct lpfc_dmabuf *dmzbuf;
2876 
2877 	irsp = &(saveq->iocb);
2878 
2879 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2880 		if (pring->lpfc_sli_rcv_async_status)
2881 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2882 		else
2883 			lpfc_printf_log(phba,
2884 					KERN_WARNING,
2885 					LOG_SLI,
2886 					"0316 Ring %d handler: unexpected "
2887 					"ASYNC_STATUS iocb received evt_code "
2888 					"0x%x\n",
2889 					pring->ringno,
2890 					irsp->un.asyncstat.evt_code);
2891 		return 1;
2892 	}
2893 
2894 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2895 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2896 		if (irsp->ulpBdeCount > 0) {
2897 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2898 					irsp->un.ulpWord[3]);
2899 			lpfc_in_buf_free(phba, dmzbuf);
2900 		}
2901 
2902 		if (irsp->ulpBdeCount > 1) {
2903 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2904 					irsp->unsli3.sli3Words[3]);
2905 			lpfc_in_buf_free(phba, dmzbuf);
2906 		}
2907 
2908 		if (irsp->ulpBdeCount > 2) {
2909 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2910 				irsp->unsli3.sli3Words[7]);
2911 			lpfc_in_buf_free(phba, dmzbuf);
2912 		}
2913 
2914 		return 1;
2915 	}
2916 
2917 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2918 		if (irsp->ulpBdeCount != 0) {
2919 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2920 						irsp->un.ulpWord[3]);
2921 			if (!saveq->context2)
2922 				lpfc_printf_log(phba,
2923 					KERN_ERR,
2924 					LOG_SLI,
2925 					"0341 Ring %d Cannot find buffer for "
2926 					"an unsolicited iocb. tag 0x%x\n",
2927 					pring->ringno,
2928 					irsp->un.ulpWord[3]);
2929 		}
2930 		if (irsp->ulpBdeCount == 2) {
2931 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2932 						irsp->unsli3.sli3Words[7]);
2933 			if (!saveq->context3)
2934 				lpfc_printf_log(phba,
2935 					KERN_ERR,
2936 					LOG_SLI,
2937 					"0342 Ring %d Cannot find buffer for an"
2938 					" unsolicited iocb. tag 0x%x\n",
2939 					pring->ringno,
2940 					irsp->unsli3.sli3Words[7]);
2941 		}
2942 		list_for_each_entry(iocbq, &saveq->list, list) {
2943 			irsp = &(iocbq->iocb);
2944 			if (irsp->ulpBdeCount != 0) {
2945 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2946 							irsp->un.ulpWord[3]);
2947 				if (!iocbq->context2)
2948 					lpfc_printf_log(phba,
2949 						KERN_ERR,
2950 						LOG_SLI,
2951 						"0343 Ring %d Cannot find "
2952 						"buffer for an unsolicited iocb"
2953 						". tag 0x%x\n", pring->ringno,
2954 						irsp->un.ulpWord[3]);
2955 			}
2956 			if (irsp->ulpBdeCount == 2) {
2957 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2958 						irsp->unsli3.sli3Words[7]);
2959 				if (!iocbq->context3)
2960 					lpfc_printf_log(phba,
2961 						KERN_ERR,
2962 						LOG_SLI,
2963 						"0344 Ring %d Cannot find "
2964 						"buffer for an unsolicited "
2965 						"iocb. tag 0x%x\n",
2966 						pring->ringno,
2967 						irsp->unsli3.sli3Words[7]);
2968 			}
2969 		}
2970 	}
2971 	if (irsp->ulpBdeCount != 0 &&
2972 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2973 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2974 		int found = 0;
2975 
2976 		/* search continue save q for same XRI */
2977 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2978 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2979 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2980 				list_add_tail(&saveq->list, &iocbq->list);
2981 				found = 1;
2982 				break;
2983 			}
2984 		}
2985 		if (!found)
2986 			list_add_tail(&saveq->clist,
2987 				      &pring->iocb_continue_saveq);
2988 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2989 			list_del_init(&iocbq->clist);
2990 			saveq = iocbq;
2991 			irsp = &(saveq->iocb);
2992 		} else
2993 			return 0;
2994 	}
2995 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2996 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2997 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2998 		Rctl = FC_RCTL_ELS_REQ;
2999 		Type = FC_TYPE_ELS;
3000 	} else {
3001 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3002 		Rctl = w5p->hcsw.Rctl;
3003 		Type = w5p->hcsw.Type;
3004 
3005 		/* Firmware Workaround */
3006 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3007 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3008 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3009 			Rctl = FC_RCTL_ELS_REQ;
3010 			Type = FC_TYPE_ELS;
3011 			w5p->hcsw.Rctl = Rctl;
3012 			w5p->hcsw.Type = Type;
3013 		}
3014 	}
3015 
3016 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3017 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3018 				"0313 Ring %d handler: unexpected Rctl x%x "
3019 				"Type x%x received\n",
3020 				pring->ringno, Rctl, Type);
3021 
3022 	return 1;
3023 }
3024 
3025 /**
3026  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3027  * @phba: Pointer to HBA context object.
3028  * @pring: Pointer to driver SLI ring object.
3029  * @prspiocb: Pointer to response iocb object.
3030  *
3031  * This function looks up the iocb_lookup table to get the command iocb
3032  * corresponding to the given response iocb using the iotag of the
3033  * response iocb. The driver calls this function with the hbalock held
3034  * for SLI3 ports or the ring lock held for SLI4 ports.
3035  * This function returns the command iocb object if it finds the command
3036  * iocb else returns NULL.
3037  **/
3038 static struct lpfc_iocbq *
3039 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3040 		      struct lpfc_sli_ring *pring,
3041 		      struct lpfc_iocbq *prspiocb)
3042 {
3043 	struct lpfc_iocbq *cmd_iocb = NULL;
3044 	uint16_t iotag;
3045 	spinlock_t *temp_lock = NULL;
3046 	unsigned long iflag = 0;
3047 
3048 	if (phba->sli_rev == LPFC_SLI_REV4)
3049 		temp_lock = &pring->ring_lock;
3050 	else
3051 		temp_lock = &phba->hbalock;
3052 
3053 	spin_lock_irqsave(temp_lock, iflag);
3054 	iotag = prspiocb->iocb.ulpIoTag;
3055 
3056 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3057 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3058 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3059 			/* remove from txcmpl queue list */
3060 			list_del_init(&cmd_iocb->list);
3061 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3062 			pring->txcmplq_cnt--;
3063 			spin_unlock_irqrestore(temp_lock, iflag);
3064 			return cmd_iocb;
3065 		}
3066 	}
3067 
3068 	spin_unlock_irqrestore(temp_lock, iflag);
3069 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3070 			"0317 iotag x%x is out of "
3071 			"range: max iotag x%x wd0 x%x\n",
3072 			iotag, phba->sli.last_iotag,
3073 			*(((uint32_t *) &prspiocb->iocb) + 7));
3074 	return NULL;
3075 }
3076 
3077 /**
3078  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3079  * @phba: Pointer to HBA context object.
3080  * @pring: Pointer to driver SLI ring object.
3081  * @iotag: IOCB tag.
3082  *
3083  * This function looks up the iocb_lookup table to get the command iocb
3084  * corresponding to the given iotag. The driver calls this function with
3085  * the ring lock held because this function is an SLI4 port only helper.
3086  * This function returns the command iocb object if it finds the command
3087  * iocb else returns NULL.
3088  **/
3089 static struct lpfc_iocbq *
3090 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3091 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3092 {
3093 	struct lpfc_iocbq *cmd_iocb = NULL;
3094 	spinlock_t *temp_lock = NULL;
3095 	unsigned long iflag = 0;
3096 
3097 	if (phba->sli_rev == LPFC_SLI_REV4)
3098 		temp_lock = &pring->ring_lock;
3099 	else
3100 		temp_lock = &phba->hbalock;
3101 
3102 	spin_lock_irqsave(temp_lock, iflag);
3103 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3104 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3105 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3106 			/* remove from txcmpl queue list */
3107 			list_del_init(&cmd_iocb->list);
3108 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3109 			pring->txcmplq_cnt--;
3110 			spin_unlock_irqrestore(temp_lock, iflag);
3111 			return cmd_iocb;
3112 		}
3113 	}
3114 
3115 	spin_unlock_irqrestore(temp_lock, iflag);
3116 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3117 			"0372 iotag x%x lookup error: max iotag (x%x) "
3118 			"iocb_flag x%x\n",
3119 			iotag, phba->sli.last_iotag,
3120 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3121 	return NULL;
3122 }
3123 
3124 /**
3125  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3126  * @phba: Pointer to HBA context object.
3127  * @pring: Pointer to driver SLI ring object.
3128  * @saveq: Pointer to the response iocb to be processed.
3129  *
3130  * This function is called by the ring event handler for non-fcp
3131  * rings when there is a new response iocb in the response ring.
3132  * The caller is not required to hold any locks. This function
3133  * gets the command iocb associated with the response iocb and
3134  * calls the completion handler for the command iocb. If there
3135  * is no completion handler, the function will free the resources
3136  * associated with command iocb. If the response iocb is for
3137  * an already aborted command iocb, the status of the completion
3138  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3139  * This function always returns 1.
3140  **/
3141 static int
3142 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3143 			  struct lpfc_iocbq *saveq)
3144 {
3145 	struct lpfc_iocbq *cmdiocbp;
3146 	int rc = 1;
3147 	unsigned long iflag;
3148 
3149 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3150 	if (cmdiocbp) {
3151 		if (cmdiocbp->iocb_cmpl) {
3152 			/*
3153 			 * If an ELS command failed send an event to mgmt
3154 			 * application.
3155 			 */
3156 			if (saveq->iocb.ulpStatus &&
3157 			     (pring->ringno == LPFC_ELS_RING) &&
3158 			     (cmdiocbp->iocb.ulpCommand ==
3159 				CMD_ELS_REQUEST64_CR))
3160 				lpfc_send_els_failure_event(phba,
3161 					cmdiocbp, saveq);
3162 
3163 			/*
3164 			 * Post all ELS completions to the worker thread.
3165 			 * All other are passed to the completion callback.
3166 			 */
3167 			if (pring->ringno == LPFC_ELS_RING) {
3168 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3169 				    (cmdiocbp->iocb_flag &
3170 							LPFC_DRIVER_ABORTED)) {
3171 					spin_lock_irqsave(&phba->hbalock,
3172 							  iflag);
3173 					cmdiocbp->iocb_flag &=
3174 						~LPFC_DRIVER_ABORTED;
3175 					spin_unlock_irqrestore(&phba->hbalock,
3176 							       iflag);
3177 					saveq->iocb.ulpStatus =
3178 						IOSTAT_LOCAL_REJECT;
3179 					saveq->iocb.un.ulpWord[4] =
3180 						IOERR_SLI_ABORTED;
3181 
3182 					/* Firmware could still be in progress
3183 					 * of DMAing payload, so don't free data
3184 					 * buffer till after a hbeat.
3185 					 */
3186 					spin_lock_irqsave(&phba->hbalock,
3187 							  iflag);
3188 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3189 					spin_unlock_irqrestore(&phba->hbalock,
3190 							       iflag);
3191 				}
3192 				if (phba->sli_rev == LPFC_SLI_REV4) {
3193 					if (saveq->iocb_flag &
3194 					    LPFC_EXCHANGE_BUSY) {
3195 						/* Set cmdiocb flag for the
3196 						 * exchange busy so sgl (xri)
3197 						 * will not be released until
3198 						 * the abort xri is received
3199 						 * from hba.
3200 						 */
3201 						spin_lock_irqsave(
3202 							&phba->hbalock, iflag);
3203 						cmdiocbp->iocb_flag |=
3204 							LPFC_EXCHANGE_BUSY;
3205 						spin_unlock_irqrestore(
3206 							&phba->hbalock, iflag);
3207 					}
3208 					if (cmdiocbp->iocb_flag &
3209 					    LPFC_DRIVER_ABORTED) {
3210 						/*
3211 						 * Clear LPFC_DRIVER_ABORTED
3212 						 * bit in case it was driver
3213 						 * initiated abort.
3214 						 */
3215 						spin_lock_irqsave(
3216 							&phba->hbalock, iflag);
3217 						cmdiocbp->iocb_flag &=
3218 							~LPFC_DRIVER_ABORTED;
3219 						spin_unlock_irqrestore(
3220 							&phba->hbalock, iflag);
3221 						cmdiocbp->iocb.ulpStatus =
3222 							IOSTAT_LOCAL_REJECT;
3223 						cmdiocbp->iocb.un.ulpWord[4] =
3224 							IOERR_ABORT_REQUESTED;
3225 						/*
3226 						 * For SLI4, irsiocb contains
3227 						 * NO_XRI in sli_xritag, it
3228 						 * shall not affect releasing
3229 						 * sgl (xri) process.
3230 						 */
3231 						saveq->iocb.ulpStatus =
3232 							IOSTAT_LOCAL_REJECT;
3233 						saveq->iocb.un.ulpWord[4] =
3234 							IOERR_SLI_ABORTED;
3235 						spin_lock_irqsave(
3236 							&phba->hbalock, iflag);
3237 						saveq->iocb_flag |=
3238 							LPFC_DELAY_MEM_FREE;
3239 						spin_unlock_irqrestore(
3240 							&phba->hbalock, iflag);
3241 					}
3242 				}
3243 			}
3244 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3245 		} else
3246 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3247 	} else {
3248 		/*
3249 		 * Unknown initiating command based on the response iotag.
3250 		 * This could be the case on the ELS ring because of
3251 		 * lpfc_els_abort().
3252 		 */
3253 		if (pring->ringno != LPFC_ELS_RING) {
3254 			/*
3255 			 * Ring <ringno> handler: unexpected completion IoTag
3256 			 * <IoTag>
3257 			 */
3258 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3259 					 "0322 Ring %d handler: "
3260 					 "unexpected completion IoTag x%x "
3261 					 "Data: x%x x%x x%x x%x\n",
3262 					 pring->ringno,
3263 					 saveq->iocb.ulpIoTag,
3264 					 saveq->iocb.ulpStatus,
3265 					 saveq->iocb.un.ulpWord[4],
3266 					 saveq->iocb.ulpCommand,
3267 					 saveq->iocb.ulpContext);
3268 		}
3269 	}
3270 
3271 	return rc;
3272 }
3273 
3274 /**
3275  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3276  * @phba: Pointer to HBA context object.
3277  * @pring: Pointer to driver SLI ring object.
3278  *
3279  * This function is called from the iocb ring event handlers when
3280  * put pointer is ahead of the get pointer for a ring. This function signal
3281  * an error attention condition to the worker thread and the worker
3282  * thread will transition the HBA to offline state.
3283  **/
3284 static void
3285 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3286 {
3287 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3288 	/*
3289 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3290 	 * rsp ring <portRspMax>
3291 	 */
3292 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3293 			"0312 Ring %d handler: portRspPut %d "
3294 			"is bigger than rsp ring %d\n",
3295 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3296 			pring->sli.sli3.numRiocb);
3297 
3298 	phba->link_state = LPFC_HBA_ERROR;
3299 
3300 	/*
3301 	 * All error attention handlers are posted to
3302 	 * worker thread
3303 	 */
3304 	phba->work_ha |= HA_ERATT;
3305 	phba->work_hs = HS_FFER3;
3306 
3307 	lpfc_worker_wake_up(phba);
3308 
3309 	return;
3310 }
3311 
3312 /**
3313  * lpfc_poll_eratt - Error attention polling timer timeout handler
3314  * @ptr: Pointer to address of HBA context object.
3315  *
3316  * This function is invoked by the Error Attention polling timer when the
3317  * timer times out. It will check the SLI Error Attention register for
3318  * possible attention events. If so, it will post an Error Attention event
3319  * and wake up worker thread to process it. Otherwise, it will set up the
3320  * Error Attention polling timer for the next poll.
3321  **/
3322 void lpfc_poll_eratt(struct timer_list *t)
3323 {
3324 	struct lpfc_hba *phba;
3325 	uint32_t eratt = 0;
3326 	uint64_t sli_intr, cnt;
3327 
3328 	phba = from_timer(phba, t, eratt_poll);
3329 
3330 	/* Here we will also keep track of interrupts per sec of the hba */
3331 	sli_intr = phba->sli.slistat.sli_intr;
3332 
3333 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3334 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3335 			sli_intr);
3336 	else
3337 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3338 
3339 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3340 	do_div(cnt, phba->eratt_poll_interval);
3341 	phba->sli.slistat.sli_ips = cnt;
3342 
3343 	phba->sli.slistat.sli_prev_intr = sli_intr;
3344 
3345 	/* Check chip HA register for error event */
3346 	eratt = lpfc_sli_check_eratt(phba);
3347 
3348 	if (eratt)
3349 		/* Tell the worker thread there is work to do */
3350 		lpfc_worker_wake_up(phba);
3351 	else
3352 		/* Restart the timer for next eratt poll */
3353 		mod_timer(&phba->eratt_poll,
3354 			  jiffies +
3355 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3356 	return;
3357 }
3358 
3359 
3360 /**
3361  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3362  * @phba: Pointer to HBA context object.
3363  * @pring: Pointer to driver SLI ring object.
3364  * @mask: Host attention register mask for this ring.
3365  *
3366  * This function is called from the interrupt context when there is a ring
3367  * event for the fcp ring. The caller does not hold any lock.
3368  * The function processes each response iocb in the response ring until it
3369  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3370  * LE bit set. The function will call the completion handler of the command iocb
3371  * if the response iocb indicates a completion for a command iocb or it is
3372  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3373  * function if this is an unsolicited iocb.
3374  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3375  * to check it explicitly.
3376  */
3377 int
3378 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3379 				struct lpfc_sli_ring *pring, uint32_t mask)
3380 {
3381 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3382 	IOCB_t *irsp = NULL;
3383 	IOCB_t *entry = NULL;
3384 	struct lpfc_iocbq *cmdiocbq = NULL;
3385 	struct lpfc_iocbq rspiocbq;
3386 	uint32_t status;
3387 	uint32_t portRspPut, portRspMax;
3388 	int rc = 1;
3389 	lpfc_iocb_type type;
3390 	unsigned long iflag;
3391 	uint32_t rsp_cmpl = 0;
3392 
3393 	spin_lock_irqsave(&phba->hbalock, iflag);
3394 	pring->stats.iocb_event++;
3395 
3396 	/*
3397 	 * The next available response entry should never exceed the maximum
3398 	 * entries.  If it does, treat it as an adapter hardware error.
3399 	 */
3400 	portRspMax = pring->sli.sli3.numRiocb;
3401 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3402 	if (unlikely(portRspPut >= portRspMax)) {
3403 		lpfc_sli_rsp_pointers_error(phba, pring);
3404 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3405 		return 1;
3406 	}
3407 	if (phba->fcp_ring_in_use) {
3408 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3409 		return 1;
3410 	} else
3411 		phba->fcp_ring_in_use = 1;
3412 
3413 	rmb();
3414 	while (pring->sli.sli3.rspidx != portRspPut) {
3415 		/*
3416 		 * Fetch an entry off the ring and copy it into a local data
3417 		 * structure.  The copy involves a byte-swap since the
3418 		 * network byte order and pci byte orders are different.
3419 		 */
3420 		entry = lpfc_resp_iocb(phba, pring);
3421 		phba->last_completion_time = jiffies;
3422 
3423 		if (++pring->sli.sli3.rspidx >= portRspMax)
3424 			pring->sli.sli3.rspidx = 0;
3425 
3426 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3427 				      (uint32_t *) &rspiocbq.iocb,
3428 				      phba->iocb_rsp_size);
3429 		INIT_LIST_HEAD(&(rspiocbq.list));
3430 		irsp = &rspiocbq.iocb;
3431 
3432 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3433 		pring->stats.iocb_rsp++;
3434 		rsp_cmpl++;
3435 
3436 		if (unlikely(irsp->ulpStatus)) {
3437 			/*
3438 			 * If resource errors reported from HBA, reduce
3439 			 * queuedepths of the SCSI device.
3440 			 */
3441 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3442 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3443 			     IOERR_NO_RESOURCES)) {
3444 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3445 				phba->lpfc_rampdown_queue_depth(phba);
3446 				spin_lock_irqsave(&phba->hbalock, iflag);
3447 			}
3448 
3449 			/* Rsp ring <ringno> error: IOCB */
3450 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3451 					"0336 Rsp Ring %d error: IOCB Data: "
3452 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3453 					pring->ringno,
3454 					irsp->un.ulpWord[0],
3455 					irsp->un.ulpWord[1],
3456 					irsp->un.ulpWord[2],
3457 					irsp->un.ulpWord[3],
3458 					irsp->un.ulpWord[4],
3459 					irsp->un.ulpWord[5],
3460 					*(uint32_t *)&irsp->un1,
3461 					*((uint32_t *)&irsp->un1 + 1));
3462 		}
3463 
3464 		switch (type) {
3465 		case LPFC_ABORT_IOCB:
3466 		case LPFC_SOL_IOCB:
3467 			/*
3468 			 * Idle exchange closed via ABTS from port.  No iocb
3469 			 * resources need to be recovered.
3470 			 */
3471 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3472 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3473 						"0333 IOCB cmd 0x%x"
3474 						" processed. Skipping"
3475 						" completion\n",
3476 						irsp->ulpCommand);
3477 				break;
3478 			}
3479 
3480 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3481 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3482 							 &rspiocbq);
3483 			spin_lock_irqsave(&phba->hbalock, iflag);
3484 			if (unlikely(!cmdiocbq))
3485 				break;
3486 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3487 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3488 			if (cmdiocbq->iocb_cmpl) {
3489 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3490 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3491 						      &rspiocbq);
3492 				spin_lock_irqsave(&phba->hbalock, iflag);
3493 			}
3494 			break;
3495 		case LPFC_UNSOL_IOCB:
3496 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3497 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3498 			spin_lock_irqsave(&phba->hbalock, iflag);
3499 			break;
3500 		default:
3501 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3502 				char adaptermsg[LPFC_MAX_ADPTMSG];
3503 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3504 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3505 				       MAX_MSG_DATA);
3506 				dev_warn(&((phba->pcidev)->dev),
3507 					 "lpfc%d: %s\n",
3508 					 phba->brd_no, adaptermsg);
3509 			} else {
3510 				/* Unknown IOCB command */
3511 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3512 						"0334 Unknown IOCB command "
3513 						"Data: x%x, x%x x%x x%x x%x\n",
3514 						type, irsp->ulpCommand,
3515 						irsp->ulpStatus,
3516 						irsp->ulpIoTag,
3517 						irsp->ulpContext);
3518 			}
3519 			break;
3520 		}
3521 
3522 		/*
3523 		 * The response IOCB has been processed.  Update the ring
3524 		 * pointer in SLIM.  If the port response put pointer has not
3525 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3526 		 * response put pointer.
3527 		 */
3528 		writel(pring->sli.sli3.rspidx,
3529 			&phba->host_gp[pring->ringno].rspGetInx);
3530 
3531 		if (pring->sli.sli3.rspidx == portRspPut)
3532 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3533 	}
3534 
3535 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3536 		pring->stats.iocb_rsp_full++;
3537 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3538 		writel(status, phba->CAregaddr);
3539 		readl(phba->CAregaddr);
3540 	}
3541 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3542 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3543 		pring->stats.iocb_cmd_empty++;
3544 
3545 		/* Force update of the local copy of cmdGetInx */
3546 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3547 		lpfc_sli_resume_iocb(phba, pring);
3548 
3549 		if ((pring->lpfc_sli_cmd_available))
3550 			(pring->lpfc_sli_cmd_available) (phba, pring);
3551 
3552 	}
3553 
3554 	phba->fcp_ring_in_use = 0;
3555 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3556 	return rc;
3557 }
3558 
3559 /**
3560  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3561  * @phba: Pointer to HBA context object.
3562  * @pring: Pointer to driver SLI ring object.
3563  * @rspiocbp: Pointer to driver response IOCB object.
3564  *
3565  * This function is called from the worker thread when there is a slow-path
3566  * response IOCB to process. This function chains all the response iocbs until
3567  * seeing the iocb with the LE bit set. The function will call
3568  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3569  * completion of a command iocb. The function will call the
3570  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3571  * The function frees the resources or calls the completion handler if this
3572  * iocb is an abort completion. The function returns NULL when the response
3573  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3574  * this function shall chain the iocb on to the iocb_continueq and return the
3575  * response iocb passed in.
3576  **/
3577 static struct lpfc_iocbq *
3578 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3579 			struct lpfc_iocbq *rspiocbp)
3580 {
3581 	struct lpfc_iocbq *saveq;
3582 	struct lpfc_iocbq *cmdiocbp;
3583 	struct lpfc_iocbq *next_iocb;
3584 	IOCB_t *irsp = NULL;
3585 	uint32_t free_saveq;
3586 	uint8_t iocb_cmd_type;
3587 	lpfc_iocb_type type;
3588 	unsigned long iflag;
3589 	int rc;
3590 
3591 	spin_lock_irqsave(&phba->hbalock, iflag);
3592 	/* First add the response iocb to the countinueq list */
3593 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3594 	pring->iocb_continueq_cnt++;
3595 
3596 	/* Now, determine whether the list is completed for processing */
3597 	irsp = &rspiocbp->iocb;
3598 	if (irsp->ulpLe) {
3599 		/*
3600 		 * By default, the driver expects to free all resources
3601 		 * associated with this iocb completion.
3602 		 */
3603 		free_saveq = 1;
3604 		saveq = list_get_first(&pring->iocb_continueq,
3605 				       struct lpfc_iocbq, list);
3606 		irsp = &(saveq->iocb);
3607 		list_del_init(&pring->iocb_continueq);
3608 		pring->iocb_continueq_cnt = 0;
3609 
3610 		pring->stats.iocb_rsp++;
3611 
3612 		/*
3613 		 * If resource errors reported from HBA, reduce
3614 		 * queuedepths of the SCSI device.
3615 		 */
3616 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3617 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3618 		     IOERR_NO_RESOURCES)) {
3619 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3620 			phba->lpfc_rampdown_queue_depth(phba);
3621 			spin_lock_irqsave(&phba->hbalock, iflag);
3622 		}
3623 
3624 		if (irsp->ulpStatus) {
3625 			/* Rsp ring <ringno> error: IOCB */
3626 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3627 					"0328 Rsp Ring %d error: "
3628 					"IOCB Data: "
3629 					"x%x x%x x%x x%x "
3630 					"x%x x%x x%x x%x "
3631 					"x%x x%x x%x x%x "
3632 					"x%x x%x x%x x%x\n",
3633 					pring->ringno,
3634 					irsp->un.ulpWord[0],
3635 					irsp->un.ulpWord[1],
3636 					irsp->un.ulpWord[2],
3637 					irsp->un.ulpWord[3],
3638 					irsp->un.ulpWord[4],
3639 					irsp->un.ulpWord[5],
3640 					*(((uint32_t *) irsp) + 6),
3641 					*(((uint32_t *) irsp) + 7),
3642 					*(((uint32_t *) irsp) + 8),
3643 					*(((uint32_t *) irsp) + 9),
3644 					*(((uint32_t *) irsp) + 10),
3645 					*(((uint32_t *) irsp) + 11),
3646 					*(((uint32_t *) irsp) + 12),
3647 					*(((uint32_t *) irsp) + 13),
3648 					*(((uint32_t *) irsp) + 14),
3649 					*(((uint32_t *) irsp) + 15));
3650 		}
3651 
3652 		/*
3653 		 * Fetch the IOCB command type and call the correct completion
3654 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3655 		 * get freed back to the lpfc_iocb_list by the discovery
3656 		 * kernel thread.
3657 		 */
3658 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3659 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3660 		switch (type) {
3661 		case LPFC_SOL_IOCB:
3662 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3663 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3664 			spin_lock_irqsave(&phba->hbalock, iflag);
3665 			break;
3666 
3667 		case LPFC_UNSOL_IOCB:
3668 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3669 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3670 			spin_lock_irqsave(&phba->hbalock, iflag);
3671 			if (!rc)
3672 				free_saveq = 0;
3673 			break;
3674 
3675 		case LPFC_ABORT_IOCB:
3676 			cmdiocbp = NULL;
3677 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3678 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3679 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3680 								 saveq);
3681 				spin_lock_irqsave(&phba->hbalock, iflag);
3682 			}
3683 			if (cmdiocbp) {
3684 				/* Call the specified completion routine */
3685 				if (cmdiocbp->iocb_cmpl) {
3686 					spin_unlock_irqrestore(&phba->hbalock,
3687 							       iflag);
3688 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3689 							      saveq);
3690 					spin_lock_irqsave(&phba->hbalock,
3691 							  iflag);
3692 				} else
3693 					__lpfc_sli_release_iocbq(phba,
3694 								 cmdiocbp);
3695 			}
3696 			break;
3697 
3698 		case LPFC_UNKNOWN_IOCB:
3699 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3700 				char adaptermsg[LPFC_MAX_ADPTMSG];
3701 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3702 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3703 				       MAX_MSG_DATA);
3704 				dev_warn(&((phba->pcidev)->dev),
3705 					 "lpfc%d: %s\n",
3706 					 phba->brd_no, adaptermsg);
3707 			} else {
3708 				/* Unknown IOCB command */
3709 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3710 						"0335 Unknown IOCB "
3711 						"command Data: x%x "
3712 						"x%x x%x x%x\n",
3713 						irsp->ulpCommand,
3714 						irsp->ulpStatus,
3715 						irsp->ulpIoTag,
3716 						irsp->ulpContext);
3717 			}
3718 			break;
3719 		}
3720 
3721 		if (free_saveq) {
3722 			list_for_each_entry_safe(rspiocbp, next_iocb,
3723 						 &saveq->list, list) {
3724 				list_del_init(&rspiocbp->list);
3725 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3726 			}
3727 			__lpfc_sli_release_iocbq(phba, saveq);
3728 		}
3729 		rspiocbp = NULL;
3730 	}
3731 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3732 	return rspiocbp;
3733 }
3734 
3735 /**
3736  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3737  * @phba: Pointer to HBA context object.
3738  * @pring: Pointer to driver SLI ring object.
3739  * @mask: Host attention register mask for this ring.
3740  *
3741  * This routine wraps the actual slow_ring event process routine from the
3742  * API jump table function pointer from the lpfc_hba struct.
3743  **/
3744 void
3745 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3746 				struct lpfc_sli_ring *pring, uint32_t mask)
3747 {
3748 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3749 }
3750 
3751 /**
3752  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3753  * @phba: Pointer to HBA context object.
3754  * @pring: Pointer to driver SLI ring object.
3755  * @mask: Host attention register mask for this ring.
3756  *
3757  * This function is called from the worker thread when there is a ring event
3758  * for non-fcp rings. The caller does not hold any lock. The function will
3759  * remove each response iocb in the response ring and calls the handle
3760  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3761  **/
3762 static void
3763 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3764 				   struct lpfc_sli_ring *pring, uint32_t mask)
3765 {
3766 	struct lpfc_pgp *pgp;
3767 	IOCB_t *entry;
3768 	IOCB_t *irsp = NULL;
3769 	struct lpfc_iocbq *rspiocbp = NULL;
3770 	uint32_t portRspPut, portRspMax;
3771 	unsigned long iflag;
3772 	uint32_t status;
3773 
3774 	pgp = &phba->port_gp[pring->ringno];
3775 	spin_lock_irqsave(&phba->hbalock, iflag);
3776 	pring->stats.iocb_event++;
3777 
3778 	/*
3779 	 * The next available response entry should never exceed the maximum
3780 	 * entries.  If it does, treat it as an adapter hardware error.
3781 	 */
3782 	portRspMax = pring->sli.sli3.numRiocb;
3783 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3784 	if (portRspPut >= portRspMax) {
3785 		/*
3786 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3787 		 * rsp ring <portRspMax>
3788 		 */
3789 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3790 				"0303 Ring %d handler: portRspPut %d "
3791 				"is bigger than rsp ring %d\n",
3792 				pring->ringno, portRspPut, portRspMax);
3793 
3794 		phba->link_state = LPFC_HBA_ERROR;
3795 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3796 
3797 		phba->work_hs = HS_FFER3;
3798 		lpfc_handle_eratt(phba);
3799 
3800 		return;
3801 	}
3802 
3803 	rmb();
3804 	while (pring->sli.sli3.rspidx != portRspPut) {
3805 		/*
3806 		 * Build a completion list and call the appropriate handler.
3807 		 * The process is to get the next available response iocb, get
3808 		 * a free iocb from the list, copy the response data into the
3809 		 * free iocb, insert to the continuation list, and update the
3810 		 * next response index to slim.  This process makes response
3811 		 * iocb's in the ring available to DMA as fast as possible but
3812 		 * pays a penalty for a copy operation.  Since the iocb is
3813 		 * only 32 bytes, this penalty is considered small relative to
3814 		 * the PCI reads for register values and a slim write.  When
3815 		 * the ulpLe field is set, the entire Command has been
3816 		 * received.
3817 		 */
3818 		entry = lpfc_resp_iocb(phba, pring);
3819 
3820 		phba->last_completion_time = jiffies;
3821 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3822 		if (rspiocbp == NULL) {
3823 			printk(KERN_ERR "%s: out of buffers! Failing "
3824 			       "completion.\n", __func__);
3825 			break;
3826 		}
3827 
3828 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3829 				      phba->iocb_rsp_size);
3830 		irsp = &rspiocbp->iocb;
3831 
3832 		if (++pring->sli.sli3.rspidx >= portRspMax)
3833 			pring->sli.sli3.rspidx = 0;
3834 
3835 		if (pring->ringno == LPFC_ELS_RING) {
3836 			lpfc_debugfs_slow_ring_trc(phba,
3837 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3838 				*(((uint32_t *) irsp) + 4),
3839 				*(((uint32_t *) irsp) + 6),
3840 				*(((uint32_t *) irsp) + 7));
3841 		}
3842 
3843 		writel(pring->sli.sli3.rspidx,
3844 			&phba->host_gp[pring->ringno].rspGetInx);
3845 
3846 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3847 		/* Handle the response IOCB */
3848 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3849 		spin_lock_irqsave(&phba->hbalock, iflag);
3850 
3851 		/*
3852 		 * If the port response put pointer has not been updated, sync
3853 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3854 		 * response put pointer.
3855 		 */
3856 		if (pring->sli.sli3.rspidx == portRspPut) {
3857 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3858 		}
3859 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3860 
3861 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3862 		/* At least one response entry has been freed */
3863 		pring->stats.iocb_rsp_full++;
3864 		/* SET RxRE_RSP in Chip Att register */
3865 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3866 		writel(status, phba->CAregaddr);
3867 		readl(phba->CAregaddr); /* flush */
3868 	}
3869 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3870 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3871 		pring->stats.iocb_cmd_empty++;
3872 
3873 		/* Force update of the local copy of cmdGetInx */
3874 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3875 		lpfc_sli_resume_iocb(phba, pring);
3876 
3877 		if ((pring->lpfc_sli_cmd_available))
3878 			(pring->lpfc_sli_cmd_available) (phba, pring);
3879 
3880 	}
3881 
3882 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3883 	return;
3884 }
3885 
3886 /**
3887  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3888  * @phba: Pointer to HBA context object.
3889  * @pring: Pointer to driver SLI ring object.
3890  * @mask: Host attention register mask for this ring.
3891  *
3892  * This function is called from the worker thread when there is a pending
3893  * ELS response iocb on the driver internal slow-path response iocb worker
3894  * queue. The caller does not hold any lock. The function will remove each
3895  * response iocb from the response worker queue and calls the handle
3896  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3897  **/
3898 static void
3899 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3900 				   struct lpfc_sli_ring *pring, uint32_t mask)
3901 {
3902 	struct lpfc_iocbq *irspiocbq;
3903 	struct hbq_dmabuf *dmabuf;
3904 	struct lpfc_cq_event *cq_event;
3905 	unsigned long iflag;
3906 	int count = 0;
3907 
3908 	spin_lock_irqsave(&phba->hbalock, iflag);
3909 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3910 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3911 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3912 		/* Get the response iocb from the head of work queue */
3913 		spin_lock_irqsave(&phba->hbalock, iflag);
3914 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3915 				 cq_event, struct lpfc_cq_event, list);
3916 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3917 
3918 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3919 		case CQE_CODE_COMPL_WQE:
3920 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3921 						 cq_event);
3922 			/* Translate ELS WCQE to response IOCBQ */
3923 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3924 								   irspiocbq);
3925 			if (irspiocbq)
3926 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3927 							   irspiocbq);
3928 			count++;
3929 			break;
3930 		case CQE_CODE_RECEIVE:
3931 		case CQE_CODE_RECEIVE_V1:
3932 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3933 					      cq_event);
3934 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3935 			count++;
3936 			break;
3937 		default:
3938 			break;
3939 		}
3940 
3941 		/* Limit the number of events to 64 to avoid soft lockups */
3942 		if (count == 64)
3943 			break;
3944 	}
3945 }
3946 
3947 /**
3948  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3949  * @phba: Pointer to HBA context object.
3950  * @pring: Pointer to driver SLI ring object.
3951  *
3952  * This function aborts all iocbs in the given ring and frees all the iocb
3953  * objects in txq. This function issues an abort iocb for all the iocb commands
3954  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3955  * the return of this function. The caller is not required to hold any locks.
3956  **/
3957 void
3958 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3959 {
3960 	LIST_HEAD(completions);
3961 	struct lpfc_iocbq *iocb, *next_iocb;
3962 
3963 	if (pring->ringno == LPFC_ELS_RING) {
3964 		lpfc_fabric_abort_hba(phba);
3965 	}
3966 
3967 	/* Error everything on txq and txcmplq
3968 	 * First do the txq.
3969 	 */
3970 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3971 		spin_lock_irq(&pring->ring_lock);
3972 		list_splice_init(&pring->txq, &completions);
3973 		pring->txq_cnt = 0;
3974 		spin_unlock_irq(&pring->ring_lock);
3975 
3976 		spin_lock_irq(&phba->hbalock);
3977 		/* Next issue ABTS for everything on the txcmplq */
3978 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3979 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3980 		spin_unlock_irq(&phba->hbalock);
3981 	} else {
3982 		spin_lock_irq(&phba->hbalock);
3983 		list_splice_init(&pring->txq, &completions);
3984 		pring->txq_cnt = 0;
3985 
3986 		/* Next issue ABTS for everything on the txcmplq */
3987 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3988 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3989 		spin_unlock_irq(&phba->hbalock);
3990 	}
3991 
3992 	/* Cancel all the IOCBs from the completions list */
3993 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3994 			      IOERR_SLI_ABORTED);
3995 }
3996 
3997 /**
3998  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3999  * @phba: Pointer to HBA context object.
4000  * @pring: Pointer to driver SLI ring object.
4001  *
4002  * This function aborts all iocbs in FCP rings and frees all the iocb
4003  * objects in txq. This function issues an abort iocb for all the iocb commands
4004  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4005  * the return of this function. The caller is not required to hold any locks.
4006  **/
4007 void
4008 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4009 {
4010 	struct lpfc_sli *psli = &phba->sli;
4011 	struct lpfc_sli_ring  *pring;
4012 	uint32_t i;
4013 
4014 	/* Look on all the FCP Rings for the iotag */
4015 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4016 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4017 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4018 			lpfc_sli_abort_iocb_ring(phba, pring);
4019 		}
4020 	} else {
4021 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4022 		lpfc_sli_abort_iocb_ring(phba, pring);
4023 	}
4024 }
4025 
4026 /**
4027  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4028  * @phba: Pointer to HBA context object.
4029  *
4030  * This function flushes all iocbs in the IO ring and frees all the iocb
4031  * objects in txq and txcmplq. This function will not issue abort iocbs
4032  * for all the iocb commands in txcmplq, they will just be returned with
4033  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4034  * slot has been permanently disabled.
4035  **/
4036 void
4037 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4038 {
4039 	LIST_HEAD(txq);
4040 	LIST_HEAD(txcmplq);
4041 	struct lpfc_sli *psli = &phba->sli;
4042 	struct lpfc_sli_ring  *pring;
4043 	uint32_t i;
4044 	struct lpfc_iocbq *piocb, *next_iocb;
4045 
4046 	spin_lock_irq(&phba->hbalock);
4047 	/* Indicate the I/O queues are flushed */
4048 	phba->hba_flag |= HBA_IOQ_FLUSH;
4049 	spin_unlock_irq(&phba->hbalock);
4050 
4051 	/* Look on all the FCP Rings for the iotag */
4052 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4053 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4054 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4055 
4056 			spin_lock_irq(&pring->ring_lock);
4057 			/* Retrieve everything on txq */
4058 			list_splice_init(&pring->txq, &txq);
4059 			list_for_each_entry_safe(piocb, next_iocb,
4060 						 &pring->txcmplq, list)
4061 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4062 			/* Retrieve everything on the txcmplq */
4063 			list_splice_init(&pring->txcmplq, &txcmplq);
4064 			pring->txq_cnt = 0;
4065 			pring->txcmplq_cnt = 0;
4066 			spin_unlock_irq(&pring->ring_lock);
4067 
4068 			/* Flush the txq */
4069 			lpfc_sli_cancel_iocbs(phba, &txq,
4070 					      IOSTAT_LOCAL_REJECT,
4071 					      IOERR_SLI_DOWN);
4072 			/* Flush the txcmpq */
4073 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4074 					      IOSTAT_LOCAL_REJECT,
4075 					      IOERR_SLI_DOWN);
4076 		}
4077 	} else {
4078 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4079 
4080 		spin_lock_irq(&phba->hbalock);
4081 		/* Retrieve everything on txq */
4082 		list_splice_init(&pring->txq, &txq);
4083 		list_for_each_entry_safe(piocb, next_iocb,
4084 					 &pring->txcmplq, list)
4085 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4086 		/* Retrieve everything on the txcmplq */
4087 		list_splice_init(&pring->txcmplq, &txcmplq);
4088 		pring->txq_cnt = 0;
4089 		pring->txcmplq_cnt = 0;
4090 		spin_unlock_irq(&phba->hbalock);
4091 
4092 		/* Flush the txq */
4093 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4094 				      IOERR_SLI_DOWN);
4095 		/* Flush the txcmpq */
4096 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4097 				      IOERR_SLI_DOWN);
4098 	}
4099 }
4100 
4101 /**
4102  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4103  * @phba: Pointer to HBA context object.
4104  * @mask: Bit mask to be checked.
4105  *
4106  * This function reads the host status register and compares
4107  * with the provided bit mask to check if HBA completed
4108  * the restart. This function will wait in a loop for the
4109  * HBA to complete restart. If the HBA does not restart within
4110  * 15 iterations, the function will reset the HBA again. The
4111  * function returns 1 when HBA fail to restart otherwise returns
4112  * zero.
4113  **/
4114 static int
4115 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4116 {
4117 	uint32_t status;
4118 	int i = 0;
4119 	int retval = 0;
4120 
4121 	/* Read the HBA Host Status Register */
4122 	if (lpfc_readl(phba->HSregaddr, &status))
4123 		return 1;
4124 
4125 	/*
4126 	 * Check status register every 100ms for 5 retries, then every
4127 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4128 	 * every 2.5 sec for 4.
4129 	 * Break our of the loop if errors occurred during init.
4130 	 */
4131 	while (((status & mask) != mask) &&
4132 	       !(status & HS_FFERM) &&
4133 	       i++ < 20) {
4134 
4135 		if (i <= 5)
4136 			msleep(10);
4137 		else if (i <= 10)
4138 			msleep(500);
4139 		else
4140 			msleep(2500);
4141 
4142 		if (i == 15) {
4143 				/* Do post */
4144 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4145 			lpfc_sli_brdrestart(phba);
4146 		}
4147 		/* Read the HBA Host Status Register */
4148 		if (lpfc_readl(phba->HSregaddr, &status)) {
4149 			retval = 1;
4150 			break;
4151 		}
4152 	}
4153 
4154 	/* Check to see if any errors occurred during init */
4155 	if ((status & HS_FFERM) || (i >= 20)) {
4156 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4157 				"2751 Adapter failed to restart, "
4158 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4159 				status,
4160 				readl(phba->MBslimaddr + 0xa8),
4161 				readl(phba->MBslimaddr + 0xac));
4162 		phba->link_state = LPFC_HBA_ERROR;
4163 		retval = 1;
4164 	}
4165 
4166 	return retval;
4167 }
4168 
4169 /**
4170  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4171  * @phba: Pointer to HBA context object.
4172  * @mask: Bit mask to be checked.
4173  *
4174  * This function checks the host status register to check if HBA is
4175  * ready. This function will wait in a loop for the HBA to be ready
4176  * If the HBA is not ready , the function will will reset the HBA PCI
4177  * function again. The function returns 1 when HBA fail to be ready
4178  * otherwise returns zero.
4179  **/
4180 static int
4181 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4182 {
4183 	uint32_t status;
4184 	int retval = 0;
4185 
4186 	/* Read the HBA Host Status Register */
4187 	status = lpfc_sli4_post_status_check(phba);
4188 
4189 	if (status) {
4190 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4191 		lpfc_sli_brdrestart(phba);
4192 		status = lpfc_sli4_post_status_check(phba);
4193 	}
4194 
4195 	/* Check to see if any errors occurred during init */
4196 	if (status) {
4197 		phba->link_state = LPFC_HBA_ERROR;
4198 		retval = 1;
4199 	} else
4200 		phba->sli4_hba.intr_enable = 0;
4201 
4202 	return retval;
4203 }
4204 
4205 /**
4206  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4207  * @phba: Pointer to HBA context object.
4208  * @mask: Bit mask to be checked.
4209  *
4210  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4211  * from the API jump table function pointer from the lpfc_hba struct.
4212  **/
4213 int
4214 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4215 {
4216 	return phba->lpfc_sli_brdready(phba, mask);
4217 }
4218 
4219 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4220 
4221 /**
4222  * lpfc_reset_barrier - Make HBA ready for HBA reset
4223  * @phba: Pointer to HBA context object.
4224  *
4225  * This function is called before resetting an HBA. This function is called
4226  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4227  **/
4228 void lpfc_reset_barrier(struct lpfc_hba *phba)
4229 {
4230 	uint32_t __iomem *resp_buf;
4231 	uint32_t __iomem *mbox_buf;
4232 	volatile uint32_t mbox;
4233 	uint32_t hc_copy, ha_copy, resp_data;
4234 	int  i;
4235 	uint8_t hdrtype;
4236 
4237 	lockdep_assert_held(&phba->hbalock);
4238 
4239 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4240 	if (hdrtype != 0x80 ||
4241 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4242 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4243 		return;
4244 
4245 	/*
4246 	 * Tell the other part of the chip to suspend temporarily all
4247 	 * its DMA activity.
4248 	 */
4249 	resp_buf = phba->MBslimaddr;
4250 
4251 	/* Disable the error attention */
4252 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4253 		return;
4254 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4255 	readl(phba->HCregaddr); /* flush */
4256 	phba->link_flag |= LS_IGNORE_ERATT;
4257 
4258 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4259 		return;
4260 	if (ha_copy & HA_ERATT) {
4261 		/* Clear Chip error bit */
4262 		writel(HA_ERATT, phba->HAregaddr);
4263 		phba->pport->stopped = 1;
4264 	}
4265 
4266 	mbox = 0;
4267 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4268 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4269 
4270 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4271 	mbox_buf = phba->MBslimaddr;
4272 	writel(mbox, mbox_buf);
4273 
4274 	for (i = 0; i < 50; i++) {
4275 		if (lpfc_readl((resp_buf + 1), &resp_data))
4276 			return;
4277 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4278 			mdelay(1);
4279 		else
4280 			break;
4281 	}
4282 	resp_data = 0;
4283 	if (lpfc_readl((resp_buf + 1), &resp_data))
4284 		return;
4285 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4286 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4287 		    phba->pport->stopped)
4288 			goto restore_hc;
4289 		else
4290 			goto clear_errat;
4291 	}
4292 
4293 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4294 	resp_data = 0;
4295 	for (i = 0; i < 500; i++) {
4296 		if (lpfc_readl(resp_buf, &resp_data))
4297 			return;
4298 		if (resp_data != mbox)
4299 			mdelay(1);
4300 		else
4301 			break;
4302 	}
4303 
4304 clear_errat:
4305 
4306 	while (++i < 500) {
4307 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4308 			return;
4309 		if (!(ha_copy & HA_ERATT))
4310 			mdelay(1);
4311 		else
4312 			break;
4313 	}
4314 
4315 	if (readl(phba->HAregaddr) & HA_ERATT) {
4316 		writel(HA_ERATT, phba->HAregaddr);
4317 		phba->pport->stopped = 1;
4318 	}
4319 
4320 restore_hc:
4321 	phba->link_flag &= ~LS_IGNORE_ERATT;
4322 	writel(hc_copy, phba->HCregaddr);
4323 	readl(phba->HCregaddr); /* flush */
4324 }
4325 
4326 /**
4327  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4328  * @phba: Pointer to HBA context object.
4329  *
4330  * This function issues a kill_board mailbox command and waits for
4331  * the error attention interrupt. This function is called for stopping
4332  * the firmware processing. The caller is not required to hold any
4333  * locks. This function calls lpfc_hba_down_post function to free
4334  * any pending commands after the kill. The function will return 1 when it
4335  * fails to kill the board else will return 0.
4336  **/
4337 int
4338 lpfc_sli_brdkill(struct lpfc_hba *phba)
4339 {
4340 	struct lpfc_sli *psli;
4341 	LPFC_MBOXQ_t *pmb;
4342 	uint32_t status;
4343 	uint32_t ha_copy;
4344 	int retval;
4345 	int i = 0;
4346 
4347 	psli = &phba->sli;
4348 
4349 	/* Kill HBA */
4350 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4351 			"0329 Kill HBA Data: x%x x%x\n",
4352 			phba->pport->port_state, psli->sli_flag);
4353 
4354 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4355 	if (!pmb)
4356 		return 1;
4357 
4358 	/* Disable the error attention */
4359 	spin_lock_irq(&phba->hbalock);
4360 	if (lpfc_readl(phba->HCregaddr, &status)) {
4361 		spin_unlock_irq(&phba->hbalock);
4362 		mempool_free(pmb, phba->mbox_mem_pool);
4363 		return 1;
4364 	}
4365 	status &= ~HC_ERINT_ENA;
4366 	writel(status, phba->HCregaddr);
4367 	readl(phba->HCregaddr); /* flush */
4368 	phba->link_flag |= LS_IGNORE_ERATT;
4369 	spin_unlock_irq(&phba->hbalock);
4370 
4371 	lpfc_kill_board(phba, pmb);
4372 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4373 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4374 
4375 	if (retval != MBX_SUCCESS) {
4376 		if (retval != MBX_BUSY)
4377 			mempool_free(pmb, phba->mbox_mem_pool);
4378 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4379 				"2752 KILL_BOARD command failed retval %d\n",
4380 				retval);
4381 		spin_lock_irq(&phba->hbalock);
4382 		phba->link_flag &= ~LS_IGNORE_ERATT;
4383 		spin_unlock_irq(&phba->hbalock);
4384 		return 1;
4385 	}
4386 
4387 	spin_lock_irq(&phba->hbalock);
4388 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4389 	spin_unlock_irq(&phba->hbalock);
4390 
4391 	mempool_free(pmb, phba->mbox_mem_pool);
4392 
4393 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4394 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4395 	 * 3 seconds we still set HBA_ERROR state because the status of the
4396 	 * board is now undefined.
4397 	 */
4398 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4399 		return 1;
4400 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4401 		mdelay(100);
4402 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4403 			return 1;
4404 	}
4405 
4406 	del_timer_sync(&psli->mbox_tmo);
4407 	if (ha_copy & HA_ERATT) {
4408 		writel(HA_ERATT, phba->HAregaddr);
4409 		phba->pport->stopped = 1;
4410 	}
4411 	spin_lock_irq(&phba->hbalock);
4412 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4413 	psli->mbox_active = NULL;
4414 	phba->link_flag &= ~LS_IGNORE_ERATT;
4415 	spin_unlock_irq(&phba->hbalock);
4416 
4417 	lpfc_hba_down_post(phba);
4418 	phba->link_state = LPFC_HBA_ERROR;
4419 
4420 	return ha_copy & HA_ERATT ? 0 : 1;
4421 }
4422 
4423 /**
4424  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4425  * @phba: Pointer to HBA context object.
4426  *
4427  * This function resets the HBA by writing HC_INITFF to the control
4428  * register. After the HBA resets, this function resets all the iocb ring
4429  * indices. This function disables PCI layer parity checking during
4430  * the reset.
4431  * This function returns 0 always.
4432  * The caller is not required to hold any locks.
4433  **/
4434 int
4435 lpfc_sli_brdreset(struct lpfc_hba *phba)
4436 {
4437 	struct lpfc_sli *psli;
4438 	struct lpfc_sli_ring *pring;
4439 	uint16_t cfg_value;
4440 	int i;
4441 
4442 	psli = &phba->sli;
4443 
4444 	/* Reset HBA */
4445 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4446 			"0325 Reset HBA Data: x%x x%x\n",
4447 			(phba->pport) ? phba->pport->port_state : 0,
4448 			psli->sli_flag);
4449 
4450 	/* perform board reset */
4451 	phba->fc_eventTag = 0;
4452 	phba->link_events = 0;
4453 	if (phba->pport) {
4454 		phba->pport->fc_myDID = 0;
4455 		phba->pport->fc_prevDID = 0;
4456 	}
4457 
4458 	/* Turn off parity checking and serr during the physical reset */
4459 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4460 		return -EIO;
4461 
4462 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4463 			      (cfg_value &
4464 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4465 
4466 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4467 
4468 	/* Now toggle INITFF bit in the Host Control Register */
4469 	writel(HC_INITFF, phba->HCregaddr);
4470 	mdelay(1);
4471 	readl(phba->HCregaddr); /* flush */
4472 	writel(0, phba->HCregaddr);
4473 	readl(phba->HCregaddr); /* flush */
4474 
4475 	/* Restore PCI cmd register */
4476 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4477 
4478 	/* Initialize relevant SLI info */
4479 	for (i = 0; i < psli->num_rings; i++) {
4480 		pring = &psli->sli3_ring[i];
4481 		pring->flag = 0;
4482 		pring->sli.sli3.rspidx = 0;
4483 		pring->sli.sli3.next_cmdidx  = 0;
4484 		pring->sli.sli3.local_getidx = 0;
4485 		pring->sli.sli3.cmdidx = 0;
4486 		pring->missbufcnt = 0;
4487 	}
4488 
4489 	phba->link_state = LPFC_WARM_START;
4490 	return 0;
4491 }
4492 
4493 /**
4494  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4495  * @phba: Pointer to HBA context object.
4496  *
4497  * This function resets a SLI4 HBA. This function disables PCI layer parity
4498  * checking during resets the device. The caller is not required to hold
4499  * any locks.
4500  *
4501  * This function returns 0 on success else returns negative error code.
4502  **/
4503 int
4504 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4505 {
4506 	struct lpfc_sli *psli = &phba->sli;
4507 	uint16_t cfg_value;
4508 	int rc = 0;
4509 
4510 	/* Reset HBA */
4511 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4512 			"0295 Reset HBA Data: x%x x%x x%x\n",
4513 			phba->pport->port_state, psli->sli_flag,
4514 			phba->hba_flag);
4515 
4516 	/* perform board reset */
4517 	phba->fc_eventTag = 0;
4518 	phba->link_events = 0;
4519 	phba->pport->fc_myDID = 0;
4520 	phba->pport->fc_prevDID = 0;
4521 
4522 	spin_lock_irq(&phba->hbalock);
4523 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4524 	phba->fcf.fcf_flag = 0;
4525 	spin_unlock_irq(&phba->hbalock);
4526 
4527 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4528 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4529 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4530 		return rc;
4531 	}
4532 
4533 	/* Now physically reset the device */
4534 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4535 			"0389 Performing PCI function reset!\n");
4536 
4537 	/* Turn off parity checking and serr during the physical reset */
4538 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4539 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4540 				"3205 PCI read Config failed\n");
4541 		return -EIO;
4542 	}
4543 
4544 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4545 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4546 
4547 	/* Perform FCoE PCI function reset before freeing queue memory */
4548 	rc = lpfc_pci_function_reset(phba);
4549 
4550 	/* Restore PCI cmd register */
4551 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4552 
4553 	return rc;
4554 }
4555 
4556 /**
4557  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4558  * @phba: Pointer to HBA context object.
4559  *
4560  * This function is called in the SLI initialization code path to
4561  * restart the HBA. The caller is not required to hold any lock.
4562  * This function writes MBX_RESTART mailbox command to the SLIM and
4563  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4564  * function to free any pending commands. The function enables
4565  * POST only during the first initialization. The function returns zero.
4566  * The function does not guarantee completion of MBX_RESTART mailbox
4567  * command before the return of this function.
4568  **/
4569 static int
4570 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4571 {
4572 	MAILBOX_t *mb;
4573 	struct lpfc_sli *psli;
4574 	volatile uint32_t word0;
4575 	void __iomem *to_slim;
4576 	uint32_t hba_aer_enabled;
4577 
4578 	spin_lock_irq(&phba->hbalock);
4579 
4580 	/* Take PCIe device Advanced Error Reporting (AER) state */
4581 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4582 
4583 	psli = &phba->sli;
4584 
4585 	/* Restart HBA */
4586 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4587 			"0337 Restart HBA Data: x%x x%x\n",
4588 			(phba->pport) ? phba->pport->port_state : 0,
4589 			psli->sli_flag);
4590 
4591 	word0 = 0;
4592 	mb = (MAILBOX_t *) &word0;
4593 	mb->mbxCommand = MBX_RESTART;
4594 	mb->mbxHc = 1;
4595 
4596 	lpfc_reset_barrier(phba);
4597 
4598 	to_slim = phba->MBslimaddr;
4599 	writel(*(uint32_t *) mb, to_slim);
4600 	readl(to_slim); /* flush */
4601 
4602 	/* Only skip post after fc_ffinit is completed */
4603 	if (phba->pport && phba->pport->port_state)
4604 		word0 = 1;	/* This is really setting up word1 */
4605 	else
4606 		word0 = 0;	/* This is really setting up word1 */
4607 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4608 	writel(*(uint32_t *) mb, to_slim);
4609 	readl(to_slim); /* flush */
4610 
4611 	lpfc_sli_brdreset(phba);
4612 	if (phba->pport)
4613 		phba->pport->stopped = 0;
4614 	phba->link_state = LPFC_INIT_START;
4615 	phba->hba_flag = 0;
4616 	spin_unlock_irq(&phba->hbalock);
4617 
4618 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4619 	psli->stats_start = ktime_get_seconds();
4620 
4621 	/* Give the INITFF and Post time to settle. */
4622 	mdelay(100);
4623 
4624 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4625 	if (hba_aer_enabled)
4626 		pci_disable_pcie_error_reporting(phba->pcidev);
4627 
4628 	lpfc_hba_down_post(phba);
4629 
4630 	return 0;
4631 }
4632 
4633 /**
4634  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4635  * @phba: Pointer to HBA context object.
4636  *
4637  * This function is called in the SLI initialization code path to restart
4638  * a SLI4 HBA. The caller is not required to hold any lock.
4639  * At the end of the function, it calls lpfc_hba_down_post function to
4640  * free any pending commands.
4641  **/
4642 static int
4643 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4644 {
4645 	struct lpfc_sli *psli = &phba->sli;
4646 	uint32_t hba_aer_enabled;
4647 	int rc;
4648 
4649 	/* Restart HBA */
4650 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4651 			"0296 Restart HBA Data: x%x x%x\n",
4652 			phba->pport->port_state, psli->sli_flag);
4653 
4654 	/* Take PCIe device Advanced Error Reporting (AER) state */
4655 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4656 
4657 	rc = lpfc_sli4_brdreset(phba);
4658 	if (rc) {
4659 		phba->link_state = LPFC_HBA_ERROR;
4660 		goto hba_down_queue;
4661 	}
4662 
4663 	spin_lock_irq(&phba->hbalock);
4664 	phba->pport->stopped = 0;
4665 	phba->link_state = LPFC_INIT_START;
4666 	phba->hba_flag = 0;
4667 	spin_unlock_irq(&phba->hbalock);
4668 
4669 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4670 	psli->stats_start = ktime_get_seconds();
4671 
4672 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4673 	if (hba_aer_enabled)
4674 		pci_disable_pcie_error_reporting(phba->pcidev);
4675 
4676 hba_down_queue:
4677 	lpfc_hba_down_post(phba);
4678 	lpfc_sli4_queue_destroy(phba);
4679 
4680 	return rc;
4681 }
4682 
4683 /**
4684  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4685  * @phba: Pointer to HBA context object.
4686  *
4687  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4688  * API jump table function pointer from the lpfc_hba struct.
4689 **/
4690 int
4691 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4692 {
4693 	return phba->lpfc_sli_brdrestart(phba);
4694 }
4695 
4696 /**
4697  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4698  * @phba: Pointer to HBA context object.
4699  *
4700  * This function is called after a HBA restart to wait for successful
4701  * restart of the HBA. Successful restart of the HBA is indicated by
4702  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4703  * iteration, the function will restart the HBA again. The function returns
4704  * zero if HBA successfully restarted else returns negative error code.
4705  **/
4706 int
4707 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4708 {
4709 	uint32_t status, i = 0;
4710 
4711 	/* Read the HBA Host Status Register */
4712 	if (lpfc_readl(phba->HSregaddr, &status))
4713 		return -EIO;
4714 
4715 	/* Check status register to see what current state is */
4716 	i = 0;
4717 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4718 
4719 		/* Check every 10ms for 10 retries, then every 100ms for 90
4720 		 * retries, then every 1 sec for 50 retires for a total of
4721 		 * ~60 seconds before reset the board again and check every
4722 		 * 1 sec for 50 retries. The up to 60 seconds before the
4723 		 * board ready is required by the Falcon FIPS zeroization
4724 		 * complete, and any reset the board in between shall cause
4725 		 * restart of zeroization, further delay the board ready.
4726 		 */
4727 		if (i++ >= 200) {
4728 			/* Adapter failed to init, timeout, status reg
4729 			   <status> */
4730 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4731 					"0436 Adapter failed to init, "
4732 					"timeout, status reg x%x, "
4733 					"FW Data: A8 x%x AC x%x\n", status,
4734 					readl(phba->MBslimaddr + 0xa8),
4735 					readl(phba->MBslimaddr + 0xac));
4736 			phba->link_state = LPFC_HBA_ERROR;
4737 			return -ETIMEDOUT;
4738 		}
4739 
4740 		/* Check to see if any errors occurred during init */
4741 		if (status & HS_FFERM) {
4742 			/* ERROR: During chipset initialization */
4743 			/* Adapter failed to init, chipset, status reg
4744 			   <status> */
4745 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4746 					"0437 Adapter failed to init, "
4747 					"chipset, status reg x%x, "
4748 					"FW Data: A8 x%x AC x%x\n", status,
4749 					readl(phba->MBslimaddr + 0xa8),
4750 					readl(phba->MBslimaddr + 0xac));
4751 			phba->link_state = LPFC_HBA_ERROR;
4752 			return -EIO;
4753 		}
4754 
4755 		if (i <= 10)
4756 			msleep(10);
4757 		else if (i <= 100)
4758 			msleep(100);
4759 		else
4760 			msleep(1000);
4761 
4762 		if (i == 150) {
4763 			/* Do post */
4764 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4765 			lpfc_sli_brdrestart(phba);
4766 		}
4767 		/* Read the HBA Host Status Register */
4768 		if (lpfc_readl(phba->HSregaddr, &status))
4769 			return -EIO;
4770 	}
4771 
4772 	/* Check to see if any errors occurred during init */
4773 	if (status & HS_FFERM) {
4774 		/* ERROR: During chipset initialization */
4775 		/* Adapter failed to init, chipset, status reg <status> */
4776 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4777 				"0438 Adapter failed to init, chipset, "
4778 				"status reg x%x, "
4779 				"FW Data: A8 x%x AC x%x\n", status,
4780 				readl(phba->MBslimaddr + 0xa8),
4781 				readl(phba->MBslimaddr + 0xac));
4782 		phba->link_state = LPFC_HBA_ERROR;
4783 		return -EIO;
4784 	}
4785 
4786 	/* Clear all interrupt enable conditions */
4787 	writel(0, phba->HCregaddr);
4788 	readl(phba->HCregaddr); /* flush */
4789 
4790 	/* setup host attn register */
4791 	writel(0xffffffff, phba->HAregaddr);
4792 	readl(phba->HAregaddr); /* flush */
4793 	return 0;
4794 }
4795 
4796 /**
4797  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4798  *
4799  * This function calculates and returns the number of HBQs required to be
4800  * configured.
4801  **/
4802 int
4803 lpfc_sli_hbq_count(void)
4804 {
4805 	return ARRAY_SIZE(lpfc_hbq_defs);
4806 }
4807 
4808 /**
4809  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4810  *
4811  * This function adds the number of hbq entries in every HBQ to get
4812  * the total number of hbq entries required for the HBA and returns
4813  * the total count.
4814  **/
4815 static int
4816 lpfc_sli_hbq_entry_count(void)
4817 {
4818 	int  hbq_count = lpfc_sli_hbq_count();
4819 	int  count = 0;
4820 	int  i;
4821 
4822 	for (i = 0; i < hbq_count; ++i)
4823 		count += lpfc_hbq_defs[i]->entry_count;
4824 	return count;
4825 }
4826 
4827 /**
4828  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4829  *
4830  * This function calculates amount of memory required for all hbq entries
4831  * to be configured and returns the total memory required.
4832  **/
4833 int
4834 lpfc_sli_hbq_size(void)
4835 {
4836 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4837 }
4838 
4839 /**
4840  * lpfc_sli_hbq_setup - configure and initialize HBQs
4841  * @phba: Pointer to HBA context object.
4842  *
4843  * This function is called during the SLI initialization to configure
4844  * all the HBQs and post buffers to the HBQ. The caller is not
4845  * required to hold any locks. This function will return zero if successful
4846  * else it will return negative error code.
4847  **/
4848 static int
4849 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4850 {
4851 	int  hbq_count = lpfc_sli_hbq_count();
4852 	LPFC_MBOXQ_t *pmb;
4853 	MAILBOX_t *pmbox;
4854 	uint32_t hbqno;
4855 	uint32_t hbq_entry_index;
4856 
4857 				/* Get a Mailbox buffer to setup mailbox
4858 				 * commands for HBA initialization
4859 				 */
4860 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4861 
4862 	if (!pmb)
4863 		return -ENOMEM;
4864 
4865 	pmbox = &pmb->u.mb;
4866 
4867 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4868 	phba->link_state = LPFC_INIT_MBX_CMDS;
4869 	phba->hbq_in_use = 1;
4870 
4871 	hbq_entry_index = 0;
4872 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4873 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4874 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4875 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4876 		phba->hbqs[hbqno].entry_count =
4877 			lpfc_hbq_defs[hbqno]->entry_count;
4878 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4879 			hbq_entry_index, pmb);
4880 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4881 
4882 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4883 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4884 			   mbxStatus <status>, ring <num> */
4885 
4886 			lpfc_printf_log(phba, KERN_ERR,
4887 					LOG_SLI | LOG_VPORT,
4888 					"1805 Adapter failed to init. "
4889 					"Data: x%x x%x x%x\n",
4890 					pmbox->mbxCommand,
4891 					pmbox->mbxStatus, hbqno);
4892 
4893 			phba->link_state = LPFC_HBA_ERROR;
4894 			mempool_free(pmb, phba->mbox_mem_pool);
4895 			return -ENXIO;
4896 		}
4897 	}
4898 	phba->hbq_count = hbq_count;
4899 
4900 	mempool_free(pmb, phba->mbox_mem_pool);
4901 
4902 	/* Initially populate or replenish the HBQs */
4903 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4904 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4905 	return 0;
4906 }
4907 
4908 /**
4909  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4910  * @phba: Pointer to HBA context object.
4911  *
4912  * This function is called during the SLI initialization to configure
4913  * all the HBQs and post buffers to the HBQ. The caller is not
4914  * required to hold any locks. This function will return zero if successful
4915  * else it will return negative error code.
4916  **/
4917 static int
4918 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4919 {
4920 	phba->hbq_in_use = 1;
4921 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4922 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4923 	phba->hbq_count = 1;
4924 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4925 	/* Initially populate or replenish the HBQs */
4926 	return 0;
4927 }
4928 
4929 /**
4930  * lpfc_sli_config_port - Issue config port mailbox command
4931  * @phba: Pointer to HBA context object.
4932  * @sli_mode: sli mode - 2/3
4933  *
4934  * This function is called by the sli initialization code path
4935  * to issue config_port mailbox command. This function restarts the
4936  * HBA firmware and issues a config_port mailbox command to configure
4937  * the SLI interface in the sli mode specified by sli_mode
4938  * variable. The caller is not required to hold any locks.
4939  * The function returns 0 if successful, else returns negative error
4940  * code.
4941  **/
4942 int
4943 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4944 {
4945 	LPFC_MBOXQ_t *pmb;
4946 	uint32_t resetcount = 0, rc = 0, done = 0;
4947 
4948 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4949 	if (!pmb) {
4950 		phba->link_state = LPFC_HBA_ERROR;
4951 		return -ENOMEM;
4952 	}
4953 
4954 	phba->sli_rev = sli_mode;
4955 	while (resetcount < 2 && !done) {
4956 		spin_lock_irq(&phba->hbalock);
4957 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4958 		spin_unlock_irq(&phba->hbalock);
4959 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4960 		lpfc_sli_brdrestart(phba);
4961 		rc = lpfc_sli_chipset_init(phba);
4962 		if (rc)
4963 			break;
4964 
4965 		spin_lock_irq(&phba->hbalock);
4966 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4967 		spin_unlock_irq(&phba->hbalock);
4968 		resetcount++;
4969 
4970 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4971 		 * value of 0 means the call was successful.  Any other
4972 		 * nonzero value is a failure, but if ERESTART is returned,
4973 		 * the driver may reset the HBA and try again.
4974 		 */
4975 		rc = lpfc_config_port_prep(phba);
4976 		if (rc == -ERESTART) {
4977 			phba->link_state = LPFC_LINK_UNKNOWN;
4978 			continue;
4979 		} else if (rc)
4980 			break;
4981 
4982 		phba->link_state = LPFC_INIT_MBX_CMDS;
4983 		lpfc_config_port(phba, pmb);
4984 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4985 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4986 					LPFC_SLI3_HBQ_ENABLED |
4987 					LPFC_SLI3_CRP_ENABLED |
4988 					LPFC_SLI3_DSS_ENABLED);
4989 		if (rc != MBX_SUCCESS) {
4990 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4991 				"0442 Adapter failed to init, mbxCmd x%x "
4992 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4993 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4994 			spin_lock_irq(&phba->hbalock);
4995 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4996 			spin_unlock_irq(&phba->hbalock);
4997 			rc = -ENXIO;
4998 		} else {
4999 			/* Allow asynchronous mailbox command to go through */
5000 			spin_lock_irq(&phba->hbalock);
5001 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5002 			spin_unlock_irq(&phba->hbalock);
5003 			done = 1;
5004 
5005 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5006 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5007 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5008 					"3110 Port did not grant ASABT\n");
5009 		}
5010 	}
5011 	if (!done) {
5012 		rc = -EINVAL;
5013 		goto do_prep_failed;
5014 	}
5015 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5016 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5017 			rc = -ENXIO;
5018 			goto do_prep_failed;
5019 		}
5020 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5021 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5022 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5023 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5024 				phba->max_vpi : phba->max_vports;
5025 
5026 		} else
5027 			phba->max_vpi = 0;
5028 		phba->fips_level = 0;
5029 		phba->fips_spec_rev = 0;
5030 		if (pmb->u.mb.un.varCfgPort.gdss) {
5031 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5032 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5033 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5034 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5035 					"2850 Security Crypto Active. FIPS x%d "
5036 					"(Spec Rev: x%d)",
5037 					phba->fips_level, phba->fips_spec_rev);
5038 		}
5039 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5040 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5041 					"2856 Config Port Security Crypto "
5042 					"Error: x%x ",
5043 					pmb->u.mb.un.varCfgPort.sec_err);
5044 		}
5045 		if (pmb->u.mb.un.varCfgPort.gerbm)
5046 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5047 		if (pmb->u.mb.un.varCfgPort.gcrp)
5048 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5049 
5050 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5051 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5052 
5053 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5054 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5055 				phba->cfg_enable_bg = 0;
5056 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5057 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5058 						"0443 Adapter did not grant "
5059 						"BlockGuard\n");
5060 			}
5061 		}
5062 	} else {
5063 		phba->hbq_get = NULL;
5064 		phba->port_gp = phba->mbox->us.s2.port;
5065 		phba->max_vpi = 0;
5066 	}
5067 do_prep_failed:
5068 	mempool_free(pmb, phba->mbox_mem_pool);
5069 	return rc;
5070 }
5071 
5072 
5073 /**
5074  * lpfc_sli_hba_setup - SLI initialization function
5075  * @phba: Pointer to HBA context object.
5076  *
5077  * This function is the main SLI initialization function. This function
5078  * is called by the HBA initialization code, HBA reset code and HBA
5079  * error attention handler code. Caller is not required to hold any
5080  * locks. This function issues config_port mailbox command to configure
5081  * the SLI, setup iocb rings and HBQ rings. In the end the function
5082  * calls the config_port_post function to issue init_link mailbox
5083  * command and to start the discovery. The function will return zero
5084  * if successful, else it will return negative error code.
5085  **/
5086 int
5087 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5088 {
5089 	uint32_t rc;
5090 	int  mode = 3, i;
5091 	int longs;
5092 
5093 	switch (phba->cfg_sli_mode) {
5094 	case 2:
5095 		if (phba->cfg_enable_npiv) {
5096 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5097 				"1824 NPIV enabled: Override sli_mode "
5098 				"parameter (%d) to auto (0).\n",
5099 				phba->cfg_sli_mode);
5100 			break;
5101 		}
5102 		mode = 2;
5103 		break;
5104 	case 0:
5105 	case 3:
5106 		break;
5107 	default:
5108 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5109 				"1819 Unrecognized sli_mode parameter: %d.\n",
5110 				phba->cfg_sli_mode);
5111 
5112 		break;
5113 	}
5114 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5115 
5116 	rc = lpfc_sli_config_port(phba, mode);
5117 
5118 	if (rc && phba->cfg_sli_mode == 3)
5119 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5120 				"1820 Unable to select SLI-3.  "
5121 				"Not supported by adapter.\n");
5122 	if (rc && mode != 2)
5123 		rc = lpfc_sli_config_port(phba, 2);
5124 	else if (rc && mode == 2)
5125 		rc = lpfc_sli_config_port(phba, 3);
5126 	if (rc)
5127 		goto lpfc_sli_hba_setup_error;
5128 
5129 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5130 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5131 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5132 		if (!rc) {
5133 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5134 					"2709 This device supports "
5135 					"Advanced Error Reporting (AER)\n");
5136 			spin_lock_irq(&phba->hbalock);
5137 			phba->hba_flag |= HBA_AER_ENABLED;
5138 			spin_unlock_irq(&phba->hbalock);
5139 		} else {
5140 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5141 					"2708 This device does not support "
5142 					"Advanced Error Reporting (AER): %d\n",
5143 					rc);
5144 			phba->cfg_aer_support = 0;
5145 		}
5146 	}
5147 
5148 	if (phba->sli_rev == 3) {
5149 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5150 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5151 	} else {
5152 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5153 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5154 		phba->sli3_options = 0;
5155 	}
5156 
5157 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5158 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5159 			phba->sli_rev, phba->max_vpi);
5160 	rc = lpfc_sli_ring_map(phba);
5161 
5162 	if (rc)
5163 		goto lpfc_sli_hba_setup_error;
5164 
5165 	/* Initialize VPIs. */
5166 	if (phba->sli_rev == LPFC_SLI_REV3) {
5167 		/*
5168 		 * The VPI bitmask and physical ID array are allocated
5169 		 * and initialized once only - at driver load.  A port
5170 		 * reset doesn't need to reinitialize this memory.
5171 		 */
5172 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5173 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5174 			phba->vpi_bmask = kcalloc(longs,
5175 						  sizeof(unsigned long),
5176 						  GFP_KERNEL);
5177 			if (!phba->vpi_bmask) {
5178 				rc = -ENOMEM;
5179 				goto lpfc_sli_hba_setup_error;
5180 			}
5181 
5182 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5183 						sizeof(uint16_t),
5184 						GFP_KERNEL);
5185 			if (!phba->vpi_ids) {
5186 				kfree(phba->vpi_bmask);
5187 				rc = -ENOMEM;
5188 				goto lpfc_sli_hba_setup_error;
5189 			}
5190 			for (i = 0; i < phba->max_vpi; i++)
5191 				phba->vpi_ids[i] = i;
5192 		}
5193 	}
5194 
5195 	/* Init HBQs */
5196 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5197 		rc = lpfc_sli_hbq_setup(phba);
5198 		if (rc)
5199 			goto lpfc_sli_hba_setup_error;
5200 	}
5201 	spin_lock_irq(&phba->hbalock);
5202 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5203 	spin_unlock_irq(&phba->hbalock);
5204 
5205 	rc = lpfc_config_port_post(phba);
5206 	if (rc)
5207 		goto lpfc_sli_hba_setup_error;
5208 
5209 	return rc;
5210 
5211 lpfc_sli_hba_setup_error:
5212 	phba->link_state = LPFC_HBA_ERROR;
5213 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5214 			"0445 Firmware initialization failed\n");
5215 	return rc;
5216 }
5217 
5218 /**
5219  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5220  * @phba: Pointer to HBA context object.
5221  * @mboxq: mailbox pointer.
5222  * This function issue a dump mailbox command to read config region
5223  * 23 and parse the records in the region and populate driver
5224  * data structure.
5225  **/
5226 static int
5227 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5228 {
5229 	LPFC_MBOXQ_t *mboxq;
5230 	struct lpfc_dmabuf *mp;
5231 	struct lpfc_mqe *mqe;
5232 	uint32_t data_length;
5233 	int rc;
5234 
5235 	/* Program the default value of vlan_id and fc_map */
5236 	phba->valid_vlan = 0;
5237 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5238 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5239 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5240 
5241 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5242 	if (!mboxq)
5243 		return -ENOMEM;
5244 
5245 	mqe = &mboxq->u.mqe;
5246 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5247 		rc = -ENOMEM;
5248 		goto out_free_mboxq;
5249 	}
5250 
5251 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5252 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5253 
5254 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5255 			"(%d):2571 Mailbox cmd x%x Status x%x "
5256 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5257 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5258 			"CQ: x%x x%x x%x x%x\n",
5259 			mboxq->vport ? mboxq->vport->vpi : 0,
5260 			bf_get(lpfc_mqe_command, mqe),
5261 			bf_get(lpfc_mqe_status, mqe),
5262 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5263 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5264 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5265 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5266 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5267 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5268 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5269 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5270 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5271 			mboxq->mcqe.word0,
5272 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5273 			mboxq->mcqe.trailer);
5274 
5275 	if (rc) {
5276 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5277 		kfree(mp);
5278 		rc = -EIO;
5279 		goto out_free_mboxq;
5280 	}
5281 	data_length = mqe->un.mb_words[5];
5282 	if (data_length > DMP_RGN23_SIZE) {
5283 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5284 		kfree(mp);
5285 		rc = -EIO;
5286 		goto out_free_mboxq;
5287 	}
5288 
5289 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5290 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5291 	kfree(mp);
5292 	rc = 0;
5293 
5294 out_free_mboxq:
5295 	mempool_free(mboxq, phba->mbox_mem_pool);
5296 	return rc;
5297 }
5298 
5299 /**
5300  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5301  * @phba: pointer to lpfc hba data structure.
5302  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5303  * @vpd: pointer to the memory to hold resulting port vpd data.
5304  * @vpd_size: On input, the number of bytes allocated to @vpd.
5305  *	      On output, the number of data bytes in @vpd.
5306  *
5307  * This routine executes a READ_REV SLI4 mailbox command.  In
5308  * addition, this routine gets the port vpd data.
5309  *
5310  * Return codes
5311  * 	0 - successful
5312  * 	-ENOMEM - could not allocated memory.
5313  **/
5314 static int
5315 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5316 		    uint8_t *vpd, uint32_t *vpd_size)
5317 {
5318 	int rc = 0;
5319 	uint32_t dma_size;
5320 	struct lpfc_dmabuf *dmabuf;
5321 	struct lpfc_mqe *mqe;
5322 
5323 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5324 	if (!dmabuf)
5325 		return -ENOMEM;
5326 
5327 	/*
5328 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5329 	 * mailbox command.
5330 	 */
5331 	dma_size = *vpd_size;
5332 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5333 					  &dmabuf->phys, GFP_KERNEL);
5334 	if (!dmabuf->virt) {
5335 		kfree(dmabuf);
5336 		return -ENOMEM;
5337 	}
5338 
5339 	/*
5340 	 * The SLI4 implementation of READ_REV conflicts at word1,
5341 	 * bits 31:16 and SLI4 adds vpd functionality not present
5342 	 * in SLI3.  This code corrects the conflicts.
5343 	 */
5344 	lpfc_read_rev(phba, mboxq);
5345 	mqe = &mboxq->u.mqe;
5346 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5347 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5348 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5349 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5350 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5351 
5352 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5353 	if (rc) {
5354 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5355 				  dmabuf->virt, dmabuf->phys);
5356 		kfree(dmabuf);
5357 		return -EIO;
5358 	}
5359 
5360 	/*
5361 	 * The available vpd length cannot be bigger than the
5362 	 * DMA buffer passed to the port.  Catch the less than
5363 	 * case and update the caller's size.
5364 	 */
5365 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5366 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5367 
5368 	memcpy(vpd, dmabuf->virt, *vpd_size);
5369 
5370 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5371 			  dmabuf->virt, dmabuf->phys);
5372 	kfree(dmabuf);
5373 	return 0;
5374 }
5375 
5376 /**
5377  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5378  * @phba: pointer to lpfc hba data structure.
5379  *
5380  * This routine retrieves SLI4 device physical port name this PCI function
5381  * is attached to.
5382  *
5383  * Return codes
5384  *      0 - successful
5385  *      otherwise - failed to retrieve controller attributes
5386  **/
5387 static int
5388 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5389 {
5390 	LPFC_MBOXQ_t *mboxq;
5391 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5392 	struct lpfc_controller_attribute *cntl_attr;
5393 	void *virtaddr = NULL;
5394 	uint32_t alloclen, reqlen;
5395 	uint32_t shdr_status, shdr_add_status;
5396 	union lpfc_sli4_cfg_shdr *shdr;
5397 	int rc;
5398 
5399 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5400 	if (!mboxq)
5401 		return -ENOMEM;
5402 
5403 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5404 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5405 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5406 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5407 			LPFC_SLI4_MBX_NEMBED);
5408 
5409 	if (alloclen < reqlen) {
5410 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5411 				"3084 Allocated DMA memory size (%d) is "
5412 				"less than the requested DMA memory size "
5413 				"(%d)\n", alloclen, reqlen);
5414 		rc = -ENOMEM;
5415 		goto out_free_mboxq;
5416 	}
5417 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5418 	virtaddr = mboxq->sge_array->addr[0];
5419 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5420 	shdr = &mbx_cntl_attr->cfg_shdr;
5421 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5422 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5423 	if (shdr_status || shdr_add_status || rc) {
5424 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5425 				"3085 Mailbox x%x (x%x/x%x) failed, "
5426 				"rc:x%x, status:x%x, add_status:x%x\n",
5427 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5428 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5429 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5430 				rc, shdr_status, shdr_add_status);
5431 		rc = -ENXIO;
5432 		goto out_free_mboxq;
5433 	}
5434 
5435 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5436 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5437 	phba->sli4_hba.lnk_info.lnk_tp =
5438 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5439 	phba->sli4_hba.lnk_info.lnk_no =
5440 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5441 
5442 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5443 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5444 		sizeof(phba->BIOSVersion));
5445 
5446 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5447 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5448 			phba->sli4_hba.lnk_info.lnk_tp,
5449 			phba->sli4_hba.lnk_info.lnk_no,
5450 			phba->BIOSVersion);
5451 out_free_mboxq:
5452 	if (rc != MBX_TIMEOUT) {
5453 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5454 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5455 		else
5456 			mempool_free(mboxq, phba->mbox_mem_pool);
5457 	}
5458 	return rc;
5459 }
5460 
5461 /**
5462  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5463  * @phba: pointer to lpfc hba data structure.
5464  *
5465  * This routine retrieves SLI4 device physical port name this PCI function
5466  * is attached to.
5467  *
5468  * Return codes
5469  *      0 - successful
5470  *      otherwise - failed to retrieve physical port name
5471  **/
5472 static int
5473 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5474 {
5475 	LPFC_MBOXQ_t *mboxq;
5476 	struct lpfc_mbx_get_port_name *get_port_name;
5477 	uint32_t shdr_status, shdr_add_status;
5478 	union lpfc_sli4_cfg_shdr *shdr;
5479 	char cport_name = 0;
5480 	int rc;
5481 
5482 	/* We assume nothing at this point */
5483 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5484 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5485 
5486 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5487 	if (!mboxq)
5488 		return -ENOMEM;
5489 	/* obtain link type and link number via READ_CONFIG */
5490 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5491 	lpfc_sli4_read_config(phba);
5492 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5493 		goto retrieve_ppname;
5494 
5495 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5496 	rc = lpfc_sli4_get_ctl_attr(phba);
5497 	if (rc)
5498 		goto out_free_mboxq;
5499 
5500 retrieve_ppname:
5501 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5502 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5503 		sizeof(struct lpfc_mbx_get_port_name) -
5504 		sizeof(struct lpfc_sli4_cfg_mhdr),
5505 		LPFC_SLI4_MBX_EMBED);
5506 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5507 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5508 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5509 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5510 		phba->sli4_hba.lnk_info.lnk_tp);
5511 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5512 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5513 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5514 	if (shdr_status || shdr_add_status || rc) {
5515 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5516 				"3087 Mailbox x%x (x%x/x%x) failed: "
5517 				"rc:x%x, status:x%x, add_status:x%x\n",
5518 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5519 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5520 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5521 				rc, shdr_status, shdr_add_status);
5522 		rc = -ENXIO;
5523 		goto out_free_mboxq;
5524 	}
5525 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5526 	case LPFC_LINK_NUMBER_0:
5527 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5528 				&get_port_name->u.response);
5529 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5530 		break;
5531 	case LPFC_LINK_NUMBER_1:
5532 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5533 				&get_port_name->u.response);
5534 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5535 		break;
5536 	case LPFC_LINK_NUMBER_2:
5537 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5538 				&get_port_name->u.response);
5539 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5540 		break;
5541 	case LPFC_LINK_NUMBER_3:
5542 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5543 				&get_port_name->u.response);
5544 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5545 		break;
5546 	default:
5547 		break;
5548 	}
5549 
5550 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5551 		phba->Port[0] = cport_name;
5552 		phba->Port[1] = '\0';
5553 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5554 				"3091 SLI get port name: %s\n", phba->Port);
5555 	}
5556 
5557 out_free_mboxq:
5558 	if (rc != MBX_TIMEOUT) {
5559 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5560 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5561 		else
5562 			mempool_free(mboxq, phba->mbox_mem_pool);
5563 	}
5564 	return rc;
5565 }
5566 
5567 /**
5568  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5569  * @phba: pointer to lpfc hba data structure.
5570  *
5571  * This routine is called to explicitly arm the SLI4 device's completion and
5572  * event queues
5573  **/
5574 static void
5575 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5576 {
5577 	int qidx;
5578 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5579 	struct lpfc_sli4_hdw_queue *qp;
5580 	struct lpfc_queue *eq;
5581 
5582 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5583 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5584 	if (sli4_hba->nvmels_cq)
5585 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5586 					   LPFC_QUEUE_REARM);
5587 
5588 	if (sli4_hba->hdwq) {
5589 		/* Loop thru all Hardware Queues */
5590 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5591 			qp = &sli4_hba->hdwq[qidx];
5592 			/* ARM the corresponding CQ */
5593 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5594 						LPFC_QUEUE_REARM);
5595 		}
5596 
5597 		/* Loop thru all IRQ vectors */
5598 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5599 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5600 			/* ARM the corresponding EQ */
5601 			sli4_hba->sli4_write_eq_db(phba, eq,
5602 						   0, LPFC_QUEUE_REARM);
5603 		}
5604 	}
5605 
5606 	if (phba->nvmet_support) {
5607 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5608 			sli4_hba->sli4_write_cq_db(phba,
5609 				sli4_hba->nvmet_cqset[qidx], 0,
5610 				LPFC_QUEUE_REARM);
5611 		}
5612 	}
5613 }
5614 
5615 /**
5616  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5617  * @phba: Pointer to HBA context object.
5618  * @type: The resource extent type.
5619  * @extnt_count: buffer to hold port available extent count.
5620  * @extnt_size: buffer to hold element count per extent.
5621  *
5622  * This function calls the port and retrievs the number of available
5623  * extents and their size for a particular extent type.
5624  *
5625  * Returns: 0 if successful.  Nonzero otherwise.
5626  **/
5627 int
5628 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5629 			       uint16_t *extnt_count, uint16_t *extnt_size)
5630 {
5631 	int rc = 0;
5632 	uint32_t length;
5633 	uint32_t mbox_tmo;
5634 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5635 	LPFC_MBOXQ_t *mbox;
5636 
5637 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5638 	if (!mbox)
5639 		return -ENOMEM;
5640 
5641 	/* Find out how many extents are available for this resource type */
5642 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5643 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5644 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5645 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5646 			 length, LPFC_SLI4_MBX_EMBED);
5647 
5648 	/* Send an extents count of 0 - the GET doesn't use it. */
5649 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5650 					LPFC_SLI4_MBX_EMBED);
5651 	if (unlikely(rc)) {
5652 		rc = -EIO;
5653 		goto err_exit;
5654 	}
5655 
5656 	if (!phba->sli4_hba.intr_enable)
5657 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5658 	else {
5659 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5660 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5661 	}
5662 	if (unlikely(rc)) {
5663 		rc = -EIO;
5664 		goto err_exit;
5665 	}
5666 
5667 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5668 	if (bf_get(lpfc_mbox_hdr_status,
5669 		   &rsrc_info->header.cfg_shdr.response)) {
5670 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5671 				"2930 Failed to get resource extents "
5672 				"Status 0x%x Add'l Status 0x%x\n",
5673 				bf_get(lpfc_mbox_hdr_status,
5674 				       &rsrc_info->header.cfg_shdr.response),
5675 				bf_get(lpfc_mbox_hdr_add_status,
5676 				       &rsrc_info->header.cfg_shdr.response));
5677 		rc = -EIO;
5678 		goto err_exit;
5679 	}
5680 
5681 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5682 			      &rsrc_info->u.rsp);
5683 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5684 			     &rsrc_info->u.rsp);
5685 
5686 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5687 			"3162 Retrieved extents type-%d from port: count:%d, "
5688 			"size:%d\n", type, *extnt_count, *extnt_size);
5689 
5690 err_exit:
5691 	mempool_free(mbox, phba->mbox_mem_pool);
5692 	return rc;
5693 }
5694 
5695 /**
5696  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5697  * @phba: Pointer to HBA context object.
5698  * @type: The extent type to check.
5699  *
5700  * This function reads the current available extents from the port and checks
5701  * if the extent count or extent size has changed since the last access.
5702  * Callers use this routine post port reset to understand if there is a
5703  * extent reprovisioning requirement.
5704  *
5705  * Returns:
5706  *   -Error: error indicates problem.
5707  *   1: Extent count or size has changed.
5708  *   0: No changes.
5709  **/
5710 static int
5711 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5712 {
5713 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5714 	uint16_t size_diff, rsrc_ext_size;
5715 	int rc = 0;
5716 	struct lpfc_rsrc_blks *rsrc_entry;
5717 	struct list_head *rsrc_blk_list = NULL;
5718 
5719 	size_diff = 0;
5720 	curr_ext_cnt = 0;
5721 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5722 					    &rsrc_ext_cnt,
5723 					    &rsrc_ext_size);
5724 	if (unlikely(rc))
5725 		return -EIO;
5726 
5727 	switch (type) {
5728 	case LPFC_RSC_TYPE_FCOE_RPI:
5729 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5730 		break;
5731 	case LPFC_RSC_TYPE_FCOE_VPI:
5732 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5733 		break;
5734 	case LPFC_RSC_TYPE_FCOE_XRI:
5735 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5736 		break;
5737 	case LPFC_RSC_TYPE_FCOE_VFI:
5738 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5739 		break;
5740 	default:
5741 		break;
5742 	}
5743 
5744 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5745 		curr_ext_cnt++;
5746 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5747 			size_diff++;
5748 	}
5749 
5750 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5751 		rc = 1;
5752 
5753 	return rc;
5754 }
5755 
5756 /**
5757  * lpfc_sli4_cfg_post_extnts -
5758  * @phba: Pointer to HBA context object.
5759  * @extnt_cnt - number of available extents.
5760  * @type - the extent type (rpi, xri, vfi, vpi).
5761  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5762  * @mbox - pointer to the caller's allocated mailbox structure.
5763  *
5764  * This function executes the extents allocation request.  It also
5765  * takes care of the amount of memory needed to allocate or get the
5766  * allocated extents. It is the caller's responsibility to evaluate
5767  * the response.
5768  *
5769  * Returns:
5770  *   -Error:  Error value describes the condition found.
5771  *   0: if successful
5772  **/
5773 static int
5774 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5775 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5776 {
5777 	int rc = 0;
5778 	uint32_t req_len;
5779 	uint32_t emb_len;
5780 	uint32_t alloc_len, mbox_tmo;
5781 
5782 	/* Calculate the total requested length of the dma memory */
5783 	req_len = extnt_cnt * sizeof(uint16_t);
5784 
5785 	/*
5786 	 * Calculate the size of an embedded mailbox.  The uint32_t
5787 	 * accounts for extents-specific word.
5788 	 */
5789 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5790 		sizeof(uint32_t);
5791 
5792 	/*
5793 	 * Presume the allocation and response will fit into an embedded
5794 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5795 	 */
5796 	*emb = LPFC_SLI4_MBX_EMBED;
5797 	if (req_len > emb_len) {
5798 		req_len = extnt_cnt * sizeof(uint16_t) +
5799 			sizeof(union lpfc_sli4_cfg_shdr) +
5800 			sizeof(uint32_t);
5801 		*emb = LPFC_SLI4_MBX_NEMBED;
5802 	}
5803 
5804 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5805 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5806 				     req_len, *emb);
5807 	if (alloc_len < req_len) {
5808 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5809 			"2982 Allocated DMA memory size (x%x) is "
5810 			"less than the requested DMA memory "
5811 			"size (x%x)\n", alloc_len, req_len);
5812 		return -ENOMEM;
5813 	}
5814 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5815 	if (unlikely(rc))
5816 		return -EIO;
5817 
5818 	if (!phba->sli4_hba.intr_enable)
5819 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5820 	else {
5821 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5822 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5823 	}
5824 
5825 	if (unlikely(rc))
5826 		rc = -EIO;
5827 	return rc;
5828 }
5829 
5830 /**
5831  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5832  * @phba: Pointer to HBA context object.
5833  * @type:  The resource extent type to allocate.
5834  *
5835  * This function allocates the number of elements for the specified
5836  * resource type.
5837  **/
5838 static int
5839 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5840 {
5841 	bool emb = false;
5842 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5843 	uint16_t rsrc_id, rsrc_start, j, k;
5844 	uint16_t *ids;
5845 	int i, rc;
5846 	unsigned long longs;
5847 	unsigned long *bmask;
5848 	struct lpfc_rsrc_blks *rsrc_blks;
5849 	LPFC_MBOXQ_t *mbox;
5850 	uint32_t length;
5851 	struct lpfc_id_range *id_array = NULL;
5852 	void *virtaddr = NULL;
5853 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5854 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5855 	struct list_head *ext_blk_list;
5856 
5857 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5858 					    &rsrc_cnt,
5859 					    &rsrc_size);
5860 	if (unlikely(rc))
5861 		return -EIO;
5862 
5863 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5864 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5865 			"3009 No available Resource Extents "
5866 			"for resource type 0x%x: Count: 0x%x, "
5867 			"Size 0x%x\n", type, rsrc_cnt,
5868 			rsrc_size);
5869 		return -ENOMEM;
5870 	}
5871 
5872 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5873 			"2903 Post resource extents type-0x%x: "
5874 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5875 
5876 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5877 	if (!mbox)
5878 		return -ENOMEM;
5879 
5880 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5881 	if (unlikely(rc)) {
5882 		rc = -EIO;
5883 		goto err_exit;
5884 	}
5885 
5886 	/*
5887 	 * Figure out where the response is located.  Then get local pointers
5888 	 * to the response data.  The port does not guarantee to respond to
5889 	 * all extents counts request so update the local variable with the
5890 	 * allocated count from the port.
5891 	 */
5892 	if (emb == LPFC_SLI4_MBX_EMBED) {
5893 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5894 		id_array = &rsrc_ext->u.rsp.id[0];
5895 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5896 	} else {
5897 		virtaddr = mbox->sge_array->addr[0];
5898 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5899 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5900 		id_array = &n_rsrc->id;
5901 	}
5902 
5903 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5904 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5905 
5906 	/*
5907 	 * Based on the resource size and count, correct the base and max
5908 	 * resource values.
5909 	 */
5910 	length = sizeof(struct lpfc_rsrc_blks);
5911 	switch (type) {
5912 	case LPFC_RSC_TYPE_FCOE_RPI:
5913 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5914 						   sizeof(unsigned long),
5915 						   GFP_KERNEL);
5916 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5917 			rc = -ENOMEM;
5918 			goto err_exit;
5919 		}
5920 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5921 						 sizeof(uint16_t),
5922 						 GFP_KERNEL);
5923 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5924 			kfree(phba->sli4_hba.rpi_bmask);
5925 			rc = -ENOMEM;
5926 			goto err_exit;
5927 		}
5928 
5929 		/*
5930 		 * The next_rpi was initialized with the maximum available
5931 		 * count but the port may allocate a smaller number.  Catch
5932 		 * that case and update the next_rpi.
5933 		 */
5934 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5935 
5936 		/* Initialize local ptrs for common extent processing later. */
5937 		bmask = phba->sli4_hba.rpi_bmask;
5938 		ids = phba->sli4_hba.rpi_ids;
5939 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5940 		break;
5941 	case LPFC_RSC_TYPE_FCOE_VPI:
5942 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5943 					  GFP_KERNEL);
5944 		if (unlikely(!phba->vpi_bmask)) {
5945 			rc = -ENOMEM;
5946 			goto err_exit;
5947 		}
5948 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5949 					 GFP_KERNEL);
5950 		if (unlikely(!phba->vpi_ids)) {
5951 			kfree(phba->vpi_bmask);
5952 			rc = -ENOMEM;
5953 			goto err_exit;
5954 		}
5955 
5956 		/* Initialize local ptrs for common extent processing later. */
5957 		bmask = phba->vpi_bmask;
5958 		ids = phba->vpi_ids;
5959 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5960 		break;
5961 	case LPFC_RSC_TYPE_FCOE_XRI:
5962 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5963 						   sizeof(unsigned long),
5964 						   GFP_KERNEL);
5965 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5966 			rc = -ENOMEM;
5967 			goto err_exit;
5968 		}
5969 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5970 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5971 						 sizeof(uint16_t),
5972 						 GFP_KERNEL);
5973 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5974 			kfree(phba->sli4_hba.xri_bmask);
5975 			rc = -ENOMEM;
5976 			goto err_exit;
5977 		}
5978 
5979 		/* Initialize local ptrs for common extent processing later. */
5980 		bmask = phba->sli4_hba.xri_bmask;
5981 		ids = phba->sli4_hba.xri_ids;
5982 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5983 		break;
5984 	case LPFC_RSC_TYPE_FCOE_VFI:
5985 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5986 						   sizeof(unsigned long),
5987 						   GFP_KERNEL);
5988 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5989 			rc = -ENOMEM;
5990 			goto err_exit;
5991 		}
5992 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5993 						 sizeof(uint16_t),
5994 						 GFP_KERNEL);
5995 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5996 			kfree(phba->sli4_hba.vfi_bmask);
5997 			rc = -ENOMEM;
5998 			goto err_exit;
5999 		}
6000 
6001 		/* Initialize local ptrs for common extent processing later. */
6002 		bmask = phba->sli4_hba.vfi_bmask;
6003 		ids = phba->sli4_hba.vfi_ids;
6004 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6005 		break;
6006 	default:
6007 		/* Unsupported Opcode.  Fail call. */
6008 		id_array = NULL;
6009 		bmask = NULL;
6010 		ids = NULL;
6011 		ext_blk_list = NULL;
6012 		goto err_exit;
6013 	}
6014 
6015 	/*
6016 	 * Complete initializing the extent configuration with the
6017 	 * allocated ids assigned to this function.  The bitmask serves
6018 	 * as an index into the array and manages the available ids.  The
6019 	 * array just stores the ids communicated to the port via the wqes.
6020 	 */
6021 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6022 		if ((i % 2) == 0)
6023 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6024 					 &id_array[k]);
6025 		else
6026 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6027 					 &id_array[k]);
6028 
6029 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6030 		if (unlikely(!rsrc_blks)) {
6031 			rc = -ENOMEM;
6032 			kfree(bmask);
6033 			kfree(ids);
6034 			goto err_exit;
6035 		}
6036 		rsrc_blks->rsrc_start = rsrc_id;
6037 		rsrc_blks->rsrc_size = rsrc_size;
6038 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6039 		rsrc_start = rsrc_id;
6040 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6041 			phba->sli4_hba.io_xri_start = rsrc_start +
6042 				lpfc_sli4_get_iocb_cnt(phba);
6043 		}
6044 
6045 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6046 			ids[j] = rsrc_id;
6047 			rsrc_id++;
6048 			j++;
6049 		}
6050 		/* Entire word processed.  Get next word.*/
6051 		if ((i % 2) == 1)
6052 			k++;
6053 	}
6054  err_exit:
6055 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6056 	return rc;
6057 }
6058 
6059 
6060 
6061 /**
6062  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6063  * @phba: Pointer to HBA context object.
6064  * @type: the extent's type.
6065  *
6066  * This function deallocates all extents of a particular resource type.
6067  * SLI4 does not allow for deallocating a particular extent range.  It
6068  * is the caller's responsibility to release all kernel memory resources.
6069  **/
6070 static int
6071 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6072 {
6073 	int rc;
6074 	uint32_t length, mbox_tmo = 0;
6075 	LPFC_MBOXQ_t *mbox;
6076 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6077 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6078 
6079 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6080 	if (!mbox)
6081 		return -ENOMEM;
6082 
6083 	/*
6084 	 * This function sends an embedded mailbox because it only sends the
6085 	 * the resource type.  All extents of this type are released by the
6086 	 * port.
6087 	 */
6088 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6089 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6090 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6091 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6092 			 length, LPFC_SLI4_MBX_EMBED);
6093 
6094 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6095 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6096 					LPFC_SLI4_MBX_EMBED);
6097 	if (unlikely(rc)) {
6098 		rc = -EIO;
6099 		goto out_free_mbox;
6100 	}
6101 	if (!phba->sli4_hba.intr_enable)
6102 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6103 	else {
6104 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6105 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6106 	}
6107 	if (unlikely(rc)) {
6108 		rc = -EIO;
6109 		goto out_free_mbox;
6110 	}
6111 
6112 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6113 	if (bf_get(lpfc_mbox_hdr_status,
6114 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6115 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6116 				"2919 Failed to release resource extents "
6117 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6118 				"Resource memory not released.\n",
6119 				type,
6120 				bf_get(lpfc_mbox_hdr_status,
6121 				    &dealloc_rsrc->header.cfg_shdr.response),
6122 				bf_get(lpfc_mbox_hdr_add_status,
6123 				    &dealloc_rsrc->header.cfg_shdr.response));
6124 		rc = -EIO;
6125 		goto out_free_mbox;
6126 	}
6127 
6128 	/* Release kernel memory resources for the specific type. */
6129 	switch (type) {
6130 	case LPFC_RSC_TYPE_FCOE_VPI:
6131 		kfree(phba->vpi_bmask);
6132 		kfree(phba->vpi_ids);
6133 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6134 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6135 				    &phba->lpfc_vpi_blk_list, list) {
6136 			list_del_init(&rsrc_blk->list);
6137 			kfree(rsrc_blk);
6138 		}
6139 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6140 		break;
6141 	case LPFC_RSC_TYPE_FCOE_XRI:
6142 		kfree(phba->sli4_hba.xri_bmask);
6143 		kfree(phba->sli4_hba.xri_ids);
6144 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6145 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6146 			list_del_init(&rsrc_blk->list);
6147 			kfree(rsrc_blk);
6148 		}
6149 		break;
6150 	case LPFC_RSC_TYPE_FCOE_VFI:
6151 		kfree(phba->sli4_hba.vfi_bmask);
6152 		kfree(phba->sli4_hba.vfi_ids);
6153 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6154 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6155 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6156 			list_del_init(&rsrc_blk->list);
6157 			kfree(rsrc_blk);
6158 		}
6159 		break;
6160 	case LPFC_RSC_TYPE_FCOE_RPI:
6161 		/* RPI bitmask and physical id array are cleaned up earlier. */
6162 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6163 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6164 			list_del_init(&rsrc_blk->list);
6165 			kfree(rsrc_blk);
6166 		}
6167 		break;
6168 	default:
6169 		break;
6170 	}
6171 
6172 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6173 
6174  out_free_mbox:
6175 	mempool_free(mbox, phba->mbox_mem_pool);
6176 	return rc;
6177 }
6178 
6179 static void
6180 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6181 		  uint32_t feature)
6182 {
6183 	uint32_t len;
6184 
6185 	len = sizeof(struct lpfc_mbx_set_feature) -
6186 		sizeof(struct lpfc_sli4_cfg_mhdr);
6187 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6188 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6189 			 LPFC_SLI4_MBX_EMBED);
6190 
6191 	switch (feature) {
6192 	case LPFC_SET_UE_RECOVERY:
6193 		bf_set(lpfc_mbx_set_feature_UER,
6194 		       &mbox->u.mqe.un.set_feature, 1);
6195 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6196 		mbox->u.mqe.un.set_feature.param_len = 8;
6197 		break;
6198 	case LPFC_SET_MDS_DIAGS:
6199 		bf_set(lpfc_mbx_set_feature_mds,
6200 		       &mbox->u.mqe.un.set_feature, 1);
6201 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6202 		       &mbox->u.mqe.un.set_feature, 1);
6203 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6204 		mbox->u.mqe.un.set_feature.param_len = 8;
6205 		break;
6206 	case LPFC_SET_DUAL_DUMP:
6207 		bf_set(lpfc_mbx_set_feature_dd,
6208 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6209 		bf_set(lpfc_mbx_set_feature_ddquery,
6210 		       &mbox->u.mqe.un.set_feature, 0);
6211 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6212 		mbox->u.mqe.un.set_feature.param_len = 4;
6213 		break;
6214 	}
6215 
6216 	return;
6217 }
6218 
6219 /**
6220  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6221  * @phba: Pointer to HBA context object.
6222  *
6223  * Disable FW logging into host memory on the adapter. To
6224  * be done before reading logs from the host memory.
6225  **/
6226 void
6227 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6228 {
6229 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6230 
6231 	spin_lock_irq(&phba->hbalock);
6232 	ras_fwlog->state = INACTIVE;
6233 	spin_unlock_irq(&phba->hbalock);
6234 
6235 	/* Disable FW logging to host memory */
6236 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6237 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6238 
6239 	/* Wait 10ms for firmware to stop using DMA buffer */
6240 	usleep_range(10 * 1000, 20 * 1000);
6241 }
6242 
6243 /**
6244  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6245  * @phba: Pointer to HBA context object.
6246  *
6247  * This function is called to free memory allocated for RAS FW logging
6248  * support in the driver.
6249  **/
6250 void
6251 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6252 {
6253 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6254 	struct lpfc_dmabuf *dmabuf, *next;
6255 
6256 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6257 		list_for_each_entry_safe(dmabuf, next,
6258 				    &ras_fwlog->fwlog_buff_list,
6259 				    list) {
6260 			list_del(&dmabuf->list);
6261 			dma_free_coherent(&phba->pcidev->dev,
6262 					  LPFC_RAS_MAX_ENTRY_SIZE,
6263 					  dmabuf->virt, dmabuf->phys);
6264 			kfree(dmabuf);
6265 		}
6266 	}
6267 
6268 	if (ras_fwlog->lwpd.virt) {
6269 		dma_free_coherent(&phba->pcidev->dev,
6270 				  sizeof(uint32_t) * 2,
6271 				  ras_fwlog->lwpd.virt,
6272 				  ras_fwlog->lwpd.phys);
6273 		ras_fwlog->lwpd.virt = NULL;
6274 	}
6275 
6276 	spin_lock_irq(&phba->hbalock);
6277 	ras_fwlog->state = INACTIVE;
6278 	spin_unlock_irq(&phba->hbalock);
6279 }
6280 
6281 /**
6282  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6283  * @phba: Pointer to HBA context object.
6284  * @fwlog_buff_count: Count of buffers to be created.
6285  *
6286  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6287  * to update FW log is posted to the adapter.
6288  * Buffer count is calculated based on module param ras_fwlog_buffsize
6289  * Size of each buffer posted to FW is 64K.
6290  **/
6291 
6292 static int
6293 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6294 			uint32_t fwlog_buff_count)
6295 {
6296 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6297 	struct lpfc_dmabuf *dmabuf;
6298 	int rc = 0, i = 0;
6299 
6300 	/* Initialize List */
6301 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6302 
6303 	/* Allocate memory for the LWPD */
6304 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6305 					    sizeof(uint32_t) * 2,
6306 					    &ras_fwlog->lwpd.phys,
6307 					    GFP_KERNEL);
6308 	if (!ras_fwlog->lwpd.virt) {
6309 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6310 				"6185 LWPD Memory Alloc Failed\n");
6311 
6312 		return -ENOMEM;
6313 	}
6314 
6315 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6316 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6317 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6318 				 GFP_KERNEL);
6319 		if (!dmabuf) {
6320 			rc = -ENOMEM;
6321 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6322 					"6186 Memory Alloc failed FW logging");
6323 			goto free_mem;
6324 		}
6325 
6326 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6327 						  LPFC_RAS_MAX_ENTRY_SIZE,
6328 						  &dmabuf->phys, GFP_KERNEL);
6329 		if (!dmabuf->virt) {
6330 			kfree(dmabuf);
6331 			rc = -ENOMEM;
6332 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6333 					"6187 DMA Alloc Failed FW logging");
6334 			goto free_mem;
6335 		}
6336 		dmabuf->buffer_tag = i;
6337 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6338 	}
6339 
6340 free_mem:
6341 	if (rc)
6342 		lpfc_sli4_ras_dma_free(phba);
6343 
6344 	return rc;
6345 }
6346 
6347 /**
6348  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6349  * @phba: pointer to lpfc hba data structure.
6350  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6351  *
6352  * Completion handler for driver's RAS MBX command to the device.
6353  **/
6354 static void
6355 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6356 {
6357 	MAILBOX_t *mb;
6358 	union lpfc_sli4_cfg_shdr *shdr;
6359 	uint32_t shdr_status, shdr_add_status;
6360 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6361 
6362 	mb = &pmb->u.mb;
6363 
6364 	shdr = (union lpfc_sli4_cfg_shdr *)
6365 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6366 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6367 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6368 
6369 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6370 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6371 				"6188 FW LOG mailbox "
6372 				"completed with status x%x add_status x%x,"
6373 				" mbx status x%x\n",
6374 				shdr_status, shdr_add_status, mb->mbxStatus);
6375 
6376 		ras_fwlog->ras_hwsupport = false;
6377 		goto disable_ras;
6378 	}
6379 
6380 	spin_lock_irq(&phba->hbalock);
6381 	ras_fwlog->state = ACTIVE;
6382 	spin_unlock_irq(&phba->hbalock);
6383 	mempool_free(pmb, phba->mbox_mem_pool);
6384 
6385 	return;
6386 
6387 disable_ras:
6388 	/* Free RAS DMA memory */
6389 	lpfc_sli4_ras_dma_free(phba);
6390 	mempool_free(pmb, phba->mbox_mem_pool);
6391 }
6392 
6393 /**
6394  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6395  * @phba: pointer to lpfc hba data structure.
6396  * @fwlog_level: Logging verbosity level.
6397  * @fwlog_enable: Enable/Disable logging.
6398  *
6399  * Initialize memory and post mailbox command to enable FW logging in host
6400  * memory.
6401  **/
6402 int
6403 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6404 			 uint32_t fwlog_level,
6405 			 uint32_t fwlog_enable)
6406 {
6407 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6408 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6409 	struct lpfc_dmabuf *dmabuf;
6410 	LPFC_MBOXQ_t *mbox;
6411 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6412 	int rc = 0;
6413 
6414 	spin_lock_irq(&phba->hbalock);
6415 	ras_fwlog->state = INACTIVE;
6416 	spin_unlock_irq(&phba->hbalock);
6417 
6418 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6419 			  phba->cfg_ras_fwlog_buffsize);
6420 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6421 
6422 	/*
6423 	 * If re-enabling FW logging support use earlier allocated
6424 	 * DMA buffers while posting MBX command.
6425 	 **/
6426 	if (!ras_fwlog->lwpd.virt) {
6427 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6428 		if (rc) {
6429 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6430 					"6189 FW Log Memory Allocation Failed");
6431 			return rc;
6432 		}
6433 	}
6434 
6435 	/* Setup Mailbox command */
6436 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6437 	if (!mbox) {
6438 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6439 				"6190 RAS MBX Alloc Failed");
6440 		rc = -ENOMEM;
6441 		goto mem_free;
6442 	}
6443 
6444 	ras_fwlog->fw_loglevel = fwlog_level;
6445 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6446 		sizeof(struct lpfc_sli4_cfg_mhdr));
6447 
6448 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6449 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6450 			 len, LPFC_SLI4_MBX_EMBED);
6451 
6452 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6453 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6454 	       fwlog_enable);
6455 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6456 	       ras_fwlog->fw_loglevel);
6457 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6458 	       ras_fwlog->fw_buffcount);
6459 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6460 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6461 
6462 	/* Update DMA buffer address */
6463 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6464 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6465 
6466 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6467 			putPaddrLow(dmabuf->phys);
6468 
6469 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6470 			putPaddrHigh(dmabuf->phys);
6471 	}
6472 
6473 	/* Update LPWD address */
6474 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6475 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6476 
6477 	spin_lock_irq(&phba->hbalock);
6478 	ras_fwlog->state = REG_INPROGRESS;
6479 	spin_unlock_irq(&phba->hbalock);
6480 	mbox->vport = phba->pport;
6481 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6482 
6483 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6484 
6485 	if (rc == MBX_NOT_FINISHED) {
6486 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6487 				"6191 FW-Log Mailbox failed. "
6488 				"status %d mbxStatus : x%x", rc,
6489 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6490 		mempool_free(mbox, phba->mbox_mem_pool);
6491 		rc = -EIO;
6492 		goto mem_free;
6493 	} else
6494 		rc = 0;
6495 mem_free:
6496 	if (rc)
6497 		lpfc_sli4_ras_dma_free(phba);
6498 
6499 	return rc;
6500 }
6501 
6502 /**
6503  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6504  * @phba: Pointer to HBA context object.
6505  *
6506  * Check if RAS is supported on the adapter and initialize it.
6507  **/
6508 void
6509 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6510 {
6511 	/* Check RAS FW Log needs to be enabled or not */
6512 	if (lpfc_check_fwlog_support(phba))
6513 		return;
6514 
6515 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6516 				 LPFC_RAS_ENABLE_LOGGING);
6517 }
6518 
6519 /**
6520  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6521  * @phba: Pointer to HBA context object.
6522  *
6523  * This function allocates all SLI4 resource identifiers.
6524  **/
6525 int
6526 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6527 {
6528 	int i, rc, error = 0;
6529 	uint16_t count, base;
6530 	unsigned long longs;
6531 
6532 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6533 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6534 	if (phba->sli4_hba.extents_in_use) {
6535 		/*
6536 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6537 		 * resource extent count must be read and allocated before
6538 		 * provisioning the resource id arrays.
6539 		 */
6540 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6541 		    LPFC_IDX_RSRC_RDY) {
6542 			/*
6543 			 * Extent-based resources are set - the driver could
6544 			 * be in a port reset. Figure out if any corrective
6545 			 * actions need to be taken.
6546 			 */
6547 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6548 						 LPFC_RSC_TYPE_FCOE_VFI);
6549 			if (rc != 0)
6550 				error++;
6551 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6552 						 LPFC_RSC_TYPE_FCOE_VPI);
6553 			if (rc != 0)
6554 				error++;
6555 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6556 						 LPFC_RSC_TYPE_FCOE_XRI);
6557 			if (rc != 0)
6558 				error++;
6559 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6560 						 LPFC_RSC_TYPE_FCOE_RPI);
6561 			if (rc != 0)
6562 				error++;
6563 
6564 			/*
6565 			 * It's possible that the number of resources
6566 			 * provided to this port instance changed between
6567 			 * resets.  Detect this condition and reallocate
6568 			 * resources.  Otherwise, there is no action.
6569 			 */
6570 			if (error) {
6571 				lpfc_printf_log(phba, KERN_INFO,
6572 						LOG_MBOX | LOG_INIT,
6573 						"2931 Detected extent resource "
6574 						"change.  Reallocating all "
6575 						"extents.\n");
6576 				rc = lpfc_sli4_dealloc_extent(phba,
6577 						 LPFC_RSC_TYPE_FCOE_VFI);
6578 				rc = lpfc_sli4_dealloc_extent(phba,
6579 						 LPFC_RSC_TYPE_FCOE_VPI);
6580 				rc = lpfc_sli4_dealloc_extent(phba,
6581 						 LPFC_RSC_TYPE_FCOE_XRI);
6582 				rc = lpfc_sli4_dealloc_extent(phba,
6583 						 LPFC_RSC_TYPE_FCOE_RPI);
6584 			} else
6585 				return 0;
6586 		}
6587 
6588 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6589 		if (unlikely(rc))
6590 			goto err_exit;
6591 
6592 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6593 		if (unlikely(rc))
6594 			goto err_exit;
6595 
6596 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6597 		if (unlikely(rc))
6598 			goto err_exit;
6599 
6600 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6601 		if (unlikely(rc))
6602 			goto err_exit;
6603 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6604 		       LPFC_IDX_RSRC_RDY);
6605 		return rc;
6606 	} else {
6607 		/*
6608 		 * The port does not support resource extents.  The XRI, VPI,
6609 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6610 		 * Just allocate the bitmasks and provision the resource id
6611 		 * arrays.  If a port reset is active, the resources don't
6612 		 * need any action - just exit.
6613 		 */
6614 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6615 		    LPFC_IDX_RSRC_RDY) {
6616 			lpfc_sli4_dealloc_resource_identifiers(phba);
6617 			lpfc_sli4_remove_rpis(phba);
6618 		}
6619 		/* RPIs. */
6620 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6621 		if (count <= 0) {
6622 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6623 					"3279 Invalid provisioning of "
6624 					"rpi:%d\n", count);
6625 			rc = -EINVAL;
6626 			goto err_exit;
6627 		}
6628 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6629 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6630 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6631 						   sizeof(unsigned long),
6632 						   GFP_KERNEL);
6633 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6634 			rc = -ENOMEM;
6635 			goto err_exit;
6636 		}
6637 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6638 						 GFP_KERNEL);
6639 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6640 			rc = -ENOMEM;
6641 			goto free_rpi_bmask;
6642 		}
6643 
6644 		for (i = 0; i < count; i++)
6645 			phba->sli4_hba.rpi_ids[i] = base + i;
6646 
6647 		/* VPIs. */
6648 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6649 		if (count <= 0) {
6650 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6651 					"3280 Invalid provisioning of "
6652 					"vpi:%d\n", count);
6653 			rc = -EINVAL;
6654 			goto free_rpi_ids;
6655 		}
6656 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6657 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6658 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6659 					  GFP_KERNEL);
6660 		if (unlikely(!phba->vpi_bmask)) {
6661 			rc = -ENOMEM;
6662 			goto free_rpi_ids;
6663 		}
6664 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6665 					GFP_KERNEL);
6666 		if (unlikely(!phba->vpi_ids)) {
6667 			rc = -ENOMEM;
6668 			goto free_vpi_bmask;
6669 		}
6670 
6671 		for (i = 0; i < count; i++)
6672 			phba->vpi_ids[i] = base + i;
6673 
6674 		/* XRIs. */
6675 		count = phba->sli4_hba.max_cfg_param.max_xri;
6676 		if (count <= 0) {
6677 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6678 					"3281 Invalid provisioning of "
6679 					"xri:%d\n", count);
6680 			rc = -EINVAL;
6681 			goto free_vpi_ids;
6682 		}
6683 		base = phba->sli4_hba.max_cfg_param.xri_base;
6684 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6685 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6686 						   sizeof(unsigned long),
6687 						   GFP_KERNEL);
6688 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6689 			rc = -ENOMEM;
6690 			goto free_vpi_ids;
6691 		}
6692 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6693 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6694 						 GFP_KERNEL);
6695 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6696 			rc = -ENOMEM;
6697 			goto free_xri_bmask;
6698 		}
6699 
6700 		for (i = 0; i < count; i++)
6701 			phba->sli4_hba.xri_ids[i] = base + i;
6702 
6703 		/* VFIs. */
6704 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6705 		if (count <= 0) {
6706 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6707 					"3282 Invalid provisioning of "
6708 					"vfi:%d\n", count);
6709 			rc = -EINVAL;
6710 			goto free_xri_ids;
6711 		}
6712 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6713 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6714 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6715 						   sizeof(unsigned long),
6716 						   GFP_KERNEL);
6717 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6718 			rc = -ENOMEM;
6719 			goto free_xri_ids;
6720 		}
6721 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6722 						 GFP_KERNEL);
6723 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6724 			rc = -ENOMEM;
6725 			goto free_vfi_bmask;
6726 		}
6727 
6728 		for (i = 0; i < count; i++)
6729 			phba->sli4_hba.vfi_ids[i] = base + i;
6730 
6731 		/*
6732 		 * Mark all resources ready.  An HBA reset doesn't need
6733 		 * to reset the initialization.
6734 		 */
6735 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6736 		       LPFC_IDX_RSRC_RDY);
6737 		return 0;
6738 	}
6739 
6740  free_vfi_bmask:
6741 	kfree(phba->sli4_hba.vfi_bmask);
6742 	phba->sli4_hba.vfi_bmask = NULL;
6743  free_xri_ids:
6744 	kfree(phba->sli4_hba.xri_ids);
6745 	phba->sli4_hba.xri_ids = NULL;
6746  free_xri_bmask:
6747 	kfree(phba->sli4_hba.xri_bmask);
6748 	phba->sli4_hba.xri_bmask = NULL;
6749  free_vpi_ids:
6750 	kfree(phba->vpi_ids);
6751 	phba->vpi_ids = NULL;
6752  free_vpi_bmask:
6753 	kfree(phba->vpi_bmask);
6754 	phba->vpi_bmask = NULL;
6755  free_rpi_ids:
6756 	kfree(phba->sli4_hba.rpi_ids);
6757 	phba->sli4_hba.rpi_ids = NULL;
6758  free_rpi_bmask:
6759 	kfree(phba->sli4_hba.rpi_bmask);
6760 	phba->sli4_hba.rpi_bmask = NULL;
6761  err_exit:
6762 	return rc;
6763 }
6764 
6765 /**
6766  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6767  * @phba: Pointer to HBA context object.
6768  *
6769  * This function allocates the number of elements for the specified
6770  * resource type.
6771  **/
6772 int
6773 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6774 {
6775 	if (phba->sli4_hba.extents_in_use) {
6776 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6777 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6778 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6779 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6780 	} else {
6781 		kfree(phba->vpi_bmask);
6782 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6783 		kfree(phba->vpi_ids);
6784 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6785 		kfree(phba->sli4_hba.xri_bmask);
6786 		kfree(phba->sli4_hba.xri_ids);
6787 		kfree(phba->sli4_hba.vfi_bmask);
6788 		kfree(phba->sli4_hba.vfi_ids);
6789 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6790 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6791 	}
6792 
6793 	return 0;
6794 }
6795 
6796 /**
6797  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6798  * @phba: Pointer to HBA context object.
6799  * @type: The resource extent type.
6800  * @extnt_count: buffer to hold port extent count response
6801  * @extnt_size: buffer to hold port extent size response.
6802  *
6803  * This function calls the port to read the host allocated extents
6804  * for a particular type.
6805  **/
6806 int
6807 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6808 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6809 {
6810 	bool emb;
6811 	int rc = 0;
6812 	uint16_t curr_blks = 0;
6813 	uint32_t req_len, emb_len;
6814 	uint32_t alloc_len, mbox_tmo;
6815 	struct list_head *blk_list_head;
6816 	struct lpfc_rsrc_blks *rsrc_blk;
6817 	LPFC_MBOXQ_t *mbox;
6818 	void *virtaddr = NULL;
6819 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6820 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6821 	union  lpfc_sli4_cfg_shdr *shdr;
6822 
6823 	switch (type) {
6824 	case LPFC_RSC_TYPE_FCOE_VPI:
6825 		blk_list_head = &phba->lpfc_vpi_blk_list;
6826 		break;
6827 	case LPFC_RSC_TYPE_FCOE_XRI:
6828 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6829 		break;
6830 	case LPFC_RSC_TYPE_FCOE_VFI:
6831 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6832 		break;
6833 	case LPFC_RSC_TYPE_FCOE_RPI:
6834 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6835 		break;
6836 	default:
6837 		return -EIO;
6838 	}
6839 
6840 	/* Count the number of extents currently allocatd for this type. */
6841 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6842 		if (curr_blks == 0) {
6843 			/*
6844 			 * The GET_ALLOCATED mailbox does not return the size,
6845 			 * just the count.  The size should be just the size
6846 			 * stored in the current allocated block and all sizes
6847 			 * for an extent type are the same so set the return
6848 			 * value now.
6849 			 */
6850 			*extnt_size = rsrc_blk->rsrc_size;
6851 		}
6852 		curr_blks++;
6853 	}
6854 
6855 	/*
6856 	 * Calculate the size of an embedded mailbox.  The uint32_t
6857 	 * accounts for extents-specific word.
6858 	 */
6859 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6860 		sizeof(uint32_t);
6861 
6862 	/*
6863 	 * Presume the allocation and response will fit into an embedded
6864 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6865 	 */
6866 	emb = LPFC_SLI4_MBX_EMBED;
6867 	req_len = emb_len;
6868 	if (req_len > emb_len) {
6869 		req_len = curr_blks * sizeof(uint16_t) +
6870 			sizeof(union lpfc_sli4_cfg_shdr) +
6871 			sizeof(uint32_t);
6872 		emb = LPFC_SLI4_MBX_NEMBED;
6873 	}
6874 
6875 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6876 	if (!mbox)
6877 		return -ENOMEM;
6878 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6879 
6880 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6881 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6882 				     req_len, emb);
6883 	if (alloc_len < req_len) {
6884 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6885 			"2983 Allocated DMA memory size (x%x) is "
6886 			"less than the requested DMA memory "
6887 			"size (x%x)\n", alloc_len, req_len);
6888 		rc = -ENOMEM;
6889 		goto err_exit;
6890 	}
6891 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6892 	if (unlikely(rc)) {
6893 		rc = -EIO;
6894 		goto err_exit;
6895 	}
6896 
6897 	if (!phba->sli4_hba.intr_enable)
6898 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6899 	else {
6900 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6901 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6902 	}
6903 
6904 	if (unlikely(rc)) {
6905 		rc = -EIO;
6906 		goto err_exit;
6907 	}
6908 
6909 	/*
6910 	 * Figure out where the response is located.  Then get local pointers
6911 	 * to the response data.  The port does not guarantee to respond to
6912 	 * all extents counts request so update the local variable with the
6913 	 * allocated count from the port.
6914 	 */
6915 	if (emb == LPFC_SLI4_MBX_EMBED) {
6916 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6917 		shdr = &rsrc_ext->header.cfg_shdr;
6918 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6919 	} else {
6920 		virtaddr = mbox->sge_array->addr[0];
6921 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6922 		shdr = &n_rsrc->cfg_shdr;
6923 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6924 	}
6925 
6926 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6927 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6928 			"2984 Failed to read allocated resources "
6929 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6930 			type,
6931 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6932 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6933 		rc = -EIO;
6934 		goto err_exit;
6935 	}
6936  err_exit:
6937 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6938 	return rc;
6939 }
6940 
6941 /**
6942  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6943  * @phba: pointer to lpfc hba data structure.
6944  * @pring: Pointer to driver SLI ring object.
6945  * @sgl_list: linked link of sgl buffers to post
6946  * @cnt: number of linked list buffers
6947  *
6948  * This routine walks the list of buffers that have been allocated and
6949  * repost them to the port by using SGL block post. This is needed after a
6950  * pci_function_reset/warm_start or start. It attempts to construct blocks
6951  * of buffer sgls which contains contiguous xris and uses the non-embedded
6952  * SGL block post mailbox commands to post them to the port. For single
6953  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6954  * mailbox command for posting.
6955  *
6956  * Returns: 0 = success, non-zero failure.
6957  **/
6958 static int
6959 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6960 			  struct list_head *sgl_list, int cnt)
6961 {
6962 	struct lpfc_sglq *sglq_entry = NULL;
6963 	struct lpfc_sglq *sglq_entry_next = NULL;
6964 	struct lpfc_sglq *sglq_entry_first = NULL;
6965 	int status, total_cnt;
6966 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6967 	int last_xritag = NO_XRI;
6968 	LIST_HEAD(prep_sgl_list);
6969 	LIST_HEAD(blck_sgl_list);
6970 	LIST_HEAD(allc_sgl_list);
6971 	LIST_HEAD(post_sgl_list);
6972 	LIST_HEAD(free_sgl_list);
6973 
6974 	spin_lock_irq(&phba->hbalock);
6975 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6976 	list_splice_init(sgl_list, &allc_sgl_list);
6977 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6978 	spin_unlock_irq(&phba->hbalock);
6979 
6980 	total_cnt = cnt;
6981 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6982 				 &allc_sgl_list, list) {
6983 		list_del_init(&sglq_entry->list);
6984 		block_cnt++;
6985 		if ((last_xritag != NO_XRI) &&
6986 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6987 			/* a hole in xri block, form a sgl posting block */
6988 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6989 			post_cnt = block_cnt - 1;
6990 			/* prepare list for next posting block */
6991 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6992 			block_cnt = 1;
6993 		} else {
6994 			/* prepare list for next posting block */
6995 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6996 			/* enough sgls for non-embed sgl mbox command */
6997 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6998 				list_splice_init(&prep_sgl_list,
6999 						 &blck_sgl_list);
7000 				post_cnt = block_cnt;
7001 				block_cnt = 0;
7002 			}
7003 		}
7004 		num_posted++;
7005 
7006 		/* keep track of last sgl's xritag */
7007 		last_xritag = sglq_entry->sli4_xritag;
7008 
7009 		/* end of repost sgl list condition for buffers */
7010 		if (num_posted == total_cnt) {
7011 			if (post_cnt == 0) {
7012 				list_splice_init(&prep_sgl_list,
7013 						 &blck_sgl_list);
7014 				post_cnt = block_cnt;
7015 			} else if (block_cnt == 1) {
7016 				status = lpfc_sli4_post_sgl(phba,
7017 						sglq_entry->phys, 0,
7018 						sglq_entry->sli4_xritag);
7019 				if (!status) {
7020 					/* successful, put sgl to posted list */
7021 					list_add_tail(&sglq_entry->list,
7022 						      &post_sgl_list);
7023 				} else {
7024 					/* Failure, put sgl to free list */
7025 					lpfc_printf_log(phba, KERN_WARNING,
7026 						LOG_SLI,
7027 						"3159 Failed to post "
7028 						"sgl, xritag:x%x\n",
7029 						sglq_entry->sli4_xritag);
7030 					list_add_tail(&sglq_entry->list,
7031 						      &free_sgl_list);
7032 					total_cnt--;
7033 				}
7034 			}
7035 		}
7036 
7037 		/* continue until a nembed page worth of sgls */
7038 		if (post_cnt == 0)
7039 			continue;
7040 
7041 		/* post the buffer list sgls as a block */
7042 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7043 						 post_cnt);
7044 
7045 		if (!status) {
7046 			/* success, put sgl list to posted sgl list */
7047 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7048 		} else {
7049 			/* Failure, put sgl list to free sgl list */
7050 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7051 							    struct lpfc_sglq,
7052 							    list);
7053 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7054 					"3160 Failed to post sgl-list, "
7055 					"xritag:x%x-x%x\n",
7056 					sglq_entry_first->sli4_xritag,
7057 					(sglq_entry_first->sli4_xritag +
7058 					 post_cnt - 1));
7059 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7060 			total_cnt -= post_cnt;
7061 		}
7062 
7063 		/* don't reset xirtag due to hole in xri block */
7064 		if (block_cnt == 0)
7065 			last_xritag = NO_XRI;
7066 
7067 		/* reset sgl post count for next round of posting */
7068 		post_cnt = 0;
7069 	}
7070 
7071 	/* free the sgls failed to post */
7072 	lpfc_free_sgl_list(phba, &free_sgl_list);
7073 
7074 	/* push sgls posted to the available list */
7075 	if (!list_empty(&post_sgl_list)) {
7076 		spin_lock_irq(&phba->hbalock);
7077 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7078 		list_splice_init(&post_sgl_list, sgl_list);
7079 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7080 		spin_unlock_irq(&phba->hbalock);
7081 	} else {
7082 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7083 				"3161 Failure to post sgl to port.\n");
7084 		return -EIO;
7085 	}
7086 
7087 	/* return the number of XRIs actually posted */
7088 	return total_cnt;
7089 }
7090 
7091 /**
7092  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7093  * @phba: pointer to lpfc hba data structure.
7094  *
7095  * This routine walks the list of nvme buffers that have been allocated and
7096  * repost them to the port by using SGL block post. This is needed after a
7097  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7098  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7099  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7100  *
7101  * Returns: 0 = success, non-zero failure.
7102  **/
7103 static int
7104 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7105 {
7106 	LIST_HEAD(post_nblist);
7107 	int num_posted, rc = 0;
7108 
7109 	/* get all NVME buffers need to repost to a local list */
7110 	lpfc_io_buf_flush(phba, &post_nblist);
7111 
7112 	/* post the list of nvme buffer sgls to port if available */
7113 	if (!list_empty(&post_nblist)) {
7114 		num_posted = lpfc_sli4_post_io_sgl_list(
7115 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7116 		/* failed to post any nvme buffer, return error */
7117 		if (num_posted == 0)
7118 			rc = -EIO;
7119 	}
7120 	return rc;
7121 }
7122 
7123 static void
7124 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7125 {
7126 	uint32_t len;
7127 
7128 	len = sizeof(struct lpfc_mbx_set_host_data) -
7129 		sizeof(struct lpfc_sli4_cfg_mhdr);
7130 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7131 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7132 			 LPFC_SLI4_MBX_EMBED);
7133 
7134 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7135 	mbox->u.mqe.un.set_host_data.param_len =
7136 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7137 	snprintf(mbox->u.mqe.un.set_host_data.data,
7138 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7139 		 "Linux %s v"LPFC_DRIVER_VERSION,
7140 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7141 }
7142 
7143 int
7144 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7145 		    struct lpfc_queue *drq, int count, int idx)
7146 {
7147 	int rc, i;
7148 	struct lpfc_rqe hrqe;
7149 	struct lpfc_rqe drqe;
7150 	struct lpfc_rqb *rqbp;
7151 	unsigned long flags;
7152 	struct rqb_dmabuf *rqb_buffer;
7153 	LIST_HEAD(rqb_buf_list);
7154 
7155 	spin_lock_irqsave(&phba->hbalock, flags);
7156 	rqbp = hrq->rqbp;
7157 	for (i = 0; i < count; i++) {
7158 		/* IF RQ is already full, don't bother */
7159 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7160 			break;
7161 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7162 		if (!rqb_buffer)
7163 			break;
7164 		rqb_buffer->hrq = hrq;
7165 		rqb_buffer->drq = drq;
7166 		rqb_buffer->idx = idx;
7167 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7168 	}
7169 	while (!list_empty(&rqb_buf_list)) {
7170 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7171 				 hbuf.list);
7172 
7173 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7174 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7175 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7176 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7177 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7178 		if (rc < 0) {
7179 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7180 					"6421 Cannot post to HRQ %d: %x %x %x "
7181 					"DRQ %x %x\n",
7182 					hrq->queue_id,
7183 					hrq->host_index,
7184 					hrq->hba_index,
7185 					hrq->entry_count,
7186 					drq->host_index,
7187 					drq->hba_index);
7188 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7189 		} else {
7190 			list_add_tail(&rqb_buffer->hbuf.list,
7191 				      &rqbp->rqb_buffer_list);
7192 			rqbp->buffer_count++;
7193 		}
7194 	}
7195 	spin_unlock_irqrestore(&phba->hbalock, flags);
7196 	return 1;
7197 }
7198 
7199 /**
7200  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7201  * @phba: Pointer to HBA context object.
7202  *
7203  * This function is the main SLI4 device initialization PCI function. This
7204  * function is called by the HBA initialization code, HBA reset code and
7205  * HBA error attention handler code. Caller is not required to hold any
7206  * locks.
7207  **/
7208 int
7209 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7210 {
7211 	int rc, i, cnt, len, dd;
7212 	LPFC_MBOXQ_t *mboxq;
7213 	struct lpfc_mqe *mqe;
7214 	uint8_t *vpd;
7215 	uint32_t vpd_size;
7216 	uint32_t ftr_rsp = 0;
7217 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7218 	struct lpfc_vport *vport = phba->pport;
7219 	struct lpfc_dmabuf *mp;
7220 	struct lpfc_rqb *rqbp;
7221 
7222 	/* Perform a PCI function reset to start from clean */
7223 	rc = lpfc_pci_function_reset(phba);
7224 	if (unlikely(rc))
7225 		return -ENODEV;
7226 
7227 	/* Check the HBA Host Status Register for readyness */
7228 	rc = lpfc_sli4_post_status_check(phba);
7229 	if (unlikely(rc))
7230 		return -ENODEV;
7231 	else {
7232 		spin_lock_irq(&phba->hbalock);
7233 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7234 		spin_unlock_irq(&phba->hbalock);
7235 	}
7236 
7237 	/*
7238 	 * Allocate a single mailbox container for initializing the
7239 	 * port.
7240 	 */
7241 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7242 	if (!mboxq)
7243 		return -ENOMEM;
7244 
7245 	/* Issue READ_REV to collect vpd and FW information. */
7246 	vpd_size = SLI4_PAGE_SIZE;
7247 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7248 	if (!vpd) {
7249 		rc = -ENOMEM;
7250 		goto out_free_mbox;
7251 	}
7252 
7253 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7254 	if (unlikely(rc)) {
7255 		kfree(vpd);
7256 		goto out_free_mbox;
7257 	}
7258 
7259 	mqe = &mboxq->u.mqe;
7260 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7261 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7262 		phba->hba_flag |= HBA_FCOE_MODE;
7263 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7264 	} else {
7265 		phba->hba_flag &= ~HBA_FCOE_MODE;
7266 	}
7267 
7268 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7269 		LPFC_DCBX_CEE_MODE)
7270 		phba->hba_flag |= HBA_FIP_SUPPORT;
7271 	else
7272 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7273 
7274 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7275 
7276 	if (phba->sli_rev != LPFC_SLI_REV4) {
7277 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7278 			"0376 READ_REV Error. SLI Level %d "
7279 			"FCoE enabled %d\n",
7280 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7281 		rc = -EIO;
7282 		kfree(vpd);
7283 		goto out_free_mbox;
7284 	}
7285 
7286 	/*
7287 	 * Continue initialization with default values even if driver failed
7288 	 * to read FCoE param config regions, only read parameters if the
7289 	 * board is FCoE
7290 	 */
7291 	if (phba->hba_flag & HBA_FCOE_MODE &&
7292 	    lpfc_sli4_read_fcoe_params(phba))
7293 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7294 			"2570 Failed to read FCoE parameters\n");
7295 
7296 	/*
7297 	 * Retrieve sli4 device physical port name, failure of doing it
7298 	 * is considered as non-fatal.
7299 	 */
7300 	rc = lpfc_sli4_retrieve_pport_name(phba);
7301 	if (!rc)
7302 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7303 				"3080 Successful retrieving SLI4 device "
7304 				"physical port name: %s.\n", phba->Port);
7305 
7306 	rc = lpfc_sli4_get_ctl_attr(phba);
7307 	if (!rc)
7308 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7309 				"8351 Successful retrieving SLI4 device "
7310 				"CTL ATTR\n");
7311 
7312 	/*
7313 	 * Evaluate the read rev and vpd data. Populate the driver
7314 	 * state with the results. If this routine fails, the failure
7315 	 * is not fatal as the driver will use generic values.
7316 	 */
7317 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7318 	if (unlikely(!rc)) {
7319 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7320 				"0377 Error %d parsing vpd. "
7321 				"Using defaults.\n", rc);
7322 		rc = 0;
7323 	}
7324 	kfree(vpd);
7325 
7326 	/* Save information as VPD data */
7327 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7328 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7329 
7330 	/*
7331 	 * This is because first G7 ASIC doesn't support the standard
7332 	 * 0x5a NVME cmd descriptor type/subtype
7333 	 */
7334 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7335 			LPFC_SLI_INTF_IF_TYPE_6) &&
7336 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7337 	    (phba->vpd.rev.smRev == 0) &&
7338 	    (phba->cfg_nvme_embed_cmd == 1))
7339 		phba->cfg_nvme_embed_cmd = 0;
7340 
7341 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7342 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7343 					 &mqe->un.read_rev);
7344 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7345 				       &mqe->un.read_rev);
7346 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7347 					    &mqe->un.read_rev);
7348 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7349 					   &mqe->un.read_rev);
7350 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7351 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7352 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7353 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7354 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7355 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7356 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7357 			"(%d):0380 READ_REV Status x%x "
7358 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7359 			mboxq->vport ? mboxq->vport->vpi : 0,
7360 			bf_get(lpfc_mqe_status, mqe),
7361 			phba->vpd.rev.opFwName,
7362 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7363 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7364 
7365 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7366 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7367 	if (phba->pport->cfg_lun_queue_depth > rc) {
7368 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7369 				"3362 LUN queue depth changed from %d to %d\n",
7370 				phba->pport->cfg_lun_queue_depth, rc);
7371 		phba->pport->cfg_lun_queue_depth = rc;
7372 	}
7373 
7374 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7375 	    LPFC_SLI_INTF_IF_TYPE_0) {
7376 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7377 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7378 		if (rc == MBX_SUCCESS) {
7379 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7380 			/* Set 1Sec interval to detect UE */
7381 			phba->eratt_poll_interval = 1;
7382 			phba->sli4_hba.ue_to_sr = bf_get(
7383 					lpfc_mbx_set_feature_UESR,
7384 					&mboxq->u.mqe.un.set_feature);
7385 			phba->sli4_hba.ue_to_rp = bf_get(
7386 					lpfc_mbx_set_feature_UERP,
7387 					&mboxq->u.mqe.un.set_feature);
7388 		}
7389 	}
7390 
7391 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7392 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7393 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7394 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7395 		if (rc != MBX_SUCCESS)
7396 			phba->mds_diags_support = 0;
7397 	}
7398 
7399 	/*
7400 	 * Discover the port's supported feature set and match it against the
7401 	 * hosts requests.
7402 	 */
7403 	lpfc_request_features(phba, mboxq);
7404 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7405 	if (unlikely(rc)) {
7406 		rc = -EIO;
7407 		goto out_free_mbox;
7408 	}
7409 
7410 	/*
7411 	 * The port must support FCP initiator mode as this is the
7412 	 * only mode running in the host.
7413 	 */
7414 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7415 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7416 				"0378 No support for fcpi mode.\n");
7417 		ftr_rsp++;
7418 	}
7419 
7420 	/* Performance Hints are ONLY for FCoE */
7421 	if (phba->hba_flag & HBA_FCOE_MODE) {
7422 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7423 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7424 		else
7425 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7426 	}
7427 
7428 	/*
7429 	 * If the port cannot support the host's requested features
7430 	 * then turn off the global config parameters to disable the
7431 	 * feature in the driver.  This is not a fatal error.
7432 	 */
7433 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7434 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7435 			phba->cfg_enable_bg = 0;
7436 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7437 			ftr_rsp++;
7438 		}
7439 	}
7440 
7441 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7442 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7443 		ftr_rsp++;
7444 
7445 	if (ftr_rsp) {
7446 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7447 				"0379 Feature Mismatch Data: x%08x %08x "
7448 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7449 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7450 				phba->cfg_enable_npiv, phba->max_vpi);
7451 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7452 			phba->cfg_enable_bg = 0;
7453 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7454 			phba->cfg_enable_npiv = 0;
7455 	}
7456 
7457 	/* These SLI3 features are assumed in SLI4 */
7458 	spin_lock_irq(&phba->hbalock);
7459 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7460 	spin_unlock_irq(&phba->hbalock);
7461 
7462 	/* Always try to enable dual dump feature if we can */
7463 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7464 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7465 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7466 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7467 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT,
7468 				"6448 Dual Dump is enabled\n");
7469 	else
7470 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7471 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7472 				"rc:x%x dd:x%x\n",
7473 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7474 				lpfc_sli_config_mbox_subsys_get(
7475 					phba, mboxq),
7476 				lpfc_sli_config_mbox_opcode_get(
7477 					phba, mboxq),
7478 				rc, dd);
7479 	/*
7480 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7481 	 * calls depends on these resources to complete port setup.
7482 	 */
7483 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7484 	if (rc) {
7485 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7486 				"2920 Failed to alloc Resource IDs "
7487 				"rc = x%x\n", rc);
7488 		goto out_free_mbox;
7489 	}
7490 
7491 	lpfc_set_host_data(phba, mboxq);
7492 
7493 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7494 	if (rc) {
7495 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7496 				"2134 Failed to set host os driver version %x",
7497 				rc);
7498 	}
7499 
7500 	/* Read the port's service parameters. */
7501 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7502 	if (rc) {
7503 		phba->link_state = LPFC_HBA_ERROR;
7504 		rc = -ENOMEM;
7505 		goto out_free_mbox;
7506 	}
7507 
7508 	mboxq->vport = vport;
7509 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7510 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7511 	if (rc == MBX_SUCCESS) {
7512 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7513 		rc = 0;
7514 	}
7515 
7516 	/*
7517 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7518 	 * it to the mbuf pool.
7519 	 */
7520 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7521 	kfree(mp);
7522 	mboxq->ctx_buf = NULL;
7523 	if (unlikely(rc)) {
7524 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7525 				"0382 READ_SPARAM command failed "
7526 				"status %d, mbxStatus x%x\n",
7527 				rc, bf_get(lpfc_mqe_status, mqe));
7528 		phba->link_state = LPFC_HBA_ERROR;
7529 		rc = -EIO;
7530 		goto out_free_mbox;
7531 	}
7532 
7533 	lpfc_update_vport_wwn(vport);
7534 
7535 	/* Update the fc_host data structures with new wwn. */
7536 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7537 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7538 
7539 	/* Create all the SLI4 queues */
7540 	rc = lpfc_sli4_queue_create(phba);
7541 	if (rc) {
7542 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7543 				"3089 Failed to allocate queues\n");
7544 		rc = -ENODEV;
7545 		goto out_free_mbox;
7546 	}
7547 	/* Set up all the queues to the device */
7548 	rc = lpfc_sli4_queue_setup(phba);
7549 	if (unlikely(rc)) {
7550 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7551 				"0381 Error %d during queue setup.\n ", rc);
7552 		goto out_stop_timers;
7553 	}
7554 	/* Initialize the driver internal SLI layer lists. */
7555 	lpfc_sli4_setup(phba);
7556 	lpfc_sli4_queue_init(phba);
7557 
7558 	/* update host els xri-sgl sizes and mappings */
7559 	rc = lpfc_sli4_els_sgl_update(phba);
7560 	if (unlikely(rc)) {
7561 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7562 				"1400 Failed to update xri-sgl size and "
7563 				"mapping: %d\n", rc);
7564 		goto out_destroy_queue;
7565 	}
7566 
7567 	/* register the els sgl pool to the port */
7568 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7569 				       phba->sli4_hba.els_xri_cnt);
7570 	if (unlikely(rc < 0)) {
7571 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7572 				"0582 Error %d during els sgl post "
7573 				"operation\n", rc);
7574 		rc = -ENODEV;
7575 		goto out_destroy_queue;
7576 	}
7577 	phba->sli4_hba.els_xri_cnt = rc;
7578 
7579 	if (phba->nvmet_support) {
7580 		/* update host nvmet xri-sgl sizes and mappings */
7581 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7582 		if (unlikely(rc)) {
7583 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7584 					"6308 Failed to update nvmet-sgl size "
7585 					"and mapping: %d\n", rc);
7586 			goto out_destroy_queue;
7587 		}
7588 
7589 		/* register the nvmet sgl pool to the port */
7590 		rc = lpfc_sli4_repost_sgl_list(
7591 			phba,
7592 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7593 			phba->sli4_hba.nvmet_xri_cnt);
7594 		if (unlikely(rc < 0)) {
7595 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7596 					"3117 Error %d during nvmet "
7597 					"sgl post\n", rc);
7598 			rc = -ENODEV;
7599 			goto out_destroy_queue;
7600 		}
7601 		phba->sli4_hba.nvmet_xri_cnt = rc;
7602 
7603 		/* We allocate an iocbq for every receive context SGL.
7604 		 * The additional allocation is for abort and ls handling.
7605 		 */
7606 		cnt = phba->sli4_hba.nvmet_xri_cnt +
7607 			phba->sli4_hba.max_cfg_param.max_xri;
7608 	} else {
7609 		/* update host common xri-sgl sizes and mappings */
7610 		rc = lpfc_sli4_io_sgl_update(phba);
7611 		if (unlikely(rc)) {
7612 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7613 					"6082 Failed to update nvme-sgl size "
7614 					"and mapping: %d\n", rc);
7615 			goto out_destroy_queue;
7616 		}
7617 
7618 		/* register the allocated common sgl pool to the port */
7619 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7620 		if (unlikely(rc)) {
7621 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7622 					"6116 Error %d during nvme sgl post "
7623 					"operation\n", rc);
7624 			/* Some NVME buffers were moved to abort nvme list */
7625 			/* A pci function reset will repost them */
7626 			rc = -ENODEV;
7627 			goto out_destroy_queue;
7628 		}
7629 		/* Each lpfc_io_buf job structure has an iocbq element.
7630 		 * This cnt provides for abort, els, ct and ls requests.
7631 		 */
7632 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7633 	}
7634 
7635 	if (!phba->sli.iocbq_lookup) {
7636 		/* Initialize and populate the iocb list per host */
7637 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7638 				"2821 initialize iocb list with %d entries\n",
7639 				cnt);
7640 		rc = lpfc_init_iocb_list(phba, cnt);
7641 		if (rc) {
7642 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7643 					"1413 Failed to init iocb list.\n");
7644 			goto out_destroy_queue;
7645 		}
7646 	}
7647 
7648 	if (phba->nvmet_support)
7649 		lpfc_nvmet_create_targetport(phba);
7650 
7651 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7652 		/* Post initial buffers to all RQs created */
7653 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7654 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7655 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7656 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7657 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7658 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7659 			rqbp->buffer_count = 0;
7660 
7661 			lpfc_post_rq_buffer(
7662 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7663 				phba->sli4_hba.nvmet_mrq_data[i],
7664 				phba->cfg_nvmet_mrq_post, i);
7665 		}
7666 	}
7667 
7668 	/* Post the rpi header region to the device. */
7669 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7670 	if (unlikely(rc)) {
7671 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7672 				"0393 Error %d during rpi post operation\n",
7673 				rc);
7674 		rc = -ENODEV;
7675 		goto out_destroy_queue;
7676 	}
7677 	lpfc_sli4_node_prep(phba);
7678 
7679 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7680 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7681 			/*
7682 			 * The FC Port needs to register FCFI (index 0)
7683 			 */
7684 			lpfc_reg_fcfi(phba, mboxq);
7685 			mboxq->vport = phba->pport;
7686 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7687 			if (rc != MBX_SUCCESS)
7688 				goto out_unset_queue;
7689 			rc = 0;
7690 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7691 						&mboxq->u.mqe.un.reg_fcfi);
7692 		} else {
7693 			/* We are a NVME Target mode with MRQ > 1 */
7694 
7695 			/* First register the FCFI */
7696 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7697 			mboxq->vport = phba->pport;
7698 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7699 			if (rc != MBX_SUCCESS)
7700 				goto out_unset_queue;
7701 			rc = 0;
7702 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7703 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7704 
7705 			/* Next register the MRQs */
7706 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7707 			mboxq->vport = phba->pport;
7708 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7709 			if (rc != MBX_SUCCESS)
7710 				goto out_unset_queue;
7711 			rc = 0;
7712 		}
7713 		/* Check if the port is configured to be disabled */
7714 		lpfc_sli_read_link_ste(phba);
7715 	}
7716 
7717 	/* Don't post more new bufs if repost already recovered
7718 	 * the nvme sgls.
7719 	 */
7720 	if (phba->nvmet_support == 0) {
7721 		if (phba->sli4_hba.io_xri_cnt == 0) {
7722 			len = lpfc_new_io_buf(
7723 					      phba, phba->sli4_hba.io_xri_max);
7724 			if (len == 0) {
7725 				rc = -ENOMEM;
7726 				goto out_unset_queue;
7727 			}
7728 
7729 			if (phba->cfg_xri_rebalancing)
7730 				lpfc_create_multixri_pools(phba);
7731 		}
7732 	} else {
7733 		phba->cfg_xri_rebalancing = 0;
7734 	}
7735 
7736 	/* Allow asynchronous mailbox command to go through */
7737 	spin_lock_irq(&phba->hbalock);
7738 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7739 	spin_unlock_irq(&phba->hbalock);
7740 
7741 	/* Post receive buffers to the device */
7742 	lpfc_sli4_rb_setup(phba);
7743 
7744 	/* Reset HBA FCF states after HBA reset */
7745 	phba->fcf.fcf_flag = 0;
7746 	phba->fcf.current_rec.flag = 0;
7747 
7748 	/* Start the ELS watchdog timer */
7749 	mod_timer(&vport->els_tmofunc,
7750 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7751 
7752 	/* Start heart beat timer */
7753 	mod_timer(&phba->hb_tmofunc,
7754 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7755 	phba->hb_outstanding = 0;
7756 	phba->last_completion_time = jiffies;
7757 
7758 	/* start eq_delay heartbeat */
7759 	if (phba->cfg_auto_imax)
7760 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7761 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7762 
7763 	/* Start error attention (ERATT) polling timer */
7764 	mod_timer(&phba->eratt_poll,
7765 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7766 
7767 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7768 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7769 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7770 		if (!rc) {
7771 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7772 					"2829 This device supports "
7773 					"Advanced Error Reporting (AER)\n");
7774 			spin_lock_irq(&phba->hbalock);
7775 			phba->hba_flag |= HBA_AER_ENABLED;
7776 			spin_unlock_irq(&phba->hbalock);
7777 		} else {
7778 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7779 					"2830 This device does not support "
7780 					"Advanced Error Reporting (AER)\n");
7781 			phba->cfg_aer_support = 0;
7782 		}
7783 		rc = 0;
7784 	}
7785 
7786 	/*
7787 	 * The port is ready, set the host's link state to LINK_DOWN
7788 	 * in preparation for link interrupts.
7789 	 */
7790 	spin_lock_irq(&phba->hbalock);
7791 	phba->link_state = LPFC_LINK_DOWN;
7792 
7793 	/* Check if physical ports are trunked */
7794 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7795 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7796 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7797 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7798 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7799 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7800 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7801 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7802 	spin_unlock_irq(&phba->hbalock);
7803 
7804 	/* Arm the CQs and then EQs on device */
7805 	lpfc_sli4_arm_cqeq_intr(phba);
7806 
7807 	/* Indicate device interrupt mode */
7808 	phba->sli4_hba.intr_enable = 1;
7809 
7810 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7811 	    (phba->hba_flag & LINK_DISABLED)) {
7812 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7813 				"3103 Adapter Link is disabled.\n");
7814 		lpfc_down_link(phba, mboxq);
7815 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7816 		if (rc != MBX_SUCCESS) {
7817 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7818 					"3104 Adapter failed to issue "
7819 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7820 			goto out_io_buff_free;
7821 		}
7822 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7823 		/* don't perform init_link on SLI4 FC port loopback test */
7824 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7825 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7826 			if (rc)
7827 				goto out_io_buff_free;
7828 		}
7829 	}
7830 	mempool_free(mboxq, phba->mbox_mem_pool);
7831 	return rc;
7832 out_io_buff_free:
7833 	/* Free allocated IO Buffers */
7834 	lpfc_io_free(phba);
7835 out_unset_queue:
7836 	/* Unset all the queues set up in this routine when error out */
7837 	lpfc_sli4_queue_unset(phba);
7838 out_destroy_queue:
7839 	lpfc_free_iocb_list(phba);
7840 	lpfc_sli4_queue_destroy(phba);
7841 out_stop_timers:
7842 	lpfc_stop_hba_timers(phba);
7843 out_free_mbox:
7844 	mempool_free(mboxq, phba->mbox_mem_pool);
7845 	return rc;
7846 }
7847 
7848 /**
7849  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7850  * @ptr: context object - pointer to hba structure.
7851  *
7852  * This is the callback function for mailbox timer. The mailbox
7853  * timer is armed when a new mailbox command is issued and the timer
7854  * is deleted when the mailbox complete. The function is called by
7855  * the kernel timer code when a mailbox does not complete within
7856  * expected time. This function wakes up the worker thread to
7857  * process the mailbox timeout and returns. All the processing is
7858  * done by the worker thread function lpfc_mbox_timeout_handler.
7859  **/
7860 void
7861 lpfc_mbox_timeout(struct timer_list *t)
7862 {
7863 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7864 	unsigned long iflag;
7865 	uint32_t tmo_posted;
7866 
7867 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7868 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7869 	if (!tmo_posted)
7870 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7871 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7872 
7873 	if (!tmo_posted)
7874 		lpfc_worker_wake_up(phba);
7875 	return;
7876 }
7877 
7878 /**
7879  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7880  *                                    are pending
7881  * @phba: Pointer to HBA context object.
7882  *
7883  * This function checks if any mailbox completions are present on the mailbox
7884  * completion queue.
7885  **/
7886 static bool
7887 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7888 {
7889 
7890 	uint32_t idx;
7891 	struct lpfc_queue *mcq;
7892 	struct lpfc_mcqe *mcqe;
7893 	bool pending_completions = false;
7894 	uint8_t	qe_valid;
7895 
7896 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7897 		return false;
7898 
7899 	/* Check for completions on mailbox completion queue */
7900 
7901 	mcq = phba->sli4_hba.mbx_cq;
7902 	idx = mcq->hba_index;
7903 	qe_valid = mcq->qe_valid;
7904 	while (bf_get_le32(lpfc_cqe_valid,
7905 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7906 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
7907 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7908 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7909 			pending_completions = true;
7910 			break;
7911 		}
7912 		idx = (idx + 1) % mcq->entry_count;
7913 		if (mcq->hba_index == idx)
7914 			break;
7915 
7916 		/* if the index wrapped around, toggle the valid bit */
7917 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7918 			qe_valid = (qe_valid) ? 0 : 1;
7919 	}
7920 	return pending_completions;
7921 
7922 }
7923 
7924 /**
7925  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7926  *					      that were missed.
7927  * @phba: Pointer to HBA context object.
7928  *
7929  * For sli4, it is possible to miss an interrupt. As such mbox completions
7930  * maybe missed causing erroneous mailbox timeouts to occur. This function
7931  * checks to see if mbox completions are on the mailbox completion queue
7932  * and will process all the completions associated with the eq for the
7933  * mailbox completion queue.
7934  **/
7935 static bool
7936 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7937 {
7938 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7939 	uint32_t eqidx;
7940 	struct lpfc_queue *fpeq = NULL;
7941 	struct lpfc_queue *eq;
7942 	bool mbox_pending;
7943 
7944 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7945 		return false;
7946 
7947 	/* Find the EQ associated with the mbox CQ */
7948 	if (sli4_hba->hdwq) {
7949 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
7950 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
7951 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
7952 				fpeq = eq;
7953 				break;
7954 			}
7955 		}
7956 	}
7957 	if (!fpeq)
7958 		return false;
7959 
7960 	/* Turn off interrupts from this EQ */
7961 
7962 	sli4_hba->sli4_eq_clr_intr(fpeq);
7963 
7964 	/* Check to see if a mbox completion is pending */
7965 
7966 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7967 
7968 	/*
7969 	 * If a mbox completion is pending, process all the events on EQ
7970 	 * associated with the mbox completion queue (this could include
7971 	 * mailbox commands, async events, els commands, receive queue data
7972 	 * and fcp commands)
7973 	 */
7974 
7975 	if (mbox_pending)
7976 		/* process and rearm the EQ */
7977 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
7978 	else
7979 		/* Always clear and re-arm the EQ */
7980 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
7981 
7982 	return mbox_pending;
7983 
7984 }
7985 
7986 /**
7987  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7988  * @phba: Pointer to HBA context object.
7989  *
7990  * This function is called from worker thread when a mailbox command times out.
7991  * The caller is not required to hold any locks. This function will reset the
7992  * HBA and recover all the pending commands.
7993  **/
7994 void
7995 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7996 {
7997 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7998 	MAILBOX_t *mb = NULL;
7999 
8000 	struct lpfc_sli *psli = &phba->sli;
8001 
8002 	/* If the mailbox completed, process the completion and return */
8003 	if (lpfc_sli4_process_missed_mbox_completions(phba))
8004 		return;
8005 
8006 	if (pmbox != NULL)
8007 		mb = &pmbox->u.mb;
8008 	/* Check the pmbox pointer first.  There is a race condition
8009 	 * between the mbox timeout handler getting executed in the
8010 	 * worklist and the mailbox actually completing. When this
8011 	 * race condition occurs, the mbox_active will be NULL.
8012 	 */
8013 	spin_lock_irq(&phba->hbalock);
8014 	if (pmbox == NULL) {
8015 		lpfc_printf_log(phba, KERN_WARNING,
8016 				LOG_MBOX | LOG_SLI,
8017 				"0353 Active Mailbox cleared - mailbox timeout "
8018 				"exiting\n");
8019 		spin_unlock_irq(&phba->hbalock);
8020 		return;
8021 	}
8022 
8023 	/* Mbox cmd <mbxCommand> timeout */
8024 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8025 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8026 			mb->mbxCommand,
8027 			phba->pport->port_state,
8028 			phba->sli.sli_flag,
8029 			phba->sli.mbox_active);
8030 	spin_unlock_irq(&phba->hbalock);
8031 
8032 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8033 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8034 	 * it to fail all outstanding SCSI IO.
8035 	 */
8036 	spin_lock_irq(&phba->pport->work_port_lock);
8037 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8038 	spin_unlock_irq(&phba->pport->work_port_lock);
8039 	spin_lock_irq(&phba->hbalock);
8040 	phba->link_state = LPFC_LINK_UNKNOWN;
8041 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8042 	spin_unlock_irq(&phba->hbalock);
8043 
8044 	lpfc_sli_abort_fcp_rings(phba);
8045 
8046 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8047 			"0345 Resetting board due to mailbox timeout\n");
8048 
8049 	/* Reset the HBA device */
8050 	lpfc_reset_hba(phba);
8051 }
8052 
8053 /**
8054  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8055  * @phba: Pointer to HBA context object.
8056  * @pmbox: Pointer to mailbox object.
8057  * @flag: Flag indicating how the mailbox need to be processed.
8058  *
8059  * This function is called by discovery code and HBA management code
8060  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8061  * function gets the hbalock to protect the data structures.
8062  * The mailbox command can be submitted in polling mode, in which case
8063  * this function will wait in a polling loop for the completion of the
8064  * mailbox.
8065  * If the mailbox is submitted in no_wait mode (not polling) the
8066  * function will submit the command and returns immediately without waiting
8067  * for the mailbox completion. The no_wait is supported only when HBA
8068  * is in SLI2/SLI3 mode - interrupts are enabled.
8069  * The SLI interface allows only one mailbox pending at a time. If the
8070  * mailbox is issued in polling mode and there is already a mailbox
8071  * pending, then the function will return an error. If the mailbox is issued
8072  * in NO_WAIT mode and there is a mailbox pending already, the function
8073  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8074  * The sli layer owns the mailbox object until the completion of mailbox
8075  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8076  * return codes the caller owns the mailbox command after the return of
8077  * the function.
8078  **/
8079 static int
8080 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8081 		       uint32_t flag)
8082 {
8083 	MAILBOX_t *mbx;
8084 	struct lpfc_sli *psli = &phba->sli;
8085 	uint32_t status, evtctr;
8086 	uint32_t ha_copy, hc_copy;
8087 	int i;
8088 	unsigned long timeout;
8089 	unsigned long drvr_flag = 0;
8090 	uint32_t word0, ldata;
8091 	void __iomem *to_slim;
8092 	int processing_queue = 0;
8093 
8094 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8095 	if (!pmbox) {
8096 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8097 		/* processing mbox queue from intr_handler */
8098 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8099 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8100 			return MBX_SUCCESS;
8101 		}
8102 		processing_queue = 1;
8103 		pmbox = lpfc_mbox_get(phba);
8104 		if (!pmbox) {
8105 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8106 			return MBX_SUCCESS;
8107 		}
8108 	}
8109 
8110 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8111 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8112 		if(!pmbox->vport) {
8113 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8114 			lpfc_printf_log(phba, KERN_ERR,
8115 					LOG_MBOX | LOG_VPORT,
8116 					"1806 Mbox x%x failed. No vport\n",
8117 					pmbox->u.mb.mbxCommand);
8118 			dump_stack();
8119 			goto out_not_finished;
8120 		}
8121 	}
8122 
8123 	/* If the PCI channel is in offline state, do not post mbox. */
8124 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8125 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8126 		goto out_not_finished;
8127 	}
8128 
8129 	/* If HBA has a deferred error attention, fail the iocb. */
8130 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8131 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8132 		goto out_not_finished;
8133 	}
8134 
8135 	psli = &phba->sli;
8136 
8137 	mbx = &pmbox->u.mb;
8138 	status = MBX_SUCCESS;
8139 
8140 	if (phba->link_state == LPFC_HBA_ERROR) {
8141 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8142 
8143 		/* Mbox command <mbxCommand> cannot issue */
8144 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8145 				"(%d):0311 Mailbox command x%x cannot "
8146 				"issue Data: x%x x%x\n",
8147 				pmbox->vport ? pmbox->vport->vpi : 0,
8148 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8149 		goto out_not_finished;
8150 	}
8151 
8152 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8153 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8154 			!(hc_copy & HC_MBINT_ENA)) {
8155 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8156 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8157 				"(%d):2528 Mailbox command x%x cannot "
8158 				"issue Data: x%x x%x\n",
8159 				pmbox->vport ? pmbox->vport->vpi : 0,
8160 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8161 			goto out_not_finished;
8162 		}
8163 	}
8164 
8165 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8166 		/* Polling for a mbox command when another one is already active
8167 		 * is not allowed in SLI. Also, the driver must have established
8168 		 * SLI2 mode to queue and process multiple mbox commands.
8169 		 */
8170 
8171 		if (flag & MBX_POLL) {
8172 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8173 
8174 			/* Mbox command <mbxCommand> cannot issue */
8175 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8176 					"(%d):2529 Mailbox command x%x "
8177 					"cannot issue Data: x%x x%x\n",
8178 					pmbox->vport ? pmbox->vport->vpi : 0,
8179 					pmbox->u.mb.mbxCommand,
8180 					psli->sli_flag, flag);
8181 			goto out_not_finished;
8182 		}
8183 
8184 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8185 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8186 			/* Mbox command <mbxCommand> cannot issue */
8187 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8188 					"(%d):2530 Mailbox command x%x "
8189 					"cannot issue Data: x%x x%x\n",
8190 					pmbox->vport ? pmbox->vport->vpi : 0,
8191 					pmbox->u.mb.mbxCommand,
8192 					psli->sli_flag, flag);
8193 			goto out_not_finished;
8194 		}
8195 
8196 		/* Another mailbox command is still being processed, queue this
8197 		 * command to be processed later.
8198 		 */
8199 		lpfc_mbox_put(phba, pmbox);
8200 
8201 		/* Mbox cmd issue - BUSY */
8202 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8203 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8204 				"x%x x%x x%x x%x\n",
8205 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8206 				mbx->mbxCommand,
8207 				phba->pport ? phba->pport->port_state : 0xff,
8208 				psli->sli_flag, flag);
8209 
8210 		psli->slistat.mbox_busy++;
8211 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8212 
8213 		if (pmbox->vport) {
8214 			lpfc_debugfs_disc_trc(pmbox->vport,
8215 				LPFC_DISC_TRC_MBOX_VPORT,
8216 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8217 				(uint32_t)mbx->mbxCommand,
8218 				mbx->un.varWords[0], mbx->un.varWords[1]);
8219 		}
8220 		else {
8221 			lpfc_debugfs_disc_trc(phba->pport,
8222 				LPFC_DISC_TRC_MBOX,
8223 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8224 				(uint32_t)mbx->mbxCommand,
8225 				mbx->un.varWords[0], mbx->un.varWords[1]);
8226 		}
8227 
8228 		return MBX_BUSY;
8229 	}
8230 
8231 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8232 
8233 	/* If we are not polling, we MUST be in SLI2 mode */
8234 	if (flag != MBX_POLL) {
8235 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8236 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8237 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8238 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8239 			/* Mbox command <mbxCommand> cannot issue */
8240 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8241 					"(%d):2531 Mailbox command x%x "
8242 					"cannot issue Data: x%x x%x\n",
8243 					pmbox->vport ? pmbox->vport->vpi : 0,
8244 					pmbox->u.mb.mbxCommand,
8245 					psli->sli_flag, flag);
8246 			goto out_not_finished;
8247 		}
8248 		/* timeout active mbox command */
8249 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8250 					   1000);
8251 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8252 	}
8253 
8254 	/* Mailbox cmd <cmd> issue */
8255 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8256 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8257 			"x%x\n",
8258 			pmbox->vport ? pmbox->vport->vpi : 0,
8259 			mbx->mbxCommand,
8260 			phba->pport ? phba->pport->port_state : 0xff,
8261 			psli->sli_flag, flag);
8262 
8263 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8264 		if (pmbox->vport) {
8265 			lpfc_debugfs_disc_trc(pmbox->vport,
8266 				LPFC_DISC_TRC_MBOX_VPORT,
8267 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8268 				(uint32_t)mbx->mbxCommand,
8269 				mbx->un.varWords[0], mbx->un.varWords[1]);
8270 		}
8271 		else {
8272 			lpfc_debugfs_disc_trc(phba->pport,
8273 				LPFC_DISC_TRC_MBOX,
8274 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8275 				(uint32_t)mbx->mbxCommand,
8276 				mbx->un.varWords[0], mbx->un.varWords[1]);
8277 		}
8278 	}
8279 
8280 	psli->slistat.mbox_cmd++;
8281 	evtctr = psli->slistat.mbox_event;
8282 
8283 	/* next set own bit for the adapter and copy over command word */
8284 	mbx->mbxOwner = OWN_CHIP;
8285 
8286 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8287 		/* Populate mbox extension offset word. */
8288 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8289 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8290 				= (uint8_t *)phba->mbox_ext
8291 				  - (uint8_t *)phba->mbox;
8292 		}
8293 
8294 		/* Copy the mailbox extension data */
8295 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8296 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8297 					      (uint8_t *)phba->mbox_ext,
8298 					      pmbox->in_ext_byte_len);
8299 		}
8300 		/* Copy command data to host SLIM area */
8301 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8302 	} else {
8303 		/* Populate mbox extension offset word. */
8304 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8305 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8306 				= MAILBOX_HBA_EXT_OFFSET;
8307 
8308 		/* Copy the mailbox extension data */
8309 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8310 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8311 				MAILBOX_HBA_EXT_OFFSET,
8312 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8313 
8314 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8315 			/* copy command data into host mbox for cmpl */
8316 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8317 					      MAILBOX_CMD_SIZE);
8318 
8319 		/* First copy mbox command data to HBA SLIM, skip past first
8320 		   word */
8321 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8322 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8323 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8324 
8325 		/* Next copy over first word, with mbxOwner set */
8326 		ldata = *((uint32_t *)mbx);
8327 		to_slim = phba->MBslimaddr;
8328 		writel(ldata, to_slim);
8329 		readl(to_slim); /* flush */
8330 
8331 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8332 			/* switch over to host mailbox */
8333 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8334 	}
8335 
8336 	wmb();
8337 
8338 	switch (flag) {
8339 	case MBX_NOWAIT:
8340 		/* Set up reference to mailbox command */
8341 		psli->mbox_active = pmbox;
8342 		/* Interrupt board to do it */
8343 		writel(CA_MBATT, phba->CAregaddr);
8344 		readl(phba->CAregaddr); /* flush */
8345 		/* Don't wait for it to finish, just return */
8346 		break;
8347 
8348 	case MBX_POLL:
8349 		/* Set up null reference to mailbox command */
8350 		psli->mbox_active = NULL;
8351 		/* Interrupt board to do it */
8352 		writel(CA_MBATT, phba->CAregaddr);
8353 		readl(phba->CAregaddr); /* flush */
8354 
8355 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8356 			/* First read mbox status word */
8357 			word0 = *((uint32_t *)phba->mbox);
8358 			word0 = le32_to_cpu(word0);
8359 		} else {
8360 			/* First read mbox status word */
8361 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8362 				spin_unlock_irqrestore(&phba->hbalock,
8363 						       drvr_flag);
8364 				goto out_not_finished;
8365 			}
8366 		}
8367 
8368 		/* Read the HBA Host Attention Register */
8369 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8370 			spin_unlock_irqrestore(&phba->hbalock,
8371 						       drvr_flag);
8372 			goto out_not_finished;
8373 		}
8374 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8375 							1000) + jiffies;
8376 		i = 0;
8377 		/* Wait for command to complete */
8378 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8379 		       (!(ha_copy & HA_MBATT) &&
8380 			(phba->link_state > LPFC_WARM_START))) {
8381 			if (time_after(jiffies, timeout)) {
8382 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8383 				spin_unlock_irqrestore(&phba->hbalock,
8384 						       drvr_flag);
8385 				goto out_not_finished;
8386 			}
8387 
8388 			/* Check if we took a mbox interrupt while we were
8389 			   polling */
8390 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8391 			    && (evtctr != psli->slistat.mbox_event))
8392 				break;
8393 
8394 			if (i++ > 10) {
8395 				spin_unlock_irqrestore(&phba->hbalock,
8396 						       drvr_flag);
8397 				msleep(1);
8398 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8399 			}
8400 
8401 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8402 				/* First copy command data */
8403 				word0 = *((uint32_t *)phba->mbox);
8404 				word0 = le32_to_cpu(word0);
8405 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8406 					MAILBOX_t *slimmb;
8407 					uint32_t slimword0;
8408 					/* Check real SLIM for any errors */
8409 					slimword0 = readl(phba->MBslimaddr);
8410 					slimmb = (MAILBOX_t *) & slimword0;
8411 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8412 					    && slimmb->mbxStatus) {
8413 						psli->sli_flag &=
8414 						    ~LPFC_SLI_ACTIVE;
8415 						word0 = slimword0;
8416 					}
8417 				}
8418 			} else {
8419 				/* First copy command data */
8420 				word0 = readl(phba->MBslimaddr);
8421 			}
8422 			/* Read the HBA Host Attention Register */
8423 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8424 				spin_unlock_irqrestore(&phba->hbalock,
8425 						       drvr_flag);
8426 				goto out_not_finished;
8427 			}
8428 		}
8429 
8430 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8431 			/* copy results back to user */
8432 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8433 						MAILBOX_CMD_SIZE);
8434 			/* Copy the mailbox extension data */
8435 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8436 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8437 						      pmbox->ctx_buf,
8438 						      pmbox->out_ext_byte_len);
8439 			}
8440 		} else {
8441 			/* First copy command data */
8442 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8443 						MAILBOX_CMD_SIZE);
8444 			/* Copy the mailbox extension data */
8445 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8446 				lpfc_memcpy_from_slim(
8447 					pmbox->ctx_buf,
8448 					phba->MBslimaddr +
8449 					MAILBOX_HBA_EXT_OFFSET,
8450 					pmbox->out_ext_byte_len);
8451 			}
8452 		}
8453 
8454 		writel(HA_MBATT, phba->HAregaddr);
8455 		readl(phba->HAregaddr); /* flush */
8456 
8457 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8458 		status = mbx->mbxStatus;
8459 	}
8460 
8461 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8462 	return status;
8463 
8464 out_not_finished:
8465 	if (processing_queue) {
8466 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8467 		lpfc_mbox_cmpl_put(phba, pmbox);
8468 	}
8469 	return MBX_NOT_FINISHED;
8470 }
8471 
8472 /**
8473  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8474  * @phba: Pointer to HBA context object.
8475  *
8476  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8477  * the driver internal pending mailbox queue. It will then try to wait out the
8478  * possible outstanding mailbox command before return.
8479  *
8480  * Returns:
8481  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8482  * 	the outstanding mailbox command timed out.
8483  **/
8484 static int
8485 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8486 {
8487 	struct lpfc_sli *psli = &phba->sli;
8488 	int rc = 0;
8489 	unsigned long timeout = 0;
8490 
8491 	/* Mark the asynchronous mailbox command posting as blocked */
8492 	spin_lock_irq(&phba->hbalock);
8493 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8494 	/* Determine how long we might wait for the active mailbox
8495 	 * command to be gracefully completed by firmware.
8496 	 */
8497 	if (phba->sli.mbox_active)
8498 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8499 						phba->sli.mbox_active) *
8500 						1000) + jiffies;
8501 	spin_unlock_irq(&phba->hbalock);
8502 
8503 	/* Make sure the mailbox is really active */
8504 	if (timeout)
8505 		lpfc_sli4_process_missed_mbox_completions(phba);
8506 
8507 	/* Wait for the outstnading mailbox command to complete */
8508 	while (phba->sli.mbox_active) {
8509 		/* Check active mailbox complete status every 2ms */
8510 		msleep(2);
8511 		if (time_after(jiffies, timeout)) {
8512 			/* Timeout, marked the outstanding cmd not complete */
8513 			rc = 1;
8514 			break;
8515 		}
8516 	}
8517 
8518 	/* Can not cleanly block async mailbox command, fails it */
8519 	if (rc) {
8520 		spin_lock_irq(&phba->hbalock);
8521 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8522 		spin_unlock_irq(&phba->hbalock);
8523 	}
8524 	return rc;
8525 }
8526 
8527 /**
8528  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8529  * @phba: Pointer to HBA context object.
8530  *
8531  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8532  * commands from the driver internal pending mailbox queue. It makes sure
8533  * that there is no outstanding mailbox command before resuming posting
8534  * asynchronous mailbox commands. If, for any reason, there is outstanding
8535  * mailbox command, it will try to wait it out before resuming asynchronous
8536  * mailbox command posting.
8537  **/
8538 static void
8539 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8540 {
8541 	struct lpfc_sli *psli = &phba->sli;
8542 
8543 	spin_lock_irq(&phba->hbalock);
8544 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8545 		/* Asynchronous mailbox posting is not blocked, do nothing */
8546 		spin_unlock_irq(&phba->hbalock);
8547 		return;
8548 	}
8549 
8550 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8551 	 * successful or timeout, after timing-out the outstanding mailbox
8552 	 * command shall always be removed, so just unblock posting async
8553 	 * mailbox command and resume
8554 	 */
8555 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8556 	spin_unlock_irq(&phba->hbalock);
8557 
8558 	/* wake up worker thread to post asynchronous mailbox command */
8559 	lpfc_worker_wake_up(phba);
8560 }
8561 
8562 /**
8563  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8564  * @phba: Pointer to HBA context object.
8565  * @mboxq: Pointer to mailbox object.
8566  *
8567  * The function waits for the bootstrap mailbox register ready bit from
8568  * port for twice the regular mailbox command timeout value.
8569  *
8570  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8571  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8572  **/
8573 static int
8574 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8575 {
8576 	uint32_t db_ready;
8577 	unsigned long timeout;
8578 	struct lpfc_register bmbx_reg;
8579 
8580 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8581 				   * 1000) + jiffies;
8582 
8583 	do {
8584 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8585 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8586 		if (!db_ready)
8587 			mdelay(2);
8588 
8589 		if (time_after(jiffies, timeout))
8590 			return MBXERR_ERROR;
8591 	} while (!db_ready);
8592 
8593 	return 0;
8594 }
8595 
8596 /**
8597  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8598  * @phba: Pointer to HBA context object.
8599  * @mboxq: Pointer to mailbox object.
8600  *
8601  * The function posts a mailbox to the port.  The mailbox is expected
8602  * to be comletely filled in and ready for the port to operate on it.
8603  * This routine executes a synchronous completion operation on the
8604  * mailbox by polling for its completion.
8605  *
8606  * The caller must not be holding any locks when calling this routine.
8607  *
8608  * Returns:
8609  *	MBX_SUCCESS - mailbox posted successfully
8610  *	Any of the MBX error values.
8611  **/
8612 static int
8613 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8614 {
8615 	int rc = MBX_SUCCESS;
8616 	unsigned long iflag;
8617 	uint32_t mcqe_status;
8618 	uint32_t mbx_cmnd;
8619 	struct lpfc_sli *psli = &phba->sli;
8620 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8621 	struct lpfc_bmbx_create *mbox_rgn;
8622 	struct dma_address *dma_address;
8623 
8624 	/*
8625 	 * Only one mailbox can be active to the bootstrap mailbox region
8626 	 * at a time and there is no queueing provided.
8627 	 */
8628 	spin_lock_irqsave(&phba->hbalock, iflag);
8629 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8630 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8631 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8632 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8633 				"cannot issue Data: x%x x%x\n",
8634 				mboxq->vport ? mboxq->vport->vpi : 0,
8635 				mboxq->u.mb.mbxCommand,
8636 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8637 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8638 				psli->sli_flag, MBX_POLL);
8639 		return MBXERR_ERROR;
8640 	}
8641 	/* The server grabs the token and owns it until release */
8642 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8643 	phba->sli.mbox_active = mboxq;
8644 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8645 
8646 	/* wait for bootstrap mbox register for readyness */
8647 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8648 	if (rc)
8649 		goto exit;
8650 	/*
8651 	 * Initialize the bootstrap memory region to avoid stale data areas
8652 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8653 	 * the bmbx mailbox region.
8654 	 */
8655 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8656 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8657 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8658 			       sizeof(struct lpfc_mqe));
8659 
8660 	/* Post the high mailbox dma address to the port and wait for ready. */
8661 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8662 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8663 
8664 	/* wait for bootstrap mbox register for hi-address write done */
8665 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8666 	if (rc)
8667 		goto exit;
8668 
8669 	/* Post the low mailbox dma address to the port. */
8670 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8671 
8672 	/* wait for bootstrap mbox register for low address write done */
8673 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8674 	if (rc)
8675 		goto exit;
8676 
8677 	/*
8678 	 * Read the CQ to ensure the mailbox has completed.
8679 	 * If so, update the mailbox status so that the upper layers
8680 	 * can complete the request normally.
8681 	 */
8682 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8683 			       sizeof(struct lpfc_mqe));
8684 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8685 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8686 			       sizeof(struct lpfc_mcqe));
8687 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8688 	/*
8689 	 * When the CQE status indicates a failure and the mailbox status
8690 	 * indicates success then copy the CQE status into the mailbox status
8691 	 * (and prefix it with x4000).
8692 	 */
8693 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8694 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8695 			bf_set(lpfc_mqe_status, mb,
8696 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8697 		rc = MBXERR_ERROR;
8698 	} else
8699 		lpfc_sli4_swap_str(phba, mboxq);
8700 
8701 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8702 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8703 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8704 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8705 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8706 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8707 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8708 			bf_get(lpfc_mqe_status, mb),
8709 			mb->un.mb_words[0], mb->un.mb_words[1],
8710 			mb->un.mb_words[2], mb->un.mb_words[3],
8711 			mb->un.mb_words[4], mb->un.mb_words[5],
8712 			mb->un.mb_words[6], mb->un.mb_words[7],
8713 			mb->un.mb_words[8], mb->un.mb_words[9],
8714 			mb->un.mb_words[10], mb->un.mb_words[11],
8715 			mb->un.mb_words[12], mboxq->mcqe.word0,
8716 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8717 			mboxq->mcqe.trailer);
8718 exit:
8719 	/* We are holding the token, no needed for lock when release */
8720 	spin_lock_irqsave(&phba->hbalock, iflag);
8721 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8722 	phba->sli.mbox_active = NULL;
8723 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8724 	return rc;
8725 }
8726 
8727 /**
8728  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8729  * @phba: Pointer to HBA context object.
8730  * @pmbox: Pointer to mailbox object.
8731  * @flag: Flag indicating how the mailbox need to be processed.
8732  *
8733  * This function is called by discovery code and HBA management code to submit
8734  * a mailbox command to firmware with SLI-4 interface spec.
8735  *
8736  * Return codes the caller owns the mailbox command after the return of the
8737  * function.
8738  **/
8739 static int
8740 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8741 		       uint32_t flag)
8742 {
8743 	struct lpfc_sli *psli = &phba->sli;
8744 	unsigned long iflags;
8745 	int rc;
8746 
8747 	/* dump from issue mailbox command if setup */
8748 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8749 
8750 	rc = lpfc_mbox_dev_check(phba);
8751 	if (unlikely(rc)) {
8752 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8753 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8754 				"cannot issue Data: x%x x%x\n",
8755 				mboxq->vport ? mboxq->vport->vpi : 0,
8756 				mboxq->u.mb.mbxCommand,
8757 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8758 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8759 				psli->sli_flag, flag);
8760 		goto out_not_finished;
8761 	}
8762 
8763 	/* Detect polling mode and jump to a handler */
8764 	if (!phba->sli4_hba.intr_enable) {
8765 		if (flag == MBX_POLL)
8766 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8767 		else
8768 			rc = -EIO;
8769 		if (rc != MBX_SUCCESS)
8770 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8771 					"(%d):2541 Mailbox command x%x "
8772 					"(x%x/x%x) failure: "
8773 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8774 					"Data: x%x x%x\n,",
8775 					mboxq->vport ? mboxq->vport->vpi : 0,
8776 					mboxq->u.mb.mbxCommand,
8777 					lpfc_sli_config_mbox_subsys_get(phba,
8778 									mboxq),
8779 					lpfc_sli_config_mbox_opcode_get(phba,
8780 									mboxq),
8781 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8782 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8783 					bf_get(lpfc_mcqe_ext_status,
8784 					       &mboxq->mcqe),
8785 					psli->sli_flag, flag);
8786 		return rc;
8787 	} else if (flag == MBX_POLL) {
8788 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8789 				"(%d):2542 Try to issue mailbox command "
8790 				"x%x (x%x/x%x) synchronously ahead of async "
8791 				"mailbox command queue: x%x x%x\n",
8792 				mboxq->vport ? mboxq->vport->vpi : 0,
8793 				mboxq->u.mb.mbxCommand,
8794 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8795 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8796 				psli->sli_flag, flag);
8797 		/* Try to block the asynchronous mailbox posting */
8798 		rc = lpfc_sli4_async_mbox_block(phba);
8799 		if (!rc) {
8800 			/* Successfully blocked, now issue sync mbox cmd */
8801 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8802 			if (rc != MBX_SUCCESS)
8803 				lpfc_printf_log(phba, KERN_WARNING,
8804 					LOG_MBOX | LOG_SLI,
8805 					"(%d):2597 Sync Mailbox command "
8806 					"x%x (x%x/x%x) failure: "
8807 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8808 					"Data: x%x x%x\n,",
8809 					mboxq->vport ? mboxq->vport->vpi : 0,
8810 					mboxq->u.mb.mbxCommand,
8811 					lpfc_sli_config_mbox_subsys_get(phba,
8812 									mboxq),
8813 					lpfc_sli_config_mbox_opcode_get(phba,
8814 									mboxq),
8815 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8816 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8817 					bf_get(lpfc_mcqe_ext_status,
8818 					       &mboxq->mcqe),
8819 					psli->sli_flag, flag);
8820 			/* Unblock the async mailbox posting afterward */
8821 			lpfc_sli4_async_mbox_unblock(phba);
8822 		}
8823 		return rc;
8824 	}
8825 
8826 	/* Now, interrupt mode asynchronous mailbox command */
8827 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8828 	if (rc) {
8829 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8830 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8831 				"cannot issue Data: x%x x%x\n",
8832 				mboxq->vport ? mboxq->vport->vpi : 0,
8833 				mboxq->u.mb.mbxCommand,
8834 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8835 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8836 				psli->sli_flag, flag);
8837 		goto out_not_finished;
8838 	}
8839 
8840 	/* Put the mailbox command to the driver internal FIFO */
8841 	psli->slistat.mbox_busy++;
8842 	spin_lock_irqsave(&phba->hbalock, iflags);
8843 	lpfc_mbox_put(phba, mboxq);
8844 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8845 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8846 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8847 			"x%x (x%x/x%x) x%x x%x x%x\n",
8848 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8849 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8850 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8851 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8852 			phba->pport->port_state,
8853 			psli->sli_flag, MBX_NOWAIT);
8854 	/* Wake up worker thread to transport mailbox command from head */
8855 	lpfc_worker_wake_up(phba);
8856 
8857 	return MBX_BUSY;
8858 
8859 out_not_finished:
8860 	return MBX_NOT_FINISHED;
8861 }
8862 
8863 /**
8864  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8865  * @phba: Pointer to HBA context object.
8866  *
8867  * This function is called by worker thread to send a mailbox command to
8868  * SLI4 HBA firmware.
8869  *
8870  **/
8871 int
8872 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8873 {
8874 	struct lpfc_sli *psli = &phba->sli;
8875 	LPFC_MBOXQ_t *mboxq;
8876 	int rc = MBX_SUCCESS;
8877 	unsigned long iflags;
8878 	struct lpfc_mqe *mqe;
8879 	uint32_t mbx_cmnd;
8880 
8881 	/* Check interrupt mode before post async mailbox command */
8882 	if (unlikely(!phba->sli4_hba.intr_enable))
8883 		return MBX_NOT_FINISHED;
8884 
8885 	/* Check for mailbox command service token */
8886 	spin_lock_irqsave(&phba->hbalock, iflags);
8887 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8888 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8889 		return MBX_NOT_FINISHED;
8890 	}
8891 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8892 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8893 		return MBX_NOT_FINISHED;
8894 	}
8895 	if (unlikely(phba->sli.mbox_active)) {
8896 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8897 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8898 				"0384 There is pending active mailbox cmd\n");
8899 		return MBX_NOT_FINISHED;
8900 	}
8901 	/* Take the mailbox command service token */
8902 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8903 
8904 	/* Get the next mailbox command from head of queue */
8905 	mboxq = lpfc_mbox_get(phba);
8906 
8907 	/* If no more mailbox command waiting for post, we're done */
8908 	if (!mboxq) {
8909 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8910 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8911 		return MBX_SUCCESS;
8912 	}
8913 	phba->sli.mbox_active = mboxq;
8914 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8915 
8916 	/* Check device readiness for posting mailbox command */
8917 	rc = lpfc_mbox_dev_check(phba);
8918 	if (unlikely(rc))
8919 		/* Driver clean routine will clean up pending mailbox */
8920 		goto out_not_finished;
8921 
8922 	/* Prepare the mbox command to be posted */
8923 	mqe = &mboxq->u.mqe;
8924 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8925 
8926 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8927 	mod_timer(&psli->mbox_tmo, (jiffies +
8928 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8929 
8930 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8931 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8932 			"x%x x%x\n",
8933 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8934 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8935 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8936 			phba->pport->port_state, psli->sli_flag);
8937 
8938 	if (mbx_cmnd != MBX_HEARTBEAT) {
8939 		if (mboxq->vport) {
8940 			lpfc_debugfs_disc_trc(mboxq->vport,
8941 				LPFC_DISC_TRC_MBOX_VPORT,
8942 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8943 				mbx_cmnd, mqe->un.mb_words[0],
8944 				mqe->un.mb_words[1]);
8945 		} else {
8946 			lpfc_debugfs_disc_trc(phba->pport,
8947 				LPFC_DISC_TRC_MBOX,
8948 				"MBOX Send: cmd:x%x mb:x%x x%x",
8949 				mbx_cmnd, mqe->un.mb_words[0],
8950 				mqe->un.mb_words[1]);
8951 		}
8952 	}
8953 	psli->slistat.mbox_cmd++;
8954 
8955 	/* Post the mailbox command to the port */
8956 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8957 	if (rc != MBX_SUCCESS) {
8958 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8959 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8960 				"cannot issue Data: x%x x%x\n",
8961 				mboxq->vport ? mboxq->vport->vpi : 0,
8962 				mboxq->u.mb.mbxCommand,
8963 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8964 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8965 				psli->sli_flag, MBX_NOWAIT);
8966 		goto out_not_finished;
8967 	}
8968 
8969 	return rc;
8970 
8971 out_not_finished:
8972 	spin_lock_irqsave(&phba->hbalock, iflags);
8973 	if (phba->sli.mbox_active) {
8974 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8975 		__lpfc_mbox_cmpl_put(phba, mboxq);
8976 		/* Release the token */
8977 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8978 		phba->sli.mbox_active = NULL;
8979 	}
8980 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8981 
8982 	return MBX_NOT_FINISHED;
8983 }
8984 
8985 /**
8986  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8987  * @phba: Pointer to HBA context object.
8988  * @pmbox: Pointer to mailbox object.
8989  * @flag: Flag indicating how the mailbox need to be processed.
8990  *
8991  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8992  * the API jump table function pointer from the lpfc_hba struct.
8993  *
8994  * Return codes the caller owns the mailbox command after the return of the
8995  * function.
8996  **/
8997 int
8998 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8999 {
9000 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9001 }
9002 
9003 /**
9004  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9005  * @phba: The hba struct for which this call is being executed.
9006  * @dev_grp: The HBA PCI-Device group number.
9007  *
9008  * This routine sets up the mbox interface API function jump table in @phba
9009  * struct.
9010  * Returns: 0 - success, -ENODEV - failure.
9011  **/
9012 int
9013 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9014 {
9015 
9016 	switch (dev_grp) {
9017 	case LPFC_PCI_DEV_LP:
9018 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9019 		phba->lpfc_sli_handle_slow_ring_event =
9020 				lpfc_sli_handle_slow_ring_event_s3;
9021 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9022 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9023 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9024 		break;
9025 	case LPFC_PCI_DEV_OC:
9026 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9027 		phba->lpfc_sli_handle_slow_ring_event =
9028 				lpfc_sli_handle_slow_ring_event_s4;
9029 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9030 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9031 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9032 		break;
9033 	default:
9034 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9035 				"1420 Invalid HBA PCI-device group: 0x%x\n",
9036 				dev_grp);
9037 		return -ENODEV;
9038 		break;
9039 	}
9040 	return 0;
9041 }
9042 
9043 /**
9044  * __lpfc_sli_ringtx_put - Add an iocb to the txq
9045  * @phba: Pointer to HBA context object.
9046  * @pring: Pointer to driver SLI ring object.
9047  * @piocb: Pointer to address of newly added command iocb.
9048  *
9049  * This function is called with hbalock held for SLI3 ports or
9050  * the ring lock held for SLI4 ports to add a command
9051  * iocb to the txq when SLI layer cannot submit the command iocb
9052  * to the ring.
9053  **/
9054 void
9055 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9056 		    struct lpfc_iocbq *piocb)
9057 {
9058 	if (phba->sli_rev == LPFC_SLI_REV4)
9059 		lockdep_assert_held(&pring->ring_lock);
9060 	else
9061 		lockdep_assert_held(&phba->hbalock);
9062 	/* Insert the caller's iocb in the txq tail for later processing. */
9063 	list_add_tail(&piocb->list, &pring->txq);
9064 }
9065 
9066 /**
9067  * lpfc_sli_next_iocb - Get the next iocb in the txq
9068  * @phba: Pointer to HBA context object.
9069  * @pring: Pointer to driver SLI ring object.
9070  * @piocb: Pointer to address of newly added command iocb.
9071  *
9072  * This function is called with hbalock held before a new
9073  * iocb is submitted to the firmware. This function checks
9074  * txq to flush the iocbs in txq to Firmware before
9075  * submitting new iocbs to the Firmware.
9076  * If there are iocbs in the txq which need to be submitted
9077  * to firmware, lpfc_sli_next_iocb returns the first element
9078  * of the txq after dequeuing it from txq.
9079  * If there is no iocb in the txq then the function will return
9080  * *piocb and *piocb is set to NULL. Caller needs to check
9081  * *piocb to find if there are more commands in the txq.
9082  **/
9083 static struct lpfc_iocbq *
9084 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9085 		   struct lpfc_iocbq **piocb)
9086 {
9087 	struct lpfc_iocbq * nextiocb;
9088 
9089 	lockdep_assert_held(&phba->hbalock);
9090 
9091 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9092 	if (!nextiocb) {
9093 		nextiocb = *piocb;
9094 		*piocb = NULL;
9095 	}
9096 
9097 	return nextiocb;
9098 }
9099 
9100 /**
9101  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9102  * @phba: Pointer to HBA context object.
9103  * @ring_number: SLI ring number to issue iocb on.
9104  * @piocb: Pointer to command iocb.
9105  * @flag: Flag indicating if this command can be put into txq.
9106  *
9107  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9108  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9109  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9110  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9111  * this function allows only iocbs for posting buffers. This function finds
9112  * next available slot in the command ring and posts the command to the
9113  * available slot and writes the port attention register to request HBA start
9114  * processing new iocb. If there is no slot available in the ring and
9115  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9116  * the function returns IOCB_BUSY.
9117  *
9118  * This function is called with hbalock held. The function will return success
9119  * after it successfully submit the iocb to firmware or after adding to the
9120  * txq.
9121  **/
9122 static int
9123 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9124 		    struct lpfc_iocbq *piocb, uint32_t flag)
9125 {
9126 	struct lpfc_iocbq *nextiocb;
9127 	IOCB_t *iocb;
9128 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9129 
9130 	lockdep_assert_held(&phba->hbalock);
9131 
9132 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9133 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9134 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9135 		lpfc_printf_log(phba, KERN_ERR,
9136 				LOG_SLI | LOG_VPORT,
9137 				"1807 IOCB x%x failed. No vport\n",
9138 				piocb->iocb.ulpCommand);
9139 		dump_stack();
9140 		return IOCB_ERROR;
9141 	}
9142 
9143 
9144 	/* If the PCI channel is in offline state, do not post iocbs. */
9145 	if (unlikely(pci_channel_offline(phba->pcidev)))
9146 		return IOCB_ERROR;
9147 
9148 	/* If HBA has a deferred error attention, fail the iocb. */
9149 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9150 		return IOCB_ERROR;
9151 
9152 	/*
9153 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9154 	 */
9155 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9156 		return IOCB_ERROR;
9157 
9158 	/*
9159 	 * Check to see if we are blocking IOCB processing because of a
9160 	 * outstanding event.
9161 	 */
9162 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9163 		goto iocb_busy;
9164 
9165 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9166 		/*
9167 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9168 		 * can be issued if the link is not up.
9169 		 */
9170 		switch (piocb->iocb.ulpCommand) {
9171 		case CMD_GEN_REQUEST64_CR:
9172 		case CMD_GEN_REQUEST64_CX:
9173 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9174 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9175 					FC_RCTL_DD_UNSOL_CMD) ||
9176 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9177 					MENLO_TRANSPORT_TYPE))
9178 
9179 				goto iocb_busy;
9180 			break;
9181 		case CMD_QUE_RING_BUF_CN:
9182 		case CMD_QUE_RING_BUF64_CN:
9183 			/*
9184 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9185 			 * completion, iocb_cmpl MUST be 0.
9186 			 */
9187 			if (piocb->iocb_cmpl)
9188 				piocb->iocb_cmpl = NULL;
9189 			/*FALLTHROUGH*/
9190 		case CMD_CREATE_XRI_CR:
9191 		case CMD_CLOSE_XRI_CN:
9192 		case CMD_CLOSE_XRI_CX:
9193 			break;
9194 		default:
9195 			goto iocb_busy;
9196 		}
9197 
9198 	/*
9199 	 * For FCP commands, we must be in a state where we can process link
9200 	 * attention events.
9201 	 */
9202 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9203 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9204 		goto iocb_busy;
9205 	}
9206 
9207 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9208 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9209 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9210 
9211 	if (iocb)
9212 		lpfc_sli_update_ring(phba, pring);
9213 	else
9214 		lpfc_sli_update_full_ring(phba, pring);
9215 
9216 	if (!piocb)
9217 		return IOCB_SUCCESS;
9218 
9219 	goto out_busy;
9220 
9221  iocb_busy:
9222 	pring->stats.iocb_cmd_delay++;
9223 
9224  out_busy:
9225 
9226 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9227 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9228 		return IOCB_SUCCESS;
9229 	}
9230 
9231 	return IOCB_BUSY;
9232 }
9233 
9234 /**
9235  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9236  * @phba: Pointer to HBA context object.
9237  * @piocb: Pointer to command iocb.
9238  * @sglq: Pointer to the scatter gather queue object.
9239  *
9240  * This routine converts the bpl or bde that is in the IOCB
9241  * to a sgl list for the sli4 hardware. The physical address
9242  * of the bpl/bde is converted back to a virtual address.
9243  * If the IOCB contains a BPL then the list of BDE's is
9244  * converted to sli4_sge's. If the IOCB contains a single
9245  * BDE then it is converted to a single sli_sge.
9246  * The IOCB is still in cpu endianess so the contents of
9247  * the bpl can be used without byte swapping.
9248  *
9249  * Returns valid XRI = Success, NO_XRI = Failure.
9250 **/
9251 static uint16_t
9252 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9253 		struct lpfc_sglq *sglq)
9254 {
9255 	uint16_t xritag = NO_XRI;
9256 	struct ulp_bde64 *bpl = NULL;
9257 	struct ulp_bde64 bde;
9258 	struct sli4_sge *sgl  = NULL;
9259 	struct lpfc_dmabuf *dmabuf;
9260 	IOCB_t *icmd;
9261 	int numBdes = 0;
9262 	int i = 0;
9263 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9264 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9265 
9266 	if (!piocbq || !sglq)
9267 		return xritag;
9268 
9269 	sgl  = (struct sli4_sge *)sglq->sgl;
9270 	icmd = &piocbq->iocb;
9271 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9272 		return sglq->sli4_xritag;
9273 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9274 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9275 				sizeof(struct ulp_bde64);
9276 		/* The addrHigh and addrLow fields within the IOCB
9277 		 * have not been byteswapped yet so there is no
9278 		 * need to swap them back.
9279 		 */
9280 		if (piocbq->context3)
9281 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9282 		else
9283 			return xritag;
9284 
9285 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9286 		if (!bpl)
9287 			return xritag;
9288 
9289 		for (i = 0; i < numBdes; i++) {
9290 			/* Should already be byte swapped. */
9291 			sgl->addr_hi = bpl->addrHigh;
9292 			sgl->addr_lo = bpl->addrLow;
9293 
9294 			sgl->word2 = le32_to_cpu(sgl->word2);
9295 			if ((i+1) == numBdes)
9296 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9297 			else
9298 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9299 			/* swap the size field back to the cpu so we
9300 			 * can assign it to the sgl.
9301 			 */
9302 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9303 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9304 			/* The offsets in the sgl need to be accumulated
9305 			 * separately for the request and reply lists.
9306 			 * The request is always first, the reply follows.
9307 			 */
9308 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9309 				/* add up the reply sg entries */
9310 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9311 					inbound++;
9312 				/* first inbound? reset the offset */
9313 				if (inbound == 1)
9314 					offset = 0;
9315 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9316 				bf_set(lpfc_sli4_sge_type, sgl,
9317 					LPFC_SGE_TYPE_DATA);
9318 				offset += bde.tus.f.bdeSize;
9319 			}
9320 			sgl->word2 = cpu_to_le32(sgl->word2);
9321 			bpl++;
9322 			sgl++;
9323 		}
9324 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9325 			/* The addrHigh and addrLow fields of the BDE have not
9326 			 * been byteswapped yet so they need to be swapped
9327 			 * before putting them in the sgl.
9328 			 */
9329 			sgl->addr_hi =
9330 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9331 			sgl->addr_lo =
9332 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9333 			sgl->word2 = le32_to_cpu(sgl->word2);
9334 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9335 			sgl->word2 = cpu_to_le32(sgl->word2);
9336 			sgl->sge_len =
9337 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9338 	}
9339 	return sglq->sli4_xritag;
9340 }
9341 
9342 /**
9343  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9344  * @phba: Pointer to HBA context object.
9345  * @piocb: Pointer to command iocb.
9346  * @wqe: Pointer to the work queue entry.
9347  *
9348  * This routine converts the iocb command to its Work Queue Entry
9349  * equivalent. The wqe pointer should not have any fields set when
9350  * this routine is called because it will memcpy over them.
9351  * This routine does not set the CQ_ID or the WQEC bits in the
9352  * wqe.
9353  *
9354  * Returns: 0 = Success, IOCB_ERROR = Failure.
9355  **/
9356 static int
9357 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9358 		union lpfc_wqe128 *wqe)
9359 {
9360 	uint32_t xmit_len = 0, total_len = 0;
9361 	uint8_t ct = 0;
9362 	uint32_t fip;
9363 	uint32_t abort_tag;
9364 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9365 	uint8_t cmnd;
9366 	uint16_t xritag;
9367 	uint16_t abrt_iotag;
9368 	struct lpfc_iocbq *abrtiocbq;
9369 	struct ulp_bde64 *bpl = NULL;
9370 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9371 	int numBdes, i;
9372 	struct ulp_bde64 bde;
9373 	struct lpfc_nodelist *ndlp;
9374 	uint32_t *pcmd;
9375 	uint32_t if_type;
9376 
9377 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9378 	/* The fcp commands will set command type */
9379 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9380 		command_type = FCP_COMMAND;
9381 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9382 		command_type = ELS_COMMAND_FIP;
9383 	else
9384 		command_type = ELS_COMMAND_NON_FIP;
9385 
9386 	if (phba->fcp_embed_io)
9387 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9388 	/* Some of the fields are in the right position already */
9389 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9390 	/* The ct field has moved so reset */
9391 	wqe->generic.wqe_com.word7 = 0;
9392 	wqe->generic.wqe_com.word10 = 0;
9393 
9394 	abort_tag = (uint32_t) iocbq->iotag;
9395 	xritag = iocbq->sli4_xritag;
9396 	/* words0-2 bpl convert bde */
9397 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9398 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9399 				sizeof(struct ulp_bde64);
9400 		bpl  = (struct ulp_bde64 *)
9401 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9402 		if (!bpl)
9403 			return IOCB_ERROR;
9404 
9405 		/* Should already be byte swapped. */
9406 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9407 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9408 		/* swap the size field back to the cpu so we
9409 		 * can assign it to the sgl.
9410 		 */
9411 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9412 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9413 		total_len = 0;
9414 		for (i = 0; i < numBdes; i++) {
9415 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9416 			total_len += bde.tus.f.bdeSize;
9417 		}
9418 	} else
9419 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9420 
9421 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9422 	cmnd = iocbq->iocb.ulpCommand;
9423 
9424 	switch (iocbq->iocb.ulpCommand) {
9425 	case CMD_ELS_REQUEST64_CR:
9426 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9427 			ndlp = iocbq->context_un.ndlp;
9428 		else
9429 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9430 		if (!iocbq->iocb.ulpLe) {
9431 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9432 				"2007 Only Limited Edition cmd Format"
9433 				" supported 0x%x\n",
9434 				iocbq->iocb.ulpCommand);
9435 			return IOCB_ERROR;
9436 		}
9437 
9438 		wqe->els_req.payload_len = xmit_len;
9439 		/* Els_reguest64 has a TMO */
9440 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9441 			iocbq->iocb.ulpTimeout);
9442 		/* Need a VF for word 4 set the vf bit*/
9443 		bf_set(els_req64_vf, &wqe->els_req, 0);
9444 		/* And a VFID for word 12 */
9445 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9446 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9447 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9448 		       iocbq->iocb.ulpContext);
9449 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9450 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9451 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9452 		if (command_type == ELS_COMMAND_FIP)
9453 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9454 					>> LPFC_FIP_ELS_ID_SHIFT);
9455 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9456 					iocbq->context2)->virt);
9457 		if_type = bf_get(lpfc_sli_intf_if_type,
9458 					&phba->sli4_hba.sli_intf);
9459 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9460 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9461 				*pcmd == ELS_CMD_SCR ||
9462 				*pcmd == ELS_CMD_RSCN_XMT ||
9463 				*pcmd == ELS_CMD_FDISC ||
9464 				*pcmd == ELS_CMD_LOGO ||
9465 				*pcmd == ELS_CMD_PLOGI)) {
9466 				bf_set(els_req64_sp, &wqe->els_req, 1);
9467 				bf_set(els_req64_sid, &wqe->els_req,
9468 					iocbq->vport->fc_myDID);
9469 				if ((*pcmd == ELS_CMD_FLOGI) &&
9470 					!(phba->fc_topology ==
9471 						LPFC_TOPOLOGY_LOOP))
9472 					bf_set(els_req64_sid, &wqe->els_req, 0);
9473 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9474 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9475 					phba->vpi_ids[iocbq->vport->vpi]);
9476 			} else if (pcmd && iocbq->context1) {
9477 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9478 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9479 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9480 			}
9481 		}
9482 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9483 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9484 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9485 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9486 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9487 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9488 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9489 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9490 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9491 		break;
9492 	case CMD_XMIT_SEQUENCE64_CX:
9493 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9494 		       iocbq->iocb.un.ulpWord[3]);
9495 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9496 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9497 		/* The entire sequence is transmitted for this IOCB */
9498 		xmit_len = total_len;
9499 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9500 		if (phba->link_flag & LS_LOOPBACK_MODE)
9501 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9502 		/* fall through */
9503 	case CMD_XMIT_SEQUENCE64_CR:
9504 		/* word3 iocb=io_tag32 wqe=reserved */
9505 		wqe->xmit_sequence.rsvd3 = 0;
9506 		/* word4 relative_offset memcpy */
9507 		/* word5 r_ctl/df_ctl memcpy */
9508 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9509 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9510 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9511 		       LPFC_WQE_IOD_WRITE);
9512 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9513 		       LPFC_WQE_LENLOC_WORD12);
9514 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9515 		wqe->xmit_sequence.xmit_len = xmit_len;
9516 		command_type = OTHER_COMMAND;
9517 		break;
9518 	case CMD_XMIT_BCAST64_CN:
9519 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9520 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9521 		/* word4 iocb=rsvd wqe=rsvd */
9522 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9523 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9524 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9525 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9526 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9527 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9528 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9529 		       LPFC_WQE_LENLOC_WORD3);
9530 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9531 		break;
9532 	case CMD_FCP_IWRITE64_CR:
9533 		command_type = FCP_COMMAND_DATA_OUT;
9534 		/* word3 iocb=iotag wqe=payload_offset_len */
9535 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9536 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9537 		       xmit_len + sizeof(struct fcp_rsp));
9538 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9539 		       0);
9540 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9541 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9542 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9543 		       iocbq->iocb.ulpFCP2Rcvy);
9544 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9545 		/* Always open the exchange */
9546 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9547 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9548 		       LPFC_WQE_LENLOC_WORD4);
9549 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9550 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9551 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9552 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9553 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9554 			if (iocbq->priority) {
9555 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9556 				       (iocbq->priority << 1));
9557 			} else {
9558 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9559 				       (phba->cfg_XLanePriority << 1));
9560 			}
9561 		}
9562 		/* Note, word 10 is already initialized to 0 */
9563 
9564 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9565 		if (phba->cfg_enable_pbde)
9566 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9567 		else
9568 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9569 
9570 		if (phba->fcp_embed_io) {
9571 			struct lpfc_io_buf *lpfc_cmd;
9572 			struct sli4_sge *sgl;
9573 			struct fcp_cmnd *fcp_cmnd;
9574 			uint32_t *ptr;
9575 
9576 			/* 128 byte wqe support here */
9577 
9578 			lpfc_cmd = iocbq->context1;
9579 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9580 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9581 
9582 			/* Word 0-2 - FCP_CMND */
9583 			wqe->generic.bde.tus.f.bdeFlags =
9584 				BUFF_TYPE_BDE_IMMED;
9585 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9586 			wqe->generic.bde.addrHigh = 0;
9587 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9588 
9589 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9590 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9591 
9592 			/* Word 22-29  FCP CMND Payload */
9593 			ptr = &wqe->words[22];
9594 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9595 		}
9596 		break;
9597 	case CMD_FCP_IREAD64_CR:
9598 		/* word3 iocb=iotag wqe=payload_offset_len */
9599 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9600 		bf_set(payload_offset_len, &wqe->fcp_iread,
9601 		       xmit_len + sizeof(struct fcp_rsp));
9602 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9603 		       0);
9604 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9605 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9606 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9607 		       iocbq->iocb.ulpFCP2Rcvy);
9608 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9609 		/* Always open the exchange */
9610 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9611 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9612 		       LPFC_WQE_LENLOC_WORD4);
9613 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9614 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9615 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9616 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9617 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9618 			if (iocbq->priority) {
9619 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9620 				       (iocbq->priority << 1));
9621 			} else {
9622 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9623 				       (phba->cfg_XLanePriority << 1));
9624 			}
9625 		}
9626 		/* Note, word 10 is already initialized to 0 */
9627 
9628 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9629 		if (phba->cfg_enable_pbde)
9630 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9631 		else
9632 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9633 
9634 		if (phba->fcp_embed_io) {
9635 			struct lpfc_io_buf *lpfc_cmd;
9636 			struct sli4_sge *sgl;
9637 			struct fcp_cmnd *fcp_cmnd;
9638 			uint32_t *ptr;
9639 
9640 			/* 128 byte wqe support here */
9641 
9642 			lpfc_cmd = iocbq->context1;
9643 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9644 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9645 
9646 			/* Word 0-2 - FCP_CMND */
9647 			wqe->generic.bde.tus.f.bdeFlags =
9648 				BUFF_TYPE_BDE_IMMED;
9649 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9650 			wqe->generic.bde.addrHigh = 0;
9651 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9652 
9653 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9654 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9655 
9656 			/* Word 22-29  FCP CMND Payload */
9657 			ptr = &wqe->words[22];
9658 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9659 		}
9660 		break;
9661 	case CMD_FCP_ICMND64_CR:
9662 		/* word3 iocb=iotag wqe=payload_offset_len */
9663 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9664 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9665 		       xmit_len + sizeof(struct fcp_rsp));
9666 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9667 		       0);
9668 		/* word3 iocb=IO_TAG wqe=reserved */
9669 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9670 		/* Always open the exchange */
9671 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9672 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9673 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9674 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9675 		       LPFC_WQE_LENLOC_NONE);
9676 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9677 		       iocbq->iocb.ulpFCP2Rcvy);
9678 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9679 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9680 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9681 			if (iocbq->priority) {
9682 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9683 				       (iocbq->priority << 1));
9684 			} else {
9685 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9686 				       (phba->cfg_XLanePriority << 1));
9687 			}
9688 		}
9689 		/* Note, word 10 is already initialized to 0 */
9690 
9691 		if (phba->fcp_embed_io) {
9692 			struct lpfc_io_buf *lpfc_cmd;
9693 			struct sli4_sge *sgl;
9694 			struct fcp_cmnd *fcp_cmnd;
9695 			uint32_t *ptr;
9696 
9697 			/* 128 byte wqe support here */
9698 
9699 			lpfc_cmd = iocbq->context1;
9700 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9701 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9702 
9703 			/* Word 0-2 - FCP_CMND */
9704 			wqe->generic.bde.tus.f.bdeFlags =
9705 				BUFF_TYPE_BDE_IMMED;
9706 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9707 			wqe->generic.bde.addrHigh = 0;
9708 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9709 
9710 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9711 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9712 
9713 			/* Word 22-29  FCP CMND Payload */
9714 			ptr = &wqe->words[22];
9715 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9716 		}
9717 		break;
9718 	case CMD_GEN_REQUEST64_CR:
9719 		/* For this command calculate the xmit length of the
9720 		 * request bde.
9721 		 */
9722 		xmit_len = 0;
9723 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9724 			sizeof(struct ulp_bde64);
9725 		for (i = 0; i < numBdes; i++) {
9726 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9727 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9728 				break;
9729 			xmit_len += bde.tus.f.bdeSize;
9730 		}
9731 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9732 		wqe->gen_req.request_payload_len = xmit_len;
9733 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9734 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9735 		/* word6 context tag copied in memcpy */
9736 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9737 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9738 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9739 				"2015 Invalid CT %x command 0x%x\n",
9740 				ct, iocbq->iocb.ulpCommand);
9741 			return IOCB_ERROR;
9742 		}
9743 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9744 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9745 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9746 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9747 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9748 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9749 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9750 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9751 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9752 		command_type = OTHER_COMMAND;
9753 		break;
9754 	case CMD_XMIT_ELS_RSP64_CX:
9755 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9756 		/* words0-2 BDE memcpy */
9757 		/* word3 iocb=iotag32 wqe=response_payload_len */
9758 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9759 		/* word4 */
9760 		wqe->xmit_els_rsp.word4 = 0;
9761 		/* word5 iocb=rsvd wge=did */
9762 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9763 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9764 
9765 		if_type = bf_get(lpfc_sli_intf_if_type,
9766 					&phba->sli4_hba.sli_intf);
9767 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9768 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9769 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9770 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9771 					iocbq->vport->fc_myDID);
9772 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9773 					bf_set(wqe_els_did,
9774 						&wqe->xmit_els_rsp.wqe_dest, 0);
9775 				}
9776 			}
9777 		}
9778 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9779 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9780 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9781 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9782 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9783 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9784 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9785 			       phba->vpi_ids[iocbq->vport->vpi]);
9786 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9787 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9788 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9789 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9790 		       LPFC_WQE_LENLOC_WORD3);
9791 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9792 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9793 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9794 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9795 					iocbq->context2)->virt);
9796 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9797 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9798 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9799 					iocbq->vport->fc_myDID);
9800 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9801 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9802 					phba->vpi_ids[phba->pport->vpi]);
9803 		}
9804 		command_type = OTHER_COMMAND;
9805 		break;
9806 	case CMD_CLOSE_XRI_CN:
9807 	case CMD_ABORT_XRI_CN:
9808 	case CMD_ABORT_XRI_CX:
9809 		/* words 0-2 memcpy should be 0 rserved */
9810 		/* port will send abts */
9811 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9812 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9813 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9814 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9815 		} else
9816 			fip = 0;
9817 
9818 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9819 			/*
9820 			 * The link is down, or the command was ELS_FIP
9821 			 * so the fw does not need to send abts
9822 			 * on the wire.
9823 			 */
9824 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9825 		else
9826 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9827 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9828 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9829 		wqe->abort_cmd.rsrvd5 = 0;
9830 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9831 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9832 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9833 		/*
9834 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9835 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9836 		 */
9837 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9838 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9839 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9840 		       LPFC_WQE_LENLOC_NONE);
9841 		cmnd = CMD_ABORT_XRI_CX;
9842 		command_type = OTHER_COMMAND;
9843 		xritag = 0;
9844 		break;
9845 	case CMD_XMIT_BLS_RSP64_CX:
9846 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9847 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9848 		 * we re-construct this WQE here based on information in
9849 		 * iocbq from scratch.
9850 		 */
9851 		memset(wqe, 0, sizeof(*wqe));
9852 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9853 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9854 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9855 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9856 		    LPFC_ABTS_UNSOL_INT) {
9857 			/* ABTS sent by initiator to CT exchange, the
9858 			 * RX_ID field will be filled with the newly
9859 			 * allocated responder XRI.
9860 			 */
9861 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9862 			       iocbq->sli4_xritag);
9863 		} else {
9864 			/* ABTS sent by responder to CT exchange, the
9865 			 * RX_ID field will be filled with the responder
9866 			 * RX_ID from ABTS.
9867 			 */
9868 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9869 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9870 		}
9871 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9872 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9873 
9874 		/* Use CT=VPI */
9875 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9876 			ndlp->nlp_DID);
9877 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9878 			iocbq->iocb.ulpContext);
9879 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9880 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9881 			phba->vpi_ids[phba->pport->vpi]);
9882 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9883 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9884 		       LPFC_WQE_LENLOC_NONE);
9885 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9886 		command_type = OTHER_COMMAND;
9887 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9888 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9889 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9890 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9891 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9892 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9893 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9894 		}
9895 
9896 		break;
9897 	case CMD_SEND_FRAME:
9898 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9899 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9900 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9901 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9902 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9903 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9904 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9905 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
9906 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9907 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9908 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9909 		return 0;
9910 	case CMD_XRI_ABORTED_CX:
9911 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9912 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9913 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9914 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9915 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9916 	default:
9917 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9918 				"2014 Invalid command 0x%x\n",
9919 				iocbq->iocb.ulpCommand);
9920 		return IOCB_ERROR;
9921 		break;
9922 	}
9923 
9924 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9925 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9926 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9927 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9928 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9929 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9930 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9931 			      LPFC_IO_DIF_INSERT);
9932 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9933 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9934 	wqe->generic.wqe_com.abort_tag = abort_tag;
9935 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9936 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9937 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9938 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9939 	return 0;
9940 }
9941 
9942 /**
9943  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9944  * @phba: Pointer to HBA context object.
9945  * @ring_number: SLI ring number to issue iocb on.
9946  * @piocb: Pointer to command iocb.
9947  * @flag: Flag indicating if this command can be put into txq.
9948  *
9949  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9950  * an iocb command to an HBA with SLI-4 interface spec.
9951  *
9952  * This function is called with ringlock held. The function will return success
9953  * after it successfully submit the iocb to firmware or after adding to the
9954  * txq.
9955  **/
9956 static int
9957 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9958 			 struct lpfc_iocbq *piocb, uint32_t flag)
9959 {
9960 	struct lpfc_sglq *sglq;
9961 	union lpfc_wqe128 wqe;
9962 	struct lpfc_queue *wq;
9963 	struct lpfc_sli_ring *pring;
9964 
9965 	/* Get the WQ */
9966 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9967 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9968 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
9969 	} else {
9970 		wq = phba->sli4_hba.els_wq;
9971 	}
9972 
9973 	/* Get corresponding ring */
9974 	pring = wq->pring;
9975 
9976 	/*
9977 	 * The WQE can be either 64 or 128 bytes,
9978 	 */
9979 
9980 	lockdep_assert_held(&pring->ring_lock);
9981 
9982 	if (piocb->sli4_xritag == NO_XRI) {
9983 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9984 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9985 			sglq = NULL;
9986 		else {
9987 			if (!list_empty(&pring->txq)) {
9988 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9989 					__lpfc_sli_ringtx_put(phba,
9990 						pring, piocb);
9991 					return IOCB_SUCCESS;
9992 				} else {
9993 					return IOCB_BUSY;
9994 				}
9995 			} else {
9996 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9997 				if (!sglq) {
9998 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9999 						__lpfc_sli_ringtx_put(phba,
10000 								pring,
10001 								piocb);
10002 						return IOCB_SUCCESS;
10003 					} else
10004 						return IOCB_BUSY;
10005 				}
10006 			}
10007 		}
10008 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
10009 		/* These IO's already have an XRI and a mapped sgl. */
10010 		sglq = NULL;
10011 	else {
10012 		/*
10013 		 * This is a continuation of a commandi,(CX) so this
10014 		 * sglq is on the active list
10015 		 */
10016 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10017 		if (!sglq)
10018 			return IOCB_ERROR;
10019 	}
10020 
10021 	if (sglq) {
10022 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10023 		piocb->sli4_xritag = sglq->sli4_xritag;
10024 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10025 			return IOCB_ERROR;
10026 	}
10027 
10028 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10029 		return IOCB_ERROR;
10030 
10031 	if (lpfc_sli4_wq_put(wq, &wqe))
10032 		return IOCB_ERROR;
10033 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10034 
10035 	return 0;
10036 }
10037 
10038 /**
10039  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10040  *
10041  * This routine wraps the actual lockless version for issusing IOCB function
10042  * pointer from the lpfc_hba struct.
10043  *
10044  * Return codes:
10045  * IOCB_ERROR - Error
10046  * IOCB_SUCCESS - Success
10047  * IOCB_BUSY - Busy
10048  **/
10049 int
10050 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10051 		struct lpfc_iocbq *piocb, uint32_t flag)
10052 {
10053 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10054 }
10055 
10056 /**
10057  * lpfc_sli_api_table_setup - Set up sli api function jump table
10058  * @phba: The hba struct for which this call is being executed.
10059  * @dev_grp: The HBA PCI-Device group number.
10060  *
10061  * This routine sets up the SLI interface API function jump table in @phba
10062  * struct.
10063  * Returns: 0 - success, -ENODEV - failure.
10064  **/
10065 int
10066 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10067 {
10068 
10069 	switch (dev_grp) {
10070 	case LPFC_PCI_DEV_LP:
10071 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10072 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10073 		break;
10074 	case LPFC_PCI_DEV_OC:
10075 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10076 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10077 		break;
10078 	default:
10079 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10080 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10081 				dev_grp);
10082 		return -ENODEV;
10083 		break;
10084 	}
10085 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10086 	return 0;
10087 }
10088 
10089 /**
10090  * lpfc_sli4_calc_ring - Calculates which ring to use
10091  * @phba: Pointer to HBA context object.
10092  * @piocb: Pointer to command iocb.
10093  *
10094  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10095  * hba_wqidx, thus we need to calculate the corresponding ring.
10096  * Since ABORTS must go on the same WQ of the command they are
10097  * aborting, we use command's hba_wqidx.
10098  */
10099 struct lpfc_sli_ring *
10100 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10101 {
10102 	struct lpfc_io_buf *lpfc_cmd;
10103 
10104 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10105 		if (unlikely(!phba->sli4_hba.hdwq))
10106 			return NULL;
10107 		/*
10108 		 * for abort iocb hba_wqidx should already
10109 		 * be setup based on what work queue we used.
10110 		 */
10111 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10112 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10113 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10114 		}
10115 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10116 	} else {
10117 		if (unlikely(!phba->sli4_hba.els_wq))
10118 			return NULL;
10119 		piocb->hba_wqidx = 0;
10120 		return phba->sli4_hba.els_wq->pring;
10121 	}
10122 }
10123 
10124 /**
10125  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10126  * @phba: Pointer to HBA context object.
10127  * @pring: Pointer to driver SLI ring object.
10128  * @piocb: Pointer to command iocb.
10129  * @flag: Flag indicating if this command can be put into txq.
10130  *
10131  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10132  * function. This function gets the hbalock and calls
10133  * __lpfc_sli_issue_iocb function and will return the error returned
10134  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10135  * functions which do not hold hbalock.
10136  **/
10137 int
10138 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10139 		    struct lpfc_iocbq *piocb, uint32_t flag)
10140 {
10141 	struct lpfc_sli_ring *pring;
10142 	struct lpfc_queue *eq;
10143 	unsigned long iflags;
10144 	int rc;
10145 
10146 	if (phba->sli_rev == LPFC_SLI_REV4) {
10147 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10148 
10149 		pring = lpfc_sli4_calc_ring(phba, piocb);
10150 		if (unlikely(pring == NULL))
10151 			return IOCB_ERROR;
10152 
10153 		spin_lock_irqsave(&pring->ring_lock, iflags);
10154 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10155 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10156 
10157 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10158 	} else {
10159 		/* For now, SLI2/3 will still use hbalock */
10160 		spin_lock_irqsave(&phba->hbalock, iflags);
10161 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10162 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10163 	}
10164 	return rc;
10165 }
10166 
10167 /**
10168  * lpfc_extra_ring_setup - Extra ring setup function
10169  * @phba: Pointer to HBA context object.
10170  *
10171  * This function is called while driver attaches with the
10172  * HBA to setup the extra ring. The extra ring is used
10173  * only when driver needs to support target mode functionality
10174  * or IP over FC functionalities.
10175  *
10176  * This function is called with no lock held. SLI3 only.
10177  **/
10178 static int
10179 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10180 {
10181 	struct lpfc_sli *psli;
10182 	struct lpfc_sli_ring *pring;
10183 
10184 	psli = &phba->sli;
10185 
10186 	/* Adjust cmd/rsp ring iocb entries more evenly */
10187 
10188 	/* Take some away from the FCP ring */
10189 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10190 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10191 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10192 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10193 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10194 
10195 	/* and give them to the extra ring */
10196 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10197 
10198 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10199 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10200 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10201 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10202 
10203 	/* Setup default profile for this ring */
10204 	pring->iotag_max = 4096;
10205 	pring->num_mask = 1;
10206 	pring->prt[0].profile = 0;      /* Mask 0 */
10207 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10208 	pring->prt[0].type = phba->cfg_multi_ring_type;
10209 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10210 	return 0;
10211 }
10212 
10213 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10214  * @phba: Pointer to HBA context object.
10215  * @iocbq: Pointer to iocb object.
10216  *
10217  * The async_event handler calls this routine when it receives
10218  * an ASYNC_STATUS_CN event from the port.  The port generates
10219  * this event when an Abort Sequence request to an rport fails
10220  * twice in succession.  The abort could be originated by the
10221  * driver or by the port.  The ABTS could have been for an ELS
10222  * or FCP IO.  The port only generates this event when an ABTS
10223  * fails to complete after one retry.
10224  */
10225 static void
10226 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10227 			  struct lpfc_iocbq *iocbq)
10228 {
10229 	struct lpfc_nodelist *ndlp = NULL;
10230 	uint16_t rpi = 0, vpi = 0;
10231 	struct lpfc_vport *vport = NULL;
10232 
10233 	/* The rpi in the ulpContext is vport-sensitive. */
10234 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10235 	rpi = iocbq->iocb.ulpContext;
10236 
10237 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10238 			"3092 Port generated ABTS async event "
10239 			"on vpi %d rpi %d status 0x%x\n",
10240 			vpi, rpi, iocbq->iocb.ulpStatus);
10241 
10242 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10243 	if (!vport)
10244 		goto err_exit;
10245 	ndlp = lpfc_findnode_rpi(vport, rpi);
10246 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10247 		goto err_exit;
10248 
10249 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10250 		lpfc_sli_abts_recover_port(vport, ndlp);
10251 	return;
10252 
10253  err_exit:
10254 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10255 			"3095 Event Context not found, no "
10256 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10257 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10258 			vpi, rpi);
10259 }
10260 
10261 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10262  * @phba: pointer to HBA context object.
10263  * @ndlp: nodelist pointer for the impacted rport.
10264  * @axri: pointer to the wcqe containing the failed exchange.
10265  *
10266  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10267  * port.  The port generates this event when an abort exchange request to an
10268  * rport fails twice in succession with no reply.  The abort could be originated
10269  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10270  */
10271 void
10272 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10273 			   struct lpfc_nodelist *ndlp,
10274 			   struct sli4_wcqe_xri_aborted *axri)
10275 {
10276 	struct lpfc_vport *vport;
10277 	uint32_t ext_status = 0;
10278 
10279 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10280 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10281 				"3115 Node Context not found, driver "
10282 				"ignoring abts err event\n");
10283 		return;
10284 	}
10285 
10286 	vport = ndlp->vport;
10287 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10288 			"3116 Port generated FCP XRI ABORT event on "
10289 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10290 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10291 			bf_get(lpfc_wcqe_xa_xri, axri),
10292 			bf_get(lpfc_wcqe_xa_status, axri),
10293 			axri->parameter);
10294 
10295 	/*
10296 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10297 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10298 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10299 	 */
10300 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10301 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10302 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10303 		lpfc_sli_abts_recover_port(vport, ndlp);
10304 }
10305 
10306 /**
10307  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10308  * @phba: Pointer to HBA context object.
10309  * @pring: Pointer to driver SLI ring object.
10310  * @iocbq: Pointer to iocb object.
10311  *
10312  * This function is called by the slow ring event handler
10313  * function when there is an ASYNC event iocb in the ring.
10314  * This function is called with no lock held.
10315  * Currently this function handles only temperature related
10316  * ASYNC events. The function decodes the temperature sensor
10317  * event message and posts events for the management applications.
10318  **/
10319 static void
10320 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10321 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10322 {
10323 	IOCB_t *icmd;
10324 	uint16_t evt_code;
10325 	struct temp_event temp_event_data;
10326 	struct Scsi_Host *shost;
10327 	uint32_t *iocb_w;
10328 
10329 	icmd = &iocbq->iocb;
10330 	evt_code = icmd->un.asyncstat.evt_code;
10331 
10332 	switch (evt_code) {
10333 	case ASYNC_TEMP_WARN:
10334 	case ASYNC_TEMP_SAFE:
10335 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10336 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10337 		if (evt_code == ASYNC_TEMP_WARN) {
10338 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10339 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10340 				"0347 Adapter is very hot, please take "
10341 				"corrective action. temperature : %d Celsius\n",
10342 				(uint32_t) icmd->ulpContext);
10343 		} else {
10344 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10345 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10346 				"0340 Adapter temperature is OK now. "
10347 				"temperature : %d Celsius\n",
10348 				(uint32_t) icmd->ulpContext);
10349 		}
10350 
10351 		/* Send temperature change event to applications */
10352 		shost = lpfc_shost_from_vport(phba->pport);
10353 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10354 			sizeof(temp_event_data), (char *) &temp_event_data,
10355 			LPFC_NL_VENDOR_ID);
10356 		break;
10357 	case ASYNC_STATUS_CN:
10358 		lpfc_sli_abts_err_handler(phba, iocbq);
10359 		break;
10360 	default:
10361 		iocb_w = (uint32_t *) icmd;
10362 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10363 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10364 			" evt_code 0x%x\n"
10365 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10366 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10367 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10368 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10369 			pring->ringno, icmd->un.asyncstat.evt_code,
10370 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10371 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10372 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10373 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10374 
10375 		break;
10376 	}
10377 }
10378 
10379 
10380 /**
10381  * lpfc_sli4_setup - SLI ring setup function
10382  * @phba: Pointer to HBA context object.
10383  *
10384  * lpfc_sli_setup sets up rings of the SLI interface with
10385  * number of iocbs per ring and iotags. This function is
10386  * called while driver attach to the HBA and before the
10387  * interrupts are enabled. So there is no need for locking.
10388  *
10389  * This function always returns 0.
10390  **/
10391 int
10392 lpfc_sli4_setup(struct lpfc_hba *phba)
10393 {
10394 	struct lpfc_sli_ring *pring;
10395 
10396 	pring = phba->sli4_hba.els_wq->pring;
10397 	pring->num_mask = LPFC_MAX_RING_MASK;
10398 	pring->prt[0].profile = 0;	/* Mask 0 */
10399 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10400 	pring->prt[0].type = FC_TYPE_ELS;
10401 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10402 	    lpfc_els_unsol_event;
10403 	pring->prt[1].profile = 0;	/* Mask 1 */
10404 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10405 	pring->prt[1].type = FC_TYPE_ELS;
10406 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10407 	    lpfc_els_unsol_event;
10408 	pring->prt[2].profile = 0;	/* Mask 2 */
10409 	/* NameServer Inquiry */
10410 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10411 	/* NameServer */
10412 	pring->prt[2].type = FC_TYPE_CT;
10413 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10414 	    lpfc_ct_unsol_event;
10415 	pring->prt[3].profile = 0;	/* Mask 3 */
10416 	/* NameServer response */
10417 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10418 	/* NameServer */
10419 	pring->prt[3].type = FC_TYPE_CT;
10420 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10421 	    lpfc_ct_unsol_event;
10422 	return 0;
10423 }
10424 
10425 /**
10426  * lpfc_sli_setup - SLI ring setup function
10427  * @phba: Pointer to HBA context object.
10428  *
10429  * lpfc_sli_setup sets up rings of the SLI interface with
10430  * number of iocbs per ring and iotags. This function is
10431  * called while driver attach to the HBA and before the
10432  * interrupts are enabled. So there is no need for locking.
10433  *
10434  * This function always returns 0. SLI3 only.
10435  **/
10436 int
10437 lpfc_sli_setup(struct lpfc_hba *phba)
10438 {
10439 	int i, totiocbsize = 0;
10440 	struct lpfc_sli *psli = &phba->sli;
10441 	struct lpfc_sli_ring *pring;
10442 
10443 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10444 	psli->sli_flag = 0;
10445 
10446 	psli->iocbq_lookup = NULL;
10447 	psli->iocbq_lookup_len = 0;
10448 	psli->last_iotag = 0;
10449 
10450 	for (i = 0; i < psli->num_rings; i++) {
10451 		pring = &psli->sli3_ring[i];
10452 		switch (i) {
10453 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10454 			/* numCiocb and numRiocb are used in config_port */
10455 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10456 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10457 			pring->sli.sli3.numCiocb +=
10458 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10459 			pring->sli.sli3.numRiocb +=
10460 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10461 			pring->sli.sli3.numCiocb +=
10462 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10463 			pring->sli.sli3.numRiocb +=
10464 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10465 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10466 							SLI3_IOCB_CMD_SIZE :
10467 							SLI2_IOCB_CMD_SIZE;
10468 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10469 							SLI3_IOCB_RSP_SIZE :
10470 							SLI2_IOCB_RSP_SIZE;
10471 			pring->iotag_ctr = 0;
10472 			pring->iotag_max =
10473 			    (phba->cfg_hba_queue_depth * 2);
10474 			pring->fast_iotag = pring->iotag_max;
10475 			pring->num_mask = 0;
10476 			break;
10477 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10478 			/* numCiocb and numRiocb are used in config_port */
10479 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10480 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10481 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10482 							SLI3_IOCB_CMD_SIZE :
10483 							SLI2_IOCB_CMD_SIZE;
10484 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10485 							SLI3_IOCB_RSP_SIZE :
10486 							SLI2_IOCB_RSP_SIZE;
10487 			pring->iotag_max = phba->cfg_hba_queue_depth;
10488 			pring->num_mask = 0;
10489 			break;
10490 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10491 			/* numCiocb and numRiocb are used in config_port */
10492 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10493 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10494 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10495 							SLI3_IOCB_CMD_SIZE :
10496 							SLI2_IOCB_CMD_SIZE;
10497 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10498 							SLI3_IOCB_RSP_SIZE :
10499 							SLI2_IOCB_RSP_SIZE;
10500 			pring->fast_iotag = 0;
10501 			pring->iotag_ctr = 0;
10502 			pring->iotag_max = 4096;
10503 			pring->lpfc_sli_rcv_async_status =
10504 				lpfc_sli_async_event_handler;
10505 			pring->num_mask = LPFC_MAX_RING_MASK;
10506 			pring->prt[0].profile = 0;	/* Mask 0 */
10507 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10508 			pring->prt[0].type = FC_TYPE_ELS;
10509 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10510 			    lpfc_els_unsol_event;
10511 			pring->prt[1].profile = 0;	/* Mask 1 */
10512 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10513 			pring->prt[1].type = FC_TYPE_ELS;
10514 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10515 			    lpfc_els_unsol_event;
10516 			pring->prt[2].profile = 0;	/* Mask 2 */
10517 			/* NameServer Inquiry */
10518 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10519 			/* NameServer */
10520 			pring->prt[2].type = FC_TYPE_CT;
10521 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10522 			    lpfc_ct_unsol_event;
10523 			pring->prt[3].profile = 0;	/* Mask 3 */
10524 			/* NameServer response */
10525 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10526 			/* NameServer */
10527 			pring->prt[3].type = FC_TYPE_CT;
10528 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10529 			    lpfc_ct_unsol_event;
10530 			break;
10531 		}
10532 		totiocbsize += (pring->sli.sli3.numCiocb *
10533 			pring->sli.sli3.sizeCiocb) +
10534 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10535 	}
10536 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10537 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10538 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10539 		       "SLI2 SLIM Data: x%x x%lx\n",
10540 		       phba->brd_no, totiocbsize,
10541 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10542 	}
10543 	if (phba->cfg_multi_ring_support == 2)
10544 		lpfc_extra_ring_setup(phba);
10545 
10546 	return 0;
10547 }
10548 
10549 /**
10550  * lpfc_sli4_queue_init - Queue initialization function
10551  * @phba: Pointer to HBA context object.
10552  *
10553  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10554  * ring. This function also initializes ring indices of each ring.
10555  * This function is called during the initialization of the SLI
10556  * interface of an HBA.
10557  * This function is called with no lock held and always returns
10558  * 1.
10559  **/
10560 void
10561 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10562 {
10563 	struct lpfc_sli *psli;
10564 	struct lpfc_sli_ring *pring;
10565 	int i;
10566 
10567 	psli = &phba->sli;
10568 	spin_lock_irq(&phba->hbalock);
10569 	INIT_LIST_HEAD(&psli->mboxq);
10570 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10571 	/* Initialize list headers for txq and txcmplq as double linked lists */
10572 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10573 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10574 		pring->flag = 0;
10575 		pring->ringno = LPFC_FCP_RING;
10576 		pring->txcmplq_cnt = 0;
10577 		INIT_LIST_HEAD(&pring->txq);
10578 		INIT_LIST_HEAD(&pring->txcmplq);
10579 		INIT_LIST_HEAD(&pring->iocb_continueq);
10580 		spin_lock_init(&pring->ring_lock);
10581 	}
10582 	pring = phba->sli4_hba.els_wq->pring;
10583 	pring->flag = 0;
10584 	pring->ringno = LPFC_ELS_RING;
10585 	pring->txcmplq_cnt = 0;
10586 	INIT_LIST_HEAD(&pring->txq);
10587 	INIT_LIST_HEAD(&pring->txcmplq);
10588 	INIT_LIST_HEAD(&pring->iocb_continueq);
10589 	spin_lock_init(&pring->ring_lock);
10590 
10591 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10592 		pring = phba->sli4_hba.nvmels_wq->pring;
10593 		pring->flag = 0;
10594 		pring->ringno = LPFC_ELS_RING;
10595 		pring->txcmplq_cnt = 0;
10596 		INIT_LIST_HEAD(&pring->txq);
10597 		INIT_LIST_HEAD(&pring->txcmplq);
10598 		INIT_LIST_HEAD(&pring->iocb_continueq);
10599 		spin_lock_init(&pring->ring_lock);
10600 	}
10601 
10602 	spin_unlock_irq(&phba->hbalock);
10603 }
10604 
10605 /**
10606  * lpfc_sli_queue_init - Queue initialization function
10607  * @phba: Pointer to HBA context object.
10608  *
10609  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10610  * ring. This function also initializes ring indices of each ring.
10611  * This function is called during the initialization of the SLI
10612  * interface of an HBA.
10613  * This function is called with no lock held and always returns
10614  * 1.
10615  **/
10616 void
10617 lpfc_sli_queue_init(struct lpfc_hba *phba)
10618 {
10619 	struct lpfc_sli *psli;
10620 	struct lpfc_sli_ring *pring;
10621 	int i;
10622 
10623 	psli = &phba->sli;
10624 	spin_lock_irq(&phba->hbalock);
10625 	INIT_LIST_HEAD(&psli->mboxq);
10626 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10627 	/* Initialize list headers for txq and txcmplq as double linked lists */
10628 	for (i = 0; i < psli->num_rings; i++) {
10629 		pring = &psli->sli3_ring[i];
10630 		pring->ringno = i;
10631 		pring->sli.sli3.next_cmdidx  = 0;
10632 		pring->sli.sli3.local_getidx = 0;
10633 		pring->sli.sli3.cmdidx = 0;
10634 		INIT_LIST_HEAD(&pring->iocb_continueq);
10635 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10636 		INIT_LIST_HEAD(&pring->postbufq);
10637 		pring->flag = 0;
10638 		INIT_LIST_HEAD(&pring->txq);
10639 		INIT_LIST_HEAD(&pring->txcmplq);
10640 		spin_lock_init(&pring->ring_lock);
10641 	}
10642 	spin_unlock_irq(&phba->hbalock);
10643 }
10644 
10645 /**
10646  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10647  * @phba: Pointer to HBA context object.
10648  *
10649  * This routine flushes the mailbox command subsystem. It will unconditionally
10650  * flush all the mailbox commands in the three possible stages in the mailbox
10651  * command sub-system: pending mailbox command queue; the outstanding mailbox
10652  * command; and completed mailbox command queue. It is caller's responsibility
10653  * to make sure that the driver is in the proper state to flush the mailbox
10654  * command sub-system. Namely, the posting of mailbox commands into the
10655  * pending mailbox command queue from the various clients must be stopped;
10656  * either the HBA is in a state that it will never works on the outstanding
10657  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10658  * mailbox command has been completed.
10659  **/
10660 static void
10661 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10662 {
10663 	LIST_HEAD(completions);
10664 	struct lpfc_sli *psli = &phba->sli;
10665 	LPFC_MBOXQ_t *pmb;
10666 	unsigned long iflag;
10667 
10668 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10669 	local_bh_disable();
10670 
10671 	/* Flush all the mailbox commands in the mbox system */
10672 	spin_lock_irqsave(&phba->hbalock, iflag);
10673 
10674 	/* The pending mailbox command queue */
10675 	list_splice_init(&phba->sli.mboxq, &completions);
10676 	/* The outstanding active mailbox command */
10677 	if (psli->mbox_active) {
10678 		list_add_tail(&psli->mbox_active->list, &completions);
10679 		psli->mbox_active = NULL;
10680 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10681 	}
10682 	/* The completed mailbox command queue */
10683 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10684 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10685 
10686 	/* Enable softirqs again, done with phba->hbalock */
10687 	local_bh_enable();
10688 
10689 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10690 	while (!list_empty(&completions)) {
10691 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10692 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10693 		if (pmb->mbox_cmpl)
10694 			pmb->mbox_cmpl(phba, pmb);
10695 	}
10696 }
10697 
10698 /**
10699  * lpfc_sli_host_down - Vport cleanup function
10700  * @vport: Pointer to virtual port object.
10701  *
10702  * lpfc_sli_host_down is called to clean up the resources
10703  * associated with a vport before destroying virtual
10704  * port data structures.
10705  * This function does following operations:
10706  * - Free discovery resources associated with this virtual
10707  *   port.
10708  * - Free iocbs associated with this virtual port in
10709  *   the txq.
10710  * - Send abort for all iocb commands associated with this
10711  *   vport in txcmplq.
10712  *
10713  * This function is called with no lock held and always returns 1.
10714  **/
10715 int
10716 lpfc_sli_host_down(struct lpfc_vport *vport)
10717 {
10718 	LIST_HEAD(completions);
10719 	struct lpfc_hba *phba = vport->phba;
10720 	struct lpfc_sli *psli = &phba->sli;
10721 	struct lpfc_queue *qp = NULL;
10722 	struct lpfc_sli_ring *pring;
10723 	struct lpfc_iocbq *iocb, *next_iocb;
10724 	int i;
10725 	unsigned long flags = 0;
10726 	uint16_t prev_pring_flag;
10727 
10728 	lpfc_cleanup_discovery_resources(vport);
10729 
10730 	spin_lock_irqsave(&phba->hbalock, flags);
10731 
10732 	/*
10733 	 * Error everything on the txq since these iocbs
10734 	 * have not been given to the FW yet.
10735 	 * Also issue ABTS for everything on the txcmplq
10736 	 */
10737 	if (phba->sli_rev != LPFC_SLI_REV4) {
10738 		for (i = 0; i < psli->num_rings; i++) {
10739 			pring = &psli->sli3_ring[i];
10740 			prev_pring_flag = pring->flag;
10741 			/* Only slow rings */
10742 			if (pring->ringno == LPFC_ELS_RING) {
10743 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10744 				/* Set the lpfc data pending flag */
10745 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10746 			}
10747 			list_for_each_entry_safe(iocb, next_iocb,
10748 						 &pring->txq, list) {
10749 				if (iocb->vport != vport)
10750 					continue;
10751 				list_move_tail(&iocb->list, &completions);
10752 			}
10753 			list_for_each_entry_safe(iocb, next_iocb,
10754 						 &pring->txcmplq, list) {
10755 				if (iocb->vport != vport)
10756 					continue;
10757 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10758 			}
10759 			pring->flag = prev_pring_flag;
10760 		}
10761 	} else {
10762 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10763 			pring = qp->pring;
10764 			if (!pring)
10765 				continue;
10766 			if (pring == phba->sli4_hba.els_wq->pring) {
10767 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10768 				/* Set the lpfc data pending flag */
10769 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10770 			}
10771 			prev_pring_flag = pring->flag;
10772 			spin_lock(&pring->ring_lock);
10773 			list_for_each_entry_safe(iocb, next_iocb,
10774 						 &pring->txq, list) {
10775 				if (iocb->vport != vport)
10776 					continue;
10777 				list_move_tail(&iocb->list, &completions);
10778 			}
10779 			spin_unlock(&pring->ring_lock);
10780 			list_for_each_entry_safe(iocb, next_iocb,
10781 						 &pring->txcmplq, list) {
10782 				if (iocb->vport != vport)
10783 					continue;
10784 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10785 			}
10786 			pring->flag = prev_pring_flag;
10787 		}
10788 	}
10789 	spin_unlock_irqrestore(&phba->hbalock, flags);
10790 
10791 	/* Cancel all the IOCBs from the completions list */
10792 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10793 			      IOERR_SLI_DOWN);
10794 	return 1;
10795 }
10796 
10797 /**
10798  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10799  * @phba: Pointer to HBA context object.
10800  *
10801  * This function cleans up all iocb, buffers, mailbox commands
10802  * while shutting down the HBA. This function is called with no
10803  * lock held and always returns 1.
10804  * This function does the following to cleanup driver resources:
10805  * - Free discovery resources for each virtual port
10806  * - Cleanup any pending fabric iocbs
10807  * - Iterate through the iocb txq and free each entry
10808  *   in the list.
10809  * - Free up any buffer posted to the HBA
10810  * - Free mailbox commands in the mailbox queue.
10811  **/
10812 int
10813 lpfc_sli_hba_down(struct lpfc_hba *phba)
10814 {
10815 	LIST_HEAD(completions);
10816 	struct lpfc_sli *psli = &phba->sli;
10817 	struct lpfc_queue *qp = NULL;
10818 	struct lpfc_sli_ring *pring;
10819 	struct lpfc_dmabuf *buf_ptr;
10820 	unsigned long flags = 0;
10821 	int i;
10822 
10823 	/* Shutdown the mailbox command sub-system */
10824 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10825 
10826 	lpfc_hba_down_prep(phba);
10827 
10828 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10829 	local_bh_disable();
10830 
10831 	lpfc_fabric_abort_hba(phba);
10832 
10833 	spin_lock_irqsave(&phba->hbalock, flags);
10834 
10835 	/*
10836 	 * Error everything on the txq since these iocbs
10837 	 * have not been given to the FW yet.
10838 	 */
10839 	if (phba->sli_rev != LPFC_SLI_REV4) {
10840 		for (i = 0; i < psli->num_rings; i++) {
10841 			pring = &psli->sli3_ring[i];
10842 			/* Only slow rings */
10843 			if (pring->ringno == LPFC_ELS_RING) {
10844 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10845 				/* Set the lpfc data pending flag */
10846 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10847 			}
10848 			list_splice_init(&pring->txq, &completions);
10849 		}
10850 	} else {
10851 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10852 			pring = qp->pring;
10853 			if (!pring)
10854 				continue;
10855 			spin_lock(&pring->ring_lock);
10856 			list_splice_init(&pring->txq, &completions);
10857 			spin_unlock(&pring->ring_lock);
10858 			if (pring == phba->sli4_hba.els_wq->pring) {
10859 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10860 				/* Set the lpfc data pending flag */
10861 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10862 			}
10863 		}
10864 	}
10865 	spin_unlock_irqrestore(&phba->hbalock, flags);
10866 
10867 	/* Cancel all the IOCBs from the completions list */
10868 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10869 			      IOERR_SLI_DOWN);
10870 
10871 	spin_lock_irqsave(&phba->hbalock, flags);
10872 	list_splice_init(&phba->elsbuf, &completions);
10873 	phba->elsbuf_cnt = 0;
10874 	phba->elsbuf_prev_cnt = 0;
10875 	spin_unlock_irqrestore(&phba->hbalock, flags);
10876 
10877 	while (!list_empty(&completions)) {
10878 		list_remove_head(&completions, buf_ptr,
10879 			struct lpfc_dmabuf, list);
10880 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10881 		kfree(buf_ptr);
10882 	}
10883 
10884 	/* Enable softirqs again, done with phba->hbalock */
10885 	local_bh_enable();
10886 
10887 	/* Return any active mbox cmds */
10888 	del_timer_sync(&psli->mbox_tmo);
10889 
10890 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10891 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10892 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10893 
10894 	return 1;
10895 }
10896 
10897 /**
10898  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10899  * @srcp: Source memory pointer.
10900  * @destp: Destination memory pointer.
10901  * @cnt: Number of words required to be copied.
10902  *
10903  * This function is used for copying data between driver memory
10904  * and the SLI memory. This function also changes the endianness
10905  * of each word if native endianness is different from SLI
10906  * endianness. This function can be called with or without
10907  * lock.
10908  **/
10909 void
10910 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10911 {
10912 	uint32_t *src = srcp;
10913 	uint32_t *dest = destp;
10914 	uint32_t ldata;
10915 	int i;
10916 
10917 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10918 		ldata = *src;
10919 		ldata = le32_to_cpu(ldata);
10920 		*dest = ldata;
10921 		src++;
10922 		dest++;
10923 	}
10924 }
10925 
10926 
10927 /**
10928  * lpfc_sli_bemem_bcopy - SLI memory copy function
10929  * @srcp: Source memory pointer.
10930  * @destp: Destination memory pointer.
10931  * @cnt: Number of words required to be copied.
10932  *
10933  * This function is used for copying data between a data structure
10934  * with big endian representation to local endianness.
10935  * This function can be called with or without lock.
10936  **/
10937 void
10938 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10939 {
10940 	uint32_t *src = srcp;
10941 	uint32_t *dest = destp;
10942 	uint32_t ldata;
10943 	int i;
10944 
10945 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10946 		ldata = *src;
10947 		ldata = be32_to_cpu(ldata);
10948 		*dest = ldata;
10949 		src++;
10950 		dest++;
10951 	}
10952 }
10953 
10954 /**
10955  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10956  * @phba: Pointer to HBA context object.
10957  * @pring: Pointer to driver SLI ring object.
10958  * @mp: Pointer to driver buffer object.
10959  *
10960  * This function is called with no lock held.
10961  * It always return zero after adding the buffer to the postbufq
10962  * buffer list.
10963  **/
10964 int
10965 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10966 			 struct lpfc_dmabuf *mp)
10967 {
10968 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10969 	   later */
10970 	spin_lock_irq(&phba->hbalock);
10971 	list_add_tail(&mp->list, &pring->postbufq);
10972 	pring->postbufq_cnt++;
10973 	spin_unlock_irq(&phba->hbalock);
10974 	return 0;
10975 }
10976 
10977 /**
10978  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10979  * @phba: Pointer to HBA context object.
10980  *
10981  * When HBQ is enabled, buffers are searched based on tags. This function
10982  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10983  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10984  * does not conflict with tags of buffer posted for unsolicited events.
10985  * The function returns the allocated tag. The function is called with
10986  * no locks held.
10987  **/
10988 uint32_t
10989 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10990 {
10991 	spin_lock_irq(&phba->hbalock);
10992 	phba->buffer_tag_count++;
10993 	/*
10994 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10995 	 * a tag assigned by HBQ.
10996 	 */
10997 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10998 	spin_unlock_irq(&phba->hbalock);
10999 	return phba->buffer_tag_count;
11000 }
11001 
11002 /**
11003  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11004  * @phba: Pointer to HBA context object.
11005  * @pring: Pointer to driver SLI ring object.
11006  * @tag: Buffer tag.
11007  *
11008  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11009  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11010  * iocb is posted to the response ring with the tag of the buffer.
11011  * This function searches the pring->postbufq list using the tag
11012  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11013  * iocb. If the buffer is found then lpfc_dmabuf object of the
11014  * buffer is returned to the caller else NULL is returned.
11015  * This function is called with no lock held.
11016  **/
11017 struct lpfc_dmabuf *
11018 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11019 			uint32_t tag)
11020 {
11021 	struct lpfc_dmabuf *mp, *next_mp;
11022 	struct list_head *slp = &pring->postbufq;
11023 
11024 	/* Search postbufq, from the beginning, looking for a match on tag */
11025 	spin_lock_irq(&phba->hbalock);
11026 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11027 		if (mp->buffer_tag == tag) {
11028 			list_del_init(&mp->list);
11029 			pring->postbufq_cnt--;
11030 			spin_unlock_irq(&phba->hbalock);
11031 			return mp;
11032 		}
11033 	}
11034 
11035 	spin_unlock_irq(&phba->hbalock);
11036 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11037 			"0402 Cannot find virtual addr for buffer tag on "
11038 			"ring %d Data x%lx x%px x%px x%x\n",
11039 			pring->ringno, (unsigned long) tag,
11040 			slp->next, slp->prev, pring->postbufq_cnt);
11041 
11042 	return NULL;
11043 }
11044 
11045 /**
11046  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11047  * @phba: Pointer to HBA context object.
11048  * @pring: Pointer to driver SLI ring object.
11049  * @phys: DMA address of the buffer.
11050  *
11051  * This function searches the buffer list using the dma_address
11052  * of unsolicited event to find the driver's lpfc_dmabuf object
11053  * corresponding to the dma_address. The function returns the
11054  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11055  * This function is called by the ct and els unsolicited event
11056  * handlers to get the buffer associated with the unsolicited
11057  * event.
11058  *
11059  * This function is called with no lock held.
11060  **/
11061 struct lpfc_dmabuf *
11062 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11063 			 dma_addr_t phys)
11064 {
11065 	struct lpfc_dmabuf *mp, *next_mp;
11066 	struct list_head *slp = &pring->postbufq;
11067 
11068 	/* Search postbufq, from the beginning, looking for a match on phys */
11069 	spin_lock_irq(&phba->hbalock);
11070 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11071 		if (mp->phys == phys) {
11072 			list_del_init(&mp->list);
11073 			pring->postbufq_cnt--;
11074 			spin_unlock_irq(&phba->hbalock);
11075 			return mp;
11076 		}
11077 	}
11078 
11079 	spin_unlock_irq(&phba->hbalock);
11080 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11081 			"0410 Cannot find virtual addr for mapped buf on "
11082 			"ring %d Data x%llx x%px x%px x%x\n",
11083 			pring->ringno, (unsigned long long)phys,
11084 			slp->next, slp->prev, pring->postbufq_cnt);
11085 	return NULL;
11086 }
11087 
11088 /**
11089  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11090  * @phba: Pointer to HBA context object.
11091  * @cmdiocb: Pointer to driver command iocb object.
11092  * @rspiocb: Pointer to driver response iocb object.
11093  *
11094  * This function is the completion handler for the abort iocbs for
11095  * ELS commands. This function is called from the ELS ring event
11096  * handler with no lock held. This function frees memory resources
11097  * associated with the abort iocb.
11098  **/
11099 static void
11100 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11101 			struct lpfc_iocbq *rspiocb)
11102 {
11103 	IOCB_t *irsp = &rspiocb->iocb;
11104 	uint16_t abort_iotag, abort_context;
11105 	struct lpfc_iocbq *abort_iocb = NULL;
11106 
11107 	if (irsp->ulpStatus) {
11108 
11109 		/*
11110 		 * Assume that the port already completed and returned, or
11111 		 * will return the iocb. Just Log the message.
11112 		 */
11113 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11114 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11115 
11116 		spin_lock_irq(&phba->hbalock);
11117 		if (phba->sli_rev < LPFC_SLI_REV4) {
11118 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11119 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11120 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11121 				spin_unlock_irq(&phba->hbalock);
11122 				goto release_iocb;
11123 			}
11124 			if (abort_iotag != 0 &&
11125 				abort_iotag <= phba->sli.last_iotag)
11126 				abort_iocb =
11127 					phba->sli.iocbq_lookup[abort_iotag];
11128 		} else
11129 			/* For sli4 the abort_tag is the XRI,
11130 			 * so the abort routine puts the iotag  of the iocb
11131 			 * being aborted in the context field of the abort
11132 			 * IOCB.
11133 			 */
11134 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11135 
11136 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11137 				"0327 Cannot abort els iocb x%px "
11138 				"with tag %x context %x, abort status %x, "
11139 				"abort code %x\n",
11140 				abort_iocb, abort_iotag, abort_context,
11141 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11142 
11143 		spin_unlock_irq(&phba->hbalock);
11144 	}
11145 release_iocb:
11146 	lpfc_sli_release_iocbq(phba, cmdiocb);
11147 	return;
11148 }
11149 
11150 /**
11151  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11152  * @phba: Pointer to HBA context object.
11153  * @cmdiocb: Pointer to driver command iocb object.
11154  * @rspiocb: Pointer to driver response iocb object.
11155  *
11156  * The function is called from SLI ring event handler with no
11157  * lock held. This function is the completion handler for ELS commands
11158  * which are aborted. The function frees memory resources used for
11159  * the aborted ELS commands.
11160  **/
11161 static void
11162 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11163 		     struct lpfc_iocbq *rspiocb)
11164 {
11165 	IOCB_t *irsp = &rspiocb->iocb;
11166 
11167 	/* ELS cmd tag <ulpIoTag> completes */
11168 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11169 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11170 			"x%x x%x x%x\n",
11171 			irsp->ulpIoTag, irsp->ulpStatus,
11172 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11173 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11174 		lpfc_ct_free_iocb(phba, cmdiocb);
11175 	else
11176 		lpfc_els_free_iocb(phba, cmdiocb);
11177 	return;
11178 }
11179 
11180 /**
11181  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11182  * @phba: Pointer to HBA context object.
11183  * @pring: Pointer to driver SLI ring object.
11184  * @cmdiocb: Pointer to driver command iocb object.
11185  *
11186  * This function issues an abort iocb for the provided command iocb down to
11187  * the port. Other than the case the outstanding command iocb is an abort
11188  * request, this function issues abort out unconditionally. This function is
11189  * called with hbalock held. The function returns 0 when it fails due to
11190  * memory allocation failure or when the command iocb is an abort request.
11191  **/
11192 static int
11193 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11194 			   struct lpfc_iocbq *cmdiocb)
11195 {
11196 	struct lpfc_vport *vport = cmdiocb->vport;
11197 	struct lpfc_iocbq *abtsiocbp;
11198 	IOCB_t *icmd = NULL;
11199 	IOCB_t *iabt = NULL;
11200 	int retval;
11201 	unsigned long iflags;
11202 	struct lpfc_nodelist *ndlp;
11203 
11204 	lockdep_assert_held(&phba->hbalock);
11205 
11206 	/*
11207 	 * There are certain command types we don't want to abort.  And we
11208 	 * don't want to abort commands that are already in the process of
11209 	 * being aborted.
11210 	 */
11211 	icmd = &cmdiocb->iocb;
11212 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11213 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11214 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11215 		return 0;
11216 
11217 	/* issue ABTS for this IOCB based on iotag */
11218 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11219 	if (abtsiocbp == NULL)
11220 		return 0;
11221 
11222 	/* This signals the response to set the correct status
11223 	 * before calling the completion handler
11224 	 */
11225 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11226 
11227 	iabt = &abtsiocbp->iocb;
11228 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11229 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11230 	if (phba->sli_rev == LPFC_SLI_REV4) {
11231 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11232 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11233 	} else {
11234 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11235 		if (pring->ringno == LPFC_ELS_RING) {
11236 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11237 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11238 		}
11239 	}
11240 	iabt->ulpLe = 1;
11241 	iabt->ulpClass = icmd->ulpClass;
11242 
11243 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11244 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11245 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11246 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11247 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11248 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11249 
11250 	if (phba->link_state >= LPFC_LINK_UP)
11251 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11252 	else
11253 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11254 
11255 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11256 	abtsiocbp->vport = vport;
11257 
11258 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11259 			 "0339 Abort xri x%x, original iotag x%x, "
11260 			 "abort cmd iotag x%x\n",
11261 			 iabt->un.acxri.abortIoTag,
11262 			 iabt->un.acxri.abortContextTag,
11263 			 abtsiocbp->iotag);
11264 
11265 	if (phba->sli_rev == LPFC_SLI_REV4) {
11266 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11267 		if (unlikely(pring == NULL))
11268 			return 0;
11269 		/* Note: both hbalock and ring_lock need to be set here */
11270 		spin_lock_irqsave(&pring->ring_lock, iflags);
11271 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11272 			abtsiocbp, 0);
11273 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11274 	} else {
11275 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11276 			abtsiocbp, 0);
11277 	}
11278 
11279 	if (retval)
11280 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11281 
11282 	/*
11283 	 * Caller to this routine should check for IOCB_ERROR
11284 	 * and handle it properly.  This routine no longer removes
11285 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11286 	 */
11287 	return retval;
11288 }
11289 
11290 /**
11291  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11292  * @phba: Pointer to HBA context object.
11293  * @pring: Pointer to driver SLI ring object.
11294  * @cmdiocb: Pointer to driver command iocb object.
11295  *
11296  * This function issues an abort iocb for the provided command iocb. In case
11297  * of unloading, the abort iocb will not be issued to commands on the ELS
11298  * ring. Instead, the callback function shall be changed to those commands
11299  * so that nothing happens when them finishes. This function is called with
11300  * hbalock held. The function returns 0 when the command iocb is an abort
11301  * request.
11302  **/
11303 int
11304 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11305 			   struct lpfc_iocbq *cmdiocb)
11306 {
11307 	struct lpfc_vport *vport = cmdiocb->vport;
11308 	int retval = IOCB_ERROR;
11309 	IOCB_t *icmd = NULL;
11310 
11311 	lockdep_assert_held(&phba->hbalock);
11312 
11313 	/*
11314 	 * There are certain command types we don't want to abort.  And we
11315 	 * don't want to abort commands that are already in the process of
11316 	 * being aborted.
11317 	 */
11318 	icmd = &cmdiocb->iocb;
11319 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11320 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11321 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11322 		return 0;
11323 
11324 	if (!pring) {
11325 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11326 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11327 		else
11328 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11329 		goto abort_iotag_exit;
11330 	}
11331 
11332 	/*
11333 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11334 	 * the callback so that nothing happens when it finishes.
11335 	 */
11336 	if ((vport->load_flag & FC_UNLOADING) &&
11337 	    (pring->ringno == LPFC_ELS_RING)) {
11338 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11339 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11340 		else
11341 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11342 		goto abort_iotag_exit;
11343 	}
11344 
11345 	/* Now, we try to issue the abort to the cmdiocb out */
11346 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11347 
11348 abort_iotag_exit:
11349 	/*
11350 	 * Caller to this routine should check for IOCB_ERROR
11351 	 * and handle it properly.  This routine no longer removes
11352 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11353 	 */
11354 	return retval;
11355 }
11356 
11357 /**
11358  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11359  * @phba: pointer to lpfc HBA data structure.
11360  *
11361  * This routine will abort all pending and outstanding iocbs to an HBA.
11362  **/
11363 void
11364 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11365 {
11366 	struct lpfc_sli *psli = &phba->sli;
11367 	struct lpfc_sli_ring *pring;
11368 	struct lpfc_queue *qp = NULL;
11369 	int i;
11370 
11371 	if (phba->sli_rev != LPFC_SLI_REV4) {
11372 		for (i = 0; i < psli->num_rings; i++) {
11373 			pring = &psli->sli3_ring[i];
11374 			lpfc_sli_abort_iocb_ring(phba, pring);
11375 		}
11376 		return;
11377 	}
11378 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11379 		pring = qp->pring;
11380 		if (!pring)
11381 			continue;
11382 		lpfc_sli_abort_iocb_ring(phba, pring);
11383 	}
11384 }
11385 
11386 /**
11387  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11388  * @iocbq: Pointer to driver iocb object.
11389  * @vport: Pointer to driver virtual port object.
11390  * @tgt_id: SCSI ID of the target.
11391  * @lun_id: LUN ID of the scsi device.
11392  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11393  *
11394  * This function acts as an iocb filter for functions which abort or count
11395  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11396  * 0 if the filtering criteria is met for the given iocb and will return
11397  * 1 if the filtering criteria is not met.
11398  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11399  * given iocb is for the SCSI device specified by vport, tgt_id and
11400  * lun_id parameter.
11401  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11402  * given iocb is for the SCSI target specified by vport and tgt_id
11403  * parameters.
11404  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11405  * given iocb is for the SCSI host associated with the given vport.
11406  * This function is called with no locks held.
11407  **/
11408 static int
11409 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11410 			   uint16_t tgt_id, uint64_t lun_id,
11411 			   lpfc_ctx_cmd ctx_cmd)
11412 {
11413 	struct lpfc_io_buf *lpfc_cmd;
11414 	int rc = 1;
11415 
11416 	if (iocbq->vport != vport)
11417 		return rc;
11418 
11419 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11420 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11421 		return rc;
11422 
11423 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11424 
11425 	if (lpfc_cmd->pCmd == NULL)
11426 		return rc;
11427 
11428 	switch (ctx_cmd) {
11429 	case LPFC_CTX_LUN:
11430 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11431 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11432 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11433 			rc = 0;
11434 		break;
11435 	case LPFC_CTX_TGT:
11436 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11437 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11438 			rc = 0;
11439 		break;
11440 	case LPFC_CTX_HOST:
11441 		rc = 0;
11442 		break;
11443 	default:
11444 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11445 			__func__, ctx_cmd);
11446 		break;
11447 	}
11448 
11449 	return rc;
11450 }
11451 
11452 /**
11453  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11454  * @vport: Pointer to virtual port.
11455  * @tgt_id: SCSI ID of the target.
11456  * @lun_id: LUN ID of the scsi device.
11457  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11458  *
11459  * This function returns number of FCP commands pending for the vport.
11460  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11461  * commands pending on the vport associated with SCSI device specified
11462  * by tgt_id and lun_id parameters.
11463  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11464  * commands pending on the vport associated with SCSI target specified
11465  * by tgt_id parameter.
11466  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11467  * commands pending on the vport.
11468  * This function returns the number of iocbs which satisfy the filter.
11469  * This function is called without any lock held.
11470  **/
11471 int
11472 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11473 		  lpfc_ctx_cmd ctx_cmd)
11474 {
11475 	struct lpfc_hba *phba = vport->phba;
11476 	struct lpfc_iocbq *iocbq;
11477 	int sum, i;
11478 
11479 	spin_lock_irq(&phba->hbalock);
11480 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11481 		iocbq = phba->sli.iocbq_lookup[i];
11482 
11483 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11484 						ctx_cmd) == 0)
11485 			sum++;
11486 	}
11487 	spin_unlock_irq(&phba->hbalock);
11488 
11489 	return sum;
11490 }
11491 
11492 /**
11493  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11494  * @phba: Pointer to HBA context object
11495  * @cmdiocb: Pointer to command iocb object.
11496  * @rspiocb: Pointer to response iocb object.
11497  *
11498  * This function is called when an aborted FCP iocb completes. This
11499  * function is called by the ring event handler with no lock held.
11500  * This function frees the iocb.
11501  **/
11502 void
11503 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11504 			struct lpfc_iocbq *rspiocb)
11505 {
11506 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11507 			"3096 ABORT_XRI_CN completing on rpi x%x "
11508 			"original iotag x%x, abort cmd iotag x%x "
11509 			"status 0x%x, reason 0x%x\n",
11510 			cmdiocb->iocb.un.acxri.abortContextTag,
11511 			cmdiocb->iocb.un.acxri.abortIoTag,
11512 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11513 			rspiocb->iocb.un.ulpWord[4]);
11514 	lpfc_sli_release_iocbq(phba, cmdiocb);
11515 	return;
11516 }
11517 
11518 /**
11519  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11520  * @vport: Pointer to virtual port.
11521  * @pring: Pointer to driver SLI ring object.
11522  * @tgt_id: SCSI ID of the target.
11523  * @lun_id: LUN ID of the scsi device.
11524  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11525  *
11526  * This function sends an abort command for every SCSI command
11527  * associated with the given virtual port pending on the ring
11528  * filtered by lpfc_sli_validate_fcp_iocb function.
11529  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11530  * FCP iocbs associated with lun specified by tgt_id and lun_id
11531  * parameters
11532  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11533  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11534  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11535  * FCP iocbs associated with virtual port.
11536  * This function returns number of iocbs it failed to abort.
11537  * This function is called with no locks held.
11538  **/
11539 int
11540 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11541 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11542 {
11543 	struct lpfc_hba *phba = vport->phba;
11544 	struct lpfc_iocbq *iocbq;
11545 	struct lpfc_iocbq *abtsiocb;
11546 	struct lpfc_sli_ring *pring_s4;
11547 	IOCB_t *cmd = NULL;
11548 	int errcnt = 0, ret_val = 0;
11549 	int i;
11550 
11551 	/* all I/Os are in process of being flushed */
11552 	if (phba->hba_flag & HBA_IOQ_FLUSH)
11553 		return errcnt;
11554 
11555 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11556 		iocbq = phba->sli.iocbq_lookup[i];
11557 
11558 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11559 					       abort_cmd) != 0)
11560 			continue;
11561 
11562 		/*
11563 		 * If the iocbq is already being aborted, don't take a second
11564 		 * action, but do count it.
11565 		 */
11566 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11567 			continue;
11568 
11569 		/* issue ABTS for this IOCB based on iotag */
11570 		abtsiocb = lpfc_sli_get_iocbq(phba);
11571 		if (abtsiocb == NULL) {
11572 			errcnt++;
11573 			continue;
11574 		}
11575 
11576 		/* indicate the IO is being aborted by the driver. */
11577 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11578 
11579 		cmd = &iocbq->iocb;
11580 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11581 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11582 		if (phba->sli_rev == LPFC_SLI_REV4)
11583 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11584 		else
11585 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11586 		abtsiocb->iocb.ulpLe = 1;
11587 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11588 		abtsiocb->vport = vport;
11589 
11590 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11591 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11592 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11593 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11594 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11595 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11596 
11597 		if (lpfc_is_link_up(phba))
11598 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11599 		else
11600 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11601 
11602 		/* Setup callback routine and issue the command. */
11603 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11604 		if (phba->sli_rev == LPFC_SLI_REV4) {
11605 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11606 			if (!pring_s4)
11607 				continue;
11608 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11609 						      abtsiocb, 0);
11610 		} else
11611 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11612 						      abtsiocb, 0);
11613 		if (ret_val == IOCB_ERROR) {
11614 			lpfc_sli_release_iocbq(phba, abtsiocb);
11615 			errcnt++;
11616 			continue;
11617 		}
11618 	}
11619 
11620 	return errcnt;
11621 }
11622 
11623 /**
11624  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11625  * @vport: Pointer to virtual port.
11626  * @pring: Pointer to driver SLI ring object.
11627  * @tgt_id: SCSI ID of the target.
11628  * @lun_id: LUN ID of the scsi device.
11629  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11630  *
11631  * This function sends an abort command for every SCSI command
11632  * associated with the given virtual port pending on the ring
11633  * filtered by lpfc_sli_validate_fcp_iocb function.
11634  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11635  * FCP iocbs associated with lun specified by tgt_id and lun_id
11636  * parameters
11637  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11638  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11639  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11640  * FCP iocbs associated with virtual port.
11641  * This function returns number of iocbs it aborted .
11642  * This function is called with no locks held right after a taskmgmt
11643  * command is sent.
11644  **/
11645 int
11646 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11647 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11648 {
11649 	struct lpfc_hba *phba = vport->phba;
11650 	struct lpfc_io_buf *lpfc_cmd;
11651 	struct lpfc_iocbq *abtsiocbq;
11652 	struct lpfc_nodelist *ndlp;
11653 	struct lpfc_iocbq *iocbq;
11654 	IOCB_t *icmd;
11655 	int sum, i, ret_val;
11656 	unsigned long iflags;
11657 	struct lpfc_sli_ring *pring_s4 = NULL;
11658 
11659 	spin_lock_irqsave(&phba->hbalock, iflags);
11660 
11661 	/* all I/Os are in process of being flushed */
11662 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
11663 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11664 		return 0;
11665 	}
11666 	sum = 0;
11667 
11668 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11669 		iocbq = phba->sli.iocbq_lookup[i];
11670 
11671 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11672 					       cmd) != 0)
11673 			continue;
11674 
11675 		/* Guard against IO completion being called at same time */
11676 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11677 		spin_lock(&lpfc_cmd->buf_lock);
11678 
11679 		if (!lpfc_cmd->pCmd) {
11680 			spin_unlock(&lpfc_cmd->buf_lock);
11681 			continue;
11682 		}
11683 
11684 		if (phba->sli_rev == LPFC_SLI_REV4) {
11685 			pring_s4 =
11686 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11687 			if (!pring_s4) {
11688 				spin_unlock(&lpfc_cmd->buf_lock);
11689 				continue;
11690 			}
11691 			/* Note: both hbalock and ring_lock must be set here */
11692 			spin_lock(&pring_s4->ring_lock);
11693 		}
11694 
11695 		/*
11696 		 * If the iocbq is already being aborted, don't take a second
11697 		 * action, but do count it.
11698 		 */
11699 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11700 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11701 			if (phba->sli_rev == LPFC_SLI_REV4)
11702 				spin_unlock(&pring_s4->ring_lock);
11703 			spin_unlock(&lpfc_cmd->buf_lock);
11704 			continue;
11705 		}
11706 
11707 		/* issue ABTS for this IOCB based on iotag */
11708 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11709 		if (!abtsiocbq) {
11710 			if (phba->sli_rev == LPFC_SLI_REV4)
11711 				spin_unlock(&pring_s4->ring_lock);
11712 			spin_unlock(&lpfc_cmd->buf_lock);
11713 			continue;
11714 		}
11715 
11716 		icmd = &iocbq->iocb;
11717 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11718 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11719 		if (phba->sli_rev == LPFC_SLI_REV4)
11720 			abtsiocbq->iocb.un.acxri.abortIoTag =
11721 							 iocbq->sli4_xritag;
11722 		else
11723 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11724 		abtsiocbq->iocb.ulpLe = 1;
11725 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11726 		abtsiocbq->vport = vport;
11727 
11728 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11729 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11730 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11731 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11732 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11733 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11734 
11735 		ndlp = lpfc_cmd->rdata->pnode;
11736 
11737 		if (lpfc_is_link_up(phba) &&
11738 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11739 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11740 		else
11741 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11742 
11743 		/* Setup callback routine and issue the command. */
11744 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11745 
11746 		/*
11747 		 * Indicate the IO is being aborted by the driver and set
11748 		 * the caller's flag into the aborted IO.
11749 		 */
11750 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11751 
11752 		if (phba->sli_rev == LPFC_SLI_REV4) {
11753 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11754 							abtsiocbq, 0);
11755 			spin_unlock(&pring_s4->ring_lock);
11756 		} else {
11757 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11758 							abtsiocbq, 0);
11759 		}
11760 
11761 		spin_unlock(&lpfc_cmd->buf_lock);
11762 
11763 		if (ret_val == IOCB_ERROR)
11764 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11765 		else
11766 			sum++;
11767 	}
11768 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11769 	return sum;
11770 }
11771 
11772 /**
11773  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11774  * @phba: Pointer to HBA context object.
11775  * @cmdiocbq: Pointer to command iocb.
11776  * @rspiocbq: Pointer to response iocb.
11777  *
11778  * This function is the completion handler for iocbs issued using
11779  * lpfc_sli_issue_iocb_wait function. This function is called by the
11780  * ring event handler function without any lock held. This function
11781  * can be called from both worker thread context and interrupt
11782  * context. This function also can be called from other thread which
11783  * cleans up the SLI layer objects.
11784  * This function copy the contents of the response iocb to the
11785  * response iocb memory object provided by the caller of
11786  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11787  * sleeps for the iocb completion.
11788  **/
11789 static void
11790 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11791 			struct lpfc_iocbq *cmdiocbq,
11792 			struct lpfc_iocbq *rspiocbq)
11793 {
11794 	wait_queue_head_t *pdone_q;
11795 	unsigned long iflags;
11796 	struct lpfc_io_buf *lpfc_cmd;
11797 
11798 	spin_lock_irqsave(&phba->hbalock, iflags);
11799 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11800 
11801 		/*
11802 		 * A time out has occurred for the iocb.  If a time out
11803 		 * completion handler has been supplied, call it.  Otherwise,
11804 		 * just free the iocbq.
11805 		 */
11806 
11807 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11808 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11809 		cmdiocbq->wait_iocb_cmpl = NULL;
11810 		if (cmdiocbq->iocb_cmpl)
11811 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11812 		else
11813 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11814 		return;
11815 	}
11816 
11817 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11818 	if (cmdiocbq->context2 && rspiocbq)
11819 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11820 		       &rspiocbq->iocb, sizeof(IOCB_t));
11821 
11822 	/* Set the exchange busy flag for task management commands */
11823 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11824 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11825 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11826 			cur_iocbq);
11827 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
11828 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
11829 		else
11830 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
11831 	}
11832 
11833 	pdone_q = cmdiocbq->context_un.wait_queue;
11834 	if (pdone_q)
11835 		wake_up(pdone_q);
11836 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11837 	return;
11838 }
11839 
11840 /**
11841  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11842  * @phba: Pointer to HBA context object..
11843  * @piocbq: Pointer to command iocb.
11844  * @flag: Flag to test.
11845  *
11846  * This routine grabs the hbalock and then test the iocb_flag to
11847  * see if the passed in flag is set.
11848  * Returns:
11849  * 1 if flag is set.
11850  * 0 if flag is not set.
11851  **/
11852 static int
11853 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11854 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11855 {
11856 	unsigned long iflags;
11857 	int ret;
11858 
11859 	spin_lock_irqsave(&phba->hbalock, iflags);
11860 	ret = piocbq->iocb_flag & flag;
11861 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11862 	return ret;
11863 
11864 }
11865 
11866 /**
11867  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11868  * @phba: Pointer to HBA context object..
11869  * @pring: Pointer to sli ring.
11870  * @piocb: Pointer to command iocb.
11871  * @prspiocbq: Pointer to response iocb.
11872  * @timeout: Timeout in number of seconds.
11873  *
11874  * This function issues the iocb to firmware and waits for the
11875  * iocb to complete. The iocb_cmpl field of the shall be used
11876  * to handle iocbs which time out. If the field is NULL, the
11877  * function shall free the iocbq structure.  If more clean up is
11878  * needed, the caller is expected to provide a completion function
11879  * that will provide the needed clean up.  If the iocb command is
11880  * not completed within timeout seconds, the function will either
11881  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11882  * completion function set in the iocb_cmpl field and then return
11883  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11884  * resources if this function returns IOCB_TIMEDOUT.
11885  * The function waits for the iocb completion using an
11886  * non-interruptible wait.
11887  * This function will sleep while waiting for iocb completion.
11888  * So, this function should not be called from any context which
11889  * does not allow sleeping. Due to the same reason, this function
11890  * cannot be called with interrupt disabled.
11891  * This function assumes that the iocb completions occur while
11892  * this function sleep. So, this function cannot be called from
11893  * the thread which process iocb completion for this ring.
11894  * This function clears the iocb_flag of the iocb object before
11895  * issuing the iocb and the iocb completion handler sets this
11896  * flag and wakes this thread when the iocb completes.
11897  * The contents of the response iocb will be copied to prspiocbq
11898  * by the completion handler when the command completes.
11899  * This function returns IOCB_SUCCESS when success.
11900  * This function is called with no lock held.
11901  **/
11902 int
11903 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11904 			 uint32_t ring_number,
11905 			 struct lpfc_iocbq *piocb,
11906 			 struct lpfc_iocbq *prspiocbq,
11907 			 uint32_t timeout)
11908 {
11909 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11910 	long timeleft, timeout_req = 0;
11911 	int retval = IOCB_SUCCESS;
11912 	uint32_t creg_val;
11913 	struct lpfc_iocbq *iocb;
11914 	int txq_cnt = 0;
11915 	int txcmplq_cnt = 0;
11916 	struct lpfc_sli_ring *pring;
11917 	unsigned long iflags;
11918 	bool iocb_completed = true;
11919 
11920 	if (phba->sli_rev >= LPFC_SLI_REV4)
11921 		pring = lpfc_sli4_calc_ring(phba, piocb);
11922 	else
11923 		pring = &phba->sli.sli3_ring[ring_number];
11924 	/*
11925 	 * If the caller has provided a response iocbq buffer, then context2
11926 	 * is NULL or its an error.
11927 	 */
11928 	if (prspiocbq) {
11929 		if (piocb->context2)
11930 			return IOCB_ERROR;
11931 		piocb->context2 = prspiocbq;
11932 	}
11933 
11934 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11935 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11936 	piocb->context_un.wait_queue = &done_q;
11937 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11938 
11939 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11940 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11941 			return IOCB_ERROR;
11942 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11943 		writel(creg_val, phba->HCregaddr);
11944 		readl(phba->HCregaddr); /* flush */
11945 	}
11946 
11947 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11948 				     SLI_IOCB_RET_IOCB);
11949 	if (retval == IOCB_SUCCESS) {
11950 		timeout_req = msecs_to_jiffies(timeout * 1000);
11951 		timeleft = wait_event_timeout(done_q,
11952 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11953 				timeout_req);
11954 		spin_lock_irqsave(&phba->hbalock, iflags);
11955 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11956 
11957 			/*
11958 			 * IOCB timed out.  Inform the wake iocb wait
11959 			 * completion function and set local status
11960 			 */
11961 
11962 			iocb_completed = false;
11963 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11964 		}
11965 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11966 		if (iocb_completed) {
11967 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11968 					"0331 IOCB wake signaled\n");
11969 			/* Note: we are not indicating if the IOCB has a success
11970 			 * status or not - that's for the caller to check.
11971 			 * IOCB_SUCCESS means just that the command was sent and
11972 			 * completed. Not that it completed successfully.
11973 			 * */
11974 		} else if (timeleft == 0) {
11975 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11976 					"0338 IOCB wait timeout error - no "
11977 					"wake response Data x%x\n", timeout);
11978 			retval = IOCB_TIMEDOUT;
11979 		} else {
11980 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11981 					"0330 IOCB wake NOT set, "
11982 					"Data x%x x%lx\n",
11983 					timeout, (timeleft / jiffies));
11984 			retval = IOCB_TIMEDOUT;
11985 		}
11986 	} else if (retval == IOCB_BUSY) {
11987 		if (phba->cfg_log_verbose & LOG_SLI) {
11988 			list_for_each_entry(iocb, &pring->txq, list) {
11989 				txq_cnt++;
11990 			}
11991 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11992 				txcmplq_cnt++;
11993 			}
11994 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11995 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11996 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11997 		}
11998 		return retval;
11999 	} else {
12000 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12001 				"0332 IOCB wait issue failed, Data x%x\n",
12002 				retval);
12003 		retval = IOCB_ERROR;
12004 	}
12005 
12006 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12007 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12008 			return IOCB_ERROR;
12009 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12010 		writel(creg_val, phba->HCregaddr);
12011 		readl(phba->HCregaddr); /* flush */
12012 	}
12013 
12014 	if (prspiocbq)
12015 		piocb->context2 = NULL;
12016 
12017 	piocb->context_un.wait_queue = NULL;
12018 	piocb->iocb_cmpl = NULL;
12019 	return retval;
12020 }
12021 
12022 /**
12023  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12024  * @phba: Pointer to HBA context object.
12025  * @pmboxq: Pointer to driver mailbox object.
12026  * @timeout: Timeout in number of seconds.
12027  *
12028  * This function issues the mailbox to firmware and waits for the
12029  * mailbox command to complete. If the mailbox command is not
12030  * completed within timeout seconds, it returns MBX_TIMEOUT.
12031  * The function waits for the mailbox completion using an
12032  * interruptible wait. If the thread is woken up due to a
12033  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12034  * should not free the mailbox resources, if this function returns
12035  * MBX_TIMEOUT.
12036  * This function will sleep while waiting for mailbox completion.
12037  * So, this function should not be called from any context which
12038  * does not allow sleeping. Due to the same reason, this function
12039  * cannot be called with interrupt disabled.
12040  * This function assumes that the mailbox completion occurs while
12041  * this function sleep. So, this function cannot be called from
12042  * the worker thread which processes mailbox completion.
12043  * This function is called in the context of HBA management
12044  * applications.
12045  * This function returns MBX_SUCCESS when successful.
12046  * This function is called with no lock held.
12047  **/
12048 int
12049 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12050 			 uint32_t timeout)
12051 {
12052 	struct completion mbox_done;
12053 	int retval;
12054 	unsigned long flag;
12055 
12056 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12057 	/* setup wake call as IOCB callback */
12058 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12059 
12060 	/* setup context3 field to pass wait_queue pointer to wake function  */
12061 	init_completion(&mbox_done);
12062 	pmboxq->context3 = &mbox_done;
12063 	/* now issue the command */
12064 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12065 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12066 		wait_for_completion_timeout(&mbox_done,
12067 					    msecs_to_jiffies(timeout * 1000));
12068 
12069 		spin_lock_irqsave(&phba->hbalock, flag);
12070 		pmboxq->context3 = NULL;
12071 		/*
12072 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12073 		 * else do not free the resources.
12074 		 */
12075 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12076 			retval = MBX_SUCCESS;
12077 		} else {
12078 			retval = MBX_TIMEOUT;
12079 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12080 		}
12081 		spin_unlock_irqrestore(&phba->hbalock, flag);
12082 	}
12083 	return retval;
12084 }
12085 
12086 /**
12087  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12088  * @phba: Pointer to HBA context.
12089  *
12090  * This function is called to shutdown the driver's mailbox sub-system.
12091  * It first marks the mailbox sub-system is in a block state to prevent
12092  * the asynchronous mailbox command from issued off the pending mailbox
12093  * command queue. If the mailbox command sub-system shutdown is due to
12094  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12095  * the mailbox sub-system flush routine to forcefully bring down the
12096  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12097  * as with offline or HBA function reset), this routine will wait for the
12098  * outstanding mailbox command to complete before invoking the mailbox
12099  * sub-system flush routine to gracefully bring down mailbox sub-system.
12100  **/
12101 void
12102 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12103 {
12104 	struct lpfc_sli *psli = &phba->sli;
12105 	unsigned long timeout;
12106 
12107 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12108 		/* delay 100ms for port state */
12109 		msleep(100);
12110 		lpfc_sli_mbox_sys_flush(phba);
12111 		return;
12112 	}
12113 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12114 
12115 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12116 	local_bh_disable();
12117 
12118 	spin_lock_irq(&phba->hbalock);
12119 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12120 
12121 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12122 		/* Determine how long we might wait for the active mailbox
12123 		 * command to be gracefully completed by firmware.
12124 		 */
12125 		if (phba->sli.mbox_active)
12126 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12127 						phba->sli.mbox_active) *
12128 						1000) + jiffies;
12129 		spin_unlock_irq(&phba->hbalock);
12130 
12131 		/* Enable softirqs again, done with phba->hbalock */
12132 		local_bh_enable();
12133 
12134 		while (phba->sli.mbox_active) {
12135 			/* Check active mailbox complete status every 2ms */
12136 			msleep(2);
12137 			if (time_after(jiffies, timeout))
12138 				/* Timeout, let the mailbox flush routine to
12139 				 * forcefully release active mailbox command
12140 				 */
12141 				break;
12142 		}
12143 	} else {
12144 		spin_unlock_irq(&phba->hbalock);
12145 
12146 		/* Enable softirqs again, done with phba->hbalock */
12147 		local_bh_enable();
12148 	}
12149 
12150 	lpfc_sli_mbox_sys_flush(phba);
12151 }
12152 
12153 /**
12154  * lpfc_sli_eratt_read - read sli-3 error attention events
12155  * @phba: Pointer to HBA context.
12156  *
12157  * This function is called to read the SLI3 device error attention registers
12158  * for possible error attention events. The caller must hold the hostlock
12159  * with spin_lock_irq().
12160  *
12161  * This function returns 1 when there is Error Attention in the Host Attention
12162  * Register and returns 0 otherwise.
12163  **/
12164 static int
12165 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12166 {
12167 	uint32_t ha_copy;
12168 
12169 	/* Read chip Host Attention (HA) register */
12170 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12171 		goto unplug_err;
12172 
12173 	if (ha_copy & HA_ERATT) {
12174 		/* Read host status register to retrieve error event */
12175 		if (lpfc_sli_read_hs(phba))
12176 			goto unplug_err;
12177 
12178 		/* Check if there is a deferred error condition is active */
12179 		if ((HS_FFER1 & phba->work_hs) &&
12180 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12181 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12182 			phba->hba_flag |= DEFER_ERATT;
12183 			/* Clear all interrupt enable conditions */
12184 			writel(0, phba->HCregaddr);
12185 			readl(phba->HCregaddr);
12186 		}
12187 
12188 		/* Set the driver HA work bitmap */
12189 		phba->work_ha |= HA_ERATT;
12190 		/* Indicate polling handles this ERATT */
12191 		phba->hba_flag |= HBA_ERATT_HANDLED;
12192 		return 1;
12193 	}
12194 	return 0;
12195 
12196 unplug_err:
12197 	/* Set the driver HS work bitmap */
12198 	phba->work_hs |= UNPLUG_ERR;
12199 	/* Set the driver HA work bitmap */
12200 	phba->work_ha |= HA_ERATT;
12201 	/* Indicate polling handles this ERATT */
12202 	phba->hba_flag |= HBA_ERATT_HANDLED;
12203 	return 1;
12204 }
12205 
12206 /**
12207  * lpfc_sli4_eratt_read - read sli-4 error attention events
12208  * @phba: Pointer to HBA context.
12209  *
12210  * This function is called to read the SLI4 device error attention registers
12211  * for possible error attention events. The caller must hold the hostlock
12212  * with spin_lock_irq().
12213  *
12214  * This function returns 1 when there is Error Attention in the Host Attention
12215  * Register and returns 0 otherwise.
12216  **/
12217 static int
12218 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12219 {
12220 	uint32_t uerr_sta_hi, uerr_sta_lo;
12221 	uint32_t if_type, portsmphr;
12222 	struct lpfc_register portstat_reg;
12223 
12224 	/*
12225 	 * For now, use the SLI4 device internal unrecoverable error
12226 	 * registers for error attention. This can be changed later.
12227 	 */
12228 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12229 	switch (if_type) {
12230 	case LPFC_SLI_INTF_IF_TYPE_0:
12231 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12232 			&uerr_sta_lo) ||
12233 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12234 			&uerr_sta_hi)) {
12235 			phba->work_hs |= UNPLUG_ERR;
12236 			phba->work_ha |= HA_ERATT;
12237 			phba->hba_flag |= HBA_ERATT_HANDLED;
12238 			return 1;
12239 		}
12240 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12241 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12242 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12243 					"1423 HBA Unrecoverable error: "
12244 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12245 					"ue_mask_lo_reg=0x%x, "
12246 					"ue_mask_hi_reg=0x%x\n",
12247 					uerr_sta_lo, uerr_sta_hi,
12248 					phba->sli4_hba.ue_mask_lo,
12249 					phba->sli4_hba.ue_mask_hi);
12250 			phba->work_status[0] = uerr_sta_lo;
12251 			phba->work_status[1] = uerr_sta_hi;
12252 			phba->work_ha |= HA_ERATT;
12253 			phba->hba_flag |= HBA_ERATT_HANDLED;
12254 			return 1;
12255 		}
12256 		break;
12257 	case LPFC_SLI_INTF_IF_TYPE_2:
12258 	case LPFC_SLI_INTF_IF_TYPE_6:
12259 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12260 			&portstat_reg.word0) ||
12261 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12262 			&portsmphr)){
12263 			phba->work_hs |= UNPLUG_ERR;
12264 			phba->work_ha |= HA_ERATT;
12265 			phba->hba_flag |= HBA_ERATT_HANDLED;
12266 			return 1;
12267 		}
12268 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12269 			phba->work_status[0] =
12270 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12271 			phba->work_status[1] =
12272 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12273 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12274 					"2885 Port Status Event: "
12275 					"port status reg 0x%x, "
12276 					"port smphr reg 0x%x, "
12277 					"error 1=0x%x, error 2=0x%x\n",
12278 					portstat_reg.word0,
12279 					portsmphr,
12280 					phba->work_status[0],
12281 					phba->work_status[1]);
12282 			phba->work_ha |= HA_ERATT;
12283 			phba->hba_flag |= HBA_ERATT_HANDLED;
12284 			return 1;
12285 		}
12286 		break;
12287 	case LPFC_SLI_INTF_IF_TYPE_1:
12288 	default:
12289 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12290 				"2886 HBA Error Attention on unsupported "
12291 				"if type %d.", if_type);
12292 		return 1;
12293 	}
12294 
12295 	return 0;
12296 }
12297 
12298 /**
12299  * lpfc_sli_check_eratt - check error attention events
12300  * @phba: Pointer to HBA context.
12301  *
12302  * This function is called from timer soft interrupt context to check HBA's
12303  * error attention register bit for error attention events.
12304  *
12305  * This function returns 1 when there is Error Attention in the Host Attention
12306  * Register and returns 0 otherwise.
12307  **/
12308 int
12309 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12310 {
12311 	uint32_t ha_copy;
12312 
12313 	/* If somebody is waiting to handle an eratt, don't process it
12314 	 * here. The brdkill function will do this.
12315 	 */
12316 	if (phba->link_flag & LS_IGNORE_ERATT)
12317 		return 0;
12318 
12319 	/* Check if interrupt handler handles this ERATT */
12320 	spin_lock_irq(&phba->hbalock);
12321 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12322 		/* Interrupt handler has handled ERATT */
12323 		spin_unlock_irq(&phba->hbalock);
12324 		return 0;
12325 	}
12326 
12327 	/*
12328 	 * If there is deferred error attention, do not check for error
12329 	 * attention
12330 	 */
12331 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12332 		spin_unlock_irq(&phba->hbalock);
12333 		return 0;
12334 	}
12335 
12336 	/* If PCI channel is offline, don't process it */
12337 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12338 		spin_unlock_irq(&phba->hbalock);
12339 		return 0;
12340 	}
12341 
12342 	switch (phba->sli_rev) {
12343 	case LPFC_SLI_REV2:
12344 	case LPFC_SLI_REV3:
12345 		/* Read chip Host Attention (HA) register */
12346 		ha_copy = lpfc_sli_eratt_read(phba);
12347 		break;
12348 	case LPFC_SLI_REV4:
12349 		/* Read device Uncoverable Error (UERR) registers */
12350 		ha_copy = lpfc_sli4_eratt_read(phba);
12351 		break;
12352 	default:
12353 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12354 				"0299 Invalid SLI revision (%d)\n",
12355 				phba->sli_rev);
12356 		ha_copy = 0;
12357 		break;
12358 	}
12359 	spin_unlock_irq(&phba->hbalock);
12360 
12361 	return ha_copy;
12362 }
12363 
12364 /**
12365  * lpfc_intr_state_check - Check device state for interrupt handling
12366  * @phba: Pointer to HBA context.
12367  *
12368  * This inline routine checks whether a device or its PCI slot is in a state
12369  * that the interrupt should be handled.
12370  *
12371  * This function returns 0 if the device or the PCI slot is in a state that
12372  * interrupt should be handled, otherwise -EIO.
12373  */
12374 static inline int
12375 lpfc_intr_state_check(struct lpfc_hba *phba)
12376 {
12377 	/* If the pci channel is offline, ignore all the interrupts */
12378 	if (unlikely(pci_channel_offline(phba->pcidev)))
12379 		return -EIO;
12380 
12381 	/* Update device level interrupt statistics */
12382 	phba->sli.slistat.sli_intr++;
12383 
12384 	/* Ignore all interrupts during initialization. */
12385 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12386 		return -EIO;
12387 
12388 	return 0;
12389 }
12390 
12391 /**
12392  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12393  * @irq: Interrupt number.
12394  * @dev_id: The device context pointer.
12395  *
12396  * This function is directly called from the PCI layer as an interrupt
12397  * service routine when device with SLI-3 interface spec is enabled with
12398  * MSI-X multi-message interrupt mode and there are slow-path events in
12399  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12400  * interrupt mode, this function is called as part of the device-level
12401  * interrupt handler. When the PCI slot is in error recovery or the HBA
12402  * is undergoing initialization, the interrupt handler will not process
12403  * the interrupt. The link attention and ELS ring attention events are
12404  * handled by the worker thread. The interrupt handler signals the worker
12405  * thread and returns for these events. This function is called without
12406  * any lock held. It gets the hbalock to access and update SLI data
12407  * structures.
12408  *
12409  * This function returns IRQ_HANDLED when interrupt is handled else it
12410  * returns IRQ_NONE.
12411  **/
12412 irqreturn_t
12413 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12414 {
12415 	struct lpfc_hba  *phba;
12416 	uint32_t ha_copy, hc_copy;
12417 	uint32_t work_ha_copy;
12418 	unsigned long status;
12419 	unsigned long iflag;
12420 	uint32_t control;
12421 
12422 	MAILBOX_t *mbox, *pmbox;
12423 	struct lpfc_vport *vport;
12424 	struct lpfc_nodelist *ndlp;
12425 	struct lpfc_dmabuf *mp;
12426 	LPFC_MBOXQ_t *pmb;
12427 	int rc;
12428 
12429 	/*
12430 	 * Get the driver's phba structure from the dev_id and
12431 	 * assume the HBA is not interrupting.
12432 	 */
12433 	phba = (struct lpfc_hba *)dev_id;
12434 
12435 	if (unlikely(!phba))
12436 		return IRQ_NONE;
12437 
12438 	/*
12439 	 * Stuff needs to be attented to when this function is invoked as an
12440 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12441 	 */
12442 	if (phba->intr_type == MSIX) {
12443 		/* Check device state for handling interrupt */
12444 		if (lpfc_intr_state_check(phba))
12445 			return IRQ_NONE;
12446 		/* Need to read HA REG for slow-path events */
12447 		spin_lock_irqsave(&phba->hbalock, iflag);
12448 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12449 			goto unplug_error;
12450 		/* If somebody is waiting to handle an eratt don't process it
12451 		 * here. The brdkill function will do this.
12452 		 */
12453 		if (phba->link_flag & LS_IGNORE_ERATT)
12454 			ha_copy &= ~HA_ERATT;
12455 		/* Check the need for handling ERATT in interrupt handler */
12456 		if (ha_copy & HA_ERATT) {
12457 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12458 				/* ERATT polling has handled ERATT */
12459 				ha_copy &= ~HA_ERATT;
12460 			else
12461 				/* Indicate interrupt handler handles ERATT */
12462 				phba->hba_flag |= HBA_ERATT_HANDLED;
12463 		}
12464 
12465 		/*
12466 		 * If there is deferred error attention, do not check for any
12467 		 * interrupt.
12468 		 */
12469 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12470 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12471 			return IRQ_NONE;
12472 		}
12473 
12474 		/* Clear up only attention source related to slow-path */
12475 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12476 			goto unplug_error;
12477 
12478 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12479 			HC_LAINT_ENA | HC_ERINT_ENA),
12480 			phba->HCregaddr);
12481 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12482 			phba->HAregaddr);
12483 		writel(hc_copy, phba->HCregaddr);
12484 		readl(phba->HAregaddr); /* flush */
12485 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12486 	} else
12487 		ha_copy = phba->ha_copy;
12488 
12489 	work_ha_copy = ha_copy & phba->work_ha_mask;
12490 
12491 	if (work_ha_copy) {
12492 		if (work_ha_copy & HA_LATT) {
12493 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12494 				/*
12495 				 * Turn off Link Attention interrupts
12496 				 * until CLEAR_LA done
12497 				 */
12498 				spin_lock_irqsave(&phba->hbalock, iflag);
12499 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12500 				if (lpfc_readl(phba->HCregaddr, &control))
12501 					goto unplug_error;
12502 				control &= ~HC_LAINT_ENA;
12503 				writel(control, phba->HCregaddr);
12504 				readl(phba->HCregaddr); /* flush */
12505 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12506 			}
12507 			else
12508 				work_ha_copy &= ~HA_LATT;
12509 		}
12510 
12511 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12512 			/*
12513 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12514 			 * the only slow ring.
12515 			 */
12516 			status = (work_ha_copy &
12517 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12518 			status >>= (4*LPFC_ELS_RING);
12519 			if (status & HA_RXMASK) {
12520 				spin_lock_irqsave(&phba->hbalock, iflag);
12521 				if (lpfc_readl(phba->HCregaddr, &control))
12522 					goto unplug_error;
12523 
12524 				lpfc_debugfs_slow_ring_trc(phba,
12525 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12526 				control, status,
12527 				(uint32_t)phba->sli.slistat.sli_intr);
12528 
12529 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12530 					lpfc_debugfs_slow_ring_trc(phba,
12531 						"ISR Disable ring:"
12532 						"pwork:x%x hawork:x%x wait:x%x",
12533 						phba->work_ha, work_ha_copy,
12534 						(uint32_t)((unsigned long)
12535 						&phba->work_waitq));
12536 
12537 					control &=
12538 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12539 					writel(control, phba->HCregaddr);
12540 					readl(phba->HCregaddr); /* flush */
12541 				}
12542 				else {
12543 					lpfc_debugfs_slow_ring_trc(phba,
12544 						"ISR slow ring:   pwork:"
12545 						"x%x hawork:x%x wait:x%x",
12546 						phba->work_ha, work_ha_copy,
12547 						(uint32_t)((unsigned long)
12548 						&phba->work_waitq));
12549 				}
12550 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12551 			}
12552 		}
12553 		spin_lock_irqsave(&phba->hbalock, iflag);
12554 		if (work_ha_copy & HA_ERATT) {
12555 			if (lpfc_sli_read_hs(phba))
12556 				goto unplug_error;
12557 			/*
12558 			 * Check if there is a deferred error condition
12559 			 * is active
12560 			 */
12561 			if ((HS_FFER1 & phba->work_hs) &&
12562 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12563 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12564 				  phba->work_hs)) {
12565 				phba->hba_flag |= DEFER_ERATT;
12566 				/* Clear all interrupt enable conditions */
12567 				writel(0, phba->HCregaddr);
12568 				readl(phba->HCregaddr);
12569 			}
12570 		}
12571 
12572 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12573 			pmb = phba->sli.mbox_active;
12574 			pmbox = &pmb->u.mb;
12575 			mbox = phba->mbox;
12576 			vport = pmb->vport;
12577 
12578 			/* First check out the status word */
12579 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12580 			if (pmbox->mbxOwner != OWN_HOST) {
12581 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12582 				/*
12583 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12584 				 * mbxStatus <status>
12585 				 */
12586 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12587 						LOG_SLI,
12588 						"(%d):0304 Stray Mailbox "
12589 						"Interrupt mbxCommand x%x "
12590 						"mbxStatus x%x\n",
12591 						(vport ? vport->vpi : 0),
12592 						pmbox->mbxCommand,
12593 						pmbox->mbxStatus);
12594 				/* clear mailbox attention bit */
12595 				work_ha_copy &= ~HA_MBATT;
12596 			} else {
12597 				phba->sli.mbox_active = NULL;
12598 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12599 				phba->last_completion_time = jiffies;
12600 				del_timer(&phba->sli.mbox_tmo);
12601 				if (pmb->mbox_cmpl) {
12602 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12603 							MAILBOX_CMD_SIZE);
12604 					if (pmb->out_ext_byte_len &&
12605 						pmb->ctx_buf)
12606 						lpfc_sli_pcimem_bcopy(
12607 						phba->mbox_ext,
12608 						pmb->ctx_buf,
12609 						pmb->out_ext_byte_len);
12610 				}
12611 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12612 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12613 
12614 					lpfc_debugfs_disc_trc(vport,
12615 						LPFC_DISC_TRC_MBOX_VPORT,
12616 						"MBOX dflt rpi: : "
12617 						"status:x%x rpi:x%x",
12618 						(uint32_t)pmbox->mbxStatus,
12619 						pmbox->un.varWords[0], 0);
12620 
12621 					if (!pmbox->mbxStatus) {
12622 						mp = (struct lpfc_dmabuf *)
12623 							(pmb->ctx_buf);
12624 						ndlp = (struct lpfc_nodelist *)
12625 							pmb->ctx_ndlp;
12626 
12627 						/* Reg_LOGIN of dflt RPI was
12628 						 * successful. new lets get
12629 						 * rid of the RPI using the
12630 						 * same mbox buffer.
12631 						 */
12632 						lpfc_unreg_login(phba,
12633 							vport->vpi,
12634 							pmbox->un.varWords[0],
12635 							pmb);
12636 						pmb->mbox_cmpl =
12637 							lpfc_mbx_cmpl_dflt_rpi;
12638 						pmb->ctx_buf = mp;
12639 						pmb->ctx_ndlp = ndlp;
12640 						pmb->vport = vport;
12641 						rc = lpfc_sli_issue_mbox(phba,
12642 								pmb,
12643 								MBX_NOWAIT);
12644 						if (rc != MBX_BUSY)
12645 							lpfc_printf_log(phba,
12646 							KERN_ERR,
12647 							LOG_MBOX | LOG_SLI,
12648 							"0350 rc should have"
12649 							"been MBX_BUSY\n");
12650 						if (rc != MBX_NOT_FINISHED)
12651 							goto send_current_mbox;
12652 					}
12653 				}
12654 				spin_lock_irqsave(
12655 						&phba->pport->work_port_lock,
12656 						iflag);
12657 				phba->pport->work_port_events &=
12658 					~WORKER_MBOX_TMO;
12659 				spin_unlock_irqrestore(
12660 						&phba->pport->work_port_lock,
12661 						iflag);
12662 				lpfc_mbox_cmpl_put(phba, pmb);
12663 			}
12664 		} else
12665 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12666 
12667 		if ((work_ha_copy & HA_MBATT) &&
12668 		    (phba->sli.mbox_active == NULL)) {
12669 send_current_mbox:
12670 			/* Process next mailbox command if there is one */
12671 			do {
12672 				rc = lpfc_sli_issue_mbox(phba, NULL,
12673 							 MBX_NOWAIT);
12674 			} while (rc == MBX_NOT_FINISHED);
12675 			if (rc != MBX_SUCCESS)
12676 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12677 						LOG_SLI, "0349 rc should be "
12678 						"MBX_SUCCESS\n");
12679 		}
12680 
12681 		spin_lock_irqsave(&phba->hbalock, iflag);
12682 		phba->work_ha |= work_ha_copy;
12683 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12684 		lpfc_worker_wake_up(phba);
12685 	}
12686 	return IRQ_HANDLED;
12687 unplug_error:
12688 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12689 	return IRQ_HANDLED;
12690 
12691 } /* lpfc_sli_sp_intr_handler */
12692 
12693 /**
12694  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12695  * @irq: Interrupt number.
12696  * @dev_id: The device context pointer.
12697  *
12698  * This function is directly called from the PCI layer as an interrupt
12699  * service routine when device with SLI-3 interface spec is enabled with
12700  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12701  * ring event in the HBA. However, when the device is enabled with either
12702  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12703  * device-level interrupt handler. When the PCI slot is in error recovery
12704  * or the HBA is undergoing initialization, the interrupt handler will not
12705  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12706  * the intrrupt context. This function is called without any lock held.
12707  * It gets the hbalock to access and update SLI data structures.
12708  *
12709  * This function returns IRQ_HANDLED when interrupt is handled else it
12710  * returns IRQ_NONE.
12711  **/
12712 irqreturn_t
12713 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12714 {
12715 	struct lpfc_hba  *phba;
12716 	uint32_t ha_copy;
12717 	unsigned long status;
12718 	unsigned long iflag;
12719 	struct lpfc_sli_ring *pring;
12720 
12721 	/* Get the driver's phba structure from the dev_id and
12722 	 * assume the HBA is not interrupting.
12723 	 */
12724 	phba = (struct lpfc_hba *) dev_id;
12725 
12726 	if (unlikely(!phba))
12727 		return IRQ_NONE;
12728 
12729 	/*
12730 	 * Stuff needs to be attented to when this function is invoked as an
12731 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12732 	 */
12733 	if (phba->intr_type == MSIX) {
12734 		/* Check device state for handling interrupt */
12735 		if (lpfc_intr_state_check(phba))
12736 			return IRQ_NONE;
12737 		/* Need to read HA REG for FCP ring and other ring events */
12738 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12739 			return IRQ_HANDLED;
12740 		/* Clear up only attention source related to fast-path */
12741 		spin_lock_irqsave(&phba->hbalock, iflag);
12742 		/*
12743 		 * If there is deferred error attention, do not check for
12744 		 * any interrupt.
12745 		 */
12746 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12747 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12748 			return IRQ_NONE;
12749 		}
12750 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12751 			phba->HAregaddr);
12752 		readl(phba->HAregaddr); /* flush */
12753 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12754 	} else
12755 		ha_copy = phba->ha_copy;
12756 
12757 	/*
12758 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12759 	 */
12760 	ha_copy &= ~(phba->work_ha_mask);
12761 
12762 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12763 	status >>= (4*LPFC_FCP_RING);
12764 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12765 	if (status & HA_RXMASK)
12766 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12767 
12768 	if (phba->cfg_multi_ring_support == 2) {
12769 		/*
12770 		 * Process all events on extra ring. Take the optimized path
12771 		 * for extra ring IO.
12772 		 */
12773 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12774 		status >>= (4*LPFC_EXTRA_RING);
12775 		if (status & HA_RXMASK) {
12776 			lpfc_sli_handle_fast_ring_event(phba,
12777 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12778 					status);
12779 		}
12780 	}
12781 	return IRQ_HANDLED;
12782 }  /* lpfc_sli_fp_intr_handler */
12783 
12784 /**
12785  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12786  * @irq: Interrupt number.
12787  * @dev_id: The device context pointer.
12788  *
12789  * This function is the HBA device-level interrupt handler to device with
12790  * SLI-3 interface spec, called from the PCI layer when either MSI or
12791  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12792  * requires driver attention. This function invokes the slow-path interrupt
12793  * attention handling function and fast-path interrupt attention handling
12794  * function in turn to process the relevant HBA attention events. This
12795  * function is called without any lock held. It gets the hbalock to access
12796  * and update SLI data structures.
12797  *
12798  * This function returns IRQ_HANDLED when interrupt is handled, else it
12799  * returns IRQ_NONE.
12800  **/
12801 irqreturn_t
12802 lpfc_sli_intr_handler(int irq, void *dev_id)
12803 {
12804 	struct lpfc_hba  *phba;
12805 	irqreturn_t sp_irq_rc, fp_irq_rc;
12806 	unsigned long status1, status2;
12807 	uint32_t hc_copy;
12808 
12809 	/*
12810 	 * Get the driver's phba structure from the dev_id and
12811 	 * assume the HBA is not interrupting.
12812 	 */
12813 	phba = (struct lpfc_hba *) dev_id;
12814 
12815 	if (unlikely(!phba))
12816 		return IRQ_NONE;
12817 
12818 	/* Check device state for handling interrupt */
12819 	if (lpfc_intr_state_check(phba))
12820 		return IRQ_NONE;
12821 
12822 	spin_lock(&phba->hbalock);
12823 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12824 		spin_unlock(&phba->hbalock);
12825 		return IRQ_HANDLED;
12826 	}
12827 
12828 	if (unlikely(!phba->ha_copy)) {
12829 		spin_unlock(&phba->hbalock);
12830 		return IRQ_NONE;
12831 	} else if (phba->ha_copy & HA_ERATT) {
12832 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12833 			/* ERATT polling has handled ERATT */
12834 			phba->ha_copy &= ~HA_ERATT;
12835 		else
12836 			/* Indicate interrupt handler handles ERATT */
12837 			phba->hba_flag |= HBA_ERATT_HANDLED;
12838 	}
12839 
12840 	/*
12841 	 * If there is deferred error attention, do not check for any interrupt.
12842 	 */
12843 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12844 		spin_unlock(&phba->hbalock);
12845 		return IRQ_NONE;
12846 	}
12847 
12848 	/* Clear attention sources except link and error attentions */
12849 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12850 		spin_unlock(&phba->hbalock);
12851 		return IRQ_HANDLED;
12852 	}
12853 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12854 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12855 		phba->HCregaddr);
12856 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12857 	writel(hc_copy, phba->HCregaddr);
12858 	readl(phba->HAregaddr); /* flush */
12859 	spin_unlock(&phba->hbalock);
12860 
12861 	/*
12862 	 * Invokes slow-path host attention interrupt handling as appropriate.
12863 	 */
12864 
12865 	/* status of events with mailbox and link attention */
12866 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12867 
12868 	/* status of events with ELS ring */
12869 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12870 	status2 >>= (4*LPFC_ELS_RING);
12871 
12872 	if (status1 || (status2 & HA_RXMASK))
12873 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12874 	else
12875 		sp_irq_rc = IRQ_NONE;
12876 
12877 	/*
12878 	 * Invoke fast-path host attention interrupt handling as appropriate.
12879 	 */
12880 
12881 	/* status of events with FCP ring */
12882 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12883 	status1 >>= (4*LPFC_FCP_RING);
12884 
12885 	/* status of events with extra ring */
12886 	if (phba->cfg_multi_ring_support == 2) {
12887 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12888 		status2 >>= (4*LPFC_EXTRA_RING);
12889 	} else
12890 		status2 = 0;
12891 
12892 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12893 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12894 	else
12895 		fp_irq_rc = IRQ_NONE;
12896 
12897 	/* Return device-level interrupt handling status */
12898 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12899 }  /* lpfc_sli_intr_handler */
12900 
12901 /**
12902  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12903  * @phba: pointer to lpfc hba data structure.
12904  *
12905  * This routine is invoked by the worker thread to process all the pending
12906  * SLI4 els abort xri events.
12907  **/
12908 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12909 {
12910 	struct lpfc_cq_event *cq_event;
12911 
12912 	/* First, declare the els xri abort event has been handled */
12913 	spin_lock_irq(&phba->hbalock);
12914 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12915 	spin_unlock_irq(&phba->hbalock);
12916 	/* Now, handle all the els xri abort events */
12917 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12918 		/* Get the first event from the head of the event queue */
12919 		spin_lock_irq(&phba->hbalock);
12920 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12921 				 cq_event, struct lpfc_cq_event, list);
12922 		spin_unlock_irq(&phba->hbalock);
12923 		/* Notify aborted XRI for ELS work queue */
12924 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12925 		/* Free the event processed back to the free pool */
12926 		lpfc_sli4_cq_event_release(phba, cq_event);
12927 	}
12928 }
12929 
12930 /**
12931  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12932  * @phba: pointer to lpfc hba data structure
12933  * @pIocbIn: pointer to the rspiocbq
12934  * @pIocbOut: pointer to the cmdiocbq
12935  * @wcqe: pointer to the complete wcqe
12936  *
12937  * This routine transfers the fields of a command iocbq to a response iocbq
12938  * by copying all the IOCB fields from command iocbq and transferring the
12939  * completion status information from the complete wcqe.
12940  **/
12941 static void
12942 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12943 			      struct lpfc_iocbq *pIocbIn,
12944 			      struct lpfc_iocbq *pIocbOut,
12945 			      struct lpfc_wcqe_complete *wcqe)
12946 {
12947 	int numBdes, i;
12948 	unsigned long iflags;
12949 	uint32_t status, max_response;
12950 	struct lpfc_dmabuf *dmabuf;
12951 	struct ulp_bde64 *bpl, bde;
12952 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12953 
12954 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12955 	       sizeof(struct lpfc_iocbq) - offset);
12956 	/* Map WCQE parameters into irspiocb parameters */
12957 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12958 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12959 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12960 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12961 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12962 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12963 					wcqe->total_data_placed;
12964 		else
12965 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12966 	else {
12967 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12968 		switch (pIocbOut->iocb.ulpCommand) {
12969 		case CMD_ELS_REQUEST64_CR:
12970 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12971 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12972 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12973 			max_response = bde.tus.f.bdeSize;
12974 			break;
12975 		case CMD_GEN_REQUEST64_CR:
12976 			max_response = 0;
12977 			if (!pIocbOut->context3)
12978 				break;
12979 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12980 					sizeof(struct ulp_bde64);
12981 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12982 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12983 			for (i = 0; i < numBdes; i++) {
12984 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12985 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12986 					max_response += bde.tus.f.bdeSize;
12987 			}
12988 			break;
12989 		default:
12990 			max_response = wcqe->total_data_placed;
12991 			break;
12992 		}
12993 		if (max_response < wcqe->total_data_placed)
12994 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12995 		else
12996 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12997 				wcqe->total_data_placed;
12998 	}
12999 
13000 	/* Convert BG errors for completion status */
13001 	if (status == CQE_STATUS_DI_ERROR) {
13002 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13003 
13004 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13005 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13006 		else
13007 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13008 
13009 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13010 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13011 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13012 				BGS_GUARD_ERR_MASK;
13013 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13014 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13015 				BGS_APPTAG_ERR_MASK;
13016 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13017 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13018 				BGS_REFTAG_ERR_MASK;
13019 
13020 		/* Check to see if there was any good data before the error */
13021 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13022 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13023 				BGS_HI_WATER_MARK_PRESENT_MASK;
13024 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13025 				wcqe->total_data_placed;
13026 		}
13027 
13028 		/*
13029 		* Set ALL the error bits to indicate we don't know what
13030 		* type of error it is.
13031 		*/
13032 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13033 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13034 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13035 				BGS_GUARD_ERR_MASK);
13036 	}
13037 
13038 	/* Pick up HBA exchange busy condition */
13039 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13040 		spin_lock_irqsave(&phba->hbalock, iflags);
13041 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13042 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13043 	}
13044 }
13045 
13046 /**
13047  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13048  * @phba: Pointer to HBA context object.
13049  * @wcqe: Pointer to work-queue completion queue entry.
13050  *
13051  * This routine handles an ELS work-queue completion event and construct
13052  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13053  * discovery engine to handle.
13054  *
13055  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13056  **/
13057 static struct lpfc_iocbq *
13058 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13059 			       struct lpfc_iocbq *irspiocbq)
13060 {
13061 	struct lpfc_sli_ring *pring;
13062 	struct lpfc_iocbq *cmdiocbq;
13063 	struct lpfc_wcqe_complete *wcqe;
13064 	unsigned long iflags;
13065 
13066 	pring = lpfc_phba_elsring(phba);
13067 	if (unlikely(!pring))
13068 		return NULL;
13069 
13070 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13071 	pring->stats.iocb_event++;
13072 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13073 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13074 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13075 	if (unlikely(!cmdiocbq)) {
13076 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13077 				"0386 ELS complete with no corresponding "
13078 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13079 				wcqe->word0, wcqe->total_data_placed,
13080 				wcqe->parameter, wcqe->word3);
13081 		lpfc_sli_release_iocbq(phba, irspiocbq);
13082 		return NULL;
13083 	}
13084 
13085 	spin_lock_irqsave(&pring->ring_lock, iflags);
13086 	/* Put the iocb back on the txcmplq */
13087 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13088 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13089 
13090 	/* Fake the irspiocbq and copy necessary response information */
13091 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13092 
13093 	return irspiocbq;
13094 }
13095 
13096 inline struct lpfc_cq_event *
13097 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13098 {
13099 	struct lpfc_cq_event *cq_event;
13100 
13101 	/* Allocate a new internal CQ_EVENT entry */
13102 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13103 	if (!cq_event) {
13104 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13105 				"0602 Failed to alloc CQ_EVENT entry\n");
13106 		return NULL;
13107 	}
13108 
13109 	/* Move the CQE into the event */
13110 	memcpy(&cq_event->cqe, entry, size);
13111 	return cq_event;
13112 }
13113 
13114 /**
13115  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13116  * @phba: Pointer to HBA context object.
13117  * @cqe: Pointer to mailbox completion queue entry.
13118  *
13119  * This routine process a mailbox completion queue entry with asynchronous
13120  * event.
13121  *
13122  * Return: true if work posted to worker thread, otherwise false.
13123  **/
13124 static bool
13125 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13126 {
13127 	struct lpfc_cq_event *cq_event;
13128 	unsigned long iflags;
13129 
13130 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13131 			"0392 Async Event: word0:x%x, word1:x%x, "
13132 			"word2:x%x, word3:x%x\n", mcqe->word0,
13133 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13134 
13135 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13136 	if (!cq_event)
13137 		return false;
13138 	spin_lock_irqsave(&phba->hbalock, iflags);
13139 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13140 	/* Set the async event flag */
13141 	phba->hba_flag |= ASYNC_EVENT;
13142 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13143 
13144 	return true;
13145 }
13146 
13147 /**
13148  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13149  * @phba: Pointer to HBA context object.
13150  * @cqe: Pointer to mailbox completion queue entry.
13151  *
13152  * This routine process a mailbox completion queue entry with mailbox
13153  * completion event.
13154  *
13155  * Return: true if work posted to worker thread, otherwise false.
13156  **/
13157 static bool
13158 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13159 {
13160 	uint32_t mcqe_status;
13161 	MAILBOX_t *mbox, *pmbox;
13162 	struct lpfc_mqe *mqe;
13163 	struct lpfc_vport *vport;
13164 	struct lpfc_nodelist *ndlp;
13165 	struct lpfc_dmabuf *mp;
13166 	unsigned long iflags;
13167 	LPFC_MBOXQ_t *pmb;
13168 	bool workposted = false;
13169 	int rc;
13170 
13171 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13172 	if (!bf_get(lpfc_trailer_completed, mcqe))
13173 		goto out_no_mqe_complete;
13174 
13175 	/* Get the reference to the active mbox command */
13176 	spin_lock_irqsave(&phba->hbalock, iflags);
13177 	pmb = phba->sli.mbox_active;
13178 	if (unlikely(!pmb)) {
13179 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13180 				"1832 No pending MBOX command to handle\n");
13181 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13182 		goto out_no_mqe_complete;
13183 	}
13184 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13185 	mqe = &pmb->u.mqe;
13186 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13187 	mbox = phba->mbox;
13188 	vport = pmb->vport;
13189 
13190 	/* Reset heartbeat timer */
13191 	phba->last_completion_time = jiffies;
13192 	del_timer(&phba->sli.mbox_tmo);
13193 
13194 	/* Move mbox data to caller's mailbox region, do endian swapping */
13195 	if (pmb->mbox_cmpl && mbox)
13196 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13197 
13198 	/*
13199 	 * For mcqe errors, conditionally move a modified error code to
13200 	 * the mbox so that the error will not be missed.
13201 	 */
13202 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13203 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13204 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13205 			bf_set(lpfc_mqe_status, mqe,
13206 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13207 	}
13208 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13209 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13210 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13211 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13212 				      mcqe_status,
13213 				      pmbox->un.varWords[0], 0);
13214 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13215 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13216 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13217 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13218 			 * RID of the PPI using the same mbox buffer.
13219 			 */
13220 			lpfc_unreg_login(phba, vport->vpi,
13221 					 pmbox->un.varWords[0], pmb);
13222 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13223 			pmb->ctx_buf = mp;
13224 			pmb->ctx_ndlp = ndlp;
13225 			pmb->vport = vport;
13226 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13227 			if (rc != MBX_BUSY)
13228 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13229 						LOG_SLI, "0385 rc should "
13230 						"have been MBX_BUSY\n");
13231 			if (rc != MBX_NOT_FINISHED)
13232 				goto send_current_mbox;
13233 		}
13234 	}
13235 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13236 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13237 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13238 
13239 	/* There is mailbox completion work to do */
13240 	spin_lock_irqsave(&phba->hbalock, iflags);
13241 	__lpfc_mbox_cmpl_put(phba, pmb);
13242 	phba->work_ha |= HA_MBATT;
13243 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13244 	workposted = true;
13245 
13246 send_current_mbox:
13247 	spin_lock_irqsave(&phba->hbalock, iflags);
13248 	/* Release the mailbox command posting token */
13249 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13250 	/* Setting active mailbox pointer need to be in sync to flag clear */
13251 	phba->sli.mbox_active = NULL;
13252 	if (bf_get(lpfc_trailer_consumed, mcqe))
13253 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13254 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13255 	/* Wake up worker thread to post the next pending mailbox command */
13256 	lpfc_worker_wake_up(phba);
13257 	return workposted;
13258 
13259 out_no_mqe_complete:
13260 	spin_lock_irqsave(&phba->hbalock, iflags);
13261 	if (bf_get(lpfc_trailer_consumed, mcqe))
13262 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13263 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13264 	return false;
13265 }
13266 
13267 /**
13268  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13269  * @phba: Pointer to HBA context object.
13270  * @cqe: Pointer to mailbox completion queue entry.
13271  *
13272  * This routine process a mailbox completion queue entry, it invokes the
13273  * proper mailbox complete handling or asynchronous event handling routine
13274  * according to the MCQE's async bit.
13275  *
13276  * Return: true if work posted to worker thread, otherwise false.
13277  **/
13278 static bool
13279 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13280 			 struct lpfc_cqe *cqe)
13281 {
13282 	struct lpfc_mcqe mcqe;
13283 	bool workposted;
13284 
13285 	cq->CQ_mbox++;
13286 
13287 	/* Copy the mailbox MCQE and convert endian order as needed */
13288 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13289 
13290 	/* Invoke the proper event handling routine */
13291 	if (!bf_get(lpfc_trailer_async, &mcqe))
13292 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13293 	else
13294 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13295 	return workposted;
13296 }
13297 
13298 /**
13299  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13300  * @phba: Pointer to HBA context object.
13301  * @cq: Pointer to associated CQ
13302  * @wcqe: Pointer to work-queue completion queue entry.
13303  *
13304  * This routine handles an ELS work-queue completion event.
13305  *
13306  * Return: true if work posted to worker thread, otherwise false.
13307  **/
13308 static bool
13309 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13310 			     struct lpfc_wcqe_complete *wcqe)
13311 {
13312 	struct lpfc_iocbq *irspiocbq;
13313 	unsigned long iflags;
13314 	struct lpfc_sli_ring *pring = cq->pring;
13315 	int txq_cnt = 0;
13316 	int txcmplq_cnt = 0;
13317 
13318 	/* Check for response status */
13319 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13320 		/* Log the error status */
13321 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13322 				"0357 ELS CQE error: status=x%x: "
13323 				"CQE: %08x %08x %08x %08x\n",
13324 				bf_get(lpfc_wcqe_c_status, wcqe),
13325 				wcqe->word0, wcqe->total_data_placed,
13326 				wcqe->parameter, wcqe->word3);
13327 	}
13328 
13329 	/* Get an irspiocbq for later ELS response processing use */
13330 	irspiocbq = lpfc_sli_get_iocbq(phba);
13331 	if (!irspiocbq) {
13332 		if (!list_empty(&pring->txq))
13333 			txq_cnt++;
13334 		if (!list_empty(&pring->txcmplq))
13335 			txcmplq_cnt++;
13336 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13337 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13338 			"els_txcmplq_cnt=%d\n",
13339 			txq_cnt, phba->iocb_cnt,
13340 			txcmplq_cnt);
13341 		return false;
13342 	}
13343 
13344 	/* Save off the slow-path queue event for work thread to process */
13345 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13346 	spin_lock_irqsave(&phba->hbalock, iflags);
13347 	list_add_tail(&irspiocbq->cq_event.list,
13348 		      &phba->sli4_hba.sp_queue_event);
13349 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13350 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13351 
13352 	return true;
13353 }
13354 
13355 /**
13356  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13357  * @phba: Pointer to HBA context object.
13358  * @wcqe: Pointer to work-queue completion queue entry.
13359  *
13360  * This routine handles slow-path WQ entry consumed event by invoking the
13361  * proper WQ release routine to the slow-path WQ.
13362  **/
13363 static void
13364 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13365 			     struct lpfc_wcqe_release *wcqe)
13366 {
13367 	/* sanity check on queue memory */
13368 	if (unlikely(!phba->sli4_hba.els_wq))
13369 		return;
13370 	/* Check for the slow-path ELS work queue */
13371 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13372 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13373 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13374 	else
13375 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13376 				"2579 Slow-path wqe consume event carries "
13377 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13378 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13379 				phba->sli4_hba.els_wq->queue_id);
13380 }
13381 
13382 /**
13383  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13384  * @phba: Pointer to HBA context object.
13385  * @cq: Pointer to a WQ completion queue.
13386  * @wcqe: Pointer to work-queue completion queue entry.
13387  *
13388  * This routine handles an XRI abort event.
13389  *
13390  * Return: true if work posted to worker thread, otherwise false.
13391  **/
13392 static bool
13393 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13394 				   struct lpfc_queue *cq,
13395 				   struct sli4_wcqe_xri_aborted *wcqe)
13396 {
13397 	bool workposted = false;
13398 	struct lpfc_cq_event *cq_event;
13399 	unsigned long iflags;
13400 
13401 	switch (cq->subtype) {
13402 	case LPFC_IO:
13403 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13404 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13405 			/* Notify aborted XRI for NVME work queue */
13406 			if (phba->nvmet_support)
13407 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13408 		}
13409 		workposted = false;
13410 		break;
13411 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13412 	case LPFC_ELS:
13413 		cq_event = lpfc_cq_event_setup(
13414 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13415 		if (!cq_event)
13416 			return false;
13417 		cq_event->hdwq = cq->hdwq;
13418 		spin_lock_irqsave(&phba->hbalock, iflags);
13419 		list_add_tail(&cq_event->list,
13420 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13421 		/* Set the els xri abort event flag */
13422 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13423 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13424 		workposted = true;
13425 		break;
13426 	default:
13427 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13428 				"0603 Invalid CQ subtype %d: "
13429 				"%08x %08x %08x %08x\n",
13430 				cq->subtype, wcqe->word0, wcqe->parameter,
13431 				wcqe->word2, wcqe->word3);
13432 		workposted = false;
13433 		break;
13434 	}
13435 	return workposted;
13436 }
13437 
13438 #define FC_RCTL_MDS_DIAGS	0xF4
13439 
13440 /**
13441  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13442  * @phba: Pointer to HBA context object.
13443  * @rcqe: Pointer to receive-queue completion queue entry.
13444  *
13445  * This routine process a receive-queue completion queue entry.
13446  *
13447  * Return: true if work posted to worker thread, otherwise false.
13448  **/
13449 static bool
13450 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13451 {
13452 	bool workposted = false;
13453 	struct fc_frame_header *fc_hdr;
13454 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13455 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13456 	struct lpfc_nvmet_tgtport *tgtp;
13457 	struct hbq_dmabuf *dma_buf;
13458 	uint32_t status, rq_id;
13459 	unsigned long iflags;
13460 
13461 	/* sanity check on queue memory */
13462 	if (unlikely(!hrq) || unlikely(!drq))
13463 		return workposted;
13464 
13465 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13466 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13467 	else
13468 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13469 	if (rq_id != hrq->queue_id)
13470 		goto out;
13471 
13472 	status = bf_get(lpfc_rcqe_status, rcqe);
13473 	switch (status) {
13474 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13475 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13476 				"2537 Receive Frame Truncated!!\n");
13477 		/* fall through */
13478 	case FC_STATUS_RQ_SUCCESS:
13479 		spin_lock_irqsave(&phba->hbalock, iflags);
13480 		lpfc_sli4_rq_release(hrq, drq);
13481 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13482 		if (!dma_buf) {
13483 			hrq->RQ_no_buf_found++;
13484 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13485 			goto out;
13486 		}
13487 		hrq->RQ_rcv_buf++;
13488 		hrq->RQ_buf_posted--;
13489 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13490 
13491 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13492 
13493 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13494 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13495 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13496 			/* Handle MDS Loopback frames */
13497 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13498 			break;
13499 		}
13500 
13501 		/* save off the frame for the work thread to process */
13502 		list_add_tail(&dma_buf->cq_event.list,
13503 			      &phba->sli4_hba.sp_queue_event);
13504 		/* Frame received */
13505 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13506 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13507 		workposted = true;
13508 		break;
13509 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13510 		if (phba->nvmet_support) {
13511 			tgtp = phba->targetport->private;
13512 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13513 					"6402 RQE Error x%x, posted %d err_cnt "
13514 					"%d: %x %x %x\n",
13515 					status, hrq->RQ_buf_posted,
13516 					hrq->RQ_no_posted_buf,
13517 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13518 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13519 					atomic_read(&tgtp->xmt_fcp_release));
13520 		}
13521 		/* fallthrough */
13522 
13523 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13524 		hrq->RQ_no_posted_buf++;
13525 		/* Post more buffers if possible */
13526 		spin_lock_irqsave(&phba->hbalock, iflags);
13527 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13528 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13529 		workposted = true;
13530 		break;
13531 	}
13532 out:
13533 	return workposted;
13534 }
13535 
13536 /**
13537  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13538  * @phba: Pointer to HBA context object.
13539  * @cq: Pointer to the completion queue.
13540  * @cqe: Pointer to a completion queue entry.
13541  *
13542  * This routine process a slow-path work-queue or receive queue completion queue
13543  * entry.
13544  *
13545  * Return: true if work posted to worker thread, otherwise false.
13546  **/
13547 static bool
13548 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13549 			 struct lpfc_cqe *cqe)
13550 {
13551 	struct lpfc_cqe cqevt;
13552 	bool workposted = false;
13553 
13554 	/* Copy the work queue CQE and convert endian order if needed */
13555 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13556 
13557 	/* Check and process for different type of WCQE and dispatch */
13558 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13559 	case CQE_CODE_COMPL_WQE:
13560 		/* Process the WQ/RQ complete event */
13561 		phba->last_completion_time = jiffies;
13562 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13563 				(struct lpfc_wcqe_complete *)&cqevt);
13564 		break;
13565 	case CQE_CODE_RELEASE_WQE:
13566 		/* Process the WQ release event */
13567 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13568 				(struct lpfc_wcqe_release *)&cqevt);
13569 		break;
13570 	case CQE_CODE_XRI_ABORTED:
13571 		/* Process the WQ XRI abort event */
13572 		phba->last_completion_time = jiffies;
13573 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13574 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13575 		break;
13576 	case CQE_CODE_RECEIVE:
13577 	case CQE_CODE_RECEIVE_V1:
13578 		/* Process the RQ event */
13579 		phba->last_completion_time = jiffies;
13580 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13581 				(struct lpfc_rcqe *)&cqevt);
13582 		break;
13583 	default:
13584 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13585 				"0388 Not a valid WCQE code: x%x\n",
13586 				bf_get(lpfc_cqe_code, &cqevt));
13587 		break;
13588 	}
13589 	return workposted;
13590 }
13591 
13592 /**
13593  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13594  * @phba: Pointer to HBA context object.
13595  * @eqe: Pointer to fast-path event queue entry.
13596  *
13597  * This routine process a event queue entry from the slow-path event queue.
13598  * It will check the MajorCode and MinorCode to determine this is for a
13599  * completion event on a completion queue, if not, an error shall be logged
13600  * and just return. Otherwise, it will get to the corresponding completion
13601  * queue and process all the entries on that completion queue, rearm the
13602  * completion queue, and then return.
13603  *
13604  **/
13605 static void
13606 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13607 	struct lpfc_queue *speq)
13608 {
13609 	struct lpfc_queue *cq = NULL, *childq;
13610 	uint16_t cqid;
13611 
13612 	/* Get the reference to the corresponding CQ */
13613 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13614 
13615 	list_for_each_entry(childq, &speq->child_list, list) {
13616 		if (childq->queue_id == cqid) {
13617 			cq = childq;
13618 			break;
13619 		}
13620 	}
13621 	if (unlikely(!cq)) {
13622 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13623 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13624 					"0365 Slow-path CQ identifier "
13625 					"(%d) does not exist\n", cqid);
13626 		return;
13627 	}
13628 
13629 	/* Save EQ associated with this CQ */
13630 	cq->assoc_qp = speq;
13631 
13632 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13633 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13634 				"0390 Cannot schedule soft IRQ "
13635 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13636 				cqid, cq->queue_id, raw_smp_processor_id());
13637 }
13638 
13639 /**
13640  * __lpfc_sli4_process_cq - Process elements of a CQ
13641  * @phba: Pointer to HBA context object.
13642  * @cq: Pointer to CQ to be processed
13643  * @handler: Routine to process each cqe
13644  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13645  *
13646  * This routine processes completion queue entries in a CQ. While a valid
13647  * queue element is found, the handler is called. During processing checks
13648  * are made for periodic doorbell writes to let the hardware know of
13649  * element consumption.
13650  *
13651  * If the max limit on cqes to process is hit, or there are no more valid
13652  * entries, the loop stops. If we processed a sufficient number of elements,
13653  * meaning there is sufficient load, rather than rearming and generating
13654  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13655  * indicates no rescheduling.
13656  *
13657  * Returns True if work scheduled, False otherwise.
13658  **/
13659 static bool
13660 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13661 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13662 			struct lpfc_cqe *), unsigned long *delay)
13663 {
13664 	struct lpfc_cqe *cqe;
13665 	bool workposted = false;
13666 	int count = 0, consumed = 0;
13667 	bool arm = true;
13668 
13669 	/* default - no reschedule */
13670 	*delay = 0;
13671 
13672 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13673 		goto rearm_and_exit;
13674 
13675 	/* Process all the entries to the CQ */
13676 	cq->q_flag = 0;
13677 	cqe = lpfc_sli4_cq_get(cq);
13678 	while (cqe) {
13679 		workposted |= handler(phba, cq, cqe);
13680 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13681 
13682 		consumed++;
13683 		if (!(++count % cq->max_proc_limit))
13684 			break;
13685 
13686 		if (!(count % cq->notify_interval)) {
13687 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13688 						LPFC_QUEUE_NOARM);
13689 			consumed = 0;
13690 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13691 		}
13692 
13693 		if (count == LPFC_NVMET_CQ_NOTIFY)
13694 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13695 
13696 		cqe = lpfc_sli4_cq_get(cq);
13697 	}
13698 	if (count >= phba->cfg_cq_poll_threshold) {
13699 		*delay = 1;
13700 		arm = false;
13701 	}
13702 
13703 	/* Track the max number of CQEs processed in 1 EQ */
13704 	if (count > cq->CQ_max_cqe)
13705 		cq->CQ_max_cqe = count;
13706 
13707 	cq->assoc_qp->EQ_cqe_cnt += count;
13708 
13709 	/* Catch the no cq entry condition */
13710 	if (unlikely(count == 0))
13711 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13712 				"0369 No entry from completion queue "
13713 				"qid=%d\n", cq->queue_id);
13714 
13715 	cq->queue_claimed = 0;
13716 
13717 rearm_and_exit:
13718 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13719 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13720 
13721 	return workposted;
13722 }
13723 
13724 /**
13725  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13726  * @cq: pointer to CQ to process
13727  *
13728  * This routine calls the cq processing routine with a handler specific
13729  * to the type of queue bound to it.
13730  *
13731  * The CQ routine returns two values: the first is the calling status,
13732  * which indicates whether work was queued to the  background discovery
13733  * thread. If true, the routine should wakeup the discovery thread;
13734  * the second is the delay parameter. If non-zero, rather than rearming
13735  * the CQ and yet another interrupt, the CQ handler should be queued so
13736  * that it is processed in a subsequent polling action. The value of
13737  * the delay indicates when to reschedule it.
13738  **/
13739 static void
13740 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13741 {
13742 	struct lpfc_hba *phba = cq->phba;
13743 	unsigned long delay;
13744 	bool workposted = false;
13745 
13746 	/* Process and rearm the CQ */
13747 	switch (cq->type) {
13748 	case LPFC_MCQ:
13749 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13750 						lpfc_sli4_sp_handle_mcqe,
13751 						&delay);
13752 		break;
13753 	case LPFC_WCQ:
13754 		if (cq->subtype == LPFC_IO)
13755 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13756 						lpfc_sli4_fp_handle_cqe,
13757 						&delay);
13758 		else
13759 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13760 						lpfc_sli4_sp_handle_cqe,
13761 						&delay);
13762 		break;
13763 	default:
13764 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13765 				"0370 Invalid completion queue type (%d)\n",
13766 				cq->type);
13767 		return;
13768 	}
13769 
13770 	if (delay) {
13771 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13772 					   &cq->sched_spwork, delay))
13773 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13774 				"0394 Cannot schedule soft IRQ "
13775 				"for cqid=%d on CPU %d\n",
13776 				cq->queue_id, cq->chann);
13777 	}
13778 
13779 	/* wake up worker thread if there are works to be done */
13780 	if (workposted)
13781 		lpfc_worker_wake_up(phba);
13782 }
13783 
13784 /**
13785  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13786  *   interrupt
13787  * @work: pointer to work element
13788  *
13789  * translates from the work handler and calls the slow-path handler.
13790  **/
13791 static void
13792 lpfc_sli4_sp_process_cq(struct work_struct *work)
13793 {
13794 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13795 
13796 	__lpfc_sli4_sp_process_cq(cq);
13797 }
13798 
13799 /**
13800  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13801  * @work: pointer to work element
13802  *
13803  * translates from the work handler and calls the slow-path handler.
13804  **/
13805 static void
13806 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13807 {
13808 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13809 					struct lpfc_queue, sched_spwork);
13810 
13811 	__lpfc_sli4_sp_process_cq(cq);
13812 }
13813 
13814 /**
13815  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13816  * @phba: Pointer to HBA context object.
13817  * @cq: Pointer to associated CQ
13818  * @wcqe: Pointer to work-queue completion queue entry.
13819  *
13820  * This routine process a fast-path work queue completion entry from fast-path
13821  * event queue for FCP command response completion.
13822  **/
13823 static void
13824 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13825 			     struct lpfc_wcqe_complete *wcqe)
13826 {
13827 	struct lpfc_sli_ring *pring = cq->pring;
13828 	struct lpfc_iocbq *cmdiocbq;
13829 	struct lpfc_iocbq irspiocbq;
13830 	unsigned long iflags;
13831 
13832 	/* Check for response status */
13833 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13834 		/* If resource errors reported from HBA, reduce queue
13835 		 * depth of the SCSI device.
13836 		 */
13837 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13838 		     IOSTAT_LOCAL_REJECT)) &&
13839 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13840 		     IOERR_NO_RESOURCES))
13841 			phba->lpfc_rampdown_queue_depth(phba);
13842 
13843 		/* Log the error status */
13844 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13845 				"0373 FCP CQE error: status=x%x: "
13846 				"CQE: %08x %08x %08x %08x\n",
13847 				bf_get(lpfc_wcqe_c_status, wcqe),
13848 				wcqe->word0, wcqe->total_data_placed,
13849 				wcqe->parameter, wcqe->word3);
13850 	}
13851 
13852 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13853 	spin_lock_irqsave(&pring->ring_lock, iflags);
13854 	pring->stats.iocb_event++;
13855 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13856 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13857 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13858 	if (unlikely(!cmdiocbq)) {
13859 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13860 				"0374 FCP complete with no corresponding "
13861 				"cmdiocb: iotag (%d)\n",
13862 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13863 		return;
13864 	}
13865 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13866 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13867 #endif
13868 	if (cmdiocbq->iocb_cmpl == NULL) {
13869 		if (cmdiocbq->wqe_cmpl) {
13870 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13871 				spin_lock_irqsave(&phba->hbalock, iflags);
13872 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13873 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13874 			}
13875 
13876 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13877 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13878 			return;
13879 		}
13880 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13881 				"0375 FCP cmdiocb not callback function "
13882 				"iotag: (%d)\n",
13883 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13884 		return;
13885 	}
13886 
13887 	/* Fake the irspiocb and copy necessary response information */
13888 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13889 
13890 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13891 		spin_lock_irqsave(&phba->hbalock, iflags);
13892 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13893 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13894 	}
13895 
13896 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13897 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13898 }
13899 
13900 /**
13901  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13902  * @phba: Pointer to HBA context object.
13903  * @cq: Pointer to completion queue.
13904  * @wcqe: Pointer to work-queue completion queue entry.
13905  *
13906  * This routine handles an fast-path WQ entry consumed event by invoking the
13907  * proper WQ release routine to the slow-path WQ.
13908  **/
13909 static void
13910 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13911 			     struct lpfc_wcqe_release *wcqe)
13912 {
13913 	struct lpfc_queue *childwq;
13914 	bool wqid_matched = false;
13915 	uint16_t hba_wqid;
13916 
13917 	/* Check for fast-path FCP work queue release */
13918 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13919 	list_for_each_entry(childwq, &cq->child_list, list) {
13920 		if (childwq->queue_id == hba_wqid) {
13921 			lpfc_sli4_wq_release(childwq,
13922 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13923 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13924 				lpfc_nvmet_wqfull_process(phba, childwq);
13925 			wqid_matched = true;
13926 			break;
13927 		}
13928 	}
13929 	/* Report warning log message if no match found */
13930 	if (wqid_matched != true)
13931 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13932 				"2580 Fast-path wqe consume event carries "
13933 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13934 }
13935 
13936 /**
13937  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13938  * @phba: Pointer to HBA context object.
13939  * @rcqe: Pointer to receive-queue completion queue entry.
13940  *
13941  * This routine process a receive-queue completion queue entry.
13942  *
13943  * Return: true if work posted to worker thread, otherwise false.
13944  **/
13945 static bool
13946 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13947 			    struct lpfc_rcqe *rcqe)
13948 {
13949 	bool workposted = false;
13950 	struct lpfc_queue *hrq;
13951 	struct lpfc_queue *drq;
13952 	struct rqb_dmabuf *dma_buf;
13953 	struct fc_frame_header *fc_hdr;
13954 	struct lpfc_nvmet_tgtport *tgtp;
13955 	uint32_t status, rq_id;
13956 	unsigned long iflags;
13957 	uint32_t fctl, idx;
13958 
13959 	if ((phba->nvmet_support == 0) ||
13960 	    (phba->sli4_hba.nvmet_cqset == NULL))
13961 		return workposted;
13962 
13963 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13964 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13965 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13966 
13967 	/* sanity check on queue memory */
13968 	if (unlikely(!hrq) || unlikely(!drq))
13969 		return workposted;
13970 
13971 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13972 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13973 	else
13974 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13975 
13976 	if ((phba->nvmet_support == 0) ||
13977 	    (rq_id != hrq->queue_id))
13978 		return workposted;
13979 
13980 	status = bf_get(lpfc_rcqe_status, rcqe);
13981 	switch (status) {
13982 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13983 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13984 				"6126 Receive Frame Truncated!!\n");
13985 		/* fall through */
13986 	case FC_STATUS_RQ_SUCCESS:
13987 		spin_lock_irqsave(&phba->hbalock, iflags);
13988 		lpfc_sli4_rq_release(hrq, drq);
13989 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13990 		if (!dma_buf) {
13991 			hrq->RQ_no_buf_found++;
13992 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13993 			goto out;
13994 		}
13995 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13996 		hrq->RQ_rcv_buf++;
13997 		hrq->RQ_buf_posted--;
13998 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13999 
14000 		/* Just some basic sanity checks on FCP Command frame */
14001 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14002 		fc_hdr->fh_f_ctl[1] << 8 |
14003 		fc_hdr->fh_f_ctl[2]);
14004 		if (((fctl &
14005 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14006 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14007 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14008 			goto drop;
14009 
14010 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14011 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14012 			lpfc_nvmet_unsol_fcp_event(
14013 				phba, idx, dma_buf, cq->isr_timestamp,
14014 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14015 			return false;
14016 		}
14017 drop:
14018 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14019 		break;
14020 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14021 		if (phba->nvmet_support) {
14022 			tgtp = phba->targetport->private;
14023 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
14024 					"6401 RQE Error x%x, posted %d err_cnt "
14025 					"%d: %x %x %x\n",
14026 					status, hrq->RQ_buf_posted,
14027 					hrq->RQ_no_posted_buf,
14028 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14029 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14030 					atomic_read(&tgtp->xmt_fcp_release));
14031 		}
14032 		/* fallthrough */
14033 
14034 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14035 		hrq->RQ_no_posted_buf++;
14036 		/* Post more buffers if possible */
14037 		break;
14038 	}
14039 out:
14040 	return workposted;
14041 }
14042 
14043 /**
14044  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14045  * @phba: adapter with cq
14046  * @cq: Pointer to the completion queue.
14047  * @eqe: Pointer to fast-path completion queue entry.
14048  *
14049  * This routine process a fast-path work queue completion entry from fast-path
14050  * event queue for FCP command response completion.
14051  *
14052  * Return: true if work posted to worker thread, otherwise false.
14053  **/
14054 static bool
14055 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14056 			 struct lpfc_cqe *cqe)
14057 {
14058 	struct lpfc_wcqe_release wcqe;
14059 	bool workposted = false;
14060 
14061 	/* Copy the work queue CQE and convert endian order if needed */
14062 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14063 
14064 	/* Check and process for different type of WCQE and dispatch */
14065 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14066 	case CQE_CODE_COMPL_WQE:
14067 	case CQE_CODE_NVME_ERSP:
14068 		cq->CQ_wq++;
14069 		/* Process the WQ complete event */
14070 		phba->last_completion_time = jiffies;
14071 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14072 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14073 				(struct lpfc_wcqe_complete *)&wcqe);
14074 		break;
14075 	case CQE_CODE_RELEASE_WQE:
14076 		cq->CQ_release_wqe++;
14077 		/* Process the WQ release event */
14078 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14079 				(struct lpfc_wcqe_release *)&wcqe);
14080 		break;
14081 	case CQE_CODE_XRI_ABORTED:
14082 		cq->CQ_xri_aborted++;
14083 		/* Process the WQ XRI abort event */
14084 		phba->last_completion_time = jiffies;
14085 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14086 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14087 		break;
14088 	case CQE_CODE_RECEIVE_V1:
14089 	case CQE_CODE_RECEIVE:
14090 		phba->last_completion_time = jiffies;
14091 		if (cq->subtype == LPFC_NVMET) {
14092 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14093 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14094 		}
14095 		break;
14096 	default:
14097 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14098 				"0144 Not a valid CQE code: x%x\n",
14099 				bf_get(lpfc_wcqe_c_code, &wcqe));
14100 		break;
14101 	}
14102 	return workposted;
14103 }
14104 
14105 /**
14106  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14107  * @phba: Pointer to HBA context object.
14108  * @eqe: Pointer to fast-path event queue entry.
14109  *
14110  * This routine process a event queue entry from the fast-path event queue.
14111  * It will check the MajorCode and MinorCode to determine this is for a
14112  * completion event on a completion queue, if not, an error shall be logged
14113  * and just return. Otherwise, it will get to the corresponding completion
14114  * queue and process all the entries on the completion queue, rearm the
14115  * completion queue, and then return.
14116  **/
14117 static void
14118 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14119 			 struct lpfc_eqe *eqe)
14120 {
14121 	struct lpfc_queue *cq = NULL;
14122 	uint32_t qidx = eq->hdwq;
14123 	uint16_t cqid, id;
14124 
14125 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14126 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14127 				"0366 Not a valid completion "
14128 				"event: majorcode=x%x, minorcode=x%x\n",
14129 				bf_get_le32(lpfc_eqe_major_code, eqe),
14130 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14131 		return;
14132 	}
14133 
14134 	/* Get the reference to the corresponding CQ */
14135 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14136 
14137 	/* Use the fast lookup method first */
14138 	if (cqid <= phba->sli4_hba.cq_max) {
14139 		cq = phba->sli4_hba.cq_lookup[cqid];
14140 		if (cq)
14141 			goto  work_cq;
14142 	}
14143 
14144 	/* Next check for NVMET completion */
14145 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14146 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14147 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14148 			/* Process NVMET unsol rcv */
14149 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14150 			goto  process_cq;
14151 		}
14152 	}
14153 
14154 	if (phba->sli4_hba.nvmels_cq &&
14155 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14156 		/* Process NVME unsol rcv */
14157 		cq = phba->sli4_hba.nvmels_cq;
14158 	}
14159 
14160 	/* Otherwise this is a Slow path event */
14161 	if (cq == NULL) {
14162 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14163 					phba->sli4_hba.hdwq[qidx].hba_eq);
14164 		return;
14165 	}
14166 
14167 process_cq:
14168 	if (unlikely(cqid != cq->queue_id)) {
14169 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14170 				"0368 Miss-matched fast-path completion "
14171 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14172 				cqid, cq->queue_id);
14173 		return;
14174 	}
14175 
14176 work_cq:
14177 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14178 	if (phba->ktime_on)
14179 		cq->isr_timestamp = ktime_get_ns();
14180 	else
14181 		cq->isr_timestamp = 0;
14182 #endif
14183 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14184 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14185 				"0363 Cannot schedule soft IRQ "
14186 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14187 				cqid, cq->queue_id, raw_smp_processor_id());
14188 }
14189 
14190 /**
14191  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14192  * @cq: Pointer to CQ to be processed
14193  *
14194  * This routine calls the cq processing routine with the handler for
14195  * fast path CQEs.
14196  *
14197  * The CQ routine returns two values: the first is the calling status,
14198  * which indicates whether work was queued to the  background discovery
14199  * thread. If true, the routine should wakeup the discovery thread;
14200  * the second is the delay parameter. If non-zero, rather than rearming
14201  * the CQ and yet another interrupt, the CQ handler should be queued so
14202  * that it is processed in a subsequent polling action. The value of
14203  * the delay indicates when to reschedule it.
14204  **/
14205 static void
14206 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14207 {
14208 	struct lpfc_hba *phba = cq->phba;
14209 	unsigned long delay;
14210 	bool workposted = false;
14211 
14212 	/* process and rearm the CQ */
14213 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14214 					     &delay);
14215 
14216 	if (delay) {
14217 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14218 					   &cq->sched_irqwork, delay))
14219 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14220 				"0367 Cannot schedule soft IRQ "
14221 				"for cqid=%d on CPU %d\n",
14222 				cq->queue_id, cq->chann);
14223 	}
14224 
14225 	/* wake up worker thread if there are works to be done */
14226 	if (workposted)
14227 		lpfc_worker_wake_up(phba);
14228 }
14229 
14230 /**
14231  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14232  *   interrupt
14233  * @work: pointer to work element
14234  *
14235  * translates from the work handler and calls the fast-path handler.
14236  **/
14237 static void
14238 lpfc_sli4_hba_process_cq(struct work_struct *work)
14239 {
14240 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14241 
14242 	__lpfc_sli4_hba_process_cq(cq);
14243 }
14244 
14245 /**
14246  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14247  * @work: pointer to work element
14248  *
14249  * translates from the work handler and calls the fast-path handler.
14250  **/
14251 static void
14252 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14253 {
14254 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14255 					struct lpfc_queue, sched_irqwork);
14256 
14257 	__lpfc_sli4_hba_process_cq(cq);
14258 }
14259 
14260 /**
14261  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14262  * @irq: Interrupt number.
14263  * @dev_id: The device context pointer.
14264  *
14265  * This function is directly called from the PCI layer as an interrupt
14266  * service routine when device with SLI-4 interface spec is enabled with
14267  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14268  * ring event in the HBA. However, when the device is enabled with either
14269  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14270  * device-level interrupt handler. When the PCI slot is in error recovery
14271  * or the HBA is undergoing initialization, the interrupt handler will not
14272  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14273  * the intrrupt context. This function is called without any lock held.
14274  * It gets the hbalock to access and update SLI data structures. Note that,
14275  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14276  * equal to that of FCP CQ index.
14277  *
14278  * The link attention and ELS ring attention events are handled
14279  * by the worker thread. The interrupt handler signals the worker thread
14280  * and returns for these events. This function is called without any lock
14281  * held. It gets the hbalock to access and update SLI data structures.
14282  *
14283  * This function returns IRQ_HANDLED when interrupt is handled else it
14284  * returns IRQ_NONE.
14285  **/
14286 irqreturn_t
14287 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14288 {
14289 	struct lpfc_hba *phba;
14290 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14291 	struct lpfc_queue *fpeq;
14292 	unsigned long iflag;
14293 	int ecount = 0;
14294 	int hba_eqidx;
14295 	struct lpfc_eq_intr_info *eqi;
14296 	uint32_t icnt;
14297 
14298 	/* Get the driver's phba structure from the dev_id */
14299 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14300 	phba = hba_eq_hdl->phba;
14301 	hba_eqidx = hba_eq_hdl->idx;
14302 
14303 	if (unlikely(!phba))
14304 		return IRQ_NONE;
14305 	if (unlikely(!phba->sli4_hba.hdwq))
14306 		return IRQ_NONE;
14307 
14308 	/* Get to the EQ struct associated with this vector */
14309 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14310 	if (unlikely(!fpeq))
14311 		return IRQ_NONE;
14312 
14313 	/* Check device state for handling interrupt */
14314 	if (unlikely(lpfc_intr_state_check(phba))) {
14315 		/* Check again for link_state with lock held */
14316 		spin_lock_irqsave(&phba->hbalock, iflag);
14317 		if (phba->link_state < LPFC_LINK_DOWN)
14318 			/* Flush, clear interrupt, and rearm the EQ */
14319 			lpfc_sli4_eqcq_flush(phba, fpeq);
14320 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14321 		return IRQ_NONE;
14322 	}
14323 
14324 	eqi = phba->sli4_hba.eq_info;
14325 	icnt = this_cpu_inc_return(eqi->icnt);
14326 	fpeq->last_cpu = raw_smp_processor_id();
14327 
14328 	if (icnt > LPFC_EQD_ISR_TRIGGER &&
14329 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14330 	    phba->cfg_auto_imax &&
14331 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14332 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14333 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14334 
14335 	/* process and rearm the EQ */
14336 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14337 
14338 	if (unlikely(ecount == 0)) {
14339 		fpeq->EQ_no_entry++;
14340 		if (phba->intr_type == MSIX)
14341 			/* MSI-X treated interrupt served as no EQ share INT */
14342 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14343 					"0358 MSI-X interrupt with no EQE\n");
14344 		else
14345 			/* Non MSI-X treated on interrupt as EQ share INT */
14346 			return IRQ_NONE;
14347 	}
14348 
14349 	return IRQ_HANDLED;
14350 } /* lpfc_sli4_fp_intr_handler */
14351 
14352 /**
14353  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14354  * @irq: Interrupt number.
14355  * @dev_id: The device context pointer.
14356  *
14357  * This function is the device-level interrupt handler to device with SLI-4
14358  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14359  * interrupt mode is enabled and there is an event in the HBA which requires
14360  * driver attention. This function invokes the slow-path interrupt attention
14361  * handling function and fast-path interrupt attention handling function in
14362  * turn to process the relevant HBA attention events. This function is called
14363  * without any lock held. It gets the hbalock to access and update SLI data
14364  * structures.
14365  *
14366  * This function returns IRQ_HANDLED when interrupt is handled, else it
14367  * returns IRQ_NONE.
14368  **/
14369 irqreturn_t
14370 lpfc_sli4_intr_handler(int irq, void *dev_id)
14371 {
14372 	struct lpfc_hba  *phba;
14373 	irqreturn_t hba_irq_rc;
14374 	bool hba_handled = false;
14375 	int qidx;
14376 
14377 	/* Get the driver's phba structure from the dev_id */
14378 	phba = (struct lpfc_hba *)dev_id;
14379 
14380 	if (unlikely(!phba))
14381 		return IRQ_NONE;
14382 
14383 	/*
14384 	 * Invoke fast-path host attention interrupt handling as appropriate.
14385 	 */
14386 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14387 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14388 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14389 		if (hba_irq_rc == IRQ_HANDLED)
14390 			hba_handled |= true;
14391 	}
14392 
14393 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14394 } /* lpfc_sli4_intr_handler */
14395 
14396 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14397 {
14398 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14399 	struct lpfc_queue *eq;
14400 	int i = 0;
14401 
14402 	rcu_read_lock();
14403 
14404 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14405 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14406 	if (!list_empty(&phba->poll_list))
14407 		mod_timer(&phba->cpuhp_poll_timer,
14408 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14409 
14410 	rcu_read_unlock();
14411 }
14412 
14413 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14414 {
14415 	struct lpfc_hba *phba = eq->phba;
14416 	int i = 0;
14417 
14418 	/*
14419 	 * Unlocking an irq is one of the entry point to check
14420 	 * for re-schedule, but we are good for io submission
14421 	 * path as midlayer does a get_cpu to glue us in. Flush
14422 	 * out the invalidate queue so we can see the updated
14423 	 * value for flag.
14424 	 */
14425 	smp_rmb();
14426 
14427 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14428 		/* We will not likely get the completion for the caller
14429 		 * during this iteration but i guess that's fine.
14430 		 * Future io's coming on this eq should be able to
14431 		 * pick it up.  As for the case of single io's, they
14432 		 * will be handled through a sched from polling timer
14433 		 * function which is currently triggered every 1msec.
14434 		 */
14435 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14436 
14437 	return i;
14438 }
14439 
14440 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14441 {
14442 	struct lpfc_hba *phba = eq->phba;
14443 
14444 	if (list_empty(&phba->poll_list)) {
14445 		timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0);
14446 		/* kickstart slowpath processing for this eq */
14447 		mod_timer(&phba->cpuhp_poll_timer,
14448 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14449 	}
14450 
14451 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14452 	synchronize_rcu();
14453 }
14454 
14455 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14456 {
14457 	struct lpfc_hba *phba = eq->phba;
14458 
14459 	/* Disable slowpath processing for this eq.  Kick start the eq
14460 	 * by RE-ARMING the eq's ASAP
14461 	 */
14462 	list_del_rcu(&eq->_poll_list);
14463 	synchronize_rcu();
14464 
14465 	if (list_empty(&phba->poll_list))
14466 		del_timer_sync(&phba->cpuhp_poll_timer);
14467 }
14468 
14469 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14470 {
14471 	struct lpfc_queue *eq, *next;
14472 
14473 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14474 		list_del(&eq->_poll_list);
14475 
14476 	INIT_LIST_HEAD(&phba->poll_list);
14477 	synchronize_rcu();
14478 }
14479 
14480 static inline void
14481 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14482 {
14483 	if (mode == eq->mode)
14484 		return;
14485 	/*
14486 	 * currently this function is only called during a hotplug
14487 	 * event and the cpu on which this function is executing
14488 	 * is going offline.  By now the hotplug has instructed
14489 	 * the scheduler to remove this cpu from cpu active mask.
14490 	 * So we don't need to work about being put aside by the
14491 	 * scheduler for a high priority process.  Yes, the inte-
14492 	 * rrupts could come but they are known to retire ASAP.
14493 	 */
14494 
14495 	/* Disable polling in the fastpath */
14496 	WRITE_ONCE(eq->mode, mode);
14497 	/* flush out the store buffer */
14498 	smp_wmb();
14499 
14500 	/*
14501 	 * Add this eq to the polling list and start polling. For
14502 	 * a grace period both interrupt handler and poller will
14503 	 * try to process the eq _but_ that's fine.  We have a
14504 	 * synchronization mechanism in place (queue_claimed) to
14505 	 * deal with it.  This is just a draining phase for int-
14506 	 * errupt handler (not eq's) as we have guranteed through
14507 	 * barrier that all the CPUs have seen the new CQ_POLLED
14508 	 * state. which will effectively disable the REARMING of
14509 	 * the EQ.  The whole idea is eq's die off eventually as
14510 	 * we are not rearming EQ's anymore.
14511 	 */
14512 	mode ? lpfc_sli4_add_to_poll_list(eq) :
14513 	       lpfc_sli4_remove_from_poll_list(eq);
14514 }
14515 
14516 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14517 {
14518 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14519 }
14520 
14521 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14522 {
14523 	struct lpfc_hba *phba = eq->phba;
14524 
14525 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14526 
14527 	/* Kick start for the pending io's in h/w.
14528 	 * Once we switch back to interrupt processing on a eq
14529 	 * the io path completion will only arm eq's when it
14530 	 * receives a completion.  But since eq's are in disa-
14531 	 * rmed state it doesn't receive a completion.  This
14532 	 * creates a deadlock scenaro.
14533 	 */
14534 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14535 }
14536 
14537 /**
14538  * lpfc_sli4_queue_free - free a queue structure and associated memory
14539  * @queue: The queue structure to free.
14540  *
14541  * This function frees a queue structure and the DMAable memory used for
14542  * the host resident queue. This function must be called after destroying the
14543  * queue on the HBA.
14544  **/
14545 void
14546 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14547 {
14548 	struct lpfc_dmabuf *dmabuf;
14549 
14550 	if (!queue)
14551 		return;
14552 
14553 	if (!list_empty(&queue->wq_list))
14554 		list_del(&queue->wq_list);
14555 
14556 	while (!list_empty(&queue->page_list)) {
14557 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14558 				 list);
14559 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14560 				  dmabuf->virt, dmabuf->phys);
14561 		kfree(dmabuf);
14562 	}
14563 	if (queue->rqbp) {
14564 		lpfc_free_rq_buffer(queue->phba, queue);
14565 		kfree(queue->rqbp);
14566 	}
14567 
14568 	if (!list_empty(&queue->cpu_list))
14569 		list_del(&queue->cpu_list);
14570 
14571 	kfree(queue);
14572 	return;
14573 }
14574 
14575 /**
14576  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14577  * @phba: The HBA that this queue is being created on.
14578  * @page_size: The size of a queue page
14579  * @entry_size: The size of each queue entry for this queue.
14580  * @entry count: The number of entries that this queue will handle.
14581  * @cpu: The cpu that will primarily utilize this queue.
14582  *
14583  * This function allocates a queue structure and the DMAable memory used for
14584  * the host resident queue. This function must be called before creating the
14585  * queue on the HBA.
14586  **/
14587 struct lpfc_queue *
14588 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14589 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14590 {
14591 	struct lpfc_queue *queue;
14592 	struct lpfc_dmabuf *dmabuf;
14593 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14594 	uint16_t x, pgcnt;
14595 
14596 	if (!phba->sli4_hba.pc_sli4_params.supported)
14597 		hw_page_size = page_size;
14598 
14599 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14600 
14601 	/* If needed, Adjust page count to match the max the adapter supports */
14602 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14603 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14604 
14605 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14606 			     GFP_KERNEL, cpu_to_node(cpu));
14607 	if (!queue)
14608 		return NULL;
14609 
14610 	INIT_LIST_HEAD(&queue->list);
14611 	INIT_LIST_HEAD(&queue->_poll_list);
14612 	INIT_LIST_HEAD(&queue->wq_list);
14613 	INIT_LIST_HEAD(&queue->wqfull_list);
14614 	INIT_LIST_HEAD(&queue->page_list);
14615 	INIT_LIST_HEAD(&queue->child_list);
14616 	INIT_LIST_HEAD(&queue->cpu_list);
14617 
14618 	/* Set queue parameters now.  If the system cannot provide memory
14619 	 * resources, the free routine needs to know what was allocated.
14620 	 */
14621 	queue->page_count = pgcnt;
14622 	queue->q_pgs = (void **)&queue[1];
14623 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14624 	queue->entry_size = entry_size;
14625 	queue->entry_count = entry_count;
14626 	queue->page_size = hw_page_size;
14627 	queue->phba = phba;
14628 
14629 	for (x = 0; x < queue->page_count; x++) {
14630 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14631 				      dev_to_node(&phba->pcidev->dev));
14632 		if (!dmabuf)
14633 			goto out_fail;
14634 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14635 						  hw_page_size, &dmabuf->phys,
14636 						  GFP_KERNEL);
14637 		if (!dmabuf->virt) {
14638 			kfree(dmabuf);
14639 			goto out_fail;
14640 		}
14641 		dmabuf->buffer_tag = x;
14642 		list_add_tail(&dmabuf->list, &queue->page_list);
14643 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14644 		queue->q_pgs[x] = dmabuf->virt;
14645 	}
14646 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14647 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14648 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14649 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14650 
14651 	/* notify_interval will be set during q creation */
14652 
14653 	return queue;
14654 out_fail:
14655 	lpfc_sli4_queue_free(queue);
14656 	return NULL;
14657 }
14658 
14659 /**
14660  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14661  * @phba: HBA structure that indicates port to create a queue on.
14662  * @pci_barset: PCI BAR set flag.
14663  *
14664  * This function shall perform iomap of the specified PCI BAR address to host
14665  * memory address if not already done so and return it. The returned host
14666  * memory address can be NULL.
14667  */
14668 static void __iomem *
14669 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14670 {
14671 	if (!phba->pcidev)
14672 		return NULL;
14673 
14674 	switch (pci_barset) {
14675 	case WQ_PCI_BAR_0_AND_1:
14676 		return phba->pci_bar0_memmap_p;
14677 	case WQ_PCI_BAR_2_AND_3:
14678 		return phba->pci_bar2_memmap_p;
14679 	case WQ_PCI_BAR_4_AND_5:
14680 		return phba->pci_bar4_memmap_p;
14681 	default:
14682 		break;
14683 	}
14684 	return NULL;
14685 }
14686 
14687 /**
14688  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14689  * @phba: HBA structure that EQs are on.
14690  * @startq: The starting EQ index to modify
14691  * @numq: The number of EQs (consecutive indexes) to modify
14692  * @usdelay: amount of delay
14693  *
14694  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14695  * is set either by writing to a register (if supported by the SLI Port)
14696  * or by mailbox command. The mailbox command allows several EQs to be
14697  * updated at once.
14698  *
14699  * The @phba struct is used to send a mailbox command to HBA. The @startq
14700  * is used to get the starting EQ index to change. The @numq value is
14701  * used to specify how many consecutive EQ indexes, starting at EQ index,
14702  * are to be changed. This function is asynchronous and will wait for any
14703  * mailbox commands to finish before returning.
14704  *
14705  * On success this function will return a zero. If unable to allocate
14706  * enough memory this function will return -ENOMEM. If a mailbox command
14707  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14708  * have had their delay multipler changed.
14709  **/
14710 void
14711 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14712 			 uint32_t numq, uint32_t usdelay)
14713 {
14714 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14715 	LPFC_MBOXQ_t *mbox;
14716 	struct lpfc_queue *eq;
14717 	int cnt = 0, rc, length;
14718 	uint32_t shdr_status, shdr_add_status;
14719 	uint32_t dmult;
14720 	int qidx;
14721 	union lpfc_sli4_cfg_shdr *shdr;
14722 
14723 	if (startq >= phba->cfg_irq_chann)
14724 		return;
14725 
14726 	if (usdelay > 0xFFFF) {
14727 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14728 				"6429 usdelay %d too large. Scaled down to "
14729 				"0xFFFF.\n", usdelay);
14730 		usdelay = 0xFFFF;
14731 	}
14732 
14733 	/* set values by EQ_DELAY register if supported */
14734 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14735 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14736 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14737 			if (!eq)
14738 				continue;
14739 
14740 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14741 
14742 			if (++cnt >= numq)
14743 				break;
14744 		}
14745 		return;
14746 	}
14747 
14748 	/* Otherwise, set values by mailbox cmd */
14749 
14750 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14751 	if (!mbox) {
14752 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14753 				"6428 Failed allocating mailbox cmd buffer."
14754 				" EQ delay was not set.\n");
14755 		return;
14756 	}
14757 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14758 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14759 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14760 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14761 			 length, LPFC_SLI4_MBX_EMBED);
14762 	eq_delay = &mbox->u.mqe.un.eq_delay;
14763 
14764 	/* Calculate delay multiper from maximum interrupt per second */
14765 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14766 	if (dmult)
14767 		dmult--;
14768 	if (dmult > LPFC_DMULT_MAX)
14769 		dmult = LPFC_DMULT_MAX;
14770 
14771 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14772 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14773 		if (!eq)
14774 			continue;
14775 		eq->q_mode = usdelay;
14776 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14777 		eq_delay->u.request.eq[cnt].phase = 0;
14778 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14779 
14780 		if (++cnt >= numq)
14781 			break;
14782 	}
14783 	eq_delay->u.request.num_eq = cnt;
14784 
14785 	mbox->vport = phba->pport;
14786 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14787 	mbox->ctx_buf = NULL;
14788 	mbox->ctx_ndlp = NULL;
14789 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14790 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14791 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14792 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14793 	if (shdr_status || shdr_add_status || rc) {
14794 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14795 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14796 				"status x%x add_status x%x, mbx status x%x\n",
14797 				shdr_status, shdr_add_status, rc);
14798 	}
14799 	mempool_free(mbox, phba->mbox_mem_pool);
14800 	return;
14801 }
14802 
14803 /**
14804  * lpfc_eq_create - Create an Event Queue on the HBA
14805  * @phba: HBA structure that indicates port to create a queue on.
14806  * @eq: The queue structure to use to create the event queue.
14807  * @imax: The maximum interrupt per second limit.
14808  *
14809  * This function creates an event queue, as detailed in @eq, on a port,
14810  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14811  *
14812  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14813  * is used to get the entry count and entry size that are necessary to
14814  * determine the number of pages to allocate and use for this queue. This
14815  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14816  * event queue. This function is asynchronous and will wait for the mailbox
14817  * command to finish before continuing.
14818  *
14819  * On success this function will return a zero. If unable to allocate enough
14820  * memory this function will return -ENOMEM. If the queue create mailbox command
14821  * fails this function will return -ENXIO.
14822  **/
14823 int
14824 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14825 {
14826 	struct lpfc_mbx_eq_create *eq_create;
14827 	LPFC_MBOXQ_t *mbox;
14828 	int rc, length, status = 0;
14829 	struct lpfc_dmabuf *dmabuf;
14830 	uint32_t shdr_status, shdr_add_status;
14831 	union lpfc_sli4_cfg_shdr *shdr;
14832 	uint16_t dmult;
14833 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14834 
14835 	/* sanity check on queue memory */
14836 	if (!eq)
14837 		return -ENODEV;
14838 	if (!phba->sli4_hba.pc_sli4_params.supported)
14839 		hw_page_size = SLI4_PAGE_SIZE;
14840 
14841 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14842 	if (!mbox)
14843 		return -ENOMEM;
14844 	length = (sizeof(struct lpfc_mbx_eq_create) -
14845 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14846 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14847 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14848 			 length, LPFC_SLI4_MBX_EMBED);
14849 	eq_create = &mbox->u.mqe.un.eq_create;
14850 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14851 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14852 	       eq->page_count);
14853 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14854 	       LPFC_EQE_SIZE);
14855 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14856 
14857 	/* Use version 2 of CREATE_EQ if eqav is set */
14858 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14859 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14860 		       LPFC_Q_CREATE_VERSION_2);
14861 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14862 		       phba->sli4_hba.pc_sli4_params.eqav);
14863 	}
14864 
14865 	/* don't setup delay multiplier using EQ_CREATE */
14866 	dmult = 0;
14867 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14868 	       dmult);
14869 	switch (eq->entry_count) {
14870 	default:
14871 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14872 				"0360 Unsupported EQ count. (%d)\n",
14873 				eq->entry_count);
14874 		if (eq->entry_count < 256) {
14875 			status = -EINVAL;
14876 			goto out;
14877 		}
14878 		/* fall through - otherwise default to smallest count */
14879 	case 256:
14880 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14881 		       LPFC_EQ_CNT_256);
14882 		break;
14883 	case 512:
14884 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14885 		       LPFC_EQ_CNT_512);
14886 		break;
14887 	case 1024:
14888 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14889 		       LPFC_EQ_CNT_1024);
14890 		break;
14891 	case 2048:
14892 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14893 		       LPFC_EQ_CNT_2048);
14894 		break;
14895 	case 4096:
14896 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14897 		       LPFC_EQ_CNT_4096);
14898 		break;
14899 	}
14900 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14901 		memset(dmabuf->virt, 0, hw_page_size);
14902 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14903 					putPaddrLow(dmabuf->phys);
14904 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14905 					putPaddrHigh(dmabuf->phys);
14906 	}
14907 	mbox->vport = phba->pport;
14908 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14909 	mbox->ctx_buf = NULL;
14910 	mbox->ctx_ndlp = NULL;
14911 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14912 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14913 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14914 	if (shdr_status || shdr_add_status || rc) {
14915 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14916 				"2500 EQ_CREATE mailbox failed with "
14917 				"status x%x add_status x%x, mbx status x%x\n",
14918 				shdr_status, shdr_add_status, rc);
14919 		status = -ENXIO;
14920 	}
14921 	eq->type = LPFC_EQ;
14922 	eq->subtype = LPFC_NONE;
14923 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14924 	if (eq->queue_id == 0xFFFF)
14925 		status = -ENXIO;
14926 	eq->host_index = 0;
14927 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
14928 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
14929 out:
14930 	mempool_free(mbox, phba->mbox_mem_pool);
14931 	return status;
14932 }
14933 
14934 /**
14935  * lpfc_cq_create - Create a Completion Queue on the HBA
14936  * @phba: HBA structure that indicates port to create a queue on.
14937  * @cq: The queue structure to use to create the completion queue.
14938  * @eq: The event queue to bind this completion queue to.
14939  *
14940  * This function creates a completion queue, as detailed in @wq, on a port,
14941  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14942  *
14943  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14944  * is used to get the entry count and entry size that are necessary to
14945  * determine the number of pages to allocate and use for this queue. The @eq
14946  * is used to indicate which event queue to bind this completion queue to. This
14947  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14948  * completion queue. This function is asynchronous and will wait for the mailbox
14949  * command to finish before continuing.
14950  *
14951  * On success this function will return a zero. If unable to allocate enough
14952  * memory this function will return -ENOMEM. If the queue create mailbox command
14953  * fails this function will return -ENXIO.
14954  **/
14955 int
14956 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14957 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14958 {
14959 	struct lpfc_mbx_cq_create *cq_create;
14960 	struct lpfc_dmabuf *dmabuf;
14961 	LPFC_MBOXQ_t *mbox;
14962 	int rc, length, status = 0;
14963 	uint32_t shdr_status, shdr_add_status;
14964 	union lpfc_sli4_cfg_shdr *shdr;
14965 
14966 	/* sanity check on queue memory */
14967 	if (!cq || !eq)
14968 		return -ENODEV;
14969 
14970 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14971 	if (!mbox)
14972 		return -ENOMEM;
14973 	length = (sizeof(struct lpfc_mbx_cq_create) -
14974 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14975 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14976 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14977 			 length, LPFC_SLI4_MBX_EMBED);
14978 	cq_create = &mbox->u.mqe.un.cq_create;
14979 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14980 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14981 		    cq->page_count);
14982 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14983 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14984 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14985 	       phba->sli4_hba.pc_sli4_params.cqv);
14986 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14987 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14988 		       (cq->page_size / SLI4_PAGE_SIZE));
14989 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14990 		       eq->queue_id);
14991 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14992 		       phba->sli4_hba.pc_sli4_params.cqav);
14993 	} else {
14994 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14995 		       eq->queue_id);
14996 	}
14997 	switch (cq->entry_count) {
14998 	case 2048:
14999 	case 4096:
15000 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15001 		    LPFC_Q_CREATE_VERSION_2) {
15002 			cq_create->u.request.context.lpfc_cq_context_count =
15003 				cq->entry_count;
15004 			bf_set(lpfc_cq_context_count,
15005 			       &cq_create->u.request.context,
15006 			       LPFC_CQ_CNT_WORD7);
15007 			break;
15008 		}
15009 		/* fall through */
15010 	default:
15011 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15012 				"0361 Unsupported CQ count: "
15013 				"entry cnt %d sz %d pg cnt %d\n",
15014 				cq->entry_count, cq->entry_size,
15015 				cq->page_count);
15016 		if (cq->entry_count < 256) {
15017 			status = -EINVAL;
15018 			goto out;
15019 		}
15020 		/* fall through - otherwise default to smallest count */
15021 	case 256:
15022 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15023 		       LPFC_CQ_CNT_256);
15024 		break;
15025 	case 512:
15026 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15027 		       LPFC_CQ_CNT_512);
15028 		break;
15029 	case 1024:
15030 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15031 		       LPFC_CQ_CNT_1024);
15032 		break;
15033 	}
15034 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15035 		memset(dmabuf->virt, 0, cq->page_size);
15036 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15037 					putPaddrLow(dmabuf->phys);
15038 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15039 					putPaddrHigh(dmabuf->phys);
15040 	}
15041 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15042 
15043 	/* The IOCTL status is embedded in the mailbox subheader. */
15044 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15045 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15046 	if (shdr_status || shdr_add_status || rc) {
15047 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15048 				"2501 CQ_CREATE mailbox failed with "
15049 				"status x%x add_status x%x, mbx status x%x\n",
15050 				shdr_status, shdr_add_status, rc);
15051 		status = -ENXIO;
15052 		goto out;
15053 	}
15054 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15055 	if (cq->queue_id == 0xFFFF) {
15056 		status = -ENXIO;
15057 		goto out;
15058 	}
15059 	/* link the cq onto the parent eq child list */
15060 	list_add_tail(&cq->list, &eq->child_list);
15061 	/* Set up completion queue's type and subtype */
15062 	cq->type = type;
15063 	cq->subtype = subtype;
15064 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15065 	cq->assoc_qid = eq->queue_id;
15066 	cq->assoc_qp = eq;
15067 	cq->host_index = 0;
15068 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15069 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15070 
15071 	if (cq->queue_id > phba->sli4_hba.cq_max)
15072 		phba->sli4_hba.cq_max = cq->queue_id;
15073 out:
15074 	mempool_free(mbox, phba->mbox_mem_pool);
15075 	return status;
15076 }
15077 
15078 /**
15079  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15080  * @phba: HBA structure that indicates port to create a queue on.
15081  * @cqp: The queue structure array to use to create the completion queues.
15082  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15083  *
15084  * This function creates a set of  completion queue, s to support MRQ
15085  * as detailed in @cqp, on a port,
15086  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15087  *
15088  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15089  * is used to get the entry count and entry size that are necessary to
15090  * determine the number of pages to allocate and use for this queue. The @eq
15091  * is used to indicate which event queue to bind this completion queue to. This
15092  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15093  * completion queue. This function is asynchronous and will wait for the mailbox
15094  * command to finish before continuing.
15095  *
15096  * On success this function will return a zero. If unable to allocate enough
15097  * memory this function will return -ENOMEM. If the queue create mailbox command
15098  * fails this function will return -ENXIO.
15099  **/
15100 int
15101 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15102 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15103 		   uint32_t subtype)
15104 {
15105 	struct lpfc_queue *cq;
15106 	struct lpfc_queue *eq;
15107 	struct lpfc_mbx_cq_create_set *cq_set;
15108 	struct lpfc_dmabuf *dmabuf;
15109 	LPFC_MBOXQ_t *mbox;
15110 	int rc, length, alloclen, status = 0;
15111 	int cnt, idx, numcq, page_idx = 0;
15112 	uint32_t shdr_status, shdr_add_status;
15113 	union lpfc_sli4_cfg_shdr *shdr;
15114 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15115 
15116 	/* sanity check on queue memory */
15117 	numcq = phba->cfg_nvmet_mrq;
15118 	if (!cqp || !hdwq || !numcq)
15119 		return -ENODEV;
15120 
15121 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15122 	if (!mbox)
15123 		return -ENOMEM;
15124 
15125 	length = sizeof(struct lpfc_mbx_cq_create_set);
15126 	length += ((numcq * cqp[0]->page_count) *
15127 		   sizeof(struct dma_address));
15128 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15129 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15130 			LPFC_SLI4_MBX_NEMBED);
15131 	if (alloclen < length) {
15132 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15133 				"3098 Allocated DMA memory size (%d) is "
15134 				"less than the requested DMA memory size "
15135 				"(%d)\n", alloclen, length);
15136 		status = -ENOMEM;
15137 		goto out;
15138 	}
15139 	cq_set = mbox->sge_array->addr[0];
15140 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15141 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15142 
15143 	for (idx = 0; idx < numcq; idx++) {
15144 		cq = cqp[idx];
15145 		eq = hdwq[idx].hba_eq;
15146 		if (!cq || !eq) {
15147 			status = -ENOMEM;
15148 			goto out;
15149 		}
15150 		if (!phba->sli4_hba.pc_sli4_params.supported)
15151 			hw_page_size = cq->page_size;
15152 
15153 		switch (idx) {
15154 		case 0:
15155 			bf_set(lpfc_mbx_cq_create_set_page_size,
15156 			       &cq_set->u.request,
15157 			       (hw_page_size / SLI4_PAGE_SIZE));
15158 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15159 			       &cq_set->u.request, cq->page_count);
15160 			bf_set(lpfc_mbx_cq_create_set_evt,
15161 			       &cq_set->u.request, 1);
15162 			bf_set(lpfc_mbx_cq_create_set_valid,
15163 			       &cq_set->u.request, 1);
15164 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15165 			       &cq_set->u.request, 0);
15166 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15167 			       &cq_set->u.request, numcq);
15168 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15169 			       &cq_set->u.request,
15170 			       phba->sli4_hba.pc_sli4_params.cqav);
15171 			switch (cq->entry_count) {
15172 			case 2048:
15173 			case 4096:
15174 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15175 				    LPFC_Q_CREATE_VERSION_2) {
15176 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15177 					       &cq_set->u.request,
15178 						cq->entry_count);
15179 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15180 					       &cq_set->u.request,
15181 					       LPFC_CQ_CNT_WORD7);
15182 					break;
15183 				}
15184 				/* fall through */
15185 			default:
15186 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15187 						"3118 Bad CQ count. (%d)\n",
15188 						cq->entry_count);
15189 				if (cq->entry_count < 256) {
15190 					status = -EINVAL;
15191 					goto out;
15192 				}
15193 				/* fall through - otherwise default to smallest */
15194 			case 256:
15195 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15196 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15197 				break;
15198 			case 512:
15199 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15200 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15201 				break;
15202 			case 1024:
15203 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15204 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15205 				break;
15206 			}
15207 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15208 			       &cq_set->u.request, eq->queue_id);
15209 			break;
15210 		case 1:
15211 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15212 			       &cq_set->u.request, eq->queue_id);
15213 			break;
15214 		case 2:
15215 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15216 			       &cq_set->u.request, eq->queue_id);
15217 			break;
15218 		case 3:
15219 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15220 			       &cq_set->u.request, eq->queue_id);
15221 			break;
15222 		case 4:
15223 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15224 			       &cq_set->u.request, eq->queue_id);
15225 			break;
15226 		case 5:
15227 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15228 			       &cq_set->u.request, eq->queue_id);
15229 			break;
15230 		case 6:
15231 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15232 			       &cq_set->u.request, eq->queue_id);
15233 			break;
15234 		case 7:
15235 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15236 			       &cq_set->u.request, eq->queue_id);
15237 			break;
15238 		case 8:
15239 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15240 			       &cq_set->u.request, eq->queue_id);
15241 			break;
15242 		case 9:
15243 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15244 			       &cq_set->u.request, eq->queue_id);
15245 			break;
15246 		case 10:
15247 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15248 			       &cq_set->u.request, eq->queue_id);
15249 			break;
15250 		case 11:
15251 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15252 			       &cq_set->u.request, eq->queue_id);
15253 			break;
15254 		case 12:
15255 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15256 			       &cq_set->u.request, eq->queue_id);
15257 			break;
15258 		case 13:
15259 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15260 			       &cq_set->u.request, eq->queue_id);
15261 			break;
15262 		case 14:
15263 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15264 			       &cq_set->u.request, eq->queue_id);
15265 			break;
15266 		case 15:
15267 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15268 			       &cq_set->u.request, eq->queue_id);
15269 			break;
15270 		}
15271 
15272 		/* link the cq onto the parent eq child list */
15273 		list_add_tail(&cq->list, &eq->child_list);
15274 		/* Set up completion queue's type and subtype */
15275 		cq->type = type;
15276 		cq->subtype = subtype;
15277 		cq->assoc_qid = eq->queue_id;
15278 		cq->assoc_qp = eq;
15279 		cq->host_index = 0;
15280 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15281 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15282 					 cq->entry_count);
15283 		cq->chann = idx;
15284 
15285 		rc = 0;
15286 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15287 			memset(dmabuf->virt, 0, hw_page_size);
15288 			cnt = page_idx + dmabuf->buffer_tag;
15289 			cq_set->u.request.page[cnt].addr_lo =
15290 					putPaddrLow(dmabuf->phys);
15291 			cq_set->u.request.page[cnt].addr_hi =
15292 					putPaddrHigh(dmabuf->phys);
15293 			rc++;
15294 		}
15295 		page_idx += rc;
15296 	}
15297 
15298 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15299 
15300 	/* The IOCTL status is embedded in the mailbox subheader. */
15301 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15302 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15303 	if (shdr_status || shdr_add_status || rc) {
15304 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15305 				"3119 CQ_CREATE_SET mailbox failed with "
15306 				"status x%x add_status x%x, mbx status x%x\n",
15307 				shdr_status, shdr_add_status, rc);
15308 		status = -ENXIO;
15309 		goto out;
15310 	}
15311 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15312 	if (rc == 0xFFFF) {
15313 		status = -ENXIO;
15314 		goto out;
15315 	}
15316 
15317 	for (idx = 0; idx < numcq; idx++) {
15318 		cq = cqp[idx];
15319 		cq->queue_id = rc + idx;
15320 		if (cq->queue_id > phba->sli4_hba.cq_max)
15321 			phba->sli4_hba.cq_max = cq->queue_id;
15322 	}
15323 
15324 out:
15325 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15326 	return status;
15327 }
15328 
15329 /**
15330  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15331  * @phba: HBA structure that indicates port to create a queue on.
15332  * @mq: The queue structure to use to create the mailbox queue.
15333  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15334  * @cq: The completion queue to associate with this cq.
15335  *
15336  * This function provides failback (fb) functionality when the
15337  * mq_create_ext fails on older FW generations.  It's purpose is identical
15338  * to mq_create_ext otherwise.
15339  *
15340  * This routine cannot fail as all attributes were previously accessed and
15341  * initialized in mq_create_ext.
15342  **/
15343 static void
15344 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15345 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15346 {
15347 	struct lpfc_mbx_mq_create *mq_create;
15348 	struct lpfc_dmabuf *dmabuf;
15349 	int length;
15350 
15351 	length = (sizeof(struct lpfc_mbx_mq_create) -
15352 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15353 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15354 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15355 			 length, LPFC_SLI4_MBX_EMBED);
15356 	mq_create = &mbox->u.mqe.un.mq_create;
15357 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15358 	       mq->page_count);
15359 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15360 	       cq->queue_id);
15361 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15362 	switch (mq->entry_count) {
15363 	case 16:
15364 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15365 		       LPFC_MQ_RING_SIZE_16);
15366 		break;
15367 	case 32:
15368 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15369 		       LPFC_MQ_RING_SIZE_32);
15370 		break;
15371 	case 64:
15372 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15373 		       LPFC_MQ_RING_SIZE_64);
15374 		break;
15375 	case 128:
15376 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15377 		       LPFC_MQ_RING_SIZE_128);
15378 		break;
15379 	}
15380 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15381 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15382 			putPaddrLow(dmabuf->phys);
15383 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15384 			putPaddrHigh(dmabuf->phys);
15385 	}
15386 }
15387 
15388 /**
15389  * lpfc_mq_create - Create a mailbox Queue on the HBA
15390  * @phba: HBA structure that indicates port to create a queue on.
15391  * @mq: The queue structure to use to create the mailbox queue.
15392  * @cq: The completion queue to associate with this cq.
15393  * @subtype: The queue's subtype.
15394  *
15395  * This function creates a mailbox queue, as detailed in @mq, on a port,
15396  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15397  *
15398  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15399  * is used to get the entry count and entry size that are necessary to
15400  * determine the number of pages to allocate and use for this queue. This
15401  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15402  * mailbox queue. This function is asynchronous and will wait for the mailbox
15403  * command to finish before continuing.
15404  *
15405  * On success this function will return a zero. If unable to allocate enough
15406  * memory this function will return -ENOMEM. If the queue create mailbox command
15407  * fails this function will return -ENXIO.
15408  **/
15409 int32_t
15410 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15411 	       struct lpfc_queue *cq, uint32_t subtype)
15412 {
15413 	struct lpfc_mbx_mq_create *mq_create;
15414 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15415 	struct lpfc_dmabuf *dmabuf;
15416 	LPFC_MBOXQ_t *mbox;
15417 	int rc, length, status = 0;
15418 	uint32_t shdr_status, shdr_add_status;
15419 	union lpfc_sli4_cfg_shdr *shdr;
15420 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15421 
15422 	/* sanity check on queue memory */
15423 	if (!mq || !cq)
15424 		return -ENODEV;
15425 	if (!phba->sli4_hba.pc_sli4_params.supported)
15426 		hw_page_size = SLI4_PAGE_SIZE;
15427 
15428 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15429 	if (!mbox)
15430 		return -ENOMEM;
15431 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15432 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15433 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15434 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15435 			 length, LPFC_SLI4_MBX_EMBED);
15436 
15437 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15438 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15439 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15440 	       &mq_create_ext->u.request, mq->page_count);
15441 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15442 	       &mq_create_ext->u.request, 1);
15443 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15444 	       &mq_create_ext->u.request, 1);
15445 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15446 	       &mq_create_ext->u.request, 1);
15447 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15448 	       &mq_create_ext->u.request, 1);
15449 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15450 	       &mq_create_ext->u.request, 1);
15451 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15452 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15453 	       phba->sli4_hba.pc_sli4_params.mqv);
15454 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15455 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15456 		       cq->queue_id);
15457 	else
15458 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15459 		       cq->queue_id);
15460 	switch (mq->entry_count) {
15461 	default:
15462 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15463 				"0362 Unsupported MQ count. (%d)\n",
15464 				mq->entry_count);
15465 		if (mq->entry_count < 16) {
15466 			status = -EINVAL;
15467 			goto out;
15468 		}
15469 		/* fall through - otherwise default to smallest count */
15470 	case 16:
15471 		bf_set(lpfc_mq_context_ring_size,
15472 		       &mq_create_ext->u.request.context,
15473 		       LPFC_MQ_RING_SIZE_16);
15474 		break;
15475 	case 32:
15476 		bf_set(lpfc_mq_context_ring_size,
15477 		       &mq_create_ext->u.request.context,
15478 		       LPFC_MQ_RING_SIZE_32);
15479 		break;
15480 	case 64:
15481 		bf_set(lpfc_mq_context_ring_size,
15482 		       &mq_create_ext->u.request.context,
15483 		       LPFC_MQ_RING_SIZE_64);
15484 		break;
15485 	case 128:
15486 		bf_set(lpfc_mq_context_ring_size,
15487 		       &mq_create_ext->u.request.context,
15488 		       LPFC_MQ_RING_SIZE_128);
15489 		break;
15490 	}
15491 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15492 		memset(dmabuf->virt, 0, hw_page_size);
15493 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15494 					putPaddrLow(dmabuf->phys);
15495 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15496 					putPaddrHigh(dmabuf->phys);
15497 	}
15498 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15499 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15500 			      &mq_create_ext->u.response);
15501 	if (rc != MBX_SUCCESS) {
15502 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15503 				"2795 MQ_CREATE_EXT failed with "
15504 				"status x%x. Failback to MQ_CREATE.\n",
15505 				rc);
15506 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15507 		mq_create = &mbox->u.mqe.un.mq_create;
15508 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15509 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15510 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15511 				      &mq_create->u.response);
15512 	}
15513 
15514 	/* The IOCTL status is embedded in the mailbox subheader. */
15515 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15516 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15517 	if (shdr_status || shdr_add_status || rc) {
15518 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15519 				"2502 MQ_CREATE mailbox failed with "
15520 				"status x%x add_status x%x, mbx status x%x\n",
15521 				shdr_status, shdr_add_status, rc);
15522 		status = -ENXIO;
15523 		goto out;
15524 	}
15525 	if (mq->queue_id == 0xFFFF) {
15526 		status = -ENXIO;
15527 		goto out;
15528 	}
15529 	mq->type = LPFC_MQ;
15530 	mq->assoc_qid = cq->queue_id;
15531 	mq->subtype = subtype;
15532 	mq->host_index = 0;
15533 	mq->hba_index = 0;
15534 
15535 	/* link the mq onto the parent cq child list */
15536 	list_add_tail(&mq->list, &cq->child_list);
15537 out:
15538 	mempool_free(mbox, phba->mbox_mem_pool);
15539 	return status;
15540 }
15541 
15542 /**
15543  * lpfc_wq_create - Create a Work Queue on the HBA
15544  * @phba: HBA structure that indicates port to create a queue on.
15545  * @wq: The queue structure to use to create the work queue.
15546  * @cq: The completion queue to bind this work queue to.
15547  * @subtype: The subtype of the work queue indicating its functionality.
15548  *
15549  * This function creates a work queue, as detailed in @wq, on a port, described
15550  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15551  *
15552  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15553  * is used to get the entry count and entry size that are necessary to
15554  * determine the number of pages to allocate and use for this queue. The @cq
15555  * is used to indicate which completion queue to bind this work queue to. This
15556  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15557  * work queue. This function is asynchronous and will wait for the mailbox
15558  * command to finish before continuing.
15559  *
15560  * On success this function will return a zero. If unable to allocate enough
15561  * memory this function will return -ENOMEM. If the queue create mailbox command
15562  * fails this function will return -ENXIO.
15563  **/
15564 int
15565 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15566 	       struct lpfc_queue *cq, uint32_t subtype)
15567 {
15568 	struct lpfc_mbx_wq_create *wq_create;
15569 	struct lpfc_dmabuf *dmabuf;
15570 	LPFC_MBOXQ_t *mbox;
15571 	int rc, length, status = 0;
15572 	uint32_t shdr_status, shdr_add_status;
15573 	union lpfc_sli4_cfg_shdr *shdr;
15574 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15575 	struct dma_address *page;
15576 	void __iomem *bar_memmap_p;
15577 	uint32_t db_offset;
15578 	uint16_t pci_barset;
15579 	uint8_t dpp_barset;
15580 	uint32_t dpp_offset;
15581 	unsigned long pg_addr;
15582 	uint8_t wq_create_version;
15583 
15584 	/* sanity check on queue memory */
15585 	if (!wq || !cq)
15586 		return -ENODEV;
15587 	if (!phba->sli4_hba.pc_sli4_params.supported)
15588 		hw_page_size = wq->page_size;
15589 
15590 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15591 	if (!mbox)
15592 		return -ENOMEM;
15593 	length = (sizeof(struct lpfc_mbx_wq_create) -
15594 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15595 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15596 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15597 			 length, LPFC_SLI4_MBX_EMBED);
15598 	wq_create = &mbox->u.mqe.un.wq_create;
15599 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15600 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15601 		    wq->page_count);
15602 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15603 		    cq->queue_id);
15604 
15605 	/* wqv is the earliest version supported, NOT the latest */
15606 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15607 	       phba->sli4_hba.pc_sli4_params.wqv);
15608 
15609 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15610 	    (wq->page_size > SLI4_PAGE_SIZE))
15611 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15612 	else
15613 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15614 
15615 
15616 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15617 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15618 	else
15619 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15620 
15621 	switch (wq_create_version) {
15622 	case LPFC_Q_CREATE_VERSION_1:
15623 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15624 		       wq->entry_count);
15625 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15626 		       LPFC_Q_CREATE_VERSION_1);
15627 
15628 		switch (wq->entry_size) {
15629 		default:
15630 		case 64:
15631 			bf_set(lpfc_mbx_wq_create_wqe_size,
15632 			       &wq_create->u.request_1,
15633 			       LPFC_WQ_WQE_SIZE_64);
15634 			break;
15635 		case 128:
15636 			bf_set(lpfc_mbx_wq_create_wqe_size,
15637 			       &wq_create->u.request_1,
15638 			       LPFC_WQ_WQE_SIZE_128);
15639 			break;
15640 		}
15641 		/* Request DPP by default */
15642 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15643 		bf_set(lpfc_mbx_wq_create_page_size,
15644 		       &wq_create->u.request_1,
15645 		       (wq->page_size / SLI4_PAGE_SIZE));
15646 		page = wq_create->u.request_1.page;
15647 		break;
15648 	default:
15649 		page = wq_create->u.request.page;
15650 		break;
15651 	}
15652 
15653 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15654 		memset(dmabuf->virt, 0, hw_page_size);
15655 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15656 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15657 	}
15658 
15659 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15660 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15661 
15662 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15663 	/* The IOCTL status is embedded in the mailbox subheader. */
15664 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15665 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15666 	if (shdr_status || shdr_add_status || rc) {
15667 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15668 				"2503 WQ_CREATE mailbox failed with "
15669 				"status x%x add_status x%x, mbx status x%x\n",
15670 				shdr_status, shdr_add_status, rc);
15671 		status = -ENXIO;
15672 		goto out;
15673 	}
15674 
15675 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15676 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15677 					&wq_create->u.response);
15678 	else
15679 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15680 					&wq_create->u.response_1);
15681 
15682 	if (wq->queue_id == 0xFFFF) {
15683 		status = -ENXIO;
15684 		goto out;
15685 	}
15686 
15687 	wq->db_format = LPFC_DB_LIST_FORMAT;
15688 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15689 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15690 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15691 					       &wq_create->u.response);
15692 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15693 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15694 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15695 						"3265 WQ[%d] doorbell format "
15696 						"not supported: x%x\n",
15697 						wq->queue_id, wq->db_format);
15698 				status = -EINVAL;
15699 				goto out;
15700 			}
15701 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15702 					    &wq_create->u.response);
15703 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15704 								   pci_barset);
15705 			if (!bar_memmap_p) {
15706 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15707 						"3263 WQ[%d] failed to memmap "
15708 						"pci barset:x%x\n",
15709 						wq->queue_id, pci_barset);
15710 				status = -ENOMEM;
15711 				goto out;
15712 			}
15713 			db_offset = wq_create->u.response.doorbell_offset;
15714 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15715 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15716 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15717 						"3252 WQ[%d] doorbell offset "
15718 						"not supported: x%x\n",
15719 						wq->queue_id, db_offset);
15720 				status = -EINVAL;
15721 				goto out;
15722 			}
15723 			wq->db_regaddr = bar_memmap_p + db_offset;
15724 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15725 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15726 					"format:x%x\n", wq->queue_id,
15727 					pci_barset, db_offset, wq->db_format);
15728 		} else
15729 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15730 	} else {
15731 		/* Check if DPP was honored by the firmware */
15732 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15733 				    &wq_create->u.response_1);
15734 		if (wq->dpp_enable) {
15735 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15736 					    &wq_create->u.response_1);
15737 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15738 								   pci_barset);
15739 			if (!bar_memmap_p) {
15740 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15741 						"3267 WQ[%d] failed to memmap "
15742 						"pci barset:x%x\n",
15743 						wq->queue_id, pci_barset);
15744 				status = -ENOMEM;
15745 				goto out;
15746 			}
15747 			db_offset = wq_create->u.response_1.doorbell_offset;
15748 			wq->db_regaddr = bar_memmap_p + db_offset;
15749 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15750 					    &wq_create->u.response_1);
15751 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15752 					    &wq_create->u.response_1);
15753 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15754 								   dpp_barset);
15755 			if (!bar_memmap_p) {
15756 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15757 						"3268 WQ[%d] failed to memmap "
15758 						"pci barset:x%x\n",
15759 						wq->queue_id, dpp_barset);
15760 				status = -ENOMEM;
15761 				goto out;
15762 			}
15763 			dpp_offset = wq_create->u.response_1.dpp_offset;
15764 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15765 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15766 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15767 					"dpp_id:x%x dpp_barset:x%x "
15768 					"dpp_offset:x%x\n",
15769 					wq->queue_id, pci_barset, db_offset,
15770 					wq->dpp_id, dpp_barset, dpp_offset);
15771 
15772 			/* Enable combined writes for DPP aperture */
15773 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15774 #ifdef CONFIG_X86
15775 			rc = set_memory_wc(pg_addr, 1);
15776 			if (rc) {
15777 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15778 					"3272 Cannot setup Combined "
15779 					"Write on WQ[%d] - disable DPP\n",
15780 					wq->queue_id);
15781 				phba->cfg_enable_dpp = 0;
15782 			}
15783 #else
15784 			phba->cfg_enable_dpp = 0;
15785 #endif
15786 		} else
15787 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15788 	}
15789 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15790 	if (wq->pring == NULL) {
15791 		status = -ENOMEM;
15792 		goto out;
15793 	}
15794 	wq->type = LPFC_WQ;
15795 	wq->assoc_qid = cq->queue_id;
15796 	wq->subtype = subtype;
15797 	wq->host_index = 0;
15798 	wq->hba_index = 0;
15799 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15800 
15801 	/* link the wq onto the parent cq child list */
15802 	list_add_tail(&wq->list, &cq->child_list);
15803 out:
15804 	mempool_free(mbox, phba->mbox_mem_pool);
15805 	return status;
15806 }
15807 
15808 /**
15809  * lpfc_rq_create - Create a Receive Queue on the HBA
15810  * @phba: HBA structure that indicates port to create a queue on.
15811  * @hrq: The queue structure to use to create the header receive queue.
15812  * @drq: The queue structure to use to create the data receive queue.
15813  * @cq: The completion queue to bind this work queue to.
15814  *
15815  * This function creates a receive buffer queue pair , as detailed in @hrq and
15816  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15817  * to the HBA.
15818  *
15819  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15820  * struct is used to get the entry count that is necessary to determine the
15821  * number of pages to use for this queue. The @cq is used to indicate which
15822  * completion queue to bind received buffers that are posted to these queues to.
15823  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15824  * receive queue pair. This function is asynchronous and will wait for the
15825  * mailbox command to finish before continuing.
15826  *
15827  * On success this function will return a zero. If unable to allocate enough
15828  * memory this function will return -ENOMEM. If the queue create mailbox command
15829  * fails this function will return -ENXIO.
15830  **/
15831 int
15832 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15833 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15834 {
15835 	struct lpfc_mbx_rq_create *rq_create;
15836 	struct lpfc_dmabuf *dmabuf;
15837 	LPFC_MBOXQ_t *mbox;
15838 	int rc, length, status = 0;
15839 	uint32_t shdr_status, shdr_add_status;
15840 	union lpfc_sli4_cfg_shdr *shdr;
15841 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15842 	void __iomem *bar_memmap_p;
15843 	uint32_t db_offset;
15844 	uint16_t pci_barset;
15845 
15846 	/* sanity check on queue memory */
15847 	if (!hrq || !drq || !cq)
15848 		return -ENODEV;
15849 	if (!phba->sli4_hba.pc_sli4_params.supported)
15850 		hw_page_size = SLI4_PAGE_SIZE;
15851 
15852 	if (hrq->entry_count != drq->entry_count)
15853 		return -EINVAL;
15854 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15855 	if (!mbox)
15856 		return -ENOMEM;
15857 	length = (sizeof(struct lpfc_mbx_rq_create) -
15858 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15859 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15860 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15861 			 length, LPFC_SLI4_MBX_EMBED);
15862 	rq_create = &mbox->u.mqe.un.rq_create;
15863 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15864 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15865 	       phba->sli4_hba.pc_sli4_params.rqv);
15866 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15867 		bf_set(lpfc_rq_context_rqe_count_1,
15868 		       &rq_create->u.request.context,
15869 		       hrq->entry_count);
15870 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15871 		bf_set(lpfc_rq_context_rqe_size,
15872 		       &rq_create->u.request.context,
15873 		       LPFC_RQE_SIZE_8);
15874 		bf_set(lpfc_rq_context_page_size,
15875 		       &rq_create->u.request.context,
15876 		       LPFC_RQ_PAGE_SIZE_4096);
15877 	} else {
15878 		switch (hrq->entry_count) {
15879 		default:
15880 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15881 					"2535 Unsupported RQ count. (%d)\n",
15882 					hrq->entry_count);
15883 			if (hrq->entry_count < 512) {
15884 				status = -EINVAL;
15885 				goto out;
15886 			}
15887 			/* fall through - otherwise default to smallest count */
15888 		case 512:
15889 			bf_set(lpfc_rq_context_rqe_count,
15890 			       &rq_create->u.request.context,
15891 			       LPFC_RQ_RING_SIZE_512);
15892 			break;
15893 		case 1024:
15894 			bf_set(lpfc_rq_context_rqe_count,
15895 			       &rq_create->u.request.context,
15896 			       LPFC_RQ_RING_SIZE_1024);
15897 			break;
15898 		case 2048:
15899 			bf_set(lpfc_rq_context_rqe_count,
15900 			       &rq_create->u.request.context,
15901 			       LPFC_RQ_RING_SIZE_2048);
15902 			break;
15903 		case 4096:
15904 			bf_set(lpfc_rq_context_rqe_count,
15905 			       &rq_create->u.request.context,
15906 			       LPFC_RQ_RING_SIZE_4096);
15907 			break;
15908 		}
15909 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15910 		       LPFC_HDR_BUF_SIZE);
15911 	}
15912 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15913 	       cq->queue_id);
15914 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15915 	       hrq->page_count);
15916 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15917 		memset(dmabuf->virt, 0, hw_page_size);
15918 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15919 					putPaddrLow(dmabuf->phys);
15920 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15921 					putPaddrHigh(dmabuf->phys);
15922 	}
15923 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15924 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15925 
15926 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15927 	/* The IOCTL status is embedded in the mailbox subheader. */
15928 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15929 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15930 	if (shdr_status || shdr_add_status || rc) {
15931 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15932 				"2504 RQ_CREATE mailbox failed with "
15933 				"status x%x add_status x%x, mbx status x%x\n",
15934 				shdr_status, shdr_add_status, rc);
15935 		status = -ENXIO;
15936 		goto out;
15937 	}
15938 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15939 	if (hrq->queue_id == 0xFFFF) {
15940 		status = -ENXIO;
15941 		goto out;
15942 	}
15943 
15944 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15945 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15946 					&rq_create->u.response);
15947 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15948 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15949 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15950 					"3262 RQ [%d] doorbell format not "
15951 					"supported: x%x\n", hrq->queue_id,
15952 					hrq->db_format);
15953 			status = -EINVAL;
15954 			goto out;
15955 		}
15956 
15957 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15958 				    &rq_create->u.response);
15959 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15960 		if (!bar_memmap_p) {
15961 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15962 					"3269 RQ[%d] failed to memmap pci "
15963 					"barset:x%x\n", hrq->queue_id,
15964 					pci_barset);
15965 			status = -ENOMEM;
15966 			goto out;
15967 		}
15968 
15969 		db_offset = rq_create->u.response.doorbell_offset;
15970 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15971 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15972 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15973 					"3270 RQ[%d] doorbell offset not "
15974 					"supported: x%x\n", hrq->queue_id,
15975 					db_offset);
15976 			status = -EINVAL;
15977 			goto out;
15978 		}
15979 		hrq->db_regaddr = bar_memmap_p + db_offset;
15980 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15981 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15982 				"format:x%x\n", hrq->queue_id, pci_barset,
15983 				db_offset, hrq->db_format);
15984 	} else {
15985 		hrq->db_format = LPFC_DB_RING_FORMAT;
15986 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15987 	}
15988 	hrq->type = LPFC_HRQ;
15989 	hrq->assoc_qid = cq->queue_id;
15990 	hrq->subtype = subtype;
15991 	hrq->host_index = 0;
15992 	hrq->hba_index = 0;
15993 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
15994 
15995 	/* now create the data queue */
15996 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15997 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15998 			 length, LPFC_SLI4_MBX_EMBED);
15999 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16000 	       phba->sli4_hba.pc_sli4_params.rqv);
16001 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16002 		bf_set(lpfc_rq_context_rqe_count_1,
16003 		       &rq_create->u.request.context, hrq->entry_count);
16004 		if (subtype == LPFC_NVMET)
16005 			rq_create->u.request.context.buffer_size =
16006 				LPFC_NVMET_DATA_BUF_SIZE;
16007 		else
16008 			rq_create->u.request.context.buffer_size =
16009 				LPFC_DATA_BUF_SIZE;
16010 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16011 		       LPFC_RQE_SIZE_8);
16012 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16013 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16014 	} else {
16015 		switch (drq->entry_count) {
16016 		default:
16017 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16018 					"2536 Unsupported RQ count. (%d)\n",
16019 					drq->entry_count);
16020 			if (drq->entry_count < 512) {
16021 				status = -EINVAL;
16022 				goto out;
16023 			}
16024 			/* fall through - otherwise default to smallest count */
16025 		case 512:
16026 			bf_set(lpfc_rq_context_rqe_count,
16027 			       &rq_create->u.request.context,
16028 			       LPFC_RQ_RING_SIZE_512);
16029 			break;
16030 		case 1024:
16031 			bf_set(lpfc_rq_context_rqe_count,
16032 			       &rq_create->u.request.context,
16033 			       LPFC_RQ_RING_SIZE_1024);
16034 			break;
16035 		case 2048:
16036 			bf_set(lpfc_rq_context_rqe_count,
16037 			       &rq_create->u.request.context,
16038 			       LPFC_RQ_RING_SIZE_2048);
16039 			break;
16040 		case 4096:
16041 			bf_set(lpfc_rq_context_rqe_count,
16042 			       &rq_create->u.request.context,
16043 			       LPFC_RQ_RING_SIZE_4096);
16044 			break;
16045 		}
16046 		if (subtype == LPFC_NVMET)
16047 			bf_set(lpfc_rq_context_buf_size,
16048 			       &rq_create->u.request.context,
16049 			       LPFC_NVMET_DATA_BUF_SIZE);
16050 		else
16051 			bf_set(lpfc_rq_context_buf_size,
16052 			       &rq_create->u.request.context,
16053 			       LPFC_DATA_BUF_SIZE);
16054 	}
16055 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16056 	       cq->queue_id);
16057 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16058 	       drq->page_count);
16059 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16060 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16061 					putPaddrLow(dmabuf->phys);
16062 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16063 					putPaddrHigh(dmabuf->phys);
16064 	}
16065 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16066 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16067 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16068 	/* The IOCTL status is embedded in the mailbox subheader. */
16069 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16070 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16071 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16072 	if (shdr_status || shdr_add_status || rc) {
16073 		status = -ENXIO;
16074 		goto out;
16075 	}
16076 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16077 	if (drq->queue_id == 0xFFFF) {
16078 		status = -ENXIO;
16079 		goto out;
16080 	}
16081 	drq->type = LPFC_DRQ;
16082 	drq->assoc_qid = cq->queue_id;
16083 	drq->subtype = subtype;
16084 	drq->host_index = 0;
16085 	drq->hba_index = 0;
16086 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16087 
16088 	/* link the header and data RQs onto the parent cq child list */
16089 	list_add_tail(&hrq->list, &cq->child_list);
16090 	list_add_tail(&drq->list, &cq->child_list);
16091 
16092 out:
16093 	mempool_free(mbox, phba->mbox_mem_pool);
16094 	return status;
16095 }
16096 
16097 /**
16098  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16099  * @phba: HBA structure that indicates port to create a queue on.
16100  * @hrqp: The queue structure array to use to create the header receive queues.
16101  * @drqp: The queue structure array to use to create the data receive queues.
16102  * @cqp: The completion queue array to bind these receive queues to.
16103  *
16104  * This function creates a receive buffer queue pair , as detailed in @hrq and
16105  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16106  * to the HBA.
16107  *
16108  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16109  * struct is used to get the entry count that is necessary to determine the
16110  * number of pages to use for this queue. The @cq is used to indicate which
16111  * completion queue to bind received buffers that are posted to these queues to.
16112  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16113  * receive queue pair. This function is asynchronous and will wait for the
16114  * mailbox command to finish before continuing.
16115  *
16116  * On success this function will return a zero. If unable to allocate enough
16117  * memory this function will return -ENOMEM. If the queue create mailbox command
16118  * fails this function will return -ENXIO.
16119  **/
16120 int
16121 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16122 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16123 		uint32_t subtype)
16124 {
16125 	struct lpfc_queue *hrq, *drq, *cq;
16126 	struct lpfc_mbx_rq_create_v2 *rq_create;
16127 	struct lpfc_dmabuf *dmabuf;
16128 	LPFC_MBOXQ_t *mbox;
16129 	int rc, length, alloclen, status = 0;
16130 	int cnt, idx, numrq, page_idx = 0;
16131 	uint32_t shdr_status, shdr_add_status;
16132 	union lpfc_sli4_cfg_shdr *shdr;
16133 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16134 
16135 	numrq = phba->cfg_nvmet_mrq;
16136 	/* sanity check on array memory */
16137 	if (!hrqp || !drqp || !cqp || !numrq)
16138 		return -ENODEV;
16139 	if (!phba->sli4_hba.pc_sli4_params.supported)
16140 		hw_page_size = SLI4_PAGE_SIZE;
16141 
16142 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16143 	if (!mbox)
16144 		return -ENOMEM;
16145 
16146 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16147 	length += ((2 * numrq * hrqp[0]->page_count) *
16148 		   sizeof(struct dma_address));
16149 
16150 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16151 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16152 				    LPFC_SLI4_MBX_NEMBED);
16153 	if (alloclen < length) {
16154 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16155 				"3099 Allocated DMA memory size (%d) is "
16156 				"less than the requested DMA memory size "
16157 				"(%d)\n", alloclen, length);
16158 		status = -ENOMEM;
16159 		goto out;
16160 	}
16161 
16162 
16163 
16164 	rq_create = mbox->sge_array->addr[0];
16165 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16166 
16167 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16168 	cnt = 0;
16169 
16170 	for (idx = 0; idx < numrq; idx++) {
16171 		hrq = hrqp[idx];
16172 		drq = drqp[idx];
16173 		cq  = cqp[idx];
16174 
16175 		/* sanity check on queue memory */
16176 		if (!hrq || !drq || !cq) {
16177 			status = -ENODEV;
16178 			goto out;
16179 		}
16180 
16181 		if (hrq->entry_count != drq->entry_count) {
16182 			status = -EINVAL;
16183 			goto out;
16184 		}
16185 
16186 		if (idx == 0) {
16187 			bf_set(lpfc_mbx_rq_create_num_pages,
16188 			       &rq_create->u.request,
16189 			       hrq->page_count);
16190 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16191 			       &rq_create->u.request, (numrq * 2));
16192 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16193 			       1);
16194 			bf_set(lpfc_rq_context_base_cq,
16195 			       &rq_create->u.request.context,
16196 			       cq->queue_id);
16197 			bf_set(lpfc_rq_context_data_size,
16198 			       &rq_create->u.request.context,
16199 			       LPFC_NVMET_DATA_BUF_SIZE);
16200 			bf_set(lpfc_rq_context_hdr_size,
16201 			       &rq_create->u.request.context,
16202 			       LPFC_HDR_BUF_SIZE);
16203 			bf_set(lpfc_rq_context_rqe_count_1,
16204 			       &rq_create->u.request.context,
16205 			       hrq->entry_count);
16206 			bf_set(lpfc_rq_context_rqe_size,
16207 			       &rq_create->u.request.context,
16208 			       LPFC_RQE_SIZE_8);
16209 			bf_set(lpfc_rq_context_page_size,
16210 			       &rq_create->u.request.context,
16211 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16212 		}
16213 		rc = 0;
16214 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16215 			memset(dmabuf->virt, 0, hw_page_size);
16216 			cnt = page_idx + dmabuf->buffer_tag;
16217 			rq_create->u.request.page[cnt].addr_lo =
16218 					putPaddrLow(dmabuf->phys);
16219 			rq_create->u.request.page[cnt].addr_hi =
16220 					putPaddrHigh(dmabuf->phys);
16221 			rc++;
16222 		}
16223 		page_idx += rc;
16224 
16225 		rc = 0;
16226 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16227 			memset(dmabuf->virt, 0, hw_page_size);
16228 			cnt = page_idx + dmabuf->buffer_tag;
16229 			rq_create->u.request.page[cnt].addr_lo =
16230 					putPaddrLow(dmabuf->phys);
16231 			rq_create->u.request.page[cnt].addr_hi =
16232 					putPaddrHigh(dmabuf->phys);
16233 			rc++;
16234 		}
16235 		page_idx += rc;
16236 
16237 		hrq->db_format = LPFC_DB_RING_FORMAT;
16238 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16239 		hrq->type = LPFC_HRQ;
16240 		hrq->assoc_qid = cq->queue_id;
16241 		hrq->subtype = subtype;
16242 		hrq->host_index = 0;
16243 		hrq->hba_index = 0;
16244 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16245 
16246 		drq->db_format = LPFC_DB_RING_FORMAT;
16247 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16248 		drq->type = LPFC_DRQ;
16249 		drq->assoc_qid = cq->queue_id;
16250 		drq->subtype = subtype;
16251 		drq->host_index = 0;
16252 		drq->hba_index = 0;
16253 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16254 
16255 		list_add_tail(&hrq->list, &cq->child_list);
16256 		list_add_tail(&drq->list, &cq->child_list);
16257 	}
16258 
16259 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16260 	/* The IOCTL status is embedded in the mailbox subheader. */
16261 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16262 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16263 	if (shdr_status || shdr_add_status || rc) {
16264 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16265 				"3120 RQ_CREATE mailbox failed with "
16266 				"status x%x add_status x%x, mbx status x%x\n",
16267 				shdr_status, shdr_add_status, rc);
16268 		status = -ENXIO;
16269 		goto out;
16270 	}
16271 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16272 	if (rc == 0xFFFF) {
16273 		status = -ENXIO;
16274 		goto out;
16275 	}
16276 
16277 	/* Initialize all RQs with associated queue id */
16278 	for (idx = 0; idx < numrq; idx++) {
16279 		hrq = hrqp[idx];
16280 		hrq->queue_id = rc + (2 * idx);
16281 		drq = drqp[idx];
16282 		drq->queue_id = rc + (2 * idx) + 1;
16283 	}
16284 
16285 out:
16286 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16287 	return status;
16288 }
16289 
16290 /**
16291  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16292  * @eq: The queue structure associated with the queue to destroy.
16293  *
16294  * This function destroys a queue, as detailed in @eq by sending an mailbox
16295  * command, specific to the type of queue, to the HBA.
16296  *
16297  * The @eq struct is used to get the queue ID of the queue to destroy.
16298  *
16299  * On success this function will return a zero. If the queue destroy mailbox
16300  * command fails this function will return -ENXIO.
16301  **/
16302 int
16303 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16304 {
16305 	LPFC_MBOXQ_t *mbox;
16306 	int rc, length, status = 0;
16307 	uint32_t shdr_status, shdr_add_status;
16308 	union lpfc_sli4_cfg_shdr *shdr;
16309 
16310 	/* sanity check on queue memory */
16311 	if (!eq)
16312 		return -ENODEV;
16313 
16314 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16315 	if (!mbox)
16316 		return -ENOMEM;
16317 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16318 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16319 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16320 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16321 			 length, LPFC_SLI4_MBX_EMBED);
16322 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16323 	       eq->queue_id);
16324 	mbox->vport = eq->phba->pport;
16325 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16326 
16327 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16328 	/* The IOCTL status is embedded in the mailbox subheader. */
16329 	shdr = (union lpfc_sli4_cfg_shdr *)
16330 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16331 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16332 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16333 	if (shdr_status || shdr_add_status || rc) {
16334 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16335 				"2505 EQ_DESTROY mailbox failed with "
16336 				"status x%x add_status x%x, mbx status x%x\n",
16337 				shdr_status, shdr_add_status, rc);
16338 		status = -ENXIO;
16339 	}
16340 
16341 	/* Remove eq from any list */
16342 	list_del_init(&eq->list);
16343 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16344 	return status;
16345 }
16346 
16347 /**
16348  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16349  * @cq: The queue structure associated with the queue to destroy.
16350  *
16351  * This function destroys a queue, as detailed in @cq by sending an mailbox
16352  * command, specific to the type of queue, to the HBA.
16353  *
16354  * The @cq struct is used to get the queue ID of the queue to destroy.
16355  *
16356  * On success this function will return a zero. If the queue destroy mailbox
16357  * command fails this function will return -ENXIO.
16358  **/
16359 int
16360 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16361 {
16362 	LPFC_MBOXQ_t *mbox;
16363 	int rc, length, status = 0;
16364 	uint32_t shdr_status, shdr_add_status;
16365 	union lpfc_sli4_cfg_shdr *shdr;
16366 
16367 	/* sanity check on queue memory */
16368 	if (!cq)
16369 		return -ENODEV;
16370 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16371 	if (!mbox)
16372 		return -ENOMEM;
16373 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16374 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16375 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16376 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16377 			 length, LPFC_SLI4_MBX_EMBED);
16378 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16379 	       cq->queue_id);
16380 	mbox->vport = cq->phba->pport;
16381 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16382 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16383 	/* The IOCTL status is embedded in the mailbox subheader. */
16384 	shdr = (union lpfc_sli4_cfg_shdr *)
16385 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16386 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16387 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16388 	if (shdr_status || shdr_add_status || rc) {
16389 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16390 				"2506 CQ_DESTROY mailbox failed with "
16391 				"status x%x add_status x%x, mbx status x%x\n",
16392 				shdr_status, shdr_add_status, rc);
16393 		status = -ENXIO;
16394 	}
16395 	/* Remove cq from any list */
16396 	list_del_init(&cq->list);
16397 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16398 	return status;
16399 }
16400 
16401 /**
16402  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16403  * @qm: The queue structure associated with the queue to destroy.
16404  *
16405  * This function destroys a queue, as detailed in @mq by sending an mailbox
16406  * command, specific to the type of queue, to the HBA.
16407  *
16408  * The @mq struct is used to get the queue ID of the queue to destroy.
16409  *
16410  * On success this function will return a zero. If the queue destroy mailbox
16411  * command fails this function will return -ENXIO.
16412  **/
16413 int
16414 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16415 {
16416 	LPFC_MBOXQ_t *mbox;
16417 	int rc, length, status = 0;
16418 	uint32_t shdr_status, shdr_add_status;
16419 	union lpfc_sli4_cfg_shdr *shdr;
16420 
16421 	/* sanity check on queue memory */
16422 	if (!mq)
16423 		return -ENODEV;
16424 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16425 	if (!mbox)
16426 		return -ENOMEM;
16427 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16428 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16429 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16430 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16431 			 length, LPFC_SLI4_MBX_EMBED);
16432 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16433 	       mq->queue_id);
16434 	mbox->vport = mq->phba->pport;
16435 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16436 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16437 	/* The IOCTL status is embedded in the mailbox subheader. */
16438 	shdr = (union lpfc_sli4_cfg_shdr *)
16439 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16440 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16441 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16442 	if (shdr_status || shdr_add_status || rc) {
16443 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16444 				"2507 MQ_DESTROY mailbox failed with "
16445 				"status x%x add_status x%x, mbx status x%x\n",
16446 				shdr_status, shdr_add_status, rc);
16447 		status = -ENXIO;
16448 	}
16449 	/* Remove mq from any list */
16450 	list_del_init(&mq->list);
16451 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16452 	return status;
16453 }
16454 
16455 /**
16456  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16457  * @wq: The queue structure associated with the queue to destroy.
16458  *
16459  * This function destroys a queue, as detailed in @wq by sending an mailbox
16460  * command, specific to the type of queue, to the HBA.
16461  *
16462  * The @wq struct is used to get the queue ID of the queue to destroy.
16463  *
16464  * On success this function will return a zero. If the queue destroy mailbox
16465  * command fails this function will return -ENXIO.
16466  **/
16467 int
16468 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16469 {
16470 	LPFC_MBOXQ_t *mbox;
16471 	int rc, length, status = 0;
16472 	uint32_t shdr_status, shdr_add_status;
16473 	union lpfc_sli4_cfg_shdr *shdr;
16474 
16475 	/* sanity check on queue memory */
16476 	if (!wq)
16477 		return -ENODEV;
16478 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16479 	if (!mbox)
16480 		return -ENOMEM;
16481 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16482 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16483 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16484 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16485 			 length, LPFC_SLI4_MBX_EMBED);
16486 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16487 	       wq->queue_id);
16488 	mbox->vport = wq->phba->pport;
16489 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16490 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16491 	shdr = (union lpfc_sli4_cfg_shdr *)
16492 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16493 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16494 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16495 	if (shdr_status || shdr_add_status || rc) {
16496 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16497 				"2508 WQ_DESTROY mailbox failed with "
16498 				"status x%x add_status x%x, mbx status x%x\n",
16499 				shdr_status, shdr_add_status, rc);
16500 		status = -ENXIO;
16501 	}
16502 	/* Remove wq from any list */
16503 	list_del_init(&wq->list);
16504 	kfree(wq->pring);
16505 	wq->pring = NULL;
16506 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16507 	return status;
16508 }
16509 
16510 /**
16511  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16512  * @rq: The queue structure associated with the queue to destroy.
16513  *
16514  * This function destroys a queue, as detailed in @rq by sending an mailbox
16515  * command, specific to the type of queue, to the HBA.
16516  *
16517  * The @rq struct is used to get the queue ID of the queue to destroy.
16518  *
16519  * On success this function will return a zero. If the queue destroy mailbox
16520  * command fails this function will return -ENXIO.
16521  **/
16522 int
16523 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16524 		struct lpfc_queue *drq)
16525 {
16526 	LPFC_MBOXQ_t *mbox;
16527 	int rc, length, status = 0;
16528 	uint32_t shdr_status, shdr_add_status;
16529 	union lpfc_sli4_cfg_shdr *shdr;
16530 
16531 	/* sanity check on queue memory */
16532 	if (!hrq || !drq)
16533 		return -ENODEV;
16534 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16535 	if (!mbox)
16536 		return -ENOMEM;
16537 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16538 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16539 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16540 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16541 			 length, LPFC_SLI4_MBX_EMBED);
16542 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16543 	       hrq->queue_id);
16544 	mbox->vport = hrq->phba->pport;
16545 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16546 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16547 	/* The IOCTL status is embedded in the mailbox subheader. */
16548 	shdr = (union lpfc_sli4_cfg_shdr *)
16549 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16550 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16551 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16552 	if (shdr_status || shdr_add_status || rc) {
16553 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16554 				"2509 RQ_DESTROY mailbox failed with "
16555 				"status x%x add_status x%x, mbx status x%x\n",
16556 				shdr_status, shdr_add_status, rc);
16557 		if (rc != MBX_TIMEOUT)
16558 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16559 		return -ENXIO;
16560 	}
16561 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16562 	       drq->queue_id);
16563 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16564 	shdr = (union lpfc_sli4_cfg_shdr *)
16565 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16566 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16567 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16568 	if (shdr_status || shdr_add_status || rc) {
16569 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16570 				"2510 RQ_DESTROY mailbox failed with "
16571 				"status x%x add_status x%x, mbx status x%x\n",
16572 				shdr_status, shdr_add_status, rc);
16573 		status = -ENXIO;
16574 	}
16575 	list_del_init(&hrq->list);
16576 	list_del_init(&drq->list);
16577 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16578 	return status;
16579 }
16580 
16581 /**
16582  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16583  * @phba: The virtual port for which this call being executed.
16584  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16585  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16586  * @xritag: the xritag that ties this io to the SGL pages.
16587  *
16588  * This routine will post the sgl pages for the IO that has the xritag
16589  * that is in the iocbq structure. The xritag is assigned during iocbq
16590  * creation and persists for as long as the driver is loaded.
16591  * if the caller has fewer than 256 scatter gather segments to map then
16592  * pdma_phys_addr1 should be 0.
16593  * If the caller needs to map more than 256 scatter gather segment then
16594  * pdma_phys_addr1 should be a valid physical address.
16595  * physical address for SGLs must be 64 byte aligned.
16596  * If you are going to map 2 SGL's then the first one must have 256 entries
16597  * the second sgl can have between 1 and 256 entries.
16598  *
16599  * Return codes:
16600  * 	0 - Success
16601  * 	-ENXIO, -ENOMEM - Failure
16602  **/
16603 int
16604 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16605 		dma_addr_t pdma_phys_addr0,
16606 		dma_addr_t pdma_phys_addr1,
16607 		uint16_t xritag)
16608 {
16609 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16610 	LPFC_MBOXQ_t *mbox;
16611 	int rc;
16612 	uint32_t shdr_status, shdr_add_status;
16613 	uint32_t mbox_tmo;
16614 	union lpfc_sli4_cfg_shdr *shdr;
16615 
16616 	if (xritag == NO_XRI) {
16617 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16618 				"0364 Invalid param:\n");
16619 		return -EINVAL;
16620 	}
16621 
16622 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16623 	if (!mbox)
16624 		return -ENOMEM;
16625 
16626 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16627 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16628 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16629 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16630 
16631 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16632 				&mbox->u.mqe.un.post_sgl_pages;
16633 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16634 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16635 
16636 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16637 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16638 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16639 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16640 
16641 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16642 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16643 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16644 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16645 	if (!phba->sli4_hba.intr_enable)
16646 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16647 	else {
16648 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16649 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16650 	}
16651 	/* The IOCTL status is embedded in the mailbox subheader. */
16652 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16653 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16654 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16655 	if (rc != MBX_TIMEOUT)
16656 		mempool_free(mbox, phba->mbox_mem_pool);
16657 	if (shdr_status || shdr_add_status || rc) {
16658 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16659 				"2511 POST_SGL mailbox failed with "
16660 				"status x%x add_status x%x, mbx status x%x\n",
16661 				shdr_status, shdr_add_status, rc);
16662 	}
16663 	return 0;
16664 }
16665 
16666 /**
16667  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16668  * @phba: pointer to lpfc hba data structure.
16669  *
16670  * This routine is invoked to post rpi header templates to the
16671  * HBA consistent with the SLI-4 interface spec.  This routine
16672  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16673  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16674  *
16675  * Returns
16676  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16677  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16678  **/
16679 static uint16_t
16680 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16681 {
16682 	unsigned long xri;
16683 
16684 	/*
16685 	 * Fetch the next logical xri.  Because this index is logical,
16686 	 * the driver starts at 0 each time.
16687 	 */
16688 	spin_lock_irq(&phba->hbalock);
16689 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16690 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16691 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16692 		spin_unlock_irq(&phba->hbalock);
16693 		return NO_XRI;
16694 	} else {
16695 		set_bit(xri, phba->sli4_hba.xri_bmask);
16696 		phba->sli4_hba.max_cfg_param.xri_used++;
16697 	}
16698 	spin_unlock_irq(&phba->hbalock);
16699 	return xri;
16700 }
16701 
16702 /**
16703  * lpfc_sli4_free_xri - Release an xri for reuse.
16704  * @phba: pointer to lpfc hba data structure.
16705  *
16706  * This routine is invoked to release an xri to the pool of
16707  * available rpis maintained by the driver.
16708  **/
16709 static void
16710 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16711 {
16712 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16713 		phba->sli4_hba.max_cfg_param.xri_used--;
16714 	}
16715 }
16716 
16717 /**
16718  * lpfc_sli4_free_xri - Release an xri for reuse.
16719  * @phba: pointer to lpfc hba data structure.
16720  *
16721  * This routine is invoked to release an xri to the pool of
16722  * available rpis maintained by the driver.
16723  **/
16724 void
16725 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16726 {
16727 	spin_lock_irq(&phba->hbalock);
16728 	__lpfc_sli4_free_xri(phba, xri);
16729 	spin_unlock_irq(&phba->hbalock);
16730 }
16731 
16732 /**
16733  * lpfc_sli4_next_xritag - Get an xritag for the io
16734  * @phba: Pointer to HBA context object.
16735  *
16736  * This function gets an xritag for the iocb. If there is no unused xritag
16737  * it will return 0xffff.
16738  * The function returns the allocated xritag if successful, else returns zero.
16739  * Zero is not a valid xritag.
16740  * The caller is not required to hold any lock.
16741  **/
16742 uint16_t
16743 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16744 {
16745 	uint16_t xri_index;
16746 
16747 	xri_index = lpfc_sli4_alloc_xri(phba);
16748 	if (xri_index == NO_XRI)
16749 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16750 				"2004 Failed to allocate XRI.last XRITAG is %d"
16751 				" Max XRI is %d, Used XRI is %d\n",
16752 				xri_index,
16753 				phba->sli4_hba.max_cfg_param.max_xri,
16754 				phba->sli4_hba.max_cfg_param.xri_used);
16755 	return xri_index;
16756 }
16757 
16758 /**
16759  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16760  * @phba: pointer to lpfc hba data structure.
16761  * @post_sgl_list: pointer to els sgl entry list.
16762  * @count: number of els sgl entries on the list.
16763  *
16764  * This routine is invoked to post a block of driver's sgl pages to the
16765  * HBA using non-embedded mailbox command. No Lock is held. This routine
16766  * is only called when the driver is loading and after all IO has been
16767  * stopped.
16768  **/
16769 static int
16770 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16771 			    struct list_head *post_sgl_list,
16772 			    int post_cnt)
16773 {
16774 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16775 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16776 	struct sgl_page_pairs *sgl_pg_pairs;
16777 	void *viraddr;
16778 	LPFC_MBOXQ_t *mbox;
16779 	uint32_t reqlen, alloclen, pg_pairs;
16780 	uint32_t mbox_tmo;
16781 	uint16_t xritag_start = 0;
16782 	int rc = 0;
16783 	uint32_t shdr_status, shdr_add_status;
16784 	union lpfc_sli4_cfg_shdr *shdr;
16785 
16786 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16787 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16788 	if (reqlen > SLI4_PAGE_SIZE) {
16789 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16790 				"2559 Block sgl registration required DMA "
16791 				"size (%d) great than a page\n", reqlen);
16792 		return -ENOMEM;
16793 	}
16794 
16795 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16796 	if (!mbox)
16797 		return -ENOMEM;
16798 
16799 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16800 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16801 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16802 			 LPFC_SLI4_MBX_NEMBED);
16803 
16804 	if (alloclen < reqlen) {
16805 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16806 				"0285 Allocated DMA memory size (%d) is "
16807 				"less than the requested DMA memory "
16808 				"size (%d)\n", alloclen, reqlen);
16809 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16810 		return -ENOMEM;
16811 	}
16812 	/* Set up the SGL pages in the non-embedded DMA pages */
16813 	viraddr = mbox->sge_array->addr[0];
16814 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16815 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16816 
16817 	pg_pairs = 0;
16818 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16819 		/* Set up the sge entry */
16820 		sgl_pg_pairs->sgl_pg0_addr_lo =
16821 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16822 		sgl_pg_pairs->sgl_pg0_addr_hi =
16823 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16824 		sgl_pg_pairs->sgl_pg1_addr_lo =
16825 				cpu_to_le32(putPaddrLow(0));
16826 		sgl_pg_pairs->sgl_pg1_addr_hi =
16827 				cpu_to_le32(putPaddrHigh(0));
16828 
16829 		/* Keep the first xritag on the list */
16830 		if (pg_pairs == 0)
16831 			xritag_start = sglq_entry->sli4_xritag;
16832 		sgl_pg_pairs++;
16833 		pg_pairs++;
16834 	}
16835 
16836 	/* Complete initialization and perform endian conversion. */
16837 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16838 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16839 	sgl->word0 = cpu_to_le32(sgl->word0);
16840 
16841 	if (!phba->sli4_hba.intr_enable)
16842 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16843 	else {
16844 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16845 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16846 	}
16847 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16848 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16849 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16850 	if (rc != MBX_TIMEOUT)
16851 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16852 	if (shdr_status || shdr_add_status || rc) {
16853 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16854 				"2513 POST_SGL_BLOCK mailbox command failed "
16855 				"status x%x add_status x%x mbx status x%x\n",
16856 				shdr_status, shdr_add_status, rc);
16857 		rc = -ENXIO;
16858 	}
16859 	return rc;
16860 }
16861 
16862 /**
16863  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16864  * @phba: pointer to lpfc hba data structure.
16865  * @nblist: pointer to nvme buffer list.
16866  * @count: number of scsi buffers on the list.
16867  *
16868  * This routine is invoked to post a block of @count scsi sgl pages from a
16869  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16870  * No Lock is held.
16871  *
16872  **/
16873 static int
16874 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16875 			    int count)
16876 {
16877 	struct lpfc_io_buf *lpfc_ncmd;
16878 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16879 	struct sgl_page_pairs *sgl_pg_pairs;
16880 	void *viraddr;
16881 	LPFC_MBOXQ_t *mbox;
16882 	uint32_t reqlen, alloclen, pg_pairs;
16883 	uint32_t mbox_tmo;
16884 	uint16_t xritag_start = 0;
16885 	int rc = 0;
16886 	uint32_t shdr_status, shdr_add_status;
16887 	dma_addr_t pdma_phys_bpl1;
16888 	union lpfc_sli4_cfg_shdr *shdr;
16889 
16890 	/* Calculate the requested length of the dma memory */
16891 	reqlen = count * sizeof(struct sgl_page_pairs) +
16892 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16893 	if (reqlen > SLI4_PAGE_SIZE) {
16894 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16895 				"6118 Block sgl registration required DMA "
16896 				"size (%d) great than a page\n", reqlen);
16897 		return -ENOMEM;
16898 	}
16899 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16900 	if (!mbox) {
16901 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16902 				"6119 Failed to allocate mbox cmd memory\n");
16903 		return -ENOMEM;
16904 	}
16905 
16906 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16907 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16908 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16909 				    reqlen, LPFC_SLI4_MBX_NEMBED);
16910 
16911 	if (alloclen < reqlen) {
16912 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16913 				"6120 Allocated DMA memory size (%d) is "
16914 				"less than the requested DMA memory "
16915 				"size (%d)\n", alloclen, reqlen);
16916 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16917 		return -ENOMEM;
16918 	}
16919 
16920 	/* Get the first SGE entry from the non-embedded DMA memory */
16921 	viraddr = mbox->sge_array->addr[0];
16922 
16923 	/* Set up the SGL pages in the non-embedded DMA pages */
16924 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16925 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16926 
16927 	pg_pairs = 0;
16928 	list_for_each_entry(lpfc_ncmd, nblist, list) {
16929 		/* Set up the sge entry */
16930 		sgl_pg_pairs->sgl_pg0_addr_lo =
16931 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
16932 		sgl_pg_pairs->sgl_pg0_addr_hi =
16933 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
16934 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16935 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
16936 						SGL_PAGE_SIZE;
16937 		else
16938 			pdma_phys_bpl1 = 0;
16939 		sgl_pg_pairs->sgl_pg1_addr_lo =
16940 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16941 		sgl_pg_pairs->sgl_pg1_addr_hi =
16942 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16943 		/* Keep the first xritag on the list */
16944 		if (pg_pairs == 0)
16945 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
16946 		sgl_pg_pairs++;
16947 		pg_pairs++;
16948 	}
16949 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16950 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16951 	/* Perform endian conversion if necessary */
16952 	sgl->word0 = cpu_to_le32(sgl->word0);
16953 
16954 	if (!phba->sli4_hba.intr_enable) {
16955 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16956 	} else {
16957 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16958 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16959 	}
16960 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
16961 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16962 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16963 	if (rc != MBX_TIMEOUT)
16964 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16965 	if (shdr_status || shdr_add_status || rc) {
16966 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16967 				"6125 POST_SGL_BLOCK mailbox command failed "
16968 				"status x%x add_status x%x mbx status x%x\n",
16969 				shdr_status, shdr_add_status, rc);
16970 		rc = -ENXIO;
16971 	}
16972 	return rc;
16973 }
16974 
16975 /**
16976  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
16977  * @phba: pointer to lpfc hba data structure.
16978  * @post_nblist: pointer to the nvme buffer list.
16979  *
16980  * This routine walks a list of nvme buffers that was passed in. It attempts
16981  * to construct blocks of nvme buffer sgls which contains contiguous xris and
16982  * uses the non-embedded SGL block post mailbox commands to post to the port.
16983  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
16984  * embedded SGL post mailbox command for posting. The @post_nblist passed in
16985  * must be local list, thus no lock is needed when manipulate the list.
16986  *
16987  * Returns: 0 = failure, non-zero number of successfully posted buffers.
16988  **/
16989 int
16990 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
16991 			   struct list_head *post_nblist, int sb_count)
16992 {
16993 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
16994 	int status, sgl_size;
16995 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
16996 	dma_addr_t pdma_phys_sgl1;
16997 	int last_xritag = NO_XRI;
16998 	int cur_xritag;
16999 	LIST_HEAD(prep_nblist);
17000 	LIST_HEAD(blck_nblist);
17001 	LIST_HEAD(nvme_nblist);
17002 
17003 	/* sanity check */
17004 	if (sb_count <= 0)
17005 		return -EINVAL;
17006 
17007 	sgl_size = phba->cfg_sg_dma_buf_size;
17008 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17009 		list_del_init(&lpfc_ncmd->list);
17010 		block_cnt++;
17011 		if ((last_xritag != NO_XRI) &&
17012 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17013 			/* a hole in xri block, form a sgl posting block */
17014 			list_splice_init(&prep_nblist, &blck_nblist);
17015 			post_cnt = block_cnt - 1;
17016 			/* prepare list for next posting block */
17017 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17018 			block_cnt = 1;
17019 		} else {
17020 			/* prepare list for next posting block */
17021 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17022 			/* enough sgls for non-embed sgl mbox command */
17023 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17024 				list_splice_init(&prep_nblist, &blck_nblist);
17025 				post_cnt = block_cnt;
17026 				block_cnt = 0;
17027 			}
17028 		}
17029 		num_posting++;
17030 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17031 
17032 		/* end of repost sgl list condition for NVME buffers */
17033 		if (num_posting == sb_count) {
17034 			if (post_cnt == 0) {
17035 				/* last sgl posting block */
17036 				list_splice_init(&prep_nblist, &blck_nblist);
17037 				post_cnt = block_cnt;
17038 			} else if (block_cnt == 1) {
17039 				/* last single sgl with non-contiguous xri */
17040 				if (sgl_size > SGL_PAGE_SIZE)
17041 					pdma_phys_sgl1 =
17042 						lpfc_ncmd->dma_phys_sgl +
17043 						SGL_PAGE_SIZE;
17044 				else
17045 					pdma_phys_sgl1 = 0;
17046 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17047 				status = lpfc_sli4_post_sgl(
17048 						phba, lpfc_ncmd->dma_phys_sgl,
17049 						pdma_phys_sgl1, cur_xritag);
17050 				if (status) {
17051 					/* Post error.  Buffer unavailable. */
17052 					lpfc_ncmd->flags |=
17053 						LPFC_SBUF_NOT_POSTED;
17054 				} else {
17055 					/* Post success. Bffer available. */
17056 					lpfc_ncmd->flags &=
17057 						~LPFC_SBUF_NOT_POSTED;
17058 					lpfc_ncmd->status = IOSTAT_SUCCESS;
17059 					num_posted++;
17060 				}
17061 				/* success, put on NVME buffer sgl list */
17062 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17063 			}
17064 		}
17065 
17066 		/* continue until a nembed page worth of sgls */
17067 		if (post_cnt == 0)
17068 			continue;
17069 
17070 		/* post block of NVME buffer list sgls */
17071 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17072 						     post_cnt);
17073 
17074 		/* don't reset xirtag due to hole in xri block */
17075 		if (block_cnt == 0)
17076 			last_xritag = NO_XRI;
17077 
17078 		/* reset NVME buffer post count for next round of posting */
17079 		post_cnt = 0;
17080 
17081 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17082 		while (!list_empty(&blck_nblist)) {
17083 			list_remove_head(&blck_nblist, lpfc_ncmd,
17084 					 struct lpfc_io_buf, list);
17085 			if (status) {
17086 				/* Post error.  Mark buffer unavailable. */
17087 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17088 			} else {
17089 				/* Post success, Mark buffer available. */
17090 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17091 				lpfc_ncmd->status = IOSTAT_SUCCESS;
17092 				num_posted++;
17093 			}
17094 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17095 		}
17096 	}
17097 	/* Push NVME buffers with sgl posted to the available list */
17098 	lpfc_io_buf_replenish(phba, &nvme_nblist);
17099 
17100 	return num_posted;
17101 }
17102 
17103 /**
17104  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17105  * @phba: pointer to lpfc_hba struct that the frame was received on
17106  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17107  *
17108  * This function checks the fields in the @fc_hdr to see if the FC frame is a
17109  * valid type of frame that the LPFC driver will handle. This function will
17110  * return a zero if the frame is a valid frame or a non zero value when the
17111  * frame does not pass the check.
17112  **/
17113 static int
17114 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17115 {
17116 	/*  make rctl_names static to save stack space */
17117 	struct fc_vft_header *fc_vft_hdr;
17118 	uint32_t *header = (uint32_t *) fc_hdr;
17119 
17120 #define FC_RCTL_MDS_DIAGS	0xF4
17121 
17122 	switch (fc_hdr->fh_r_ctl) {
17123 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17124 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17125 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17126 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17127 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17128 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17129 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17130 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17131 	case FC_RCTL_ELS_REQ:	/* extended link services request */
17132 	case FC_RCTL_ELS_REP:	/* extended link services reply */
17133 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17134 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17135 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
17136 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17137 	case FC_RCTL_BA_RMC: 	/* remove connection */
17138 	case FC_RCTL_BA_ACC:	/* basic accept */
17139 	case FC_RCTL_BA_RJT:	/* basic reject */
17140 	case FC_RCTL_BA_PRMT:
17141 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17142 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17143 	case FC_RCTL_P_RJT:	/* port reject */
17144 	case FC_RCTL_F_RJT:	/* fabric reject */
17145 	case FC_RCTL_P_BSY:	/* port busy */
17146 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17147 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17148 	case FC_RCTL_LCR:	/* link credit reset */
17149 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17150 	case FC_RCTL_END:	/* end */
17151 		break;
17152 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17153 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17154 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17155 		return lpfc_fc_frame_check(phba, fc_hdr);
17156 	default:
17157 		goto drop;
17158 	}
17159 
17160 	switch (fc_hdr->fh_type) {
17161 	case FC_TYPE_BLS:
17162 	case FC_TYPE_ELS:
17163 	case FC_TYPE_FCP:
17164 	case FC_TYPE_CT:
17165 	case FC_TYPE_NVME:
17166 		break;
17167 	case FC_TYPE_IP:
17168 	case FC_TYPE_ILS:
17169 	default:
17170 		goto drop;
17171 	}
17172 
17173 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17174 			"2538 Received frame rctl:x%x, type:x%x, "
17175 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17176 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17177 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17178 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17179 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17180 			be32_to_cpu(header[6]));
17181 	return 0;
17182 drop:
17183 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17184 			"2539 Dropped frame rctl:x%x type:x%x\n",
17185 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17186 	return 1;
17187 }
17188 
17189 /**
17190  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17191  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17192  *
17193  * This function processes the FC header to retrieve the VFI from the VF
17194  * header, if one exists. This function will return the VFI if one exists
17195  * or 0 if no VSAN Header exists.
17196  **/
17197 static uint32_t
17198 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17199 {
17200 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17201 
17202 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17203 		return 0;
17204 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17205 }
17206 
17207 /**
17208  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17209  * @phba: Pointer to the HBA structure to search for the vport on
17210  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17211  * @fcfi: The FC Fabric ID that the frame came from
17212  *
17213  * This function searches the @phba for a vport that matches the content of the
17214  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17215  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17216  * returns the matching vport pointer or NULL if unable to match frame to a
17217  * vport.
17218  **/
17219 static struct lpfc_vport *
17220 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17221 		       uint16_t fcfi, uint32_t did)
17222 {
17223 	struct lpfc_vport **vports;
17224 	struct lpfc_vport *vport = NULL;
17225 	int i;
17226 
17227 	if (did == Fabric_DID)
17228 		return phba->pport;
17229 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17230 		!(phba->link_state == LPFC_HBA_READY))
17231 		return phba->pport;
17232 
17233 	vports = lpfc_create_vport_work_array(phba);
17234 	if (vports != NULL) {
17235 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17236 			if (phba->fcf.fcfi == fcfi &&
17237 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17238 			    vports[i]->fc_myDID == did) {
17239 				vport = vports[i];
17240 				break;
17241 			}
17242 		}
17243 	}
17244 	lpfc_destroy_vport_work_array(phba, vports);
17245 	return vport;
17246 }
17247 
17248 /**
17249  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17250  * @vport: The vport to work on.
17251  *
17252  * This function updates the receive sequence time stamp for this vport. The
17253  * receive sequence time stamp indicates the time that the last frame of the
17254  * the sequence that has been idle for the longest amount of time was received.
17255  * the driver uses this time stamp to indicate if any received sequences have
17256  * timed out.
17257  **/
17258 static void
17259 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17260 {
17261 	struct lpfc_dmabuf *h_buf;
17262 	struct hbq_dmabuf *dmabuf = NULL;
17263 
17264 	/* get the oldest sequence on the rcv list */
17265 	h_buf = list_get_first(&vport->rcv_buffer_list,
17266 			       struct lpfc_dmabuf, list);
17267 	if (!h_buf)
17268 		return;
17269 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17270 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17271 }
17272 
17273 /**
17274  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17275  * @vport: The vport that the received sequences were sent to.
17276  *
17277  * This function cleans up all outstanding received sequences. This is called
17278  * by the driver when a link event or user action invalidates all the received
17279  * sequences.
17280  **/
17281 void
17282 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17283 {
17284 	struct lpfc_dmabuf *h_buf, *hnext;
17285 	struct lpfc_dmabuf *d_buf, *dnext;
17286 	struct hbq_dmabuf *dmabuf = NULL;
17287 
17288 	/* start with the oldest sequence on the rcv list */
17289 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17290 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17291 		list_del_init(&dmabuf->hbuf.list);
17292 		list_for_each_entry_safe(d_buf, dnext,
17293 					 &dmabuf->dbuf.list, list) {
17294 			list_del_init(&d_buf->list);
17295 			lpfc_in_buf_free(vport->phba, d_buf);
17296 		}
17297 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17298 	}
17299 }
17300 
17301 /**
17302  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17303  * @vport: The vport that the received sequences were sent to.
17304  *
17305  * This function determines whether any received sequences have timed out by
17306  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17307  * indicates that there is at least one timed out sequence this routine will
17308  * go through the received sequences one at a time from most inactive to most
17309  * active to determine which ones need to be cleaned up. Once it has determined
17310  * that a sequence needs to be cleaned up it will simply free up the resources
17311  * without sending an abort.
17312  **/
17313 void
17314 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17315 {
17316 	struct lpfc_dmabuf *h_buf, *hnext;
17317 	struct lpfc_dmabuf *d_buf, *dnext;
17318 	struct hbq_dmabuf *dmabuf = NULL;
17319 	unsigned long timeout;
17320 	int abort_count = 0;
17321 
17322 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17323 		   vport->rcv_buffer_time_stamp);
17324 	if (list_empty(&vport->rcv_buffer_list) ||
17325 	    time_before(jiffies, timeout))
17326 		return;
17327 	/* start with the oldest sequence on the rcv list */
17328 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17329 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17330 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17331 			   dmabuf->time_stamp);
17332 		if (time_before(jiffies, timeout))
17333 			break;
17334 		abort_count++;
17335 		list_del_init(&dmabuf->hbuf.list);
17336 		list_for_each_entry_safe(d_buf, dnext,
17337 					 &dmabuf->dbuf.list, list) {
17338 			list_del_init(&d_buf->list);
17339 			lpfc_in_buf_free(vport->phba, d_buf);
17340 		}
17341 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17342 	}
17343 	if (abort_count)
17344 		lpfc_update_rcv_time_stamp(vport);
17345 }
17346 
17347 /**
17348  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17349  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17350  *
17351  * This function searches through the existing incomplete sequences that have
17352  * been sent to this @vport. If the frame matches one of the incomplete
17353  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17354  * make up that sequence. If no sequence is found that matches this frame then
17355  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17356  * This function returns a pointer to the first dmabuf in the sequence list that
17357  * the frame was linked to.
17358  **/
17359 static struct hbq_dmabuf *
17360 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17361 {
17362 	struct fc_frame_header *new_hdr;
17363 	struct fc_frame_header *temp_hdr;
17364 	struct lpfc_dmabuf *d_buf;
17365 	struct lpfc_dmabuf *h_buf;
17366 	struct hbq_dmabuf *seq_dmabuf = NULL;
17367 	struct hbq_dmabuf *temp_dmabuf = NULL;
17368 	uint8_t	found = 0;
17369 
17370 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17371 	dmabuf->time_stamp = jiffies;
17372 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17373 
17374 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17375 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17376 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17377 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17378 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17379 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17380 			continue;
17381 		/* found a pending sequence that matches this frame */
17382 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17383 		break;
17384 	}
17385 	if (!seq_dmabuf) {
17386 		/*
17387 		 * This indicates first frame received for this sequence.
17388 		 * Queue the buffer on the vport's rcv_buffer_list.
17389 		 */
17390 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17391 		lpfc_update_rcv_time_stamp(vport);
17392 		return dmabuf;
17393 	}
17394 	temp_hdr = seq_dmabuf->hbuf.virt;
17395 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17396 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17397 		list_del_init(&seq_dmabuf->hbuf.list);
17398 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17399 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17400 		lpfc_update_rcv_time_stamp(vport);
17401 		return dmabuf;
17402 	}
17403 	/* move this sequence to the tail to indicate a young sequence */
17404 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17405 	seq_dmabuf->time_stamp = jiffies;
17406 	lpfc_update_rcv_time_stamp(vport);
17407 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17408 		temp_hdr = dmabuf->hbuf.virt;
17409 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17410 		return seq_dmabuf;
17411 	}
17412 	/* find the correct place in the sequence to insert this frame */
17413 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17414 	while (!found) {
17415 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17416 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17417 		/*
17418 		 * If the frame's sequence count is greater than the frame on
17419 		 * the list then insert the frame right after this frame
17420 		 */
17421 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17422 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17423 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17424 			found = 1;
17425 			break;
17426 		}
17427 
17428 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17429 			break;
17430 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17431 	}
17432 
17433 	if (found)
17434 		return seq_dmabuf;
17435 	return NULL;
17436 }
17437 
17438 /**
17439  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17440  * @vport: pointer to a vitural port
17441  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17442  *
17443  * This function tries to abort from the partially assembed sequence, described
17444  * by the information from basic abbort @dmabuf. It checks to see whether such
17445  * partially assembled sequence held by the driver. If so, it shall free up all
17446  * the frames from the partially assembled sequence.
17447  *
17448  * Return
17449  * true  -- if there is matching partially assembled sequence present and all
17450  *          the frames freed with the sequence;
17451  * false -- if there is no matching partially assembled sequence present so
17452  *          nothing got aborted in the lower layer driver
17453  **/
17454 static bool
17455 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17456 			    struct hbq_dmabuf *dmabuf)
17457 {
17458 	struct fc_frame_header *new_hdr;
17459 	struct fc_frame_header *temp_hdr;
17460 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17461 	struct hbq_dmabuf *seq_dmabuf = NULL;
17462 
17463 	/* Use the hdr_buf to find the sequence that matches this frame */
17464 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17465 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17466 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17467 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17468 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17469 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17470 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17471 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17472 			continue;
17473 		/* found a pending sequence that matches this frame */
17474 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17475 		break;
17476 	}
17477 
17478 	/* Free up all the frames from the partially assembled sequence */
17479 	if (seq_dmabuf) {
17480 		list_for_each_entry_safe(d_buf, n_buf,
17481 					 &seq_dmabuf->dbuf.list, list) {
17482 			list_del_init(&d_buf->list);
17483 			lpfc_in_buf_free(vport->phba, d_buf);
17484 		}
17485 		return true;
17486 	}
17487 	return false;
17488 }
17489 
17490 /**
17491  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17492  * @vport: pointer to a vitural port
17493  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17494  *
17495  * This function tries to abort from the assembed sequence from upper level
17496  * protocol, described by the information from basic abbort @dmabuf. It
17497  * checks to see whether such pending context exists at upper level protocol.
17498  * If so, it shall clean up the pending context.
17499  *
17500  * Return
17501  * true  -- if there is matching pending context of the sequence cleaned
17502  *          at ulp;
17503  * false -- if there is no matching pending context of the sequence present
17504  *          at ulp.
17505  **/
17506 static bool
17507 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17508 {
17509 	struct lpfc_hba *phba = vport->phba;
17510 	int handled;
17511 
17512 	/* Accepting abort at ulp with SLI4 only */
17513 	if (phba->sli_rev < LPFC_SLI_REV4)
17514 		return false;
17515 
17516 	/* Register all caring upper level protocols to attend abort */
17517 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17518 	if (handled)
17519 		return true;
17520 
17521 	return false;
17522 }
17523 
17524 /**
17525  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17526  * @phba: Pointer to HBA context object.
17527  * @cmd_iocbq: pointer to the command iocbq structure.
17528  * @rsp_iocbq: pointer to the response iocbq structure.
17529  *
17530  * This function handles the sequence abort response iocb command complete
17531  * event. It properly releases the memory allocated to the sequence abort
17532  * accept iocb.
17533  **/
17534 static void
17535 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17536 			     struct lpfc_iocbq *cmd_iocbq,
17537 			     struct lpfc_iocbq *rsp_iocbq)
17538 {
17539 	struct lpfc_nodelist *ndlp;
17540 
17541 	if (cmd_iocbq) {
17542 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17543 		lpfc_nlp_put(ndlp);
17544 		lpfc_nlp_not_used(ndlp);
17545 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17546 	}
17547 
17548 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17549 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17550 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17551 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17552 			rsp_iocbq->iocb.ulpStatus,
17553 			rsp_iocbq->iocb.un.ulpWord[4]);
17554 }
17555 
17556 /**
17557  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17558  * @phba: Pointer to HBA context object.
17559  * @xri: xri id in transaction.
17560  *
17561  * This function validates the xri maps to the known range of XRIs allocated an
17562  * used by the driver.
17563  **/
17564 uint16_t
17565 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17566 		      uint16_t xri)
17567 {
17568 	uint16_t i;
17569 
17570 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17571 		if (xri == phba->sli4_hba.xri_ids[i])
17572 			return i;
17573 	}
17574 	return NO_XRI;
17575 }
17576 
17577 /**
17578  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17579  * @phba: Pointer to HBA context object.
17580  * @fc_hdr: pointer to a FC frame header.
17581  *
17582  * This function sends a basic response to a previous unsol sequence abort
17583  * event after aborting the sequence handling.
17584  **/
17585 void
17586 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17587 			struct fc_frame_header *fc_hdr, bool aborted)
17588 {
17589 	struct lpfc_hba *phba = vport->phba;
17590 	struct lpfc_iocbq *ctiocb = NULL;
17591 	struct lpfc_nodelist *ndlp;
17592 	uint16_t oxid, rxid, xri, lxri;
17593 	uint32_t sid, fctl;
17594 	IOCB_t *icmd;
17595 	int rc;
17596 
17597 	if (!lpfc_is_link_up(phba))
17598 		return;
17599 
17600 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17601 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17602 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17603 
17604 	ndlp = lpfc_findnode_did(vport, sid);
17605 	if (!ndlp) {
17606 		ndlp = lpfc_nlp_init(vport, sid);
17607 		if (!ndlp) {
17608 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17609 					 "1268 Failed to allocate ndlp for "
17610 					 "oxid:x%x SID:x%x\n", oxid, sid);
17611 			return;
17612 		}
17613 		/* Put ndlp onto pport node list */
17614 		lpfc_enqueue_node(vport, ndlp);
17615 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17616 		/* re-setup ndlp without removing from node list */
17617 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17618 		if (!ndlp) {
17619 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17620 					 "3275 Failed to active ndlp found "
17621 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17622 			return;
17623 		}
17624 	}
17625 
17626 	/* Allocate buffer for rsp iocb */
17627 	ctiocb = lpfc_sli_get_iocbq(phba);
17628 	if (!ctiocb)
17629 		return;
17630 
17631 	/* Extract the F_CTL field from FC_HDR */
17632 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17633 
17634 	icmd = &ctiocb->iocb;
17635 	icmd->un.xseq64.bdl.bdeSize = 0;
17636 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17637 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17638 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17639 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17640 
17641 	/* Fill in the rest of iocb fields */
17642 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17643 	icmd->ulpBdeCount = 0;
17644 	icmd->ulpLe = 1;
17645 	icmd->ulpClass = CLASS3;
17646 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17647 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17648 
17649 	ctiocb->vport = phba->pport;
17650 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17651 	ctiocb->sli4_lxritag = NO_XRI;
17652 	ctiocb->sli4_xritag = NO_XRI;
17653 
17654 	if (fctl & FC_FC_EX_CTX)
17655 		/* Exchange responder sent the abort so we
17656 		 * own the oxid.
17657 		 */
17658 		xri = oxid;
17659 	else
17660 		xri = rxid;
17661 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17662 	if (lxri != NO_XRI)
17663 		lpfc_set_rrq_active(phba, ndlp, lxri,
17664 			(xri == oxid) ? rxid : oxid, 0);
17665 	/* For BA_ABTS from exchange responder, if the logical xri with
17666 	 * the oxid maps to the FCP XRI range, the port no longer has
17667 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17668 	 * a BA_RJT.
17669 	 */
17670 	if ((fctl & FC_FC_EX_CTX) &&
17671 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17672 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17673 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17674 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17675 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17676 	}
17677 
17678 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17679 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17680 	 * the IOCB for a BA_RJT.
17681 	 */
17682 	if (aborted == false) {
17683 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17684 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17685 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17686 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17687 	}
17688 
17689 	if (fctl & FC_FC_EX_CTX) {
17690 		/* ABTS sent by responder to CT exchange, construction
17691 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17692 		 * field and RX_ID from ABTS for RX_ID field.
17693 		 */
17694 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17695 	} else {
17696 		/* ABTS sent by initiator to CT exchange, construction
17697 		 * of BA_ACC will need to allocate a new XRI as for the
17698 		 * XRI_TAG field.
17699 		 */
17700 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17701 	}
17702 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17703 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17704 
17705 	/* Xmit CT abts response on exchange <xid> */
17706 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17707 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17708 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17709 
17710 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17711 	if (rc == IOCB_ERROR) {
17712 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17713 				 "2925 Failed to issue CT ABTS RSP x%x on "
17714 				 "xri x%x, Data x%x\n",
17715 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17716 				 phba->link_state);
17717 		lpfc_nlp_put(ndlp);
17718 		ctiocb->context1 = NULL;
17719 		lpfc_sli_release_iocbq(phba, ctiocb);
17720 	}
17721 }
17722 
17723 /**
17724  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17725  * @vport: Pointer to the vport on which this sequence was received
17726  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17727  *
17728  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17729  * receive sequence is only partially assembed by the driver, it shall abort
17730  * the partially assembled frames for the sequence. Otherwise, if the
17731  * unsolicited receive sequence has been completely assembled and passed to
17732  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17733  * unsolicited sequence has been aborted. After that, it will issue a basic
17734  * accept to accept the abort.
17735  **/
17736 static void
17737 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17738 			     struct hbq_dmabuf *dmabuf)
17739 {
17740 	struct lpfc_hba *phba = vport->phba;
17741 	struct fc_frame_header fc_hdr;
17742 	uint32_t fctl;
17743 	bool aborted;
17744 
17745 	/* Make a copy of fc_hdr before the dmabuf being released */
17746 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17747 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17748 
17749 	if (fctl & FC_FC_EX_CTX) {
17750 		/* ABTS by responder to exchange, no cleanup needed */
17751 		aborted = true;
17752 	} else {
17753 		/* ABTS by initiator to exchange, need to do cleanup */
17754 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17755 		if (aborted == false)
17756 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17757 	}
17758 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17759 
17760 	if (phba->nvmet_support) {
17761 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17762 		return;
17763 	}
17764 
17765 	/* Respond with BA_ACC or BA_RJT accordingly */
17766 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17767 }
17768 
17769 /**
17770  * lpfc_seq_complete - Indicates if a sequence is complete
17771  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17772  *
17773  * This function checks the sequence, starting with the frame described by
17774  * @dmabuf, to see if all the frames associated with this sequence are present.
17775  * the frames associated with this sequence are linked to the @dmabuf using the
17776  * dbuf list. This function looks for two major things. 1) That the first frame
17777  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17778  * set. 3) That there are no holes in the sequence count. The function will
17779  * return 1 when the sequence is complete, otherwise it will return 0.
17780  **/
17781 static int
17782 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17783 {
17784 	struct fc_frame_header *hdr;
17785 	struct lpfc_dmabuf *d_buf;
17786 	struct hbq_dmabuf *seq_dmabuf;
17787 	uint32_t fctl;
17788 	int seq_count = 0;
17789 
17790 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17791 	/* make sure first fame of sequence has a sequence count of zero */
17792 	if (hdr->fh_seq_cnt != seq_count)
17793 		return 0;
17794 	fctl = (hdr->fh_f_ctl[0] << 16 |
17795 		hdr->fh_f_ctl[1] << 8 |
17796 		hdr->fh_f_ctl[2]);
17797 	/* If last frame of sequence we can return success. */
17798 	if (fctl & FC_FC_END_SEQ)
17799 		return 1;
17800 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17801 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17802 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17803 		/* If there is a hole in the sequence count then fail. */
17804 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17805 			return 0;
17806 		fctl = (hdr->fh_f_ctl[0] << 16 |
17807 			hdr->fh_f_ctl[1] << 8 |
17808 			hdr->fh_f_ctl[2]);
17809 		/* If last frame of sequence we can return success. */
17810 		if (fctl & FC_FC_END_SEQ)
17811 			return 1;
17812 	}
17813 	return 0;
17814 }
17815 
17816 /**
17817  * lpfc_prep_seq - Prep sequence for ULP processing
17818  * @vport: Pointer to the vport on which this sequence was received
17819  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17820  *
17821  * This function takes a sequence, described by a list of frames, and creates
17822  * a list of iocbq structures to describe the sequence. This iocbq list will be
17823  * used to issue to the generic unsolicited sequence handler. This routine
17824  * returns a pointer to the first iocbq in the list. If the function is unable
17825  * to allocate an iocbq then it throw out the received frames that were not
17826  * able to be described and return a pointer to the first iocbq. If unable to
17827  * allocate any iocbqs (including the first) this function will return NULL.
17828  **/
17829 static struct lpfc_iocbq *
17830 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17831 {
17832 	struct hbq_dmabuf *hbq_buf;
17833 	struct lpfc_dmabuf *d_buf, *n_buf;
17834 	struct lpfc_iocbq *first_iocbq, *iocbq;
17835 	struct fc_frame_header *fc_hdr;
17836 	uint32_t sid;
17837 	uint32_t len, tot_len;
17838 	struct ulp_bde64 *pbde;
17839 
17840 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17841 	/* remove from receive buffer list */
17842 	list_del_init(&seq_dmabuf->hbuf.list);
17843 	lpfc_update_rcv_time_stamp(vport);
17844 	/* get the Remote Port's SID */
17845 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17846 	tot_len = 0;
17847 	/* Get an iocbq struct to fill in. */
17848 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17849 	if (first_iocbq) {
17850 		/* Initialize the first IOCB. */
17851 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17852 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17853 		first_iocbq->vport = vport;
17854 
17855 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17856 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17857 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17858 			first_iocbq->iocb.un.rcvels.parmRo =
17859 				sli4_did_from_fc_hdr(fc_hdr);
17860 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17861 		} else
17862 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17863 		first_iocbq->iocb.ulpContext = NO_XRI;
17864 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17865 			be16_to_cpu(fc_hdr->fh_ox_id);
17866 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17867 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17868 			vport->phba->vpi_ids[vport->vpi];
17869 		/* put the first buffer into the first IOCBq */
17870 		tot_len = bf_get(lpfc_rcqe_length,
17871 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17872 
17873 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17874 		first_iocbq->context3 = NULL;
17875 		first_iocbq->iocb.ulpBdeCount = 1;
17876 		if (tot_len > LPFC_DATA_BUF_SIZE)
17877 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17878 							LPFC_DATA_BUF_SIZE;
17879 		else
17880 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17881 
17882 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17883 
17884 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17885 	}
17886 	iocbq = first_iocbq;
17887 	/*
17888 	 * Each IOCBq can have two Buffers assigned, so go through the list
17889 	 * of buffers for this sequence and save two buffers in each IOCBq
17890 	 */
17891 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17892 		if (!iocbq) {
17893 			lpfc_in_buf_free(vport->phba, d_buf);
17894 			continue;
17895 		}
17896 		if (!iocbq->context3) {
17897 			iocbq->context3 = d_buf;
17898 			iocbq->iocb.ulpBdeCount++;
17899 			/* We need to get the size out of the right CQE */
17900 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17901 			len = bf_get(lpfc_rcqe_length,
17902 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17903 			pbde = (struct ulp_bde64 *)
17904 					&iocbq->iocb.unsli3.sli3Words[4];
17905 			if (len > LPFC_DATA_BUF_SIZE)
17906 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17907 			else
17908 				pbde->tus.f.bdeSize = len;
17909 
17910 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17911 			tot_len += len;
17912 		} else {
17913 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17914 			if (!iocbq) {
17915 				if (first_iocbq) {
17916 					first_iocbq->iocb.ulpStatus =
17917 							IOSTAT_FCP_RSP_ERROR;
17918 					first_iocbq->iocb.un.ulpWord[4] =
17919 							IOERR_NO_RESOURCES;
17920 				}
17921 				lpfc_in_buf_free(vport->phba, d_buf);
17922 				continue;
17923 			}
17924 			/* We need to get the size out of the right CQE */
17925 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17926 			len = bf_get(lpfc_rcqe_length,
17927 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17928 			iocbq->context2 = d_buf;
17929 			iocbq->context3 = NULL;
17930 			iocbq->iocb.ulpBdeCount = 1;
17931 			if (len > LPFC_DATA_BUF_SIZE)
17932 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17933 							LPFC_DATA_BUF_SIZE;
17934 			else
17935 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17936 
17937 			tot_len += len;
17938 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17939 
17940 			iocbq->iocb.un.rcvels.remoteID = sid;
17941 			list_add_tail(&iocbq->list, &first_iocbq->list);
17942 		}
17943 	}
17944 	return first_iocbq;
17945 }
17946 
17947 static void
17948 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17949 			  struct hbq_dmabuf *seq_dmabuf)
17950 {
17951 	struct fc_frame_header *fc_hdr;
17952 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17953 	struct lpfc_hba *phba = vport->phba;
17954 
17955 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17956 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17957 	if (!iocbq) {
17958 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17959 				"2707 Ring %d handler: Failed to allocate "
17960 				"iocb Rctl x%x Type x%x received\n",
17961 				LPFC_ELS_RING,
17962 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17963 		return;
17964 	}
17965 	if (!lpfc_complete_unsol_iocb(phba,
17966 				      phba->sli4_hba.els_wq->pring,
17967 				      iocbq, fc_hdr->fh_r_ctl,
17968 				      fc_hdr->fh_type))
17969 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17970 				"2540 Ring %d handler: unexpected Rctl "
17971 				"x%x Type x%x received\n",
17972 				LPFC_ELS_RING,
17973 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17974 
17975 	/* Free iocb created in lpfc_prep_seq */
17976 	list_for_each_entry_safe(curr_iocb, next_iocb,
17977 		&iocbq->list, list) {
17978 		list_del_init(&curr_iocb->list);
17979 		lpfc_sli_release_iocbq(phba, curr_iocb);
17980 	}
17981 	lpfc_sli_release_iocbq(phba, iocbq);
17982 }
17983 
17984 static void
17985 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17986 			    struct lpfc_iocbq *rspiocb)
17987 {
17988 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17989 
17990 	if (pcmd && pcmd->virt)
17991 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17992 	kfree(pcmd);
17993 	lpfc_sli_release_iocbq(phba, cmdiocb);
17994 	lpfc_drain_txq(phba);
17995 }
17996 
17997 static void
17998 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17999 			      struct hbq_dmabuf *dmabuf)
18000 {
18001 	struct fc_frame_header *fc_hdr;
18002 	struct lpfc_hba *phba = vport->phba;
18003 	struct lpfc_iocbq *iocbq = NULL;
18004 	union  lpfc_wqe *wqe;
18005 	struct lpfc_dmabuf *pcmd = NULL;
18006 	uint32_t frame_len;
18007 	int rc;
18008 	unsigned long iflags;
18009 
18010 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18011 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18012 
18013 	/* Send the received frame back */
18014 	iocbq = lpfc_sli_get_iocbq(phba);
18015 	if (!iocbq) {
18016 		/* Queue cq event and wakeup worker thread to process it */
18017 		spin_lock_irqsave(&phba->hbalock, iflags);
18018 		list_add_tail(&dmabuf->cq_event.list,
18019 			      &phba->sli4_hba.sp_queue_event);
18020 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18021 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18022 		lpfc_worker_wake_up(phba);
18023 		return;
18024 	}
18025 
18026 	/* Allocate buffer for command payload */
18027 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18028 	if (pcmd)
18029 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18030 					    &pcmd->phys);
18031 	if (!pcmd || !pcmd->virt)
18032 		goto exit;
18033 
18034 	INIT_LIST_HEAD(&pcmd->list);
18035 
18036 	/* copyin the payload */
18037 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18038 
18039 	/* fill in BDE's for command */
18040 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18041 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18042 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18043 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18044 
18045 	iocbq->context2 = pcmd;
18046 	iocbq->vport = vport;
18047 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18048 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18049 
18050 	/*
18051 	 * Setup rest of the iocb as though it were a WQE
18052 	 * Build the SEND_FRAME WQE
18053 	 */
18054 	wqe = (union lpfc_wqe *)&iocbq->iocb;
18055 
18056 	wqe->send_frame.frame_len = frame_len;
18057 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18058 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18059 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18060 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18061 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18062 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18063 
18064 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18065 	iocbq->iocb.ulpLe = 1;
18066 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18067 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18068 	if (rc == IOCB_ERROR)
18069 		goto exit;
18070 
18071 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18072 	return;
18073 
18074 exit:
18075 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18076 			"2023 Unable to process MDS loopback frame\n");
18077 	if (pcmd && pcmd->virt)
18078 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18079 	kfree(pcmd);
18080 	if (iocbq)
18081 		lpfc_sli_release_iocbq(phba, iocbq);
18082 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18083 }
18084 
18085 /**
18086  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18087  * @phba: Pointer to HBA context object.
18088  *
18089  * This function is called with no lock held. This function processes all
18090  * the received buffers and gives it to upper layers when a received buffer
18091  * indicates that it is the final frame in the sequence. The interrupt
18092  * service routine processes received buffers at interrupt contexts.
18093  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18094  * appropriate receive function when the final frame in a sequence is received.
18095  **/
18096 void
18097 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18098 				 struct hbq_dmabuf *dmabuf)
18099 {
18100 	struct hbq_dmabuf *seq_dmabuf;
18101 	struct fc_frame_header *fc_hdr;
18102 	struct lpfc_vport *vport;
18103 	uint32_t fcfi;
18104 	uint32_t did;
18105 
18106 	/* Process each received buffer */
18107 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18108 
18109 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18110 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18111 		vport = phba->pport;
18112 		/* Handle MDS Loopback frames */
18113 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18114 		return;
18115 	}
18116 
18117 	/* check to see if this a valid type of frame */
18118 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18119 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18120 		return;
18121 	}
18122 
18123 	if ((bf_get(lpfc_cqe_code,
18124 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18125 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18126 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18127 	else
18128 		fcfi = bf_get(lpfc_rcqe_fcf_id,
18129 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18130 
18131 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18132 		vport = phba->pport;
18133 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18134 				"2023 MDS Loopback %d bytes\n",
18135 				bf_get(lpfc_rcqe_length,
18136 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18137 		/* Handle MDS Loopback frames */
18138 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18139 		return;
18140 	}
18141 
18142 	/* d_id this frame is directed to */
18143 	did = sli4_did_from_fc_hdr(fc_hdr);
18144 
18145 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18146 	if (!vport) {
18147 		/* throw out the frame */
18148 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18149 		return;
18150 	}
18151 
18152 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18153 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18154 		(did != Fabric_DID)) {
18155 		/*
18156 		 * Throw out the frame if we are not pt2pt.
18157 		 * The pt2pt protocol allows for discovery frames
18158 		 * to be received without a registered VPI.
18159 		 */
18160 		if (!(vport->fc_flag & FC_PT2PT) ||
18161 			(phba->link_state == LPFC_HBA_READY)) {
18162 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18163 			return;
18164 		}
18165 	}
18166 
18167 	/* Handle the basic abort sequence (BA_ABTS) event */
18168 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18169 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18170 		return;
18171 	}
18172 
18173 	/* Link this frame */
18174 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18175 	if (!seq_dmabuf) {
18176 		/* unable to add frame to vport - throw it out */
18177 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18178 		return;
18179 	}
18180 	/* If not last frame in sequence continue processing frames. */
18181 	if (!lpfc_seq_complete(seq_dmabuf))
18182 		return;
18183 
18184 	/* Send the complete sequence to the upper layer protocol */
18185 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18186 }
18187 
18188 /**
18189  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18190  * @phba: pointer to lpfc hba data structure.
18191  *
18192  * This routine is invoked to post rpi header templates to the
18193  * HBA consistent with the SLI-4 interface spec.  This routine
18194  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18195  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18196  *
18197  * This routine does not require any locks.  It's usage is expected
18198  * to be driver load or reset recovery when the driver is
18199  * sequential.
18200  *
18201  * Return codes
18202  * 	0 - successful
18203  *      -EIO - The mailbox failed to complete successfully.
18204  * 	When this error occurs, the driver is not guaranteed
18205  *	to have any rpi regions posted to the device and
18206  *	must either attempt to repost the regions or take a
18207  *	fatal error.
18208  **/
18209 int
18210 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18211 {
18212 	struct lpfc_rpi_hdr *rpi_page;
18213 	uint32_t rc = 0;
18214 	uint16_t lrpi = 0;
18215 
18216 	/* SLI4 ports that support extents do not require RPI headers. */
18217 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18218 		goto exit;
18219 	if (phba->sli4_hba.extents_in_use)
18220 		return -EIO;
18221 
18222 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18223 		/*
18224 		 * Assign the rpi headers a physical rpi only if the driver
18225 		 * has not initialized those resources.  A port reset only
18226 		 * needs the headers posted.
18227 		 */
18228 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18229 		    LPFC_RPI_RSRC_RDY)
18230 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18231 
18232 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18233 		if (rc != MBX_SUCCESS) {
18234 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18235 					"2008 Error %d posting all rpi "
18236 					"headers\n", rc);
18237 			rc = -EIO;
18238 			break;
18239 		}
18240 	}
18241 
18242  exit:
18243 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18244 	       LPFC_RPI_RSRC_RDY);
18245 	return rc;
18246 }
18247 
18248 /**
18249  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18250  * @phba: pointer to lpfc hba data structure.
18251  * @rpi_page:  pointer to the rpi memory region.
18252  *
18253  * This routine is invoked to post a single rpi header to the
18254  * HBA consistent with the SLI-4 interface spec.  This memory region
18255  * maps up to 64 rpi context regions.
18256  *
18257  * Return codes
18258  * 	0 - successful
18259  * 	-ENOMEM - No available memory
18260  *      -EIO - The mailbox failed to complete successfully.
18261  **/
18262 int
18263 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18264 {
18265 	LPFC_MBOXQ_t *mboxq;
18266 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18267 	uint32_t rc = 0;
18268 	uint32_t shdr_status, shdr_add_status;
18269 	union lpfc_sli4_cfg_shdr *shdr;
18270 
18271 	/* SLI4 ports that support extents do not require RPI headers. */
18272 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18273 		return rc;
18274 	if (phba->sli4_hba.extents_in_use)
18275 		return -EIO;
18276 
18277 	/* The port is notified of the header region via a mailbox command. */
18278 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18279 	if (!mboxq) {
18280 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18281 				"2001 Unable to allocate memory for issuing "
18282 				"SLI_CONFIG_SPECIAL mailbox command\n");
18283 		return -ENOMEM;
18284 	}
18285 
18286 	/* Post all rpi memory regions to the port. */
18287 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18288 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18289 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18290 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18291 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18292 			 LPFC_SLI4_MBX_EMBED);
18293 
18294 
18295 	/* Post the physical rpi to the port for this rpi header. */
18296 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18297 	       rpi_page->start_rpi);
18298 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18299 	       hdr_tmpl, rpi_page->page_count);
18300 
18301 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18302 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18303 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18304 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18305 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18306 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18307 	if (rc != MBX_TIMEOUT)
18308 		mempool_free(mboxq, phba->mbox_mem_pool);
18309 	if (shdr_status || shdr_add_status || rc) {
18310 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18311 				"2514 POST_RPI_HDR mailbox failed with "
18312 				"status x%x add_status x%x, mbx status x%x\n",
18313 				shdr_status, shdr_add_status, rc);
18314 		rc = -ENXIO;
18315 	} else {
18316 		/*
18317 		 * The next_rpi stores the next logical module-64 rpi value used
18318 		 * to post physical rpis in subsequent rpi postings.
18319 		 */
18320 		spin_lock_irq(&phba->hbalock);
18321 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18322 		spin_unlock_irq(&phba->hbalock);
18323 	}
18324 	return rc;
18325 }
18326 
18327 /**
18328  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18329  * @phba: pointer to lpfc hba data structure.
18330  *
18331  * This routine is invoked to post rpi header templates to the
18332  * HBA consistent with the SLI-4 interface spec.  This routine
18333  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18334  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18335  *
18336  * Returns
18337  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18338  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18339  **/
18340 int
18341 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18342 {
18343 	unsigned long rpi;
18344 	uint16_t max_rpi, rpi_limit;
18345 	uint16_t rpi_remaining, lrpi = 0;
18346 	struct lpfc_rpi_hdr *rpi_hdr;
18347 	unsigned long iflag;
18348 
18349 	/*
18350 	 * Fetch the next logical rpi.  Because this index is logical,
18351 	 * the  driver starts at 0 each time.
18352 	 */
18353 	spin_lock_irqsave(&phba->hbalock, iflag);
18354 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18355 	rpi_limit = phba->sli4_hba.next_rpi;
18356 
18357 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18358 	if (rpi >= rpi_limit)
18359 		rpi = LPFC_RPI_ALLOC_ERROR;
18360 	else {
18361 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18362 		phba->sli4_hba.max_cfg_param.rpi_used++;
18363 		phba->sli4_hba.rpi_count++;
18364 	}
18365 	lpfc_printf_log(phba, KERN_INFO,
18366 			LOG_NODE | LOG_DISCOVERY,
18367 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18368 			(int) rpi, max_rpi, rpi_limit);
18369 
18370 	/*
18371 	 * Don't try to allocate more rpi header regions if the device limit
18372 	 * has been exhausted.
18373 	 */
18374 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18375 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18376 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18377 		return rpi;
18378 	}
18379 
18380 	/*
18381 	 * RPI header postings are not required for SLI4 ports capable of
18382 	 * extents.
18383 	 */
18384 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18385 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18386 		return rpi;
18387 	}
18388 
18389 	/*
18390 	 * If the driver is running low on rpi resources, allocate another
18391 	 * page now.  Note that the next_rpi value is used because
18392 	 * it represents how many are actually in use whereas max_rpi notes
18393 	 * how many are supported max by the device.
18394 	 */
18395 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18396 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18397 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18398 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18399 		if (!rpi_hdr) {
18400 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18401 					"2002 Error Could not grow rpi "
18402 					"count\n");
18403 		} else {
18404 			lrpi = rpi_hdr->start_rpi;
18405 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18406 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18407 		}
18408 	}
18409 
18410 	return rpi;
18411 }
18412 
18413 /**
18414  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18415  * @phba: pointer to lpfc hba data structure.
18416  *
18417  * This routine is invoked to release an rpi to the pool of
18418  * available rpis maintained by the driver.
18419  **/
18420 static void
18421 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18422 {
18423 	/*
18424 	 * if the rpi value indicates a prior unreg has already
18425 	 * been done, skip the unreg.
18426 	 */
18427 	if (rpi == LPFC_RPI_ALLOC_ERROR)
18428 		return;
18429 
18430 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18431 		phba->sli4_hba.rpi_count--;
18432 		phba->sli4_hba.max_cfg_param.rpi_used--;
18433 	} else {
18434 		lpfc_printf_log(phba, KERN_INFO,
18435 				LOG_NODE | LOG_DISCOVERY,
18436 				"2016 rpi %x not inuse\n",
18437 				rpi);
18438 	}
18439 }
18440 
18441 /**
18442  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18443  * @phba: pointer to lpfc hba data structure.
18444  *
18445  * This routine is invoked to release an rpi to the pool of
18446  * available rpis maintained by the driver.
18447  **/
18448 void
18449 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18450 {
18451 	spin_lock_irq(&phba->hbalock);
18452 	__lpfc_sli4_free_rpi(phba, rpi);
18453 	spin_unlock_irq(&phba->hbalock);
18454 }
18455 
18456 /**
18457  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18458  * @phba: pointer to lpfc hba data structure.
18459  *
18460  * This routine is invoked to remove the memory region that
18461  * provided rpi via a bitmask.
18462  **/
18463 void
18464 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18465 {
18466 	kfree(phba->sli4_hba.rpi_bmask);
18467 	kfree(phba->sli4_hba.rpi_ids);
18468 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18469 }
18470 
18471 /**
18472  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18473  * @phba: pointer to lpfc hba data structure.
18474  *
18475  * This routine is invoked to remove the memory region that
18476  * provided rpi via a bitmask.
18477  **/
18478 int
18479 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18480 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18481 {
18482 	LPFC_MBOXQ_t *mboxq;
18483 	struct lpfc_hba *phba = ndlp->phba;
18484 	int rc;
18485 
18486 	/* The port is notified of the header region via a mailbox command. */
18487 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18488 	if (!mboxq)
18489 		return -ENOMEM;
18490 
18491 	/* Post all rpi memory regions to the port. */
18492 	lpfc_resume_rpi(mboxq, ndlp);
18493 	if (cmpl) {
18494 		mboxq->mbox_cmpl = cmpl;
18495 		mboxq->ctx_buf = arg;
18496 		mboxq->ctx_ndlp = ndlp;
18497 	} else
18498 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18499 	mboxq->vport = ndlp->vport;
18500 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18501 	if (rc == MBX_NOT_FINISHED) {
18502 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18503 				"2010 Resume RPI Mailbox failed "
18504 				"status %d, mbxStatus x%x\n", rc,
18505 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18506 		mempool_free(mboxq, phba->mbox_mem_pool);
18507 		return -EIO;
18508 	}
18509 	return 0;
18510 }
18511 
18512 /**
18513  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18514  * @vport: Pointer to the vport for which the vpi is being initialized
18515  *
18516  * This routine is invoked to activate a vpi with the port.
18517  *
18518  * Returns:
18519  *    0 success
18520  *    -Evalue otherwise
18521  **/
18522 int
18523 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18524 {
18525 	LPFC_MBOXQ_t *mboxq;
18526 	int rc = 0;
18527 	int retval = MBX_SUCCESS;
18528 	uint32_t mbox_tmo;
18529 	struct lpfc_hba *phba = vport->phba;
18530 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18531 	if (!mboxq)
18532 		return -ENOMEM;
18533 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18534 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18535 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18536 	if (rc != MBX_SUCCESS) {
18537 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18538 				"2022 INIT VPI Mailbox failed "
18539 				"status %d, mbxStatus x%x\n", rc,
18540 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18541 		retval = -EIO;
18542 	}
18543 	if (rc != MBX_TIMEOUT)
18544 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18545 
18546 	return retval;
18547 }
18548 
18549 /**
18550  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18551  * @phba: pointer to lpfc hba data structure.
18552  * @mboxq: Pointer to mailbox object.
18553  *
18554  * This routine is invoked to manually add a single FCF record. The caller
18555  * must pass a completely initialized FCF_Record.  This routine takes
18556  * care of the nonembedded mailbox operations.
18557  **/
18558 static void
18559 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18560 {
18561 	void *virt_addr;
18562 	union lpfc_sli4_cfg_shdr *shdr;
18563 	uint32_t shdr_status, shdr_add_status;
18564 
18565 	virt_addr = mboxq->sge_array->addr[0];
18566 	/* The IOCTL status is embedded in the mailbox subheader. */
18567 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18568 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18569 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18570 
18571 	if ((shdr_status || shdr_add_status) &&
18572 		(shdr_status != STATUS_FCF_IN_USE))
18573 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18574 			"2558 ADD_FCF_RECORD mailbox failed with "
18575 			"status x%x add_status x%x\n",
18576 			shdr_status, shdr_add_status);
18577 
18578 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18579 }
18580 
18581 /**
18582  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18583  * @phba: pointer to lpfc hba data structure.
18584  * @fcf_record:  pointer to the initialized fcf record to add.
18585  *
18586  * This routine is invoked to manually add a single FCF record. The caller
18587  * must pass a completely initialized FCF_Record.  This routine takes
18588  * care of the nonembedded mailbox operations.
18589  **/
18590 int
18591 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18592 {
18593 	int rc = 0;
18594 	LPFC_MBOXQ_t *mboxq;
18595 	uint8_t *bytep;
18596 	void *virt_addr;
18597 	struct lpfc_mbx_sge sge;
18598 	uint32_t alloc_len, req_len;
18599 	uint32_t fcfindex;
18600 
18601 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18602 	if (!mboxq) {
18603 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18604 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18605 		return -ENOMEM;
18606 	}
18607 
18608 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18609 		  sizeof(uint32_t);
18610 
18611 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18612 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18613 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18614 				     req_len, LPFC_SLI4_MBX_NEMBED);
18615 	if (alloc_len < req_len) {
18616 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18617 			"2523 Allocated DMA memory size (x%x) is "
18618 			"less than the requested DMA memory "
18619 			"size (x%x)\n", alloc_len, req_len);
18620 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18621 		return -ENOMEM;
18622 	}
18623 
18624 	/*
18625 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18626 	 * routine only uses a single SGE.
18627 	 */
18628 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18629 	virt_addr = mboxq->sge_array->addr[0];
18630 	/*
18631 	 * Configure the FCF record for FCFI 0.  This is the driver's
18632 	 * hardcoded default and gets used in nonFIP mode.
18633 	 */
18634 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18635 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18636 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18637 
18638 	/*
18639 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18640 	 * the FCoE header plus word10. The data copy needs to be endian
18641 	 * correct.
18642 	 */
18643 	bytep += sizeof(uint32_t);
18644 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18645 	mboxq->vport = phba->pport;
18646 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18647 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18648 	if (rc == MBX_NOT_FINISHED) {
18649 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18650 			"2515 ADD_FCF_RECORD mailbox failed with "
18651 			"status 0x%x\n", rc);
18652 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18653 		rc = -EIO;
18654 	} else
18655 		rc = 0;
18656 
18657 	return rc;
18658 }
18659 
18660 /**
18661  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18662  * @phba: pointer to lpfc hba data structure.
18663  * @fcf_record:  pointer to the fcf record to write the default data.
18664  * @fcf_index: FCF table entry index.
18665  *
18666  * This routine is invoked to build the driver's default FCF record.  The
18667  * values used are hardcoded.  This routine handles memory initialization.
18668  *
18669  **/
18670 void
18671 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18672 				struct fcf_record *fcf_record,
18673 				uint16_t fcf_index)
18674 {
18675 	memset(fcf_record, 0, sizeof(struct fcf_record));
18676 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18677 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18678 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18679 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18680 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18681 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18682 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18683 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18684 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18685 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18686 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18687 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18688 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18689 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18690 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18691 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18692 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18693 	/* Set the VLAN bit map */
18694 	if (phba->valid_vlan) {
18695 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18696 			= 1 << (phba->vlan_id % 8);
18697 	}
18698 }
18699 
18700 /**
18701  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18702  * @phba: pointer to lpfc hba data structure.
18703  * @fcf_index: FCF table entry offset.
18704  *
18705  * This routine is invoked to scan the entire FCF table by reading FCF
18706  * record and processing it one at a time starting from the @fcf_index
18707  * for initial FCF discovery or fast FCF failover rediscovery.
18708  *
18709  * Return 0 if the mailbox command is submitted successfully, none 0
18710  * otherwise.
18711  **/
18712 int
18713 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18714 {
18715 	int rc = 0, error;
18716 	LPFC_MBOXQ_t *mboxq;
18717 
18718 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18719 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18720 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18721 	if (!mboxq) {
18722 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18723 				"2000 Failed to allocate mbox for "
18724 				"READ_FCF cmd\n");
18725 		error = -ENOMEM;
18726 		goto fail_fcf_scan;
18727 	}
18728 	/* Construct the read FCF record mailbox command */
18729 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18730 	if (rc) {
18731 		error = -EINVAL;
18732 		goto fail_fcf_scan;
18733 	}
18734 	/* Issue the mailbox command asynchronously */
18735 	mboxq->vport = phba->pport;
18736 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18737 
18738 	spin_lock_irq(&phba->hbalock);
18739 	phba->hba_flag |= FCF_TS_INPROG;
18740 	spin_unlock_irq(&phba->hbalock);
18741 
18742 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18743 	if (rc == MBX_NOT_FINISHED)
18744 		error = -EIO;
18745 	else {
18746 		/* Reset eligible FCF count for new scan */
18747 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18748 			phba->fcf.eligible_fcf_cnt = 0;
18749 		error = 0;
18750 	}
18751 fail_fcf_scan:
18752 	if (error) {
18753 		if (mboxq)
18754 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18755 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18756 		spin_lock_irq(&phba->hbalock);
18757 		phba->hba_flag &= ~FCF_TS_INPROG;
18758 		spin_unlock_irq(&phba->hbalock);
18759 	}
18760 	return error;
18761 }
18762 
18763 /**
18764  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18765  * @phba: pointer to lpfc hba data structure.
18766  * @fcf_index: FCF table entry offset.
18767  *
18768  * This routine is invoked to read an FCF record indicated by @fcf_index
18769  * and to use it for FLOGI roundrobin FCF failover.
18770  *
18771  * Return 0 if the mailbox command is submitted successfully, none 0
18772  * otherwise.
18773  **/
18774 int
18775 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18776 {
18777 	int rc = 0, error;
18778 	LPFC_MBOXQ_t *mboxq;
18779 
18780 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18781 	if (!mboxq) {
18782 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18783 				"2763 Failed to allocate mbox for "
18784 				"READ_FCF cmd\n");
18785 		error = -ENOMEM;
18786 		goto fail_fcf_read;
18787 	}
18788 	/* Construct the read FCF record mailbox command */
18789 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18790 	if (rc) {
18791 		error = -EINVAL;
18792 		goto fail_fcf_read;
18793 	}
18794 	/* Issue the mailbox command asynchronously */
18795 	mboxq->vport = phba->pport;
18796 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18797 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18798 	if (rc == MBX_NOT_FINISHED)
18799 		error = -EIO;
18800 	else
18801 		error = 0;
18802 
18803 fail_fcf_read:
18804 	if (error && mboxq)
18805 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18806 	return error;
18807 }
18808 
18809 /**
18810  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18811  * @phba: pointer to lpfc hba data structure.
18812  * @fcf_index: FCF table entry offset.
18813  *
18814  * This routine is invoked to read an FCF record indicated by @fcf_index to
18815  * determine whether it's eligible for FLOGI roundrobin failover list.
18816  *
18817  * Return 0 if the mailbox command is submitted successfully, none 0
18818  * otherwise.
18819  **/
18820 int
18821 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18822 {
18823 	int rc = 0, error;
18824 	LPFC_MBOXQ_t *mboxq;
18825 
18826 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18827 	if (!mboxq) {
18828 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18829 				"2758 Failed to allocate mbox for "
18830 				"READ_FCF cmd\n");
18831 				error = -ENOMEM;
18832 				goto fail_fcf_read;
18833 	}
18834 	/* Construct the read FCF record mailbox command */
18835 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18836 	if (rc) {
18837 		error = -EINVAL;
18838 		goto fail_fcf_read;
18839 	}
18840 	/* Issue the mailbox command asynchronously */
18841 	mboxq->vport = phba->pport;
18842 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18843 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18844 	if (rc == MBX_NOT_FINISHED)
18845 		error = -EIO;
18846 	else
18847 		error = 0;
18848 
18849 fail_fcf_read:
18850 	if (error && mboxq)
18851 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18852 	return error;
18853 }
18854 
18855 /**
18856  * lpfc_check_next_fcf_pri_level
18857  * phba pointer to the lpfc_hba struct for this port.
18858  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18859  * routine when the rr_bmask is empty. The FCF indecies are put into the
18860  * rr_bmask based on their priority level. Starting from the highest priority
18861  * to the lowest. The most likely FCF candidate will be in the highest
18862  * priority group. When this routine is called it searches the fcf_pri list for
18863  * next lowest priority group and repopulates the rr_bmask with only those
18864  * fcf_indexes.
18865  * returns:
18866  * 1=success 0=failure
18867  **/
18868 static int
18869 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18870 {
18871 	uint16_t next_fcf_pri;
18872 	uint16_t last_index;
18873 	struct lpfc_fcf_pri *fcf_pri;
18874 	int rc;
18875 	int ret = 0;
18876 
18877 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18878 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18879 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18880 			"3060 Last IDX %d\n", last_index);
18881 
18882 	/* Verify the priority list has 2 or more entries */
18883 	spin_lock_irq(&phba->hbalock);
18884 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18885 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18886 		spin_unlock_irq(&phba->hbalock);
18887 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18888 			"3061 Last IDX %d\n", last_index);
18889 		return 0; /* Empty rr list */
18890 	}
18891 	spin_unlock_irq(&phba->hbalock);
18892 
18893 	next_fcf_pri = 0;
18894 	/*
18895 	 * Clear the rr_bmask and set all of the bits that are at this
18896 	 * priority.
18897 	 */
18898 	memset(phba->fcf.fcf_rr_bmask, 0,
18899 			sizeof(*phba->fcf.fcf_rr_bmask));
18900 	spin_lock_irq(&phba->hbalock);
18901 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18902 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18903 			continue;
18904 		/*
18905 		 * the 1st priority that has not FLOGI failed
18906 		 * will be the highest.
18907 		 */
18908 		if (!next_fcf_pri)
18909 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18910 		spin_unlock_irq(&phba->hbalock);
18911 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18912 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18913 						fcf_pri->fcf_rec.fcf_index);
18914 			if (rc)
18915 				return 0;
18916 		}
18917 		spin_lock_irq(&phba->hbalock);
18918 	}
18919 	/*
18920 	 * if next_fcf_pri was not set above and the list is not empty then
18921 	 * we have failed flogis on all of them. So reset flogi failed
18922 	 * and start at the beginning.
18923 	 */
18924 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18925 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18926 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18927 			/*
18928 			 * the 1st priority that has not FLOGI failed
18929 			 * will be the highest.
18930 			 */
18931 			if (!next_fcf_pri)
18932 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18933 			spin_unlock_irq(&phba->hbalock);
18934 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18935 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18936 						fcf_pri->fcf_rec.fcf_index);
18937 				if (rc)
18938 					return 0;
18939 			}
18940 			spin_lock_irq(&phba->hbalock);
18941 		}
18942 	} else
18943 		ret = 1;
18944 	spin_unlock_irq(&phba->hbalock);
18945 
18946 	return ret;
18947 }
18948 /**
18949  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18950  * @phba: pointer to lpfc hba data structure.
18951  *
18952  * This routine is to get the next eligible FCF record index in a round
18953  * robin fashion. If the next eligible FCF record index equals to the
18954  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18955  * shall be returned, otherwise, the next eligible FCF record's index
18956  * shall be returned.
18957  **/
18958 uint16_t
18959 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18960 {
18961 	uint16_t next_fcf_index;
18962 
18963 initial_priority:
18964 	/* Search start from next bit of currently registered FCF index */
18965 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18966 
18967 next_priority:
18968 	/* Determine the next fcf index to check */
18969 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18970 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18971 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18972 				       next_fcf_index);
18973 
18974 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18975 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18976 		/*
18977 		 * If we have wrapped then we need to clear the bits that
18978 		 * have been tested so that we can detect when we should
18979 		 * change the priority level.
18980 		 */
18981 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18982 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18983 	}
18984 
18985 
18986 	/* Check roundrobin failover list empty condition */
18987 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18988 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18989 		/*
18990 		 * If next fcf index is not found check if there are lower
18991 		 * Priority level fcf's in the fcf_priority list.
18992 		 * Set up the rr_bmask with all of the avaiable fcf bits
18993 		 * at that level and continue the selection process.
18994 		 */
18995 		if (lpfc_check_next_fcf_pri_level(phba))
18996 			goto initial_priority;
18997 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18998 				"2844 No roundrobin failover FCF available\n");
18999 
19000 		return LPFC_FCOE_FCF_NEXT_NONE;
19001 	}
19002 
19003 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19004 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19005 		LPFC_FCF_FLOGI_FAILED) {
19006 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19007 			return LPFC_FCOE_FCF_NEXT_NONE;
19008 
19009 		goto next_priority;
19010 	}
19011 
19012 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19013 			"2845 Get next roundrobin failover FCF (x%x)\n",
19014 			next_fcf_index);
19015 
19016 	return next_fcf_index;
19017 }
19018 
19019 /**
19020  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19021  * @phba: pointer to lpfc hba data structure.
19022  *
19023  * This routine sets the FCF record index in to the eligible bmask for
19024  * roundrobin failover search. It checks to make sure that the index
19025  * does not go beyond the range of the driver allocated bmask dimension
19026  * before setting the bit.
19027  *
19028  * Returns 0 if the index bit successfully set, otherwise, it returns
19029  * -EINVAL.
19030  **/
19031 int
19032 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19033 {
19034 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19035 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19036 				"2610 FCF (x%x) reached driver's book "
19037 				"keeping dimension:x%x\n",
19038 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19039 		return -EINVAL;
19040 	}
19041 	/* Set the eligible FCF record index bmask */
19042 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19043 
19044 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19045 			"2790 Set FCF (x%x) to roundrobin FCF failover "
19046 			"bmask\n", fcf_index);
19047 
19048 	return 0;
19049 }
19050 
19051 /**
19052  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19053  * @phba: pointer to lpfc hba data structure.
19054  *
19055  * This routine clears the FCF record index from the eligible bmask for
19056  * roundrobin failover search. It checks to make sure that the index
19057  * does not go beyond the range of the driver allocated bmask dimension
19058  * before clearing the bit.
19059  **/
19060 void
19061 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19062 {
19063 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19064 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19065 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19066 				"2762 FCF (x%x) reached driver's book "
19067 				"keeping dimension:x%x\n",
19068 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19069 		return;
19070 	}
19071 	/* Clear the eligible FCF record index bmask */
19072 	spin_lock_irq(&phba->hbalock);
19073 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19074 				 list) {
19075 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19076 			list_del_init(&fcf_pri->list);
19077 			break;
19078 		}
19079 	}
19080 	spin_unlock_irq(&phba->hbalock);
19081 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19082 
19083 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19084 			"2791 Clear FCF (x%x) from roundrobin failover "
19085 			"bmask\n", fcf_index);
19086 }
19087 
19088 /**
19089  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19090  * @phba: pointer to lpfc hba data structure.
19091  *
19092  * This routine is the completion routine for the rediscover FCF table mailbox
19093  * command. If the mailbox command returned failure, it will try to stop the
19094  * FCF rediscover wait timer.
19095  **/
19096 static void
19097 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19098 {
19099 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19100 	uint32_t shdr_status, shdr_add_status;
19101 
19102 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19103 
19104 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19105 			     &redisc_fcf->header.cfg_shdr.response);
19106 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19107 			     &redisc_fcf->header.cfg_shdr.response);
19108 	if (shdr_status || shdr_add_status) {
19109 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19110 				"2746 Requesting for FCF rediscovery failed "
19111 				"status x%x add_status x%x\n",
19112 				shdr_status, shdr_add_status);
19113 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19114 			spin_lock_irq(&phba->hbalock);
19115 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19116 			spin_unlock_irq(&phba->hbalock);
19117 			/*
19118 			 * CVL event triggered FCF rediscover request failed,
19119 			 * last resort to re-try current registered FCF entry.
19120 			 */
19121 			lpfc_retry_pport_discovery(phba);
19122 		} else {
19123 			spin_lock_irq(&phba->hbalock);
19124 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19125 			spin_unlock_irq(&phba->hbalock);
19126 			/*
19127 			 * DEAD FCF event triggered FCF rediscover request
19128 			 * failed, last resort to fail over as a link down
19129 			 * to FCF registration.
19130 			 */
19131 			lpfc_sli4_fcf_dead_failthrough(phba);
19132 		}
19133 	} else {
19134 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19135 				"2775 Start FCF rediscover quiescent timer\n");
19136 		/*
19137 		 * Start FCF rediscovery wait timer for pending FCF
19138 		 * before rescan FCF record table.
19139 		 */
19140 		lpfc_fcf_redisc_wait_start_timer(phba);
19141 	}
19142 
19143 	mempool_free(mbox, phba->mbox_mem_pool);
19144 }
19145 
19146 /**
19147  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19148  * @phba: pointer to lpfc hba data structure.
19149  *
19150  * This routine is invoked to request for rediscovery of the entire FCF table
19151  * by the port.
19152  **/
19153 int
19154 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19155 {
19156 	LPFC_MBOXQ_t *mbox;
19157 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19158 	int rc, length;
19159 
19160 	/* Cancel retry delay timers to all vports before FCF rediscover */
19161 	lpfc_cancel_all_vport_retry_delay_timer(phba);
19162 
19163 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19164 	if (!mbox) {
19165 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19166 				"2745 Failed to allocate mbox for "
19167 				"requesting FCF rediscover.\n");
19168 		return -ENOMEM;
19169 	}
19170 
19171 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19172 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19173 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19174 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19175 			 length, LPFC_SLI4_MBX_EMBED);
19176 
19177 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19178 	/* Set count to 0 for invalidating the entire FCF database */
19179 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19180 
19181 	/* Issue the mailbox command asynchronously */
19182 	mbox->vport = phba->pport;
19183 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19184 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19185 
19186 	if (rc == MBX_NOT_FINISHED) {
19187 		mempool_free(mbox, phba->mbox_mem_pool);
19188 		return -EIO;
19189 	}
19190 	return 0;
19191 }
19192 
19193 /**
19194  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19195  * @phba: pointer to lpfc hba data structure.
19196  *
19197  * This function is the failover routine as a last resort to the FCF DEAD
19198  * event when driver failed to perform fast FCF failover.
19199  **/
19200 void
19201 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19202 {
19203 	uint32_t link_state;
19204 
19205 	/*
19206 	 * Last resort as FCF DEAD event failover will treat this as
19207 	 * a link down, but save the link state because we don't want
19208 	 * it to be changed to Link Down unless it is already down.
19209 	 */
19210 	link_state = phba->link_state;
19211 	lpfc_linkdown(phba);
19212 	phba->link_state = link_state;
19213 
19214 	/* Unregister FCF if no devices connected to it */
19215 	lpfc_unregister_unused_fcf(phba);
19216 }
19217 
19218 /**
19219  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19220  * @phba: pointer to lpfc hba data structure.
19221  * @rgn23_data: pointer to configure region 23 data.
19222  *
19223  * This function gets SLI3 port configure region 23 data through memory dump
19224  * mailbox command. When it successfully retrieves data, the size of the data
19225  * will be returned, otherwise, 0 will be returned.
19226  **/
19227 static uint32_t
19228 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19229 {
19230 	LPFC_MBOXQ_t *pmb = NULL;
19231 	MAILBOX_t *mb;
19232 	uint32_t offset = 0;
19233 	int rc;
19234 
19235 	if (!rgn23_data)
19236 		return 0;
19237 
19238 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19239 	if (!pmb) {
19240 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19241 				"2600 failed to allocate mailbox memory\n");
19242 		return 0;
19243 	}
19244 	mb = &pmb->u.mb;
19245 
19246 	do {
19247 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19248 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19249 
19250 		if (rc != MBX_SUCCESS) {
19251 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19252 					"2601 failed to read config "
19253 					"region 23, rc 0x%x Status 0x%x\n",
19254 					rc, mb->mbxStatus);
19255 			mb->un.varDmp.word_cnt = 0;
19256 		}
19257 		/*
19258 		 * dump mem may return a zero when finished or we got a
19259 		 * mailbox error, either way we are done.
19260 		 */
19261 		if (mb->un.varDmp.word_cnt == 0)
19262 			break;
19263 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19264 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19265 
19266 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19267 				       rgn23_data + offset,
19268 				       mb->un.varDmp.word_cnt);
19269 		offset += mb->un.varDmp.word_cnt;
19270 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19271 
19272 	mempool_free(pmb, phba->mbox_mem_pool);
19273 	return offset;
19274 }
19275 
19276 /**
19277  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19278  * @phba: pointer to lpfc hba data structure.
19279  * @rgn23_data: pointer to configure region 23 data.
19280  *
19281  * This function gets SLI4 port configure region 23 data through memory dump
19282  * mailbox command. When it successfully retrieves data, the size of the data
19283  * will be returned, otherwise, 0 will be returned.
19284  **/
19285 static uint32_t
19286 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19287 {
19288 	LPFC_MBOXQ_t *mboxq = NULL;
19289 	struct lpfc_dmabuf *mp = NULL;
19290 	struct lpfc_mqe *mqe;
19291 	uint32_t data_length = 0;
19292 	int rc;
19293 
19294 	if (!rgn23_data)
19295 		return 0;
19296 
19297 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19298 	if (!mboxq) {
19299 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19300 				"3105 failed to allocate mailbox memory\n");
19301 		return 0;
19302 	}
19303 
19304 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19305 		goto out;
19306 	mqe = &mboxq->u.mqe;
19307 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19308 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19309 	if (rc)
19310 		goto out;
19311 	data_length = mqe->un.mb_words[5];
19312 	if (data_length == 0)
19313 		goto out;
19314 	if (data_length > DMP_RGN23_SIZE) {
19315 		data_length = 0;
19316 		goto out;
19317 	}
19318 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19319 out:
19320 	mempool_free(mboxq, phba->mbox_mem_pool);
19321 	if (mp) {
19322 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19323 		kfree(mp);
19324 	}
19325 	return data_length;
19326 }
19327 
19328 /**
19329  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19330  * @phba: pointer to lpfc hba data structure.
19331  *
19332  * This function read region 23 and parse TLV for port status to
19333  * decide if the user disaled the port. If the TLV indicates the
19334  * port is disabled, the hba_flag is set accordingly.
19335  **/
19336 void
19337 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19338 {
19339 	uint8_t *rgn23_data = NULL;
19340 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19341 	uint32_t offset = 0;
19342 
19343 	/* Get adapter Region 23 data */
19344 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19345 	if (!rgn23_data)
19346 		goto out;
19347 
19348 	if (phba->sli_rev < LPFC_SLI_REV4)
19349 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19350 	else {
19351 		if_type = bf_get(lpfc_sli_intf_if_type,
19352 				 &phba->sli4_hba.sli_intf);
19353 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19354 			goto out;
19355 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19356 	}
19357 
19358 	if (!data_size)
19359 		goto out;
19360 
19361 	/* Check the region signature first */
19362 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19363 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19364 			"2619 Config region 23 has bad signature\n");
19365 			goto out;
19366 	}
19367 	offset += 4;
19368 
19369 	/* Check the data structure version */
19370 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19371 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19372 			"2620 Config region 23 has bad version\n");
19373 		goto out;
19374 	}
19375 	offset += 4;
19376 
19377 	/* Parse TLV entries in the region */
19378 	while (offset < data_size) {
19379 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19380 			break;
19381 		/*
19382 		 * If the TLV is not driver specific TLV or driver id is
19383 		 * not linux driver id, skip the record.
19384 		 */
19385 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19386 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19387 		    (rgn23_data[offset + 3] != 0)) {
19388 			offset += rgn23_data[offset + 1] * 4 + 4;
19389 			continue;
19390 		}
19391 
19392 		/* Driver found a driver specific TLV in the config region */
19393 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19394 		offset += 4;
19395 		tlv_offset = 0;
19396 
19397 		/*
19398 		 * Search for configured port state sub-TLV.
19399 		 */
19400 		while ((offset < data_size) &&
19401 			(tlv_offset < sub_tlv_len)) {
19402 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19403 				offset += 4;
19404 				tlv_offset += 4;
19405 				break;
19406 			}
19407 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19408 				offset += rgn23_data[offset + 1] * 4 + 4;
19409 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19410 				continue;
19411 			}
19412 
19413 			/* This HBA contains PORT_STE configured */
19414 			if (!rgn23_data[offset + 2])
19415 				phba->hba_flag |= LINK_DISABLED;
19416 
19417 			goto out;
19418 		}
19419 	}
19420 
19421 out:
19422 	kfree(rgn23_data);
19423 	return;
19424 }
19425 
19426 /**
19427  * lpfc_wr_object - write an object to the firmware
19428  * @phba: HBA structure that indicates port to create a queue on.
19429  * @dmabuf_list: list of dmabufs to write to the port.
19430  * @size: the total byte value of the objects to write to the port.
19431  * @offset: the current offset to be used to start the transfer.
19432  *
19433  * This routine will create a wr_object mailbox command to send to the port.
19434  * the mailbox command will be constructed using the dma buffers described in
19435  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19436  * BDEs that the imbedded mailbox can support. The @offset variable will be
19437  * used to indicate the starting offset of the transfer and will also return
19438  * the offset after the write object mailbox has completed. @size is used to
19439  * determine the end of the object and whether the eof bit should be set.
19440  *
19441  * Return 0 is successful and offset will contain the the new offset to use
19442  * for the next write.
19443  * Return negative value for error cases.
19444  **/
19445 int
19446 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19447 	       uint32_t size, uint32_t *offset)
19448 {
19449 	struct lpfc_mbx_wr_object *wr_object;
19450 	LPFC_MBOXQ_t *mbox;
19451 	int rc = 0, i = 0;
19452 	uint32_t shdr_status, shdr_add_status, shdr_change_status;
19453 	uint32_t mbox_tmo;
19454 	struct lpfc_dmabuf *dmabuf;
19455 	uint32_t written = 0;
19456 	bool check_change_status = false;
19457 
19458 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19459 	if (!mbox)
19460 		return -ENOMEM;
19461 
19462 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19463 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19464 			sizeof(struct lpfc_mbx_wr_object) -
19465 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19466 
19467 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19468 	wr_object->u.request.write_offset = *offset;
19469 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19470 	wr_object->u.request.object_name[0] =
19471 		cpu_to_le32(wr_object->u.request.object_name[0]);
19472 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19473 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19474 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19475 			break;
19476 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19477 		wr_object->u.request.bde[i].addrHigh =
19478 			putPaddrHigh(dmabuf->phys);
19479 		if (written + SLI4_PAGE_SIZE >= size) {
19480 			wr_object->u.request.bde[i].tus.f.bdeSize =
19481 				(size - written);
19482 			written += (size - written);
19483 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19484 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19485 			check_change_status = true;
19486 		} else {
19487 			wr_object->u.request.bde[i].tus.f.bdeSize =
19488 				SLI4_PAGE_SIZE;
19489 			written += SLI4_PAGE_SIZE;
19490 		}
19491 		i++;
19492 	}
19493 	wr_object->u.request.bde_count = i;
19494 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19495 	if (!phba->sli4_hba.intr_enable)
19496 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19497 	else {
19498 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19499 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19500 	}
19501 	/* The IOCTL status is embedded in the mailbox subheader. */
19502 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19503 			     &wr_object->header.cfg_shdr.response);
19504 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19505 				 &wr_object->header.cfg_shdr.response);
19506 	if (check_change_status) {
19507 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19508 					    &wr_object->u.response);
19509 		switch (shdr_change_status) {
19510 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19511 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19512 					"3198 Firmware write complete: System "
19513 					"reboot required to instantiate\n");
19514 			break;
19515 		case (LPFC_CHANGE_STATUS_FW_RESET):
19516 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19517 					"3199 Firmware write complete: Firmware"
19518 					" reset required to instantiate\n");
19519 			break;
19520 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19521 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19522 					"3200 Firmware write complete: Port "
19523 					"Migration or PCI Reset required to "
19524 					"instantiate\n");
19525 			break;
19526 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19527 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19528 					"3201 Firmware write complete: PCI "
19529 					"Reset required to instantiate\n");
19530 			break;
19531 		default:
19532 			break;
19533 		}
19534 	}
19535 	if (rc != MBX_TIMEOUT)
19536 		mempool_free(mbox, phba->mbox_mem_pool);
19537 	if (shdr_status || shdr_add_status || rc) {
19538 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19539 				"3025 Write Object mailbox failed with "
19540 				"status x%x add_status x%x, mbx status x%x\n",
19541 				shdr_status, shdr_add_status, rc);
19542 		rc = -ENXIO;
19543 		*offset = shdr_add_status;
19544 	} else
19545 		*offset += wr_object->u.response.actual_write_length;
19546 	return rc;
19547 }
19548 
19549 /**
19550  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19551  * @vport: pointer to vport data structure.
19552  *
19553  * This function iterate through the mailboxq and clean up all REG_LOGIN
19554  * and REG_VPI mailbox commands associated with the vport. This function
19555  * is called when driver want to restart discovery of the vport due to
19556  * a Clear Virtual Link event.
19557  **/
19558 void
19559 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19560 {
19561 	struct lpfc_hba *phba = vport->phba;
19562 	LPFC_MBOXQ_t *mb, *nextmb;
19563 	struct lpfc_dmabuf *mp;
19564 	struct lpfc_nodelist *ndlp;
19565 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19566 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19567 	LIST_HEAD(mbox_cmd_list);
19568 	uint8_t restart_loop;
19569 
19570 	/* Clean up internally queued mailbox commands with the vport */
19571 	spin_lock_irq(&phba->hbalock);
19572 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19573 		if (mb->vport != vport)
19574 			continue;
19575 
19576 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19577 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19578 			continue;
19579 
19580 		list_del(&mb->list);
19581 		list_add_tail(&mb->list, &mbox_cmd_list);
19582 	}
19583 	/* Clean up active mailbox command with the vport */
19584 	mb = phba->sli.mbox_active;
19585 	if (mb && (mb->vport == vport)) {
19586 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19587 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19588 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19589 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19590 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19591 			/* Put reference count for delayed processing */
19592 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19593 			/* Unregister the RPI when mailbox complete */
19594 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19595 		}
19596 	}
19597 	/* Cleanup any mailbox completions which are not yet processed */
19598 	do {
19599 		restart_loop = 0;
19600 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19601 			/*
19602 			 * If this mailox is already processed or it is
19603 			 * for another vport ignore it.
19604 			 */
19605 			if ((mb->vport != vport) ||
19606 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19607 				continue;
19608 
19609 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19610 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19611 				continue;
19612 
19613 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19614 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19615 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19616 				/* Unregister the RPI when mailbox complete */
19617 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19618 				restart_loop = 1;
19619 				spin_unlock_irq(&phba->hbalock);
19620 				spin_lock(shost->host_lock);
19621 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19622 				spin_unlock(shost->host_lock);
19623 				spin_lock_irq(&phba->hbalock);
19624 				break;
19625 			}
19626 		}
19627 	} while (restart_loop);
19628 
19629 	spin_unlock_irq(&phba->hbalock);
19630 
19631 	/* Release the cleaned-up mailbox commands */
19632 	while (!list_empty(&mbox_cmd_list)) {
19633 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19634 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19635 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19636 			if (mp) {
19637 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19638 				kfree(mp);
19639 			}
19640 			mb->ctx_buf = NULL;
19641 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19642 			mb->ctx_ndlp = NULL;
19643 			if (ndlp) {
19644 				spin_lock(shost->host_lock);
19645 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19646 				spin_unlock(shost->host_lock);
19647 				lpfc_nlp_put(ndlp);
19648 			}
19649 		}
19650 		mempool_free(mb, phba->mbox_mem_pool);
19651 	}
19652 
19653 	/* Release the ndlp with the cleaned-up active mailbox command */
19654 	if (act_mbx_ndlp) {
19655 		spin_lock(shost->host_lock);
19656 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19657 		spin_unlock(shost->host_lock);
19658 		lpfc_nlp_put(act_mbx_ndlp);
19659 	}
19660 }
19661 
19662 /**
19663  * lpfc_drain_txq - Drain the txq
19664  * @phba: Pointer to HBA context object.
19665  *
19666  * This function attempt to submit IOCBs on the txq
19667  * to the adapter.  For SLI4 adapters, the txq contains
19668  * ELS IOCBs that have been deferred because the there
19669  * are no SGLs.  This congestion can occur with large
19670  * vport counts during node discovery.
19671  **/
19672 
19673 uint32_t
19674 lpfc_drain_txq(struct lpfc_hba *phba)
19675 {
19676 	LIST_HEAD(completions);
19677 	struct lpfc_sli_ring *pring;
19678 	struct lpfc_iocbq *piocbq = NULL;
19679 	unsigned long iflags = 0;
19680 	char *fail_msg = NULL;
19681 	struct lpfc_sglq *sglq;
19682 	union lpfc_wqe128 wqe;
19683 	uint32_t txq_cnt = 0;
19684 	struct lpfc_queue *wq;
19685 
19686 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19687 		/* MDS WQE are posted only to first WQ*/
19688 		wq = phba->sli4_hba.hdwq[0].io_wq;
19689 		if (unlikely(!wq))
19690 			return 0;
19691 		pring = wq->pring;
19692 	} else {
19693 		wq = phba->sli4_hba.els_wq;
19694 		if (unlikely(!wq))
19695 			return 0;
19696 		pring = lpfc_phba_elsring(phba);
19697 	}
19698 
19699 	if (unlikely(!pring) || list_empty(&pring->txq))
19700 		return 0;
19701 
19702 	spin_lock_irqsave(&pring->ring_lock, iflags);
19703 	list_for_each_entry(piocbq, &pring->txq, list) {
19704 		txq_cnt++;
19705 	}
19706 
19707 	if (txq_cnt > pring->txq_max)
19708 		pring->txq_max = txq_cnt;
19709 
19710 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19711 
19712 	while (!list_empty(&pring->txq)) {
19713 		spin_lock_irqsave(&pring->ring_lock, iflags);
19714 
19715 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19716 		if (!piocbq) {
19717 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19718 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19719 				"2823 txq empty and txq_cnt is %d\n ",
19720 				txq_cnt);
19721 			break;
19722 		}
19723 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19724 		if (!sglq) {
19725 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19726 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19727 			break;
19728 		}
19729 		txq_cnt--;
19730 
19731 		/* The xri and iocb resources secured,
19732 		 * attempt to issue request
19733 		 */
19734 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19735 		piocbq->sli4_xritag = sglq->sli4_xritag;
19736 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19737 			fail_msg = "to convert bpl to sgl";
19738 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19739 			fail_msg = "to convert iocb to wqe";
19740 		else if (lpfc_sli4_wq_put(wq, &wqe))
19741 			fail_msg = " - Wq is full";
19742 		else
19743 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19744 
19745 		if (fail_msg) {
19746 			/* Failed means we can't issue and need to cancel */
19747 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19748 					"2822 IOCB failed %s iotag 0x%x "
19749 					"xri 0x%x\n",
19750 					fail_msg,
19751 					piocbq->iotag, piocbq->sli4_xritag);
19752 			list_add_tail(&piocbq->list, &completions);
19753 		}
19754 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19755 	}
19756 
19757 	/* Cancel all the IOCBs that cannot be issued */
19758 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19759 				IOERR_SLI_ABORTED);
19760 
19761 	return txq_cnt;
19762 }
19763 
19764 /**
19765  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19766  * @phba: Pointer to HBA context object.
19767  * @pwqe: Pointer to command WQE.
19768  * @sglq: Pointer to the scatter gather queue object.
19769  *
19770  * This routine converts the bpl or bde that is in the WQE
19771  * to a sgl list for the sli4 hardware. The physical address
19772  * of the bpl/bde is converted back to a virtual address.
19773  * If the WQE contains a BPL then the list of BDE's is
19774  * converted to sli4_sge's. If the WQE contains a single
19775  * BDE then it is converted to a single sli_sge.
19776  * The WQE is still in cpu endianness so the contents of
19777  * the bpl can be used without byte swapping.
19778  *
19779  * Returns valid XRI = Success, NO_XRI = Failure.
19780  */
19781 static uint16_t
19782 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19783 		 struct lpfc_sglq *sglq)
19784 {
19785 	uint16_t xritag = NO_XRI;
19786 	struct ulp_bde64 *bpl = NULL;
19787 	struct ulp_bde64 bde;
19788 	struct sli4_sge *sgl  = NULL;
19789 	struct lpfc_dmabuf *dmabuf;
19790 	union lpfc_wqe128 *wqe;
19791 	int numBdes = 0;
19792 	int i = 0;
19793 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19794 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19795 	uint32_t cmd;
19796 
19797 	if (!pwqeq || !sglq)
19798 		return xritag;
19799 
19800 	sgl  = (struct sli4_sge *)sglq->sgl;
19801 	wqe = &pwqeq->wqe;
19802 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19803 
19804 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19805 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19806 		return sglq->sli4_xritag;
19807 	numBdes = pwqeq->rsvd2;
19808 	if (numBdes) {
19809 		/* The addrHigh and addrLow fields within the WQE
19810 		 * have not been byteswapped yet so there is no
19811 		 * need to swap them back.
19812 		 */
19813 		if (pwqeq->context3)
19814 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19815 		else
19816 			return xritag;
19817 
19818 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19819 		if (!bpl)
19820 			return xritag;
19821 
19822 		for (i = 0; i < numBdes; i++) {
19823 			/* Should already be byte swapped. */
19824 			sgl->addr_hi = bpl->addrHigh;
19825 			sgl->addr_lo = bpl->addrLow;
19826 
19827 			sgl->word2 = le32_to_cpu(sgl->word2);
19828 			if ((i+1) == numBdes)
19829 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19830 			else
19831 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19832 			/* swap the size field back to the cpu so we
19833 			 * can assign it to the sgl.
19834 			 */
19835 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19836 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19837 			/* The offsets in the sgl need to be accumulated
19838 			 * separately for the request and reply lists.
19839 			 * The request is always first, the reply follows.
19840 			 */
19841 			switch (cmd) {
19842 			case CMD_GEN_REQUEST64_WQE:
19843 				/* add up the reply sg entries */
19844 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19845 					inbound++;
19846 				/* first inbound? reset the offset */
19847 				if (inbound == 1)
19848 					offset = 0;
19849 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19850 				bf_set(lpfc_sli4_sge_type, sgl,
19851 					LPFC_SGE_TYPE_DATA);
19852 				offset += bde.tus.f.bdeSize;
19853 				break;
19854 			case CMD_FCP_TRSP64_WQE:
19855 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19856 				bf_set(lpfc_sli4_sge_type, sgl,
19857 					LPFC_SGE_TYPE_DATA);
19858 				break;
19859 			case CMD_FCP_TSEND64_WQE:
19860 			case CMD_FCP_TRECEIVE64_WQE:
19861 				bf_set(lpfc_sli4_sge_type, sgl,
19862 					bpl->tus.f.bdeFlags);
19863 				if (i < 3)
19864 					offset = 0;
19865 				else
19866 					offset += bde.tus.f.bdeSize;
19867 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19868 				break;
19869 			}
19870 			sgl->word2 = cpu_to_le32(sgl->word2);
19871 			bpl++;
19872 			sgl++;
19873 		}
19874 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19875 		/* The addrHigh and addrLow fields of the BDE have not
19876 		 * been byteswapped yet so they need to be swapped
19877 		 * before putting them in the sgl.
19878 		 */
19879 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19880 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19881 		sgl->word2 = le32_to_cpu(sgl->word2);
19882 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19883 		sgl->word2 = cpu_to_le32(sgl->word2);
19884 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19885 	}
19886 	return sglq->sli4_xritag;
19887 }
19888 
19889 /**
19890  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19891  * @phba: Pointer to HBA context object.
19892  * @ring_number: Base sli ring number
19893  * @pwqe: Pointer to command WQE.
19894  **/
19895 int
19896 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
19897 		    struct lpfc_iocbq *pwqe)
19898 {
19899 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19900 	struct lpfc_nvmet_rcv_ctx *ctxp;
19901 	struct lpfc_queue *wq;
19902 	struct lpfc_sglq *sglq;
19903 	struct lpfc_sli_ring *pring;
19904 	unsigned long iflags;
19905 	uint32_t ret = 0;
19906 
19907 	/* NVME_LS and NVME_LS ABTS requests. */
19908 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19909 		pring =  phba->sli4_hba.nvmels_wq->pring;
19910 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19911 					  qp, wq_access);
19912 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19913 		if (!sglq) {
19914 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19915 			return WQE_BUSY;
19916 		}
19917 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19918 		pwqe->sli4_xritag = sglq->sli4_xritag;
19919 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19920 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19921 			return WQE_ERROR;
19922 		}
19923 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19924 		       pwqe->sli4_xritag);
19925 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19926 		if (ret) {
19927 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19928 			return ret;
19929 		}
19930 
19931 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19932 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19933 
19934 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19935 		return 0;
19936 	}
19937 
19938 	/* NVME_FCREQ and NVME_ABTS requests */
19939 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19940 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19941 		wq = qp->io_wq;
19942 		pring = wq->pring;
19943 
19944 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19945 
19946 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19947 					  qp, wq_access);
19948 		ret = lpfc_sli4_wq_put(wq, wqe);
19949 		if (ret) {
19950 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19951 			return ret;
19952 		}
19953 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19954 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19955 
19956 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19957 		return 0;
19958 	}
19959 
19960 	/* NVMET requests */
19961 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19962 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19963 		wq = qp->io_wq;
19964 		pring = wq->pring;
19965 
19966 		ctxp = pwqe->context2;
19967 		sglq = ctxp->ctxbuf->sglq;
19968 		if (pwqe->sli4_xritag ==  NO_XRI) {
19969 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19970 			pwqe->sli4_xritag = sglq->sli4_xritag;
19971 		}
19972 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19973 		       pwqe->sli4_xritag);
19974 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
19975 
19976 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
19977 					  qp, wq_access);
19978 		ret = lpfc_sli4_wq_put(wq, wqe);
19979 		if (ret) {
19980 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19981 			return ret;
19982 		}
19983 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19984 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19985 
19986 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
19987 		return 0;
19988 	}
19989 	return WQE_ERROR;
19990 }
19991 
19992 #ifdef LPFC_MXP_STAT
19993 /**
19994  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
19995  * @phba: pointer to lpfc hba data structure.
19996  * @hwqid: belong to which HWQ.
19997  *
19998  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
19999  * 15 seconds after a test case is running.
20000  *
20001  * The user should call lpfc_debugfs_multixripools_write before running a test
20002  * case to clear stat_snapshot_taken. Then the user starts a test case. During
20003  * test case is running, stat_snapshot_taken is incremented by 1 every time when
20004  * this routine is called from heartbeat timer. When stat_snapshot_taken is
20005  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20006  **/
20007 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20008 {
20009 	struct lpfc_sli4_hdw_queue *qp;
20010 	struct lpfc_multixri_pool *multixri_pool;
20011 	struct lpfc_pvt_pool *pvt_pool;
20012 	struct lpfc_pbl_pool *pbl_pool;
20013 	u32 txcmplq_cnt;
20014 
20015 	qp = &phba->sli4_hba.hdwq[hwqid];
20016 	multixri_pool = qp->p_multixri_pool;
20017 	if (!multixri_pool)
20018 		return;
20019 
20020 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20021 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20022 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20023 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20024 
20025 		multixri_pool->stat_pbl_count = pbl_pool->count;
20026 		multixri_pool->stat_pvt_count = pvt_pool->count;
20027 		multixri_pool->stat_busy_count = txcmplq_cnt;
20028 	}
20029 
20030 	multixri_pool->stat_snapshot_taken++;
20031 }
20032 #endif
20033 
20034 /**
20035  * lpfc_adjust_pvt_pool_count - Adjust private pool count
20036  * @phba: pointer to lpfc hba data structure.
20037  * @hwqid: belong to which HWQ.
20038  *
20039  * This routine moves some XRIs from private to public pool when private pool
20040  * is not busy.
20041  **/
20042 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20043 {
20044 	struct lpfc_multixri_pool *multixri_pool;
20045 	u32 io_req_count;
20046 	u32 prev_io_req_count;
20047 
20048 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20049 	if (!multixri_pool)
20050 		return;
20051 	io_req_count = multixri_pool->io_req_count;
20052 	prev_io_req_count = multixri_pool->prev_io_req_count;
20053 
20054 	if (prev_io_req_count != io_req_count) {
20055 		/* Private pool is busy */
20056 		multixri_pool->prev_io_req_count = io_req_count;
20057 	} else {
20058 		/* Private pool is not busy.
20059 		 * Move XRIs from private to public pool.
20060 		 */
20061 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20062 	}
20063 }
20064 
20065 /**
20066  * lpfc_adjust_high_watermark - Adjust high watermark
20067  * @phba: pointer to lpfc hba data structure.
20068  * @hwqid: belong to which HWQ.
20069  *
20070  * This routine sets high watermark as number of outstanding XRIs,
20071  * but make sure the new value is between xri_limit/2 and xri_limit.
20072  **/
20073 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20074 {
20075 	u32 new_watermark;
20076 	u32 watermark_max;
20077 	u32 watermark_min;
20078 	u32 xri_limit;
20079 	u32 txcmplq_cnt;
20080 	u32 abts_io_bufs;
20081 	struct lpfc_multixri_pool *multixri_pool;
20082 	struct lpfc_sli4_hdw_queue *qp;
20083 
20084 	qp = &phba->sli4_hba.hdwq[hwqid];
20085 	multixri_pool = qp->p_multixri_pool;
20086 	if (!multixri_pool)
20087 		return;
20088 	xri_limit = multixri_pool->xri_limit;
20089 
20090 	watermark_max = xri_limit;
20091 	watermark_min = xri_limit / 2;
20092 
20093 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20094 	abts_io_bufs = qp->abts_scsi_io_bufs;
20095 	abts_io_bufs += qp->abts_nvme_io_bufs;
20096 
20097 	new_watermark = txcmplq_cnt + abts_io_bufs;
20098 	new_watermark = min(watermark_max, new_watermark);
20099 	new_watermark = max(watermark_min, new_watermark);
20100 	multixri_pool->pvt_pool.high_watermark = new_watermark;
20101 
20102 #ifdef LPFC_MXP_STAT
20103 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20104 					  new_watermark);
20105 #endif
20106 }
20107 
20108 /**
20109  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20110  * @phba: pointer to lpfc hba data structure.
20111  * @hwqid: belong to which HWQ.
20112  *
20113  * This routine is called from hearbeat timer when pvt_pool is idle.
20114  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20115  * The first step moves (all - low_watermark) amount of XRIs.
20116  * The second step moves the rest of XRIs.
20117  **/
20118 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20119 {
20120 	struct lpfc_pbl_pool *pbl_pool;
20121 	struct lpfc_pvt_pool *pvt_pool;
20122 	struct lpfc_sli4_hdw_queue *qp;
20123 	struct lpfc_io_buf *lpfc_ncmd;
20124 	struct lpfc_io_buf *lpfc_ncmd_next;
20125 	unsigned long iflag;
20126 	struct list_head tmp_list;
20127 	u32 tmp_count;
20128 
20129 	qp = &phba->sli4_hba.hdwq[hwqid];
20130 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20131 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20132 	tmp_count = 0;
20133 
20134 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20135 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20136 
20137 	if (pvt_pool->count > pvt_pool->low_watermark) {
20138 		/* Step 1: move (all - low_watermark) from pvt_pool
20139 		 * to pbl_pool
20140 		 */
20141 
20142 		/* Move low watermark of bufs from pvt_pool to tmp_list */
20143 		INIT_LIST_HEAD(&tmp_list);
20144 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20145 					 &pvt_pool->list, list) {
20146 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20147 			tmp_count++;
20148 			if (tmp_count >= pvt_pool->low_watermark)
20149 				break;
20150 		}
20151 
20152 		/* Move all bufs from pvt_pool to pbl_pool */
20153 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20154 
20155 		/* Move all bufs from tmp_list to pvt_pool */
20156 		list_splice(&tmp_list, &pvt_pool->list);
20157 
20158 		pbl_pool->count += (pvt_pool->count - tmp_count);
20159 		pvt_pool->count = tmp_count;
20160 	} else {
20161 		/* Step 2: move the rest from pvt_pool to pbl_pool */
20162 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20163 		pbl_pool->count += pvt_pool->count;
20164 		pvt_pool->count = 0;
20165 	}
20166 
20167 	spin_unlock(&pvt_pool->lock);
20168 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20169 }
20170 
20171 /**
20172  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20173  * @phba: pointer to lpfc hba data structure
20174  * @pbl_pool: specified public free XRI pool
20175  * @pvt_pool: specified private free XRI pool
20176  * @count: number of XRIs to move
20177  *
20178  * This routine tries to move some free common bufs from the specified pbl_pool
20179  * to the specified pvt_pool. It might move less than count XRIs if there's not
20180  * enough in public pool.
20181  *
20182  * Return:
20183  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20184  *          specified pvt_pool
20185  *   false - if the specified pbl_pool is empty or locked by someone else
20186  **/
20187 static bool
20188 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20189 			  struct lpfc_pbl_pool *pbl_pool,
20190 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20191 {
20192 	struct lpfc_io_buf *lpfc_ncmd;
20193 	struct lpfc_io_buf *lpfc_ncmd_next;
20194 	unsigned long iflag;
20195 	int ret;
20196 
20197 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20198 	if (ret) {
20199 		if (pbl_pool->count) {
20200 			/* Move a batch of XRIs from public to private pool */
20201 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20202 			list_for_each_entry_safe(lpfc_ncmd,
20203 						 lpfc_ncmd_next,
20204 						 &pbl_pool->list,
20205 						 list) {
20206 				list_move_tail(&lpfc_ncmd->list,
20207 					       &pvt_pool->list);
20208 				pvt_pool->count++;
20209 				pbl_pool->count--;
20210 				count--;
20211 				if (count == 0)
20212 					break;
20213 			}
20214 
20215 			spin_unlock(&pvt_pool->lock);
20216 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20217 			return true;
20218 		}
20219 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20220 	}
20221 
20222 	return false;
20223 }
20224 
20225 /**
20226  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20227  * @phba: pointer to lpfc hba data structure.
20228  * @hwqid: belong to which HWQ.
20229  * @count: number of XRIs to move
20230  *
20231  * This routine tries to find some free common bufs in one of public pools with
20232  * Round Robin method. The search always starts from local hwqid, then the next
20233  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20234  * a batch of free common bufs are moved to private pool on hwqid.
20235  * It might move less than count XRIs if there's not enough in public pool.
20236  **/
20237 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20238 {
20239 	struct lpfc_multixri_pool *multixri_pool;
20240 	struct lpfc_multixri_pool *next_multixri_pool;
20241 	struct lpfc_pvt_pool *pvt_pool;
20242 	struct lpfc_pbl_pool *pbl_pool;
20243 	struct lpfc_sli4_hdw_queue *qp;
20244 	u32 next_hwqid;
20245 	u32 hwq_count;
20246 	int ret;
20247 
20248 	qp = &phba->sli4_hba.hdwq[hwqid];
20249 	multixri_pool = qp->p_multixri_pool;
20250 	pvt_pool = &multixri_pool->pvt_pool;
20251 	pbl_pool = &multixri_pool->pbl_pool;
20252 
20253 	/* Check if local pbl_pool is available */
20254 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20255 	if (ret) {
20256 #ifdef LPFC_MXP_STAT
20257 		multixri_pool->local_pbl_hit_count++;
20258 #endif
20259 		return;
20260 	}
20261 
20262 	hwq_count = phba->cfg_hdw_queue;
20263 
20264 	/* Get the next hwqid which was found last time */
20265 	next_hwqid = multixri_pool->rrb_next_hwqid;
20266 
20267 	do {
20268 		/* Go to next hwq */
20269 		next_hwqid = (next_hwqid + 1) % hwq_count;
20270 
20271 		next_multixri_pool =
20272 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20273 		pbl_pool = &next_multixri_pool->pbl_pool;
20274 
20275 		/* Check if the public free xri pool is available */
20276 		ret = _lpfc_move_xri_pbl_to_pvt(
20277 			phba, qp, pbl_pool, pvt_pool, count);
20278 
20279 		/* Exit while-loop if success or all hwqid are checked */
20280 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20281 
20282 	/* Starting point for the next time */
20283 	multixri_pool->rrb_next_hwqid = next_hwqid;
20284 
20285 	if (!ret) {
20286 		/* stats: all public pools are empty*/
20287 		multixri_pool->pbl_empty_count++;
20288 	}
20289 
20290 #ifdef LPFC_MXP_STAT
20291 	if (ret) {
20292 		if (next_hwqid == hwqid)
20293 			multixri_pool->local_pbl_hit_count++;
20294 		else
20295 			multixri_pool->other_pbl_hit_count++;
20296 	}
20297 #endif
20298 }
20299 
20300 /**
20301  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20302  * @phba: pointer to lpfc hba data structure.
20303  * @qp: belong to which HWQ.
20304  *
20305  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20306  * low watermark.
20307  **/
20308 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20309 {
20310 	struct lpfc_multixri_pool *multixri_pool;
20311 	struct lpfc_pvt_pool *pvt_pool;
20312 
20313 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20314 	pvt_pool = &multixri_pool->pvt_pool;
20315 
20316 	if (pvt_pool->count < pvt_pool->low_watermark)
20317 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20318 }
20319 
20320 /**
20321  * lpfc_release_io_buf - Return one IO buf back to free pool
20322  * @phba: pointer to lpfc hba data structure.
20323  * @lpfc_ncmd: IO buf to be returned.
20324  * @qp: belong to which HWQ.
20325  *
20326  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20327  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20328  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20329  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20330  * lpfc_io_buf_list_put.
20331  **/
20332 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20333 			 struct lpfc_sli4_hdw_queue *qp)
20334 {
20335 	unsigned long iflag;
20336 	struct lpfc_pbl_pool *pbl_pool;
20337 	struct lpfc_pvt_pool *pvt_pool;
20338 	struct lpfc_epd_pool *epd_pool;
20339 	u32 txcmplq_cnt;
20340 	u32 xri_owned;
20341 	u32 xri_limit;
20342 	u32 abts_io_bufs;
20343 
20344 	/* MUST zero fields if buffer is reused by another protocol */
20345 	lpfc_ncmd->nvmeCmd = NULL;
20346 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20347 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20348 
20349 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20350 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20351 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20352 
20353 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20354 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20355 
20356 	if (phba->cfg_xri_rebalancing) {
20357 		if (lpfc_ncmd->expedite) {
20358 			/* Return to expedite pool */
20359 			epd_pool = &phba->epd_pool;
20360 			spin_lock_irqsave(&epd_pool->lock, iflag);
20361 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20362 			epd_pool->count++;
20363 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20364 			return;
20365 		}
20366 
20367 		/* Avoid invalid access if an IO sneaks in and is being rejected
20368 		 * just _after_ xri pools are destroyed in lpfc_offline.
20369 		 * Nothing much can be done at this point.
20370 		 */
20371 		if (!qp->p_multixri_pool)
20372 			return;
20373 
20374 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20375 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20376 
20377 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20378 		abts_io_bufs = qp->abts_scsi_io_bufs;
20379 		abts_io_bufs += qp->abts_nvme_io_bufs;
20380 
20381 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20382 		xri_limit = qp->p_multixri_pool->xri_limit;
20383 
20384 #ifdef LPFC_MXP_STAT
20385 		if (xri_owned <= xri_limit)
20386 			qp->p_multixri_pool->below_limit_count++;
20387 		else
20388 			qp->p_multixri_pool->above_limit_count++;
20389 #endif
20390 
20391 		/* XRI goes to either public or private free xri pool
20392 		 *     based on watermark and xri_limit
20393 		 */
20394 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20395 		    (xri_owned < xri_limit &&
20396 		     pvt_pool->count < pvt_pool->high_watermark)) {
20397 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20398 						  qp, free_pvt_pool);
20399 			list_add_tail(&lpfc_ncmd->list,
20400 				      &pvt_pool->list);
20401 			pvt_pool->count++;
20402 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20403 		} else {
20404 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20405 						  qp, free_pub_pool);
20406 			list_add_tail(&lpfc_ncmd->list,
20407 				      &pbl_pool->list);
20408 			pbl_pool->count++;
20409 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20410 		}
20411 	} else {
20412 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20413 					  qp, free_xri);
20414 		list_add_tail(&lpfc_ncmd->list,
20415 			      &qp->lpfc_io_buf_list_put);
20416 		qp->put_io_bufs++;
20417 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20418 				       iflag);
20419 	}
20420 }
20421 
20422 /**
20423  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20424  * @phba: pointer to lpfc hba data structure.
20425  * @pvt_pool: pointer to private pool data structure.
20426  * @ndlp: pointer to lpfc nodelist data structure.
20427  *
20428  * This routine tries to get one free IO buf from private pool.
20429  *
20430  * Return:
20431  *   pointer to one free IO buf - if private pool is not empty
20432  *   NULL - if private pool is empty
20433  **/
20434 static struct lpfc_io_buf *
20435 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20436 				  struct lpfc_sli4_hdw_queue *qp,
20437 				  struct lpfc_pvt_pool *pvt_pool,
20438 				  struct lpfc_nodelist *ndlp)
20439 {
20440 	struct lpfc_io_buf *lpfc_ncmd;
20441 	struct lpfc_io_buf *lpfc_ncmd_next;
20442 	unsigned long iflag;
20443 
20444 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20445 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20446 				 &pvt_pool->list, list) {
20447 		if (lpfc_test_rrq_active(
20448 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20449 			continue;
20450 		list_del(&lpfc_ncmd->list);
20451 		pvt_pool->count--;
20452 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20453 		return lpfc_ncmd;
20454 	}
20455 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20456 
20457 	return NULL;
20458 }
20459 
20460 /**
20461  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20462  * @phba: pointer to lpfc hba data structure.
20463  *
20464  * This routine tries to get one free IO buf from expedite pool.
20465  *
20466  * Return:
20467  *   pointer to one free IO buf - if expedite pool is not empty
20468  *   NULL - if expedite pool is empty
20469  **/
20470 static struct lpfc_io_buf *
20471 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20472 {
20473 	struct lpfc_io_buf *lpfc_ncmd;
20474 	struct lpfc_io_buf *lpfc_ncmd_next;
20475 	unsigned long iflag;
20476 	struct lpfc_epd_pool *epd_pool;
20477 
20478 	epd_pool = &phba->epd_pool;
20479 	lpfc_ncmd = NULL;
20480 
20481 	spin_lock_irqsave(&epd_pool->lock, iflag);
20482 	if (epd_pool->count > 0) {
20483 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20484 					 &epd_pool->list, list) {
20485 			list_del(&lpfc_ncmd->list);
20486 			epd_pool->count--;
20487 			break;
20488 		}
20489 	}
20490 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20491 
20492 	return lpfc_ncmd;
20493 }
20494 
20495 /**
20496  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20497  * @phba: pointer to lpfc hba data structure.
20498  * @ndlp: pointer to lpfc nodelist data structure.
20499  * @hwqid: belong to which HWQ
20500  * @expedite: 1 means this request is urgent.
20501  *
20502  * This routine will do the following actions and then return a pointer to
20503  * one free IO buf.
20504  *
20505  * 1. If private free xri count is empty, move some XRIs from public to
20506  *    private pool.
20507  * 2. Get one XRI from private free xri pool.
20508  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20509  *    get one free xri from expedite pool.
20510  *
20511  * Note: ndlp is only used on SCSI side for RRQ testing.
20512  *       The caller should pass NULL for ndlp on NVME side.
20513  *
20514  * Return:
20515  *   pointer to one free IO buf - if private pool is not empty
20516  *   NULL - if private pool is empty
20517  **/
20518 static struct lpfc_io_buf *
20519 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20520 				    struct lpfc_nodelist *ndlp,
20521 				    int hwqid, int expedite)
20522 {
20523 	struct lpfc_sli4_hdw_queue *qp;
20524 	struct lpfc_multixri_pool *multixri_pool;
20525 	struct lpfc_pvt_pool *pvt_pool;
20526 	struct lpfc_io_buf *lpfc_ncmd;
20527 
20528 	qp = &phba->sli4_hba.hdwq[hwqid];
20529 	lpfc_ncmd = NULL;
20530 	multixri_pool = qp->p_multixri_pool;
20531 	pvt_pool = &multixri_pool->pvt_pool;
20532 	multixri_pool->io_req_count++;
20533 
20534 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20535 	if (pvt_pool->count == 0)
20536 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20537 
20538 	/* Get one XRI from private free xri pool */
20539 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20540 
20541 	if (lpfc_ncmd) {
20542 		lpfc_ncmd->hdwq = qp;
20543 		lpfc_ncmd->hdwq_no = hwqid;
20544 	} else if (expedite) {
20545 		/* If we fail to get one from pvt_pool and this is an expedite
20546 		 * request, get one free xri from expedite pool.
20547 		 */
20548 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20549 	}
20550 
20551 	return lpfc_ncmd;
20552 }
20553 
20554 static inline struct lpfc_io_buf *
20555 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20556 {
20557 	struct lpfc_sli4_hdw_queue *qp;
20558 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20559 
20560 	qp = &phba->sli4_hba.hdwq[idx];
20561 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20562 				 &qp->lpfc_io_buf_list_get, list) {
20563 		if (lpfc_test_rrq_active(phba, ndlp,
20564 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20565 			continue;
20566 
20567 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20568 			continue;
20569 
20570 		list_del_init(&lpfc_cmd->list);
20571 		qp->get_io_bufs--;
20572 		lpfc_cmd->hdwq = qp;
20573 		lpfc_cmd->hdwq_no = idx;
20574 		return lpfc_cmd;
20575 	}
20576 	return NULL;
20577 }
20578 
20579 /**
20580  * lpfc_get_io_buf - Get one IO buffer from free pool
20581  * @phba: The HBA for which this call is being executed.
20582  * @ndlp: pointer to lpfc nodelist data structure.
20583  * @hwqid: belong to which HWQ
20584  * @expedite: 1 means this request is urgent.
20585  *
20586  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20587  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20588  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20589  *
20590  * Note: ndlp is only used on SCSI side for RRQ testing.
20591  *       The caller should pass NULL for ndlp on NVME side.
20592  *
20593  * Return codes:
20594  *   NULL - Error
20595  *   Pointer to lpfc_io_buf - Success
20596  **/
20597 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20598 				    struct lpfc_nodelist *ndlp,
20599 				    u32 hwqid, int expedite)
20600 {
20601 	struct lpfc_sli4_hdw_queue *qp;
20602 	unsigned long iflag;
20603 	struct lpfc_io_buf *lpfc_cmd;
20604 
20605 	qp = &phba->sli4_hba.hdwq[hwqid];
20606 	lpfc_cmd = NULL;
20607 
20608 	if (phba->cfg_xri_rebalancing)
20609 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20610 			phba, ndlp, hwqid, expedite);
20611 	else {
20612 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20613 					  qp, alloc_xri_get);
20614 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20615 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20616 		if (!lpfc_cmd) {
20617 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20618 					  qp, alloc_xri_put);
20619 			list_splice(&qp->lpfc_io_buf_list_put,
20620 				    &qp->lpfc_io_buf_list_get);
20621 			qp->get_io_bufs += qp->put_io_bufs;
20622 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20623 			qp->put_io_bufs = 0;
20624 			spin_unlock(&qp->io_buf_list_put_lock);
20625 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20626 			    expedite)
20627 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20628 		}
20629 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20630 	}
20631 
20632 	return lpfc_cmd;
20633 }
20634 
20635 /**
20636  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20637  * @phba: The HBA for which this call is being executed.
20638  * @lpfc_buf: IO buf structure to append the SGL chunk
20639  *
20640  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20641  * and will allocate an SGL chunk if the pool is empty.
20642  *
20643  * Return codes:
20644  *   NULL - Error
20645  *   Pointer to sli4_hybrid_sgl - Success
20646  **/
20647 struct sli4_hybrid_sgl *
20648 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20649 {
20650 	struct sli4_hybrid_sgl *list_entry = NULL;
20651 	struct sli4_hybrid_sgl *tmp = NULL;
20652 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
20653 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20654 	struct list_head *buf_list = &hdwq->sgl_list;
20655 	unsigned long iflags;
20656 
20657 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20658 
20659 	if (likely(!list_empty(buf_list))) {
20660 		/* break off 1 chunk from the sgl_list */
20661 		list_for_each_entry_safe(list_entry, tmp,
20662 					 buf_list, list_node) {
20663 			list_move_tail(&list_entry->list_node,
20664 				       &lpfc_buf->dma_sgl_xtra_list);
20665 			break;
20666 		}
20667 	} else {
20668 		/* allocate more */
20669 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20670 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20671 				   cpu_to_node(hdwq->io_wq->chann));
20672 		if (!tmp) {
20673 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20674 					"8353 error kmalloc memory for HDWQ "
20675 					"%d %s\n",
20676 					lpfc_buf->hdwq_no, __func__);
20677 			return NULL;
20678 		}
20679 
20680 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20681 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
20682 		if (!tmp->dma_sgl) {
20683 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20684 					"8354 error pool_alloc memory for HDWQ "
20685 					"%d %s\n",
20686 					lpfc_buf->hdwq_no, __func__);
20687 			kfree(tmp);
20688 			return NULL;
20689 		}
20690 
20691 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20692 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20693 	}
20694 
20695 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20696 					struct sli4_hybrid_sgl,
20697 					list_node);
20698 
20699 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20700 
20701 	return allocated_sgl;
20702 }
20703 
20704 /**
20705  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20706  * @phba: The HBA for which this call is being executed.
20707  * @lpfc_buf: IO buf structure with the SGL chunk
20708  *
20709  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20710  *
20711  * Return codes:
20712  *   0 - Success
20713  *   -EINVAL - Error
20714  **/
20715 int
20716 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20717 {
20718 	int rc = 0;
20719 	struct sli4_hybrid_sgl *list_entry = NULL;
20720 	struct sli4_hybrid_sgl *tmp = NULL;
20721 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20722 	struct list_head *buf_list = &hdwq->sgl_list;
20723 	unsigned long iflags;
20724 
20725 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20726 
20727 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20728 		list_for_each_entry_safe(list_entry, tmp,
20729 					 &lpfc_buf->dma_sgl_xtra_list,
20730 					 list_node) {
20731 			list_move_tail(&list_entry->list_node,
20732 				       buf_list);
20733 		}
20734 	} else {
20735 		rc = -EINVAL;
20736 	}
20737 
20738 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20739 	return rc;
20740 }
20741 
20742 /**
20743  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20744  * @phba: phba object
20745  * @hdwq: hdwq to cleanup sgl buff resources on
20746  *
20747  * This routine frees all SGL chunks of hdwq SGL chunk pool.
20748  *
20749  * Return codes:
20750  *   None
20751  **/
20752 void
20753 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20754 		       struct lpfc_sli4_hdw_queue *hdwq)
20755 {
20756 	struct list_head *buf_list = &hdwq->sgl_list;
20757 	struct sli4_hybrid_sgl *list_entry = NULL;
20758 	struct sli4_hybrid_sgl *tmp = NULL;
20759 	unsigned long iflags;
20760 
20761 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20762 
20763 	/* Free sgl pool */
20764 	list_for_each_entry_safe(list_entry, tmp,
20765 				 buf_list, list_node) {
20766 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20767 			      list_entry->dma_sgl,
20768 			      list_entry->dma_phys_sgl);
20769 		list_del(&list_entry->list_node);
20770 		kfree(list_entry);
20771 	}
20772 
20773 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20774 }
20775 
20776 /**
20777  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20778  * @phba: The HBA for which this call is being executed.
20779  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20780  *
20781  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20782  * and will allocate an CMD/RSP buffer if the pool is empty.
20783  *
20784  * Return codes:
20785  *   NULL - Error
20786  *   Pointer to fcp_cmd_rsp_buf - Success
20787  **/
20788 struct fcp_cmd_rsp_buf *
20789 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20790 			      struct lpfc_io_buf *lpfc_buf)
20791 {
20792 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20793 	struct fcp_cmd_rsp_buf *tmp = NULL;
20794 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20795 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20796 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20797 	unsigned long iflags;
20798 
20799 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20800 
20801 	if (likely(!list_empty(buf_list))) {
20802 		/* break off 1 chunk from the list */
20803 		list_for_each_entry_safe(list_entry, tmp,
20804 					 buf_list,
20805 					 list_node) {
20806 			list_move_tail(&list_entry->list_node,
20807 				       &lpfc_buf->dma_cmd_rsp_list);
20808 			break;
20809 		}
20810 	} else {
20811 		/* allocate more */
20812 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20813 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20814 				   cpu_to_node(hdwq->io_wq->chann));
20815 		if (!tmp) {
20816 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20817 					"8355 error kmalloc memory for HDWQ "
20818 					"%d %s\n",
20819 					lpfc_buf->hdwq_no, __func__);
20820 			return NULL;
20821 		}
20822 
20823 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20824 						GFP_ATOMIC,
20825 						&tmp->fcp_cmd_rsp_dma_handle);
20826 
20827 		if (!tmp->fcp_cmnd) {
20828 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20829 					"8356 error pool_alloc memory for HDWQ "
20830 					"%d %s\n",
20831 					lpfc_buf->hdwq_no, __func__);
20832 			kfree(tmp);
20833 			return NULL;
20834 		}
20835 
20836 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20837 				sizeof(struct fcp_cmnd));
20838 
20839 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20840 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20841 	}
20842 
20843 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20844 					struct fcp_cmd_rsp_buf,
20845 					list_node);
20846 
20847 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20848 
20849 	return allocated_buf;
20850 }
20851 
20852 /**
20853  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20854  * @phba: The HBA for which this call is being executed.
20855  * @lpfc_buf: IO buf structure with the CMD/RSP buf
20856  *
20857  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20858  *
20859  * Return codes:
20860  *   0 - Success
20861  *   -EINVAL - Error
20862  **/
20863 int
20864 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20865 			      struct lpfc_io_buf *lpfc_buf)
20866 {
20867 	int rc = 0;
20868 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20869 	struct fcp_cmd_rsp_buf *tmp = NULL;
20870 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20871 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20872 	unsigned long iflags;
20873 
20874 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20875 
20876 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20877 		list_for_each_entry_safe(list_entry, tmp,
20878 					 &lpfc_buf->dma_cmd_rsp_list,
20879 					 list_node) {
20880 			list_move_tail(&list_entry->list_node,
20881 				       buf_list);
20882 		}
20883 	} else {
20884 		rc = -EINVAL;
20885 	}
20886 
20887 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20888 	return rc;
20889 }
20890 
20891 /**
20892  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20893  * @phba: phba object
20894  * @hdwq: hdwq to cleanup cmd rsp buff resources on
20895  *
20896  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
20897  *
20898  * Return codes:
20899  *   None
20900  **/
20901 void
20902 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20903 			       struct lpfc_sli4_hdw_queue *hdwq)
20904 {
20905 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20906 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20907 	struct fcp_cmd_rsp_buf *tmp = NULL;
20908 	unsigned long iflags;
20909 
20910 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20911 
20912 	/* Free cmd_rsp buf pool */
20913 	list_for_each_entry_safe(list_entry, tmp,
20914 				 buf_list,
20915 				 list_node) {
20916 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
20917 			      list_entry->fcp_cmnd,
20918 			      list_entry->fcp_cmd_rsp_dma_handle);
20919 		list_del(&list_entry->list_node);
20920 		kfree(list_entry);
20921 	}
20922 
20923 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20924 }
20925