1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1773 * @phba: Pointer to HBA context object. 1774 * @pring: Pointer to driver SLI ring object. 1775 * 1776 * This function is called with hbalock held and the caller must post the 1777 * iocb without releasing the lock. If the caller releases the lock, 1778 * iocb slot returned by the function is not guaranteed to be available. 1779 * The function returns pointer to the next available iocb slot if there 1780 * is available slot in the ring, else it returns NULL. 1781 * If the get index of the ring is ahead of the put index, the function 1782 * will post an error attention event to the worker thread to take the 1783 * HBA to offline state. 1784 **/ 1785 static IOCB_t * 1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1787 { 1788 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1789 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1790 1791 lockdep_assert_held(&phba->hbalock); 1792 1793 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1794 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1795 pring->sli.sli3.next_cmdidx = 0; 1796 1797 if (unlikely(pring->sli.sli3.local_getidx == 1798 pring->sli.sli3.next_cmdidx)) { 1799 1800 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1801 1802 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1804 "0315 Ring %d issue: portCmdGet %d " 1805 "is bigger than cmd ring %d\n", 1806 pring->ringno, 1807 pring->sli.sli3.local_getidx, 1808 max_cmd_idx); 1809 1810 phba->link_state = LPFC_HBA_ERROR; 1811 /* 1812 * All error attention handlers are posted to 1813 * worker thread 1814 */ 1815 phba->work_ha |= HA_ERATT; 1816 phba->work_hs = HS_FFER3; 1817 1818 lpfc_worker_wake_up(phba); 1819 1820 return NULL; 1821 } 1822 1823 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1824 return NULL; 1825 } 1826 1827 return lpfc_cmd_iocb(phba, pring); 1828 } 1829 1830 /** 1831 * lpfc_sli_next_iotag - Get an iotag for the iocb 1832 * @phba: Pointer to HBA context object. 1833 * @iocbq: Pointer to driver iocb object. 1834 * 1835 * This function gets an iotag for the iocb. If there is no unused iotag and 1836 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1837 * array and assigns a new iotag. 1838 * The function returns the allocated iotag if successful, else returns zero. 1839 * Zero is not a valid iotag. 1840 * The caller is not required to hold any lock. 1841 **/ 1842 uint16_t 1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1844 { 1845 struct lpfc_iocbq **new_arr; 1846 struct lpfc_iocbq **old_arr; 1847 size_t new_len; 1848 struct lpfc_sli *psli = &phba->sli; 1849 uint16_t iotag; 1850 1851 spin_lock_irq(&phba->hbalock); 1852 iotag = psli->last_iotag; 1853 if(++iotag < psli->iocbq_lookup_len) { 1854 psli->last_iotag = iotag; 1855 psli->iocbq_lookup[iotag] = iocbq; 1856 spin_unlock_irq(&phba->hbalock); 1857 iocbq->iotag = iotag; 1858 return iotag; 1859 } else if (psli->iocbq_lookup_len < (0xffff 1860 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1861 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1862 spin_unlock_irq(&phba->hbalock); 1863 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1864 GFP_KERNEL); 1865 if (new_arr) { 1866 spin_lock_irq(&phba->hbalock); 1867 old_arr = psli->iocbq_lookup; 1868 if (new_len <= psli->iocbq_lookup_len) { 1869 /* highly unprobable case */ 1870 kfree(new_arr); 1871 iotag = psli->last_iotag; 1872 if(++iotag < psli->iocbq_lookup_len) { 1873 psli->last_iotag = iotag; 1874 psli->iocbq_lookup[iotag] = iocbq; 1875 spin_unlock_irq(&phba->hbalock); 1876 iocbq->iotag = iotag; 1877 return iotag; 1878 } 1879 spin_unlock_irq(&phba->hbalock); 1880 return 0; 1881 } 1882 if (psli->iocbq_lookup) 1883 memcpy(new_arr, old_arr, 1884 ((psli->last_iotag + 1) * 1885 sizeof (struct lpfc_iocbq *))); 1886 psli->iocbq_lookup = new_arr; 1887 psli->iocbq_lookup_len = new_len; 1888 psli->last_iotag = iotag; 1889 psli->iocbq_lookup[iotag] = iocbq; 1890 spin_unlock_irq(&phba->hbalock); 1891 iocbq->iotag = iotag; 1892 kfree(old_arr); 1893 return iotag; 1894 } 1895 } else 1896 spin_unlock_irq(&phba->hbalock); 1897 1898 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1899 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1900 psli->last_iotag); 1901 1902 return 0; 1903 } 1904 1905 /** 1906 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1907 * @phba: Pointer to HBA context object. 1908 * @pring: Pointer to driver SLI ring object. 1909 * @iocb: Pointer to iocb slot in the ring. 1910 * @nextiocb: Pointer to driver iocb object which need to be 1911 * posted to firmware. 1912 * 1913 * This function is called to post a new iocb to the firmware. This 1914 * function copies the new iocb to ring iocb slot and updates the 1915 * ring pointers. It adds the new iocb to txcmplq if there is 1916 * a completion call back for this iocb else the function will free the 1917 * iocb object. The hbalock is asserted held in the code path calling 1918 * this routine. 1919 **/ 1920 static void 1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1922 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1923 { 1924 /* 1925 * Set up an iotag 1926 */ 1927 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1928 1929 1930 if (pring->ringno == LPFC_ELS_RING) { 1931 lpfc_debugfs_slow_ring_trc(phba, 1932 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1933 *(((uint32_t *) &nextiocb->iocb) + 4), 1934 *(((uint32_t *) &nextiocb->iocb) + 6), 1935 *(((uint32_t *) &nextiocb->iocb) + 7)); 1936 } 1937 1938 /* 1939 * Issue iocb command to adapter 1940 */ 1941 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1942 wmb(); 1943 pring->stats.iocb_cmd++; 1944 1945 /* 1946 * If there is no completion routine to call, we can release the 1947 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1948 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1949 */ 1950 if (nextiocb->iocb_cmpl) 1951 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1952 else 1953 __lpfc_sli_release_iocbq(phba, nextiocb); 1954 1955 /* 1956 * Let the HBA know what IOCB slot will be the next one the 1957 * driver will put a command into. 1958 */ 1959 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1960 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1961 } 1962 1963 /** 1964 * lpfc_sli_update_full_ring - Update the chip attention register 1965 * @phba: Pointer to HBA context object. 1966 * @pring: Pointer to driver SLI ring object. 1967 * 1968 * The caller is not required to hold any lock for calling this function. 1969 * This function updates the chip attention bits for the ring to inform firmware 1970 * that there are pending work to be done for this ring and requests an 1971 * interrupt when there is space available in the ring. This function is 1972 * called when the driver is unable to post more iocbs to the ring due 1973 * to unavailability of space in the ring. 1974 **/ 1975 static void 1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1977 { 1978 int ringno = pring->ringno; 1979 1980 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1981 1982 wmb(); 1983 1984 /* 1985 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1986 * The HBA will tell us when an IOCB entry is available. 1987 */ 1988 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1989 readl(phba->CAregaddr); /* flush */ 1990 1991 pring->stats.iocb_cmd_full++; 1992 } 1993 1994 /** 1995 * lpfc_sli_update_ring - Update chip attention register 1996 * @phba: Pointer to HBA context object. 1997 * @pring: Pointer to driver SLI ring object. 1998 * 1999 * This function updates the chip attention register bit for the 2000 * given ring to inform HBA that there is more work to be done 2001 * in this ring. The caller is not required to hold any lock. 2002 **/ 2003 static void 2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2005 { 2006 int ringno = pring->ringno; 2007 2008 /* 2009 * Tell the HBA that there is work to do in this ring. 2010 */ 2011 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2012 wmb(); 2013 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2014 readl(phba->CAregaddr); /* flush */ 2015 } 2016 } 2017 2018 /** 2019 * lpfc_sli_resume_iocb - Process iocbs in the txq 2020 * @phba: Pointer to HBA context object. 2021 * @pring: Pointer to driver SLI ring object. 2022 * 2023 * This function is called with hbalock held to post pending iocbs 2024 * in the txq to the firmware. This function is called when driver 2025 * detects space available in the ring. 2026 **/ 2027 static void 2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2029 { 2030 IOCB_t *iocb; 2031 struct lpfc_iocbq *nextiocb; 2032 2033 lockdep_assert_held(&phba->hbalock); 2034 2035 /* 2036 * Check to see if: 2037 * (a) there is anything on the txq to send 2038 * (b) link is up 2039 * (c) link attention events can be processed (fcp ring only) 2040 * (d) IOCB processing is not blocked by the outstanding mbox command. 2041 */ 2042 2043 if (lpfc_is_link_up(phba) && 2044 (!list_empty(&pring->txq)) && 2045 (pring->ringno != LPFC_FCP_RING || 2046 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2047 2048 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2049 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2050 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2051 2052 if (iocb) 2053 lpfc_sli_update_ring(phba, pring); 2054 else 2055 lpfc_sli_update_full_ring(phba, pring); 2056 } 2057 2058 return; 2059 } 2060 2061 /** 2062 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2063 * @phba: Pointer to HBA context object. 2064 * @hbqno: HBQ number. 2065 * 2066 * This function is called with hbalock held to get the next 2067 * available slot for the given HBQ. If there is free slot 2068 * available for the HBQ it will return pointer to the next available 2069 * HBQ entry else it will return NULL. 2070 **/ 2071 static struct lpfc_hbq_entry * 2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2073 { 2074 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2075 2076 lockdep_assert_held(&phba->hbalock); 2077 2078 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2079 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2080 hbqp->next_hbqPutIdx = 0; 2081 2082 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2083 uint32_t raw_index = phba->hbq_get[hbqno]; 2084 uint32_t getidx = le32_to_cpu(raw_index); 2085 2086 hbqp->local_hbqGetIdx = getidx; 2087 2088 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2090 "1802 HBQ %d: local_hbqGetIdx " 2091 "%u is > than hbqp->entry_count %u\n", 2092 hbqno, hbqp->local_hbqGetIdx, 2093 hbqp->entry_count); 2094 2095 phba->link_state = LPFC_HBA_ERROR; 2096 return NULL; 2097 } 2098 2099 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2100 return NULL; 2101 } 2102 2103 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2104 hbqp->hbqPutIdx; 2105 } 2106 2107 /** 2108 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2109 * @phba: Pointer to HBA context object. 2110 * 2111 * This function is called with no lock held to free all the 2112 * hbq buffers while uninitializing the SLI interface. It also 2113 * frees the HBQ buffers returned by the firmware but not yet 2114 * processed by the upper layers. 2115 **/ 2116 void 2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2118 { 2119 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2120 struct hbq_dmabuf *hbq_buf; 2121 unsigned long flags; 2122 int i, hbq_count; 2123 2124 hbq_count = lpfc_sli_hbq_count(); 2125 /* Return all memory used by all HBQs */ 2126 spin_lock_irqsave(&phba->hbalock, flags); 2127 for (i = 0; i < hbq_count; ++i) { 2128 list_for_each_entry_safe(dmabuf, next_dmabuf, 2129 &phba->hbqs[i].hbq_buffer_list, list) { 2130 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2131 list_del(&hbq_buf->dbuf.list); 2132 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2133 } 2134 phba->hbqs[i].buffer_count = 0; 2135 } 2136 2137 /* Mark the HBQs not in use */ 2138 phba->hbq_in_use = 0; 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 } 2141 2142 /** 2143 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2144 * @phba: Pointer to HBA context object. 2145 * @hbqno: HBQ number. 2146 * @hbq_buf: Pointer to HBQ buffer. 2147 * 2148 * This function is called with the hbalock held to post a 2149 * hbq buffer to the firmware. If the function finds an empty 2150 * slot in the HBQ, it will post the buffer. The function will return 2151 * pointer to the hbq entry if it successfully post the buffer 2152 * else it will return NULL. 2153 **/ 2154 static int 2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2156 struct hbq_dmabuf *hbq_buf) 2157 { 2158 lockdep_assert_held(&phba->hbalock); 2159 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2160 } 2161 2162 /** 2163 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2164 * @phba: Pointer to HBA context object. 2165 * @hbqno: HBQ number. 2166 * @hbq_buf: Pointer to HBQ buffer. 2167 * 2168 * This function is called with the hbalock held to post a hbq buffer to the 2169 * firmware. If the function finds an empty slot in the HBQ, it will post the 2170 * buffer and place it on the hbq_buffer_list. The function will return zero if 2171 * it successfully post the buffer else it will return an error. 2172 **/ 2173 static int 2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2175 struct hbq_dmabuf *hbq_buf) 2176 { 2177 struct lpfc_hbq_entry *hbqe; 2178 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2179 2180 lockdep_assert_held(&phba->hbalock); 2181 /* Get next HBQ entry slot to use */ 2182 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2183 if (hbqe) { 2184 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2185 2186 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2187 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2188 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2189 hbqe->bde.tus.f.bdeFlags = 0; 2190 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2191 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2192 /* Sync SLIM */ 2193 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2194 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2195 /* flush */ 2196 readl(phba->hbq_put + hbqno); 2197 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2198 return 0; 2199 } else 2200 return -ENOMEM; 2201 } 2202 2203 /** 2204 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2205 * @phba: Pointer to HBA context object. 2206 * @hbqno: HBQ number. 2207 * @hbq_buf: Pointer to HBQ buffer. 2208 * 2209 * This function is called with the hbalock held to post an RQE to the SLI4 2210 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2211 * the hbq_buffer_list and return zero, otherwise it will return an error. 2212 **/ 2213 static int 2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2215 struct hbq_dmabuf *hbq_buf) 2216 { 2217 int rc; 2218 struct lpfc_rqe hrqe; 2219 struct lpfc_rqe drqe; 2220 struct lpfc_queue *hrq; 2221 struct lpfc_queue *drq; 2222 2223 if (hbqno != LPFC_ELS_HBQ) 2224 return 1; 2225 hrq = phba->sli4_hba.hdr_rq; 2226 drq = phba->sli4_hba.dat_rq; 2227 2228 lockdep_assert_held(&phba->hbalock); 2229 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2230 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2231 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2232 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2233 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2234 if (rc < 0) 2235 return rc; 2236 hbq_buf->tag = (rc | (hbqno << 16)); 2237 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2238 return 0; 2239 } 2240 2241 /* HBQ for ELS and CT traffic. */ 2242 static struct lpfc_hbq_init lpfc_els_hbq = { 2243 .rn = 1, 2244 .entry_count = 256, 2245 .mask_count = 0, 2246 .profile = 0, 2247 .ring_mask = (1 << LPFC_ELS_RING), 2248 .buffer_count = 0, 2249 .init_count = 40, 2250 .add_count = 40, 2251 }; 2252 2253 /* Array of HBQs */ 2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2255 &lpfc_els_hbq, 2256 }; 2257 2258 /** 2259 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2260 * @phba: Pointer to HBA context object. 2261 * @hbqno: HBQ number. 2262 * @count: Number of HBQ buffers to be posted. 2263 * 2264 * This function is called with no lock held to post more hbq buffers to the 2265 * given HBQ. The function returns the number of HBQ buffers successfully 2266 * posted. 2267 **/ 2268 static int 2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2270 { 2271 uint32_t i, posted = 0; 2272 unsigned long flags; 2273 struct hbq_dmabuf *hbq_buffer; 2274 LIST_HEAD(hbq_buf_list); 2275 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2276 return 0; 2277 2278 if ((phba->hbqs[hbqno].buffer_count + count) > 2279 lpfc_hbq_defs[hbqno]->entry_count) 2280 count = lpfc_hbq_defs[hbqno]->entry_count - 2281 phba->hbqs[hbqno].buffer_count; 2282 if (!count) 2283 return 0; 2284 /* Allocate HBQ entries */ 2285 for (i = 0; i < count; i++) { 2286 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2287 if (!hbq_buffer) 2288 break; 2289 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2290 } 2291 /* Check whether HBQ is still in use */ 2292 spin_lock_irqsave(&phba->hbalock, flags); 2293 if (!phba->hbq_in_use) 2294 goto err; 2295 while (!list_empty(&hbq_buf_list)) { 2296 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2297 dbuf.list); 2298 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2299 (hbqno << 16)); 2300 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2301 phba->hbqs[hbqno].buffer_count++; 2302 posted++; 2303 } else 2304 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2305 } 2306 spin_unlock_irqrestore(&phba->hbalock, flags); 2307 return posted; 2308 err: 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 while (!list_empty(&hbq_buf_list)) { 2311 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2312 dbuf.list); 2313 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2314 } 2315 return 0; 2316 } 2317 2318 /** 2319 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2320 * @phba: Pointer to HBA context object. 2321 * @qno: HBQ number. 2322 * 2323 * This function posts more buffers to the HBQ. This function 2324 * is called with no lock held. The function returns the number of HBQ entries 2325 * successfully allocated. 2326 **/ 2327 int 2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2329 { 2330 if (phba->sli_rev == LPFC_SLI_REV4) 2331 return 0; 2332 else 2333 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2334 lpfc_hbq_defs[qno]->add_count); 2335 } 2336 2337 /** 2338 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2339 * @phba: Pointer to HBA context object. 2340 * @qno: HBQ queue number. 2341 * 2342 * This function is called from SLI initialization code path with 2343 * no lock held to post initial HBQ buffers to firmware. The 2344 * function returns the number of HBQ entries successfully allocated. 2345 **/ 2346 static int 2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2348 { 2349 if (phba->sli_rev == LPFC_SLI_REV4) 2350 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2351 lpfc_hbq_defs[qno]->entry_count); 2352 else 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->init_count); 2355 } 2356 2357 /* 2358 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2359 * 2360 * This function removes the first hbq buffer on an hbq list and returns a 2361 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2362 **/ 2363 static struct hbq_dmabuf * 2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2365 { 2366 struct lpfc_dmabuf *d_buf; 2367 2368 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2369 if (!d_buf) 2370 return NULL; 2371 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2372 } 2373 2374 /** 2375 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2376 * @phba: Pointer to HBA context object. 2377 * @hrq: HBQ number. 2378 * 2379 * This function removes the first RQ buffer on an RQ buffer list and returns a 2380 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2381 **/ 2382 static struct rqb_dmabuf * 2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2384 { 2385 struct lpfc_dmabuf *h_buf; 2386 struct lpfc_rqb *rqbp; 2387 2388 rqbp = hrq->rqbp; 2389 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2390 struct lpfc_dmabuf, list); 2391 if (!h_buf) 2392 return NULL; 2393 rqbp->buffer_count--; 2394 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2395 } 2396 2397 /** 2398 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2399 * @phba: Pointer to HBA context object. 2400 * @tag: Tag of the hbq buffer. 2401 * 2402 * This function searches for the hbq buffer associated with the given tag in 2403 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2404 * otherwise it returns NULL. 2405 **/ 2406 static struct hbq_dmabuf * 2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2408 { 2409 struct lpfc_dmabuf *d_buf; 2410 struct hbq_dmabuf *hbq_buf; 2411 uint32_t hbqno; 2412 2413 hbqno = tag >> 16; 2414 if (hbqno >= LPFC_MAX_HBQS) 2415 return NULL; 2416 2417 spin_lock_irq(&phba->hbalock); 2418 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2420 if (hbq_buf->tag == tag) { 2421 spin_unlock_irq(&phba->hbalock); 2422 return hbq_buf; 2423 } 2424 } 2425 spin_unlock_irq(&phba->hbalock); 2426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2427 "1803 Bad hbq tag. Data: x%x x%x\n", 2428 tag, phba->hbqs[tag >> 16].buffer_count); 2429 return NULL; 2430 } 2431 2432 /** 2433 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbq_buffer: Pointer to HBQ buffer. 2436 * 2437 * This function is called with hbalock. This function gives back 2438 * the hbq buffer to firmware. If the HBQ does not have space to 2439 * post the buffer, it will free the buffer. 2440 **/ 2441 void 2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2443 { 2444 uint32_t hbqno; 2445 2446 if (hbq_buffer) { 2447 hbqno = hbq_buffer->tag >> 16; 2448 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2449 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2450 } 2451 } 2452 2453 /** 2454 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2455 * @mbxCommand: mailbox command code. 2456 * 2457 * This function is called by the mailbox event handler function to verify 2458 * that the completed mailbox command is a legitimate mailbox command. If the 2459 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2460 * and the mailbox event handler will take the HBA offline. 2461 **/ 2462 static int 2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2464 { 2465 uint8_t ret; 2466 2467 switch (mbxCommand) { 2468 case MBX_LOAD_SM: 2469 case MBX_READ_NV: 2470 case MBX_WRITE_NV: 2471 case MBX_WRITE_VPARMS: 2472 case MBX_RUN_BIU_DIAG: 2473 case MBX_INIT_LINK: 2474 case MBX_DOWN_LINK: 2475 case MBX_CONFIG_LINK: 2476 case MBX_CONFIG_RING: 2477 case MBX_RESET_RING: 2478 case MBX_READ_CONFIG: 2479 case MBX_READ_RCONFIG: 2480 case MBX_READ_SPARM: 2481 case MBX_READ_STATUS: 2482 case MBX_READ_RPI: 2483 case MBX_READ_XRI: 2484 case MBX_READ_REV: 2485 case MBX_READ_LNK_STAT: 2486 case MBX_REG_LOGIN: 2487 case MBX_UNREG_LOGIN: 2488 case MBX_CLEAR_LA: 2489 case MBX_DUMP_MEMORY: 2490 case MBX_DUMP_CONTEXT: 2491 case MBX_RUN_DIAGS: 2492 case MBX_RESTART: 2493 case MBX_UPDATE_CFG: 2494 case MBX_DOWN_LOAD: 2495 case MBX_DEL_LD_ENTRY: 2496 case MBX_RUN_PROGRAM: 2497 case MBX_SET_MASK: 2498 case MBX_SET_VARIABLE: 2499 case MBX_UNREG_D_ID: 2500 case MBX_KILL_BOARD: 2501 case MBX_CONFIG_FARP: 2502 case MBX_BEACON: 2503 case MBX_LOAD_AREA: 2504 case MBX_RUN_BIU_DIAG64: 2505 case MBX_CONFIG_PORT: 2506 case MBX_READ_SPARM64: 2507 case MBX_READ_RPI64: 2508 case MBX_REG_LOGIN64: 2509 case MBX_READ_TOPOLOGY: 2510 case MBX_WRITE_WWN: 2511 case MBX_SET_DEBUG: 2512 case MBX_LOAD_EXP_ROM: 2513 case MBX_ASYNCEVT_ENABLE: 2514 case MBX_REG_VPI: 2515 case MBX_UNREG_VPI: 2516 case MBX_HEARTBEAT: 2517 case MBX_PORT_CAPABILITIES: 2518 case MBX_PORT_IOV_CONTROL: 2519 case MBX_SLI4_CONFIG: 2520 case MBX_SLI4_REQ_FTRS: 2521 case MBX_REG_FCFI: 2522 case MBX_UNREG_FCFI: 2523 case MBX_REG_VFI: 2524 case MBX_UNREG_VFI: 2525 case MBX_INIT_VPI: 2526 case MBX_INIT_VFI: 2527 case MBX_RESUME_RPI: 2528 case MBX_READ_EVENT_LOG_STATUS: 2529 case MBX_READ_EVENT_LOG: 2530 case MBX_SECURITY_MGMT: 2531 case MBX_AUTH_PORT: 2532 case MBX_ACCESS_VDATA: 2533 ret = mbxCommand; 2534 break; 2535 default: 2536 ret = MBX_SHUTDOWN; 2537 break; 2538 } 2539 return ret; 2540 } 2541 2542 /** 2543 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2544 * @phba: Pointer to HBA context object. 2545 * @pmboxq: Pointer to mailbox command. 2546 * 2547 * This is completion handler function for mailbox commands issued from 2548 * lpfc_sli_issue_mbox_wait function. This function is called by the 2549 * mailbox event handler function with no lock held. This function 2550 * will wake up thread waiting on the wait queue pointed by context1 2551 * of the mailbox. 2552 **/ 2553 void 2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2555 { 2556 unsigned long drvr_flag; 2557 struct completion *pmbox_done; 2558 2559 /* 2560 * If pmbox_done is empty, the driver thread gave up waiting and 2561 * continued running. 2562 */ 2563 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2564 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2565 pmbox_done = (struct completion *)pmboxq->context3; 2566 if (pmbox_done) 2567 complete(pmbox_done); 2568 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2569 return; 2570 } 2571 2572 static void 2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2574 { 2575 unsigned long iflags; 2576 2577 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2578 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2579 spin_lock_irqsave(&ndlp->lock, iflags); 2580 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2581 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2582 spin_unlock_irqrestore(&ndlp->lock, iflags); 2583 } 2584 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2585 } 2586 2587 /** 2588 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2589 * @phba: Pointer to HBA context object. 2590 * @pmb: Pointer to mailbox object. 2591 * 2592 * This function is the default mailbox completion handler. It 2593 * frees the memory resources associated with the completed mailbox 2594 * command. If the completed command is a REG_LOGIN mailbox command, 2595 * this function will issue a UREG_LOGIN to re-claim the RPI. 2596 **/ 2597 void 2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2599 { 2600 struct lpfc_vport *vport = pmb->vport; 2601 struct lpfc_dmabuf *mp; 2602 struct lpfc_nodelist *ndlp; 2603 struct Scsi_Host *shost; 2604 uint16_t rpi, vpi; 2605 int rc; 2606 2607 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2608 2609 if (mp) { 2610 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2611 kfree(mp); 2612 } 2613 2614 /* 2615 * If a REG_LOGIN succeeded after node is destroyed or node 2616 * is in re-discovery driver need to cleanup the RPI. 2617 */ 2618 if (!(phba->pport->load_flag & FC_UNLOADING) && 2619 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2620 !pmb->u.mb.mbxStatus) { 2621 rpi = pmb->u.mb.un.varWords[0]; 2622 vpi = pmb->u.mb.un.varRegLogin.vpi; 2623 if (phba->sli_rev == LPFC_SLI_REV4) 2624 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2625 lpfc_unreg_login(phba, vpi, rpi, pmb); 2626 pmb->vport = vport; 2627 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2628 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2629 if (rc != MBX_NOT_FINISHED) 2630 return; 2631 } 2632 2633 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2634 !(phba->pport->load_flag & FC_UNLOADING) && 2635 !pmb->u.mb.mbxStatus) { 2636 shost = lpfc_shost_from_vport(vport); 2637 spin_lock_irq(shost->host_lock); 2638 vport->vpi_state |= LPFC_VPI_REGISTERED; 2639 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2640 spin_unlock_irq(shost->host_lock); 2641 } 2642 2643 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2644 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2645 lpfc_nlp_put(ndlp); 2646 pmb->ctx_buf = NULL; 2647 pmb->ctx_ndlp = NULL; 2648 } 2649 2650 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2651 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2652 2653 /* Check to see if there are any deferred events to process */ 2654 if (ndlp) { 2655 lpfc_printf_vlog( 2656 vport, 2657 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2658 "1438 UNREG cmpl deferred mbox x%x " 2659 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2660 ndlp->nlp_rpi, ndlp->nlp_DID, 2661 ndlp->nlp_flag, ndlp->nlp_defer_did, 2662 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2663 2664 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2665 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2666 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2667 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2668 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2669 } else { 2670 __lpfc_sli_rpi_release(vport, ndlp); 2671 } 2672 2673 /* The unreg_login mailbox is complete and had a 2674 * reference that has to be released. The PLOGI 2675 * got its own ref. 2676 */ 2677 lpfc_nlp_put(ndlp); 2678 pmb->ctx_ndlp = NULL; 2679 } 2680 } 2681 2682 /* Check security permission status on INIT_LINK mailbox command */ 2683 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2684 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2685 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2686 "2860 SLI authentication is required " 2687 "for INIT_LINK but has not done yet\n"); 2688 2689 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2690 lpfc_sli4_mbox_cmd_free(phba, pmb); 2691 else 2692 mempool_free(pmb, phba->mbox_mem_pool); 2693 } 2694 /** 2695 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2696 * @phba: Pointer to HBA context object. 2697 * @pmb: Pointer to mailbox object. 2698 * 2699 * This function is the unreg rpi mailbox completion handler. It 2700 * frees the memory resources associated with the completed mailbox 2701 * command. An additional reference is put on the ndlp to prevent 2702 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2703 * the unreg mailbox command completes, this routine puts the 2704 * reference back. 2705 * 2706 **/ 2707 void 2708 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2709 { 2710 struct lpfc_vport *vport = pmb->vport; 2711 struct lpfc_nodelist *ndlp; 2712 2713 ndlp = pmb->ctx_ndlp; 2714 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2715 if (phba->sli_rev == LPFC_SLI_REV4 && 2716 (bf_get(lpfc_sli_intf_if_type, 2717 &phba->sli4_hba.sli_intf) >= 2718 LPFC_SLI_INTF_IF_TYPE_2)) { 2719 if (ndlp) { 2720 lpfc_printf_vlog( 2721 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2722 "0010 UNREG_LOGIN vpi:%x " 2723 "rpi:%x DID:%x defer x%x flg x%x " 2724 "x%px\n", 2725 vport->vpi, ndlp->nlp_rpi, 2726 ndlp->nlp_DID, ndlp->nlp_defer_did, 2727 ndlp->nlp_flag, 2728 ndlp); 2729 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2730 2731 /* Check to see if there are any deferred 2732 * events to process 2733 */ 2734 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2735 (ndlp->nlp_defer_did != 2736 NLP_EVT_NOTHING_PENDING)) { 2737 lpfc_printf_vlog( 2738 vport, KERN_INFO, LOG_DISCOVERY, 2739 "4111 UNREG cmpl deferred " 2740 "clr x%x on " 2741 "NPort x%x Data: x%x x%px\n", 2742 ndlp->nlp_rpi, ndlp->nlp_DID, 2743 ndlp->nlp_defer_did, ndlp); 2744 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2745 ndlp->nlp_defer_did = 2746 NLP_EVT_NOTHING_PENDING; 2747 lpfc_issue_els_plogi( 2748 vport, ndlp->nlp_DID, 0); 2749 } else { 2750 __lpfc_sli_rpi_release(vport, ndlp); 2751 } 2752 2753 lpfc_nlp_put(ndlp); 2754 } 2755 } 2756 } 2757 2758 mempool_free(pmb, phba->mbox_mem_pool); 2759 } 2760 2761 /** 2762 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2763 * @phba: Pointer to HBA context object. 2764 * 2765 * This function is called with no lock held. This function processes all 2766 * the completed mailbox commands and gives it to upper layers. The interrupt 2767 * service routine processes mailbox completion interrupt and adds completed 2768 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2769 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2770 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2771 * function returns the mailbox commands to the upper layer by calling the 2772 * completion handler function of each mailbox. 2773 **/ 2774 int 2775 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2776 { 2777 MAILBOX_t *pmbox; 2778 LPFC_MBOXQ_t *pmb; 2779 int rc; 2780 LIST_HEAD(cmplq); 2781 2782 phba->sli.slistat.mbox_event++; 2783 2784 /* Get all completed mailboxe buffers into the cmplq */ 2785 spin_lock_irq(&phba->hbalock); 2786 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2787 spin_unlock_irq(&phba->hbalock); 2788 2789 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2790 do { 2791 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2792 if (pmb == NULL) 2793 break; 2794 2795 pmbox = &pmb->u.mb; 2796 2797 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2798 if (pmb->vport) { 2799 lpfc_debugfs_disc_trc(pmb->vport, 2800 LPFC_DISC_TRC_MBOX_VPORT, 2801 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2802 (uint32_t)pmbox->mbxCommand, 2803 pmbox->un.varWords[0], 2804 pmbox->un.varWords[1]); 2805 } 2806 else { 2807 lpfc_debugfs_disc_trc(phba->pport, 2808 LPFC_DISC_TRC_MBOX, 2809 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2810 (uint32_t)pmbox->mbxCommand, 2811 pmbox->un.varWords[0], 2812 pmbox->un.varWords[1]); 2813 } 2814 } 2815 2816 /* 2817 * It is a fatal error if unknown mbox command completion. 2818 */ 2819 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2820 MBX_SHUTDOWN) { 2821 /* Unknown mailbox command compl */ 2822 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2823 "(%d):0323 Unknown Mailbox command " 2824 "x%x (x%x/x%x) Cmpl\n", 2825 pmb->vport ? pmb->vport->vpi : 2826 LPFC_VPORT_UNKNOWN, 2827 pmbox->mbxCommand, 2828 lpfc_sli_config_mbox_subsys_get(phba, 2829 pmb), 2830 lpfc_sli_config_mbox_opcode_get(phba, 2831 pmb)); 2832 phba->link_state = LPFC_HBA_ERROR; 2833 phba->work_hs = HS_FFER3; 2834 lpfc_handle_eratt(phba); 2835 continue; 2836 } 2837 2838 if (pmbox->mbxStatus) { 2839 phba->sli.slistat.mbox_stat_err++; 2840 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2841 /* Mbox cmd cmpl error - RETRYing */ 2842 lpfc_printf_log(phba, KERN_INFO, 2843 LOG_MBOX | LOG_SLI, 2844 "(%d):0305 Mbox cmd cmpl " 2845 "error - RETRYing Data: x%x " 2846 "(x%x/x%x) x%x x%x x%x\n", 2847 pmb->vport ? pmb->vport->vpi : 2848 LPFC_VPORT_UNKNOWN, 2849 pmbox->mbxCommand, 2850 lpfc_sli_config_mbox_subsys_get(phba, 2851 pmb), 2852 lpfc_sli_config_mbox_opcode_get(phba, 2853 pmb), 2854 pmbox->mbxStatus, 2855 pmbox->un.varWords[0], 2856 pmb->vport ? pmb->vport->port_state : 2857 LPFC_VPORT_UNKNOWN); 2858 pmbox->mbxStatus = 0; 2859 pmbox->mbxOwner = OWN_HOST; 2860 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2861 if (rc != MBX_NOT_FINISHED) 2862 continue; 2863 } 2864 } 2865 2866 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2867 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2868 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2869 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2870 "x%x x%x x%x\n", 2871 pmb->vport ? pmb->vport->vpi : 0, 2872 pmbox->mbxCommand, 2873 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2874 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2875 pmb->mbox_cmpl, 2876 *((uint32_t *) pmbox), 2877 pmbox->un.varWords[0], 2878 pmbox->un.varWords[1], 2879 pmbox->un.varWords[2], 2880 pmbox->un.varWords[3], 2881 pmbox->un.varWords[4], 2882 pmbox->un.varWords[5], 2883 pmbox->un.varWords[6], 2884 pmbox->un.varWords[7], 2885 pmbox->un.varWords[8], 2886 pmbox->un.varWords[9], 2887 pmbox->un.varWords[10]); 2888 2889 if (pmb->mbox_cmpl) 2890 pmb->mbox_cmpl(phba,pmb); 2891 } while (1); 2892 return 0; 2893 } 2894 2895 /** 2896 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2897 * @phba: Pointer to HBA context object. 2898 * @pring: Pointer to driver SLI ring object. 2899 * @tag: buffer tag. 2900 * 2901 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2902 * is set in the tag the buffer is posted for a particular exchange, 2903 * the function will return the buffer without replacing the buffer. 2904 * If the buffer is for unsolicited ELS or CT traffic, this function 2905 * returns the buffer and also posts another buffer to the firmware. 2906 **/ 2907 static struct lpfc_dmabuf * 2908 lpfc_sli_get_buff(struct lpfc_hba *phba, 2909 struct lpfc_sli_ring *pring, 2910 uint32_t tag) 2911 { 2912 struct hbq_dmabuf *hbq_entry; 2913 2914 if (tag & QUE_BUFTAG_BIT) 2915 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2916 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2917 if (!hbq_entry) 2918 return NULL; 2919 return &hbq_entry->dbuf; 2920 } 2921 2922 /** 2923 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2924 * containing a NVME LS request. 2925 * @phba: pointer to lpfc hba data structure. 2926 * @piocb: pointer to the iocbq struct representing the sequence starting 2927 * frame. 2928 * 2929 * This routine initially validates the NVME LS, validates there is a login 2930 * with the port that sent the LS, and then calls the appropriate nvme host 2931 * or target LS request handler. 2932 **/ 2933 static void 2934 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2935 { 2936 struct lpfc_nodelist *ndlp; 2937 struct lpfc_dmabuf *d_buf; 2938 struct hbq_dmabuf *nvmebuf; 2939 struct fc_frame_header *fc_hdr; 2940 struct lpfc_async_xchg_ctx *axchg = NULL; 2941 char *failwhy = NULL; 2942 uint32_t oxid, sid, did, fctl, size; 2943 int ret = 1; 2944 2945 d_buf = piocb->context2; 2946 2947 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2948 fc_hdr = nvmebuf->hbuf.virt; 2949 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2950 sid = sli4_sid_from_fc_hdr(fc_hdr); 2951 did = sli4_did_from_fc_hdr(fc_hdr); 2952 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2953 fc_hdr->fh_f_ctl[1] << 8 | 2954 fc_hdr->fh_f_ctl[2]); 2955 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2956 2957 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2958 oxid, size, sid); 2959 2960 if (phba->pport->load_flag & FC_UNLOADING) { 2961 failwhy = "Driver Unloading"; 2962 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2963 failwhy = "NVME FC4 Disabled"; 2964 } else if (!phba->nvmet_support && !phba->pport->localport) { 2965 failwhy = "No Localport"; 2966 } else if (phba->nvmet_support && !phba->targetport) { 2967 failwhy = "No Targetport"; 2968 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2969 failwhy = "Bad NVME LS R_CTL"; 2970 } else if (unlikely((fctl & 0x00FF0000) != 2971 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2972 failwhy = "Bad NVME LS F_CTL"; 2973 } else { 2974 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2975 if (!axchg) 2976 failwhy = "No CTX memory"; 2977 } 2978 2979 if (unlikely(failwhy)) { 2980 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2981 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2982 sid, oxid, failwhy); 2983 goto out_fail; 2984 } 2985 2986 /* validate the source of the LS is logged in */ 2987 ndlp = lpfc_findnode_did(phba->pport, sid); 2988 if (!ndlp || 2989 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2990 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2991 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2992 "6216 NVME Unsol rcv: No ndlp: " 2993 "NPort_ID x%x oxid x%x\n", 2994 sid, oxid); 2995 goto out_fail; 2996 } 2997 2998 axchg->phba = phba; 2999 axchg->ndlp = ndlp; 3000 axchg->size = size; 3001 axchg->oxid = oxid; 3002 axchg->sid = sid; 3003 axchg->wqeq = NULL; 3004 axchg->state = LPFC_NVME_STE_LS_RCV; 3005 axchg->entry_cnt = 1; 3006 axchg->rqb_buffer = (void *)nvmebuf; 3007 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3008 axchg->payload = nvmebuf->dbuf.virt; 3009 INIT_LIST_HEAD(&axchg->list); 3010 3011 if (phba->nvmet_support) { 3012 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3013 spin_lock_irq(&ndlp->lock); 3014 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3015 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3016 spin_unlock_irq(&ndlp->lock); 3017 3018 /* This reference is a single occurrence to hold the 3019 * node valid until the nvmet transport calls 3020 * host_release. 3021 */ 3022 if (!lpfc_nlp_get(ndlp)) 3023 goto out_fail; 3024 3025 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3026 "6206 NVMET unsol ls_req ndlp x%px " 3027 "DID x%x xflags x%x refcnt %d\n", 3028 ndlp, ndlp->nlp_DID, 3029 ndlp->fc4_xpt_flags, 3030 kref_read(&ndlp->kref)); 3031 } else { 3032 spin_unlock_irq(&ndlp->lock); 3033 } 3034 } else { 3035 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3036 } 3037 3038 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3039 if (!ret) 3040 return; 3041 3042 out_fail: 3043 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3044 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3045 "NVMe%s handler failed %d\n", 3046 did, sid, oxid, 3047 (phba->nvmet_support) ? "T" : "I", ret); 3048 3049 /* recycle receive buffer */ 3050 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3051 3052 /* If start of new exchange, abort it */ 3053 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3054 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3055 3056 if (ret) 3057 kfree(axchg); 3058 } 3059 3060 /** 3061 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3062 * @phba: Pointer to HBA context object. 3063 * @pring: Pointer to driver SLI ring object. 3064 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3065 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3066 * @fch_type: the type for the first frame of the sequence. 3067 * 3068 * This function is called with no lock held. This function uses the r_ctl and 3069 * type of the received sequence to find the correct callback function to call 3070 * to process the sequence. 3071 **/ 3072 static int 3073 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3074 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3075 uint32_t fch_type) 3076 { 3077 int i; 3078 3079 switch (fch_type) { 3080 case FC_TYPE_NVME: 3081 lpfc_nvme_unsol_ls_handler(phba, saveq); 3082 return 1; 3083 default: 3084 break; 3085 } 3086 3087 /* unSolicited Responses */ 3088 if (pring->prt[0].profile) { 3089 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3090 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3091 saveq); 3092 return 1; 3093 } 3094 /* We must search, based on rctl / type 3095 for the right routine */ 3096 for (i = 0; i < pring->num_mask; i++) { 3097 if ((pring->prt[i].rctl == fch_r_ctl) && 3098 (pring->prt[i].type == fch_type)) { 3099 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3100 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3101 (phba, pring, saveq); 3102 return 1; 3103 } 3104 } 3105 return 0; 3106 } 3107 3108 /** 3109 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3110 * @phba: Pointer to HBA context object. 3111 * @pring: Pointer to driver SLI ring object. 3112 * @saveq: Pointer to the unsolicited iocb. 3113 * 3114 * This function is called with no lock held by the ring event handler 3115 * when there is an unsolicited iocb posted to the response ring by the 3116 * firmware. This function gets the buffer associated with the iocbs 3117 * and calls the event handler for the ring. This function handles both 3118 * qring buffers and hbq buffers. 3119 * When the function returns 1 the caller can free the iocb object otherwise 3120 * upper layer functions will free the iocb objects. 3121 **/ 3122 static int 3123 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3124 struct lpfc_iocbq *saveq) 3125 { 3126 IOCB_t * irsp; 3127 WORD5 * w5p; 3128 uint32_t Rctl, Type; 3129 struct lpfc_iocbq *iocbq; 3130 struct lpfc_dmabuf *dmzbuf; 3131 3132 irsp = &(saveq->iocb); 3133 3134 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3135 if (pring->lpfc_sli_rcv_async_status) 3136 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3137 else 3138 lpfc_printf_log(phba, 3139 KERN_WARNING, 3140 LOG_SLI, 3141 "0316 Ring %d handler: unexpected " 3142 "ASYNC_STATUS iocb received evt_code " 3143 "0x%x\n", 3144 pring->ringno, 3145 irsp->un.asyncstat.evt_code); 3146 return 1; 3147 } 3148 3149 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3150 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3151 if (irsp->ulpBdeCount > 0) { 3152 dmzbuf = lpfc_sli_get_buff(phba, pring, 3153 irsp->un.ulpWord[3]); 3154 lpfc_in_buf_free(phba, dmzbuf); 3155 } 3156 3157 if (irsp->ulpBdeCount > 1) { 3158 dmzbuf = lpfc_sli_get_buff(phba, pring, 3159 irsp->unsli3.sli3Words[3]); 3160 lpfc_in_buf_free(phba, dmzbuf); 3161 } 3162 3163 if (irsp->ulpBdeCount > 2) { 3164 dmzbuf = lpfc_sli_get_buff(phba, pring, 3165 irsp->unsli3.sli3Words[7]); 3166 lpfc_in_buf_free(phba, dmzbuf); 3167 } 3168 3169 return 1; 3170 } 3171 3172 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3173 if (irsp->ulpBdeCount != 0) { 3174 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3175 irsp->un.ulpWord[3]); 3176 if (!saveq->context2) 3177 lpfc_printf_log(phba, 3178 KERN_ERR, 3179 LOG_SLI, 3180 "0341 Ring %d Cannot find buffer for " 3181 "an unsolicited iocb. tag 0x%x\n", 3182 pring->ringno, 3183 irsp->un.ulpWord[3]); 3184 } 3185 if (irsp->ulpBdeCount == 2) { 3186 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3187 irsp->unsli3.sli3Words[7]); 3188 if (!saveq->context3) 3189 lpfc_printf_log(phba, 3190 KERN_ERR, 3191 LOG_SLI, 3192 "0342 Ring %d Cannot find buffer for an" 3193 " unsolicited iocb. tag 0x%x\n", 3194 pring->ringno, 3195 irsp->unsli3.sli3Words[7]); 3196 } 3197 list_for_each_entry(iocbq, &saveq->list, list) { 3198 irsp = &(iocbq->iocb); 3199 if (irsp->ulpBdeCount != 0) { 3200 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3201 irsp->un.ulpWord[3]); 3202 if (!iocbq->context2) 3203 lpfc_printf_log(phba, 3204 KERN_ERR, 3205 LOG_SLI, 3206 "0343 Ring %d Cannot find " 3207 "buffer for an unsolicited iocb" 3208 ". tag 0x%x\n", pring->ringno, 3209 irsp->un.ulpWord[3]); 3210 } 3211 if (irsp->ulpBdeCount == 2) { 3212 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3213 irsp->unsli3.sli3Words[7]); 3214 if (!iocbq->context3) 3215 lpfc_printf_log(phba, 3216 KERN_ERR, 3217 LOG_SLI, 3218 "0344 Ring %d Cannot find " 3219 "buffer for an unsolicited " 3220 "iocb. tag 0x%x\n", 3221 pring->ringno, 3222 irsp->unsli3.sli3Words[7]); 3223 } 3224 } 3225 } 3226 if (irsp->ulpBdeCount != 0 && 3227 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3228 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3229 int found = 0; 3230 3231 /* search continue save q for same XRI */ 3232 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3233 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3234 saveq->iocb.unsli3.rcvsli3.ox_id) { 3235 list_add_tail(&saveq->list, &iocbq->list); 3236 found = 1; 3237 break; 3238 } 3239 } 3240 if (!found) 3241 list_add_tail(&saveq->clist, 3242 &pring->iocb_continue_saveq); 3243 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3244 list_del_init(&iocbq->clist); 3245 saveq = iocbq; 3246 irsp = &(saveq->iocb); 3247 } else 3248 return 0; 3249 } 3250 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3251 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3252 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3253 Rctl = FC_RCTL_ELS_REQ; 3254 Type = FC_TYPE_ELS; 3255 } else { 3256 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3257 Rctl = w5p->hcsw.Rctl; 3258 Type = w5p->hcsw.Type; 3259 3260 /* Firmware Workaround */ 3261 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3262 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3263 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3264 Rctl = FC_RCTL_ELS_REQ; 3265 Type = FC_TYPE_ELS; 3266 w5p->hcsw.Rctl = Rctl; 3267 w5p->hcsw.Type = Type; 3268 } 3269 } 3270 3271 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3272 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3273 "0313 Ring %d handler: unexpected Rctl x%x " 3274 "Type x%x received\n", 3275 pring->ringno, Rctl, Type); 3276 3277 return 1; 3278 } 3279 3280 /** 3281 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3282 * @phba: Pointer to HBA context object. 3283 * @pring: Pointer to driver SLI ring object. 3284 * @prspiocb: Pointer to response iocb object. 3285 * 3286 * This function looks up the iocb_lookup table to get the command iocb 3287 * corresponding to the given response iocb using the iotag of the 3288 * response iocb. The driver calls this function with the hbalock held 3289 * for SLI3 ports or the ring lock held for SLI4 ports. 3290 * This function returns the command iocb object if it finds the command 3291 * iocb else returns NULL. 3292 **/ 3293 static struct lpfc_iocbq * 3294 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3295 struct lpfc_sli_ring *pring, 3296 struct lpfc_iocbq *prspiocb) 3297 { 3298 struct lpfc_iocbq *cmd_iocb = NULL; 3299 uint16_t iotag; 3300 spinlock_t *temp_lock = NULL; 3301 unsigned long iflag = 0; 3302 3303 if (phba->sli_rev == LPFC_SLI_REV4) 3304 temp_lock = &pring->ring_lock; 3305 else 3306 temp_lock = &phba->hbalock; 3307 3308 spin_lock_irqsave(temp_lock, iflag); 3309 iotag = prspiocb->iocb.ulpIoTag; 3310 3311 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3312 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3313 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3314 /* remove from txcmpl queue list */ 3315 list_del_init(&cmd_iocb->list); 3316 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3317 pring->txcmplq_cnt--; 3318 spin_unlock_irqrestore(temp_lock, iflag); 3319 return cmd_iocb; 3320 } 3321 } 3322 3323 spin_unlock_irqrestore(temp_lock, iflag); 3324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3325 "0317 iotag x%x is out of " 3326 "range: max iotag x%x wd0 x%x\n", 3327 iotag, phba->sli.last_iotag, 3328 *(((uint32_t *) &prspiocb->iocb) + 7)); 3329 return NULL; 3330 } 3331 3332 /** 3333 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3334 * @phba: Pointer to HBA context object. 3335 * @pring: Pointer to driver SLI ring object. 3336 * @iotag: IOCB tag. 3337 * 3338 * This function looks up the iocb_lookup table to get the command iocb 3339 * corresponding to the given iotag. The driver calls this function with 3340 * the ring lock held because this function is an SLI4 port only helper. 3341 * This function returns the command iocb object if it finds the command 3342 * iocb else returns NULL. 3343 **/ 3344 static struct lpfc_iocbq * 3345 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3346 struct lpfc_sli_ring *pring, uint16_t iotag) 3347 { 3348 struct lpfc_iocbq *cmd_iocb = NULL; 3349 spinlock_t *temp_lock = NULL; 3350 unsigned long iflag = 0; 3351 3352 if (phba->sli_rev == LPFC_SLI_REV4) 3353 temp_lock = &pring->ring_lock; 3354 else 3355 temp_lock = &phba->hbalock; 3356 3357 spin_lock_irqsave(temp_lock, iflag); 3358 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3359 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3360 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3361 /* remove from txcmpl queue list */ 3362 list_del_init(&cmd_iocb->list); 3363 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3364 pring->txcmplq_cnt--; 3365 spin_unlock_irqrestore(temp_lock, iflag); 3366 return cmd_iocb; 3367 } 3368 } 3369 3370 spin_unlock_irqrestore(temp_lock, iflag); 3371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3372 "0372 iotag x%x lookup error: max iotag (x%x) " 3373 "iocb_flag x%x\n", 3374 iotag, phba->sli.last_iotag, 3375 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3376 return NULL; 3377 } 3378 3379 /** 3380 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3381 * @phba: Pointer to HBA context object. 3382 * @pring: Pointer to driver SLI ring object. 3383 * @saveq: Pointer to the response iocb to be processed. 3384 * 3385 * This function is called by the ring event handler for non-fcp 3386 * rings when there is a new response iocb in the response ring. 3387 * The caller is not required to hold any locks. This function 3388 * gets the command iocb associated with the response iocb and 3389 * calls the completion handler for the command iocb. If there 3390 * is no completion handler, the function will free the resources 3391 * associated with command iocb. If the response iocb is for 3392 * an already aborted command iocb, the status of the completion 3393 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3394 * This function always returns 1. 3395 **/ 3396 static int 3397 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3398 struct lpfc_iocbq *saveq) 3399 { 3400 struct lpfc_iocbq *cmdiocbp; 3401 int rc = 1; 3402 unsigned long iflag; 3403 3404 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3405 if (cmdiocbp) { 3406 if (cmdiocbp->iocb_cmpl) { 3407 /* 3408 * If an ELS command failed send an event to mgmt 3409 * application. 3410 */ 3411 if (saveq->iocb.ulpStatus && 3412 (pring->ringno == LPFC_ELS_RING) && 3413 (cmdiocbp->iocb.ulpCommand == 3414 CMD_ELS_REQUEST64_CR)) 3415 lpfc_send_els_failure_event(phba, 3416 cmdiocbp, saveq); 3417 3418 /* 3419 * Post all ELS completions to the worker thread. 3420 * All other are passed to the completion callback. 3421 */ 3422 if (pring->ringno == LPFC_ELS_RING) { 3423 if ((phba->sli_rev < LPFC_SLI_REV4) && 3424 (cmdiocbp->iocb_flag & 3425 LPFC_DRIVER_ABORTED)) { 3426 spin_lock_irqsave(&phba->hbalock, 3427 iflag); 3428 cmdiocbp->iocb_flag &= 3429 ~LPFC_DRIVER_ABORTED; 3430 spin_unlock_irqrestore(&phba->hbalock, 3431 iflag); 3432 saveq->iocb.ulpStatus = 3433 IOSTAT_LOCAL_REJECT; 3434 saveq->iocb.un.ulpWord[4] = 3435 IOERR_SLI_ABORTED; 3436 3437 /* Firmware could still be in progress 3438 * of DMAing payload, so don't free data 3439 * buffer till after a hbeat. 3440 */ 3441 spin_lock_irqsave(&phba->hbalock, 3442 iflag); 3443 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3444 spin_unlock_irqrestore(&phba->hbalock, 3445 iflag); 3446 } 3447 if (phba->sli_rev == LPFC_SLI_REV4) { 3448 if (saveq->iocb_flag & 3449 LPFC_EXCHANGE_BUSY) { 3450 /* Set cmdiocb flag for the 3451 * exchange busy so sgl (xri) 3452 * will not be released until 3453 * the abort xri is received 3454 * from hba. 3455 */ 3456 spin_lock_irqsave( 3457 &phba->hbalock, iflag); 3458 cmdiocbp->iocb_flag |= 3459 LPFC_EXCHANGE_BUSY; 3460 spin_unlock_irqrestore( 3461 &phba->hbalock, iflag); 3462 } 3463 if (cmdiocbp->iocb_flag & 3464 LPFC_DRIVER_ABORTED) { 3465 /* 3466 * Clear LPFC_DRIVER_ABORTED 3467 * bit in case it was driver 3468 * initiated abort. 3469 */ 3470 spin_lock_irqsave( 3471 &phba->hbalock, iflag); 3472 cmdiocbp->iocb_flag &= 3473 ~LPFC_DRIVER_ABORTED; 3474 spin_unlock_irqrestore( 3475 &phba->hbalock, iflag); 3476 cmdiocbp->iocb.ulpStatus = 3477 IOSTAT_LOCAL_REJECT; 3478 cmdiocbp->iocb.un.ulpWord[4] = 3479 IOERR_ABORT_REQUESTED; 3480 /* 3481 * For SLI4, irsiocb contains 3482 * NO_XRI in sli_xritag, it 3483 * shall not affect releasing 3484 * sgl (xri) process. 3485 */ 3486 saveq->iocb.ulpStatus = 3487 IOSTAT_LOCAL_REJECT; 3488 saveq->iocb.un.ulpWord[4] = 3489 IOERR_SLI_ABORTED; 3490 spin_lock_irqsave( 3491 &phba->hbalock, iflag); 3492 saveq->iocb_flag |= 3493 LPFC_DELAY_MEM_FREE; 3494 spin_unlock_irqrestore( 3495 &phba->hbalock, iflag); 3496 } 3497 } 3498 } 3499 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3500 } else 3501 lpfc_sli_release_iocbq(phba, cmdiocbp); 3502 } else { 3503 /* 3504 * Unknown initiating command based on the response iotag. 3505 * This could be the case on the ELS ring because of 3506 * lpfc_els_abort(). 3507 */ 3508 if (pring->ringno != LPFC_ELS_RING) { 3509 /* 3510 * Ring <ringno> handler: unexpected completion IoTag 3511 * <IoTag> 3512 */ 3513 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3514 "0322 Ring %d handler: " 3515 "unexpected completion IoTag x%x " 3516 "Data: x%x x%x x%x x%x\n", 3517 pring->ringno, 3518 saveq->iocb.ulpIoTag, 3519 saveq->iocb.ulpStatus, 3520 saveq->iocb.un.ulpWord[4], 3521 saveq->iocb.ulpCommand, 3522 saveq->iocb.ulpContext); 3523 } 3524 } 3525 3526 return rc; 3527 } 3528 3529 /** 3530 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3531 * @phba: Pointer to HBA context object. 3532 * @pring: Pointer to driver SLI ring object. 3533 * 3534 * This function is called from the iocb ring event handlers when 3535 * put pointer is ahead of the get pointer for a ring. This function signal 3536 * an error attention condition to the worker thread and the worker 3537 * thread will transition the HBA to offline state. 3538 **/ 3539 static void 3540 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3541 { 3542 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3543 /* 3544 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3545 * rsp ring <portRspMax> 3546 */ 3547 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3548 "0312 Ring %d handler: portRspPut %d " 3549 "is bigger than rsp ring %d\n", 3550 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3551 pring->sli.sli3.numRiocb); 3552 3553 phba->link_state = LPFC_HBA_ERROR; 3554 3555 /* 3556 * All error attention handlers are posted to 3557 * worker thread 3558 */ 3559 phba->work_ha |= HA_ERATT; 3560 phba->work_hs = HS_FFER3; 3561 3562 lpfc_worker_wake_up(phba); 3563 3564 return; 3565 } 3566 3567 /** 3568 * lpfc_poll_eratt - Error attention polling timer timeout handler 3569 * @t: Context to fetch pointer to address of HBA context object from. 3570 * 3571 * This function is invoked by the Error Attention polling timer when the 3572 * timer times out. It will check the SLI Error Attention register for 3573 * possible attention events. If so, it will post an Error Attention event 3574 * and wake up worker thread to process it. Otherwise, it will set up the 3575 * Error Attention polling timer for the next poll. 3576 **/ 3577 void lpfc_poll_eratt(struct timer_list *t) 3578 { 3579 struct lpfc_hba *phba; 3580 uint32_t eratt = 0; 3581 uint64_t sli_intr, cnt; 3582 3583 phba = from_timer(phba, t, eratt_poll); 3584 3585 /* Here we will also keep track of interrupts per sec of the hba */ 3586 sli_intr = phba->sli.slistat.sli_intr; 3587 3588 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3589 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3590 sli_intr); 3591 else 3592 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3593 3594 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3595 do_div(cnt, phba->eratt_poll_interval); 3596 phba->sli.slistat.sli_ips = cnt; 3597 3598 phba->sli.slistat.sli_prev_intr = sli_intr; 3599 3600 /* Check chip HA register for error event */ 3601 eratt = lpfc_sli_check_eratt(phba); 3602 3603 if (eratt) 3604 /* Tell the worker thread there is work to do */ 3605 lpfc_worker_wake_up(phba); 3606 else 3607 /* Restart the timer for next eratt poll */ 3608 mod_timer(&phba->eratt_poll, 3609 jiffies + 3610 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3611 return; 3612 } 3613 3614 3615 /** 3616 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3617 * @phba: Pointer to HBA context object. 3618 * @pring: Pointer to driver SLI ring object. 3619 * @mask: Host attention register mask for this ring. 3620 * 3621 * This function is called from the interrupt context when there is a ring 3622 * event for the fcp ring. The caller does not hold any lock. 3623 * The function processes each response iocb in the response ring until it 3624 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3625 * LE bit set. The function will call the completion handler of the command iocb 3626 * if the response iocb indicates a completion for a command iocb or it is 3627 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3628 * function if this is an unsolicited iocb. 3629 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3630 * to check it explicitly. 3631 */ 3632 int 3633 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3634 struct lpfc_sli_ring *pring, uint32_t mask) 3635 { 3636 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3637 IOCB_t *irsp = NULL; 3638 IOCB_t *entry = NULL; 3639 struct lpfc_iocbq *cmdiocbq = NULL; 3640 struct lpfc_iocbq rspiocbq; 3641 uint32_t status; 3642 uint32_t portRspPut, portRspMax; 3643 int rc = 1; 3644 lpfc_iocb_type type; 3645 unsigned long iflag; 3646 uint32_t rsp_cmpl = 0; 3647 3648 spin_lock_irqsave(&phba->hbalock, iflag); 3649 pring->stats.iocb_event++; 3650 3651 /* 3652 * The next available response entry should never exceed the maximum 3653 * entries. If it does, treat it as an adapter hardware error. 3654 */ 3655 portRspMax = pring->sli.sli3.numRiocb; 3656 portRspPut = le32_to_cpu(pgp->rspPutInx); 3657 if (unlikely(portRspPut >= portRspMax)) { 3658 lpfc_sli_rsp_pointers_error(phba, pring); 3659 spin_unlock_irqrestore(&phba->hbalock, iflag); 3660 return 1; 3661 } 3662 if (phba->fcp_ring_in_use) { 3663 spin_unlock_irqrestore(&phba->hbalock, iflag); 3664 return 1; 3665 } else 3666 phba->fcp_ring_in_use = 1; 3667 3668 rmb(); 3669 while (pring->sli.sli3.rspidx != portRspPut) { 3670 /* 3671 * Fetch an entry off the ring and copy it into a local data 3672 * structure. The copy involves a byte-swap since the 3673 * network byte order and pci byte orders are different. 3674 */ 3675 entry = lpfc_resp_iocb(phba, pring); 3676 phba->last_completion_time = jiffies; 3677 3678 if (++pring->sli.sli3.rspidx >= portRspMax) 3679 pring->sli.sli3.rspidx = 0; 3680 3681 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3682 (uint32_t *) &rspiocbq.iocb, 3683 phba->iocb_rsp_size); 3684 INIT_LIST_HEAD(&(rspiocbq.list)); 3685 irsp = &rspiocbq.iocb; 3686 3687 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3688 pring->stats.iocb_rsp++; 3689 rsp_cmpl++; 3690 3691 if (unlikely(irsp->ulpStatus)) { 3692 /* 3693 * If resource errors reported from HBA, reduce 3694 * queuedepths of the SCSI device. 3695 */ 3696 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3697 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3698 IOERR_NO_RESOURCES)) { 3699 spin_unlock_irqrestore(&phba->hbalock, iflag); 3700 phba->lpfc_rampdown_queue_depth(phba); 3701 spin_lock_irqsave(&phba->hbalock, iflag); 3702 } 3703 3704 /* Rsp ring <ringno> error: IOCB */ 3705 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3706 "0336 Rsp Ring %d error: IOCB Data: " 3707 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3708 pring->ringno, 3709 irsp->un.ulpWord[0], 3710 irsp->un.ulpWord[1], 3711 irsp->un.ulpWord[2], 3712 irsp->un.ulpWord[3], 3713 irsp->un.ulpWord[4], 3714 irsp->un.ulpWord[5], 3715 *(uint32_t *)&irsp->un1, 3716 *((uint32_t *)&irsp->un1 + 1)); 3717 } 3718 3719 switch (type) { 3720 case LPFC_ABORT_IOCB: 3721 case LPFC_SOL_IOCB: 3722 /* 3723 * Idle exchange closed via ABTS from port. No iocb 3724 * resources need to be recovered. 3725 */ 3726 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3727 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3728 "0333 IOCB cmd 0x%x" 3729 " processed. Skipping" 3730 " completion\n", 3731 irsp->ulpCommand); 3732 break; 3733 } 3734 3735 spin_unlock_irqrestore(&phba->hbalock, iflag); 3736 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3737 &rspiocbq); 3738 spin_lock_irqsave(&phba->hbalock, iflag); 3739 if (unlikely(!cmdiocbq)) 3740 break; 3741 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3742 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3743 if (cmdiocbq->iocb_cmpl) { 3744 spin_unlock_irqrestore(&phba->hbalock, iflag); 3745 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3746 &rspiocbq); 3747 spin_lock_irqsave(&phba->hbalock, iflag); 3748 } 3749 break; 3750 case LPFC_UNSOL_IOCB: 3751 spin_unlock_irqrestore(&phba->hbalock, iflag); 3752 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3753 spin_lock_irqsave(&phba->hbalock, iflag); 3754 break; 3755 default: 3756 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3757 char adaptermsg[LPFC_MAX_ADPTMSG]; 3758 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3759 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3760 MAX_MSG_DATA); 3761 dev_warn(&((phba->pcidev)->dev), 3762 "lpfc%d: %s\n", 3763 phba->brd_no, adaptermsg); 3764 } else { 3765 /* Unknown IOCB command */ 3766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3767 "0334 Unknown IOCB command " 3768 "Data: x%x, x%x x%x x%x x%x\n", 3769 type, irsp->ulpCommand, 3770 irsp->ulpStatus, 3771 irsp->ulpIoTag, 3772 irsp->ulpContext); 3773 } 3774 break; 3775 } 3776 3777 /* 3778 * The response IOCB has been processed. Update the ring 3779 * pointer in SLIM. If the port response put pointer has not 3780 * been updated, sync the pgp->rspPutInx and fetch the new port 3781 * response put pointer. 3782 */ 3783 writel(pring->sli.sli3.rspidx, 3784 &phba->host_gp[pring->ringno].rspGetInx); 3785 3786 if (pring->sli.sli3.rspidx == portRspPut) 3787 portRspPut = le32_to_cpu(pgp->rspPutInx); 3788 } 3789 3790 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3791 pring->stats.iocb_rsp_full++; 3792 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3793 writel(status, phba->CAregaddr); 3794 readl(phba->CAregaddr); 3795 } 3796 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3797 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3798 pring->stats.iocb_cmd_empty++; 3799 3800 /* Force update of the local copy of cmdGetInx */ 3801 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3802 lpfc_sli_resume_iocb(phba, pring); 3803 3804 if ((pring->lpfc_sli_cmd_available)) 3805 (pring->lpfc_sli_cmd_available) (phba, pring); 3806 3807 } 3808 3809 phba->fcp_ring_in_use = 0; 3810 spin_unlock_irqrestore(&phba->hbalock, iflag); 3811 return rc; 3812 } 3813 3814 /** 3815 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3816 * @phba: Pointer to HBA context object. 3817 * @pring: Pointer to driver SLI ring object. 3818 * @rspiocbp: Pointer to driver response IOCB object. 3819 * 3820 * This function is called from the worker thread when there is a slow-path 3821 * response IOCB to process. This function chains all the response iocbs until 3822 * seeing the iocb with the LE bit set. The function will call 3823 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3824 * completion of a command iocb. The function will call the 3825 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3826 * The function frees the resources or calls the completion handler if this 3827 * iocb is an abort completion. The function returns NULL when the response 3828 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3829 * this function shall chain the iocb on to the iocb_continueq and return the 3830 * response iocb passed in. 3831 **/ 3832 static struct lpfc_iocbq * 3833 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3834 struct lpfc_iocbq *rspiocbp) 3835 { 3836 struct lpfc_iocbq *saveq; 3837 struct lpfc_iocbq *cmdiocbp; 3838 struct lpfc_iocbq *next_iocb; 3839 IOCB_t *irsp = NULL; 3840 uint32_t free_saveq; 3841 uint8_t iocb_cmd_type; 3842 lpfc_iocb_type type; 3843 unsigned long iflag; 3844 int rc; 3845 3846 spin_lock_irqsave(&phba->hbalock, iflag); 3847 /* First add the response iocb to the countinueq list */ 3848 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3849 pring->iocb_continueq_cnt++; 3850 3851 /* Now, determine whether the list is completed for processing */ 3852 irsp = &rspiocbp->iocb; 3853 if (irsp->ulpLe) { 3854 /* 3855 * By default, the driver expects to free all resources 3856 * associated with this iocb completion. 3857 */ 3858 free_saveq = 1; 3859 saveq = list_get_first(&pring->iocb_continueq, 3860 struct lpfc_iocbq, list); 3861 irsp = &(saveq->iocb); 3862 list_del_init(&pring->iocb_continueq); 3863 pring->iocb_continueq_cnt = 0; 3864 3865 pring->stats.iocb_rsp++; 3866 3867 /* 3868 * If resource errors reported from HBA, reduce 3869 * queuedepths of the SCSI device. 3870 */ 3871 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3872 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3873 IOERR_NO_RESOURCES)) { 3874 spin_unlock_irqrestore(&phba->hbalock, iflag); 3875 phba->lpfc_rampdown_queue_depth(phba); 3876 spin_lock_irqsave(&phba->hbalock, iflag); 3877 } 3878 3879 if (irsp->ulpStatus) { 3880 /* Rsp ring <ringno> error: IOCB */ 3881 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3882 "0328 Rsp Ring %d error: " 3883 "IOCB Data: " 3884 "x%x x%x x%x x%x " 3885 "x%x x%x x%x x%x " 3886 "x%x x%x x%x x%x " 3887 "x%x x%x x%x x%x\n", 3888 pring->ringno, 3889 irsp->un.ulpWord[0], 3890 irsp->un.ulpWord[1], 3891 irsp->un.ulpWord[2], 3892 irsp->un.ulpWord[3], 3893 irsp->un.ulpWord[4], 3894 irsp->un.ulpWord[5], 3895 *(((uint32_t *) irsp) + 6), 3896 *(((uint32_t *) irsp) + 7), 3897 *(((uint32_t *) irsp) + 8), 3898 *(((uint32_t *) irsp) + 9), 3899 *(((uint32_t *) irsp) + 10), 3900 *(((uint32_t *) irsp) + 11), 3901 *(((uint32_t *) irsp) + 12), 3902 *(((uint32_t *) irsp) + 13), 3903 *(((uint32_t *) irsp) + 14), 3904 *(((uint32_t *) irsp) + 15)); 3905 } 3906 3907 /* 3908 * Fetch the IOCB command type and call the correct completion 3909 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3910 * get freed back to the lpfc_iocb_list by the discovery 3911 * kernel thread. 3912 */ 3913 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3914 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3915 switch (type) { 3916 case LPFC_SOL_IOCB: 3917 spin_unlock_irqrestore(&phba->hbalock, iflag); 3918 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3919 spin_lock_irqsave(&phba->hbalock, iflag); 3920 break; 3921 3922 case LPFC_UNSOL_IOCB: 3923 spin_unlock_irqrestore(&phba->hbalock, iflag); 3924 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3925 spin_lock_irqsave(&phba->hbalock, iflag); 3926 if (!rc) 3927 free_saveq = 0; 3928 break; 3929 3930 case LPFC_ABORT_IOCB: 3931 cmdiocbp = NULL; 3932 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3933 spin_unlock_irqrestore(&phba->hbalock, iflag); 3934 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3935 saveq); 3936 spin_lock_irqsave(&phba->hbalock, iflag); 3937 } 3938 if (cmdiocbp) { 3939 /* Call the specified completion routine */ 3940 if (cmdiocbp->iocb_cmpl) { 3941 spin_unlock_irqrestore(&phba->hbalock, 3942 iflag); 3943 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3944 saveq); 3945 spin_lock_irqsave(&phba->hbalock, 3946 iflag); 3947 } else 3948 __lpfc_sli_release_iocbq(phba, 3949 cmdiocbp); 3950 } 3951 break; 3952 3953 case LPFC_UNKNOWN_IOCB: 3954 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3955 char adaptermsg[LPFC_MAX_ADPTMSG]; 3956 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3957 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3958 MAX_MSG_DATA); 3959 dev_warn(&((phba->pcidev)->dev), 3960 "lpfc%d: %s\n", 3961 phba->brd_no, adaptermsg); 3962 } else { 3963 /* Unknown IOCB command */ 3964 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3965 "0335 Unknown IOCB " 3966 "command Data: x%x " 3967 "x%x x%x x%x\n", 3968 irsp->ulpCommand, 3969 irsp->ulpStatus, 3970 irsp->ulpIoTag, 3971 irsp->ulpContext); 3972 } 3973 break; 3974 } 3975 3976 if (free_saveq) { 3977 list_for_each_entry_safe(rspiocbp, next_iocb, 3978 &saveq->list, list) { 3979 list_del_init(&rspiocbp->list); 3980 __lpfc_sli_release_iocbq(phba, rspiocbp); 3981 } 3982 __lpfc_sli_release_iocbq(phba, saveq); 3983 } 3984 rspiocbp = NULL; 3985 } 3986 spin_unlock_irqrestore(&phba->hbalock, iflag); 3987 return rspiocbp; 3988 } 3989 3990 /** 3991 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3992 * @phba: Pointer to HBA context object. 3993 * @pring: Pointer to driver SLI ring object. 3994 * @mask: Host attention register mask for this ring. 3995 * 3996 * This routine wraps the actual slow_ring event process routine from the 3997 * API jump table function pointer from the lpfc_hba struct. 3998 **/ 3999 void 4000 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4001 struct lpfc_sli_ring *pring, uint32_t mask) 4002 { 4003 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4004 } 4005 4006 /** 4007 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4008 * @phba: Pointer to HBA context object. 4009 * @pring: Pointer to driver SLI ring object. 4010 * @mask: Host attention register mask for this ring. 4011 * 4012 * This function is called from the worker thread when there is a ring event 4013 * for non-fcp rings. The caller does not hold any lock. The function will 4014 * remove each response iocb in the response ring and calls the handle 4015 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4016 **/ 4017 static void 4018 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4019 struct lpfc_sli_ring *pring, uint32_t mask) 4020 { 4021 struct lpfc_pgp *pgp; 4022 IOCB_t *entry; 4023 IOCB_t *irsp = NULL; 4024 struct lpfc_iocbq *rspiocbp = NULL; 4025 uint32_t portRspPut, portRspMax; 4026 unsigned long iflag; 4027 uint32_t status; 4028 4029 pgp = &phba->port_gp[pring->ringno]; 4030 spin_lock_irqsave(&phba->hbalock, iflag); 4031 pring->stats.iocb_event++; 4032 4033 /* 4034 * The next available response entry should never exceed the maximum 4035 * entries. If it does, treat it as an adapter hardware error. 4036 */ 4037 portRspMax = pring->sli.sli3.numRiocb; 4038 portRspPut = le32_to_cpu(pgp->rspPutInx); 4039 if (portRspPut >= portRspMax) { 4040 /* 4041 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4042 * rsp ring <portRspMax> 4043 */ 4044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4045 "0303 Ring %d handler: portRspPut %d " 4046 "is bigger than rsp ring %d\n", 4047 pring->ringno, portRspPut, portRspMax); 4048 4049 phba->link_state = LPFC_HBA_ERROR; 4050 spin_unlock_irqrestore(&phba->hbalock, iflag); 4051 4052 phba->work_hs = HS_FFER3; 4053 lpfc_handle_eratt(phba); 4054 4055 return; 4056 } 4057 4058 rmb(); 4059 while (pring->sli.sli3.rspidx != portRspPut) { 4060 /* 4061 * Build a completion list and call the appropriate handler. 4062 * The process is to get the next available response iocb, get 4063 * a free iocb from the list, copy the response data into the 4064 * free iocb, insert to the continuation list, and update the 4065 * next response index to slim. This process makes response 4066 * iocb's in the ring available to DMA as fast as possible but 4067 * pays a penalty for a copy operation. Since the iocb is 4068 * only 32 bytes, this penalty is considered small relative to 4069 * the PCI reads for register values and a slim write. When 4070 * the ulpLe field is set, the entire Command has been 4071 * received. 4072 */ 4073 entry = lpfc_resp_iocb(phba, pring); 4074 4075 phba->last_completion_time = jiffies; 4076 rspiocbp = __lpfc_sli_get_iocbq(phba); 4077 if (rspiocbp == NULL) { 4078 printk(KERN_ERR "%s: out of buffers! Failing " 4079 "completion.\n", __func__); 4080 break; 4081 } 4082 4083 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4084 phba->iocb_rsp_size); 4085 irsp = &rspiocbp->iocb; 4086 4087 if (++pring->sli.sli3.rspidx >= portRspMax) 4088 pring->sli.sli3.rspidx = 0; 4089 4090 if (pring->ringno == LPFC_ELS_RING) { 4091 lpfc_debugfs_slow_ring_trc(phba, 4092 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4093 *(((uint32_t *) irsp) + 4), 4094 *(((uint32_t *) irsp) + 6), 4095 *(((uint32_t *) irsp) + 7)); 4096 } 4097 4098 writel(pring->sli.sli3.rspidx, 4099 &phba->host_gp[pring->ringno].rspGetInx); 4100 4101 spin_unlock_irqrestore(&phba->hbalock, iflag); 4102 /* Handle the response IOCB */ 4103 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4104 spin_lock_irqsave(&phba->hbalock, iflag); 4105 4106 /* 4107 * If the port response put pointer has not been updated, sync 4108 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4109 * response put pointer. 4110 */ 4111 if (pring->sli.sli3.rspidx == portRspPut) { 4112 portRspPut = le32_to_cpu(pgp->rspPutInx); 4113 } 4114 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4115 4116 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4117 /* At least one response entry has been freed */ 4118 pring->stats.iocb_rsp_full++; 4119 /* SET RxRE_RSP in Chip Att register */ 4120 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4121 writel(status, phba->CAregaddr); 4122 readl(phba->CAregaddr); /* flush */ 4123 } 4124 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4125 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4126 pring->stats.iocb_cmd_empty++; 4127 4128 /* Force update of the local copy of cmdGetInx */ 4129 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4130 lpfc_sli_resume_iocb(phba, pring); 4131 4132 if ((pring->lpfc_sli_cmd_available)) 4133 (pring->lpfc_sli_cmd_available) (phba, pring); 4134 4135 } 4136 4137 spin_unlock_irqrestore(&phba->hbalock, iflag); 4138 return; 4139 } 4140 4141 /** 4142 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4143 * @phba: Pointer to HBA context object. 4144 * @pring: Pointer to driver SLI ring object. 4145 * @mask: Host attention register mask for this ring. 4146 * 4147 * This function is called from the worker thread when there is a pending 4148 * ELS response iocb on the driver internal slow-path response iocb worker 4149 * queue. The caller does not hold any lock. The function will remove each 4150 * response iocb from the response worker queue and calls the handle 4151 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4152 **/ 4153 static void 4154 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4155 struct lpfc_sli_ring *pring, uint32_t mask) 4156 { 4157 struct lpfc_iocbq *irspiocbq; 4158 struct hbq_dmabuf *dmabuf; 4159 struct lpfc_cq_event *cq_event; 4160 unsigned long iflag; 4161 int count = 0; 4162 4163 spin_lock_irqsave(&phba->hbalock, iflag); 4164 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4165 spin_unlock_irqrestore(&phba->hbalock, iflag); 4166 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4167 /* Get the response iocb from the head of work queue */ 4168 spin_lock_irqsave(&phba->hbalock, iflag); 4169 list_remove_head(&phba->sli4_hba.sp_queue_event, 4170 cq_event, struct lpfc_cq_event, list); 4171 spin_unlock_irqrestore(&phba->hbalock, iflag); 4172 4173 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4174 case CQE_CODE_COMPL_WQE: 4175 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4176 cq_event); 4177 /* Translate ELS WCQE to response IOCBQ */ 4178 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4179 irspiocbq); 4180 if (irspiocbq) 4181 lpfc_sli_sp_handle_rspiocb(phba, pring, 4182 irspiocbq); 4183 count++; 4184 break; 4185 case CQE_CODE_RECEIVE: 4186 case CQE_CODE_RECEIVE_V1: 4187 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4188 cq_event); 4189 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4190 count++; 4191 break; 4192 default: 4193 break; 4194 } 4195 4196 /* Limit the number of events to 64 to avoid soft lockups */ 4197 if (count == 64) 4198 break; 4199 } 4200 } 4201 4202 /** 4203 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4204 * @phba: Pointer to HBA context object. 4205 * @pring: Pointer to driver SLI ring object. 4206 * 4207 * This function aborts all iocbs in the given ring and frees all the iocb 4208 * objects in txq. This function issues an abort iocb for all the iocb commands 4209 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4210 * the return of this function. The caller is not required to hold any locks. 4211 **/ 4212 void 4213 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4214 { 4215 LIST_HEAD(completions); 4216 struct lpfc_iocbq *iocb, *next_iocb; 4217 4218 if (pring->ringno == LPFC_ELS_RING) { 4219 lpfc_fabric_abort_hba(phba); 4220 } 4221 4222 /* Error everything on txq and txcmplq 4223 * First do the txq. 4224 */ 4225 if (phba->sli_rev >= LPFC_SLI_REV4) { 4226 spin_lock_irq(&pring->ring_lock); 4227 list_splice_init(&pring->txq, &completions); 4228 pring->txq_cnt = 0; 4229 spin_unlock_irq(&pring->ring_lock); 4230 4231 spin_lock_irq(&phba->hbalock); 4232 /* Next issue ABTS for everything on the txcmplq */ 4233 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4234 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4235 spin_unlock_irq(&phba->hbalock); 4236 } else { 4237 spin_lock_irq(&phba->hbalock); 4238 list_splice_init(&pring->txq, &completions); 4239 pring->txq_cnt = 0; 4240 4241 /* Next issue ABTS for everything on the txcmplq */ 4242 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4243 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4244 spin_unlock_irq(&phba->hbalock); 4245 } 4246 /* Make sure HBA is alive */ 4247 lpfc_issue_hb_tmo(phba); 4248 4249 /* Cancel all the IOCBs from the completions list */ 4250 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4251 IOERR_SLI_ABORTED); 4252 } 4253 4254 /** 4255 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4256 * @phba: Pointer to HBA context object. 4257 * 4258 * This function aborts all iocbs in FCP rings and frees all the iocb 4259 * objects in txq. This function issues an abort iocb for all the iocb commands 4260 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4261 * the return of this function. The caller is not required to hold any locks. 4262 **/ 4263 void 4264 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4265 { 4266 struct lpfc_sli *psli = &phba->sli; 4267 struct lpfc_sli_ring *pring; 4268 uint32_t i; 4269 4270 /* Look on all the FCP Rings for the iotag */ 4271 if (phba->sli_rev >= LPFC_SLI_REV4) { 4272 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4273 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4274 lpfc_sli_abort_iocb_ring(phba, pring); 4275 } 4276 } else { 4277 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4278 lpfc_sli_abort_iocb_ring(phba, pring); 4279 } 4280 } 4281 4282 /** 4283 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4284 * @phba: Pointer to HBA context object. 4285 * 4286 * This function flushes all iocbs in the IO ring and frees all the iocb 4287 * objects in txq and txcmplq. This function will not issue abort iocbs 4288 * for all the iocb commands in txcmplq, they will just be returned with 4289 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4290 * slot has been permanently disabled. 4291 **/ 4292 void 4293 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4294 { 4295 LIST_HEAD(txq); 4296 LIST_HEAD(txcmplq); 4297 struct lpfc_sli *psli = &phba->sli; 4298 struct lpfc_sli_ring *pring; 4299 uint32_t i; 4300 struct lpfc_iocbq *piocb, *next_iocb; 4301 4302 spin_lock_irq(&phba->hbalock); 4303 if (phba->hba_flag & HBA_IOQ_FLUSH || 4304 !phba->sli4_hba.hdwq) { 4305 spin_unlock_irq(&phba->hbalock); 4306 return; 4307 } 4308 /* Indicate the I/O queues are flushed */ 4309 phba->hba_flag |= HBA_IOQ_FLUSH; 4310 spin_unlock_irq(&phba->hbalock); 4311 4312 /* Look on all the FCP Rings for the iotag */ 4313 if (phba->sli_rev >= LPFC_SLI_REV4) { 4314 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4315 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4316 4317 spin_lock_irq(&pring->ring_lock); 4318 /* Retrieve everything on txq */ 4319 list_splice_init(&pring->txq, &txq); 4320 list_for_each_entry_safe(piocb, next_iocb, 4321 &pring->txcmplq, list) 4322 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4323 /* Retrieve everything on the txcmplq */ 4324 list_splice_init(&pring->txcmplq, &txcmplq); 4325 pring->txq_cnt = 0; 4326 pring->txcmplq_cnt = 0; 4327 spin_unlock_irq(&pring->ring_lock); 4328 4329 /* Flush the txq */ 4330 lpfc_sli_cancel_iocbs(phba, &txq, 4331 IOSTAT_LOCAL_REJECT, 4332 IOERR_SLI_DOWN); 4333 /* Flush the txcmpq */ 4334 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4335 IOSTAT_LOCAL_REJECT, 4336 IOERR_SLI_DOWN); 4337 } 4338 } else { 4339 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4340 4341 spin_lock_irq(&phba->hbalock); 4342 /* Retrieve everything on txq */ 4343 list_splice_init(&pring->txq, &txq); 4344 list_for_each_entry_safe(piocb, next_iocb, 4345 &pring->txcmplq, list) 4346 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4347 /* Retrieve everything on the txcmplq */ 4348 list_splice_init(&pring->txcmplq, &txcmplq); 4349 pring->txq_cnt = 0; 4350 pring->txcmplq_cnt = 0; 4351 spin_unlock_irq(&phba->hbalock); 4352 4353 /* Flush the txq */ 4354 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4355 IOERR_SLI_DOWN); 4356 /* Flush the txcmpq */ 4357 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4358 IOERR_SLI_DOWN); 4359 } 4360 } 4361 4362 /** 4363 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4364 * @phba: Pointer to HBA context object. 4365 * @mask: Bit mask to be checked. 4366 * 4367 * This function reads the host status register and compares 4368 * with the provided bit mask to check if HBA completed 4369 * the restart. This function will wait in a loop for the 4370 * HBA to complete restart. If the HBA does not restart within 4371 * 15 iterations, the function will reset the HBA again. The 4372 * function returns 1 when HBA fail to restart otherwise returns 4373 * zero. 4374 **/ 4375 static int 4376 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4377 { 4378 uint32_t status; 4379 int i = 0; 4380 int retval = 0; 4381 4382 /* Read the HBA Host Status Register */ 4383 if (lpfc_readl(phba->HSregaddr, &status)) 4384 return 1; 4385 4386 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4387 4388 /* 4389 * Check status register every 100ms for 5 retries, then every 4390 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4391 * every 2.5 sec for 4. 4392 * Break our of the loop if errors occurred during init. 4393 */ 4394 while (((status & mask) != mask) && 4395 !(status & HS_FFERM) && 4396 i++ < 20) { 4397 4398 if (i <= 5) 4399 msleep(10); 4400 else if (i <= 10) 4401 msleep(500); 4402 else 4403 msleep(2500); 4404 4405 if (i == 15) { 4406 /* Do post */ 4407 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4408 lpfc_sli_brdrestart(phba); 4409 } 4410 /* Read the HBA Host Status Register */ 4411 if (lpfc_readl(phba->HSregaddr, &status)) { 4412 retval = 1; 4413 break; 4414 } 4415 } 4416 4417 /* Check to see if any errors occurred during init */ 4418 if ((status & HS_FFERM) || (i >= 20)) { 4419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4420 "2751 Adapter failed to restart, " 4421 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4422 status, 4423 readl(phba->MBslimaddr + 0xa8), 4424 readl(phba->MBslimaddr + 0xac)); 4425 phba->link_state = LPFC_HBA_ERROR; 4426 retval = 1; 4427 } 4428 4429 return retval; 4430 } 4431 4432 /** 4433 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4434 * @phba: Pointer to HBA context object. 4435 * @mask: Bit mask to be checked. 4436 * 4437 * This function checks the host status register to check if HBA is 4438 * ready. This function will wait in a loop for the HBA to be ready 4439 * If the HBA is not ready , the function will will reset the HBA PCI 4440 * function again. The function returns 1 when HBA fail to be ready 4441 * otherwise returns zero. 4442 **/ 4443 static int 4444 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4445 { 4446 uint32_t status; 4447 int retval = 0; 4448 4449 /* Read the HBA Host Status Register */ 4450 status = lpfc_sli4_post_status_check(phba); 4451 4452 if (status) { 4453 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4454 lpfc_sli_brdrestart(phba); 4455 status = lpfc_sli4_post_status_check(phba); 4456 } 4457 4458 /* Check to see if any errors occurred during init */ 4459 if (status) { 4460 phba->link_state = LPFC_HBA_ERROR; 4461 retval = 1; 4462 } else 4463 phba->sli4_hba.intr_enable = 0; 4464 4465 return retval; 4466 } 4467 4468 /** 4469 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4470 * @phba: Pointer to HBA context object. 4471 * @mask: Bit mask to be checked. 4472 * 4473 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4474 * from the API jump table function pointer from the lpfc_hba struct. 4475 **/ 4476 int 4477 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4478 { 4479 return phba->lpfc_sli_brdready(phba, mask); 4480 } 4481 4482 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4483 4484 /** 4485 * lpfc_reset_barrier - Make HBA ready for HBA reset 4486 * @phba: Pointer to HBA context object. 4487 * 4488 * This function is called before resetting an HBA. This function is called 4489 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4490 **/ 4491 void lpfc_reset_barrier(struct lpfc_hba *phba) 4492 { 4493 uint32_t __iomem *resp_buf; 4494 uint32_t __iomem *mbox_buf; 4495 volatile uint32_t mbox; 4496 uint32_t hc_copy, ha_copy, resp_data; 4497 int i; 4498 uint8_t hdrtype; 4499 4500 lockdep_assert_held(&phba->hbalock); 4501 4502 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4503 if (hdrtype != 0x80 || 4504 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4505 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4506 return; 4507 4508 /* 4509 * Tell the other part of the chip to suspend temporarily all 4510 * its DMA activity. 4511 */ 4512 resp_buf = phba->MBslimaddr; 4513 4514 /* Disable the error attention */ 4515 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4516 return; 4517 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4518 readl(phba->HCregaddr); /* flush */ 4519 phba->link_flag |= LS_IGNORE_ERATT; 4520 4521 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4522 return; 4523 if (ha_copy & HA_ERATT) { 4524 /* Clear Chip error bit */ 4525 writel(HA_ERATT, phba->HAregaddr); 4526 phba->pport->stopped = 1; 4527 } 4528 4529 mbox = 0; 4530 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4531 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4532 4533 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4534 mbox_buf = phba->MBslimaddr; 4535 writel(mbox, mbox_buf); 4536 4537 for (i = 0; i < 50; i++) { 4538 if (lpfc_readl((resp_buf + 1), &resp_data)) 4539 return; 4540 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4541 mdelay(1); 4542 else 4543 break; 4544 } 4545 resp_data = 0; 4546 if (lpfc_readl((resp_buf + 1), &resp_data)) 4547 return; 4548 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4549 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4550 phba->pport->stopped) 4551 goto restore_hc; 4552 else 4553 goto clear_errat; 4554 } 4555 4556 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4557 resp_data = 0; 4558 for (i = 0; i < 500; i++) { 4559 if (lpfc_readl(resp_buf, &resp_data)) 4560 return; 4561 if (resp_data != mbox) 4562 mdelay(1); 4563 else 4564 break; 4565 } 4566 4567 clear_errat: 4568 4569 while (++i < 500) { 4570 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4571 return; 4572 if (!(ha_copy & HA_ERATT)) 4573 mdelay(1); 4574 else 4575 break; 4576 } 4577 4578 if (readl(phba->HAregaddr) & HA_ERATT) { 4579 writel(HA_ERATT, phba->HAregaddr); 4580 phba->pport->stopped = 1; 4581 } 4582 4583 restore_hc: 4584 phba->link_flag &= ~LS_IGNORE_ERATT; 4585 writel(hc_copy, phba->HCregaddr); 4586 readl(phba->HCregaddr); /* flush */ 4587 } 4588 4589 /** 4590 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4591 * @phba: Pointer to HBA context object. 4592 * 4593 * This function issues a kill_board mailbox command and waits for 4594 * the error attention interrupt. This function is called for stopping 4595 * the firmware processing. The caller is not required to hold any 4596 * locks. This function calls lpfc_hba_down_post function to free 4597 * any pending commands after the kill. The function will return 1 when it 4598 * fails to kill the board else will return 0. 4599 **/ 4600 int 4601 lpfc_sli_brdkill(struct lpfc_hba *phba) 4602 { 4603 struct lpfc_sli *psli; 4604 LPFC_MBOXQ_t *pmb; 4605 uint32_t status; 4606 uint32_t ha_copy; 4607 int retval; 4608 int i = 0; 4609 4610 psli = &phba->sli; 4611 4612 /* Kill HBA */ 4613 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4614 "0329 Kill HBA Data: x%x x%x\n", 4615 phba->pport->port_state, psli->sli_flag); 4616 4617 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4618 if (!pmb) 4619 return 1; 4620 4621 /* Disable the error attention */ 4622 spin_lock_irq(&phba->hbalock); 4623 if (lpfc_readl(phba->HCregaddr, &status)) { 4624 spin_unlock_irq(&phba->hbalock); 4625 mempool_free(pmb, phba->mbox_mem_pool); 4626 return 1; 4627 } 4628 status &= ~HC_ERINT_ENA; 4629 writel(status, phba->HCregaddr); 4630 readl(phba->HCregaddr); /* flush */ 4631 phba->link_flag |= LS_IGNORE_ERATT; 4632 spin_unlock_irq(&phba->hbalock); 4633 4634 lpfc_kill_board(phba, pmb); 4635 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4636 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4637 4638 if (retval != MBX_SUCCESS) { 4639 if (retval != MBX_BUSY) 4640 mempool_free(pmb, phba->mbox_mem_pool); 4641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4642 "2752 KILL_BOARD command failed retval %d\n", 4643 retval); 4644 spin_lock_irq(&phba->hbalock); 4645 phba->link_flag &= ~LS_IGNORE_ERATT; 4646 spin_unlock_irq(&phba->hbalock); 4647 return 1; 4648 } 4649 4650 spin_lock_irq(&phba->hbalock); 4651 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4652 spin_unlock_irq(&phba->hbalock); 4653 4654 mempool_free(pmb, phba->mbox_mem_pool); 4655 4656 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4657 * attention every 100ms for 3 seconds. If we don't get ERATT after 4658 * 3 seconds we still set HBA_ERROR state because the status of the 4659 * board is now undefined. 4660 */ 4661 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4662 return 1; 4663 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4664 mdelay(100); 4665 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4666 return 1; 4667 } 4668 4669 del_timer_sync(&psli->mbox_tmo); 4670 if (ha_copy & HA_ERATT) { 4671 writel(HA_ERATT, phba->HAregaddr); 4672 phba->pport->stopped = 1; 4673 } 4674 spin_lock_irq(&phba->hbalock); 4675 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4676 psli->mbox_active = NULL; 4677 phba->link_flag &= ~LS_IGNORE_ERATT; 4678 spin_unlock_irq(&phba->hbalock); 4679 4680 lpfc_hba_down_post(phba); 4681 phba->link_state = LPFC_HBA_ERROR; 4682 4683 return ha_copy & HA_ERATT ? 0 : 1; 4684 } 4685 4686 /** 4687 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4688 * @phba: Pointer to HBA context object. 4689 * 4690 * This function resets the HBA by writing HC_INITFF to the control 4691 * register. After the HBA resets, this function resets all the iocb ring 4692 * indices. This function disables PCI layer parity checking during 4693 * the reset. 4694 * This function returns 0 always. 4695 * The caller is not required to hold any locks. 4696 **/ 4697 int 4698 lpfc_sli_brdreset(struct lpfc_hba *phba) 4699 { 4700 struct lpfc_sli *psli; 4701 struct lpfc_sli_ring *pring; 4702 uint16_t cfg_value; 4703 int i; 4704 4705 psli = &phba->sli; 4706 4707 /* Reset HBA */ 4708 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4709 "0325 Reset HBA Data: x%x x%x\n", 4710 (phba->pport) ? phba->pport->port_state : 0, 4711 psli->sli_flag); 4712 4713 /* perform board reset */ 4714 phba->fc_eventTag = 0; 4715 phba->link_events = 0; 4716 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4717 if (phba->pport) { 4718 phba->pport->fc_myDID = 0; 4719 phba->pport->fc_prevDID = 0; 4720 } 4721 4722 /* Turn off parity checking and serr during the physical reset */ 4723 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4724 return -EIO; 4725 4726 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4727 (cfg_value & 4728 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4729 4730 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4731 4732 /* Now toggle INITFF bit in the Host Control Register */ 4733 writel(HC_INITFF, phba->HCregaddr); 4734 mdelay(1); 4735 readl(phba->HCregaddr); /* flush */ 4736 writel(0, phba->HCregaddr); 4737 readl(phba->HCregaddr); /* flush */ 4738 4739 /* Restore PCI cmd register */ 4740 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4741 4742 /* Initialize relevant SLI info */ 4743 for (i = 0; i < psli->num_rings; i++) { 4744 pring = &psli->sli3_ring[i]; 4745 pring->flag = 0; 4746 pring->sli.sli3.rspidx = 0; 4747 pring->sli.sli3.next_cmdidx = 0; 4748 pring->sli.sli3.local_getidx = 0; 4749 pring->sli.sli3.cmdidx = 0; 4750 pring->missbufcnt = 0; 4751 } 4752 4753 phba->link_state = LPFC_WARM_START; 4754 return 0; 4755 } 4756 4757 /** 4758 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4759 * @phba: Pointer to HBA context object. 4760 * 4761 * This function resets a SLI4 HBA. This function disables PCI layer parity 4762 * checking during resets the device. The caller is not required to hold 4763 * any locks. 4764 * 4765 * This function returns 0 on success else returns negative error code. 4766 **/ 4767 int 4768 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4769 { 4770 struct lpfc_sli *psli = &phba->sli; 4771 uint16_t cfg_value; 4772 int rc = 0; 4773 4774 /* Reset HBA */ 4775 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4776 "0295 Reset HBA Data: x%x x%x x%x\n", 4777 phba->pport->port_state, psli->sli_flag, 4778 phba->hba_flag); 4779 4780 /* perform board reset */ 4781 phba->fc_eventTag = 0; 4782 phba->link_events = 0; 4783 phba->pport->fc_myDID = 0; 4784 phba->pport->fc_prevDID = 0; 4785 4786 spin_lock_irq(&phba->hbalock); 4787 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4788 phba->fcf.fcf_flag = 0; 4789 spin_unlock_irq(&phba->hbalock); 4790 4791 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4792 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4793 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4794 return rc; 4795 } 4796 4797 /* Now physically reset the device */ 4798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4799 "0389 Performing PCI function reset!\n"); 4800 4801 /* Turn off parity checking and serr during the physical reset */ 4802 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4804 "3205 PCI read Config failed\n"); 4805 return -EIO; 4806 } 4807 4808 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4809 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4810 4811 /* Perform FCoE PCI function reset before freeing queue memory */ 4812 rc = lpfc_pci_function_reset(phba); 4813 4814 /* Restore PCI cmd register */ 4815 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4816 4817 return rc; 4818 } 4819 4820 /** 4821 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4822 * @phba: Pointer to HBA context object. 4823 * 4824 * This function is called in the SLI initialization code path to 4825 * restart the HBA. The caller is not required to hold any lock. 4826 * This function writes MBX_RESTART mailbox command to the SLIM and 4827 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4828 * function to free any pending commands. The function enables 4829 * POST only during the first initialization. The function returns zero. 4830 * The function does not guarantee completion of MBX_RESTART mailbox 4831 * command before the return of this function. 4832 **/ 4833 static int 4834 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4835 { 4836 MAILBOX_t *mb; 4837 struct lpfc_sli *psli; 4838 volatile uint32_t word0; 4839 void __iomem *to_slim; 4840 uint32_t hba_aer_enabled; 4841 4842 spin_lock_irq(&phba->hbalock); 4843 4844 /* Take PCIe device Advanced Error Reporting (AER) state */ 4845 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4846 4847 psli = &phba->sli; 4848 4849 /* Restart HBA */ 4850 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4851 "0337 Restart HBA Data: x%x x%x\n", 4852 (phba->pport) ? phba->pport->port_state : 0, 4853 psli->sli_flag); 4854 4855 word0 = 0; 4856 mb = (MAILBOX_t *) &word0; 4857 mb->mbxCommand = MBX_RESTART; 4858 mb->mbxHc = 1; 4859 4860 lpfc_reset_barrier(phba); 4861 4862 to_slim = phba->MBslimaddr; 4863 writel(*(uint32_t *) mb, to_slim); 4864 readl(to_slim); /* flush */ 4865 4866 /* Only skip post after fc_ffinit is completed */ 4867 if (phba->pport && phba->pport->port_state) 4868 word0 = 1; /* This is really setting up word1 */ 4869 else 4870 word0 = 0; /* This is really setting up word1 */ 4871 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4872 writel(*(uint32_t *) mb, to_slim); 4873 readl(to_slim); /* flush */ 4874 4875 lpfc_sli_brdreset(phba); 4876 if (phba->pport) 4877 phba->pport->stopped = 0; 4878 phba->link_state = LPFC_INIT_START; 4879 phba->hba_flag = 0; 4880 spin_unlock_irq(&phba->hbalock); 4881 4882 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4883 psli->stats_start = ktime_get_seconds(); 4884 4885 /* Give the INITFF and Post time to settle. */ 4886 mdelay(100); 4887 4888 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4889 if (hba_aer_enabled) 4890 pci_disable_pcie_error_reporting(phba->pcidev); 4891 4892 lpfc_hba_down_post(phba); 4893 4894 return 0; 4895 } 4896 4897 /** 4898 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4899 * @phba: Pointer to HBA context object. 4900 * 4901 * This function is called in the SLI initialization code path to restart 4902 * a SLI4 HBA. The caller is not required to hold any lock. 4903 * At the end of the function, it calls lpfc_hba_down_post function to 4904 * free any pending commands. 4905 **/ 4906 static int 4907 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4908 { 4909 struct lpfc_sli *psli = &phba->sli; 4910 uint32_t hba_aer_enabled; 4911 int rc; 4912 4913 /* Restart HBA */ 4914 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4915 "0296 Restart HBA Data: x%x x%x\n", 4916 phba->pport->port_state, psli->sli_flag); 4917 4918 /* Take PCIe device Advanced Error Reporting (AER) state */ 4919 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4920 4921 rc = lpfc_sli4_brdreset(phba); 4922 if (rc) { 4923 phba->link_state = LPFC_HBA_ERROR; 4924 goto hba_down_queue; 4925 } 4926 4927 spin_lock_irq(&phba->hbalock); 4928 phba->pport->stopped = 0; 4929 phba->link_state = LPFC_INIT_START; 4930 phba->hba_flag = 0; 4931 spin_unlock_irq(&phba->hbalock); 4932 4933 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4934 psli->stats_start = ktime_get_seconds(); 4935 4936 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4937 if (hba_aer_enabled) 4938 pci_disable_pcie_error_reporting(phba->pcidev); 4939 4940 hba_down_queue: 4941 lpfc_hba_down_post(phba); 4942 lpfc_sli4_queue_destroy(phba); 4943 4944 return rc; 4945 } 4946 4947 /** 4948 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4949 * @phba: Pointer to HBA context object. 4950 * 4951 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4952 * API jump table function pointer from the lpfc_hba struct. 4953 **/ 4954 int 4955 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4956 { 4957 return phba->lpfc_sli_brdrestart(phba); 4958 } 4959 4960 /** 4961 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4962 * @phba: Pointer to HBA context object. 4963 * 4964 * This function is called after a HBA restart to wait for successful 4965 * restart of the HBA. Successful restart of the HBA is indicated by 4966 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4967 * iteration, the function will restart the HBA again. The function returns 4968 * zero if HBA successfully restarted else returns negative error code. 4969 **/ 4970 int 4971 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4972 { 4973 uint32_t status, i = 0; 4974 4975 /* Read the HBA Host Status Register */ 4976 if (lpfc_readl(phba->HSregaddr, &status)) 4977 return -EIO; 4978 4979 /* Check status register to see what current state is */ 4980 i = 0; 4981 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4982 4983 /* Check every 10ms for 10 retries, then every 100ms for 90 4984 * retries, then every 1 sec for 50 retires for a total of 4985 * ~60 seconds before reset the board again and check every 4986 * 1 sec for 50 retries. The up to 60 seconds before the 4987 * board ready is required by the Falcon FIPS zeroization 4988 * complete, and any reset the board in between shall cause 4989 * restart of zeroization, further delay the board ready. 4990 */ 4991 if (i++ >= 200) { 4992 /* Adapter failed to init, timeout, status reg 4993 <status> */ 4994 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4995 "0436 Adapter failed to init, " 4996 "timeout, status reg x%x, " 4997 "FW Data: A8 x%x AC x%x\n", status, 4998 readl(phba->MBslimaddr + 0xa8), 4999 readl(phba->MBslimaddr + 0xac)); 5000 phba->link_state = LPFC_HBA_ERROR; 5001 return -ETIMEDOUT; 5002 } 5003 5004 /* Check to see if any errors occurred during init */ 5005 if (status & HS_FFERM) { 5006 /* ERROR: During chipset initialization */ 5007 /* Adapter failed to init, chipset, status reg 5008 <status> */ 5009 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5010 "0437 Adapter failed to init, " 5011 "chipset, status reg x%x, " 5012 "FW Data: A8 x%x AC x%x\n", status, 5013 readl(phba->MBslimaddr + 0xa8), 5014 readl(phba->MBslimaddr + 0xac)); 5015 phba->link_state = LPFC_HBA_ERROR; 5016 return -EIO; 5017 } 5018 5019 if (i <= 10) 5020 msleep(10); 5021 else if (i <= 100) 5022 msleep(100); 5023 else 5024 msleep(1000); 5025 5026 if (i == 150) { 5027 /* Do post */ 5028 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5029 lpfc_sli_brdrestart(phba); 5030 } 5031 /* Read the HBA Host Status Register */ 5032 if (lpfc_readl(phba->HSregaddr, &status)) 5033 return -EIO; 5034 } 5035 5036 /* Check to see if any errors occurred during init */ 5037 if (status & HS_FFERM) { 5038 /* ERROR: During chipset initialization */ 5039 /* Adapter failed to init, chipset, status reg <status> */ 5040 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5041 "0438 Adapter failed to init, chipset, " 5042 "status reg x%x, " 5043 "FW Data: A8 x%x AC x%x\n", status, 5044 readl(phba->MBslimaddr + 0xa8), 5045 readl(phba->MBslimaddr + 0xac)); 5046 phba->link_state = LPFC_HBA_ERROR; 5047 return -EIO; 5048 } 5049 5050 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5051 5052 /* Clear all interrupt enable conditions */ 5053 writel(0, phba->HCregaddr); 5054 readl(phba->HCregaddr); /* flush */ 5055 5056 /* setup host attn register */ 5057 writel(0xffffffff, phba->HAregaddr); 5058 readl(phba->HAregaddr); /* flush */ 5059 return 0; 5060 } 5061 5062 /** 5063 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5064 * 5065 * This function calculates and returns the number of HBQs required to be 5066 * configured. 5067 **/ 5068 int 5069 lpfc_sli_hbq_count(void) 5070 { 5071 return ARRAY_SIZE(lpfc_hbq_defs); 5072 } 5073 5074 /** 5075 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5076 * 5077 * This function adds the number of hbq entries in every HBQ to get 5078 * the total number of hbq entries required for the HBA and returns 5079 * the total count. 5080 **/ 5081 static int 5082 lpfc_sli_hbq_entry_count(void) 5083 { 5084 int hbq_count = lpfc_sli_hbq_count(); 5085 int count = 0; 5086 int i; 5087 5088 for (i = 0; i < hbq_count; ++i) 5089 count += lpfc_hbq_defs[i]->entry_count; 5090 return count; 5091 } 5092 5093 /** 5094 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5095 * 5096 * This function calculates amount of memory required for all hbq entries 5097 * to be configured and returns the total memory required. 5098 **/ 5099 int 5100 lpfc_sli_hbq_size(void) 5101 { 5102 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5103 } 5104 5105 /** 5106 * lpfc_sli_hbq_setup - configure and initialize HBQs 5107 * @phba: Pointer to HBA context object. 5108 * 5109 * This function is called during the SLI initialization to configure 5110 * all the HBQs and post buffers to the HBQ. The caller is not 5111 * required to hold any locks. This function will return zero if successful 5112 * else it will return negative error code. 5113 **/ 5114 static int 5115 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5116 { 5117 int hbq_count = lpfc_sli_hbq_count(); 5118 LPFC_MBOXQ_t *pmb; 5119 MAILBOX_t *pmbox; 5120 uint32_t hbqno; 5121 uint32_t hbq_entry_index; 5122 5123 /* Get a Mailbox buffer to setup mailbox 5124 * commands for HBA initialization 5125 */ 5126 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5127 5128 if (!pmb) 5129 return -ENOMEM; 5130 5131 pmbox = &pmb->u.mb; 5132 5133 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5134 phba->link_state = LPFC_INIT_MBX_CMDS; 5135 phba->hbq_in_use = 1; 5136 5137 hbq_entry_index = 0; 5138 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5139 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5140 phba->hbqs[hbqno].hbqPutIdx = 0; 5141 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5142 phba->hbqs[hbqno].entry_count = 5143 lpfc_hbq_defs[hbqno]->entry_count; 5144 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5145 hbq_entry_index, pmb); 5146 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5147 5148 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5149 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5150 mbxStatus <status>, ring <num> */ 5151 5152 lpfc_printf_log(phba, KERN_ERR, 5153 LOG_SLI | LOG_VPORT, 5154 "1805 Adapter failed to init. " 5155 "Data: x%x x%x x%x\n", 5156 pmbox->mbxCommand, 5157 pmbox->mbxStatus, hbqno); 5158 5159 phba->link_state = LPFC_HBA_ERROR; 5160 mempool_free(pmb, phba->mbox_mem_pool); 5161 return -ENXIO; 5162 } 5163 } 5164 phba->hbq_count = hbq_count; 5165 5166 mempool_free(pmb, phba->mbox_mem_pool); 5167 5168 /* Initially populate or replenish the HBQs */ 5169 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5170 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5171 return 0; 5172 } 5173 5174 /** 5175 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5176 * @phba: Pointer to HBA context object. 5177 * 5178 * This function is called during the SLI initialization to configure 5179 * all the HBQs and post buffers to the HBQ. The caller is not 5180 * required to hold any locks. This function will return zero if successful 5181 * else it will return negative error code. 5182 **/ 5183 static int 5184 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5185 { 5186 phba->hbq_in_use = 1; 5187 /** 5188 * Specific case when the MDS diagnostics is enabled and supported. 5189 * The receive buffer count is truncated to manage the incoming 5190 * traffic. 5191 **/ 5192 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5193 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5194 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5195 else 5196 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5197 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5198 phba->hbq_count = 1; 5199 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5200 /* Initially populate or replenish the HBQs */ 5201 return 0; 5202 } 5203 5204 /** 5205 * lpfc_sli_config_port - Issue config port mailbox command 5206 * @phba: Pointer to HBA context object. 5207 * @sli_mode: sli mode - 2/3 5208 * 5209 * This function is called by the sli initialization code path 5210 * to issue config_port mailbox command. This function restarts the 5211 * HBA firmware and issues a config_port mailbox command to configure 5212 * the SLI interface in the sli mode specified by sli_mode 5213 * variable. The caller is not required to hold any locks. 5214 * The function returns 0 if successful, else returns negative error 5215 * code. 5216 **/ 5217 int 5218 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5219 { 5220 LPFC_MBOXQ_t *pmb; 5221 uint32_t resetcount = 0, rc = 0, done = 0; 5222 5223 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5224 if (!pmb) { 5225 phba->link_state = LPFC_HBA_ERROR; 5226 return -ENOMEM; 5227 } 5228 5229 phba->sli_rev = sli_mode; 5230 while (resetcount < 2 && !done) { 5231 spin_lock_irq(&phba->hbalock); 5232 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5233 spin_unlock_irq(&phba->hbalock); 5234 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5235 lpfc_sli_brdrestart(phba); 5236 rc = lpfc_sli_chipset_init(phba); 5237 if (rc) 5238 break; 5239 5240 spin_lock_irq(&phba->hbalock); 5241 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5242 spin_unlock_irq(&phba->hbalock); 5243 resetcount++; 5244 5245 /* Call pre CONFIG_PORT mailbox command initialization. A 5246 * value of 0 means the call was successful. Any other 5247 * nonzero value is a failure, but if ERESTART is returned, 5248 * the driver may reset the HBA and try again. 5249 */ 5250 rc = lpfc_config_port_prep(phba); 5251 if (rc == -ERESTART) { 5252 phba->link_state = LPFC_LINK_UNKNOWN; 5253 continue; 5254 } else if (rc) 5255 break; 5256 5257 phba->link_state = LPFC_INIT_MBX_CMDS; 5258 lpfc_config_port(phba, pmb); 5259 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5260 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5261 LPFC_SLI3_HBQ_ENABLED | 5262 LPFC_SLI3_CRP_ENABLED | 5263 LPFC_SLI3_DSS_ENABLED); 5264 if (rc != MBX_SUCCESS) { 5265 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5266 "0442 Adapter failed to init, mbxCmd x%x " 5267 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5268 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5269 spin_lock_irq(&phba->hbalock); 5270 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5271 spin_unlock_irq(&phba->hbalock); 5272 rc = -ENXIO; 5273 } else { 5274 /* Allow asynchronous mailbox command to go through */ 5275 spin_lock_irq(&phba->hbalock); 5276 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5277 spin_unlock_irq(&phba->hbalock); 5278 done = 1; 5279 5280 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5281 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5282 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5283 "3110 Port did not grant ASABT\n"); 5284 } 5285 } 5286 if (!done) { 5287 rc = -EINVAL; 5288 goto do_prep_failed; 5289 } 5290 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5291 if (!pmb->u.mb.un.varCfgPort.cMA) { 5292 rc = -ENXIO; 5293 goto do_prep_failed; 5294 } 5295 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5296 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5297 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5298 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5299 phba->max_vpi : phba->max_vports; 5300 5301 } else 5302 phba->max_vpi = 0; 5303 if (pmb->u.mb.un.varCfgPort.gerbm) 5304 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5305 if (pmb->u.mb.un.varCfgPort.gcrp) 5306 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5307 5308 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5309 phba->port_gp = phba->mbox->us.s3_pgp.port; 5310 5311 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5312 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5313 phba->cfg_enable_bg = 0; 5314 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5315 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5316 "0443 Adapter did not grant " 5317 "BlockGuard\n"); 5318 } 5319 } 5320 } else { 5321 phba->hbq_get = NULL; 5322 phba->port_gp = phba->mbox->us.s2.port; 5323 phba->max_vpi = 0; 5324 } 5325 do_prep_failed: 5326 mempool_free(pmb, phba->mbox_mem_pool); 5327 return rc; 5328 } 5329 5330 5331 /** 5332 * lpfc_sli_hba_setup - SLI initialization function 5333 * @phba: Pointer to HBA context object. 5334 * 5335 * This function is the main SLI initialization function. This function 5336 * is called by the HBA initialization code, HBA reset code and HBA 5337 * error attention handler code. Caller is not required to hold any 5338 * locks. This function issues config_port mailbox command to configure 5339 * the SLI, setup iocb rings and HBQ rings. In the end the function 5340 * calls the config_port_post function to issue init_link mailbox 5341 * command and to start the discovery. The function will return zero 5342 * if successful, else it will return negative error code. 5343 **/ 5344 int 5345 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5346 { 5347 uint32_t rc; 5348 int i; 5349 int longs; 5350 5351 /* Enable ISR already does config_port because of config_msi mbx */ 5352 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5353 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5354 if (rc) 5355 return -EIO; 5356 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5357 } 5358 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5359 5360 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5361 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5362 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5363 if (!rc) { 5364 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5365 "2709 This device supports " 5366 "Advanced Error Reporting (AER)\n"); 5367 spin_lock_irq(&phba->hbalock); 5368 phba->hba_flag |= HBA_AER_ENABLED; 5369 spin_unlock_irq(&phba->hbalock); 5370 } else { 5371 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5372 "2708 This device does not support " 5373 "Advanced Error Reporting (AER): %d\n", 5374 rc); 5375 phba->cfg_aer_support = 0; 5376 } 5377 } 5378 5379 if (phba->sli_rev == 3) { 5380 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5381 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5382 } else { 5383 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5384 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5385 phba->sli3_options = 0; 5386 } 5387 5388 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5389 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5390 phba->sli_rev, phba->max_vpi); 5391 rc = lpfc_sli_ring_map(phba); 5392 5393 if (rc) 5394 goto lpfc_sli_hba_setup_error; 5395 5396 /* Initialize VPIs. */ 5397 if (phba->sli_rev == LPFC_SLI_REV3) { 5398 /* 5399 * The VPI bitmask and physical ID array are allocated 5400 * and initialized once only - at driver load. A port 5401 * reset doesn't need to reinitialize this memory. 5402 */ 5403 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5404 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5405 phba->vpi_bmask = kcalloc(longs, 5406 sizeof(unsigned long), 5407 GFP_KERNEL); 5408 if (!phba->vpi_bmask) { 5409 rc = -ENOMEM; 5410 goto lpfc_sli_hba_setup_error; 5411 } 5412 5413 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5414 sizeof(uint16_t), 5415 GFP_KERNEL); 5416 if (!phba->vpi_ids) { 5417 kfree(phba->vpi_bmask); 5418 rc = -ENOMEM; 5419 goto lpfc_sli_hba_setup_error; 5420 } 5421 for (i = 0; i < phba->max_vpi; i++) 5422 phba->vpi_ids[i] = i; 5423 } 5424 } 5425 5426 /* Init HBQs */ 5427 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5428 rc = lpfc_sli_hbq_setup(phba); 5429 if (rc) 5430 goto lpfc_sli_hba_setup_error; 5431 } 5432 spin_lock_irq(&phba->hbalock); 5433 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5434 spin_unlock_irq(&phba->hbalock); 5435 5436 rc = lpfc_config_port_post(phba); 5437 if (rc) 5438 goto lpfc_sli_hba_setup_error; 5439 5440 return rc; 5441 5442 lpfc_sli_hba_setup_error: 5443 phba->link_state = LPFC_HBA_ERROR; 5444 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5445 "0445 Firmware initialization failed\n"); 5446 return rc; 5447 } 5448 5449 /** 5450 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5451 * @phba: Pointer to HBA context object. 5452 * 5453 * This function issue a dump mailbox command to read config region 5454 * 23 and parse the records in the region and populate driver 5455 * data structure. 5456 **/ 5457 static int 5458 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5459 { 5460 LPFC_MBOXQ_t *mboxq; 5461 struct lpfc_dmabuf *mp; 5462 struct lpfc_mqe *mqe; 5463 uint32_t data_length; 5464 int rc; 5465 5466 /* Program the default value of vlan_id and fc_map */ 5467 phba->valid_vlan = 0; 5468 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5469 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5470 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5471 5472 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5473 if (!mboxq) 5474 return -ENOMEM; 5475 5476 mqe = &mboxq->u.mqe; 5477 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5478 rc = -ENOMEM; 5479 goto out_free_mboxq; 5480 } 5481 5482 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5483 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5484 5485 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5486 "(%d):2571 Mailbox cmd x%x Status x%x " 5487 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5488 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5489 "CQ: x%x x%x x%x x%x\n", 5490 mboxq->vport ? mboxq->vport->vpi : 0, 5491 bf_get(lpfc_mqe_command, mqe), 5492 bf_get(lpfc_mqe_status, mqe), 5493 mqe->un.mb_words[0], mqe->un.mb_words[1], 5494 mqe->un.mb_words[2], mqe->un.mb_words[3], 5495 mqe->un.mb_words[4], mqe->un.mb_words[5], 5496 mqe->un.mb_words[6], mqe->un.mb_words[7], 5497 mqe->un.mb_words[8], mqe->un.mb_words[9], 5498 mqe->un.mb_words[10], mqe->un.mb_words[11], 5499 mqe->un.mb_words[12], mqe->un.mb_words[13], 5500 mqe->un.mb_words[14], mqe->un.mb_words[15], 5501 mqe->un.mb_words[16], mqe->un.mb_words[50], 5502 mboxq->mcqe.word0, 5503 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5504 mboxq->mcqe.trailer); 5505 5506 if (rc) { 5507 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5508 kfree(mp); 5509 rc = -EIO; 5510 goto out_free_mboxq; 5511 } 5512 data_length = mqe->un.mb_words[5]; 5513 if (data_length > DMP_RGN23_SIZE) { 5514 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5515 kfree(mp); 5516 rc = -EIO; 5517 goto out_free_mboxq; 5518 } 5519 5520 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5521 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5522 kfree(mp); 5523 rc = 0; 5524 5525 out_free_mboxq: 5526 mempool_free(mboxq, phba->mbox_mem_pool); 5527 return rc; 5528 } 5529 5530 /** 5531 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5532 * @phba: pointer to lpfc hba data structure. 5533 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5534 * @vpd: pointer to the memory to hold resulting port vpd data. 5535 * @vpd_size: On input, the number of bytes allocated to @vpd. 5536 * On output, the number of data bytes in @vpd. 5537 * 5538 * This routine executes a READ_REV SLI4 mailbox command. In 5539 * addition, this routine gets the port vpd data. 5540 * 5541 * Return codes 5542 * 0 - successful 5543 * -ENOMEM - could not allocated memory. 5544 **/ 5545 static int 5546 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5547 uint8_t *vpd, uint32_t *vpd_size) 5548 { 5549 int rc = 0; 5550 uint32_t dma_size; 5551 struct lpfc_dmabuf *dmabuf; 5552 struct lpfc_mqe *mqe; 5553 5554 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5555 if (!dmabuf) 5556 return -ENOMEM; 5557 5558 /* 5559 * Get a DMA buffer for the vpd data resulting from the READ_REV 5560 * mailbox command. 5561 */ 5562 dma_size = *vpd_size; 5563 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5564 &dmabuf->phys, GFP_KERNEL); 5565 if (!dmabuf->virt) { 5566 kfree(dmabuf); 5567 return -ENOMEM; 5568 } 5569 5570 /* 5571 * The SLI4 implementation of READ_REV conflicts at word1, 5572 * bits 31:16 and SLI4 adds vpd functionality not present 5573 * in SLI3. This code corrects the conflicts. 5574 */ 5575 lpfc_read_rev(phba, mboxq); 5576 mqe = &mboxq->u.mqe; 5577 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5578 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5579 mqe->un.read_rev.word1 &= 0x0000FFFF; 5580 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5581 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5582 5583 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5584 if (rc) { 5585 dma_free_coherent(&phba->pcidev->dev, dma_size, 5586 dmabuf->virt, dmabuf->phys); 5587 kfree(dmabuf); 5588 return -EIO; 5589 } 5590 5591 /* 5592 * The available vpd length cannot be bigger than the 5593 * DMA buffer passed to the port. Catch the less than 5594 * case and update the caller's size. 5595 */ 5596 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5597 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5598 5599 memcpy(vpd, dmabuf->virt, *vpd_size); 5600 5601 dma_free_coherent(&phba->pcidev->dev, dma_size, 5602 dmabuf->virt, dmabuf->phys); 5603 kfree(dmabuf); 5604 return 0; 5605 } 5606 5607 /** 5608 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5609 * @phba: pointer to lpfc hba data structure. 5610 * 5611 * This routine retrieves SLI4 device physical port name this PCI function 5612 * is attached to. 5613 * 5614 * Return codes 5615 * 0 - successful 5616 * otherwise - failed to retrieve controller attributes 5617 **/ 5618 static int 5619 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5620 { 5621 LPFC_MBOXQ_t *mboxq; 5622 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5623 struct lpfc_controller_attribute *cntl_attr; 5624 void *virtaddr = NULL; 5625 uint32_t alloclen, reqlen; 5626 uint32_t shdr_status, shdr_add_status; 5627 union lpfc_sli4_cfg_shdr *shdr; 5628 int rc; 5629 5630 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5631 if (!mboxq) 5632 return -ENOMEM; 5633 5634 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5635 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5636 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5637 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5638 LPFC_SLI4_MBX_NEMBED); 5639 5640 if (alloclen < reqlen) { 5641 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5642 "3084 Allocated DMA memory size (%d) is " 5643 "less than the requested DMA memory size " 5644 "(%d)\n", alloclen, reqlen); 5645 rc = -ENOMEM; 5646 goto out_free_mboxq; 5647 } 5648 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5649 virtaddr = mboxq->sge_array->addr[0]; 5650 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5651 shdr = &mbx_cntl_attr->cfg_shdr; 5652 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5653 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5654 if (shdr_status || shdr_add_status || rc) { 5655 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5656 "3085 Mailbox x%x (x%x/x%x) failed, " 5657 "rc:x%x, status:x%x, add_status:x%x\n", 5658 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5659 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5660 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5661 rc, shdr_status, shdr_add_status); 5662 rc = -ENXIO; 5663 goto out_free_mboxq; 5664 } 5665 5666 cntl_attr = &mbx_cntl_attr->cntl_attr; 5667 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5668 phba->sli4_hba.lnk_info.lnk_tp = 5669 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5670 phba->sli4_hba.lnk_info.lnk_no = 5671 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5672 5673 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5674 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5675 sizeof(phba->BIOSVersion)); 5676 5677 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5678 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5679 phba->sli4_hba.lnk_info.lnk_tp, 5680 phba->sli4_hba.lnk_info.lnk_no, 5681 phba->BIOSVersion); 5682 out_free_mboxq: 5683 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5684 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5685 else 5686 mempool_free(mboxq, phba->mbox_mem_pool); 5687 return rc; 5688 } 5689 5690 /** 5691 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5692 * @phba: pointer to lpfc hba data structure. 5693 * 5694 * This routine retrieves SLI4 device physical port name this PCI function 5695 * is attached to. 5696 * 5697 * Return codes 5698 * 0 - successful 5699 * otherwise - failed to retrieve physical port name 5700 **/ 5701 static int 5702 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5703 { 5704 LPFC_MBOXQ_t *mboxq; 5705 struct lpfc_mbx_get_port_name *get_port_name; 5706 uint32_t shdr_status, shdr_add_status; 5707 union lpfc_sli4_cfg_shdr *shdr; 5708 char cport_name = 0; 5709 int rc; 5710 5711 /* We assume nothing at this point */ 5712 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5713 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5714 5715 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5716 if (!mboxq) 5717 return -ENOMEM; 5718 /* obtain link type and link number via READ_CONFIG */ 5719 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5720 lpfc_sli4_read_config(phba); 5721 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5722 goto retrieve_ppname; 5723 5724 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5725 rc = lpfc_sli4_get_ctl_attr(phba); 5726 if (rc) 5727 goto out_free_mboxq; 5728 5729 retrieve_ppname: 5730 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5731 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5732 sizeof(struct lpfc_mbx_get_port_name) - 5733 sizeof(struct lpfc_sli4_cfg_mhdr), 5734 LPFC_SLI4_MBX_EMBED); 5735 get_port_name = &mboxq->u.mqe.un.get_port_name; 5736 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5737 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5738 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5739 phba->sli4_hba.lnk_info.lnk_tp); 5740 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5741 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5742 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5743 if (shdr_status || shdr_add_status || rc) { 5744 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5745 "3087 Mailbox x%x (x%x/x%x) failed: " 5746 "rc:x%x, status:x%x, add_status:x%x\n", 5747 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5748 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5749 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5750 rc, shdr_status, shdr_add_status); 5751 rc = -ENXIO; 5752 goto out_free_mboxq; 5753 } 5754 switch (phba->sli4_hba.lnk_info.lnk_no) { 5755 case LPFC_LINK_NUMBER_0: 5756 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5757 &get_port_name->u.response); 5758 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5759 break; 5760 case LPFC_LINK_NUMBER_1: 5761 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5762 &get_port_name->u.response); 5763 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5764 break; 5765 case LPFC_LINK_NUMBER_2: 5766 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5767 &get_port_name->u.response); 5768 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5769 break; 5770 case LPFC_LINK_NUMBER_3: 5771 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5772 &get_port_name->u.response); 5773 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5774 break; 5775 default: 5776 break; 5777 } 5778 5779 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5780 phba->Port[0] = cport_name; 5781 phba->Port[1] = '\0'; 5782 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5783 "3091 SLI get port name: %s\n", phba->Port); 5784 } 5785 5786 out_free_mboxq: 5787 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5788 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5789 else 5790 mempool_free(mboxq, phba->mbox_mem_pool); 5791 return rc; 5792 } 5793 5794 /** 5795 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5796 * @phba: pointer to lpfc hba data structure. 5797 * 5798 * This routine is called to explicitly arm the SLI4 device's completion and 5799 * event queues 5800 **/ 5801 static void 5802 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5803 { 5804 int qidx; 5805 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5806 struct lpfc_sli4_hdw_queue *qp; 5807 struct lpfc_queue *eq; 5808 5809 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5810 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5811 if (sli4_hba->nvmels_cq) 5812 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5813 LPFC_QUEUE_REARM); 5814 5815 if (sli4_hba->hdwq) { 5816 /* Loop thru all Hardware Queues */ 5817 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5818 qp = &sli4_hba->hdwq[qidx]; 5819 /* ARM the corresponding CQ */ 5820 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5821 LPFC_QUEUE_REARM); 5822 } 5823 5824 /* Loop thru all IRQ vectors */ 5825 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5826 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5827 /* ARM the corresponding EQ */ 5828 sli4_hba->sli4_write_eq_db(phba, eq, 5829 0, LPFC_QUEUE_REARM); 5830 } 5831 } 5832 5833 if (phba->nvmet_support) { 5834 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5835 sli4_hba->sli4_write_cq_db(phba, 5836 sli4_hba->nvmet_cqset[qidx], 0, 5837 LPFC_QUEUE_REARM); 5838 } 5839 } 5840 } 5841 5842 /** 5843 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5844 * @phba: Pointer to HBA context object. 5845 * @type: The resource extent type. 5846 * @extnt_count: buffer to hold port available extent count. 5847 * @extnt_size: buffer to hold element count per extent. 5848 * 5849 * This function calls the port and retrievs the number of available 5850 * extents and their size for a particular extent type. 5851 * 5852 * Returns: 0 if successful. Nonzero otherwise. 5853 **/ 5854 int 5855 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5856 uint16_t *extnt_count, uint16_t *extnt_size) 5857 { 5858 int rc = 0; 5859 uint32_t length; 5860 uint32_t mbox_tmo; 5861 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5862 LPFC_MBOXQ_t *mbox; 5863 5864 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5865 if (!mbox) 5866 return -ENOMEM; 5867 5868 /* Find out how many extents are available for this resource type */ 5869 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5870 sizeof(struct lpfc_sli4_cfg_mhdr)); 5871 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5872 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5873 length, LPFC_SLI4_MBX_EMBED); 5874 5875 /* Send an extents count of 0 - the GET doesn't use it. */ 5876 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5877 LPFC_SLI4_MBX_EMBED); 5878 if (unlikely(rc)) { 5879 rc = -EIO; 5880 goto err_exit; 5881 } 5882 5883 if (!phba->sli4_hba.intr_enable) 5884 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5885 else { 5886 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5887 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5888 } 5889 if (unlikely(rc)) { 5890 rc = -EIO; 5891 goto err_exit; 5892 } 5893 5894 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5895 if (bf_get(lpfc_mbox_hdr_status, 5896 &rsrc_info->header.cfg_shdr.response)) { 5897 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5898 "2930 Failed to get resource extents " 5899 "Status 0x%x Add'l Status 0x%x\n", 5900 bf_get(lpfc_mbox_hdr_status, 5901 &rsrc_info->header.cfg_shdr.response), 5902 bf_get(lpfc_mbox_hdr_add_status, 5903 &rsrc_info->header.cfg_shdr.response)); 5904 rc = -EIO; 5905 goto err_exit; 5906 } 5907 5908 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5909 &rsrc_info->u.rsp); 5910 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5911 &rsrc_info->u.rsp); 5912 5913 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5914 "3162 Retrieved extents type-%d from port: count:%d, " 5915 "size:%d\n", type, *extnt_count, *extnt_size); 5916 5917 err_exit: 5918 mempool_free(mbox, phba->mbox_mem_pool); 5919 return rc; 5920 } 5921 5922 /** 5923 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5924 * @phba: Pointer to HBA context object. 5925 * @type: The extent type to check. 5926 * 5927 * This function reads the current available extents from the port and checks 5928 * if the extent count or extent size has changed since the last access. 5929 * Callers use this routine post port reset to understand if there is a 5930 * extent reprovisioning requirement. 5931 * 5932 * Returns: 5933 * -Error: error indicates problem. 5934 * 1: Extent count or size has changed. 5935 * 0: No changes. 5936 **/ 5937 static int 5938 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5939 { 5940 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5941 uint16_t size_diff, rsrc_ext_size; 5942 int rc = 0; 5943 struct lpfc_rsrc_blks *rsrc_entry; 5944 struct list_head *rsrc_blk_list = NULL; 5945 5946 size_diff = 0; 5947 curr_ext_cnt = 0; 5948 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5949 &rsrc_ext_cnt, 5950 &rsrc_ext_size); 5951 if (unlikely(rc)) 5952 return -EIO; 5953 5954 switch (type) { 5955 case LPFC_RSC_TYPE_FCOE_RPI: 5956 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5957 break; 5958 case LPFC_RSC_TYPE_FCOE_VPI: 5959 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5960 break; 5961 case LPFC_RSC_TYPE_FCOE_XRI: 5962 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5963 break; 5964 case LPFC_RSC_TYPE_FCOE_VFI: 5965 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5966 break; 5967 default: 5968 break; 5969 } 5970 5971 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5972 curr_ext_cnt++; 5973 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5974 size_diff++; 5975 } 5976 5977 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5978 rc = 1; 5979 5980 return rc; 5981 } 5982 5983 /** 5984 * lpfc_sli4_cfg_post_extnts - 5985 * @phba: Pointer to HBA context object. 5986 * @extnt_cnt: number of available extents. 5987 * @type: the extent type (rpi, xri, vfi, vpi). 5988 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5989 * @mbox: pointer to the caller's allocated mailbox structure. 5990 * 5991 * This function executes the extents allocation request. It also 5992 * takes care of the amount of memory needed to allocate or get the 5993 * allocated extents. It is the caller's responsibility to evaluate 5994 * the response. 5995 * 5996 * Returns: 5997 * -Error: Error value describes the condition found. 5998 * 0: if successful 5999 **/ 6000 static int 6001 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6002 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6003 { 6004 int rc = 0; 6005 uint32_t req_len; 6006 uint32_t emb_len; 6007 uint32_t alloc_len, mbox_tmo; 6008 6009 /* Calculate the total requested length of the dma memory */ 6010 req_len = extnt_cnt * sizeof(uint16_t); 6011 6012 /* 6013 * Calculate the size of an embedded mailbox. The uint32_t 6014 * accounts for extents-specific word. 6015 */ 6016 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6017 sizeof(uint32_t); 6018 6019 /* 6020 * Presume the allocation and response will fit into an embedded 6021 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6022 */ 6023 *emb = LPFC_SLI4_MBX_EMBED; 6024 if (req_len > emb_len) { 6025 req_len = extnt_cnt * sizeof(uint16_t) + 6026 sizeof(union lpfc_sli4_cfg_shdr) + 6027 sizeof(uint32_t); 6028 *emb = LPFC_SLI4_MBX_NEMBED; 6029 } 6030 6031 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6032 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6033 req_len, *emb); 6034 if (alloc_len < req_len) { 6035 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6036 "2982 Allocated DMA memory size (x%x) is " 6037 "less than the requested DMA memory " 6038 "size (x%x)\n", alloc_len, req_len); 6039 return -ENOMEM; 6040 } 6041 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6042 if (unlikely(rc)) 6043 return -EIO; 6044 6045 if (!phba->sli4_hba.intr_enable) 6046 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6047 else { 6048 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6049 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6050 } 6051 6052 if (unlikely(rc)) 6053 rc = -EIO; 6054 return rc; 6055 } 6056 6057 /** 6058 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6059 * @phba: Pointer to HBA context object. 6060 * @type: The resource extent type to allocate. 6061 * 6062 * This function allocates the number of elements for the specified 6063 * resource type. 6064 **/ 6065 static int 6066 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6067 { 6068 bool emb = false; 6069 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6070 uint16_t rsrc_id, rsrc_start, j, k; 6071 uint16_t *ids; 6072 int i, rc; 6073 unsigned long longs; 6074 unsigned long *bmask; 6075 struct lpfc_rsrc_blks *rsrc_blks; 6076 LPFC_MBOXQ_t *mbox; 6077 uint32_t length; 6078 struct lpfc_id_range *id_array = NULL; 6079 void *virtaddr = NULL; 6080 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6081 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6082 struct list_head *ext_blk_list; 6083 6084 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6085 &rsrc_cnt, 6086 &rsrc_size); 6087 if (unlikely(rc)) 6088 return -EIO; 6089 6090 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6091 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6092 "3009 No available Resource Extents " 6093 "for resource type 0x%x: Count: 0x%x, " 6094 "Size 0x%x\n", type, rsrc_cnt, 6095 rsrc_size); 6096 return -ENOMEM; 6097 } 6098 6099 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6100 "2903 Post resource extents type-0x%x: " 6101 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6102 6103 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6104 if (!mbox) 6105 return -ENOMEM; 6106 6107 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6108 if (unlikely(rc)) { 6109 rc = -EIO; 6110 goto err_exit; 6111 } 6112 6113 /* 6114 * Figure out where the response is located. Then get local pointers 6115 * to the response data. The port does not guarantee to respond to 6116 * all extents counts request so update the local variable with the 6117 * allocated count from the port. 6118 */ 6119 if (emb == LPFC_SLI4_MBX_EMBED) { 6120 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6121 id_array = &rsrc_ext->u.rsp.id[0]; 6122 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6123 } else { 6124 virtaddr = mbox->sge_array->addr[0]; 6125 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6126 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6127 id_array = &n_rsrc->id; 6128 } 6129 6130 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6131 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6132 6133 /* 6134 * Based on the resource size and count, correct the base and max 6135 * resource values. 6136 */ 6137 length = sizeof(struct lpfc_rsrc_blks); 6138 switch (type) { 6139 case LPFC_RSC_TYPE_FCOE_RPI: 6140 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6141 sizeof(unsigned long), 6142 GFP_KERNEL); 6143 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6144 rc = -ENOMEM; 6145 goto err_exit; 6146 } 6147 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6148 sizeof(uint16_t), 6149 GFP_KERNEL); 6150 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6151 kfree(phba->sli4_hba.rpi_bmask); 6152 rc = -ENOMEM; 6153 goto err_exit; 6154 } 6155 6156 /* 6157 * The next_rpi was initialized with the maximum available 6158 * count but the port may allocate a smaller number. Catch 6159 * that case and update the next_rpi. 6160 */ 6161 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6162 6163 /* Initialize local ptrs for common extent processing later. */ 6164 bmask = phba->sli4_hba.rpi_bmask; 6165 ids = phba->sli4_hba.rpi_ids; 6166 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6167 break; 6168 case LPFC_RSC_TYPE_FCOE_VPI: 6169 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6170 GFP_KERNEL); 6171 if (unlikely(!phba->vpi_bmask)) { 6172 rc = -ENOMEM; 6173 goto err_exit; 6174 } 6175 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6176 GFP_KERNEL); 6177 if (unlikely(!phba->vpi_ids)) { 6178 kfree(phba->vpi_bmask); 6179 rc = -ENOMEM; 6180 goto err_exit; 6181 } 6182 6183 /* Initialize local ptrs for common extent processing later. */ 6184 bmask = phba->vpi_bmask; 6185 ids = phba->vpi_ids; 6186 ext_blk_list = &phba->lpfc_vpi_blk_list; 6187 break; 6188 case LPFC_RSC_TYPE_FCOE_XRI: 6189 phba->sli4_hba.xri_bmask = kcalloc(longs, 6190 sizeof(unsigned long), 6191 GFP_KERNEL); 6192 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6193 rc = -ENOMEM; 6194 goto err_exit; 6195 } 6196 phba->sli4_hba.max_cfg_param.xri_used = 0; 6197 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6198 sizeof(uint16_t), 6199 GFP_KERNEL); 6200 if (unlikely(!phba->sli4_hba.xri_ids)) { 6201 kfree(phba->sli4_hba.xri_bmask); 6202 rc = -ENOMEM; 6203 goto err_exit; 6204 } 6205 6206 /* Initialize local ptrs for common extent processing later. */ 6207 bmask = phba->sli4_hba.xri_bmask; 6208 ids = phba->sli4_hba.xri_ids; 6209 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6210 break; 6211 case LPFC_RSC_TYPE_FCOE_VFI: 6212 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6213 sizeof(unsigned long), 6214 GFP_KERNEL); 6215 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6216 rc = -ENOMEM; 6217 goto err_exit; 6218 } 6219 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6220 sizeof(uint16_t), 6221 GFP_KERNEL); 6222 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6223 kfree(phba->sli4_hba.vfi_bmask); 6224 rc = -ENOMEM; 6225 goto err_exit; 6226 } 6227 6228 /* Initialize local ptrs for common extent processing later. */ 6229 bmask = phba->sli4_hba.vfi_bmask; 6230 ids = phba->sli4_hba.vfi_ids; 6231 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6232 break; 6233 default: 6234 /* Unsupported Opcode. Fail call. */ 6235 id_array = NULL; 6236 bmask = NULL; 6237 ids = NULL; 6238 ext_blk_list = NULL; 6239 goto err_exit; 6240 } 6241 6242 /* 6243 * Complete initializing the extent configuration with the 6244 * allocated ids assigned to this function. The bitmask serves 6245 * as an index into the array and manages the available ids. The 6246 * array just stores the ids communicated to the port via the wqes. 6247 */ 6248 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6249 if ((i % 2) == 0) 6250 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6251 &id_array[k]); 6252 else 6253 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6254 &id_array[k]); 6255 6256 rsrc_blks = kzalloc(length, GFP_KERNEL); 6257 if (unlikely(!rsrc_blks)) { 6258 rc = -ENOMEM; 6259 kfree(bmask); 6260 kfree(ids); 6261 goto err_exit; 6262 } 6263 rsrc_blks->rsrc_start = rsrc_id; 6264 rsrc_blks->rsrc_size = rsrc_size; 6265 list_add_tail(&rsrc_blks->list, ext_blk_list); 6266 rsrc_start = rsrc_id; 6267 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6268 phba->sli4_hba.io_xri_start = rsrc_start + 6269 lpfc_sli4_get_iocb_cnt(phba); 6270 } 6271 6272 while (rsrc_id < (rsrc_start + rsrc_size)) { 6273 ids[j] = rsrc_id; 6274 rsrc_id++; 6275 j++; 6276 } 6277 /* Entire word processed. Get next word.*/ 6278 if ((i % 2) == 1) 6279 k++; 6280 } 6281 err_exit: 6282 lpfc_sli4_mbox_cmd_free(phba, mbox); 6283 return rc; 6284 } 6285 6286 6287 6288 /** 6289 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6290 * @phba: Pointer to HBA context object. 6291 * @type: the extent's type. 6292 * 6293 * This function deallocates all extents of a particular resource type. 6294 * SLI4 does not allow for deallocating a particular extent range. It 6295 * is the caller's responsibility to release all kernel memory resources. 6296 **/ 6297 static int 6298 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6299 { 6300 int rc; 6301 uint32_t length, mbox_tmo = 0; 6302 LPFC_MBOXQ_t *mbox; 6303 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6304 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6305 6306 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6307 if (!mbox) 6308 return -ENOMEM; 6309 6310 /* 6311 * This function sends an embedded mailbox because it only sends the 6312 * the resource type. All extents of this type are released by the 6313 * port. 6314 */ 6315 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6316 sizeof(struct lpfc_sli4_cfg_mhdr)); 6317 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6318 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6319 length, LPFC_SLI4_MBX_EMBED); 6320 6321 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6322 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6323 LPFC_SLI4_MBX_EMBED); 6324 if (unlikely(rc)) { 6325 rc = -EIO; 6326 goto out_free_mbox; 6327 } 6328 if (!phba->sli4_hba.intr_enable) 6329 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6330 else { 6331 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6332 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6333 } 6334 if (unlikely(rc)) { 6335 rc = -EIO; 6336 goto out_free_mbox; 6337 } 6338 6339 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6340 if (bf_get(lpfc_mbox_hdr_status, 6341 &dealloc_rsrc->header.cfg_shdr.response)) { 6342 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6343 "2919 Failed to release resource extents " 6344 "for type %d - Status 0x%x Add'l Status 0x%x. " 6345 "Resource memory not released.\n", 6346 type, 6347 bf_get(lpfc_mbox_hdr_status, 6348 &dealloc_rsrc->header.cfg_shdr.response), 6349 bf_get(lpfc_mbox_hdr_add_status, 6350 &dealloc_rsrc->header.cfg_shdr.response)); 6351 rc = -EIO; 6352 goto out_free_mbox; 6353 } 6354 6355 /* Release kernel memory resources for the specific type. */ 6356 switch (type) { 6357 case LPFC_RSC_TYPE_FCOE_VPI: 6358 kfree(phba->vpi_bmask); 6359 kfree(phba->vpi_ids); 6360 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6361 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6362 &phba->lpfc_vpi_blk_list, list) { 6363 list_del_init(&rsrc_blk->list); 6364 kfree(rsrc_blk); 6365 } 6366 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6367 break; 6368 case LPFC_RSC_TYPE_FCOE_XRI: 6369 kfree(phba->sli4_hba.xri_bmask); 6370 kfree(phba->sli4_hba.xri_ids); 6371 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6372 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6373 list_del_init(&rsrc_blk->list); 6374 kfree(rsrc_blk); 6375 } 6376 break; 6377 case LPFC_RSC_TYPE_FCOE_VFI: 6378 kfree(phba->sli4_hba.vfi_bmask); 6379 kfree(phba->sli4_hba.vfi_ids); 6380 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6381 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6382 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6383 list_del_init(&rsrc_blk->list); 6384 kfree(rsrc_blk); 6385 } 6386 break; 6387 case LPFC_RSC_TYPE_FCOE_RPI: 6388 /* RPI bitmask and physical id array are cleaned up earlier. */ 6389 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6390 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6391 list_del_init(&rsrc_blk->list); 6392 kfree(rsrc_blk); 6393 } 6394 break; 6395 default: 6396 break; 6397 } 6398 6399 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6400 6401 out_free_mbox: 6402 mempool_free(mbox, phba->mbox_mem_pool); 6403 return rc; 6404 } 6405 6406 static void 6407 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6408 uint32_t feature) 6409 { 6410 uint32_t len; 6411 6412 len = sizeof(struct lpfc_mbx_set_feature) - 6413 sizeof(struct lpfc_sli4_cfg_mhdr); 6414 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6415 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6416 LPFC_SLI4_MBX_EMBED); 6417 6418 switch (feature) { 6419 case LPFC_SET_UE_RECOVERY: 6420 bf_set(lpfc_mbx_set_feature_UER, 6421 &mbox->u.mqe.un.set_feature, 1); 6422 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6423 mbox->u.mqe.un.set_feature.param_len = 8; 6424 break; 6425 case LPFC_SET_MDS_DIAGS: 6426 bf_set(lpfc_mbx_set_feature_mds, 6427 &mbox->u.mqe.un.set_feature, 1); 6428 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6429 &mbox->u.mqe.un.set_feature, 1); 6430 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6431 mbox->u.mqe.un.set_feature.param_len = 8; 6432 break; 6433 case LPFC_SET_DUAL_DUMP: 6434 bf_set(lpfc_mbx_set_feature_dd, 6435 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6436 bf_set(lpfc_mbx_set_feature_ddquery, 6437 &mbox->u.mqe.un.set_feature, 0); 6438 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6439 mbox->u.mqe.un.set_feature.param_len = 4; 6440 break; 6441 } 6442 6443 return; 6444 } 6445 6446 /** 6447 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6448 * @phba: Pointer to HBA context object. 6449 * 6450 * Disable FW logging into host memory on the adapter. To 6451 * be done before reading logs from the host memory. 6452 **/ 6453 void 6454 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6455 { 6456 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6457 6458 spin_lock_irq(&phba->hbalock); 6459 ras_fwlog->state = INACTIVE; 6460 spin_unlock_irq(&phba->hbalock); 6461 6462 /* Disable FW logging to host memory */ 6463 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6464 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6465 6466 /* Wait 10ms for firmware to stop using DMA buffer */ 6467 usleep_range(10 * 1000, 20 * 1000); 6468 } 6469 6470 /** 6471 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6472 * @phba: Pointer to HBA context object. 6473 * 6474 * This function is called to free memory allocated for RAS FW logging 6475 * support in the driver. 6476 **/ 6477 void 6478 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6479 { 6480 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6481 struct lpfc_dmabuf *dmabuf, *next; 6482 6483 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6484 list_for_each_entry_safe(dmabuf, next, 6485 &ras_fwlog->fwlog_buff_list, 6486 list) { 6487 list_del(&dmabuf->list); 6488 dma_free_coherent(&phba->pcidev->dev, 6489 LPFC_RAS_MAX_ENTRY_SIZE, 6490 dmabuf->virt, dmabuf->phys); 6491 kfree(dmabuf); 6492 } 6493 } 6494 6495 if (ras_fwlog->lwpd.virt) { 6496 dma_free_coherent(&phba->pcidev->dev, 6497 sizeof(uint32_t) * 2, 6498 ras_fwlog->lwpd.virt, 6499 ras_fwlog->lwpd.phys); 6500 ras_fwlog->lwpd.virt = NULL; 6501 } 6502 6503 spin_lock_irq(&phba->hbalock); 6504 ras_fwlog->state = INACTIVE; 6505 spin_unlock_irq(&phba->hbalock); 6506 } 6507 6508 /** 6509 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6510 * @phba: Pointer to HBA context object. 6511 * @fwlog_buff_count: Count of buffers to be created. 6512 * 6513 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6514 * to update FW log is posted to the adapter. 6515 * Buffer count is calculated based on module param ras_fwlog_buffsize 6516 * Size of each buffer posted to FW is 64K. 6517 **/ 6518 6519 static int 6520 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6521 uint32_t fwlog_buff_count) 6522 { 6523 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6524 struct lpfc_dmabuf *dmabuf; 6525 int rc = 0, i = 0; 6526 6527 /* Initialize List */ 6528 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6529 6530 /* Allocate memory for the LWPD */ 6531 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6532 sizeof(uint32_t) * 2, 6533 &ras_fwlog->lwpd.phys, 6534 GFP_KERNEL); 6535 if (!ras_fwlog->lwpd.virt) { 6536 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6537 "6185 LWPD Memory Alloc Failed\n"); 6538 6539 return -ENOMEM; 6540 } 6541 6542 ras_fwlog->fw_buffcount = fwlog_buff_count; 6543 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6544 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6545 GFP_KERNEL); 6546 if (!dmabuf) { 6547 rc = -ENOMEM; 6548 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6549 "6186 Memory Alloc failed FW logging"); 6550 goto free_mem; 6551 } 6552 6553 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6554 LPFC_RAS_MAX_ENTRY_SIZE, 6555 &dmabuf->phys, GFP_KERNEL); 6556 if (!dmabuf->virt) { 6557 kfree(dmabuf); 6558 rc = -ENOMEM; 6559 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6560 "6187 DMA Alloc Failed FW logging"); 6561 goto free_mem; 6562 } 6563 dmabuf->buffer_tag = i; 6564 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6565 } 6566 6567 free_mem: 6568 if (rc) 6569 lpfc_sli4_ras_dma_free(phba); 6570 6571 return rc; 6572 } 6573 6574 /** 6575 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6576 * @phba: pointer to lpfc hba data structure. 6577 * @pmb: pointer to the driver internal queue element for mailbox command. 6578 * 6579 * Completion handler for driver's RAS MBX command to the device. 6580 **/ 6581 static void 6582 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6583 { 6584 MAILBOX_t *mb; 6585 union lpfc_sli4_cfg_shdr *shdr; 6586 uint32_t shdr_status, shdr_add_status; 6587 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6588 6589 mb = &pmb->u.mb; 6590 6591 shdr = (union lpfc_sli4_cfg_shdr *) 6592 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6593 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6594 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6595 6596 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6597 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6598 "6188 FW LOG mailbox " 6599 "completed with status x%x add_status x%x," 6600 " mbx status x%x\n", 6601 shdr_status, shdr_add_status, mb->mbxStatus); 6602 6603 ras_fwlog->ras_hwsupport = false; 6604 goto disable_ras; 6605 } 6606 6607 spin_lock_irq(&phba->hbalock); 6608 ras_fwlog->state = ACTIVE; 6609 spin_unlock_irq(&phba->hbalock); 6610 mempool_free(pmb, phba->mbox_mem_pool); 6611 6612 return; 6613 6614 disable_ras: 6615 /* Free RAS DMA memory */ 6616 lpfc_sli4_ras_dma_free(phba); 6617 mempool_free(pmb, phba->mbox_mem_pool); 6618 } 6619 6620 /** 6621 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6622 * @phba: pointer to lpfc hba data structure. 6623 * @fwlog_level: Logging verbosity level. 6624 * @fwlog_enable: Enable/Disable logging. 6625 * 6626 * Initialize memory and post mailbox command to enable FW logging in host 6627 * memory. 6628 **/ 6629 int 6630 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6631 uint32_t fwlog_level, 6632 uint32_t fwlog_enable) 6633 { 6634 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6635 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6636 struct lpfc_dmabuf *dmabuf; 6637 LPFC_MBOXQ_t *mbox; 6638 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6639 int rc = 0; 6640 6641 spin_lock_irq(&phba->hbalock); 6642 ras_fwlog->state = INACTIVE; 6643 spin_unlock_irq(&phba->hbalock); 6644 6645 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6646 phba->cfg_ras_fwlog_buffsize); 6647 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6648 6649 /* 6650 * If re-enabling FW logging support use earlier allocated 6651 * DMA buffers while posting MBX command. 6652 **/ 6653 if (!ras_fwlog->lwpd.virt) { 6654 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6655 if (rc) { 6656 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6657 "6189 FW Log Memory Allocation Failed"); 6658 return rc; 6659 } 6660 } 6661 6662 /* Setup Mailbox command */ 6663 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6664 if (!mbox) { 6665 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6666 "6190 RAS MBX Alloc Failed"); 6667 rc = -ENOMEM; 6668 goto mem_free; 6669 } 6670 6671 ras_fwlog->fw_loglevel = fwlog_level; 6672 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6673 sizeof(struct lpfc_sli4_cfg_mhdr)); 6674 6675 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6676 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6677 len, LPFC_SLI4_MBX_EMBED); 6678 6679 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6680 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6681 fwlog_enable); 6682 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6683 ras_fwlog->fw_loglevel); 6684 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6685 ras_fwlog->fw_buffcount); 6686 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6687 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6688 6689 /* Update DMA buffer address */ 6690 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6691 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6692 6693 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6694 putPaddrLow(dmabuf->phys); 6695 6696 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6697 putPaddrHigh(dmabuf->phys); 6698 } 6699 6700 /* Update LPWD address */ 6701 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6702 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6703 6704 spin_lock_irq(&phba->hbalock); 6705 ras_fwlog->state = REG_INPROGRESS; 6706 spin_unlock_irq(&phba->hbalock); 6707 mbox->vport = phba->pport; 6708 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6709 6710 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6711 6712 if (rc == MBX_NOT_FINISHED) { 6713 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6714 "6191 FW-Log Mailbox failed. " 6715 "status %d mbxStatus : x%x", rc, 6716 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6717 mempool_free(mbox, phba->mbox_mem_pool); 6718 rc = -EIO; 6719 goto mem_free; 6720 } else 6721 rc = 0; 6722 mem_free: 6723 if (rc) 6724 lpfc_sli4_ras_dma_free(phba); 6725 6726 return rc; 6727 } 6728 6729 /** 6730 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6731 * @phba: Pointer to HBA context object. 6732 * 6733 * Check if RAS is supported on the adapter and initialize it. 6734 **/ 6735 void 6736 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6737 { 6738 /* Check RAS FW Log needs to be enabled or not */ 6739 if (lpfc_check_fwlog_support(phba)) 6740 return; 6741 6742 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6743 LPFC_RAS_ENABLE_LOGGING); 6744 } 6745 6746 /** 6747 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6748 * @phba: Pointer to HBA context object. 6749 * 6750 * This function allocates all SLI4 resource identifiers. 6751 **/ 6752 int 6753 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6754 { 6755 int i, rc, error = 0; 6756 uint16_t count, base; 6757 unsigned long longs; 6758 6759 if (!phba->sli4_hba.rpi_hdrs_in_use) 6760 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6761 if (phba->sli4_hba.extents_in_use) { 6762 /* 6763 * The port supports resource extents. The XRI, VPI, VFI, RPI 6764 * resource extent count must be read and allocated before 6765 * provisioning the resource id arrays. 6766 */ 6767 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6768 LPFC_IDX_RSRC_RDY) { 6769 /* 6770 * Extent-based resources are set - the driver could 6771 * be in a port reset. Figure out if any corrective 6772 * actions need to be taken. 6773 */ 6774 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6775 LPFC_RSC_TYPE_FCOE_VFI); 6776 if (rc != 0) 6777 error++; 6778 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6779 LPFC_RSC_TYPE_FCOE_VPI); 6780 if (rc != 0) 6781 error++; 6782 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6783 LPFC_RSC_TYPE_FCOE_XRI); 6784 if (rc != 0) 6785 error++; 6786 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6787 LPFC_RSC_TYPE_FCOE_RPI); 6788 if (rc != 0) 6789 error++; 6790 6791 /* 6792 * It's possible that the number of resources 6793 * provided to this port instance changed between 6794 * resets. Detect this condition and reallocate 6795 * resources. Otherwise, there is no action. 6796 */ 6797 if (error) { 6798 lpfc_printf_log(phba, KERN_INFO, 6799 LOG_MBOX | LOG_INIT, 6800 "2931 Detected extent resource " 6801 "change. Reallocating all " 6802 "extents.\n"); 6803 rc = lpfc_sli4_dealloc_extent(phba, 6804 LPFC_RSC_TYPE_FCOE_VFI); 6805 rc = lpfc_sli4_dealloc_extent(phba, 6806 LPFC_RSC_TYPE_FCOE_VPI); 6807 rc = lpfc_sli4_dealloc_extent(phba, 6808 LPFC_RSC_TYPE_FCOE_XRI); 6809 rc = lpfc_sli4_dealloc_extent(phba, 6810 LPFC_RSC_TYPE_FCOE_RPI); 6811 } else 6812 return 0; 6813 } 6814 6815 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6816 if (unlikely(rc)) 6817 goto err_exit; 6818 6819 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6820 if (unlikely(rc)) 6821 goto err_exit; 6822 6823 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6824 if (unlikely(rc)) 6825 goto err_exit; 6826 6827 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6828 if (unlikely(rc)) 6829 goto err_exit; 6830 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6831 LPFC_IDX_RSRC_RDY); 6832 return rc; 6833 } else { 6834 /* 6835 * The port does not support resource extents. The XRI, VPI, 6836 * VFI, RPI resource ids were determined from READ_CONFIG. 6837 * Just allocate the bitmasks and provision the resource id 6838 * arrays. If a port reset is active, the resources don't 6839 * need any action - just exit. 6840 */ 6841 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6842 LPFC_IDX_RSRC_RDY) { 6843 lpfc_sli4_dealloc_resource_identifiers(phba); 6844 lpfc_sli4_remove_rpis(phba); 6845 } 6846 /* RPIs. */ 6847 count = phba->sli4_hba.max_cfg_param.max_rpi; 6848 if (count <= 0) { 6849 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6850 "3279 Invalid provisioning of " 6851 "rpi:%d\n", count); 6852 rc = -EINVAL; 6853 goto err_exit; 6854 } 6855 base = phba->sli4_hba.max_cfg_param.rpi_base; 6856 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6857 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6858 sizeof(unsigned long), 6859 GFP_KERNEL); 6860 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6861 rc = -ENOMEM; 6862 goto err_exit; 6863 } 6864 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6865 GFP_KERNEL); 6866 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6867 rc = -ENOMEM; 6868 goto free_rpi_bmask; 6869 } 6870 6871 for (i = 0; i < count; i++) 6872 phba->sli4_hba.rpi_ids[i] = base + i; 6873 6874 /* VPIs. */ 6875 count = phba->sli4_hba.max_cfg_param.max_vpi; 6876 if (count <= 0) { 6877 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6878 "3280 Invalid provisioning of " 6879 "vpi:%d\n", count); 6880 rc = -EINVAL; 6881 goto free_rpi_ids; 6882 } 6883 base = phba->sli4_hba.max_cfg_param.vpi_base; 6884 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6885 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6886 GFP_KERNEL); 6887 if (unlikely(!phba->vpi_bmask)) { 6888 rc = -ENOMEM; 6889 goto free_rpi_ids; 6890 } 6891 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6892 GFP_KERNEL); 6893 if (unlikely(!phba->vpi_ids)) { 6894 rc = -ENOMEM; 6895 goto free_vpi_bmask; 6896 } 6897 6898 for (i = 0; i < count; i++) 6899 phba->vpi_ids[i] = base + i; 6900 6901 /* XRIs. */ 6902 count = phba->sli4_hba.max_cfg_param.max_xri; 6903 if (count <= 0) { 6904 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6905 "3281 Invalid provisioning of " 6906 "xri:%d\n", count); 6907 rc = -EINVAL; 6908 goto free_vpi_ids; 6909 } 6910 base = phba->sli4_hba.max_cfg_param.xri_base; 6911 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6912 phba->sli4_hba.xri_bmask = kcalloc(longs, 6913 sizeof(unsigned long), 6914 GFP_KERNEL); 6915 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6916 rc = -ENOMEM; 6917 goto free_vpi_ids; 6918 } 6919 phba->sli4_hba.max_cfg_param.xri_used = 0; 6920 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6921 GFP_KERNEL); 6922 if (unlikely(!phba->sli4_hba.xri_ids)) { 6923 rc = -ENOMEM; 6924 goto free_xri_bmask; 6925 } 6926 6927 for (i = 0; i < count; i++) 6928 phba->sli4_hba.xri_ids[i] = base + i; 6929 6930 /* VFIs. */ 6931 count = phba->sli4_hba.max_cfg_param.max_vfi; 6932 if (count <= 0) { 6933 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6934 "3282 Invalid provisioning of " 6935 "vfi:%d\n", count); 6936 rc = -EINVAL; 6937 goto free_xri_ids; 6938 } 6939 base = phba->sli4_hba.max_cfg_param.vfi_base; 6940 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6941 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6942 sizeof(unsigned long), 6943 GFP_KERNEL); 6944 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6945 rc = -ENOMEM; 6946 goto free_xri_ids; 6947 } 6948 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6949 GFP_KERNEL); 6950 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6951 rc = -ENOMEM; 6952 goto free_vfi_bmask; 6953 } 6954 6955 for (i = 0; i < count; i++) 6956 phba->sli4_hba.vfi_ids[i] = base + i; 6957 6958 /* 6959 * Mark all resources ready. An HBA reset doesn't need 6960 * to reset the initialization. 6961 */ 6962 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6963 LPFC_IDX_RSRC_RDY); 6964 return 0; 6965 } 6966 6967 free_vfi_bmask: 6968 kfree(phba->sli4_hba.vfi_bmask); 6969 phba->sli4_hba.vfi_bmask = NULL; 6970 free_xri_ids: 6971 kfree(phba->sli4_hba.xri_ids); 6972 phba->sli4_hba.xri_ids = NULL; 6973 free_xri_bmask: 6974 kfree(phba->sli4_hba.xri_bmask); 6975 phba->sli4_hba.xri_bmask = NULL; 6976 free_vpi_ids: 6977 kfree(phba->vpi_ids); 6978 phba->vpi_ids = NULL; 6979 free_vpi_bmask: 6980 kfree(phba->vpi_bmask); 6981 phba->vpi_bmask = NULL; 6982 free_rpi_ids: 6983 kfree(phba->sli4_hba.rpi_ids); 6984 phba->sli4_hba.rpi_ids = NULL; 6985 free_rpi_bmask: 6986 kfree(phba->sli4_hba.rpi_bmask); 6987 phba->sli4_hba.rpi_bmask = NULL; 6988 err_exit: 6989 return rc; 6990 } 6991 6992 /** 6993 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6994 * @phba: Pointer to HBA context object. 6995 * 6996 * This function allocates the number of elements for the specified 6997 * resource type. 6998 **/ 6999 int 7000 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7001 { 7002 if (phba->sli4_hba.extents_in_use) { 7003 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7004 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7005 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7006 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7007 } else { 7008 kfree(phba->vpi_bmask); 7009 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7010 kfree(phba->vpi_ids); 7011 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7012 kfree(phba->sli4_hba.xri_bmask); 7013 kfree(phba->sli4_hba.xri_ids); 7014 kfree(phba->sli4_hba.vfi_bmask); 7015 kfree(phba->sli4_hba.vfi_ids); 7016 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7017 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7018 } 7019 7020 return 0; 7021 } 7022 7023 /** 7024 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7025 * @phba: Pointer to HBA context object. 7026 * @type: The resource extent type. 7027 * @extnt_cnt: buffer to hold port extent count response 7028 * @extnt_size: buffer to hold port extent size response. 7029 * 7030 * This function calls the port to read the host allocated extents 7031 * for a particular type. 7032 **/ 7033 int 7034 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7035 uint16_t *extnt_cnt, uint16_t *extnt_size) 7036 { 7037 bool emb; 7038 int rc = 0; 7039 uint16_t curr_blks = 0; 7040 uint32_t req_len, emb_len; 7041 uint32_t alloc_len, mbox_tmo; 7042 struct list_head *blk_list_head; 7043 struct lpfc_rsrc_blks *rsrc_blk; 7044 LPFC_MBOXQ_t *mbox; 7045 void *virtaddr = NULL; 7046 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7047 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7048 union lpfc_sli4_cfg_shdr *shdr; 7049 7050 switch (type) { 7051 case LPFC_RSC_TYPE_FCOE_VPI: 7052 blk_list_head = &phba->lpfc_vpi_blk_list; 7053 break; 7054 case LPFC_RSC_TYPE_FCOE_XRI: 7055 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7056 break; 7057 case LPFC_RSC_TYPE_FCOE_VFI: 7058 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7059 break; 7060 case LPFC_RSC_TYPE_FCOE_RPI: 7061 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7062 break; 7063 default: 7064 return -EIO; 7065 } 7066 7067 /* Count the number of extents currently allocatd for this type. */ 7068 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7069 if (curr_blks == 0) { 7070 /* 7071 * The GET_ALLOCATED mailbox does not return the size, 7072 * just the count. The size should be just the size 7073 * stored in the current allocated block and all sizes 7074 * for an extent type are the same so set the return 7075 * value now. 7076 */ 7077 *extnt_size = rsrc_blk->rsrc_size; 7078 } 7079 curr_blks++; 7080 } 7081 7082 /* 7083 * Calculate the size of an embedded mailbox. The uint32_t 7084 * accounts for extents-specific word. 7085 */ 7086 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7087 sizeof(uint32_t); 7088 7089 /* 7090 * Presume the allocation and response will fit into an embedded 7091 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7092 */ 7093 emb = LPFC_SLI4_MBX_EMBED; 7094 req_len = emb_len; 7095 if (req_len > emb_len) { 7096 req_len = curr_blks * sizeof(uint16_t) + 7097 sizeof(union lpfc_sli4_cfg_shdr) + 7098 sizeof(uint32_t); 7099 emb = LPFC_SLI4_MBX_NEMBED; 7100 } 7101 7102 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7103 if (!mbox) 7104 return -ENOMEM; 7105 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7106 7107 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7108 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7109 req_len, emb); 7110 if (alloc_len < req_len) { 7111 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7112 "2983 Allocated DMA memory size (x%x) is " 7113 "less than the requested DMA memory " 7114 "size (x%x)\n", alloc_len, req_len); 7115 rc = -ENOMEM; 7116 goto err_exit; 7117 } 7118 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7119 if (unlikely(rc)) { 7120 rc = -EIO; 7121 goto err_exit; 7122 } 7123 7124 if (!phba->sli4_hba.intr_enable) 7125 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7126 else { 7127 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7128 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7129 } 7130 7131 if (unlikely(rc)) { 7132 rc = -EIO; 7133 goto err_exit; 7134 } 7135 7136 /* 7137 * Figure out where the response is located. Then get local pointers 7138 * to the response data. The port does not guarantee to respond to 7139 * all extents counts request so update the local variable with the 7140 * allocated count from the port. 7141 */ 7142 if (emb == LPFC_SLI4_MBX_EMBED) { 7143 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7144 shdr = &rsrc_ext->header.cfg_shdr; 7145 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7146 } else { 7147 virtaddr = mbox->sge_array->addr[0]; 7148 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7149 shdr = &n_rsrc->cfg_shdr; 7150 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7151 } 7152 7153 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7155 "2984 Failed to read allocated resources " 7156 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7157 type, 7158 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7159 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7160 rc = -EIO; 7161 goto err_exit; 7162 } 7163 err_exit: 7164 lpfc_sli4_mbox_cmd_free(phba, mbox); 7165 return rc; 7166 } 7167 7168 /** 7169 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7170 * @phba: pointer to lpfc hba data structure. 7171 * @sgl_list: linked link of sgl buffers to post 7172 * @cnt: number of linked list buffers 7173 * 7174 * This routine walks the list of buffers that have been allocated and 7175 * repost them to the port by using SGL block post. This is needed after a 7176 * pci_function_reset/warm_start or start. It attempts to construct blocks 7177 * of buffer sgls which contains contiguous xris and uses the non-embedded 7178 * SGL block post mailbox commands to post them to the port. For single 7179 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7180 * mailbox command for posting. 7181 * 7182 * Returns: 0 = success, non-zero failure. 7183 **/ 7184 static int 7185 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7186 struct list_head *sgl_list, int cnt) 7187 { 7188 struct lpfc_sglq *sglq_entry = NULL; 7189 struct lpfc_sglq *sglq_entry_next = NULL; 7190 struct lpfc_sglq *sglq_entry_first = NULL; 7191 int status, total_cnt; 7192 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7193 int last_xritag = NO_XRI; 7194 LIST_HEAD(prep_sgl_list); 7195 LIST_HEAD(blck_sgl_list); 7196 LIST_HEAD(allc_sgl_list); 7197 LIST_HEAD(post_sgl_list); 7198 LIST_HEAD(free_sgl_list); 7199 7200 spin_lock_irq(&phba->hbalock); 7201 spin_lock(&phba->sli4_hba.sgl_list_lock); 7202 list_splice_init(sgl_list, &allc_sgl_list); 7203 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7204 spin_unlock_irq(&phba->hbalock); 7205 7206 total_cnt = cnt; 7207 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7208 &allc_sgl_list, list) { 7209 list_del_init(&sglq_entry->list); 7210 block_cnt++; 7211 if ((last_xritag != NO_XRI) && 7212 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7213 /* a hole in xri block, form a sgl posting block */ 7214 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7215 post_cnt = block_cnt - 1; 7216 /* prepare list for next posting block */ 7217 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7218 block_cnt = 1; 7219 } else { 7220 /* prepare list for next posting block */ 7221 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7222 /* enough sgls for non-embed sgl mbox command */ 7223 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7224 list_splice_init(&prep_sgl_list, 7225 &blck_sgl_list); 7226 post_cnt = block_cnt; 7227 block_cnt = 0; 7228 } 7229 } 7230 num_posted++; 7231 7232 /* keep track of last sgl's xritag */ 7233 last_xritag = sglq_entry->sli4_xritag; 7234 7235 /* end of repost sgl list condition for buffers */ 7236 if (num_posted == total_cnt) { 7237 if (post_cnt == 0) { 7238 list_splice_init(&prep_sgl_list, 7239 &blck_sgl_list); 7240 post_cnt = block_cnt; 7241 } else if (block_cnt == 1) { 7242 status = lpfc_sli4_post_sgl(phba, 7243 sglq_entry->phys, 0, 7244 sglq_entry->sli4_xritag); 7245 if (!status) { 7246 /* successful, put sgl to posted list */ 7247 list_add_tail(&sglq_entry->list, 7248 &post_sgl_list); 7249 } else { 7250 /* Failure, put sgl to free list */ 7251 lpfc_printf_log(phba, KERN_WARNING, 7252 LOG_SLI, 7253 "3159 Failed to post " 7254 "sgl, xritag:x%x\n", 7255 sglq_entry->sli4_xritag); 7256 list_add_tail(&sglq_entry->list, 7257 &free_sgl_list); 7258 total_cnt--; 7259 } 7260 } 7261 } 7262 7263 /* continue until a nembed page worth of sgls */ 7264 if (post_cnt == 0) 7265 continue; 7266 7267 /* post the buffer list sgls as a block */ 7268 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7269 post_cnt); 7270 7271 if (!status) { 7272 /* success, put sgl list to posted sgl list */ 7273 list_splice_init(&blck_sgl_list, &post_sgl_list); 7274 } else { 7275 /* Failure, put sgl list to free sgl list */ 7276 sglq_entry_first = list_first_entry(&blck_sgl_list, 7277 struct lpfc_sglq, 7278 list); 7279 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7280 "3160 Failed to post sgl-list, " 7281 "xritag:x%x-x%x\n", 7282 sglq_entry_first->sli4_xritag, 7283 (sglq_entry_first->sli4_xritag + 7284 post_cnt - 1)); 7285 list_splice_init(&blck_sgl_list, &free_sgl_list); 7286 total_cnt -= post_cnt; 7287 } 7288 7289 /* don't reset xirtag due to hole in xri block */ 7290 if (block_cnt == 0) 7291 last_xritag = NO_XRI; 7292 7293 /* reset sgl post count for next round of posting */ 7294 post_cnt = 0; 7295 } 7296 7297 /* free the sgls failed to post */ 7298 lpfc_free_sgl_list(phba, &free_sgl_list); 7299 7300 /* push sgls posted to the available list */ 7301 if (!list_empty(&post_sgl_list)) { 7302 spin_lock_irq(&phba->hbalock); 7303 spin_lock(&phba->sli4_hba.sgl_list_lock); 7304 list_splice_init(&post_sgl_list, sgl_list); 7305 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7306 spin_unlock_irq(&phba->hbalock); 7307 } else { 7308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7309 "3161 Failure to post sgl to port.\n"); 7310 return -EIO; 7311 } 7312 7313 /* return the number of XRIs actually posted */ 7314 return total_cnt; 7315 } 7316 7317 /** 7318 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7319 * @phba: pointer to lpfc hba data structure. 7320 * 7321 * This routine walks the list of nvme buffers that have been allocated and 7322 * repost them to the port by using SGL block post. This is needed after a 7323 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7324 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7325 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7326 * 7327 * Returns: 0 = success, non-zero failure. 7328 **/ 7329 static int 7330 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7331 { 7332 LIST_HEAD(post_nblist); 7333 int num_posted, rc = 0; 7334 7335 /* get all NVME buffers need to repost to a local list */ 7336 lpfc_io_buf_flush(phba, &post_nblist); 7337 7338 /* post the list of nvme buffer sgls to port if available */ 7339 if (!list_empty(&post_nblist)) { 7340 num_posted = lpfc_sli4_post_io_sgl_list( 7341 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7342 /* failed to post any nvme buffer, return error */ 7343 if (num_posted == 0) 7344 rc = -EIO; 7345 } 7346 return rc; 7347 } 7348 7349 static void 7350 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7351 { 7352 uint32_t len; 7353 7354 len = sizeof(struct lpfc_mbx_set_host_data) - 7355 sizeof(struct lpfc_sli4_cfg_mhdr); 7356 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7357 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7358 LPFC_SLI4_MBX_EMBED); 7359 7360 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7361 mbox->u.mqe.un.set_host_data.param_len = 7362 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7363 snprintf(mbox->u.mqe.un.set_host_data.data, 7364 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7365 "Linux %s v"LPFC_DRIVER_VERSION, 7366 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7367 } 7368 7369 int 7370 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7371 struct lpfc_queue *drq, int count, int idx) 7372 { 7373 int rc, i; 7374 struct lpfc_rqe hrqe; 7375 struct lpfc_rqe drqe; 7376 struct lpfc_rqb *rqbp; 7377 unsigned long flags; 7378 struct rqb_dmabuf *rqb_buffer; 7379 LIST_HEAD(rqb_buf_list); 7380 7381 rqbp = hrq->rqbp; 7382 for (i = 0; i < count; i++) { 7383 spin_lock_irqsave(&phba->hbalock, flags); 7384 /* IF RQ is already full, don't bother */ 7385 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7386 spin_unlock_irqrestore(&phba->hbalock, flags); 7387 break; 7388 } 7389 spin_unlock_irqrestore(&phba->hbalock, flags); 7390 7391 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7392 if (!rqb_buffer) 7393 break; 7394 rqb_buffer->hrq = hrq; 7395 rqb_buffer->drq = drq; 7396 rqb_buffer->idx = idx; 7397 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7398 } 7399 7400 spin_lock_irqsave(&phba->hbalock, flags); 7401 while (!list_empty(&rqb_buf_list)) { 7402 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7403 hbuf.list); 7404 7405 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7406 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7407 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7408 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7409 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7410 if (rc < 0) { 7411 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7412 "6421 Cannot post to HRQ %d: %x %x %x " 7413 "DRQ %x %x\n", 7414 hrq->queue_id, 7415 hrq->host_index, 7416 hrq->hba_index, 7417 hrq->entry_count, 7418 drq->host_index, 7419 drq->hba_index); 7420 rqbp->rqb_free_buffer(phba, rqb_buffer); 7421 } else { 7422 list_add_tail(&rqb_buffer->hbuf.list, 7423 &rqbp->rqb_buffer_list); 7424 rqbp->buffer_count++; 7425 } 7426 } 7427 spin_unlock_irqrestore(&phba->hbalock, flags); 7428 return 1; 7429 } 7430 7431 /** 7432 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7433 * @phba: pointer to lpfc hba data structure. 7434 * 7435 * This routine initializes the per-cq idle_stat to dynamically dictate 7436 * polling decisions. 7437 * 7438 * Return codes: 7439 * None 7440 **/ 7441 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7442 { 7443 int i; 7444 struct lpfc_sli4_hdw_queue *hdwq; 7445 struct lpfc_queue *cq; 7446 struct lpfc_idle_stat *idle_stat; 7447 u64 wall; 7448 7449 for_each_present_cpu(i) { 7450 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7451 cq = hdwq->io_cq; 7452 7453 /* Skip if we've already handled this cq's primary CPU */ 7454 if (cq->chann != i) 7455 continue; 7456 7457 idle_stat = &phba->sli4_hba.idle_stat[i]; 7458 7459 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7460 idle_stat->prev_wall = wall; 7461 7462 if (phba->nvmet_support) 7463 cq->poll_mode = LPFC_QUEUE_WORK; 7464 else 7465 cq->poll_mode = LPFC_IRQ_POLL; 7466 } 7467 7468 if (!phba->nvmet_support) 7469 schedule_delayed_work(&phba->idle_stat_delay_work, 7470 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7471 } 7472 7473 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7474 { 7475 uint32_t if_type; 7476 7477 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7478 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7479 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7480 struct lpfc_register reg_data; 7481 7482 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7483 ®_data.word0)) 7484 return; 7485 7486 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7487 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7488 "2904 Firmware Dump Image Present" 7489 " on Adapter"); 7490 } 7491 } 7492 7493 /** 7494 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7495 * @phba: Pointer to HBA context object. 7496 * 7497 * This function is the main SLI4 device initialization PCI function. This 7498 * function is called by the HBA initialization code, HBA reset code and 7499 * HBA error attention handler code. Caller is not required to hold any 7500 * locks. 7501 **/ 7502 int 7503 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7504 { 7505 int rc, i, cnt, len, dd; 7506 LPFC_MBOXQ_t *mboxq; 7507 struct lpfc_mqe *mqe; 7508 uint8_t *vpd; 7509 uint32_t vpd_size; 7510 uint32_t ftr_rsp = 0; 7511 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7512 struct lpfc_vport *vport = phba->pport; 7513 struct lpfc_dmabuf *mp; 7514 struct lpfc_rqb *rqbp; 7515 7516 /* Perform a PCI function reset to start from clean */ 7517 rc = lpfc_pci_function_reset(phba); 7518 if (unlikely(rc)) 7519 return -ENODEV; 7520 7521 /* Check the HBA Host Status Register for readyness */ 7522 rc = lpfc_sli4_post_status_check(phba); 7523 if (unlikely(rc)) 7524 return -ENODEV; 7525 else { 7526 spin_lock_irq(&phba->hbalock); 7527 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7528 spin_unlock_irq(&phba->hbalock); 7529 } 7530 7531 lpfc_sli4_dip(phba); 7532 7533 /* 7534 * Allocate a single mailbox container for initializing the 7535 * port. 7536 */ 7537 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7538 if (!mboxq) 7539 return -ENOMEM; 7540 7541 /* Issue READ_REV to collect vpd and FW information. */ 7542 vpd_size = SLI4_PAGE_SIZE; 7543 vpd = kzalloc(vpd_size, GFP_KERNEL); 7544 if (!vpd) { 7545 rc = -ENOMEM; 7546 goto out_free_mbox; 7547 } 7548 7549 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7550 if (unlikely(rc)) { 7551 kfree(vpd); 7552 goto out_free_mbox; 7553 } 7554 7555 mqe = &mboxq->u.mqe; 7556 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7557 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7558 phba->hba_flag |= HBA_FCOE_MODE; 7559 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7560 } else { 7561 phba->hba_flag &= ~HBA_FCOE_MODE; 7562 } 7563 7564 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7565 LPFC_DCBX_CEE_MODE) 7566 phba->hba_flag |= HBA_FIP_SUPPORT; 7567 else 7568 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7569 7570 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7571 7572 if (phba->sli_rev != LPFC_SLI_REV4) { 7573 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7574 "0376 READ_REV Error. SLI Level %d " 7575 "FCoE enabled %d\n", 7576 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7577 rc = -EIO; 7578 kfree(vpd); 7579 goto out_free_mbox; 7580 } 7581 7582 /* 7583 * Continue initialization with default values even if driver failed 7584 * to read FCoE param config regions, only read parameters if the 7585 * board is FCoE 7586 */ 7587 if (phba->hba_flag & HBA_FCOE_MODE && 7588 lpfc_sli4_read_fcoe_params(phba)) 7589 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7590 "2570 Failed to read FCoE parameters\n"); 7591 7592 /* 7593 * Retrieve sli4 device physical port name, failure of doing it 7594 * is considered as non-fatal. 7595 */ 7596 rc = lpfc_sli4_retrieve_pport_name(phba); 7597 if (!rc) 7598 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7599 "3080 Successful retrieving SLI4 device " 7600 "physical port name: %s.\n", phba->Port); 7601 7602 rc = lpfc_sli4_get_ctl_attr(phba); 7603 if (!rc) 7604 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7605 "8351 Successful retrieving SLI4 device " 7606 "CTL ATTR\n"); 7607 7608 /* 7609 * Evaluate the read rev and vpd data. Populate the driver 7610 * state with the results. If this routine fails, the failure 7611 * is not fatal as the driver will use generic values. 7612 */ 7613 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7614 if (unlikely(!rc)) { 7615 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7616 "0377 Error %d parsing vpd. " 7617 "Using defaults.\n", rc); 7618 rc = 0; 7619 } 7620 kfree(vpd); 7621 7622 /* Save information as VPD data */ 7623 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7624 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7625 7626 /* 7627 * This is because first G7 ASIC doesn't support the standard 7628 * 0x5a NVME cmd descriptor type/subtype 7629 */ 7630 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7631 LPFC_SLI_INTF_IF_TYPE_6) && 7632 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7633 (phba->vpd.rev.smRev == 0) && 7634 (phba->cfg_nvme_embed_cmd == 1)) 7635 phba->cfg_nvme_embed_cmd = 0; 7636 7637 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7638 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7639 &mqe->un.read_rev); 7640 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7641 &mqe->un.read_rev); 7642 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7643 &mqe->un.read_rev); 7644 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7645 &mqe->un.read_rev); 7646 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7647 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7648 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7649 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7650 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7651 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7652 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7653 "(%d):0380 READ_REV Status x%x " 7654 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7655 mboxq->vport ? mboxq->vport->vpi : 0, 7656 bf_get(lpfc_mqe_status, mqe), 7657 phba->vpd.rev.opFwName, 7658 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7659 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7660 7661 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7662 LPFC_SLI_INTF_IF_TYPE_0) { 7663 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7664 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7665 if (rc == MBX_SUCCESS) { 7666 phba->hba_flag |= HBA_RECOVERABLE_UE; 7667 /* Set 1Sec interval to detect UE */ 7668 phba->eratt_poll_interval = 1; 7669 phba->sli4_hba.ue_to_sr = bf_get( 7670 lpfc_mbx_set_feature_UESR, 7671 &mboxq->u.mqe.un.set_feature); 7672 phba->sli4_hba.ue_to_rp = bf_get( 7673 lpfc_mbx_set_feature_UERP, 7674 &mboxq->u.mqe.un.set_feature); 7675 } 7676 } 7677 7678 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7679 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7680 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7681 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7682 if (rc != MBX_SUCCESS) 7683 phba->mds_diags_support = 0; 7684 } 7685 7686 /* 7687 * Discover the port's supported feature set and match it against the 7688 * hosts requests. 7689 */ 7690 lpfc_request_features(phba, mboxq); 7691 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7692 if (unlikely(rc)) { 7693 rc = -EIO; 7694 goto out_free_mbox; 7695 } 7696 7697 /* 7698 * The port must support FCP initiator mode as this is the 7699 * only mode running in the host. 7700 */ 7701 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7702 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7703 "0378 No support for fcpi mode.\n"); 7704 ftr_rsp++; 7705 } 7706 7707 /* Performance Hints are ONLY for FCoE */ 7708 if (phba->hba_flag & HBA_FCOE_MODE) { 7709 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7710 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7711 else 7712 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7713 } 7714 7715 /* 7716 * If the port cannot support the host's requested features 7717 * then turn off the global config parameters to disable the 7718 * feature in the driver. This is not a fatal error. 7719 */ 7720 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7721 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7722 phba->cfg_enable_bg = 0; 7723 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7724 ftr_rsp++; 7725 } 7726 } 7727 7728 if (phba->max_vpi && phba->cfg_enable_npiv && 7729 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7730 ftr_rsp++; 7731 7732 if (ftr_rsp) { 7733 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7734 "0379 Feature Mismatch Data: x%08x %08x " 7735 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7736 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7737 phba->cfg_enable_npiv, phba->max_vpi); 7738 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7739 phba->cfg_enable_bg = 0; 7740 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7741 phba->cfg_enable_npiv = 0; 7742 } 7743 7744 /* These SLI3 features are assumed in SLI4 */ 7745 spin_lock_irq(&phba->hbalock); 7746 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7747 spin_unlock_irq(&phba->hbalock); 7748 7749 /* Always try to enable dual dump feature if we can */ 7750 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7751 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7752 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7753 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7754 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7755 "6448 Dual Dump is enabled\n"); 7756 else 7757 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7758 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7759 "rc:x%x dd:x%x\n", 7760 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7761 lpfc_sli_config_mbox_subsys_get( 7762 phba, mboxq), 7763 lpfc_sli_config_mbox_opcode_get( 7764 phba, mboxq), 7765 rc, dd); 7766 /* 7767 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7768 * calls depends on these resources to complete port setup. 7769 */ 7770 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7771 if (rc) { 7772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7773 "2920 Failed to alloc Resource IDs " 7774 "rc = x%x\n", rc); 7775 goto out_free_mbox; 7776 } 7777 7778 lpfc_set_host_data(phba, mboxq); 7779 7780 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7781 if (rc) { 7782 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7783 "2134 Failed to set host os driver version %x", 7784 rc); 7785 } 7786 7787 /* Read the port's service parameters. */ 7788 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7789 if (rc) { 7790 phba->link_state = LPFC_HBA_ERROR; 7791 rc = -ENOMEM; 7792 goto out_free_mbox; 7793 } 7794 7795 mboxq->vport = vport; 7796 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7797 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7798 if (rc == MBX_SUCCESS) { 7799 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7800 rc = 0; 7801 } 7802 7803 /* 7804 * This memory was allocated by the lpfc_read_sparam routine. Release 7805 * it to the mbuf pool. 7806 */ 7807 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7808 kfree(mp); 7809 mboxq->ctx_buf = NULL; 7810 if (unlikely(rc)) { 7811 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7812 "0382 READ_SPARAM command failed " 7813 "status %d, mbxStatus x%x\n", 7814 rc, bf_get(lpfc_mqe_status, mqe)); 7815 phba->link_state = LPFC_HBA_ERROR; 7816 rc = -EIO; 7817 goto out_free_mbox; 7818 } 7819 7820 lpfc_update_vport_wwn(vport); 7821 7822 /* Update the fc_host data structures with new wwn. */ 7823 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7824 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7825 7826 /* Create all the SLI4 queues */ 7827 rc = lpfc_sli4_queue_create(phba); 7828 if (rc) { 7829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7830 "3089 Failed to allocate queues\n"); 7831 rc = -ENODEV; 7832 goto out_free_mbox; 7833 } 7834 /* Set up all the queues to the device */ 7835 rc = lpfc_sli4_queue_setup(phba); 7836 if (unlikely(rc)) { 7837 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7838 "0381 Error %d during queue setup.\n ", rc); 7839 goto out_stop_timers; 7840 } 7841 /* Initialize the driver internal SLI layer lists. */ 7842 lpfc_sli4_setup(phba); 7843 lpfc_sli4_queue_init(phba); 7844 7845 /* update host els xri-sgl sizes and mappings */ 7846 rc = lpfc_sli4_els_sgl_update(phba); 7847 if (unlikely(rc)) { 7848 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7849 "1400 Failed to update xri-sgl size and " 7850 "mapping: %d\n", rc); 7851 goto out_destroy_queue; 7852 } 7853 7854 /* register the els sgl pool to the port */ 7855 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7856 phba->sli4_hba.els_xri_cnt); 7857 if (unlikely(rc < 0)) { 7858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7859 "0582 Error %d during els sgl post " 7860 "operation\n", rc); 7861 rc = -ENODEV; 7862 goto out_destroy_queue; 7863 } 7864 phba->sli4_hba.els_xri_cnt = rc; 7865 7866 if (phba->nvmet_support) { 7867 /* update host nvmet xri-sgl sizes and mappings */ 7868 rc = lpfc_sli4_nvmet_sgl_update(phba); 7869 if (unlikely(rc)) { 7870 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7871 "6308 Failed to update nvmet-sgl size " 7872 "and mapping: %d\n", rc); 7873 goto out_destroy_queue; 7874 } 7875 7876 /* register the nvmet sgl pool to the port */ 7877 rc = lpfc_sli4_repost_sgl_list( 7878 phba, 7879 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7880 phba->sli4_hba.nvmet_xri_cnt); 7881 if (unlikely(rc < 0)) { 7882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7883 "3117 Error %d during nvmet " 7884 "sgl post\n", rc); 7885 rc = -ENODEV; 7886 goto out_destroy_queue; 7887 } 7888 phba->sli4_hba.nvmet_xri_cnt = rc; 7889 7890 /* We allocate an iocbq for every receive context SGL. 7891 * The additional allocation is for abort and ls handling. 7892 */ 7893 cnt = phba->sli4_hba.nvmet_xri_cnt + 7894 phba->sli4_hba.max_cfg_param.max_xri; 7895 } else { 7896 /* update host common xri-sgl sizes and mappings */ 7897 rc = lpfc_sli4_io_sgl_update(phba); 7898 if (unlikely(rc)) { 7899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7900 "6082 Failed to update nvme-sgl size " 7901 "and mapping: %d\n", rc); 7902 goto out_destroy_queue; 7903 } 7904 7905 /* register the allocated common sgl pool to the port */ 7906 rc = lpfc_sli4_repost_io_sgl_list(phba); 7907 if (unlikely(rc)) { 7908 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7909 "6116 Error %d during nvme sgl post " 7910 "operation\n", rc); 7911 /* Some NVME buffers were moved to abort nvme list */ 7912 /* A pci function reset will repost them */ 7913 rc = -ENODEV; 7914 goto out_destroy_queue; 7915 } 7916 /* Each lpfc_io_buf job structure has an iocbq element. 7917 * This cnt provides for abort, els, ct and ls requests. 7918 */ 7919 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7920 } 7921 7922 if (!phba->sli.iocbq_lookup) { 7923 /* Initialize and populate the iocb list per host */ 7924 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7925 "2821 initialize iocb list with %d entries\n", 7926 cnt); 7927 rc = lpfc_init_iocb_list(phba, cnt); 7928 if (rc) { 7929 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7930 "1413 Failed to init iocb list.\n"); 7931 goto out_destroy_queue; 7932 } 7933 } 7934 7935 if (phba->nvmet_support) 7936 lpfc_nvmet_create_targetport(phba); 7937 7938 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7939 /* Post initial buffers to all RQs created */ 7940 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7941 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7942 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7943 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7944 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7945 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7946 rqbp->buffer_count = 0; 7947 7948 lpfc_post_rq_buffer( 7949 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7950 phba->sli4_hba.nvmet_mrq_data[i], 7951 phba->cfg_nvmet_mrq_post, i); 7952 } 7953 } 7954 7955 /* Post the rpi header region to the device. */ 7956 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7957 if (unlikely(rc)) { 7958 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7959 "0393 Error %d during rpi post operation\n", 7960 rc); 7961 rc = -ENODEV; 7962 goto out_destroy_queue; 7963 } 7964 lpfc_sli4_node_prep(phba); 7965 7966 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7967 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7968 /* 7969 * The FC Port needs to register FCFI (index 0) 7970 */ 7971 lpfc_reg_fcfi(phba, mboxq); 7972 mboxq->vport = phba->pport; 7973 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7974 if (rc != MBX_SUCCESS) 7975 goto out_unset_queue; 7976 rc = 0; 7977 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7978 &mboxq->u.mqe.un.reg_fcfi); 7979 } else { 7980 /* We are a NVME Target mode with MRQ > 1 */ 7981 7982 /* First register the FCFI */ 7983 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7984 mboxq->vport = phba->pport; 7985 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7986 if (rc != MBX_SUCCESS) 7987 goto out_unset_queue; 7988 rc = 0; 7989 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7990 &mboxq->u.mqe.un.reg_fcfi_mrq); 7991 7992 /* Next register the MRQs */ 7993 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7994 mboxq->vport = phba->pport; 7995 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7996 if (rc != MBX_SUCCESS) 7997 goto out_unset_queue; 7998 rc = 0; 7999 } 8000 /* Check if the port is configured to be disabled */ 8001 lpfc_sli_read_link_ste(phba); 8002 } 8003 8004 /* Don't post more new bufs if repost already recovered 8005 * the nvme sgls. 8006 */ 8007 if (phba->nvmet_support == 0) { 8008 if (phba->sli4_hba.io_xri_cnt == 0) { 8009 len = lpfc_new_io_buf( 8010 phba, phba->sli4_hba.io_xri_max); 8011 if (len == 0) { 8012 rc = -ENOMEM; 8013 goto out_unset_queue; 8014 } 8015 8016 if (phba->cfg_xri_rebalancing) 8017 lpfc_create_multixri_pools(phba); 8018 } 8019 } else { 8020 phba->cfg_xri_rebalancing = 0; 8021 } 8022 8023 /* Allow asynchronous mailbox command to go through */ 8024 spin_lock_irq(&phba->hbalock); 8025 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8026 spin_unlock_irq(&phba->hbalock); 8027 8028 /* Post receive buffers to the device */ 8029 lpfc_sli4_rb_setup(phba); 8030 8031 /* Reset HBA FCF states after HBA reset */ 8032 phba->fcf.fcf_flag = 0; 8033 phba->fcf.current_rec.flag = 0; 8034 8035 /* Start the ELS watchdog timer */ 8036 mod_timer(&vport->els_tmofunc, 8037 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8038 8039 /* Start heart beat timer */ 8040 mod_timer(&phba->hb_tmofunc, 8041 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8042 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8043 phba->last_completion_time = jiffies; 8044 8045 /* start eq_delay heartbeat */ 8046 if (phba->cfg_auto_imax) 8047 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8048 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8049 8050 /* start per phba idle_stat_delay heartbeat */ 8051 lpfc_init_idle_stat_hb(phba); 8052 8053 /* Start error attention (ERATT) polling timer */ 8054 mod_timer(&phba->eratt_poll, 8055 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8056 8057 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8058 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8059 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8060 if (!rc) { 8061 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8062 "2829 This device supports " 8063 "Advanced Error Reporting (AER)\n"); 8064 spin_lock_irq(&phba->hbalock); 8065 phba->hba_flag |= HBA_AER_ENABLED; 8066 spin_unlock_irq(&phba->hbalock); 8067 } else { 8068 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8069 "2830 This device does not support " 8070 "Advanced Error Reporting (AER)\n"); 8071 phba->cfg_aer_support = 0; 8072 } 8073 rc = 0; 8074 } 8075 8076 /* 8077 * The port is ready, set the host's link state to LINK_DOWN 8078 * in preparation for link interrupts. 8079 */ 8080 spin_lock_irq(&phba->hbalock); 8081 phba->link_state = LPFC_LINK_DOWN; 8082 8083 /* Check if physical ports are trunked */ 8084 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8085 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8086 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8087 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8088 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8089 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8090 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8091 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8092 spin_unlock_irq(&phba->hbalock); 8093 8094 /* Arm the CQs and then EQs on device */ 8095 lpfc_sli4_arm_cqeq_intr(phba); 8096 8097 /* Indicate device interrupt mode */ 8098 phba->sli4_hba.intr_enable = 1; 8099 8100 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8101 (phba->hba_flag & LINK_DISABLED)) { 8102 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8103 "3103 Adapter Link is disabled.\n"); 8104 lpfc_down_link(phba, mboxq); 8105 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8106 if (rc != MBX_SUCCESS) { 8107 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8108 "3104 Adapter failed to issue " 8109 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8110 goto out_io_buff_free; 8111 } 8112 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8113 /* don't perform init_link on SLI4 FC port loopback test */ 8114 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8115 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8116 if (rc) 8117 goto out_io_buff_free; 8118 } 8119 } 8120 mempool_free(mboxq, phba->mbox_mem_pool); 8121 return rc; 8122 out_io_buff_free: 8123 /* Free allocated IO Buffers */ 8124 lpfc_io_free(phba); 8125 out_unset_queue: 8126 /* Unset all the queues set up in this routine when error out */ 8127 lpfc_sli4_queue_unset(phba); 8128 out_destroy_queue: 8129 lpfc_free_iocb_list(phba); 8130 lpfc_sli4_queue_destroy(phba); 8131 out_stop_timers: 8132 lpfc_stop_hba_timers(phba); 8133 out_free_mbox: 8134 mempool_free(mboxq, phba->mbox_mem_pool); 8135 return rc; 8136 } 8137 8138 /** 8139 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8140 * @t: Context to fetch pointer to hba structure from. 8141 * 8142 * This is the callback function for mailbox timer. The mailbox 8143 * timer is armed when a new mailbox command is issued and the timer 8144 * is deleted when the mailbox complete. The function is called by 8145 * the kernel timer code when a mailbox does not complete within 8146 * expected time. This function wakes up the worker thread to 8147 * process the mailbox timeout and returns. All the processing is 8148 * done by the worker thread function lpfc_mbox_timeout_handler. 8149 **/ 8150 void 8151 lpfc_mbox_timeout(struct timer_list *t) 8152 { 8153 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8154 unsigned long iflag; 8155 uint32_t tmo_posted; 8156 8157 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8158 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8159 if (!tmo_posted) 8160 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8161 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8162 8163 if (!tmo_posted) 8164 lpfc_worker_wake_up(phba); 8165 return; 8166 } 8167 8168 /** 8169 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8170 * are pending 8171 * @phba: Pointer to HBA context object. 8172 * 8173 * This function checks if any mailbox completions are present on the mailbox 8174 * completion queue. 8175 **/ 8176 static bool 8177 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8178 { 8179 8180 uint32_t idx; 8181 struct lpfc_queue *mcq; 8182 struct lpfc_mcqe *mcqe; 8183 bool pending_completions = false; 8184 uint8_t qe_valid; 8185 8186 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8187 return false; 8188 8189 /* Check for completions on mailbox completion queue */ 8190 8191 mcq = phba->sli4_hba.mbx_cq; 8192 idx = mcq->hba_index; 8193 qe_valid = mcq->qe_valid; 8194 while (bf_get_le32(lpfc_cqe_valid, 8195 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8196 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8197 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8198 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8199 pending_completions = true; 8200 break; 8201 } 8202 idx = (idx + 1) % mcq->entry_count; 8203 if (mcq->hba_index == idx) 8204 break; 8205 8206 /* if the index wrapped around, toggle the valid bit */ 8207 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8208 qe_valid = (qe_valid) ? 0 : 1; 8209 } 8210 return pending_completions; 8211 8212 } 8213 8214 /** 8215 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8216 * that were missed. 8217 * @phba: Pointer to HBA context object. 8218 * 8219 * For sli4, it is possible to miss an interrupt. As such mbox completions 8220 * maybe missed causing erroneous mailbox timeouts to occur. This function 8221 * checks to see if mbox completions are on the mailbox completion queue 8222 * and will process all the completions associated with the eq for the 8223 * mailbox completion queue. 8224 **/ 8225 static bool 8226 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8227 { 8228 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8229 uint32_t eqidx; 8230 struct lpfc_queue *fpeq = NULL; 8231 struct lpfc_queue *eq; 8232 bool mbox_pending; 8233 8234 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8235 return false; 8236 8237 /* Find the EQ associated with the mbox CQ */ 8238 if (sli4_hba->hdwq) { 8239 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8240 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8241 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8242 fpeq = eq; 8243 break; 8244 } 8245 } 8246 } 8247 if (!fpeq) 8248 return false; 8249 8250 /* Turn off interrupts from this EQ */ 8251 8252 sli4_hba->sli4_eq_clr_intr(fpeq); 8253 8254 /* Check to see if a mbox completion is pending */ 8255 8256 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8257 8258 /* 8259 * If a mbox completion is pending, process all the events on EQ 8260 * associated with the mbox completion queue (this could include 8261 * mailbox commands, async events, els commands, receive queue data 8262 * and fcp commands) 8263 */ 8264 8265 if (mbox_pending) 8266 /* process and rearm the EQ */ 8267 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8268 else 8269 /* Always clear and re-arm the EQ */ 8270 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8271 8272 return mbox_pending; 8273 8274 } 8275 8276 /** 8277 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8278 * @phba: Pointer to HBA context object. 8279 * 8280 * This function is called from worker thread when a mailbox command times out. 8281 * The caller is not required to hold any locks. This function will reset the 8282 * HBA and recover all the pending commands. 8283 **/ 8284 void 8285 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8286 { 8287 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8288 MAILBOX_t *mb = NULL; 8289 8290 struct lpfc_sli *psli = &phba->sli; 8291 8292 /* If the mailbox completed, process the completion */ 8293 lpfc_sli4_process_missed_mbox_completions(phba); 8294 8295 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8296 return; 8297 8298 if (pmbox != NULL) 8299 mb = &pmbox->u.mb; 8300 /* Check the pmbox pointer first. There is a race condition 8301 * between the mbox timeout handler getting executed in the 8302 * worklist and the mailbox actually completing. When this 8303 * race condition occurs, the mbox_active will be NULL. 8304 */ 8305 spin_lock_irq(&phba->hbalock); 8306 if (pmbox == NULL) { 8307 lpfc_printf_log(phba, KERN_WARNING, 8308 LOG_MBOX | LOG_SLI, 8309 "0353 Active Mailbox cleared - mailbox timeout " 8310 "exiting\n"); 8311 spin_unlock_irq(&phba->hbalock); 8312 return; 8313 } 8314 8315 /* Mbox cmd <mbxCommand> timeout */ 8316 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8317 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8318 mb->mbxCommand, 8319 phba->pport->port_state, 8320 phba->sli.sli_flag, 8321 phba->sli.mbox_active); 8322 spin_unlock_irq(&phba->hbalock); 8323 8324 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8325 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8326 * it to fail all outstanding SCSI IO. 8327 */ 8328 spin_lock_irq(&phba->pport->work_port_lock); 8329 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8330 spin_unlock_irq(&phba->pport->work_port_lock); 8331 spin_lock_irq(&phba->hbalock); 8332 phba->link_state = LPFC_LINK_UNKNOWN; 8333 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8334 spin_unlock_irq(&phba->hbalock); 8335 8336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8337 "0345 Resetting board due to mailbox timeout\n"); 8338 8339 /* Reset the HBA device */ 8340 lpfc_reset_hba(phba); 8341 } 8342 8343 /** 8344 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8345 * @phba: Pointer to HBA context object. 8346 * @pmbox: Pointer to mailbox object. 8347 * @flag: Flag indicating how the mailbox need to be processed. 8348 * 8349 * This function is called by discovery code and HBA management code 8350 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8351 * function gets the hbalock to protect the data structures. 8352 * The mailbox command can be submitted in polling mode, in which case 8353 * this function will wait in a polling loop for the completion of the 8354 * mailbox. 8355 * If the mailbox is submitted in no_wait mode (not polling) the 8356 * function will submit the command and returns immediately without waiting 8357 * for the mailbox completion. The no_wait is supported only when HBA 8358 * is in SLI2/SLI3 mode - interrupts are enabled. 8359 * The SLI interface allows only one mailbox pending at a time. If the 8360 * mailbox is issued in polling mode and there is already a mailbox 8361 * pending, then the function will return an error. If the mailbox is issued 8362 * in NO_WAIT mode and there is a mailbox pending already, the function 8363 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8364 * The sli layer owns the mailbox object until the completion of mailbox 8365 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8366 * return codes the caller owns the mailbox command after the return of 8367 * the function. 8368 **/ 8369 static int 8370 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8371 uint32_t flag) 8372 { 8373 MAILBOX_t *mbx; 8374 struct lpfc_sli *psli = &phba->sli; 8375 uint32_t status, evtctr; 8376 uint32_t ha_copy, hc_copy; 8377 int i; 8378 unsigned long timeout; 8379 unsigned long drvr_flag = 0; 8380 uint32_t word0, ldata; 8381 void __iomem *to_slim; 8382 int processing_queue = 0; 8383 8384 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8385 if (!pmbox) { 8386 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8387 /* processing mbox queue from intr_handler */ 8388 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8389 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8390 return MBX_SUCCESS; 8391 } 8392 processing_queue = 1; 8393 pmbox = lpfc_mbox_get(phba); 8394 if (!pmbox) { 8395 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8396 return MBX_SUCCESS; 8397 } 8398 } 8399 8400 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8401 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8402 if(!pmbox->vport) { 8403 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8404 lpfc_printf_log(phba, KERN_ERR, 8405 LOG_MBOX | LOG_VPORT, 8406 "1806 Mbox x%x failed. No vport\n", 8407 pmbox->u.mb.mbxCommand); 8408 dump_stack(); 8409 goto out_not_finished; 8410 } 8411 } 8412 8413 /* If the PCI channel is in offline state, do not post mbox. */ 8414 if (unlikely(pci_channel_offline(phba->pcidev))) { 8415 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8416 goto out_not_finished; 8417 } 8418 8419 /* If HBA has a deferred error attention, fail the iocb. */ 8420 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8422 goto out_not_finished; 8423 } 8424 8425 psli = &phba->sli; 8426 8427 mbx = &pmbox->u.mb; 8428 status = MBX_SUCCESS; 8429 8430 if (phba->link_state == LPFC_HBA_ERROR) { 8431 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8432 8433 /* Mbox command <mbxCommand> cannot issue */ 8434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8435 "(%d):0311 Mailbox command x%x cannot " 8436 "issue Data: x%x x%x\n", 8437 pmbox->vport ? pmbox->vport->vpi : 0, 8438 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8439 goto out_not_finished; 8440 } 8441 8442 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8443 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8444 !(hc_copy & HC_MBINT_ENA)) { 8445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8447 "(%d):2528 Mailbox command x%x cannot " 8448 "issue Data: x%x x%x\n", 8449 pmbox->vport ? pmbox->vport->vpi : 0, 8450 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8451 goto out_not_finished; 8452 } 8453 } 8454 8455 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8456 /* Polling for a mbox command when another one is already active 8457 * is not allowed in SLI. Also, the driver must have established 8458 * SLI2 mode to queue and process multiple mbox commands. 8459 */ 8460 8461 if (flag & MBX_POLL) { 8462 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8463 8464 /* Mbox command <mbxCommand> cannot issue */ 8465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8466 "(%d):2529 Mailbox command x%x " 8467 "cannot issue Data: x%x x%x\n", 8468 pmbox->vport ? pmbox->vport->vpi : 0, 8469 pmbox->u.mb.mbxCommand, 8470 psli->sli_flag, flag); 8471 goto out_not_finished; 8472 } 8473 8474 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8475 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8476 /* Mbox command <mbxCommand> cannot issue */ 8477 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8478 "(%d):2530 Mailbox command x%x " 8479 "cannot issue Data: x%x x%x\n", 8480 pmbox->vport ? pmbox->vport->vpi : 0, 8481 pmbox->u.mb.mbxCommand, 8482 psli->sli_flag, flag); 8483 goto out_not_finished; 8484 } 8485 8486 /* Another mailbox command is still being processed, queue this 8487 * command to be processed later. 8488 */ 8489 lpfc_mbox_put(phba, pmbox); 8490 8491 /* Mbox cmd issue - BUSY */ 8492 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8493 "(%d):0308 Mbox cmd issue - BUSY Data: " 8494 "x%x x%x x%x x%x\n", 8495 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8496 mbx->mbxCommand, 8497 phba->pport ? phba->pport->port_state : 0xff, 8498 psli->sli_flag, flag); 8499 8500 psli->slistat.mbox_busy++; 8501 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8502 8503 if (pmbox->vport) { 8504 lpfc_debugfs_disc_trc(pmbox->vport, 8505 LPFC_DISC_TRC_MBOX_VPORT, 8506 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8507 (uint32_t)mbx->mbxCommand, 8508 mbx->un.varWords[0], mbx->un.varWords[1]); 8509 } 8510 else { 8511 lpfc_debugfs_disc_trc(phba->pport, 8512 LPFC_DISC_TRC_MBOX, 8513 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8514 (uint32_t)mbx->mbxCommand, 8515 mbx->un.varWords[0], mbx->un.varWords[1]); 8516 } 8517 8518 return MBX_BUSY; 8519 } 8520 8521 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8522 8523 /* If we are not polling, we MUST be in SLI2 mode */ 8524 if (flag != MBX_POLL) { 8525 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8526 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8527 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8528 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8529 /* Mbox command <mbxCommand> cannot issue */ 8530 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8531 "(%d):2531 Mailbox command x%x " 8532 "cannot issue Data: x%x x%x\n", 8533 pmbox->vport ? pmbox->vport->vpi : 0, 8534 pmbox->u.mb.mbxCommand, 8535 psli->sli_flag, flag); 8536 goto out_not_finished; 8537 } 8538 /* timeout active mbox command */ 8539 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8540 1000); 8541 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8542 } 8543 8544 /* Mailbox cmd <cmd> issue */ 8545 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8546 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8547 "x%x\n", 8548 pmbox->vport ? pmbox->vport->vpi : 0, 8549 mbx->mbxCommand, 8550 phba->pport ? phba->pport->port_state : 0xff, 8551 psli->sli_flag, flag); 8552 8553 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8554 if (pmbox->vport) { 8555 lpfc_debugfs_disc_trc(pmbox->vport, 8556 LPFC_DISC_TRC_MBOX_VPORT, 8557 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8558 (uint32_t)mbx->mbxCommand, 8559 mbx->un.varWords[0], mbx->un.varWords[1]); 8560 } 8561 else { 8562 lpfc_debugfs_disc_trc(phba->pport, 8563 LPFC_DISC_TRC_MBOX, 8564 "MBOX Send: cmd:x%x mb:x%x x%x", 8565 (uint32_t)mbx->mbxCommand, 8566 mbx->un.varWords[0], mbx->un.varWords[1]); 8567 } 8568 } 8569 8570 psli->slistat.mbox_cmd++; 8571 evtctr = psli->slistat.mbox_event; 8572 8573 /* next set own bit for the adapter and copy over command word */ 8574 mbx->mbxOwner = OWN_CHIP; 8575 8576 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8577 /* Populate mbox extension offset word. */ 8578 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8579 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8580 = (uint8_t *)phba->mbox_ext 8581 - (uint8_t *)phba->mbox; 8582 } 8583 8584 /* Copy the mailbox extension data */ 8585 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8586 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8587 (uint8_t *)phba->mbox_ext, 8588 pmbox->in_ext_byte_len); 8589 } 8590 /* Copy command data to host SLIM area */ 8591 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8592 } else { 8593 /* Populate mbox extension offset word. */ 8594 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8595 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8596 = MAILBOX_HBA_EXT_OFFSET; 8597 8598 /* Copy the mailbox extension data */ 8599 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8600 lpfc_memcpy_to_slim(phba->MBslimaddr + 8601 MAILBOX_HBA_EXT_OFFSET, 8602 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8603 8604 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8605 /* copy command data into host mbox for cmpl */ 8606 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8607 MAILBOX_CMD_SIZE); 8608 8609 /* First copy mbox command data to HBA SLIM, skip past first 8610 word */ 8611 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8612 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8613 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8614 8615 /* Next copy over first word, with mbxOwner set */ 8616 ldata = *((uint32_t *)mbx); 8617 to_slim = phba->MBslimaddr; 8618 writel(ldata, to_slim); 8619 readl(to_slim); /* flush */ 8620 8621 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8622 /* switch over to host mailbox */ 8623 psli->sli_flag |= LPFC_SLI_ACTIVE; 8624 } 8625 8626 wmb(); 8627 8628 switch (flag) { 8629 case MBX_NOWAIT: 8630 /* Set up reference to mailbox command */ 8631 psli->mbox_active = pmbox; 8632 /* Interrupt board to do it */ 8633 writel(CA_MBATT, phba->CAregaddr); 8634 readl(phba->CAregaddr); /* flush */ 8635 /* Don't wait for it to finish, just return */ 8636 break; 8637 8638 case MBX_POLL: 8639 /* Set up null reference to mailbox command */ 8640 psli->mbox_active = NULL; 8641 /* Interrupt board to do it */ 8642 writel(CA_MBATT, phba->CAregaddr); 8643 readl(phba->CAregaddr); /* flush */ 8644 8645 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8646 /* First read mbox status word */ 8647 word0 = *((uint32_t *)phba->mbox); 8648 word0 = le32_to_cpu(word0); 8649 } else { 8650 /* First read mbox status word */ 8651 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8652 spin_unlock_irqrestore(&phba->hbalock, 8653 drvr_flag); 8654 goto out_not_finished; 8655 } 8656 } 8657 8658 /* Read the HBA Host Attention Register */ 8659 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8660 spin_unlock_irqrestore(&phba->hbalock, 8661 drvr_flag); 8662 goto out_not_finished; 8663 } 8664 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8665 1000) + jiffies; 8666 i = 0; 8667 /* Wait for command to complete */ 8668 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8669 (!(ha_copy & HA_MBATT) && 8670 (phba->link_state > LPFC_WARM_START))) { 8671 if (time_after(jiffies, timeout)) { 8672 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8673 spin_unlock_irqrestore(&phba->hbalock, 8674 drvr_flag); 8675 goto out_not_finished; 8676 } 8677 8678 /* Check if we took a mbox interrupt while we were 8679 polling */ 8680 if (((word0 & OWN_CHIP) != OWN_CHIP) 8681 && (evtctr != psli->slistat.mbox_event)) 8682 break; 8683 8684 if (i++ > 10) { 8685 spin_unlock_irqrestore(&phba->hbalock, 8686 drvr_flag); 8687 msleep(1); 8688 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8689 } 8690 8691 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8692 /* First copy command data */ 8693 word0 = *((uint32_t *)phba->mbox); 8694 word0 = le32_to_cpu(word0); 8695 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8696 MAILBOX_t *slimmb; 8697 uint32_t slimword0; 8698 /* Check real SLIM for any errors */ 8699 slimword0 = readl(phba->MBslimaddr); 8700 slimmb = (MAILBOX_t *) & slimword0; 8701 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8702 && slimmb->mbxStatus) { 8703 psli->sli_flag &= 8704 ~LPFC_SLI_ACTIVE; 8705 word0 = slimword0; 8706 } 8707 } 8708 } else { 8709 /* First copy command data */ 8710 word0 = readl(phba->MBslimaddr); 8711 } 8712 /* Read the HBA Host Attention Register */ 8713 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8714 spin_unlock_irqrestore(&phba->hbalock, 8715 drvr_flag); 8716 goto out_not_finished; 8717 } 8718 } 8719 8720 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8721 /* copy results back to user */ 8722 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8723 MAILBOX_CMD_SIZE); 8724 /* Copy the mailbox extension data */ 8725 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8726 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8727 pmbox->ctx_buf, 8728 pmbox->out_ext_byte_len); 8729 } 8730 } else { 8731 /* First copy command data */ 8732 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8733 MAILBOX_CMD_SIZE); 8734 /* Copy the mailbox extension data */ 8735 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8736 lpfc_memcpy_from_slim( 8737 pmbox->ctx_buf, 8738 phba->MBslimaddr + 8739 MAILBOX_HBA_EXT_OFFSET, 8740 pmbox->out_ext_byte_len); 8741 } 8742 } 8743 8744 writel(HA_MBATT, phba->HAregaddr); 8745 readl(phba->HAregaddr); /* flush */ 8746 8747 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8748 status = mbx->mbxStatus; 8749 } 8750 8751 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8752 return status; 8753 8754 out_not_finished: 8755 if (processing_queue) { 8756 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8757 lpfc_mbox_cmpl_put(phba, pmbox); 8758 } 8759 return MBX_NOT_FINISHED; 8760 } 8761 8762 /** 8763 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8764 * @phba: Pointer to HBA context object. 8765 * 8766 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8767 * the driver internal pending mailbox queue. It will then try to wait out the 8768 * possible outstanding mailbox command before return. 8769 * 8770 * Returns: 8771 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8772 * the outstanding mailbox command timed out. 8773 **/ 8774 static int 8775 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8776 { 8777 struct lpfc_sli *psli = &phba->sli; 8778 int rc = 0; 8779 unsigned long timeout = 0; 8780 8781 /* Mark the asynchronous mailbox command posting as blocked */ 8782 spin_lock_irq(&phba->hbalock); 8783 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8784 /* Determine how long we might wait for the active mailbox 8785 * command to be gracefully completed by firmware. 8786 */ 8787 if (phba->sli.mbox_active) 8788 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8789 phba->sli.mbox_active) * 8790 1000) + jiffies; 8791 spin_unlock_irq(&phba->hbalock); 8792 8793 /* Make sure the mailbox is really active */ 8794 if (timeout) 8795 lpfc_sli4_process_missed_mbox_completions(phba); 8796 8797 /* Wait for the outstnading mailbox command to complete */ 8798 while (phba->sli.mbox_active) { 8799 /* Check active mailbox complete status every 2ms */ 8800 msleep(2); 8801 if (time_after(jiffies, timeout)) { 8802 /* Timeout, marked the outstanding cmd not complete */ 8803 rc = 1; 8804 break; 8805 } 8806 } 8807 8808 /* Can not cleanly block async mailbox command, fails it */ 8809 if (rc) { 8810 spin_lock_irq(&phba->hbalock); 8811 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8812 spin_unlock_irq(&phba->hbalock); 8813 } 8814 return rc; 8815 } 8816 8817 /** 8818 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8819 * @phba: Pointer to HBA context object. 8820 * 8821 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8822 * commands from the driver internal pending mailbox queue. It makes sure 8823 * that there is no outstanding mailbox command before resuming posting 8824 * asynchronous mailbox commands. If, for any reason, there is outstanding 8825 * mailbox command, it will try to wait it out before resuming asynchronous 8826 * mailbox command posting. 8827 **/ 8828 static void 8829 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8830 { 8831 struct lpfc_sli *psli = &phba->sli; 8832 8833 spin_lock_irq(&phba->hbalock); 8834 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8835 /* Asynchronous mailbox posting is not blocked, do nothing */ 8836 spin_unlock_irq(&phba->hbalock); 8837 return; 8838 } 8839 8840 /* Outstanding synchronous mailbox command is guaranteed to be done, 8841 * successful or timeout, after timing-out the outstanding mailbox 8842 * command shall always be removed, so just unblock posting async 8843 * mailbox command and resume 8844 */ 8845 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8846 spin_unlock_irq(&phba->hbalock); 8847 8848 /* wake up worker thread to post asynchronous mailbox command */ 8849 lpfc_worker_wake_up(phba); 8850 } 8851 8852 /** 8853 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8854 * @phba: Pointer to HBA context object. 8855 * @mboxq: Pointer to mailbox object. 8856 * 8857 * The function waits for the bootstrap mailbox register ready bit from 8858 * port for twice the regular mailbox command timeout value. 8859 * 8860 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8861 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8862 **/ 8863 static int 8864 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8865 { 8866 uint32_t db_ready; 8867 unsigned long timeout; 8868 struct lpfc_register bmbx_reg; 8869 8870 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8871 * 1000) + jiffies; 8872 8873 do { 8874 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8875 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8876 if (!db_ready) 8877 mdelay(2); 8878 8879 if (time_after(jiffies, timeout)) 8880 return MBXERR_ERROR; 8881 } while (!db_ready); 8882 8883 return 0; 8884 } 8885 8886 /** 8887 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8888 * @phba: Pointer to HBA context object. 8889 * @mboxq: Pointer to mailbox object. 8890 * 8891 * The function posts a mailbox to the port. The mailbox is expected 8892 * to be comletely filled in and ready for the port to operate on it. 8893 * This routine executes a synchronous completion operation on the 8894 * mailbox by polling for its completion. 8895 * 8896 * The caller must not be holding any locks when calling this routine. 8897 * 8898 * Returns: 8899 * MBX_SUCCESS - mailbox posted successfully 8900 * Any of the MBX error values. 8901 **/ 8902 static int 8903 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8904 { 8905 int rc = MBX_SUCCESS; 8906 unsigned long iflag; 8907 uint32_t mcqe_status; 8908 uint32_t mbx_cmnd; 8909 struct lpfc_sli *psli = &phba->sli; 8910 struct lpfc_mqe *mb = &mboxq->u.mqe; 8911 struct lpfc_bmbx_create *mbox_rgn; 8912 struct dma_address *dma_address; 8913 8914 /* 8915 * Only one mailbox can be active to the bootstrap mailbox region 8916 * at a time and there is no queueing provided. 8917 */ 8918 spin_lock_irqsave(&phba->hbalock, iflag); 8919 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8920 spin_unlock_irqrestore(&phba->hbalock, iflag); 8921 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8922 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8923 "cannot issue Data: x%x x%x\n", 8924 mboxq->vport ? mboxq->vport->vpi : 0, 8925 mboxq->u.mb.mbxCommand, 8926 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8927 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8928 psli->sli_flag, MBX_POLL); 8929 return MBXERR_ERROR; 8930 } 8931 /* The server grabs the token and owns it until release */ 8932 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8933 phba->sli.mbox_active = mboxq; 8934 spin_unlock_irqrestore(&phba->hbalock, iflag); 8935 8936 /* wait for bootstrap mbox register for readyness */ 8937 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8938 if (rc) 8939 goto exit; 8940 /* 8941 * Initialize the bootstrap memory region to avoid stale data areas 8942 * in the mailbox post. Then copy the caller's mailbox contents to 8943 * the bmbx mailbox region. 8944 */ 8945 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8946 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8947 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8948 sizeof(struct lpfc_mqe)); 8949 8950 /* Post the high mailbox dma address to the port and wait for ready. */ 8951 dma_address = &phba->sli4_hba.bmbx.dma_address; 8952 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8953 8954 /* wait for bootstrap mbox register for hi-address write done */ 8955 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8956 if (rc) 8957 goto exit; 8958 8959 /* Post the low mailbox dma address to the port. */ 8960 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8961 8962 /* wait for bootstrap mbox register for low address write done */ 8963 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8964 if (rc) 8965 goto exit; 8966 8967 /* 8968 * Read the CQ to ensure the mailbox has completed. 8969 * If so, update the mailbox status so that the upper layers 8970 * can complete the request normally. 8971 */ 8972 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8973 sizeof(struct lpfc_mqe)); 8974 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8975 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8976 sizeof(struct lpfc_mcqe)); 8977 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8978 /* 8979 * When the CQE status indicates a failure and the mailbox status 8980 * indicates success then copy the CQE status into the mailbox status 8981 * (and prefix it with x4000). 8982 */ 8983 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8984 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8985 bf_set(lpfc_mqe_status, mb, 8986 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8987 rc = MBXERR_ERROR; 8988 } else 8989 lpfc_sli4_swap_str(phba, mboxq); 8990 8991 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8992 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8993 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8994 " x%x x%x CQ: x%x x%x x%x x%x\n", 8995 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8996 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8997 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8998 bf_get(lpfc_mqe_status, mb), 8999 mb->un.mb_words[0], mb->un.mb_words[1], 9000 mb->un.mb_words[2], mb->un.mb_words[3], 9001 mb->un.mb_words[4], mb->un.mb_words[5], 9002 mb->un.mb_words[6], mb->un.mb_words[7], 9003 mb->un.mb_words[8], mb->un.mb_words[9], 9004 mb->un.mb_words[10], mb->un.mb_words[11], 9005 mb->un.mb_words[12], mboxq->mcqe.word0, 9006 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9007 mboxq->mcqe.trailer); 9008 exit: 9009 /* We are holding the token, no needed for lock when release */ 9010 spin_lock_irqsave(&phba->hbalock, iflag); 9011 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9012 phba->sli.mbox_active = NULL; 9013 spin_unlock_irqrestore(&phba->hbalock, iflag); 9014 return rc; 9015 } 9016 9017 /** 9018 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9019 * @phba: Pointer to HBA context object. 9020 * @mboxq: Pointer to mailbox object. 9021 * @flag: Flag indicating how the mailbox need to be processed. 9022 * 9023 * This function is called by discovery code and HBA management code to submit 9024 * a mailbox command to firmware with SLI-4 interface spec. 9025 * 9026 * Return codes the caller owns the mailbox command after the return of the 9027 * function. 9028 **/ 9029 static int 9030 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9031 uint32_t flag) 9032 { 9033 struct lpfc_sli *psli = &phba->sli; 9034 unsigned long iflags; 9035 int rc; 9036 9037 /* dump from issue mailbox command if setup */ 9038 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9039 9040 rc = lpfc_mbox_dev_check(phba); 9041 if (unlikely(rc)) { 9042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9043 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9044 "cannot issue Data: x%x x%x\n", 9045 mboxq->vport ? mboxq->vport->vpi : 0, 9046 mboxq->u.mb.mbxCommand, 9047 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9048 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9049 psli->sli_flag, flag); 9050 goto out_not_finished; 9051 } 9052 9053 /* Detect polling mode and jump to a handler */ 9054 if (!phba->sli4_hba.intr_enable) { 9055 if (flag == MBX_POLL) 9056 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9057 else 9058 rc = -EIO; 9059 if (rc != MBX_SUCCESS) 9060 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9061 "(%d):2541 Mailbox command x%x " 9062 "(x%x/x%x) failure: " 9063 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9064 "Data: x%x x%x\n,", 9065 mboxq->vport ? mboxq->vport->vpi : 0, 9066 mboxq->u.mb.mbxCommand, 9067 lpfc_sli_config_mbox_subsys_get(phba, 9068 mboxq), 9069 lpfc_sli_config_mbox_opcode_get(phba, 9070 mboxq), 9071 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9072 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9073 bf_get(lpfc_mcqe_ext_status, 9074 &mboxq->mcqe), 9075 psli->sli_flag, flag); 9076 return rc; 9077 } else if (flag == MBX_POLL) { 9078 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9079 "(%d):2542 Try to issue mailbox command " 9080 "x%x (x%x/x%x) synchronously ahead of async " 9081 "mailbox command queue: x%x x%x\n", 9082 mboxq->vport ? mboxq->vport->vpi : 0, 9083 mboxq->u.mb.mbxCommand, 9084 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9085 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9086 psli->sli_flag, flag); 9087 /* Try to block the asynchronous mailbox posting */ 9088 rc = lpfc_sli4_async_mbox_block(phba); 9089 if (!rc) { 9090 /* Successfully blocked, now issue sync mbox cmd */ 9091 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9092 if (rc != MBX_SUCCESS) 9093 lpfc_printf_log(phba, KERN_WARNING, 9094 LOG_MBOX | LOG_SLI, 9095 "(%d):2597 Sync Mailbox command " 9096 "x%x (x%x/x%x) failure: " 9097 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9098 "Data: x%x x%x\n,", 9099 mboxq->vport ? mboxq->vport->vpi : 0, 9100 mboxq->u.mb.mbxCommand, 9101 lpfc_sli_config_mbox_subsys_get(phba, 9102 mboxq), 9103 lpfc_sli_config_mbox_opcode_get(phba, 9104 mboxq), 9105 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9106 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9107 bf_get(lpfc_mcqe_ext_status, 9108 &mboxq->mcqe), 9109 psli->sli_flag, flag); 9110 /* Unblock the async mailbox posting afterward */ 9111 lpfc_sli4_async_mbox_unblock(phba); 9112 } 9113 return rc; 9114 } 9115 9116 /* Now, interrupt mode asynchronous mailbox command */ 9117 rc = lpfc_mbox_cmd_check(phba, mboxq); 9118 if (rc) { 9119 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9120 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9121 "cannot issue Data: x%x x%x\n", 9122 mboxq->vport ? mboxq->vport->vpi : 0, 9123 mboxq->u.mb.mbxCommand, 9124 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9125 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9126 psli->sli_flag, flag); 9127 goto out_not_finished; 9128 } 9129 9130 /* Put the mailbox command to the driver internal FIFO */ 9131 psli->slistat.mbox_busy++; 9132 spin_lock_irqsave(&phba->hbalock, iflags); 9133 lpfc_mbox_put(phba, mboxq); 9134 spin_unlock_irqrestore(&phba->hbalock, iflags); 9135 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9136 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9137 "x%x (x%x/x%x) x%x x%x x%x\n", 9138 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9139 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9140 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9141 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9142 phba->pport->port_state, 9143 psli->sli_flag, MBX_NOWAIT); 9144 /* Wake up worker thread to transport mailbox command from head */ 9145 lpfc_worker_wake_up(phba); 9146 9147 return MBX_BUSY; 9148 9149 out_not_finished: 9150 return MBX_NOT_FINISHED; 9151 } 9152 9153 /** 9154 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9155 * @phba: Pointer to HBA context object. 9156 * 9157 * This function is called by worker thread to send a mailbox command to 9158 * SLI4 HBA firmware. 9159 * 9160 **/ 9161 int 9162 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9163 { 9164 struct lpfc_sli *psli = &phba->sli; 9165 LPFC_MBOXQ_t *mboxq; 9166 int rc = MBX_SUCCESS; 9167 unsigned long iflags; 9168 struct lpfc_mqe *mqe; 9169 uint32_t mbx_cmnd; 9170 9171 /* Check interrupt mode before post async mailbox command */ 9172 if (unlikely(!phba->sli4_hba.intr_enable)) 9173 return MBX_NOT_FINISHED; 9174 9175 /* Check for mailbox command service token */ 9176 spin_lock_irqsave(&phba->hbalock, iflags); 9177 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9178 spin_unlock_irqrestore(&phba->hbalock, iflags); 9179 return MBX_NOT_FINISHED; 9180 } 9181 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9182 spin_unlock_irqrestore(&phba->hbalock, iflags); 9183 return MBX_NOT_FINISHED; 9184 } 9185 if (unlikely(phba->sli.mbox_active)) { 9186 spin_unlock_irqrestore(&phba->hbalock, iflags); 9187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9188 "0384 There is pending active mailbox cmd\n"); 9189 return MBX_NOT_FINISHED; 9190 } 9191 /* Take the mailbox command service token */ 9192 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9193 9194 /* Get the next mailbox command from head of queue */ 9195 mboxq = lpfc_mbox_get(phba); 9196 9197 /* If no more mailbox command waiting for post, we're done */ 9198 if (!mboxq) { 9199 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9200 spin_unlock_irqrestore(&phba->hbalock, iflags); 9201 return MBX_SUCCESS; 9202 } 9203 phba->sli.mbox_active = mboxq; 9204 spin_unlock_irqrestore(&phba->hbalock, iflags); 9205 9206 /* Check device readiness for posting mailbox command */ 9207 rc = lpfc_mbox_dev_check(phba); 9208 if (unlikely(rc)) 9209 /* Driver clean routine will clean up pending mailbox */ 9210 goto out_not_finished; 9211 9212 /* Prepare the mbox command to be posted */ 9213 mqe = &mboxq->u.mqe; 9214 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9215 9216 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9217 mod_timer(&psli->mbox_tmo, (jiffies + 9218 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9219 9220 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9221 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9222 "x%x x%x\n", 9223 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9224 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9225 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9226 phba->pport->port_state, psli->sli_flag); 9227 9228 if (mbx_cmnd != MBX_HEARTBEAT) { 9229 if (mboxq->vport) { 9230 lpfc_debugfs_disc_trc(mboxq->vport, 9231 LPFC_DISC_TRC_MBOX_VPORT, 9232 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9233 mbx_cmnd, mqe->un.mb_words[0], 9234 mqe->un.mb_words[1]); 9235 } else { 9236 lpfc_debugfs_disc_trc(phba->pport, 9237 LPFC_DISC_TRC_MBOX, 9238 "MBOX Send: cmd:x%x mb:x%x x%x", 9239 mbx_cmnd, mqe->un.mb_words[0], 9240 mqe->un.mb_words[1]); 9241 } 9242 } 9243 psli->slistat.mbox_cmd++; 9244 9245 /* Post the mailbox command to the port */ 9246 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9247 if (rc != MBX_SUCCESS) { 9248 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9249 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9250 "cannot issue Data: x%x x%x\n", 9251 mboxq->vport ? mboxq->vport->vpi : 0, 9252 mboxq->u.mb.mbxCommand, 9253 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9254 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9255 psli->sli_flag, MBX_NOWAIT); 9256 goto out_not_finished; 9257 } 9258 9259 return rc; 9260 9261 out_not_finished: 9262 spin_lock_irqsave(&phba->hbalock, iflags); 9263 if (phba->sli.mbox_active) { 9264 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9265 __lpfc_mbox_cmpl_put(phba, mboxq); 9266 /* Release the token */ 9267 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9268 phba->sli.mbox_active = NULL; 9269 } 9270 spin_unlock_irqrestore(&phba->hbalock, iflags); 9271 9272 return MBX_NOT_FINISHED; 9273 } 9274 9275 /** 9276 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9277 * @phba: Pointer to HBA context object. 9278 * @pmbox: Pointer to mailbox object. 9279 * @flag: Flag indicating how the mailbox need to be processed. 9280 * 9281 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9282 * the API jump table function pointer from the lpfc_hba struct. 9283 * 9284 * Return codes the caller owns the mailbox command after the return of the 9285 * function. 9286 **/ 9287 int 9288 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9289 { 9290 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9291 } 9292 9293 /** 9294 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9295 * @phba: The hba struct for which this call is being executed. 9296 * @dev_grp: The HBA PCI-Device group number. 9297 * 9298 * This routine sets up the mbox interface API function jump table in @phba 9299 * struct. 9300 * Returns: 0 - success, -ENODEV - failure. 9301 **/ 9302 int 9303 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9304 { 9305 9306 switch (dev_grp) { 9307 case LPFC_PCI_DEV_LP: 9308 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9309 phba->lpfc_sli_handle_slow_ring_event = 9310 lpfc_sli_handle_slow_ring_event_s3; 9311 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9312 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9313 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9314 break; 9315 case LPFC_PCI_DEV_OC: 9316 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9317 phba->lpfc_sli_handle_slow_ring_event = 9318 lpfc_sli_handle_slow_ring_event_s4; 9319 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9320 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9321 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9322 break; 9323 default: 9324 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9325 "1420 Invalid HBA PCI-device group: 0x%x\n", 9326 dev_grp); 9327 return -ENODEV; 9328 } 9329 return 0; 9330 } 9331 9332 /** 9333 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9334 * @phba: Pointer to HBA context object. 9335 * @pring: Pointer to driver SLI ring object. 9336 * @piocb: Pointer to address of newly added command iocb. 9337 * 9338 * This function is called with hbalock held for SLI3 ports or 9339 * the ring lock held for SLI4 ports to add a command 9340 * iocb to the txq when SLI layer cannot submit the command iocb 9341 * to the ring. 9342 **/ 9343 void 9344 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9345 struct lpfc_iocbq *piocb) 9346 { 9347 if (phba->sli_rev == LPFC_SLI_REV4) 9348 lockdep_assert_held(&pring->ring_lock); 9349 else 9350 lockdep_assert_held(&phba->hbalock); 9351 /* Insert the caller's iocb in the txq tail for later processing. */ 9352 list_add_tail(&piocb->list, &pring->txq); 9353 } 9354 9355 /** 9356 * lpfc_sli_next_iocb - Get the next iocb in the txq 9357 * @phba: Pointer to HBA context object. 9358 * @pring: Pointer to driver SLI ring object. 9359 * @piocb: Pointer to address of newly added command iocb. 9360 * 9361 * This function is called with hbalock held before a new 9362 * iocb is submitted to the firmware. This function checks 9363 * txq to flush the iocbs in txq to Firmware before 9364 * submitting new iocbs to the Firmware. 9365 * If there are iocbs in the txq which need to be submitted 9366 * to firmware, lpfc_sli_next_iocb returns the first element 9367 * of the txq after dequeuing it from txq. 9368 * If there is no iocb in the txq then the function will return 9369 * *piocb and *piocb is set to NULL. Caller needs to check 9370 * *piocb to find if there are more commands in the txq. 9371 **/ 9372 static struct lpfc_iocbq * 9373 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9374 struct lpfc_iocbq **piocb) 9375 { 9376 struct lpfc_iocbq * nextiocb; 9377 9378 lockdep_assert_held(&phba->hbalock); 9379 9380 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9381 if (!nextiocb) { 9382 nextiocb = *piocb; 9383 *piocb = NULL; 9384 } 9385 9386 return nextiocb; 9387 } 9388 9389 /** 9390 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9391 * @phba: Pointer to HBA context object. 9392 * @ring_number: SLI ring number to issue iocb on. 9393 * @piocb: Pointer to command iocb. 9394 * @flag: Flag indicating if this command can be put into txq. 9395 * 9396 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9397 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9398 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9399 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9400 * this function allows only iocbs for posting buffers. This function finds 9401 * next available slot in the command ring and posts the command to the 9402 * available slot and writes the port attention register to request HBA start 9403 * processing new iocb. If there is no slot available in the ring and 9404 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9405 * the function returns IOCB_BUSY. 9406 * 9407 * This function is called with hbalock held. The function will return success 9408 * after it successfully submit the iocb to firmware or after adding to the 9409 * txq. 9410 **/ 9411 static int 9412 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9413 struct lpfc_iocbq *piocb, uint32_t flag) 9414 { 9415 struct lpfc_iocbq *nextiocb; 9416 IOCB_t *iocb; 9417 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9418 9419 lockdep_assert_held(&phba->hbalock); 9420 9421 if (piocb->iocb_cmpl && (!piocb->vport) && 9422 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9423 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9425 "1807 IOCB x%x failed. No vport\n", 9426 piocb->iocb.ulpCommand); 9427 dump_stack(); 9428 return IOCB_ERROR; 9429 } 9430 9431 9432 /* If the PCI channel is in offline state, do not post iocbs. */ 9433 if (unlikely(pci_channel_offline(phba->pcidev))) 9434 return IOCB_ERROR; 9435 9436 /* If HBA has a deferred error attention, fail the iocb. */ 9437 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9438 return IOCB_ERROR; 9439 9440 /* 9441 * We should never get an IOCB if we are in a < LINK_DOWN state 9442 */ 9443 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9444 return IOCB_ERROR; 9445 9446 /* 9447 * Check to see if we are blocking IOCB processing because of a 9448 * outstanding event. 9449 */ 9450 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9451 goto iocb_busy; 9452 9453 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9454 /* 9455 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9456 * can be issued if the link is not up. 9457 */ 9458 switch (piocb->iocb.ulpCommand) { 9459 case CMD_GEN_REQUEST64_CR: 9460 case CMD_GEN_REQUEST64_CX: 9461 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9462 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9463 FC_RCTL_DD_UNSOL_CMD) || 9464 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9465 MENLO_TRANSPORT_TYPE)) 9466 9467 goto iocb_busy; 9468 break; 9469 case CMD_QUE_RING_BUF_CN: 9470 case CMD_QUE_RING_BUF64_CN: 9471 /* 9472 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9473 * completion, iocb_cmpl MUST be 0. 9474 */ 9475 if (piocb->iocb_cmpl) 9476 piocb->iocb_cmpl = NULL; 9477 fallthrough; 9478 case CMD_CREATE_XRI_CR: 9479 case CMD_CLOSE_XRI_CN: 9480 case CMD_CLOSE_XRI_CX: 9481 break; 9482 default: 9483 goto iocb_busy; 9484 } 9485 9486 /* 9487 * For FCP commands, we must be in a state where we can process link 9488 * attention events. 9489 */ 9490 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9491 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9492 goto iocb_busy; 9493 } 9494 9495 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9496 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9497 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9498 9499 if (iocb) 9500 lpfc_sli_update_ring(phba, pring); 9501 else 9502 lpfc_sli_update_full_ring(phba, pring); 9503 9504 if (!piocb) 9505 return IOCB_SUCCESS; 9506 9507 goto out_busy; 9508 9509 iocb_busy: 9510 pring->stats.iocb_cmd_delay++; 9511 9512 out_busy: 9513 9514 if (!(flag & SLI_IOCB_RET_IOCB)) { 9515 __lpfc_sli_ringtx_put(phba, pring, piocb); 9516 return IOCB_SUCCESS; 9517 } 9518 9519 return IOCB_BUSY; 9520 } 9521 9522 /** 9523 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9524 * @phba: Pointer to HBA context object. 9525 * @piocbq: Pointer to command iocb. 9526 * @sglq: Pointer to the scatter gather queue object. 9527 * 9528 * This routine converts the bpl or bde that is in the IOCB 9529 * to a sgl list for the sli4 hardware. The physical address 9530 * of the bpl/bde is converted back to a virtual address. 9531 * If the IOCB contains a BPL then the list of BDE's is 9532 * converted to sli4_sge's. If the IOCB contains a single 9533 * BDE then it is converted to a single sli_sge. 9534 * The IOCB is still in cpu endianess so the contents of 9535 * the bpl can be used without byte swapping. 9536 * 9537 * Returns valid XRI = Success, NO_XRI = Failure. 9538 **/ 9539 static uint16_t 9540 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9541 struct lpfc_sglq *sglq) 9542 { 9543 uint16_t xritag = NO_XRI; 9544 struct ulp_bde64 *bpl = NULL; 9545 struct ulp_bde64 bde; 9546 struct sli4_sge *sgl = NULL; 9547 struct lpfc_dmabuf *dmabuf; 9548 IOCB_t *icmd; 9549 int numBdes = 0; 9550 int i = 0; 9551 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9552 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9553 9554 if (!piocbq || !sglq) 9555 return xritag; 9556 9557 sgl = (struct sli4_sge *)sglq->sgl; 9558 icmd = &piocbq->iocb; 9559 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9560 return sglq->sli4_xritag; 9561 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9562 numBdes = icmd->un.genreq64.bdl.bdeSize / 9563 sizeof(struct ulp_bde64); 9564 /* The addrHigh and addrLow fields within the IOCB 9565 * have not been byteswapped yet so there is no 9566 * need to swap them back. 9567 */ 9568 if (piocbq->context3) 9569 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9570 else 9571 return xritag; 9572 9573 bpl = (struct ulp_bde64 *)dmabuf->virt; 9574 if (!bpl) 9575 return xritag; 9576 9577 for (i = 0; i < numBdes; i++) { 9578 /* Should already be byte swapped. */ 9579 sgl->addr_hi = bpl->addrHigh; 9580 sgl->addr_lo = bpl->addrLow; 9581 9582 sgl->word2 = le32_to_cpu(sgl->word2); 9583 if ((i+1) == numBdes) 9584 bf_set(lpfc_sli4_sge_last, sgl, 1); 9585 else 9586 bf_set(lpfc_sli4_sge_last, sgl, 0); 9587 /* swap the size field back to the cpu so we 9588 * can assign it to the sgl. 9589 */ 9590 bde.tus.w = le32_to_cpu(bpl->tus.w); 9591 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9592 /* The offsets in the sgl need to be accumulated 9593 * separately for the request and reply lists. 9594 * The request is always first, the reply follows. 9595 */ 9596 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9597 /* add up the reply sg entries */ 9598 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9599 inbound++; 9600 /* first inbound? reset the offset */ 9601 if (inbound == 1) 9602 offset = 0; 9603 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9604 bf_set(lpfc_sli4_sge_type, sgl, 9605 LPFC_SGE_TYPE_DATA); 9606 offset += bde.tus.f.bdeSize; 9607 } 9608 sgl->word2 = cpu_to_le32(sgl->word2); 9609 bpl++; 9610 sgl++; 9611 } 9612 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9613 /* The addrHigh and addrLow fields of the BDE have not 9614 * been byteswapped yet so they need to be swapped 9615 * before putting them in the sgl. 9616 */ 9617 sgl->addr_hi = 9618 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9619 sgl->addr_lo = 9620 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9621 sgl->word2 = le32_to_cpu(sgl->word2); 9622 bf_set(lpfc_sli4_sge_last, sgl, 1); 9623 sgl->word2 = cpu_to_le32(sgl->word2); 9624 sgl->sge_len = 9625 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9626 } 9627 return sglq->sli4_xritag; 9628 } 9629 9630 /** 9631 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 9632 * @phba: Pointer to HBA context object. 9633 * @iocbq: Pointer to command iocb. 9634 * @wqe: Pointer to the work queue entry. 9635 * 9636 * This routine converts the iocb command to its Work Queue Entry 9637 * equivalent. The wqe pointer should not have any fields set when 9638 * this routine is called because it will memcpy over them. 9639 * This routine does not set the CQ_ID or the WQEC bits in the 9640 * wqe. 9641 * 9642 * Returns: 0 = Success, IOCB_ERROR = Failure. 9643 **/ 9644 static int 9645 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9646 union lpfc_wqe128 *wqe) 9647 { 9648 uint32_t xmit_len = 0, total_len = 0; 9649 uint8_t ct = 0; 9650 uint32_t fip; 9651 uint32_t abort_tag; 9652 uint8_t command_type = ELS_COMMAND_NON_FIP; 9653 uint8_t cmnd; 9654 uint16_t xritag; 9655 uint16_t abrt_iotag; 9656 struct lpfc_iocbq *abrtiocbq; 9657 struct ulp_bde64 *bpl = NULL; 9658 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9659 int numBdes, i; 9660 struct ulp_bde64 bde; 9661 struct lpfc_nodelist *ndlp; 9662 uint32_t *pcmd; 9663 uint32_t if_type; 9664 9665 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9666 /* The fcp commands will set command type */ 9667 if (iocbq->iocb_flag & LPFC_IO_FCP) 9668 command_type = FCP_COMMAND; 9669 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9670 command_type = ELS_COMMAND_FIP; 9671 else 9672 command_type = ELS_COMMAND_NON_FIP; 9673 9674 if (phba->fcp_embed_io) 9675 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9676 /* Some of the fields are in the right position already */ 9677 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9678 /* The ct field has moved so reset */ 9679 wqe->generic.wqe_com.word7 = 0; 9680 wqe->generic.wqe_com.word10 = 0; 9681 9682 abort_tag = (uint32_t) iocbq->iotag; 9683 xritag = iocbq->sli4_xritag; 9684 /* words0-2 bpl convert bde */ 9685 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9686 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9687 sizeof(struct ulp_bde64); 9688 bpl = (struct ulp_bde64 *) 9689 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9690 if (!bpl) 9691 return IOCB_ERROR; 9692 9693 /* Should already be byte swapped. */ 9694 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9695 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9696 /* swap the size field back to the cpu so we 9697 * can assign it to the sgl. 9698 */ 9699 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9700 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9701 total_len = 0; 9702 for (i = 0; i < numBdes; i++) { 9703 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9704 total_len += bde.tus.f.bdeSize; 9705 } 9706 } else 9707 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9708 9709 iocbq->iocb.ulpIoTag = iocbq->iotag; 9710 cmnd = iocbq->iocb.ulpCommand; 9711 9712 switch (iocbq->iocb.ulpCommand) { 9713 case CMD_ELS_REQUEST64_CR: 9714 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9715 ndlp = iocbq->context_un.ndlp; 9716 else 9717 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9718 if (!iocbq->iocb.ulpLe) { 9719 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9720 "2007 Only Limited Edition cmd Format" 9721 " supported 0x%x\n", 9722 iocbq->iocb.ulpCommand); 9723 return IOCB_ERROR; 9724 } 9725 9726 wqe->els_req.payload_len = xmit_len; 9727 /* Els_reguest64 has a TMO */ 9728 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9729 iocbq->iocb.ulpTimeout); 9730 /* Need a VF for word 4 set the vf bit*/ 9731 bf_set(els_req64_vf, &wqe->els_req, 0); 9732 /* And a VFID for word 12 */ 9733 bf_set(els_req64_vfid, &wqe->els_req, 0); 9734 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9735 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9736 iocbq->iocb.ulpContext); 9737 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9738 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9739 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9740 if (command_type == ELS_COMMAND_FIP) 9741 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9742 >> LPFC_FIP_ELS_ID_SHIFT); 9743 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9744 iocbq->context2)->virt); 9745 if_type = bf_get(lpfc_sli_intf_if_type, 9746 &phba->sli4_hba.sli_intf); 9747 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9748 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9749 *pcmd == ELS_CMD_SCR || 9750 *pcmd == ELS_CMD_RDF || 9751 *pcmd == ELS_CMD_RSCN_XMT || 9752 *pcmd == ELS_CMD_FDISC || 9753 *pcmd == ELS_CMD_LOGO || 9754 *pcmd == ELS_CMD_PLOGI)) { 9755 bf_set(els_req64_sp, &wqe->els_req, 1); 9756 bf_set(els_req64_sid, &wqe->els_req, 9757 iocbq->vport->fc_myDID); 9758 if ((*pcmd == ELS_CMD_FLOGI) && 9759 !(phba->fc_topology == 9760 LPFC_TOPOLOGY_LOOP)) 9761 bf_set(els_req64_sid, &wqe->els_req, 0); 9762 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9763 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9764 phba->vpi_ids[iocbq->vport->vpi]); 9765 } else if (pcmd && iocbq->context1) { 9766 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9767 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9768 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9769 } 9770 } 9771 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9772 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9773 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9774 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9775 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9776 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9777 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9778 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9779 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9780 break; 9781 case CMD_XMIT_SEQUENCE64_CX: 9782 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9783 iocbq->iocb.un.ulpWord[3]); 9784 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9785 iocbq->iocb.unsli3.rcvsli3.ox_id); 9786 /* The entire sequence is transmitted for this IOCB */ 9787 xmit_len = total_len; 9788 cmnd = CMD_XMIT_SEQUENCE64_CR; 9789 if (phba->link_flag & LS_LOOPBACK_MODE) 9790 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9791 fallthrough; 9792 case CMD_XMIT_SEQUENCE64_CR: 9793 /* word3 iocb=io_tag32 wqe=reserved */ 9794 wqe->xmit_sequence.rsvd3 = 0; 9795 /* word4 relative_offset memcpy */ 9796 /* word5 r_ctl/df_ctl memcpy */ 9797 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9798 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9799 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9800 LPFC_WQE_IOD_WRITE); 9801 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9802 LPFC_WQE_LENLOC_WORD12); 9803 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9804 wqe->xmit_sequence.xmit_len = xmit_len; 9805 command_type = OTHER_COMMAND; 9806 break; 9807 case CMD_XMIT_BCAST64_CN: 9808 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9809 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9810 /* word4 iocb=rsvd wqe=rsvd */ 9811 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9812 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9813 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9814 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9815 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9816 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9817 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9818 LPFC_WQE_LENLOC_WORD3); 9819 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9820 break; 9821 case CMD_FCP_IWRITE64_CR: 9822 command_type = FCP_COMMAND_DATA_OUT; 9823 /* word3 iocb=iotag wqe=payload_offset_len */ 9824 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9825 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9826 xmit_len + sizeof(struct fcp_rsp)); 9827 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9828 0); 9829 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9830 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9831 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9832 iocbq->iocb.ulpFCP2Rcvy); 9833 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9834 /* Always open the exchange */ 9835 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9836 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9837 LPFC_WQE_LENLOC_WORD4); 9838 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9839 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9840 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9841 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9842 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9843 if (iocbq->priority) { 9844 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9845 (iocbq->priority << 1)); 9846 } else { 9847 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9848 (phba->cfg_XLanePriority << 1)); 9849 } 9850 } 9851 /* Note, word 10 is already initialized to 0 */ 9852 9853 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9854 if (phba->cfg_enable_pbde) 9855 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9856 else 9857 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9858 9859 if (phba->fcp_embed_io) { 9860 struct lpfc_io_buf *lpfc_cmd; 9861 struct sli4_sge *sgl; 9862 struct fcp_cmnd *fcp_cmnd; 9863 uint32_t *ptr; 9864 9865 /* 128 byte wqe support here */ 9866 9867 lpfc_cmd = iocbq->context1; 9868 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9869 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9870 9871 /* Word 0-2 - FCP_CMND */ 9872 wqe->generic.bde.tus.f.bdeFlags = 9873 BUFF_TYPE_BDE_IMMED; 9874 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9875 wqe->generic.bde.addrHigh = 0; 9876 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9877 9878 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9879 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9880 9881 /* Word 22-29 FCP CMND Payload */ 9882 ptr = &wqe->words[22]; 9883 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9884 } 9885 break; 9886 case CMD_FCP_IREAD64_CR: 9887 /* word3 iocb=iotag wqe=payload_offset_len */ 9888 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9889 bf_set(payload_offset_len, &wqe->fcp_iread, 9890 xmit_len + sizeof(struct fcp_rsp)); 9891 bf_set(cmd_buff_len, &wqe->fcp_iread, 9892 0); 9893 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9894 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9895 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9896 iocbq->iocb.ulpFCP2Rcvy); 9897 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9898 /* Always open the exchange */ 9899 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9900 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9901 LPFC_WQE_LENLOC_WORD4); 9902 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9903 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9904 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9905 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9906 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9907 if (iocbq->priority) { 9908 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9909 (iocbq->priority << 1)); 9910 } else { 9911 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9912 (phba->cfg_XLanePriority << 1)); 9913 } 9914 } 9915 /* Note, word 10 is already initialized to 0 */ 9916 9917 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9918 if (phba->cfg_enable_pbde) 9919 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9920 else 9921 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9922 9923 if (phba->fcp_embed_io) { 9924 struct lpfc_io_buf *lpfc_cmd; 9925 struct sli4_sge *sgl; 9926 struct fcp_cmnd *fcp_cmnd; 9927 uint32_t *ptr; 9928 9929 /* 128 byte wqe support here */ 9930 9931 lpfc_cmd = iocbq->context1; 9932 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9933 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9934 9935 /* Word 0-2 - FCP_CMND */ 9936 wqe->generic.bde.tus.f.bdeFlags = 9937 BUFF_TYPE_BDE_IMMED; 9938 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9939 wqe->generic.bde.addrHigh = 0; 9940 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9941 9942 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9943 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9944 9945 /* Word 22-29 FCP CMND Payload */ 9946 ptr = &wqe->words[22]; 9947 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9948 } 9949 break; 9950 case CMD_FCP_ICMND64_CR: 9951 /* word3 iocb=iotag wqe=payload_offset_len */ 9952 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9953 bf_set(payload_offset_len, &wqe->fcp_icmd, 9954 xmit_len + sizeof(struct fcp_rsp)); 9955 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9956 0); 9957 /* word3 iocb=IO_TAG wqe=reserved */ 9958 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9959 /* Always open the exchange */ 9960 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9961 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9962 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9963 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9964 LPFC_WQE_LENLOC_NONE); 9965 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9966 iocbq->iocb.ulpFCP2Rcvy); 9967 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9968 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9969 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9970 if (iocbq->priority) { 9971 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9972 (iocbq->priority << 1)); 9973 } else { 9974 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9975 (phba->cfg_XLanePriority << 1)); 9976 } 9977 } 9978 /* Note, word 10 is already initialized to 0 */ 9979 9980 if (phba->fcp_embed_io) { 9981 struct lpfc_io_buf *lpfc_cmd; 9982 struct sli4_sge *sgl; 9983 struct fcp_cmnd *fcp_cmnd; 9984 uint32_t *ptr; 9985 9986 /* 128 byte wqe support here */ 9987 9988 lpfc_cmd = iocbq->context1; 9989 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9990 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9991 9992 /* Word 0-2 - FCP_CMND */ 9993 wqe->generic.bde.tus.f.bdeFlags = 9994 BUFF_TYPE_BDE_IMMED; 9995 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9996 wqe->generic.bde.addrHigh = 0; 9997 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9998 9999 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10000 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10001 10002 /* Word 22-29 FCP CMND Payload */ 10003 ptr = &wqe->words[22]; 10004 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10005 } 10006 break; 10007 case CMD_GEN_REQUEST64_CR: 10008 /* For this command calculate the xmit length of the 10009 * request bde. 10010 */ 10011 xmit_len = 0; 10012 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10013 sizeof(struct ulp_bde64); 10014 for (i = 0; i < numBdes; i++) { 10015 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10016 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10017 break; 10018 xmit_len += bde.tus.f.bdeSize; 10019 } 10020 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10021 wqe->gen_req.request_payload_len = xmit_len; 10022 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10023 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10024 /* word6 context tag copied in memcpy */ 10025 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10026 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10027 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10028 "2015 Invalid CT %x command 0x%x\n", 10029 ct, iocbq->iocb.ulpCommand); 10030 return IOCB_ERROR; 10031 } 10032 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10033 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10034 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10035 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10036 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10037 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10038 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10039 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10040 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10041 command_type = OTHER_COMMAND; 10042 break; 10043 case CMD_XMIT_ELS_RSP64_CX: 10044 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10045 /* words0-2 BDE memcpy */ 10046 /* word3 iocb=iotag32 wqe=response_payload_len */ 10047 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10048 /* word4 */ 10049 wqe->xmit_els_rsp.word4 = 0; 10050 /* word5 iocb=rsvd wge=did */ 10051 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10052 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10053 10054 if_type = bf_get(lpfc_sli_intf_if_type, 10055 &phba->sli4_hba.sli_intf); 10056 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10057 if (iocbq->vport->fc_flag & FC_PT2PT) { 10058 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10059 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10060 iocbq->vport->fc_myDID); 10061 if (iocbq->vport->fc_myDID == Fabric_DID) { 10062 bf_set(wqe_els_did, 10063 &wqe->xmit_els_rsp.wqe_dest, 0); 10064 } 10065 } 10066 } 10067 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10068 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10069 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10070 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10071 iocbq->iocb.unsli3.rcvsli3.ox_id); 10072 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10073 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10074 phba->vpi_ids[iocbq->vport->vpi]); 10075 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10076 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10077 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10078 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10079 LPFC_WQE_LENLOC_WORD3); 10080 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10081 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10082 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10083 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 10084 iocbq->context2)->virt); 10085 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10086 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10087 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10088 iocbq->vport->fc_myDID); 10089 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10090 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10091 phba->vpi_ids[phba->pport->vpi]); 10092 } 10093 command_type = OTHER_COMMAND; 10094 break; 10095 case CMD_CLOSE_XRI_CN: 10096 case CMD_ABORT_XRI_CN: 10097 case CMD_ABORT_XRI_CX: 10098 /* words 0-2 memcpy should be 0 rserved */ 10099 /* port will send abts */ 10100 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10101 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10102 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10103 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10104 } else 10105 fip = 0; 10106 10107 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10108 /* 10109 * The link is down, or the command was ELS_FIP 10110 * so the fw does not need to send abts 10111 * on the wire. 10112 */ 10113 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10114 else 10115 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10116 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10117 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10118 wqe->abort_cmd.rsrvd5 = 0; 10119 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10120 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10121 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10122 /* 10123 * The abort handler will send us CMD_ABORT_XRI_CN or 10124 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10125 */ 10126 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10127 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10128 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10129 LPFC_WQE_LENLOC_NONE); 10130 cmnd = CMD_ABORT_XRI_CX; 10131 command_type = OTHER_COMMAND; 10132 xritag = 0; 10133 break; 10134 case CMD_XMIT_BLS_RSP64_CX: 10135 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10136 /* As BLS ABTS RSP WQE is very different from other WQEs, 10137 * we re-construct this WQE here based on information in 10138 * iocbq from scratch. 10139 */ 10140 memset(wqe, 0, sizeof(*wqe)); 10141 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10142 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10143 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10144 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10145 LPFC_ABTS_UNSOL_INT) { 10146 /* ABTS sent by initiator to CT exchange, the 10147 * RX_ID field will be filled with the newly 10148 * allocated responder XRI. 10149 */ 10150 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10151 iocbq->sli4_xritag); 10152 } else { 10153 /* ABTS sent by responder to CT exchange, the 10154 * RX_ID field will be filled with the responder 10155 * RX_ID from ABTS. 10156 */ 10157 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10158 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10159 } 10160 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10161 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10162 10163 /* Use CT=VPI */ 10164 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10165 ndlp->nlp_DID); 10166 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10167 iocbq->iocb.ulpContext); 10168 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10169 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10170 phba->vpi_ids[phba->pport->vpi]); 10171 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10172 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10173 LPFC_WQE_LENLOC_NONE); 10174 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10175 command_type = OTHER_COMMAND; 10176 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10177 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10178 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10179 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10180 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10181 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10182 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10183 } 10184 10185 break; 10186 case CMD_SEND_FRAME: 10187 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10188 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10189 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10190 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10191 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10192 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10193 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10194 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10195 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10196 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10197 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10198 return 0; 10199 case CMD_XRI_ABORTED_CX: 10200 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10201 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10202 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10203 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10204 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10205 default: 10206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10207 "2014 Invalid command 0x%x\n", 10208 iocbq->iocb.ulpCommand); 10209 return IOCB_ERROR; 10210 } 10211 10212 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10213 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10214 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10215 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10216 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10217 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10218 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10219 LPFC_IO_DIF_INSERT); 10220 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10221 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10222 wqe->generic.wqe_com.abort_tag = abort_tag; 10223 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10224 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10225 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10226 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10227 return 0; 10228 } 10229 10230 /** 10231 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10232 * @phba: Pointer to HBA context object. 10233 * @ring_number: SLI ring number to issue wqe on. 10234 * @piocb: Pointer to command iocb. 10235 * @flag: Flag indicating if this command can be put into txq. 10236 * 10237 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10238 * send an iocb command to an HBA with SLI-4 interface spec. 10239 * 10240 * This function takes the hbalock before invoking the lockless version. 10241 * The function will return success after it successfully submit the wqe to 10242 * firmware or after adding to the txq. 10243 **/ 10244 static int 10245 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10246 struct lpfc_iocbq *piocb, uint32_t flag) 10247 { 10248 unsigned long iflags; 10249 int rc; 10250 10251 spin_lock_irqsave(&phba->hbalock, iflags); 10252 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10253 spin_unlock_irqrestore(&phba->hbalock, iflags); 10254 10255 return rc; 10256 } 10257 10258 /** 10259 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10260 * @phba: Pointer to HBA context object. 10261 * @ring_number: SLI ring number to issue wqe on. 10262 * @piocb: Pointer to command iocb. 10263 * @flag: Flag indicating if this command can be put into txq. 10264 * 10265 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10266 * an wqe command to an HBA with SLI-4 interface spec. 10267 * 10268 * This function is a lockless version. The function will return success 10269 * after it successfully submit the wqe to firmware or after adding to the 10270 * txq. 10271 **/ 10272 static int 10273 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10274 struct lpfc_iocbq *piocb, uint32_t flag) 10275 { 10276 int rc; 10277 struct lpfc_io_buf *lpfc_cmd = 10278 (struct lpfc_io_buf *)piocb->context1; 10279 union lpfc_wqe128 *wqe = &piocb->wqe; 10280 struct sli4_sge *sgl; 10281 10282 /* 128 byte wqe support here */ 10283 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10284 10285 if (phba->fcp_embed_io) { 10286 struct fcp_cmnd *fcp_cmnd; 10287 u32 *ptr; 10288 10289 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10290 10291 /* Word 0-2 - FCP_CMND */ 10292 wqe->generic.bde.tus.f.bdeFlags = 10293 BUFF_TYPE_BDE_IMMED; 10294 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10295 wqe->generic.bde.addrHigh = 0; 10296 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10297 10298 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10299 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10300 10301 /* Word 22-29 FCP CMND Payload */ 10302 ptr = &wqe->words[22]; 10303 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10304 } else { 10305 /* Word 0-2 - Inline BDE */ 10306 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10307 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10308 wqe->generic.bde.addrHigh = sgl->addr_hi; 10309 wqe->generic.bde.addrLow = sgl->addr_lo; 10310 10311 /* Word 10 */ 10312 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10313 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10314 } 10315 10316 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10317 return rc; 10318 } 10319 10320 /** 10321 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10322 * @phba: Pointer to HBA context object. 10323 * @ring_number: SLI ring number to issue iocb on. 10324 * @piocb: Pointer to command iocb. 10325 * @flag: Flag indicating if this command can be put into txq. 10326 * 10327 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10328 * an iocb command to an HBA with SLI-4 interface spec. 10329 * 10330 * This function is called with ringlock held. The function will return success 10331 * after it successfully submit the iocb to firmware or after adding to the 10332 * txq. 10333 **/ 10334 static int 10335 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10336 struct lpfc_iocbq *piocb, uint32_t flag) 10337 { 10338 struct lpfc_sglq *sglq; 10339 union lpfc_wqe128 wqe; 10340 struct lpfc_queue *wq; 10341 struct lpfc_sli_ring *pring; 10342 10343 /* Get the WQ */ 10344 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10345 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10346 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10347 } else { 10348 wq = phba->sli4_hba.els_wq; 10349 } 10350 10351 /* Get corresponding ring */ 10352 pring = wq->pring; 10353 10354 /* 10355 * The WQE can be either 64 or 128 bytes, 10356 */ 10357 10358 lockdep_assert_held(&pring->ring_lock); 10359 10360 if (piocb->sli4_xritag == NO_XRI) { 10361 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10362 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10363 sglq = NULL; 10364 else { 10365 if (!list_empty(&pring->txq)) { 10366 if (!(flag & SLI_IOCB_RET_IOCB)) { 10367 __lpfc_sli_ringtx_put(phba, 10368 pring, piocb); 10369 return IOCB_SUCCESS; 10370 } else { 10371 return IOCB_BUSY; 10372 } 10373 } else { 10374 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10375 if (!sglq) { 10376 if (!(flag & SLI_IOCB_RET_IOCB)) { 10377 __lpfc_sli_ringtx_put(phba, 10378 pring, 10379 piocb); 10380 return IOCB_SUCCESS; 10381 } else 10382 return IOCB_BUSY; 10383 } 10384 } 10385 } 10386 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10387 /* These IO's already have an XRI and a mapped sgl. */ 10388 sglq = NULL; 10389 } 10390 else { 10391 /* 10392 * This is a continuation of a commandi,(CX) so this 10393 * sglq is on the active list 10394 */ 10395 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10396 if (!sglq) 10397 return IOCB_ERROR; 10398 } 10399 10400 if (sglq) { 10401 piocb->sli4_lxritag = sglq->sli4_lxritag; 10402 piocb->sli4_xritag = sglq->sli4_xritag; 10403 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10404 return IOCB_ERROR; 10405 } 10406 10407 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10408 return IOCB_ERROR; 10409 10410 if (lpfc_sli4_wq_put(wq, &wqe)) 10411 return IOCB_ERROR; 10412 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10413 10414 return 0; 10415 } 10416 10417 /* 10418 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10419 * 10420 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10421 * or IOCB for sli-3 function. 10422 * pointer from the lpfc_hba struct. 10423 * 10424 * Return codes: 10425 * IOCB_ERROR - Error 10426 * IOCB_SUCCESS - Success 10427 * IOCB_BUSY - Busy 10428 **/ 10429 int 10430 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10431 struct lpfc_iocbq *piocb, uint32_t flag) 10432 { 10433 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10434 } 10435 10436 /* 10437 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10438 * 10439 * This routine wraps the actual lockless version for issusing IOCB function 10440 * pointer from the lpfc_hba struct. 10441 * 10442 * Return codes: 10443 * IOCB_ERROR - Error 10444 * IOCB_SUCCESS - Success 10445 * IOCB_BUSY - Busy 10446 **/ 10447 int 10448 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10449 struct lpfc_iocbq *piocb, uint32_t flag) 10450 { 10451 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10452 } 10453 10454 /** 10455 * lpfc_sli_api_table_setup - Set up sli api function jump table 10456 * @phba: The hba struct for which this call is being executed. 10457 * @dev_grp: The HBA PCI-Device group number. 10458 * 10459 * This routine sets up the SLI interface API function jump table in @phba 10460 * struct. 10461 * Returns: 0 - success, -ENODEV - failure. 10462 **/ 10463 int 10464 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10465 { 10466 10467 switch (dev_grp) { 10468 case LPFC_PCI_DEV_LP: 10469 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10470 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10471 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10472 break; 10473 case LPFC_PCI_DEV_OC: 10474 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10475 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10476 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10477 break; 10478 default: 10479 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10480 "1419 Invalid HBA PCI-device group: 0x%x\n", 10481 dev_grp); 10482 return -ENODEV; 10483 } 10484 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10485 return 0; 10486 } 10487 10488 /** 10489 * lpfc_sli4_calc_ring - Calculates which ring to use 10490 * @phba: Pointer to HBA context object. 10491 * @piocb: Pointer to command iocb. 10492 * 10493 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10494 * hba_wqidx, thus we need to calculate the corresponding ring. 10495 * Since ABORTS must go on the same WQ of the command they are 10496 * aborting, we use command's hba_wqidx. 10497 */ 10498 struct lpfc_sli_ring * 10499 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10500 { 10501 struct lpfc_io_buf *lpfc_cmd; 10502 10503 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10504 if (unlikely(!phba->sli4_hba.hdwq)) 10505 return NULL; 10506 /* 10507 * for abort iocb hba_wqidx should already 10508 * be setup based on what work queue we used. 10509 */ 10510 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10511 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10512 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10513 } 10514 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10515 } else { 10516 if (unlikely(!phba->sli4_hba.els_wq)) 10517 return NULL; 10518 piocb->hba_wqidx = 0; 10519 return phba->sli4_hba.els_wq->pring; 10520 } 10521 } 10522 10523 /** 10524 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10525 * @phba: Pointer to HBA context object. 10526 * @ring_number: Ring number 10527 * @piocb: Pointer to command iocb. 10528 * @flag: Flag indicating if this command can be put into txq. 10529 * 10530 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10531 * function. This function gets the hbalock and calls 10532 * __lpfc_sli_issue_iocb function and will return the error returned 10533 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10534 * functions which do not hold hbalock. 10535 **/ 10536 int 10537 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10538 struct lpfc_iocbq *piocb, uint32_t flag) 10539 { 10540 struct lpfc_sli_ring *pring; 10541 struct lpfc_queue *eq; 10542 unsigned long iflags; 10543 int rc; 10544 10545 if (phba->sli_rev == LPFC_SLI_REV4) { 10546 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10547 10548 pring = lpfc_sli4_calc_ring(phba, piocb); 10549 if (unlikely(pring == NULL)) 10550 return IOCB_ERROR; 10551 10552 spin_lock_irqsave(&pring->ring_lock, iflags); 10553 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10554 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10555 10556 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10557 } else { 10558 /* For now, SLI2/3 will still use hbalock */ 10559 spin_lock_irqsave(&phba->hbalock, iflags); 10560 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10561 spin_unlock_irqrestore(&phba->hbalock, iflags); 10562 } 10563 return rc; 10564 } 10565 10566 /** 10567 * lpfc_extra_ring_setup - Extra ring setup function 10568 * @phba: Pointer to HBA context object. 10569 * 10570 * This function is called while driver attaches with the 10571 * HBA to setup the extra ring. The extra ring is used 10572 * only when driver needs to support target mode functionality 10573 * or IP over FC functionalities. 10574 * 10575 * This function is called with no lock held. SLI3 only. 10576 **/ 10577 static int 10578 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10579 { 10580 struct lpfc_sli *psli; 10581 struct lpfc_sli_ring *pring; 10582 10583 psli = &phba->sli; 10584 10585 /* Adjust cmd/rsp ring iocb entries more evenly */ 10586 10587 /* Take some away from the FCP ring */ 10588 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10589 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10590 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10591 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10592 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10593 10594 /* and give them to the extra ring */ 10595 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10596 10597 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10598 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10599 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10600 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10601 10602 /* Setup default profile for this ring */ 10603 pring->iotag_max = 4096; 10604 pring->num_mask = 1; 10605 pring->prt[0].profile = 0; /* Mask 0 */ 10606 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10607 pring->prt[0].type = phba->cfg_multi_ring_type; 10608 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10609 return 0; 10610 } 10611 10612 static void 10613 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10614 struct lpfc_nodelist *ndlp) 10615 { 10616 unsigned long iflags; 10617 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10618 10619 spin_lock_irqsave(&phba->hbalock, iflags); 10620 if (!list_empty(&evtp->evt_listp)) { 10621 spin_unlock_irqrestore(&phba->hbalock, iflags); 10622 return; 10623 } 10624 10625 /* Incrementing the reference count until the queued work is done. */ 10626 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10627 if (!evtp->evt_arg1) { 10628 spin_unlock_irqrestore(&phba->hbalock, iflags); 10629 return; 10630 } 10631 evtp->evt = LPFC_EVT_RECOVER_PORT; 10632 list_add_tail(&evtp->evt_listp, &phba->work_list); 10633 spin_unlock_irqrestore(&phba->hbalock, iflags); 10634 10635 lpfc_worker_wake_up(phba); 10636 } 10637 10638 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10639 * @phba: Pointer to HBA context object. 10640 * @iocbq: Pointer to iocb object. 10641 * 10642 * The async_event handler calls this routine when it receives 10643 * an ASYNC_STATUS_CN event from the port. The port generates 10644 * this event when an Abort Sequence request to an rport fails 10645 * twice in succession. The abort could be originated by the 10646 * driver or by the port. The ABTS could have been for an ELS 10647 * or FCP IO. The port only generates this event when an ABTS 10648 * fails to complete after one retry. 10649 */ 10650 static void 10651 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10652 struct lpfc_iocbq *iocbq) 10653 { 10654 struct lpfc_nodelist *ndlp = NULL; 10655 uint16_t rpi = 0, vpi = 0; 10656 struct lpfc_vport *vport = NULL; 10657 10658 /* The rpi in the ulpContext is vport-sensitive. */ 10659 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10660 rpi = iocbq->iocb.ulpContext; 10661 10662 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10663 "3092 Port generated ABTS async event " 10664 "on vpi %d rpi %d status 0x%x\n", 10665 vpi, rpi, iocbq->iocb.ulpStatus); 10666 10667 vport = lpfc_find_vport_by_vpid(phba, vpi); 10668 if (!vport) 10669 goto err_exit; 10670 ndlp = lpfc_findnode_rpi(vport, rpi); 10671 if (!ndlp) 10672 goto err_exit; 10673 10674 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10675 lpfc_sli_abts_recover_port(vport, ndlp); 10676 return; 10677 10678 err_exit: 10679 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10680 "3095 Event Context not found, no " 10681 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10682 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10683 vpi, rpi); 10684 } 10685 10686 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10687 * @phba: pointer to HBA context object. 10688 * @ndlp: nodelist pointer for the impacted rport. 10689 * @axri: pointer to the wcqe containing the failed exchange. 10690 * 10691 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10692 * port. The port generates this event when an abort exchange request to an 10693 * rport fails twice in succession with no reply. The abort could be originated 10694 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10695 */ 10696 void 10697 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10698 struct lpfc_nodelist *ndlp, 10699 struct sli4_wcqe_xri_aborted *axri) 10700 { 10701 uint32_t ext_status = 0; 10702 10703 if (!ndlp) { 10704 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10705 "3115 Node Context not found, driver " 10706 "ignoring abts err event\n"); 10707 return; 10708 } 10709 10710 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10711 "3116 Port generated FCP XRI ABORT event on " 10712 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10713 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10714 bf_get(lpfc_wcqe_xa_xri, axri), 10715 bf_get(lpfc_wcqe_xa_status, axri), 10716 axri->parameter); 10717 10718 /* 10719 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10720 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10721 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10722 */ 10723 ext_status = axri->parameter & IOERR_PARAM_MASK; 10724 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10725 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10726 lpfc_sli_post_recovery_event(phba, ndlp); 10727 } 10728 10729 /** 10730 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10731 * @phba: Pointer to HBA context object. 10732 * @pring: Pointer to driver SLI ring object. 10733 * @iocbq: Pointer to iocb object. 10734 * 10735 * This function is called by the slow ring event handler 10736 * function when there is an ASYNC event iocb in the ring. 10737 * This function is called with no lock held. 10738 * Currently this function handles only temperature related 10739 * ASYNC events. The function decodes the temperature sensor 10740 * event message and posts events for the management applications. 10741 **/ 10742 static void 10743 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10744 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10745 { 10746 IOCB_t *icmd; 10747 uint16_t evt_code; 10748 struct temp_event temp_event_data; 10749 struct Scsi_Host *shost; 10750 uint32_t *iocb_w; 10751 10752 icmd = &iocbq->iocb; 10753 evt_code = icmd->un.asyncstat.evt_code; 10754 10755 switch (evt_code) { 10756 case ASYNC_TEMP_WARN: 10757 case ASYNC_TEMP_SAFE: 10758 temp_event_data.data = (uint32_t) icmd->ulpContext; 10759 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10760 if (evt_code == ASYNC_TEMP_WARN) { 10761 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10762 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10763 "0347 Adapter is very hot, please take " 10764 "corrective action. temperature : %d Celsius\n", 10765 (uint32_t) icmd->ulpContext); 10766 } else { 10767 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10768 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10769 "0340 Adapter temperature is OK now. " 10770 "temperature : %d Celsius\n", 10771 (uint32_t) icmd->ulpContext); 10772 } 10773 10774 /* Send temperature change event to applications */ 10775 shost = lpfc_shost_from_vport(phba->pport); 10776 fc_host_post_vendor_event(shost, fc_get_event_number(), 10777 sizeof(temp_event_data), (char *) &temp_event_data, 10778 LPFC_NL_VENDOR_ID); 10779 break; 10780 case ASYNC_STATUS_CN: 10781 lpfc_sli_abts_err_handler(phba, iocbq); 10782 break; 10783 default: 10784 iocb_w = (uint32_t *) icmd; 10785 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10786 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10787 " evt_code 0x%x\n" 10788 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10789 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10790 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10791 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10792 pring->ringno, icmd->un.asyncstat.evt_code, 10793 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10794 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10795 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10796 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10797 10798 break; 10799 } 10800 } 10801 10802 10803 /** 10804 * lpfc_sli4_setup - SLI ring setup function 10805 * @phba: Pointer to HBA context object. 10806 * 10807 * lpfc_sli_setup sets up rings of the SLI interface with 10808 * number of iocbs per ring and iotags. This function is 10809 * called while driver attach to the HBA and before the 10810 * interrupts are enabled. So there is no need for locking. 10811 * 10812 * This function always returns 0. 10813 **/ 10814 int 10815 lpfc_sli4_setup(struct lpfc_hba *phba) 10816 { 10817 struct lpfc_sli_ring *pring; 10818 10819 pring = phba->sli4_hba.els_wq->pring; 10820 pring->num_mask = LPFC_MAX_RING_MASK; 10821 pring->prt[0].profile = 0; /* Mask 0 */ 10822 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10823 pring->prt[0].type = FC_TYPE_ELS; 10824 pring->prt[0].lpfc_sli_rcv_unsol_event = 10825 lpfc_els_unsol_event; 10826 pring->prt[1].profile = 0; /* Mask 1 */ 10827 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10828 pring->prt[1].type = FC_TYPE_ELS; 10829 pring->prt[1].lpfc_sli_rcv_unsol_event = 10830 lpfc_els_unsol_event; 10831 pring->prt[2].profile = 0; /* Mask 2 */ 10832 /* NameServer Inquiry */ 10833 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10834 /* NameServer */ 10835 pring->prt[2].type = FC_TYPE_CT; 10836 pring->prt[2].lpfc_sli_rcv_unsol_event = 10837 lpfc_ct_unsol_event; 10838 pring->prt[3].profile = 0; /* Mask 3 */ 10839 /* NameServer response */ 10840 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10841 /* NameServer */ 10842 pring->prt[3].type = FC_TYPE_CT; 10843 pring->prt[3].lpfc_sli_rcv_unsol_event = 10844 lpfc_ct_unsol_event; 10845 return 0; 10846 } 10847 10848 /** 10849 * lpfc_sli_setup - SLI ring setup function 10850 * @phba: Pointer to HBA context object. 10851 * 10852 * lpfc_sli_setup sets up rings of the SLI interface with 10853 * number of iocbs per ring and iotags. This function is 10854 * called while driver attach to the HBA and before the 10855 * interrupts are enabled. So there is no need for locking. 10856 * 10857 * This function always returns 0. SLI3 only. 10858 **/ 10859 int 10860 lpfc_sli_setup(struct lpfc_hba *phba) 10861 { 10862 int i, totiocbsize = 0; 10863 struct lpfc_sli *psli = &phba->sli; 10864 struct lpfc_sli_ring *pring; 10865 10866 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10867 psli->sli_flag = 0; 10868 10869 psli->iocbq_lookup = NULL; 10870 psli->iocbq_lookup_len = 0; 10871 psli->last_iotag = 0; 10872 10873 for (i = 0; i < psli->num_rings; i++) { 10874 pring = &psli->sli3_ring[i]; 10875 switch (i) { 10876 case LPFC_FCP_RING: /* ring 0 - FCP */ 10877 /* numCiocb and numRiocb are used in config_port */ 10878 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10879 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10880 pring->sli.sli3.numCiocb += 10881 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10882 pring->sli.sli3.numRiocb += 10883 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10884 pring->sli.sli3.numCiocb += 10885 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10886 pring->sli.sli3.numRiocb += 10887 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10888 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10889 SLI3_IOCB_CMD_SIZE : 10890 SLI2_IOCB_CMD_SIZE; 10891 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10892 SLI3_IOCB_RSP_SIZE : 10893 SLI2_IOCB_RSP_SIZE; 10894 pring->iotag_ctr = 0; 10895 pring->iotag_max = 10896 (phba->cfg_hba_queue_depth * 2); 10897 pring->fast_iotag = pring->iotag_max; 10898 pring->num_mask = 0; 10899 break; 10900 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10901 /* numCiocb and numRiocb are used in config_port */ 10902 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10903 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10904 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10905 SLI3_IOCB_CMD_SIZE : 10906 SLI2_IOCB_CMD_SIZE; 10907 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10908 SLI3_IOCB_RSP_SIZE : 10909 SLI2_IOCB_RSP_SIZE; 10910 pring->iotag_max = phba->cfg_hba_queue_depth; 10911 pring->num_mask = 0; 10912 break; 10913 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10914 /* numCiocb and numRiocb are used in config_port */ 10915 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10916 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10917 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10918 SLI3_IOCB_CMD_SIZE : 10919 SLI2_IOCB_CMD_SIZE; 10920 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10921 SLI3_IOCB_RSP_SIZE : 10922 SLI2_IOCB_RSP_SIZE; 10923 pring->fast_iotag = 0; 10924 pring->iotag_ctr = 0; 10925 pring->iotag_max = 4096; 10926 pring->lpfc_sli_rcv_async_status = 10927 lpfc_sli_async_event_handler; 10928 pring->num_mask = LPFC_MAX_RING_MASK; 10929 pring->prt[0].profile = 0; /* Mask 0 */ 10930 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10931 pring->prt[0].type = FC_TYPE_ELS; 10932 pring->prt[0].lpfc_sli_rcv_unsol_event = 10933 lpfc_els_unsol_event; 10934 pring->prt[1].profile = 0; /* Mask 1 */ 10935 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10936 pring->prt[1].type = FC_TYPE_ELS; 10937 pring->prt[1].lpfc_sli_rcv_unsol_event = 10938 lpfc_els_unsol_event; 10939 pring->prt[2].profile = 0; /* Mask 2 */ 10940 /* NameServer Inquiry */ 10941 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10942 /* NameServer */ 10943 pring->prt[2].type = FC_TYPE_CT; 10944 pring->prt[2].lpfc_sli_rcv_unsol_event = 10945 lpfc_ct_unsol_event; 10946 pring->prt[3].profile = 0; /* Mask 3 */ 10947 /* NameServer response */ 10948 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10949 /* NameServer */ 10950 pring->prt[3].type = FC_TYPE_CT; 10951 pring->prt[3].lpfc_sli_rcv_unsol_event = 10952 lpfc_ct_unsol_event; 10953 break; 10954 } 10955 totiocbsize += (pring->sli.sli3.numCiocb * 10956 pring->sli.sli3.sizeCiocb) + 10957 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10958 } 10959 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10960 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10961 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10962 "SLI2 SLIM Data: x%x x%lx\n", 10963 phba->brd_no, totiocbsize, 10964 (unsigned long) MAX_SLIM_IOCB_SIZE); 10965 } 10966 if (phba->cfg_multi_ring_support == 2) 10967 lpfc_extra_ring_setup(phba); 10968 10969 return 0; 10970 } 10971 10972 /** 10973 * lpfc_sli4_queue_init - Queue initialization function 10974 * @phba: Pointer to HBA context object. 10975 * 10976 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10977 * ring. This function also initializes ring indices of each ring. 10978 * This function is called during the initialization of the SLI 10979 * interface of an HBA. 10980 * This function is called with no lock held and always returns 10981 * 1. 10982 **/ 10983 void 10984 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10985 { 10986 struct lpfc_sli *psli; 10987 struct lpfc_sli_ring *pring; 10988 int i; 10989 10990 psli = &phba->sli; 10991 spin_lock_irq(&phba->hbalock); 10992 INIT_LIST_HEAD(&psli->mboxq); 10993 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10994 /* Initialize list headers for txq and txcmplq as double linked lists */ 10995 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10996 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10997 pring->flag = 0; 10998 pring->ringno = LPFC_FCP_RING; 10999 pring->txcmplq_cnt = 0; 11000 INIT_LIST_HEAD(&pring->txq); 11001 INIT_LIST_HEAD(&pring->txcmplq); 11002 INIT_LIST_HEAD(&pring->iocb_continueq); 11003 spin_lock_init(&pring->ring_lock); 11004 } 11005 pring = phba->sli4_hba.els_wq->pring; 11006 pring->flag = 0; 11007 pring->ringno = LPFC_ELS_RING; 11008 pring->txcmplq_cnt = 0; 11009 INIT_LIST_HEAD(&pring->txq); 11010 INIT_LIST_HEAD(&pring->txcmplq); 11011 INIT_LIST_HEAD(&pring->iocb_continueq); 11012 spin_lock_init(&pring->ring_lock); 11013 11014 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11015 pring = phba->sli4_hba.nvmels_wq->pring; 11016 pring->flag = 0; 11017 pring->ringno = LPFC_ELS_RING; 11018 pring->txcmplq_cnt = 0; 11019 INIT_LIST_HEAD(&pring->txq); 11020 INIT_LIST_HEAD(&pring->txcmplq); 11021 INIT_LIST_HEAD(&pring->iocb_continueq); 11022 spin_lock_init(&pring->ring_lock); 11023 } 11024 11025 spin_unlock_irq(&phba->hbalock); 11026 } 11027 11028 /** 11029 * lpfc_sli_queue_init - Queue initialization function 11030 * @phba: Pointer to HBA context object. 11031 * 11032 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11033 * ring. This function also initializes ring indices of each ring. 11034 * This function is called during the initialization of the SLI 11035 * interface of an HBA. 11036 * This function is called with no lock held and always returns 11037 * 1. 11038 **/ 11039 void 11040 lpfc_sli_queue_init(struct lpfc_hba *phba) 11041 { 11042 struct lpfc_sli *psli; 11043 struct lpfc_sli_ring *pring; 11044 int i; 11045 11046 psli = &phba->sli; 11047 spin_lock_irq(&phba->hbalock); 11048 INIT_LIST_HEAD(&psli->mboxq); 11049 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11050 /* Initialize list headers for txq and txcmplq as double linked lists */ 11051 for (i = 0; i < psli->num_rings; i++) { 11052 pring = &psli->sli3_ring[i]; 11053 pring->ringno = i; 11054 pring->sli.sli3.next_cmdidx = 0; 11055 pring->sli.sli3.local_getidx = 0; 11056 pring->sli.sli3.cmdidx = 0; 11057 INIT_LIST_HEAD(&pring->iocb_continueq); 11058 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11059 INIT_LIST_HEAD(&pring->postbufq); 11060 pring->flag = 0; 11061 INIT_LIST_HEAD(&pring->txq); 11062 INIT_LIST_HEAD(&pring->txcmplq); 11063 spin_lock_init(&pring->ring_lock); 11064 } 11065 spin_unlock_irq(&phba->hbalock); 11066 } 11067 11068 /** 11069 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11070 * @phba: Pointer to HBA context object. 11071 * 11072 * This routine flushes the mailbox command subsystem. It will unconditionally 11073 * flush all the mailbox commands in the three possible stages in the mailbox 11074 * command sub-system: pending mailbox command queue; the outstanding mailbox 11075 * command; and completed mailbox command queue. It is caller's responsibility 11076 * to make sure that the driver is in the proper state to flush the mailbox 11077 * command sub-system. Namely, the posting of mailbox commands into the 11078 * pending mailbox command queue from the various clients must be stopped; 11079 * either the HBA is in a state that it will never works on the outstanding 11080 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11081 * mailbox command has been completed. 11082 **/ 11083 static void 11084 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11085 { 11086 LIST_HEAD(completions); 11087 struct lpfc_sli *psli = &phba->sli; 11088 LPFC_MBOXQ_t *pmb; 11089 unsigned long iflag; 11090 11091 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11092 local_bh_disable(); 11093 11094 /* Flush all the mailbox commands in the mbox system */ 11095 spin_lock_irqsave(&phba->hbalock, iflag); 11096 11097 /* The pending mailbox command queue */ 11098 list_splice_init(&phba->sli.mboxq, &completions); 11099 /* The outstanding active mailbox command */ 11100 if (psli->mbox_active) { 11101 list_add_tail(&psli->mbox_active->list, &completions); 11102 psli->mbox_active = NULL; 11103 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11104 } 11105 /* The completed mailbox command queue */ 11106 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11107 spin_unlock_irqrestore(&phba->hbalock, iflag); 11108 11109 /* Enable softirqs again, done with phba->hbalock */ 11110 local_bh_enable(); 11111 11112 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11113 while (!list_empty(&completions)) { 11114 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11115 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11116 if (pmb->mbox_cmpl) 11117 pmb->mbox_cmpl(phba, pmb); 11118 } 11119 } 11120 11121 /** 11122 * lpfc_sli_host_down - Vport cleanup function 11123 * @vport: Pointer to virtual port object. 11124 * 11125 * lpfc_sli_host_down is called to clean up the resources 11126 * associated with a vport before destroying virtual 11127 * port data structures. 11128 * This function does following operations: 11129 * - Free discovery resources associated with this virtual 11130 * port. 11131 * - Free iocbs associated with this virtual port in 11132 * the txq. 11133 * - Send abort for all iocb commands associated with this 11134 * vport in txcmplq. 11135 * 11136 * This function is called with no lock held and always returns 1. 11137 **/ 11138 int 11139 lpfc_sli_host_down(struct lpfc_vport *vport) 11140 { 11141 LIST_HEAD(completions); 11142 struct lpfc_hba *phba = vport->phba; 11143 struct lpfc_sli *psli = &phba->sli; 11144 struct lpfc_queue *qp = NULL; 11145 struct lpfc_sli_ring *pring; 11146 struct lpfc_iocbq *iocb, *next_iocb; 11147 int i; 11148 unsigned long flags = 0; 11149 uint16_t prev_pring_flag; 11150 11151 lpfc_cleanup_discovery_resources(vport); 11152 11153 spin_lock_irqsave(&phba->hbalock, flags); 11154 11155 /* 11156 * Error everything on the txq since these iocbs 11157 * have not been given to the FW yet. 11158 * Also issue ABTS for everything on the txcmplq 11159 */ 11160 if (phba->sli_rev != LPFC_SLI_REV4) { 11161 for (i = 0; i < psli->num_rings; i++) { 11162 pring = &psli->sli3_ring[i]; 11163 prev_pring_flag = pring->flag; 11164 /* Only slow rings */ 11165 if (pring->ringno == LPFC_ELS_RING) { 11166 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11167 /* Set the lpfc data pending flag */ 11168 set_bit(LPFC_DATA_READY, &phba->data_flags); 11169 } 11170 list_for_each_entry_safe(iocb, next_iocb, 11171 &pring->txq, list) { 11172 if (iocb->vport != vport) 11173 continue; 11174 list_move_tail(&iocb->list, &completions); 11175 } 11176 list_for_each_entry_safe(iocb, next_iocb, 11177 &pring->txcmplq, list) { 11178 if (iocb->vport != vport) 11179 continue; 11180 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11181 NULL); 11182 } 11183 pring->flag = prev_pring_flag; 11184 } 11185 } else { 11186 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11187 pring = qp->pring; 11188 if (!pring) 11189 continue; 11190 if (pring == phba->sli4_hba.els_wq->pring) { 11191 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11192 /* Set the lpfc data pending flag */ 11193 set_bit(LPFC_DATA_READY, &phba->data_flags); 11194 } 11195 prev_pring_flag = pring->flag; 11196 spin_lock(&pring->ring_lock); 11197 list_for_each_entry_safe(iocb, next_iocb, 11198 &pring->txq, list) { 11199 if (iocb->vport != vport) 11200 continue; 11201 list_move_tail(&iocb->list, &completions); 11202 } 11203 spin_unlock(&pring->ring_lock); 11204 list_for_each_entry_safe(iocb, next_iocb, 11205 &pring->txcmplq, list) { 11206 if (iocb->vport != vport) 11207 continue; 11208 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11209 NULL); 11210 } 11211 pring->flag = prev_pring_flag; 11212 } 11213 } 11214 spin_unlock_irqrestore(&phba->hbalock, flags); 11215 11216 /* Make sure HBA is alive */ 11217 lpfc_issue_hb_tmo(phba); 11218 11219 /* Cancel all the IOCBs from the completions list */ 11220 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11221 IOERR_SLI_DOWN); 11222 return 1; 11223 } 11224 11225 /** 11226 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11227 * @phba: Pointer to HBA context object. 11228 * 11229 * This function cleans up all iocb, buffers, mailbox commands 11230 * while shutting down the HBA. This function is called with no 11231 * lock held and always returns 1. 11232 * This function does the following to cleanup driver resources: 11233 * - Free discovery resources for each virtual port 11234 * - Cleanup any pending fabric iocbs 11235 * - Iterate through the iocb txq and free each entry 11236 * in the list. 11237 * - Free up any buffer posted to the HBA 11238 * - Free mailbox commands in the mailbox queue. 11239 **/ 11240 int 11241 lpfc_sli_hba_down(struct lpfc_hba *phba) 11242 { 11243 LIST_HEAD(completions); 11244 struct lpfc_sli *psli = &phba->sli; 11245 struct lpfc_queue *qp = NULL; 11246 struct lpfc_sli_ring *pring; 11247 struct lpfc_dmabuf *buf_ptr; 11248 unsigned long flags = 0; 11249 int i; 11250 11251 /* Shutdown the mailbox command sub-system */ 11252 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11253 11254 lpfc_hba_down_prep(phba); 11255 11256 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11257 local_bh_disable(); 11258 11259 lpfc_fabric_abort_hba(phba); 11260 11261 spin_lock_irqsave(&phba->hbalock, flags); 11262 11263 /* 11264 * Error everything on the txq since these iocbs 11265 * have not been given to the FW yet. 11266 */ 11267 if (phba->sli_rev != LPFC_SLI_REV4) { 11268 for (i = 0; i < psli->num_rings; i++) { 11269 pring = &psli->sli3_ring[i]; 11270 /* Only slow rings */ 11271 if (pring->ringno == LPFC_ELS_RING) { 11272 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11273 /* Set the lpfc data pending flag */ 11274 set_bit(LPFC_DATA_READY, &phba->data_flags); 11275 } 11276 list_splice_init(&pring->txq, &completions); 11277 } 11278 } else { 11279 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11280 pring = qp->pring; 11281 if (!pring) 11282 continue; 11283 spin_lock(&pring->ring_lock); 11284 list_splice_init(&pring->txq, &completions); 11285 spin_unlock(&pring->ring_lock); 11286 if (pring == phba->sli4_hba.els_wq->pring) { 11287 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11288 /* Set the lpfc data pending flag */ 11289 set_bit(LPFC_DATA_READY, &phba->data_flags); 11290 } 11291 } 11292 } 11293 spin_unlock_irqrestore(&phba->hbalock, flags); 11294 11295 /* Cancel all the IOCBs from the completions list */ 11296 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11297 IOERR_SLI_DOWN); 11298 11299 spin_lock_irqsave(&phba->hbalock, flags); 11300 list_splice_init(&phba->elsbuf, &completions); 11301 phba->elsbuf_cnt = 0; 11302 phba->elsbuf_prev_cnt = 0; 11303 spin_unlock_irqrestore(&phba->hbalock, flags); 11304 11305 while (!list_empty(&completions)) { 11306 list_remove_head(&completions, buf_ptr, 11307 struct lpfc_dmabuf, list); 11308 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11309 kfree(buf_ptr); 11310 } 11311 11312 /* Enable softirqs again, done with phba->hbalock */ 11313 local_bh_enable(); 11314 11315 /* Return any active mbox cmds */ 11316 del_timer_sync(&psli->mbox_tmo); 11317 11318 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11319 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11320 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11321 11322 return 1; 11323 } 11324 11325 /** 11326 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11327 * @srcp: Source memory pointer. 11328 * @destp: Destination memory pointer. 11329 * @cnt: Number of words required to be copied. 11330 * 11331 * This function is used for copying data between driver memory 11332 * and the SLI memory. This function also changes the endianness 11333 * of each word if native endianness is different from SLI 11334 * endianness. This function can be called with or without 11335 * lock. 11336 **/ 11337 void 11338 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11339 { 11340 uint32_t *src = srcp; 11341 uint32_t *dest = destp; 11342 uint32_t ldata; 11343 int i; 11344 11345 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11346 ldata = *src; 11347 ldata = le32_to_cpu(ldata); 11348 *dest = ldata; 11349 src++; 11350 dest++; 11351 } 11352 } 11353 11354 11355 /** 11356 * lpfc_sli_bemem_bcopy - SLI memory copy function 11357 * @srcp: Source memory pointer. 11358 * @destp: Destination memory pointer. 11359 * @cnt: Number of words required to be copied. 11360 * 11361 * This function is used for copying data between a data structure 11362 * with big endian representation to local endianness. 11363 * This function can be called with or without lock. 11364 **/ 11365 void 11366 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11367 { 11368 uint32_t *src = srcp; 11369 uint32_t *dest = destp; 11370 uint32_t ldata; 11371 int i; 11372 11373 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11374 ldata = *src; 11375 ldata = be32_to_cpu(ldata); 11376 *dest = ldata; 11377 src++; 11378 dest++; 11379 } 11380 } 11381 11382 /** 11383 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11384 * @phba: Pointer to HBA context object. 11385 * @pring: Pointer to driver SLI ring object. 11386 * @mp: Pointer to driver buffer object. 11387 * 11388 * This function is called with no lock held. 11389 * It always return zero after adding the buffer to the postbufq 11390 * buffer list. 11391 **/ 11392 int 11393 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11394 struct lpfc_dmabuf *mp) 11395 { 11396 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11397 later */ 11398 spin_lock_irq(&phba->hbalock); 11399 list_add_tail(&mp->list, &pring->postbufq); 11400 pring->postbufq_cnt++; 11401 spin_unlock_irq(&phba->hbalock); 11402 return 0; 11403 } 11404 11405 /** 11406 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11407 * @phba: Pointer to HBA context object. 11408 * 11409 * When HBQ is enabled, buffers are searched based on tags. This function 11410 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11411 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11412 * does not conflict with tags of buffer posted for unsolicited events. 11413 * The function returns the allocated tag. The function is called with 11414 * no locks held. 11415 **/ 11416 uint32_t 11417 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11418 { 11419 spin_lock_irq(&phba->hbalock); 11420 phba->buffer_tag_count++; 11421 /* 11422 * Always set the QUE_BUFTAG_BIT to distiguish between 11423 * a tag assigned by HBQ. 11424 */ 11425 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11426 spin_unlock_irq(&phba->hbalock); 11427 return phba->buffer_tag_count; 11428 } 11429 11430 /** 11431 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11432 * @phba: Pointer to HBA context object. 11433 * @pring: Pointer to driver SLI ring object. 11434 * @tag: Buffer tag. 11435 * 11436 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11437 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11438 * iocb is posted to the response ring with the tag of the buffer. 11439 * This function searches the pring->postbufq list using the tag 11440 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11441 * iocb. If the buffer is found then lpfc_dmabuf object of the 11442 * buffer is returned to the caller else NULL is returned. 11443 * This function is called with no lock held. 11444 **/ 11445 struct lpfc_dmabuf * 11446 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11447 uint32_t tag) 11448 { 11449 struct lpfc_dmabuf *mp, *next_mp; 11450 struct list_head *slp = &pring->postbufq; 11451 11452 /* Search postbufq, from the beginning, looking for a match on tag */ 11453 spin_lock_irq(&phba->hbalock); 11454 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11455 if (mp->buffer_tag == tag) { 11456 list_del_init(&mp->list); 11457 pring->postbufq_cnt--; 11458 spin_unlock_irq(&phba->hbalock); 11459 return mp; 11460 } 11461 } 11462 11463 spin_unlock_irq(&phba->hbalock); 11464 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11465 "0402 Cannot find virtual addr for buffer tag on " 11466 "ring %d Data x%lx x%px x%px x%x\n", 11467 pring->ringno, (unsigned long) tag, 11468 slp->next, slp->prev, pring->postbufq_cnt); 11469 11470 return NULL; 11471 } 11472 11473 /** 11474 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11475 * @phba: Pointer to HBA context object. 11476 * @pring: Pointer to driver SLI ring object. 11477 * @phys: DMA address of the buffer. 11478 * 11479 * This function searches the buffer list using the dma_address 11480 * of unsolicited event to find the driver's lpfc_dmabuf object 11481 * corresponding to the dma_address. The function returns the 11482 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11483 * This function is called by the ct and els unsolicited event 11484 * handlers to get the buffer associated with the unsolicited 11485 * event. 11486 * 11487 * This function is called with no lock held. 11488 **/ 11489 struct lpfc_dmabuf * 11490 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11491 dma_addr_t phys) 11492 { 11493 struct lpfc_dmabuf *mp, *next_mp; 11494 struct list_head *slp = &pring->postbufq; 11495 11496 /* Search postbufq, from the beginning, looking for a match on phys */ 11497 spin_lock_irq(&phba->hbalock); 11498 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11499 if (mp->phys == phys) { 11500 list_del_init(&mp->list); 11501 pring->postbufq_cnt--; 11502 spin_unlock_irq(&phba->hbalock); 11503 return mp; 11504 } 11505 } 11506 11507 spin_unlock_irq(&phba->hbalock); 11508 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11509 "0410 Cannot find virtual addr for mapped buf on " 11510 "ring %d Data x%llx x%px x%px x%x\n", 11511 pring->ringno, (unsigned long long)phys, 11512 slp->next, slp->prev, pring->postbufq_cnt); 11513 return NULL; 11514 } 11515 11516 /** 11517 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11518 * @phba: Pointer to HBA context object. 11519 * @cmdiocb: Pointer to driver command iocb object. 11520 * @rspiocb: Pointer to driver response iocb object. 11521 * 11522 * This function is the completion handler for the abort iocbs for 11523 * ELS commands. This function is called from the ELS ring event 11524 * handler with no lock held. This function frees memory resources 11525 * associated with the abort iocb. 11526 **/ 11527 static void 11528 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11529 struct lpfc_iocbq *rspiocb) 11530 { 11531 IOCB_t *irsp = &rspiocb->iocb; 11532 uint16_t abort_iotag, abort_context; 11533 struct lpfc_iocbq *abort_iocb = NULL; 11534 11535 if (irsp->ulpStatus) { 11536 11537 /* 11538 * Assume that the port already completed and returned, or 11539 * will return the iocb. Just Log the message. 11540 */ 11541 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11542 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11543 11544 spin_lock_irq(&phba->hbalock); 11545 if (phba->sli_rev < LPFC_SLI_REV4) { 11546 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11547 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11548 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11549 spin_unlock_irq(&phba->hbalock); 11550 goto release_iocb; 11551 } 11552 if (abort_iotag != 0 && 11553 abort_iotag <= phba->sli.last_iotag) 11554 abort_iocb = 11555 phba->sli.iocbq_lookup[abort_iotag]; 11556 } else 11557 /* For sli4 the abort_tag is the XRI, 11558 * so the abort routine puts the iotag of the iocb 11559 * being aborted in the context field of the abort 11560 * IOCB. 11561 */ 11562 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11563 11564 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11565 "0327 Cannot abort els iocb x%px " 11566 "with tag %x context %x, abort status %x, " 11567 "abort code %x\n", 11568 abort_iocb, abort_iotag, abort_context, 11569 irsp->ulpStatus, irsp->un.ulpWord[4]); 11570 11571 spin_unlock_irq(&phba->hbalock); 11572 } 11573 release_iocb: 11574 lpfc_sli_release_iocbq(phba, cmdiocb); 11575 return; 11576 } 11577 11578 /** 11579 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11580 * @phba: Pointer to HBA context object. 11581 * @cmdiocb: Pointer to driver command iocb object. 11582 * @rspiocb: Pointer to driver response iocb object. 11583 * 11584 * The function is called from SLI ring event handler with no 11585 * lock held. This function is the completion handler for ELS commands 11586 * which are aborted. The function frees memory resources used for 11587 * the aborted ELS commands. 11588 **/ 11589 void 11590 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11591 struct lpfc_iocbq *rspiocb) 11592 { 11593 IOCB_t *irsp = &rspiocb->iocb; 11594 11595 /* ELS cmd tag <ulpIoTag> completes */ 11596 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11597 "0139 Ignoring ELS cmd tag x%x completion Data: " 11598 "x%x x%x x%x\n", 11599 irsp->ulpIoTag, irsp->ulpStatus, 11600 irsp->un.ulpWord[4], irsp->ulpTimeout); 11601 lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1); 11602 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11603 lpfc_ct_free_iocb(phba, cmdiocb); 11604 else 11605 lpfc_els_free_iocb(phba, cmdiocb); 11606 } 11607 11608 /** 11609 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11610 * @phba: Pointer to HBA context object. 11611 * @pring: Pointer to driver SLI ring object. 11612 * @cmdiocb: Pointer to driver command iocb object. 11613 * @cmpl: completion function. 11614 * 11615 * This function issues an abort iocb for the provided command iocb. In case 11616 * of unloading, the abort iocb will not be issued to commands on the ELS 11617 * ring. Instead, the callback function shall be changed to those commands 11618 * so that nothing happens when them finishes. This function is called with 11619 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11620 * when the command iocb is an abort request. 11621 * 11622 **/ 11623 int 11624 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11625 struct lpfc_iocbq *cmdiocb, void *cmpl) 11626 { 11627 struct lpfc_vport *vport = cmdiocb->vport; 11628 struct lpfc_iocbq *abtsiocbp; 11629 IOCB_t *icmd = NULL; 11630 IOCB_t *iabt = NULL; 11631 int retval = IOCB_ERROR; 11632 unsigned long iflags; 11633 struct lpfc_nodelist *ndlp; 11634 11635 /* 11636 * There are certain command types we don't want to abort. And we 11637 * don't want to abort commands that are already in the process of 11638 * being aborted. 11639 */ 11640 icmd = &cmdiocb->iocb; 11641 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11642 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11643 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 11644 return IOCB_ABORTING; 11645 11646 if (!pring) { 11647 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11648 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11649 else 11650 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11651 return retval; 11652 } 11653 11654 /* 11655 * If we're unloading, don't abort iocb on the ELS ring, but change 11656 * the callback so that nothing happens when it finishes. 11657 */ 11658 if ((vport->load_flag & FC_UNLOADING) && 11659 pring->ringno == LPFC_ELS_RING) { 11660 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11661 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11662 else 11663 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11664 return retval; 11665 } 11666 11667 /* issue ABTS for this IOCB based on iotag */ 11668 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11669 if (abtsiocbp == NULL) 11670 return IOCB_NORESOURCE; 11671 11672 /* This signals the response to set the correct status 11673 * before calling the completion handler 11674 */ 11675 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11676 11677 iabt = &abtsiocbp->iocb; 11678 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11679 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11680 if (phba->sli_rev == LPFC_SLI_REV4) { 11681 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11682 if (pring->ringno == LPFC_ELS_RING) 11683 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11684 } else { 11685 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11686 if (pring->ringno == LPFC_ELS_RING) { 11687 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11688 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11689 } 11690 } 11691 iabt->ulpLe = 1; 11692 iabt->ulpClass = icmd->ulpClass; 11693 11694 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11695 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11696 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11697 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11698 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11699 } 11700 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11701 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11702 11703 if (phba->link_state >= LPFC_LINK_UP) 11704 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11705 else 11706 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11707 11708 if (cmpl) 11709 abtsiocbp->iocb_cmpl = cmpl; 11710 else 11711 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11712 abtsiocbp->vport = vport; 11713 11714 if (phba->sli_rev == LPFC_SLI_REV4) { 11715 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11716 if (unlikely(pring == NULL)) 11717 goto abort_iotag_exit; 11718 /* Note: both hbalock and ring_lock need to be set here */ 11719 spin_lock_irqsave(&pring->ring_lock, iflags); 11720 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11721 abtsiocbp, 0); 11722 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11723 } else { 11724 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11725 abtsiocbp, 0); 11726 } 11727 11728 abort_iotag_exit: 11729 11730 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11731 "0339 Abort xri x%x, original iotag x%x, " 11732 "abort cmd iotag x%x retval x%x\n", 11733 iabt->un.acxri.abortIoTag, 11734 iabt->un.acxri.abortContextTag, 11735 abtsiocbp->iotag, retval); 11736 11737 if (retval) { 11738 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11739 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11740 } 11741 11742 /* 11743 * Caller to this routine should check for IOCB_ERROR 11744 * and handle it properly. This routine no longer removes 11745 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11746 */ 11747 return retval; 11748 } 11749 11750 /** 11751 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11752 * @phba: pointer to lpfc HBA data structure. 11753 * 11754 * This routine will abort all pending and outstanding iocbs to an HBA. 11755 **/ 11756 void 11757 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11758 { 11759 struct lpfc_sli *psli = &phba->sli; 11760 struct lpfc_sli_ring *pring; 11761 struct lpfc_queue *qp = NULL; 11762 int i; 11763 11764 if (phba->sli_rev != LPFC_SLI_REV4) { 11765 for (i = 0; i < psli->num_rings; i++) { 11766 pring = &psli->sli3_ring[i]; 11767 lpfc_sli_abort_iocb_ring(phba, pring); 11768 } 11769 return; 11770 } 11771 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11772 pring = qp->pring; 11773 if (!pring) 11774 continue; 11775 lpfc_sli_abort_iocb_ring(phba, pring); 11776 } 11777 } 11778 11779 /** 11780 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11781 * @iocbq: Pointer to driver iocb object. 11782 * @vport: Pointer to driver virtual port object. 11783 * @tgt_id: SCSI ID of the target. 11784 * @lun_id: LUN ID of the scsi device. 11785 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11786 * 11787 * This function acts as an iocb filter for functions which abort or count 11788 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11789 * 0 if the filtering criteria is met for the given iocb and will return 11790 * 1 if the filtering criteria is not met. 11791 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11792 * given iocb is for the SCSI device specified by vport, tgt_id and 11793 * lun_id parameter. 11794 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11795 * given iocb is for the SCSI target specified by vport and tgt_id 11796 * parameters. 11797 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11798 * given iocb is for the SCSI host associated with the given vport. 11799 * This function is called with no locks held. 11800 **/ 11801 static int 11802 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11803 uint16_t tgt_id, uint64_t lun_id, 11804 lpfc_ctx_cmd ctx_cmd) 11805 { 11806 struct lpfc_io_buf *lpfc_cmd; 11807 IOCB_t *icmd = NULL; 11808 int rc = 1; 11809 11810 if (!iocbq || iocbq->vport != vport) 11811 return rc; 11812 11813 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11814 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 11815 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11816 return rc; 11817 11818 icmd = &iocbq->iocb; 11819 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11820 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 11821 return rc; 11822 11823 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11824 11825 if (lpfc_cmd->pCmd == NULL) 11826 return rc; 11827 11828 switch (ctx_cmd) { 11829 case LPFC_CTX_LUN: 11830 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11831 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11832 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11833 rc = 0; 11834 break; 11835 case LPFC_CTX_TGT: 11836 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11837 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11838 rc = 0; 11839 break; 11840 case LPFC_CTX_HOST: 11841 rc = 0; 11842 break; 11843 default: 11844 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11845 __func__, ctx_cmd); 11846 break; 11847 } 11848 11849 return rc; 11850 } 11851 11852 /** 11853 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11854 * @vport: Pointer to virtual port. 11855 * @tgt_id: SCSI ID of the target. 11856 * @lun_id: LUN ID of the scsi device. 11857 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11858 * 11859 * This function returns number of FCP commands pending for the vport. 11860 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11861 * commands pending on the vport associated with SCSI device specified 11862 * by tgt_id and lun_id parameters. 11863 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11864 * commands pending on the vport associated with SCSI target specified 11865 * by tgt_id parameter. 11866 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11867 * commands pending on the vport. 11868 * This function returns the number of iocbs which satisfy the filter. 11869 * This function is called without any lock held. 11870 **/ 11871 int 11872 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11873 lpfc_ctx_cmd ctx_cmd) 11874 { 11875 struct lpfc_hba *phba = vport->phba; 11876 struct lpfc_iocbq *iocbq; 11877 int sum, i; 11878 11879 spin_lock_irq(&phba->hbalock); 11880 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11881 iocbq = phba->sli.iocbq_lookup[i]; 11882 11883 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11884 ctx_cmd) == 0) 11885 sum++; 11886 } 11887 spin_unlock_irq(&phba->hbalock); 11888 11889 return sum; 11890 } 11891 11892 /** 11893 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11894 * @phba: Pointer to HBA context object 11895 * @cmdiocb: Pointer to command iocb object. 11896 * @wcqe: pointer to the complete wcqe 11897 * 11898 * This function is called when an aborted FCP iocb completes. This 11899 * function is called by the ring event handler with no lock held. 11900 * This function frees the iocb. It is called for sli-4 adapters. 11901 **/ 11902 void 11903 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11904 struct lpfc_wcqe_complete *wcqe) 11905 { 11906 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11907 "3017 ABORT_XRI_CN completing on rpi x%x " 11908 "original iotag x%x, abort cmd iotag x%x " 11909 "status 0x%x, reason 0x%x\n", 11910 cmdiocb->iocb.un.acxri.abortContextTag, 11911 cmdiocb->iocb.un.acxri.abortIoTag, 11912 cmdiocb->iotag, 11913 (bf_get(lpfc_wcqe_c_status, wcqe) 11914 & LPFC_IOCB_STATUS_MASK), 11915 wcqe->parameter); 11916 lpfc_sli_release_iocbq(phba, cmdiocb); 11917 } 11918 11919 /** 11920 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11921 * @phba: Pointer to HBA context object 11922 * @cmdiocb: Pointer to command iocb object. 11923 * @rspiocb: Pointer to response iocb object. 11924 * 11925 * This function is called when an aborted FCP iocb completes. This 11926 * function is called by the ring event handler with no lock held. 11927 * This function frees the iocb. 11928 **/ 11929 void 11930 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11931 struct lpfc_iocbq *rspiocb) 11932 { 11933 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11934 "3096 ABORT_XRI_CN completing on rpi x%x " 11935 "original iotag x%x, abort cmd iotag x%x " 11936 "status 0x%x, reason 0x%x\n", 11937 cmdiocb->iocb.un.acxri.abortContextTag, 11938 cmdiocb->iocb.un.acxri.abortIoTag, 11939 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11940 rspiocb->iocb.un.ulpWord[4]); 11941 lpfc_sli_release_iocbq(phba, cmdiocb); 11942 return; 11943 } 11944 11945 /** 11946 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11947 * @vport: Pointer to virtual port. 11948 * @tgt_id: SCSI ID of the target. 11949 * @lun_id: LUN ID of the scsi device. 11950 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11951 * 11952 * This function sends an abort command for every SCSI command 11953 * associated with the given virtual port pending on the ring 11954 * filtered by lpfc_sli_validate_fcp_iocb function. 11955 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11956 * FCP iocbs associated with lun specified by tgt_id and lun_id 11957 * parameters 11958 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11959 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11960 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11961 * FCP iocbs associated with virtual port. 11962 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 11963 * lpfc_sli4_calc_ring is used. 11964 * This function returns number of iocbs it failed to abort. 11965 * This function is called with no locks held. 11966 **/ 11967 int 11968 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 11969 lpfc_ctx_cmd abort_cmd) 11970 { 11971 struct lpfc_hba *phba = vport->phba; 11972 struct lpfc_sli_ring *pring = NULL; 11973 struct lpfc_iocbq *iocbq; 11974 int errcnt = 0, ret_val = 0; 11975 unsigned long iflags; 11976 int i; 11977 void *fcp_cmpl = NULL; 11978 11979 /* all I/Os are in process of being flushed */ 11980 if (phba->hba_flag & HBA_IOQ_FLUSH) 11981 return errcnt; 11982 11983 for (i = 1; i <= phba->sli.last_iotag; i++) { 11984 iocbq = phba->sli.iocbq_lookup[i]; 11985 11986 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11987 abort_cmd) != 0) 11988 continue; 11989 11990 spin_lock_irqsave(&phba->hbalock, iflags); 11991 if (phba->sli_rev == LPFC_SLI_REV3) { 11992 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 11993 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 11994 } else if (phba->sli_rev == LPFC_SLI_REV4) { 11995 pring = lpfc_sli4_calc_ring(phba, iocbq); 11996 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 11997 } 11998 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 11999 fcp_cmpl); 12000 spin_unlock_irqrestore(&phba->hbalock, iflags); 12001 if (ret_val != IOCB_SUCCESS) 12002 errcnt++; 12003 } 12004 12005 return errcnt; 12006 } 12007 12008 /** 12009 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12010 * @vport: Pointer to virtual port. 12011 * @pring: Pointer to driver SLI ring object. 12012 * @tgt_id: SCSI ID of the target. 12013 * @lun_id: LUN ID of the scsi device. 12014 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12015 * 12016 * This function sends an abort command for every SCSI command 12017 * associated with the given virtual port pending on the ring 12018 * filtered by lpfc_sli_validate_fcp_iocb function. 12019 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12020 * FCP iocbs associated with lun specified by tgt_id and lun_id 12021 * parameters 12022 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12023 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12024 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12025 * FCP iocbs associated with virtual port. 12026 * This function returns number of iocbs it aborted . 12027 * This function is called with no locks held right after a taskmgmt 12028 * command is sent. 12029 **/ 12030 int 12031 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12032 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12033 { 12034 struct lpfc_hba *phba = vport->phba; 12035 struct lpfc_io_buf *lpfc_cmd; 12036 struct lpfc_iocbq *abtsiocbq; 12037 struct lpfc_nodelist *ndlp; 12038 struct lpfc_iocbq *iocbq; 12039 IOCB_t *icmd; 12040 int sum, i, ret_val; 12041 unsigned long iflags; 12042 struct lpfc_sli_ring *pring_s4 = NULL; 12043 12044 spin_lock_irqsave(&phba->hbalock, iflags); 12045 12046 /* all I/Os are in process of being flushed */ 12047 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12048 spin_unlock_irqrestore(&phba->hbalock, iflags); 12049 return 0; 12050 } 12051 sum = 0; 12052 12053 for (i = 1; i <= phba->sli.last_iotag; i++) { 12054 iocbq = phba->sli.iocbq_lookup[i]; 12055 12056 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12057 cmd) != 0) 12058 continue; 12059 12060 /* Guard against IO completion being called at same time */ 12061 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12062 spin_lock(&lpfc_cmd->buf_lock); 12063 12064 if (!lpfc_cmd->pCmd) { 12065 spin_unlock(&lpfc_cmd->buf_lock); 12066 continue; 12067 } 12068 12069 if (phba->sli_rev == LPFC_SLI_REV4) { 12070 pring_s4 = 12071 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12072 if (!pring_s4) { 12073 spin_unlock(&lpfc_cmd->buf_lock); 12074 continue; 12075 } 12076 /* Note: both hbalock and ring_lock must be set here */ 12077 spin_lock(&pring_s4->ring_lock); 12078 } 12079 12080 /* 12081 * If the iocbq is already being aborted, don't take a second 12082 * action, but do count it. 12083 */ 12084 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12085 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12086 if (phba->sli_rev == LPFC_SLI_REV4) 12087 spin_unlock(&pring_s4->ring_lock); 12088 spin_unlock(&lpfc_cmd->buf_lock); 12089 continue; 12090 } 12091 12092 /* issue ABTS for this IOCB based on iotag */ 12093 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12094 if (!abtsiocbq) { 12095 if (phba->sli_rev == LPFC_SLI_REV4) 12096 spin_unlock(&pring_s4->ring_lock); 12097 spin_unlock(&lpfc_cmd->buf_lock); 12098 continue; 12099 } 12100 12101 icmd = &iocbq->iocb; 12102 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12103 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12104 if (phba->sli_rev == LPFC_SLI_REV4) 12105 abtsiocbq->iocb.un.acxri.abortIoTag = 12106 iocbq->sli4_xritag; 12107 else 12108 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12109 abtsiocbq->iocb.ulpLe = 1; 12110 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12111 abtsiocbq->vport = vport; 12112 12113 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12114 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12115 if (iocbq->iocb_flag & LPFC_IO_FCP) 12116 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12117 if (iocbq->iocb_flag & LPFC_IO_FOF) 12118 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12119 12120 ndlp = lpfc_cmd->rdata->pnode; 12121 12122 if (lpfc_is_link_up(phba) && 12123 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12124 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12125 else 12126 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12127 12128 /* Setup callback routine and issue the command. */ 12129 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12130 12131 /* 12132 * Indicate the IO is being aborted by the driver and set 12133 * the caller's flag into the aborted IO. 12134 */ 12135 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12136 12137 if (phba->sli_rev == LPFC_SLI_REV4) { 12138 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12139 abtsiocbq, 0); 12140 spin_unlock(&pring_s4->ring_lock); 12141 } else { 12142 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12143 abtsiocbq, 0); 12144 } 12145 12146 spin_unlock(&lpfc_cmd->buf_lock); 12147 12148 if (ret_val == IOCB_ERROR) 12149 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12150 else 12151 sum++; 12152 } 12153 spin_unlock_irqrestore(&phba->hbalock, iflags); 12154 return sum; 12155 } 12156 12157 /** 12158 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12159 * @phba: Pointer to HBA context object. 12160 * @cmdiocbq: Pointer to command iocb. 12161 * @rspiocbq: Pointer to response iocb. 12162 * 12163 * This function is the completion handler for iocbs issued using 12164 * lpfc_sli_issue_iocb_wait function. This function is called by the 12165 * ring event handler function without any lock held. This function 12166 * can be called from both worker thread context and interrupt 12167 * context. This function also can be called from other thread which 12168 * cleans up the SLI layer objects. 12169 * This function copy the contents of the response iocb to the 12170 * response iocb memory object provided by the caller of 12171 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12172 * sleeps for the iocb completion. 12173 **/ 12174 static void 12175 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12176 struct lpfc_iocbq *cmdiocbq, 12177 struct lpfc_iocbq *rspiocbq) 12178 { 12179 wait_queue_head_t *pdone_q; 12180 unsigned long iflags; 12181 struct lpfc_io_buf *lpfc_cmd; 12182 12183 spin_lock_irqsave(&phba->hbalock, iflags); 12184 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12185 12186 /* 12187 * A time out has occurred for the iocb. If a time out 12188 * completion handler has been supplied, call it. Otherwise, 12189 * just free the iocbq. 12190 */ 12191 12192 spin_unlock_irqrestore(&phba->hbalock, iflags); 12193 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12194 cmdiocbq->wait_iocb_cmpl = NULL; 12195 if (cmdiocbq->iocb_cmpl) 12196 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12197 else 12198 lpfc_sli_release_iocbq(phba, cmdiocbq); 12199 return; 12200 } 12201 12202 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12203 if (cmdiocbq->context2 && rspiocbq) 12204 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12205 &rspiocbq->iocb, sizeof(IOCB_t)); 12206 12207 /* Set the exchange busy flag for task management commands */ 12208 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12209 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12210 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12211 cur_iocbq); 12212 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12213 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12214 else 12215 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12216 } 12217 12218 pdone_q = cmdiocbq->context_un.wait_queue; 12219 if (pdone_q) 12220 wake_up(pdone_q); 12221 spin_unlock_irqrestore(&phba->hbalock, iflags); 12222 return; 12223 } 12224 12225 /** 12226 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12227 * @phba: Pointer to HBA context object.. 12228 * @piocbq: Pointer to command iocb. 12229 * @flag: Flag to test. 12230 * 12231 * This routine grabs the hbalock and then test the iocb_flag to 12232 * see if the passed in flag is set. 12233 * Returns: 12234 * 1 if flag is set. 12235 * 0 if flag is not set. 12236 **/ 12237 static int 12238 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12239 struct lpfc_iocbq *piocbq, uint32_t flag) 12240 { 12241 unsigned long iflags; 12242 int ret; 12243 12244 spin_lock_irqsave(&phba->hbalock, iflags); 12245 ret = piocbq->iocb_flag & flag; 12246 spin_unlock_irqrestore(&phba->hbalock, iflags); 12247 return ret; 12248 12249 } 12250 12251 /** 12252 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12253 * @phba: Pointer to HBA context object.. 12254 * @ring_number: Ring number 12255 * @piocb: Pointer to command iocb. 12256 * @prspiocbq: Pointer to response iocb. 12257 * @timeout: Timeout in number of seconds. 12258 * 12259 * This function issues the iocb to firmware and waits for the 12260 * iocb to complete. The iocb_cmpl field of the shall be used 12261 * to handle iocbs which time out. If the field is NULL, the 12262 * function shall free the iocbq structure. If more clean up is 12263 * needed, the caller is expected to provide a completion function 12264 * that will provide the needed clean up. If the iocb command is 12265 * not completed within timeout seconds, the function will either 12266 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12267 * completion function set in the iocb_cmpl field and then return 12268 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12269 * resources if this function returns IOCB_TIMEDOUT. 12270 * The function waits for the iocb completion using an 12271 * non-interruptible wait. 12272 * This function will sleep while waiting for iocb completion. 12273 * So, this function should not be called from any context which 12274 * does not allow sleeping. Due to the same reason, this function 12275 * cannot be called with interrupt disabled. 12276 * This function assumes that the iocb completions occur while 12277 * this function sleep. So, this function cannot be called from 12278 * the thread which process iocb completion for this ring. 12279 * This function clears the iocb_flag of the iocb object before 12280 * issuing the iocb and the iocb completion handler sets this 12281 * flag and wakes this thread when the iocb completes. 12282 * The contents of the response iocb will be copied to prspiocbq 12283 * by the completion handler when the command completes. 12284 * This function returns IOCB_SUCCESS when success. 12285 * This function is called with no lock held. 12286 **/ 12287 int 12288 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12289 uint32_t ring_number, 12290 struct lpfc_iocbq *piocb, 12291 struct lpfc_iocbq *prspiocbq, 12292 uint32_t timeout) 12293 { 12294 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12295 long timeleft, timeout_req = 0; 12296 int retval = IOCB_SUCCESS; 12297 uint32_t creg_val; 12298 struct lpfc_iocbq *iocb; 12299 int txq_cnt = 0; 12300 int txcmplq_cnt = 0; 12301 struct lpfc_sli_ring *pring; 12302 unsigned long iflags; 12303 bool iocb_completed = true; 12304 12305 if (phba->sli_rev >= LPFC_SLI_REV4) 12306 pring = lpfc_sli4_calc_ring(phba, piocb); 12307 else 12308 pring = &phba->sli.sli3_ring[ring_number]; 12309 /* 12310 * If the caller has provided a response iocbq buffer, then context2 12311 * is NULL or its an error. 12312 */ 12313 if (prspiocbq) { 12314 if (piocb->context2) 12315 return IOCB_ERROR; 12316 piocb->context2 = prspiocbq; 12317 } 12318 12319 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12320 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12321 piocb->context_un.wait_queue = &done_q; 12322 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12323 12324 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12325 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12326 return IOCB_ERROR; 12327 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12328 writel(creg_val, phba->HCregaddr); 12329 readl(phba->HCregaddr); /* flush */ 12330 } 12331 12332 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12333 SLI_IOCB_RET_IOCB); 12334 if (retval == IOCB_SUCCESS) { 12335 timeout_req = msecs_to_jiffies(timeout * 1000); 12336 timeleft = wait_event_timeout(done_q, 12337 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12338 timeout_req); 12339 spin_lock_irqsave(&phba->hbalock, iflags); 12340 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12341 12342 /* 12343 * IOCB timed out. Inform the wake iocb wait 12344 * completion function and set local status 12345 */ 12346 12347 iocb_completed = false; 12348 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12349 } 12350 spin_unlock_irqrestore(&phba->hbalock, iflags); 12351 if (iocb_completed) { 12352 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12353 "0331 IOCB wake signaled\n"); 12354 /* Note: we are not indicating if the IOCB has a success 12355 * status or not - that's for the caller to check. 12356 * IOCB_SUCCESS means just that the command was sent and 12357 * completed. Not that it completed successfully. 12358 * */ 12359 } else if (timeleft == 0) { 12360 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12361 "0338 IOCB wait timeout error - no " 12362 "wake response Data x%x\n", timeout); 12363 retval = IOCB_TIMEDOUT; 12364 } else { 12365 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12366 "0330 IOCB wake NOT set, " 12367 "Data x%x x%lx\n", 12368 timeout, (timeleft / jiffies)); 12369 retval = IOCB_TIMEDOUT; 12370 } 12371 } else if (retval == IOCB_BUSY) { 12372 if (phba->cfg_log_verbose & LOG_SLI) { 12373 list_for_each_entry(iocb, &pring->txq, list) { 12374 txq_cnt++; 12375 } 12376 list_for_each_entry(iocb, &pring->txcmplq, list) { 12377 txcmplq_cnt++; 12378 } 12379 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12380 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12381 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12382 } 12383 return retval; 12384 } else { 12385 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12386 "0332 IOCB wait issue failed, Data x%x\n", 12387 retval); 12388 retval = IOCB_ERROR; 12389 } 12390 12391 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12392 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12393 return IOCB_ERROR; 12394 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12395 writel(creg_val, phba->HCregaddr); 12396 readl(phba->HCregaddr); /* flush */ 12397 } 12398 12399 if (prspiocbq) 12400 piocb->context2 = NULL; 12401 12402 piocb->context_un.wait_queue = NULL; 12403 piocb->iocb_cmpl = NULL; 12404 return retval; 12405 } 12406 12407 /** 12408 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12409 * @phba: Pointer to HBA context object. 12410 * @pmboxq: Pointer to driver mailbox object. 12411 * @timeout: Timeout in number of seconds. 12412 * 12413 * This function issues the mailbox to firmware and waits for the 12414 * mailbox command to complete. If the mailbox command is not 12415 * completed within timeout seconds, it returns MBX_TIMEOUT. 12416 * The function waits for the mailbox completion using an 12417 * interruptible wait. If the thread is woken up due to a 12418 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12419 * should not free the mailbox resources, if this function returns 12420 * MBX_TIMEOUT. 12421 * This function will sleep while waiting for mailbox completion. 12422 * So, this function should not be called from any context which 12423 * does not allow sleeping. Due to the same reason, this function 12424 * cannot be called with interrupt disabled. 12425 * This function assumes that the mailbox completion occurs while 12426 * this function sleep. So, this function cannot be called from 12427 * the worker thread which processes mailbox completion. 12428 * This function is called in the context of HBA management 12429 * applications. 12430 * This function returns MBX_SUCCESS when successful. 12431 * This function is called with no lock held. 12432 **/ 12433 int 12434 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12435 uint32_t timeout) 12436 { 12437 struct completion mbox_done; 12438 int retval; 12439 unsigned long flag; 12440 12441 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12442 /* setup wake call as IOCB callback */ 12443 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12444 12445 /* setup context3 field to pass wait_queue pointer to wake function */ 12446 init_completion(&mbox_done); 12447 pmboxq->context3 = &mbox_done; 12448 /* now issue the command */ 12449 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12450 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12451 wait_for_completion_timeout(&mbox_done, 12452 msecs_to_jiffies(timeout * 1000)); 12453 12454 spin_lock_irqsave(&phba->hbalock, flag); 12455 pmboxq->context3 = NULL; 12456 /* 12457 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12458 * else do not free the resources. 12459 */ 12460 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12461 retval = MBX_SUCCESS; 12462 } else { 12463 retval = MBX_TIMEOUT; 12464 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12465 } 12466 spin_unlock_irqrestore(&phba->hbalock, flag); 12467 } 12468 return retval; 12469 } 12470 12471 /** 12472 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12473 * @phba: Pointer to HBA context. 12474 * @mbx_action: Mailbox shutdown options. 12475 * 12476 * This function is called to shutdown the driver's mailbox sub-system. 12477 * It first marks the mailbox sub-system is in a block state to prevent 12478 * the asynchronous mailbox command from issued off the pending mailbox 12479 * command queue. If the mailbox command sub-system shutdown is due to 12480 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12481 * the mailbox sub-system flush routine to forcefully bring down the 12482 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12483 * as with offline or HBA function reset), this routine will wait for the 12484 * outstanding mailbox command to complete before invoking the mailbox 12485 * sub-system flush routine to gracefully bring down mailbox sub-system. 12486 **/ 12487 void 12488 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12489 { 12490 struct lpfc_sli *psli = &phba->sli; 12491 unsigned long timeout; 12492 12493 if (mbx_action == LPFC_MBX_NO_WAIT) { 12494 /* delay 100ms for port state */ 12495 msleep(100); 12496 lpfc_sli_mbox_sys_flush(phba); 12497 return; 12498 } 12499 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12500 12501 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12502 local_bh_disable(); 12503 12504 spin_lock_irq(&phba->hbalock); 12505 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12506 12507 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12508 /* Determine how long we might wait for the active mailbox 12509 * command to be gracefully completed by firmware. 12510 */ 12511 if (phba->sli.mbox_active) 12512 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12513 phba->sli.mbox_active) * 12514 1000) + jiffies; 12515 spin_unlock_irq(&phba->hbalock); 12516 12517 /* Enable softirqs again, done with phba->hbalock */ 12518 local_bh_enable(); 12519 12520 while (phba->sli.mbox_active) { 12521 /* Check active mailbox complete status every 2ms */ 12522 msleep(2); 12523 if (time_after(jiffies, timeout)) 12524 /* Timeout, let the mailbox flush routine to 12525 * forcefully release active mailbox command 12526 */ 12527 break; 12528 } 12529 } else { 12530 spin_unlock_irq(&phba->hbalock); 12531 12532 /* Enable softirqs again, done with phba->hbalock */ 12533 local_bh_enable(); 12534 } 12535 12536 lpfc_sli_mbox_sys_flush(phba); 12537 } 12538 12539 /** 12540 * lpfc_sli_eratt_read - read sli-3 error attention events 12541 * @phba: Pointer to HBA context. 12542 * 12543 * This function is called to read the SLI3 device error attention registers 12544 * for possible error attention events. The caller must hold the hostlock 12545 * with spin_lock_irq(). 12546 * 12547 * This function returns 1 when there is Error Attention in the Host Attention 12548 * Register and returns 0 otherwise. 12549 **/ 12550 static int 12551 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12552 { 12553 uint32_t ha_copy; 12554 12555 /* Read chip Host Attention (HA) register */ 12556 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12557 goto unplug_err; 12558 12559 if (ha_copy & HA_ERATT) { 12560 /* Read host status register to retrieve error event */ 12561 if (lpfc_sli_read_hs(phba)) 12562 goto unplug_err; 12563 12564 /* Check if there is a deferred error condition is active */ 12565 if ((HS_FFER1 & phba->work_hs) && 12566 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12567 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12568 phba->hba_flag |= DEFER_ERATT; 12569 /* Clear all interrupt enable conditions */ 12570 writel(0, phba->HCregaddr); 12571 readl(phba->HCregaddr); 12572 } 12573 12574 /* Set the driver HA work bitmap */ 12575 phba->work_ha |= HA_ERATT; 12576 /* Indicate polling handles this ERATT */ 12577 phba->hba_flag |= HBA_ERATT_HANDLED; 12578 return 1; 12579 } 12580 return 0; 12581 12582 unplug_err: 12583 /* Set the driver HS work bitmap */ 12584 phba->work_hs |= UNPLUG_ERR; 12585 /* Set the driver HA work bitmap */ 12586 phba->work_ha |= HA_ERATT; 12587 /* Indicate polling handles this ERATT */ 12588 phba->hba_flag |= HBA_ERATT_HANDLED; 12589 return 1; 12590 } 12591 12592 /** 12593 * lpfc_sli4_eratt_read - read sli-4 error attention events 12594 * @phba: Pointer to HBA context. 12595 * 12596 * This function is called to read the SLI4 device error attention registers 12597 * for possible error attention events. The caller must hold the hostlock 12598 * with spin_lock_irq(). 12599 * 12600 * This function returns 1 when there is Error Attention in the Host Attention 12601 * Register and returns 0 otherwise. 12602 **/ 12603 static int 12604 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12605 { 12606 uint32_t uerr_sta_hi, uerr_sta_lo; 12607 uint32_t if_type, portsmphr; 12608 struct lpfc_register portstat_reg; 12609 12610 /* 12611 * For now, use the SLI4 device internal unrecoverable error 12612 * registers for error attention. This can be changed later. 12613 */ 12614 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12615 switch (if_type) { 12616 case LPFC_SLI_INTF_IF_TYPE_0: 12617 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12618 &uerr_sta_lo) || 12619 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12620 &uerr_sta_hi)) { 12621 phba->work_hs |= UNPLUG_ERR; 12622 phba->work_ha |= HA_ERATT; 12623 phba->hba_flag |= HBA_ERATT_HANDLED; 12624 return 1; 12625 } 12626 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12627 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12628 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12629 "1423 HBA Unrecoverable error: " 12630 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12631 "ue_mask_lo_reg=0x%x, " 12632 "ue_mask_hi_reg=0x%x\n", 12633 uerr_sta_lo, uerr_sta_hi, 12634 phba->sli4_hba.ue_mask_lo, 12635 phba->sli4_hba.ue_mask_hi); 12636 phba->work_status[0] = uerr_sta_lo; 12637 phba->work_status[1] = uerr_sta_hi; 12638 phba->work_ha |= HA_ERATT; 12639 phba->hba_flag |= HBA_ERATT_HANDLED; 12640 return 1; 12641 } 12642 break; 12643 case LPFC_SLI_INTF_IF_TYPE_2: 12644 case LPFC_SLI_INTF_IF_TYPE_6: 12645 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12646 &portstat_reg.word0) || 12647 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12648 &portsmphr)){ 12649 phba->work_hs |= UNPLUG_ERR; 12650 phba->work_ha |= HA_ERATT; 12651 phba->hba_flag |= HBA_ERATT_HANDLED; 12652 return 1; 12653 } 12654 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12655 phba->work_status[0] = 12656 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12657 phba->work_status[1] = 12658 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12659 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12660 "2885 Port Status Event: " 12661 "port status reg 0x%x, " 12662 "port smphr reg 0x%x, " 12663 "error 1=0x%x, error 2=0x%x\n", 12664 portstat_reg.word0, 12665 portsmphr, 12666 phba->work_status[0], 12667 phba->work_status[1]); 12668 phba->work_ha |= HA_ERATT; 12669 phba->hba_flag |= HBA_ERATT_HANDLED; 12670 return 1; 12671 } 12672 break; 12673 case LPFC_SLI_INTF_IF_TYPE_1: 12674 default: 12675 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12676 "2886 HBA Error Attention on unsupported " 12677 "if type %d.", if_type); 12678 return 1; 12679 } 12680 12681 return 0; 12682 } 12683 12684 /** 12685 * lpfc_sli_check_eratt - check error attention events 12686 * @phba: Pointer to HBA context. 12687 * 12688 * This function is called from timer soft interrupt context to check HBA's 12689 * error attention register bit for error attention events. 12690 * 12691 * This function returns 1 when there is Error Attention in the Host Attention 12692 * Register and returns 0 otherwise. 12693 **/ 12694 int 12695 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12696 { 12697 uint32_t ha_copy; 12698 12699 /* If somebody is waiting to handle an eratt, don't process it 12700 * here. The brdkill function will do this. 12701 */ 12702 if (phba->link_flag & LS_IGNORE_ERATT) 12703 return 0; 12704 12705 /* Check if interrupt handler handles this ERATT */ 12706 spin_lock_irq(&phba->hbalock); 12707 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12708 /* Interrupt handler has handled ERATT */ 12709 spin_unlock_irq(&phba->hbalock); 12710 return 0; 12711 } 12712 12713 /* 12714 * If there is deferred error attention, do not check for error 12715 * attention 12716 */ 12717 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12718 spin_unlock_irq(&phba->hbalock); 12719 return 0; 12720 } 12721 12722 /* If PCI channel is offline, don't process it */ 12723 if (unlikely(pci_channel_offline(phba->pcidev))) { 12724 spin_unlock_irq(&phba->hbalock); 12725 return 0; 12726 } 12727 12728 switch (phba->sli_rev) { 12729 case LPFC_SLI_REV2: 12730 case LPFC_SLI_REV3: 12731 /* Read chip Host Attention (HA) register */ 12732 ha_copy = lpfc_sli_eratt_read(phba); 12733 break; 12734 case LPFC_SLI_REV4: 12735 /* Read device Uncoverable Error (UERR) registers */ 12736 ha_copy = lpfc_sli4_eratt_read(phba); 12737 break; 12738 default: 12739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12740 "0299 Invalid SLI revision (%d)\n", 12741 phba->sli_rev); 12742 ha_copy = 0; 12743 break; 12744 } 12745 spin_unlock_irq(&phba->hbalock); 12746 12747 return ha_copy; 12748 } 12749 12750 /** 12751 * lpfc_intr_state_check - Check device state for interrupt handling 12752 * @phba: Pointer to HBA context. 12753 * 12754 * This inline routine checks whether a device or its PCI slot is in a state 12755 * that the interrupt should be handled. 12756 * 12757 * This function returns 0 if the device or the PCI slot is in a state that 12758 * interrupt should be handled, otherwise -EIO. 12759 */ 12760 static inline int 12761 lpfc_intr_state_check(struct lpfc_hba *phba) 12762 { 12763 /* If the pci channel is offline, ignore all the interrupts */ 12764 if (unlikely(pci_channel_offline(phba->pcidev))) 12765 return -EIO; 12766 12767 /* Update device level interrupt statistics */ 12768 phba->sli.slistat.sli_intr++; 12769 12770 /* Ignore all interrupts during initialization. */ 12771 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12772 return -EIO; 12773 12774 return 0; 12775 } 12776 12777 /** 12778 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12779 * @irq: Interrupt number. 12780 * @dev_id: The device context pointer. 12781 * 12782 * This function is directly called from the PCI layer as an interrupt 12783 * service routine when device with SLI-3 interface spec is enabled with 12784 * MSI-X multi-message interrupt mode and there are slow-path events in 12785 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12786 * interrupt mode, this function is called as part of the device-level 12787 * interrupt handler. When the PCI slot is in error recovery or the HBA 12788 * is undergoing initialization, the interrupt handler will not process 12789 * the interrupt. The link attention and ELS ring attention events are 12790 * handled by the worker thread. The interrupt handler signals the worker 12791 * thread and returns for these events. This function is called without 12792 * any lock held. It gets the hbalock to access and update SLI data 12793 * structures. 12794 * 12795 * This function returns IRQ_HANDLED when interrupt is handled else it 12796 * returns IRQ_NONE. 12797 **/ 12798 irqreturn_t 12799 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12800 { 12801 struct lpfc_hba *phba; 12802 uint32_t ha_copy, hc_copy; 12803 uint32_t work_ha_copy; 12804 unsigned long status; 12805 unsigned long iflag; 12806 uint32_t control; 12807 12808 MAILBOX_t *mbox, *pmbox; 12809 struct lpfc_vport *vport; 12810 struct lpfc_nodelist *ndlp; 12811 struct lpfc_dmabuf *mp; 12812 LPFC_MBOXQ_t *pmb; 12813 int rc; 12814 12815 /* 12816 * Get the driver's phba structure from the dev_id and 12817 * assume the HBA is not interrupting. 12818 */ 12819 phba = (struct lpfc_hba *)dev_id; 12820 12821 if (unlikely(!phba)) 12822 return IRQ_NONE; 12823 12824 /* 12825 * Stuff needs to be attented to when this function is invoked as an 12826 * individual interrupt handler in MSI-X multi-message interrupt mode 12827 */ 12828 if (phba->intr_type == MSIX) { 12829 /* Check device state for handling interrupt */ 12830 if (lpfc_intr_state_check(phba)) 12831 return IRQ_NONE; 12832 /* Need to read HA REG for slow-path events */ 12833 spin_lock_irqsave(&phba->hbalock, iflag); 12834 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12835 goto unplug_error; 12836 /* If somebody is waiting to handle an eratt don't process it 12837 * here. The brdkill function will do this. 12838 */ 12839 if (phba->link_flag & LS_IGNORE_ERATT) 12840 ha_copy &= ~HA_ERATT; 12841 /* Check the need for handling ERATT in interrupt handler */ 12842 if (ha_copy & HA_ERATT) { 12843 if (phba->hba_flag & HBA_ERATT_HANDLED) 12844 /* ERATT polling has handled ERATT */ 12845 ha_copy &= ~HA_ERATT; 12846 else 12847 /* Indicate interrupt handler handles ERATT */ 12848 phba->hba_flag |= HBA_ERATT_HANDLED; 12849 } 12850 12851 /* 12852 * If there is deferred error attention, do not check for any 12853 * interrupt. 12854 */ 12855 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12856 spin_unlock_irqrestore(&phba->hbalock, iflag); 12857 return IRQ_NONE; 12858 } 12859 12860 /* Clear up only attention source related to slow-path */ 12861 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12862 goto unplug_error; 12863 12864 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12865 HC_LAINT_ENA | HC_ERINT_ENA), 12866 phba->HCregaddr); 12867 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12868 phba->HAregaddr); 12869 writel(hc_copy, phba->HCregaddr); 12870 readl(phba->HAregaddr); /* flush */ 12871 spin_unlock_irqrestore(&phba->hbalock, iflag); 12872 } else 12873 ha_copy = phba->ha_copy; 12874 12875 work_ha_copy = ha_copy & phba->work_ha_mask; 12876 12877 if (work_ha_copy) { 12878 if (work_ha_copy & HA_LATT) { 12879 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12880 /* 12881 * Turn off Link Attention interrupts 12882 * until CLEAR_LA done 12883 */ 12884 spin_lock_irqsave(&phba->hbalock, iflag); 12885 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12886 if (lpfc_readl(phba->HCregaddr, &control)) 12887 goto unplug_error; 12888 control &= ~HC_LAINT_ENA; 12889 writel(control, phba->HCregaddr); 12890 readl(phba->HCregaddr); /* flush */ 12891 spin_unlock_irqrestore(&phba->hbalock, iflag); 12892 } 12893 else 12894 work_ha_copy &= ~HA_LATT; 12895 } 12896 12897 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12898 /* 12899 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12900 * the only slow ring. 12901 */ 12902 status = (work_ha_copy & 12903 (HA_RXMASK << (4*LPFC_ELS_RING))); 12904 status >>= (4*LPFC_ELS_RING); 12905 if (status & HA_RXMASK) { 12906 spin_lock_irqsave(&phba->hbalock, iflag); 12907 if (lpfc_readl(phba->HCregaddr, &control)) 12908 goto unplug_error; 12909 12910 lpfc_debugfs_slow_ring_trc(phba, 12911 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12912 control, status, 12913 (uint32_t)phba->sli.slistat.sli_intr); 12914 12915 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12916 lpfc_debugfs_slow_ring_trc(phba, 12917 "ISR Disable ring:" 12918 "pwork:x%x hawork:x%x wait:x%x", 12919 phba->work_ha, work_ha_copy, 12920 (uint32_t)((unsigned long) 12921 &phba->work_waitq)); 12922 12923 control &= 12924 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12925 writel(control, phba->HCregaddr); 12926 readl(phba->HCregaddr); /* flush */ 12927 } 12928 else { 12929 lpfc_debugfs_slow_ring_trc(phba, 12930 "ISR slow ring: pwork:" 12931 "x%x hawork:x%x wait:x%x", 12932 phba->work_ha, work_ha_copy, 12933 (uint32_t)((unsigned long) 12934 &phba->work_waitq)); 12935 } 12936 spin_unlock_irqrestore(&phba->hbalock, iflag); 12937 } 12938 } 12939 spin_lock_irqsave(&phba->hbalock, iflag); 12940 if (work_ha_copy & HA_ERATT) { 12941 if (lpfc_sli_read_hs(phba)) 12942 goto unplug_error; 12943 /* 12944 * Check if there is a deferred error condition 12945 * is active 12946 */ 12947 if ((HS_FFER1 & phba->work_hs) && 12948 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12949 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12950 phba->work_hs)) { 12951 phba->hba_flag |= DEFER_ERATT; 12952 /* Clear all interrupt enable conditions */ 12953 writel(0, phba->HCregaddr); 12954 readl(phba->HCregaddr); 12955 } 12956 } 12957 12958 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12959 pmb = phba->sli.mbox_active; 12960 pmbox = &pmb->u.mb; 12961 mbox = phba->mbox; 12962 vport = pmb->vport; 12963 12964 /* First check out the status word */ 12965 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12966 if (pmbox->mbxOwner != OWN_HOST) { 12967 spin_unlock_irqrestore(&phba->hbalock, iflag); 12968 /* 12969 * Stray Mailbox Interrupt, mbxCommand <cmd> 12970 * mbxStatus <status> 12971 */ 12972 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12973 "(%d):0304 Stray Mailbox " 12974 "Interrupt mbxCommand x%x " 12975 "mbxStatus x%x\n", 12976 (vport ? vport->vpi : 0), 12977 pmbox->mbxCommand, 12978 pmbox->mbxStatus); 12979 /* clear mailbox attention bit */ 12980 work_ha_copy &= ~HA_MBATT; 12981 } else { 12982 phba->sli.mbox_active = NULL; 12983 spin_unlock_irqrestore(&phba->hbalock, iflag); 12984 phba->last_completion_time = jiffies; 12985 del_timer(&phba->sli.mbox_tmo); 12986 if (pmb->mbox_cmpl) { 12987 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12988 MAILBOX_CMD_SIZE); 12989 if (pmb->out_ext_byte_len && 12990 pmb->ctx_buf) 12991 lpfc_sli_pcimem_bcopy( 12992 phba->mbox_ext, 12993 pmb->ctx_buf, 12994 pmb->out_ext_byte_len); 12995 } 12996 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12997 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12998 12999 lpfc_debugfs_disc_trc(vport, 13000 LPFC_DISC_TRC_MBOX_VPORT, 13001 "MBOX dflt rpi: : " 13002 "status:x%x rpi:x%x", 13003 (uint32_t)pmbox->mbxStatus, 13004 pmbox->un.varWords[0], 0); 13005 13006 if (!pmbox->mbxStatus) { 13007 mp = (struct lpfc_dmabuf *) 13008 (pmb->ctx_buf); 13009 ndlp = (struct lpfc_nodelist *) 13010 pmb->ctx_ndlp; 13011 13012 /* Reg_LOGIN of dflt RPI was 13013 * successful. new lets get 13014 * rid of the RPI using the 13015 * same mbox buffer. 13016 */ 13017 lpfc_unreg_login(phba, 13018 vport->vpi, 13019 pmbox->un.varWords[0], 13020 pmb); 13021 pmb->mbox_cmpl = 13022 lpfc_mbx_cmpl_dflt_rpi; 13023 pmb->ctx_buf = mp; 13024 pmb->ctx_ndlp = ndlp; 13025 pmb->vport = vport; 13026 rc = lpfc_sli_issue_mbox(phba, 13027 pmb, 13028 MBX_NOWAIT); 13029 if (rc != MBX_BUSY) 13030 lpfc_printf_log(phba, 13031 KERN_ERR, 13032 LOG_TRACE_EVENT, 13033 "0350 rc should have" 13034 "been MBX_BUSY\n"); 13035 if (rc != MBX_NOT_FINISHED) 13036 goto send_current_mbox; 13037 } 13038 } 13039 spin_lock_irqsave( 13040 &phba->pport->work_port_lock, 13041 iflag); 13042 phba->pport->work_port_events &= 13043 ~WORKER_MBOX_TMO; 13044 spin_unlock_irqrestore( 13045 &phba->pport->work_port_lock, 13046 iflag); 13047 13048 /* Do NOT queue MBX_HEARTBEAT to the worker 13049 * thread for processing. 13050 */ 13051 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13052 /* Process mbox now */ 13053 phba->sli.mbox_active = NULL; 13054 phba->sli.sli_flag &= 13055 ~LPFC_SLI_MBOX_ACTIVE; 13056 if (pmb->mbox_cmpl) 13057 pmb->mbox_cmpl(phba, pmb); 13058 } else { 13059 /* Queue to worker thread to process */ 13060 lpfc_mbox_cmpl_put(phba, pmb); 13061 } 13062 } 13063 } else 13064 spin_unlock_irqrestore(&phba->hbalock, iflag); 13065 13066 if ((work_ha_copy & HA_MBATT) && 13067 (phba->sli.mbox_active == NULL)) { 13068 send_current_mbox: 13069 /* Process next mailbox command if there is one */ 13070 do { 13071 rc = lpfc_sli_issue_mbox(phba, NULL, 13072 MBX_NOWAIT); 13073 } while (rc == MBX_NOT_FINISHED); 13074 if (rc != MBX_SUCCESS) 13075 lpfc_printf_log(phba, KERN_ERR, 13076 LOG_TRACE_EVENT, 13077 "0349 rc should be " 13078 "MBX_SUCCESS\n"); 13079 } 13080 13081 spin_lock_irqsave(&phba->hbalock, iflag); 13082 phba->work_ha |= work_ha_copy; 13083 spin_unlock_irqrestore(&phba->hbalock, iflag); 13084 lpfc_worker_wake_up(phba); 13085 } 13086 return IRQ_HANDLED; 13087 unplug_error: 13088 spin_unlock_irqrestore(&phba->hbalock, iflag); 13089 return IRQ_HANDLED; 13090 13091 } /* lpfc_sli_sp_intr_handler */ 13092 13093 /** 13094 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13095 * @irq: Interrupt number. 13096 * @dev_id: The device context pointer. 13097 * 13098 * This function is directly called from the PCI layer as an interrupt 13099 * service routine when device with SLI-3 interface spec is enabled with 13100 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13101 * ring event in the HBA. However, when the device is enabled with either 13102 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13103 * device-level interrupt handler. When the PCI slot is in error recovery 13104 * or the HBA is undergoing initialization, the interrupt handler will not 13105 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13106 * the intrrupt context. This function is called without any lock held. 13107 * It gets the hbalock to access and update SLI data structures. 13108 * 13109 * This function returns IRQ_HANDLED when interrupt is handled else it 13110 * returns IRQ_NONE. 13111 **/ 13112 irqreturn_t 13113 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13114 { 13115 struct lpfc_hba *phba; 13116 uint32_t ha_copy; 13117 unsigned long status; 13118 unsigned long iflag; 13119 struct lpfc_sli_ring *pring; 13120 13121 /* Get the driver's phba structure from the dev_id and 13122 * assume the HBA is not interrupting. 13123 */ 13124 phba = (struct lpfc_hba *) dev_id; 13125 13126 if (unlikely(!phba)) 13127 return IRQ_NONE; 13128 13129 /* 13130 * Stuff needs to be attented to when this function is invoked as an 13131 * individual interrupt handler in MSI-X multi-message interrupt mode 13132 */ 13133 if (phba->intr_type == MSIX) { 13134 /* Check device state for handling interrupt */ 13135 if (lpfc_intr_state_check(phba)) 13136 return IRQ_NONE; 13137 /* Need to read HA REG for FCP ring and other ring events */ 13138 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13139 return IRQ_HANDLED; 13140 /* Clear up only attention source related to fast-path */ 13141 spin_lock_irqsave(&phba->hbalock, iflag); 13142 /* 13143 * If there is deferred error attention, do not check for 13144 * any interrupt. 13145 */ 13146 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13147 spin_unlock_irqrestore(&phba->hbalock, iflag); 13148 return IRQ_NONE; 13149 } 13150 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13151 phba->HAregaddr); 13152 readl(phba->HAregaddr); /* flush */ 13153 spin_unlock_irqrestore(&phba->hbalock, iflag); 13154 } else 13155 ha_copy = phba->ha_copy; 13156 13157 /* 13158 * Process all events on FCP ring. Take the optimized path for FCP IO. 13159 */ 13160 ha_copy &= ~(phba->work_ha_mask); 13161 13162 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13163 status >>= (4*LPFC_FCP_RING); 13164 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13165 if (status & HA_RXMASK) 13166 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13167 13168 if (phba->cfg_multi_ring_support == 2) { 13169 /* 13170 * Process all events on extra ring. Take the optimized path 13171 * for extra ring IO. 13172 */ 13173 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13174 status >>= (4*LPFC_EXTRA_RING); 13175 if (status & HA_RXMASK) { 13176 lpfc_sli_handle_fast_ring_event(phba, 13177 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13178 status); 13179 } 13180 } 13181 return IRQ_HANDLED; 13182 } /* lpfc_sli_fp_intr_handler */ 13183 13184 /** 13185 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13186 * @irq: Interrupt number. 13187 * @dev_id: The device context pointer. 13188 * 13189 * This function is the HBA device-level interrupt handler to device with 13190 * SLI-3 interface spec, called from the PCI layer when either MSI or 13191 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13192 * requires driver attention. This function invokes the slow-path interrupt 13193 * attention handling function and fast-path interrupt attention handling 13194 * function in turn to process the relevant HBA attention events. This 13195 * function is called without any lock held. It gets the hbalock to access 13196 * and update SLI data structures. 13197 * 13198 * This function returns IRQ_HANDLED when interrupt is handled, else it 13199 * returns IRQ_NONE. 13200 **/ 13201 irqreturn_t 13202 lpfc_sli_intr_handler(int irq, void *dev_id) 13203 { 13204 struct lpfc_hba *phba; 13205 irqreturn_t sp_irq_rc, fp_irq_rc; 13206 unsigned long status1, status2; 13207 uint32_t hc_copy; 13208 13209 /* 13210 * Get the driver's phba structure from the dev_id and 13211 * assume the HBA is not interrupting. 13212 */ 13213 phba = (struct lpfc_hba *) dev_id; 13214 13215 if (unlikely(!phba)) 13216 return IRQ_NONE; 13217 13218 /* Check device state for handling interrupt */ 13219 if (lpfc_intr_state_check(phba)) 13220 return IRQ_NONE; 13221 13222 spin_lock(&phba->hbalock); 13223 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13224 spin_unlock(&phba->hbalock); 13225 return IRQ_HANDLED; 13226 } 13227 13228 if (unlikely(!phba->ha_copy)) { 13229 spin_unlock(&phba->hbalock); 13230 return IRQ_NONE; 13231 } else if (phba->ha_copy & HA_ERATT) { 13232 if (phba->hba_flag & HBA_ERATT_HANDLED) 13233 /* ERATT polling has handled ERATT */ 13234 phba->ha_copy &= ~HA_ERATT; 13235 else 13236 /* Indicate interrupt handler handles ERATT */ 13237 phba->hba_flag |= HBA_ERATT_HANDLED; 13238 } 13239 13240 /* 13241 * If there is deferred error attention, do not check for any interrupt. 13242 */ 13243 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13244 spin_unlock(&phba->hbalock); 13245 return IRQ_NONE; 13246 } 13247 13248 /* Clear attention sources except link and error attentions */ 13249 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13250 spin_unlock(&phba->hbalock); 13251 return IRQ_HANDLED; 13252 } 13253 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13254 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13255 phba->HCregaddr); 13256 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13257 writel(hc_copy, phba->HCregaddr); 13258 readl(phba->HAregaddr); /* flush */ 13259 spin_unlock(&phba->hbalock); 13260 13261 /* 13262 * Invokes slow-path host attention interrupt handling as appropriate. 13263 */ 13264 13265 /* status of events with mailbox and link attention */ 13266 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13267 13268 /* status of events with ELS ring */ 13269 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13270 status2 >>= (4*LPFC_ELS_RING); 13271 13272 if (status1 || (status2 & HA_RXMASK)) 13273 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13274 else 13275 sp_irq_rc = IRQ_NONE; 13276 13277 /* 13278 * Invoke fast-path host attention interrupt handling as appropriate. 13279 */ 13280 13281 /* status of events with FCP ring */ 13282 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13283 status1 >>= (4*LPFC_FCP_RING); 13284 13285 /* status of events with extra ring */ 13286 if (phba->cfg_multi_ring_support == 2) { 13287 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13288 status2 >>= (4*LPFC_EXTRA_RING); 13289 } else 13290 status2 = 0; 13291 13292 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13293 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13294 else 13295 fp_irq_rc = IRQ_NONE; 13296 13297 /* Return device-level interrupt handling status */ 13298 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13299 } /* lpfc_sli_intr_handler */ 13300 13301 /** 13302 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13303 * @phba: pointer to lpfc hba data structure. 13304 * 13305 * This routine is invoked by the worker thread to process all the pending 13306 * SLI4 els abort xri events. 13307 **/ 13308 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13309 { 13310 struct lpfc_cq_event *cq_event; 13311 unsigned long iflags; 13312 13313 /* First, declare the els xri abort event has been handled */ 13314 spin_lock_irqsave(&phba->hbalock, iflags); 13315 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13316 spin_unlock_irqrestore(&phba->hbalock, iflags); 13317 13318 /* Now, handle all the els xri abort events */ 13319 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13320 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13321 /* Get the first event from the head of the event queue */ 13322 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13323 cq_event, struct lpfc_cq_event, list); 13324 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13325 iflags); 13326 /* Notify aborted XRI for ELS work queue */ 13327 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13328 13329 /* Free the event processed back to the free pool */ 13330 lpfc_sli4_cq_event_release(phba, cq_event); 13331 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13332 iflags); 13333 } 13334 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13335 } 13336 13337 /** 13338 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13339 * @phba: pointer to lpfc hba data structure 13340 * @pIocbIn: pointer to the rspiocbq 13341 * @pIocbOut: pointer to the cmdiocbq 13342 * @wcqe: pointer to the complete wcqe 13343 * 13344 * This routine transfers the fields of a command iocbq to a response iocbq 13345 * by copying all the IOCB fields from command iocbq and transferring the 13346 * completion status information from the complete wcqe. 13347 **/ 13348 static void 13349 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13350 struct lpfc_iocbq *pIocbIn, 13351 struct lpfc_iocbq *pIocbOut, 13352 struct lpfc_wcqe_complete *wcqe) 13353 { 13354 int numBdes, i; 13355 unsigned long iflags; 13356 uint32_t status, max_response; 13357 struct lpfc_dmabuf *dmabuf; 13358 struct ulp_bde64 *bpl, bde; 13359 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13360 13361 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13362 sizeof(struct lpfc_iocbq) - offset); 13363 /* Map WCQE parameters into irspiocb parameters */ 13364 status = bf_get(lpfc_wcqe_c_status, wcqe); 13365 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13366 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13367 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13368 pIocbIn->iocb.un.fcpi.fcpi_parm = 13369 pIocbOut->iocb.un.fcpi.fcpi_parm - 13370 wcqe->total_data_placed; 13371 else 13372 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13373 else { 13374 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13375 switch (pIocbOut->iocb.ulpCommand) { 13376 case CMD_ELS_REQUEST64_CR: 13377 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13378 bpl = (struct ulp_bde64 *)dmabuf->virt; 13379 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13380 max_response = bde.tus.f.bdeSize; 13381 break; 13382 case CMD_GEN_REQUEST64_CR: 13383 max_response = 0; 13384 if (!pIocbOut->context3) 13385 break; 13386 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13387 sizeof(struct ulp_bde64); 13388 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13389 bpl = (struct ulp_bde64 *)dmabuf->virt; 13390 for (i = 0; i < numBdes; i++) { 13391 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13392 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13393 max_response += bde.tus.f.bdeSize; 13394 } 13395 break; 13396 default: 13397 max_response = wcqe->total_data_placed; 13398 break; 13399 } 13400 if (max_response < wcqe->total_data_placed) 13401 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13402 else 13403 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13404 wcqe->total_data_placed; 13405 } 13406 13407 /* Convert BG errors for completion status */ 13408 if (status == CQE_STATUS_DI_ERROR) { 13409 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13410 13411 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13412 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13413 else 13414 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13415 13416 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13417 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13418 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13419 BGS_GUARD_ERR_MASK; 13420 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13421 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13422 BGS_APPTAG_ERR_MASK; 13423 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13424 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13425 BGS_REFTAG_ERR_MASK; 13426 13427 /* Check to see if there was any good data before the error */ 13428 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13429 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13430 BGS_HI_WATER_MARK_PRESENT_MASK; 13431 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13432 wcqe->total_data_placed; 13433 } 13434 13435 /* 13436 * Set ALL the error bits to indicate we don't know what 13437 * type of error it is. 13438 */ 13439 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13440 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13441 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13442 BGS_GUARD_ERR_MASK); 13443 } 13444 13445 /* Pick up HBA exchange busy condition */ 13446 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13447 spin_lock_irqsave(&phba->hbalock, iflags); 13448 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13449 spin_unlock_irqrestore(&phba->hbalock, iflags); 13450 } 13451 } 13452 13453 /** 13454 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13455 * @phba: Pointer to HBA context object. 13456 * @irspiocbq: Pointer to work-queue completion queue entry. 13457 * 13458 * This routine handles an ELS work-queue completion event and construct 13459 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13460 * discovery engine to handle. 13461 * 13462 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13463 **/ 13464 static struct lpfc_iocbq * 13465 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13466 struct lpfc_iocbq *irspiocbq) 13467 { 13468 struct lpfc_sli_ring *pring; 13469 struct lpfc_iocbq *cmdiocbq; 13470 struct lpfc_wcqe_complete *wcqe; 13471 unsigned long iflags; 13472 13473 pring = lpfc_phba_elsring(phba); 13474 if (unlikely(!pring)) 13475 return NULL; 13476 13477 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13478 pring->stats.iocb_event++; 13479 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13480 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13481 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13482 if (unlikely(!cmdiocbq)) { 13483 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13484 "0386 ELS complete with no corresponding " 13485 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13486 wcqe->word0, wcqe->total_data_placed, 13487 wcqe->parameter, wcqe->word3); 13488 lpfc_sli_release_iocbq(phba, irspiocbq); 13489 return NULL; 13490 } 13491 13492 spin_lock_irqsave(&pring->ring_lock, iflags); 13493 /* Put the iocb back on the txcmplq */ 13494 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13495 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13496 13497 /* Fake the irspiocbq and copy necessary response information */ 13498 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13499 13500 return irspiocbq; 13501 } 13502 13503 inline struct lpfc_cq_event * 13504 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13505 { 13506 struct lpfc_cq_event *cq_event; 13507 13508 /* Allocate a new internal CQ_EVENT entry */ 13509 cq_event = lpfc_sli4_cq_event_alloc(phba); 13510 if (!cq_event) { 13511 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13512 "0602 Failed to alloc CQ_EVENT entry\n"); 13513 return NULL; 13514 } 13515 13516 /* Move the CQE into the event */ 13517 memcpy(&cq_event->cqe, entry, size); 13518 return cq_event; 13519 } 13520 13521 /** 13522 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13523 * @phba: Pointer to HBA context object. 13524 * @mcqe: Pointer to mailbox completion queue entry. 13525 * 13526 * This routine process a mailbox completion queue entry with asynchronous 13527 * event. 13528 * 13529 * Return: true if work posted to worker thread, otherwise false. 13530 **/ 13531 static bool 13532 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13533 { 13534 struct lpfc_cq_event *cq_event; 13535 unsigned long iflags; 13536 13537 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13538 "0392 Async Event: word0:x%x, word1:x%x, " 13539 "word2:x%x, word3:x%x\n", mcqe->word0, 13540 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13541 13542 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13543 if (!cq_event) 13544 return false; 13545 13546 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13547 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13548 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13549 13550 /* Set the async event flag */ 13551 spin_lock_irqsave(&phba->hbalock, iflags); 13552 phba->hba_flag |= ASYNC_EVENT; 13553 spin_unlock_irqrestore(&phba->hbalock, iflags); 13554 13555 return true; 13556 } 13557 13558 /** 13559 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13560 * @phba: Pointer to HBA context object. 13561 * @mcqe: Pointer to mailbox completion queue entry. 13562 * 13563 * This routine process a mailbox completion queue entry with mailbox 13564 * completion event. 13565 * 13566 * Return: true if work posted to worker thread, otherwise false. 13567 **/ 13568 static bool 13569 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13570 { 13571 uint32_t mcqe_status; 13572 MAILBOX_t *mbox, *pmbox; 13573 struct lpfc_mqe *mqe; 13574 struct lpfc_vport *vport; 13575 struct lpfc_nodelist *ndlp; 13576 struct lpfc_dmabuf *mp; 13577 unsigned long iflags; 13578 LPFC_MBOXQ_t *pmb; 13579 bool workposted = false; 13580 int rc; 13581 13582 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13583 if (!bf_get(lpfc_trailer_completed, mcqe)) 13584 goto out_no_mqe_complete; 13585 13586 /* Get the reference to the active mbox command */ 13587 spin_lock_irqsave(&phba->hbalock, iflags); 13588 pmb = phba->sli.mbox_active; 13589 if (unlikely(!pmb)) { 13590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13591 "1832 No pending MBOX command to handle\n"); 13592 spin_unlock_irqrestore(&phba->hbalock, iflags); 13593 goto out_no_mqe_complete; 13594 } 13595 spin_unlock_irqrestore(&phba->hbalock, iflags); 13596 mqe = &pmb->u.mqe; 13597 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13598 mbox = phba->mbox; 13599 vport = pmb->vport; 13600 13601 /* Reset heartbeat timer */ 13602 phba->last_completion_time = jiffies; 13603 del_timer(&phba->sli.mbox_tmo); 13604 13605 /* Move mbox data to caller's mailbox region, do endian swapping */ 13606 if (pmb->mbox_cmpl && mbox) 13607 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13608 13609 /* 13610 * For mcqe errors, conditionally move a modified error code to 13611 * the mbox so that the error will not be missed. 13612 */ 13613 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13614 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13615 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13616 bf_set(lpfc_mqe_status, mqe, 13617 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13618 } 13619 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13620 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13621 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13622 "MBOX dflt rpi: status:x%x rpi:x%x", 13623 mcqe_status, 13624 pmbox->un.varWords[0], 0); 13625 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13626 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13627 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13628 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13629 * RID of the PPI using the same mbox buffer. 13630 */ 13631 lpfc_unreg_login(phba, vport->vpi, 13632 pmbox->un.varWords[0], pmb); 13633 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13634 pmb->ctx_buf = mp; 13635 13636 /* No reference taken here. This is a default 13637 * RPI reg/immediate unreg cycle. The reference was 13638 * taken in the reg rpi path and is released when 13639 * this mailbox completes. 13640 */ 13641 pmb->ctx_ndlp = ndlp; 13642 pmb->vport = vport; 13643 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13644 if (rc != MBX_BUSY) 13645 lpfc_printf_log(phba, KERN_ERR, 13646 LOG_TRACE_EVENT, 13647 "0385 rc should " 13648 "have been MBX_BUSY\n"); 13649 if (rc != MBX_NOT_FINISHED) 13650 goto send_current_mbox; 13651 } 13652 } 13653 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13654 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13655 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13656 13657 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13658 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13659 spin_lock_irqsave(&phba->hbalock, iflags); 13660 /* Release the mailbox command posting token */ 13661 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13662 phba->sli.mbox_active = NULL; 13663 if (bf_get(lpfc_trailer_consumed, mcqe)) 13664 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13665 spin_unlock_irqrestore(&phba->hbalock, iflags); 13666 13667 /* Post the next mbox command, if there is one */ 13668 lpfc_sli4_post_async_mbox(phba); 13669 13670 /* Process cmpl now */ 13671 if (pmb->mbox_cmpl) 13672 pmb->mbox_cmpl(phba, pmb); 13673 return false; 13674 } 13675 13676 /* There is mailbox completion work to queue to the worker thread */ 13677 spin_lock_irqsave(&phba->hbalock, iflags); 13678 __lpfc_mbox_cmpl_put(phba, pmb); 13679 phba->work_ha |= HA_MBATT; 13680 spin_unlock_irqrestore(&phba->hbalock, iflags); 13681 workposted = true; 13682 13683 send_current_mbox: 13684 spin_lock_irqsave(&phba->hbalock, iflags); 13685 /* Release the mailbox command posting token */ 13686 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13687 /* Setting active mailbox pointer need to be in sync to flag clear */ 13688 phba->sli.mbox_active = NULL; 13689 if (bf_get(lpfc_trailer_consumed, mcqe)) 13690 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13691 spin_unlock_irqrestore(&phba->hbalock, iflags); 13692 /* Wake up worker thread to post the next pending mailbox command */ 13693 lpfc_worker_wake_up(phba); 13694 return workposted; 13695 13696 out_no_mqe_complete: 13697 spin_lock_irqsave(&phba->hbalock, iflags); 13698 if (bf_get(lpfc_trailer_consumed, mcqe)) 13699 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13700 spin_unlock_irqrestore(&phba->hbalock, iflags); 13701 return false; 13702 } 13703 13704 /** 13705 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13706 * @phba: Pointer to HBA context object. 13707 * @cq: Pointer to associated CQ 13708 * @cqe: Pointer to mailbox completion queue entry. 13709 * 13710 * This routine process a mailbox completion queue entry, it invokes the 13711 * proper mailbox complete handling or asynchronous event handling routine 13712 * according to the MCQE's async bit. 13713 * 13714 * Return: true if work posted to worker thread, otherwise false. 13715 **/ 13716 static bool 13717 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13718 struct lpfc_cqe *cqe) 13719 { 13720 struct lpfc_mcqe mcqe; 13721 bool workposted; 13722 13723 cq->CQ_mbox++; 13724 13725 /* Copy the mailbox MCQE and convert endian order as needed */ 13726 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13727 13728 /* Invoke the proper event handling routine */ 13729 if (!bf_get(lpfc_trailer_async, &mcqe)) 13730 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13731 else 13732 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13733 return workposted; 13734 } 13735 13736 /** 13737 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13738 * @phba: Pointer to HBA context object. 13739 * @cq: Pointer to associated CQ 13740 * @wcqe: Pointer to work-queue completion queue entry. 13741 * 13742 * This routine handles an ELS work-queue completion event. 13743 * 13744 * Return: true if work posted to worker thread, otherwise false. 13745 **/ 13746 static bool 13747 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13748 struct lpfc_wcqe_complete *wcqe) 13749 { 13750 struct lpfc_iocbq *irspiocbq; 13751 unsigned long iflags; 13752 struct lpfc_sli_ring *pring = cq->pring; 13753 int txq_cnt = 0; 13754 int txcmplq_cnt = 0; 13755 13756 /* Check for response status */ 13757 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13758 /* Log the error status */ 13759 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13760 "0357 ELS CQE error: status=x%x: " 13761 "CQE: %08x %08x %08x %08x\n", 13762 bf_get(lpfc_wcqe_c_status, wcqe), 13763 wcqe->word0, wcqe->total_data_placed, 13764 wcqe->parameter, wcqe->word3); 13765 } 13766 13767 /* Get an irspiocbq for later ELS response processing use */ 13768 irspiocbq = lpfc_sli_get_iocbq(phba); 13769 if (!irspiocbq) { 13770 if (!list_empty(&pring->txq)) 13771 txq_cnt++; 13772 if (!list_empty(&pring->txcmplq)) 13773 txcmplq_cnt++; 13774 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13775 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13776 "els_txcmplq_cnt=%d\n", 13777 txq_cnt, phba->iocb_cnt, 13778 txcmplq_cnt); 13779 return false; 13780 } 13781 13782 /* Save off the slow-path queue event for work thread to process */ 13783 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13784 spin_lock_irqsave(&phba->hbalock, iflags); 13785 list_add_tail(&irspiocbq->cq_event.list, 13786 &phba->sli4_hba.sp_queue_event); 13787 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13788 spin_unlock_irqrestore(&phba->hbalock, iflags); 13789 13790 return true; 13791 } 13792 13793 /** 13794 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13795 * @phba: Pointer to HBA context object. 13796 * @wcqe: Pointer to work-queue completion queue entry. 13797 * 13798 * This routine handles slow-path WQ entry consumed event by invoking the 13799 * proper WQ release routine to the slow-path WQ. 13800 **/ 13801 static void 13802 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13803 struct lpfc_wcqe_release *wcqe) 13804 { 13805 /* sanity check on queue memory */ 13806 if (unlikely(!phba->sli4_hba.els_wq)) 13807 return; 13808 /* Check for the slow-path ELS work queue */ 13809 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13810 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13811 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13812 else 13813 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13814 "2579 Slow-path wqe consume event carries " 13815 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13816 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13817 phba->sli4_hba.els_wq->queue_id); 13818 } 13819 13820 /** 13821 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13822 * @phba: Pointer to HBA context object. 13823 * @cq: Pointer to a WQ completion queue. 13824 * @wcqe: Pointer to work-queue completion queue entry. 13825 * 13826 * This routine handles an XRI abort event. 13827 * 13828 * Return: true if work posted to worker thread, otherwise false. 13829 **/ 13830 static bool 13831 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13832 struct lpfc_queue *cq, 13833 struct sli4_wcqe_xri_aborted *wcqe) 13834 { 13835 bool workposted = false; 13836 struct lpfc_cq_event *cq_event; 13837 unsigned long iflags; 13838 13839 switch (cq->subtype) { 13840 case LPFC_IO: 13841 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13842 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13843 /* Notify aborted XRI for NVME work queue */ 13844 if (phba->nvmet_support) 13845 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13846 } 13847 workposted = false; 13848 break; 13849 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13850 case LPFC_ELS: 13851 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13852 if (!cq_event) { 13853 workposted = false; 13854 break; 13855 } 13856 cq_event->hdwq = cq->hdwq; 13857 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13858 iflags); 13859 list_add_tail(&cq_event->list, 13860 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13861 /* Set the els xri abort event flag */ 13862 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13863 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13864 iflags); 13865 workposted = true; 13866 break; 13867 default: 13868 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13869 "0603 Invalid CQ subtype %d: " 13870 "%08x %08x %08x %08x\n", 13871 cq->subtype, wcqe->word0, wcqe->parameter, 13872 wcqe->word2, wcqe->word3); 13873 workposted = false; 13874 break; 13875 } 13876 return workposted; 13877 } 13878 13879 #define FC_RCTL_MDS_DIAGS 0xF4 13880 13881 /** 13882 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13883 * @phba: Pointer to HBA context object. 13884 * @rcqe: Pointer to receive-queue completion queue entry. 13885 * 13886 * This routine process a receive-queue completion queue entry. 13887 * 13888 * Return: true if work posted to worker thread, otherwise false. 13889 **/ 13890 static bool 13891 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13892 { 13893 bool workposted = false; 13894 struct fc_frame_header *fc_hdr; 13895 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13896 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13897 struct lpfc_nvmet_tgtport *tgtp; 13898 struct hbq_dmabuf *dma_buf; 13899 uint32_t status, rq_id; 13900 unsigned long iflags; 13901 13902 /* sanity check on queue memory */ 13903 if (unlikely(!hrq) || unlikely(!drq)) 13904 return workposted; 13905 13906 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13907 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13908 else 13909 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13910 if (rq_id != hrq->queue_id) 13911 goto out; 13912 13913 status = bf_get(lpfc_rcqe_status, rcqe); 13914 switch (status) { 13915 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13916 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13917 "2537 Receive Frame Truncated!!\n"); 13918 fallthrough; 13919 case FC_STATUS_RQ_SUCCESS: 13920 spin_lock_irqsave(&phba->hbalock, iflags); 13921 lpfc_sli4_rq_release(hrq, drq); 13922 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13923 if (!dma_buf) { 13924 hrq->RQ_no_buf_found++; 13925 spin_unlock_irqrestore(&phba->hbalock, iflags); 13926 goto out; 13927 } 13928 hrq->RQ_rcv_buf++; 13929 hrq->RQ_buf_posted--; 13930 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13931 13932 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13933 13934 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13935 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13936 spin_unlock_irqrestore(&phba->hbalock, iflags); 13937 /* Handle MDS Loopback frames */ 13938 if (!(phba->pport->load_flag & FC_UNLOADING)) 13939 lpfc_sli4_handle_mds_loopback(phba->pport, 13940 dma_buf); 13941 else 13942 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13943 break; 13944 } 13945 13946 /* save off the frame for the work thread to process */ 13947 list_add_tail(&dma_buf->cq_event.list, 13948 &phba->sli4_hba.sp_queue_event); 13949 /* Frame received */ 13950 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13951 spin_unlock_irqrestore(&phba->hbalock, iflags); 13952 workposted = true; 13953 break; 13954 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13955 if (phba->nvmet_support) { 13956 tgtp = phba->targetport->private; 13957 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13958 "6402 RQE Error x%x, posted %d err_cnt " 13959 "%d: %x %x %x\n", 13960 status, hrq->RQ_buf_posted, 13961 hrq->RQ_no_posted_buf, 13962 atomic_read(&tgtp->rcv_fcp_cmd_in), 13963 atomic_read(&tgtp->rcv_fcp_cmd_out), 13964 atomic_read(&tgtp->xmt_fcp_release)); 13965 } 13966 fallthrough; 13967 13968 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13969 hrq->RQ_no_posted_buf++; 13970 /* Post more buffers if possible */ 13971 spin_lock_irqsave(&phba->hbalock, iflags); 13972 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13973 spin_unlock_irqrestore(&phba->hbalock, iflags); 13974 workposted = true; 13975 break; 13976 } 13977 out: 13978 return workposted; 13979 } 13980 13981 /** 13982 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13983 * @phba: Pointer to HBA context object. 13984 * @cq: Pointer to the completion queue. 13985 * @cqe: Pointer to a completion queue entry. 13986 * 13987 * This routine process a slow-path work-queue or receive queue completion queue 13988 * entry. 13989 * 13990 * Return: true if work posted to worker thread, otherwise false. 13991 **/ 13992 static bool 13993 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13994 struct lpfc_cqe *cqe) 13995 { 13996 struct lpfc_cqe cqevt; 13997 bool workposted = false; 13998 13999 /* Copy the work queue CQE and convert endian order if needed */ 14000 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14001 14002 /* Check and process for different type of WCQE and dispatch */ 14003 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14004 case CQE_CODE_COMPL_WQE: 14005 /* Process the WQ/RQ complete event */ 14006 phba->last_completion_time = jiffies; 14007 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14008 (struct lpfc_wcqe_complete *)&cqevt); 14009 break; 14010 case CQE_CODE_RELEASE_WQE: 14011 /* Process the WQ release event */ 14012 lpfc_sli4_sp_handle_rel_wcqe(phba, 14013 (struct lpfc_wcqe_release *)&cqevt); 14014 break; 14015 case CQE_CODE_XRI_ABORTED: 14016 /* Process the WQ XRI abort event */ 14017 phba->last_completion_time = jiffies; 14018 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14019 (struct sli4_wcqe_xri_aborted *)&cqevt); 14020 break; 14021 case CQE_CODE_RECEIVE: 14022 case CQE_CODE_RECEIVE_V1: 14023 /* Process the RQ event */ 14024 phba->last_completion_time = jiffies; 14025 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14026 (struct lpfc_rcqe *)&cqevt); 14027 break; 14028 default: 14029 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14030 "0388 Not a valid WCQE code: x%x\n", 14031 bf_get(lpfc_cqe_code, &cqevt)); 14032 break; 14033 } 14034 return workposted; 14035 } 14036 14037 /** 14038 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14039 * @phba: Pointer to HBA context object. 14040 * @eqe: Pointer to fast-path event queue entry. 14041 * @speq: Pointer to slow-path event queue. 14042 * 14043 * This routine process a event queue entry from the slow-path event queue. 14044 * It will check the MajorCode and MinorCode to determine this is for a 14045 * completion event on a completion queue, if not, an error shall be logged 14046 * and just return. Otherwise, it will get to the corresponding completion 14047 * queue and process all the entries on that completion queue, rearm the 14048 * completion queue, and then return. 14049 * 14050 **/ 14051 static void 14052 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14053 struct lpfc_queue *speq) 14054 { 14055 struct lpfc_queue *cq = NULL, *childq; 14056 uint16_t cqid; 14057 int ret = 0; 14058 14059 /* Get the reference to the corresponding CQ */ 14060 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14061 14062 list_for_each_entry(childq, &speq->child_list, list) { 14063 if (childq->queue_id == cqid) { 14064 cq = childq; 14065 break; 14066 } 14067 } 14068 if (unlikely(!cq)) { 14069 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14071 "0365 Slow-path CQ identifier " 14072 "(%d) does not exist\n", cqid); 14073 return; 14074 } 14075 14076 /* Save EQ associated with this CQ */ 14077 cq->assoc_qp = speq; 14078 14079 if (is_kdump_kernel()) 14080 ret = queue_work(phba->wq, &cq->spwork); 14081 else 14082 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14083 14084 if (!ret) 14085 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14086 "0390 Cannot schedule queue work " 14087 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14088 cqid, cq->queue_id, raw_smp_processor_id()); 14089 } 14090 14091 /** 14092 * __lpfc_sli4_process_cq - Process elements of a CQ 14093 * @phba: Pointer to HBA context object. 14094 * @cq: Pointer to CQ to be processed 14095 * @handler: Routine to process each cqe 14096 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14097 * @poll_mode: Polling mode we were called from 14098 * 14099 * This routine processes completion queue entries in a CQ. While a valid 14100 * queue element is found, the handler is called. During processing checks 14101 * are made for periodic doorbell writes to let the hardware know of 14102 * element consumption. 14103 * 14104 * If the max limit on cqes to process is hit, or there are no more valid 14105 * entries, the loop stops. If we processed a sufficient number of elements, 14106 * meaning there is sufficient load, rather than rearming and generating 14107 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14108 * indicates no rescheduling. 14109 * 14110 * Returns True if work scheduled, False otherwise. 14111 **/ 14112 static bool 14113 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14114 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14115 struct lpfc_cqe *), unsigned long *delay, 14116 enum lpfc_poll_mode poll_mode) 14117 { 14118 struct lpfc_cqe *cqe; 14119 bool workposted = false; 14120 int count = 0, consumed = 0; 14121 bool arm = true; 14122 14123 /* default - no reschedule */ 14124 *delay = 0; 14125 14126 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14127 goto rearm_and_exit; 14128 14129 /* Process all the entries to the CQ */ 14130 cq->q_flag = 0; 14131 cqe = lpfc_sli4_cq_get(cq); 14132 while (cqe) { 14133 workposted |= handler(phba, cq, cqe); 14134 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14135 14136 consumed++; 14137 if (!(++count % cq->max_proc_limit)) 14138 break; 14139 14140 if (!(count % cq->notify_interval)) { 14141 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14142 LPFC_QUEUE_NOARM); 14143 consumed = 0; 14144 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14145 } 14146 14147 if (count == LPFC_NVMET_CQ_NOTIFY) 14148 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14149 14150 cqe = lpfc_sli4_cq_get(cq); 14151 } 14152 if (count >= phba->cfg_cq_poll_threshold) { 14153 *delay = 1; 14154 arm = false; 14155 } 14156 14157 /* Note: complete the irq_poll softirq before rearming CQ */ 14158 if (poll_mode == LPFC_IRQ_POLL) 14159 irq_poll_complete(&cq->iop); 14160 14161 /* Track the max number of CQEs processed in 1 EQ */ 14162 if (count > cq->CQ_max_cqe) 14163 cq->CQ_max_cqe = count; 14164 14165 cq->assoc_qp->EQ_cqe_cnt += count; 14166 14167 /* Catch the no cq entry condition */ 14168 if (unlikely(count == 0)) 14169 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14170 "0369 No entry from completion queue " 14171 "qid=%d\n", cq->queue_id); 14172 14173 xchg(&cq->queue_claimed, 0); 14174 14175 rearm_and_exit: 14176 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14177 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14178 14179 return workposted; 14180 } 14181 14182 /** 14183 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14184 * @cq: pointer to CQ to process 14185 * 14186 * This routine calls the cq processing routine with a handler specific 14187 * to the type of queue bound to it. 14188 * 14189 * The CQ routine returns two values: the first is the calling status, 14190 * which indicates whether work was queued to the background discovery 14191 * thread. If true, the routine should wakeup the discovery thread; 14192 * the second is the delay parameter. If non-zero, rather than rearming 14193 * the CQ and yet another interrupt, the CQ handler should be queued so 14194 * that it is processed in a subsequent polling action. The value of 14195 * the delay indicates when to reschedule it. 14196 **/ 14197 static void 14198 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14199 { 14200 struct lpfc_hba *phba = cq->phba; 14201 unsigned long delay; 14202 bool workposted = false; 14203 int ret = 0; 14204 14205 /* Process and rearm the CQ */ 14206 switch (cq->type) { 14207 case LPFC_MCQ: 14208 workposted |= __lpfc_sli4_process_cq(phba, cq, 14209 lpfc_sli4_sp_handle_mcqe, 14210 &delay, LPFC_QUEUE_WORK); 14211 break; 14212 case LPFC_WCQ: 14213 if (cq->subtype == LPFC_IO) 14214 workposted |= __lpfc_sli4_process_cq(phba, cq, 14215 lpfc_sli4_fp_handle_cqe, 14216 &delay, LPFC_QUEUE_WORK); 14217 else 14218 workposted |= __lpfc_sli4_process_cq(phba, cq, 14219 lpfc_sli4_sp_handle_cqe, 14220 &delay, LPFC_QUEUE_WORK); 14221 break; 14222 default: 14223 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14224 "0370 Invalid completion queue type (%d)\n", 14225 cq->type); 14226 return; 14227 } 14228 14229 if (delay) { 14230 if (is_kdump_kernel()) 14231 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14232 delay); 14233 else 14234 ret = queue_delayed_work_on(cq->chann, phba->wq, 14235 &cq->sched_spwork, delay); 14236 if (!ret) 14237 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14238 "0394 Cannot schedule queue work " 14239 "for cqid=%d on CPU %d\n", 14240 cq->queue_id, cq->chann); 14241 } 14242 14243 /* wake up worker thread if there are works to be done */ 14244 if (workposted) 14245 lpfc_worker_wake_up(phba); 14246 } 14247 14248 /** 14249 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14250 * interrupt 14251 * @work: pointer to work element 14252 * 14253 * translates from the work handler and calls the slow-path handler. 14254 **/ 14255 static void 14256 lpfc_sli4_sp_process_cq(struct work_struct *work) 14257 { 14258 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14259 14260 __lpfc_sli4_sp_process_cq(cq); 14261 } 14262 14263 /** 14264 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14265 * @work: pointer to work element 14266 * 14267 * translates from the work handler and calls the slow-path handler. 14268 **/ 14269 static void 14270 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14271 { 14272 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14273 struct lpfc_queue, sched_spwork); 14274 14275 __lpfc_sli4_sp_process_cq(cq); 14276 } 14277 14278 /** 14279 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14280 * @phba: Pointer to HBA context object. 14281 * @cq: Pointer to associated CQ 14282 * @wcqe: Pointer to work-queue completion queue entry. 14283 * 14284 * This routine process a fast-path work queue completion entry from fast-path 14285 * event queue for FCP command response completion. 14286 **/ 14287 static void 14288 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14289 struct lpfc_wcqe_complete *wcqe) 14290 { 14291 struct lpfc_sli_ring *pring = cq->pring; 14292 struct lpfc_iocbq *cmdiocbq; 14293 struct lpfc_iocbq irspiocbq; 14294 unsigned long iflags; 14295 14296 /* Check for response status */ 14297 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14298 /* If resource errors reported from HBA, reduce queue 14299 * depth of the SCSI device. 14300 */ 14301 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14302 IOSTAT_LOCAL_REJECT)) && 14303 ((wcqe->parameter & IOERR_PARAM_MASK) == 14304 IOERR_NO_RESOURCES)) 14305 phba->lpfc_rampdown_queue_depth(phba); 14306 14307 /* Log the cmpl status */ 14308 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14309 "0373 FCP CQE cmpl: status=x%x: " 14310 "CQE: %08x %08x %08x %08x\n", 14311 bf_get(lpfc_wcqe_c_status, wcqe), 14312 wcqe->word0, wcqe->total_data_placed, 14313 wcqe->parameter, wcqe->word3); 14314 } 14315 14316 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14317 spin_lock_irqsave(&pring->ring_lock, iflags); 14318 pring->stats.iocb_event++; 14319 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14320 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14321 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14322 if (unlikely(!cmdiocbq)) { 14323 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14324 "0374 FCP complete with no corresponding " 14325 "cmdiocb: iotag (%d)\n", 14326 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14327 return; 14328 } 14329 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14330 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14331 #endif 14332 if (cmdiocbq->iocb_cmpl == NULL) { 14333 if (cmdiocbq->wqe_cmpl) { 14334 /* For FCP the flag is cleared in wqe_cmpl */ 14335 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14336 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14337 spin_lock_irqsave(&phba->hbalock, iflags); 14338 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14339 spin_unlock_irqrestore(&phba->hbalock, iflags); 14340 } 14341 14342 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14343 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14344 return; 14345 } 14346 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14347 "0375 FCP cmdiocb not callback function " 14348 "iotag: (%d)\n", 14349 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14350 return; 14351 } 14352 14353 /* Only SLI4 non-IO commands stil use IOCB */ 14354 /* Fake the irspiocb and copy necessary response information */ 14355 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14356 14357 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14358 spin_lock_irqsave(&phba->hbalock, iflags); 14359 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14360 spin_unlock_irqrestore(&phba->hbalock, iflags); 14361 } 14362 14363 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14364 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14365 } 14366 14367 /** 14368 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14369 * @phba: Pointer to HBA context object. 14370 * @cq: Pointer to completion queue. 14371 * @wcqe: Pointer to work-queue completion queue entry. 14372 * 14373 * This routine handles an fast-path WQ entry consumed event by invoking the 14374 * proper WQ release routine to the slow-path WQ. 14375 **/ 14376 static void 14377 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14378 struct lpfc_wcqe_release *wcqe) 14379 { 14380 struct lpfc_queue *childwq; 14381 bool wqid_matched = false; 14382 uint16_t hba_wqid; 14383 14384 /* Check for fast-path FCP work queue release */ 14385 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14386 list_for_each_entry(childwq, &cq->child_list, list) { 14387 if (childwq->queue_id == hba_wqid) { 14388 lpfc_sli4_wq_release(childwq, 14389 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14390 if (childwq->q_flag & HBA_NVMET_WQFULL) 14391 lpfc_nvmet_wqfull_process(phba, childwq); 14392 wqid_matched = true; 14393 break; 14394 } 14395 } 14396 /* Report warning log message if no match found */ 14397 if (wqid_matched != true) 14398 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14399 "2580 Fast-path wqe consume event carries " 14400 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14401 } 14402 14403 /** 14404 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14405 * @phba: Pointer to HBA context object. 14406 * @cq: Pointer to completion queue. 14407 * @rcqe: Pointer to receive-queue completion queue entry. 14408 * 14409 * This routine process a receive-queue completion queue entry. 14410 * 14411 * Return: true if work posted to worker thread, otherwise false. 14412 **/ 14413 static bool 14414 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14415 struct lpfc_rcqe *rcqe) 14416 { 14417 bool workposted = false; 14418 struct lpfc_queue *hrq; 14419 struct lpfc_queue *drq; 14420 struct rqb_dmabuf *dma_buf; 14421 struct fc_frame_header *fc_hdr; 14422 struct lpfc_nvmet_tgtport *tgtp; 14423 uint32_t status, rq_id; 14424 unsigned long iflags; 14425 uint32_t fctl, idx; 14426 14427 if ((phba->nvmet_support == 0) || 14428 (phba->sli4_hba.nvmet_cqset == NULL)) 14429 return workposted; 14430 14431 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14432 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14433 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14434 14435 /* sanity check on queue memory */ 14436 if (unlikely(!hrq) || unlikely(!drq)) 14437 return workposted; 14438 14439 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14440 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14441 else 14442 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14443 14444 if ((phba->nvmet_support == 0) || 14445 (rq_id != hrq->queue_id)) 14446 return workposted; 14447 14448 status = bf_get(lpfc_rcqe_status, rcqe); 14449 switch (status) { 14450 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14452 "6126 Receive Frame Truncated!!\n"); 14453 fallthrough; 14454 case FC_STATUS_RQ_SUCCESS: 14455 spin_lock_irqsave(&phba->hbalock, iflags); 14456 lpfc_sli4_rq_release(hrq, drq); 14457 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14458 if (!dma_buf) { 14459 hrq->RQ_no_buf_found++; 14460 spin_unlock_irqrestore(&phba->hbalock, iflags); 14461 goto out; 14462 } 14463 spin_unlock_irqrestore(&phba->hbalock, iflags); 14464 hrq->RQ_rcv_buf++; 14465 hrq->RQ_buf_posted--; 14466 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14467 14468 /* Just some basic sanity checks on FCP Command frame */ 14469 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14470 fc_hdr->fh_f_ctl[1] << 8 | 14471 fc_hdr->fh_f_ctl[2]); 14472 if (((fctl & 14473 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14474 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14475 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14476 goto drop; 14477 14478 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14479 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14480 lpfc_nvmet_unsol_fcp_event( 14481 phba, idx, dma_buf, cq->isr_timestamp, 14482 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14483 return false; 14484 } 14485 drop: 14486 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14487 break; 14488 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14489 if (phba->nvmet_support) { 14490 tgtp = phba->targetport->private; 14491 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14492 "6401 RQE Error x%x, posted %d err_cnt " 14493 "%d: %x %x %x\n", 14494 status, hrq->RQ_buf_posted, 14495 hrq->RQ_no_posted_buf, 14496 atomic_read(&tgtp->rcv_fcp_cmd_in), 14497 atomic_read(&tgtp->rcv_fcp_cmd_out), 14498 atomic_read(&tgtp->xmt_fcp_release)); 14499 } 14500 fallthrough; 14501 14502 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14503 hrq->RQ_no_posted_buf++; 14504 /* Post more buffers if possible */ 14505 break; 14506 } 14507 out: 14508 return workposted; 14509 } 14510 14511 /** 14512 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14513 * @phba: adapter with cq 14514 * @cq: Pointer to the completion queue. 14515 * @cqe: Pointer to fast-path completion queue entry. 14516 * 14517 * This routine process a fast-path work queue completion entry from fast-path 14518 * event queue for FCP command response completion. 14519 * 14520 * Return: true if work posted to worker thread, otherwise false. 14521 **/ 14522 static bool 14523 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14524 struct lpfc_cqe *cqe) 14525 { 14526 struct lpfc_wcqe_release wcqe; 14527 bool workposted = false; 14528 14529 /* Copy the work queue CQE and convert endian order if needed */ 14530 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14531 14532 /* Check and process for different type of WCQE and dispatch */ 14533 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14534 case CQE_CODE_COMPL_WQE: 14535 case CQE_CODE_NVME_ERSP: 14536 cq->CQ_wq++; 14537 /* Process the WQ complete event */ 14538 phba->last_completion_time = jiffies; 14539 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14540 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14541 (struct lpfc_wcqe_complete *)&wcqe); 14542 break; 14543 case CQE_CODE_RELEASE_WQE: 14544 cq->CQ_release_wqe++; 14545 /* Process the WQ release event */ 14546 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14547 (struct lpfc_wcqe_release *)&wcqe); 14548 break; 14549 case CQE_CODE_XRI_ABORTED: 14550 cq->CQ_xri_aborted++; 14551 /* Process the WQ XRI abort event */ 14552 phba->last_completion_time = jiffies; 14553 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14554 (struct sli4_wcqe_xri_aborted *)&wcqe); 14555 break; 14556 case CQE_CODE_RECEIVE_V1: 14557 case CQE_CODE_RECEIVE: 14558 phba->last_completion_time = jiffies; 14559 if (cq->subtype == LPFC_NVMET) { 14560 workposted = lpfc_sli4_nvmet_handle_rcqe( 14561 phba, cq, (struct lpfc_rcqe *)&wcqe); 14562 } 14563 break; 14564 default: 14565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14566 "0144 Not a valid CQE code: x%x\n", 14567 bf_get(lpfc_wcqe_c_code, &wcqe)); 14568 break; 14569 } 14570 return workposted; 14571 } 14572 14573 /** 14574 * lpfc_sli4_sched_cq_work - Schedules cq work 14575 * @phba: Pointer to HBA context object. 14576 * @cq: Pointer to CQ 14577 * @cqid: CQ ID 14578 * 14579 * This routine checks the poll mode of the CQ corresponding to 14580 * cq->chann, then either schedules a softirq or queue_work to complete 14581 * cq work. 14582 * 14583 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14584 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14585 * 14586 **/ 14587 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14588 struct lpfc_queue *cq, uint16_t cqid) 14589 { 14590 int ret = 0; 14591 14592 switch (cq->poll_mode) { 14593 case LPFC_IRQ_POLL: 14594 irq_poll_sched(&cq->iop); 14595 break; 14596 case LPFC_QUEUE_WORK: 14597 default: 14598 if (is_kdump_kernel()) 14599 ret = queue_work(phba->wq, &cq->irqwork); 14600 else 14601 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14602 if (!ret) 14603 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14604 "0383 Cannot schedule queue work " 14605 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14606 cqid, cq->queue_id, 14607 raw_smp_processor_id()); 14608 } 14609 } 14610 14611 /** 14612 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14613 * @phba: Pointer to HBA context object. 14614 * @eq: Pointer to the queue structure. 14615 * @eqe: Pointer to fast-path event queue entry. 14616 * 14617 * This routine process a event queue entry from the fast-path event queue. 14618 * It will check the MajorCode and MinorCode to determine this is for a 14619 * completion event on a completion queue, if not, an error shall be logged 14620 * and just return. Otherwise, it will get to the corresponding completion 14621 * queue and process all the entries on the completion queue, rearm the 14622 * completion queue, and then return. 14623 **/ 14624 static void 14625 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14626 struct lpfc_eqe *eqe) 14627 { 14628 struct lpfc_queue *cq = NULL; 14629 uint32_t qidx = eq->hdwq; 14630 uint16_t cqid, id; 14631 14632 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14633 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14634 "0366 Not a valid completion " 14635 "event: majorcode=x%x, minorcode=x%x\n", 14636 bf_get_le32(lpfc_eqe_major_code, eqe), 14637 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14638 return; 14639 } 14640 14641 /* Get the reference to the corresponding CQ */ 14642 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14643 14644 /* Use the fast lookup method first */ 14645 if (cqid <= phba->sli4_hba.cq_max) { 14646 cq = phba->sli4_hba.cq_lookup[cqid]; 14647 if (cq) 14648 goto work_cq; 14649 } 14650 14651 /* Next check for NVMET completion */ 14652 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14653 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14654 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14655 /* Process NVMET unsol rcv */ 14656 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14657 goto process_cq; 14658 } 14659 } 14660 14661 if (phba->sli4_hba.nvmels_cq && 14662 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14663 /* Process NVME unsol rcv */ 14664 cq = phba->sli4_hba.nvmels_cq; 14665 } 14666 14667 /* Otherwise this is a Slow path event */ 14668 if (cq == NULL) { 14669 lpfc_sli4_sp_handle_eqe(phba, eqe, 14670 phba->sli4_hba.hdwq[qidx].hba_eq); 14671 return; 14672 } 14673 14674 process_cq: 14675 if (unlikely(cqid != cq->queue_id)) { 14676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14677 "0368 Miss-matched fast-path completion " 14678 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14679 cqid, cq->queue_id); 14680 return; 14681 } 14682 14683 work_cq: 14684 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14685 if (phba->ktime_on) 14686 cq->isr_timestamp = ktime_get_ns(); 14687 else 14688 cq->isr_timestamp = 0; 14689 #endif 14690 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14691 } 14692 14693 /** 14694 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14695 * @cq: Pointer to CQ to be processed 14696 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14697 * 14698 * This routine calls the cq processing routine with the handler for 14699 * fast path CQEs. 14700 * 14701 * The CQ routine returns two values: the first is the calling status, 14702 * which indicates whether work was queued to the background discovery 14703 * thread. If true, the routine should wakeup the discovery thread; 14704 * the second is the delay parameter. If non-zero, rather than rearming 14705 * the CQ and yet another interrupt, the CQ handler should be queued so 14706 * that it is processed in a subsequent polling action. The value of 14707 * the delay indicates when to reschedule it. 14708 **/ 14709 static void 14710 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14711 enum lpfc_poll_mode poll_mode) 14712 { 14713 struct lpfc_hba *phba = cq->phba; 14714 unsigned long delay; 14715 bool workposted = false; 14716 int ret = 0; 14717 14718 /* process and rearm the CQ */ 14719 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14720 &delay, poll_mode); 14721 14722 if (delay) { 14723 if (is_kdump_kernel()) 14724 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14725 delay); 14726 else 14727 ret = queue_delayed_work_on(cq->chann, phba->wq, 14728 &cq->sched_irqwork, delay); 14729 if (!ret) 14730 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14731 "0367 Cannot schedule queue work " 14732 "for cqid=%d on CPU %d\n", 14733 cq->queue_id, cq->chann); 14734 } 14735 14736 /* wake up worker thread if there are works to be done */ 14737 if (workposted) 14738 lpfc_worker_wake_up(phba); 14739 } 14740 14741 /** 14742 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14743 * interrupt 14744 * @work: pointer to work element 14745 * 14746 * translates from the work handler and calls the fast-path handler. 14747 **/ 14748 static void 14749 lpfc_sli4_hba_process_cq(struct work_struct *work) 14750 { 14751 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14752 14753 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14754 } 14755 14756 /** 14757 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 14758 * @work: pointer to work element 14759 * 14760 * translates from the work handler and calls the fast-path handler. 14761 **/ 14762 static void 14763 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14764 { 14765 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14766 struct lpfc_queue, sched_irqwork); 14767 14768 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14769 } 14770 14771 /** 14772 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14773 * @irq: Interrupt number. 14774 * @dev_id: The device context pointer. 14775 * 14776 * This function is directly called from the PCI layer as an interrupt 14777 * service routine when device with SLI-4 interface spec is enabled with 14778 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14779 * ring event in the HBA. However, when the device is enabled with either 14780 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14781 * device-level interrupt handler. When the PCI slot is in error recovery 14782 * or the HBA is undergoing initialization, the interrupt handler will not 14783 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14784 * the intrrupt context. This function is called without any lock held. 14785 * It gets the hbalock to access and update SLI data structures. Note that, 14786 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14787 * equal to that of FCP CQ index. 14788 * 14789 * The link attention and ELS ring attention events are handled 14790 * by the worker thread. The interrupt handler signals the worker thread 14791 * and returns for these events. This function is called without any lock 14792 * held. It gets the hbalock to access and update SLI data structures. 14793 * 14794 * This function returns IRQ_HANDLED when interrupt is handled else it 14795 * returns IRQ_NONE. 14796 **/ 14797 irqreturn_t 14798 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14799 { 14800 struct lpfc_hba *phba; 14801 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14802 struct lpfc_queue *fpeq; 14803 unsigned long iflag; 14804 int ecount = 0; 14805 int hba_eqidx; 14806 struct lpfc_eq_intr_info *eqi; 14807 14808 /* Get the driver's phba structure from the dev_id */ 14809 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14810 phba = hba_eq_hdl->phba; 14811 hba_eqidx = hba_eq_hdl->idx; 14812 14813 if (unlikely(!phba)) 14814 return IRQ_NONE; 14815 if (unlikely(!phba->sli4_hba.hdwq)) 14816 return IRQ_NONE; 14817 14818 /* Get to the EQ struct associated with this vector */ 14819 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14820 if (unlikely(!fpeq)) 14821 return IRQ_NONE; 14822 14823 /* Check device state for handling interrupt */ 14824 if (unlikely(lpfc_intr_state_check(phba))) { 14825 /* Check again for link_state with lock held */ 14826 spin_lock_irqsave(&phba->hbalock, iflag); 14827 if (phba->link_state < LPFC_LINK_DOWN) 14828 /* Flush, clear interrupt, and rearm the EQ */ 14829 lpfc_sli4_eqcq_flush(phba, fpeq); 14830 spin_unlock_irqrestore(&phba->hbalock, iflag); 14831 return IRQ_NONE; 14832 } 14833 14834 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14835 eqi->icnt++; 14836 14837 fpeq->last_cpu = raw_smp_processor_id(); 14838 14839 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14840 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14841 phba->cfg_auto_imax && 14842 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14843 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14844 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14845 14846 /* process and rearm the EQ */ 14847 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14848 14849 if (unlikely(ecount == 0)) { 14850 fpeq->EQ_no_entry++; 14851 if (phba->intr_type == MSIX) 14852 /* MSI-X treated interrupt served as no EQ share INT */ 14853 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14854 "0358 MSI-X interrupt with no EQE\n"); 14855 else 14856 /* Non MSI-X treated on interrupt as EQ share INT */ 14857 return IRQ_NONE; 14858 } 14859 14860 return IRQ_HANDLED; 14861 } /* lpfc_sli4_hba_intr_handler */ 14862 14863 /** 14864 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14865 * @irq: Interrupt number. 14866 * @dev_id: The device context pointer. 14867 * 14868 * This function is the device-level interrupt handler to device with SLI-4 14869 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14870 * interrupt mode is enabled and there is an event in the HBA which requires 14871 * driver attention. This function invokes the slow-path interrupt attention 14872 * handling function and fast-path interrupt attention handling function in 14873 * turn to process the relevant HBA attention events. This function is called 14874 * without any lock held. It gets the hbalock to access and update SLI data 14875 * structures. 14876 * 14877 * This function returns IRQ_HANDLED when interrupt is handled, else it 14878 * returns IRQ_NONE. 14879 **/ 14880 irqreturn_t 14881 lpfc_sli4_intr_handler(int irq, void *dev_id) 14882 { 14883 struct lpfc_hba *phba; 14884 irqreturn_t hba_irq_rc; 14885 bool hba_handled = false; 14886 int qidx; 14887 14888 /* Get the driver's phba structure from the dev_id */ 14889 phba = (struct lpfc_hba *)dev_id; 14890 14891 if (unlikely(!phba)) 14892 return IRQ_NONE; 14893 14894 /* 14895 * Invoke fast-path host attention interrupt handling as appropriate. 14896 */ 14897 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14898 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14899 &phba->sli4_hba.hba_eq_hdl[qidx]); 14900 if (hba_irq_rc == IRQ_HANDLED) 14901 hba_handled |= true; 14902 } 14903 14904 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14905 } /* lpfc_sli4_intr_handler */ 14906 14907 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14908 { 14909 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14910 struct lpfc_queue *eq; 14911 int i = 0; 14912 14913 rcu_read_lock(); 14914 14915 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14916 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14917 if (!list_empty(&phba->poll_list)) 14918 mod_timer(&phba->cpuhp_poll_timer, 14919 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14920 14921 rcu_read_unlock(); 14922 } 14923 14924 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14925 { 14926 struct lpfc_hba *phba = eq->phba; 14927 int i = 0; 14928 14929 /* 14930 * Unlocking an irq is one of the entry point to check 14931 * for re-schedule, but we are good for io submission 14932 * path as midlayer does a get_cpu to glue us in. Flush 14933 * out the invalidate queue so we can see the updated 14934 * value for flag. 14935 */ 14936 smp_rmb(); 14937 14938 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14939 /* We will not likely get the completion for the caller 14940 * during this iteration but i guess that's fine. 14941 * Future io's coming on this eq should be able to 14942 * pick it up. As for the case of single io's, they 14943 * will be handled through a sched from polling timer 14944 * function which is currently triggered every 1msec. 14945 */ 14946 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14947 14948 return i; 14949 } 14950 14951 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14952 { 14953 struct lpfc_hba *phba = eq->phba; 14954 14955 /* kickstart slowpath processing if needed */ 14956 if (list_empty(&phba->poll_list)) 14957 mod_timer(&phba->cpuhp_poll_timer, 14958 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14959 14960 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14961 synchronize_rcu(); 14962 } 14963 14964 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14965 { 14966 struct lpfc_hba *phba = eq->phba; 14967 14968 /* Disable slowpath processing for this eq. Kick start the eq 14969 * by RE-ARMING the eq's ASAP 14970 */ 14971 list_del_rcu(&eq->_poll_list); 14972 synchronize_rcu(); 14973 14974 if (list_empty(&phba->poll_list)) 14975 del_timer_sync(&phba->cpuhp_poll_timer); 14976 } 14977 14978 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14979 { 14980 struct lpfc_queue *eq, *next; 14981 14982 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14983 list_del(&eq->_poll_list); 14984 14985 INIT_LIST_HEAD(&phba->poll_list); 14986 synchronize_rcu(); 14987 } 14988 14989 static inline void 14990 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14991 { 14992 if (mode == eq->mode) 14993 return; 14994 /* 14995 * currently this function is only called during a hotplug 14996 * event and the cpu on which this function is executing 14997 * is going offline. By now the hotplug has instructed 14998 * the scheduler to remove this cpu from cpu active mask. 14999 * So we don't need to work about being put aside by the 15000 * scheduler for a high priority process. Yes, the inte- 15001 * rrupts could come but they are known to retire ASAP. 15002 */ 15003 15004 /* Disable polling in the fastpath */ 15005 WRITE_ONCE(eq->mode, mode); 15006 /* flush out the store buffer */ 15007 smp_wmb(); 15008 15009 /* 15010 * Add this eq to the polling list and start polling. For 15011 * a grace period both interrupt handler and poller will 15012 * try to process the eq _but_ that's fine. We have a 15013 * synchronization mechanism in place (queue_claimed) to 15014 * deal with it. This is just a draining phase for int- 15015 * errupt handler (not eq's) as we have guranteed through 15016 * barrier that all the CPUs have seen the new CQ_POLLED 15017 * state. which will effectively disable the REARMING of 15018 * the EQ. The whole idea is eq's die off eventually as 15019 * we are not rearming EQ's anymore. 15020 */ 15021 mode ? lpfc_sli4_add_to_poll_list(eq) : 15022 lpfc_sli4_remove_from_poll_list(eq); 15023 } 15024 15025 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15026 { 15027 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15028 } 15029 15030 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15031 { 15032 struct lpfc_hba *phba = eq->phba; 15033 15034 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15035 15036 /* Kick start for the pending io's in h/w. 15037 * Once we switch back to interrupt processing on a eq 15038 * the io path completion will only arm eq's when it 15039 * receives a completion. But since eq's are in disa- 15040 * rmed state it doesn't receive a completion. This 15041 * creates a deadlock scenaro. 15042 */ 15043 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15044 } 15045 15046 /** 15047 * lpfc_sli4_queue_free - free a queue structure and associated memory 15048 * @queue: The queue structure to free. 15049 * 15050 * This function frees a queue structure and the DMAable memory used for 15051 * the host resident queue. This function must be called after destroying the 15052 * queue on the HBA. 15053 **/ 15054 void 15055 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15056 { 15057 struct lpfc_dmabuf *dmabuf; 15058 15059 if (!queue) 15060 return; 15061 15062 if (!list_empty(&queue->wq_list)) 15063 list_del(&queue->wq_list); 15064 15065 while (!list_empty(&queue->page_list)) { 15066 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15067 list); 15068 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15069 dmabuf->virt, dmabuf->phys); 15070 kfree(dmabuf); 15071 } 15072 if (queue->rqbp) { 15073 lpfc_free_rq_buffer(queue->phba, queue); 15074 kfree(queue->rqbp); 15075 } 15076 15077 if (!list_empty(&queue->cpu_list)) 15078 list_del(&queue->cpu_list); 15079 15080 kfree(queue); 15081 return; 15082 } 15083 15084 /** 15085 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15086 * @phba: The HBA that this queue is being created on. 15087 * @page_size: The size of a queue page 15088 * @entry_size: The size of each queue entry for this queue. 15089 * @entry_count: The number of entries that this queue will handle. 15090 * @cpu: The cpu that will primarily utilize this queue. 15091 * 15092 * This function allocates a queue structure and the DMAable memory used for 15093 * the host resident queue. This function must be called before creating the 15094 * queue on the HBA. 15095 **/ 15096 struct lpfc_queue * 15097 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15098 uint32_t entry_size, uint32_t entry_count, int cpu) 15099 { 15100 struct lpfc_queue *queue; 15101 struct lpfc_dmabuf *dmabuf; 15102 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15103 uint16_t x, pgcnt; 15104 15105 if (!phba->sli4_hba.pc_sli4_params.supported) 15106 hw_page_size = page_size; 15107 15108 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15109 15110 /* If needed, Adjust page count to match the max the adapter supports */ 15111 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15112 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15113 15114 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15115 GFP_KERNEL, cpu_to_node(cpu)); 15116 if (!queue) 15117 return NULL; 15118 15119 INIT_LIST_HEAD(&queue->list); 15120 INIT_LIST_HEAD(&queue->_poll_list); 15121 INIT_LIST_HEAD(&queue->wq_list); 15122 INIT_LIST_HEAD(&queue->wqfull_list); 15123 INIT_LIST_HEAD(&queue->page_list); 15124 INIT_LIST_HEAD(&queue->child_list); 15125 INIT_LIST_HEAD(&queue->cpu_list); 15126 15127 /* Set queue parameters now. If the system cannot provide memory 15128 * resources, the free routine needs to know what was allocated. 15129 */ 15130 queue->page_count = pgcnt; 15131 queue->q_pgs = (void **)&queue[1]; 15132 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15133 queue->entry_size = entry_size; 15134 queue->entry_count = entry_count; 15135 queue->page_size = hw_page_size; 15136 queue->phba = phba; 15137 15138 for (x = 0; x < queue->page_count; x++) { 15139 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15140 dev_to_node(&phba->pcidev->dev)); 15141 if (!dmabuf) 15142 goto out_fail; 15143 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15144 hw_page_size, &dmabuf->phys, 15145 GFP_KERNEL); 15146 if (!dmabuf->virt) { 15147 kfree(dmabuf); 15148 goto out_fail; 15149 } 15150 dmabuf->buffer_tag = x; 15151 list_add_tail(&dmabuf->list, &queue->page_list); 15152 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15153 queue->q_pgs[x] = dmabuf->virt; 15154 } 15155 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15156 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15157 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15158 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15159 15160 /* notify_interval will be set during q creation */ 15161 15162 return queue; 15163 out_fail: 15164 lpfc_sli4_queue_free(queue); 15165 return NULL; 15166 } 15167 15168 /** 15169 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15170 * @phba: HBA structure that indicates port to create a queue on. 15171 * @pci_barset: PCI BAR set flag. 15172 * 15173 * This function shall perform iomap of the specified PCI BAR address to host 15174 * memory address if not already done so and return it. The returned host 15175 * memory address can be NULL. 15176 */ 15177 static void __iomem * 15178 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15179 { 15180 if (!phba->pcidev) 15181 return NULL; 15182 15183 switch (pci_barset) { 15184 case WQ_PCI_BAR_0_AND_1: 15185 return phba->pci_bar0_memmap_p; 15186 case WQ_PCI_BAR_2_AND_3: 15187 return phba->pci_bar2_memmap_p; 15188 case WQ_PCI_BAR_4_AND_5: 15189 return phba->pci_bar4_memmap_p; 15190 default: 15191 break; 15192 } 15193 return NULL; 15194 } 15195 15196 /** 15197 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15198 * @phba: HBA structure that EQs are on. 15199 * @startq: The starting EQ index to modify 15200 * @numq: The number of EQs (consecutive indexes) to modify 15201 * @usdelay: amount of delay 15202 * 15203 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15204 * is set either by writing to a register (if supported by the SLI Port) 15205 * or by mailbox command. The mailbox command allows several EQs to be 15206 * updated at once. 15207 * 15208 * The @phba struct is used to send a mailbox command to HBA. The @startq 15209 * is used to get the starting EQ index to change. The @numq value is 15210 * used to specify how many consecutive EQ indexes, starting at EQ index, 15211 * are to be changed. This function is asynchronous and will wait for any 15212 * mailbox commands to finish before returning. 15213 * 15214 * On success this function will return a zero. If unable to allocate 15215 * enough memory this function will return -ENOMEM. If a mailbox command 15216 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15217 * have had their delay multipler changed. 15218 **/ 15219 void 15220 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15221 uint32_t numq, uint32_t usdelay) 15222 { 15223 struct lpfc_mbx_modify_eq_delay *eq_delay; 15224 LPFC_MBOXQ_t *mbox; 15225 struct lpfc_queue *eq; 15226 int cnt = 0, rc, length; 15227 uint32_t shdr_status, shdr_add_status; 15228 uint32_t dmult; 15229 int qidx; 15230 union lpfc_sli4_cfg_shdr *shdr; 15231 15232 if (startq >= phba->cfg_irq_chann) 15233 return; 15234 15235 if (usdelay > 0xFFFF) { 15236 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15237 "6429 usdelay %d too large. Scaled down to " 15238 "0xFFFF.\n", usdelay); 15239 usdelay = 0xFFFF; 15240 } 15241 15242 /* set values by EQ_DELAY register if supported */ 15243 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15244 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15245 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15246 if (!eq) 15247 continue; 15248 15249 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15250 15251 if (++cnt >= numq) 15252 break; 15253 } 15254 return; 15255 } 15256 15257 /* Otherwise, set values by mailbox cmd */ 15258 15259 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15260 if (!mbox) { 15261 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15262 "6428 Failed allocating mailbox cmd buffer." 15263 " EQ delay was not set.\n"); 15264 return; 15265 } 15266 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15267 sizeof(struct lpfc_sli4_cfg_mhdr)); 15268 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15269 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15270 length, LPFC_SLI4_MBX_EMBED); 15271 eq_delay = &mbox->u.mqe.un.eq_delay; 15272 15273 /* Calculate delay multiper from maximum interrupt per second */ 15274 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15275 if (dmult) 15276 dmult--; 15277 if (dmult > LPFC_DMULT_MAX) 15278 dmult = LPFC_DMULT_MAX; 15279 15280 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15281 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15282 if (!eq) 15283 continue; 15284 eq->q_mode = usdelay; 15285 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15286 eq_delay->u.request.eq[cnt].phase = 0; 15287 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15288 15289 if (++cnt >= numq) 15290 break; 15291 } 15292 eq_delay->u.request.num_eq = cnt; 15293 15294 mbox->vport = phba->pport; 15295 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15296 mbox->ctx_buf = NULL; 15297 mbox->ctx_ndlp = NULL; 15298 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15299 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15300 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15301 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15302 if (shdr_status || shdr_add_status || rc) { 15303 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15304 "2512 MODIFY_EQ_DELAY mailbox failed with " 15305 "status x%x add_status x%x, mbx status x%x\n", 15306 shdr_status, shdr_add_status, rc); 15307 } 15308 mempool_free(mbox, phba->mbox_mem_pool); 15309 return; 15310 } 15311 15312 /** 15313 * lpfc_eq_create - Create an Event Queue on the HBA 15314 * @phba: HBA structure that indicates port to create a queue on. 15315 * @eq: The queue structure to use to create the event queue. 15316 * @imax: The maximum interrupt per second limit. 15317 * 15318 * This function creates an event queue, as detailed in @eq, on a port, 15319 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15320 * 15321 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15322 * is used to get the entry count and entry size that are necessary to 15323 * determine the number of pages to allocate and use for this queue. This 15324 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15325 * event queue. This function is asynchronous and will wait for the mailbox 15326 * command to finish before continuing. 15327 * 15328 * On success this function will return a zero. If unable to allocate enough 15329 * memory this function will return -ENOMEM. If the queue create mailbox command 15330 * fails this function will return -ENXIO. 15331 **/ 15332 int 15333 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15334 { 15335 struct lpfc_mbx_eq_create *eq_create; 15336 LPFC_MBOXQ_t *mbox; 15337 int rc, length, status = 0; 15338 struct lpfc_dmabuf *dmabuf; 15339 uint32_t shdr_status, shdr_add_status; 15340 union lpfc_sli4_cfg_shdr *shdr; 15341 uint16_t dmult; 15342 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15343 15344 /* sanity check on queue memory */ 15345 if (!eq) 15346 return -ENODEV; 15347 if (!phba->sli4_hba.pc_sli4_params.supported) 15348 hw_page_size = SLI4_PAGE_SIZE; 15349 15350 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15351 if (!mbox) 15352 return -ENOMEM; 15353 length = (sizeof(struct lpfc_mbx_eq_create) - 15354 sizeof(struct lpfc_sli4_cfg_mhdr)); 15355 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15356 LPFC_MBOX_OPCODE_EQ_CREATE, 15357 length, LPFC_SLI4_MBX_EMBED); 15358 eq_create = &mbox->u.mqe.un.eq_create; 15359 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15360 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15361 eq->page_count); 15362 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15363 LPFC_EQE_SIZE); 15364 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15365 15366 /* Use version 2 of CREATE_EQ if eqav is set */ 15367 if (phba->sli4_hba.pc_sli4_params.eqav) { 15368 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15369 LPFC_Q_CREATE_VERSION_2); 15370 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15371 phba->sli4_hba.pc_sli4_params.eqav); 15372 } 15373 15374 /* don't setup delay multiplier using EQ_CREATE */ 15375 dmult = 0; 15376 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15377 dmult); 15378 switch (eq->entry_count) { 15379 default: 15380 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15381 "0360 Unsupported EQ count. (%d)\n", 15382 eq->entry_count); 15383 if (eq->entry_count < 256) { 15384 status = -EINVAL; 15385 goto out; 15386 } 15387 fallthrough; /* otherwise default to smallest count */ 15388 case 256: 15389 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15390 LPFC_EQ_CNT_256); 15391 break; 15392 case 512: 15393 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15394 LPFC_EQ_CNT_512); 15395 break; 15396 case 1024: 15397 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15398 LPFC_EQ_CNT_1024); 15399 break; 15400 case 2048: 15401 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15402 LPFC_EQ_CNT_2048); 15403 break; 15404 case 4096: 15405 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15406 LPFC_EQ_CNT_4096); 15407 break; 15408 } 15409 list_for_each_entry(dmabuf, &eq->page_list, list) { 15410 memset(dmabuf->virt, 0, hw_page_size); 15411 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15412 putPaddrLow(dmabuf->phys); 15413 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15414 putPaddrHigh(dmabuf->phys); 15415 } 15416 mbox->vport = phba->pport; 15417 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15418 mbox->ctx_buf = NULL; 15419 mbox->ctx_ndlp = NULL; 15420 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15421 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15422 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15423 if (shdr_status || shdr_add_status || rc) { 15424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15425 "2500 EQ_CREATE mailbox failed with " 15426 "status x%x add_status x%x, mbx status x%x\n", 15427 shdr_status, shdr_add_status, rc); 15428 status = -ENXIO; 15429 } 15430 eq->type = LPFC_EQ; 15431 eq->subtype = LPFC_NONE; 15432 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15433 if (eq->queue_id == 0xFFFF) 15434 status = -ENXIO; 15435 eq->host_index = 0; 15436 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15437 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15438 out: 15439 mempool_free(mbox, phba->mbox_mem_pool); 15440 return status; 15441 } 15442 15443 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15444 { 15445 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15446 15447 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15448 15449 return 1; 15450 } 15451 15452 /** 15453 * lpfc_cq_create - Create a Completion Queue on the HBA 15454 * @phba: HBA structure that indicates port to create a queue on. 15455 * @cq: The queue structure to use to create the completion queue. 15456 * @eq: The event queue to bind this completion queue to. 15457 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15458 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15459 * 15460 * This function creates a completion queue, as detailed in @wq, on a port, 15461 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15462 * 15463 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15464 * is used to get the entry count and entry size that are necessary to 15465 * determine the number of pages to allocate and use for this queue. The @eq 15466 * is used to indicate which event queue to bind this completion queue to. This 15467 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15468 * completion queue. This function is asynchronous and will wait for the mailbox 15469 * command to finish before continuing. 15470 * 15471 * On success this function will return a zero. If unable to allocate enough 15472 * memory this function will return -ENOMEM. If the queue create mailbox command 15473 * fails this function will return -ENXIO. 15474 **/ 15475 int 15476 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15477 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15478 { 15479 struct lpfc_mbx_cq_create *cq_create; 15480 struct lpfc_dmabuf *dmabuf; 15481 LPFC_MBOXQ_t *mbox; 15482 int rc, length, status = 0; 15483 uint32_t shdr_status, shdr_add_status; 15484 union lpfc_sli4_cfg_shdr *shdr; 15485 15486 /* sanity check on queue memory */ 15487 if (!cq || !eq) 15488 return -ENODEV; 15489 15490 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15491 if (!mbox) 15492 return -ENOMEM; 15493 length = (sizeof(struct lpfc_mbx_cq_create) - 15494 sizeof(struct lpfc_sli4_cfg_mhdr)); 15495 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15496 LPFC_MBOX_OPCODE_CQ_CREATE, 15497 length, LPFC_SLI4_MBX_EMBED); 15498 cq_create = &mbox->u.mqe.un.cq_create; 15499 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15500 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15501 cq->page_count); 15502 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15503 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15504 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15505 phba->sli4_hba.pc_sli4_params.cqv); 15506 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15507 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15508 (cq->page_size / SLI4_PAGE_SIZE)); 15509 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15510 eq->queue_id); 15511 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15512 phba->sli4_hba.pc_sli4_params.cqav); 15513 } else { 15514 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15515 eq->queue_id); 15516 } 15517 switch (cq->entry_count) { 15518 case 2048: 15519 case 4096: 15520 if (phba->sli4_hba.pc_sli4_params.cqv == 15521 LPFC_Q_CREATE_VERSION_2) { 15522 cq_create->u.request.context.lpfc_cq_context_count = 15523 cq->entry_count; 15524 bf_set(lpfc_cq_context_count, 15525 &cq_create->u.request.context, 15526 LPFC_CQ_CNT_WORD7); 15527 break; 15528 } 15529 fallthrough; 15530 default: 15531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15532 "0361 Unsupported CQ count: " 15533 "entry cnt %d sz %d pg cnt %d\n", 15534 cq->entry_count, cq->entry_size, 15535 cq->page_count); 15536 if (cq->entry_count < 256) { 15537 status = -EINVAL; 15538 goto out; 15539 } 15540 fallthrough; /* otherwise default to smallest count */ 15541 case 256: 15542 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15543 LPFC_CQ_CNT_256); 15544 break; 15545 case 512: 15546 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15547 LPFC_CQ_CNT_512); 15548 break; 15549 case 1024: 15550 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15551 LPFC_CQ_CNT_1024); 15552 break; 15553 } 15554 list_for_each_entry(dmabuf, &cq->page_list, list) { 15555 memset(dmabuf->virt, 0, cq->page_size); 15556 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15557 putPaddrLow(dmabuf->phys); 15558 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15559 putPaddrHigh(dmabuf->phys); 15560 } 15561 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15562 15563 /* The IOCTL status is embedded in the mailbox subheader. */ 15564 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15565 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15566 if (shdr_status || shdr_add_status || rc) { 15567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15568 "2501 CQ_CREATE mailbox failed with " 15569 "status x%x add_status x%x, mbx status x%x\n", 15570 shdr_status, shdr_add_status, rc); 15571 status = -ENXIO; 15572 goto out; 15573 } 15574 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15575 if (cq->queue_id == 0xFFFF) { 15576 status = -ENXIO; 15577 goto out; 15578 } 15579 /* link the cq onto the parent eq child list */ 15580 list_add_tail(&cq->list, &eq->child_list); 15581 /* Set up completion queue's type and subtype */ 15582 cq->type = type; 15583 cq->subtype = subtype; 15584 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15585 cq->assoc_qid = eq->queue_id; 15586 cq->assoc_qp = eq; 15587 cq->host_index = 0; 15588 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15589 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15590 15591 if (cq->queue_id > phba->sli4_hba.cq_max) 15592 phba->sli4_hba.cq_max = cq->queue_id; 15593 15594 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15595 out: 15596 mempool_free(mbox, phba->mbox_mem_pool); 15597 return status; 15598 } 15599 15600 /** 15601 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15602 * @phba: HBA structure that indicates port to create a queue on. 15603 * @cqp: The queue structure array to use to create the completion queues. 15604 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15605 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15606 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15607 * 15608 * This function creates a set of completion queue, s to support MRQ 15609 * as detailed in @cqp, on a port, 15610 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15611 * 15612 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15613 * is used to get the entry count and entry size that are necessary to 15614 * determine the number of pages to allocate and use for this queue. The @eq 15615 * is used to indicate which event queue to bind this completion queue to. This 15616 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15617 * completion queue. This function is asynchronous and will wait for the mailbox 15618 * command to finish before continuing. 15619 * 15620 * On success this function will return a zero. If unable to allocate enough 15621 * memory this function will return -ENOMEM. If the queue create mailbox command 15622 * fails this function will return -ENXIO. 15623 **/ 15624 int 15625 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15626 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15627 uint32_t subtype) 15628 { 15629 struct lpfc_queue *cq; 15630 struct lpfc_queue *eq; 15631 struct lpfc_mbx_cq_create_set *cq_set; 15632 struct lpfc_dmabuf *dmabuf; 15633 LPFC_MBOXQ_t *mbox; 15634 int rc, length, alloclen, status = 0; 15635 int cnt, idx, numcq, page_idx = 0; 15636 uint32_t shdr_status, shdr_add_status; 15637 union lpfc_sli4_cfg_shdr *shdr; 15638 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15639 15640 /* sanity check on queue memory */ 15641 numcq = phba->cfg_nvmet_mrq; 15642 if (!cqp || !hdwq || !numcq) 15643 return -ENODEV; 15644 15645 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15646 if (!mbox) 15647 return -ENOMEM; 15648 15649 length = sizeof(struct lpfc_mbx_cq_create_set); 15650 length += ((numcq * cqp[0]->page_count) * 15651 sizeof(struct dma_address)); 15652 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15653 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15654 LPFC_SLI4_MBX_NEMBED); 15655 if (alloclen < length) { 15656 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15657 "3098 Allocated DMA memory size (%d) is " 15658 "less than the requested DMA memory size " 15659 "(%d)\n", alloclen, length); 15660 status = -ENOMEM; 15661 goto out; 15662 } 15663 cq_set = mbox->sge_array->addr[0]; 15664 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15665 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15666 15667 for (idx = 0; idx < numcq; idx++) { 15668 cq = cqp[idx]; 15669 eq = hdwq[idx].hba_eq; 15670 if (!cq || !eq) { 15671 status = -ENOMEM; 15672 goto out; 15673 } 15674 if (!phba->sli4_hba.pc_sli4_params.supported) 15675 hw_page_size = cq->page_size; 15676 15677 switch (idx) { 15678 case 0: 15679 bf_set(lpfc_mbx_cq_create_set_page_size, 15680 &cq_set->u.request, 15681 (hw_page_size / SLI4_PAGE_SIZE)); 15682 bf_set(lpfc_mbx_cq_create_set_num_pages, 15683 &cq_set->u.request, cq->page_count); 15684 bf_set(lpfc_mbx_cq_create_set_evt, 15685 &cq_set->u.request, 1); 15686 bf_set(lpfc_mbx_cq_create_set_valid, 15687 &cq_set->u.request, 1); 15688 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15689 &cq_set->u.request, 0); 15690 bf_set(lpfc_mbx_cq_create_set_num_cq, 15691 &cq_set->u.request, numcq); 15692 bf_set(lpfc_mbx_cq_create_set_autovalid, 15693 &cq_set->u.request, 15694 phba->sli4_hba.pc_sli4_params.cqav); 15695 switch (cq->entry_count) { 15696 case 2048: 15697 case 4096: 15698 if (phba->sli4_hba.pc_sli4_params.cqv == 15699 LPFC_Q_CREATE_VERSION_2) { 15700 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15701 &cq_set->u.request, 15702 cq->entry_count); 15703 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15704 &cq_set->u.request, 15705 LPFC_CQ_CNT_WORD7); 15706 break; 15707 } 15708 fallthrough; 15709 default: 15710 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15711 "3118 Bad CQ count. (%d)\n", 15712 cq->entry_count); 15713 if (cq->entry_count < 256) { 15714 status = -EINVAL; 15715 goto out; 15716 } 15717 fallthrough; /* otherwise default to smallest */ 15718 case 256: 15719 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15720 &cq_set->u.request, LPFC_CQ_CNT_256); 15721 break; 15722 case 512: 15723 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15724 &cq_set->u.request, LPFC_CQ_CNT_512); 15725 break; 15726 case 1024: 15727 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15728 &cq_set->u.request, LPFC_CQ_CNT_1024); 15729 break; 15730 } 15731 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15732 &cq_set->u.request, eq->queue_id); 15733 break; 15734 case 1: 15735 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15736 &cq_set->u.request, eq->queue_id); 15737 break; 15738 case 2: 15739 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15740 &cq_set->u.request, eq->queue_id); 15741 break; 15742 case 3: 15743 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15744 &cq_set->u.request, eq->queue_id); 15745 break; 15746 case 4: 15747 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15748 &cq_set->u.request, eq->queue_id); 15749 break; 15750 case 5: 15751 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15752 &cq_set->u.request, eq->queue_id); 15753 break; 15754 case 6: 15755 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15756 &cq_set->u.request, eq->queue_id); 15757 break; 15758 case 7: 15759 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15760 &cq_set->u.request, eq->queue_id); 15761 break; 15762 case 8: 15763 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15764 &cq_set->u.request, eq->queue_id); 15765 break; 15766 case 9: 15767 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15768 &cq_set->u.request, eq->queue_id); 15769 break; 15770 case 10: 15771 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15772 &cq_set->u.request, eq->queue_id); 15773 break; 15774 case 11: 15775 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15776 &cq_set->u.request, eq->queue_id); 15777 break; 15778 case 12: 15779 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15780 &cq_set->u.request, eq->queue_id); 15781 break; 15782 case 13: 15783 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15784 &cq_set->u.request, eq->queue_id); 15785 break; 15786 case 14: 15787 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15788 &cq_set->u.request, eq->queue_id); 15789 break; 15790 case 15: 15791 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15792 &cq_set->u.request, eq->queue_id); 15793 break; 15794 } 15795 15796 /* link the cq onto the parent eq child list */ 15797 list_add_tail(&cq->list, &eq->child_list); 15798 /* Set up completion queue's type and subtype */ 15799 cq->type = type; 15800 cq->subtype = subtype; 15801 cq->assoc_qid = eq->queue_id; 15802 cq->assoc_qp = eq; 15803 cq->host_index = 0; 15804 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15805 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15806 cq->entry_count); 15807 cq->chann = idx; 15808 15809 rc = 0; 15810 list_for_each_entry(dmabuf, &cq->page_list, list) { 15811 memset(dmabuf->virt, 0, hw_page_size); 15812 cnt = page_idx + dmabuf->buffer_tag; 15813 cq_set->u.request.page[cnt].addr_lo = 15814 putPaddrLow(dmabuf->phys); 15815 cq_set->u.request.page[cnt].addr_hi = 15816 putPaddrHigh(dmabuf->phys); 15817 rc++; 15818 } 15819 page_idx += rc; 15820 } 15821 15822 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15823 15824 /* The IOCTL status is embedded in the mailbox subheader. */ 15825 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15826 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15827 if (shdr_status || shdr_add_status || rc) { 15828 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15829 "3119 CQ_CREATE_SET mailbox failed with " 15830 "status x%x add_status x%x, mbx status x%x\n", 15831 shdr_status, shdr_add_status, rc); 15832 status = -ENXIO; 15833 goto out; 15834 } 15835 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15836 if (rc == 0xFFFF) { 15837 status = -ENXIO; 15838 goto out; 15839 } 15840 15841 for (idx = 0; idx < numcq; idx++) { 15842 cq = cqp[idx]; 15843 cq->queue_id = rc + idx; 15844 if (cq->queue_id > phba->sli4_hba.cq_max) 15845 phba->sli4_hba.cq_max = cq->queue_id; 15846 } 15847 15848 out: 15849 lpfc_sli4_mbox_cmd_free(phba, mbox); 15850 return status; 15851 } 15852 15853 /** 15854 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15855 * @phba: HBA structure that indicates port to create a queue on. 15856 * @mq: The queue structure to use to create the mailbox queue. 15857 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15858 * @cq: The completion queue to associate with this cq. 15859 * 15860 * This function provides failback (fb) functionality when the 15861 * mq_create_ext fails on older FW generations. It's purpose is identical 15862 * to mq_create_ext otherwise. 15863 * 15864 * This routine cannot fail as all attributes were previously accessed and 15865 * initialized in mq_create_ext. 15866 **/ 15867 static void 15868 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15869 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15870 { 15871 struct lpfc_mbx_mq_create *mq_create; 15872 struct lpfc_dmabuf *dmabuf; 15873 int length; 15874 15875 length = (sizeof(struct lpfc_mbx_mq_create) - 15876 sizeof(struct lpfc_sli4_cfg_mhdr)); 15877 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15878 LPFC_MBOX_OPCODE_MQ_CREATE, 15879 length, LPFC_SLI4_MBX_EMBED); 15880 mq_create = &mbox->u.mqe.un.mq_create; 15881 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15882 mq->page_count); 15883 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15884 cq->queue_id); 15885 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15886 switch (mq->entry_count) { 15887 case 16: 15888 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15889 LPFC_MQ_RING_SIZE_16); 15890 break; 15891 case 32: 15892 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15893 LPFC_MQ_RING_SIZE_32); 15894 break; 15895 case 64: 15896 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15897 LPFC_MQ_RING_SIZE_64); 15898 break; 15899 case 128: 15900 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15901 LPFC_MQ_RING_SIZE_128); 15902 break; 15903 } 15904 list_for_each_entry(dmabuf, &mq->page_list, list) { 15905 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15906 putPaddrLow(dmabuf->phys); 15907 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15908 putPaddrHigh(dmabuf->phys); 15909 } 15910 } 15911 15912 /** 15913 * lpfc_mq_create - Create a mailbox Queue on the HBA 15914 * @phba: HBA structure that indicates port to create a queue on. 15915 * @mq: The queue structure to use to create the mailbox queue. 15916 * @cq: The completion queue to associate with this cq. 15917 * @subtype: The queue's subtype. 15918 * 15919 * This function creates a mailbox queue, as detailed in @mq, on a port, 15920 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15921 * 15922 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15923 * is used to get the entry count and entry size that are necessary to 15924 * determine the number of pages to allocate and use for this queue. This 15925 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15926 * mailbox queue. This function is asynchronous and will wait for the mailbox 15927 * command to finish before continuing. 15928 * 15929 * On success this function will return a zero. If unable to allocate enough 15930 * memory this function will return -ENOMEM. If the queue create mailbox command 15931 * fails this function will return -ENXIO. 15932 **/ 15933 int32_t 15934 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15935 struct lpfc_queue *cq, uint32_t subtype) 15936 { 15937 struct lpfc_mbx_mq_create *mq_create; 15938 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15939 struct lpfc_dmabuf *dmabuf; 15940 LPFC_MBOXQ_t *mbox; 15941 int rc, length, status = 0; 15942 uint32_t shdr_status, shdr_add_status; 15943 union lpfc_sli4_cfg_shdr *shdr; 15944 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15945 15946 /* sanity check on queue memory */ 15947 if (!mq || !cq) 15948 return -ENODEV; 15949 if (!phba->sli4_hba.pc_sli4_params.supported) 15950 hw_page_size = SLI4_PAGE_SIZE; 15951 15952 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15953 if (!mbox) 15954 return -ENOMEM; 15955 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15956 sizeof(struct lpfc_sli4_cfg_mhdr)); 15957 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15958 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15959 length, LPFC_SLI4_MBX_EMBED); 15960 15961 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15962 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15963 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15964 &mq_create_ext->u.request, mq->page_count); 15965 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15966 &mq_create_ext->u.request, 1); 15967 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15968 &mq_create_ext->u.request, 1); 15969 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15970 &mq_create_ext->u.request, 1); 15971 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15972 &mq_create_ext->u.request, 1); 15973 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15974 &mq_create_ext->u.request, 1); 15975 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15976 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15977 phba->sli4_hba.pc_sli4_params.mqv); 15978 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15979 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15980 cq->queue_id); 15981 else 15982 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15983 cq->queue_id); 15984 switch (mq->entry_count) { 15985 default: 15986 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15987 "0362 Unsupported MQ count. (%d)\n", 15988 mq->entry_count); 15989 if (mq->entry_count < 16) { 15990 status = -EINVAL; 15991 goto out; 15992 } 15993 fallthrough; /* otherwise default to smallest count */ 15994 case 16: 15995 bf_set(lpfc_mq_context_ring_size, 15996 &mq_create_ext->u.request.context, 15997 LPFC_MQ_RING_SIZE_16); 15998 break; 15999 case 32: 16000 bf_set(lpfc_mq_context_ring_size, 16001 &mq_create_ext->u.request.context, 16002 LPFC_MQ_RING_SIZE_32); 16003 break; 16004 case 64: 16005 bf_set(lpfc_mq_context_ring_size, 16006 &mq_create_ext->u.request.context, 16007 LPFC_MQ_RING_SIZE_64); 16008 break; 16009 case 128: 16010 bf_set(lpfc_mq_context_ring_size, 16011 &mq_create_ext->u.request.context, 16012 LPFC_MQ_RING_SIZE_128); 16013 break; 16014 } 16015 list_for_each_entry(dmabuf, &mq->page_list, list) { 16016 memset(dmabuf->virt, 0, hw_page_size); 16017 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16018 putPaddrLow(dmabuf->phys); 16019 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16020 putPaddrHigh(dmabuf->phys); 16021 } 16022 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16023 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16024 &mq_create_ext->u.response); 16025 if (rc != MBX_SUCCESS) { 16026 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16027 "2795 MQ_CREATE_EXT failed with " 16028 "status x%x. Failback to MQ_CREATE.\n", 16029 rc); 16030 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16031 mq_create = &mbox->u.mqe.un.mq_create; 16032 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16033 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16034 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16035 &mq_create->u.response); 16036 } 16037 16038 /* The IOCTL status is embedded in the mailbox subheader. */ 16039 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16040 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16041 if (shdr_status || shdr_add_status || rc) { 16042 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16043 "2502 MQ_CREATE mailbox failed with " 16044 "status x%x add_status x%x, mbx status x%x\n", 16045 shdr_status, shdr_add_status, rc); 16046 status = -ENXIO; 16047 goto out; 16048 } 16049 if (mq->queue_id == 0xFFFF) { 16050 status = -ENXIO; 16051 goto out; 16052 } 16053 mq->type = LPFC_MQ; 16054 mq->assoc_qid = cq->queue_id; 16055 mq->subtype = subtype; 16056 mq->host_index = 0; 16057 mq->hba_index = 0; 16058 16059 /* link the mq onto the parent cq child list */ 16060 list_add_tail(&mq->list, &cq->child_list); 16061 out: 16062 mempool_free(mbox, phba->mbox_mem_pool); 16063 return status; 16064 } 16065 16066 /** 16067 * lpfc_wq_create - Create a Work Queue on the HBA 16068 * @phba: HBA structure that indicates port to create a queue on. 16069 * @wq: The queue structure to use to create the work queue. 16070 * @cq: The completion queue to bind this work queue to. 16071 * @subtype: The subtype of the work queue indicating its functionality. 16072 * 16073 * This function creates a work queue, as detailed in @wq, on a port, described 16074 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16075 * 16076 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16077 * is used to get the entry count and entry size that are necessary to 16078 * determine the number of pages to allocate and use for this queue. The @cq 16079 * is used to indicate which completion queue to bind this work queue to. This 16080 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16081 * work queue. This function is asynchronous and will wait for the mailbox 16082 * command to finish before continuing. 16083 * 16084 * On success this function will return a zero. If unable to allocate enough 16085 * memory this function will return -ENOMEM. If the queue create mailbox command 16086 * fails this function will return -ENXIO. 16087 **/ 16088 int 16089 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16090 struct lpfc_queue *cq, uint32_t subtype) 16091 { 16092 struct lpfc_mbx_wq_create *wq_create; 16093 struct lpfc_dmabuf *dmabuf; 16094 LPFC_MBOXQ_t *mbox; 16095 int rc, length, status = 0; 16096 uint32_t shdr_status, shdr_add_status; 16097 union lpfc_sli4_cfg_shdr *shdr; 16098 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16099 struct dma_address *page; 16100 void __iomem *bar_memmap_p; 16101 uint32_t db_offset; 16102 uint16_t pci_barset; 16103 uint8_t dpp_barset; 16104 uint32_t dpp_offset; 16105 uint8_t wq_create_version; 16106 #ifdef CONFIG_X86 16107 unsigned long pg_addr; 16108 #endif 16109 16110 /* sanity check on queue memory */ 16111 if (!wq || !cq) 16112 return -ENODEV; 16113 if (!phba->sli4_hba.pc_sli4_params.supported) 16114 hw_page_size = wq->page_size; 16115 16116 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16117 if (!mbox) 16118 return -ENOMEM; 16119 length = (sizeof(struct lpfc_mbx_wq_create) - 16120 sizeof(struct lpfc_sli4_cfg_mhdr)); 16121 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16122 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16123 length, LPFC_SLI4_MBX_EMBED); 16124 wq_create = &mbox->u.mqe.un.wq_create; 16125 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16126 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16127 wq->page_count); 16128 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16129 cq->queue_id); 16130 16131 /* wqv is the earliest version supported, NOT the latest */ 16132 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16133 phba->sli4_hba.pc_sli4_params.wqv); 16134 16135 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16136 (wq->page_size > SLI4_PAGE_SIZE)) 16137 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16138 else 16139 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16140 16141 switch (wq_create_version) { 16142 case LPFC_Q_CREATE_VERSION_1: 16143 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16144 wq->entry_count); 16145 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16146 LPFC_Q_CREATE_VERSION_1); 16147 16148 switch (wq->entry_size) { 16149 default: 16150 case 64: 16151 bf_set(lpfc_mbx_wq_create_wqe_size, 16152 &wq_create->u.request_1, 16153 LPFC_WQ_WQE_SIZE_64); 16154 break; 16155 case 128: 16156 bf_set(lpfc_mbx_wq_create_wqe_size, 16157 &wq_create->u.request_1, 16158 LPFC_WQ_WQE_SIZE_128); 16159 break; 16160 } 16161 /* Request DPP by default */ 16162 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16163 bf_set(lpfc_mbx_wq_create_page_size, 16164 &wq_create->u.request_1, 16165 (wq->page_size / SLI4_PAGE_SIZE)); 16166 page = wq_create->u.request_1.page; 16167 break; 16168 default: 16169 page = wq_create->u.request.page; 16170 break; 16171 } 16172 16173 list_for_each_entry(dmabuf, &wq->page_list, list) { 16174 memset(dmabuf->virt, 0, hw_page_size); 16175 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16176 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16177 } 16178 16179 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16180 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16181 16182 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16183 /* The IOCTL status is embedded in the mailbox subheader. */ 16184 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16185 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16186 if (shdr_status || shdr_add_status || rc) { 16187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16188 "2503 WQ_CREATE mailbox failed with " 16189 "status x%x add_status x%x, mbx status x%x\n", 16190 shdr_status, shdr_add_status, rc); 16191 status = -ENXIO; 16192 goto out; 16193 } 16194 16195 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16196 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16197 &wq_create->u.response); 16198 else 16199 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16200 &wq_create->u.response_1); 16201 16202 if (wq->queue_id == 0xFFFF) { 16203 status = -ENXIO; 16204 goto out; 16205 } 16206 16207 wq->db_format = LPFC_DB_LIST_FORMAT; 16208 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16209 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16210 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16211 &wq_create->u.response); 16212 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16213 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16214 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16215 "3265 WQ[%d] doorbell format " 16216 "not supported: x%x\n", 16217 wq->queue_id, wq->db_format); 16218 status = -EINVAL; 16219 goto out; 16220 } 16221 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16222 &wq_create->u.response); 16223 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16224 pci_barset); 16225 if (!bar_memmap_p) { 16226 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16227 "3263 WQ[%d] failed to memmap " 16228 "pci barset:x%x\n", 16229 wq->queue_id, pci_barset); 16230 status = -ENOMEM; 16231 goto out; 16232 } 16233 db_offset = wq_create->u.response.doorbell_offset; 16234 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16235 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16236 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16237 "3252 WQ[%d] doorbell offset " 16238 "not supported: x%x\n", 16239 wq->queue_id, db_offset); 16240 status = -EINVAL; 16241 goto out; 16242 } 16243 wq->db_regaddr = bar_memmap_p + db_offset; 16244 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16245 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16246 "format:x%x\n", wq->queue_id, 16247 pci_barset, db_offset, wq->db_format); 16248 } else 16249 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16250 } else { 16251 /* Check if DPP was honored by the firmware */ 16252 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16253 &wq_create->u.response_1); 16254 if (wq->dpp_enable) { 16255 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16256 &wq_create->u.response_1); 16257 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16258 pci_barset); 16259 if (!bar_memmap_p) { 16260 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16261 "3267 WQ[%d] failed to memmap " 16262 "pci barset:x%x\n", 16263 wq->queue_id, pci_barset); 16264 status = -ENOMEM; 16265 goto out; 16266 } 16267 db_offset = wq_create->u.response_1.doorbell_offset; 16268 wq->db_regaddr = bar_memmap_p + db_offset; 16269 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16270 &wq_create->u.response_1); 16271 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16272 &wq_create->u.response_1); 16273 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16274 dpp_barset); 16275 if (!bar_memmap_p) { 16276 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16277 "3268 WQ[%d] failed to memmap " 16278 "pci barset:x%x\n", 16279 wq->queue_id, dpp_barset); 16280 status = -ENOMEM; 16281 goto out; 16282 } 16283 dpp_offset = wq_create->u.response_1.dpp_offset; 16284 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16285 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16286 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16287 "dpp_id:x%x dpp_barset:x%x " 16288 "dpp_offset:x%x\n", 16289 wq->queue_id, pci_barset, db_offset, 16290 wq->dpp_id, dpp_barset, dpp_offset); 16291 16292 #ifdef CONFIG_X86 16293 /* Enable combined writes for DPP aperture */ 16294 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16295 rc = set_memory_wc(pg_addr, 1); 16296 if (rc) { 16297 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16298 "3272 Cannot setup Combined " 16299 "Write on WQ[%d] - disable DPP\n", 16300 wq->queue_id); 16301 phba->cfg_enable_dpp = 0; 16302 } 16303 #else 16304 phba->cfg_enable_dpp = 0; 16305 #endif 16306 } else 16307 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16308 } 16309 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16310 if (wq->pring == NULL) { 16311 status = -ENOMEM; 16312 goto out; 16313 } 16314 wq->type = LPFC_WQ; 16315 wq->assoc_qid = cq->queue_id; 16316 wq->subtype = subtype; 16317 wq->host_index = 0; 16318 wq->hba_index = 0; 16319 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16320 16321 /* link the wq onto the parent cq child list */ 16322 list_add_tail(&wq->list, &cq->child_list); 16323 out: 16324 mempool_free(mbox, phba->mbox_mem_pool); 16325 return status; 16326 } 16327 16328 /** 16329 * lpfc_rq_create - Create a Receive Queue on the HBA 16330 * @phba: HBA structure that indicates port to create a queue on. 16331 * @hrq: The queue structure to use to create the header receive queue. 16332 * @drq: The queue structure to use to create the data receive queue. 16333 * @cq: The completion queue to bind this work queue to. 16334 * @subtype: The subtype of the work queue indicating its functionality. 16335 * 16336 * This function creates a receive buffer queue pair , as detailed in @hrq and 16337 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16338 * to the HBA. 16339 * 16340 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16341 * struct is used to get the entry count that is necessary to determine the 16342 * number of pages to use for this queue. The @cq is used to indicate which 16343 * completion queue to bind received buffers that are posted to these queues to. 16344 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16345 * receive queue pair. This function is asynchronous and will wait for the 16346 * mailbox command to finish before continuing. 16347 * 16348 * On success this function will return a zero. If unable to allocate enough 16349 * memory this function will return -ENOMEM. If the queue create mailbox command 16350 * fails this function will return -ENXIO. 16351 **/ 16352 int 16353 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16354 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16355 { 16356 struct lpfc_mbx_rq_create *rq_create; 16357 struct lpfc_dmabuf *dmabuf; 16358 LPFC_MBOXQ_t *mbox; 16359 int rc, length, status = 0; 16360 uint32_t shdr_status, shdr_add_status; 16361 union lpfc_sli4_cfg_shdr *shdr; 16362 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16363 void __iomem *bar_memmap_p; 16364 uint32_t db_offset; 16365 uint16_t pci_barset; 16366 16367 /* sanity check on queue memory */ 16368 if (!hrq || !drq || !cq) 16369 return -ENODEV; 16370 if (!phba->sli4_hba.pc_sli4_params.supported) 16371 hw_page_size = SLI4_PAGE_SIZE; 16372 16373 if (hrq->entry_count != drq->entry_count) 16374 return -EINVAL; 16375 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16376 if (!mbox) 16377 return -ENOMEM; 16378 length = (sizeof(struct lpfc_mbx_rq_create) - 16379 sizeof(struct lpfc_sli4_cfg_mhdr)); 16380 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16381 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16382 length, LPFC_SLI4_MBX_EMBED); 16383 rq_create = &mbox->u.mqe.un.rq_create; 16384 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16385 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16386 phba->sli4_hba.pc_sli4_params.rqv); 16387 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16388 bf_set(lpfc_rq_context_rqe_count_1, 16389 &rq_create->u.request.context, 16390 hrq->entry_count); 16391 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16392 bf_set(lpfc_rq_context_rqe_size, 16393 &rq_create->u.request.context, 16394 LPFC_RQE_SIZE_8); 16395 bf_set(lpfc_rq_context_page_size, 16396 &rq_create->u.request.context, 16397 LPFC_RQ_PAGE_SIZE_4096); 16398 } else { 16399 switch (hrq->entry_count) { 16400 default: 16401 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16402 "2535 Unsupported RQ count. (%d)\n", 16403 hrq->entry_count); 16404 if (hrq->entry_count < 512) { 16405 status = -EINVAL; 16406 goto out; 16407 } 16408 fallthrough; /* otherwise default to smallest count */ 16409 case 512: 16410 bf_set(lpfc_rq_context_rqe_count, 16411 &rq_create->u.request.context, 16412 LPFC_RQ_RING_SIZE_512); 16413 break; 16414 case 1024: 16415 bf_set(lpfc_rq_context_rqe_count, 16416 &rq_create->u.request.context, 16417 LPFC_RQ_RING_SIZE_1024); 16418 break; 16419 case 2048: 16420 bf_set(lpfc_rq_context_rqe_count, 16421 &rq_create->u.request.context, 16422 LPFC_RQ_RING_SIZE_2048); 16423 break; 16424 case 4096: 16425 bf_set(lpfc_rq_context_rqe_count, 16426 &rq_create->u.request.context, 16427 LPFC_RQ_RING_SIZE_4096); 16428 break; 16429 } 16430 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16431 LPFC_HDR_BUF_SIZE); 16432 } 16433 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16434 cq->queue_id); 16435 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16436 hrq->page_count); 16437 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16438 memset(dmabuf->virt, 0, hw_page_size); 16439 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16440 putPaddrLow(dmabuf->phys); 16441 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16442 putPaddrHigh(dmabuf->phys); 16443 } 16444 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16445 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16446 16447 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16448 /* The IOCTL status is embedded in the mailbox subheader. */ 16449 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16450 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16451 if (shdr_status || shdr_add_status || rc) { 16452 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16453 "2504 RQ_CREATE mailbox failed with " 16454 "status x%x add_status x%x, mbx status x%x\n", 16455 shdr_status, shdr_add_status, rc); 16456 status = -ENXIO; 16457 goto out; 16458 } 16459 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16460 if (hrq->queue_id == 0xFFFF) { 16461 status = -ENXIO; 16462 goto out; 16463 } 16464 16465 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16466 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16467 &rq_create->u.response); 16468 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16469 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16470 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16471 "3262 RQ [%d] doorbell format not " 16472 "supported: x%x\n", hrq->queue_id, 16473 hrq->db_format); 16474 status = -EINVAL; 16475 goto out; 16476 } 16477 16478 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16479 &rq_create->u.response); 16480 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16481 if (!bar_memmap_p) { 16482 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16483 "3269 RQ[%d] failed to memmap pci " 16484 "barset:x%x\n", hrq->queue_id, 16485 pci_barset); 16486 status = -ENOMEM; 16487 goto out; 16488 } 16489 16490 db_offset = rq_create->u.response.doorbell_offset; 16491 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16492 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16493 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16494 "3270 RQ[%d] doorbell offset not " 16495 "supported: x%x\n", hrq->queue_id, 16496 db_offset); 16497 status = -EINVAL; 16498 goto out; 16499 } 16500 hrq->db_regaddr = bar_memmap_p + db_offset; 16501 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16502 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16503 "format:x%x\n", hrq->queue_id, pci_barset, 16504 db_offset, hrq->db_format); 16505 } else { 16506 hrq->db_format = LPFC_DB_RING_FORMAT; 16507 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16508 } 16509 hrq->type = LPFC_HRQ; 16510 hrq->assoc_qid = cq->queue_id; 16511 hrq->subtype = subtype; 16512 hrq->host_index = 0; 16513 hrq->hba_index = 0; 16514 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16515 16516 /* now create the data queue */ 16517 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16518 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16519 length, LPFC_SLI4_MBX_EMBED); 16520 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16521 phba->sli4_hba.pc_sli4_params.rqv); 16522 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16523 bf_set(lpfc_rq_context_rqe_count_1, 16524 &rq_create->u.request.context, hrq->entry_count); 16525 if (subtype == LPFC_NVMET) 16526 rq_create->u.request.context.buffer_size = 16527 LPFC_NVMET_DATA_BUF_SIZE; 16528 else 16529 rq_create->u.request.context.buffer_size = 16530 LPFC_DATA_BUF_SIZE; 16531 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16532 LPFC_RQE_SIZE_8); 16533 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16534 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16535 } else { 16536 switch (drq->entry_count) { 16537 default: 16538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16539 "2536 Unsupported RQ count. (%d)\n", 16540 drq->entry_count); 16541 if (drq->entry_count < 512) { 16542 status = -EINVAL; 16543 goto out; 16544 } 16545 fallthrough; /* otherwise default to smallest count */ 16546 case 512: 16547 bf_set(lpfc_rq_context_rqe_count, 16548 &rq_create->u.request.context, 16549 LPFC_RQ_RING_SIZE_512); 16550 break; 16551 case 1024: 16552 bf_set(lpfc_rq_context_rqe_count, 16553 &rq_create->u.request.context, 16554 LPFC_RQ_RING_SIZE_1024); 16555 break; 16556 case 2048: 16557 bf_set(lpfc_rq_context_rqe_count, 16558 &rq_create->u.request.context, 16559 LPFC_RQ_RING_SIZE_2048); 16560 break; 16561 case 4096: 16562 bf_set(lpfc_rq_context_rqe_count, 16563 &rq_create->u.request.context, 16564 LPFC_RQ_RING_SIZE_4096); 16565 break; 16566 } 16567 if (subtype == LPFC_NVMET) 16568 bf_set(lpfc_rq_context_buf_size, 16569 &rq_create->u.request.context, 16570 LPFC_NVMET_DATA_BUF_SIZE); 16571 else 16572 bf_set(lpfc_rq_context_buf_size, 16573 &rq_create->u.request.context, 16574 LPFC_DATA_BUF_SIZE); 16575 } 16576 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16577 cq->queue_id); 16578 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16579 drq->page_count); 16580 list_for_each_entry(dmabuf, &drq->page_list, list) { 16581 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16582 putPaddrLow(dmabuf->phys); 16583 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16584 putPaddrHigh(dmabuf->phys); 16585 } 16586 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16587 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16588 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16589 /* The IOCTL status is embedded in the mailbox subheader. */ 16590 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16591 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16592 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16593 if (shdr_status || shdr_add_status || rc) { 16594 status = -ENXIO; 16595 goto out; 16596 } 16597 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16598 if (drq->queue_id == 0xFFFF) { 16599 status = -ENXIO; 16600 goto out; 16601 } 16602 drq->type = LPFC_DRQ; 16603 drq->assoc_qid = cq->queue_id; 16604 drq->subtype = subtype; 16605 drq->host_index = 0; 16606 drq->hba_index = 0; 16607 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16608 16609 /* link the header and data RQs onto the parent cq child list */ 16610 list_add_tail(&hrq->list, &cq->child_list); 16611 list_add_tail(&drq->list, &cq->child_list); 16612 16613 out: 16614 mempool_free(mbox, phba->mbox_mem_pool); 16615 return status; 16616 } 16617 16618 /** 16619 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16620 * @phba: HBA structure that indicates port to create a queue on. 16621 * @hrqp: The queue structure array to use to create the header receive queues. 16622 * @drqp: The queue structure array to use to create the data receive queues. 16623 * @cqp: The completion queue array to bind these receive queues to. 16624 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16625 * 16626 * This function creates a receive buffer queue pair , as detailed in @hrq and 16627 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16628 * to the HBA. 16629 * 16630 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16631 * struct is used to get the entry count that is necessary to determine the 16632 * number of pages to use for this queue. The @cq is used to indicate which 16633 * completion queue to bind received buffers that are posted to these queues to. 16634 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16635 * receive queue pair. This function is asynchronous and will wait for the 16636 * mailbox command to finish before continuing. 16637 * 16638 * On success this function will return a zero. If unable to allocate enough 16639 * memory this function will return -ENOMEM. If the queue create mailbox command 16640 * fails this function will return -ENXIO. 16641 **/ 16642 int 16643 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16644 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16645 uint32_t subtype) 16646 { 16647 struct lpfc_queue *hrq, *drq, *cq; 16648 struct lpfc_mbx_rq_create_v2 *rq_create; 16649 struct lpfc_dmabuf *dmabuf; 16650 LPFC_MBOXQ_t *mbox; 16651 int rc, length, alloclen, status = 0; 16652 int cnt, idx, numrq, page_idx = 0; 16653 uint32_t shdr_status, shdr_add_status; 16654 union lpfc_sli4_cfg_shdr *shdr; 16655 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16656 16657 numrq = phba->cfg_nvmet_mrq; 16658 /* sanity check on array memory */ 16659 if (!hrqp || !drqp || !cqp || !numrq) 16660 return -ENODEV; 16661 if (!phba->sli4_hba.pc_sli4_params.supported) 16662 hw_page_size = SLI4_PAGE_SIZE; 16663 16664 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16665 if (!mbox) 16666 return -ENOMEM; 16667 16668 length = sizeof(struct lpfc_mbx_rq_create_v2); 16669 length += ((2 * numrq * hrqp[0]->page_count) * 16670 sizeof(struct dma_address)); 16671 16672 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16673 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16674 LPFC_SLI4_MBX_NEMBED); 16675 if (alloclen < length) { 16676 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16677 "3099 Allocated DMA memory size (%d) is " 16678 "less than the requested DMA memory size " 16679 "(%d)\n", alloclen, length); 16680 status = -ENOMEM; 16681 goto out; 16682 } 16683 16684 16685 16686 rq_create = mbox->sge_array->addr[0]; 16687 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16688 16689 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16690 cnt = 0; 16691 16692 for (idx = 0; idx < numrq; idx++) { 16693 hrq = hrqp[idx]; 16694 drq = drqp[idx]; 16695 cq = cqp[idx]; 16696 16697 /* sanity check on queue memory */ 16698 if (!hrq || !drq || !cq) { 16699 status = -ENODEV; 16700 goto out; 16701 } 16702 16703 if (hrq->entry_count != drq->entry_count) { 16704 status = -EINVAL; 16705 goto out; 16706 } 16707 16708 if (idx == 0) { 16709 bf_set(lpfc_mbx_rq_create_num_pages, 16710 &rq_create->u.request, 16711 hrq->page_count); 16712 bf_set(lpfc_mbx_rq_create_rq_cnt, 16713 &rq_create->u.request, (numrq * 2)); 16714 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16715 1); 16716 bf_set(lpfc_rq_context_base_cq, 16717 &rq_create->u.request.context, 16718 cq->queue_id); 16719 bf_set(lpfc_rq_context_data_size, 16720 &rq_create->u.request.context, 16721 LPFC_NVMET_DATA_BUF_SIZE); 16722 bf_set(lpfc_rq_context_hdr_size, 16723 &rq_create->u.request.context, 16724 LPFC_HDR_BUF_SIZE); 16725 bf_set(lpfc_rq_context_rqe_count_1, 16726 &rq_create->u.request.context, 16727 hrq->entry_count); 16728 bf_set(lpfc_rq_context_rqe_size, 16729 &rq_create->u.request.context, 16730 LPFC_RQE_SIZE_8); 16731 bf_set(lpfc_rq_context_page_size, 16732 &rq_create->u.request.context, 16733 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16734 } 16735 rc = 0; 16736 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16737 memset(dmabuf->virt, 0, hw_page_size); 16738 cnt = page_idx + dmabuf->buffer_tag; 16739 rq_create->u.request.page[cnt].addr_lo = 16740 putPaddrLow(dmabuf->phys); 16741 rq_create->u.request.page[cnt].addr_hi = 16742 putPaddrHigh(dmabuf->phys); 16743 rc++; 16744 } 16745 page_idx += rc; 16746 16747 rc = 0; 16748 list_for_each_entry(dmabuf, &drq->page_list, list) { 16749 memset(dmabuf->virt, 0, hw_page_size); 16750 cnt = page_idx + dmabuf->buffer_tag; 16751 rq_create->u.request.page[cnt].addr_lo = 16752 putPaddrLow(dmabuf->phys); 16753 rq_create->u.request.page[cnt].addr_hi = 16754 putPaddrHigh(dmabuf->phys); 16755 rc++; 16756 } 16757 page_idx += rc; 16758 16759 hrq->db_format = LPFC_DB_RING_FORMAT; 16760 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16761 hrq->type = LPFC_HRQ; 16762 hrq->assoc_qid = cq->queue_id; 16763 hrq->subtype = subtype; 16764 hrq->host_index = 0; 16765 hrq->hba_index = 0; 16766 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16767 16768 drq->db_format = LPFC_DB_RING_FORMAT; 16769 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16770 drq->type = LPFC_DRQ; 16771 drq->assoc_qid = cq->queue_id; 16772 drq->subtype = subtype; 16773 drq->host_index = 0; 16774 drq->hba_index = 0; 16775 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16776 16777 list_add_tail(&hrq->list, &cq->child_list); 16778 list_add_tail(&drq->list, &cq->child_list); 16779 } 16780 16781 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16782 /* The IOCTL status is embedded in the mailbox subheader. */ 16783 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16784 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16785 if (shdr_status || shdr_add_status || rc) { 16786 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16787 "3120 RQ_CREATE mailbox failed with " 16788 "status x%x add_status x%x, mbx status x%x\n", 16789 shdr_status, shdr_add_status, rc); 16790 status = -ENXIO; 16791 goto out; 16792 } 16793 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16794 if (rc == 0xFFFF) { 16795 status = -ENXIO; 16796 goto out; 16797 } 16798 16799 /* Initialize all RQs with associated queue id */ 16800 for (idx = 0; idx < numrq; idx++) { 16801 hrq = hrqp[idx]; 16802 hrq->queue_id = rc + (2 * idx); 16803 drq = drqp[idx]; 16804 drq->queue_id = rc + (2 * idx) + 1; 16805 } 16806 16807 out: 16808 lpfc_sli4_mbox_cmd_free(phba, mbox); 16809 return status; 16810 } 16811 16812 /** 16813 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16814 * @phba: HBA structure that indicates port to destroy a queue on. 16815 * @eq: The queue structure associated with the queue to destroy. 16816 * 16817 * This function destroys a queue, as detailed in @eq by sending an mailbox 16818 * command, specific to the type of queue, to the HBA. 16819 * 16820 * The @eq struct is used to get the queue ID of the queue to destroy. 16821 * 16822 * On success this function will return a zero. If the queue destroy mailbox 16823 * command fails this function will return -ENXIO. 16824 **/ 16825 int 16826 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16827 { 16828 LPFC_MBOXQ_t *mbox; 16829 int rc, length, status = 0; 16830 uint32_t shdr_status, shdr_add_status; 16831 union lpfc_sli4_cfg_shdr *shdr; 16832 16833 /* sanity check on queue memory */ 16834 if (!eq) 16835 return -ENODEV; 16836 16837 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16838 if (!mbox) 16839 return -ENOMEM; 16840 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16841 sizeof(struct lpfc_sli4_cfg_mhdr)); 16842 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16843 LPFC_MBOX_OPCODE_EQ_DESTROY, 16844 length, LPFC_SLI4_MBX_EMBED); 16845 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16846 eq->queue_id); 16847 mbox->vport = eq->phba->pport; 16848 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16849 16850 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16851 /* The IOCTL status is embedded in the mailbox subheader. */ 16852 shdr = (union lpfc_sli4_cfg_shdr *) 16853 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16854 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16855 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16856 if (shdr_status || shdr_add_status || rc) { 16857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16858 "2505 EQ_DESTROY mailbox failed with " 16859 "status x%x add_status x%x, mbx status x%x\n", 16860 shdr_status, shdr_add_status, rc); 16861 status = -ENXIO; 16862 } 16863 16864 /* Remove eq from any list */ 16865 list_del_init(&eq->list); 16866 mempool_free(mbox, eq->phba->mbox_mem_pool); 16867 return status; 16868 } 16869 16870 /** 16871 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16872 * @phba: HBA structure that indicates port to destroy a queue on. 16873 * @cq: The queue structure associated with the queue to destroy. 16874 * 16875 * This function destroys a queue, as detailed in @cq by sending an mailbox 16876 * command, specific to the type of queue, to the HBA. 16877 * 16878 * The @cq struct is used to get the queue ID of the queue to destroy. 16879 * 16880 * On success this function will return a zero. If the queue destroy mailbox 16881 * command fails this function will return -ENXIO. 16882 **/ 16883 int 16884 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16885 { 16886 LPFC_MBOXQ_t *mbox; 16887 int rc, length, status = 0; 16888 uint32_t shdr_status, shdr_add_status; 16889 union lpfc_sli4_cfg_shdr *shdr; 16890 16891 /* sanity check on queue memory */ 16892 if (!cq) 16893 return -ENODEV; 16894 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16895 if (!mbox) 16896 return -ENOMEM; 16897 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16898 sizeof(struct lpfc_sli4_cfg_mhdr)); 16899 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16900 LPFC_MBOX_OPCODE_CQ_DESTROY, 16901 length, LPFC_SLI4_MBX_EMBED); 16902 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16903 cq->queue_id); 16904 mbox->vport = cq->phba->pport; 16905 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16906 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16907 /* The IOCTL status is embedded in the mailbox subheader. */ 16908 shdr = (union lpfc_sli4_cfg_shdr *) 16909 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16910 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16911 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16912 if (shdr_status || shdr_add_status || rc) { 16913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16914 "2506 CQ_DESTROY mailbox failed with " 16915 "status x%x add_status x%x, mbx status x%x\n", 16916 shdr_status, shdr_add_status, rc); 16917 status = -ENXIO; 16918 } 16919 /* Remove cq from any list */ 16920 list_del_init(&cq->list); 16921 mempool_free(mbox, cq->phba->mbox_mem_pool); 16922 return status; 16923 } 16924 16925 /** 16926 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16927 * @phba: HBA structure that indicates port to destroy a queue on. 16928 * @mq: The queue structure associated with the queue to destroy. 16929 * 16930 * This function destroys a queue, as detailed in @mq by sending an mailbox 16931 * command, specific to the type of queue, to the HBA. 16932 * 16933 * The @mq struct is used to get the queue ID of the queue to destroy. 16934 * 16935 * On success this function will return a zero. If the queue destroy mailbox 16936 * command fails this function will return -ENXIO. 16937 **/ 16938 int 16939 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16940 { 16941 LPFC_MBOXQ_t *mbox; 16942 int rc, length, status = 0; 16943 uint32_t shdr_status, shdr_add_status; 16944 union lpfc_sli4_cfg_shdr *shdr; 16945 16946 /* sanity check on queue memory */ 16947 if (!mq) 16948 return -ENODEV; 16949 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16950 if (!mbox) 16951 return -ENOMEM; 16952 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16953 sizeof(struct lpfc_sli4_cfg_mhdr)); 16954 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16955 LPFC_MBOX_OPCODE_MQ_DESTROY, 16956 length, LPFC_SLI4_MBX_EMBED); 16957 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16958 mq->queue_id); 16959 mbox->vport = mq->phba->pport; 16960 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16961 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16962 /* The IOCTL status is embedded in the mailbox subheader. */ 16963 shdr = (union lpfc_sli4_cfg_shdr *) 16964 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16965 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16966 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16967 if (shdr_status || shdr_add_status || rc) { 16968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16969 "2507 MQ_DESTROY mailbox failed with " 16970 "status x%x add_status x%x, mbx status x%x\n", 16971 shdr_status, shdr_add_status, rc); 16972 status = -ENXIO; 16973 } 16974 /* Remove mq from any list */ 16975 list_del_init(&mq->list); 16976 mempool_free(mbox, mq->phba->mbox_mem_pool); 16977 return status; 16978 } 16979 16980 /** 16981 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16982 * @phba: HBA structure that indicates port to destroy a queue on. 16983 * @wq: The queue structure associated with the queue to destroy. 16984 * 16985 * This function destroys a queue, as detailed in @wq by sending an mailbox 16986 * command, specific to the type of queue, to the HBA. 16987 * 16988 * The @wq struct is used to get the queue ID of the queue to destroy. 16989 * 16990 * On success this function will return a zero. If the queue destroy mailbox 16991 * command fails this function will return -ENXIO. 16992 **/ 16993 int 16994 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16995 { 16996 LPFC_MBOXQ_t *mbox; 16997 int rc, length, status = 0; 16998 uint32_t shdr_status, shdr_add_status; 16999 union lpfc_sli4_cfg_shdr *shdr; 17000 17001 /* sanity check on queue memory */ 17002 if (!wq) 17003 return -ENODEV; 17004 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17005 if (!mbox) 17006 return -ENOMEM; 17007 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17008 sizeof(struct lpfc_sli4_cfg_mhdr)); 17009 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17010 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17011 length, LPFC_SLI4_MBX_EMBED); 17012 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17013 wq->queue_id); 17014 mbox->vport = wq->phba->pport; 17015 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17016 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17017 shdr = (union lpfc_sli4_cfg_shdr *) 17018 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17019 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17020 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17021 if (shdr_status || shdr_add_status || rc) { 17022 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17023 "2508 WQ_DESTROY mailbox failed with " 17024 "status x%x add_status x%x, mbx status x%x\n", 17025 shdr_status, shdr_add_status, rc); 17026 status = -ENXIO; 17027 } 17028 /* Remove wq from any list */ 17029 list_del_init(&wq->list); 17030 kfree(wq->pring); 17031 wq->pring = NULL; 17032 mempool_free(mbox, wq->phba->mbox_mem_pool); 17033 return status; 17034 } 17035 17036 /** 17037 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17038 * @phba: HBA structure that indicates port to destroy a queue on. 17039 * @hrq: The queue structure associated with the queue to destroy. 17040 * @drq: The queue structure associated with the queue to destroy. 17041 * 17042 * This function destroys a queue, as detailed in @rq by sending an mailbox 17043 * command, specific to the type of queue, to the HBA. 17044 * 17045 * The @rq struct is used to get the queue ID of the queue to destroy. 17046 * 17047 * On success this function will return a zero. If the queue destroy mailbox 17048 * command fails this function will return -ENXIO. 17049 **/ 17050 int 17051 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17052 struct lpfc_queue *drq) 17053 { 17054 LPFC_MBOXQ_t *mbox; 17055 int rc, length, status = 0; 17056 uint32_t shdr_status, shdr_add_status; 17057 union lpfc_sli4_cfg_shdr *shdr; 17058 17059 /* sanity check on queue memory */ 17060 if (!hrq || !drq) 17061 return -ENODEV; 17062 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17063 if (!mbox) 17064 return -ENOMEM; 17065 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17066 sizeof(struct lpfc_sli4_cfg_mhdr)); 17067 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17068 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17069 length, LPFC_SLI4_MBX_EMBED); 17070 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17071 hrq->queue_id); 17072 mbox->vport = hrq->phba->pport; 17073 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17074 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17075 /* The IOCTL status is embedded in the mailbox subheader. */ 17076 shdr = (union lpfc_sli4_cfg_shdr *) 17077 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17078 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17079 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17080 if (shdr_status || shdr_add_status || rc) { 17081 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17082 "2509 RQ_DESTROY mailbox failed with " 17083 "status x%x add_status x%x, mbx status x%x\n", 17084 shdr_status, shdr_add_status, rc); 17085 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17086 return -ENXIO; 17087 } 17088 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17089 drq->queue_id); 17090 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17091 shdr = (union lpfc_sli4_cfg_shdr *) 17092 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17093 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17094 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17095 if (shdr_status || shdr_add_status || rc) { 17096 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17097 "2510 RQ_DESTROY mailbox failed with " 17098 "status x%x add_status x%x, mbx status x%x\n", 17099 shdr_status, shdr_add_status, rc); 17100 status = -ENXIO; 17101 } 17102 list_del_init(&hrq->list); 17103 list_del_init(&drq->list); 17104 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17105 return status; 17106 } 17107 17108 /** 17109 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17110 * @phba: The virtual port for which this call being executed. 17111 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17112 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17113 * @xritag: the xritag that ties this io to the SGL pages. 17114 * 17115 * This routine will post the sgl pages for the IO that has the xritag 17116 * that is in the iocbq structure. The xritag is assigned during iocbq 17117 * creation and persists for as long as the driver is loaded. 17118 * if the caller has fewer than 256 scatter gather segments to map then 17119 * pdma_phys_addr1 should be 0. 17120 * If the caller needs to map more than 256 scatter gather segment then 17121 * pdma_phys_addr1 should be a valid physical address. 17122 * physical address for SGLs must be 64 byte aligned. 17123 * If you are going to map 2 SGL's then the first one must have 256 entries 17124 * the second sgl can have between 1 and 256 entries. 17125 * 17126 * Return codes: 17127 * 0 - Success 17128 * -ENXIO, -ENOMEM - Failure 17129 **/ 17130 int 17131 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17132 dma_addr_t pdma_phys_addr0, 17133 dma_addr_t pdma_phys_addr1, 17134 uint16_t xritag) 17135 { 17136 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17137 LPFC_MBOXQ_t *mbox; 17138 int rc; 17139 uint32_t shdr_status, shdr_add_status; 17140 uint32_t mbox_tmo; 17141 union lpfc_sli4_cfg_shdr *shdr; 17142 17143 if (xritag == NO_XRI) { 17144 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17145 "0364 Invalid param:\n"); 17146 return -EINVAL; 17147 } 17148 17149 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17150 if (!mbox) 17151 return -ENOMEM; 17152 17153 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17154 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17155 sizeof(struct lpfc_mbx_post_sgl_pages) - 17156 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17157 17158 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17159 &mbox->u.mqe.un.post_sgl_pages; 17160 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17161 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17162 17163 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17164 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17165 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17166 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17167 17168 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17169 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17170 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17171 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17172 if (!phba->sli4_hba.intr_enable) 17173 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17174 else { 17175 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17176 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17177 } 17178 /* The IOCTL status is embedded in the mailbox subheader. */ 17179 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17180 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17181 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17182 if (!phba->sli4_hba.intr_enable) 17183 mempool_free(mbox, phba->mbox_mem_pool); 17184 else if (rc != MBX_TIMEOUT) 17185 mempool_free(mbox, phba->mbox_mem_pool); 17186 if (shdr_status || shdr_add_status || rc) { 17187 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17188 "2511 POST_SGL mailbox failed with " 17189 "status x%x add_status x%x, mbx status x%x\n", 17190 shdr_status, shdr_add_status, rc); 17191 } 17192 return 0; 17193 } 17194 17195 /** 17196 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17197 * @phba: pointer to lpfc hba data structure. 17198 * 17199 * This routine is invoked to post rpi header templates to the 17200 * HBA consistent with the SLI-4 interface spec. This routine 17201 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17202 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17203 * 17204 * Returns 17205 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17206 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17207 **/ 17208 static uint16_t 17209 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17210 { 17211 unsigned long xri; 17212 17213 /* 17214 * Fetch the next logical xri. Because this index is logical, 17215 * the driver starts at 0 each time. 17216 */ 17217 spin_lock_irq(&phba->hbalock); 17218 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17219 phba->sli4_hba.max_cfg_param.max_xri, 0); 17220 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17221 spin_unlock_irq(&phba->hbalock); 17222 return NO_XRI; 17223 } else { 17224 set_bit(xri, phba->sli4_hba.xri_bmask); 17225 phba->sli4_hba.max_cfg_param.xri_used++; 17226 } 17227 spin_unlock_irq(&phba->hbalock); 17228 return xri; 17229 } 17230 17231 /** 17232 * __lpfc_sli4_free_xri - Release an xri for reuse. 17233 * @phba: pointer to lpfc hba data structure. 17234 * @xri: xri to release. 17235 * 17236 * This routine is invoked to release an xri to the pool of 17237 * available rpis maintained by the driver. 17238 **/ 17239 static void 17240 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17241 { 17242 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17243 phba->sli4_hba.max_cfg_param.xri_used--; 17244 } 17245 } 17246 17247 /** 17248 * lpfc_sli4_free_xri - Release an xri for reuse. 17249 * @phba: pointer to lpfc hba data structure. 17250 * @xri: xri to release. 17251 * 17252 * This routine is invoked to release an xri to the pool of 17253 * available rpis maintained by the driver. 17254 **/ 17255 void 17256 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17257 { 17258 spin_lock_irq(&phba->hbalock); 17259 __lpfc_sli4_free_xri(phba, xri); 17260 spin_unlock_irq(&phba->hbalock); 17261 } 17262 17263 /** 17264 * lpfc_sli4_next_xritag - Get an xritag for the io 17265 * @phba: Pointer to HBA context object. 17266 * 17267 * This function gets an xritag for the iocb. If there is no unused xritag 17268 * it will return 0xffff. 17269 * The function returns the allocated xritag if successful, else returns zero. 17270 * Zero is not a valid xritag. 17271 * The caller is not required to hold any lock. 17272 **/ 17273 uint16_t 17274 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17275 { 17276 uint16_t xri_index; 17277 17278 xri_index = lpfc_sli4_alloc_xri(phba); 17279 if (xri_index == NO_XRI) 17280 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17281 "2004 Failed to allocate XRI.last XRITAG is %d" 17282 " Max XRI is %d, Used XRI is %d\n", 17283 xri_index, 17284 phba->sli4_hba.max_cfg_param.max_xri, 17285 phba->sli4_hba.max_cfg_param.xri_used); 17286 return xri_index; 17287 } 17288 17289 /** 17290 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17291 * @phba: pointer to lpfc hba data structure. 17292 * @post_sgl_list: pointer to els sgl entry list. 17293 * @post_cnt: number of els sgl entries on the list. 17294 * 17295 * This routine is invoked to post a block of driver's sgl pages to the 17296 * HBA using non-embedded mailbox command. No Lock is held. This routine 17297 * is only called when the driver is loading and after all IO has been 17298 * stopped. 17299 **/ 17300 static int 17301 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17302 struct list_head *post_sgl_list, 17303 int post_cnt) 17304 { 17305 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17306 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17307 struct sgl_page_pairs *sgl_pg_pairs; 17308 void *viraddr; 17309 LPFC_MBOXQ_t *mbox; 17310 uint32_t reqlen, alloclen, pg_pairs; 17311 uint32_t mbox_tmo; 17312 uint16_t xritag_start = 0; 17313 int rc = 0; 17314 uint32_t shdr_status, shdr_add_status; 17315 union lpfc_sli4_cfg_shdr *shdr; 17316 17317 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17318 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17319 if (reqlen > SLI4_PAGE_SIZE) { 17320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17321 "2559 Block sgl registration required DMA " 17322 "size (%d) great than a page\n", reqlen); 17323 return -ENOMEM; 17324 } 17325 17326 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17327 if (!mbox) 17328 return -ENOMEM; 17329 17330 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17331 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17332 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17333 LPFC_SLI4_MBX_NEMBED); 17334 17335 if (alloclen < reqlen) { 17336 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17337 "0285 Allocated DMA memory size (%d) is " 17338 "less than the requested DMA memory " 17339 "size (%d)\n", alloclen, reqlen); 17340 lpfc_sli4_mbox_cmd_free(phba, mbox); 17341 return -ENOMEM; 17342 } 17343 /* Set up the SGL pages in the non-embedded DMA pages */ 17344 viraddr = mbox->sge_array->addr[0]; 17345 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17346 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17347 17348 pg_pairs = 0; 17349 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17350 /* Set up the sge entry */ 17351 sgl_pg_pairs->sgl_pg0_addr_lo = 17352 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17353 sgl_pg_pairs->sgl_pg0_addr_hi = 17354 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17355 sgl_pg_pairs->sgl_pg1_addr_lo = 17356 cpu_to_le32(putPaddrLow(0)); 17357 sgl_pg_pairs->sgl_pg1_addr_hi = 17358 cpu_to_le32(putPaddrHigh(0)); 17359 17360 /* Keep the first xritag on the list */ 17361 if (pg_pairs == 0) 17362 xritag_start = sglq_entry->sli4_xritag; 17363 sgl_pg_pairs++; 17364 pg_pairs++; 17365 } 17366 17367 /* Complete initialization and perform endian conversion. */ 17368 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17369 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17370 sgl->word0 = cpu_to_le32(sgl->word0); 17371 17372 if (!phba->sli4_hba.intr_enable) 17373 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17374 else { 17375 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17376 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17377 } 17378 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17379 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17380 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17381 if (!phba->sli4_hba.intr_enable) 17382 lpfc_sli4_mbox_cmd_free(phba, mbox); 17383 else if (rc != MBX_TIMEOUT) 17384 lpfc_sli4_mbox_cmd_free(phba, mbox); 17385 if (shdr_status || shdr_add_status || rc) { 17386 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17387 "2513 POST_SGL_BLOCK mailbox command failed " 17388 "status x%x add_status x%x mbx status x%x\n", 17389 shdr_status, shdr_add_status, rc); 17390 rc = -ENXIO; 17391 } 17392 return rc; 17393 } 17394 17395 /** 17396 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17397 * @phba: pointer to lpfc hba data structure. 17398 * @nblist: pointer to nvme buffer list. 17399 * @count: number of scsi buffers on the list. 17400 * 17401 * This routine is invoked to post a block of @count scsi sgl pages from a 17402 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17403 * No Lock is held. 17404 * 17405 **/ 17406 static int 17407 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17408 int count) 17409 { 17410 struct lpfc_io_buf *lpfc_ncmd; 17411 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17412 struct sgl_page_pairs *sgl_pg_pairs; 17413 void *viraddr; 17414 LPFC_MBOXQ_t *mbox; 17415 uint32_t reqlen, alloclen, pg_pairs; 17416 uint32_t mbox_tmo; 17417 uint16_t xritag_start = 0; 17418 int rc = 0; 17419 uint32_t shdr_status, shdr_add_status; 17420 dma_addr_t pdma_phys_bpl1; 17421 union lpfc_sli4_cfg_shdr *shdr; 17422 17423 /* Calculate the requested length of the dma memory */ 17424 reqlen = count * sizeof(struct sgl_page_pairs) + 17425 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17426 if (reqlen > SLI4_PAGE_SIZE) { 17427 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17428 "6118 Block sgl registration required DMA " 17429 "size (%d) great than a page\n", reqlen); 17430 return -ENOMEM; 17431 } 17432 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17433 if (!mbox) { 17434 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17435 "6119 Failed to allocate mbox cmd memory\n"); 17436 return -ENOMEM; 17437 } 17438 17439 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17440 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17441 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17442 reqlen, LPFC_SLI4_MBX_NEMBED); 17443 17444 if (alloclen < reqlen) { 17445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17446 "6120 Allocated DMA memory size (%d) is " 17447 "less than the requested DMA memory " 17448 "size (%d)\n", alloclen, reqlen); 17449 lpfc_sli4_mbox_cmd_free(phba, mbox); 17450 return -ENOMEM; 17451 } 17452 17453 /* Get the first SGE entry from the non-embedded DMA memory */ 17454 viraddr = mbox->sge_array->addr[0]; 17455 17456 /* Set up the SGL pages in the non-embedded DMA pages */ 17457 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17458 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17459 17460 pg_pairs = 0; 17461 list_for_each_entry(lpfc_ncmd, nblist, list) { 17462 /* Set up the sge entry */ 17463 sgl_pg_pairs->sgl_pg0_addr_lo = 17464 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17465 sgl_pg_pairs->sgl_pg0_addr_hi = 17466 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17467 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17468 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17469 SGL_PAGE_SIZE; 17470 else 17471 pdma_phys_bpl1 = 0; 17472 sgl_pg_pairs->sgl_pg1_addr_lo = 17473 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17474 sgl_pg_pairs->sgl_pg1_addr_hi = 17475 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17476 /* Keep the first xritag on the list */ 17477 if (pg_pairs == 0) 17478 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17479 sgl_pg_pairs++; 17480 pg_pairs++; 17481 } 17482 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17483 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17484 /* Perform endian conversion if necessary */ 17485 sgl->word0 = cpu_to_le32(sgl->word0); 17486 17487 if (!phba->sli4_hba.intr_enable) { 17488 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17489 } else { 17490 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17491 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17492 } 17493 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17494 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17495 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17496 if (!phba->sli4_hba.intr_enable) 17497 lpfc_sli4_mbox_cmd_free(phba, mbox); 17498 else if (rc != MBX_TIMEOUT) 17499 lpfc_sli4_mbox_cmd_free(phba, mbox); 17500 if (shdr_status || shdr_add_status || rc) { 17501 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17502 "6125 POST_SGL_BLOCK mailbox command failed " 17503 "status x%x add_status x%x mbx status x%x\n", 17504 shdr_status, shdr_add_status, rc); 17505 rc = -ENXIO; 17506 } 17507 return rc; 17508 } 17509 17510 /** 17511 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17512 * @phba: pointer to lpfc hba data structure. 17513 * @post_nblist: pointer to the nvme buffer list. 17514 * @sb_count: number of nvme buffers. 17515 * 17516 * This routine walks a list of nvme buffers that was passed in. It attempts 17517 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17518 * uses the non-embedded SGL block post mailbox commands to post to the port. 17519 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17520 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17521 * must be local list, thus no lock is needed when manipulate the list. 17522 * 17523 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17524 **/ 17525 int 17526 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17527 struct list_head *post_nblist, int sb_count) 17528 { 17529 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17530 int status, sgl_size; 17531 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17532 dma_addr_t pdma_phys_sgl1; 17533 int last_xritag = NO_XRI; 17534 int cur_xritag; 17535 LIST_HEAD(prep_nblist); 17536 LIST_HEAD(blck_nblist); 17537 LIST_HEAD(nvme_nblist); 17538 17539 /* sanity check */ 17540 if (sb_count <= 0) 17541 return -EINVAL; 17542 17543 sgl_size = phba->cfg_sg_dma_buf_size; 17544 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17545 list_del_init(&lpfc_ncmd->list); 17546 block_cnt++; 17547 if ((last_xritag != NO_XRI) && 17548 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17549 /* a hole in xri block, form a sgl posting block */ 17550 list_splice_init(&prep_nblist, &blck_nblist); 17551 post_cnt = block_cnt - 1; 17552 /* prepare list for next posting block */ 17553 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17554 block_cnt = 1; 17555 } else { 17556 /* prepare list for next posting block */ 17557 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17558 /* enough sgls for non-embed sgl mbox command */ 17559 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17560 list_splice_init(&prep_nblist, &blck_nblist); 17561 post_cnt = block_cnt; 17562 block_cnt = 0; 17563 } 17564 } 17565 num_posting++; 17566 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17567 17568 /* end of repost sgl list condition for NVME buffers */ 17569 if (num_posting == sb_count) { 17570 if (post_cnt == 0) { 17571 /* last sgl posting block */ 17572 list_splice_init(&prep_nblist, &blck_nblist); 17573 post_cnt = block_cnt; 17574 } else if (block_cnt == 1) { 17575 /* last single sgl with non-contiguous xri */ 17576 if (sgl_size > SGL_PAGE_SIZE) 17577 pdma_phys_sgl1 = 17578 lpfc_ncmd->dma_phys_sgl + 17579 SGL_PAGE_SIZE; 17580 else 17581 pdma_phys_sgl1 = 0; 17582 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17583 status = lpfc_sli4_post_sgl( 17584 phba, lpfc_ncmd->dma_phys_sgl, 17585 pdma_phys_sgl1, cur_xritag); 17586 if (status) { 17587 /* Post error. Buffer unavailable. */ 17588 lpfc_ncmd->flags |= 17589 LPFC_SBUF_NOT_POSTED; 17590 } else { 17591 /* Post success. Bffer available. */ 17592 lpfc_ncmd->flags &= 17593 ~LPFC_SBUF_NOT_POSTED; 17594 lpfc_ncmd->status = IOSTAT_SUCCESS; 17595 num_posted++; 17596 } 17597 /* success, put on NVME buffer sgl list */ 17598 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17599 } 17600 } 17601 17602 /* continue until a nembed page worth of sgls */ 17603 if (post_cnt == 0) 17604 continue; 17605 17606 /* post block of NVME buffer list sgls */ 17607 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17608 post_cnt); 17609 17610 /* don't reset xirtag due to hole in xri block */ 17611 if (block_cnt == 0) 17612 last_xritag = NO_XRI; 17613 17614 /* reset NVME buffer post count for next round of posting */ 17615 post_cnt = 0; 17616 17617 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17618 while (!list_empty(&blck_nblist)) { 17619 list_remove_head(&blck_nblist, lpfc_ncmd, 17620 struct lpfc_io_buf, list); 17621 if (status) { 17622 /* Post error. Mark buffer unavailable. */ 17623 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17624 } else { 17625 /* Post success, Mark buffer available. */ 17626 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17627 lpfc_ncmd->status = IOSTAT_SUCCESS; 17628 num_posted++; 17629 } 17630 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17631 } 17632 } 17633 /* Push NVME buffers with sgl posted to the available list */ 17634 lpfc_io_buf_replenish(phba, &nvme_nblist); 17635 17636 return num_posted; 17637 } 17638 17639 /** 17640 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17641 * @phba: pointer to lpfc_hba struct that the frame was received on 17642 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17643 * 17644 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17645 * valid type of frame that the LPFC driver will handle. This function will 17646 * return a zero if the frame is a valid frame or a non zero value when the 17647 * frame does not pass the check. 17648 **/ 17649 static int 17650 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17651 { 17652 /* make rctl_names static to save stack space */ 17653 struct fc_vft_header *fc_vft_hdr; 17654 uint32_t *header = (uint32_t *) fc_hdr; 17655 17656 #define FC_RCTL_MDS_DIAGS 0xF4 17657 17658 switch (fc_hdr->fh_r_ctl) { 17659 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17660 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17661 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17662 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17663 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17664 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17665 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17666 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17667 case FC_RCTL_ELS_REQ: /* extended link services request */ 17668 case FC_RCTL_ELS_REP: /* extended link services reply */ 17669 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17670 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17671 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17672 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17673 case FC_RCTL_BA_RMC: /* remove connection */ 17674 case FC_RCTL_BA_ACC: /* basic accept */ 17675 case FC_RCTL_BA_RJT: /* basic reject */ 17676 case FC_RCTL_BA_PRMT: 17677 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17678 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17679 case FC_RCTL_P_RJT: /* port reject */ 17680 case FC_RCTL_F_RJT: /* fabric reject */ 17681 case FC_RCTL_P_BSY: /* port busy */ 17682 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17683 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17684 case FC_RCTL_LCR: /* link credit reset */ 17685 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17686 case FC_RCTL_END: /* end */ 17687 break; 17688 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17689 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17690 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17691 return lpfc_fc_frame_check(phba, fc_hdr); 17692 default: 17693 goto drop; 17694 } 17695 17696 switch (fc_hdr->fh_type) { 17697 case FC_TYPE_BLS: 17698 case FC_TYPE_ELS: 17699 case FC_TYPE_FCP: 17700 case FC_TYPE_CT: 17701 case FC_TYPE_NVME: 17702 break; 17703 case FC_TYPE_IP: 17704 case FC_TYPE_ILS: 17705 default: 17706 goto drop; 17707 } 17708 17709 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17710 "2538 Received frame rctl:x%x, type:x%x, " 17711 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17712 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17713 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17714 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17715 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17716 be32_to_cpu(header[6])); 17717 return 0; 17718 drop: 17719 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17720 "2539 Dropped frame rctl:x%x type:x%x\n", 17721 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17722 return 1; 17723 } 17724 17725 /** 17726 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17727 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17728 * 17729 * This function processes the FC header to retrieve the VFI from the VF 17730 * header, if one exists. This function will return the VFI if one exists 17731 * or 0 if no VSAN Header exists. 17732 **/ 17733 static uint32_t 17734 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17735 { 17736 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17737 17738 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17739 return 0; 17740 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17741 } 17742 17743 /** 17744 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17745 * @phba: Pointer to the HBA structure to search for the vport on 17746 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17747 * @fcfi: The FC Fabric ID that the frame came from 17748 * @did: Destination ID to match against 17749 * 17750 * This function searches the @phba for a vport that matches the content of the 17751 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17752 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17753 * returns the matching vport pointer or NULL if unable to match frame to a 17754 * vport. 17755 **/ 17756 static struct lpfc_vport * 17757 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17758 uint16_t fcfi, uint32_t did) 17759 { 17760 struct lpfc_vport **vports; 17761 struct lpfc_vport *vport = NULL; 17762 int i; 17763 17764 if (did == Fabric_DID) 17765 return phba->pport; 17766 if ((phba->pport->fc_flag & FC_PT2PT) && 17767 !(phba->link_state == LPFC_HBA_READY)) 17768 return phba->pport; 17769 17770 vports = lpfc_create_vport_work_array(phba); 17771 if (vports != NULL) { 17772 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17773 if (phba->fcf.fcfi == fcfi && 17774 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17775 vports[i]->fc_myDID == did) { 17776 vport = vports[i]; 17777 break; 17778 } 17779 } 17780 } 17781 lpfc_destroy_vport_work_array(phba, vports); 17782 return vport; 17783 } 17784 17785 /** 17786 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17787 * @vport: The vport to work on. 17788 * 17789 * This function updates the receive sequence time stamp for this vport. The 17790 * receive sequence time stamp indicates the time that the last frame of the 17791 * the sequence that has been idle for the longest amount of time was received. 17792 * the driver uses this time stamp to indicate if any received sequences have 17793 * timed out. 17794 **/ 17795 static void 17796 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17797 { 17798 struct lpfc_dmabuf *h_buf; 17799 struct hbq_dmabuf *dmabuf = NULL; 17800 17801 /* get the oldest sequence on the rcv list */ 17802 h_buf = list_get_first(&vport->rcv_buffer_list, 17803 struct lpfc_dmabuf, list); 17804 if (!h_buf) 17805 return; 17806 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17807 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17808 } 17809 17810 /** 17811 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17812 * @vport: The vport that the received sequences were sent to. 17813 * 17814 * This function cleans up all outstanding received sequences. This is called 17815 * by the driver when a link event or user action invalidates all the received 17816 * sequences. 17817 **/ 17818 void 17819 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17820 { 17821 struct lpfc_dmabuf *h_buf, *hnext; 17822 struct lpfc_dmabuf *d_buf, *dnext; 17823 struct hbq_dmabuf *dmabuf = NULL; 17824 17825 /* start with the oldest sequence on the rcv list */ 17826 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17827 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17828 list_del_init(&dmabuf->hbuf.list); 17829 list_for_each_entry_safe(d_buf, dnext, 17830 &dmabuf->dbuf.list, list) { 17831 list_del_init(&d_buf->list); 17832 lpfc_in_buf_free(vport->phba, d_buf); 17833 } 17834 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17835 } 17836 } 17837 17838 /** 17839 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17840 * @vport: The vport that the received sequences were sent to. 17841 * 17842 * This function determines whether any received sequences have timed out by 17843 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17844 * indicates that there is at least one timed out sequence this routine will 17845 * go through the received sequences one at a time from most inactive to most 17846 * active to determine which ones need to be cleaned up. Once it has determined 17847 * that a sequence needs to be cleaned up it will simply free up the resources 17848 * without sending an abort. 17849 **/ 17850 void 17851 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17852 { 17853 struct lpfc_dmabuf *h_buf, *hnext; 17854 struct lpfc_dmabuf *d_buf, *dnext; 17855 struct hbq_dmabuf *dmabuf = NULL; 17856 unsigned long timeout; 17857 int abort_count = 0; 17858 17859 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17860 vport->rcv_buffer_time_stamp); 17861 if (list_empty(&vport->rcv_buffer_list) || 17862 time_before(jiffies, timeout)) 17863 return; 17864 /* start with the oldest sequence on the rcv list */ 17865 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17866 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17867 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17868 dmabuf->time_stamp); 17869 if (time_before(jiffies, timeout)) 17870 break; 17871 abort_count++; 17872 list_del_init(&dmabuf->hbuf.list); 17873 list_for_each_entry_safe(d_buf, dnext, 17874 &dmabuf->dbuf.list, list) { 17875 list_del_init(&d_buf->list); 17876 lpfc_in_buf_free(vport->phba, d_buf); 17877 } 17878 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17879 } 17880 if (abort_count) 17881 lpfc_update_rcv_time_stamp(vport); 17882 } 17883 17884 /** 17885 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17886 * @vport: pointer to a vitural port 17887 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17888 * 17889 * This function searches through the existing incomplete sequences that have 17890 * been sent to this @vport. If the frame matches one of the incomplete 17891 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17892 * make up that sequence. If no sequence is found that matches this frame then 17893 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17894 * This function returns a pointer to the first dmabuf in the sequence list that 17895 * the frame was linked to. 17896 **/ 17897 static struct hbq_dmabuf * 17898 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17899 { 17900 struct fc_frame_header *new_hdr; 17901 struct fc_frame_header *temp_hdr; 17902 struct lpfc_dmabuf *d_buf; 17903 struct lpfc_dmabuf *h_buf; 17904 struct hbq_dmabuf *seq_dmabuf = NULL; 17905 struct hbq_dmabuf *temp_dmabuf = NULL; 17906 uint8_t found = 0; 17907 17908 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17909 dmabuf->time_stamp = jiffies; 17910 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17911 17912 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17913 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17914 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17915 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17916 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17917 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17918 continue; 17919 /* found a pending sequence that matches this frame */ 17920 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17921 break; 17922 } 17923 if (!seq_dmabuf) { 17924 /* 17925 * This indicates first frame received for this sequence. 17926 * Queue the buffer on the vport's rcv_buffer_list. 17927 */ 17928 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17929 lpfc_update_rcv_time_stamp(vport); 17930 return dmabuf; 17931 } 17932 temp_hdr = seq_dmabuf->hbuf.virt; 17933 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17934 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17935 list_del_init(&seq_dmabuf->hbuf.list); 17936 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17937 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17938 lpfc_update_rcv_time_stamp(vport); 17939 return dmabuf; 17940 } 17941 /* move this sequence to the tail to indicate a young sequence */ 17942 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17943 seq_dmabuf->time_stamp = jiffies; 17944 lpfc_update_rcv_time_stamp(vport); 17945 if (list_empty(&seq_dmabuf->dbuf.list)) { 17946 temp_hdr = dmabuf->hbuf.virt; 17947 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17948 return seq_dmabuf; 17949 } 17950 /* find the correct place in the sequence to insert this frame */ 17951 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17952 while (!found) { 17953 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17954 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17955 /* 17956 * If the frame's sequence count is greater than the frame on 17957 * the list then insert the frame right after this frame 17958 */ 17959 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17960 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17961 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17962 found = 1; 17963 break; 17964 } 17965 17966 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17967 break; 17968 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17969 } 17970 17971 if (found) 17972 return seq_dmabuf; 17973 return NULL; 17974 } 17975 17976 /** 17977 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17978 * @vport: pointer to a vitural port 17979 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17980 * 17981 * This function tries to abort from the partially assembed sequence, described 17982 * by the information from basic abbort @dmabuf. It checks to see whether such 17983 * partially assembled sequence held by the driver. If so, it shall free up all 17984 * the frames from the partially assembled sequence. 17985 * 17986 * Return 17987 * true -- if there is matching partially assembled sequence present and all 17988 * the frames freed with the sequence; 17989 * false -- if there is no matching partially assembled sequence present so 17990 * nothing got aborted in the lower layer driver 17991 **/ 17992 static bool 17993 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17994 struct hbq_dmabuf *dmabuf) 17995 { 17996 struct fc_frame_header *new_hdr; 17997 struct fc_frame_header *temp_hdr; 17998 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17999 struct hbq_dmabuf *seq_dmabuf = NULL; 18000 18001 /* Use the hdr_buf to find the sequence that matches this frame */ 18002 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18003 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18004 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18005 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18006 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18007 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18008 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18009 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18010 continue; 18011 /* found a pending sequence that matches this frame */ 18012 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18013 break; 18014 } 18015 18016 /* Free up all the frames from the partially assembled sequence */ 18017 if (seq_dmabuf) { 18018 list_for_each_entry_safe(d_buf, n_buf, 18019 &seq_dmabuf->dbuf.list, list) { 18020 list_del_init(&d_buf->list); 18021 lpfc_in_buf_free(vport->phba, d_buf); 18022 } 18023 return true; 18024 } 18025 return false; 18026 } 18027 18028 /** 18029 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18030 * @vport: pointer to a vitural port 18031 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18032 * 18033 * This function tries to abort from the assembed sequence from upper level 18034 * protocol, described by the information from basic abbort @dmabuf. It 18035 * checks to see whether such pending context exists at upper level protocol. 18036 * If so, it shall clean up the pending context. 18037 * 18038 * Return 18039 * true -- if there is matching pending context of the sequence cleaned 18040 * at ulp; 18041 * false -- if there is no matching pending context of the sequence present 18042 * at ulp. 18043 **/ 18044 static bool 18045 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18046 { 18047 struct lpfc_hba *phba = vport->phba; 18048 int handled; 18049 18050 /* Accepting abort at ulp with SLI4 only */ 18051 if (phba->sli_rev < LPFC_SLI_REV4) 18052 return false; 18053 18054 /* Register all caring upper level protocols to attend abort */ 18055 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18056 if (handled) 18057 return true; 18058 18059 return false; 18060 } 18061 18062 /** 18063 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18064 * @phba: Pointer to HBA context object. 18065 * @cmd_iocbq: pointer to the command iocbq structure. 18066 * @rsp_iocbq: pointer to the response iocbq structure. 18067 * 18068 * This function handles the sequence abort response iocb command complete 18069 * event. It properly releases the memory allocated to the sequence abort 18070 * accept iocb. 18071 **/ 18072 static void 18073 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18074 struct lpfc_iocbq *cmd_iocbq, 18075 struct lpfc_iocbq *rsp_iocbq) 18076 { 18077 struct lpfc_nodelist *ndlp; 18078 18079 if (cmd_iocbq) { 18080 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18081 lpfc_nlp_put(ndlp); 18082 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18083 } 18084 18085 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18086 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18087 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18088 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18089 rsp_iocbq->iocb.ulpStatus, 18090 rsp_iocbq->iocb.un.ulpWord[4]); 18091 } 18092 18093 /** 18094 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18095 * @phba: Pointer to HBA context object. 18096 * @xri: xri id in transaction. 18097 * 18098 * This function validates the xri maps to the known range of XRIs allocated an 18099 * used by the driver. 18100 **/ 18101 uint16_t 18102 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18103 uint16_t xri) 18104 { 18105 uint16_t i; 18106 18107 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18108 if (xri == phba->sli4_hba.xri_ids[i]) 18109 return i; 18110 } 18111 return NO_XRI; 18112 } 18113 18114 /** 18115 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18116 * @vport: pointer to a virtual port. 18117 * @fc_hdr: pointer to a FC frame header. 18118 * @aborted: was the partially assembled receive sequence successfully aborted 18119 * 18120 * This function sends a basic response to a previous unsol sequence abort 18121 * event after aborting the sequence handling. 18122 **/ 18123 void 18124 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18125 struct fc_frame_header *fc_hdr, bool aborted) 18126 { 18127 struct lpfc_hba *phba = vport->phba; 18128 struct lpfc_iocbq *ctiocb = NULL; 18129 struct lpfc_nodelist *ndlp; 18130 uint16_t oxid, rxid, xri, lxri; 18131 uint32_t sid, fctl; 18132 IOCB_t *icmd; 18133 int rc; 18134 18135 if (!lpfc_is_link_up(phba)) 18136 return; 18137 18138 sid = sli4_sid_from_fc_hdr(fc_hdr); 18139 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18140 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18141 18142 ndlp = lpfc_findnode_did(vport, sid); 18143 if (!ndlp) { 18144 ndlp = lpfc_nlp_init(vport, sid); 18145 if (!ndlp) { 18146 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18147 "1268 Failed to allocate ndlp for " 18148 "oxid:x%x SID:x%x\n", oxid, sid); 18149 return; 18150 } 18151 /* Put ndlp onto pport node list */ 18152 lpfc_enqueue_node(vport, ndlp); 18153 } 18154 18155 /* Allocate buffer for rsp iocb */ 18156 ctiocb = lpfc_sli_get_iocbq(phba); 18157 if (!ctiocb) 18158 return; 18159 18160 /* Extract the F_CTL field from FC_HDR */ 18161 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18162 18163 icmd = &ctiocb->iocb; 18164 icmd->un.xseq64.bdl.bdeSize = 0; 18165 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18166 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18167 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18168 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18169 18170 /* Fill in the rest of iocb fields */ 18171 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18172 icmd->ulpBdeCount = 0; 18173 icmd->ulpLe = 1; 18174 icmd->ulpClass = CLASS3; 18175 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18176 ctiocb->context1 = lpfc_nlp_get(ndlp); 18177 if (!ctiocb->context1) { 18178 lpfc_sli_release_iocbq(phba, ctiocb); 18179 return; 18180 } 18181 18182 ctiocb->vport = phba->pport; 18183 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18184 ctiocb->sli4_lxritag = NO_XRI; 18185 ctiocb->sli4_xritag = NO_XRI; 18186 18187 if (fctl & FC_FC_EX_CTX) 18188 /* Exchange responder sent the abort so we 18189 * own the oxid. 18190 */ 18191 xri = oxid; 18192 else 18193 xri = rxid; 18194 lxri = lpfc_sli4_xri_inrange(phba, xri); 18195 if (lxri != NO_XRI) 18196 lpfc_set_rrq_active(phba, ndlp, lxri, 18197 (xri == oxid) ? rxid : oxid, 0); 18198 /* For BA_ABTS from exchange responder, if the logical xri with 18199 * the oxid maps to the FCP XRI range, the port no longer has 18200 * that exchange context, send a BLS_RJT. Override the IOCB for 18201 * a BA_RJT. 18202 */ 18203 if ((fctl & FC_FC_EX_CTX) && 18204 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18205 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18206 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18207 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18208 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18209 } 18210 18211 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18212 * the driver no longer has that exchange, send a BLS_RJT. Override 18213 * the IOCB for a BA_RJT. 18214 */ 18215 if (aborted == false) { 18216 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18217 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18218 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18219 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18220 } 18221 18222 if (fctl & FC_FC_EX_CTX) { 18223 /* ABTS sent by responder to CT exchange, construction 18224 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18225 * field and RX_ID from ABTS for RX_ID field. 18226 */ 18227 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18228 } else { 18229 /* ABTS sent by initiator to CT exchange, construction 18230 * of BA_ACC will need to allocate a new XRI as for the 18231 * XRI_TAG field. 18232 */ 18233 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18234 } 18235 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18236 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18237 18238 /* Xmit CT abts response on exchange <xid> */ 18239 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18240 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18241 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18242 18243 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18244 if (rc == IOCB_ERROR) { 18245 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18246 "2925 Failed to issue CT ABTS RSP x%x on " 18247 "xri x%x, Data x%x\n", 18248 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18249 phba->link_state); 18250 lpfc_nlp_put(ndlp); 18251 ctiocb->context1 = NULL; 18252 lpfc_sli_release_iocbq(phba, ctiocb); 18253 } 18254 } 18255 18256 /** 18257 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18258 * @vport: Pointer to the vport on which this sequence was received 18259 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18260 * 18261 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18262 * receive sequence is only partially assembed by the driver, it shall abort 18263 * the partially assembled frames for the sequence. Otherwise, if the 18264 * unsolicited receive sequence has been completely assembled and passed to 18265 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18266 * unsolicited sequence has been aborted. After that, it will issue a basic 18267 * accept to accept the abort. 18268 **/ 18269 static void 18270 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18271 struct hbq_dmabuf *dmabuf) 18272 { 18273 struct lpfc_hba *phba = vport->phba; 18274 struct fc_frame_header fc_hdr; 18275 uint32_t fctl; 18276 bool aborted; 18277 18278 /* Make a copy of fc_hdr before the dmabuf being released */ 18279 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18280 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18281 18282 if (fctl & FC_FC_EX_CTX) { 18283 /* ABTS by responder to exchange, no cleanup needed */ 18284 aborted = true; 18285 } else { 18286 /* ABTS by initiator to exchange, need to do cleanup */ 18287 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18288 if (aborted == false) 18289 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18290 } 18291 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18292 18293 if (phba->nvmet_support) { 18294 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18295 return; 18296 } 18297 18298 /* Respond with BA_ACC or BA_RJT accordingly */ 18299 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18300 } 18301 18302 /** 18303 * lpfc_seq_complete - Indicates if a sequence is complete 18304 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18305 * 18306 * This function checks the sequence, starting with the frame described by 18307 * @dmabuf, to see if all the frames associated with this sequence are present. 18308 * the frames associated with this sequence are linked to the @dmabuf using the 18309 * dbuf list. This function looks for two major things. 1) That the first frame 18310 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18311 * set. 3) That there are no holes in the sequence count. The function will 18312 * return 1 when the sequence is complete, otherwise it will return 0. 18313 **/ 18314 static int 18315 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18316 { 18317 struct fc_frame_header *hdr; 18318 struct lpfc_dmabuf *d_buf; 18319 struct hbq_dmabuf *seq_dmabuf; 18320 uint32_t fctl; 18321 int seq_count = 0; 18322 18323 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18324 /* make sure first fame of sequence has a sequence count of zero */ 18325 if (hdr->fh_seq_cnt != seq_count) 18326 return 0; 18327 fctl = (hdr->fh_f_ctl[0] << 16 | 18328 hdr->fh_f_ctl[1] << 8 | 18329 hdr->fh_f_ctl[2]); 18330 /* If last frame of sequence we can return success. */ 18331 if (fctl & FC_FC_END_SEQ) 18332 return 1; 18333 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18334 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18335 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18336 /* If there is a hole in the sequence count then fail. */ 18337 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18338 return 0; 18339 fctl = (hdr->fh_f_ctl[0] << 16 | 18340 hdr->fh_f_ctl[1] << 8 | 18341 hdr->fh_f_ctl[2]); 18342 /* If last frame of sequence we can return success. */ 18343 if (fctl & FC_FC_END_SEQ) 18344 return 1; 18345 } 18346 return 0; 18347 } 18348 18349 /** 18350 * lpfc_prep_seq - Prep sequence for ULP processing 18351 * @vport: Pointer to the vport on which this sequence was received 18352 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18353 * 18354 * This function takes a sequence, described by a list of frames, and creates 18355 * a list of iocbq structures to describe the sequence. This iocbq list will be 18356 * used to issue to the generic unsolicited sequence handler. This routine 18357 * returns a pointer to the first iocbq in the list. If the function is unable 18358 * to allocate an iocbq then it throw out the received frames that were not 18359 * able to be described and return a pointer to the first iocbq. If unable to 18360 * allocate any iocbqs (including the first) this function will return NULL. 18361 **/ 18362 static struct lpfc_iocbq * 18363 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18364 { 18365 struct hbq_dmabuf *hbq_buf; 18366 struct lpfc_dmabuf *d_buf, *n_buf; 18367 struct lpfc_iocbq *first_iocbq, *iocbq; 18368 struct fc_frame_header *fc_hdr; 18369 uint32_t sid; 18370 uint32_t len, tot_len; 18371 struct ulp_bde64 *pbde; 18372 18373 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18374 /* remove from receive buffer list */ 18375 list_del_init(&seq_dmabuf->hbuf.list); 18376 lpfc_update_rcv_time_stamp(vport); 18377 /* get the Remote Port's SID */ 18378 sid = sli4_sid_from_fc_hdr(fc_hdr); 18379 tot_len = 0; 18380 /* Get an iocbq struct to fill in. */ 18381 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18382 if (first_iocbq) { 18383 /* Initialize the first IOCB. */ 18384 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18385 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18386 first_iocbq->vport = vport; 18387 18388 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18389 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18390 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18391 first_iocbq->iocb.un.rcvels.parmRo = 18392 sli4_did_from_fc_hdr(fc_hdr); 18393 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18394 } else 18395 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18396 first_iocbq->iocb.ulpContext = NO_XRI; 18397 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18398 be16_to_cpu(fc_hdr->fh_ox_id); 18399 /* iocbq is prepped for internal consumption. Physical vpi. */ 18400 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18401 vport->phba->vpi_ids[vport->vpi]; 18402 /* put the first buffer into the first IOCBq */ 18403 tot_len = bf_get(lpfc_rcqe_length, 18404 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18405 18406 first_iocbq->context2 = &seq_dmabuf->dbuf; 18407 first_iocbq->context3 = NULL; 18408 first_iocbq->iocb.ulpBdeCount = 1; 18409 if (tot_len > LPFC_DATA_BUF_SIZE) 18410 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18411 LPFC_DATA_BUF_SIZE; 18412 else 18413 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18414 18415 first_iocbq->iocb.un.rcvels.remoteID = sid; 18416 18417 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18418 } 18419 iocbq = first_iocbq; 18420 /* 18421 * Each IOCBq can have two Buffers assigned, so go through the list 18422 * of buffers for this sequence and save two buffers in each IOCBq 18423 */ 18424 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18425 if (!iocbq) { 18426 lpfc_in_buf_free(vport->phba, d_buf); 18427 continue; 18428 } 18429 if (!iocbq->context3) { 18430 iocbq->context3 = d_buf; 18431 iocbq->iocb.ulpBdeCount++; 18432 /* We need to get the size out of the right CQE */ 18433 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18434 len = bf_get(lpfc_rcqe_length, 18435 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18436 pbde = (struct ulp_bde64 *) 18437 &iocbq->iocb.unsli3.sli3Words[4]; 18438 if (len > LPFC_DATA_BUF_SIZE) 18439 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18440 else 18441 pbde->tus.f.bdeSize = len; 18442 18443 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18444 tot_len += len; 18445 } else { 18446 iocbq = lpfc_sli_get_iocbq(vport->phba); 18447 if (!iocbq) { 18448 if (first_iocbq) { 18449 first_iocbq->iocb.ulpStatus = 18450 IOSTAT_FCP_RSP_ERROR; 18451 first_iocbq->iocb.un.ulpWord[4] = 18452 IOERR_NO_RESOURCES; 18453 } 18454 lpfc_in_buf_free(vport->phba, d_buf); 18455 continue; 18456 } 18457 /* We need to get the size out of the right CQE */ 18458 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18459 len = bf_get(lpfc_rcqe_length, 18460 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18461 iocbq->context2 = d_buf; 18462 iocbq->context3 = NULL; 18463 iocbq->iocb.ulpBdeCount = 1; 18464 if (len > LPFC_DATA_BUF_SIZE) 18465 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18466 LPFC_DATA_BUF_SIZE; 18467 else 18468 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18469 18470 tot_len += len; 18471 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18472 18473 iocbq->iocb.un.rcvels.remoteID = sid; 18474 list_add_tail(&iocbq->list, &first_iocbq->list); 18475 } 18476 } 18477 /* Free the sequence's header buffer */ 18478 if (!first_iocbq) 18479 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18480 18481 return first_iocbq; 18482 } 18483 18484 static void 18485 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18486 struct hbq_dmabuf *seq_dmabuf) 18487 { 18488 struct fc_frame_header *fc_hdr; 18489 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18490 struct lpfc_hba *phba = vport->phba; 18491 18492 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18493 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18494 if (!iocbq) { 18495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18496 "2707 Ring %d handler: Failed to allocate " 18497 "iocb Rctl x%x Type x%x received\n", 18498 LPFC_ELS_RING, 18499 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18500 return; 18501 } 18502 if (!lpfc_complete_unsol_iocb(phba, 18503 phba->sli4_hba.els_wq->pring, 18504 iocbq, fc_hdr->fh_r_ctl, 18505 fc_hdr->fh_type)) 18506 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18507 "2540 Ring %d handler: unexpected Rctl " 18508 "x%x Type x%x received\n", 18509 LPFC_ELS_RING, 18510 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18511 18512 /* Free iocb created in lpfc_prep_seq */ 18513 list_for_each_entry_safe(curr_iocb, next_iocb, 18514 &iocbq->list, list) { 18515 list_del_init(&curr_iocb->list); 18516 lpfc_sli_release_iocbq(phba, curr_iocb); 18517 } 18518 lpfc_sli_release_iocbq(phba, iocbq); 18519 } 18520 18521 static void 18522 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18523 struct lpfc_iocbq *rspiocb) 18524 { 18525 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18526 18527 if (pcmd && pcmd->virt) 18528 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18529 kfree(pcmd); 18530 lpfc_sli_release_iocbq(phba, cmdiocb); 18531 lpfc_drain_txq(phba); 18532 } 18533 18534 static void 18535 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18536 struct hbq_dmabuf *dmabuf) 18537 { 18538 struct fc_frame_header *fc_hdr; 18539 struct lpfc_hba *phba = vport->phba; 18540 struct lpfc_iocbq *iocbq = NULL; 18541 union lpfc_wqe *wqe; 18542 struct lpfc_dmabuf *pcmd = NULL; 18543 uint32_t frame_len; 18544 int rc; 18545 unsigned long iflags; 18546 18547 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18548 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18549 18550 /* Send the received frame back */ 18551 iocbq = lpfc_sli_get_iocbq(phba); 18552 if (!iocbq) { 18553 /* Queue cq event and wakeup worker thread to process it */ 18554 spin_lock_irqsave(&phba->hbalock, iflags); 18555 list_add_tail(&dmabuf->cq_event.list, 18556 &phba->sli4_hba.sp_queue_event); 18557 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18558 spin_unlock_irqrestore(&phba->hbalock, iflags); 18559 lpfc_worker_wake_up(phba); 18560 return; 18561 } 18562 18563 /* Allocate buffer for command payload */ 18564 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18565 if (pcmd) 18566 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18567 &pcmd->phys); 18568 if (!pcmd || !pcmd->virt) 18569 goto exit; 18570 18571 INIT_LIST_HEAD(&pcmd->list); 18572 18573 /* copyin the payload */ 18574 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18575 18576 /* fill in BDE's for command */ 18577 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18578 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18579 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18580 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18581 18582 iocbq->context2 = pcmd; 18583 iocbq->vport = vport; 18584 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18585 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18586 18587 /* 18588 * Setup rest of the iocb as though it were a WQE 18589 * Build the SEND_FRAME WQE 18590 */ 18591 wqe = (union lpfc_wqe *)&iocbq->iocb; 18592 18593 wqe->send_frame.frame_len = frame_len; 18594 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18595 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18596 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18597 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18598 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18599 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18600 18601 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18602 iocbq->iocb.ulpLe = 1; 18603 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18604 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18605 if (rc == IOCB_ERROR) 18606 goto exit; 18607 18608 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18609 return; 18610 18611 exit: 18612 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18613 "2023 Unable to process MDS loopback frame\n"); 18614 if (pcmd && pcmd->virt) 18615 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18616 kfree(pcmd); 18617 if (iocbq) 18618 lpfc_sli_release_iocbq(phba, iocbq); 18619 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18620 } 18621 18622 /** 18623 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18624 * @phba: Pointer to HBA context object. 18625 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18626 * 18627 * This function is called with no lock held. This function processes all 18628 * the received buffers and gives it to upper layers when a received buffer 18629 * indicates that it is the final frame in the sequence. The interrupt 18630 * service routine processes received buffers at interrupt contexts. 18631 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18632 * appropriate receive function when the final frame in a sequence is received. 18633 **/ 18634 void 18635 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18636 struct hbq_dmabuf *dmabuf) 18637 { 18638 struct hbq_dmabuf *seq_dmabuf; 18639 struct fc_frame_header *fc_hdr; 18640 struct lpfc_vport *vport; 18641 uint32_t fcfi; 18642 uint32_t did; 18643 18644 /* Process each received buffer */ 18645 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18646 18647 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18648 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18649 vport = phba->pport; 18650 /* Handle MDS Loopback frames */ 18651 if (!(phba->pport->load_flag & FC_UNLOADING)) 18652 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18653 else 18654 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18655 return; 18656 } 18657 18658 /* check to see if this a valid type of frame */ 18659 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18660 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18661 return; 18662 } 18663 18664 if ((bf_get(lpfc_cqe_code, 18665 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18666 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18667 &dmabuf->cq_event.cqe.rcqe_cmpl); 18668 else 18669 fcfi = bf_get(lpfc_rcqe_fcf_id, 18670 &dmabuf->cq_event.cqe.rcqe_cmpl); 18671 18672 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18673 vport = phba->pport; 18674 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18675 "2023 MDS Loopback %d bytes\n", 18676 bf_get(lpfc_rcqe_length, 18677 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18678 /* Handle MDS Loopback frames */ 18679 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18680 return; 18681 } 18682 18683 /* d_id this frame is directed to */ 18684 did = sli4_did_from_fc_hdr(fc_hdr); 18685 18686 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18687 if (!vport) { 18688 /* throw out the frame */ 18689 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18690 return; 18691 } 18692 18693 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18694 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18695 (did != Fabric_DID)) { 18696 /* 18697 * Throw out the frame if we are not pt2pt. 18698 * The pt2pt protocol allows for discovery frames 18699 * to be received without a registered VPI. 18700 */ 18701 if (!(vport->fc_flag & FC_PT2PT) || 18702 (phba->link_state == LPFC_HBA_READY)) { 18703 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18704 return; 18705 } 18706 } 18707 18708 /* Handle the basic abort sequence (BA_ABTS) event */ 18709 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18710 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18711 return; 18712 } 18713 18714 /* Link this frame */ 18715 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18716 if (!seq_dmabuf) { 18717 /* unable to add frame to vport - throw it out */ 18718 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18719 return; 18720 } 18721 /* If not last frame in sequence continue processing frames. */ 18722 if (!lpfc_seq_complete(seq_dmabuf)) 18723 return; 18724 18725 /* Send the complete sequence to the upper layer protocol */ 18726 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18727 } 18728 18729 /** 18730 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18731 * @phba: pointer to lpfc hba data structure. 18732 * 18733 * This routine is invoked to post rpi header templates to the 18734 * HBA consistent with the SLI-4 interface spec. This routine 18735 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18736 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18737 * 18738 * This routine does not require any locks. It's usage is expected 18739 * to be driver load or reset recovery when the driver is 18740 * sequential. 18741 * 18742 * Return codes 18743 * 0 - successful 18744 * -EIO - The mailbox failed to complete successfully. 18745 * When this error occurs, the driver is not guaranteed 18746 * to have any rpi regions posted to the device and 18747 * must either attempt to repost the regions or take a 18748 * fatal error. 18749 **/ 18750 int 18751 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18752 { 18753 struct lpfc_rpi_hdr *rpi_page; 18754 uint32_t rc = 0; 18755 uint16_t lrpi = 0; 18756 18757 /* SLI4 ports that support extents do not require RPI headers. */ 18758 if (!phba->sli4_hba.rpi_hdrs_in_use) 18759 goto exit; 18760 if (phba->sli4_hba.extents_in_use) 18761 return -EIO; 18762 18763 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18764 /* 18765 * Assign the rpi headers a physical rpi only if the driver 18766 * has not initialized those resources. A port reset only 18767 * needs the headers posted. 18768 */ 18769 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18770 LPFC_RPI_RSRC_RDY) 18771 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18772 18773 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18774 if (rc != MBX_SUCCESS) { 18775 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18776 "2008 Error %d posting all rpi " 18777 "headers\n", rc); 18778 rc = -EIO; 18779 break; 18780 } 18781 } 18782 18783 exit: 18784 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18785 LPFC_RPI_RSRC_RDY); 18786 return rc; 18787 } 18788 18789 /** 18790 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18791 * @phba: pointer to lpfc hba data structure. 18792 * @rpi_page: pointer to the rpi memory region. 18793 * 18794 * This routine is invoked to post a single rpi header to the 18795 * HBA consistent with the SLI-4 interface spec. This memory region 18796 * maps up to 64 rpi context regions. 18797 * 18798 * Return codes 18799 * 0 - successful 18800 * -ENOMEM - No available memory 18801 * -EIO - The mailbox failed to complete successfully. 18802 **/ 18803 int 18804 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18805 { 18806 LPFC_MBOXQ_t *mboxq; 18807 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18808 uint32_t rc = 0; 18809 uint32_t shdr_status, shdr_add_status; 18810 union lpfc_sli4_cfg_shdr *shdr; 18811 18812 /* SLI4 ports that support extents do not require RPI headers. */ 18813 if (!phba->sli4_hba.rpi_hdrs_in_use) 18814 return rc; 18815 if (phba->sli4_hba.extents_in_use) 18816 return -EIO; 18817 18818 /* The port is notified of the header region via a mailbox command. */ 18819 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18820 if (!mboxq) { 18821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18822 "2001 Unable to allocate memory for issuing " 18823 "SLI_CONFIG_SPECIAL mailbox command\n"); 18824 return -ENOMEM; 18825 } 18826 18827 /* Post all rpi memory regions to the port. */ 18828 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18829 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18830 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18831 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18832 sizeof(struct lpfc_sli4_cfg_mhdr), 18833 LPFC_SLI4_MBX_EMBED); 18834 18835 18836 /* Post the physical rpi to the port for this rpi header. */ 18837 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18838 rpi_page->start_rpi); 18839 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18840 hdr_tmpl, rpi_page->page_count); 18841 18842 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18843 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18844 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18845 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18846 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18847 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18848 mempool_free(mboxq, phba->mbox_mem_pool); 18849 if (shdr_status || shdr_add_status || rc) { 18850 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18851 "2514 POST_RPI_HDR mailbox failed with " 18852 "status x%x add_status x%x, mbx status x%x\n", 18853 shdr_status, shdr_add_status, rc); 18854 rc = -ENXIO; 18855 } else { 18856 /* 18857 * The next_rpi stores the next logical module-64 rpi value used 18858 * to post physical rpis in subsequent rpi postings. 18859 */ 18860 spin_lock_irq(&phba->hbalock); 18861 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18862 spin_unlock_irq(&phba->hbalock); 18863 } 18864 return rc; 18865 } 18866 18867 /** 18868 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18869 * @phba: pointer to lpfc hba data structure. 18870 * 18871 * This routine is invoked to post rpi header templates to the 18872 * HBA consistent with the SLI-4 interface spec. This routine 18873 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18874 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18875 * 18876 * Returns 18877 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18878 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18879 **/ 18880 int 18881 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18882 { 18883 unsigned long rpi; 18884 uint16_t max_rpi, rpi_limit; 18885 uint16_t rpi_remaining, lrpi = 0; 18886 struct lpfc_rpi_hdr *rpi_hdr; 18887 unsigned long iflag; 18888 18889 /* 18890 * Fetch the next logical rpi. Because this index is logical, 18891 * the driver starts at 0 each time. 18892 */ 18893 spin_lock_irqsave(&phba->hbalock, iflag); 18894 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18895 rpi_limit = phba->sli4_hba.next_rpi; 18896 18897 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18898 if (rpi >= rpi_limit) 18899 rpi = LPFC_RPI_ALLOC_ERROR; 18900 else { 18901 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18902 phba->sli4_hba.max_cfg_param.rpi_used++; 18903 phba->sli4_hba.rpi_count++; 18904 } 18905 lpfc_printf_log(phba, KERN_INFO, 18906 LOG_NODE | LOG_DISCOVERY, 18907 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18908 (int) rpi, max_rpi, rpi_limit); 18909 18910 /* 18911 * Don't try to allocate more rpi header regions if the device limit 18912 * has been exhausted. 18913 */ 18914 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18915 (phba->sli4_hba.rpi_count >= max_rpi)) { 18916 spin_unlock_irqrestore(&phba->hbalock, iflag); 18917 return rpi; 18918 } 18919 18920 /* 18921 * RPI header postings are not required for SLI4 ports capable of 18922 * extents. 18923 */ 18924 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18925 spin_unlock_irqrestore(&phba->hbalock, iflag); 18926 return rpi; 18927 } 18928 18929 /* 18930 * If the driver is running low on rpi resources, allocate another 18931 * page now. Note that the next_rpi value is used because 18932 * it represents how many are actually in use whereas max_rpi notes 18933 * how many are supported max by the device. 18934 */ 18935 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18936 spin_unlock_irqrestore(&phba->hbalock, iflag); 18937 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18938 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18939 if (!rpi_hdr) { 18940 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18941 "2002 Error Could not grow rpi " 18942 "count\n"); 18943 } else { 18944 lrpi = rpi_hdr->start_rpi; 18945 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18946 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18947 } 18948 } 18949 18950 return rpi; 18951 } 18952 18953 /** 18954 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 18955 * @phba: pointer to lpfc hba data structure. 18956 * @rpi: rpi to free 18957 * 18958 * This routine is invoked to release an rpi to the pool of 18959 * available rpis maintained by the driver. 18960 **/ 18961 static void 18962 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18963 { 18964 /* 18965 * if the rpi value indicates a prior unreg has already 18966 * been done, skip the unreg. 18967 */ 18968 if (rpi == LPFC_RPI_ALLOC_ERROR) 18969 return; 18970 18971 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18972 phba->sli4_hba.rpi_count--; 18973 phba->sli4_hba.max_cfg_param.rpi_used--; 18974 } else { 18975 lpfc_printf_log(phba, KERN_INFO, 18976 LOG_NODE | LOG_DISCOVERY, 18977 "2016 rpi %x not inuse\n", 18978 rpi); 18979 } 18980 } 18981 18982 /** 18983 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18984 * @phba: pointer to lpfc hba data structure. 18985 * @rpi: rpi to free 18986 * 18987 * This routine is invoked to release an rpi to the pool of 18988 * available rpis maintained by the driver. 18989 **/ 18990 void 18991 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18992 { 18993 spin_lock_irq(&phba->hbalock); 18994 __lpfc_sli4_free_rpi(phba, rpi); 18995 spin_unlock_irq(&phba->hbalock); 18996 } 18997 18998 /** 18999 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19000 * @phba: pointer to lpfc hba data structure. 19001 * 19002 * This routine is invoked to remove the memory region that 19003 * provided rpi via a bitmask. 19004 **/ 19005 void 19006 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19007 { 19008 kfree(phba->sli4_hba.rpi_bmask); 19009 kfree(phba->sli4_hba.rpi_ids); 19010 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19011 } 19012 19013 /** 19014 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19015 * @ndlp: pointer to lpfc nodelist data structure. 19016 * @cmpl: completion call-back. 19017 * @arg: data to load as MBox 'caller buffer information' 19018 * 19019 * This routine is invoked to remove the memory region that 19020 * provided rpi via a bitmask. 19021 **/ 19022 int 19023 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19024 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19025 { 19026 LPFC_MBOXQ_t *mboxq; 19027 struct lpfc_hba *phba = ndlp->phba; 19028 int rc; 19029 19030 /* The port is notified of the header region via a mailbox command. */ 19031 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19032 if (!mboxq) 19033 return -ENOMEM; 19034 19035 /* Post all rpi memory regions to the port. */ 19036 lpfc_resume_rpi(mboxq, ndlp); 19037 if (cmpl) { 19038 mboxq->mbox_cmpl = cmpl; 19039 mboxq->ctx_buf = arg; 19040 mboxq->ctx_ndlp = ndlp; 19041 } else 19042 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19043 mboxq->vport = ndlp->vport; 19044 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19045 if (rc == MBX_NOT_FINISHED) { 19046 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19047 "2010 Resume RPI Mailbox failed " 19048 "status %d, mbxStatus x%x\n", rc, 19049 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19050 mempool_free(mboxq, phba->mbox_mem_pool); 19051 return -EIO; 19052 } 19053 return 0; 19054 } 19055 19056 /** 19057 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19058 * @vport: Pointer to the vport for which the vpi is being initialized 19059 * 19060 * This routine is invoked to activate a vpi with the port. 19061 * 19062 * Returns: 19063 * 0 success 19064 * -Evalue otherwise 19065 **/ 19066 int 19067 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19068 { 19069 LPFC_MBOXQ_t *mboxq; 19070 int rc = 0; 19071 int retval = MBX_SUCCESS; 19072 uint32_t mbox_tmo; 19073 struct lpfc_hba *phba = vport->phba; 19074 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19075 if (!mboxq) 19076 return -ENOMEM; 19077 lpfc_init_vpi(phba, mboxq, vport->vpi); 19078 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19079 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19080 if (rc != MBX_SUCCESS) { 19081 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19082 "2022 INIT VPI Mailbox failed " 19083 "status %d, mbxStatus x%x\n", rc, 19084 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19085 retval = -EIO; 19086 } 19087 if (rc != MBX_TIMEOUT) 19088 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19089 19090 return retval; 19091 } 19092 19093 /** 19094 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19095 * @phba: pointer to lpfc hba data structure. 19096 * @mboxq: Pointer to mailbox object. 19097 * 19098 * This routine is invoked to manually add a single FCF record. The caller 19099 * must pass a completely initialized FCF_Record. This routine takes 19100 * care of the nonembedded mailbox operations. 19101 **/ 19102 static void 19103 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19104 { 19105 void *virt_addr; 19106 union lpfc_sli4_cfg_shdr *shdr; 19107 uint32_t shdr_status, shdr_add_status; 19108 19109 virt_addr = mboxq->sge_array->addr[0]; 19110 /* The IOCTL status is embedded in the mailbox subheader. */ 19111 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19112 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19113 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19114 19115 if ((shdr_status || shdr_add_status) && 19116 (shdr_status != STATUS_FCF_IN_USE)) 19117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19118 "2558 ADD_FCF_RECORD mailbox failed with " 19119 "status x%x add_status x%x\n", 19120 shdr_status, shdr_add_status); 19121 19122 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19123 } 19124 19125 /** 19126 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19127 * @phba: pointer to lpfc hba data structure. 19128 * @fcf_record: pointer to the initialized fcf record to add. 19129 * 19130 * This routine is invoked to manually add a single FCF record. The caller 19131 * must pass a completely initialized FCF_Record. This routine takes 19132 * care of the nonembedded mailbox operations. 19133 **/ 19134 int 19135 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19136 { 19137 int rc = 0; 19138 LPFC_MBOXQ_t *mboxq; 19139 uint8_t *bytep; 19140 void *virt_addr; 19141 struct lpfc_mbx_sge sge; 19142 uint32_t alloc_len, req_len; 19143 uint32_t fcfindex; 19144 19145 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19146 if (!mboxq) { 19147 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19148 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19149 return -ENOMEM; 19150 } 19151 19152 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19153 sizeof(uint32_t); 19154 19155 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19156 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19157 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19158 req_len, LPFC_SLI4_MBX_NEMBED); 19159 if (alloc_len < req_len) { 19160 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19161 "2523 Allocated DMA memory size (x%x) is " 19162 "less than the requested DMA memory " 19163 "size (x%x)\n", alloc_len, req_len); 19164 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19165 return -ENOMEM; 19166 } 19167 19168 /* 19169 * Get the first SGE entry from the non-embedded DMA memory. This 19170 * routine only uses a single SGE. 19171 */ 19172 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19173 virt_addr = mboxq->sge_array->addr[0]; 19174 /* 19175 * Configure the FCF record for FCFI 0. This is the driver's 19176 * hardcoded default and gets used in nonFIP mode. 19177 */ 19178 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19179 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19180 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19181 19182 /* 19183 * Copy the fcf_index and the FCF Record Data. The data starts after 19184 * the FCoE header plus word10. The data copy needs to be endian 19185 * correct. 19186 */ 19187 bytep += sizeof(uint32_t); 19188 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19189 mboxq->vport = phba->pport; 19190 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19191 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19192 if (rc == MBX_NOT_FINISHED) { 19193 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19194 "2515 ADD_FCF_RECORD mailbox failed with " 19195 "status 0x%x\n", rc); 19196 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19197 rc = -EIO; 19198 } else 19199 rc = 0; 19200 19201 return rc; 19202 } 19203 19204 /** 19205 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19206 * @phba: pointer to lpfc hba data structure. 19207 * @fcf_record: pointer to the fcf record to write the default data. 19208 * @fcf_index: FCF table entry index. 19209 * 19210 * This routine is invoked to build the driver's default FCF record. The 19211 * values used are hardcoded. This routine handles memory initialization. 19212 * 19213 **/ 19214 void 19215 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19216 struct fcf_record *fcf_record, 19217 uint16_t fcf_index) 19218 { 19219 memset(fcf_record, 0, sizeof(struct fcf_record)); 19220 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19221 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19222 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19223 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19224 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19225 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19226 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19227 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19228 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19229 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19230 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19231 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19232 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19233 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19234 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19235 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19236 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19237 /* Set the VLAN bit map */ 19238 if (phba->valid_vlan) { 19239 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19240 = 1 << (phba->vlan_id % 8); 19241 } 19242 } 19243 19244 /** 19245 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19246 * @phba: pointer to lpfc hba data structure. 19247 * @fcf_index: FCF table entry offset. 19248 * 19249 * This routine is invoked to scan the entire FCF table by reading FCF 19250 * record and processing it one at a time starting from the @fcf_index 19251 * for initial FCF discovery or fast FCF failover rediscovery. 19252 * 19253 * Return 0 if the mailbox command is submitted successfully, none 0 19254 * otherwise. 19255 **/ 19256 int 19257 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19258 { 19259 int rc = 0, error; 19260 LPFC_MBOXQ_t *mboxq; 19261 19262 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19263 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19264 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19265 if (!mboxq) { 19266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19267 "2000 Failed to allocate mbox for " 19268 "READ_FCF cmd\n"); 19269 error = -ENOMEM; 19270 goto fail_fcf_scan; 19271 } 19272 /* Construct the read FCF record mailbox command */ 19273 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19274 if (rc) { 19275 error = -EINVAL; 19276 goto fail_fcf_scan; 19277 } 19278 /* Issue the mailbox command asynchronously */ 19279 mboxq->vport = phba->pport; 19280 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19281 19282 spin_lock_irq(&phba->hbalock); 19283 phba->hba_flag |= FCF_TS_INPROG; 19284 spin_unlock_irq(&phba->hbalock); 19285 19286 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19287 if (rc == MBX_NOT_FINISHED) 19288 error = -EIO; 19289 else { 19290 /* Reset eligible FCF count for new scan */ 19291 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19292 phba->fcf.eligible_fcf_cnt = 0; 19293 error = 0; 19294 } 19295 fail_fcf_scan: 19296 if (error) { 19297 if (mboxq) 19298 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19299 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19300 spin_lock_irq(&phba->hbalock); 19301 phba->hba_flag &= ~FCF_TS_INPROG; 19302 spin_unlock_irq(&phba->hbalock); 19303 } 19304 return error; 19305 } 19306 19307 /** 19308 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19309 * @phba: pointer to lpfc hba data structure. 19310 * @fcf_index: FCF table entry offset. 19311 * 19312 * This routine is invoked to read an FCF record indicated by @fcf_index 19313 * and to use it for FLOGI roundrobin FCF failover. 19314 * 19315 * Return 0 if the mailbox command is submitted successfully, none 0 19316 * otherwise. 19317 **/ 19318 int 19319 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19320 { 19321 int rc = 0, error; 19322 LPFC_MBOXQ_t *mboxq; 19323 19324 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19325 if (!mboxq) { 19326 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19327 "2763 Failed to allocate mbox for " 19328 "READ_FCF cmd\n"); 19329 error = -ENOMEM; 19330 goto fail_fcf_read; 19331 } 19332 /* Construct the read FCF record mailbox command */ 19333 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19334 if (rc) { 19335 error = -EINVAL; 19336 goto fail_fcf_read; 19337 } 19338 /* Issue the mailbox command asynchronously */ 19339 mboxq->vport = phba->pport; 19340 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19341 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19342 if (rc == MBX_NOT_FINISHED) 19343 error = -EIO; 19344 else 19345 error = 0; 19346 19347 fail_fcf_read: 19348 if (error && mboxq) 19349 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19350 return error; 19351 } 19352 19353 /** 19354 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19355 * @phba: pointer to lpfc hba data structure. 19356 * @fcf_index: FCF table entry offset. 19357 * 19358 * This routine is invoked to read an FCF record indicated by @fcf_index to 19359 * determine whether it's eligible for FLOGI roundrobin failover list. 19360 * 19361 * Return 0 if the mailbox command is submitted successfully, none 0 19362 * otherwise. 19363 **/ 19364 int 19365 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19366 { 19367 int rc = 0, error; 19368 LPFC_MBOXQ_t *mboxq; 19369 19370 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19371 if (!mboxq) { 19372 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19373 "2758 Failed to allocate mbox for " 19374 "READ_FCF cmd\n"); 19375 error = -ENOMEM; 19376 goto fail_fcf_read; 19377 } 19378 /* Construct the read FCF record mailbox command */ 19379 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19380 if (rc) { 19381 error = -EINVAL; 19382 goto fail_fcf_read; 19383 } 19384 /* Issue the mailbox command asynchronously */ 19385 mboxq->vport = phba->pport; 19386 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19387 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19388 if (rc == MBX_NOT_FINISHED) 19389 error = -EIO; 19390 else 19391 error = 0; 19392 19393 fail_fcf_read: 19394 if (error && mboxq) 19395 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19396 return error; 19397 } 19398 19399 /** 19400 * lpfc_check_next_fcf_pri_level 19401 * @phba: pointer to the lpfc_hba struct for this port. 19402 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19403 * routine when the rr_bmask is empty. The FCF indecies are put into the 19404 * rr_bmask based on their priority level. Starting from the highest priority 19405 * to the lowest. The most likely FCF candidate will be in the highest 19406 * priority group. When this routine is called it searches the fcf_pri list for 19407 * next lowest priority group and repopulates the rr_bmask with only those 19408 * fcf_indexes. 19409 * returns: 19410 * 1=success 0=failure 19411 **/ 19412 static int 19413 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19414 { 19415 uint16_t next_fcf_pri; 19416 uint16_t last_index; 19417 struct lpfc_fcf_pri *fcf_pri; 19418 int rc; 19419 int ret = 0; 19420 19421 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19422 LPFC_SLI4_FCF_TBL_INDX_MAX); 19423 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19424 "3060 Last IDX %d\n", last_index); 19425 19426 /* Verify the priority list has 2 or more entries */ 19427 spin_lock_irq(&phba->hbalock); 19428 if (list_empty(&phba->fcf.fcf_pri_list) || 19429 list_is_singular(&phba->fcf.fcf_pri_list)) { 19430 spin_unlock_irq(&phba->hbalock); 19431 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19432 "3061 Last IDX %d\n", last_index); 19433 return 0; /* Empty rr list */ 19434 } 19435 spin_unlock_irq(&phba->hbalock); 19436 19437 next_fcf_pri = 0; 19438 /* 19439 * Clear the rr_bmask and set all of the bits that are at this 19440 * priority. 19441 */ 19442 memset(phba->fcf.fcf_rr_bmask, 0, 19443 sizeof(*phba->fcf.fcf_rr_bmask)); 19444 spin_lock_irq(&phba->hbalock); 19445 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19446 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19447 continue; 19448 /* 19449 * the 1st priority that has not FLOGI failed 19450 * will be the highest. 19451 */ 19452 if (!next_fcf_pri) 19453 next_fcf_pri = fcf_pri->fcf_rec.priority; 19454 spin_unlock_irq(&phba->hbalock); 19455 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19456 rc = lpfc_sli4_fcf_rr_index_set(phba, 19457 fcf_pri->fcf_rec.fcf_index); 19458 if (rc) 19459 return 0; 19460 } 19461 spin_lock_irq(&phba->hbalock); 19462 } 19463 /* 19464 * if next_fcf_pri was not set above and the list is not empty then 19465 * we have failed flogis on all of them. So reset flogi failed 19466 * and start at the beginning. 19467 */ 19468 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19469 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19470 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19471 /* 19472 * the 1st priority that has not FLOGI failed 19473 * will be the highest. 19474 */ 19475 if (!next_fcf_pri) 19476 next_fcf_pri = fcf_pri->fcf_rec.priority; 19477 spin_unlock_irq(&phba->hbalock); 19478 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19479 rc = lpfc_sli4_fcf_rr_index_set(phba, 19480 fcf_pri->fcf_rec.fcf_index); 19481 if (rc) 19482 return 0; 19483 } 19484 spin_lock_irq(&phba->hbalock); 19485 } 19486 } else 19487 ret = 1; 19488 spin_unlock_irq(&phba->hbalock); 19489 19490 return ret; 19491 } 19492 /** 19493 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19494 * @phba: pointer to lpfc hba data structure. 19495 * 19496 * This routine is to get the next eligible FCF record index in a round 19497 * robin fashion. If the next eligible FCF record index equals to the 19498 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19499 * shall be returned, otherwise, the next eligible FCF record's index 19500 * shall be returned. 19501 **/ 19502 uint16_t 19503 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19504 { 19505 uint16_t next_fcf_index; 19506 19507 initial_priority: 19508 /* Search start from next bit of currently registered FCF index */ 19509 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19510 19511 next_priority: 19512 /* Determine the next fcf index to check */ 19513 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19514 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19515 LPFC_SLI4_FCF_TBL_INDX_MAX, 19516 next_fcf_index); 19517 19518 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19519 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19520 /* 19521 * If we have wrapped then we need to clear the bits that 19522 * have been tested so that we can detect when we should 19523 * change the priority level. 19524 */ 19525 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19526 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19527 } 19528 19529 19530 /* Check roundrobin failover list empty condition */ 19531 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19532 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19533 /* 19534 * If next fcf index is not found check if there are lower 19535 * Priority level fcf's in the fcf_priority list. 19536 * Set up the rr_bmask with all of the avaiable fcf bits 19537 * at that level and continue the selection process. 19538 */ 19539 if (lpfc_check_next_fcf_pri_level(phba)) 19540 goto initial_priority; 19541 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19542 "2844 No roundrobin failover FCF available\n"); 19543 19544 return LPFC_FCOE_FCF_NEXT_NONE; 19545 } 19546 19547 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19548 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19549 LPFC_FCF_FLOGI_FAILED) { 19550 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19551 return LPFC_FCOE_FCF_NEXT_NONE; 19552 19553 goto next_priority; 19554 } 19555 19556 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19557 "2845 Get next roundrobin failover FCF (x%x)\n", 19558 next_fcf_index); 19559 19560 return next_fcf_index; 19561 } 19562 19563 /** 19564 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19565 * @phba: pointer to lpfc hba data structure. 19566 * @fcf_index: index into the FCF table to 'set' 19567 * 19568 * This routine sets the FCF record index in to the eligible bmask for 19569 * roundrobin failover search. It checks to make sure that the index 19570 * does not go beyond the range of the driver allocated bmask dimension 19571 * before setting the bit. 19572 * 19573 * Returns 0 if the index bit successfully set, otherwise, it returns 19574 * -EINVAL. 19575 **/ 19576 int 19577 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19578 { 19579 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19580 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19581 "2610 FCF (x%x) reached driver's book " 19582 "keeping dimension:x%x\n", 19583 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19584 return -EINVAL; 19585 } 19586 /* Set the eligible FCF record index bmask */ 19587 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19588 19589 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19590 "2790 Set FCF (x%x) to roundrobin FCF failover " 19591 "bmask\n", fcf_index); 19592 19593 return 0; 19594 } 19595 19596 /** 19597 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19598 * @phba: pointer to lpfc hba data structure. 19599 * @fcf_index: index into the FCF table to 'clear' 19600 * 19601 * This routine clears the FCF record index from the eligible bmask for 19602 * roundrobin failover search. It checks to make sure that the index 19603 * does not go beyond the range of the driver allocated bmask dimension 19604 * before clearing the bit. 19605 **/ 19606 void 19607 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19608 { 19609 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19610 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19611 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19612 "2762 FCF (x%x) reached driver's book " 19613 "keeping dimension:x%x\n", 19614 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19615 return; 19616 } 19617 /* Clear the eligible FCF record index bmask */ 19618 spin_lock_irq(&phba->hbalock); 19619 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19620 list) { 19621 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19622 list_del_init(&fcf_pri->list); 19623 break; 19624 } 19625 } 19626 spin_unlock_irq(&phba->hbalock); 19627 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19628 19629 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19630 "2791 Clear FCF (x%x) from roundrobin failover " 19631 "bmask\n", fcf_index); 19632 } 19633 19634 /** 19635 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19636 * @phba: pointer to lpfc hba data structure. 19637 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19638 * 19639 * This routine is the completion routine for the rediscover FCF table mailbox 19640 * command. If the mailbox command returned failure, it will try to stop the 19641 * FCF rediscover wait timer. 19642 **/ 19643 static void 19644 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19645 { 19646 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19647 uint32_t shdr_status, shdr_add_status; 19648 19649 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19650 19651 shdr_status = bf_get(lpfc_mbox_hdr_status, 19652 &redisc_fcf->header.cfg_shdr.response); 19653 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19654 &redisc_fcf->header.cfg_shdr.response); 19655 if (shdr_status || shdr_add_status) { 19656 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19657 "2746 Requesting for FCF rediscovery failed " 19658 "status x%x add_status x%x\n", 19659 shdr_status, shdr_add_status); 19660 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19661 spin_lock_irq(&phba->hbalock); 19662 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19663 spin_unlock_irq(&phba->hbalock); 19664 /* 19665 * CVL event triggered FCF rediscover request failed, 19666 * last resort to re-try current registered FCF entry. 19667 */ 19668 lpfc_retry_pport_discovery(phba); 19669 } else { 19670 spin_lock_irq(&phba->hbalock); 19671 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19672 spin_unlock_irq(&phba->hbalock); 19673 /* 19674 * DEAD FCF event triggered FCF rediscover request 19675 * failed, last resort to fail over as a link down 19676 * to FCF registration. 19677 */ 19678 lpfc_sli4_fcf_dead_failthrough(phba); 19679 } 19680 } else { 19681 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19682 "2775 Start FCF rediscover quiescent timer\n"); 19683 /* 19684 * Start FCF rediscovery wait timer for pending FCF 19685 * before rescan FCF record table. 19686 */ 19687 lpfc_fcf_redisc_wait_start_timer(phba); 19688 } 19689 19690 mempool_free(mbox, phba->mbox_mem_pool); 19691 } 19692 19693 /** 19694 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19695 * @phba: pointer to lpfc hba data structure. 19696 * 19697 * This routine is invoked to request for rediscovery of the entire FCF table 19698 * by the port. 19699 **/ 19700 int 19701 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19702 { 19703 LPFC_MBOXQ_t *mbox; 19704 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19705 int rc, length; 19706 19707 /* Cancel retry delay timers to all vports before FCF rediscover */ 19708 lpfc_cancel_all_vport_retry_delay_timer(phba); 19709 19710 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19711 if (!mbox) { 19712 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19713 "2745 Failed to allocate mbox for " 19714 "requesting FCF rediscover.\n"); 19715 return -ENOMEM; 19716 } 19717 19718 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19719 sizeof(struct lpfc_sli4_cfg_mhdr)); 19720 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19721 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19722 length, LPFC_SLI4_MBX_EMBED); 19723 19724 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19725 /* Set count to 0 for invalidating the entire FCF database */ 19726 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19727 19728 /* Issue the mailbox command asynchronously */ 19729 mbox->vport = phba->pport; 19730 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19731 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19732 19733 if (rc == MBX_NOT_FINISHED) { 19734 mempool_free(mbox, phba->mbox_mem_pool); 19735 return -EIO; 19736 } 19737 return 0; 19738 } 19739 19740 /** 19741 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19742 * @phba: pointer to lpfc hba data structure. 19743 * 19744 * This function is the failover routine as a last resort to the FCF DEAD 19745 * event when driver failed to perform fast FCF failover. 19746 **/ 19747 void 19748 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19749 { 19750 uint32_t link_state; 19751 19752 /* 19753 * Last resort as FCF DEAD event failover will treat this as 19754 * a link down, but save the link state because we don't want 19755 * it to be changed to Link Down unless it is already down. 19756 */ 19757 link_state = phba->link_state; 19758 lpfc_linkdown(phba); 19759 phba->link_state = link_state; 19760 19761 /* Unregister FCF if no devices connected to it */ 19762 lpfc_unregister_unused_fcf(phba); 19763 } 19764 19765 /** 19766 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19767 * @phba: pointer to lpfc hba data structure. 19768 * @rgn23_data: pointer to configure region 23 data. 19769 * 19770 * This function gets SLI3 port configure region 23 data through memory dump 19771 * mailbox command. When it successfully retrieves data, the size of the data 19772 * will be returned, otherwise, 0 will be returned. 19773 **/ 19774 static uint32_t 19775 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19776 { 19777 LPFC_MBOXQ_t *pmb = NULL; 19778 MAILBOX_t *mb; 19779 uint32_t offset = 0; 19780 int rc; 19781 19782 if (!rgn23_data) 19783 return 0; 19784 19785 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19786 if (!pmb) { 19787 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19788 "2600 failed to allocate mailbox memory\n"); 19789 return 0; 19790 } 19791 mb = &pmb->u.mb; 19792 19793 do { 19794 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19795 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19796 19797 if (rc != MBX_SUCCESS) { 19798 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19799 "2601 failed to read config " 19800 "region 23, rc 0x%x Status 0x%x\n", 19801 rc, mb->mbxStatus); 19802 mb->un.varDmp.word_cnt = 0; 19803 } 19804 /* 19805 * dump mem may return a zero when finished or we got a 19806 * mailbox error, either way we are done. 19807 */ 19808 if (mb->un.varDmp.word_cnt == 0) 19809 break; 19810 19811 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19812 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19813 19814 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19815 rgn23_data + offset, 19816 mb->un.varDmp.word_cnt); 19817 offset += mb->un.varDmp.word_cnt; 19818 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19819 19820 mempool_free(pmb, phba->mbox_mem_pool); 19821 return offset; 19822 } 19823 19824 /** 19825 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19826 * @phba: pointer to lpfc hba data structure. 19827 * @rgn23_data: pointer to configure region 23 data. 19828 * 19829 * This function gets SLI4 port configure region 23 data through memory dump 19830 * mailbox command. When it successfully retrieves data, the size of the data 19831 * will be returned, otherwise, 0 will be returned. 19832 **/ 19833 static uint32_t 19834 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19835 { 19836 LPFC_MBOXQ_t *mboxq = NULL; 19837 struct lpfc_dmabuf *mp = NULL; 19838 struct lpfc_mqe *mqe; 19839 uint32_t data_length = 0; 19840 int rc; 19841 19842 if (!rgn23_data) 19843 return 0; 19844 19845 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19846 if (!mboxq) { 19847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19848 "3105 failed to allocate mailbox memory\n"); 19849 return 0; 19850 } 19851 19852 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19853 goto out; 19854 mqe = &mboxq->u.mqe; 19855 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19856 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19857 if (rc) 19858 goto out; 19859 data_length = mqe->un.mb_words[5]; 19860 if (data_length == 0) 19861 goto out; 19862 if (data_length > DMP_RGN23_SIZE) { 19863 data_length = 0; 19864 goto out; 19865 } 19866 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19867 out: 19868 mempool_free(mboxq, phba->mbox_mem_pool); 19869 if (mp) { 19870 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19871 kfree(mp); 19872 } 19873 return data_length; 19874 } 19875 19876 /** 19877 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19878 * @phba: pointer to lpfc hba data structure. 19879 * 19880 * This function read region 23 and parse TLV for port status to 19881 * decide if the user disaled the port. If the TLV indicates the 19882 * port is disabled, the hba_flag is set accordingly. 19883 **/ 19884 void 19885 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19886 { 19887 uint8_t *rgn23_data = NULL; 19888 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19889 uint32_t offset = 0; 19890 19891 /* Get adapter Region 23 data */ 19892 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19893 if (!rgn23_data) 19894 goto out; 19895 19896 if (phba->sli_rev < LPFC_SLI_REV4) 19897 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19898 else { 19899 if_type = bf_get(lpfc_sli_intf_if_type, 19900 &phba->sli4_hba.sli_intf); 19901 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19902 goto out; 19903 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19904 } 19905 19906 if (!data_size) 19907 goto out; 19908 19909 /* Check the region signature first */ 19910 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19911 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19912 "2619 Config region 23 has bad signature\n"); 19913 goto out; 19914 } 19915 offset += 4; 19916 19917 /* Check the data structure version */ 19918 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19919 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19920 "2620 Config region 23 has bad version\n"); 19921 goto out; 19922 } 19923 offset += 4; 19924 19925 /* Parse TLV entries in the region */ 19926 while (offset < data_size) { 19927 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19928 break; 19929 /* 19930 * If the TLV is not driver specific TLV or driver id is 19931 * not linux driver id, skip the record. 19932 */ 19933 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19934 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19935 (rgn23_data[offset + 3] != 0)) { 19936 offset += rgn23_data[offset + 1] * 4 + 4; 19937 continue; 19938 } 19939 19940 /* Driver found a driver specific TLV in the config region */ 19941 sub_tlv_len = rgn23_data[offset + 1] * 4; 19942 offset += 4; 19943 tlv_offset = 0; 19944 19945 /* 19946 * Search for configured port state sub-TLV. 19947 */ 19948 while ((offset < data_size) && 19949 (tlv_offset < sub_tlv_len)) { 19950 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19951 offset += 4; 19952 tlv_offset += 4; 19953 break; 19954 } 19955 if (rgn23_data[offset] != PORT_STE_TYPE) { 19956 offset += rgn23_data[offset + 1] * 4 + 4; 19957 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19958 continue; 19959 } 19960 19961 /* This HBA contains PORT_STE configured */ 19962 if (!rgn23_data[offset + 2]) 19963 phba->hba_flag |= LINK_DISABLED; 19964 19965 goto out; 19966 } 19967 } 19968 19969 out: 19970 kfree(rgn23_data); 19971 return; 19972 } 19973 19974 /** 19975 * lpfc_wr_object - write an object to the firmware 19976 * @phba: HBA structure that indicates port to create a queue on. 19977 * @dmabuf_list: list of dmabufs to write to the port. 19978 * @size: the total byte value of the objects to write to the port. 19979 * @offset: the current offset to be used to start the transfer. 19980 * 19981 * This routine will create a wr_object mailbox command to send to the port. 19982 * the mailbox command will be constructed using the dma buffers described in 19983 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19984 * BDEs that the imbedded mailbox can support. The @offset variable will be 19985 * used to indicate the starting offset of the transfer and will also return 19986 * the offset after the write object mailbox has completed. @size is used to 19987 * determine the end of the object and whether the eof bit should be set. 19988 * 19989 * Return 0 is successful and offset will contain the the new offset to use 19990 * for the next write. 19991 * Return negative value for error cases. 19992 **/ 19993 int 19994 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19995 uint32_t size, uint32_t *offset) 19996 { 19997 struct lpfc_mbx_wr_object *wr_object; 19998 LPFC_MBOXQ_t *mbox; 19999 int rc = 0, i = 0; 20000 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 20001 uint32_t mbox_tmo; 20002 struct lpfc_dmabuf *dmabuf; 20003 uint32_t written = 0; 20004 bool check_change_status = false; 20005 20006 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20007 if (!mbox) 20008 return -ENOMEM; 20009 20010 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20011 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20012 sizeof(struct lpfc_mbx_wr_object) - 20013 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20014 20015 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20016 wr_object->u.request.write_offset = *offset; 20017 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20018 wr_object->u.request.object_name[0] = 20019 cpu_to_le32(wr_object->u.request.object_name[0]); 20020 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20021 list_for_each_entry(dmabuf, dmabuf_list, list) { 20022 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20023 break; 20024 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20025 wr_object->u.request.bde[i].addrHigh = 20026 putPaddrHigh(dmabuf->phys); 20027 if (written + SLI4_PAGE_SIZE >= size) { 20028 wr_object->u.request.bde[i].tus.f.bdeSize = 20029 (size - written); 20030 written += (size - written); 20031 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20032 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20033 check_change_status = true; 20034 } else { 20035 wr_object->u.request.bde[i].tus.f.bdeSize = 20036 SLI4_PAGE_SIZE; 20037 written += SLI4_PAGE_SIZE; 20038 } 20039 i++; 20040 } 20041 wr_object->u.request.bde_count = i; 20042 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20043 if (!phba->sli4_hba.intr_enable) 20044 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20045 else { 20046 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20047 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20048 } 20049 /* The IOCTL status is embedded in the mailbox subheader. */ 20050 shdr_status = bf_get(lpfc_mbox_hdr_status, 20051 &wr_object->header.cfg_shdr.response); 20052 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20053 &wr_object->header.cfg_shdr.response); 20054 if (check_change_status) { 20055 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20056 &wr_object->u.response); 20057 20058 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20059 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20060 shdr_csf = bf_get(lpfc_wr_object_csf, 20061 &wr_object->u.response); 20062 if (shdr_csf) 20063 shdr_change_status = 20064 LPFC_CHANGE_STATUS_PCI_RESET; 20065 } 20066 20067 switch (shdr_change_status) { 20068 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20069 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20070 "3198 Firmware write complete: System " 20071 "reboot required to instantiate\n"); 20072 break; 20073 case (LPFC_CHANGE_STATUS_FW_RESET): 20074 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20075 "3199 Firmware write complete: Firmware" 20076 " reset required to instantiate\n"); 20077 break; 20078 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20079 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20080 "3200 Firmware write complete: Port " 20081 "Migration or PCI Reset required to " 20082 "instantiate\n"); 20083 break; 20084 case (LPFC_CHANGE_STATUS_PCI_RESET): 20085 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 20086 "3201 Firmware write complete: PCI " 20087 "Reset required to instantiate\n"); 20088 break; 20089 default: 20090 break; 20091 } 20092 } 20093 if (!phba->sli4_hba.intr_enable) 20094 mempool_free(mbox, phba->mbox_mem_pool); 20095 else if (rc != MBX_TIMEOUT) 20096 mempool_free(mbox, phba->mbox_mem_pool); 20097 if (shdr_status || shdr_add_status || rc) { 20098 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20099 "3025 Write Object mailbox failed with " 20100 "status x%x add_status x%x, mbx status x%x\n", 20101 shdr_status, shdr_add_status, rc); 20102 rc = -ENXIO; 20103 *offset = shdr_add_status; 20104 } else 20105 *offset += wr_object->u.response.actual_write_length; 20106 return rc; 20107 } 20108 20109 /** 20110 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20111 * @vport: pointer to vport data structure. 20112 * 20113 * This function iterate through the mailboxq and clean up all REG_LOGIN 20114 * and REG_VPI mailbox commands associated with the vport. This function 20115 * is called when driver want to restart discovery of the vport due to 20116 * a Clear Virtual Link event. 20117 **/ 20118 void 20119 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20120 { 20121 struct lpfc_hba *phba = vport->phba; 20122 LPFC_MBOXQ_t *mb, *nextmb; 20123 struct lpfc_dmabuf *mp; 20124 struct lpfc_nodelist *ndlp; 20125 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20126 LIST_HEAD(mbox_cmd_list); 20127 uint8_t restart_loop; 20128 20129 /* Clean up internally queued mailbox commands with the vport */ 20130 spin_lock_irq(&phba->hbalock); 20131 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20132 if (mb->vport != vport) 20133 continue; 20134 20135 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20136 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20137 continue; 20138 20139 list_del(&mb->list); 20140 list_add_tail(&mb->list, &mbox_cmd_list); 20141 } 20142 /* Clean up active mailbox command with the vport */ 20143 mb = phba->sli.mbox_active; 20144 if (mb && (mb->vport == vport)) { 20145 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20146 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20147 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20148 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20149 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20150 /* Put reference count for delayed processing */ 20151 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20152 /* Unregister the RPI when mailbox complete */ 20153 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20154 } 20155 } 20156 /* Cleanup any mailbox completions which are not yet processed */ 20157 do { 20158 restart_loop = 0; 20159 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20160 /* 20161 * If this mailox is already processed or it is 20162 * for another vport ignore it. 20163 */ 20164 if ((mb->vport != vport) || 20165 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20166 continue; 20167 20168 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20169 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20170 continue; 20171 20172 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20173 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20174 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20175 /* Unregister the RPI when mailbox complete */ 20176 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20177 restart_loop = 1; 20178 spin_unlock_irq(&phba->hbalock); 20179 spin_lock(&ndlp->lock); 20180 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20181 spin_unlock(&ndlp->lock); 20182 spin_lock_irq(&phba->hbalock); 20183 break; 20184 } 20185 } 20186 } while (restart_loop); 20187 20188 spin_unlock_irq(&phba->hbalock); 20189 20190 /* Release the cleaned-up mailbox commands */ 20191 while (!list_empty(&mbox_cmd_list)) { 20192 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20193 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20194 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20195 if (mp) { 20196 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20197 kfree(mp); 20198 } 20199 mb->ctx_buf = NULL; 20200 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20201 mb->ctx_ndlp = NULL; 20202 if (ndlp) { 20203 spin_lock(&ndlp->lock); 20204 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20205 spin_unlock(&ndlp->lock); 20206 lpfc_nlp_put(ndlp); 20207 } 20208 } 20209 mempool_free(mb, phba->mbox_mem_pool); 20210 } 20211 20212 /* Release the ndlp with the cleaned-up active mailbox command */ 20213 if (act_mbx_ndlp) { 20214 spin_lock(&act_mbx_ndlp->lock); 20215 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20216 spin_unlock(&act_mbx_ndlp->lock); 20217 lpfc_nlp_put(act_mbx_ndlp); 20218 } 20219 } 20220 20221 /** 20222 * lpfc_drain_txq - Drain the txq 20223 * @phba: Pointer to HBA context object. 20224 * 20225 * This function attempt to submit IOCBs on the txq 20226 * to the adapter. For SLI4 adapters, the txq contains 20227 * ELS IOCBs that have been deferred because the there 20228 * are no SGLs. This congestion can occur with large 20229 * vport counts during node discovery. 20230 **/ 20231 20232 uint32_t 20233 lpfc_drain_txq(struct lpfc_hba *phba) 20234 { 20235 LIST_HEAD(completions); 20236 struct lpfc_sli_ring *pring; 20237 struct lpfc_iocbq *piocbq = NULL; 20238 unsigned long iflags = 0; 20239 char *fail_msg = NULL; 20240 struct lpfc_sglq *sglq; 20241 union lpfc_wqe128 wqe; 20242 uint32_t txq_cnt = 0; 20243 struct lpfc_queue *wq; 20244 20245 if (phba->link_flag & LS_MDS_LOOPBACK) { 20246 /* MDS WQE are posted only to first WQ*/ 20247 wq = phba->sli4_hba.hdwq[0].io_wq; 20248 if (unlikely(!wq)) 20249 return 0; 20250 pring = wq->pring; 20251 } else { 20252 wq = phba->sli4_hba.els_wq; 20253 if (unlikely(!wq)) 20254 return 0; 20255 pring = lpfc_phba_elsring(phba); 20256 } 20257 20258 if (unlikely(!pring) || list_empty(&pring->txq)) 20259 return 0; 20260 20261 spin_lock_irqsave(&pring->ring_lock, iflags); 20262 list_for_each_entry(piocbq, &pring->txq, list) { 20263 txq_cnt++; 20264 } 20265 20266 if (txq_cnt > pring->txq_max) 20267 pring->txq_max = txq_cnt; 20268 20269 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20270 20271 while (!list_empty(&pring->txq)) { 20272 spin_lock_irqsave(&pring->ring_lock, iflags); 20273 20274 piocbq = lpfc_sli_ringtx_get(phba, pring); 20275 if (!piocbq) { 20276 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20278 "2823 txq empty and txq_cnt is %d\n ", 20279 txq_cnt); 20280 break; 20281 } 20282 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20283 if (!sglq) { 20284 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20285 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20286 break; 20287 } 20288 txq_cnt--; 20289 20290 /* The xri and iocb resources secured, 20291 * attempt to issue request 20292 */ 20293 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20294 piocbq->sli4_xritag = sglq->sli4_xritag; 20295 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20296 fail_msg = "to convert bpl to sgl"; 20297 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20298 fail_msg = "to convert iocb to wqe"; 20299 else if (lpfc_sli4_wq_put(wq, &wqe)) 20300 fail_msg = " - Wq is full"; 20301 else 20302 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20303 20304 if (fail_msg) { 20305 /* Failed means we can't issue and need to cancel */ 20306 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20307 "2822 IOCB failed %s iotag 0x%x " 20308 "xri 0x%x\n", 20309 fail_msg, 20310 piocbq->iotag, piocbq->sli4_xritag); 20311 list_add_tail(&piocbq->list, &completions); 20312 } 20313 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20314 } 20315 20316 /* Cancel all the IOCBs that cannot be issued */ 20317 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20318 IOERR_SLI_ABORTED); 20319 20320 return txq_cnt; 20321 } 20322 20323 /** 20324 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20325 * @phba: Pointer to HBA context object. 20326 * @pwqeq: Pointer to command WQE. 20327 * @sglq: Pointer to the scatter gather queue object. 20328 * 20329 * This routine converts the bpl or bde that is in the WQE 20330 * to a sgl list for the sli4 hardware. The physical address 20331 * of the bpl/bde is converted back to a virtual address. 20332 * If the WQE contains a BPL then the list of BDE's is 20333 * converted to sli4_sge's. If the WQE contains a single 20334 * BDE then it is converted to a single sli_sge. 20335 * The WQE is still in cpu endianness so the contents of 20336 * the bpl can be used without byte swapping. 20337 * 20338 * Returns valid XRI = Success, NO_XRI = Failure. 20339 */ 20340 static uint16_t 20341 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20342 struct lpfc_sglq *sglq) 20343 { 20344 uint16_t xritag = NO_XRI; 20345 struct ulp_bde64 *bpl = NULL; 20346 struct ulp_bde64 bde; 20347 struct sli4_sge *sgl = NULL; 20348 struct lpfc_dmabuf *dmabuf; 20349 union lpfc_wqe128 *wqe; 20350 int numBdes = 0; 20351 int i = 0; 20352 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20353 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20354 uint32_t cmd; 20355 20356 if (!pwqeq || !sglq) 20357 return xritag; 20358 20359 sgl = (struct sli4_sge *)sglq->sgl; 20360 wqe = &pwqeq->wqe; 20361 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20362 20363 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20364 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20365 return sglq->sli4_xritag; 20366 numBdes = pwqeq->rsvd2; 20367 if (numBdes) { 20368 /* The addrHigh and addrLow fields within the WQE 20369 * have not been byteswapped yet so there is no 20370 * need to swap them back. 20371 */ 20372 if (pwqeq->context3) 20373 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20374 else 20375 return xritag; 20376 20377 bpl = (struct ulp_bde64 *)dmabuf->virt; 20378 if (!bpl) 20379 return xritag; 20380 20381 for (i = 0; i < numBdes; i++) { 20382 /* Should already be byte swapped. */ 20383 sgl->addr_hi = bpl->addrHigh; 20384 sgl->addr_lo = bpl->addrLow; 20385 20386 sgl->word2 = le32_to_cpu(sgl->word2); 20387 if ((i+1) == numBdes) 20388 bf_set(lpfc_sli4_sge_last, sgl, 1); 20389 else 20390 bf_set(lpfc_sli4_sge_last, sgl, 0); 20391 /* swap the size field back to the cpu so we 20392 * can assign it to the sgl. 20393 */ 20394 bde.tus.w = le32_to_cpu(bpl->tus.w); 20395 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20396 /* The offsets in the sgl need to be accumulated 20397 * separately for the request and reply lists. 20398 * The request is always first, the reply follows. 20399 */ 20400 switch (cmd) { 20401 case CMD_GEN_REQUEST64_WQE: 20402 /* add up the reply sg entries */ 20403 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20404 inbound++; 20405 /* first inbound? reset the offset */ 20406 if (inbound == 1) 20407 offset = 0; 20408 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20409 bf_set(lpfc_sli4_sge_type, sgl, 20410 LPFC_SGE_TYPE_DATA); 20411 offset += bde.tus.f.bdeSize; 20412 break; 20413 case CMD_FCP_TRSP64_WQE: 20414 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20415 bf_set(lpfc_sli4_sge_type, sgl, 20416 LPFC_SGE_TYPE_DATA); 20417 break; 20418 case CMD_FCP_TSEND64_WQE: 20419 case CMD_FCP_TRECEIVE64_WQE: 20420 bf_set(lpfc_sli4_sge_type, sgl, 20421 bpl->tus.f.bdeFlags); 20422 if (i < 3) 20423 offset = 0; 20424 else 20425 offset += bde.tus.f.bdeSize; 20426 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20427 break; 20428 } 20429 sgl->word2 = cpu_to_le32(sgl->word2); 20430 bpl++; 20431 sgl++; 20432 } 20433 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20434 /* The addrHigh and addrLow fields of the BDE have not 20435 * been byteswapped yet so they need to be swapped 20436 * before putting them in the sgl. 20437 */ 20438 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20439 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20440 sgl->word2 = le32_to_cpu(sgl->word2); 20441 bf_set(lpfc_sli4_sge_last, sgl, 1); 20442 sgl->word2 = cpu_to_le32(sgl->word2); 20443 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20444 } 20445 return sglq->sli4_xritag; 20446 } 20447 20448 /** 20449 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20450 * @phba: Pointer to HBA context object. 20451 * @qp: Pointer to HDW queue. 20452 * @pwqe: Pointer to command WQE. 20453 **/ 20454 int 20455 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20456 struct lpfc_iocbq *pwqe) 20457 { 20458 union lpfc_wqe128 *wqe = &pwqe->wqe; 20459 struct lpfc_async_xchg_ctx *ctxp; 20460 struct lpfc_queue *wq; 20461 struct lpfc_sglq *sglq; 20462 struct lpfc_sli_ring *pring; 20463 unsigned long iflags; 20464 uint32_t ret = 0; 20465 20466 /* NVME_LS and NVME_LS ABTS requests. */ 20467 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20468 pring = phba->sli4_hba.nvmels_wq->pring; 20469 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20470 qp, wq_access); 20471 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20472 if (!sglq) { 20473 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20474 return WQE_BUSY; 20475 } 20476 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20477 pwqe->sli4_xritag = sglq->sli4_xritag; 20478 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20479 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20480 return WQE_ERROR; 20481 } 20482 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20483 pwqe->sli4_xritag); 20484 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20485 if (ret) { 20486 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20487 return ret; 20488 } 20489 20490 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20491 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20492 20493 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20494 return 0; 20495 } 20496 20497 /* NVME_FCREQ and NVME_ABTS requests */ 20498 if (pwqe->iocb_flag & LPFC_IO_NVME || 20499 pwqe->iocb_flag & LPFC_IO_FCP) { 20500 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20501 wq = qp->io_wq; 20502 pring = wq->pring; 20503 20504 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20505 20506 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20507 qp, wq_access); 20508 ret = lpfc_sli4_wq_put(wq, wqe); 20509 if (ret) { 20510 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20511 return ret; 20512 } 20513 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20514 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20515 20516 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20517 return 0; 20518 } 20519 20520 /* NVMET requests */ 20521 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20522 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20523 wq = qp->io_wq; 20524 pring = wq->pring; 20525 20526 ctxp = pwqe->context2; 20527 sglq = ctxp->ctxbuf->sglq; 20528 if (pwqe->sli4_xritag == NO_XRI) { 20529 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20530 pwqe->sli4_xritag = sglq->sli4_xritag; 20531 } 20532 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20533 pwqe->sli4_xritag); 20534 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20535 20536 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20537 qp, wq_access); 20538 ret = lpfc_sli4_wq_put(wq, wqe); 20539 if (ret) { 20540 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20541 return ret; 20542 } 20543 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20544 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20545 20546 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20547 return 0; 20548 } 20549 return WQE_ERROR; 20550 } 20551 20552 /** 20553 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20554 * @phba: Pointer to HBA context object. 20555 * @cmdiocb: Pointer to driver command iocb object. 20556 * @cmpl: completion function. 20557 * 20558 * Fill the appropriate fields for the abort WQE and call 20559 * internal routine lpfc_sli4_issue_wqe to send the WQE 20560 * This function is called with hbalock held and no ring_lock held. 20561 * 20562 * RETURNS 0 - SUCCESS 20563 **/ 20564 20565 int 20566 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20567 void *cmpl) 20568 { 20569 struct lpfc_vport *vport = cmdiocb->vport; 20570 struct lpfc_iocbq *abtsiocb = NULL; 20571 union lpfc_wqe128 *abtswqe; 20572 struct lpfc_io_buf *lpfc_cmd; 20573 int retval = IOCB_ERROR; 20574 u16 xritag = cmdiocb->sli4_xritag; 20575 20576 /* 20577 * The scsi command can not be in txq and it is in flight because the 20578 * pCmd is still pointing at the SCSI command we have to abort. There 20579 * is no need to search the txcmplq. Just send an abort to the FW. 20580 */ 20581 20582 abtsiocb = __lpfc_sli_get_iocbq(phba); 20583 if (!abtsiocb) 20584 return WQE_NORESOURCE; 20585 20586 /* Indicate the IO is being aborted by the driver. */ 20587 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20588 20589 abtswqe = &abtsiocb->wqe; 20590 memset(abtswqe, 0, sizeof(*abtswqe)); 20591 20592 if (lpfc_is_link_up(phba)) 20593 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20594 else 20595 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0); 20596 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20597 abtswqe->abort_cmd.rsrvd5 = 0; 20598 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20599 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20600 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20601 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20602 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20603 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20604 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20605 20606 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20607 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20608 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20609 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20610 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20611 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20612 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20613 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20614 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20615 abtsiocb->vport = vport; 20616 abtsiocb->wqe_cmpl = cmpl; 20617 20618 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20619 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20620 20621 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20622 "0359 Abort xri x%x, original iotag x%x, " 20623 "abort cmd iotag x%x retval x%x\n", 20624 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20625 20626 if (retval) { 20627 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20628 __lpfc_sli_release_iocbq(phba, abtsiocb); 20629 } 20630 20631 return retval; 20632 } 20633 20634 #ifdef LPFC_MXP_STAT 20635 /** 20636 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20637 * @phba: pointer to lpfc hba data structure. 20638 * @hwqid: belong to which HWQ. 20639 * 20640 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20641 * 15 seconds after a test case is running. 20642 * 20643 * The user should call lpfc_debugfs_multixripools_write before running a test 20644 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20645 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20646 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20647 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20648 **/ 20649 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20650 { 20651 struct lpfc_sli4_hdw_queue *qp; 20652 struct lpfc_multixri_pool *multixri_pool; 20653 struct lpfc_pvt_pool *pvt_pool; 20654 struct lpfc_pbl_pool *pbl_pool; 20655 u32 txcmplq_cnt; 20656 20657 qp = &phba->sli4_hba.hdwq[hwqid]; 20658 multixri_pool = qp->p_multixri_pool; 20659 if (!multixri_pool) 20660 return; 20661 20662 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20663 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20664 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20665 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20666 20667 multixri_pool->stat_pbl_count = pbl_pool->count; 20668 multixri_pool->stat_pvt_count = pvt_pool->count; 20669 multixri_pool->stat_busy_count = txcmplq_cnt; 20670 } 20671 20672 multixri_pool->stat_snapshot_taken++; 20673 } 20674 #endif 20675 20676 /** 20677 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20678 * @phba: pointer to lpfc hba data structure. 20679 * @hwqid: belong to which HWQ. 20680 * 20681 * This routine moves some XRIs from private to public pool when private pool 20682 * is not busy. 20683 **/ 20684 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20685 { 20686 struct lpfc_multixri_pool *multixri_pool; 20687 u32 io_req_count; 20688 u32 prev_io_req_count; 20689 20690 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20691 if (!multixri_pool) 20692 return; 20693 io_req_count = multixri_pool->io_req_count; 20694 prev_io_req_count = multixri_pool->prev_io_req_count; 20695 20696 if (prev_io_req_count != io_req_count) { 20697 /* Private pool is busy */ 20698 multixri_pool->prev_io_req_count = io_req_count; 20699 } else { 20700 /* Private pool is not busy. 20701 * Move XRIs from private to public pool. 20702 */ 20703 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20704 } 20705 } 20706 20707 /** 20708 * lpfc_adjust_high_watermark - Adjust high watermark 20709 * @phba: pointer to lpfc hba data structure. 20710 * @hwqid: belong to which HWQ. 20711 * 20712 * This routine sets high watermark as number of outstanding XRIs, 20713 * but make sure the new value is between xri_limit/2 and xri_limit. 20714 **/ 20715 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20716 { 20717 u32 new_watermark; 20718 u32 watermark_max; 20719 u32 watermark_min; 20720 u32 xri_limit; 20721 u32 txcmplq_cnt; 20722 u32 abts_io_bufs; 20723 struct lpfc_multixri_pool *multixri_pool; 20724 struct lpfc_sli4_hdw_queue *qp; 20725 20726 qp = &phba->sli4_hba.hdwq[hwqid]; 20727 multixri_pool = qp->p_multixri_pool; 20728 if (!multixri_pool) 20729 return; 20730 xri_limit = multixri_pool->xri_limit; 20731 20732 watermark_max = xri_limit; 20733 watermark_min = xri_limit / 2; 20734 20735 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20736 abts_io_bufs = qp->abts_scsi_io_bufs; 20737 abts_io_bufs += qp->abts_nvme_io_bufs; 20738 20739 new_watermark = txcmplq_cnt + abts_io_bufs; 20740 new_watermark = min(watermark_max, new_watermark); 20741 new_watermark = max(watermark_min, new_watermark); 20742 multixri_pool->pvt_pool.high_watermark = new_watermark; 20743 20744 #ifdef LPFC_MXP_STAT 20745 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20746 new_watermark); 20747 #endif 20748 } 20749 20750 /** 20751 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20752 * @phba: pointer to lpfc hba data structure. 20753 * @hwqid: belong to which HWQ. 20754 * 20755 * This routine is called from hearbeat timer when pvt_pool is idle. 20756 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20757 * The first step moves (all - low_watermark) amount of XRIs. 20758 * The second step moves the rest of XRIs. 20759 **/ 20760 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20761 { 20762 struct lpfc_pbl_pool *pbl_pool; 20763 struct lpfc_pvt_pool *pvt_pool; 20764 struct lpfc_sli4_hdw_queue *qp; 20765 struct lpfc_io_buf *lpfc_ncmd; 20766 struct lpfc_io_buf *lpfc_ncmd_next; 20767 unsigned long iflag; 20768 struct list_head tmp_list; 20769 u32 tmp_count; 20770 20771 qp = &phba->sli4_hba.hdwq[hwqid]; 20772 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20773 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20774 tmp_count = 0; 20775 20776 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20777 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20778 20779 if (pvt_pool->count > pvt_pool->low_watermark) { 20780 /* Step 1: move (all - low_watermark) from pvt_pool 20781 * to pbl_pool 20782 */ 20783 20784 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20785 INIT_LIST_HEAD(&tmp_list); 20786 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20787 &pvt_pool->list, list) { 20788 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20789 tmp_count++; 20790 if (tmp_count >= pvt_pool->low_watermark) 20791 break; 20792 } 20793 20794 /* Move all bufs from pvt_pool to pbl_pool */ 20795 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20796 20797 /* Move all bufs from tmp_list to pvt_pool */ 20798 list_splice(&tmp_list, &pvt_pool->list); 20799 20800 pbl_pool->count += (pvt_pool->count - tmp_count); 20801 pvt_pool->count = tmp_count; 20802 } else { 20803 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20804 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20805 pbl_pool->count += pvt_pool->count; 20806 pvt_pool->count = 0; 20807 } 20808 20809 spin_unlock(&pvt_pool->lock); 20810 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20811 } 20812 20813 /** 20814 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20815 * @phba: pointer to lpfc hba data structure 20816 * @qp: pointer to HDW queue 20817 * @pbl_pool: specified public free XRI pool 20818 * @pvt_pool: specified private free XRI pool 20819 * @count: number of XRIs to move 20820 * 20821 * This routine tries to move some free common bufs from the specified pbl_pool 20822 * to the specified pvt_pool. It might move less than count XRIs if there's not 20823 * enough in public pool. 20824 * 20825 * Return: 20826 * true - if XRIs are successfully moved from the specified pbl_pool to the 20827 * specified pvt_pool 20828 * false - if the specified pbl_pool is empty or locked by someone else 20829 **/ 20830 static bool 20831 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20832 struct lpfc_pbl_pool *pbl_pool, 20833 struct lpfc_pvt_pool *pvt_pool, u32 count) 20834 { 20835 struct lpfc_io_buf *lpfc_ncmd; 20836 struct lpfc_io_buf *lpfc_ncmd_next; 20837 unsigned long iflag; 20838 int ret; 20839 20840 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20841 if (ret) { 20842 if (pbl_pool->count) { 20843 /* Move a batch of XRIs from public to private pool */ 20844 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20845 list_for_each_entry_safe(lpfc_ncmd, 20846 lpfc_ncmd_next, 20847 &pbl_pool->list, 20848 list) { 20849 list_move_tail(&lpfc_ncmd->list, 20850 &pvt_pool->list); 20851 pvt_pool->count++; 20852 pbl_pool->count--; 20853 count--; 20854 if (count == 0) 20855 break; 20856 } 20857 20858 spin_unlock(&pvt_pool->lock); 20859 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20860 return true; 20861 } 20862 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20863 } 20864 20865 return false; 20866 } 20867 20868 /** 20869 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20870 * @phba: pointer to lpfc hba data structure. 20871 * @hwqid: belong to which HWQ. 20872 * @count: number of XRIs to move 20873 * 20874 * This routine tries to find some free common bufs in one of public pools with 20875 * Round Robin method. The search always starts from local hwqid, then the next 20876 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20877 * a batch of free common bufs are moved to private pool on hwqid. 20878 * It might move less than count XRIs if there's not enough in public pool. 20879 **/ 20880 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20881 { 20882 struct lpfc_multixri_pool *multixri_pool; 20883 struct lpfc_multixri_pool *next_multixri_pool; 20884 struct lpfc_pvt_pool *pvt_pool; 20885 struct lpfc_pbl_pool *pbl_pool; 20886 struct lpfc_sli4_hdw_queue *qp; 20887 u32 next_hwqid; 20888 u32 hwq_count; 20889 int ret; 20890 20891 qp = &phba->sli4_hba.hdwq[hwqid]; 20892 multixri_pool = qp->p_multixri_pool; 20893 pvt_pool = &multixri_pool->pvt_pool; 20894 pbl_pool = &multixri_pool->pbl_pool; 20895 20896 /* Check if local pbl_pool is available */ 20897 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20898 if (ret) { 20899 #ifdef LPFC_MXP_STAT 20900 multixri_pool->local_pbl_hit_count++; 20901 #endif 20902 return; 20903 } 20904 20905 hwq_count = phba->cfg_hdw_queue; 20906 20907 /* Get the next hwqid which was found last time */ 20908 next_hwqid = multixri_pool->rrb_next_hwqid; 20909 20910 do { 20911 /* Go to next hwq */ 20912 next_hwqid = (next_hwqid + 1) % hwq_count; 20913 20914 next_multixri_pool = 20915 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20916 pbl_pool = &next_multixri_pool->pbl_pool; 20917 20918 /* Check if the public free xri pool is available */ 20919 ret = _lpfc_move_xri_pbl_to_pvt( 20920 phba, qp, pbl_pool, pvt_pool, count); 20921 20922 /* Exit while-loop if success or all hwqid are checked */ 20923 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20924 20925 /* Starting point for the next time */ 20926 multixri_pool->rrb_next_hwqid = next_hwqid; 20927 20928 if (!ret) { 20929 /* stats: all public pools are empty*/ 20930 multixri_pool->pbl_empty_count++; 20931 } 20932 20933 #ifdef LPFC_MXP_STAT 20934 if (ret) { 20935 if (next_hwqid == hwqid) 20936 multixri_pool->local_pbl_hit_count++; 20937 else 20938 multixri_pool->other_pbl_hit_count++; 20939 } 20940 #endif 20941 } 20942 20943 /** 20944 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20945 * @phba: pointer to lpfc hba data structure. 20946 * @hwqid: belong to which HWQ. 20947 * 20948 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20949 * low watermark. 20950 **/ 20951 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20952 { 20953 struct lpfc_multixri_pool *multixri_pool; 20954 struct lpfc_pvt_pool *pvt_pool; 20955 20956 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20957 pvt_pool = &multixri_pool->pvt_pool; 20958 20959 if (pvt_pool->count < pvt_pool->low_watermark) 20960 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20961 } 20962 20963 /** 20964 * lpfc_release_io_buf - Return one IO buf back to free pool 20965 * @phba: pointer to lpfc hba data structure. 20966 * @lpfc_ncmd: IO buf to be returned. 20967 * @qp: belong to which HWQ. 20968 * 20969 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20970 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20971 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20972 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20973 * lpfc_io_buf_list_put. 20974 **/ 20975 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20976 struct lpfc_sli4_hdw_queue *qp) 20977 { 20978 unsigned long iflag; 20979 struct lpfc_pbl_pool *pbl_pool; 20980 struct lpfc_pvt_pool *pvt_pool; 20981 struct lpfc_epd_pool *epd_pool; 20982 u32 txcmplq_cnt; 20983 u32 xri_owned; 20984 u32 xri_limit; 20985 u32 abts_io_bufs; 20986 20987 /* MUST zero fields if buffer is reused by another protocol */ 20988 lpfc_ncmd->nvmeCmd = NULL; 20989 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20990 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20991 20992 if (phba->cfg_xpsgl && !phba->nvmet_support && 20993 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20994 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20995 20996 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20997 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20998 20999 if (phba->cfg_xri_rebalancing) { 21000 if (lpfc_ncmd->expedite) { 21001 /* Return to expedite pool */ 21002 epd_pool = &phba->epd_pool; 21003 spin_lock_irqsave(&epd_pool->lock, iflag); 21004 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21005 epd_pool->count++; 21006 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21007 return; 21008 } 21009 21010 /* Avoid invalid access if an IO sneaks in and is being rejected 21011 * just _after_ xri pools are destroyed in lpfc_offline. 21012 * Nothing much can be done at this point. 21013 */ 21014 if (!qp->p_multixri_pool) 21015 return; 21016 21017 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21018 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21019 21020 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21021 abts_io_bufs = qp->abts_scsi_io_bufs; 21022 abts_io_bufs += qp->abts_nvme_io_bufs; 21023 21024 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21025 xri_limit = qp->p_multixri_pool->xri_limit; 21026 21027 #ifdef LPFC_MXP_STAT 21028 if (xri_owned <= xri_limit) 21029 qp->p_multixri_pool->below_limit_count++; 21030 else 21031 qp->p_multixri_pool->above_limit_count++; 21032 #endif 21033 21034 /* XRI goes to either public or private free xri pool 21035 * based on watermark and xri_limit 21036 */ 21037 if ((pvt_pool->count < pvt_pool->low_watermark) || 21038 (xri_owned < xri_limit && 21039 pvt_pool->count < pvt_pool->high_watermark)) { 21040 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21041 qp, free_pvt_pool); 21042 list_add_tail(&lpfc_ncmd->list, 21043 &pvt_pool->list); 21044 pvt_pool->count++; 21045 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21046 } else { 21047 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21048 qp, free_pub_pool); 21049 list_add_tail(&lpfc_ncmd->list, 21050 &pbl_pool->list); 21051 pbl_pool->count++; 21052 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21053 } 21054 } else { 21055 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21056 qp, free_xri); 21057 list_add_tail(&lpfc_ncmd->list, 21058 &qp->lpfc_io_buf_list_put); 21059 qp->put_io_bufs++; 21060 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21061 iflag); 21062 } 21063 } 21064 21065 /** 21066 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21067 * @phba: pointer to lpfc hba data structure. 21068 * @qp: pointer to HDW queue 21069 * @pvt_pool: pointer to private pool data structure. 21070 * @ndlp: pointer to lpfc nodelist data structure. 21071 * 21072 * This routine tries to get one free IO buf from private pool. 21073 * 21074 * Return: 21075 * pointer to one free IO buf - if private pool is not empty 21076 * NULL - if private pool is empty 21077 **/ 21078 static struct lpfc_io_buf * 21079 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21080 struct lpfc_sli4_hdw_queue *qp, 21081 struct lpfc_pvt_pool *pvt_pool, 21082 struct lpfc_nodelist *ndlp) 21083 { 21084 struct lpfc_io_buf *lpfc_ncmd; 21085 struct lpfc_io_buf *lpfc_ncmd_next; 21086 unsigned long iflag; 21087 21088 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21089 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21090 &pvt_pool->list, list) { 21091 if (lpfc_test_rrq_active( 21092 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21093 continue; 21094 list_del(&lpfc_ncmd->list); 21095 pvt_pool->count--; 21096 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21097 return lpfc_ncmd; 21098 } 21099 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21100 21101 return NULL; 21102 } 21103 21104 /** 21105 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21106 * @phba: pointer to lpfc hba data structure. 21107 * 21108 * This routine tries to get one free IO buf from expedite pool. 21109 * 21110 * Return: 21111 * pointer to one free IO buf - if expedite pool is not empty 21112 * NULL - if expedite pool is empty 21113 **/ 21114 static struct lpfc_io_buf * 21115 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21116 { 21117 struct lpfc_io_buf *lpfc_ncmd; 21118 struct lpfc_io_buf *lpfc_ncmd_next; 21119 unsigned long iflag; 21120 struct lpfc_epd_pool *epd_pool; 21121 21122 epd_pool = &phba->epd_pool; 21123 lpfc_ncmd = NULL; 21124 21125 spin_lock_irqsave(&epd_pool->lock, iflag); 21126 if (epd_pool->count > 0) { 21127 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21128 &epd_pool->list, list) { 21129 list_del(&lpfc_ncmd->list); 21130 epd_pool->count--; 21131 break; 21132 } 21133 } 21134 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21135 21136 return lpfc_ncmd; 21137 } 21138 21139 /** 21140 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21141 * @phba: pointer to lpfc hba data structure. 21142 * @ndlp: pointer to lpfc nodelist data structure. 21143 * @hwqid: belong to which HWQ 21144 * @expedite: 1 means this request is urgent. 21145 * 21146 * This routine will do the following actions and then return a pointer to 21147 * one free IO buf. 21148 * 21149 * 1. If private free xri count is empty, move some XRIs from public to 21150 * private pool. 21151 * 2. Get one XRI from private free xri pool. 21152 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21153 * get one free xri from expedite pool. 21154 * 21155 * Note: ndlp is only used on SCSI side for RRQ testing. 21156 * The caller should pass NULL for ndlp on NVME side. 21157 * 21158 * Return: 21159 * pointer to one free IO buf - if private pool is not empty 21160 * NULL - if private pool is empty 21161 **/ 21162 static struct lpfc_io_buf * 21163 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21164 struct lpfc_nodelist *ndlp, 21165 int hwqid, int expedite) 21166 { 21167 struct lpfc_sli4_hdw_queue *qp; 21168 struct lpfc_multixri_pool *multixri_pool; 21169 struct lpfc_pvt_pool *pvt_pool; 21170 struct lpfc_io_buf *lpfc_ncmd; 21171 21172 qp = &phba->sli4_hba.hdwq[hwqid]; 21173 lpfc_ncmd = NULL; 21174 multixri_pool = qp->p_multixri_pool; 21175 pvt_pool = &multixri_pool->pvt_pool; 21176 multixri_pool->io_req_count++; 21177 21178 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21179 if (pvt_pool->count == 0) 21180 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21181 21182 /* Get one XRI from private free xri pool */ 21183 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21184 21185 if (lpfc_ncmd) { 21186 lpfc_ncmd->hdwq = qp; 21187 lpfc_ncmd->hdwq_no = hwqid; 21188 } else if (expedite) { 21189 /* If we fail to get one from pvt_pool and this is an expedite 21190 * request, get one free xri from expedite pool. 21191 */ 21192 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21193 } 21194 21195 return lpfc_ncmd; 21196 } 21197 21198 static inline struct lpfc_io_buf * 21199 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21200 { 21201 struct lpfc_sli4_hdw_queue *qp; 21202 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21203 21204 qp = &phba->sli4_hba.hdwq[idx]; 21205 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21206 &qp->lpfc_io_buf_list_get, list) { 21207 if (lpfc_test_rrq_active(phba, ndlp, 21208 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21209 continue; 21210 21211 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21212 continue; 21213 21214 list_del_init(&lpfc_cmd->list); 21215 qp->get_io_bufs--; 21216 lpfc_cmd->hdwq = qp; 21217 lpfc_cmd->hdwq_no = idx; 21218 return lpfc_cmd; 21219 } 21220 return NULL; 21221 } 21222 21223 /** 21224 * lpfc_get_io_buf - Get one IO buffer from free pool 21225 * @phba: The HBA for which this call is being executed. 21226 * @ndlp: pointer to lpfc nodelist data structure. 21227 * @hwqid: belong to which HWQ 21228 * @expedite: 1 means this request is urgent. 21229 * 21230 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21231 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21232 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21233 * 21234 * Note: ndlp is only used on SCSI side for RRQ testing. 21235 * The caller should pass NULL for ndlp on NVME side. 21236 * 21237 * Return codes: 21238 * NULL - Error 21239 * Pointer to lpfc_io_buf - Success 21240 **/ 21241 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21242 struct lpfc_nodelist *ndlp, 21243 u32 hwqid, int expedite) 21244 { 21245 struct lpfc_sli4_hdw_queue *qp; 21246 unsigned long iflag; 21247 struct lpfc_io_buf *lpfc_cmd; 21248 21249 qp = &phba->sli4_hba.hdwq[hwqid]; 21250 lpfc_cmd = NULL; 21251 21252 if (phba->cfg_xri_rebalancing) 21253 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21254 phba, ndlp, hwqid, expedite); 21255 else { 21256 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21257 qp, alloc_xri_get); 21258 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21259 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21260 if (!lpfc_cmd) { 21261 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21262 qp, alloc_xri_put); 21263 list_splice(&qp->lpfc_io_buf_list_put, 21264 &qp->lpfc_io_buf_list_get); 21265 qp->get_io_bufs += qp->put_io_bufs; 21266 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21267 qp->put_io_bufs = 0; 21268 spin_unlock(&qp->io_buf_list_put_lock); 21269 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21270 expedite) 21271 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21272 } 21273 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21274 } 21275 21276 return lpfc_cmd; 21277 } 21278 21279 /** 21280 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21281 * @phba: The HBA for which this call is being executed. 21282 * @lpfc_buf: IO buf structure to append the SGL chunk 21283 * 21284 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21285 * and will allocate an SGL chunk if the pool is empty. 21286 * 21287 * Return codes: 21288 * NULL - Error 21289 * Pointer to sli4_hybrid_sgl - Success 21290 **/ 21291 struct sli4_hybrid_sgl * 21292 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21293 { 21294 struct sli4_hybrid_sgl *list_entry = NULL; 21295 struct sli4_hybrid_sgl *tmp = NULL; 21296 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21297 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21298 struct list_head *buf_list = &hdwq->sgl_list; 21299 unsigned long iflags; 21300 21301 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21302 21303 if (likely(!list_empty(buf_list))) { 21304 /* break off 1 chunk from the sgl_list */ 21305 list_for_each_entry_safe(list_entry, tmp, 21306 buf_list, list_node) { 21307 list_move_tail(&list_entry->list_node, 21308 &lpfc_buf->dma_sgl_xtra_list); 21309 break; 21310 } 21311 } else { 21312 /* allocate more */ 21313 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21314 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21315 cpu_to_node(hdwq->io_wq->chann)); 21316 if (!tmp) { 21317 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21318 "8353 error kmalloc memory for HDWQ " 21319 "%d %s\n", 21320 lpfc_buf->hdwq_no, __func__); 21321 return NULL; 21322 } 21323 21324 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21325 GFP_ATOMIC, &tmp->dma_phys_sgl); 21326 if (!tmp->dma_sgl) { 21327 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21328 "8354 error pool_alloc memory for HDWQ " 21329 "%d %s\n", 21330 lpfc_buf->hdwq_no, __func__); 21331 kfree(tmp); 21332 return NULL; 21333 } 21334 21335 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21336 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21337 } 21338 21339 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21340 struct sli4_hybrid_sgl, 21341 list_node); 21342 21343 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21344 21345 return allocated_sgl; 21346 } 21347 21348 /** 21349 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21350 * @phba: The HBA for which this call is being executed. 21351 * @lpfc_buf: IO buf structure with the SGL chunk 21352 * 21353 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21354 * 21355 * Return codes: 21356 * 0 - Success 21357 * -EINVAL - Error 21358 **/ 21359 int 21360 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21361 { 21362 int rc = 0; 21363 struct sli4_hybrid_sgl *list_entry = NULL; 21364 struct sli4_hybrid_sgl *tmp = NULL; 21365 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21366 struct list_head *buf_list = &hdwq->sgl_list; 21367 unsigned long iflags; 21368 21369 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21370 21371 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21372 list_for_each_entry_safe(list_entry, tmp, 21373 &lpfc_buf->dma_sgl_xtra_list, 21374 list_node) { 21375 list_move_tail(&list_entry->list_node, 21376 buf_list); 21377 } 21378 } else { 21379 rc = -EINVAL; 21380 } 21381 21382 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21383 return rc; 21384 } 21385 21386 /** 21387 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21388 * @phba: phba object 21389 * @hdwq: hdwq to cleanup sgl buff resources on 21390 * 21391 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21392 * 21393 * Return codes: 21394 * None 21395 **/ 21396 void 21397 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21398 struct lpfc_sli4_hdw_queue *hdwq) 21399 { 21400 struct list_head *buf_list = &hdwq->sgl_list; 21401 struct sli4_hybrid_sgl *list_entry = NULL; 21402 struct sli4_hybrid_sgl *tmp = NULL; 21403 unsigned long iflags; 21404 21405 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21406 21407 /* Free sgl pool */ 21408 list_for_each_entry_safe(list_entry, tmp, 21409 buf_list, list_node) { 21410 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21411 list_entry->dma_sgl, 21412 list_entry->dma_phys_sgl); 21413 list_del(&list_entry->list_node); 21414 kfree(list_entry); 21415 } 21416 21417 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21418 } 21419 21420 /** 21421 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21422 * @phba: The HBA for which this call is being executed. 21423 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21424 * 21425 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21426 * and will allocate an CMD/RSP buffer if the pool is empty. 21427 * 21428 * Return codes: 21429 * NULL - Error 21430 * Pointer to fcp_cmd_rsp_buf - Success 21431 **/ 21432 struct fcp_cmd_rsp_buf * 21433 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21434 struct lpfc_io_buf *lpfc_buf) 21435 { 21436 struct fcp_cmd_rsp_buf *list_entry = NULL; 21437 struct fcp_cmd_rsp_buf *tmp = NULL; 21438 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21439 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21440 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21441 unsigned long iflags; 21442 21443 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21444 21445 if (likely(!list_empty(buf_list))) { 21446 /* break off 1 chunk from the list */ 21447 list_for_each_entry_safe(list_entry, tmp, 21448 buf_list, 21449 list_node) { 21450 list_move_tail(&list_entry->list_node, 21451 &lpfc_buf->dma_cmd_rsp_list); 21452 break; 21453 } 21454 } else { 21455 /* allocate more */ 21456 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21457 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21458 cpu_to_node(hdwq->io_wq->chann)); 21459 if (!tmp) { 21460 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21461 "8355 error kmalloc memory for HDWQ " 21462 "%d %s\n", 21463 lpfc_buf->hdwq_no, __func__); 21464 return NULL; 21465 } 21466 21467 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21468 GFP_ATOMIC, 21469 &tmp->fcp_cmd_rsp_dma_handle); 21470 21471 if (!tmp->fcp_cmnd) { 21472 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21473 "8356 error pool_alloc memory for HDWQ " 21474 "%d %s\n", 21475 lpfc_buf->hdwq_no, __func__); 21476 kfree(tmp); 21477 return NULL; 21478 } 21479 21480 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21481 sizeof(struct fcp_cmnd)); 21482 21483 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21484 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21485 } 21486 21487 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21488 struct fcp_cmd_rsp_buf, 21489 list_node); 21490 21491 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21492 21493 return allocated_buf; 21494 } 21495 21496 /** 21497 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21498 * @phba: The HBA for which this call is being executed. 21499 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21500 * 21501 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21502 * 21503 * Return codes: 21504 * 0 - Success 21505 * -EINVAL - Error 21506 **/ 21507 int 21508 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21509 struct lpfc_io_buf *lpfc_buf) 21510 { 21511 int rc = 0; 21512 struct fcp_cmd_rsp_buf *list_entry = NULL; 21513 struct fcp_cmd_rsp_buf *tmp = NULL; 21514 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21515 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21516 unsigned long iflags; 21517 21518 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21519 21520 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21521 list_for_each_entry_safe(list_entry, tmp, 21522 &lpfc_buf->dma_cmd_rsp_list, 21523 list_node) { 21524 list_move_tail(&list_entry->list_node, 21525 buf_list); 21526 } 21527 } else { 21528 rc = -EINVAL; 21529 } 21530 21531 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21532 return rc; 21533 } 21534 21535 /** 21536 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21537 * @phba: phba object 21538 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21539 * 21540 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21541 * 21542 * Return codes: 21543 * None 21544 **/ 21545 void 21546 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21547 struct lpfc_sli4_hdw_queue *hdwq) 21548 { 21549 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21550 struct fcp_cmd_rsp_buf *list_entry = NULL; 21551 struct fcp_cmd_rsp_buf *tmp = NULL; 21552 unsigned long iflags; 21553 21554 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21555 21556 /* Free cmd_rsp buf pool */ 21557 list_for_each_entry_safe(list_entry, tmp, 21558 buf_list, 21559 list_node) { 21560 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21561 list_entry->fcp_cmnd, 21562 list_entry->fcp_cmd_rsp_dma_handle); 21563 list_del(&list_entry->list_node); 21564 kfree(list_entry); 21565 } 21566 21567 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21568 } 21569