xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 78c5335b)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.     *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42 
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 							 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 				      struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 					  struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 				       int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 				     struct lpfc_queue *eq,
85 				     struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 				    struct lpfc_queue *cq,
91 				    struct lpfc_cqe *cqe);
92 
93 union lpfc_wqe128 lpfc_iread_cmd_template;
94 union lpfc_wqe128 lpfc_iwrite_cmd_template;
95 union lpfc_wqe128 lpfc_icmnd_cmd_template;
96 
97 static IOCB_t *
98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
99 {
100 	return &iocbq->iocb;
101 }
102 
103 /* Setup WQE templates for IOs */
104 void lpfc_wqe_cmd_template(void)
105 {
106 	union lpfc_wqe128 *wqe;
107 
108 	/* IREAD template */
109 	wqe = &lpfc_iread_cmd_template;
110 	memset(wqe, 0, sizeof(union lpfc_wqe128));
111 
112 	/* Word 0, 1, 2 - BDE is variable */
113 
114 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
115 
116 	/* Word 4 - total_xfer_len is variable */
117 
118 	/* Word 5 - is zero */
119 
120 	/* Word 6 - ctxt_tag, xri_tag is variable */
121 
122 	/* Word 7 */
123 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
124 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
125 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
126 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
127 
128 	/* Word 8 - abort_tag is variable */
129 
130 	/* Word 9  - reqtag is variable */
131 
132 	/* Word 10 - dbde, wqes is variable */
133 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
134 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
135 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
136 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
137 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
138 
139 	/* Word 11 - pbde is variable */
140 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
141 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
142 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
143 
144 	/* Word 12 - is zero */
145 
146 	/* Word 13, 14, 15 - PBDE is variable */
147 
148 	/* IWRITE template */
149 	wqe = &lpfc_iwrite_cmd_template;
150 	memset(wqe, 0, sizeof(union lpfc_wqe128));
151 
152 	/* Word 0, 1, 2 - BDE is variable */
153 
154 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
155 
156 	/* Word 4 - total_xfer_len is variable */
157 
158 	/* Word 5 - initial_xfer_len is variable */
159 
160 	/* Word 6 - ctxt_tag, xri_tag is variable */
161 
162 	/* Word 7 */
163 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
164 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
165 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
166 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
167 
168 	/* Word 8 - abort_tag is variable */
169 
170 	/* Word 9  - reqtag is variable */
171 
172 	/* Word 10 - dbde, wqes is variable */
173 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
174 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
175 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
176 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
177 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
178 
179 	/* Word 11 - pbde is variable */
180 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
181 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
182 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
183 
184 	/* Word 12 - is zero */
185 
186 	/* Word 13, 14, 15 - PBDE is variable */
187 
188 	/* ICMND template */
189 	wqe = &lpfc_icmnd_cmd_template;
190 	memset(wqe, 0, sizeof(union lpfc_wqe128));
191 
192 	/* Word 0, 1, 2 - BDE is variable */
193 
194 	/* Word 3 - payload_offset_len is variable */
195 
196 	/* Word 4, 5 - is zero */
197 
198 	/* Word 6 - ctxt_tag, xri_tag is variable */
199 
200 	/* Word 7 */
201 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
202 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
203 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
204 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
205 
206 	/* Word 8 - abort_tag is variable */
207 
208 	/* Word 9  - reqtag is variable */
209 
210 	/* Word 10 - dbde, wqes is variable */
211 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
212 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
213 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
214 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
215 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
216 
217 	/* Word 11 */
218 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
219 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
220 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
221 
222 	/* Word 12, 13, 14, 15 - is zero */
223 }
224 
225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
226 /**
227  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
228  * @srcp: Source memory pointer.
229  * @destp: Destination memory pointer.
230  * @cnt: Number of words required to be copied.
231  *       Must be a multiple of sizeof(uint64_t)
232  *
233  * This function is used for copying data between driver memory
234  * and the SLI WQ. This function also changes the endianness
235  * of each word if native endianness is different from SLI
236  * endianness. This function can be called with or without
237  * lock.
238  **/
239 static void
240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
241 {
242 	uint64_t *src = srcp;
243 	uint64_t *dest = destp;
244 	int i;
245 
246 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
247 		*dest++ = *src++;
248 }
249 #else
250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
251 #endif
252 
253 /**
254  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
255  * @q: The Work Queue to operate on.
256  * @wqe: The work Queue Entry to put on the Work queue.
257  *
258  * This routine will copy the contents of @wqe to the next available entry on
259  * the @q. This function will then ring the Work Queue Doorbell to signal the
260  * HBA to start processing the Work Queue Entry. This function returns 0 if
261  * successful. If no entries are available on @q then this function will return
262  * -ENOMEM.
263  * The caller is expected to hold the hbalock when calling this routine.
264  **/
265 static int
266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
267 {
268 	union lpfc_wqe *temp_wqe;
269 	struct lpfc_register doorbell;
270 	uint32_t host_index;
271 	uint32_t idx;
272 	uint32_t i = 0;
273 	uint8_t *tmp;
274 	u32 if_type;
275 
276 	/* sanity check on queue memory */
277 	if (unlikely(!q))
278 		return -ENOMEM;
279 
280 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
281 
282 	/* If the host has not yet processed the next entry then we are done */
283 	idx = ((q->host_index + 1) % q->entry_count);
284 	if (idx == q->hba_index) {
285 		q->WQ_overflow++;
286 		return -EBUSY;
287 	}
288 	q->WQ_posted++;
289 	/* set consumption flag every once in a while */
290 	if (!((q->host_index + 1) % q->notify_interval))
291 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
292 	else
293 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
294 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
295 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
296 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
297 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
298 		/* write to DPP aperture taking advatage of Combined Writes */
299 		tmp = (uint8_t *)temp_wqe;
300 #ifdef __raw_writeq
301 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
302 			__raw_writeq(*((uint64_t *)(tmp + i)),
303 					q->dpp_regaddr + i);
304 #else
305 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
306 			__raw_writel(*((uint32_t *)(tmp + i)),
307 					q->dpp_regaddr + i);
308 #endif
309 	}
310 	/* ensure WQE bcopy and DPP flushed before doorbell write */
311 	wmb();
312 
313 	/* Update the host index before invoking device */
314 	host_index = q->host_index;
315 
316 	q->host_index = idx;
317 
318 	/* Ring Doorbell */
319 	doorbell.word0 = 0;
320 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
321 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
322 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
323 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
324 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
325 			    q->dpp_id);
326 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
327 			    q->queue_id);
328 		} else {
329 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
330 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
331 
332 			/* Leave bits <23:16> clear for if_type 6 dpp */
333 			if_type = bf_get(lpfc_sli_intf_if_type,
334 					 &q->phba->sli4_hba.sli_intf);
335 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
336 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
337 				       host_index);
338 		}
339 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
340 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
341 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
342 	} else {
343 		return -EINVAL;
344 	}
345 	writel(doorbell.word0, q->db_regaddr);
346 
347 	return 0;
348 }
349 
350 /**
351  * lpfc_sli4_wq_release - Updates internal hba index for WQ
352  * @q: The Work Queue to operate on.
353  * @index: The index to advance the hba index to.
354  *
355  * This routine will update the HBA index of a queue to reflect consumption of
356  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
357  * an entry the host calls this function to update the queue's internal
358  * pointers.
359  **/
360 static void
361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
362 {
363 	/* sanity check on queue memory */
364 	if (unlikely(!q))
365 		return;
366 
367 	q->hba_index = index;
368 }
369 
370 /**
371  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
372  * @q: The Mailbox Queue to operate on.
373  * @mqe: The Mailbox Queue Entry to put on the Work queue.
374  *
375  * This routine will copy the contents of @mqe to the next available entry on
376  * the @q. This function will then ring the Work Queue Doorbell to signal the
377  * HBA to start processing the Work Queue Entry. This function returns 0 if
378  * successful. If no entries are available on @q then this function will return
379  * -ENOMEM.
380  * The caller is expected to hold the hbalock when calling this routine.
381  **/
382 static uint32_t
383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
384 {
385 	struct lpfc_mqe *temp_mqe;
386 	struct lpfc_register doorbell;
387 
388 	/* sanity check on queue memory */
389 	if (unlikely(!q))
390 		return -ENOMEM;
391 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
392 
393 	/* If the host has not yet processed the next entry then we are done */
394 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
395 		return -ENOMEM;
396 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
397 	/* Save off the mailbox pointer for completion */
398 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
399 
400 	/* Update the host index before invoking device */
401 	q->host_index = ((q->host_index + 1) % q->entry_count);
402 
403 	/* Ring Doorbell */
404 	doorbell.word0 = 0;
405 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
406 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
407 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
408 	return 0;
409 }
410 
411 /**
412  * lpfc_sli4_mq_release - Updates internal hba index for MQ
413  * @q: The Mailbox Queue to operate on.
414  *
415  * This routine will update the HBA index of a queue to reflect consumption of
416  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
417  * an entry the host calls this function to update the queue's internal
418  * pointers. This routine returns the number of entries that were consumed by
419  * the HBA.
420  **/
421 static uint32_t
422 lpfc_sli4_mq_release(struct lpfc_queue *q)
423 {
424 	/* sanity check on queue memory */
425 	if (unlikely(!q))
426 		return 0;
427 
428 	/* Clear the mailbox pointer for completion */
429 	q->phba->mbox = NULL;
430 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
431 	return 1;
432 }
433 
434 /**
435  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
436  * @q: The Event Queue to get the first valid EQE from
437  *
438  * This routine will get the first valid Event Queue Entry from @q, update
439  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
440  * the Queue (no more work to do), or the Queue is full of EQEs that have been
441  * processed, but not popped back to the HBA then this routine will return NULL.
442  **/
443 static struct lpfc_eqe *
444 lpfc_sli4_eq_get(struct lpfc_queue *q)
445 {
446 	struct lpfc_eqe *eqe;
447 
448 	/* sanity check on queue memory */
449 	if (unlikely(!q))
450 		return NULL;
451 	eqe = lpfc_sli4_qe(q, q->host_index);
452 
453 	/* If the next EQE is not valid then we are done */
454 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
455 		return NULL;
456 
457 	/*
458 	 * insert barrier for instruction interlock : data from the hardware
459 	 * must have the valid bit checked before it can be copied and acted
460 	 * upon. Speculative instructions were allowing a bcopy at the start
461 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
462 	 * after our return, to copy data before the valid bit check above
463 	 * was done. As such, some of the copied data was stale. The barrier
464 	 * ensures the check is before any data is copied.
465 	 */
466 	mb();
467 	return eqe;
468 }
469 
470 /**
471  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
472  * @q: The Event Queue to disable interrupts
473  *
474  **/
475 void
476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
477 {
478 	struct lpfc_register doorbell;
479 
480 	doorbell.word0 = 0;
481 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
482 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
483 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
484 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
485 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
486 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
487 }
488 
489 /**
490  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
491  * @q: The Event Queue to disable interrupts
492  *
493  **/
494 void
495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
496 {
497 	struct lpfc_register doorbell;
498 
499 	doorbell.word0 = 0;
500 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
501 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
502 }
503 
504 /**
505  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
506  * @phba: adapter with EQ
507  * @q: The Event Queue that the host has completed processing for.
508  * @count: Number of elements that have been consumed
509  * @arm: Indicates whether the host wants to arms this CQ.
510  *
511  * This routine will notify the HBA, by ringing the doorbell, that count
512  * number of EQEs have been processed. The @arm parameter indicates whether
513  * the queue should be rearmed when ringing the doorbell.
514  **/
515 void
516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
517 		     uint32_t count, bool arm)
518 {
519 	struct lpfc_register doorbell;
520 
521 	/* sanity check on queue memory */
522 	if (unlikely(!q || (count == 0 && !arm)))
523 		return;
524 
525 	/* ring doorbell for number popped */
526 	doorbell.word0 = 0;
527 	if (arm) {
528 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
529 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
530 	}
531 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
532 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
533 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
534 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
535 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
536 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
537 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
538 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
539 		readl(q->phba->sli4_hba.EQDBregaddr);
540 }
541 
542 /**
543  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
544  * @phba: adapter with EQ
545  * @q: The Event Queue that the host has completed processing for.
546  * @count: Number of elements that have been consumed
547  * @arm: Indicates whether the host wants to arms this CQ.
548  *
549  * This routine will notify the HBA, by ringing the doorbell, that count
550  * number of EQEs have been processed. The @arm parameter indicates whether
551  * the queue should be rearmed when ringing the doorbell.
552  **/
553 void
554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
555 			  uint32_t count, bool arm)
556 {
557 	struct lpfc_register doorbell;
558 
559 	/* sanity check on queue memory */
560 	if (unlikely(!q || (count == 0 && !arm)))
561 		return;
562 
563 	/* ring doorbell for number popped */
564 	doorbell.word0 = 0;
565 	if (arm)
566 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
567 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
568 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
569 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
570 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
571 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
572 		readl(q->phba->sli4_hba.EQDBregaddr);
573 }
574 
575 static void
576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
577 			struct lpfc_eqe *eqe)
578 {
579 	if (!phba->sli4_hba.pc_sli4_params.eqav)
580 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
581 
582 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
583 
584 	/* if the index wrapped around, toggle the valid bit */
585 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
586 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
587 }
588 
589 static void
590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
591 {
592 	struct lpfc_eqe *eqe = NULL;
593 	u32 eq_count = 0, cq_count = 0;
594 	struct lpfc_cqe *cqe = NULL;
595 	struct lpfc_queue *cq = NULL, *childq = NULL;
596 	int cqid = 0;
597 
598 	/* walk all the EQ entries and drop on the floor */
599 	eqe = lpfc_sli4_eq_get(eq);
600 	while (eqe) {
601 		/* Get the reference to the corresponding CQ */
602 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
603 		cq = NULL;
604 
605 		list_for_each_entry(childq, &eq->child_list, list) {
606 			if (childq->queue_id == cqid) {
607 				cq = childq;
608 				break;
609 			}
610 		}
611 		/* If CQ is valid, iterate through it and drop all the CQEs */
612 		if (cq) {
613 			cqe = lpfc_sli4_cq_get(cq);
614 			while (cqe) {
615 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
616 				cq_count++;
617 				cqe = lpfc_sli4_cq_get(cq);
618 			}
619 			/* Clear and re-arm the CQ */
620 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
621 			    LPFC_QUEUE_REARM);
622 			cq_count = 0;
623 		}
624 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
625 		eq_count++;
626 		eqe = lpfc_sli4_eq_get(eq);
627 	}
628 
629 	/* Clear and re-arm the EQ */
630 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
631 }
632 
633 static int
634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
635 		     uint8_t rearm)
636 {
637 	struct lpfc_eqe *eqe;
638 	int count = 0, consumed = 0;
639 
640 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
641 		goto rearm_and_exit;
642 
643 	eqe = lpfc_sli4_eq_get(eq);
644 	while (eqe) {
645 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
646 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
647 
648 		consumed++;
649 		if (!(++count % eq->max_proc_limit))
650 			break;
651 
652 		if (!(count % eq->notify_interval)) {
653 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
654 							LPFC_QUEUE_NOARM);
655 			consumed = 0;
656 		}
657 
658 		eqe = lpfc_sli4_eq_get(eq);
659 	}
660 	eq->EQ_processed += count;
661 
662 	/* Track the max number of EQEs processed in 1 intr */
663 	if (count > eq->EQ_max_eqe)
664 		eq->EQ_max_eqe = count;
665 
666 	xchg(&eq->queue_claimed, 0);
667 
668 rearm_and_exit:
669 	/* Always clear the EQ. */
670 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
671 
672 	return count;
673 }
674 
675 /**
676  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
677  * @q: The Completion Queue to get the first valid CQE from
678  *
679  * This routine will get the first valid Completion Queue Entry from @q, update
680  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
681  * the Queue (no more work to do), or the Queue is full of CQEs that have been
682  * processed, but not popped back to the HBA then this routine will return NULL.
683  **/
684 static struct lpfc_cqe *
685 lpfc_sli4_cq_get(struct lpfc_queue *q)
686 {
687 	struct lpfc_cqe *cqe;
688 
689 	/* sanity check on queue memory */
690 	if (unlikely(!q))
691 		return NULL;
692 	cqe = lpfc_sli4_qe(q, q->host_index);
693 
694 	/* If the next CQE is not valid then we are done */
695 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
696 		return NULL;
697 
698 	/*
699 	 * insert barrier for instruction interlock : data from the hardware
700 	 * must have the valid bit checked before it can be copied and acted
701 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
702 	 * instructions allowing action on content before valid bit checked,
703 	 * add barrier here as well. May not be needed as "content" is a
704 	 * single 32-bit entity here (vs multi word structure for cq's).
705 	 */
706 	mb();
707 	return cqe;
708 }
709 
710 static void
711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
712 			struct lpfc_cqe *cqe)
713 {
714 	if (!phba->sli4_hba.pc_sli4_params.cqav)
715 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
716 
717 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
718 
719 	/* if the index wrapped around, toggle the valid bit */
720 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
721 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
722 }
723 
724 /**
725  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
726  * @phba: the adapter with the CQ
727  * @q: The Completion Queue that the host has completed processing for.
728  * @count: the number of elements that were consumed
729  * @arm: Indicates whether the host wants to arms this CQ.
730  *
731  * This routine will notify the HBA, by ringing the doorbell, that the
732  * CQEs have been processed. The @arm parameter specifies whether the
733  * queue should be rearmed when ringing the doorbell.
734  **/
735 void
736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
737 		     uint32_t count, bool arm)
738 {
739 	struct lpfc_register doorbell;
740 
741 	/* sanity check on queue memory */
742 	if (unlikely(!q || (count == 0 && !arm)))
743 		return;
744 
745 	/* ring doorbell for number popped */
746 	doorbell.word0 = 0;
747 	if (arm)
748 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
749 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
750 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
751 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
752 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
753 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
754 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
755 }
756 
757 /**
758  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
759  * @phba: the adapter with the CQ
760  * @q: The Completion Queue that the host has completed processing for.
761  * @count: the number of elements that were consumed
762  * @arm: Indicates whether the host wants to arms this CQ.
763  *
764  * This routine will notify the HBA, by ringing the doorbell, that the
765  * CQEs have been processed. The @arm parameter specifies whether the
766  * queue should be rearmed when ringing the doorbell.
767  **/
768 void
769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
770 			 uint32_t count, bool arm)
771 {
772 	struct lpfc_register doorbell;
773 
774 	/* sanity check on queue memory */
775 	if (unlikely(!q || (count == 0 && !arm)))
776 		return;
777 
778 	/* ring doorbell for number popped */
779 	doorbell.word0 = 0;
780 	if (arm)
781 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
782 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
783 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
784 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
785 }
786 
787 /*
788  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
789  *
790  * This routine will copy the contents of @wqe to the next available entry on
791  * the @q. This function will then ring the Receive Queue Doorbell to signal the
792  * HBA to start processing the Receive Queue Entry. This function returns the
793  * index that the rqe was copied to if successful. If no entries are available
794  * on @q then this function will return -ENOMEM.
795  * The caller is expected to hold the hbalock when calling this routine.
796  **/
797 int
798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
799 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
800 {
801 	struct lpfc_rqe *temp_hrqe;
802 	struct lpfc_rqe *temp_drqe;
803 	struct lpfc_register doorbell;
804 	int hq_put_index;
805 	int dq_put_index;
806 
807 	/* sanity check on queue memory */
808 	if (unlikely(!hq) || unlikely(!dq))
809 		return -ENOMEM;
810 	hq_put_index = hq->host_index;
811 	dq_put_index = dq->host_index;
812 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
813 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
814 
815 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
816 		return -EINVAL;
817 	if (hq_put_index != dq_put_index)
818 		return -EINVAL;
819 	/* If the host has not yet processed the next entry then we are done */
820 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
821 		return -EBUSY;
822 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
823 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
824 
825 	/* Update the host index to point to the next slot */
826 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
827 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
828 	hq->RQ_buf_posted++;
829 
830 	/* Ring The Header Receive Queue Doorbell */
831 	if (!(hq->host_index % hq->notify_interval)) {
832 		doorbell.word0 = 0;
833 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
834 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
835 			       hq->notify_interval);
836 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
837 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
838 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
839 			       hq->notify_interval);
840 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
841 			       hq->host_index);
842 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
843 		} else {
844 			return -EINVAL;
845 		}
846 		writel(doorbell.word0, hq->db_regaddr);
847 	}
848 	return hq_put_index;
849 }
850 
851 /*
852  * lpfc_sli4_rq_release - Updates internal hba index for RQ
853  *
854  * This routine will update the HBA index of a queue to reflect consumption of
855  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
856  * consumed an entry the host calls this function to update the queue's
857  * internal pointers. This routine returns the number of entries that were
858  * consumed by the HBA.
859  **/
860 static uint32_t
861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
862 {
863 	/* sanity check on queue memory */
864 	if (unlikely(!hq) || unlikely(!dq))
865 		return 0;
866 
867 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
868 		return 0;
869 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
870 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
871 	return 1;
872 }
873 
874 /**
875  * lpfc_cmd_iocb - Get next command iocb entry in the ring
876  * @phba: Pointer to HBA context object.
877  * @pring: Pointer to driver SLI ring object.
878  *
879  * This function returns pointer to next command iocb entry
880  * in the command ring. The caller must hold hbalock to prevent
881  * other threads consume the next command iocb.
882  * SLI-2/SLI-3 provide different sized iocbs.
883  **/
884 static inline IOCB_t *
885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
886 {
887 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
888 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
889 }
890 
891 /**
892  * lpfc_resp_iocb - Get next response iocb entry in the ring
893  * @phba: Pointer to HBA context object.
894  * @pring: Pointer to driver SLI ring object.
895  *
896  * This function returns pointer to next response iocb entry
897  * in the response ring. The caller must hold hbalock to make sure
898  * that no other thread consume the next response iocb.
899  * SLI-2/SLI-3 provide different sized iocbs.
900  **/
901 static inline IOCB_t *
902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
903 {
904 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
905 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
906 }
907 
908 /**
909  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910  * @phba: Pointer to HBA context object.
911  *
912  * This function is called with hbalock held. This function
913  * allocates a new driver iocb object from the iocb pool. If the
914  * allocation is successful, it returns pointer to the newly
915  * allocated iocb object else it returns NULL.
916  **/
917 struct lpfc_iocbq *
918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
919 {
920 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
921 	struct lpfc_iocbq * iocbq = NULL;
922 
923 	lockdep_assert_held(&phba->hbalock);
924 
925 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
926 	if (iocbq)
927 		phba->iocb_cnt++;
928 	if (phba->iocb_cnt > phba->iocb_max)
929 		phba->iocb_max = phba->iocb_cnt;
930 	return iocbq;
931 }
932 
933 /**
934  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
935  * @phba: Pointer to HBA context object.
936  * @xritag: XRI value.
937  *
938  * This function clears the sglq pointer from the array of active
939  * sglq's. The xritag that is passed in is used to index into the
940  * array. Before the xritag can be used it needs to be adjusted
941  * by subtracting the xribase.
942  *
943  * Returns sglq ponter = success, NULL = Failure.
944  **/
945 struct lpfc_sglq *
946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
947 {
948 	struct lpfc_sglq *sglq;
949 
950 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
951 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
952 	return sglq;
953 }
954 
955 /**
956  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
957  * @phba: Pointer to HBA context object.
958  * @xritag: XRI value.
959  *
960  * This function returns the sglq pointer from the array of active
961  * sglq's. The xritag that is passed in is used to index into the
962  * array. Before the xritag can be used it needs to be adjusted
963  * by subtracting the xribase.
964  *
965  * Returns sglq ponter = success, NULL = Failure.
966  **/
967 struct lpfc_sglq *
968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
969 {
970 	struct lpfc_sglq *sglq;
971 
972 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
973 	return sglq;
974 }
975 
976 /**
977  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
978  * @phba: Pointer to HBA context object.
979  * @xritag: xri used in this exchange.
980  * @rrq: The RRQ to be cleared.
981  *
982  **/
983 void
984 lpfc_clr_rrq_active(struct lpfc_hba *phba,
985 		    uint16_t xritag,
986 		    struct lpfc_node_rrq *rrq)
987 {
988 	struct lpfc_nodelist *ndlp = NULL;
989 
990 	/* Lookup did to verify if did is still active on this vport */
991 	if (rrq->vport)
992 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
993 
994 	if (!ndlp)
995 		goto out;
996 
997 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
998 		rrq->send_rrq = 0;
999 		rrq->xritag = 0;
1000 		rrq->rrq_stop_time = 0;
1001 	}
1002 out:
1003 	mempool_free(rrq, phba->rrq_pool);
1004 }
1005 
1006 /**
1007  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1008  * @phba: Pointer to HBA context object.
1009  *
1010  * This function is called with hbalock held. This function
1011  * Checks if stop_time (ratov from setting rrq active) has
1012  * been reached, if it has and the send_rrq flag is set then
1013  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1014  * then it will just call the routine to clear the rrq and
1015  * free the rrq resource.
1016  * The timer is set to the next rrq that is going to expire before
1017  * leaving the routine.
1018  *
1019  **/
1020 void
1021 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1022 {
1023 	struct lpfc_node_rrq *rrq;
1024 	struct lpfc_node_rrq *nextrrq;
1025 	unsigned long next_time;
1026 	unsigned long iflags;
1027 	LIST_HEAD(send_rrq);
1028 
1029 	spin_lock_irqsave(&phba->hbalock, iflags);
1030 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1031 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1032 	list_for_each_entry_safe(rrq, nextrrq,
1033 				 &phba->active_rrq_list, list) {
1034 		if (time_after(jiffies, rrq->rrq_stop_time))
1035 			list_move(&rrq->list, &send_rrq);
1036 		else if (time_before(rrq->rrq_stop_time, next_time))
1037 			next_time = rrq->rrq_stop_time;
1038 	}
1039 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1040 	if ((!list_empty(&phba->active_rrq_list)) &&
1041 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1042 		mod_timer(&phba->rrq_tmr, next_time);
1043 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1044 		list_del(&rrq->list);
1045 		if (!rrq->send_rrq) {
1046 			/* this call will free the rrq */
1047 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1048 		} else if (lpfc_send_rrq(phba, rrq)) {
1049 			/* if we send the rrq then the completion handler
1050 			*  will clear the bit in the xribitmap.
1051 			*/
1052 			lpfc_clr_rrq_active(phba, rrq->xritag,
1053 					    rrq);
1054 		}
1055 	}
1056 }
1057 
1058 /**
1059  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1060  * @vport: Pointer to vport context object.
1061  * @xri: The xri used in the exchange.
1062  * @did: The targets DID for this exchange.
1063  *
1064  * returns NULL = rrq not found in the phba->active_rrq_list.
1065  *         rrq = rrq for this xri and target.
1066  **/
1067 struct lpfc_node_rrq *
1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1069 {
1070 	struct lpfc_hba *phba = vport->phba;
1071 	struct lpfc_node_rrq *rrq;
1072 	struct lpfc_node_rrq *nextrrq;
1073 	unsigned long iflags;
1074 
1075 	if (phba->sli_rev != LPFC_SLI_REV4)
1076 		return NULL;
1077 	spin_lock_irqsave(&phba->hbalock, iflags);
1078 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1079 		if (rrq->vport == vport && rrq->xritag == xri &&
1080 				rrq->nlp_DID == did){
1081 			list_del(&rrq->list);
1082 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1083 			return rrq;
1084 		}
1085 	}
1086 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1087 	return NULL;
1088 }
1089 
1090 /**
1091  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1092  * @vport: Pointer to vport context object.
1093  * @ndlp: Pointer to the lpfc_node_list structure.
1094  * If ndlp is NULL Remove all active RRQs for this vport from the
1095  * phba->active_rrq_list and clear the rrq.
1096  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1097  **/
1098 void
1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1100 
1101 {
1102 	struct lpfc_hba *phba = vport->phba;
1103 	struct lpfc_node_rrq *rrq;
1104 	struct lpfc_node_rrq *nextrrq;
1105 	unsigned long iflags;
1106 	LIST_HEAD(rrq_list);
1107 
1108 	if (phba->sli_rev != LPFC_SLI_REV4)
1109 		return;
1110 	if (!ndlp) {
1111 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1112 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1113 	}
1114 	spin_lock_irqsave(&phba->hbalock, iflags);
1115 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1116 		if (rrq->vport != vport)
1117 			continue;
1118 
1119 		if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID))
1120 			list_move(&rrq->list, &rrq_list);
1121 
1122 	}
1123 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1124 
1125 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1126 		list_del(&rrq->list);
1127 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1128 	}
1129 }
1130 
1131 /**
1132  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1133  * @phba: Pointer to HBA context object.
1134  * @ndlp: Targets nodelist pointer for this exchange.
1135  * @xritag: the xri in the bitmap to test.
1136  *
1137  * This function returns:
1138  * 0 = rrq not active for this xri
1139  * 1 = rrq is valid for this xri.
1140  **/
1141 int
1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1143 			uint16_t  xritag)
1144 {
1145 	if (!ndlp)
1146 		return 0;
1147 	if (!ndlp->active_rrqs_xri_bitmap)
1148 		return 0;
1149 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1150 		return 1;
1151 	else
1152 		return 0;
1153 }
1154 
1155 /**
1156  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1157  * @phba: Pointer to HBA context object.
1158  * @ndlp: nodelist pointer for this target.
1159  * @xritag: xri used in this exchange.
1160  * @rxid: Remote Exchange ID.
1161  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1162  *
1163  * This function takes the hbalock.
1164  * The active bit is always set in the active rrq xri_bitmap even
1165  * if there is no slot avaiable for the other rrq information.
1166  *
1167  * returns 0 rrq actived for this xri
1168  *         < 0 No memory or invalid ndlp.
1169  **/
1170 int
1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1172 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1173 {
1174 	unsigned long iflags;
1175 	struct lpfc_node_rrq *rrq;
1176 	int empty;
1177 
1178 	if (!ndlp)
1179 		return -EINVAL;
1180 
1181 	if (!phba->cfg_enable_rrq)
1182 		return -EINVAL;
1183 
1184 	spin_lock_irqsave(&phba->hbalock, iflags);
1185 	if (phba->pport->load_flag & FC_UNLOADING) {
1186 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1187 		goto out;
1188 	}
1189 
1190 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1191 		goto out;
1192 
1193 	if (!ndlp->active_rrqs_xri_bitmap)
1194 		goto out;
1195 
1196 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1197 		goto out;
1198 
1199 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1200 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1201 	if (!rrq) {
1202 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1203 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1204 				" DID:0x%x Send:%d\n",
1205 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1206 		return -EINVAL;
1207 	}
1208 	if (phba->cfg_enable_rrq == 1)
1209 		rrq->send_rrq = send_rrq;
1210 	else
1211 		rrq->send_rrq = 0;
1212 	rrq->xritag = xritag;
1213 	rrq->rrq_stop_time = jiffies +
1214 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1215 	rrq->nlp_DID = ndlp->nlp_DID;
1216 	rrq->vport = ndlp->vport;
1217 	rrq->rxid = rxid;
1218 	spin_lock_irqsave(&phba->hbalock, iflags);
1219 	empty = list_empty(&phba->active_rrq_list);
1220 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1221 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1222 	if (empty)
1223 		lpfc_worker_wake_up(phba);
1224 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1225 	return 0;
1226 out:
1227 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1228 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1229 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1230 			" DID:0x%x Send:%d\n",
1231 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1232 	return -EINVAL;
1233 }
1234 
1235 /**
1236  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1237  * @phba: Pointer to HBA context object.
1238  * @piocbq: Pointer to the iocbq.
1239  *
1240  * The driver calls this function with either the nvme ls ring lock
1241  * or the fc els ring lock held depending on the iocb usage.  This function
1242  * gets a new driver sglq object from the sglq list. If the list is not empty
1243  * then it is successful, it returns pointer to the newly allocated sglq
1244  * object else it returns NULL.
1245  **/
1246 static struct lpfc_sglq *
1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1248 {
1249 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1250 	struct lpfc_sglq *sglq = NULL;
1251 	struct lpfc_sglq *start_sglq = NULL;
1252 	struct lpfc_io_buf *lpfc_cmd;
1253 	struct lpfc_nodelist *ndlp;
1254 	struct lpfc_sli_ring *pring = NULL;
1255 	int found = 0;
1256 
1257 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1258 		pring =  phba->sli4_hba.nvmels_wq->pring;
1259 	else
1260 		pring = lpfc_phba_elsring(phba);
1261 
1262 	lockdep_assert_held(&pring->ring_lock);
1263 
1264 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1265 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1266 		ndlp = lpfc_cmd->rdata->pnode;
1267 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1268 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1269 		ndlp = piocbq->context_un.ndlp;
1270 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1271 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1272 			ndlp = NULL;
1273 		else
1274 			ndlp = piocbq->context_un.ndlp;
1275 	} else {
1276 		ndlp = piocbq->context1;
1277 	}
1278 
1279 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1280 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1281 	start_sglq = sglq;
1282 	while (!found) {
1283 		if (!sglq)
1284 			break;
1285 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1286 		    test_bit(sglq->sli4_lxritag,
1287 		    ndlp->active_rrqs_xri_bitmap)) {
1288 			/* This xri has an rrq outstanding for this DID.
1289 			 * put it back in the list and get another xri.
1290 			 */
1291 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1292 			sglq = NULL;
1293 			list_remove_head(lpfc_els_sgl_list, sglq,
1294 						struct lpfc_sglq, list);
1295 			if (sglq == start_sglq) {
1296 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1297 				sglq = NULL;
1298 				break;
1299 			} else
1300 				continue;
1301 		}
1302 		sglq->ndlp = ndlp;
1303 		found = 1;
1304 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1305 		sglq->state = SGL_ALLOCATED;
1306 	}
1307 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1308 	return sglq;
1309 }
1310 
1311 /**
1312  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1313  * @phba: Pointer to HBA context object.
1314  * @piocbq: Pointer to the iocbq.
1315  *
1316  * This function is called with the sgl_list lock held. This function
1317  * gets a new driver sglq object from the sglq list. If the
1318  * list is not empty then it is successful, it returns pointer to the newly
1319  * allocated sglq object else it returns NULL.
1320  **/
1321 struct lpfc_sglq *
1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1323 {
1324 	struct list_head *lpfc_nvmet_sgl_list;
1325 	struct lpfc_sglq *sglq = NULL;
1326 
1327 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1328 
1329 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1330 
1331 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1332 	if (!sglq)
1333 		return NULL;
1334 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1335 	sglq->state = SGL_ALLOCATED;
1336 	return sglq;
1337 }
1338 
1339 /**
1340  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1341  * @phba: Pointer to HBA context object.
1342  *
1343  * This function is called with no lock held. This function
1344  * allocates a new driver iocb object from the iocb pool. If the
1345  * allocation is successful, it returns pointer to the newly
1346  * allocated iocb object else it returns NULL.
1347  **/
1348 struct lpfc_iocbq *
1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1350 {
1351 	struct lpfc_iocbq * iocbq = NULL;
1352 	unsigned long iflags;
1353 
1354 	spin_lock_irqsave(&phba->hbalock, iflags);
1355 	iocbq = __lpfc_sli_get_iocbq(phba);
1356 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1357 	return iocbq;
1358 }
1359 
1360 /**
1361  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1362  * @phba: Pointer to HBA context object.
1363  * @iocbq: Pointer to driver iocb object.
1364  *
1365  * This function is called to release the driver iocb object
1366  * to the iocb pool. The iotag in the iocb object
1367  * does not change for each use of the iocb object. This function
1368  * clears all other fields of the iocb object when it is freed.
1369  * The sqlq structure that holds the xritag and phys and virtual
1370  * mappings for the scatter gather list is retrieved from the
1371  * active array of sglq. The get of the sglq pointer also clears
1372  * the entry in the array. If the status of the IO indiactes that
1373  * this IO was aborted then the sglq entry it put on the
1374  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1375  * IO has good status or fails for any other reason then the sglq
1376  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1377  *  asserted held in the code path calling this routine.
1378  **/
1379 static void
1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1381 {
1382 	struct lpfc_sglq *sglq;
1383 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1384 	unsigned long iflag = 0;
1385 	struct lpfc_sli_ring *pring;
1386 
1387 	if (iocbq->sli4_xritag == NO_XRI)
1388 		sglq = NULL;
1389 	else
1390 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1391 
1392 
1393 	if (sglq)  {
1394 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1395 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1396 					  iflag);
1397 			sglq->state = SGL_FREED;
1398 			sglq->ndlp = NULL;
1399 			list_add_tail(&sglq->list,
1400 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1401 			spin_unlock_irqrestore(
1402 				&phba->sli4_hba.sgl_list_lock, iflag);
1403 			goto out;
1404 		}
1405 
1406 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1407 		    (!(unlikely(pci_channel_offline(phba->pcidev)))) &&
1408 		    sglq->state != SGL_XRI_ABORTED) {
1409 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1410 					  iflag);
1411 
1412 			/* Check if we can get a reference on ndlp */
1413 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1414 				sglq->ndlp = NULL;
1415 
1416 			list_add(&sglq->list,
1417 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1418 			spin_unlock_irqrestore(
1419 				&phba->sli4_hba.sgl_list_lock, iflag);
1420 		} else {
1421 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1422 					  iflag);
1423 			sglq->state = SGL_FREED;
1424 			sglq->ndlp = NULL;
1425 			list_add_tail(&sglq->list,
1426 				      &phba->sli4_hba.lpfc_els_sgl_list);
1427 			spin_unlock_irqrestore(
1428 				&phba->sli4_hba.sgl_list_lock, iflag);
1429 			pring = lpfc_phba_elsring(phba);
1430 			/* Check if TXQ queue needs to be serviced */
1431 			if (pring && (!list_empty(&pring->txq)))
1432 				lpfc_worker_wake_up(phba);
1433 		}
1434 	}
1435 
1436 out:
1437 	/*
1438 	 * Clean all volatile data fields, preserve iotag and node struct.
1439 	 */
1440 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1441 	iocbq->sli4_lxritag = NO_XRI;
1442 	iocbq->sli4_xritag = NO_XRI;
1443 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF |
1444 			      LPFC_IO_NVME_LS);
1445 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1446 }
1447 
1448 
1449 /**
1450  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1451  * @phba: Pointer to HBA context object.
1452  * @iocbq: Pointer to driver iocb object.
1453  *
1454  * This function is called to release the driver iocb object to the
1455  * iocb pool. The iotag in the iocb object does not change for each
1456  * use of the iocb object. This function clears all other fields of
1457  * the iocb object when it is freed. The hbalock is asserted held in
1458  * the code path calling this routine.
1459  **/
1460 static void
1461 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1462 {
1463 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1464 
1465 	/*
1466 	 * Clean all volatile data fields, preserve iotag and node struct.
1467 	 */
1468 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1469 	iocbq->sli4_xritag = NO_XRI;
1470 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1471 }
1472 
1473 /**
1474  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1475  * @phba: Pointer to HBA context object.
1476  * @iocbq: Pointer to driver iocb object.
1477  *
1478  * This function is called with hbalock held to release driver
1479  * iocb object to the iocb pool. The iotag in the iocb object
1480  * does not change for each use of the iocb object. This function
1481  * clears all other fields of the iocb object when it is freed.
1482  **/
1483 static void
1484 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1485 {
1486 	lockdep_assert_held(&phba->hbalock);
1487 
1488 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1489 	phba->iocb_cnt--;
1490 }
1491 
1492 /**
1493  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1494  * @phba: Pointer to HBA context object.
1495  * @iocbq: Pointer to driver iocb object.
1496  *
1497  * This function is called with no lock held to release the iocb to
1498  * iocb pool.
1499  **/
1500 void
1501 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1502 {
1503 	unsigned long iflags;
1504 
1505 	/*
1506 	 * Clean all volatile data fields, preserve iotag and node struct.
1507 	 */
1508 	spin_lock_irqsave(&phba->hbalock, iflags);
1509 	__lpfc_sli_release_iocbq(phba, iocbq);
1510 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1511 }
1512 
1513 /**
1514  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1515  * @phba: Pointer to HBA context object.
1516  * @iocblist: List of IOCBs.
1517  * @ulpstatus: ULP status in IOCB command field.
1518  * @ulpWord4: ULP word-4 in IOCB command field.
1519  *
1520  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1521  * on the list by invoking the complete callback function associated with the
1522  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1523  * fields.
1524  **/
1525 void
1526 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1527 		      uint32_t ulpstatus, uint32_t ulpWord4)
1528 {
1529 	struct lpfc_iocbq *piocb;
1530 
1531 	while (!list_empty(iocblist)) {
1532 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1533 		if (piocb->wqe_cmpl) {
1534 			if (piocb->iocb_flag & LPFC_IO_NVME)
1535 				lpfc_nvme_cancel_iocb(phba, piocb,
1536 						      ulpstatus, ulpWord4);
1537 			else
1538 				lpfc_sli_release_iocbq(phba, piocb);
1539 
1540 		} else if (piocb->iocb_cmpl) {
1541 			piocb->iocb.ulpStatus = ulpstatus;
1542 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1543 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1544 		} else {
1545 			lpfc_sli_release_iocbq(phba, piocb);
1546 		}
1547 	}
1548 	return;
1549 }
1550 
1551 /**
1552  * lpfc_sli_iocb_cmd_type - Get the iocb type
1553  * @iocb_cmnd: iocb command code.
1554  *
1555  * This function is called by ring event handler function to get the iocb type.
1556  * This function translates the iocb command to an iocb command type used to
1557  * decide the final disposition of each completed IOCB.
1558  * The function returns
1559  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1560  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1561  * LPFC_ABORT_IOCB   if it is an abort iocb
1562  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1563  *
1564  * The caller is not required to hold any lock.
1565  **/
1566 static lpfc_iocb_type
1567 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1568 {
1569 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1570 
1571 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1572 		return 0;
1573 
1574 	switch (iocb_cmnd) {
1575 	case CMD_XMIT_SEQUENCE_CR:
1576 	case CMD_XMIT_SEQUENCE_CX:
1577 	case CMD_XMIT_BCAST_CN:
1578 	case CMD_XMIT_BCAST_CX:
1579 	case CMD_ELS_REQUEST_CR:
1580 	case CMD_ELS_REQUEST_CX:
1581 	case CMD_CREATE_XRI_CR:
1582 	case CMD_CREATE_XRI_CX:
1583 	case CMD_GET_RPI_CN:
1584 	case CMD_XMIT_ELS_RSP_CX:
1585 	case CMD_GET_RPI_CR:
1586 	case CMD_FCP_IWRITE_CR:
1587 	case CMD_FCP_IWRITE_CX:
1588 	case CMD_FCP_IREAD_CR:
1589 	case CMD_FCP_IREAD_CX:
1590 	case CMD_FCP_ICMND_CR:
1591 	case CMD_FCP_ICMND_CX:
1592 	case CMD_FCP_TSEND_CX:
1593 	case CMD_FCP_TRSP_CX:
1594 	case CMD_FCP_TRECEIVE_CX:
1595 	case CMD_FCP_AUTO_TRSP_CX:
1596 	case CMD_ADAPTER_MSG:
1597 	case CMD_ADAPTER_DUMP:
1598 	case CMD_XMIT_SEQUENCE64_CR:
1599 	case CMD_XMIT_SEQUENCE64_CX:
1600 	case CMD_XMIT_BCAST64_CN:
1601 	case CMD_XMIT_BCAST64_CX:
1602 	case CMD_ELS_REQUEST64_CR:
1603 	case CMD_ELS_REQUEST64_CX:
1604 	case CMD_FCP_IWRITE64_CR:
1605 	case CMD_FCP_IWRITE64_CX:
1606 	case CMD_FCP_IREAD64_CR:
1607 	case CMD_FCP_IREAD64_CX:
1608 	case CMD_FCP_ICMND64_CR:
1609 	case CMD_FCP_ICMND64_CX:
1610 	case CMD_FCP_TSEND64_CX:
1611 	case CMD_FCP_TRSP64_CX:
1612 	case CMD_FCP_TRECEIVE64_CX:
1613 	case CMD_GEN_REQUEST64_CR:
1614 	case CMD_GEN_REQUEST64_CX:
1615 	case CMD_XMIT_ELS_RSP64_CX:
1616 	case DSSCMD_IWRITE64_CR:
1617 	case DSSCMD_IWRITE64_CX:
1618 	case DSSCMD_IREAD64_CR:
1619 	case DSSCMD_IREAD64_CX:
1620 	case CMD_SEND_FRAME:
1621 		type = LPFC_SOL_IOCB;
1622 		break;
1623 	case CMD_ABORT_XRI_CN:
1624 	case CMD_ABORT_XRI_CX:
1625 	case CMD_CLOSE_XRI_CN:
1626 	case CMD_CLOSE_XRI_CX:
1627 	case CMD_XRI_ABORTED_CX:
1628 	case CMD_ABORT_MXRI64_CN:
1629 	case CMD_XMIT_BLS_RSP64_CX:
1630 		type = LPFC_ABORT_IOCB;
1631 		break;
1632 	case CMD_RCV_SEQUENCE_CX:
1633 	case CMD_RCV_ELS_REQ_CX:
1634 	case CMD_RCV_SEQUENCE64_CX:
1635 	case CMD_RCV_ELS_REQ64_CX:
1636 	case CMD_ASYNC_STATUS:
1637 	case CMD_IOCB_RCV_SEQ64_CX:
1638 	case CMD_IOCB_RCV_ELS64_CX:
1639 	case CMD_IOCB_RCV_CONT64_CX:
1640 	case CMD_IOCB_RET_XRI64_CX:
1641 		type = LPFC_UNSOL_IOCB;
1642 		break;
1643 	case CMD_IOCB_XMIT_MSEQ64_CR:
1644 	case CMD_IOCB_XMIT_MSEQ64_CX:
1645 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1646 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1647 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1648 	case CMD_IOCB_ABORT_EXTENDED_CN:
1649 	case CMD_IOCB_RET_HBQE64_CN:
1650 	case CMD_IOCB_FCP_IBIDIR64_CR:
1651 	case CMD_IOCB_FCP_IBIDIR64_CX:
1652 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1653 	case CMD_IOCB_LOGENTRY_CN:
1654 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1655 		printk("%s - Unhandled SLI-3 Command x%x\n",
1656 				__func__, iocb_cmnd);
1657 		type = LPFC_UNKNOWN_IOCB;
1658 		break;
1659 	default:
1660 		type = LPFC_UNKNOWN_IOCB;
1661 		break;
1662 	}
1663 
1664 	return type;
1665 }
1666 
1667 /**
1668  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1669  * @phba: Pointer to HBA context object.
1670  *
1671  * This function is called from SLI initialization code
1672  * to configure every ring of the HBA's SLI interface. The
1673  * caller is not required to hold any lock. This function issues
1674  * a config_ring mailbox command for each ring.
1675  * This function returns zero if successful else returns a negative
1676  * error code.
1677  **/
1678 static int
1679 lpfc_sli_ring_map(struct lpfc_hba *phba)
1680 {
1681 	struct lpfc_sli *psli = &phba->sli;
1682 	LPFC_MBOXQ_t *pmb;
1683 	MAILBOX_t *pmbox;
1684 	int i, rc, ret = 0;
1685 
1686 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1687 	if (!pmb)
1688 		return -ENOMEM;
1689 	pmbox = &pmb->u.mb;
1690 	phba->link_state = LPFC_INIT_MBX_CMDS;
1691 	for (i = 0; i < psli->num_rings; i++) {
1692 		lpfc_config_ring(phba, i, pmb);
1693 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1694 		if (rc != MBX_SUCCESS) {
1695 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1696 					"0446 Adapter failed to init (%d), "
1697 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1698 					"ring %d\n",
1699 					rc, pmbox->mbxCommand,
1700 					pmbox->mbxStatus, i);
1701 			phba->link_state = LPFC_HBA_ERROR;
1702 			ret = -ENXIO;
1703 			break;
1704 		}
1705 	}
1706 	mempool_free(pmb, phba->mbox_mem_pool);
1707 	return ret;
1708 }
1709 
1710 /**
1711  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1712  * @phba: Pointer to HBA context object.
1713  * @pring: Pointer to driver SLI ring object.
1714  * @piocb: Pointer to the driver iocb object.
1715  *
1716  * The driver calls this function with the hbalock held for SLI3 ports or
1717  * the ring lock held for SLI4 ports. The function adds the
1718  * new iocb to txcmplq of the given ring. This function always returns
1719  * 0. If this function is called for ELS ring, this function checks if
1720  * there is a vport associated with the ELS command. This function also
1721  * starts els_tmofunc timer if this is an ELS command.
1722  **/
1723 static int
1724 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1725 			struct lpfc_iocbq *piocb)
1726 {
1727 	if (phba->sli_rev == LPFC_SLI_REV4)
1728 		lockdep_assert_held(&pring->ring_lock);
1729 	else
1730 		lockdep_assert_held(&phba->hbalock);
1731 
1732 	BUG_ON(!piocb);
1733 
1734 	list_add_tail(&piocb->list, &pring->txcmplq);
1735 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1736 	pring->txcmplq_cnt++;
1737 
1738 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1739 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1740 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1741 		BUG_ON(!piocb->vport);
1742 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1743 			mod_timer(&piocb->vport->els_tmofunc,
1744 				  jiffies +
1745 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 /**
1752  * lpfc_sli_ringtx_get - Get first element of the txq
1753  * @phba: Pointer to HBA context object.
1754  * @pring: Pointer to driver SLI ring object.
1755  *
1756  * This function is called with hbalock held to get next
1757  * iocb in txq of the given ring. If there is any iocb in
1758  * the txq, the function returns first iocb in the list after
1759  * removing the iocb from the list, else it returns NULL.
1760  **/
1761 struct lpfc_iocbq *
1762 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1763 {
1764 	struct lpfc_iocbq *cmd_iocb;
1765 
1766 	lockdep_assert_held(&phba->hbalock);
1767 
1768 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1769 	return cmd_iocb;
1770 }
1771 
1772 /**
1773  * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl
1774  * @phba: Pointer to HBA context object.
1775  * @cmdiocb: Pointer to driver command iocb object.
1776  * @cmf_cmpl: Pointer to completed WCQE.
1777  *
1778  * This routine will inform the driver of any BW adjustments we need
1779  * to make. These changes will be picked up during the next CMF
1780  * timer interrupt. In addition, any BW changes will be logged
1781  * with LOG_CGN_MGMT.
1782  **/
1783 static void
1784 lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
1785 		   struct lpfc_wcqe_complete *cmf_cmpl)
1786 {
1787 	union lpfc_wqe128 *wqe;
1788 	uint32_t status, info;
1789 	uint64_t bw, bwdif, slop;
1790 	uint64_t pcent, bwpcent;
1791 	int asig, afpin, sigcnt, fpincnt;
1792 	int wsigmax, wfpinmax, cg, tdp;
1793 	char *s;
1794 
1795 	/* First check for error */
1796 	status = bf_get(lpfc_wcqe_c_status, cmf_cmpl);
1797 	if (status) {
1798 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1799 				"6211 CMF_SYNC_WQE Error "
1800 				"req_tag x%x status x%x hwstatus x%x "
1801 				"tdatap x%x parm x%x\n",
1802 				bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl),
1803 				bf_get(lpfc_wcqe_c_status, cmf_cmpl),
1804 				bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl),
1805 				cmf_cmpl->total_data_placed,
1806 				cmf_cmpl->parameter);
1807 		goto out;
1808 	}
1809 
1810 	/* Gather congestion information on a successful cmpl */
1811 	info = cmf_cmpl->parameter;
1812 	phba->cmf_active_info = info;
1813 
1814 	/* See if firmware info count is valid or has changed */
1815 	if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info)
1816 		info = 0;
1817 	else
1818 		phba->cmf_info_per_interval = info;
1819 
1820 	tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl);
1821 	cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl);
1822 
1823 	/* Get BW requirement from firmware */
1824 	bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE;
1825 	if (!bw) {
1826 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1827 				"6212 CMF_SYNC_WQE x%x: NULL bw\n",
1828 				bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl));
1829 		goto out;
1830 	}
1831 
1832 	/* Gather information needed for logging if a BW change is required */
1833 	wqe = &cmdiocb->wqe;
1834 	asig = bf_get(cmf_sync_asig, &wqe->cmf_sync);
1835 	afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync);
1836 	fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync);
1837 	sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync);
1838 	if (phba->cmf_max_bytes_per_interval != bw ||
1839 	    (asig || afpin || sigcnt || fpincnt)) {
1840 		/* Are we increasing or decreasing BW */
1841 		if (phba->cmf_max_bytes_per_interval <  bw) {
1842 			bwdif = bw - phba->cmf_max_bytes_per_interval;
1843 			s = "Increase";
1844 		} else {
1845 			bwdif = phba->cmf_max_bytes_per_interval - bw;
1846 			s = "Decrease";
1847 		}
1848 
1849 		/* What is the change percentage */
1850 		slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/
1851 		pcent = div64_u64(bwdif * 100 + slop,
1852 				  phba->cmf_link_byte_count);
1853 		bwpcent = div64_u64(bw * 100 + slop,
1854 				    phba->cmf_link_byte_count);
1855 		if (asig) {
1856 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1857 					"6237 BW Threshold %lld%% (%lld): "
1858 					"%lld%% %s: Signal Alarm: cg:%d "
1859 					"Info:%u\n",
1860 					bwpcent, bw, pcent, s, cg,
1861 					phba->cmf_active_info);
1862 		} else if (afpin) {
1863 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1864 					"6238 BW Threshold %lld%% (%lld): "
1865 					"%lld%% %s: FPIN Alarm: cg:%d "
1866 					"Info:%u\n",
1867 					bwpcent, bw, pcent, s, cg,
1868 					phba->cmf_active_info);
1869 		} else if (sigcnt) {
1870 			wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync);
1871 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1872 					"6239 BW Threshold %lld%% (%lld): "
1873 					"%lld%% %s: Signal Warning: "
1874 					"Cnt %d Max %d: cg:%d Info:%u\n",
1875 					bwpcent, bw, pcent, s, sigcnt,
1876 					wsigmax, cg, phba->cmf_active_info);
1877 		} else if (fpincnt) {
1878 			wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync);
1879 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1880 					"6240 BW Threshold %lld%% (%lld): "
1881 					"%lld%% %s: FPIN Warning: "
1882 					"Cnt %d Max %d: cg:%d Info:%u\n",
1883 					bwpcent, bw, pcent, s, fpincnt,
1884 					wfpinmax, cg, phba->cmf_active_info);
1885 		} else {
1886 			lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1887 					"6241 BW Threshold %lld%% (%lld): "
1888 					"CMF %lld%% %s: cg:%d Info:%u\n",
1889 					bwpcent, bw, pcent, s, cg,
1890 					phba->cmf_active_info);
1891 		}
1892 	} else if (info) {
1893 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1894 				"6246 Info Threshold %u\n", info);
1895 	}
1896 
1897 	/* Save BW change to be picked up during next timer interrupt */
1898 	phba->cmf_last_sync_bw = bw;
1899 out:
1900 	lpfc_sli_release_iocbq(phba, cmdiocb);
1901 }
1902 
1903 /**
1904  * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE
1905  * @phba: Pointer to HBA context object.
1906  * @ms:   ms to set in WQE interval, 0 means use init op
1907  * @total: Total rcv bytes for this interval
1908  *
1909  * This routine is called every CMF timer interrupt. Its purpose is
1910  * to issue a CMF_SYNC_WQE to the firmware to inform it of any events
1911  * that may indicate we have congestion (FPINs or Signals). Upon
1912  * completion, the firmware will indicate any BW restrictions the
1913  * driver may need to take.
1914  **/
1915 int
1916 lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total)
1917 {
1918 	union lpfc_wqe128 *wqe;
1919 	struct lpfc_iocbq *sync_buf;
1920 	unsigned long iflags;
1921 	u32 ret_val;
1922 	u32 atot, wtot, max;
1923 
1924 	/* First address any alarm / warning activity */
1925 	atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0);
1926 	wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0);
1927 
1928 	/* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */
1929 	if (phba->cmf_active_mode != LPFC_CFG_MANAGED ||
1930 	    phba->link_state == LPFC_LINK_DOWN)
1931 		return 0;
1932 
1933 	spin_lock_irqsave(&phba->hbalock, iflags);
1934 	sync_buf = __lpfc_sli_get_iocbq(phba);
1935 	if (!sync_buf) {
1936 		lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT,
1937 				"6213 No available WQEs for CMF_SYNC_WQE\n");
1938 		ret_val = ENOMEM;
1939 		goto out_unlock;
1940 	}
1941 
1942 	wqe = &sync_buf->wqe;
1943 
1944 	/* WQEs are reused.  Clear stale data and set key fields to zero */
1945 	memset(wqe, 0, sizeof(*wqe));
1946 
1947 	/* If this is the very first CMF_SYNC_WQE, issue an init operation */
1948 	if (!ms) {
1949 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
1950 				"6441 CMF Init %d - CMF_SYNC_WQE\n",
1951 				phba->fc_eventTag);
1952 		bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */
1953 		bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL);
1954 		goto initpath;
1955 	}
1956 
1957 	bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */
1958 	bf_set(cmf_sync_interval, &wqe->cmf_sync, ms);
1959 
1960 	/* Check for alarms / warnings */
1961 	if (atot) {
1962 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1963 			/* We hit an Signal alarm condition */
1964 			bf_set(cmf_sync_asig, &wqe->cmf_sync, 1);
1965 		} else {
1966 			/* We hit a FPIN alarm condition */
1967 			bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1);
1968 		}
1969 	} else if (wtot) {
1970 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY ||
1971 		    phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
1972 			/* We hit an Signal warning condition */
1973 			max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency *
1974 				lpfc_acqe_cgn_frequency;
1975 			bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max);
1976 			bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot);
1977 		} else {
1978 			/* We hit a FPIN warning condition */
1979 			bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1);
1980 			bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1);
1981 		}
1982 	}
1983 
1984 	/* Update total read blocks during previous timer interval */
1985 	wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE);
1986 
1987 initpath:
1988 	bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER);
1989 	wqe->cmf_sync.event_tag = phba->fc_eventTag;
1990 	bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE);
1991 
1992 	/* Setup reqtag to match the wqe completion. */
1993 	bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag);
1994 
1995 	bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1);
1996 
1997 	bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND);
1998 	bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1);
1999 	bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT);
2000 
2001 	sync_buf->vport = phba->pport;
2002 	sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl;
2003 	sync_buf->iocb_cmpl = NULL;
2004 	sync_buf->context1 = NULL;
2005 	sync_buf->context2 = NULL;
2006 	sync_buf->context3 = NULL;
2007 	sync_buf->sli4_xritag = NO_XRI;
2008 
2009 	sync_buf->iocb_flag |= LPFC_IO_CMF;
2010 	ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf);
2011 	if (ret_val)
2012 		lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
2013 				"6214 Cannot issue CMF_SYNC_WQE: x%x\n",
2014 				ret_val);
2015 out_unlock:
2016 	spin_unlock_irqrestore(&phba->hbalock, iflags);
2017 	return ret_val;
2018 }
2019 
2020 /**
2021  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
2022  * @phba: Pointer to HBA context object.
2023  * @pring: Pointer to driver SLI ring object.
2024  *
2025  * This function is called with hbalock held and the caller must post the
2026  * iocb without releasing the lock. If the caller releases the lock,
2027  * iocb slot returned by the function is not guaranteed to be available.
2028  * The function returns pointer to the next available iocb slot if there
2029  * is available slot in the ring, else it returns NULL.
2030  * If the get index of the ring is ahead of the put index, the function
2031  * will post an error attention event to the worker thread to take the
2032  * HBA to offline state.
2033  **/
2034 static IOCB_t *
2035 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2036 {
2037 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2038 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
2039 
2040 	lockdep_assert_held(&phba->hbalock);
2041 
2042 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
2043 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
2044 		pring->sli.sli3.next_cmdidx = 0;
2045 
2046 	if (unlikely(pring->sli.sli3.local_getidx ==
2047 		pring->sli.sli3.next_cmdidx)) {
2048 
2049 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
2050 
2051 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
2052 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2053 					"0315 Ring %d issue: portCmdGet %d "
2054 					"is bigger than cmd ring %d\n",
2055 					pring->ringno,
2056 					pring->sli.sli3.local_getidx,
2057 					max_cmd_idx);
2058 
2059 			phba->link_state = LPFC_HBA_ERROR;
2060 			/*
2061 			 * All error attention handlers are posted to
2062 			 * worker thread
2063 			 */
2064 			phba->work_ha |= HA_ERATT;
2065 			phba->work_hs = HS_FFER3;
2066 
2067 			lpfc_worker_wake_up(phba);
2068 
2069 			return NULL;
2070 		}
2071 
2072 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
2073 			return NULL;
2074 	}
2075 
2076 	return lpfc_cmd_iocb(phba, pring);
2077 }
2078 
2079 /**
2080  * lpfc_sli_next_iotag - Get an iotag for the iocb
2081  * @phba: Pointer to HBA context object.
2082  * @iocbq: Pointer to driver iocb object.
2083  *
2084  * This function gets an iotag for the iocb. If there is no unused iotag and
2085  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
2086  * array and assigns a new iotag.
2087  * The function returns the allocated iotag if successful, else returns zero.
2088  * Zero is not a valid iotag.
2089  * The caller is not required to hold any lock.
2090  **/
2091 uint16_t
2092 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
2093 {
2094 	struct lpfc_iocbq **new_arr;
2095 	struct lpfc_iocbq **old_arr;
2096 	size_t new_len;
2097 	struct lpfc_sli *psli = &phba->sli;
2098 	uint16_t iotag;
2099 
2100 	spin_lock_irq(&phba->hbalock);
2101 	iotag = psli->last_iotag;
2102 	if(++iotag < psli->iocbq_lookup_len) {
2103 		psli->last_iotag = iotag;
2104 		psli->iocbq_lookup[iotag] = iocbq;
2105 		spin_unlock_irq(&phba->hbalock);
2106 		iocbq->iotag = iotag;
2107 		return iotag;
2108 	} else if (psli->iocbq_lookup_len < (0xffff
2109 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
2110 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
2111 		spin_unlock_irq(&phba->hbalock);
2112 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
2113 				  GFP_KERNEL);
2114 		if (new_arr) {
2115 			spin_lock_irq(&phba->hbalock);
2116 			old_arr = psli->iocbq_lookup;
2117 			if (new_len <= psli->iocbq_lookup_len) {
2118 				/* highly unprobable case */
2119 				kfree(new_arr);
2120 				iotag = psli->last_iotag;
2121 				if(++iotag < psli->iocbq_lookup_len) {
2122 					psli->last_iotag = iotag;
2123 					psli->iocbq_lookup[iotag] = iocbq;
2124 					spin_unlock_irq(&phba->hbalock);
2125 					iocbq->iotag = iotag;
2126 					return iotag;
2127 				}
2128 				spin_unlock_irq(&phba->hbalock);
2129 				return 0;
2130 			}
2131 			if (psli->iocbq_lookup)
2132 				memcpy(new_arr, old_arr,
2133 				       ((psli->last_iotag  + 1) *
2134 					sizeof (struct lpfc_iocbq *)));
2135 			psli->iocbq_lookup = new_arr;
2136 			psli->iocbq_lookup_len = new_len;
2137 			psli->last_iotag = iotag;
2138 			psli->iocbq_lookup[iotag] = iocbq;
2139 			spin_unlock_irq(&phba->hbalock);
2140 			iocbq->iotag = iotag;
2141 			kfree(old_arr);
2142 			return iotag;
2143 		}
2144 	} else
2145 		spin_unlock_irq(&phba->hbalock);
2146 
2147 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2148 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
2149 			psli->last_iotag);
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
2156  * @phba: Pointer to HBA context object.
2157  * @pring: Pointer to driver SLI ring object.
2158  * @iocb: Pointer to iocb slot in the ring.
2159  * @nextiocb: Pointer to driver iocb object which need to be
2160  *            posted to firmware.
2161  *
2162  * This function is called to post a new iocb to the firmware. This
2163  * function copies the new iocb to ring iocb slot and updates the
2164  * ring pointers. It adds the new iocb to txcmplq if there is
2165  * a completion call back for this iocb else the function will free the
2166  * iocb object.  The hbalock is asserted held in the code path calling
2167  * this routine.
2168  **/
2169 static void
2170 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2171 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
2172 {
2173 	/*
2174 	 * Set up an iotag
2175 	 */
2176 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
2177 
2178 
2179 	if (pring->ringno == LPFC_ELS_RING) {
2180 		lpfc_debugfs_slow_ring_trc(phba,
2181 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
2182 			*(((uint32_t *) &nextiocb->iocb) + 4),
2183 			*(((uint32_t *) &nextiocb->iocb) + 6),
2184 			*(((uint32_t *) &nextiocb->iocb) + 7));
2185 	}
2186 
2187 	/*
2188 	 * Issue iocb command to adapter
2189 	 */
2190 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
2191 	wmb();
2192 	pring->stats.iocb_cmd++;
2193 
2194 	/*
2195 	 * If there is no completion routine to call, we can release the
2196 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
2197 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
2198 	 */
2199 	if (nextiocb->iocb_cmpl)
2200 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
2201 	else
2202 		__lpfc_sli_release_iocbq(phba, nextiocb);
2203 
2204 	/*
2205 	 * Let the HBA know what IOCB slot will be the next one the
2206 	 * driver will put a command into.
2207 	 */
2208 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
2209 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
2210 }
2211 
2212 /**
2213  * lpfc_sli_update_full_ring - Update the chip attention register
2214  * @phba: Pointer to HBA context object.
2215  * @pring: Pointer to driver SLI ring object.
2216  *
2217  * The caller is not required to hold any lock for calling this function.
2218  * This function updates the chip attention bits for the ring to inform firmware
2219  * that there are pending work to be done for this ring and requests an
2220  * interrupt when there is space available in the ring. This function is
2221  * called when the driver is unable to post more iocbs to the ring due
2222  * to unavailability of space in the ring.
2223  **/
2224 static void
2225 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2226 {
2227 	int ringno = pring->ringno;
2228 
2229 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
2230 
2231 	wmb();
2232 
2233 	/*
2234 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
2235 	 * The HBA will tell us when an IOCB entry is available.
2236 	 */
2237 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
2238 	readl(phba->CAregaddr); /* flush */
2239 
2240 	pring->stats.iocb_cmd_full++;
2241 }
2242 
2243 /**
2244  * lpfc_sli_update_ring - Update chip attention register
2245  * @phba: Pointer to HBA context object.
2246  * @pring: Pointer to driver SLI ring object.
2247  *
2248  * This function updates the chip attention register bit for the
2249  * given ring to inform HBA that there is more work to be done
2250  * in this ring. The caller is not required to hold any lock.
2251  **/
2252 static void
2253 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2254 {
2255 	int ringno = pring->ringno;
2256 
2257 	/*
2258 	 * Tell the HBA that there is work to do in this ring.
2259 	 */
2260 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2261 		wmb();
2262 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2263 		readl(phba->CAregaddr); /* flush */
2264 	}
2265 }
2266 
2267 /**
2268  * lpfc_sli_resume_iocb - Process iocbs in the txq
2269  * @phba: Pointer to HBA context object.
2270  * @pring: Pointer to driver SLI ring object.
2271  *
2272  * This function is called with hbalock held to post pending iocbs
2273  * in the txq to the firmware. This function is called when driver
2274  * detects space available in the ring.
2275  **/
2276 static void
2277 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2278 {
2279 	IOCB_t *iocb;
2280 	struct lpfc_iocbq *nextiocb;
2281 
2282 	lockdep_assert_held(&phba->hbalock);
2283 
2284 	/*
2285 	 * Check to see if:
2286 	 *  (a) there is anything on the txq to send
2287 	 *  (b) link is up
2288 	 *  (c) link attention events can be processed (fcp ring only)
2289 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2290 	 */
2291 
2292 	if (lpfc_is_link_up(phba) &&
2293 	    (!list_empty(&pring->txq)) &&
2294 	    (pring->ringno != LPFC_FCP_RING ||
2295 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2296 
2297 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2298 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2299 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2300 
2301 		if (iocb)
2302 			lpfc_sli_update_ring(phba, pring);
2303 		else
2304 			lpfc_sli_update_full_ring(phba, pring);
2305 	}
2306 
2307 	return;
2308 }
2309 
2310 /**
2311  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2312  * @phba: Pointer to HBA context object.
2313  * @hbqno: HBQ number.
2314  *
2315  * This function is called with hbalock held to get the next
2316  * available slot for the given HBQ. If there is free slot
2317  * available for the HBQ it will return pointer to the next available
2318  * HBQ entry else it will return NULL.
2319  **/
2320 static struct lpfc_hbq_entry *
2321 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2322 {
2323 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2324 
2325 	lockdep_assert_held(&phba->hbalock);
2326 
2327 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2328 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2329 		hbqp->next_hbqPutIdx = 0;
2330 
2331 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2332 		uint32_t raw_index = phba->hbq_get[hbqno];
2333 		uint32_t getidx = le32_to_cpu(raw_index);
2334 
2335 		hbqp->local_hbqGetIdx = getidx;
2336 
2337 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2338 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2339 					"1802 HBQ %d: local_hbqGetIdx "
2340 					"%u is > than hbqp->entry_count %u\n",
2341 					hbqno, hbqp->local_hbqGetIdx,
2342 					hbqp->entry_count);
2343 
2344 			phba->link_state = LPFC_HBA_ERROR;
2345 			return NULL;
2346 		}
2347 
2348 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2349 			return NULL;
2350 	}
2351 
2352 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2353 			hbqp->hbqPutIdx;
2354 }
2355 
2356 /**
2357  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2358  * @phba: Pointer to HBA context object.
2359  *
2360  * This function is called with no lock held to free all the
2361  * hbq buffers while uninitializing the SLI interface. It also
2362  * frees the HBQ buffers returned by the firmware but not yet
2363  * processed by the upper layers.
2364  **/
2365 void
2366 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2367 {
2368 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2369 	struct hbq_dmabuf *hbq_buf;
2370 	unsigned long flags;
2371 	int i, hbq_count;
2372 
2373 	hbq_count = lpfc_sli_hbq_count();
2374 	/* Return all memory used by all HBQs */
2375 	spin_lock_irqsave(&phba->hbalock, flags);
2376 	for (i = 0; i < hbq_count; ++i) {
2377 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2378 				&phba->hbqs[i].hbq_buffer_list, list) {
2379 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2380 			list_del(&hbq_buf->dbuf.list);
2381 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2382 		}
2383 		phba->hbqs[i].buffer_count = 0;
2384 	}
2385 
2386 	/* Mark the HBQs not in use */
2387 	phba->hbq_in_use = 0;
2388 	spin_unlock_irqrestore(&phba->hbalock, flags);
2389 }
2390 
2391 /**
2392  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2393  * @phba: Pointer to HBA context object.
2394  * @hbqno: HBQ number.
2395  * @hbq_buf: Pointer to HBQ buffer.
2396  *
2397  * This function is called with the hbalock held to post a
2398  * hbq buffer to the firmware. If the function finds an empty
2399  * slot in the HBQ, it will post the buffer. The function will return
2400  * pointer to the hbq entry if it successfully post the buffer
2401  * else it will return NULL.
2402  **/
2403 static int
2404 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2405 			 struct hbq_dmabuf *hbq_buf)
2406 {
2407 	lockdep_assert_held(&phba->hbalock);
2408 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2409 }
2410 
2411 /**
2412  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2413  * @phba: Pointer to HBA context object.
2414  * @hbqno: HBQ number.
2415  * @hbq_buf: Pointer to HBQ buffer.
2416  *
2417  * This function is called with the hbalock held to post a hbq buffer to the
2418  * firmware. If the function finds an empty slot in the HBQ, it will post the
2419  * buffer and place it on the hbq_buffer_list. The function will return zero if
2420  * it successfully post the buffer else it will return an error.
2421  **/
2422 static int
2423 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2424 			    struct hbq_dmabuf *hbq_buf)
2425 {
2426 	struct lpfc_hbq_entry *hbqe;
2427 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2428 
2429 	lockdep_assert_held(&phba->hbalock);
2430 	/* Get next HBQ entry slot to use */
2431 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2432 	if (hbqe) {
2433 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2434 
2435 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2436 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2437 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2438 		hbqe->bde.tus.f.bdeFlags = 0;
2439 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2440 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2441 				/* Sync SLIM */
2442 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2443 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2444 				/* flush */
2445 		readl(phba->hbq_put + hbqno);
2446 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2447 		return 0;
2448 	} else
2449 		return -ENOMEM;
2450 }
2451 
2452 /**
2453  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2454  * @phba: Pointer to HBA context object.
2455  * @hbqno: HBQ number.
2456  * @hbq_buf: Pointer to HBQ buffer.
2457  *
2458  * This function is called with the hbalock held to post an RQE to the SLI4
2459  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2460  * the hbq_buffer_list and return zero, otherwise it will return an error.
2461  **/
2462 static int
2463 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2464 			    struct hbq_dmabuf *hbq_buf)
2465 {
2466 	int rc;
2467 	struct lpfc_rqe hrqe;
2468 	struct lpfc_rqe drqe;
2469 	struct lpfc_queue *hrq;
2470 	struct lpfc_queue *drq;
2471 
2472 	if (hbqno != LPFC_ELS_HBQ)
2473 		return 1;
2474 	hrq = phba->sli4_hba.hdr_rq;
2475 	drq = phba->sli4_hba.dat_rq;
2476 
2477 	lockdep_assert_held(&phba->hbalock);
2478 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2479 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2480 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2481 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2482 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2483 	if (rc < 0)
2484 		return rc;
2485 	hbq_buf->tag = (rc | (hbqno << 16));
2486 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2487 	return 0;
2488 }
2489 
2490 /* HBQ for ELS and CT traffic. */
2491 static struct lpfc_hbq_init lpfc_els_hbq = {
2492 	.rn = 1,
2493 	.entry_count = 256,
2494 	.mask_count = 0,
2495 	.profile = 0,
2496 	.ring_mask = (1 << LPFC_ELS_RING),
2497 	.buffer_count = 0,
2498 	.init_count = 40,
2499 	.add_count = 40,
2500 };
2501 
2502 /* Array of HBQs */
2503 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2504 	&lpfc_els_hbq,
2505 };
2506 
2507 /**
2508  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2509  * @phba: Pointer to HBA context object.
2510  * @hbqno: HBQ number.
2511  * @count: Number of HBQ buffers to be posted.
2512  *
2513  * This function is called with no lock held to post more hbq buffers to the
2514  * given HBQ. The function returns the number of HBQ buffers successfully
2515  * posted.
2516  **/
2517 static int
2518 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2519 {
2520 	uint32_t i, posted = 0;
2521 	unsigned long flags;
2522 	struct hbq_dmabuf *hbq_buffer;
2523 	LIST_HEAD(hbq_buf_list);
2524 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2525 		return 0;
2526 
2527 	if ((phba->hbqs[hbqno].buffer_count + count) >
2528 	    lpfc_hbq_defs[hbqno]->entry_count)
2529 		count = lpfc_hbq_defs[hbqno]->entry_count -
2530 					phba->hbqs[hbqno].buffer_count;
2531 	if (!count)
2532 		return 0;
2533 	/* Allocate HBQ entries */
2534 	for (i = 0; i < count; i++) {
2535 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2536 		if (!hbq_buffer)
2537 			break;
2538 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2539 	}
2540 	/* Check whether HBQ is still in use */
2541 	spin_lock_irqsave(&phba->hbalock, flags);
2542 	if (!phba->hbq_in_use)
2543 		goto err;
2544 	while (!list_empty(&hbq_buf_list)) {
2545 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2546 				 dbuf.list);
2547 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2548 				      (hbqno << 16));
2549 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2550 			phba->hbqs[hbqno].buffer_count++;
2551 			posted++;
2552 		} else
2553 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2554 	}
2555 	spin_unlock_irqrestore(&phba->hbalock, flags);
2556 	return posted;
2557 err:
2558 	spin_unlock_irqrestore(&phba->hbalock, flags);
2559 	while (!list_empty(&hbq_buf_list)) {
2560 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2561 				 dbuf.list);
2562 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2563 	}
2564 	return 0;
2565 }
2566 
2567 /**
2568  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2569  * @phba: Pointer to HBA context object.
2570  * @qno: HBQ number.
2571  *
2572  * This function posts more buffers to the HBQ. This function
2573  * is called with no lock held. The function returns the number of HBQ entries
2574  * successfully allocated.
2575  **/
2576 int
2577 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2578 {
2579 	if (phba->sli_rev == LPFC_SLI_REV4)
2580 		return 0;
2581 	else
2582 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2583 					 lpfc_hbq_defs[qno]->add_count);
2584 }
2585 
2586 /**
2587  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2588  * @phba: Pointer to HBA context object.
2589  * @qno:  HBQ queue number.
2590  *
2591  * This function is called from SLI initialization code path with
2592  * no lock held to post initial HBQ buffers to firmware. The
2593  * function returns the number of HBQ entries successfully allocated.
2594  **/
2595 static int
2596 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2597 {
2598 	if (phba->sli_rev == LPFC_SLI_REV4)
2599 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2600 					lpfc_hbq_defs[qno]->entry_count);
2601 	else
2602 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2603 					 lpfc_hbq_defs[qno]->init_count);
2604 }
2605 
2606 /*
2607  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2608  *
2609  * This function removes the first hbq buffer on an hbq list and returns a
2610  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2611  **/
2612 static struct hbq_dmabuf *
2613 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2614 {
2615 	struct lpfc_dmabuf *d_buf;
2616 
2617 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2618 	if (!d_buf)
2619 		return NULL;
2620 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2621 }
2622 
2623 /**
2624  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2625  * @phba: Pointer to HBA context object.
2626  * @hrq: HBQ number.
2627  *
2628  * This function removes the first RQ buffer on an RQ buffer list and returns a
2629  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2630  **/
2631 static struct rqb_dmabuf *
2632 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2633 {
2634 	struct lpfc_dmabuf *h_buf;
2635 	struct lpfc_rqb *rqbp;
2636 
2637 	rqbp = hrq->rqbp;
2638 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2639 			 struct lpfc_dmabuf, list);
2640 	if (!h_buf)
2641 		return NULL;
2642 	rqbp->buffer_count--;
2643 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2644 }
2645 
2646 /**
2647  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2648  * @phba: Pointer to HBA context object.
2649  * @tag: Tag of the hbq buffer.
2650  *
2651  * This function searches for the hbq buffer associated with the given tag in
2652  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2653  * otherwise it returns NULL.
2654  **/
2655 static struct hbq_dmabuf *
2656 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2657 {
2658 	struct lpfc_dmabuf *d_buf;
2659 	struct hbq_dmabuf *hbq_buf;
2660 	uint32_t hbqno;
2661 
2662 	hbqno = tag >> 16;
2663 	if (hbqno >= LPFC_MAX_HBQS)
2664 		return NULL;
2665 
2666 	spin_lock_irq(&phba->hbalock);
2667 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2668 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2669 		if (hbq_buf->tag == tag) {
2670 			spin_unlock_irq(&phba->hbalock);
2671 			return hbq_buf;
2672 		}
2673 	}
2674 	spin_unlock_irq(&phba->hbalock);
2675 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2676 			"1803 Bad hbq tag. Data: x%x x%x\n",
2677 			tag, phba->hbqs[tag >> 16].buffer_count);
2678 	return NULL;
2679 }
2680 
2681 /**
2682  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2683  * @phba: Pointer to HBA context object.
2684  * @hbq_buffer: Pointer to HBQ buffer.
2685  *
2686  * This function is called with hbalock. This function gives back
2687  * the hbq buffer to firmware. If the HBQ does not have space to
2688  * post the buffer, it will free the buffer.
2689  **/
2690 void
2691 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2692 {
2693 	uint32_t hbqno;
2694 
2695 	if (hbq_buffer) {
2696 		hbqno = hbq_buffer->tag >> 16;
2697 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2698 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2699 	}
2700 }
2701 
2702 /**
2703  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2704  * @mbxCommand: mailbox command code.
2705  *
2706  * This function is called by the mailbox event handler function to verify
2707  * that the completed mailbox command is a legitimate mailbox command. If the
2708  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2709  * and the mailbox event handler will take the HBA offline.
2710  **/
2711 static int
2712 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2713 {
2714 	uint8_t ret;
2715 
2716 	switch (mbxCommand) {
2717 	case MBX_LOAD_SM:
2718 	case MBX_READ_NV:
2719 	case MBX_WRITE_NV:
2720 	case MBX_WRITE_VPARMS:
2721 	case MBX_RUN_BIU_DIAG:
2722 	case MBX_INIT_LINK:
2723 	case MBX_DOWN_LINK:
2724 	case MBX_CONFIG_LINK:
2725 	case MBX_CONFIG_RING:
2726 	case MBX_RESET_RING:
2727 	case MBX_READ_CONFIG:
2728 	case MBX_READ_RCONFIG:
2729 	case MBX_READ_SPARM:
2730 	case MBX_READ_STATUS:
2731 	case MBX_READ_RPI:
2732 	case MBX_READ_XRI:
2733 	case MBX_READ_REV:
2734 	case MBX_READ_LNK_STAT:
2735 	case MBX_REG_LOGIN:
2736 	case MBX_UNREG_LOGIN:
2737 	case MBX_CLEAR_LA:
2738 	case MBX_DUMP_MEMORY:
2739 	case MBX_DUMP_CONTEXT:
2740 	case MBX_RUN_DIAGS:
2741 	case MBX_RESTART:
2742 	case MBX_UPDATE_CFG:
2743 	case MBX_DOWN_LOAD:
2744 	case MBX_DEL_LD_ENTRY:
2745 	case MBX_RUN_PROGRAM:
2746 	case MBX_SET_MASK:
2747 	case MBX_SET_VARIABLE:
2748 	case MBX_UNREG_D_ID:
2749 	case MBX_KILL_BOARD:
2750 	case MBX_CONFIG_FARP:
2751 	case MBX_BEACON:
2752 	case MBX_LOAD_AREA:
2753 	case MBX_RUN_BIU_DIAG64:
2754 	case MBX_CONFIG_PORT:
2755 	case MBX_READ_SPARM64:
2756 	case MBX_READ_RPI64:
2757 	case MBX_REG_LOGIN64:
2758 	case MBX_READ_TOPOLOGY:
2759 	case MBX_WRITE_WWN:
2760 	case MBX_SET_DEBUG:
2761 	case MBX_LOAD_EXP_ROM:
2762 	case MBX_ASYNCEVT_ENABLE:
2763 	case MBX_REG_VPI:
2764 	case MBX_UNREG_VPI:
2765 	case MBX_HEARTBEAT:
2766 	case MBX_PORT_CAPABILITIES:
2767 	case MBX_PORT_IOV_CONTROL:
2768 	case MBX_SLI4_CONFIG:
2769 	case MBX_SLI4_REQ_FTRS:
2770 	case MBX_REG_FCFI:
2771 	case MBX_UNREG_FCFI:
2772 	case MBX_REG_VFI:
2773 	case MBX_UNREG_VFI:
2774 	case MBX_INIT_VPI:
2775 	case MBX_INIT_VFI:
2776 	case MBX_RESUME_RPI:
2777 	case MBX_READ_EVENT_LOG_STATUS:
2778 	case MBX_READ_EVENT_LOG:
2779 	case MBX_SECURITY_MGMT:
2780 	case MBX_AUTH_PORT:
2781 	case MBX_ACCESS_VDATA:
2782 		ret = mbxCommand;
2783 		break;
2784 	default:
2785 		ret = MBX_SHUTDOWN;
2786 		break;
2787 	}
2788 	return ret;
2789 }
2790 
2791 /**
2792  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2793  * @phba: Pointer to HBA context object.
2794  * @pmboxq: Pointer to mailbox command.
2795  *
2796  * This is completion handler function for mailbox commands issued from
2797  * lpfc_sli_issue_mbox_wait function. This function is called by the
2798  * mailbox event handler function with no lock held. This function
2799  * will wake up thread waiting on the wait queue pointed by context1
2800  * of the mailbox.
2801  **/
2802 void
2803 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2804 {
2805 	unsigned long drvr_flag;
2806 	struct completion *pmbox_done;
2807 
2808 	/*
2809 	 * If pmbox_done is empty, the driver thread gave up waiting and
2810 	 * continued running.
2811 	 */
2812 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2813 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2814 	pmbox_done = (struct completion *)pmboxq->context3;
2815 	if (pmbox_done)
2816 		complete(pmbox_done);
2817 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2818 	return;
2819 }
2820 
2821 static void
2822 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2823 {
2824 	unsigned long iflags;
2825 
2826 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2827 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2828 		spin_lock_irqsave(&ndlp->lock, iflags);
2829 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2830 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2831 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2832 	}
2833 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2834 }
2835 
2836 /**
2837  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2838  * @phba: Pointer to HBA context object.
2839  * @pmb: Pointer to mailbox object.
2840  *
2841  * This function is the default mailbox completion handler. It
2842  * frees the memory resources associated with the completed mailbox
2843  * command. If the completed command is a REG_LOGIN mailbox command,
2844  * this function will issue a UREG_LOGIN to re-claim the RPI.
2845  **/
2846 void
2847 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2848 {
2849 	struct lpfc_vport  *vport = pmb->vport;
2850 	struct lpfc_dmabuf *mp;
2851 	struct lpfc_nodelist *ndlp;
2852 	struct Scsi_Host *shost;
2853 	uint16_t rpi, vpi;
2854 	int rc;
2855 
2856 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2857 
2858 	if (mp) {
2859 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2860 		kfree(mp);
2861 	}
2862 
2863 	/*
2864 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2865 	 * is in re-discovery driver need to cleanup the RPI.
2866 	 */
2867 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2868 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2869 	    !pmb->u.mb.mbxStatus) {
2870 		rpi = pmb->u.mb.un.varWords[0];
2871 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2872 		if (phba->sli_rev == LPFC_SLI_REV4)
2873 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2874 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2875 		pmb->vport = vport;
2876 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2877 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2878 		if (rc != MBX_NOT_FINISHED)
2879 			return;
2880 	}
2881 
2882 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2883 		!(phba->pport->load_flag & FC_UNLOADING) &&
2884 		!pmb->u.mb.mbxStatus) {
2885 		shost = lpfc_shost_from_vport(vport);
2886 		spin_lock_irq(shost->host_lock);
2887 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2888 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2889 		spin_unlock_irq(shost->host_lock);
2890 	}
2891 
2892 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2893 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2894 		lpfc_nlp_put(ndlp);
2895 		pmb->ctx_buf = NULL;
2896 		pmb->ctx_ndlp = NULL;
2897 	}
2898 
2899 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2900 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2901 
2902 		/* Check to see if there are any deferred events to process */
2903 		if (ndlp) {
2904 			lpfc_printf_vlog(
2905 				vport,
2906 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2907 				"1438 UNREG cmpl deferred mbox x%x "
2908 				"on NPort x%x Data: x%x x%x x%px x%x x%x\n",
2909 				ndlp->nlp_rpi, ndlp->nlp_DID,
2910 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2911 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2912 
2913 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2914 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2915 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2916 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2917 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2918 			} else {
2919 				__lpfc_sli_rpi_release(vport, ndlp);
2920 			}
2921 
2922 			/* The unreg_login mailbox is complete and had a
2923 			 * reference that has to be released.  The PLOGI
2924 			 * got its own ref.
2925 			 */
2926 			lpfc_nlp_put(ndlp);
2927 			pmb->ctx_ndlp = NULL;
2928 		}
2929 	}
2930 
2931 	/* This nlp_put pairs with lpfc_sli4_resume_rpi */
2932 	if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) {
2933 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2934 		lpfc_nlp_put(ndlp);
2935 	}
2936 
2937 	/* Check security permission status on INIT_LINK mailbox command */
2938 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2939 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2940 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2941 				"2860 SLI authentication is required "
2942 				"for INIT_LINK but has not done yet\n");
2943 
2944 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2945 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2946 	else
2947 		mempool_free(pmb, phba->mbox_mem_pool);
2948 }
2949  /**
2950  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2951  * @phba: Pointer to HBA context object.
2952  * @pmb: Pointer to mailbox object.
2953  *
2954  * This function is the unreg rpi mailbox completion handler. It
2955  * frees the memory resources associated with the completed mailbox
2956  * command. An additional reference is put on the ndlp to prevent
2957  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2958  * the unreg mailbox command completes, this routine puts the
2959  * reference back.
2960  *
2961  **/
2962 void
2963 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2964 {
2965 	struct lpfc_vport  *vport = pmb->vport;
2966 	struct lpfc_nodelist *ndlp;
2967 
2968 	ndlp = pmb->ctx_ndlp;
2969 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2970 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2971 		    (bf_get(lpfc_sli_intf_if_type,
2972 		     &phba->sli4_hba.sli_intf) >=
2973 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2974 			if (ndlp) {
2975 				lpfc_printf_vlog(
2976 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2977 					 "0010 UNREG_LOGIN vpi:%x "
2978 					 "rpi:%x DID:%x defer x%x flg x%x "
2979 					 "x%px\n",
2980 					 vport->vpi, ndlp->nlp_rpi,
2981 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2982 					 ndlp->nlp_flag,
2983 					 ndlp);
2984 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2985 
2986 				/* Check to see if there are any deferred
2987 				 * events to process
2988 				 */
2989 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2990 				    (ndlp->nlp_defer_did !=
2991 				    NLP_EVT_NOTHING_PENDING)) {
2992 					lpfc_printf_vlog(
2993 						vport, KERN_INFO, LOG_DISCOVERY,
2994 						"4111 UNREG cmpl deferred "
2995 						"clr x%x on "
2996 						"NPort x%x Data: x%x x%px\n",
2997 						ndlp->nlp_rpi, ndlp->nlp_DID,
2998 						ndlp->nlp_defer_did, ndlp);
2999 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
3000 					ndlp->nlp_defer_did =
3001 						NLP_EVT_NOTHING_PENDING;
3002 					lpfc_issue_els_plogi(
3003 						vport, ndlp->nlp_DID, 0);
3004 				} else {
3005 					__lpfc_sli_rpi_release(vport, ndlp);
3006 				}
3007 				lpfc_nlp_put(ndlp);
3008 			}
3009 		}
3010 	}
3011 
3012 	mempool_free(pmb, phba->mbox_mem_pool);
3013 }
3014 
3015 /**
3016  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
3017  * @phba: Pointer to HBA context object.
3018  *
3019  * This function is called with no lock held. This function processes all
3020  * the completed mailbox commands and gives it to upper layers. The interrupt
3021  * service routine processes mailbox completion interrupt and adds completed
3022  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
3023  * Worker thread call lpfc_sli_handle_mb_event, which will return the
3024  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
3025  * function returns the mailbox commands to the upper layer by calling the
3026  * completion handler function of each mailbox.
3027  **/
3028 int
3029 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
3030 {
3031 	MAILBOX_t *pmbox;
3032 	LPFC_MBOXQ_t *pmb;
3033 	int rc;
3034 	LIST_HEAD(cmplq);
3035 
3036 	phba->sli.slistat.mbox_event++;
3037 
3038 	/* Get all completed mailboxe buffers into the cmplq */
3039 	spin_lock_irq(&phba->hbalock);
3040 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
3041 	spin_unlock_irq(&phba->hbalock);
3042 
3043 	/* Get a Mailbox buffer to setup mailbox commands for callback */
3044 	do {
3045 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
3046 		if (pmb == NULL)
3047 			break;
3048 
3049 		pmbox = &pmb->u.mb;
3050 
3051 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
3052 			if (pmb->vport) {
3053 				lpfc_debugfs_disc_trc(pmb->vport,
3054 					LPFC_DISC_TRC_MBOX_VPORT,
3055 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
3056 					(uint32_t)pmbox->mbxCommand,
3057 					pmbox->un.varWords[0],
3058 					pmbox->un.varWords[1]);
3059 			}
3060 			else {
3061 				lpfc_debugfs_disc_trc(phba->pport,
3062 					LPFC_DISC_TRC_MBOX,
3063 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
3064 					(uint32_t)pmbox->mbxCommand,
3065 					pmbox->un.varWords[0],
3066 					pmbox->un.varWords[1]);
3067 			}
3068 		}
3069 
3070 		/*
3071 		 * It is a fatal error if unknown mbox command completion.
3072 		 */
3073 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
3074 		    MBX_SHUTDOWN) {
3075 			/* Unknown mailbox command compl */
3076 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3077 					"(%d):0323 Unknown Mailbox command "
3078 					"x%x (x%x/x%x) Cmpl\n",
3079 					pmb->vport ? pmb->vport->vpi :
3080 					LPFC_VPORT_UNKNOWN,
3081 					pmbox->mbxCommand,
3082 					lpfc_sli_config_mbox_subsys_get(phba,
3083 									pmb),
3084 					lpfc_sli_config_mbox_opcode_get(phba,
3085 									pmb));
3086 			phba->link_state = LPFC_HBA_ERROR;
3087 			phba->work_hs = HS_FFER3;
3088 			lpfc_handle_eratt(phba);
3089 			continue;
3090 		}
3091 
3092 		if (pmbox->mbxStatus) {
3093 			phba->sli.slistat.mbox_stat_err++;
3094 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
3095 				/* Mbox cmd cmpl error - RETRYing */
3096 				lpfc_printf_log(phba, KERN_INFO,
3097 					LOG_MBOX | LOG_SLI,
3098 					"(%d):0305 Mbox cmd cmpl "
3099 					"error - RETRYing Data: x%x "
3100 					"(x%x/x%x) x%x x%x x%x\n",
3101 					pmb->vport ? pmb->vport->vpi :
3102 					LPFC_VPORT_UNKNOWN,
3103 					pmbox->mbxCommand,
3104 					lpfc_sli_config_mbox_subsys_get(phba,
3105 									pmb),
3106 					lpfc_sli_config_mbox_opcode_get(phba,
3107 									pmb),
3108 					pmbox->mbxStatus,
3109 					pmbox->un.varWords[0],
3110 					pmb->vport ? pmb->vport->port_state :
3111 					LPFC_VPORT_UNKNOWN);
3112 				pmbox->mbxStatus = 0;
3113 				pmbox->mbxOwner = OWN_HOST;
3114 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3115 				if (rc != MBX_NOT_FINISHED)
3116 					continue;
3117 			}
3118 		}
3119 
3120 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
3121 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
3122 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
3123 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
3124 				"x%x x%x x%x\n",
3125 				pmb->vport ? pmb->vport->vpi : 0,
3126 				pmbox->mbxCommand,
3127 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
3128 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
3129 				pmb->mbox_cmpl,
3130 				*((uint32_t *) pmbox),
3131 				pmbox->un.varWords[0],
3132 				pmbox->un.varWords[1],
3133 				pmbox->un.varWords[2],
3134 				pmbox->un.varWords[3],
3135 				pmbox->un.varWords[4],
3136 				pmbox->un.varWords[5],
3137 				pmbox->un.varWords[6],
3138 				pmbox->un.varWords[7],
3139 				pmbox->un.varWords[8],
3140 				pmbox->un.varWords[9],
3141 				pmbox->un.varWords[10]);
3142 
3143 		if (pmb->mbox_cmpl)
3144 			pmb->mbox_cmpl(phba,pmb);
3145 	} while (1);
3146 	return 0;
3147 }
3148 
3149 /**
3150  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
3151  * @phba: Pointer to HBA context object.
3152  * @pring: Pointer to driver SLI ring object.
3153  * @tag: buffer tag.
3154  *
3155  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
3156  * is set in the tag the buffer is posted for a particular exchange,
3157  * the function will return the buffer without replacing the buffer.
3158  * If the buffer is for unsolicited ELS or CT traffic, this function
3159  * returns the buffer and also posts another buffer to the firmware.
3160  **/
3161 static struct lpfc_dmabuf *
3162 lpfc_sli_get_buff(struct lpfc_hba *phba,
3163 		  struct lpfc_sli_ring *pring,
3164 		  uint32_t tag)
3165 {
3166 	struct hbq_dmabuf *hbq_entry;
3167 
3168 	if (tag & QUE_BUFTAG_BIT)
3169 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
3170 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
3171 	if (!hbq_entry)
3172 		return NULL;
3173 	return &hbq_entry->dbuf;
3174 }
3175 
3176 /**
3177  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
3178  *                              containing a NVME LS request.
3179  * @phba: pointer to lpfc hba data structure.
3180  * @piocb: pointer to the iocbq struct representing the sequence starting
3181  *        frame.
3182  *
3183  * This routine initially validates the NVME LS, validates there is a login
3184  * with the port that sent the LS, and then calls the appropriate nvme host
3185  * or target LS request handler.
3186  **/
3187 static void
3188 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
3189 {
3190 	struct lpfc_nodelist *ndlp;
3191 	struct lpfc_dmabuf *d_buf;
3192 	struct hbq_dmabuf *nvmebuf;
3193 	struct fc_frame_header *fc_hdr;
3194 	struct lpfc_async_xchg_ctx *axchg = NULL;
3195 	char *failwhy = NULL;
3196 	uint32_t oxid, sid, did, fctl, size;
3197 	int ret = 1;
3198 
3199 	d_buf = piocb->context2;
3200 
3201 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
3202 	fc_hdr = nvmebuf->hbuf.virt;
3203 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
3204 	sid = sli4_sid_from_fc_hdr(fc_hdr);
3205 	did = sli4_did_from_fc_hdr(fc_hdr);
3206 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
3207 		fc_hdr->fh_f_ctl[1] << 8 |
3208 		fc_hdr->fh_f_ctl[2]);
3209 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
3210 
3211 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
3212 			 oxid, size, sid);
3213 
3214 	if (phba->pport->load_flag & FC_UNLOADING) {
3215 		failwhy = "Driver Unloading";
3216 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
3217 		failwhy = "NVME FC4 Disabled";
3218 	} else if (!phba->nvmet_support && !phba->pport->localport) {
3219 		failwhy = "No Localport";
3220 	} else if (phba->nvmet_support && !phba->targetport) {
3221 		failwhy = "No Targetport";
3222 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
3223 		failwhy = "Bad NVME LS R_CTL";
3224 	} else if (unlikely((fctl & 0x00FF0000) !=
3225 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
3226 		failwhy = "Bad NVME LS F_CTL";
3227 	} else {
3228 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
3229 		if (!axchg)
3230 			failwhy = "No CTX memory";
3231 	}
3232 
3233 	if (unlikely(failwhy)) {
3234 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3235 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
3236 				sid, oxid, failwhy);
3237 		goto out_fail;
3238 	}
3239 
3240 	/* validate the source of the LS is logged in */
3241 	ndlp = lpfc_findnode_did(phba->pport, sid);
3242 	if (!ndlp ||
3243 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3244 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3245 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
3246 				"6216 NVME Unsol rcv: No ndlp: "
3247 				"NPort_ID x%x oxid x%x\n",
3248 				sid, oxid);
3249 		goto out_fail;
3250 	}
3251 
3252 	axchg->phba = phba;
3253 	axchg->ndlp = ndlp;
3254 	axchg->size = size;
3255 	axchg->oxid = oxid;
3256 	axchg->sid = sid;
3257 	axchg->wqeq = NULL;
3258 	axchg->state = LPFC_NVME_STE_LS_RCV;
3259 	axchg->entry_cnt = 1;
3260 	axchg->rqb_buffer = (void *)nvmebuf;
3261 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3262 	axchg->payload = nvmebuf->dbuf.virt;
3263 	INIT_LIST_HEAD(&axchg->list);
3264 
3265 	if (phba->nvmet_support) {
3266 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3267 		spin_lock_irq(&ndlp->lock);
3268 		if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) {
3269 			ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH;
3270 			spin_unlock_irq(&ndlp->lock);
3271 
3272 			/* This reference is a single occurrence to hold the
3273 			 * node valid until the nvmet transport calls
3274 			 * host_release.
3275 			 */
3276 			if (!lpfc_nlp_get(ndlp))
3277 				goto out_fail;
3278 
3279 			lpfc_printf_log(phba, KERN_ERR, LOG_NODE,
3280 					"6206 NVMET unsol ls_req ndlp x%px "
3281 					"DID x%x xflags x%x refcnt %d\n",
3282 					ndlp, ndlp->nlp_DID,
3283 					ndlp->fc4_xpt_flags,
3284 					kref_read(&ndlp->kref));
3285 		} else {
3286 			spin_unlock_irq(&ndlp->lock);
3287 		}
3288 	} else {
3289 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3290 	}
3291 
3292 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3293 	if (!ret)
3294 		return;
3295 
3296 out_fail:
3297 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3298 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3299 			"NVMe%s handler failed %d\n",
3300 			did, sid, oxid,
3301 			(phba->nvmet_support) ? "T" : "I", ret);
3302 
3303 	/* recycle receive buffer */
3304 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3305 
3306 	/* If start of new exchange, abort it */
3307 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3308 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3309 
3310 	if (ret)
3311 		kfree(axchg);
3312 }
3313 
3314 /**
3315  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3316  * @phba: Pointer to HBA context object.
3317  * @pring: Pointer to driver SLI ring object.
3318  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3319  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3320  * @fch_type: the type for the first frame of the sequence.
3321  *
3322  * This function is called with no lock held. This function uses the r_ctl and
3323  * type of the received sequence to find the correct callback function to call
3324  * to process the sequence.
3325  **/
3326 static int
3327 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3328 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3329 			 uint32_t fch_type)
3330 {
3331 	int i;
3332 
3333 	switch (fch_type) {
3334 	case FC_TYPE_NVME:
3335 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3336 		return 1;
3337 	default:
3338 		break;
3339 	}
3340 
3341 	/* unSolicited Responses */
3342 	if (pring->prt[0].profile) {
3343 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3344 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3345 									saveq);
3346 		return 1;
3347 	}
3348 	/* We must search, based on rctl / type
3349 	   for the right routine */
3350 	for (i = 0; i < pring->num_mask; i++) {
3351 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3352 		    (pring->prt[i].type == fch_type)) {
3353 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3354 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3355 						(phba, pring, saveq);
3356 			return 1;
3357 		}
3358 	}
3359 	return 0;
3360 }
3361 
3362 /**
3363  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3364  * @phba: Pointer to HBA context object.
3365  * @pring: Pointer to driver SLI ring object.
3366  * @saveq: Pointer to the unsolicited iocb.
3367  *
3368  * This function is called with no lock held by the ring event handler
3369  * when there is an unsolicited iocb posted to the response ring by the
3370  * firmware. This function gets the buffer associated with the iocbs
3371  * and calls the event handler for the ring. This function handles both
3372  * qring buffers and hbq buffers.
3373  * When the function returns 1 the caller can free the iocb object otherwise
3374  * upper layer functions will free the iocb objects.
3375  **/
3376 static int
3377 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3378 			    struct lpfc_iocbq *saveq)
3379 {
3380 	IOCB_t           * irsp;
3381 	WORD5            * w5p;
3382 	uint32_t           Rctl, Type;
3383 	struct lpfc_iocbq *iocbq;
3384 	struct lpfc_dmabuf *dmzbuf;
3385 
3386 	irsp = &(saveq->iocb);
3387 
3388 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3389 		if (pring->lpfc_sli_rcv_async_status)
3390 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3391 		else
3392 			lpfc_printf_log(phba,
3393 					KERN_WARNING,
3394 					LOG_SLI,
3395 					"0316 Ring %d handler: unexpected "
3396 					"ASYNC_STATUS iocb received evt_code "
3397 					"0x%x\n",
3398 					pring->ringno,
3399 					irsp->un.asyncstat.evt_code);
3400 		return 1;
3401 	}
3402 
3403 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3404 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3405 		if (irsp->ulpBdeCount > 0) {
3406 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3407 					irsp->un.ulpWord[3]);
3408 			lpfc_in_buf_free(phba, dmzbuf);
3409 		}
3410 
3411 		if (irsp->ulpBdeCount > 1) {
3412 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3413 					irsp->unsli3.sli3Words[3]);
3414 			lpfc_in_buf_free(phba, dmzbuf);
3415 		}
3416 
3417 		if (irsp->ulpBdeCount > 2) {
3418 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3419 				irsp->unsli3.sli3Words[7]);
3420 			lpfc_in_buf_free(phba, dmzbuf);
3421 		}
3422 
3423 		return 1;
3424 	}
3425 
3426 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3427 		if (irsp->ulpBdeCount != 0) {
3428 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3429 						irsp->un.ulpWord[3]);
3430 			if (!saveq->context2)
3431 				lpfc_printf_log(phba,
3432 					KERN_ERR,
3433 					LOG_SLI,
3434 					"0341 Ring %d Cannot find buffer for "
3435 					"an unsolicited iocb. tag 0x%x\n",
3436 					pring->ringno,
3437 					irsp->un.ulpWord[3]);
3438 		}
3439 		if (irsp->ulpBdeCount == 2) {
3440 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3441 						irsp->unsli3.sli3Words[7]);
3442 			if (!saveq->context3)
3443 				lpfc_printf_log(phba,
3444 					KERN_ERR,
3445 					LOG_SLI,
3446 					"0342 Ring %d Cannot find buffer for an"
3447 					" unsolicited iocb. tag 0x%x\n",
3448 					pring->ringno,
3449 					irsp->unsli3.sli3Words[7]);
3450 		}
3451 		list_for_each_entry(iocbq, &saveq->list, list) {
3452 			irsp = &(iocbq->iocb);
3453 			if (irsp->ulpBdeCount != 0) {
3454 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3455 							irsp->un.ulpWord[3]);
3456 				if (!iocbq->context2)
3457 					lpfc_printf_log(phba,
3458 						KERN_ERR,
3459 						LOG_SLI,
3460 						"0343 Ring %d Cannot find "
3461 						"buffer for an unsolicited iocb"
3462 						". tag 0x%x\n", pring->ringno,
3463 						irsp->un.ulpWord[3]);
3464 			}
3465 			if (irsp->ulpBdeCount == 2) {
3466 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3467 						irsp->unsli3.sli3Words[7]);
3468 				if (!iocbq->context3)
3469 					lpfc_printf_log(phba,
3470 						KERN_ERR,
3471 						LOG_SLI,
3472 						"0344 Ring %d Cannot find "
3473 						"buffer for an unsolicited "
3474 						"iocb. tag 0x%x\n",
3475 						pring->ringno,
3476 						irsp->unsli3.sli3Words[7]);
3477 			}
3478 		}
3479 	}
3480 	if (irsp->ulpBdeCount != 0 &&
3481 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3482 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3483 		int found = 0;
3484 
3485 		/* search continue save q for same XRI */
3486 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3487 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3488 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3489 				list_add_tail(&saveq->list, &iocbq->list);
3490 				found = 1;
3491 				break;
3492 			}
3493 		}
3494 		if (!found)
3495 			list_add_tail(&saveq->clist,
3496 				      &pring->iocb_continue_saveq);
3497 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3498 			list_del_init(&iocbq->clist);
3499 			saveq = iocbq;
3500 			irsp = &(saveq->iocb);
3501 		} else
3502 			return 0;
3503 	}
3504 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3505 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3506 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3507 		Rctl = FC_RCTL_ELS_REQ;
3508 		Type = FC_TYPE_ELS;
3509 	} else {
3510 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3511 		Rctl = w5p->hcsw.Rctl;
3512 		Type = w5p->hcsw.Type;
3513 
3514 		/* Firmware Workaround */
3515 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3516 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3517 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3518 			Rctl = FC_RCTL_ELS_REQ;
3519 			Type = FC_TYPE_ELS;
3520 			w5p->hcsw.Rctl = Rctl;
3521 			w5p->hcsw.Type = Type;
3522 		}
3523 	}
3524 
3525 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3526 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3527 				"0313 Ring %d handler: unexpected Rctl x%x "
3528 				"Type x%x received\n",
3529 				pring->ringno, Rctl, Type);
3530 
3531 	return 1;
3532 }
3533 
3534 /**
3535  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3536  * @phba: Pointer to HBA context object.
3537  * @pring: Pointer to driver SLI ring object.
3538  * @prspiocb: Pointer to response iocb object.
3539  *
3540  * This function looks up the iocb_lookup table to get the command iocb
3541  * corresponding to the given response iocb using the iotag of the
3542  * response iocb. The driver calls this function with the hbalock held
3543  * for SLI3 ports or the ring lock held for SLI4 ports.
3544  * This function returns the command iocb object if it finds the command
3545  * iocb else returns NULL.
3546  **/
3547 static struct lpfc_iocbq *
3548 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3549 		      struct lpfc_sli_ring *pring,
3550 		      struct lpfc_iocbq *prspiocb)
3551 {
3552 	struct lpfc_iocbq *cmd_iocb = NULL;
3553 	uint16_t iotag;
3554 	spinlock_t *temp_lock = NULL;
3555 	unsigned long iflag = 0;
3556 
3557 	if (phba->sli_rev == LPFC_SLI_REV4)
3558 		temp_lock = &pring->ring_lock;
3559 	else
3560 		temp_lock = &phba->hbalock;
3561 
3562 	spin_lock_irqsave(temp_lock, iflag);
3563 	iotag = prspiocb->iocb.ulpIoTag;
3564 
3565 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3566 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3567 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3568 			/* remove from txcmpl queue list */
3569 			list_del_init(&cmd_iocb->list);
3570 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3571 			pring->txcmplq_cnt--;
3572 			spin_unlock_irqrestore(temp_lock, iflag);
3573 			return cmd_iocb;
3574 		}
3575 	}
3576 
3577 	spin_unlock_irqrestore(temp_lock, iflag);
3578 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3579 			"0317 iotag x%x is out of "
3580 			"range: max iotag x%x wd0 x%x\n",
3581 			iotag, phba->sli.last_iotag,
3582 			*(((uint32_t *) &prspiocb->iocb) + 7));
3583 	return NULL;
3584 }
3585 
3586 /**
3587  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3588  * @phba: Pointer to HBA context object.
3589  * @pring: Pointer to driver SLI ring object.
3590  * @iotag: IOCB tag.
3591  *
3592  * This function looks up the iocb_lookup table to get the command iocb
3593  * corresponding to the given iotag. The driver calls this function with
3594  * the ring lock held because this function is an SLI4 port only helper.
3595  * This function returns the command iocb object if it finds the command
3596  * iocb else returns NULL.
3597  **/
3598 static struct lpfc_iocbq *
3599 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3600 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3601 {
3602 	struct lpfc_iocbq *cmd_iocb = NULL;
3603 	spinlock_t *temp_lock = NULL;
3604 	unsigned long iflag = 0;
3605 
3606 	if (phba->sli_rev == LPFC_SLI_REV4)
3607 		temp_lock = &pring->ring_lock;
3608 	else
3609 		temp_lock = &phba->hbalock;
3610 
3611 	spin_lock_irqsave(temp_lock, iflag);
3612 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3613 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3614 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3615 			/* remove from txcmpl queue list */
3616 			list_del_init(&cmd_iocb->list);
3617 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3618 			pring->txcmplq_cnt--;
3619 			spin_unlock_irqrestore(temp_lock, iflag);
3620 			return cmd_iocb;
3621 		}
3622 	}
3623 
3624 	spin_unlock_irqrestore(temp_lock, iflag);
3625 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3626 			"0372 iotag x%x lookup error: max iotag (x%x) "
3627 			"iocb_flag x%x\n",
3628 			iotag, phba->sli.last_iotag,
3629 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3630 	return NULL;
3631 }
3632 
3633 /**
3634  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3635  * @phba: Pointer to HBA context object.
3636  * @pring: Pointer to driver SLI ring object.
3637  * @saveq: Pointer to the response iocb to be processed.
3638  *
3639  * This function is called by the ring event handler for non-fcp
3640  * rings when there is a new response iocb in the response ring.
3641  * The caller is not required to hold any locks. This function
3642  * gets the command iocb associated with the response iocb and
3643  * calls the completion handler for the command iocb. If there
3644  * is no completion handler, the function will free the resources
3645  * associated with command iocb. If the response iocb is for
3646  * an already aborted command iocb, the status of the completion
3647  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3648  * This function always returns 1.
3649  **/
3650 static int
3651 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3652 			  struct lpfc_iocbq *saveq)
3653 {
3654 	struct lpfc_iocbq *cmdiocbp;
3655 	int rc = 1;
3656 	unsigned long iflag;
3657 
3658 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3659 	if (cmdiocbp) {
3660 		if (cmdiocbp->iocb_cmpl) {
3661 			/*
3662 			 * If an ELS command failed send an event to mgmt
3663 			 * application.
3664 			 */
3665 			if (saveq->iocb.ulpStatus &&
3666 			     (pring->ringno == LPFC_ELS_RING) &&
3667 			     (cmdiocbp->iocb.ulpCommand ==
3668 				CMD_ELS_REQUEST64_CR))
3669 				lpfc_send_els_failure_event(phba,
3670 					cmdiocbp, saveq);
3671 
3672 			/*
3673 			 * Post all ELS completions to the worker thread.
3674 			 * All other are passed to the completion callback.
3675 			 */
3676 			if (pring->ringno == LPFC_ELS_RING) {
3677 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3678 				    (cmdiocbp->iocb_flag &
3679 							LPFC_DRIVER_ABORTED)) {
3680 					spin_lock_irqsave(&phba->hbalock,
3681 							  iflag);
3682 					cmdiocbp->iocb_flag &=
3683 						~LPFC_DRIVER_ABORTED;
3684 					spin_unlock_irqrestore(&phba->hbalock,
3685 							       iflag);
3686 					saveq->iocb.ulpStatus =
3687 						IOSTAT_LOCAL_REJECT;
3688 					saveq->iocb.un.ulpWord[4] =
3689 						IOERR_SLI_ABORTED;
3690 
3691 					/* Firmware could still be in progress
3692 					 * of DMAing payload, so don't free data
3693 					 * buffer till after a hbeat.
3694 					 */
3695 					spin_lock_irqsave(&phba->hbalock,
3696 							  iflag);
3697 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3698 					spin_unlock_irqrestore(&phba->hbalock,
3699 							       iflag);
3700 				}
3701 				if (phba->sli_rev == LPFC_SLI_REV4) {
3702 					if (saveq->iocb_flag &
3703 					    LPFC_EXCHANGE_BUSY) {
3704 						/* Set cmdiocb flag for the
3705 						 * exchange busy so sgl (xri)
3706 						 * will not be released until
3707 						 * the abort xri is received
3708 						 * from hba.
3709 						 */
3710 						spin_lock_irqsave(
3711 							&phba->hbalock, iflag);
3712 						cmdiocbp->iocb_flag |=
3713 							LPFC_EXCHANGE_BUSY;
3714 						spin_unlock_irqrestore(
3715 							&phba->hbalock, iflag);
3716 					}
3717 					if (cmdiocbp->iocb_flag &
3718 					    LPFC_DRIVER_ABORTED) {
3719 						/*
3720 						 * Clear LPFC_DRIVER_ABORTED
3721 						 * bit in case it was driver
3722 						 * initiated abort.
3723 						 */
3724 						spin_lock_irqsave(
3725 							&phba->hbalock, iflag);
3726 						cmdiocbp->iocb_flag &=
3727 							~LPFC_DRIVER_ABORTED;
3728 						spin_unlock_irqrestore(
3729 							&phba->hbalock, iflag);
3730 						cmdiocbp->iocb.ulpStatus =
3731 							IOSTAT_LOCAL_REJECT;
3732 						cmdiocbp->iocb.un.ulpWord[4] =
3733 							IOERR_ABORT_REQUESTED;
3734 						/*
3735 						 * For SLI4, irsiocb contains
3736 						 * NO_XRI in sli_xritag, it
3737 						 * shall not affect releasing
3738 						 * sgl (xri) process.
3739 						 */
3740 						saveq->iocb.ulpStatus =
3741 							IOSTAT_LOCAL_REJECT;
3742 						saveq->iocb.un.ulpWord[4] =
3743 							IOERR_SLI_ABORTED;
3744 						spin_lock_irqsave(
3745 							&phba->hbalock, iflag);
3746 						saveq->iocb_flag |=
3747 							LPFC_DELAY_MEM_FREE;
3748 						spin_unlock_irqrestore(
3749 							&phba->hbalock, iflag);
3750 					}
3751 				}
3752 			}
3753 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3754 		} else
3755 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3756 	} else {
3757 		/*
3758 		 * Unknown initiating command based on the response iotag.
3759 		 * This could be the case on the ELS ring because of
3760 		 * lpfc_els_abort().
3761 		 */
3762 		if (pring->ringno != LPFC_ELS_RING) {
3763 			/*
3764 			 * Ring <ringno> handler: unexpected completion IoTag
3765 			 * <IoTag>
3766 			 */
3767 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3768 					 "0322 Ring %d handler: "
3769 					 "unexpected completion IoTag x%x "
3770 					 "Data: x%x x%x x%x x%x\n",
3771 					 pring->ringno,
3772 					 saveq->iocb.ulpIoTag,
3773 					 saveq->iocb.ulpStatus,
3774 					 saveq->iocb.un.ulpWord[4],
3775 					 saveq->iocb.ulpCommand,
3776 					 saveq->iocb.ulpContext);
3777 		}
3778 	}
3779 
3780 	return rc;
3781 }
3782 
3783 /**
3784  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3785  * @phba: Pointer to HBA context object.
3786  * @pring: Pointer to driver SLI ring object.
3787  *
3788  * This function is called from the iocb ring event handlers when
3789  * put pointer is ahead of the get pointer for a ring. This function signal
3790  * an error attention condition to the worker thread and the worker
3791  * thread will transition the HBA to offline state.
3792  **/
3793 static void
3794 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3795 {
3796 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3797 	/*
3798 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3799 	 * rsp ring <portRspMax>
3800 	 */
3801 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3802 			"0312 Ring %d handler: portRspPut %d "
3803 			"is bigger than rsp ring %d\n",
3804 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3805 			pring->sli.sli3.numRiocb);
3806 
3807 	phba->link_state = LPFC_HBA_ERROR;
3808 
3809 	/*
3810 	 * All error attention handlers are posted to
3811 	 * worker thread
3812 	 */
3813 	phba->work_ha |= HA_ERATT;
3814 	phba->work_hs = HS_FFER3;
3815 
3816 	lpfc_worker_wake_up(phba);
3817 
3818 	return;
3819 }
3820 
3821 /**
3822  * lpfc_poll_eratt - Error attention polling timer timeout handler
3823  * @t: Context to fetch pointer to address of HBA context object from.
3824  *
3825  * This function is invoked by the Error Attention polling timer when the
3826  * timer times out. It will check the SLI Error Attention register for
3827  * possible attention events. If so, it will post an Error Attention event
3828  * and wake up worker thread to process it. Otherwise, it will set up the
3829  * Error Attention polling timer for the next poll.
3830  **/
3831 void lpfc_poll_eratt(struct timer_list *t)
3832 {
3833 	struct lpfc_hba *phba;
3834 	uint32_t eratt = 0;
3835 	uint64_t sli_intr, cnt;
3836 
3837 	phba = from_timer(phba, t, eratt_poll);
3838 
3839 	/* Here we will also keep track of interrupts per sec of the hba */
3840 	sli_intr = phba->sli.slistat.sli_intr;
3841 
3842 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3843 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3844 			sli_intr);
3845 	else
3846 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3847 
3848 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3849 	do_div(cnt, phba->eratt_poll_interval);
3850 	phba->sli.slistat.sli_ips = cnt;
3851 
3852 	phba->sli.slistat.sli_prev_intr = sli_intr;
3853 
3854 	/* Check chip HA register for error event */
3855 	eratt = lpfc_sli_check_eratt(phba);
3856 
3857 	if (eratt)
3858 		/* Tell the worker thread there is work to do */
3859 		lpfc_worker_wake_up(phba);
3860 	else
3861 		/* Restart the timer for next eratt poll */
3862 		mod_timer(&phba->eratt_poll,
3863 			  jiffies +
3864 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3865 	return;
3866 }
3867 
3868 
3869 /**
3870  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3871  * @phba: Pointer to HBA context object.
3872  * @pring: Pointer to driver SLI ring object.
3873  * @mask: Host attention register mask for this ring.
3874  *
3875  * This function is called from the interrupt context when there is a ring
3876  * event for the fcp ring. The caller does not hold any lock.
3877  * The function processes each response iocb in the response ring until it
3878  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3879  * LE bit set. The function will call the completion handler of the command iocb
3880  * if the response iocb indicates a completion for a command iocb or it is
3881  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3882  * function if this is an unsolicited iocb.
3883  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3884  * to check it explicitly.
3885  */
3886 int
3887 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3888 				struct lpfc_sli_ring *pring, uint32_t mask)
3889 {
3890 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3891 	IOCB_t *irsp = NULL;
3892 	IOCB_t *entry = NULL;
3893 	struct lpfc_iocbq *cmdiocbq = NULL;
3894 	struct lpfc_iocbq rspiocbq;
3895 	uint32_t status;
3896 	uint32_t portRspPut, portRspMax;
3897 	int rc = 1;
3898 	lpfc_iocb_type type;
3899 	unsigned long iflag;
3900 	uint32_t rsp_cmpl = 0;
3901 
3902 	spin_lock_irqsave(&phba->hbalock, iflag);
3903 	pring->stats.iocb_event++;
3904 
3905 	/*
3906 	 * The next available response entry should never exceed the maximum
3907 	 * entries.  If it does, treat it as an adapter hardware error.
3908 	 */
3909 	portRspMax = pring->sli.sli3.numRiocb;
3910 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3911 	if (unlikely(portRspPut >= portRspMax)) {
3912 		lpfc_sli_rsp_pointers_error(phba, pring);
3913 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3914 		return 1;
3915 	}
3916 	if (phba->fcp_ring_in_use) {
3917 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3918 		return 1;
3919 	} else
3920 		phba->fcp_ring_in_use = 1;
3921 
3922 	rmb();
3923 	while (pring->sli.sli3.rspidx != portRspPut) {
3924 		/*
3925 		 * Fetch an entry off the ring and copy it into a local data
3926 		 * structure.  The copy involves a byte-swap since the
3927 		 * network byte order and pci byte orders are different.
3928 		 */
3929 		entry = lpfc_resp_iocb(phba, pring);
3930 		phba->last_completion_time = jiffies;
3931 
3932 		if (++pring->sli.sli3.rspidx >= portRspMax)
3933 			pring->sli.sli3.rspidx = 0;
3934 
3935 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3936 				      (uint32_t *) &rspiocbq.iocb,
3937 				      phba->iocb_rsp_size);
3938 		INIT_LIST_HEAD(&(rspiocbq.list));
3939 		irsp = &rspiocbq.iocb;
3940 
3941 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3942 		pring->stats.iocb_rsp++;
3943 		rsp_cmpl++;
3944 
3945 		if (unlikely(irsp->ulpStatus)) {
3946 			/*
3947 			 * If resource errors reported from HBA, reduce
3948 			 * queuedepths of the SCSI device.
3949 			 */
3950 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3951 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3952 			     IOERR_NO_RESOURCES)) {
3953 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3954 				phba->lpfc_rampdown_queue_depth(phba);
3955 				spin_lock_irqsave(&phba->hbalock, iflag);
3956 			}
3957 
3958 			/* Rsp ring <ringno> error: IOCB */
3959 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3960 					"0336 Rsp Ring %d error: IOCB Data: "
3961 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3962 					pring->ringno,
3963 					irsp->un.ulpWord[0],
3964 					irsp->un.ulpWord[1],
3965 					irsp->un.ulpWord[2],
3966 					irsp->un.ulpWord[3],
3967 					irsp->un.ulpWord[4],
3968 					irsp->un.ulpWord[5],
3969 					*(uint32_t *)&irsp->un1,
3970 					*((uint32_t *)&irsp->un1 + 1));
3971 		}
3972 
3973 		switch (type) {
3974 		case LPFC_ABORT_IOCB:
3975 		case LPFC_SOL_IOCB:
3976 			/*
3977 			 * Idle exchange closed via ABTS from port.  No iocb
3978 			 * resources need to be recovered.
3979 			 */
3980 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3981 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3982 						"0333 IOCB cmd 0x%x"
3983 						" processed. Skipping"
3984 						" completion\n",
3985 						irsp->ulpCommand);
3986 				break;
3987 			}
3988 
3989 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3990 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3991 							 &rspiocbq);
3992 			spin_lock_irqsave(&phba->hbalock, iflag);
3993 			if (unlikely(!cmdiocbq))
3994 				break;
3995 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3996 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3997 			if (cmdiocbq->iocb_cmpl) {
3998 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3999 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
4000 						      &rspiocbq);
4001 				spin_lock_irqsave(&phba->hbalock, iflag);
4002 			}
4003 			break;
4004 		case LPFC_UNSOL_IOCB:
4005 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4006 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
4007 			spin_lock_irqsave(&phba->hbalock, iflag);
4008 			break;
4009 		default:
4010 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4011 				char adaptermsg[LPFC_MAX_ADPTMSG];
4012 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4013 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
4014 				       MAX_MSG_DATA);
4015 				dev_warn(&((phba->pcidev)->dev),
4016 					 "lpfc%d: %s\n",
4017 					 phba->brd_no, adaptermsg);
4018 			} else {
4019 				/* Unknown IOCB command */
4020 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4021 						"0334 Unknown IOCB command "
4022 						"Data: x%x, x%x x%x x%x x%x\n",
4023 						type, irsp->ulpCommand,
4024 						irsp->ulpStatus,
4025 						irsp->ulpIoTag,
4026 						irsp->ulpContext);
4027 			}
4028 			break;
4029 		}
4030 
4031 		/*
4032 		 * The response IOCB has been processed.  Update the ring
4033 		 * pointer in SLIM.  If the port response put pointer has not
4034 		 * been updated, sync the pgp->rspPutInx and fetch the new port
4035 		 * response put pointer.
4036 		 */
4037 		writel(pring->sli.sli3.rspidx,
4038 			&phba->host_gp[pring->ringno].rspGetInx);
4039 
4040 		if (pring->sli.sli3.rspidx == portRspPut)
4041 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4042 	}
4043 
4044 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
4045 		pring->stats.iocb_rsp_full++;
4046 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4047 		writel(status, phba->CAregaddr);
4048 		readl(phba->CAregaddr);
4049 	}
4050 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4051 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4052 		pring->stats.iocb_cmd_empty++;
4053 
4054 		/* Force update of the local copy of cmdGetInx */
4055 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4056 		lpfc_sli_resume_iocb(phba, pring);
4057 
4058 		if ((pring->lpfc_sli_cmd_available))
4059 			(pring->lpfc_sli_cmd_available) (phba, pring);
4060 
4061 	}
4062 
4063 	phba->fcp_ring_in_use = 0;
4064 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4065 	return rc;
4066 }
4067 
4068 /**
4069  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
4070  * @phba: Pointer to HBA context object.
4071  * @pring: Pointer to driver SLI ring object.
4072  * @rspiocbp: Pointer to driver response IOCB object.
4073  *
4074  * This function is called from the worker thread when there is a slow-path
4075  * response IOCB to process. This function chains all the response iocbs until
4076  * seeing the iocb with the LE bit set. The function will call
4077  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
4078  * completion of a command iocb. The function will call the
4079  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
4080  * The function frees the resources or calls the completion handler if this
4081  * iocb is an abort completion. The function returns NULL when the response
4082  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
4083  * this function shall chain the iocb on to the iocb_continueq and return the
4084  * response iocb passed in.
4085  **/
4086 static struct lpfc_iocbq *
4087 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
4088 			struct lpfc_iocbq *rspiocbp)
4089 {
4090 	struct lpfc_iocbq *saveq;
4091 	struct lpfc_iocbq *cmdiocbp;
4092 	struct lpfc_iocbq *next_iocb;
4093 	IOCB_t *irsp = NULL;
4094 	uint32_t free_saveq;
4095 	uint8_t iocb_cmd_type;
4096 	lpfc_iocb_type type;
4097 	unsigned long iflag;
4098 	int rc;
4099 
4100 	spin_lock_irqsave(&phba->hbalock, iflag);
4101 	/* First add the response iocb to the countinueq list */
4102 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
4103 	pring->iocb_continueq_cnt++;
4104 
4105 	/* Now, determine whether the list is completed for processing */
4106 	irsp = &rspiocbp->iocb;
4107 	if (irsp->ulpLe) {
4108 		/*
4109 		 * By default, the driver expects to free all resources
4110 		 * associated with this iocb completion.
4111 		 */
4112 		free_saveq = 1;
4113 		saveq = list_get_first(&pring->iocb_continueq,
4114 				       struct lpfc_iocbq, list);
4115 		irsp = &(saveq->iocb);
4116 		list_del_init(&pring->iocb_continueq);
4117 		pring->iocb_continueq_cnt = 0;
4118 
4119 		pring->stats.iocb_rsp++;
4120 
4121 		/*
4122 		 * If resource errors reported from HBA, reduce
4123 		 * queuedepths of the SCSI device.
4124 		 */
4125 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
4126 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
4127 		     IOERR_NO_RESOURCES)) {
4128 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4129 			phba->lpfc_rampdown_queue_depth(phba);
4130 			spin_lock_irqsave(&phba->hbalock, iflag);
4131 		}
4132 
4133 		if (irsp->ulpStatus) {
4134 			/* Rsp ring <ringno> error: IOCB */
4135 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4136 					"0328 Rsp Ring %d error: "
4137 					"IOCB Data: "
4138 					"x%x x%x x%x x%x "
4139 					"x%x x%x x%x x%x "
4140 					"x%x x%x x%x x%x "
4141 					"x%x x%x x%x x%x\n",
4142 					pring->ringno,
4143 					irsp->un.ulpWord[0],
4144 					irsp->un.ulpWord[1],
4145 					irsp->un.ulpWord[2],
4146 					irsp->un.ulpWord[3],
4147 					irsp->un.ulpWord[4],
4148 					irsp->un.ulpWord[5],
4149 					*(((uint32_t *) irsp) + 6),
4150 					*(((uint32_t *) irsp) + 7),
4151 					*(((uint32_t *) irsp) + 8),
4152 					*(((uint32_t *) irsp) + 9),
4153 					*(((uint32_t *) irsp) + 10),
4154 					*(((uint32_t *) irsp) + 11),
4155 					*(((uint32_t *) irsp) + 12),
4156 					*(((uint32_t *) irsp) + 13),
4157 					*(((uint32_t *) irsp) + 14),
4158 					*(((uint32_t *) irsp) + 15));
4159 		}
4160 
4161 		/*
4162 		 * Fetch the IOCB command type and call the correct completion
4163 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
4164 		 * get freed back to the lpfc_iocb_list by the discovery
4165 		 * kernel thread.
4166 		 */
4167 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
4168 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
4169 		switch (type) {
4170 		case LPFC_SOL_IOCB:
4171 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4172 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
4173 			spin_lock_irqsave(&phba->hbalock, iflag);
4174 			break;
4175 
4176 		case LPFC_UNSOL_IOCB:
4177 			spin_unlock_irqrestore(&phba->hbalock, iflag);
4178 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
4179 			spin_lock_irqsave(&phba->hbalock, iflag);
4180 			if (!rc)
4181 				free_saveq = 0;
4182 			break;
4183 
4184 		case LPFC_ABORT_IOCB:
4185 			cmdiocbp = NULL;
4186 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
4187 				spin_unlock_irqrestore(&phba->hbalock, iflag);
4188 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
4189 								 saveq);
4190 				spin_lock_irqsave(&phba->hbalock, iflag);
4191 			}
4192 			if (cmdiocbp) {
4193 				/* Call the specified completion routine */
4194 				if (cmdiocbp->iocb_cmpl) {
4195 					spin_unlock_irqrestore(&phba->hbalock,
4196 							       iflag);
4197 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
4198 							      saveq);
4199 					spin_lock_irqsave(&phba->hbalock,
4200 							  iflag);
4201 				} else
4202 					__lpfc_sli_release_iocbq(phba,
4203 								 cmdiocbp);
4204 			}
4205 			break;
4206 
4207 		case LPFC_UNKNOWN_IOCB:
4208 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
4209 				char adaptermsg[LPFC_MAX_ADPTMSG];
4210 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
4211 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
4212 				       MAX_MSG_DATA);
4213 				dev_warn(&((phba->pcidev)->dev),
4214 					 "lpfc%d: %s\n",
4215 					 phba->brd_no, adaptermsg);
4216 			} else {
4217 				/* Unknown IOCB command */
4218 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4219 						"0335 Unknown IOCB "
4220 						"command Data: x%x "
4221 						"x%x x%x x%x\n",
4222 						irsp->ulpCommand,
4223 						irsp->ulpStatus,
4224 						irsp->ulpIoTag,
4225 						irsp->ulpContext);
4226 			}
4227 			break;
4228 		}
4229 
4230 		if (free_saveq) {
4231 			list_for_each_entry_safe(rspiocbp, next_iocb,
4232 						 &saveq->list, list) {
4233 				list_del_init(&rspiocbp->list);
4234 				__lpfc_sli_release_iocbq(phba, rspiocbp);
4235 			}
4236 			__lpfc_sli_release_iocbq(phba, saveq);
4237 		}
4238 		rspiocbp = NULL;
4239 	}
4240 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4241 	return rspiocbp;
4242 }
4243 
4244 /**
4245  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
4246  * @phba: Pointer to HBA context object.
4247  * @pring: Pointer to driver SLI ring object.
4248  * @mask: Host attention register mask for this ring.
4249  *
4250  * This routine wraps the actual slow_ring event process routine from the
4251  * API jump table function pointer from the lpfc_hba struct.
4252  **/
4253 void
4254 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
4255 				struct lpfc_sli_ring *pring, uint32_t mask)
4256 {
4257 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
4258 }
4259 
4260 /**
4261  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
4262  * @phba: Pointer to HBA context object.
4263  * @pring: Pointer to driver SLI ring object.
4264  * @mask: Host attention register mask for this ring.
4265  *
4266  * This function is called from the worker thread when there is a ring event
4267  * for non-fcp rings. The caller does not hold any lock. The function will
4268  * remove each response iocb in the response ring and calls the handle
4269  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4270  **/
4271 static void
4272 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
4273 				   struct lpfc_sli_ring *pring, uint32_t mask)
4274 {
4275 	struct lpfc_pgp *pgp;
4276 	IOCB_t *entry;
4277 	IOCB_t *irsp = NULL;
4278 	struct lpfc_iocbq *rspiocbp = NULL;
4279 	uint32_t portRspPut, portRspMax;
4280 	unsigned long iflag;
4281 	uint32_t status;
4282 
4283 	pgp = &phba->port_gp[pring->ringno];
4284 	spin_lock_irqsave(&phba->hbalock, iflag);
4285 	pring->stats.iocb_event++;
4286 
4287 	/*
4288 	 * The next available response entry should never exceed the maximum
4289 	 * entries.  If it does, treat it as an adapter hardware error.
4290 	 */
4291 	portRspMax = pring->sli.sli3.numRiocb;
4292 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4293 	if (portRspPut >= portRspMax) {
4294 		/*
4295 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4296 		 * rsp ring <portRspMax>
4297 		 */
4298 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4299 				"0303 Ring %d handler: portRspPut %d "
4300 				"is bigger than rsp ring %d\n",
4301 				pring->ringno, portRspPut, portRspMax);
4302 
4303 		phba->link_state = LPFC_HBA_ERROR;
4304 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4305 
4306 		phba->work_hs = HS_FFER3;
4307 		lpfc_handle_eratt(phba);
4308 
4309 		return;
4310 	}
4311 
4312 	rmb();
4313 	while (pring->sli.sli3.rspidx != portRspPut) {
4314 		/*
4315 		 * Build a completion list and call the appropriate handler.
4316 		 * The process is to get the next available response iocb, get
4317 		 * a free iocb from the list, copy the response data into the
4318 		 * free iocb, insert to the continuation list, and update the
4319 		 * next response index to slim.  This process makes response
4320 		 * iocb's in the ring available to DMA as fast as possible but
4321 		 * pays a penalty for a copy operation.  Since the iocb is
4322 		 * only 32 bytes, this penalty is considered small relative to
4323 		 * the PCI reads for register values and a slim write.  When
4324 		 * the ulpLe field is set, the entire Command has been
4325 		 * received.
4326 		 */
4327 		entry = lpfc_resp_iocb(phba, pring);
4328 
4329 		phba->last_completion_time = jiffies;
4330 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4331 		if (rspiocbp == NULL) {
4332 			printk(KERN_ERR "%s: out of buffers! Failing "
4333 			       "completion.\n", __func__);
4334 			break;
4335 		}
4336 
4337 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4338 				      phba->iocb_rsp_size);
4339 		irsp = &rspiocbp->iocb;
4340 
4341 		if (++pring->sli.sli3.rspidx >= portRspMax)
4342 			pring->sli.sli3.rspidx = 0;
4343 
4344 		if (pring->ringno == LPFC_ELS_RING) {
4345 			lpfc_debugfs_slow_ring_trc(phba,
4346 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4347 				*(((uint32_t *) irsp) + 4),
4348 				*(((uint32_t *) irsp) + 6),
4349 				*(((uint32_t *) irsp) + 7));
4350 		}
4351 
4352 		writel(pring->sli.sli3.rspidx,
4353 			&phba->host_gp[pring->ringno].rspGetInx);
4354 
4355 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4356 		/* Handle the response IOCB */
4357 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4358 		spin_lock_irqsave(&phba->hbalock, iflag);
4359 
4360 		/*
4361 		 * If the port response put pointer has not been updated, sync
4362 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4363 		 * response put pointer.
4364 		 */
4365 		if (pring->sli.sli3.rspidx == portRspPut) {
4366 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4367 		}
4368 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4369 
4370 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4371 		/* At least one response entry has been freed */
4372 		pring->stats.iocb_rsp_full++;
4373 		/* SET RxRE_RSP in Chip Att register */
4374 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4375 		writel(status, phba->CAregaddr);
4376 		readl(phba->CAregaddr); /* flush */
4377 	}
4378 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4379 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4380 		pring->stats.iocb_cmd_empty++;
4381 
4382 		/* Force update of the local copy of cmdGetInx */
4383 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4384 		lpfc_sli_resume_iocb(phba, pring);
4385 
4386 		if ((pring->lpfc_sli_cmd_available))
4387 			(pring->lpfc_sli_cmd_available) (phba, pring);
4388 
4389 	}
4390 
4391 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4392 	return;
4393 }
4394 
4395 /**
4396  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4397  * @phba: Pointer to HBA context object.
4398  * @pring: Pointer to driver SLI ring object.
4399  * @mask: Host attention register mask for this ring.
4400  *
4401  * This function is called from the worker thread when there is a pending
4402  * ELS response iocb on the driver internal slow-path response iocb worker
4403  * queue. The caller does not hold any lock. The function will remove each
4404  * response iocb from the response worker queue and calls the handle
4405  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4406  **/
4407 static void
4408 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4409 				   struct lpfc_sli_ring *pring, uint32_t mask)
4410 {
4411 	struct lpfc_iocbq *irspiocbq;
4412 	struct hbq_dmabuf *dmabuf;
4413 	struct lpfc_cq_event *cq_event;
4414 	unsigned long iflag;
4415 	int count = 0;
4416 
4417 	spin_lock_irqsave(&phba->hbalock, iflag);
4418 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4419 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4420 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4421 		/* Get the response iocb from the head of work queue */
4422 		spin_lock_irqsave(&phba->hbalock, iflag);
4423 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4424 				 cq_event, struct lpfc_cq_event, list);
4425 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4426 
4427 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4428 		case CQE_CODE_COMPL_WQE:
4429 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4430 						 cq_event);
4431 			/* Translate ELS WCQE to response IOCBQ */
4432 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4433 								   irspiocbq);
4434 			if (irspiocbq)
4435 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4436 							   irspiocbq);
4437 			count++;
4438 			break;
4439 		case CQE_CODE_RECEIVE:
4440 		case CQE_CODE_RECEIVE_V1:
4441 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4442 					      cq_event);
4443 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4444 			count++;
4445 			break;
4446 		default:
4447 			break;
4448 		}
4449 
4450 		/* Limit the number of events to 64 to avoid soft lockups */
4451 		if (count == 64)
4452 			break;
4453 	}
4454 }
4455 
4456 /**
4457  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4458  * @phba: Pointer to HBA context object.
4459  * @pring: Pointer to driver SLI ring object.
4460  *
4461  * This function aborts all iocbs in the given ring and frees all the iocb
4462  * objects in txq. This function issues an abort iocb for all the iocb commands
4463  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4464  * the return of this function. The caller is not required to hold any locks.
4465  **/
4466 void
4467 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4468 {
4469 	LIST_HEAD(completions);
4470 	struct lpfc_iocbq *iocb, *next_iocb;
4471 
4472 	if (pring->ringno == LPFC_ELS_RING) {
4473 		lpfc_fabric_abort_hba(phba);
4474 	}
4475 
4476 	/* Error everything on txq and txcmplq
4477 	 * First do the txq.
4478 	 */
4479 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4480 		spin_lock_irq(&pring->ring_lock);
4481 		list_splice_init(&pring->txq, &completions);
4482 		pring->txq_cnt = 0;
4483 		spin_unlock_irq(&pring->ring_lock);
4484 
4485 		spin_lock_irq(&phba->hbalock);
4486 		/* Next issue ABTS for everything on the txcmplq */
4487 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4488 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4489 		spin_unlock_irq(&phba->hbalock);
4490 	} else {
4491 		spin_lock_irq(&phba->hbalock);
4492 		list_splice_init(&pring->txq, &completions);
4493 		pring->txq_cnt = 0;
4494 
4495 		/* Next issue ABTS for everything on the txcmplq */
4496 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4497 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4498 		spin_unlock_irq(&phba->hbalock);
4499 	}
4500 	/* Make sure HBA is alive */
4501 	lpfc_issue_hb_tmo(phba);
4502 
4503 	/* Cancel all the IOCBs from the completions list */
4504 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4505 			      IOERR_SLI_ABORTED);
4506 }
4507 
4508 /**
4509  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4510  * @phba: Pointer to HBA context object.
4511  *
4512  * This function aborts all iocbs in FCP rings and frees all the iocb
4513  * objects in txq. This function issues an abort iocb for all the iocb commands
4514  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4515  * the return of this function. The caller is not required to hold any locks.
4516  **/
4517 void
4518 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4519 {
4520 	struct lpfc_sli *psli = &phba->sli;
4521 	struct lpfc_sli_ring  *pring;
4522 	uint32_t i;
4523 
4524 	/* Look on all the FCP Rings for the iotag */
4525 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4526 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4527 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4528 			lpfc_sli_abort_iocb_ring(phba, pring);
4529 		}
4530 	} else {
4531 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4532 		lpfc_sli_abort_iocb_ring(phba, pring);
4533 	}
4534 }
4535 
4536 /**
4537  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4538  * @phba: Pointer to HBA context object.
4539  *
4540  * This function flushes all iocbs in the IO ring and frees all the iocb
4541  * objects in txq and txcmplq. This function will not issue abort iocbs
4542  * for all the iocb commands in txcmplq, they will just be returned with
4543  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4544  * slot has been permanently disabled.
4545  **/
4546 void
4547 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4548 {
4549 	LIST_HEAD(txq);
4550 	LIST_HEAD(txcmplq);
4551 	struct lpfc_sli *psli = &phba->sli;
4552 	struct lpfc_sli_ring  *pring;
4553 	uint32_t i;
4554 	struct lpfc_iocbq *piocb, *next_iocb;
4555 
4556 	spin_lock_irq(&phba->hbalock);
4557 	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4558 	    !phba->sli4_hba.hdwq) {
4559 		spin_unlock_irq(&phba->hbalock);
4560 		return;
4561 	}
4562 	/* Indicate the I/O queues are flushed */
4563 	phba->hba_flag |= HBA_IOQ_FLUSH;
4564 	spin_unlock_irq(&phba->hbalock);
4565 
4566 	/* Look on all the FCP Rings for the iotag */
4567 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4568 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4569 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4570 
4571 			spin_lock_irq(&pring->ring_lock);
4572 			/* Retrieve everything on txq */
4573 			list_splice_init(&pring->txq, &txq);
4574 			list_for_each_entry_safe(piocb, next_iocb,
4575 						 &pring->txcmplq, list)
4576 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4577 			/* Retrieve everything on the txcmplq */
4578 			list_splice_init(&pring->txcmplq, &txcmplq);
4579 			pring->txq_cnt = 0;
4580 			pring->txcmplq_cnt = 0;
4581 			spin_unlock_irq(&pring->ring_lock);
4582 
4583 			/* Flush the txq */
4584 			lpfc_sli_cancel_iocbs(phba, &txq,
4585 					      IOSTAT_LOCAL_REJECT,
4586 					      IOERR_SLI_DOWN);
4587 			/* Flush the txcmplq */
4588 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4589 					      IOSTAT_LOCAL_REJECT,
4590 					      IOERR_SLI_DOWN);
4591 			if (unlikely(pci_channel_offline(phba->pcidev)))
4592 				lpfc_sli4_io_xri_aborted(phba, NULL, 0);
4593 		}
4594 	} else {
4595 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4596 
4597 		spin_lock_irq(&phba->hbalock);
4598 		/* Retrieve everything on txq */
4599 		list_splice_init(&pring->txq, &txq);
4600 		list_for_each_entry_safe(piocb, next_iocb,
4601 					 &pring->txcmplq, list)
4602 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4603 		/* Retrieve everything on the txcmplq */
4604 		list_splice_init(&pring->txcmplq, &txcmplq);
4605 		pring->txq_cnt = 0;
4606 		pring->txcmplq_cnt = 0;
4607 		spin_unlock_irq(&phba->hbalock);
4608 
4609 		/* Flush the txq */
4610 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4611 				      IOERR_SLI_DOWN);
4612 		/* Flush the txcmpq */
4613 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4614 				      IOERR_SLI_DOWN);
4615 	}
4616 }
4617 
4618 /**
4619  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4620  * @phba: Pointer to HBA context object.
4621  * @mask: Bit mask to be checked.
4622  *
4623  * This function reads the host status register and compares
4624  * with the provided bit mask to check if HBA completed
4625  * the restart. This function will wait in a loop for the
4626  * HBA to complete restart. If the HBA does not restart within
4627  * 15 iterations, the function will reset the HBA again. The
4628  * function returns 1 when HBA fail to restart otherwise returns
4629  * zero.
4630  **/
4631 static int
4632 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4633 {
4634 	uint32_t status;
4635 	int i = 0;
4636 	int retval = 0;
4637 
4638 	/* Read the HBA Host Status Register */
4639 	if (lpfc_readl(phba->HSregaddr, &status))
4640 		return 1;
4641 
4642 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4643 
4644 	/*
4645 	 * Check status register every 100ms for 5 retries, then every
4646 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4647 	 * every 2.5 sec for 4.
4648 	 * Break our of the loop if errors occurred during init.
4649 	 */
4650 	while (((status & mask) != mask) &&
4651 	       !(status & HS_FFERM) &&
4652 	       i++ < 20) {
4653 
4654 		if (i <= 5)
4655 			msleep(10);
4656 		else if (i <= 10)
4657 			msleep(500);
4658 		else
4659 			msleep(2500);
4660 
4661 		if (i == 15) {
4662 				/* Do post */
4663 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4664 			lpfc_sli_brdrestart(phba);
4665 		}
4666 		/* Read the HBA Host Status Register */
4667 		if (lpfc_readl(phba->HSregaddr, &status)) {
4668 			retval = 1;
4669 			break;
4670 		}
4671 	}
4672 
4673 	/* Check to see if any errors occurred during init */
4674 	if ((status & HS_FFERM) || (i >= 20)) {
4675 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4676 				"2751 Adapter failed to restart, "
4677 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4678 				status,
4679 				readl(phba->MBslimaddr + 0xa8),
4680 				readl(phba->MBslimaddr + 0xac));
4681 		phba->link_state = LPFC_HBA_ERROR;
4682 		retval = 1;
4683 	}
4684 
4685 	return retval;
4686 }
4687 
4688 /**
4689  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4690  * @phba: Pointer to HBA context object.
4691  * @mask: Bit mask to be checked.
4692  *
4693  * This function checks the host status register to check if HBA is
4694  * ready. This function will wait in a loop for the HBA to be ready
4695  * If the HBA is not ready , the function will will reset the HBA PCI
4696  * function again. The function returns 1 when HBA fail to be ready
4697  * otherwise returns zero.
4698  **/
4699 static int
4700 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4701 {
4702 	uint32_t status;
4703 	int retval = 0;
4704 
4705 	/* Read the HBA Host Status Register */
4706 	status = lpfc_sli4_post_status_check(phba);
4707 
4708 	if (status) {
4709 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4710 		lpfc_sli_brdrestart(phba);
4711 		status = lpfc_sli4_post_status_check(phba);
4712 	}
4713 
4714 	/* Check to see if any errors occurred during init */
4715 	if (status) {
4716 		phba->link_state = LPFC_HBA_ERROR;
4717 		retval = 1;
4718 	} else
4719 		phba->sli4_hba.intr_enable = 0;
4720 
4721 	phba->hba_flag &= ~HBA_SETUP;
4722 	return retval;
4723 }
4724 
4725 /**
4726  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4727  * @phba: Pointer to HBA context object.
4728  * @mask: Bit mask to be checked.
4729  *
4730  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4731  * from the API jump table function pointer from the lpfc_hba struct.
4732  **/
4733 int
4734 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4735 {
4736 	return phba->lpfc_sli_brdready(phba, mask);
4737 }
4738 
4739 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4740 
4741 /**
4742  * lpfc_reset_barrier - Make HBA ready for HBA reset
4743  * @phba: Pointer to HBA context object.
4744  *
4745  * This function is called before resetting an HBA. This function is called
4746  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4747  **/
4748 void lpfc_reset_barrier(struct lpfc_hba *phba)
4749 {
4750 	uint32_t __iomem *resp_buf;
4751 	uint32_t __iomem *mbox_buf;
4752 	volatile uint32_t mbox;
4753 	uint32_t hc_copy, ha_copy, resp_data;
4754 	int  i;
4755 	uint8_t hdrtype;
4756 
4757 	lockdep_assert_held(&phba->hbalock);
4758 
4759 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4760 	if (hdrtype != 0x80 ||
4761 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4762 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4763 		return;
4764 
4765 	/*
4766 	 * Tell the other part of the chip to suspend temporarily all
4767 	 * its DMA activity.
4768 	 */
4769 	resp_buf = phba->MBslimaddr;
4770 
4771 	/* Disable the error attention */
4772 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4773 		return;
4774 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4775 	readl(phba->HCregaddr); /* flush */
4776 	phba->link_flag |= LS_IGNORE_ERATT;
4777 
4778 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4779 		return;
4780 	if (ha_copy & HA_ERATT) {
4781 		/* Clear Chip error bit */
4782 		writel(HA_ERATT, phba->HAregaddr);
4783 		phba->pport->stopped = 1;
4784 	}
4785 
4786 	mbox = 0;
4787 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4788 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4789 
4790 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4791 	mbox_buf = phba->MBslimaddr;
4792 	writel(mbox, mbox_buf);
4793 
4794 	for (i = 0; i < 50; i++) {
4795 		if (lpfc_readl((resp_buf + 1), &resp_data))
4796 			return;
4797 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4798 			mdelay(1);
4799 		else
4800 			break;
4801 	}
4802 	resp_data = 0;
4803 	if (lpfc_readl((resp_buf + 1), &resp_data))
4804 		return;
4805 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4806 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4807 		    phba->pport->stopped)
4808 			goto restore_hc;
4809 		else
4810 			goto clear_errat;
4811 	}
4812 
4813 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4814 	resp_data = 0;
4815 	for (i = 0; i < 500; i++) {
4816 		if (lpfc_readl(resp_buf, &resp_data))
4817 			return;
4818 		if (resp_data != mbox)
4819 			mdelay(1);
4820 		else
4821 			break;
4822 	}
4823 
4824 clear_errat:
4825 
4826 	while (++i < 500) {
4827 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4828 			return;
4829 		if (!(ha_copy & HA_ERATT))
4830 			mdelay(1);
4831 		else
4832 			break;
4833 	}
4834 
4835 	if (readl(phba->HAregaddr) & HA_ERATT) {
4836 		writel(HA_ERATT, phba->HAregaddr);
4837 		phba->pport->stopped = 1;
4838 	}
4839 
4840 restore_hc:
4841 	phba->link_flag &= ~LS_IGNORE_ERATT;
4842 	writel(hc_copy, phba->HCregaddr);
4843 	readl(phba->HCregaddr); /* flush */
4844 }
4845 
4846 /**
4847  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4848  * @phba: Pointer to HBA context object.
4849  *
4850  * This function issues a kill_board mailbox command and waits for
4851  * the error attention interrupt. This function is called for stopping
4852  * the firmware processing. The caller is not required to hold any
4853  * locks. This function calls lpfc_hba_down_post function to free
4854  * any pending commands after the kill. The function will return 1 when it
4855  * fails to kill the board else will return 0.
4856  **/
4857 int
4858 lpfc_sli_brdkill(struct lpfc_hba *phba)
4859 {
4860 	struct lpfc_sli *psli;
4861 	LPFC_MBOXQ_t *pmb;
4862 	uint32_t status;
4863 	uint32_t ha_copy;
4864 	int retval;
4865 	int i = 0;
4866 
4867 	psli = &phba->sli;
4868 
4869 	/* Kill HBA */
4870 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4871 			"0329 Kill HBA Data: x%x x%x\n",
4872 			phba->pport->port_state, psli->sli_flag);
4873 
4874 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4875 	if (!pmb)
4876 		return 1;
4877 
4878 	/* Disable the error attention */
4879 	spin_lock_irq(&phba->hbalock);
4880 	if (lpfc_readl(phba->HCregaddr, &status)) {
4881 		spin_unlock_irq(&phba->hbalock);
4882 		mempool_free(pmb, phba->mbox_mem_pool);
4883 		return 1;
4884 	}
4885 	status &= ~HC_ERINT_ENA;
4886 	writel(status, phba->HCregaddr);
4887 	readl(phba->HCregaddr); /* flush */
4888 	phba->link_flag |= LS_IGNORE_ERATT;
4889 	spin_unlock_irq(&phba->hbalock);
4890 
4891 	lpfc_kill_board(phba, pmb);
4892 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4893 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4894 
4895 	if (retval != MBX_SUCCESS) {
4896 		if (retval != MBX_BUSY)
4897 			mempool_free(pmb, phba->mbox_mem_pool);
4898 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4899 				"2752 KILL_BOARD command failed retval %d\n",
4900 				retval);
4901 		spin_lock_irq(&phba->hbalock);
4902 		phba->link_flag &= ~LS_IGNORE_ERATT;
4903 		spin_unlock_irq(&phba->hbalock);
4904 		return 1;
4905 	}
4906 
4907 	spin_lock_irq(&phba->hbalock);
4908 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4909 	spin_unlock_irq(&phba->hbalock);
4910 
4911 	mempool_free(pmb, phba->mbox_mem_pool);
4912 
4913 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4914 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4915 	 * 3 seconds we still set HBA_ERROR state because the status of the
4916 	 * board is now undefined.
4917 	 */
4918 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4919 		return 1;
4920 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4921 		mdelay(100);
4922 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4923 			return 1;
4924 	}
4925 
4926 	del_timer_sync(&psli->mbox_tmo);
4927 	if (ha_copy & HA_ERATT) {
4928 		writel(HA_ERATT, phba->HAregaddr);
4929 		phba->pport->stopped = 1;
4930 	}
4931 	spin_lock_irq(&phba->hbalock);
4932 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4933 	psli->mbox_active = NULL;
4934 	phba->link_flag &= ~LS_IGNORE_ERATT;
4935 	spin_unlock_irq(&phba->hbalock);
4936 
4937 	lpfc_hba_down_post(phba);
4938 	phba->link_state = LPFC_HBA_ERROR;
4939 
4940 	return ha_copy & HA_ERATT ? 0 : 1;
4941 }
4942 
4943 /**
4944  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4945  * @phba: Pointer to HBA context object.
4946  *
4947  * This function resets the HBA by writing HC_INITFF to the control
4948  * register. After the HBA resets, this function resets all the iocb ring
4949  * indices. This function disables PCI layer parity checking during
4950  * the reset.
4951  * This function returns 0 always.
4952  * The caller is not required to hold any locks.
4953  **/
4954 int
4955 lpfc_sli_brdreset(struct lpfc_hba *phba)
4956 {
4957 	struct lpfc_sli *psli;
4958 	struct lpfc_sli_ring *pring;
4959 	uint16_t cfg_value;
4960 	int i;
4961 
4962 	psli = &phba->sli;
4963 
4964 	/* Reset HBA */
4965 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4966 			"0325 Reset HBA Data: x%x x%x\n",
4967 			(phba->pport) ? phba->pport->port_state : 0,
4968 			psli->sli_flag);
4969 
4970 	/* perform board reset */
4971 	phba->fc_eventTag = 0;
4972 	phba->link_events = 0;
4973 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
4974 	if (phba->pport) {
4975 		phba->pport->fc_myDID = 0;
4976 		phba->pport->fc_prevDID = 0;
4977 	}
4978 
4979 	/* Turn off parity checking and serr during the physical reset */
4980 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4981 		return -EIO;
4982 
4983 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4984 			      (cfg_value &
4985 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4986 
4987 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4988 
4989 	/* Now toggle INITFF bit in the Host Control Register */
4990 	writel(HC_INITFF, phba->HCregaddr);
4991 	mdelay(1);
4992 	readl(phba->HCregaddr); /* flush */
4993 	writel(0, phba->HCregaddr);
4994 	readl(phba->HCregaddr); /* flush */
4995 
4996 	/* Restore PCI cmd register */
4997 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4998 
4999 	/* Initialize relevant SLI info */
5000 	for (i = 0; i < psli->num_rings; i++) {
5001 		pring = &psli->sli3_ring[i];
5002 		pring->flag = 0;
5003 		pring->sli.sli3.rspidx = 0;
5004 		pring->sli.sli3.next_cmdidx  = 0;
5005 		pring->sli.sli3.local_getidx = 0;
5006 		pring->sli.sli3.cmdidx = 0;
5007 		pring->missbufcnt = 0;
5008 	}
5009 
5010 	phba->link_state = LPFC_WARM_START;
5011 	return 0;
5012 }
5013 
5014 /**
5015  * lpfc_sli4_brdreset - Reset a sli-4 HBA
5016  * @phba: Pointer to HBA context object.
5017  *
5018  * This function resets a SLI4 HBA. This function disables PCI layer parity
5019  * checking during resets the device. The caller is not required to hold
5020  * any locks.
5021  *
5022  * This function returns 0 on success else returns negative error code.
5023  **/
5024 int
5025 lpfc_sli4_brdreset(struct lpfc_hba *phba)
5026 {
5027 	struct lpfc_sli *psli = &phba->sli;
5028 	uint16_t cfg_value;
5029 	int rc = 0;
5030 
5031 	/* Reset HBA */
5032 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5033 			"0295 Reset HBA Data: x%x x%x x%x\n",
5034 			phba->pport->port_state, psli->sli_flag,
5035 			phba->hba_flag);
5036 
5037 	/* perform board reset */
5038 	phba->fc_eventTag = 0;
5039 	phba->link_events = 0;
5040 	phba->pport->fc_myDID = 0;
5041 	phba->pport->fc_prevDID = 0;
5042 	phba->hba_flag &= ~HBA_SETUP;
5043 
5044 	spin_lock_irq(&phba->hbalock);
5045 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
5046 	phba->fcf.fcf_flag = 0;
5047 	spin_unlock_irq(&phba->hbalock);
5048 
5049 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
5050 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
5051 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
5052 		return rc;
5053 	}
5054 
5055 	/* Now physically reset the device */
5056 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5057 			"0389 Performing PCI function reset!\n");
5058 
5059 	/* Turn off parity checking and serr during the physical reset */
5060 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
5061 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5062 				"3205 PCI read Config failed\n");
5063 		return -EIO;
5064 	}
5065 
5066 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
5067 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
5068 
5069 	/* Perform FCoE PCI function reset before freeing queue memory */
5070 	rc = lpfc_pci_function_reset(phba);
5071 
5072 	/* Restore PCI cmd register */
5073 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
5074 
5075 	return rc;
5076 }
5077 
5078 /**
5079  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
5080  * @phba: Pointer to HBA context object.
5081  *
5082  * This function is called in the SLI initialization code path to
5083  * restart the HBA. The caller is not required to hold any lock.
5084  * This function writes MBX_RESTART mailbox command to the SLIM and
5085  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
5086  * function to free any pending commands. The function enables
5087  * POST only during the first initialization. The function returns zero.
5088  * The function does not guarantee completion of MBX_RESTART mailbox
5089  * command before the return of this function.
5090  **/
5091 static int
5092 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
5093 {
5094 	MAILBOX_t *mb;
5095 	struct lpfc_sli *psli;
5096 	volatile uint32_t word0;
5097 	void __iomem *to_slim;
5098 	uint32_t hba_aer_enabled;
5099 
5100 	spin_lock_irq(&phba->hbalock);
5101 
5102 	/* Take PCIe device Advanced Error Reporting (AER) state */
5103 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5104 
5105 	psli = &phba->sli;
5106 
5107 	/* Restart HBA */
5108 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5109 			"0337 Restart HBA Data: x%x x%x\n",
5110 			(phba->pport) ? phba->pport->port_state : 0,
5111 			psli->sli_flag);
5112 
5113 	word0 = 0;
5114 	mb = (MAILBOX_t *) &word0;
5115 	mb->mbxCommand = MBX_RESTART;
5116 	mb->mbxHc = 1;
5117 
5118 	lpfc_reset_barrier(phba);
5119 
5120 	to_slim = phba->MBslimaddr;
5121 	writel(*(uint32_t *) mb, to_slim);
5122 	readl(to_slim); /* flush */
5123 
5124 	/* Only skip post after fc_ffinit is completed */
5125 	if (phba->pport && phba->pport->port_state)
5126 		word0 = 1;	/* This is really setting up word1 */
5127 	else
5128 		word0 = 0;	/* This is really setting up word1 */
5129 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
5130 	writel(*(uint32_t *) mb, to_slim);
5131 	readl(to_slim); /* flush */
5132 
5133 	lpfc_sli_brdreset(phba);
5134 	if (phba->pport)
5135 		phba->pport->stopped = 0;
5136 	phba->link_state = LPFC_INIT_START;
5137 	phba->hba_flag = 0;
5138 	spin_unlock_irq(&phba->hbalock);
5139 
5140 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5141 	psli->stats_start = ktime_get_seconds();
5142 
5143 	/* Give the INITFF and Post time to settle. */
5144 	mdelay(100);
5145 
5146 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5147 	if (hba_aer_enabled)
5148 		pci_disable_pcie_error_reporting(phba->pcidev);
5149 
5150 	lpfc_hba_down_post(phba);
5151 
5152 	return 0;
5153 }
5154 
5155 /**
5156  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
5157  * @phba: Pointer to HBA context object.
5158  *
5159  * This function is called in the SLI initialization code path to restart
5160  * a SLI4 HBA. The caller is not required to hold any lock.
5161  * At the end of the function, it calls lpfc_hba_down_post function to
5162  * free any pending commands.
5163  **/
5164 static int
5165 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
5166 {
5167 	struct lpfc_sli *psli = &phba->sli;
5168 	uint32_t hba_aer_enabled;
5169 	int rc;
5170 
5171 	/* Restart HBA */
5172 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5173 			"0296 Restart HBA Data: x%x x%x\n",
5174 			phba->pport->port_state, psli->sli_flag);
5175 
5176 	/* Take PCIe device Advanced Error Reporting (AER) state */
5177 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
5178 
5179 	rc = lpfc_sli4_brdreset(phba);
5180 	if (rc) {
5181 		phba->link_state = LPFC_HBA_ERROR;
5182 		goto hba_down_queue;
5183 	}
5184 
5185 	spin_lock_irq(&phba->hbalock);
5186 	phba->pport->stopped = 0;
5187 	phba->link_state = LPFC_INIT_START;
5188 	phba->hba_flag = 0;
5189 	spin_unlock_irq(&phba->hbalock);
5190 
5191 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
5192 	psli->stats_start = ktime_get_seconds();
5193 
5194 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
5195 	if (hba_aer_enabled)
5196 		pci_disable_pcie_error_reporting(phba->pcidev);
5197 
5198 hba_down_queue:
5199 	lpfc_hba_down_post(phba);
5200 	lpfc_sli4_queue_destroy(phba);
5201 
5202 	return rc;
5203 }
5204 
5205 /**
5206  * lpfc_sli_brdrestart - Wrapper func for restarting hba
5207  * @phba: Pointer to HBA context object.
5208  *
5209  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
5210  * API jump table function pointer from the lpfc_hba struct.
5211 **/
5212 int
5213 lpfc_sli_brdrestart(struct lpfc_hba *phba)
5214 {
5215 	return phba->lpfc_sli_brdrestart(phba);
5216 }
5217 
5218 /**
5219  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
5220  * @phba: Pointer to HBA context object.
5221  *
5222  * This function is called after a HBA restart to wait for successful
5223  * restart of the HBA. Successful restart of the HBA is indicated by
5224  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
5225  * iteration, the function will restart the HBA again. The function returns
5226  * zero if HBA successfully restarted else returns negative error code.
5227  **/
5228 int
5229 lpfc_sli_chipset_init(struct lpfc_hba *phba)
5230 {
5231 	uint32_t status, i = 0;
5232 
5233 	/* Read the HBA Host Status Register */
5234 	if (lpfc_readl(phba->HSregaddr, &status))
5235 		return -EIO;
5236 
5237 	/* Check status register to see what current state is */
5238 	i = 0;
5239 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
5240 
5241 		/* Check every 10ms for 10 retries, then every 100ms for 90
5242 		 * retries, then every 1 sec for 50 retires for a total of
5243 		 * ~60 seconds before reset the board again and check every
5244 		 * 1 sec for 50 retries. The up to 60 seconds before the
5245 		 * board ready is required by the Falcon FIPS zeroization
5246 		 * complete, and any reset the board in between shall cause
5247 		 * restart of zeroization, further delay the board ready.
5248 		 */
5249 		if (i++ >= 200) {
5250 			/* Adapter failed to init, timeout, status reg
5251 			   <status> */
5252 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5253 					"0436 Adapter failed to init, "
5254 					"timeout, status reg x%x, "
5255 					"FW Data: A8 x%x AC x%x\n", status,
5256 					readl(phba->MBslimaddr + 0xa8),
5257 					readl(phba->MBslimaddr + 0xac));
5258 			phba->link_state = LPFC_HBA_ERROR;
5259 			return -ETIMEDOUT;
5260 		}
5261 
5262 		/* Check to see if any errors occurred during init */
5263 		if (status & HS_FFERM) {
5264 			/* ERROR: During chipset initialization */
5265 			/* Adapter failed to init, chipset, status reg
5266 			   <status> */
5267 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5268 					"0437 Adapter failed to init, "
5269 					"chipset, status reg x%x, "
5270 					"FW Data: A8 x%x AC x%x\n", status,
5271 					readl(phba->MBslimaddr + 0xa8),
5272 					readl(phba->MBslimaddr + 0xac));
5273 			phba->link_state = LPFC_HBA_ERROR;
5274 			return -EIO;
5275 		}
5276 
5277 		if (i <= 10)
5278 			msleep(10);
5279 		else if (i <= 100)
5280 			msleep(100);
5281 		else
5282 			msleep(1000);
5283 
5284 		if (i == 150) {
5285 			/* Do post */
5286 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5287 			lpfc_sli_brdrestart(phba);
5288 		}
5289 		/* Read the HBA Host Status Register */
5290 		if (lpfc_readl(phba->HSregaddr, &status))
5291 			return -EIO;
5292 	}
5293 
5294 	/* Check to see if any errors occurred during init */
5295 	if (status & HS_FFERM) {
5296 		/* ERROR: During chipset initialization */
5297 		/* Adapter failed to init, chipset, status reg <status> */
5298 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5299 				"0438 Adapter failed to init, chipset, "
5300 				"status reg x%x, "
5301 				"FW Data: A8 x%x AC x%x\n", status,
5302 				readl(phba->MBslimaddr + 0xa8),
5303 				readl(phba->MBslimaddr + 0xac));
5304 		phba->link_state = LPFC_HBA_ERROR;
5305 		return -EIO;
5306 	}
5307 
5308 	phba->hba_flag |= HBA_NEEDS_CFG_PORT;
5309 
5310 	/* Clear all interrupt enable conditions */
5311 	writel(0, phba->HCregaddr);
5312 	readl(phba->HCregaddr); /* flush */
5313 
5314 	/* setup host attn register */
5315 	writel(0xffffffff, phba->HAregaddr);
5316 	readl(phba->HAregaddr); /* flush */
5317 	return 0;
5318 }
5319 
5320 /**
5321  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5322  *
5323  * This function calculates and returns the number of HBQs required to be
5324  * configured.
5325  **/
5326 int
5327 lpfc_sli_hbq_count(void)
5328 {
5329 	return ARRAY_SIZE(lpfc_hbq_defs);
5330 }
5331 
5332 /**
5333  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5334  *
5335  * This function adds the number of hbq entries in every HBQ to get
5336  * the total number of hbq entries required for the HBA and returns
5337  * the total count.
5338  **/
5339 static int
5340 lpfc_sli_hbq_entry_count(void)
5341 {
5342 	int  hbq_count = lpfc_sli_hbq_count();
5343 	int  count = 0;
5344 	int  i;
5345 
5346 	for (i = 0; i < hbq_count; ++i)
5347 		count += lpfc_hbq_defs[i]->entry_count;
5348 	return count;
5349 }
5350 
5351 /**
5352  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5353  *
5354  * This function calculates amount of memory required for all hbq entries
5355  * to be configured and returns the total memory required.
5356  **/
5357 int
5358 lpfc_sli_hbq_size(void)
5359 {
5360 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5361 }
5362 
5363 /**
5364  * lpfc_sli_hbq_setup - configure and initialize HBQs
5365  * @phba: Pointer to HBA context object.
5366  *
5367  * This function is called during the SLI initialization to configure
5368  * all the HBQs and post buffers to the HBQ. The caller is not
5369  * required to hold any locks. This function will return zero if successful
5370  * else it will return negative error code.
5371  **/
5372 static int
5373 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5374 {
5375 	int  hbq_count = lpfc_sli_hbq_count();
5376 	LPFC_MBOXQ_t *pmb;
5377 	MAILBOX_t *pmbox;
5378 	uint32_t hbqno;
5379 	uint32_t hbq_entry_index;
5380 
5381 				/* Get a Mailbox buffer to setup mailbox
5382 				 * commands for HBA initialization
5383 				 */
5384 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5385 
5386 	if (!pmb)
5387 		return -ENOMEM;
5388 
5389 	pmbox = &pmb->u.mb;
5390 
5391 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5392 	phba->link_state = LPFC_INIT_MBX_CMDS;
5393 	phba->hbq_in_use = 1;
5394 
5395 	hbq_entry_index = 0;
5396 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5397 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5398 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5399 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5400 		phba->hbqs[hbqno].entry_count =
5401 			lpfc_hbq_defs[hbqno]->entry_count;
5402 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5403 			hbq_entry_index, pmb);
5404 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5405 
5406 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5407 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5408 			   mbxStatus <status>, ring <num> */
5409 
5410 			lpfc_printf_log(phba, KERN_ERR,
5411 					LOG_SLI | LOG_VPORT,
5412 					"1805 Adapter failed to init. "
5413 					"Data: x%x x%x x%x\n",
5414 					pmbox->mbxCommand,
5415 					pmbox->mbxStatus, hbqno);
5416 
5417 			phba->link_state = LPFC_HBA_ERROR;
5418 			mempool_free(pmb, phba->mbox_mem_pool);
5419 			return -ENXIO;
5420 		}
5421 	}
5422 	phba->hbq_count = hbq_count;
5423 
5424 	mempool_free(pmb, phba->mbox_mem_pool);
5425 
5426 	/* Initially populate or replenish the HBQs */
5427 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5428 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5429 	return 0;
5430 }
5431 
5432 /**
5433  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5434  * @phba: Pointer to HBA context object.
5435  *
5436  * This function is called during the SLI initialization to configure
5437  * all the HBQs and post buffers to the HBQ. The caller is not
5438  * required to hold any locks. This function will return zero if successful
5439  * else it will return negative error code.
5440  **/
5441 static int
5442 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5443 {
5444 	phba->hbq_in_use = 1;
5445 	/**
5446 	 * Specific case when the MDS diagnostics is enabled and supported.
5447 	 * The receive buffer count is truncated to manage the incoming
5448 	 * traffic.
5449 	 **/
5450 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5451 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5452 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5453 	else
5454 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5455 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5456 	phba->hbq_count = 1;
5457 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5458 	/* Initially populate or replenish the HBQs */
5459 	return 0;
5460 }
5461 
5462 /**
5463  * lpfc_sli_config_port - Issue config port mailbox command
5464  * @phba: Pointer to HBA context object.
5465  * @sli_mode: sli mode - 2/3
5466  *
5467  * This function is called by the sli initialization code path
5468  * to issue config_port mailbox command. This function restarts the
5469  * HBA firmware and issues a config_port mailbox command to configure
5470  * the SLI interface in the sli mode specified by sli_mode
5471  * variable. The caller is not required to hold any locks.
5472  * The function returns 0 if successful, else returns negative error
5473  * code.
5474  **/
5475 int
5476 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5477 {
5478 	LPFC_MBOXQ_t *pmb;
5479 	uint32_t resetcount = 0, rc = 0, done = 0;
5480 
5481 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5482 	if (!pmb) {
5483 		phba->link_state = LPFC_HBA_ERROR;
5484 		return -ENOMEM;
5485 	}
5486 
5487 	phba->sli_rev = sli_mode;
5488 	while (resetcount < 2 && !done) {
5489 		spin_lock_irq(&phba->hbalock);
5490 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5491 		spin_unlock_irq(&phba->hbalock);
5492 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5493 		lpfc_sli_brdrestart(phba);
5494 		rc = lpfc_sli_chipset_init(phba);
5495 		if (rc)
5496 			break;
5497 
5498 		spin_lock_irq(&phba->hbalock);
5499 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5500 		spin_unlock_irq(&phba->hbalock);
5501 		resetcount++;
5502 
5503 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5504 		 * value of 0 means the call was successful.  Any other
5505 		 * nonzero value is a failure, but if ERESTART is returned,
5506 		 * the driver may reset the HBA and try again.
5507 		 */
5508 		rc = lpfc_config_port_prep(phba);
5509 		if (rc == -ERESTART) {
5510 			phba->link_state = LPFC_LINK_UNKNOWN;
5511 			continue;
5512 		} else if (rc)
5513 			break;
5514 
5515 		phba->link_state = LPFC_INIT_MBX_CMDS;
5516 		lpfc_config_port(phba, pmb);
5517 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5518 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5519 					LPFC_SLI3_HBQ_ENABLED |
5520 					LPFC_SLI3_CRP_ENABLED |
5521 					LPFC_SLI3_DSS_ENABLED);
5522 		if (rc != MBX_SUCCESS) {
5523 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5524 				"0442 Adapter failed to init, mbxCmd x%x "
5525 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5526 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5527 			spin_lock_irq(&phba->hbalock);
5528 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5529 			spin_unlock_irq(&phba->hbalock);
5530 			rc = -ENXIO;
5531 		} else {
5532 			/* Allow asynchronous mailbox command to go through */
5533 			spin_lock_irq(&phba->hbalock);
5534 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5535 			spin_unlock_irq(&phba->hbalock);
5536 			done = 1;
5537 
5538 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5539 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5540 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5541 					"3110 Port did not grant ASABT\n");
5542 		}
5543 	}
5544 	if (!done) {
5545 		rc = -EINVAL;
5546 		goto do_prep_failed;
5547 	}
5548 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5549 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5550 			rc = -ENXIO;
5551 			goto do_prep_failed;
5552 		}
5553 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5554 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5555 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5556 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5557 				phba->max_vpi : phba->max_vports;
5558 
5559 		} else
5560 			phba->max_vpi = 0;
5561 		if (pmb->u.mb.un.varCfgPort.gerbm)
5562 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5563 		if (pmb->u.mb.un.varCfgPort.gcrp)
5564 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5565 
5566 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5567 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5568 
5569 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5570 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5571 				phba->cfg_enable_bg = 0;
5572 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5573 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5574 						"0443 Adapter did not grant "
5575 						"BlockGuard\n");
5576 			}
5577 		}
5578 	} else {
5579 		phba->hbq_get = NULL;
5580 		phba->port_gp = phba->mbox->us.s2.port;
5581 		phba->max_vpi = 0;
5582 	}
5583 do_prep_failed:
5584 	mempool_free(pmb, phba->mbox_mem_pool);
5585 	return rc;
5586 }
5587 
5588 
5589 /**
5590  * lpfc_sli_hba_setup - SLI initialization function
5591  * @phba: Pointer to HBA context object.
5592  *
5593  * This function is the main SLI initialization function. This function
5594  * is called by the HBA initialization code, HBA reset code and HBA
5595  * error attention handler code. Caller is not required to hold any
5596  * locks. This function issues config_port mailbox command to configure
5597  * the SLI, setup iocb rings and HBQ rings. In the end the function
5598  * calls the config_port_post function to issue init_link mailbox
5599  * command and to start the discovery. The function will return zero
5600  * if successful, else it will return negative error code.
5601  **/
5602 int
5603 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5604 {
5605 	uint32_t rc;
5606 	int  i;
5607 	int longs;
5608 
5609 	/* Enable ISR already does config_port because of config_msi mbx */
5610 	if (phba->hba_flag & HBA_NEEDS_CFG_PORT) {
5611 		rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3);
5612 		if (rc)
5613 			return -EIO;
5614 		phba->hba_flag &= ~HBA_NEEDS_CFG_PORT;
5615 	}
5616 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5617 
5618 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5619 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5620 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5621 		if (!rc) {
5622 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5623 					"2709 This device supports "
5624 					"Advanced Error Reporting (AER)\n");
5625 			spin_lock_irq(&phba->hbalock);
5626 			phba->hba_flag |= HBA_AER_ENABLED;
5627 			spin_unlock_irq(&phba->hbalock);
5628 		} else {
5629 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5630 					"2708 This device does not support "
5631 					"Advanced Error Reporting (AER): %d\n",
5632 					rc);
5633 			phba->cfg_aer_support = 0;
5634 		}
5635 	}
5636 
5637 	if (phba->sli_rev == 3) {
5638 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5639 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5640 	} else {
5641 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5642 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5643 		phba->sli3_options = 0;
5644 	}
5645 
5646 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5647 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5648 			phba->sli_rev, phba->max_vpi);
5649 	rc = lpfc_sli_ring_map(phba);
5650 
5651 	if (rc)
5652 		goto lpfc_sli_hba_setup_error;
5653 
5654 	/* Initialize VPIs. */
5655 	if (phba->sli_rev == LPFC_SLI_REV3) {
5656 		/*
5657 		 * The VPI bitmask and physical ID array are allocated
5658 		 * and initialized once only - at driver load.  A port
5659 		 * reset doesn't need to reinitialize this memory.
5660 		 */
5661 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5662 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5663 			phba->vpi_bmask = kcalloc(longs,
5664 						  sizeof(unsigned long),
5665 						  GFP_KERNEL);
5666 			if (!phba->vpi_bmask) {
5667 				rc = -ENOMEM;
5668 				goto lpfc_sli_hba_setup_error;
5669 			}
5670 
5671 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5672 						sizeof(uint16_t),
5673 						GFP_KERNEL);
5674 			if (!phba->vpi_ids) {
5675 				kfree(phba->vpi_bmask);
5676 				rc = -ENOMEM;
5677 				goto lpfc_sli_hba_setup_error;
5678 			}
5679 			for (i = 0; i < phba->max_vpi; i++)
5680 				phba->vpi_ids[i] = i;
5681 		}
5682 	}
5683 
5684 	/* Init HBQs */
5685 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5686 		rc = lpfc_sli_hbq_setup(phba);
5687 		if (rc)
5688 			goto lpfc_sli_hba_setup_error;
5689 	}
5690 	spin_lock_irq(&phba->hbalock);
5691 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5692 	spin_unlock_irq(&phba->hbalock);
5693 
5694 	rc = lpfc_config_port_post(phba);
5695 	if (rc)
5696 		goto lpfc_sli_hba_setup_error;
5697 
5698 	return rc;
5699 
5700 lpfc_sli_hba_setup_error:
5701 	phba->link_state = LPFC_HBA_ERROR;
5702 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5703 			"0445 Firmware initialization failed\n");
5704 	return rc;
5705 }
5706 
5707 /**
5708  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5709  * @phba: Pointer to HBA context object.
5710  *
5711  * This function issue a dump mailbox command to read config region
5712  * 23 and parse the records in the region and populate driver
5713  * data structure.
5714  **/
5715 static int
5716 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5717 {
5718 	LPFC_MBOXQ_t *mboxq;
5719 	struct lpfc_dmabuf *mp;
5720 	struct lpfc_mqe *mqe;
5721 	uint32_t data_length;
5722 	int rc;
5723 
5724 	/* Program the default value of vlan_id and fc_map */
5725 	phba->valid_vlan = 0;
5726 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5727 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5728 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5729 
5730 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5731 	if (!mboxq)
5732 		return -ENOMEM;
5733 
5734 	mqe = &mboxq->u.mqe;
5735 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5736 		rc = -ENOMEM;
5737 		goto out_free_mboxq;
5738 	}
5739 
5740 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5741 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5742 
5743 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5744 			"(%d):2571 Mailbox cmd x%x Status x%x "
5745 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5746 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5747 			"CQ: x%x x%x x%x x%x\n",
5748 			mboxq->vport ? mboxq->vport->vpi : 0,
5749 			bf_get(lpfc_mqe_command, mqe),
5750 			bf_get(lpfc_mqe_status, mqe),
5751 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5752 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5753 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5754 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5755 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5756 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5757 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5758 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5759 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5760 			mboxq->mcqe.word0,
5761 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5762 			mboxq->mcqe.trailer);
5763 
5764 	if (rc) {
5765 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5766 		kfree(mp);
5767 		rc = -EIO;
5768 		goto out_free_mboxq;
5769 	}
5770 	data_length = mqe->un.mb_words[5];
5771 	if (data_length > DMP_RGN23_SIZE) {
5772 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5773 		kfree(mp);
5774 		rc = -EIO;
5775 		goto out_free_mboxq;
5776 	}
5777 
5778 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5779 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5780 	kfree(mp);
5781 	rc = 0;
5782 
5783 out_free_mboxq:
5784 	mempool_free(mboxq, phba->mbox_mem_pool);
5785 	return rc;
5786 }
5787 
5788 /**
5789  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5790  * @phba: pointer to lpfc hba data structure.
5791  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5792  * @vpd: pointer to the memory to hold resulting port vpd data.
5793  * @vpd_size: On input, the number of bytes allocated to @vpd.
5794  *	      On output, the number of data bytes in @vpd.
5795  *
5796  * This routine executes a READ_REV SLI4 mailbox command.  In
5797  * addition, this routine gets the port vpd data.
5798  *
5799  * Return codes
5800  * 	0 - successful
5801  * 	-ENOMEM - could not allocated memory.
5802  **/
5803 static int
5804 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5805 		    uint8_t *vpd, uint32_t *vpd_size)
5806 {
5807 	int rc = 0;
5808 	uint32_t dma_size;
5809 	struct lpfc_dmabuf *dmabuf;
5810 	struct lpfc_mqe *mqe;
5811 
5812 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5813 	if (!dmabuf)
5814 		return -ENOMEM;
5815 
5816 	/*
5817 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5818 	 * mailbox command.
5819 	 */
5820 	dma_size = *vpd_size;
5821 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5822 					  &dmabuf->phys, GFP_KERNEL);
5823 	if (!dmabuf->virt) {
5824 		kfree(dmabuf);
5825 		return -ENOMEM;
5826 	}
5827 
5828 	/*
5829 	 * The SLI4 implementation of READ_REV conflicts at word1,
5830 	 * bits 31:16 and SLI4 adds vpd functionality not present
5831 	 * in SLI3.  This code corrects the conflicts.
5832 	 */
5833 	lpfc_read_rev(phba, mboxq);
5834 	mqe = &mboxq->u.mqe;
5835 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5836 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5837 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5838 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5839 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5840 
5841 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5842 	if (rc) {
5843 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5844 				  dmabuf->virt, dmabuf->phys);
5845 		kfree(dmabuf);
5846 		return -EIO;
5847 	}
5848 
5849 	/*
5850 	 * The available vpd length cannot be bigger than the
5851 	 * DMA buffer passed to the port.  Catch the less than
5852 	 * case and update the caller's size.
5853 	 */
5854 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5855 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5856 
5857 	memcpy(vpd, dmabuf->virt, *vpd_size);
5858 
5859 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5860 			  dmabuf->virt, dmabuf->phys);
5861 	kfree(dmabuf);
5862 	return 0;
5863 }
5864 
5865 /**
5866  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5867  * @phba: pointer to lpfc hba data structure.
5868  *
5869  * This routine retrieves SLI4 device physical port name this PCI function
5870  * is attached to.
5871  *
5872  * Return codes
5873  *      0 - successful
5874  *      otherwise - failed to retrieve controller attributes
5875  **/
5876 static int
5877 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5878 {
5879 	LPFC_MBOXQ_t *mboxq;
5880 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5881 	struct lpfc_controller_attribute *cntl_attr;
5882 	void *virtaddr = NULL;
5883 	uint32_t alloclen, reqlen;
5884 	uint32_t shdr_status, shdr_add_status;
5885 	union lpfc_sli4_cfg_shdr *shdr;
5886 	int rc;
5887 
5888 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5889 	if (!mboxq)
5890 		return -ENOMEM;
5891 
5892 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5893 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5894 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5895 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5896 			LPFC_SLI4_MBX_NEMBED);
5897 
5898 	if (alloclen < reqlen) {
5899 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5900 				"3084 Allocated DMA memory size (%d) is "
5901 				"less than the requested DMA memory size "
5902 				"(%d)\n", alloclen, reqlen);
5903 		rc = -ENOMEM;
5904 		goto out_free_mboxq;
5905 	}
5906 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5907 	virtaddr = mboxq->sge_array->addr[0];
5908 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5909 	shdr = &mbx_cntl_attr->cfg_shdr;
5910 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5911 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5912 	if (shdr_status || shdr_add_status || rc) {
5913 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5914 				"3085 Mailbox x%x (x%x/x%x) failed, "
5915 				"rc:x%x, status:x%x, add_status:x%x\n",
5916 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5917 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5918 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5919 				rc, shdr_status, shdr_add_status);
5920 		rc = -ENXIO;
5921 		goto out_free_mboxq;
5922 	}
5923 
5924 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5925 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5926 	phba->sli4_hba.lnk_info.lnk_tp =
5927 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5928 	phba->sli4_hba.lnk_info.lnk_no =
5929 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5930 	phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr);
5931 	phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr);
5932 
5933 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5934 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5935 		sizeof(phba->BIOSVersion));
5936 
5937 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5938 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, "
5939 			"flash_id: x%02x, asic_rev: x%02x\n",
5940 			phba->sli4_hba.lnk_info.lnk_tp,
5941 			phba->sli4_hba.lnk_info.lnk_no,
5942 			phba->BIOSVersion, phba->sli4_hba.flash_id,
5943 			phba->sli4_hba.asic_rev);
5944 out_free_mboxq:
5945 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5946 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
5947 	else
5948 		mempool_free(mboxq, phba->mbox_mem_pool);
5949 	return rc;
5950 }
5951 
5952 /**
5953  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5954  * @phba: pointer to lpfc hba data structure.
5955  *
5956  * This routine retrieves SLI4 device physical port name this PCI function
5957  * is attached to.
5958  *
5959  * Return codes
5960  *      0 - successful
5961  *      otherwise - failed to retrieve physical port name
5962  **/
5963 static int
5964 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5965 {
5966 	LPFC_MBOXQ_t *mboxq;
5967 	struct lpfc_mbx_get_port_name *get_port_name;
5968 	uint32_t shdr_status, shdr_add_status;
5969 	union lpfc_sli4_cfg_shdr *shdr;
5970 	char cport_name = 0;
5971 	int rc;
5972 
5973 	/* We assume nothing at this point */
5974 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5975 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5976 
5977 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5978 	if (!mboxq)
5979 		return -ENOMEM;
5980 	/* obtain link type and link number via READ_CONFIG */
5981 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5982 	lpfc_sli4_read_config(phba);
5983 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5984 		goto retrieve_ppname;
5985 
5986 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5987 	rc = lpfc_sli4_get_ctl_attr(phba);
5988 	if (rc)
5989 		goto out_free_mboxq;
5990 
5991 retrieve_ppname:
5992 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5993 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5994 		sizeof(struct lpfc_mbx_get_port_name) -
5995 		sizeof(struct lpfc_sli4_cfg_mhdr),
5996 		LPFC_SLI4_MBX_EMBED);
5997 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5998 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5999 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
6000 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
6001 		phba->sli4_hba.lnk_info.lnk_tp);
6002 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6003 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6004 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6005 	if (shdr_status || shdr_add_status || rc) {
6006 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6007 				"3087 Mailbox x%x (x%x/x%x) failed: "
6008 				"rc:x%x, status:x%x, add_status:x%x\n",
6009 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
6010 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6011 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6012 				rc, shdr_status, shdr_add_status);
6013 		rc = -ENXIO;
6014 		goto out_free_mboxq;
6015 	}
6016 	switch (phba->sli4_hba.lnk_info.lnk_no) {
6017 	case LPFC_LINK_NUMBER_0:
6018 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
6019 				&get_port_name->u.response);
6020 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6021 		break;
6022 	case LPFC_LINK_NUMBER_1:
6023 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
6024 				&get_port_name->u.response);
6025 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6026 		break;
6027 	case LPFC_LINK_NUMBER_2:
6028 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
6029 				&get_port_name->u.response);
6030 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6031 		break;
6032 	case LPFC_LINK_NUMBER_3:
6033 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
6034 				&get_port_name->u.response);
6035 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
6036 		break;
6037 	default:
6038 		break;
6039 	}
6040 
6041 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
6042 		phba->Port[0] = cport_name;
6043 		phba->Port[1] = '\0';
6044 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6045 				"3091 SLI get port name: %s\n", phba->Port);
6046 	}
6047 
6048 out_free_mboxq:
6049 	if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
6050 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
6051 	else
6052 		mempool_free(mboxq, phba->mbox_mem_pool);
6053 	return rc;
6054 }
6055 
6056 /**
6057  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
6058  * @phba: pointer to lpfc hba data structure.
6059  *
6060  * This routine is called to explicitly arm the SLI4 device's completion and
6061  * event queues
6062  **/
6063 static void
6064 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
6065 {
6066 	int qidx;
6067 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
6068 	struct lpfc_sli4_hdw_queue *qp;
6069 	struct lpfc_queue *eq;
6070 
6071 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
6072 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
6073 	if (sli4_hba->nvmels_cq)
6074 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
6075 					   LPFC_QUEUE_REARM);
6076 
6077 	if (sli4_hba->hdwq) {
6078 		/* Loop thru all Hardware Queues */
6079 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
6080 			qp = &sli4_hba->hdwq[qidx];
6081 			/* ARM the corresponding CQ */
6082 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
6083 						LPFC_QUEUE_REARM);
6084 		}
6085 
6086 		/* Loop thru all IRQ vectors */
6087 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
6088 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
6089 			/* ARM the corresponding EQ */
6090 			sli4_hba->sli4_write_eq_db(phba, eq,
6091 						   0, LPFC_QUEUE_REARM);
6092 		}
6093 	}
6094 
6095 	if (phba->nvmet_support) {
6096 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
6097 			sli4_hba->sli4_write_cq_db(phba,
6098 				sli4_hba->nvmet_cqset[qidx], 0,
6099 				LPFC_QUEUE_REARM);
6100 		}
6101 	}
6102 }
6103 
6104 /**
6105  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
6106  * @phba: Pointer to HBA context object.
6107  * @type: The resource extent type.
6108  * @extnt_count: buffer to hold port available extent count.
6109  * @extnt_size: buffer to hold element count per extent.
6110  *
6111  * This function calls the port and retrievs the number of available
6112  * extents and their size for a particular extent type.
6113  *
6114  * Returns: 0 if successful.  Nonzero otherwise.
6115  **/
6116 int
6117 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
6118 			       uint16_t *extnt_count, uint16_t *extnt_size)
6119 {
6120 	int rc = 0;
6121 	uint32_t length;
6122 	uint32_t mbox_tmo;
6123 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
6124 	LPFC_MBOXQ_t *mbox;
6125 
6126 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6127 	if (!mbox)
6128 		return -ENOMEM;
6129 
6130 	/* Find out how many extents are available for this resource type */
6131 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
6132 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6133 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6134 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
6135 			 length, LPFC_SLI4_MBX_EMBED);
6136 
6137 	/* Send an extents count of 0 - the GET doesn't use it. */
6138 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6139 					LPFC_SLI4_MBX_EMBED);
6140 	if (unlikely(rc)) {
6141 		rc = -EIO;
6142 		goto err_exit;
6143 	}
6144 
6145 	if (!phba->sli4_hba.intr_enable)
6146 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6147 	else {
6148 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6149 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6150 	}
6151 	if (unlikely(rc)) {
6152 		rc = -EIO;
6153 		goto err_exit;
6154 	}
6155 
6156 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
6157 	if (bf_get(lpfc_mbox_hdr_status,
6158 		   &rsrc_info->header.cfg_shdr.response)) {
6159 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6160 				"2930 Failed to get resource extents "
6161 				"Status 0x%x Add'l Status 0x%x\n",
6162 				bf_get(lpfc_mbox_hdr_status,
6163 				       &rsrc_info->header.cfg_shdr.response),
6164 				bf_get(lpfc_mbox_hdr_add_status,
6165 				       &rsrc_info->header.cfg_shdr.response));
6166 		rc = -EIO;
6167 		goto err_exit;
6168 	}
6169 
6170 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
6171 			      &rsrc_info->u.rsp);
6172 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
6173 			     &rsrc_info->u.rsp);
6174 
6175 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
6176 			"3162 Retrieved extents type-%d from port: count:%d, "
6177 			"size:%d\n", type, *extnt_count, *extnt_size);
6178 
6179 err_exit:
6180 	mempool_free(mbox, phba->mbox_mem_pool);
6181 	return rc;
6182 }
6183 
6184 /**
6185  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
6186  * @phba: Pointer to HBA context object.
6187  * @type: The extent type to check.
6188  *
6189  * This function reads the current available extents from the port and checks
6190  * if the extent count or extent size has changed since the last access.
6191  * Callers use this routine post port reset to understand if there is a
6192  * extent reprovisioning requirement.
6193  *
6194  * Returns:
6195  *   -Error: error indicates problem.
6196  *   1: Extent count or size has changed.
6197  *   0: No changes.
6198  **/
6199 static int
6200 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
6201 {
6202 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
6203 	uint16_t size_diff, rsrc_ext_size;
6204 	int rc = 0;
6205 	struct lpfc_rsrc_blks *rsrc_entry;
6206 	struct list_head *rsrc_blk_list = NULL;
6207 
6208 	size_diff = 0;
6209 	curr_ext_cnt = 0;
6210 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6211 					    &rsrc_ext_cnt,
6212 					    &rsrc_ext_size);
6213 	if (unlikely(rc))
6214 		return -EIO;
6215 
6216 	switch (type) {
6217 	case LPFC_RSC_TYPE_FCOE_RPI:
6218 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6219 		break;
6220 	case LPFC_RSC_TYPE_FCOE_VPI:
6221 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
6222 		break;
6223 	case LPFC_RSC_TYPE_FCOE_XRI:
6224 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6225 		break;
6226 	case LPFC_RSC_TYPE_FCOE_VFI:
6227 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6228 		break;
6229 	default:
6230 		break;
6231 	}
6232 
6233 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
6234 		curr_ext_cnt++;
6235 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
6236 			size_diff++;
6237 	}
6238 
6239 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
6240 		rc = 1;
6241 
6242 	return rc;
6243 }
6244 
6245 /**
6246  * lpfc_sli4_cfg_post_extnts -
6247  * @phba: Pointer to HBA context object.
6248  * @extnt_cnt: number of available extents.
6249  * @type: the extent type (rpi, xri, vfi, vpi).
6250  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
6251  * @mbox: pointer to the caller's allocated mailbox structure.
6252  *
6253  * This function executes the extents allocation request.  It also
6254  * takes care of the amount of memory needed to allocate or get the
6255  * allocated extents. It is the caller's responsibility to evaluate
6256  * the response.
6257  *
6258  * Returns:
6259  *   -Error:  Error value describes the condition found.
6260  *   0: if successful
6261  **/
6262 static int
6263 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6264 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6265 {
6266 	int rc = 0;
6267 	uint32_t req_len;
6268 	uint32_t emb_len;
6269 	uint32_t alloc_len, mbox_tmo;
6270 
6271 	/* Calculate the total requested length of the dma memory */
6272 	req_len = extnt_cnt * sizeof(uint16_t);
6273 
6274 	/*
6275 	 * Calculate the size of an embedded mailbox.  The uint32_t
6276 	 * accounts for extents-specific word.
6277 	 */
6278 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6279 		sizeof(uint32_t);
6280 
6281 	/*
6282 	 * Presume the allocation and response will fit into an embedded
6283 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6284 	 */
6285 	*emb = LPFC_SLI4_MBX_EMBED;
6286 	if (req_len > emb_len) {
6287 		req_len = extnt_cnt * sizeof(uint16_t) +
6288 			sizeof(union lpfc_sli4_cfg_shdr) +
6289 			sizeof(uint32_t);
6290 		*emb = LPFC_SLI4_MBX_NEMBED;
6291 	}
6292 
6293 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6294 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6295 				     req_len, *emb);
6296 	if (alloc_len < req_len) {
6297 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6298 			"2982 Allocated DMA memory size (x%x) is "
6299 			"less than the requested DMA memory "
6300 			"size (x%x)\n", alloc_len, req_len);
6301 		return -ENOMEM;
6302 	}
6303 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6304 	if (unlikely(rc))
6305 		return -EIO;
6306 
6307 	if (!phba->sli4_hba.intr_enable)
6308 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6309 	else {
6310 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6311 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6312 	}
6313 
6314 	if (unlikely(rc))
6315 		rc = -EIO;
6316 	return rc;
6317 }
6318 
6319 /**
6320  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6321  * @phba: Pointer to HBA context object.
6322  * @type:  The resource extent type to allocate.
6323  *
6324  * This function allocates the number of elements for the specified
6325  * resource type.
6326  **/
6327 static int
6328 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6329 {
6330 	bool emb = false;
6331 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6332 	uint16_t rsrc_id, rsrc_start, j, k;
6333 	uint16_t *ids;
6334 	int i, rc;
6335 	unsigned long longs;
6336 	unsigned long *bmask;
6337 	struct lpfc_rsrc_blks *rsrc_blks;
6338 	LPFC_MBOXQ_t *mbox;
6339 	uint32_t length;
6340 	struct lpfc_id_range *id_array = NULL;
6341 	void *virtaddr = NULL;
6342 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6343 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6344 	struct list_head *ext_blk_list;
6345 
6346 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6347 					    &rsrc_cnt,
6348 					    &rsrc_size);
6349 	if (unlikely(rc))
6350 		return -EIO;
6351 
6352 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6353 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6354 			"3009 No available Resource Extents "
6355 			"for resource type 0x%x: Count: 0x%x, "
6356 			"Size 0x%x\n", type, rsrc_cnt,
6357 			rsrc_size);
6358 		return -ENOMEM;
6359 	}
6360 
6361 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6362 			"2903 Post resource extents type-0x%x: "
6363 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6364 
6365 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6366 	if (!mbox)
6367 		return -ENOMEM;
6368 
6369 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6370 	if (unlikely(rc)) {
6371 		rc = -EIO;
6372 		goto err_exit;
6373 	}
6374 
6375 	/*
6376 	 * Figure out where the response is located.  Then get local pointers
6377 	 * to the response data.  The port does not guarantee to respond to
6378 	 * all extents counts request so update the local variable with the
6379 	 * allocated count from the port.
6380 	 */
6381 	if (emb == LPFC_SLI4_MBX_EMBED) {
6382 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6383 		id_array = &rsrc_ext->u.rsp.id[0];
6384 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6385 	} else {
6386 		virtaddr = mbox->sge_array->addr[0];
6387 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6388 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6389 		id_array = &n_rsrc->id;
6390 	}
6391 
6392 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6393 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6394 
6395 	/*
6396 	 * Based on the resource size and count, correct the base and max
6397 	 * resource values.
6398 	 */
6399 	length = sizeof(struct lpfc_rsrc_blks);
6400 	switch (type) {
6401 	case LPFC_RSC_TYPE_FCOE_RPI:
6402 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6403 						   sizeof(unsigned long),
6404 						   GFP_KERNEL);
6405 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6406 			rc = -ENOMEM;
6407 			goto err_exit;
6408 		}
6409 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6410 						 sizeof(uint16_t),
6411 						 GFP_KERNEL);
6412 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6413 			kfree(phba->sli4_hba.rpi_bmask);
6414 			rc = -ENOMEM;
6415 			goto err_exit;
6416 		}
6417 
6418 		/*
6419 		 * The next_rpi was initialized with the maximum available
6420 		 * count but the port may allocate a smaller number.  Catch
6421 		 * that case and update the next_rpi.
6422 		 */
6423 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6424 
6425 		/* Initialize local ptrs for common extent processing later. */
6426 		bmask = phba->sli4_hba.rpi_bmask;
6427 		ids = phba->sli4_hba.rpi_ids;
6428 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6429 		break;
6430 	case LPFC_RSC_TYPE_FCOE_VPI:
6431 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6432 					  GFP_KERNEL);
6433 		if (unlikely(!phba->vpi_bmask)) {
6434 			rc = -ENOMEM;
6435 			goto err_exit;
6436 		}
6437 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6438 					 GFP_KERNEL);
6439 		if (unlikely(!phba->vpi_ids)) {
6440 			kfree(phba->vpi_bmask);
6441 			rc = -ENOMEM;
6442 			goto err_exit;
6443 		}
6444 
6445 		/* Initialize local ptrs for common extent processing later. */
6446 		bmask = phba->vpi_bmask;
6447 		ids = phba->vpi_ids;
6448 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6449 		break;
6450 	case LPFC_RSC_TYPE_FCOE_XRI:
6451 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6452 						   sizeof(unsigned long),
6453 						   GFP_KERNEL);
6454 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6455 			rc = -ENOMEM;
6456 			goto err_exit;
6457 		}
6458 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6459 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6460 						 sizeof(uint16_t),
6461 						 GFP_KERNEL);
6462 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6463 			kfree(phba->sli4_hba.xri_bmask);
6464 			rc = -ENOMEM;
6465 			goto err_exit;
6466 		}
6467 
6468 		/* Initialize local ptrs for common extent processing later. */
6469 		bmask = phba->sli4_hba.xri_bmask;
6470 		ids = phba->sli4_hba.xri_ids;
6471 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6472 		break;
6473 	case LPFC_RSC_TYPE_FCOE_VFI:
6474 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6475 						   sizeof(unsigned long),
6476 						   GFP_KERNEL);
6477 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6478 			rc = -ENOMEM;
6479 			goto err_exit;
6480 		}
6481 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6482 						 sizeof(uint16_t),
6483 						 GFP_KERNEL);
6484 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6485 			kfree(phba->sli4_hba.vfi_bmask);
6486 			rc = -ENOMEM;
6487 			goto err_exit;
6488 		}
6489 
6490 		/* Initialize local ptrs for common extent processing later. */
6491 		bmask = phba->sli4_hba.vfi_bmask;
6492 		ids = phba->sli4_hba.vfi_ids;
6493 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6494 		break;
6495 	default:
6496 		/* Unsupported Opcode.  Fail call. */
6497 		id_array = NULL;
6498 		bmask = NULL;
6499 		ids = NULL;
6500 		ext_blk_list = NULL;
6501 		goto err_exit;
6502 	}
6503 
6504 	/*
6505 	 * Complete initializing the extent configuration with the
6506 	 * allocated ids assigned to this function.  The bitmask serves
6507 	 * as an index into the array and manages the available ids.  The
6508 	 * array just stores the ids communicated to the port via the wqes.
6509 	 */
6510 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6511 		if ((i % 2) == 0)
6512 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6513 					 &id_array[k]);
6514 		else
6515 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6516 					 &id_array[k]);
6517 
6518 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6519 		if (unlikely(!rsrc_blks)) {
6520 			rc = -ENOMEM;
6521 			kfree(bmask);
6522 			kfree(ids);
6523 			goto err_exit;
6524 		}
6525 		rsrc_blks->rsrc_start = rsrc_id;
6526 		rsrc_blks->rsrc_size = rsrc_size;
6527 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6528 		rsrc_start = rsrc_id;
6529 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6530 			phba->sli4_hba.io_xri_start = rsrc_start +
6531 				lpfc_sli4_get_iocb_cnt(phba);
6532 		}
6533 
6534 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6535 			ids[j] = rsrc_id;
6536 			rsrc_id++;
6537 			j++;
6538 		}
6539 		/* Entire word processed.  Get next word.*/
6540 		if ((i % 2) == 1)
6541 			k++;
6542 	}
6543  err_exit:
6544 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6545 	return rc;
6546 }
6547 
6548 
6549 
6550 /**
6551  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6552  * @phba: Pointer to HBA context object.
6553  * @type: the extent's type.
6554  *
6555  * This function deallocates all extents of a particular resource type.
6556  * SLI4 does not allow for deallocating a particular extent range.  It
6557  * is the caller's responsibility to release all kernel memory resources.
6558  **/
6559 static int
6560 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6561 {
6562 	int rc;
6563 	uint32_t length, mbox_tmo = 0;
6564 	LPFC_MBOXQ_t *mbox;
6565 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6566 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6567 
6568 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6569 	if (!mbox)
6570 		return -ENOMEM;
6571 
6572 	/*
6573 	 * This function sends an embedded mailbox because it only sends the
6574 	 * the resource type.  All extents of this type are released by the
6575 	 * port.
6576 	 */
6577 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6578 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6579 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6580 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6581 			 length, LPFC_SLI4_MBX_EMBED);
6582 
6583 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6584 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6585 					LPFC_SLI4_MBX_EMBED);
6586 	if (unlikely(rc)) {
6587 		rc = -EIO;
6588 		goto out_free_mbox;
6589 	}
6590 	if (!phba->sli4_hba.intr_enable)
6591 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6592 	else {
6593 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6594 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6595 	}
6596 	if (unlikely(rc)) {
6597 		rc = -EIO;
6598 		goto out_free_mbox;
6599 	}
6600 
6601 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6602 	if (bf_get(lpfc_mbox_hdr_status,
6603 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6604 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6605 				"2919 Failed to release resource extents "
6606 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6607 				"Resource memory not released.\n",
6608 				type,
6609 				bf_get(lpfc_mbox_hdr_status,
6610 				    &dealloc_rsrc->header.cfg_shdr.response),
6611 				bf_get(lpfc_mbox_hdr_add_status,
6612 				    &dealloc_rsrc->header.cfg_shdr.response));
6613 		rc = -EIO;
6614 		goto out_free_mbox;
6615 	}
6616 
6617 	/* Release kernel memory resources for the specific type. */
6618 	switch (type) {
6619 	case LPFC_RSC_TYPE_FCOE_VPI:
6620 		kfree(phba->vpi_bmask);
6621 		kfree(phba->vpi_ids);
6622 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6623 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6624 				    &phba->lpfc_vpi_blk_list, list) {
6625 			list_del_init(&rsrc_blk->list);
6626 			kfree(rsrc_blk);
6627 		}
6628 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6629 		break;
6630 	case LPFC_RSC_TYPE_FCOE_XRI:
6631 		kfree(phba->sli4_hba.xri_bmask);
6632 		kfree(phba->sli4_hba.xri_ids);
6633 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6634 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6635 			list_del_init(&rsrc_blk->list);
6636 			kfree(rsrc_blk);
6637 		}
6638 		break;
6639 	case LPFC_RSC_TYPE_FCOE_VFI:
6640 		kfree(phba->sli4_hba.vfi_bmask);
6641 		kfree(phba->sli4_hba.vfi_ids);
6642 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6643 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6644 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6645 			list_del_init(&rsrc_blk->list);
6646 			kfree(rsrc_blk);
6647 		}
6648 		break;
6649 	case LPFC_RSC_TYPE_FCOE_RPI:
6650 		/* RPI bitmask and physical id array are cleaned up earlier. */
6651 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6652 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6653 			list_del_init(&rsrc_blk->list);
6654 			kfree(rsrc_blk);
6655 		}
6656 		break;
6657 	default:
6658 		break;
6659 	}
6660 
6661 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6662 
6663  out_free_mbox:
6664 	mempool_free(mbox, phba->mbox_mem_pool);
6665 	return rc;
6666 }
6667 
6668 static void
6669 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6670 		  uint32_t feature)
6671 {
6672 	uint32_t len;
6673 	u32 sig_freq = 0;
6674 
6675 	len = sizeof(struct lpfc_mbx_set_feature) -
6676 		sizeof(struct lpfc_sli4_cfg_mhdr);
6677 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6678 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6679 			 LPFC_SLI4_MBX_EMBED);
6680 
6681 	switch (feature) {
6682 	case LPFC_SET_UE_RECOVERY:
6683 		bf_set(lpfc_mbx_set_feature_UER,
6684 		       &mbox->u.mqe.un.set_feature, 1);
6685 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6686 		mbox->u.mqe.un.set_feature.param_len = 8;
6687 		break;
6688 	case LPFC_SET_MDS_DIAGS:
6689 		bf_set(lpfc_mbx_set_feature_mds,
6690 		       &mbox->u.mqe.un.set_feature, 1);
6691 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6692 		       &mbox->u.mqe.un.set_feature, 1);
6693 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6694 		mbox->u.mqe.un.set_feature.param_len = 8;
6695 		break;
6696 	case LPFC_SET_CGN_SIGNAL:
6697 		if (phba->cmf_active_mode == LPFC_CFG_OFF)
6698 			sig_freq = 0;
6699 		else
6700 			sig_freq = phba->cgn_sig_freq;
6701 
6702 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) {
6703 			bf_set(lpfc_mbx_set_feature_CGN_alarm_freq,
6704 			       &mbox->u.mqe.un.set_feature, sig_freq);
6705 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6706 			       &mbox->u.mqe.un.set_feature, sig_freq);
6707 		}
6708 
6709 		if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY)
6710 			bf_set(lpfc_mbx_set_feature_CGN_warn_freq,
6711 			       &mbox->u.mqe.un.set_feature, sig_freq);
6712 
6713 		if (phba->cmf_active_mode == LPFC_CFG_OFF ||
6714 		    phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED)
6715 			sig_freq = 0;
6716 		else
6717 			sig_freq = lpfc_acqe_cgn_frequency;
6718 
6719 		bf_set(lpfc_mbx_set_feature_CGN_acqe_freq,
6720 		       &mbox->u.mqe.un.set_feature, sig_freq);
6721 
6722 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL;
6723 		mbox->u.mqe.un.set_feature.param_len = 12;
6724 		break;
6725 	case LPFC_SET_DUAL_DUMP:
6726 		bf_set(lpfc_mbx_set_feature_dd,
6727 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6728 		bf_set(lpfc_mbx_set_feature_ddquery,
6729 		       &mbox->u.mqe.un.set_feature, 0);
6730 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6731 		mbox->u.mqe.un.set_feature.param_len = 4;
6732 		break;
6733 	case LPFC_SET_ENABLE_MI:
6734 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI;
6735 		mbox->u.mqe.un.set_feature.param_len = 4;
6736 		bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature,
6737 		       phba->pport->cfg_lun_queue_depth);
6738 		bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature,
6739 		       phba->sli4_hba.pc_sli4_params.mi_ver);
6740 		break;
6741 	case LPFC_SET_ENABLE_CMF:
6742 		bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1);
6743 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF;
6744 		mbox->u.mqe.un.set_feature.param_len = 4;
6745 		bf_set(lpfc_mbx_set_feature_cmf,
6746 		       &mbox->u.mqe.un.set_feature, 1);
6747 		break;
6748 	}
6749 	return;
6750 }
6751 
6752 /**
6753  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6754  * @phba: Pointer to HBA context object.
6755  *
6756  * Disable FW logging into host memory on the adapter. To
6757  * be done before reading logs from the host memory.
6758  **/
6759 void
6760 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6761 {
6762 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6763 
6764 	spin_lock_irq(&phba->hbalock);
6765 	ras_fwlog->state = INACTIVE;
6766 	spin_unlock_irq(&phba->hbalock);
6767 
6768 	/* Disable FW logging to host memory */
6769 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6770 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6771 
6772 	/* Wait 10ms for firmware to stop using DMA buffer */
6773 	usleep_range(10 * 1000, 20 * 1000);
6774 }
6775 
6776 /**
6777  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6778  * @phba: Pointer to HBA context object.
6779  *
6780  * This function is called to free memory allocated for RAS FW logging
6781  * support in the driver.
6782  **/
6783 void
6784 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6785 {
6786 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6787 	struct lpfc_dmabuf *dmabuf, *next;
6788 
6789 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6790 		list_for_each_entry_safe(dmabuf, next,
6791 				    &ras_fwlog->fwlog_buff_list,
6792 				    list) {
6793 			list_del(&dmabuf->list);
6794 			dma_free_coherent(&phba->pcidev->dev,
6795 					  LPFC_RAS_MAX_ENTRY_SIZE,
6796 					  dmabuf->virt, dmabuf->phys);
6797 			kfree(dmabuf);
6798 		}
6799 	}
6800 
6801 	if (ras_fwlog->lwpd.virt) {
6802 		dma_free_coherent(&phba->pcidev->dev,
6803 				  sizeof(uint32_t) * 2,
6804 				  ras_fwlog->lwpd.virt,
6805 				  ras_fwlog->lwpd.phys);
6806 		ras_fwlog->lwpd.virt = NULL;
6807 	}
6808 
6809 	spin_lock_irq(&phba->hbalock);
6810 	ras_fwlog->state = INACTIVE;
6811 	spin_unlock_irq(&phba->hbalock);
6812 }
6813 
6814 /**
6815  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6816  * @phba: Pointer to HBA context object.
6817  * @fwlog_buff_count: Count of buffers to be created.
6818  *
6819  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6820  * to update FW log is posted to the adapter.
6821  * Buffer count is calculated based on module param ras_fwlog_buffsize
6822  * Size of each buffer posted to FW is 64K.
6823  **/
6824 
6825 static int
6826 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6827 			uint32_t fwlog_buff_count)
6828 {
6829 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6830 	struct lpfc_dmabuf *dmabuf;
6831 	int rc = 0, i = 0;
6832 
6833 	/* Initialize List */
6834 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6835 
6836 	/* Allocate memory for the LWPD */
6837 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6838 					    sizeof(uint32_t) * 2,
6839 					    &ras_fwlog->lwpd.phys,
6840 					    GFP_KERNEL);
6841 	if (!ras_fwlog->lwpd.virt) {
6842 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6843 				"6185 LWPD Memory Alloc Failed\n");
6844 
6845 		return -ENOMEM;
6846 	}
6847 
6848 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6849 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6850 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6851 				 GFP_KERNEL);
6852 		if (!dmabuf) {
6853 			rc = -ENOMEM;
6854 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6855 					"6186 Memory Alloc failed FW logging");
6856 			goto free_mem;
6857 		}
6858 
6859 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6860 						  LPFC_RAS_MAX_ENTRY_SIZE,
6861 						  &dmabuf->phys, GFP_KERNEL);
6862 		if (!dmabuf->virt) {
6863 			kfree(dmabuf);
6864 			rc = -ENOMEM;
6865 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6866 					"6187 DMA Alloc Failed FW logging");
6867 			goto free_mem;
6868 		}
6869 		dmabuf->buffer_tag = i;
6870 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6871 	}
6872 
6873 free_mem:
6874 	if (rc)
6875 		lpfc_sli4_ras_dma_free(phba);
6876 
6877 	return rc;
6878 }
6879 
6880 /**
6881  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6882  * @phba: pointer to lpfc hba data structure.
6883  * @pmb: pointer to the driver internal queue element for mailbox command.
6884  *
6885  * Completion handler for driver's RAS MBX command to the device.
6886  **/
6887 static void
6888 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6889 {
6890 	MAILBOX_t *mb;
6891 	union lpfc_sli4_cfg_shdr *shdr;
6892 	uint32_t shdr_status, shdr_add_status;
6893 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6894 
6895 	mb = &pmb->u.mb;
6896 
6897 	shdr = (union lpfc_sli4_cfg_shdr *)
6898 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6899 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6900 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6901 
6902 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6903 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6904 				"6188 FW LOG mailbox "
6905 				"completed with status x%x add_status x%x,"
6906 				" mbx status x%x\n",
6907 				shdr_status, shdr_add_status, mb->mbxStatus);
6908 
6909 		ras_fwlog->ras_hwsupport = false;
6910 		goto disable_ras;
6911 	}
6912 
6913 	spin_lock_irq(&phba->hbalock);
6914 	ras_fwlog->state = ACTIVE;
6915 	spin_unlock_irq(&phba->hbalock);
6916 	mempool_free(pmb, phba->mbox_mem_pool);
6917 
6918 	return;
6919 
6920 disable_ras:
6921 	/* Free RAS DMA memory */
6922 	lpfc_sli4_ras_dma_free(phba);
6923 	mempool_free(pmb, phba->mbox_mem_pool);
6924 }
6925 
6926 /**
6927  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6928  * @phba: pointer to lpfc hba data structure.
6929  * @fwlog_level: Logging verbosity level.
6930  * @fwlog_enable: Enable/Disable logging.
6931  *
6932  * Initialize memory and post mailbox command to enable FW logging in host
6933  * memory.
6934  **/
6935 int
6936 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6937 			 uint32_t fwlog_level,
6938 			 uint32_t fwlog_enable)
6939 {
6940 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6941 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6942 	struct lpfc_dmabuf *dmabuf;
6943 	LPFC_MBOXQ_t *mbox;
6944 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6945 	int rc = 0;
6946 
6947 	spin_lock_irq(&phba->hbalock);
6948 	ras_fwlog->state = INACTIVE;
6949 	spin_unlock_irq(&phba->hbalock);
6950 
6951 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6952 			  phba->cfg_ras_fwlog_buffsize);
6953 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6954 
6955 	/*
6956 	 * If re-enabling FW logging support use earlier allocated
6957 	 * DMA buffers while posting MBX command.
6958 	 **/
6959 	if (!ras_fwlog->lwpd.virt) {
6960 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6961 		if (rc) {
6962 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6963 					"6189 FW Log Memory Allocation Failed");
6964 			return rc;
6965 		}
6966 	}
6967 
6968 	/* Setup Mailbox command */
6969 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6970 	if (!mbox) {
6971 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6972 				"6190 RAS MBX Alloc Failed");
6973 		rc = -ENOMEM;
6974 		goto mem_free;
6975 	}
6976 
6977 	ras_fwlog->fw_loglevel = fwlog_level;
6978 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6979 		sizeof(struct lpfc_sli4_cfg_mhdr));
6980 
6981 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6982 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6983 			 len, LPFC_SLI4_MBX_EMBED);
6984 
6985 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6986 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6987 	       fwlog_enable);
6988 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6989 	       ras_fwlog->fw_loglevel);
6990 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6991 	       ras_fwlog->fw_buffcount);
6992 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6993 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6994 
6995 	/* Update DMA buffer address */
6996 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6997 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6998 
6999 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
7000 			putPaddrLow(dmabuf->phys);
7001 
7002 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
7003 			putPaddrHigh(dmabuf->phys);
7004 	}
7005 
7006 	/* Update LPWD address */
7007 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
7008 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
7009 
7010 	spin_lock_irq(&phba->hbalock);
7011 	ras_fwlog->state = REG_INPROGRESS;
7012 	spin_unlock_irq(&phba->hbalock);
7013 	mbox->vport = phba->pport;
7014 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
7015 
7016 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
7017 
7018 	if (rc == MBX_NOT_FINISHED) {
7019 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7020 				"6191 FW-Log Mailbox failed. "
7021 				"status %d mbxStatus : x%x", rc,
7022 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
7023 		mempool_free(mbox, phba->mbox_mem_pool);
7024 		rc = -EIO;
7025 		goto mem_free;
7026 	} else
7027 		rc = 0;
7028 mem_free:
7029 	if (rc)
7030 		lpfc_sli4_ras_dma_free(phba);
7031 
7032 	return rc;
7033 }
7034 
7035 /**
7036  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
7037  * @phba: Pointer to HBA context object.
7038  *
7039  * Check if RAS is supported on the adapter and initialize it.
7040  **/
7041 void
7042 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
7043 {
7044 	/* Check RAS FW Log needs to be enabled or not */
7045 	if (lpfc_check_fwlog_support(phba))
7046 		return;
7047 
7048 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
7049 				 LPFC_RAS_ENABLE_LOGGING);
7050 }
7051 
7052 /**
7053  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
7054  * @phba: Pointer to HBA context object.
7055  *
7056  * This function allocates all SLI4 resource identifiers.
7057  **/
7058 int
7059 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
7060 {
7061 	int i, rc, error = 0;
7062 	uint16_t count, base;
7063 	unsigned long longs;
7064 
7065 	if (!phba->sli4_hba.rpi_hdrs_in_use)
7066 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
7067 	if (phba->sli4_hba.extents_in_use) {
7068 		/*
7069 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
7070 		 * resource extent count must be read and allocated before
7071 		 * provisioning the resource id arrays.
7072 		 */
7073 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7074 		    LPFC_IDX_RSRC_RDY) {
7075 			/*
7076 			 * Extent-based resources are set - the driver could
7077 			 * be in a port reset. Figure out if any corrective
7078 			 * actions need to be taken.
7079 			 */
7080 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7081 						 LPFC_RSC_TYPE_FCOE_VFI);
7082 			if (rc != 0)
7083 				error++;
7084 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7085 						 LPFC_RSC_TYPE_FCOE_VPI);
7086 			if (rc != 0)
7087 				error++;
7088 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7089 						 LPFC_RSC_TYPE_FCOE_XRI);
7090 			if (rc != 0)
7091 				error++;
7092 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
7093 						 LPFC_RSC_TYPE_FCOE_RPI);
7094 			if (rc != 0)
7095 				error++;
7096 
7097 			/*
7098 			 * It's possible that the number of resources
7099 			 * provided to this port instance changed between
7100 			 * resets.  Detect this condition and reallocate
7101 			 * resources.  Otherwise, there is no action.
7102 			 */
7103 			if (error) {
7104 				lpfc_printf_log(phba, KERN_INFO,
7105 						LOG_MBOX | LOG_INIT,
7106 						"2931 Detected extent resource "
7107 						"change.  Reallocating all "
7108 						"extents.\n");
7109 				rc = lpfc_sli4_dealloc_extent(phba,
7110 						 LPFC_RSC_TYPE_FCOE_VFI);
7111 				rc = lpfc_sli4_dealloc_extent(phba,
7112 						 LPFC_RSC_TYPE_FCOE_VPI);
7113 				rc = lpfc_sli4_dealloc_extent(phba,
7114 						 LPFC_RSC_TYPE_FCOE_XRI);
7115 				rc = lpfc_sli4_dealloc_extent(phba,
7116 						 LPFC_RSC_TYPE_FCOE_RPI);
7117 			} else
7118 				return 0;
7119 		}
7120 
7121 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7122 		if (unlikely(rc))
7123 			goto err_exit;
7124 
7125 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7126 		if (unlikely(rc))
7127 			goto err_exit;
7128 
7129 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7130 		if (unlikely(rc))
7131 			goto err_exit;
7132 
7133 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7134 		if (unlikely(rc))
7135 			goto err_exit;
7136 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7137 		       LPFC_IDX_RSRC_RDY);
7138 		return rc;
7139 	} else {
7140 		/*
7141 		 * The port does not support resource extents.  The XRI, VPI,
7142 		 * VFI, RPI resource ids were determined from READ_CONFIG.
7143 		 * Just allocate the bitmasks and provision the resource id
7144 		 * arrays.  If a port reset is active, the resources don't
7145 		 * need any action - just exit.
7146 		 */
7147 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
7148 		    LPFC_IDX_RSRC_RDY) {
7149 			lpfc_sli4_dealloc_resource_identifiers(phba);
7150 			lpfc_sli4_remove_rpis(phba);
7151 		}
7152 		/* RPIs. */
7153 		count = phba->sli4_hba.max_cfg_param.max_rpi;
7154 		if (count <= 0) {
7155 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7156 					"3279 Invalid provisioning of "
7157 					"rpi:%d\n", count);
7158 			rc = -EINVAL;
7159 			goto err_exit;
7160 		}
7161 		base = phba->sli4_hba.max_cfg_param.rpi_base;
7162 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7163 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
7164 						   sizeof(unsigned long),
7165 						   GFP_KERNEL);
7166 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
7167 			rc = -ENOMEM;
7168 			goto err_exit;
7169 		}
7170 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
7171 						 GFP_KERNEL);
7172 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
7173 			rc = -ENOMEM;
7174 			goto free_rpi_bmask;
7175 		}
7176 
7177 		for (i = 0; i < count; i++)
7178 			phba->sli4_hba.rpi_ids[i] = base + i;
7179 
7180 		/* VPIs. */
7181 		count = phba->sli4_hba.max_cfg_param.max_vpi;
7182 		if (count <= 0) {
7183 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7184 					"3280 Invalid provisioning of "
7185 					"vpi:%d\n", count);
7186 			rc = -EINVAL;
7187 			goto free_rpi_ids;
7188 		}
7189 		base = phba->sli4_hba.max_cfg_param.vpi_base;
7190 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7191 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
7192 					  GFP_KERNEL);
7193 		if (unlikely(!phba->vpi_bmask)) {
7194 			rc = -ENOMEM;
7195 			goto free_rpi_ids;
7196 		}
7197 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
7198 					GFP_KERNEL);
7199 		if (unlikely(!phba->vpi_ids)) {
7200 			rc = -ENOMEM;
7201 			goto free_vpi_bmask;
7202 		}
7203 
7204 		for (i = 0; i < count; i++)
7205 			phba->vpi_ids[i] = base + i;
7206 
7207 		/* XRIs. */
7208 		count = phba->sli4_hba.max_cfg_param.max_xri;
7209 		if (count <= 0) {
7210 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7211 					"3281 Invalid provisioning of "
7212 					"xri:%d\n", count);
7213 			rc = -EINVAL;
7214 			goto free_vpi_ids;
7215 		}
7216 		base = phba->sli4_hba.max_cfg_param.xri_base;
7217 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7218 		phba->sli4_hba.xri_bmask = kcalloc(longs,
7219 						   sizeof(unsigned long),
7220 						   GFP_KERNEL);
7221 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
7222 			rc = -ENOMEM;
7223 			goto free_vpi_ids;
7224 		}
7225 		phba->sli4_hba.max_cfg_param.xri_used = 0;
7226 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
7227 						 GFP_KERNEL);
7228 		if (unlikely(!phba->sli4_hba.xri_ids)) {
7229 			rc = -ENOMEM;
7230 			goto free_xri_bmask;
7231 		}
7232 
7233 		for (i = 0; i < count; i++)
7234 			phba->sli4_hba.xri_ids[i] = base + i;
7235 
7236 		/* VFIs. */
7237 		count = phba->sli4_hba.max_cfg_param.max_vfi;
7238 		if (count <= 0) {
7239 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7240 					"3282 Invalid provisioning of "
7241 					"vfi:%d\n", count);
7242 			rc = -EINVAL;
7243 			goto free_xri_ids;
7244 		}
7245 		base = phba->sli4_hba.max_cfg_param.vfi_base;
7246 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
7247 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
7248 						   sizeof(unsigned long),
7249 						   GFP_KERNEL);
7250 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
7251 			rc = -ENOMEM;
7252 			goto free_xri_ids;
7253 		}
7254 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
7255 						 GFP_KERNEL);
7256 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
7257 			rc = -ENOMEM;
7258 			goto free_vfi_bmask;
7259 		}
7260 
7261 		for (i = 0; i < count; i++)
7262 			phba->sli4_hba.vfi_ids[i] = base + i;
7263 
7264 		/*
7265 		 * Mark all resources ready.  An HBA reset doesn't need
7266 		 * to reset the initialization.
7267 		 */
7268 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
7269 		       LPFC_IDX_RSRC_RDY);
7270 		return 0;
7271 	}
7272 
7273  free_vfi_bmask:
7274 	kfree(phba->sli4_hba.vfi_bmask);
7275 	phba->sli4_hba.vfi_bmask = NULL;
7276  free_xri_ids:
7277 	kfree(phba->sli4_hba.xri_ids);
7278 	phba->sli4_hba.xri_ids = NULL;
7279  free_xri_bmask:
7280 	kfree(phba->sli4_hba.xri_bmask);
7281 	phba->sli4_hba.xri_bmask = NULL;
7282  free_vpi_ids:
7283 	kfree(phba->vpi_ids);
7284 	phba->vpi_ids = NULL;
7285  free_vpi_bmask:
7286 	kfree(phba->vpi_bmask);
7287 	phba->vpi_bmask = NULL;
7288  free_rpi_ids:
7289 	kfree(phba->sli4_hba.rpi_ids);
7290 	phba->sli4_hba.rpi_ids = NULL;
7291  free_rpi_bmask:
7292 	kfree(phba->sli4_hba.rpi_bmask);
7293 	phba->sli4_hba.rpi_bmask = NULL;
7294  err_exit:
7295 	return rc;
7296 }
7297 
7298 /**
7299  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
7300  * @phba: Pointer to HBA context object.
7301  *
7302  * This function allocates the number of elements for the specified
7303  * resource type.
7304  **/
7305 int
7306 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7307 {
7308 	if (phba->sli4_hba.extents_in_use) {
7309 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7310 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7311 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7312 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7313 	} else {
7314 		kfree(phba->vpi_bmask);
7315 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7316 		kfree(phba->vpi_ids);
7317 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7318 		kfree(phba->sli4_hba.xri_bmask);
7319 		kfree(phba->sli4_hba.xri_ids);
7320 		kfree(phba->sli4_hba.vfi_bmask);
7321 		kfree(phba->sli4_hba.vfi_ids);
7322 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7323 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7324 	}
7325 
7326 	return 0;
7327 }
7328 
7329 /**
7330  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7331  * @phba: Pointer to HBA context object.
7332  * @type: The resource extent type.
7333  * @extnt_cnt: buffer to hold port extent count response
7334  * @extnt_size: buffer to hold port extent size response.
7335  *
7336  * This function calls the port to read the host allocated extents
7337  * for a particular type.
7338  **/
7339 int
7340 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7341 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7342 {
7343 	bool emb;
7344 	int rc = 0;
7345 	uint16_t curr_blks = 0;
7346 	uint32_t req_len, emb_len;
7347 	uint32_t alloc_len, mbox_tmo;
7348 	struct list_head *blk_list_head;
7349 	struct lpfc_rsrc_blks *rsrc_blk;
7350 	LPFC_MBOXQ_t *mbox;
7351 	void *virtaddr = NULL;
7352 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7353 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7354 	union  lpfc_sli4_cfg_shdr *shdr;
7355 
7356 	switch (type) {
7357 	case LPFC_RSC_TYPE_FCOE_VPI:
7358 		blk_list_head = &phba->lpfc_vpi_blk_list;
7359 		break;
7360 	case LPFC_RSC_TYPE_FCOE_XRI:
7361 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7362 		break;
7363 	case LPFC_RSC_TYPE_FCOE_VFI:
7364 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7365 		break;
7366 	case LPFC_RSC_TYPE_FCOE_RPI:
7367 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7368 		break;
7369 	default:
7370 		return -EIO;
7371 	}
7372 
7373 	/* Count the number of extents currently allocatd for this type. */
7374 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7375 		if (curr_blks == 0) {
7376 			/*
7377 			 * The GET_ALLOCATED mailbox does not return the size,
7378 			 * just the count.  The size should be just the size
7379 			 * stored in the current allocated block and all sizes
7380 			 * for an extent type are the same so set the return
7381 			 * value now.
7382 			 */
7383 			*extnt_size = rsrc_blk->rsrc_size;
7384 		}
7385 		curr_blks++;
7386 	}
7387 
7388 	/*
7389 	 * Calculate the size of an embedded mailbox.  The uint32_t
7390 	 * accounts for extents-specific word.
7391 	 */
7392 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7393 		sizeof(uint32_t);
7394 
7395 	/*
7396 	 * Presume the allocation and response will fit into an embedded
7397 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7398 	 */
7399 	emb = LPFC_SLI4_MBX_EMBED;
7400 	req_len = emb_len;
7401 	if (req_len > emb_len) {
7402 		req_len = curr_blks * sizeof(uint16_t) +
7403 			sizeof(union lpfc_sli4_cfg_shdr) +
7404 			sizeof(uint32_t);
7405 		emb = LPFC_SLI4_MBX_NEMBED;
7406 	}
7407 
7408 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7409 	if (!mbox)
7410 		return -ENOMEM;
7411 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7412 
7413 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7414 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7415 				     req_len, emb);
7416 	if (alloc_len < req_len) {
7417 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7418 			"2983 Allocated DMA memory size (x%x) is "
7419 			"less than the requested DMA memory "
7420 			"size (x%x)\n", alloc_len, req_len);
7421 		rc = -ENOMEM;
7422 		goto err_exit;
7423 	}
7424 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7425 	if (unlikely(rc)) {
7426 		rc = -EIO;
7427 		goto err_exit;
7428 	}
7429 
7430 	if (!phba->sli4_hba.intr_enable)
7431 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7432 	else {
7433 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7434 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7435 	}
7436 
7437 	if (unlikely(rc)) {
7438 		rc = -EIO;
7439 		goto err_exit;
7440 	}
7441 
7442 	/*
7443 	 * Figure out where the response is located.  Then get local pointers
7444 	 * to the response data.  The port does not guarantee to respond to
7445 	 * all extents counts request so update the local variable with the
7446 	 * allocated count from the port.
7447 	 */
7448 	if (emb == LPFC_SLI4_MBX_EMBED) {
7449 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7450 		shdr = &rsrc_ext->header.cfg_shdr;
7451 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7452 	} else {
7453 		virtaddr = mbox->sge_array->addr[0];
7454 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7455 		shdr = &n_rsrc->cfg_shdr;
7456 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7457 	}
7458 
7459 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7460 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7461 			"2984 Failed to read allocated resources "
7462 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7463 			type,
7464 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7465 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7466 		rc = -EIO;
7467 		goto err_exit;
7468 	}
7469  err_exit:
7470 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7471 	return rc;
7472 }
7473 
7474 /**
7475  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7476  * @phba: pointer to lpfc hba data structure.
7477  * @sgl_list: linked link of sgl buffers to post
7478  * @cnt: number of linked list buffers
7479  *
7480  * This routine walks the list of buffers that have been allocated and
7481  * repost them to the port by using SGL block post. This is needed after a
7482  * pci_function_reset/warm_start or start. It attempts to construct blocks
7483  * of buffer sgls which contains contiguous xris and uses the non-embedded
7484  * SGL block post mailbox commands to post them to the port. For single
7485  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7486  * mailbox command for posting.
7487  *
7488  * Returns: 0 = success, non-zero failure.
7489  **/
7490 static int
7491 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7492 			  struct list_head *sgl_list, int cnt)
7493 {
7494 	struct lpfc_sglq *sglq_entry = NULL;
7495 	struct lpfc_sglq *sglq_entry_next = NULL;
7496 	struct lpfc_sglq *sglq_entry_first = NULL;
7497 	int status, total_cnt;
7498 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7499 	int last_xritag = NO_XRI;
7500 	LIST_HEAD(prep_sgl_list);
7501 	LIST_HEAD(blck_sgl_list);
7502 	LIST_HEAD(allc_sgl_list);
7503 	LIST_HEAD(post_sgl_list);
7504 	LIST_HEAD(free_sgl_list);
7505 
7506 	spin_lock_irq(&phba->hbalock);
7507 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7508 	list_splice_init(sgl_list, &allc_sgl_list);
7509 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7510 	spin_unlock_irq(&phba->hbalock);
7511 
7512 	total_cnt = cnt;
7513 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7514 				 &allc_sgl_list, list) {
7515 		list_del_init(&sglq_entry->list);
7516 		block_cnt++;
7517 		if ((last_xritag != NO_XRI) &&
7518 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7519 			/* a hole in xri block, form a sgl posting block */
7520 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7521 			post_cnt = block_cnt - 1;
7522 			/* prepare list for next posting block */
7523 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7524 			block_cnt = 1;
7525 		} else {
7526 			/* prepare list for next posting block */
7527 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7528 			/* enough sgls for non-embed sgl mbox command */
7529 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7530 				list_splice_init(&prep_sgl_list,
7531 						 &blck_sgl_list);
7532 				post_cnt = block_cnt;
7533 				block_cnt = 0;
7534 			}
7535 		}
7536 		num_posted++;
7537 
7538 		/* keep track of last sgl's xritag */
7539 		last_xritag = sglq_entry->sli4_xritag;
7540 
7541 		/* end of repost sgl list condition for buffers */
7542 		if (num_posted == total_cnt) {
7543 			if (post_cnt == 0) {
7544 				list_splice_init(&prep_sgl_list,
7545 						 &blck_sgl_list);
7546 				post_cnt = block_cnt;
7547 			} else if (block_cnt == 1) {
7548 				status = lpfc_sli4_post_sgl(phba,
7549 						sglq_entry->phys, 0,
7550 						sglq_entry->sli4_xritag);
7551 				if (!status) {
7552 					/* successful, put sgl to posted list */
7553 					list_add_tail(&sglq_entry->list,
7554 						      &post_sgl_list);
7555 				} else {
7556 					/* Failure, put sgl to free list */
7557 					lpfc_printf_log(phba, KERN_WARNING,
7558 						LOG_SLI,
7559 						"3159 Failed to post "
7560 						"sgl, xritag:x%x\n",
7561 						sglq_entry->sli4_xritag);
7562 					list_add_tail(&sglq_entry->list,
7563 						      &free_sgl_list);
7564 					total_cnt--;
7565 				}
7566 			}
7567 		}
7568 
7569 		/* continue until a nembed page worth of sgls */
7570 		if (post_cnt == 0)
7571 			continue;
7572 
7573 		/* post the buffer list sgls as a block */
7574 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7575 						 post_cnt);
7576 
7577 		if (!status) {
7578 			/* success, put sgl list to posted sgl list */
7579 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7580 		} else {
7581 			/* Failure, put sgl list to free sgl list */
7582 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7583 							    struct lpfc_sglq,
7584 							    list);
7585 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7586 					"3160 Failed to post sgl-list, "
7587 					"xritag:x%x-x%x\n",
7588 					sglq_entry_first->sli4_xritag,
7589 					(sglq_entry_first->sli4_xritag +
7590 					 post_cnt - 1));
7591 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7592 			total_cnt -= post_cnt;
7593 		}
7594 
7595 		/* don't reset xirtag due to hole in xri block */
7596 		if (block_cnt == 0)
7597 			last_xritag = NO_XRI;
7598 
7599 		/* reset sgl post count for next round of posting */
7600 		post_cnt = 0;
7601 	}
7602 
7603 	/* free the sgls failed to post */
7604 	lpfc_free_sgl_list(phba, &free_sgl_list);
7605 
7606 	/* push sgls posted to the available list */
7607 	if (!list_empty(&post_sgl_list)) {
7608 		spin_lock_irq(&phba->hbalock);
7609 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7610 		list_splice_init(&post_sgl_list, sgl_list);
7611 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7612 		spin_unlock_irq(&phba->hbalock);
7613 	} else {
7614 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7615 				"3161 Failure to post sgl to port.\n");
7616 		return -EIO;
7617 	}
7618 
7619 	/* return the number of XRIs actually posted */
7620 	return total_cnt;
7621 }
7622 
7623 /**
7624  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7625  * @phba: pointer to lpfc hba data structure.
7626  *
7627  * This routine walks the list of nvme buffers that have been allocated and
7628  * repost them to the port by using SGL block post. This is needed after a
7629  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7630  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7631  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7632  *
7633  * Returns: 0 = success, non-zero failure.
7634  **/
7635 static int
7636 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7637 {
7638 	LIST_HEAD(post_nblist);
7639 	int num_posted, rc = 0;
7640 
7641 	/* get all NVME buffers need to repost to a local list */
7642 	lpfc_io_buf_flush(phba, &post_nblist);
7643 
7644 	/* post the list of nvme buffer sgls to port if available */
7645 	if (!list_empty(&post_nblist)) {
7646 		num_posted = lpfc_sli4_post_io_sgl_list(
7647 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7648 		/* failed to post any nvme buffer, return error */
7649 		if (num_posted == 0)
7650 			rc = -EIO;
7651 	}
7652 	return rc;
7653 }
7654 
7655 static void
7656 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7657 {
7658 	uint32_t len;
7659 
7660 	len = sizeof(struct lpfc_mbx_set_host_data) -
7661 		sizeof(struct lpfc_sli4_cfg_mhdr);
7662 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7663 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7664 			 LPFC_SLI4_MBX_EMBED);
7665 
7666 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7667 	mbox->u.mqe.un.set_host_data.param_len =
7668 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7669 	snprintf(mbox->u.mqe.un.set_host_data.un.data,
7670 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7671 		 "Linux %s v"LPFC_DRIVER_VERSION,
7672 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7673 }
7674 
7675 int
7676 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7677 		    struct lpfc_queue *drq, int count, int idx)
7678 {
7679 	int rc, i;
7680 	struct lpfc_rqe hrqe;
7681 	struct lpfc_rqe drqe;
7682 	struct lpfc_rqb *rqbp;
7683 	unsigned long flags;
7684 	struct rqb_dmabuf *rqb_buffer;
7685 	LIST_HEAD(rqb_buf_list);
7686 
7687 	rqbp = hrq->rqbp;
7688 	for (i = 0; i < count; i++) {
7689 		spin_lock_irqsave(&phba->hbalock, flags);
7690 		/* IF RQ is already full, don't bother */
7691 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7692 			spin_unlock_irqrestore(&phba->hbalock, flags);
7693 			break;
7694 		}
7695 		spin_unlock_irqrestore(&phba->hbalock, flags);
7696 
7697 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7698 		if (!rqb_buffer)
7699 			break;
7700 		rqb_buffer->hrq = hrq;
7701 		rqb_buffer->drq = drq;
7702 		rqb_buffer->idx = idx;
7703 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7704 	}
7705 
7706 	spin_lock_irqsave(&phba->hbalock, flags);
7707 	while (!list_empty(&rqb_buf_list)) {
7708 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7709 				 hbuf.list);
7710 
7711 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7712 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7713 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7714 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7715 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7716 		if (rc < 0) {
7717 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7718 					"6421 Cannot post to HRQ %d: %x %x %x "
7719 					"DRQ %x %x\n",
7720 					hrq->queue_id,
7721 					hrq->host_index,
7722 					hrq->hba_index,
7723 					hrq->entry_count,
7724 					drq->host_index,
7725 					drq->hba_index);
7726 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7727 		} else {
7728 			list_add_tail(&rqb_buffer->hbuf.list,
7729 				      &rqbp->rqb_buffer_list);
7730 			rqbp->buffer_count++;
7731 		}
7732 	}
7733 	spin_unlock_irqrestore(&phba->hbalock, flags);
7734 	return 1;
7735 }
7736 
7737 static void
7738 lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
7739 {
7740 	struct lpfc_vport *vport = pmb->vport;
7741 	union lpfc_sli4_cfg_shdr *shdr;
7742 	u32 shdr_status, shdr_add_status;
7743 	u32 sig, acqe;
7744 
7745 	/* Two outcomes. (1) Set featurs was successul and EDC negotiation
7746 	 * is done. (2) Mailbox failed and send FPIN support only.
7747 	 */
7748 	shdr = (union lpfc_sli4_cfg_shdr *)
7749 		&pmb->u.mqe.un.sli4_config.header.cfg_shdr;
7750 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
7751 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
7752 	if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) {
7753 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
7754 				"2516 CGN SET_FEATURE mbox failed with "
7755 				"status x%x add_status x%x, mbx status x%x "
7756 				"Reset Congestion to FPINs only\n",
7757 				shdr_status, shdr_add_status,
7758 				pmb->u.mb.mbxStatus);
7759 		/* If there is a mbox error, move on to RDF */
7760 		phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7761 		phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7762 		goto out;
7763 	}
7764 
7765 	/* Zero out Congestion Signal ACQE counter */
7766 	phba->cgn_acqe_cnt = 0;
7767 
7768 	acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq,
7769 		      &pmb->u.mqe.un.set_feature);
7770 	sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq,
7771 		     &pmb->u.mqe.un.set_feature);
7772 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7773 			"4620 SET_FEATURES Success: Freq: %ds %dms "
7774 			" Reg: x%x x%x\n", acqe, sig,
7775 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7776 out:
7777 	mempool_free(pmb, phba->mbox_mem_pool);
7778 
7779 	/* Register for FPIN events from the fabric now that the
7780 	 * EDC common_set_features has completed.
7781 	 */
7782 	lpfc_issue_els_rdf(vport, 0);
7783 }
7784 
7785 int
7786 lpfc_config_cgn_signal(struct lpfc_hba *phba)
7787 {
7788 	LPFC_MBOXQ_t *mboxq;
7789 	u32 rc;
7790 
7791 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7792 	if (!mboxq)
7793 		goto out_rdf;
7794 
7795 	lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL);
7796 	mboxq->vport = phba->pport;
7797 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs;
7798 
7799 	lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT,
7800 			"4621 SET_FEATURES: FREQ sig x%x acqe x%x: "
7801 			"Reg: x%x x%x\n",
7802 			phba->cgn_sig_freq, lpfc_acqe_cgn_frequency,
7803 			phba->cgn_reg_signal, phba->cgn_reg_fpin);
7804 
7805 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
7806 	if (rc == MBX_NOT_FINISHED)
7807 		goto out;
7808 	return 0;
7809 
7810 out:
7811 	mempool_free(mboxq, phba->mbox_mem_pool);
7812 out_rdf:
7813 	/* If there is a mbox error, move on to RDF */
7814 	phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM;
7815 	phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED;
7816 	lpfc_issue_els_rdf(phba->pport, 0);
7817 	return -EIO;
7818 }
7819 
7820 /**
7821  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7822  * @phba: pointer to lpfc hba data structure.
7823  *
7824  * This routine initializes the per-cq idle_stat to dynamically dictate
7825  * polling decisions.
7826  *
7827  * Return codes:
7828  *   None
7829  **/
7830 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7831 {
7832 	int i;
7833 	struct lpfc_sli4_hdw_queue *hdwq;
7834 	struct lpfc_queue *cq;
7835 	struct lpfc_idle_stat *idle_stat;
7836 	u64 wall;
7837 
7838 	for_each_present_cpu(i) {
7839 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7840 		cq = hdwq->io_cq;
7841 
7842 		/* Skip if we've already handled this cq's primary CPU */
7843 		if (cq->chann != i)
7844 			continue;
7845 
7846 		idle_stat = &phba->sli4_hba.idle_stat[i];
7847 
7848 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7849 		idle_stat->prev_wall = wall;
7850 
7851 		if (phba->nvmet_support ||
7852 		    phba->cmf_active_mode != LPFC_CFG_OFF)
7853 			cq->poll_mode = LPFC_QUEUE_WORK;
7854 		else
7855 			cq->poll_mode = LPFC_IRQ_POLL;
7856 	}
7857 
7858 	if (!phba->nvmet_support)
7859 		schedule_delayed_work(&phba->idle_stat_delay_work,
7860 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7861 }
7862 
7863 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7864 {
7865 	uint32_t if_type;
7866 
7867 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7868 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7869 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7870 		struct lpfc_register reg_data;
7871 
7872 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7873 			       &reg_data.word0))
7874 			return;
7875 
7876 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
7877 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7878 					"2904 Firmware Dump Image Present"
7879 					" on Adapter");
7880 	}
7881 }
7882 
7883 /**
7884  * lpfc_cmf_setup - Initialize idle_stat tracking
7885  * @phba: Pointer to HBA context object.
7886  *
7887  * This is called from HBA setup during driver load or when the HBA
7888  * comes online. this does all the initialization to support CMF and MI.
7889  **/
7890 static int
7891 lpfc_cmf_setup(struct lpfc_hba *phba)
7892 {
7893 	LPFC_MBOXQ_t *mboxq;
7894 	struct lpfc_dmabuf *mp;
7895 	struct lpfc_pc_sli4_params *sli4_params;
7896 	int rc, cmf, mi_ver;
7897 
7898 	rc = lpfc_sli4_refresh_params(phba);
7899 	if (unlikely(rc))
7900 		return rc;
7901 
7902 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7903 	if (!mboxq)
7904 		return -ENOMEM;
7905 
7906 	sli4_params = &phba->sli4_hba.pc_sli4_params;
7907 
7908 	/* Are we forcing MI off via module parameter? */
7909 	if (!phba->cfg_enable_mi)
7910 		sli4_params->mi_ver = 0;
7911 
7912 	/* Always try to enable MI feature if we can */
7913 	if (sli4_params->mi_ver) {
7914 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI);
7915 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7916 		mi_ver = bf_get(lpfc_mbx_set_feature_mi,
7917 				 &mboxq->u.mqe.un.set_feature);
7918 
7919 		if (rc == MBX_SUCCESS) {
7920 			if (mi_ver) {
7921 				lpfc_printf_log(phba,
7922 						KERN_WARNING, LOG_CGN_MGMT,
7923 						"6215 MI is enabled\n");
7924 				sli4_params->mi_ver = mi_ver;
7925 			} else {
7926 				lpfc_printf_log(phba,
7927 						KERN_WARNING, LOG_CGN_MGMT,
7928 						"6338 MI is disabled\n");
7929 				sli4_params->mi_ver = 0;
7930 			}
7931 		} else {
7932 			/* mi_ver is already set from GET_SLI4_PARAMETERS */
7933 			lpfc_printf_log(phba, KERN_INFO,
7934 					LOG_CGN_MGMT | LOG_INIT,
7935 					"6245 Enable MI Mailbox x%x (x%x/x%x) "
7936 					"failed, rc:x%x mi:x%x\n",
7937 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7938 					lpfc_sli_config_mbox_subsys_get
7939 						(phba, mboxq),
7940 					lpfc_sli_config_mbox_opcode_get
7941 						(phba, mboxq),
7942 					rc, sli4_params->mi_ver);
7943 		}
7944 	} else {
7945 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
7946 				"6217 MI is disabled\n");
7947 	}
7948 
7949 	/* Ensure FDMI is enabled for MI if enable_mi is set */
7950 	if (sli4_params->mi_ver)
7951 		phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT;
7952 
7953 	/* Always try to enable CMF feature if we can */
7954 	if (sli4_params->cmf) {
7955 		lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF);
7956 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7957 		cmf = bf_get(lpfc_mbx_set_feature_cmf,
7958 			     &mboxq->u.mqe.un.set_feature);
7959 		if (rc == MBX_SUCCESS && cmf) {
7960 			lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
7961 					"6218 CMF is enabled: mode %d\n",
7962 					phba->cmf_active_mode);
7963 		} else {
7964 			lpfc_printf_log(phba, KERN_WARNING,
7965 					LOG_CGN_MGMT | LOG_INIT,
7966 					"6219 Enable CMF Mailbox x%x (x%x/x%x) "
7967 					"failed, rc:x%x dd:x%x\n",
7968 					bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7969 					lpfc_sli_config_mbox_subsys_get
7970 						(phba, mboxq),
7971 					lpfc_sli_config_mbox_opcode_get
7972 						(phba, mboxq),
7973 					rc, cmf);
7974 			sli4_params->cmf = 0;
7975 			phba->cmf_active_mode = LPFC_CFG_OFF;
7976 			goto no_cmf;
7977 		}
7978 
7979 		/* Allocate Congestion Information Buffer */
7980 		if (!phba->cgn_i) {
7981 			mp = kmalloc(sizeof(*mp), GFP_KERNEL);
7982 			if (mp)
7983 				mp->virt = dma_alloc_coherent
7984 						(&phba->pcidev->dev,
7985 						sizeof(struct lpfc_cgn_info),
7986 						&mp->phys, GFP_KERNEL);
7987 			if (!mp || !mp->virt) {
7988 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7989 						"2640 Failed to alloc memory "
7990 						"for Congestion Info\n");
7991 				kfree(mp);
7992 				sli4_params->cmf = 0;
7993 				phba->cmf_active_mode = LPFC_CFG_OFF;
7994 				goto no_cmf;
7995 			}
7996 			phba->cgn_i = mp;
7997 
7998 			/* initialize congestion buffer info */
7999 			lpfc_init_congestion_buf(phba);
8000 			lpfc_init_congestion_stat(phba);
8001 
8002 			/* Zero out Congestion Signal counters */
8003 			atomic64_set(&phba->cgn_acqe_stat.alarm, 0);
8004 			atomic64_set(&phba->cgn_acqe_stat.warn, 0);
8005 		}
8006 
8007 		rc = lpfc_sli4_cgn_params_read(phba);
8008 		if (rc < 0) {
8009 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8010 					"6242 Error reading Cgn Params (%d)\n",
8011 					rc);
8012 			/* Ensure CGN Mode is off */
8013 			sli4_params->cmf = 0;
8014 		} else if (!rc) {
8015 			lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT,
8016 					"6243 CGN Event empty object.\n");
8017 			/* Ensure CGN Mode is off */
8018 			sli4_params->cmf = 0;
8019 		}
8020 	} else {
8021 no_cmf:
8022 		lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT,
8023 				"6220 CMF is disabled\n");
8024 	}
8025 
8026 	/* Only register congestion buffer with firmware if BOTH
8027 	 * CMF and E2E are enabled.
8028 	 */
8029 	if (sli4_params->cmf && sli4_params->mi_ver) {
8030 		rc = lpfc_reg_congestion_buf(phba);
8031 		if (rc) {
8032 			dma_free_coherent(&phba->pcidev->dev,
8033 					  sizeof(struct lpfc_cgn_info),
8034 					  phba->cgn_i->virt, phba->cgn_i->phys);
8035 			kfree(phba->cgn_i);
8036 			phba->cgn_i = NULL;
8037 			/* Ensure CGN Mode is off */
8038 			phba->cmf_active_mode = LPFC_CFG_OFF;
8039 			return 0;
8040 		}
8041 	}
8042 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8043 			"6470 Setup MI version %d CMF %d mode %d\n",
8044 			sli4_params->mi_ver, sli4_params->cmf,
8045 			phba->cmf_active_mode);
8046 
8047 	mempool_free(mboxq, phba->mbox_mem_pool);
8048 
8049 	/* Initialize atomic counters */
8050 	atomic_set(&phba->cgn_fabric_warn_cnt, 0);
8051 	atomic_set(&phba->cgn_fabric_alarm_cnt, 0);
8052 	atomic_set(&phba->cgn_sync_alarm_cnt, 0);
8053 	atomic_set(&phba->cgn_sync_warn_cnt, 0);
8054 	atomic_set(&phba->cgn_driver_evt_cnt, 0);
8055 	atomic_set(&phba->cgn_latency_evt_cnt, 0);
8056 	atomic64_set(&phba->cgn_latency_evt, 0);
8057 
8058 	phba->cmf_interval_rate = LPFC_CMF_INTERVAL;
8059 
8060 	/* Allocate RX Monitor Buffer */
8061 	if (!phba->rxtable) {
8062 		phba->rxtable = kmalloc_array(LPFC_MAX_RXMONITOR_ENTRY,
8063 					      sizeof(struct rxtable_entry),
8064 					      GFP_KERNEL);
8065 		if (!phba->rxtable) {
8066 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8067 					"2644 Failed to alloc memory "
8068 					"for RX Monitor Buffer\n");
8069 			return -ENOMEM;
8070 		}
8071 	}
8072 	atomic_set(&phba->rxtable_idx_head, 0);
8073 	atomic_set(&phba->rxtable_idx_tail, 0);
8074 	return 0;
8075 }
8076 
8077 static int
8078 lpfc_set_host_tm(struct lpfc_hba *phba)
8079 {
8080 	LPFC_MBOXQ_t *mboxq;
8081 	uint32_t len, rc;
8082 	struct timespec64 cur_time;
8083 	struct tm broken;
8084 	uint32_t month, day, year;
8085 	uint32_t hour, minute, second;
8086 	struct lpfc_mbx_set_host_date_time *tm;
8087 
8088 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8089 	if (!mboxq)
8090 		return -ENOMEM;
8091 
8092 	len = sizeof(struct lpfc_mbx_set_host_data) -
8093 		sizeof(struct lpfc_sli4_cfg_mhdr);
8094 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
8095 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
8096 			 LPFC_SLI4_MBX_EMBED);
8097 
8098 	mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME;
8099 	mboxq->u.mqe.un.set_host_data.param_len =
8100 			sizeof(struct lpfc_mbx_set_host_date_time);
8101 	tm = &mboxq->u.mqe.un.set_host_data.un.tm;
8102 	ktime_get_real_ts64(&cur_time);
8103 	time64_to_tm(cur_time.tv_sec, 0, &broken);
8104 	month = broken.tm_mon + 1;
8105 	day = broken.tm_mday;
8106 	year = broken.tm_year - 100;
8107 	hour = broken.tm_hour;
8108 	minute = broken.tm_min;
8109 	second = broken.tm_sec;
8110 	bf_set(lpfc_mbx_set_host_month, tm, month);
8111 	bf_set(lpfc_mbx_set_host_day, tm, day);
8112 	bf_set(lpfc_mbx_set_host_year, tm, year);
8113 	bf_set(lpfc_mbx_set_host_hour, tm, hour);
8114 	bf_set(lpfc_mbx_set_host_min, tm, minute);
8115 	bf_set(lpfc_mbx_set_host_sec, tm, second);
8116 
8117 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8118 	mempool_free(mboxq, phba->mbox_mem_pool);
8119 	return rc;
8120 }
8121 
8122 /**
8123  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
8124  * @phba: Pointer to HBA context object.
8125  *
8126  * This function is the main SLI4 device initialization PCI function. This
8127  * function is called by the HBA initialization code, HBA reset code and
8128  * HBA error attention handler code. Caller is not required to hold any
8129  * locks.
8130  **/
8131 int
8132 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
8133 {
8134 	int rc, i, cnt, len, dd;
8135 	LPFC_MBOXQ_t *mboxq;
8136 	struct lpfc_mqe *mqe;
8137 	uint8_t *vpd;
8138 	uint32_t vpd_size;
8139 	uint32_t ftr_rsp = 0;
8140 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
8141 	struct lpfc_vport *vport = phba->pport;
8142 	struct lpfc_dmabuf *mp;
8143 	struct lpfc_rqb *rqbp;
8144 	u32 flg;
8145 
8146 	/* Perform a PCI function reset to start from clean */
8147 	rc = lpfc_pci_function_reset(phba);
8148 	if (unlikely(rc))
8149 		return -ENODEV;
8150 
8151 	/* Check the HBA Host Status Register for readyness */
8152 	rc = lpfc_sli4_post_status_check(phba);
8153 	if (unlikely(rc))
8154 		return -ENODEV;
8155 	else {
8156 		spin_lock_irq(&phba->hbalock);
8157 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
8158 		flg = phba->sli.sli_flag;
8159 		spin_unlock_irq(&phba->hbalock);
8160 		/* Allow a little time after setting SLI_ACTIVE for any polled
8161 		 * MBX commands to complete via BSG.
8162 		 */
8163 		for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) {
8164 			msleep(20);
8165 			spin_lock_irq(&phba->hbalock);
8166 			flg = phba->sli.sli_flag;
8167 			spin_unlock_irq(&phba->hbalock);
8168 		}
8169 	}
8170 
8171 	lpfc_sli4_dip(phba);
8172 
8173 	/*
8174 	 * Allocate a single mailbox container for initializing the
8175 	 * port.
8176 	 */
8177 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
8178 	if (!mboxq)
8179 		return -ENOMEM;
8180 
8181 	/* Issue READ_REV to collect vpd and FW information. */
8182 	vpd_size = SLI4_PAGE_SIZE;
8183 	vpd = kzalloc(vpd_size, GFP_KERNEL);
8184 	if (!vpd) {
8185 		rc = -ENOMEM;
8186 		goto out_free_mbox;
8187 	}
8188 
8189 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
8190 	if (unlikely(rc)) {
8191 		kfree(vpd);
8192 		goto out_free_mbox;
8193 	}
8194 
8195 	mqe = &mboxq->u.mqe;
8196 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
8197 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
8198 		phba->hba_flag |= HBA_FCOE_MODE;
8199 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
8200 	} else {
8201 		phba->hba_flag &= ~HBA_FCOE_MODE;
8202 	}
8203 
8204 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
8205 		LPFC_DCBX_CEE_MODE)
8206 		phba->hba_flag |= HBA_FIP_SUPPORT;
8207 	else
8208 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
8209 
8210 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
8211 
8212 	if (phba->sli_rev != LPFC_SLI_REV4) {
8213 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8214 			"0376 READ_REV Error. SLI Level %d "
8215 			"FCoE enabled %d\n",
8216 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
8217 		rc = -EIO;
8218 		kfree(vpd);
8219 		goto out_free_mbox;
8220 	}
8221 
8222 	rc = lpfc_set_host_tm(phba);
8223 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
8224 			"6468 Set host date / time: Status x%x:\n", rc);
8225 
8226 	/*
8227 	 * Continue initialization with default values even if driver failed
8228 	 * to read FCoE param config regions, only read parameters if the
8229 	 * board is FCoE
8230 	 */
8231 	if (phba->hba_flag & HBA_FCOE_MODE &&
8232 	    lpfc_sli4_read_fcoe_params(phba))
8233 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
8234 			"2570 Failed to read FCoE parameters\n");
8235 
8236 	/*
8237 	 * Retrieve sli4 device physical port name, failure of doing it
8238 	 * is considered as non-fatal.
8239 	 */
8240 	rc = lpfc_sli4_retrieve_pport_name(phba);
8241 	if (!rc)
8242 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8243 				"3080 Successful retrieving SLI4 device "
8244 				"physical port name: %s.\n", phba->Port);
8245 
8246 	rc = lpfc_sli4_get_ctl_attr(phba);
8247 	if (!rc)
8248 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8249 				"8351 Successful retrieving SLI4 device "
8250 				"CTL ATTR\n");
8251 
8252 	/*
8253 	 * Evaluate the read rev and vpd data. Populate the driver
8254 	 * state with the results. If this routine fails, the failure
8255 	 * is not fatal as the driver will use generic values.
8256 	 */
8257 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
8258 	if (unlikely(!rc)) {
8259 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8260 				"0377 Error %d parsing vpd. "
8261 				"Using defaults.\n", rc);
8262 		rc = 0;
8263 	}
8264 	kfree(vpd);
8265 
8266 	/* Save information as VPD data */
8267 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
8268 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
8269 
8270 	/*
8271 	 * This is because first G7 ASIC doesn't support the standard
8272 	 * 0x5a NVME cmd descriptor type/subtype
8273 	 */
8274 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8275 			LPFC_SLI_INTF_IF_TYPE_6) &&
8276 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
8277 	    (phba->vpd.rev.smRev == 0) &&
8278 	    (phba->cfg_nvme_embed_cmd == 1))
8279 		phba->cfg_nvme_embed_cmd = 0;
8280 
8281 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
8282 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
8283 					 &mqe->un.read_rev);
8284 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
8285 				       &mqe->un.read_rev);
8286 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
8287 					    &mqe->un.read_rev);
8288 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
8289 					   &mqe->un.read_rev);
8290 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
8291 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
8292 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
8293 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
8294 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
8295 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
8296 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8297 			"(%d):0380 READ_REV Status x%x "
8298 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
8299 			mboxq->vport ? mboxq->vport->vpi : 0,
8300 			bf_get(lpfc_mqe_status, mqe),
8301 			phba->vpd.rev.opFwName,
8302 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
8303 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
8304 
8305 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
8306 	    LPFC_SLI_INTF_IF_TYPE_0) {
8307 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
8308 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8309 		if (rc == MBX_SUCCESS) {
8310 			phba->hba_flag |= HBA_RECOVERABLE_UE;
8311 			/* Set 1Sec interval to detect UE */
8312 			phba->eratt_poll_interval = 1;
8313 			phba->sli4_hba.ue_to_sr = bf_get(
8314 					lpfc_mbx_set_feature_UESR,
8315 					&mboxq->u.mqe.un.set_feature);
8316 			phba->sli4_hba.ue_to_rp = bf_get(
8317 					lpfc_mbx_set_feature_UERP,
8318 					&mboxq->u.mqe.un.set_feature);
8319 		}
8320 	}
8321 
8322 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
8323 		/* Enable MDS Diagnostics only if the SLI Port supports it */
8324 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
8325 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8326 		if (rc != MBX_SUCCESS)
8327 			phba->mds_diags_support = 0;
8328 	}
8329 
8330 	/*
8331 	 * Discover the port's supported feature set and match it against the
8332 	 * hosts requests.
8333 	 */
8334 	lpfc_request_features(phba, mboxq);
8335 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8336 	if (unlikely(rc)) {
8337 		rc = -EIO;
8338 		goto out_free_mbox;
8339 	}
8340 
8341 	/* Disable VMID if app header is not supported */
8342 	if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr,
8343 						  &mqe->un.req_ftrs))) {
8344 		bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0);
8345 		phba->cfg_vmid_app_header = 0;
8346 		lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI,
8347 				"1242 vmid feature not supported\n");
8348 	}
8349 
8350 	/*
8351 	 * The port must support FCP initiator mode as this is the
8352 	 * only mode running in the host.
8353 	 */
8354 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
8355 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8356 				"0378 No support for fcpi mode.\n");
8357 		ftr_rsp++;
8358 	}
8359 
8360 	/* Performance Hints are ONLY for FCoE */
8361 	if (phba->hba_flag & HBA_FCOE_MODE) {
8362 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
8363 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
8364 		else
8365 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
8366 	}
8367 
8368 	/*
8369 	 * If the port cannot support the host's requested features
8370 	 * then turn off the global config parameters to disable the
8371 	 * feature in the driver.  This is not a fatal error.
8372 	 */
8373 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
8374 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
8375 			phba->cfg_enable_bg = 0;
8376 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
8377 			ftr_rsp++;
8378 		}
8379 	}
8380 
8381 	if (phba->max_vpi && phba->cfg_enable_npiv &&
8382 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8383 		ftr_rsp++;
8384 
8385 	if (ftr_rsp) {
8386 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8387 				"0379 Feature Mismatch Data: x%08x %08x "
8388 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
8389 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
8390 				phba->cfg_enable_npiv, phba->max_vpi);
8391 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
8392 			phba->cfg_enable_bg = 0;
8393 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
8394 			phba->cfg_enable_npiv = 0;
8395 	}
8396 
8397 	/* These SLI3 features are assumed in SLI4 */
8398 	spin_lock_irq(&phba->hbalock);
8399 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
8400 	spin_unlock_irq(&phba->hbalock);
8401 
8402 	/* Always try to enable dual dump feature if we can */
8403 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
8404 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8405 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
8406 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
8407 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8408 				"6448 Dual Dump is enabled\n");
8409 	else
8410 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
8411 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
8412 				"rc:x%x dd:x%x\n",
8413 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8414 				lpfc_sli_config_mbox_subsys_get(
8415 					phba, mboxq),
8416 				lpfc_sli_config_mbox_opcode_get(
8417 					phba, mboxq),
8418 				rc, dd);
8419 	/*
8420 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
8421 	 * calls depends on these resources to complete port setup.
8422 	 */
8423 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
8424 	if (rc) {
8425 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8426 				"2920 Failed to alloc Resource IDs "
8427 				"rc = x%x\n", rc);
8428 		goto out_free_mbox;
8429 	}
8430 
8431 	lpfc_set_host_data(phba, mboxq);
8432 
8433 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8434 	if (rc) {
8435 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8436 				"2134 Failed to set host os driver version %x",
8437 				rc);
8438 	}
8439 
8440 	/* Read the port's service parameters. */
8441 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
8442 	if (rc) {
8443 		phba->link_state = LPFC_HBA_ERROR;
8444 		rc = -ENOMEM;
8445 		goto out_free_mbox;
8446 	}
8447 
8448 	mboxq->vport = vport;
8449 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8450 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
8451 	if (rc == MBX_SUCCESS) {
8452 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
8453 		rc = 0;
8454 	}
8455 
8456 	/*
8457 	 * This memory was allocated by the lpfc_read_sparam routine. Release
8458 	 * it to the mbuf pool.
8459 	 */
8460 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
8461 	kfree(mp);
8462 	mboxq->ctx_buf = NULL;
8463 	if (unlikely(rc)) {
8464 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8465 				"0382 READ_SPARAM command failed "
8466 				"status %d, mbxStatus x%x\n",
8467 				rc, bf_get(lpfc_mqe_status, mqe));
8468 		phba->link_state = LPFC_HBA_ERROR;
8469 		rc = -EIO;
8470 		goto out_free_mbox;
8471 	}
8472 
8473 	lpfc_update_vport_wwn(vport);
8474 
8475 	/* Update the fc_host data structures with new wwn. */
8476 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
8477 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
8478 
8479 	/* Create all the SLI4 queues */
8480 	rc = lpfc_sli4_queue_create(phba);
8481 	if (rc) {
8482 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8483 				"3089 Failed to allocate queues\n");
8484 		rc = -ENODEV;
8485 		goto out_free_mbox;
8486 	}
8487 	/* Set up all the queues to the device */
8488 	rc = lpfc_sli4_queue_setup(phba);
8489 	if (unlikely(rc)) {
8490 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8491 				"0381 Error %d during queue setup.\n ", rc);
8492 		goto out_stop_timers;
8493 	}
8494 	/* Initialize the driver internal SLI layer lists. */
8495 	lpfc_sli4_setup(phba);
8496 	lpfc_sli4_queue_init(phba);
8497 
8498 	/* update host els xri-sgl sizes and mappings */
8499 	rc = lpfc_sli4_els_sgl_update(phba);
8500 	if (unlikely(rc)) {
8501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8502 				"1400 Failed to update xri-sgl size and "
8503 				"mapping: %d\n", rc);
8504 		goto out_destroy_queue;
8505 	}
8506 
8507 	/* register the els sgl pool to the port */
8508 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
8509 				       phba->sli4_hba.els_xri_cnt);
8510 	if (unlikely(rc < 0)) {
8511 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8512 				"0582 Error %d during els sgl post "
8513 				"operation\n", rc);
8514 		rc = -ENODEV;
8515 		goto out_destroy_queue;
8516 	}
8517 	phba->sli4_hba.els_xri_cnt = rc;
8518 
8519 	if (phba->nvmet_support) {
8520 		/* update host nvmet xri-sgl sizes and mappings */
8521 		rc = lpfc_sli4_nvmet_sgl_update(phba);
8522 		if (unlikely(rc)) {
8523 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8524 					"6308 Failed to update nvmet-sgl size "
8525 					"and mapping: %d\n", rc);
8526 			goto out_destroy_queue;
8527 		}
8528 
8529 		/* register the nvmet sgl pool to the port */
8530 		rc = lpfc_sli4_repost_sgl_list(
8531 			phba,
8532 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
8533 			phba->sli4_hba.nvmet_xri_cnt);
8534 		if (unlikely(rc < 0)) {
8535 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8536 					"3117 Error %d during nvmet "
8537 					"sgl post\n", rc);
8538 			rc = -ENODEV;
8539 			goto out_destroy_queue;
8540 		}
8541 		phba->sli4_hba.nvmet_xri_cnt = rc;
8542 
8543 		/* We allocate an iocbq for every receive context SGL.
8544 		 * The additional allocation is for abort and ls handling.
8545 		 */
8546 		cnt = phba->sli4_hba.nvmet_xri_cnt +
8547 			phba->sli4_hba.max_cfg_param.max_xri;
8548 	} else {
8549 		/* update host common xri-sgl sizes and mappings */
8550 		rc = lpfc_sli4_io_sgl_update(phba);
8551 		if (unlikely(rc)) {
8552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8553 					"6082 Failed to update nvme-sgl size "
8554 					"and mapping: %d\n", rc);
8555 			goto out_destroy_queue;
8556 		}
8557 
8558 		/* register the allocated common sgl pool to the port */
8559 		rc = lpfc_sli4_repost_io_sgl_list(phba);
8560 		if (unlikely(rc)) {
8561 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8562 					"6116 Error %d during nvme sgl post "
8563 					"operation\n", rc);
8564 			/* Some NVME buffers were moved to abort nvme list */
8565 			/* A pci function reset will repost them */
8566 			rc = -ENODEV;
8567 			goto out_destroy_queue;
8568 		}
8569 		/* Each lpfc_io_buf job structure has an iocbq element.
8570 		 * This cnt provides for abort, els, ct and ls requests.
8571 		 */
8572 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
8573 	}
8574 
8575 	if (!phba->sli.iocbq_lookup) {
8576 		/* Initialize and populate the iocb list per host */
8577 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8578 				"2821 initialize iocb list with %d entries\n",
8579 				cnt);
8580 		rc = lpfc_init_iocb_list(phba, cnt);
8581 		if (rc) {
8582 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8583 					"1413 Failed to init iocb list.\n");
8584 			goto out_destroy_queue;
8585 		}
8586 	}
8587 
8588 	if (phba->nvmet_support)
8589 		lpfc_nvmet_create_targetport(phba);
8590 
8591 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
8592 		/* Post initial buffers to all RQs created */
8593 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
8594 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
8595 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
8596 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
8597 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
8598 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
8599 			rqbp->buffer_count = 0;
8600 
8601 			lpfc_post_rq_buffer(
8602 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
8603 				phba->sli4_hba.nvmet_mrq_data[i],
8604 				phba->cfg_nvmet_mrq_post, i);
8605 		}
8606 	}
8607 
8608 	/* Post the rpi header region to the device. */
8609 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
8610 	if (unlikely(rc)) {
8611 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8612 				"0393 Error %d during rpi post operation\n",
8613 				rc);
8614 		rc = -ENODEV;
8615 		goto out_free_iocblist;
8616 	}
8617 	lpfc_sli4_node_prep(phba);
8618 
8619 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
8620 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
8621 			/*
8622 			 * The FC Port needs to register FCFI (index 0)
8623 			 */
8624 			lpfc_reg_fcfi(phba, mboxq);
8625 			mboxq->vport = phba->pport;
8626 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8627 			if (rc != MBX_SUCCESS)
8628 				goto out_unset_queue;
8629 			rc = 0;
8630 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
8631 						&mboxq->u.mqe.un.reg_fcfi);
8632 		} else {
8633 			/* We are a NVME Target mode with MRQ > 1 */
8634 
8635 			/* First register the FCFI */
8636 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
8637 			mboxq->vport = phba->pport;
8638 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8639 			if (rc != MBX_SUCCESS)
8640 				goto out_unset_queue;
8641 			rc = 0;
8642 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
8643 						&mboxq->u.mqe.un.reg_fcfi_mrq);
8644 
8645 			/* Next register the MRQs */
8646 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
8647 			mboxq->vport = phba->pport;
8648 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8649 			if (rc != MBX_SUCCESS)
8650 				goto out_unset_queue;
8651 			rc = 0;
8652 		}
8653 		/* Check if the port is configured to be disabled */
8654 		lpfc_sli_read_link_ste(phba);
8655 	}
8656 
8657 	/* Don't post more new bufs if repost already recovered
8658 	 * the nvme sgls.
8659 	 */
8660 	if (phba->nvmet_support == 0) {
8661 		if (phba->sli4_hba.io_xri_cnt == 0) {
8662 			len = lpfc_new_io_buf(
8663 					      phba, phba->sli4_hba.io_xri_max);
8664 			if (len == 0) {
8665 				rc = -ENOMEM;
8666 				goto out_unset_queue;
8667 			}
8668 
8669 			if (phba->cfg_xri_rebalancing)
8670 				lpfc_create_multixri_pools(phba);
8671 		}
8672 	} else {
8673 		phba->cfg_xri_rebalancing = 0;
8674 	}
8675 
8676 	/* Allow asynchronous mailbox command to go through */
8677 	spin_lock_irq(&phba->hbalock);
8678 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8679 	spin_unlock_irq(&phba->hbalock);
8680 
8681 	/* Post receive buffers to the device */
8682 	lpfc_sli4_rb_setup(phba);
8683 
8684 	/* Reset HBA FCF states after HBA reset */
8685 	phba->fcf.fcf_flag = 0;
8686 	phba->fcf.current_rec.flag = 0;
8687 
8688 	/* Start the ELS watchdog timer */
8689 	mod_timer(&vport->els_tmofunc,
8690 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
8691 
8692 	/* Start heart beat timer */
8693 	mod_timer(&phba->hb_tmofunc,
8694 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
8695 	phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO);
8696 	phba->last_completion_time = jiffies;
8697 
8698 	/* start eq_delay heartbeat */
8699 	if (phba->cfg_auto_imax)
8700 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
8701 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
8702 
8703 	/* start per phba idle_stat_delay heartbeat */
8704 	lpfc_init_idle_stat_hb(phba);
8705 
8706 	/* Start error attention (ERATT) polling timer */
8707 	mod_timer(&phba->eratt_poll,
8708 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
8709 
8710 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
8711 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
8712 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
8713 		if (!rc) {
8714 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8715 					"2829 This device supports "
8716 					"Advanced Error Reporting (AER)\n");
8717 			spin_lock_irq(&phba->hbalock);
8718 			phba->hba_flag |= HBA_AER_ENABLED;
8719 			spin_unlock_irq(&phba->hbalock);
8720 		} else {
8721 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8722 					"2830 This device does not support "
8723 					"Advanced Error Reporting (AER)\n");
8724 			phba->cfg_aer_support = 0;
8725 		}
8726 		rc = 0;
8727 	}
8728 
8729 	/*
8730 	 * The port is ready, set the host's link state to LINK_DOWN
8731 	 * in preparation for link interrupts.
8732 	 */
8733 	spin_lock_irq(&phba->hbalock);
8734 	phba->link_state = LPFC_LINK_DOWN;
8735 
8736 	/* Check if physical ports are trunked */
8737 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
8738 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
8739 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
8740 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
8741 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
8742 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
8743 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
8744 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
8745 	spin_unlock_irq(&phba->hbalock);
8746 
8747 	/* Arm the CQs and then EQs on device */
8748 	lpfc_sli4_arm_cqeq_intr(phba);
8749 
8750 	/* Indicate device interrupt mode */
8751 	phba->sli4_hba.intr_enable = 1;
8752 
8753 	/* Setup CMF after HBA is initialized */
8754 	lpfc_cmf_setup(phba);
8755 
8756 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
8757 	    (phba->hba_flag & LINK_DISABLED)) {
8758 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8759 				"3103 Adapter Link is disabled.\n");
8760 		lpfc_down_link(phba, mboxq);
8761 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8762 		if (rc != MBX_SUCCESS) {
8763 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8764 					"3104 Adapter failed to issue "
8765 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
8766 			goto out_io_buff_free;
8767 		}
8768 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
8769 		/* don't perform init_link on SLI4 FC port loopback test */
8770 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
8771 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
8772 			if (rc)
8773 				goto out_io_buff_free;
8774 		}
8775 	}
8776 	mempool_free(mboxq, phba->mbox_mem_pool);
8777 
8778 	phba->hba_flag |= HBA_SETUP;
8779 	return rc;
8780 
8781 out_io_buff_free:
8782 	/* Free allocated IO Buffers */
8783 	lpfc_io_free(phba);
8784 out_unset_queue:
8785 	/* Unset all the queues set up in this routine when error out */
8786 	lpfc_sli4_queue_unset(phba);
8787 out_free_iocblist:
8788 	lpfc_free_iocb_list(phba);
8789 out_destroy_queue:
8790 	lpfc_sli4_queue_destroy(phba);
8791 out_stop_timers:
8792 	lpfc_stop_hba_timers(phba);
8793 out_free_mbox:
8794 	mempool_free(mboxq, phba->mbox_mem_pool);
8795 	return rc;
8796 }
8797 
8798 /**
8799  * lpfc_mbox_timeout - Timeout call back function for mbox timer
8800  * @t: Context to fetch pointer to hba structure from.
8801  *
8802  * This is the callback function for mailbox timer. The mailbox
8803  * timer is armed when a new mailbox command is issued and the timer
8804  * is deleted when the mailbox complete. The function is called by
8805  * the kernel timer code when a mailbox does not complete within
8806  * expected time. This function wakes up the worker thread to
8807  * process the mailbox timeout and returns. All the processing is
8808  * done by the worker thread function lpfc_mbox_timeout_handler.
8809  **/
8810 void
8811 lpfc_mbox_timeout(struct timer_list *t)
8812 {
8813 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
8814 	unsigned long iflag;
8815 	uint32_t tmo_posted;
8816 
8817 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8818 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8819 	if (!tmo_posted)
8820 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
8821 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8822 
8823 	if (!tmo_posted)
8824 		lpfc_worker_wake_up(phba);
8825 	return;
8826 }
8827 
8828 /**
8829  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8830  *                                    are pending
8831  * @phba: Pointer to HBA context object.
8832  *
8833  * This function checks if any mailbox completions are present on the mailbox
8834  * completion queue.
8835  **/
8836 static bool
8837 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8838 {
8839 
8840 	uint32_t idx;
8841 	struct lpfc_queue *mcq;
8842 	struct lpfc_mcqe *mcqe;
8843 	bool pending_completions = false;
8844 	uint8_t	qe_valid;
8845 
8846 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8847 		return false;
8848 
8849 	/* Check for completions on mailbox completion queue */
8850 
8851 	mcq = phba->sli4_hba.mbx_cq;
8852 	idx = mcq->hba_index;
8853 	qe_valid = mcq->qe_valid;
8854 	while (bf_get_le32(lpfc_cqe_valid,
8855 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8856 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8857 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8858 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8859 			pending_completions = true;
8860 			break;
8861 		}
8862 		idx = (idx + 1) % mcq->entry_count;
8863 		if (mcq->hba_index == idx)
8864 			break;
8865 
8866 		/* if the index wrapped around, toggle the valid bit */
8867 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8868 			qe_valid = (qe_valid) ? 0 : 1;
8869 	}
8870 	return pending_completions;
8871 
8872 }
8873 
8874 /**
8875  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8876  *					      that were missed.
8877  * @phba: Pointer to HBA context object.
8878  *
8879  * For sli4, it is possible to miss an interrupt. As such mbox completions
8880  * maybe missed causing erroneous mailbox timeouts to occur. This function
8881  * checks to see if mbox completions are on the mailbox completion queue
8882  * and will process all the completions associated with the eq for the
8883  * mailbox completion queue.
8884  **/
8885 static bool
8886 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8887 {
8888 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8889 	uint32_t eqidx;
8890 	struct lpfc_queue *fpeq = NULL;
8891 	struct lpfc_queue *eq;
8892 	bool mbox_pending;
8893 
8894 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8895 		return false;
8896 
8897 	/* Find the EQ associated with the mbox CQ */
8898 	if (sli4_hba->hdwq) {
8899 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8900 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8901 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8902 				fpeq = eq;
8903 				break;
8904 			}
8905 		}
8906 	}
8907 	if (!fpeq)
8908 		return false;
8909 
8910 	/* Turn off interrupts from this EQ */
8911 
8912 	sli4_hba->sli4_eq_clr_intr(fpeq);
8913 
8914 	/* Check to see if a mbox completion is pending */
8915 
8916 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8917 
8918 	/*
8919 	 * If a mbox completion is pending, process all the events on EQ
8920 	 * associated with the mbox completion queue (this could include
8921 	 * mailbox commands, async events, els commands, receive queue data
8922 	 * and fcp commands)
8923 	 */
8924 
8925 	if (mbox_pending)
8926 		/* process and rearm the EQ */
8927 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8928 	else
8929 		/* Always clear and re-arm the EQ */
8930 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8931 
8932 	return mbox_pending;
8933 
8934 }
8935 
8936 /**
8937  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8938  * @phba: Pointer to HBA context object.
8939  *
8940  * This function is called from worker thread when a mailbox command times out.
8941  * The caller is not required to hold any locks. This function will reset the
8942  * HBA and recover all the pending commands.
8943  **/
8944 void
8945 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8946 {
8947 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8948 	MAILBOX_t *mb = NULL;
8949 
8950 	struct lpfc_sli *psli = &phba->sli;
8951 
8952 	/* If the mailbox completed, process the completion */
8953 	lpfc_sli4_process_missed_mbox_completions(phba);
8954 
8955 	if (!(psli->sli_flag & LPFC_SLI_ACTIVE))
8956 		return;
8957 
8958 	if (pmbox != NULL)
8959 		mb = &pmbox->u.mb;
8960 	/* Check the pmbox pointer first.  There is a race condition
8961 	 * between the mbox timeout handler getting executed in the
8962 	 * worklist and the mailbox actually completing. When this
8963 	 * race condition occurs, the mbox_active will be NULL.
8964 	 */
8965 	spin_lock_irq(&phba->hbalock);
8966 	if (pmbox == NULL) {
8967 		lpfc_printf_log(phba, KERN_WARNING,
8968 				LOG_MBOX | LOG_SLI,
8969 				"0353 Active Mailbox cleared - mailbox timeout "
8970 				"exiting\n");
8971 		spin_unlock_irq(&phba->hbalock);
8972 		return;
8973 	}
8974 
8975 	/* Mbox cmd <mbxCommand> timeout */
8976 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8977 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8978 			mb->mbxCommand,
8979 			phba->pport->port_state,
8980 			phba->sli.sli_flag,
8981 			phba->sli.mbox_active);
8982 	spin_unlock_irq(&phba->hbalock);
8983 
8984 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8985 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8986 	 * it to fail all outstanding SCSI IO.
8987 	 */
8988 	spin_lock_irq(&phba->pport->work_port_lock);
8989 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8990 	spin_unlock_irq(&phba->pport->work_port_lock);
8991 	spin_lock_irq(&phba->hbalock);
8992 	phba->link_state = LPFC_LINK_UNKNOWN;
8993 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8994 	spin_unlock_irq(&phba->hbalock);
8995 
8996 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8997 			"0345 Resetting board due to mailbox timeout\n");
8998 
8999 	/* Reset the HBA device */
9000 	lpfc_reset_hba(phba);
9001 }
9002 
9003 /**
9004  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
9005  * @phba: Pointer to HBA context object.
9006  * @pmbox: Pointer to mailbox object.
9007  * @flag: Flag indicating how the mailbox need to be processed.
9008  *
9009  * This function is called by discovery code and HBA management code
9010  * to submit a mailbox command to firmware with SLI-3 interface spec. This
9011  * function gets the hbalock to protect the data structures.
9012  * The mailbox command can be submitted in polling mode, in which case
9013  * this function will wait in a polling loop for the completion of the
9014  * mailbox.
9015  * If the mailbox is submitted in no_wait mode (not polling) the
9016  * function will submit the command and returns immediately without waiting
9017  * for the mailbox completion. The no_wait is supported only when HBA
9018  * is in SLI2/SLI3 mode - interrupts are enabled.
9019  * The SLI interface allows only one mailbox pending at a time. If the
9020  * mailbox is issued in polling mode and there is already a mailbox
9021  * pending, then the function will return an error. If the mailbox is issued
9022  * in NO_WAIT mode and there is a mailbox pending already, the function
9023  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
9024  * The sli layer owns the mailbox object until the completion of mailbox
9025  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
9026  * return codes the caller owns the mailbox command after the return of
9027  * the function.
9028  **/
9029 static int
9030 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
9031 		       uint32_t flag)
9032 {
9033 	MAILBOX_t *mbx;
9034 	struct lpfc_sli *psli = &phba->sli;
9035 	uint32_t status, evtctr;
9036 	uint32_t ha_copy, hc_copy;
9037 	int i;
9038 	unsigned long timeout;
9039 	unsigned long drvr_flag = 0;
9040 	uint32_t word0, ldata;
9041 	void __iomem *to_slim;
9042 	int processing_queue = 0;
9043 
9044 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
9045 	if (!pmbox) {
9046 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9047 		/* processing mbox queue from intr_handler */
9048 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9049 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9050 			return MBX_SUCCESS;
9051 		}
9052 		processing_queue = 1;
9053 		pmbox = lpfc_mbox_get(phba);
9054 		if (!pmbox) {
9055 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9056 			return MBX_SUCCESS;
9057 		}
9058 	}
9059 
9060 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
9061 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
9062 		if(!pmbox->vport) {
9063 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9064 			lpfc_printf_log(phba, KERN_ERR,
9065 					LOG_MBOX | LOG_VPORT,
9066 					"1806 Mbox x%x failed. No vport\n",
9067 					pmbox->u.mb.mbxCommand);
9068 			dump_stack();
9069 			goto out_not_finished;
9070 		}
9071 	}
9072 
9073 	/* If the PCI channel is in offline state, do not post mbox. */
9074 	if (unlikely(pci_channel_offline(phba->pcidev))) {
9075 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9076 		goto out_not_finished;
9077 	}
9078 
9079 	/* If HBA has a deferred error attention, fail the iocb. */
9080 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
9081 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9082 		goto out_not_finished;
9083 	}
9084 
9085 	psli = &phba->sli;
9086 
9087 	mbx = &pmbox->u.mb;
9088 	status = MBX_SUCCESS;
9089 
9090 	if (phba->link_state == LPFC_HBA_ERROR) {
9091 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9092 
9093 		/* Mbox command <mbxCommand> cannot issue */
9094 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9095 				"(%d):0311 Mailbox command x%x cannot "
9096 				"issue Data: x%x x%x\n",
9097 				pmbox->vport ? pmbox->vport->vpi : 0,
9098 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9099 		goto out_not_finished;
9100 	}
9101 
9102 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
9103 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
9104 			!(hc_copy & HC_MBINT_ENA)) {
9105 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9106 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9107 				"(%d):2528 Mailbox command x%x cannot "
9108 				"issue Data: x%x x%x\n",
9109 				pmbox->vport ? pmbox->vport->vpi : 0,
9110 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
9111 			goto out_not_finished;
9112 		}
9113 	}
9114 
9115 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9116 		/* Polling for a mbox command when another one is already active
9117 		 * is not allowed in SLI. Also, the driver must have established
9118 		 * SLI2 mode to queue and process multiple mbox commands.
9119 		 */
9120 
9121 		if (flag & MBX_POLL) {
9122 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9123 
9124 			/* Mbox command <mbxCommand> cannot issue */
9125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9126 					"(%d):2529 Mailbox command x%x "
9127 					"cannot issue Data: x%x x%x\n",
9128 					pmbox->vport ? pmbox->vport->vpi : 0,
9129 					pmbox->u.mb.mbxCommand,
9130 					psli->sli_flag, flag);
9131 			goto out_not_finished;
9132 		}
9133 
9134 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
9135 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9136 			/* Mbox command <mbxCommand> cannot issue */
9137 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9138 					"(%d):2530 Mailbox command x%x "
9139 					"cannot issue Data: x%x x%x\n",
9140 					pmbox->vport ? pmbox->vport->vpi : 0,
9141 					pmbox->u.mb.mbxCommand,
9142 					psli->sli_flag, flag);
9143 			goto out_not_finished;
9144 		}
9145 
9146 		/* Another mailbox command is still being processed, queue this
9147 		 * command to be processed later.
9148 		 */
9149 		lpfc_mbox_put(phba, pmbox);
9150 
9151 		/* Mbox cmd issue - BUSY */
9152 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9153 				"(%d):0308 Mbox cmd issue - BUSY Data: "
9154 				"x%x x%x x%x x%x\n",
9155 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
9156 				mbx->mbxCommand,
9157 				phba->pport ? phba->pport->port_state : 0xff,
9158 				psli->sli_flag, flag);
9159 
9160 		psli->slistat.mbox_busy++;
9161 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9162 
9163 		if (pmbox->vport) {
9164 			lpfc_debugfs_disc_trc(pmbox->vport,
9165 				LPFC_DISC_TRC_MBOX_VPORT,
9166 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
9167 				(uint32_t)mbx->mbxCommand,
9168 				mbx->un.varWords[0], mbx->un.varWords[1]);
9169 		}
9170 		else {
9171 			lpfc_debugfs_disc_trc(phba->pport,
9172 				LPFC_DISC_TRC_MBOX,
9173 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
9174 				(uint32_t)mbx->mbxCommand,
9175 				mbx->un.varWords[0], mbx->un.varWords[1]);
9176 		}
9177 
9178 		return MBX_BUSY;
9179 	}
9180 
9181 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9182 
9183 	/* If we are not polling, we MUST be in SLI2 mode */
9184 	if (flag != MBX_POLL) {
9185 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
9186 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
9187 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9188 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9189 			/* Mbox command <mbxCommand> cannot issue */
9190 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9191 					"(%d):2531 Mailbox command x%x "
9192 					"cannot issue Data: x%x x%x\n",
9193 					pmbox->vport ? pmbox->vport->vpi : 0,
9194 					pmbox->u.mb.mbxCommand,
9195 					psli->sli_flag, flag);
9196 			goto out_not_finished;
9197 		}
9198 		/* timeout active mbox command */
9199 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9200 					   1000);
9201 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
9202 	}
9203 
9204 	/* Mailbox cmd <cmd> issue */
9205 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9206 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
9207 			"x%x\n",
9208 			pmbox->vport ? pmbox->vport->vpi : 0,
9209 			mbx->mbxCommand,
9210 			phba->pport ? phba->pport->port_state : 0xff,
9211 			psli->sli_flag, flag);
9212 
9213 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
9214 		if (pmbox->vport) {
9215 			lpfc_debugfs_disc_trc(pmbox->vport,
9216 				LPFC_DISC_TRC_MBOX_VPORT,
9217 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9218 				(uint32_t)mbx->mbxCommand,
9219 				mbx->un.varWords[0], mbx->un.varWords[1]);
9220 		}
9221 		else {
9222 			lpfc_debugfs_disc_trc(phba->pport,
9223 				LPFC_DISC_TRC_MBOX,
9224 				"MBOX Send:       cmd:x%x mb:x%x x%x",
9225 				(uint32_t)mbx->mbxCommand,
9226 				mbx->un.varWords[0], mbx->un.varWords[1]);
9227 		}
9228 	}
9229 
9230 	psli->slistat.mbox_cmd++;
9231 	evtctr = psli->slistat.mbox_event;
9232 
9233 	/* next set own bit for the adapter and copy over command word */
9234 	mbx->mbxOwner = OWN_CHIP;
9235 
9236 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9237 		/* Populate mbox extension offset word. */
9238 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
9239 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9240 				= (uint8_t *)phba->mbox_ext
9241 				  - (uint8_t *)phba->mbox;
9242 		}
9243 
9244 		/* Copy the mailbox extension data */
9245 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
9246 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
9247 					      (uint8_t *)phba->mbox_ext,
9248 					      pmbox->in_ext_byte_len);
9249 		}
9250 		/* Copy command data to host SLIM area */
9251 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
9252 	} else {
9253 		/* Populate mbox extension offset word. */
9254 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
9255 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
9256 				= MAILBOX_HBA_EXT_OFFSET;
9257 
9258 		/* Copy the mailbox extension data */
9259 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
9260 			lpfc_memcpy_to_slim(phba->MBslimaddr +
9261 				MAILBOX_HBA_EXT_OFFSET,
9262 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
9263 
9264 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9265 			/* copy command data into host mbox for cmpl */
9266 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
9267 					      MAILBOX_CMD_SIZE);
9268 
9269 		/* First copy mbox command data to HBA SLIM, skip past first
9270 		   word */
9271 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
9272 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
9273 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
9274 
9275 		/* Next copy over first word, with mbxOwner set */
9276 		ldata = *((uint32_t *)mbx);
9277 		to_slim = phba->MBslimaddr;
9278 		writel(ldata, to_slim);
9279 		readl(to_slim); /* flush */
9280 
9281 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
9282 			/* switch over to host mailbox */
9283 			psli->sli_flag |= LPFC_SLI_ACTIVE;
9284 	}
9285 
9286 	wmb();
9287 
9288 	switch (flag) {
9289 	case MBX_NOWAIT:
9290 		/* Set up reference to mailbox command */
9291 		psli->mbox_active = pmbox;
9292 		/* Interrupt board to do it */
9293 		writel(CA_MBATT, phba->CAregaddr);
9294 		readl(phba->CAregaddr); /* flush */
9295 		/* Don't wait for it to finish, just return */
9296 		break;
9297 
9298 	case MBX_POLL:
9299 		/* Set up null reference to mailbox command */
9300 		psli->mbox_active = NULL;
9301 		/* Interrupt board to do it */
9302 		writel(CA_MBATT, phba->CAregaddr);
9303 		readl(phba->CAregaddr); /* flush */
9304 
9305 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9306 			/* First read mbox status word */
9307 			word0 = *((uint32_t *)phba->mbox);
9308 			word0 = le32_to_cpu(word0);
9309 		} else {
9310 			/* First read mbox status word */
9311 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
9312 				spin_unlock_irqrestore(&phba->hbalock,
9313 						       drvr_flag);
9314 				goto out_not_finished;
9315 			}
9316 		}
9317 
9318 		/* Read the HBA Host Attention Register */
9319 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9320 			spin_unlock_irqrestore(&phba->hbalock,
9321 						       drvr_flag);
9322 			goto out_not_finished;
9323 		}
9324 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
9325 							1000) + jiffies;
9326 		i = 0;
9327 		/* Wait for command to complete */
9328 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
9329 		       (!(ha_copy & HA_MBATT) &&
9330 			(phba->link_state > LPFC_WARM_START))) {
9331 			if (time_after(jiffies, timeout)) {
9332 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9333 				spin_unlock_irqrestore(&phba->hbalock,
9334 						       drvr_flag);
9335 				goto out_not_finished;
9336 			}
9337 
9338 			/* Check if we took a mbox interrupt while we were
9339 			   polling */
9340 			if (((word0 & OWN_CHIP) != OWN_CHIP)
9341 			    && (evtctr != psli->slistat.mbox_event))
9342 				break;
9343 
9344 			if (i++ > 10) {
9345 				spin_unlock_irqrestore(&phba->hbalock,
9346 						       drvr_flag);
9347 				msleep(1);
9348 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
9349 			}
9350 
9351 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9352 				/* First copy command data */
9353 				word0 = *((uint32_t *)phba->mbox);
9354 				word0 = le32_to_cpu(word0);
9355 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
9356 					MAILBOX_t *slimmb;
9357 					uint32_t slimword0;
9358 					/* Check real SLIM for any errors */
9359 					slimword0 = readl(phba->MBslimaddr);
9360 					slimmb = (MAILBOX_t *) & slimword0;
9361 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
9362 					    && slimmb->mbxStatus) {
9363 						psli->sli_flag &=
9364 						    ~LPFC_SLI_ACTIVE;
9365 						word0 = slimword0;
9366 					}
9367 				}
9368 			} else {
9369 				/* First copy command data */
9370 				word0 = readl(phba->MBslimaddr);
9371 			}
9372 			/* Read the HBA Host Attention Register */
9373 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
9374 				spin_unlock_irqrestore(&phba->hbalock,
9375 						       drvr_flag);
9376 				goto out_not_finished;
9377 			}
9378 		}
9379 
9380 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9381 			/* copy results back to user */
9382 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
9383 						MAILBOX_CMD_SIZE);
9384 			/* Copy the mailbox extension data */
9385 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9386 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
9387 						      pmbox->ctx_buf,
9388 						      pmbox->out_ext_byte_len);
9389 			}
9390 		} else {
9391 			/* First copy command data */
9392 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
9393 						MAILBOX_CMD_SIZE);
9394 			/* Copy the mailbox extension data */
9395 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
9396 				lpfc_memcpy_from_slim(
9397 					pmbox->ctx_buf,
9398 					phba->MBslimaddr +
9399 					MAILBOX_HBA_EXT_OFFSET,
9400 					pmbox->out_ext_byte_len);
9401 			}
9402 		}
9403 
9404 		writel(HA_MBATT, phba->HAregaddr);
9405 		readl(phba->HAregaddr); /* flush */
9406 
9407 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9408 		status = mbx->mbxStatus;
9409 	}
9410 
9411 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
9412 	return status;
9413 
9414 out_not_finished:
9415 	if (processing_queue) {
9416 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
9417 		lpfc_mbox_cmpl_put(phba, pmbox);
9418 	}
9419 	return MBX_NOT_FINISHED;
9420 }
9421 
9422 /**
9423  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
9424  * @phba: Pointer to HBA context object.
9425  *
9426  * The function blocks the posting of SLI4 asynchronous mailbox commands from
9427  * the driver internal pending mailbox queue. It will then try to wait out the
9428  * possible outstanding mailbox command before return.
9429  *
9430  * Returns:
9431  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
9432  * 	the outstanding mailbox command timed out.
9433  **/
9434 static int
9435 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
9436 {
9437 	struct lpfc_sli *psli = &phba->sli;
9438 	LPFC_MBOXQ_t *mboxq;
9439 	int rc = 0;
9440 	unsigned long timeout = 0;
9441 	u32 sli_flag;
9442 	u8 cmd, subsys, opcode;
9443 
9444 	/* Mark the asynchronous mailbox command posting as blocked */
9445 	spin_lock_irq(&phba->hbalock);
9446 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9447 	/* Determine how long we might wait for the active mailbox
9448 	 * command to be gracefully completed by firmware.
9449 	 */
9450 	if (phba->sli.mbox_active)
9451 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9452 						phba->sli.mbox_active) *
9453 						1000) + jiffies;
9454 	spin_unlock_irq(&phba->hbalock);
9455 
9456 	/* Make sure the mailbox is really active */
9457 	if (timeout)
9458 		lpfc_sli4_process_missed_mbox_completions(phba);
9459 
9460 	/* Wait for the outstanding mailbox command to complete */
9461 	while (phba->sli.mbox_active) {
9462 		/* Check active mailbox complete status every 2ms */
9463 		msleep(2);
9464 		if (time_after(jiffies, timeout)) {
9465 			/* Timeout, mark the outstanding cmd not complete */
9466 
9467 			/* Sanity check sli.mbox_active has not completed or
9468 			 * cancelled from another context during last 2ms sleep,
9469 			 * so take hbalock to be sure before logging.
9470 			 */
9471 			spin_lock_irq(&phba->hbalock);
9472 			if (phba->sli.mbox_active) {
9473 				mboxq = phba->sli.mbox_active;
9474 				cmd = mboxq->u.mb.mbxCommand;
9475 				subsys = lpfc_sli_config_mbox_subsys_get(phba,
9476 									 mboxq);
9477 				opcode = lpfc_sli_config_mbox_opcode_get(phba,
9478 									 mboxq);
9479 				sli_flag = psli->sli_flag;
9480 				spin_unlock_irq(&phba->hbalock);
9481 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9482 						"2352 Mailbox command x%x "
9483 						"(x%x/x%x) sli_flag x%x could "
9484 						"not complete\n",
9485 						cmd, subsys, opcode,
9486 						sli_flag);
9487 			} else {
9488 				spin_unlock_irq(&phba->hbalock);
9489 			}
9490 
9491 			rc = 1;
9492 			break;
9493 		}
9494 	}
9495 
9496 	/* Can not cleanly block async mailbox command, fails it */
9497 	if (rc) {
9498 		spin_lock_irq(&phba->hbalock);
9499 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9500 		spin_unlock_irq(&phba->hbalock);
9501 	}
9502 	return rc;
9503 }
9504 
9505 /**
9506  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
9507  * @phba: Pointer to HBA context object.
9508  *
9509  * The function unblocks and resume posting of SLI4 asynchronous mailbox
9510  * commands from the driver internal pending mailbox queue. It makes sure
9511  * that there is no outstanding mailbox command before resuming posting
9512  * asynchronous mailbox commands. If, for any reason, there is outstanding
9513  * mailbox command, it will try to wait it out before resuming asynchronous
9514  * mailbox command posting.
9515  **/
9516 static void
9517 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
9518 {
9519 	struct lpfc_sli *psli = &phba->sli;
9520 
9521 	spin_lock_irq(&phba->hbalock);
9522 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9523 		/* Asynchronous mailbox posting is not blocked, do nothing */
9524 		spin_unlock_irq(&phba->hbalock);
9525 		return;
9526 	}
9527 
9528 	/* Outstanding synchronous mailbox command is guaranteed to be done,
9529 	 * successful or timeout, after timing-out the outstanding mailbox
9530 	 * command shall always be removed, so just unblock posting async
9531 	 * mailbox command and resume
9532 	 */
9533 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
9534 	spin_unlock_irq(&phba->hbalock);
9535 
9536 	/* wake up worker thread to post asynchronous mailbox command */
9537 	lpfc_worker_wake_up(phba);
9538 }
9539 
9540 /**
9541  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
9542  * @phba: Pointer to HBA context object.
9543  * @mboxq: Pointer to mailbox object.
9544  *
9545  * The function waits for the bootstrap mailbox register ready bit from
9546  * port for twice the regular mailbox command timeout value.
9547  *
9548  *      0 - no timeout on waiting for bootstrap mailbox register ready.
9549  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
9550  **/
9551 static int
9552 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9553 {
9554 	uint32_t db_ready;
9555 	unsigned long timeout;
9556 	struct lpfc_register bmbx_reg;
9557 
9558 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
9559 				   * 1000) + jiffies;
9560 
9561 	do {
9562 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
9563 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
9564 		if (!db_ready)
9565 			mdelay(2);
9566 
9567 		if (time_after(jiffies, timeout))
9568 			return MBXERR_ERROR;
9569 	} while (!db_ready);
9570 
9571 	return 0;
9572 }
9573 
9574 /**
9575  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
9576  * @phba: Pointer to HBA context object.
9577  * @mboxq: Pointer to mailbox object.
9578  *
9579  * The function posts a mailbox to the port.  The mailbox is expected
9580  * to be comletely filled in and ready for the port to operate on it.
9581  * This routine executes a synchronous completion operation on the
9582  * mailbox by polling for its completion.
9583  *
9584  * The caller must not be holding any locks when calling this routine.
9585  *
9586  * Returns:
9587  *	MBX_SUCCESS - mailbox posted successfully
9588  *	Any of the MBX error values.
9589  **/
9590 static int
9591 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
9592 {
9593 	int rc = MBX_SUCCESS;
9594 	unsigned long iflag;
9595 	uint32_t mcqe_status;
9596 	uint32_t mbx_cmnd;
9597 	struct lpfc_sli *psli = &phba->sli;
9598 	struct lpfc_mqe *mb = &mboxq->u.mqe;
9599 	struct lpfc_bmbx_create *mbox_rgn;
9600 	struct dma_address *dma_address;
9601 
9602 	/*
9603 	 * Only one mailbox can be active to the bootstrap mailbox region
9604 	 * at a time and there is no queueing provided.
9605 	 */
9606 	spin_lock_irqsave(&phba->hbalock, iflag);
9607 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9608 		spin_unlock_irqrestore(&phba->hbalock, iflag);
9609 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9610 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
9611 				"cannot issue Data: x%x x%x\n",
9612 				mboxq->vport ? mboxq->vport->vpi : 0,
9613 				mboxq->u.mb.mbxCommand,
9614 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9615 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9616 				psli->sli_flag, MBX_POLL);
9617 		return MBXERR_ERROR;
9618 	}
9619 	/* The server grabs the token and owns it until release */
9620 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9621 	phba->sli.mbox_active = mboxq;
9622 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9623 
9624 	/* wait for bootstrap mbox register for readyness */
9625 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9626 	if (rc)
9627 		goto exit;
9628 	/*
9629 	 * Initialize the bootstrap memory region to avoid stale data areas
9630 	 * in the mailbox post.  Then copy the caller's mailbox contents to
9631 	 * the bmbx mailbox region.
9632 	 */
9633 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
9634 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
9635 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
9636 			       sizeof(struct lpfc_mqe));
9637 
9638 	/* Post the high mailbox dma address to the port and wait for ready. */
9639 	dma_address = &phba->sli4_hba.bmbx.dma_address;
9640 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
9641 
9642 	/* wait for bootstrap mbox register for hi-address write done */
9643 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9644 	if (rc)
9645 		goto exit;
9646 
9647 	/* Post the low mailbox dma address to the port. */
9648 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
9649 
9650 	/* wait for bootstrap mbox register for low address write done */
9651 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
9652 	if (rc)
9653 		goto exit;
9654 
9655 	/*
9656 	 * Read the CQ to ensure the mailbox has completed.
9657 	 * If so, update the mailbox status so that the upper layers
9658 	 * can complete the request normally.
9659 	 */
9660 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
9661 			       sizeof(struct lpfc_mqe));
9662 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
9663 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
9664 			       sizeof(struct lpfc_mcqe));
9665 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
9666 	/*
9667 	 * When the CQE status indicates a failure and the mailbox status
9668 	 * indicates success then copy the CQE status into the mailbox status
9669 	 * (and prefix it with x4000).
9670 	 */
9671 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
9672 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
9673 			bf_set(lpfc_mqe_status, mb,
9674 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
9675 		rc = MBXERR_ERROR;
9676 	} else
9677 		lpfc_sli4_swap_str(phba, mboxq);
9678 
9679 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9680 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
9681 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
9682 			" x%x x%x CQ: x%x x%x x%x x%x\n",
9683 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9684 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9685 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9686 			bf_get(lpfc_mqe_status, mb),
9687 			mb->un.mb_words[0], mb->un.mb_words[1],
9688 			mb->un.mb_words[2], mb->un.mb_words[3],
9689 			mb->un.mb_words[4], mb->un.mb_words[5],
9690 			mb->un.mb_words[6], mb->un.mb_words[7],
9691 			mb->un.mb_words[8], mb->un.mb_words[9],
9692 			mb->un.mb_words[10], mb->un.mb_words[11],
9693 			mb->un.mb_words[12], mboxq->mcqe.word0,
9694 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
9695 			mboxq->mcqe.trailer);
9696 exit:
9697 	/* We are holding the token, no needed for lock when release */
9698 	spin_lock_irqsave(&phba->hbalock, iflag);
9699 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9700 	phba->sli.mbox_active = NULL;
9701 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9702 	return rc;
9703 }
9704 
9705 /**
9706  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
9707  * @phba: Pointer to HBA context object.
9708  * @mboxq: Pointer to mailbox object.
9709  * @flag: Flag indicating how the mailbox need to be processed.
9710  *
9711  * This function is called by discovery code and HBA management code to submit
9712  * a mailbox command to firmware with SLI-4 interface spec.
9713  *
9714  * Return codes the caller owns the mailbox command after the return of the
9715  * function.
9716  **/
9717 static int
9718 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
9719 		       uint32_t flag)
9720 {
9721 	struct lpfc_sli *psli = &phba->sli;
9722 	unsigned long iflags;
9723 	int rc;
9724 
9725 	/* dump from issue mailbox command if setup */
9726 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
9727 
9728 	rc = lpfc_mbox_dev_check(phba);
9729 	if (unlikely(rc)) {
9730 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9731 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
9732 				"cannot issue Data: x%x x%x\n",
9733 				mboxq->vport ? mboxq->vport->vpi : 0,
9734 				mboxq->u.mb.mbxCommand,
9735 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9736 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9737 				psli->sli_flag, flag);
9738 		goto out_not_finished;
9739 	}
9740 
9741 	/* Detect polling mode and jump to a handler */
9742 	if (!phba->sli4_hba.intr_enable) {
9743 		if (flag == MBX_POLL)
9744 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9745 		else
9746 			rc = -EIO;
9747 		if (rc != MBX_SUCCESS)
9748 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9749 					"(%d):2541 Mailbox command x%x "
9750 					"(x%x/x%x) failure: "
9751 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9752 					"Data: x%x x%x\n",
9753 					mboxq->vport ? mboxq->vport->vpi : 0,
9754 					mboxq->u.mb.mbxCommand,
9755 					lpfc_sli_config_mbox_subsys_get(phba,
9756 									mboxq),
9757 					lpfc_sli_config_mbox_opcode_get(phba,
9758 									mboxq),
9759 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9760 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9761 					bf_get(lpfc_mcqe_ext_status,
9762 					       &mboxq->mcqe),
9763 					psli->sli_flag, flag);
9764 		return rc;
9765 	} else if (flag == MBX_POLL) {
9766 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9767 				"(%d):2542 Try to issue mailbox command "
9768 				"x%x (x%x/x%x) synchronously ahead of async "
9769 				"mailbox command queue: x%x x%x\n",
9770 				mboxq->vport ? mboxq->vport->vpi : 0,
9771 				mboxq->u.mb.mbxCommand,
9772 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9773 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9774 				psli->sli_flag, flag);
9775 		/* Try to block the asynchronous mailbox posting */
9776 		rc = lpfc_sli4_async_mbox_block(phba);
9777 		if (!rc) {
9778 			/* Successfully blocked, now issue sync mbox cmd */
9779 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9780 			if (rc != MBX_SUCCESS)
9781 				lpfc_printf_log(phba, KERN_WARNING,
9782 					LOG_MBOX | LOG_SLI,
9783 					"(%d):2597 Sync Mailbox command "
9784 					"x%x (x%x/x%x) failure: "
9785 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9786 					"Data: x%x x%x\n",
9787 					mboxq->vport ? mboxq->vport->vpi : 0,
9788 					mboxq->u.mb.mbxCommand,
9789 					lpfc_sli_config_mbox_subsys_get(phba,
9790 									mboxq),
9791 					lpfc_sli_config_mbox_opcode_get(phba,
9792 									mboxq),
9793 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9794 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9795 					bf_get(lpfc_mcqe_ext_status,
9796 					       &mboxq->mcqe),
9797 					psli->sli_flag, flag);
9798 			/* Unblock the async mailbox posting afterward */
9799 			lpfc_sli4_async_mbox_unblock(phba);
9800 		}
9801 		return rc;
9802 	}
9803 
9804 	/* Now, interrupt mode asynchronous mailbox command */
9805 	rc = lpfc_mbox_cmd_check(phba, mboxq);
9806 	if (rc) {
9807 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9808 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
9809 				"cannot issue Data: x%x x%x\n",
9810 				mboxq->vport ? mboxq->vport->vpi : 0,
9811 				mboxq->u.mb.mbxCommand,
9812 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9813 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9814 				psli->sli_flag, flag);
9815 		goto out_not_finished;
9816 	}
9817 
9818 	/* Put the mailbox command to the driver internal FIFO */
9819 	psli->slistat.mbox_busy++;
9820 	spin_lock_irqsave(&phba->hbalock, iflags);
9821 	lpfc_mbox_put(phba, mboxq);
9822 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9823 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9824 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
9825 			"x%x (x%x/x%x) x%x x%x x%x\n",
9826 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9827 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9828 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9829 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9830 			phba->pport->port_state,
9831 			psli->sli_flag, MBX_NOWAIT);
9832 	/* Wake up worker thread to transport mailbox command from head */
9833 	lpfc_worker_wake_up(phba);
9834 
9835 	return MBX_BUSY;
9836 
9837 out_not_finished:
9838 	return MBX_NOT_FINISHED;
9839 }
9840 
9841 /**
9842  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9843  * @phba: Pointer to HBA context object.
9844  *
9845  * This function is called by worker thread to send a mailbox command to
9846  * SLI4 HBA firmware.
9847  *
9848  **/
9849 int
9850 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9851 {
9852 	struct lpfc_sli *psli = &phba->sli;
9853 	LPFC_MBOXQ_t *mboxq;
9854 	int rc = MBX_SUCCESS;
9855 	unsigned long iflags;
9856 	struct lpfc_mqe *mqe;
9857 	uint32_t mbx_cmnd;
9858 
9859 	/* Check interrupt mode before post async mailbox command */
9860 	if (unlikely(!phba->sli4_hba.intr_enable))
9861 		return MBX_NOT_FINISHED;
9862 
9863 	/* Check for mailbox command service token */
9864 	spin_lock_irqsave(&phba->hbalock, iflags);
9865 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9866 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9867 		return MBX_NOT_FINISHED;
9868 	}
9869 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9870 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9871 		return MBX_NOT_FINISHED;
9872 	}
9873 	if (unlikely(phba->sli.mbox_active)) {
9874 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9875 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9876 				"0384 There is pending active mailbox cmd\n");
9877 		return MBX_NOT_FINISHED;
9878 	}
9879 	/* Take the mailbox command service token */
9880 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9881 
9882 	/* Get the next mailbox command from head of queue */
9883 	mboxq = lpfc_mbox_get(phba);
9884 
9885 	/* If no more mailbox command waiting for post, we're done */
9886 	if (!mboxq) {
9887 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9888 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9889 		return MBX_SUCCESS;
9890 	}
9891 	phba->sli.mbox_active = mboxq;
9892 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9893 
9894 	/* Check device readiness for posting mailbox command */
9895 	rc = lpfc_mbox_dev_check(phba);
9896 	if (unlikely(rc))
9897 		/* Driver clean routine will clean up pending mailbox */
9898 		goto out_not_finished;
9899 
9900 	/* Prepare the mbox command to be posted */
9901 	mqe = &mboxq->u.mqe;
9902 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9903 
9904 	/* Start timer for the mbox_tmo and log some mailbox post messages */
9905 	mod_timer(&psli->mbox_tmo, (jiffies +
9906 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9907 
9908 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9909 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9910 			"x%x x%x\n",
9911 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9912 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9913 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9914 			phba->pport->port_state, psli->sli_flag);
9915 
9916 	if (mbx_cmnd != MBX_HEARTBEAT) {
9917 		if (mboxq->vport) {
9918 			lpfc_debugfs_disc_trc(mboxq->vport,
9919 				LPFC_DISC_TRC_MBOX_VPORT,
9920 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9921 				mbx_cmnd, mqe->un.mb_words[0],
9922 				mqe->un.mb_words[1]);
9923 		} else {
9924 			lpfc_debugfs_disc_trc(phba->pport,
9925 				LPFC_DISC_TRC_MBOX,
9926 				"MBOX Send: cmd:x%x mb:x%x x%x",
9927 				mbx_cmnd, mqe->un.mb_words[0],
9928 				mqe->un.mb_words[1]);
9929 		}
9930 	}
9931 	psli->slistat.mbox_cmd++;
9932 
9933 	/* Post the mailbox command to the port */
9934 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9935 	if (rc != MBX_SUCCESS) {
9936 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9937 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
9938 				"cannot issue Data: x%x x%x\n",
9939 				mboxq->vport ? mboxq->vport->vpi : 0,
9940 				mboxq->u.mb.mbxCommand,
9941 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9942 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9943 				psli->sli_flag, MBX_NOWAIT);
9944 		goto out_not_finished;
9945 	}
9946 
9947 	return rc;
9948 
9949 out_not_finished:
9950 	spin_lock_irqsave(&phba->hbalock, iflags);
9951 	if (phba->sli.mbox_active) {
9952 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9953 		__lpfc_mbox_cmpl_put(phba, mboxq);
9954 		/* Release the token */
9955 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9956 		phba->sli.mbox_active = NULL;
9957 	}
9958 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9959 
9960 	return MBX_NOT_FINISHED;
9961 }
9962 
9963 /**
9964  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9965  * @phba: Pointer to HBA context object.
9966  * @pmbox: Pointer to mailbox object.
9967  * @flag: Flag indicating how the mailbox need to be processed.
9968  *
9969  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9970  * the API jump table function pointer from the lpfc_hba struct.
9971  *
9972  * Return codes the caller owns the mailbox command after the return of the
9973  * function.
9974  **/
9975 int
9976 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9977 {
9978 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9979 }
9980 
9981 /**
9982  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9983  * @phba: The hba struct for which this call is being executed.
9984  * @dev_grp: The HBA PCI-Device group number.
9985  *
9986  * This routine sets up the mbox interface API function jump table in @phba
9987  * struct.
9988  * Returns: 0 - success, -ENODEV - failure.
9989  **/
9990 int
9991 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9992 {
9993 
9994 	switch (dev_grp) {
9995 	case LPFC_PCI_DEV_LP:
9996 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9997 		phba->lpfc_sli_handle_slow_ring_event =
9998 				lpfc_sli_handle_slow_ring_event_s3;
9999 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
10000 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
10001 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
10002 		break;
10003 	case LPFC_PCI_DEV_OC:
10004 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
10005 		phba->lpfc_sli_handle_slow_ring_event =
10006 				lpfc_sli_handle_slow_ring_event_s4;
10007 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
10008 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
10009 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
10010 		break;
10011 	default:
10012 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10013 				"1420 Invalid HBA PCI-device group: 0x%x\n",
10014 				dev_grp);
10015 		return -ENODEV;
10016 	}
10017 	return 0;
10018 }
10019 
10020 /**
10021  * __lpfc_sli_ringtx_put - Add an iocb to the txq
10022  * @phba: Pointer to HBA context object.
10023  * @pring: Pointer to driver SLI ring object.
10024  * @piocb: Pointer to address of newly added command iocb.
10025  *
10026  * This function is called with hbalock held for SLI3 ports or
10027  * the ring lock held for SLI4 ports to add a command
10028  * iocb to the txq when SLI layer cannot submit the command iocb
10029  * to the ring.
10030  **/
10031 void
10032 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10033 		    struct lpfc_iocbq *piocb)
10034 {
10035 	if (phba->sli_rev == LPFC_SLI_REV4)
10036 		lockdep_assert_held(&pring->ring_lock);
10037 	else
10038 		lockdep_assert_held(&phba->hbalock);
10039 	/* Insert the caller's iocb in the txq tail for later processing. */
10040 	list_add_tail(&piocb->list, &pring->txq);
10041 }
10042 
10043 /**
10044  * lpfc_sli_next_iocb - Get the next iocb in the txq
10045  * @phba: Pointer to HBA context object.
10046  * @pring: Pointer to driver SLI ring object.
10047  * @piocb: Pointer to address of newly added command iocb.
10048  *
10049  * This function is called with hbalock held before a new
10050  * iocb is submitted to the firmware. This function checks
10051  * txq to flush the iocbs in txq to Firmware before
10052  * submitting new iocbs to the Firmware.
10053  * If there are iocbs in the txq which need to be submitted
10054  * to firmware, lpfc_sli_next_iocb returns the first element
10055  * of the txq after dequeuing it from txq.
10056  * If there is no iocb in the txq then the function will return
10057  * *piocb and *piocb is set to NULL. Caller needs to check
10058  * *piocb to find if there are more commands in the txq.
10059  **/
10060 static struct lpfc_iocbq *
10061 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10062 		   struct lpfc_iocbq **piocb)
10063 {
10064 	struct lpfc_iocbq * nextiocb;
10065 
10066 	lockdep_assert_held(&phba->hbalock);
10067 
10068 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
10069 	if (!nextiocb) {
10070 		nextiocb = *piocb;
10071 		*piocb = NULL;
10072 	}
10073 
10074 	return nextiocb;
10075 }
10076 
10077 /**
10078  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
10079  * @phba: Pointer to HBA context object.
10080  * @ring_number: SLI ring number to issue iocb on.
10081  * @piocb: Pointer to command iocb.
10082  * @flag: Flag indicating if this command can be put into txq.
10083  *
10084  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
10085  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
10086  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
10087  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
10088  * this function allows only iocbs for posting buffers. This function finds
10089  * next available slot in the command ring and posts the command to the
10090  * available slot and writes the port attention register to request HBA start
10091  * processing new iocb. If there is no slot available in the ring and
10092  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
10093  * the function returns IOCB_BUSY.
10094  *
10095  * This function is called with hbalock held. The function will return success
10096  * after it successfully submit the iocb to firmware or after adding to the
10097  * txq.
10098  **/
10099 static int
10100 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
10101 		    struct lpfc_iocbq *piocb, uint32_t flag)
10102 {
10103 	struct lpfc_iocbq *nextiocb;
10104 	IOCB_t *iocb;
10105 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
10106 
10107 	lockdep_assert_held(&phba->hbalock);
10108 
10109 	if (piocb->iocb_cmpl && (!piocb->vport) &&
10110 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
10111 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
10112 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10113 				"1807 IOCB x%x failed. No vport\n",
10114 				piocb->iocb.ulpCommand);
10115 		dump_stack();
10116 		return IOCB_ERROR;
10117 	}
10118 
10119 
10120 	/* If the PCI channel is in offline state, do not post iocbs. */
10121 	if (unlikely(pci_channel_offline(phba->pcidev)))
10122 		return IOCB_ERROR;
10123 
10124 	/* If HBA has a deferred error attention, fail the iocb. */
10125 	if (unlikely(phba->hba_flag & DEFER_ERATT))
10126 		return IOCB_ERROR;
10127 
10128 	/*
10129 	 * We should never get an IOCB if we are in a < LINK_DOWN state
10130 	 */
10131 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10132 		return IOCB_ERROR;
10133 
10134 	/*
10135 	 * Check to see if we are blocking IOCB processing because of a
10136 	 * outstanding event.
10137 	 */
10138 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
10139 		goto iocb_busy;
10140 
10141 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
10142 		/*
10143 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
10144 		 * can be issued if the link is not up.
10145 		 */
10146 		switch (piocb->iocb.ulpCommand) {
10147 		case CMD_GEN_REQUEST64_CR:
10148 		case CMD_GEN_REQUEST64_CX:
10149 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
10150 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
10151 					FC_RCTL_DD_UNSOL_CMD) ||
10152 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
10153 					MENLO_TRANSPORT_TYPE))
10154 
10155 				goto iocb_busy;
10156 			break;
10157 		case CMD_QUE_RING_BUF_CN:
10158 		case CMD_QUE_RING_BUF64_CN:
10159 			/*
10160 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
10161 			 * completion, iocb_cmpl MUST be 0.
10162 			 */
10163 			if (piocb->iocb_cmpl)
10164 				piocb->iocb_cmpl = NULL;
10165 			fallthrough;
10166 		case CMD_CREATE_XRI_CR:
10167 		case CMD_CLOSE_XRI_CN:
10168 		case CMD_CLOSE_XRI_CX:
10169 			break;
10170 		default:
10171 			goto iocb_busy;
10172 		}
10173 
10174 	/*
10175 	 * For FCP commands, we must be in a state where we can process link
10176 	 * attention events.
10177 	 */
10178 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
10179 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
10180 		goto iocb_busy;
10181 	}
10182 
10183 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
10184 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
10185 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
10186 
10187 	if (iocb)
10188 		lpfc_sli_update_ring(phba, pring);
10189 	else
10190 		lpfc_sli_update_full_ring(phba, pring);
10191 
10192 	if (!piocb)
10193 		return IOCB_SUCCESS;
10194 
10195 	goto out_busy;
10196 
10197  iocb_busy:
10198 	pring->stats.iocb_cmd_delay++;
10199 
10200  out_busy:
10201 
10202 	if (!(flag & SLI_IOCB_RET_IOCB)) {
10203 		__lpfc_sli_ringtx_put(phba, pring, piocb);
10204 		return IOCB_SUCCESS;
10205 	}
10206 
10207 	return IOCB_BUSY;
10208 }
10209 
10210 /**
10211  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
10212  * @phba: Pointer to HBA context object.
10213  * @piocbq: Pointer to command iocb.
10214  * @sglq: Pointer to the scatter gather queue object.
10215  *
10216  * This routine converts the bpl or bde that is in the IOCB
10217  * to a sgl list for the sli4 hardware. The physical address
10218  * of the bpl/bde is converted back to a virtual address.
10219  * If the IOCB contains a BPL then the list of BDE's is
10220  * converted to sli4_sge's. If the IOCB contains a single
10221  * BDE then it is converted to a single sli_sge.
10222  * The IOCB is still in cpu endianess so the contents of
10223  * the bpl can be used without byte swapping.
10224  *
10225  * Returns valid XRI = Success, NO_XRI = Failure.
10226 **/
10227 static uint16_t
10228 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
10229 		struct lpfc_sglq *sglq)
10230 {
10231 	uint16_t xritag = NO_XRI;
10232 	struct ulp_bde64 *bpl = NULL;
10233 	struct ulp_bde64 bde;
10234 	struct sli4_sge *sgl  = NULL;
10235 	struct lpfc_dmabuf *dmabuf;
10236 	IOCB_t *icmd;
10237 	int numBdes = 0;
10238 	int i = 0;
10239 	uint32_t offset = 0; /* accumulated offset in the sg request list */
10240 	int inbound = 0; /* number of sg reply entries inbound from firmware */
10241 
10242 	if (!piocbq || !sglq)
10243 		return xritag;
10244 
10245 	sgl  = (struct sli4_sge *)sglq->sgl;
10246 	icmd = &piocbq->iocb;
10247 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
10248 		return sglq->sli4_xritag;
10249 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
10250 		numBdes = icmd->un.genreq64.bdl.bdeSize /
10251 				sizeof(struct ulp_bde64);
10252 		/* The addrHigh and addrLow fields within the IOCB
10253 		 * have not been byteswapped yet so there is no
10254 		 * need to swap them back.
10255 		 */
10256 		if (piocbq->context3)
10257 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
10258 		else
10259 			return xritag;
10260 
10261 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
10262 		if (!bpl)
10263 			return xritag;
10264 
10265 		for (i = 0; i < numBdes; i++) {
10266 			/* Should already be byte swapped. */
10267 			sgl->addr_hi = bpl->addrHigh;
10268 			sgl->addr_lo = bpl->addrLow;
10269 
10270 			sgl->word2 = le32_to_cpu(sgl->word2);
10271 			if ((i+1) == numBdes)
10272 				bf_set(lpfc_sli4_sge_last, sgl, 1);
10273 			else
10274 				bf_set(lpfc_sli4_sge_last, sgl, 0);
10275 			/* swap the size field back to the cpu so we
10276 			 * can assign it to the sgl.
10277 			 */
10278 			bde.tus.w = le32_to_cpu(bpl->tus.w);
10279 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
10280 			/* The offsets in the sgl need to be accumulated
10281 			 * separately for the request and reply lists.
10282 			 * The request is always first, the reply follows.
10283 			 */
10284 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
10285 				/* add up the reply sg entries */
10286 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
10287 					inbound++;
10288 				/* first inbound? reset the offset */
10289 				if (inbound == 1)
10290 					offset = 0;
10291 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
10292 				bf_set(lpfc_sli4_sge_type, sgl,
10293 					LPFC_SGE_TYPE_DATA);
10294 				offset += bde.tus.f.bdeSize;
10295 			}
10296 			sgl->word2 = cpu_to_le32(sgl->word2);
10297 			bpl++;
10298 			sgl++;
10299 		}
10300 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
10301 			/* The addrHigh and addrLow fields of the BDE have not
10302 			 * been byteswapped yet so they need to be swapped
10303 			 * before putting them in the sgl.
10304 			 */
10305 			sgl->addr_hi =
10306 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
10307 			sgl->addr_lo =
10308 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
10309 			sgl->word2 = le32_to_cpu(sgl->word2);
10310 			bf_set(lpfc_sli4_sge_last, sgl, 1);
10311 			sgl->word2 = cpu_to_le32(sgl->word2);
10312 			sgl->sge_len =
10313 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
10314 	}
10315 	return sglq->sli4_xritag;
10316 }
10317 
10318 /**
10319  * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry.
10320  * @phba: Pointer to HBA context object.
10321  * @iocbq: Pointer to command iocb.
10322  * @wqe: Pointer to the work queue entry.
10323  *
10324  * This routine converts the iocb command to its Work Queue Entry
10325  * equivalent. The wqe pointer should not have any fields set when
10326  * this routine is called because it will memcpy over them.
10327  * This routine does not set the CQ_ID or the WQEC bits in the
10328  * wqe.
10329  *
10330  * Returns: 0 = Success, IOCB_ERROR = Failure.
10331  **/
10332 static int
10333 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
10334 		union lpfc_wqe128 *wqe)
10335 {
10336 	uint32_t xmit_len = 0, total_len = 0;
10337 	uint8_t ct = 0;
10338 	uint32_t fip;
10339 	uint32_t abort_tag;
10340 	uint8_t command_type = ELS_COMMAND_NON_FIP;
10341 	uint8_t cmnd;
10342 	uint16_t xritag;
10343 	uint16_t abrt_iotag;
10344 	struct lpfc_iocbq *abrtiocbq;
10345 	struct ulp_bde64 *bpl = NULL;
10346 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
10347 	int numBdes, i;
10348 	struct ulp_bde64 bde;
10349 	struct lpfc_nodelist *ndlp;
10350 	uint32_t *pcmd;
10351 	uint32_t if_type;
10352 
10353 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
10354 	/* The fcp commands will set command type */
10355 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
10356 		command_type = FCP_COMMAND;
10357 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
10358 		command_type = ELS_COMMAND_FIP;
10359 	else
10360 		command_type = ELS_COMMAND_NON_FIP;
10361 
10362 	if (phba->fcp_embed_io)
10363 		memset(wqe, 0, sizeof(union lpfc_wqe128));
10364 	/* Some of the fields are in the right position already */
10365 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
10366 	/* The ct field has moved so reset */
10367 	wqe->generic.wqe_com.word7 = 0;
10368 	wqe->generic.wqe_com.word10 = 0;
10369 
10370 	abort_tag = (uint32_t) iocbq->iotag;
10371 	xritag = iocbq->sli4_xritag;
10372 	/* words0-2 bpl convert bde */
10373 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
10374 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
10375 				sizeof(struct ulp_bde64);
10376 		bpl  = (struct ulp_bde64 *)
10377 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
10378 		if (!bpl)
10379 			return IOCB_ERROR;
10380 
10381 		/* Should already be byte swapped. */
10382 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
10383 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
10384 		/* swap the size field back to the cpu so we
10385 		 * can assign it to the sgl.
10386 		 */
10387 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
10388 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
10389 		total_len = 0;
10390 		for (i = 0; i < numBdes; i++) {
10391 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
10392 			total_len += bde.tus.f.bdeSize;
10393 		}
10394 	} else
10395 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
10396 
10397 	iocbq->iocb.ulpIoTag = iocbq->iotag;
10398 	cmnd = iocbq->iocb.ulpCommand;
10399 
10400 	switch (iocbq->iocb.ulpCommand) {
10401 	case CMD_ELS_REQUEST64_CR:
10402 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
10403 			ndlp = iocbq->context_un.ndlp;
10404 		else
10405 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
10406 		if (!iocbq->iocb.ulpLe) {
10407 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10408 				"2007 Only Limited Edition cmd Format"
10409 				" supported 0x%x\n",
10410 				iocbq->iocb.ulpCommand);
10411 			return IOCB_ERROR;
10412 		}
10413 
10414 		wqe->els_req.payload_len = xmit_len;
10415 		/* Els_reguest64 has a TMO */
10416 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
10417 			iocbq->iocb.ulpTimeout);
10418 		/* Need a VF for word 4 set the vf bit*/
10419 		bf_set(els_req64_vf, &wqe->els_req, 0);
10420 		/* And a VFID for word 12 */
10421 		bf_set(els_req64_vfid, &wqe->els_req, 0);
10422 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
10423 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10424 		       iocbq->iocb.ulpContext);
10425 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
10426 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
10427 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
10428 		if (command_type == ELS_COMMAND_FIP)
10429 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
10430 					>> LPFC_FIP_ELS_ID_SHIFT);
10431 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
10432 					iocbq->context2)->virt);
10433 		if_type = bf_get(lpfc_sli_intf_if_type,
10434 					&phba->sli4_hba.sli_intf);
10435 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10436 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
10437 				*pcmd == ELS_CMD_SCR ||
10438 				*pcmd == ELS_CMD_RDF ||
10439 				*pcmd == ELS_CMD_EDC ||
10440 				*pcmd == ELS_CMD_RSCN_XMT ||
10441 				*pcmd == ELS_CMD_FDISC ||
10442 				*pcmd == ELS_CMD_LOGO ||
10443 				*pcmd == ELS_CMD_QFPA ||
10444 				*pcmd == ELS_CMD_UVEM ||
10445 				*pcmd == ELS_CMD_PLOGI)) {
10446 				bf_set(els_req64_sp, &wqe->els_req, 1);
10447 				bf_set(els_req64_sid, &wqe->els_req,
10448 					iocbq->vport->fc_myDID);
10449 				if ((*pcmd == ELS_CMD_FLOGI) &&
10450 					!(phba->fc_topology ==
10451 						LPFC_TOPOLOGY_LOOP))
10452 					bf_set(els_req64_sid, &wqe->els_req, 0);
10453 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
10454 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10455 					phba->vpi_ids[iocbq->vport->vpi]);
10456 			} else if (pcmd && iocbq->context1) {
10457 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
10458 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
10459 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10460 			}
10461 		}
10462 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
10463 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10464 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
10465 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
10466 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
10467 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
10468 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
10469 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
10470 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
10471 		break;
10472 	case CMD_XMIT_SEQUENCE64_CX:
10473 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
10474 		       iocbq->iocb.un.ulpWord[3]);
10475 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
10476 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
10477 		/* The entire sequence is transmitted for this IOCB */
10478 		xmit_len = total_len;
10479 		cmnd = CMD_XMIT_SEQUENCE64_CR;
10480 		if (phba->link_flag & LS_LOOPBACK_MODE)
10481 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
10482 		fallthrough;
10483 	case CMD_XMIT_SEQUENCE64_CR:
10484 		/* word3 iocb=io_tag32 wqe=reserved */
10485 		wqe->xmit_sequence.rsvd3 = 0;
10486 		/* word4 relative_offset memcpy */
10487 		/* word5 r_ctl/df_ctl memcpy */
10488 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
10489 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
10490 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
10491 		       LPFC_WQE_IOD_WRITE);
10492 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
10493 		       LPFC_WQE_LENLOC_WORD12);
10494 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
10495 		wqe->xmit_sequence.xmit_len = xmit_len;
10496 		command_type = OTHER_COMMAND;
10497 		break;
10498 	case CMD_XMIT_BCAST64_CN:
10499 		/* word3 iocb=iotag32 wqe=seq_payload_len */
10500 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
10501 		/* word4 iocb=rsvd wqe=rsvd */
10502 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
10503 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
10504 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
10505 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10506 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
10507 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
10508 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
10509 		       LPFC_WQE_LENLOC_WORD3);
10510 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
10511 		break;
10512 	case CMD_FCP_IWRITE64_CR:
10513 		command_type = FCP_COMMAND_DATA_OUT;
10514 		/* word3 iocb=iotag wqe=payload_offset_len */
10515 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
10516 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
10517 		       xmit_len + sizeof(struct fcp_rsp));
10518 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
10519 		       0);
10520 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
10521 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
10522 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
10523 		       iocbq->iocb.ulpFCP2Rcvy);
10524 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
10525 		/* Always open the exchange */
10526 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
10527 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
10528 		       LPFC_WQE_LENLOC_WORD4);
10529 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
10530 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
10531 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
10532 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
10533 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
10534 			if (iocbq->priority) {
10535 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10536 				       (iocbq->priority << 1));
10537 			} else {
10538 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
10539 				       (phba->cfg_XLanePriority << 1));
10540 			}
10541 		}
10542 		/* Note, word 10 is already initialized to 0 */
10543 
10544 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
10545 		if (phba->cfg_enable_pbde)
10546 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
10547 		else
10548 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
10549 
10550 		if (phba->fcp_embed_io) {
10551 			struct lpfc_io_buf *lpfc_cmd;
10552 			struct sli4_sge *sgl;
10553 			struct fcp_cmnd *fcp_cmnd;
10554 			uint32_t *ptr;
10555 
10556 			/* 128 byte wqe support here */
10557 
10558 			lpfc_cmd = iocbq->context1;
10559 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10560 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
10561 
10562 			/* Word 0-2 - FCP_CMND */
10563 			wqe->generic.bde.tus.f.bdeFlags =
10564 				BUFF_TYPE_BDE_IMMED;
10565 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10566 			wqe->generic.bde.addrHigh = 0;
10567 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
10568 
10569 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10570 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10571 
10572 			/* Word 22-29  FCP CMND Payload */
10573 			ptr = &wqe->words[22];
10574 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10575 		}
10576 		break;
10577 	case CMD_FCP_IREAD64_CR:
10578 		/* word3 iocb=iotag wqe=payload_offset_len */
10579 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
10580 		bf_set(payload_offset_len, &wqe->fcp_iread,
10581 		       xmit_len + sizeof(struct fcp_rsp));
10582 		bf_set(cmd_buff_len, &wqe->fcp_iread,
10583 		       0);
10584 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
10585 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
10586 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
10587 		       iocbq->iocb.ulpFCP2Rcvy);
10588 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
10589 		/* Always open the exchange */
10590 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
10591 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
10592 		       LPFC_WQE_LENLOC_WORD4);
10593 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
10594 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
10595 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
10596 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
10597 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
10598 			if (iocbq->priority) {
10599 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
10600 				       (iocbq->priority << 1));
10601 			} else {
10602 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
10603 				       (phba->cfg_XLanePriority << 1));
10604 			}
10605 		}
10606 		/* Note, word 10 is already initialized to 0 */
10607 
10608 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
10609 		if (phba->cfg_enable_pbde)
10610 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
10611 		else
10612 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
10613 
10614 		if (phba->fcp_embed_io) {
10615 			struct lpfc_io_buf *lpfc_cmd;
10616 			struct sli4_sge *sgl;
10617 			struct fcp_cmnd *fcp_cmnd;
10618 			uint32_t *ptr;
10619 
10620 			/* 128 byte wqe support here */
10621 
10622 			lpfc_cmd = iocbq->context1;
10623 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10624 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
10625 
10626 			/* Word 0-2 - FCP_CMND */
10627 			wqe->generic.bde.tus.f.bdeFlags =
10628 				BUFF_TYPE_BDE_IMMED;
10629 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10630 			wqe->generic.bde.addrHigh = 0;
10631 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
10632 
10633 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
10634 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
10635 
10636 			/* Word 22-29  FCP CMND Payload */
10637 			ptr = &wqe->words[22];
10638 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10639 		}
10640 		break;
10641 	case CMD_FCP_ICMND64_CR:
10642 		/* word3 iocb=iotag wqe=payload_offset_len */
10643 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
10644 		bf_set(payload_offset_len, &wqe->fcp_icmd,
10645 		       xmit_len + sizeof(struct fcp_rsp));
10646 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
10647 		       0);
10648 		/* word3 iocb=IO_TAG wqe=reserved */
10649 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
10650 		/* Always open the exchange */
10651 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
10652 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
10653 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
10654 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
10655 		       LPFC_WQE_LENLOC_NONE);
10656 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
10657 		       iocbq->iocb.ulpFCP2Rcvy);
10658 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
10659 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
10660 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
10661 			if (iocbq->priority) {
10662 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
10663 				       (iocbq->priority << 1));
10664 			} else {
10665 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
10666 				       (phba->cfg_XLanePriority << 1));
10667 			}
10668 		}
10669 		/* Note, word 10 is already initialized to 0 */
10670 
10671 		if (phba->fcp_embed_io) {
10672 			struct lpfc_io_buf *lpfc_cmd;
10673 			struct sli4_sge *sgl;
10674 			struct fcp_cmnd *fcp_cmnd;
10675 			uint32_t *ptr;
10676 
10677 			/* 128 byte wqe support here */
10678 
10679 			lpfc_cmd = iocbq->context1;
10680 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10681 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
10682 
10683 			/* Word 0-2 - FCP_CMND */
10684 			wqe->generic.bde.tus.f.bdeFlags =
10685 				BUFF_TYPE_BDE_IMMED;
10686 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10687 			wqe->generic.bde.addrHigh = 0;
10688 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
10689 
10690 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
10691 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
10692 
10693 			/* Word 22-29  FCP CMND Payload */
10694 			ptr = &wqe->words[22];
10695 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10696 		}
10697 		break;
10698 	case CMD_GEN_REQUEST64_CR:
10699 		/* For this command calculate the xmit length of the
10700 		 * request bde.
10701 		 */
10702 		xmit_len = 0;
10703 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
10704 			sizeof(struct ulp_bde64);
10705 		for (i = 0; i < numBdes; i++) {
10706 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
10707 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
10708 				break;
10709 			xmit_len += bde.tus.f.bdeSize;
10710 		}
10711 		/* word3 iocb=IO_TAG wqe=request_payload_len */
10712 		wqe->gen_req.request_payload_len = xmit_len;
10713 		/* word4 iocb=parameter wqe=relative_offset memcpy */
10714 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
10715 		/* word6 context tag copied in memcpy */
10716 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
10717 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
10718 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10719 				"2015 Invalid CT %x command 0x%x\n",
10720 				ct, iocbq->iocb.ulpCommand);
10721 			return IOCB_ERROR;
10722 		}
10723 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
10724 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
10725 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
10726 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
10727 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
10728 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
10729 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
10730 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
10731 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
10732 		command_type = OTHER_COMMAND;
10733 		break;
10734 	case CMD_XMIT_ELS_RSP64_CX:
10735 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10736 		/* words0-2 BDE memcpy */
10737 		/* word3 iocb=iotag32 wqe=response_payload_len */
10738 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
10739 		/* word4 */
10740 		wqe->xmit_els_rsp.word4 = 0;
10741 		/* word5 iocb=rsvd wge=did */
10742 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
10743 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
10744 
10745 		if_type = bf_get(lpfc_sli_intf_if_type,
10746 					&phba->sli4_hba.sli_intf);
10747 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10748 			if (iocbq->vport->fc_flag & FC_PT2PT) {
10749 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10750 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10751 					iocbq->vport->fc_myDID);
10752 				if (iocbq->vport->fc_myDID == Fabric_DID) {
10753 					bf_set(wqe_els_did,
10754 						&wqe->xmit_els_rsp.wqe_dest, 0);
10755 				}
10756 			}
10757 		}
10758 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
10759 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10760 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
10761 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
10762 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
10763 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
10764 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10765 			       phba->vpi_ids[iocbq->vport->vpi]);
10766 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
10767 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
10768 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
10769 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
10770 		       LPFC_WQE_LENLOC_WORD3);
10771 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
10772 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
10773 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10774 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
10775 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10776 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10777 					iocbq->vport->fc_myDID);
10778 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
10779 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10780 					phba->vpi_ids[phba->pport->vpi]);
10781 		}
10782 		command_type = OTHER_COMMAND;
10783 		break;
10784 	case CMD_CLOSE_XRI_CN:
10785 	case CMD_ABORT_XRI_CN:
10786 	case CMD_ABORT_XRI_CX:
10787 		/* words 0-2 memcpy should be 0 rserved */
10788 		/* port will send abts */
10789 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
10790 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
10791 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
10792 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
10793 		} else
10794 			fip = 0;
10795 
10796 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
10797 			/*
10798 			 * The link is down, or the command was ELS_FIP
10799 			 * so the fw does not need to send abts
10800 			 * on the wire.
10801 			 */
10802 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
10803 		else
10804 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
10805 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
10806 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
10807 		wqe->abort_cmd.rsrvd5 = 0;
10808 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
10809 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10810 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
10811 		/*
10812 		 * The abort handler will send us CMD_ABORT_XRI_CN or
10813 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
10814 		 */
10815 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10816 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10817 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
10818 		       LPFC_WQE_LENLOC_NONE);
10819 		cmnd = CMD_ABORT_XRI_CX;
10820 		command_type = OTHER_COMMAND;
10821 		xritag = 0;
10822 		break;
10823 	case CMD_XMIT_BLS_RSP64_CX:
10824 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10825 		/* As BLS ABTS RSP WQE is very different from other WQEs,
10826 		 * we re-construct this WQE here based on information in
10827 		 * iocbq from scratch.
10828 		 */
10829 		memset(wqe, 0, sizeof(*wqe));
10830 		/* OX_ID is invariable to who sent ABTS to CT exchange */
10831 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10832 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10833 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10834 		    LPFC_ABTS_UNSOL_INT) {
10835 			/* ABTS sent by initiator to CT exchange, the
10836 			 * RX_ID field will be filled with the newly
10837 			 * allocated responder XRI.
10838 			 */
10839 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10840 			       iocbq->sli4_xritag);
10841 		} else {
10842 			/* ABTS sent by responder to CT exchange, the
10843 			 * RX_ID field will be filled with the responder
10844 			 * RX_ID from ABTS.
10845 			 */
10846 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10847 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10848 		}
10849 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10850 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10851 
10852 		/* Use CT=VPI */
10853 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10854 			ndlp->nlp_DID);
10855 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10856 			iocbq->iocb.ulpContext);
10857 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10858 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10859 			phba->vpi_ids[phba->pport->vpi]);
10860 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10861 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10862 		       LPFC_WQE_LENLOC_NONE);
10863 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
10864 		command_type = OTHER_COMMAND;
10865 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10866 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10867 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10868 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10869 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10870 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10871 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10872 		}
10873 
10874 		break;
10875 	case CMD_SEND_FRAME:
10876 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10877 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10878 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10879 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10880 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10881 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10882 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10883 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10884 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10885 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10886 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10887 		return 0;
10888 	case CMD_XRI_ABORTED_CX:
10889 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10890 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10891 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10892 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10893 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10894 	default:
10895 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10896 				"2014 Invalid command 0x%x\n",
10897 				iocbq->iocb.ulpCommand);
10898 		return IOCB_ERROR;
10899 	}
10900 
10901 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10902 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10903 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10904 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10905 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10906 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10907 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10908 			      LPFC_IO_DIF_INSERT);
10909 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10910 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10911 	wqe->generic.wqe_com.abort_tag = abort_tag;
10912 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10913 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10914 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10915 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10916 	return 0;
10917 }
10918 
10919 /**
10920  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10921  * @phba: Pointer to HBA context object.
10922  * @ring_number: SLI ring number to issue wqe on.
10923  * @piocb: Pointer to command iocb.
10924  * @flag: Flag indicating if this command can be put into txq.
10925  *
10926  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10927  * send  an iocb command to an HBA with SLI-4 interface spec.
10928  *
10929  * This function takes the hbalock before invoking the lockless version.
10930  * The function will return success after it successfully submit the wqe to
10931  * firmware or after adding to the txq.
10932  **/
10933 static int
10934 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10935 			   struct lpfc_iocbq *piocb, uint32_t flag)
10936 {
10937 	unsigned long iflags;
10938 	int rc;
10939 
10940 	spin_lock_irqsave(&phba->hbalock, iflags);
10941 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10942 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10943 
10944 	return rc;
10945 }
10946 
10947 /**
10948  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10949  * @phba: Pointer to HBA context object.
10950  * @ring_number: SLI ring number to issue wqe on.
10951  * @piocb: Pointer to command iocb.
10952  * @flag: Flag indicating if this command can be put into txq.
10953  *
10954  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10955  * an wqe command to an HBA with SLI-4 interface spec.
10956  *
10957  * This function is a lockless version. The function will return success
10958  * after it successfully submit the wqe to firmware or after adding to the
10959  * txq.
10960  **/
10961 static int
10962 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10963 			   struct lpfc_iocbq *piocb, uint32_t flag)
10964 {
10965 	int rc;
10966 	struct lpfc_io_buf *lpfc_cmd =
10967 		(struct lpfc_io_buf *)piocb->context1;
10968 	union lpfc_wqe128 *wqe = &piocb->wqe;
10969 	struct sli4_sge *sgl;
10970 
10971 	/* 128 byte wqe support here */
10972 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10973 
10974 	if (phba->fcp_embed_io) {
10975 		struct fcp_cmnd *fcp_cmnd;
10976 		u32 *ptr;
10977 
10978 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10979 
10980 		/* Word 0-2 - FCP_CMND */
10981 		wqe->generic.bde.tus.f.bdeFlags =
10982 			BUFF_TYPE_BDE_IMMED;
10983 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10984 		wqe->generic.bde.addrHigh = 0;
10985 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10986 
10987 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10988 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10989 
10990 		/* Word 22-29  FCP CMND Payload */
10991 		ptr = &wqe->words[22];
10992 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10993 	} else {
10994 		/* Word 0-2 - Inline BDE */
10995 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10996 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10997 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10998 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10999 
11000 		/* Word 10 */
11001 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
11002 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
11003 	}
11004 
11005 	/* add the VMID tags as per switch response */
11006 	if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) {
11007 		if (phba->pport->vmid_priority_tagging) {
11008 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
11009 			bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
11010 					(piocb->vmid_tag.cs_ctl_vmid));
11011 		} else {
11012 			bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1);
11013 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
11014 			wqe->words[31] = piocb->vmid_tag.app_id;
11015 		}
11016 	}
11017 	rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
11018 	return rc;
11019 }
11020 
11021 /**
11022  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
11023  * @phba: Pointer to HBA context object.
11024  * @ring_number: SLI ring number to issue iocb on.
11025  * @piocb: Pointer to command iocb.
11026  * @flag: Flag indicating if this command can be put into txq.
11027  *
11028  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
11029  * an iocb command to an HBA with SLI-4 interface spec.
11030  *
11031  * This function is called with ringlock held. The function will return success
11032  * after it successfully submit the iocb to firmware or after adding to the
11033  * txq.
11034  **/
11035 static int
11036 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
11037 			 struct lpfc_iocbq *piocb, uint32_t flag)
11038 {
11039 	struct lpfc_sglq *sglq;
11040 	union lpfc_wqe128 wqe;
11041 	struct lpfc_queue *wq;
11042 	struct lpfc_sli_ring *pring;
11043 
11044 	/* Get the WQ */
11045 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
11046 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
11047 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
11048 	} else {
11049 		wq = phba->sli4_hba.els_wq;
11050 	}
11051 
11052 	/* Get corresponding ring */
11053 	pring = wq->pring;
11054 
11055 	/*
11056 	 * The WQE can be either 64 or 128 bytes,
11057 	 */
11058 
11059 	lockdep_assert_held(&pring->ring_lock);
11060 
11061 	if (piocb->sli4_xritag == NO_XRI) {
11062 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
11063 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
11064 			sglq = NULL;
11065 		else {
11066 			if (!list_empty(&pring->txq)) {
11067 				if (!(flag & SLI_IOCB_RET_IOCB)) {
11068 					__lpfc_sli_ringtx_put(phba,
11069 						pring, piocb);
11070 					return IOCB_SUCCESS;
11071 				} else {
11072 					return IOCB_BUSY;
11073 				}
11074 			} else {
11075 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
11076 				if (!sglq) {
11077 					if (!(flag & SLI_IOCB_RET_IOCB)) {
11078 						__lpfc_sli_ringtx_put(phba,
11079 								pring,
11080 								piocb);
11081 						return IOCB_SUCCESS;
11082 					} else
11083 						return IOCB_BUSY;
11084 				}
11085 			}
11086 		}
11087 	} else if (piocb->iocb_flag &  LPFC_IO_FCP) {
11088 		/* These IO's already have an XRI and a mapped sgl. */
11089 		sglq = NULL;
11090 	}
11091 	else {
11092 		/*
11093 		 * This is a continuation of a commandi,(CX) so this
11094 		 * sglq is on the active list
11095 		 */
11096 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
11097 		if (!sglq)
11098 			return IOCB_ERROR;
11099 	}
11100 
11101 	if (sglq) {
11102 		piocb->sli4_lxritag = sglq->sli4_lxritag;
11103 		piocb->sli4_xritag = sglq->sli4_xritag;
11104 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
11105 			return IOCB_ERROR;
11106 	}
11107 
11108 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
11109 		return IOCB_ERROR;
11110 
11111 	if (lpfc_sli4_wq_put(wq, &wqe))
11112 		return IOCB_ERROR;
11113 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
11114 
11115 	return 0;
11116 }
11117 
11118 /*
11119  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
11120  *
11121  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
11122  * or IOCB for sli-3  function.
11123  * pointer from the lpfc_hba struct.
11124  *
11125  * Return codes:
11126  * IOCB_ERROR - Error
11127  * IOCB_SUCCESS - Success
11128  * IOCB_BUSY - Busy
11129  **/
11130 int
11131 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
11132 		      struct lpfc_iocbq *piocb, uint32_t flag)
11133 {
11134 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
11135 }
11136 
11137 /*
11138  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
11139  *
11140  * This routine wraps the actual lockless version for issusing IOCB function
11141  * pointer from the lpfc_hba struct.
11142  *
11143  * Return codes:
11144  * IOCB_ERROR - Error
11145  * IOCB_SUCCESS - Success
11146  * IOCB_BUSY - Busy
11147  **/
11148 int
11149 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11150 		struct lpfc_iocbq *piocb, uint32_t flag)
11151 {
11152 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11153 }
11154 
11155 /**
11156  * lpfc_sli_api_table_setup - Set up sli api function jump table
11157  * @phba: The hba struct for which this call is being executed.
11158  * @dev_grp: The HBA PCI-Device group number.
11159  *
11160  * This routine sets up the SLI interface API function jump table in @phba
11161  * struct.
11162  * Returns: 0 - success, -ENODEV - failure.
11163  **/
11164 int
11165 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
11166 {
11167 
11168 	switch (dev_grp) {
11169 	case LPFC_PCI_DEV_LP:
11170 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
11171 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
11172 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
11173 		break;
11174 	case LPFC_PCI_DEV_OC:
11175 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
11176 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
11177 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
11178 		break;
11179 	default:
11180 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11181 				"1419 Invalid HBA PCI-device group: 0x%x\n",
11182 				dev_grp);
11183 		return -ENODEV;
11184 	}
11185 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
11186 	return 0;
11187 }
11188 
11189 /**
11190  * lpfc_sli4_calc_ring - Calculates which ring to use
11191  * @phba: Pointer to HBA context object.
11192  * @piocb: Pointer to command iocb.
11193  *
11194  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
11195  * hba_wqidx, thus we need to calculate the corresponding ring.
11196  * Since ABORTS must go on the same WQ of the command they are
11197  * aborting, we use command's hba_wqidx.
11198  */
11199 struct lpfc_sli_ring *
11200 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
11201 {
11202 	struct lpfc_io_buf *lpfc_cmd;
11203 
11204 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
11205 		if (unlikely(!phba->sli4_hba.hdwq))
11206 			return NULL;
11207 		/*
11208 		 * for abort iocb hba_wqidx should already
11209 		 * be setup based on what work queue we used.
11210 		 */
11211 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
11212 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
11213 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
11214 		}
11215 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
11216 	} else {
11217 		if (unlikely(!phba->sli4_hba.els_wq))
11218 			return NULL;
11219 		piocb->hba_wqidx = 0;
11220 		return phba->sli4_hba.els_wq->pring;
11221 	}
11222 }
11223 
11224 /**
11225  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
11226  * @phba: Pointer to HBA context object.
11227  * @ring_number: Ring number
11228  * @piocb: Pointer to command iocb.
11229  * @flag: Flag indicating if this command can be put into txq.
11230  *
11231  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
11232  * function. This function gets the hbalock and calls
11233  * __lpfc_sli_issue_iocb function and will return the error returned
11234  * by __lpfc_sli_issue_iocb function. This wrapper is used by
11235  * functions which do not hold hbalock.
11236  **/
11237 int
11238 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
11239 		    struct lpfc_iocbq *piocb, uint32_t flag)
11240 {
11241 	struct lpfc_sli_ring *pring;
11242 	struct lpfc_queue *eq;
11243 	unsigned long iflags;
11244 	int rc;
11245 
11246 	if (phba->sli_rev == LPFC_SLI_REV4) {
11247 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
11248 
11249 		pring = lpfc_sli4_calc_ring(phba, piocb);
11250 		if (unlikely(pring == NULL))
11251 			return IOCB_ERROR;
11252 
11253 		spin_lock_irqsave(&pring->ring_lock, iflags);
11254 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11255 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11256 
11257 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
11258 	} else {
11259 		/* For now, SLI2/3 will still use hbalock */
11260 		spin_lock_irqsave(&phba->hbalock, iflags);
11261 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
11262 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11263 	}
11264 	return rc;
11265 }
11266 
11267 /**
11268  * lpfc_extra_ring_setup - Extra ring setup function
11269  * @phba: Pointer to HBA context object.
11270  *
11271  * This function is called while driver attaches with the
11272  * HBA to setup the extra ring. The extra ring is used
11273  * only when driver needs to support target mode functionality
11274  * or IP over FC functionalities.
11275  *
11276  * This function is called with no lock held. SLI3 only.
11277  **/
11278 static int
11279 lpfc_extra_ring_setup( struct lpfc_hba *phba)
11280 {
11281 	struct lpfc_sli *psli;
11282 	struct lpfc_sli_ring *pring;
11283 
11284 	psli = &phba->sli;
11285 
11286 	/* Adjust cmd/rsp ring iocb entries more evenly */
11287 
11288 	/* Take some away from the FCP ring */
11289 	pring = &psli->sli3_ring[LPFC_FCP_RING];
11290 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11291 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11292 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11293 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11294 
11295 	/* and give them to the extra ring */
11296 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
11297 
11298 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11299 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11300 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11301 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11302 
11303 	/* Setup default profile for this ring */
11304 	pring->iotag_max = 4096;
11305 	pring->num_mask = 1;
11306 	pring->prt[0].profile = 0;      /* Mask 0 */
11307 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
11308 	pring->prt[0].type = phba->cfg_multi_ring_type;
11309 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
11310 	return 0;
11311 }
11312 
11313 static void
11314 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
11315 			     struct lpfc_nodelist *ndlp)
11316 {
11317 	unsigned long iflags;
11318 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
11319 
11320 	spin_lock_irqsave(&phba->hbalock, iflags);
11321 	if (!list_empty(&evtp->evt_listp)) {
11322 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11323 		return;
11324 	}
11325 
11326 	/* Incrementing the reference count until the queued work is done. */
11327 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
11328 	if (!evtp->evt_arg1) {
11329 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11330 		return;
11331 	}
11332 	evtp->evt = LPFC_EVT_RECOVER_PORT;
11333 	list_add_tail(&evtp->evt_listp, &phba->work_list);
11334 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11335 
11336 	lpfc_worker_wake_up(phba);
11337 }
11338 
11339 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
11340  * @phba: Pointer to HBA context object.
11341  * @iocbq: Pointer to iocb object.
11342  *
11343  * The async_event handler calls this routine when it receives
11344  * an ASYNC_STATUS_CN event from the port.  The port generates
11345  * this event when an Abort Sequence request to an rport fails
11346  * twice in succession.  The abort could be originated by the
11347  * driver or by the port.  The ABTS could have been for an ELS
11348  * or FCP IO.  The port only generates this event when an ABTS
11349  * fails to complete after one retry.
11350  */
11351 static void
11352 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
11353 			  struct lpfc_iocbq *iocbq)
11354 {
11355 	struct lpfc_nodelist *ndlp = NULL;
11356 	uint16_t rpi = 0, vpi = 0;
11357 	struct lpfc_vport *vport = NULL;
11358 
11359 	/* The rpi in the ulpContext is vport-sensitive. */
11360 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
11361 	rpi = iocbq->iocb.ulpContext;
11362 
11363 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11364 			"3092 Port generated ABTS async event "
11365 			"on vpi %d rpi %d status 0x%x\n",
11366 			vpi, rpi, iocbq->iocb.ulpStatus);
11367 
11368 	vport = lpfc_find_vport_by_vpid(phba, vpi);
11369 	if (!vport)
11370 		goto err_exit;
11371 	ndlp = lpfc_findnode_rpi(vport, rpi);
11372 	if (!ndlp)
11373 		goto err_exit;
11374 
11375 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
11376 		lpfc_sli_abts_recover_port(vport, ndlp);
11377 	return;
11378 
11379  err_exit:
11380 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11381 			"3095 Event Context not found, no "
11382 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
11383 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
11384 			vpi, rpi);
11385 }
11386 
11387 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
11388  * @phba: pointer to HBA context object.
11389  * @ndlp: nodelist pointer for the impacted rport.
11390  * @axri: pointer to the wcqe containing the failed exchange.
11391  *
11392  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
11393  * port.  The port generates this event when an abort exchange request to an
11394  * rport fails twice in succession with no reply.  The abort could be originated
11395  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
11396  */
11397 void
11398 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
11399 			   struct lpfc_nodelist *ndlp,
11400 			   struct sli4_wcqe_xri_aborted *axri)
11401 {
11402 	uint32_t ext_status = 0;
11403 
11404 	if (!ndlp) {
11405 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11406 				"3115 Node Context not found, driver "
11407 				"ignoring abts err event\n");
11408 		return;
11409 	}
11410 
11411 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11412 			"3116 Port generated FCP XRI ABORT event on "
11413 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
11414 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
11415 			bf_get(lpfc_wcqe_xa_xri, axri),
11416 			bf_get(lpfc_wcqe_xa_status, axri),
11417 			axri->parameter);
11418 
11419 	/*
11420 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
11421 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
11422 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
11423 	 */
11424 	ext_status = axri->parameter & IOERR_PARAM_MASK;
11425 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
11426 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
11427 		lpfc_sli_post_recovery_event(phba, ndlp);
11428 }
11429 
11430 /**
11431  * lpfc_sli_async_event_handler - ASYNC iocb handler function
11432  * @phba: Pointer to HBA context object.
11433  * @pring: Pointer to driver SLI ring object.
11434  * @iocbq: Pointer to iocb object.
11435  *
11436  * This function is called by the slow ring event handler
11437  * function when there is an ASYNC event iocb in the ring.
11438  * This function is called with no lock held.
11439  * Currently this function handles only temperature related
11440  * ASYNC events. The function decodes the temperature sensor
11441  * event message and posts events for the management applications.
11442  **/
11443 static void
11444 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
11445 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
11446 {
11447 	IOCB_t *icmd;
11448 	uint16_t evt_code;
11449 	struct temp_event temp_event_data;
11450 	struct Scsi_Host *shost;
11451 	uint32_t *iocb_w;
11452 
11453 	icmd = &iocbq->iocb;
11454 	evt_code = icmd->un.asyncstat.evt_code;
11455 
11456 	switch (evt_code) {
11457 	case ASYNC_TEMP_WARN:
11458 	case ASYNC_TEMP_SAFE:
11459 		temp_event_data.data = (uint32_t) icmd->ulpContext;
11460 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
11461 		if (evt_code == ASYNC_TEMP_WARN) {
11462 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
11463 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11464 				"0347 Adapter is very hot, please take "
11465 				"corrective action. temperature : %d Celsius\n",
11466 				(uint32_t) icmd->ulpContext);
11467 		} else {
11468 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
11469 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11470 				"0340 Adapter temperature is OK now. "
11471 				"temperature : %d Celsius\n",
11472 				(uint32_t) icmd->ulpContext);
11473 		}
11474 
11475 		/* Send temperature change event to applications */
11476 		shost = lpfc_shost_from_vport(phba->pport);
11477 		fc_host_post_vendor_event(shost, fc_get_event_number(),
11478 			sizeof(temp_event_data), (char *) &temp_event_data,
11479 			LPFC_NL_VENDOR_ID);
11480 		break;
11481 	case ASYNC_STATUS_CN:
11482 		lpfc_sli_abts_err_handler(phba, iocbq);
11483 		break;
11484 	default:
11485 		iocb_w = (uint32_t *) icmd;
11486 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11487 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
11488 			" evt_code 0x%x\n"
11489 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
11490 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
11491 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
11492 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
11493 			pring->ringno, icmd->un.asyncstat.evt_code,
11494 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
11495 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
11496 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
11497 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
11498 
11499 		break;
11500 	}
11501 }
11502 
11503 
11504 /**
11505  * lpfc_sli4_setup - SLI ring setup function
11506  * @phba: Pointer to HBA context object.
11507  *
11508  * lpfc_sli_setup sets up rings of the SLI interface with
11509  * number of iocbs per ring and iotags. This function is
11510  * called while driver attach to the HBA and before the
11511  * interrupts are enabled. So there is no need for locking.
11512  *
11513  * This function always returns 0.
11514  **/
11515 int
11516 lpfc_sli4_setup(struct lpfc_hba *phba)
11517 {
11518 	struct lpfc_sli_ring *pring;
11519 
11520 	pring = phba->sli4_hba.els_wq->pring;
11521 	pring->num_mask = LPFC_MAX_RING_MASK;
11522 	pring->prt[0].profile = 0;	/* Mask 0 */
11523 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11524 	pring->prt[0].type = FC_TYPE_ELS;
11525 	pring->prt[0].lpfc_sli_rcv_unsol_event =
11526 	    lpfc_els_unsol_event;
11527 	pring->prt[1].profile = 0;	/* Mask 1 */
11528 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
11529 	pring->prt[1].type = FC_TYPE_ELS;
11530 	pring->prt[1].lpfc_sli_rcv_unsol_event =
11531 	    lpfc_els_unsol_event;
11532 	pring->prt[2].profile = 0;	/* Mask 2 */
11533 	/* NameServer Inquiry */
11534 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11535 	/* NameServer */
11536 	pring->prt[2].type = FC_TYPE_CT;
11537 	pring->prt[2].lpfc_sli_rcv_unsol_event =
11538 	    lpfc_ct_unsol_event;
11539 	pring->prt[3].profile = 0;	/* Mask 3 */
11540 	/* NameServer response */
11541 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11542 	/* NameServer */
11543 	pring->prt[3].type = FC_TYPE_CT;
11544 	pring->prt[3].lpfc_sli_rcv_unsol_event =
11545 	    lpfc_ct_unsol_event;
11546 	return 0;
11547 }
11548 
11549 /**
11550  * lpfc_sli_setup - SLI ring setup function
11551  * @phba: Pointer to HBA context object.
11552  *
11553  * lpfc_sli_setup sets up rings of the SLI interface with
11554  * number of iocbs per ring and iotags. This function is
11555  * called while driver attach to the HBA and before the
11556  * interrupts are enabled. So there is no need for locking.
11557  *
11558  * This function always returns 0. SLI3 only.
11559  **/
11560 int
11561 lpfc_sli_setup(struct lpfc_hba *phba)
11562 {
11563 	int i, totiocbsize = 0;
11564 	struct lpfc_sli *psli = &phba->sli;
11565 	struct lpfc_sli_ring *pring;
11566 
11567 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
11568 	psli->sli_flag = 0;
11569 
11570 	psli->iocbq_lookup = NULL;
11571 	psli->iocbq_lookup_len = 0;
11572 	psli->last_iotag = 0;
11573 
11574 	for (i = 0; i < psli->num_rings; i++) {
11575 		pring = &psli->sli3_ring[i];
11576 		switch (i) {
11577 		case LPFC_FCP_RING:	/* ring 0 - FCP */
11578 			/* numCiocb and numRiocb are used in config_port */
11579 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
11580 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
11581 			pring->sli.sli3.numCiocb +=
11582 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
11583 			pring->sli.sli3.numRiocb +=
11584 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
11585 			pring->sli.sli3.numCiocb +=
11586 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
11587 			pring->sli.sli3.numRiocb +=
11588 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
11589 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11590 							SLI3_IOCB_CMD_SIZE :
11591 							SLI2_IOCB_CMD_SIZE;
11592 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11593 							SLI3_IOCB_RSP_SIZE :
11594 							SLI2_IOCB_RSP_SIZE;
11595 			pring->iotag_ctr = 0;
11596 			pring->iotag_max =
11597 			    (phba->cfg_hba_queue_depth * 2);
11598 			pring->fast_iotag = pring->iotag_max;
11599 			pring->num_mask = 0;
11600 			break;
11601 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
11602 			/* numCiocb and numRiocb are used in config_port */
11603 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
11604 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
11605 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11606 							SLI3_IOCB_CMD_SIZE :
11607 							SLI2_IOCB_CMD_SIZE;
11608 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11609 							SLI3_IOCB_RSP_SIZE :
11610 							SLI2_IOCB_RSP_SIZE;
11611 			pring->iotag_max = phba->cfg_hba_queue_depth;
11612 			pring->num_mask = 0;
11613 			break;
11614 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
11615 			/* numCiocb and numRiocb are used in config_port */
11616 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
11617 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
11618 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
11619 							SLI3_IOCB_CMD_SIZE :
11620 							SLI2_IOCB_CMD_SIZE;
11621 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
11622 							SLI3_IOCB_RSP_SIZE :
11623 							SLI2_IOCB_RSP_SIZE;
11624 			pring->fast_iotag = 0;
11625 			pring->iotag_ctr = 0;
11626 			pring->iotag_max = 4096;
11627 			pring->lpfc_sli_rcv_async_status =
11628 				lpfc_sli_async_event_handler;
11629 			pring->num_mask = LPFC_MAX_RING_MASK;
11630 			pring->prt[0].profile = 0;	/* Mask 0 */
11631 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
11632 			pring->prt[0].type = FC_TYPE_ELS;
11633 			pring->prt[0].lpfc_sli_rcv_unsol_event =
11634 			    lpfc_els_unsol_event;
11635 			pring->prt[1].profile = 0;	/* Mask 1 */
11636 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
11637 			pring->prt[1].type = FC_TYPE_ELS;
11638 			pring->prt[1].lpfc_sli_rcv_unsol_event =
11639 			    lpfc_els_unsol_event;
11640 			pring->prt[2].profile = 0;	/* Mask 2 */
11641 			/* NameServer Inquiry */
11642 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
11643 			/* NameServer */
11644 			pring->prt[2].type = FC_TYPE_CT;
11645 			pring->prt[2].lpfc_sli_rcv_unsol_event =
11646 			    lpfc_ct_unsol_event;
11647 			pring->prt[3].profile = 0;	/* Mask 3 */
11648 			/* NameServer response */
11649 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
11650 			/* NameServer */
11651 			pring->prt[3].type = FC_TYPE_CT;
11652 			pring->prt[3].lpfc_sli_rcv_unsol_event =
11653 			    lpfc_ct_unsol_event;
11654 			break;
11655 		}
11656 		totiocbsize += (pring->sli.sli3.numCiocb *
11657 			pring->sli.sli3.sizeCiocb) +
11658 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
11659 	}
11660 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
11661 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
11662 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
11663 		       "SLI2 SLIM Data: x%x x%lx\n",
11664 		       phba->brd_no, totiocbsize,
11665 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
11666 	}
11667 	if (phba->cfg_multi_ring_support == 2)
11668 		lpfc_extra_ring_setup(phba);
11669 
11670 	return 0;
11671 }
11672 
11673 /**
11674  * lpfc_sli4_queue_init - Queue initialization function
11675  * @phba: Pointer to HBA context object.
11676  *
11677  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
11678  * ring. This function also initializes ring indices of each ring.
11679  * This function is called during the initialization of the SLI
11680  * interface of an HBA.
11681  * This function is called with no lock held and always returns
11682  * 1.
11683  **/
11684 void
11685 lpfc_sli4_queue_init(struct lpfc_hba *phba)
11686 {
11687 	struct lpfc_sli *psli;
11688 	struct lpfc_sli_ring *pring;
11689 	int i;
11690 
11691 	psli = &phba->sli;
11692 	spin_lock_irq(&phba->hbalock);
11693 	INIT_LIST_HEAD(&psli->mboxq);
11694 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11695 	/* Initialize list headers for txq and txcmplq as double linked lists */
11696 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
11697 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
11698 		pring->flag = 0;
11699 		pring->ringno = LPFC_FCP_RING;
11700 		pring->txcmplq_cnt = 0;
11701 		INIT_LIST_HEAD(&pring->txq);
11702 		INIT_LIST_HEAD(&pring->txcmplq);
11703 		INIT_LIST_HEAD(&pring->iocb_continueq);
11704 		spin_lock_init(&pring->ring_lock);
11705 	}
11706 	pring = phba->sli4_hba.els_wq->pring;
11707 	pring->flag = 0;
11708 	pring->ringno = LPFC_ELS_RING;
11709 	pring->txcmplq_cnt = 0;
11710 	INIT_LIST_HEAD(&pring->txq);
11711 	INIT_LIST_HEAD(&pring->txcmplq);
11712 	INIT_LIST_HEAD(&pring->iocb_continueq);
11713 	spin_lock_init(&pring->ring_lock);
11714 
11715 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11716 		pring = phba->sli4_hba.nvmels_wq->pring;
11717 		pring->flag = 0;
11718 		pring->ringno = LPFC_ELS_RING;
11719 		pring->txcmplq_cnt = 0;
11720 		INIT_LIST_HEAD(&pring->txq);
11721 		INIT_LIST_HEAD(&pring->txcmplq);
11722 		INIT_LIST_HEAD(&pring->iocb_continueq);
11723 		spin_lock_init(&pring->ring_lock);
11724 	}
11725 
11726 	spin_unlock_irq(&phba->hbalock);
11727 }
11728 
11729 /**
11730  * lpfc_sli_queue_init - Queue initialization function
11731  * @phba: Pointer to HBA context object.
11732  *
11733  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11734  * ring. This function also initializes ring indices of each ring.
11735  * This function is called during the initialization of the SLI
11736  * interface of an HBA.
11737  * This function is called with no lock held and always returns
11738  * 1.
11739  **/
11740 void
11741 lpfc_sli_queue_init(struct lpfc_hba *phba)
11742 {
11743 	struct lpfc_sli *psli;
11744 	struct lpfc_sli_ring *pring;
11745 	int i;
11746 
11747 	psli = &phba->sli;
11748 	spin_lock_irq(&phba->hbalock);
11749 	INIT_LIST_HEAD(&psli->mboxq);
11750 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11751 	/* Initialize list headers for txq and txcmplq as double linked lists */
11752 	for (i = 0; i < psli->num_rings; i++) {
11753 		pring = &psli->sli3_ring[i];
11754 		pring->ringno = i;
11755 		pring->sli.sli3.next_cmdidx  = 0;
11756 		pring->sli.sli3.local_getidx = 0;
11757 		pring->sli.sli3.cmdidx = 0;
11758 		INIT_LIST_HEAD(&pring->iocb_continueq);
11759 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11760 		INIT_LIST_HEAD(&pring->postbufq);
11761 		pring->flag = 0;
11762 		INIT_LIST_HEAD(&pring->txq);
11763 		INIT_LIST_HEAD(&pring->txcmplq);
11764 		spin_lock_init(&pring->ring_lock);
11765 	}
11766 	spin_unlock_irq(&phba->hbalock);
11767 }
11768 
11769 /**
11770  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11771  * @phba: Pointer to HBA context object.
11772  *
11773  * This routine flushes the mailbox command subsystem. It will unconditionally
11774  * flush all the mailbox commands in the three possible stages in the mailbox
11775  * command sub-system: pending mailbox command queue; the outstanding mailbox
11776  * command; and completed mailbox command queue. It is caller's responsibility
11777  * to make sure that the driver is in the proper state to flush the mailbox
11778  * command sub-system. Namely, the posting of mailbox commands into the
11779  * pending mailbox command queue from the various clients must be stopped;
11780  * either the HBA is in a state that it will never works on the outstanding
11781  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11782  * mailbox command has been completed.
11783  **/
11784 static void
11785 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11786 {
11787 	LIST_HEAD(completions);
11788 	struct lpfc_sli *psli = &phba->sli;
11789 	LPFC_MBOXQ_t *pmb;
11790 	unsigned long iflag;
11791 
11792 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11793 	local_bh_disable();
11794 
11795 	/* Flush all the mailbox commands in the mbox system */
11796 	spin_lock_irqsave(&phba->hbalock, iflag);
11797 
11798 	/* The pending mailbox command queue */
11799 	list_splice_init(&phba->sli.mboxq, &completions);
11800 	/* The outstanding active mailbox command */
11801 	if (psli->mbox_active) {
11802 		list_add_tail(&psli->mbox_active->list, &completions);
11803 		psli->mbox_active = NULL;
11804 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11805 	}
11806 	/* The completed mailbox command queue */
11807 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11808 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11809 
11810 	/* Enable softirqs again, done with phba->hbalock */
11811 	local_bh_enable();
11812 
11813 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11814 	while (!list_empty(&completions)) {
11815 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11816 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11817 		if (pmb->mbox_cmpl)
11818 			pmb->mbox_cmpl(phba, pmb);
11819 	}
11820 }
11821 
11822 /**
11823  * lpfc_sli_host_down - Vport cleanup function
11824  * @vport: Pointer to virtual port object.
11825  *
11826  * lpfc_sli_host_down is called to clean up the resources
11827  * associated with a vport before destroying virtual
11828  * port data structures.
11829  * This function does following operations:
11830  * - Free discovery resources associated with this virtual
11831  *   port.
11832  * - Free iocbs associated with this virtual port in
11833  *   the txq.
11834  * - Send abort for all iocb commands associated with this
11835  *   vport in txcmplq.
11836  *
11837  * This function is called with no lock held and always returns 1.
11838  **/
11839 int
11840 lpfc_sli_host_down(struct lpfc_vport *vport)
11841 {
11842 	LIST_HEAD(completions);
11843 	struct lpfc_hba *phba = vport->phba;
11844 	struct lpfc_sli *psli = &phba->sli;
11845 	struct lpfc_queue *qp = NULL;
11846 	struct lpfc_sli_ring *pring;
11847 	struct lpfc_iocbq *iocb, *next_iocb;
11848 	int i;
11849 	unsigned long flags = 0;
11850 	uint16_t prev_pring_flag;
11851 
11852 	lpfc_cleanup_discovery_resources(vport);
11853 
11854 	spin_lock_irqsave(&phba->hbalock, flags);
11855 
11856 	/*
11857 	 * Error everything on the txq since these iocbs
11858 	 * have not been given to the FW yet.
11859 	 * Also issue ABTS for everything on the txcmplq
11860 	 */
11861 	if (phba->sli_rev != LPFC_SLI_REV4) {
11862 		for (i = 0; i < psli->num_rings; i++) {
11863 			pring = &psli->sli3_ring[i];
11864 			prev_pring_flag = pring->flag;
11865 			/* Only slow rings */
11866 			if (pring->ringno == LPFC_ELS_RING) {
11867 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11868 				/* Set the lpfc data pending flag */
11869 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11870 			}
11871 			list_for_each_entry_safe(iocb, next_iocb,
11872 						 &pring->txq, list) {
11873 				if (iocb->vport != vport)
11874 					continue;
11875 				list_move_tail(&iocb->list, &completions);
11876 			}
11877 			list_for_each_entry_safe(iocb, next_iocb,
11878 						 &pring->txcmplq, list) {
11879 				if (iocb->vport != vport)
11880 					continue;
11881 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11882 							   NULL);
11883 			}
11884 			pring->flag = prev_pring_flag;
11885 		}
11886 	} else {
11887 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11888 			pring = qp->pring;
11889 			if (!pring)
11890 				continue;
11891 			if (pring == phba->sli4_hba.els_wq->pring) {
11892 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11893 				/* Set the lpfc data pending flag */
11894 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11895 			}
11896 			prev_pring_flag = pring->flag;
11897 			spin_lock(&pring->ring_lock);
11898 			list_for_each_entry_safe(iocb, next_iocb,
11899 						 &pring->txq, list) {
11900 				if (iocb->vport != vport)
11901 					continue;
11902 				list_move_tail(&iocb->list, &completions);
11903 			}
11904 			spin_unlock(&pring->ring_lock);
11905 			list_for_each_entry_safe(iocb, next_iocb,
11906 						 &pring->txcmplq, list) {
11907 				if (iocb->vport != vport)
11908 					continue;
11909 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11910 							   NULL);
11911 			}
11912 			pring->flag = prev_pring_flag;
11913 		}
11914 	}
11915 	spin_unlock_irqrestore(&phba->hbalock, flags);
11916 
11917 	/* Make sure HBA is alive */
11918 	lpfc_issue_hb_tmo(phba);
11919 
11920 	/* Cancel all the IOCBs from the completions list */
11921 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11922 			      IOERR_SLI_DOWN);
11923 	return 1;
11924 }
11925 
11926 /**
11927  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11928  * @phba: Pointer to HBA context object.
11929  *
11930  * This function cleans up all iocb, buffers, mailbox commands
11931  * while shutting down the HBA. This function is called with no
11932  * lock held and always returns 1.
11933  * This function does the following to cleanup driver resources:
11934  * - Free discovery resources for each virtual port
11935  * - Cleanup any pending fabric iocbs
11936  * - Iterate through the iocb txq and free each entry
11937  *   in the list.
11938  * - Free up any buffer posted to the HBA
11939  * - Free mailbox commands in the mailbox queue.
11940  **/
11941 int
11942 lpfc_sli_hba_down(struct lpfc_hba *phba)
11943 {
11944 	LIST_HEAD(completions);
11945 	struct lpfc_sli *psli = &phba->sli;
11946 	struct lpfc_queue *qp = NULL;
11947 	struct lpfc_sli_ring *pring;
11948 	struct lpfc_dmabuf *buf_ptr;
11949 	unsigned long flags = 0;
11950 	int i;
11951 
11952 	/* Shutdown the mailbox command sub-system */
11953 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11954 
11955 	lpfc_hba_down_prep(phba);
11956 
11957 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11958 	local_bh_disable();
11959 
11960 	lpfc_fabric_abort_hba(phba);
11961 
11962 	spin_lock_irqsave(&phba->hbalock, flags);
11963 
11964 	/*
11965 	 * Error everything on the txq since these iocbs
11966 	 * have not been given to the FW yet.
11967 	 */
11968 	if (phba->sli_rev != LPFC_SLI_REV4) {
11969 		for (i = 0; i < psli->num_rings; i++) {
11970 			pring = &psli->sli3_ring[i];
11971 			/* Only slow rings */
11972 			if (pring->ringno == LPFC_ELS_RING) {
11973 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11974 				/* Set the lpfc data pending flag */
11975 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11976 			}
11977 			list_splice_init(&pring->txq, &completions);
11978 		}
11979 	} else {
11980 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11981 			pring = qp->pring;
11982 			if (!pring)
11983 				continue;
11984 			spin_lock(&pring->ring_lock);
11985 			list_splice_init(&pring->txq, &completions);
11986 			spin_unlock(&pring->ring_lock);
11987 			if (pring == phba->sli4_hba.els_wq->pring) {
11988 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11989 				/* Set the lpfc data pending flag */
11990 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11991 			}
11992 		}
11993 	}
11994 	spin_unlock_irqrestore(&phba->hbalock, flags);
11995 
11996 	/* Cancel all the IOCBs from the completions list */
11997 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11998 			      IOERR_SLI_DOWN);
11999 
12000 	spin_lock_irqsave(&phba->hbalock, flags);
12001 	list_splice_init(&phba->elsbuf, &completions);
12002 	phba->elsbuf_cnt = 0;
12003 	phba->elsbuf_prev_cnt = 0;
12004 	spin_unlock_irqrestore(&phba->hbalock, flags);
12005 
12006 	while (!list_empty(&completions)) {
12007 		list_remove_head(&completions, buf_ptr,
12008 			struct lpfc_dmabuf, list);
12009 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
12010 		kfree(buf_ptr);
12011 	}
12012 
12013 	/* Enable softirqs again, done with phba->hbalock */
12014 	local_bh_enable();
12015 
12016 	/* Return any active mbox cmds */
12017 	del_timer_sync(&psli->mbox_tmo);
12018 
12019 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
12020 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
12021 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
12022 
12023 	return 1;
12024 }
12025 
12026 /**
12027  * lpfc_sli_pcimem_bcopy - SLI memory copy function
12028  * @srcp: Source memory pointer.
12029  * @destp: Destination memory pointer.
12030  * @cnt: Number of words required to be copied.
12031  *
12032  * This function is used for copying data between driver memory
12033  * and the SLI memory. This function also changes the endianness
12034  * of each word if native endianness is different from SLI
12035  * endianness. This function can be called with or without
12036  * lock.
12037  **/
12038 void
12039 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
12040 {
12041 	uint32_t *src = srcp;
12042 	uint32_t *dest = destp;
12043 	uint32_t ldata;
12044 	int i;
12045 
12046 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
12047 		ldata = *src;
12048 		ldata = le32_to_cpu(ldata);
12049 		*dest = ldata;
12050 		src++;
12051 		dest++;
12052 	}
12053 }
12054 
12055 
12056 /**
12057  * lpfc_sli_bemem_bcopy - SLI memory copy function
12058  * @srcp: Source memory pointer.
12059  * @destp: Destination memory pointer.
12060  * @cnt: Number of words required to be copied.
12061  *
12062  * This function is used for copying data between a data structure
12063  * with big endian representation to local endianness.
12064  * This function can be called with or without lock.
12065  **/
12066 void
12067 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
12068 {
12069 	uint32_t *src = srcp;
12070 	uint32_t *dest = destp;
12071 	uint32_t ldata;
12072 	int i;
12073 
12074 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
12075 		ldata = *src;
12076 		ldata = be32_to_cpu(ldata);
12077 		*dest = ldata;
12078 		src++;
12079 		dest++;
12080 	}
12081 }
12082 
12083 /**
12084  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
12085  * @phba: Pointer to HBA context object.
12086  * @pring: Pointer to driver SLI ring object.
12087  * @mp: Pointer to driver buffer object.
12088  *
12089  * This function is called with no lock held.
12090  * It always return zero after adding the buffer to the postbufq
12091  * buffer list.
12092  **/
12093 int
12094 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12095 			 struct lpfc_dmabuf *mp)
12096 {
12097 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
12098 	   later */
12099 	spin_lock_irq(&phba->hbalock);
12100 	list_add_tail(&mp->list, &pring->postbufq);
12101 	pring->postbufq_cnt++;
12102 	spin_unlock_irq(&phba->hbalock);
12103 	return 0;
12104 }
12105 
12106 /**
12107  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
12108  * @phba: Pointer to HBA context object.
12109  *
12110  * When HBQ is enabled, buffers are searched based on tags. This function
12111  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
12112  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
12113  * does not conflict with tags of buffer posted for unsolicited events.
12114  * The function returns the allocated tag. The function is called with
12115  * no locks held.
12116  **/
12117 uint32_t
12118 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
12119 {
12120 	spin_lock_irq(&phba->hbalock);
12121 	phba->buffer_tag_count++;
12122 	/*
12123 	 * Always set the QUE_BUFTAG_BIT to distiguish between
12124 	 * a tag assigned by HBQ.
12125 	 */
12126 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
12127 	spin_unlock_irq(&phba->hbalock);
12128 	return phba->buffer_tag_count;
12129 }
12130 
12131 /**
12132  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
12133  * @phba: Pointer to HBA context object.
12134  * @pring: Pointer to driver SLI ring object.
12135  * @tag: Buffer tag.
12136  *
12137  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
12138  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
12139  * iocb is posted to the response ring with the tag of the buffer.
12140  * This function searches the pring->postbufq list using the tag
12141  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
12142  * iocb. If the buffer is found then lpfc_dmabuf object of the
12143  * buffer is returned to the caller else NULL is returned.
12144  * This function is called with no lock held.
12145  **/
12146 struct lpfc_dmabuf *
12147 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12148 			uint32_t tag)
12149 {
12150 	struct lpfc_dmabuf *mp, *next_mp;
12151 	struct list_head *slp = &pring->postbufq;
12152 
12153 	/* Search postbufq, from the beginning, looking for a match on tag */
12154 	spin_lock_irq(&phba->hbalock);
12155 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12156 		if (mp->buffer_tag == tag) {
12157 			list_del_init(&mp->list);
12158 			pring->postbufq_cnt--;
12159 			spin_unlock_irq(&phba->hbalock);
12160 			return mp;
12161 		}
12162 	}
12163 
12164 	spin_unlock_irq(&phba->hbalock);
12165 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12166 			"0402 Cannot find virtual addr for buffer tag on "
12167 			"ring %d Data x%lx x%px x%px x%x\n",
12168 			pring->ringno, (unsigned long) tag,
12169 			slp->next, slp->prev, pring->postbufq_cnt);
12170 
12171 	return NULL;
12172 }
12173 
12174 /**
12175  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
12176  * @phba: Pointer to HBA context object.
12177  * @pring: Pointer to driver SLI ring object.
12178  * @phys: DMA address of the buffer.
12179  *
12180  * This function searches the buffer list using the dma_address
12181  * of unsolicited event to find the driver's lpfc_dmabuf object
12182  * corresponding to the dma_address. The function returns the
12183  * lpfc_dmabuf object if a buffer is found else it returns NULL.
12184  * This function is called by the ct and els unsolicited event
12185  * handlers to get the buffer associated with the unsolicited
12186  * event.
12187  *
12188  * This function is called with no lock held.
12189  **/
12190 struct lpfc_dmabuf *
12191 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12192 			 dma_addr_t phys)
12193 {
12194 	struct lpfc_dmabuf *mp, *next_mp;
12195 	struct list_head *slp = &pring->postbufq;
12196 
12197 	/* Search postbufq, from the beginning, looking for a match on phys */
12198 	spin_lock_irq(&phba->hbalock);
12199 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
12200 		if (mp->phys == phys) {
12201 			list_del_init(&mp->list);
12202 			pring->postbufq_cnt--;
12203 			spin_unlock_irq(&phba->hbalock);
12204 			return mp;
12205 		}
12206 	}
12207 
12208 	spin_unlock_irq(&phba->hbalock);
12209 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12210 			"0410 Cannot find virtual addr for mapped buf on "
12211 			"ring %d Data x%llx x%px x%px x%x\n",
12212 			pring->ringno, (unsigned long long)phys,
12213 			slp->next, slp->prev, pring->postbufq_cnt);
12214 	return NULL;
12215 }
12216 
12217 /**
12218  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
12219  * @phba: Pointer to HBA context object.
12220  * @cmdiocb: Pointer to driver command iocb object.
12221  * @rspiocb: Pointer to driver response iocb object.
12222  *
12223  * This function is the completion handler for the abort iocbs for
12224  * ELS commands. This function is called from the ELS ring event
12225  * handler with no lock held. This function frees memory resources
12226  * associated with the abort iocb.
12227  **/
12228 static void
12229 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12230 			struct lpfc_iocbq *rspiocb)
12231 {
12232 	IOCB_t *irsp = &rspiocb->iocb;
12233 	uint16_t abort_iotag, abort_context;
12234 	struct lpfc_iocbq *abort_iocb = NULL;
12235 
12236 	if (irsp->ulpStatus) {
12237 
12238 		/*
12239 		 * Assume that the port already completed and returned, or
12240 		 * will return the iocb. Just Log the message.
12241 		 */
12242 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
12243 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
12244 
12245 		spin_lock_irq(&phba->hbalock);
12246 		if (phba->sli_rev < LPFC_SLI_REV4) {
12247 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
12248 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
12249 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
12250 				spin_unlock_irq(&phba->hbalock);
12251 				goto release_iocb;
12252 			}
12253 			if (abort_iotag != 0 &&
12254 				abort_iotag <= phba->sli.last_iotag)
12255 				abort_iocb =
12256 					phba->sli.iocbq_lookup[abort_iotag];
12257 		} else
12258 			/* For sli4 the abort_tag is the XRI,
12259 			 * so the abort routine puts the iotag  of the iocb
12260 			 * being aborted in the context field of the abort
12261 			 * IOCB.
12262 			 */
12263 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
12264 
12265 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
12266 				"0327 Cannot abort els iocb x%px "
12267 				"with tag %x context %x, abort status %x, "
12268 				"abort code %x\n",
12269 				abort_iocb, abort_iotag, abort_context,
12270 				irsp->ulpStatus, irsp->un.ulpWord[4]);
12271 
12272 		spin_unlock_irq(&phba->hbalock);
12273 	}
12274 release_iocb:
12275 	lpfc_sli_release_iocbq(phba, cmdiocb);
12276 	return;
12277 }
12278 
12279 /**
12280  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
12281  * @phba: Pointer to HBA context object.
12282  * @cmdiocb: Pointer to driver command iocb object.
12283  * @rspiocb: Pointer to driver response iocb object.
12284  *
12285  * The function is called from SLI ring event handler with no
12286  * lock held. This function is the completion handler for ELS commands
12287  * which are aborted. The function frees memory resources used for
12288  * the aborted ELS commands.
12289  **/
12290 void
12291 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12292 		     struct lpfc_iocbq *rspiocb)
12293 {
12294 	struct lpfc_nodelist *ndlp = NULL;
12295 	IOCB_t *irsp = &rspiocb->iocb;
12296 
12297 	/* ELS cmd tag <ulpIoTag> completes */
12298 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
12299 			"0139 Ignoring ELS cmd code x%x completion Data: "
12300 			"x%x x%x x%x\n",
12301 			irsp->ulpIoTag, irsp->ulpStatus,
12302 			irsp->un.ulpWord[4], irsp->ulpTimeout);
12303 	/*
12304 	 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp
12305 	 * if exchange is busy.
12306 	 */
12307 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
12308 		ndlp = cmdiocb->context_un.ndlp;
12309 		lpfc_ct_free_iocb(phba, cmdiocb);
12310 	} else {
12311 		ndlp = (struct lpfc_nodelist *) cmdiocb->context1;
12312 		lpfc_els_free_iocb(phba, cmdiocb);
12313 	}
12314 
12315 	lpfc_nlp_put(ndlp);
12316 }
12317 
12318 /**
12319  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
12320  * @phba: Pointer to HBA context object.
12321  * @pring: Pointer to driver SLI ring object.
12322  * @cmdiocb: Pointer to driver command iocb object.
12323  * @cmpl: completion function.
12324  *
12325  * This function issues an abort iocb for the provided command iocb. In case
12326  * of unloading, the abort iocb will not be issued to commands on the ELS
12327  * ring. Instead, the callback function shall be changed to those commands
12328  * so that nothing happens when them finishes. This function is called with
12329  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
12330  * when the command iocb is an abort request.
12331  *
12332  **/
12333 int
12334 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
12335 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
12336 {
12337 	struct lpfc_vport *vport = cmdiocb->vport;
12338 	struct lpfc_iocbq *abtsiocbp;
12339 	IOCB_t *icmd = NULL;
12340 	IOCB_t *iabt = NULL;
12341 	int retval = IOCB_ERROR;
12342 	unsigned long iflags;
12343 	struct lpfc_nodelist *ndlp;
12344 
12345 	/*
12346 	 * There are certain command types we don't want to abort.  And we
12347 	 * don't want to abort commands that are already in the process of
12348 	 * being aborted.
12349 	 */
12350 	icmd = &cmdiocb->iocb;
12351 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
12352 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
12353 	    cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED)
12354 		return IOCB_ABORTING;
12355 
12356 	if (!pring) {
12357 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
12358 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
12359 		else
12360 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
12361 		return retval;
12362 	}
12363 
12364 	/*
12365 	 * If we're unloading, don't abort iocb on the ELS ring, but change
12366 	 * the callback so that nothing happens when it finishes.
12367 	 */
12368 	if ((vport->load_flag & FC_UNLOADING) &&
12369 	    pring->ringno == LPFC_ELS_RING) {
12370 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
12371 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
12372 		else
12373 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
12374 		return retval;
12375 	}
12376 
12377 	/* issue ABTS for this IOCB based on iotag */
12378 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
12379 	if (abtsiocbp == NULL)
12380 		return IOCB_NORESOURCE;
12381 
12382 	/* This signals the response to set the correct status
12383 	 * before calling the completion handler
12384 	 */
12385 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
12386 
12387 	iabt = &abtsiocbp->iocb;
12388 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
12389 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
12390 	if (phba->sli_rev == LPFC_SLI_REV4) {
12391 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
12392 		if (pring->ringno == LPFC_ELS_RING)
12393 			iabt->un.acxri.abortContextTag = cmdiocb->iotag;
12394 	} else {
12395 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
12396 		if (pring->ringno == LPFC_ELS_RING) {
12397 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
12398 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
12399 		}
12400 	}
12401 	iabt->ulpLe = 1;
12402 	iabt->ulpClass = icmd->ulpClass;
12403 
12404 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12405 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
12406 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
12407 		abtsiocbp->iocb_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX);
12408 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
12409 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
12410 
12411 	if (phba->link_state < LPFC_LINK_UP ||
12412 	    (phba->sli_rev == LPFC_SLI_REV4 &&
12413 	     phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN))
12414 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
12415 	else
12416 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
12417 
12418 	if (cmpl)
12419 		abtsiocbp->iocb_cmpl = cmpl;
12420 	else
12421 		abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
12422 	abtsiocbp->vport = vport;
12423 
12424 	if (phba->sli_rev == LPFC_SLI_REV4) {
12425 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
12426 		if (unlikely(pring == NULL))
12427 			goto abort_iotag_exit;
12428 		/* Note: both hbalock and ring_lock need to be set here */
12429 		spin_lock_irqsave(&pring->ring_lock, iflags);
12430 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12431 			abtsiocbp, 0);
12432 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
12433 	} else {
12434 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
12435 			abtsiocbp, 0);
12436 	}
12437 
12438 abort_iotag_exit:
12439 
12440 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
12441 			 "0339 Abort xri x%x, original iotag x%x, "
12442 			 "abort cmd iotag x%x retval x%x\n",
12443 			 iabt->un.acxri.abortIoTag,
12444 			 iabt->un.acxri.abortContextTag,
12445 			 abtsiocbp->iotag, retval);
12446 
12447 	if (retval) {
12448 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
12449 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
12450 	}
12451 
12452 	/*
12453 	 * Caller to this routine should check for IOCB_ERROR
12454 	 * and handle it properly.  This routine no longer removes
12455 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
12456 	 */
12457 	return retval;
12458 }
12459 
12460 /**
12461  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
12462  * @phba: pointer to lpfc HBA data structure.
12463  *
12464  * This routine will abort all pending and outstanding iocbs to an HBA.
12465  **/
12466 void
12467 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
12468 {
12469 	struct lpfc_sli *psli = &phba->sli;
12470 	struct lpfc_sli_ring *pring;
12471 	struct lpfc_queue *qp = NULL;
12472 	int i;
12473 
12474 	if (phba->sli_rev != LPFC_SLI_REV4) {
12475 		for (i = 0; i < psli->num_rings; i++) {
12476 			pring = &psli->sli3_ring[i];
12477 			lpfc_sli_abort_iocb_ring(phba, pring);
12478 		}
12479 		return;
12480 	}
12481 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
12482 		pring = qp->pring;
12483 		if (!pring)
12484 			continue;
12485 		lpfc_sli_abort_iocb_ring(phba, pring);
12486 	}
12487 }
12488 
12489 /**
12490  * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts
12491  * @iocbq: Pointer to iocb object.
12492  * @vport: Pointer to driver virtual port object.
12493  *
12494  * This function acts as an iocb filter for functions which abort FCP iocbs.
12495  *
12496  * Return values
12497  * -ENODEV, if a null iocb or vport ptr is encountered
12498  * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as
12499  *          driver already started the abort process, or is an abort iocb itself
12500  * 0, passes criteria for aborting the FCP I/O iocb
12501  **/
12502 static int
12503 lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq,
12504 				     struct lpfc_vport *vport)
12505 {
12506 	IOCB_t *icmd = NULL;
12507 
12508 	/* No null ptr vports */
12509 	if (!iocbq || iocbq->vport != vport)
12510 		return -ENODEV;
12511 
12512 	/* iocb must be for FCP IO, already exists on the TX cmpl queue,
12513 	 * can't be premarked as driver aborted, nor be an ABORT iocb itself
12514 	 */
12515 	icmd = &iocbq->iocb;
12516 	if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
12517 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) ||
12518 	    (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
12519 	    (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
12520 	     icmd->ulpCommand == CMD_CLOSE_XRI_CN))
12521 		return -EINVAL;
12522 
12523 	return 0;
12524 }
12525 
12526 /**
12527  * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target
12528  * @iocbq: Pointer to driver iocb object.
12529  * @vport: Pointer to driver virtual port object.
12530  * @tgt_id: SCSI ID of the target.
12531  * @lun_id: LUN ID of the scsi device.
12532  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
12533  *
12534  * This function acts as an iocb filter for validating a lun/SCSI target/SCSI
12535  * host.
12536  *
12537  * It will return
12538  * 0 if the filtering criteria is met for the given iocb and will return
12539  * 1 if the filtering criteria is not met.
12540  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
12541  * given iocb is for the SCSI device specified by vport, tgt_id and
12542  * lun_id parameter.
12543  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
12544  * given iocb is for the SCSI target specified by vport and tgt_id
12545  * parameters.
12546  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
12547  * given iocb is for the SCSI host associated with the given vport.
12548  * This function is called with no locks held.
12549  **/
12550 static int
12551 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
12552 			   uint16_t tgt_id, uint64_t lun_id,
12553 			   lpfc_ctx_cmd ctx_cmd)
12554 {
12555 	struct lpfc_io_buf *lpfc_cmd;
12556 	int rc = 1;
12557 
12558 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12559 
12560 	if (lpfc_cmd->pCmd == NULL)
12561 		return rc;
12562 
12563 	switch (ctx_cmd) {
12564 	case LPFC_CTX_LUN:
12565 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12566 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
12567 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
12568 			rc = 0;
12569 		break;
12570 	case LPFC_CTX_TGT:
12571 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
12572 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
12573 			rc = 0;
12574 		break;
12575 	case LPFC_CTX_HOST:
12576 		rc = 0;
12577 		break;
12578 	default:
12579 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
12580 			__func__, ctx_cmd);
12581 		break;
12582 	}
12583 
12584 	return rc;
12585 }
12586 
12587 /**
12588  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
12589  * @vport: Pointer to virtual port.
12590  * @tgt_id: SCSI ID of the target.
12591  * @lun_id: LUN ID of the scsi device.
12592  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12593  *
12594  * This function returns number of FCP commands pending for the vport.
12595  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
12596  * commands pending on the vport associated with SCSI device specified
12597  * by tgt_id and lun_id parameters.
12598  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
12599  * commands pending on the vport associated with SCSI target specified
12600  * by tgt_id parameter.
12601  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
12602  * commands pending on the vport.
12603  * This function returns the number of iocbs which satisfy the filter.
12604  * This function is called without any lock held.
12605  **/
12606 int
12607 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
12608 		  lpfc_ctx_cmd ctx_cmd)
12609 {
12610 	struct lpfc_hba *phba = vport->phba;
12611 	struct lpfc_iocbq *iocbq;
12612 	IOCB_t *icmd = NULL;
12613 	int sum, i;
12614 	unsigned long iflags;
12615 
12616 	spin_lock_irqsave(&phba->hbalock, iflags);
12617 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
12618 		iocbq = phba->sli.iocbq_lookup[i];
12619 
12620 		if (!iocbq || iocbq->vport != vport)
12621 			continue;
12622 		if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
12623 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
12624 			continue;
12625 
12626 		/* Include counting outstanding aborts */
12627 		icmd = &iocbq->iocb;
12628 		if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
12629 		    icmd->ulpCommand == CMD_CLOSE_XRI_CN) {
12630 			sum++;
12631 			continue;
12632 		}
12633 
12634 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12635 					       ctx_cmd) == 0)
12636 			sum++;
12637 	}
12638 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12639 
12640 	return sum;
12641 }
12642 
12643 /**
12644  * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12645  * @phba: Pointer to HBA context object
12646  * @cmdiocb: Pointer to command iocb object.
12647  * @wcqe: pointer to the complete wcqe
12648  *
12649  * This function is called when an aborted FCP iocb completes. This
12650  * function is called by the ring event handler with no lock held.
12651  * This function frees the iocb. It is called for sli-4 adapters.
12652  **/
12653 void
12654 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12655 			 struct lpfc_wcqe_complete *wcqe)
12656 {
12657 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12658 			"3017 ABORT_XRI_CN completing on rpi x%x "
12659 			"original iotag x%x, abort cmd iotag x%x "
12660 			"status 0x%x, reason 0x%x\n",
12661 			cmdiocb->iocb.un.acxri.abortContextTag,
12662 			cmdiocb->iocb.un.acxri.abortIoTag,
12663 			cmdiocb->iotag,
12664 			(bf_get(lpfc_wcqe_c_status, wcqe)
12665 			& LPFC_IOCB_STATUS_MASK),
12666 			wcqe->parameter);
12667 	lpfc_sli_release_iocbq(phba, cmdiocb);
12668 }
12669 
12670 /**
12671  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
12672  * @phba: Pointer to HBA context object
12673  * @cmdiocb: Pointer to command iocb object.
12674  * @rspiocb: Pointer to response iocb object.
12675  *
12676  * This function is called when an aborted FCP iocb completes. This
12677  * function is called by the ring event handler with no lock held.
12678  * This function frees the iocb.
12679  **/
12680 void
12681 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
12682 			struct lpfc_iocbq *rspiocb)
12683 {
12684 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12685 			"3096 ABORT_XRI_CN completing on rpi x%x "
12686 			"original iotag x%x, abort cmd iotag x%x "
12687 			"status 0x%x, reason 0x%x\n",
12688 			cmdiocb->iocb.un.acxri.abortContextTag,
12689 			cmdiocb->iocb.un.acxri.abortIoTag,
12690 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
12691 			rspiocb->iocb.un.ulpWord[4]);
12692 	lpfc_sli_release_iocbq(phba, cmdiocb);
12693 	return;
12694 }
12695 
12696 /**
12697  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
12698  * @vport: Pointer to virtual port.
12699  * @tgt_id: SCSI ID of the target.
12700  * @lun_id: LUN ID of the scsi device.
12701  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12702  *
12703  * This function sends an abort command for every SCSI command
12704  * associated with the given virtual port pending on the ring
12705  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12706  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12707  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12708  * followed by lpfc_sli_validate_fcp_iocb.
12709  *
12710  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
12711  * FCP iocbs associated with lun specified by tgt_id and lun_id
12712  * parameters
12713  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
12714  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12715  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
12716  * FCP iocbs associated with virtual port.
12717  * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4
12718  * lpfc_sli4_calc_ring is used.
12719  * This function returns number of iocbs it failed to abort.
12720  * This function is called with no locks held.
12721  **/
12722 int
12723 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id,
12724 		    lpfc_ctx_cmd abort_cmd)
12725 {
12726 	struct lpfc_hba *phba = vport->phba;
12727 	struct lpfc_sli_ring *pring = NULL;
12728 	struct lpfc_iocbq *iocbq;
12729 	int errcnt = 0, ret_val = 0;
12730 	unsigned long iflags;
12731 	int i;
12732 	void *fcp_cmpl = NULL;
12733 
12734 	/* all I/Os are in process of being flushed */
12735 	if (phba->hba_flag & HBA_IOQ_FLUSH)
12736 		return errcnt;
12737 
12738 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12739 		iocbq = phba->sli.iocbq_lookup[i];
12740 
12741 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12742 			continue;
12743 
12744 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12745 					       abort_cmd) != 0)
12746 			continue;
12747 
12748 		spin_lock_irqsave(&phba->hbalock, iflags);
12749 		if (phba->sli_rev == LPFC_SLI_REV3) {
12750 			pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12751 			fcp_cmpl = lpfc_sli_abort_fcp_cmpl;
12752 		} else if (phba->sli_rev == LPFC_SLI_REV4) {
12753 			pring = lpfc_sli4_calc_ring(phba, iocbq);
12754 			fcp_cmpl = lpfc_sli4_abort_fcp_cmpl;
12755 		}
12756 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
12757 						     fcp_cmpl);
12758 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12759 		if (ret_val != IOCB_SUCCESS)
12760 			errcnt++;
12761 	}
12762 
12763 	return errcnt;
12764 }
12765 
12766 /**
12767  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
12768  * @vport: Pointer to virtual port.
12769  * @pring: Pointer to driver SLI ring object.
12770  * @tgt_id: SCSI ID of the target.
12771  * @lun_id: LUN ID of the scsi device.
12772  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
12773  *
12774  * This function sends an abort command for every SCSI command
12775  * associated with the given virtual port pending on the ring
12776  * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then
12777  * lpfc_sli_validate_fcp_iocb function.  The ordering for validation before
12778  * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort
12779  * followed by lpfc_sli_validate_fcp_iocb.
12780  *
12781  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12782  * FCP iocbs associated with lun specified by tgt_id and lun_id
12783  * parameters
12784  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12785  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12786  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12787  * FCP iocbs associated with virtual port.
12788  * This function returns number of iocbs it aborted .
12789  * This function is called with no locks held right after a taskmgmt
12790  * command is sent.
12791  **/
12792 int
12793 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12794 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12795 {
12796 	struct lpfc_hba *phba = vport->phba;
12797 	struct lpfc_io_buf *lpfc_cmd;
12798 	struct lpfc_iocbq *abtsiocbq;
12799 	struct lpfc_nodelist *ndlp;
12800 	struct lpfc_iocbq *iocbq;
12801 	IOCB_t *icmd;
12802 	int sum, i, ret_val;
12803 	unsigned long iflags;
12804 	struct lpfc_sli_ring *pring_s4 = NULL;
12805 
12806 	spin_lock_irqsave(&phba->hbalock, iflags);
12807 
12808 	/* all I/Os are in process of being flushed */
12809 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12810 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12811 		return 0;
12812 	}
12813 	sum = 0;
12814 
12815 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12816 		iocbq = phba->sli.iocbq_lookup[i];
12817 
12818 		if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport))
12819 			continue;
12820 
12821 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12822 					       cmd) != 0)
12823 			continue;
12824 
12825 		/* Guard against IO completion being called at same time */
12826 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12827 		spin_lock(&lpfc_cmd->buf_lock);
12828 
12829 		if (!lpfc_cmd->pCmd) {
12830 			spin_unlock(&lpfc_cmd->buf_lock);
12831 			continue;
12832 		}
12833 
12834 		if (phba->sli_rev == LPFC_SLI_REV4) {
12835 			pring_s4 =
12836 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12837 			if (!pring_s4) {
12838 				spin_unlock(&lpfc_cmd->buf_lock);
12839 				continue;
12840 			}
12841 			/* Note: both hbalock and ring_lock must be set here */
12842 			spin_lock(&pring_s4->ring_lock);
12843 		}
12844 
12845 		/*
12846 		 * If the iocbq is already being aborted, don't take a second
12847 		 * action, but do count it.
12848 		 */
12849 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
12850 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
12851 			if (phba->sli_rev == LPFC_SLI_REV4)
12852 				spin_unlock(&pring_s4->ring_lock);
12853 			spin_unlock(&lpfc_cmd->buf_lock);
12854 			continue;
12855 		}
12856 
12857 		/* issue ABTS for this IOCB based on iotag */
12858 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12859 		if (!abtsiocbq) {
12860 			if (phba->sli_rev == LPFC_SLI_REV4)
12861 				spin_unlock(&pring_s4->ring_lock);
12862 			spin_unlock(&lpfc_cmd->buf_lock);
12863 			continue;
12864 		}
12865 
12866 		icmd = &iocbq->iocb;
12867 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
12868 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
12869 		if (phba->sli_rev == LPFC_SLI_REV4)
12870 			abtsiocbq->iocb.un.acxri.abortIoTag =
12871 							 iocbq->sli4_xritag;
12872 		else
12873 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
12874 		abtsiocbq->iocb.ulpLe = 1;
12875 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
12876 		abtsiocbq->vport = vport;
12877 
12878 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12879 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12880 		if (iocbq->iocb_flag & LPFC_IO_FCP)
12881 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
12882 		if (iocbq->iocb_flag & LPFC_IO_FOF)
12883 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
12884 
12885 		ndlp = lpfc_cmd->rdata->pnode;
12886 
12887 		if (lpfc_is_link_up(phba) &&
12888 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
12889 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
12890 		else
12891 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
12892 
12893 		/* Setup callback routine and issue the command. */
12894 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
12895 
12896 		/*
12897 		 * Indicate the IO is being aborted by the driver and set
12898 		 * the caller's flag into the aborted IO.
12899 		 */
12900 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
12901 
12902 		if (phba->sli_rev == LPFC_SLI_REV4) {
12903 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12904 							abtsiocbq, 0);
12905 			spin_unlock(&pring_s4->ring_lock);
12906 		} else {
12907 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12908 							abtsiocbq, 0);
12909 		}
12910 
12911 		spin_unlock(&lpfc_cmd->buf_lock);
12912 
12913 		if (ret_val == IOCB_ERROR)
12914 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12915 		else
12916 			sum++;
12917 	}
12918 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12919 	return sum;
12920 }
12921 
12922 /**
12923  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12924  * @phba: Pointer to HBA context object.
12925  * @cmdiocbq: Pointer to command iocb.
12926  * @rspiocbq: Pointer to response iocb.
12927  *
12928  * This function is the completion handler for iocbs issued using
12929  * lpfc_sli_issue_iocb_wait function. This function is called by the
12930  * ring event handler function without any lock held. This function
12931  * can be called from both worker thread context and interrupt
12932  * context. This function also can be called from other thread which
12933  * cleans up the SLI layer objects.
12934  * This function copy the contents of the response iocb to the
12935  * response iocb memory object provided by the caller of
12936  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12937  * sleeps for the iocb completion.
12938  **/
12939 static void
12940 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12941 			struct lpfc_iocbq *cmdiocbq,
12942 			struct lpfc_iocbq *rspiocbq)
12943 {
12944 	wait_queue_head_t *pdone_q;
12945 	unsigned long iflags;
12946 	struct lpfc_io_buf *lpfc_cmd;
12947 
12948 	spin_lock_irqsave(&phba->hbalock, iflags);
12949 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
12950 
12951 		/*
12952 		 * A time out has occurred for the iocb.  If a time out
12953 		 * completion handler has been supplied, call it.  Otherwise,
12954 		 * just free the iocbq.
12955 		 */
12956 
12957 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12958 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
12959 		cmdiocbq->wait_iocb_cmpl = NULL;
12960 		if (cmdiocbq->iocb_cmpl)
12961 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
12962 		else
12963 			lpfc_sli_release_iocbq(phba, cmdiocbq);
12964 		return;
12965 	}
12966 
12967 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
12968 	if (cmdiocbq->context2 && rspiocbq)
12969 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
12970 		       &rspiocbq->iocb, sizeof(IOCB_t));
12971 
12972 	/* Set the exchange busy flag for task management commands */
12973 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
12974 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
12975 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12976 			cur_iocbq);
12977 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
12978 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12979 		else
12980 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12981 	}
12982 
12983 	pdone_q = cmdiocbq->context_un.wait_queue;
12984 	if (pdone_q)
12985 		wake_up(pdone_q);
12986 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12987 	return;
12988 }
12989 
12990 /**
12991  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12992  * @phba: Pointer to HBA context object..
12993  * @piocbq: Pointer to command iocb.
12994  * @flag: Flag to test.
12995  *
12996  * This routine grabs the hbalock and then test the iocb_flag to
12997  * see if the passed in flag is set.
12998  * Returns:
12999  * 1 if flag is set.
13000  * 0 if flag is not set.
13001  **/
13002 static int
13003 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
13004 		 struct lpfc_iocbq *piocbq, uint32_t flag)
13005 {
13006 	unsigned long iflags;
13007 	int ret;
13008 
13009 	spin_lock_irqsave(&phba->hbalock, iflags);
13010 	ret = piocbq->iocb_flag & flag;
13011 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13012 	return ret;
13013 
13014 }
13015 
13016 /**
13017  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
13018  * @phba: Pointer to HBA context object..
13019  * @ring_number: Ring number
13020  * @piocb: Pointer to command iocb.
13021  * @prspiocbq: Pointer to response iocb.
13022  * @timeout: Timeout in number of seconds.
13023  *
13024  * This function issues the iocb to firmware and waits for the
13025  * iocb to complete. The iocb_cmpl field of the shall be used
13026  * to handle iocbs which time out. If the field is NULL, the
13027  * function shall free the iocbq structure.  If more clean up is
13028  * needed, the caller is expected to provide a completion function
13029  * that will provide the needed clean up.  If the iocb command is
13030  * not completed within timeout seconds, the function will either
13031  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
13032  * completion function set in the iocb_cmpl field and then return
13033  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
13034  * resources if this function returns IOCB_TIMEDOUT.
13035  * The function waits for the iocb completion using an
13036  * non-interruptible wait.
13037  * This function will sleep while waiting for iocb completion.
13038  * So, this function should not be called from any context which
13039  * does not allow sleeping. Due to the same reason, this function
13040  * cannot be called with interrupt disabled.
13041  * This function assumes that the iocb completions occur while
13042  * this function sleep. So, this function cannot be called from
13043  * the thread which process iocb completion for this ring.
13044  * This function clears the iocb_flag of the iocb object before
13045  * issuing the iocb and the iocb completion handler sets this
13046  * flag and wakes this thread when the iocb completes.
13047  * The contents of the response iocb will be copied to prspiocbq
13048  * by the completion handler when the command completes.
13049  * This function returns IOCB_SUCCESS when success.
13050  * This function is called with no lock held.
13051  **/
13052 int
13053 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
13054 			 uint32_t ring_number,
13055 			 struct lpfc_iocbq *piocb,
13056 			 struct lpfc_iocbq *prspiocbq,
13057 			 uint32_t timeout)
13058 {
13059 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
13060 	long timeleft, timeout_req = 0;
13061 	int retval = IOCB_SUCCESS;
13062 	uint32_t creg_val;
13063 	struct lpfc_iocbq *iocb;
13064 	int txq_cnt = 0;
13065 	int txcmplq_cnt = 0;
13066 	struct lpfc_sli_ring *pring;
13067 	unsigned long iflags;
13068 	bool iocb_completed = true;
13069 
13070 	if (phba->sli_rev >= LPFC_SLI_REV4)
13071 		pring = lpfc_sli4_calc_ring(phba, piocb);
13072 	else
13073 		pring = &phba->sli.sli3_ring[ring_number];
13074 	/*
13075 	 * If the caller has provided a response iocbq buffer, then context2
13076 	 * is NULL or its an error.
13077 	 */
13078 	if (prspiocbq) {
13079 		if (piocb->context2)
13080 			return IOCB_ERROR;
13081 		piocb->context2 = prspiocbq;
13082 	}
13083 
13084 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
13085 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
13086 	piocb->context_un.wait_queue = &done_q;
13087 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
13088 
13089 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13090 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13091 			return IOCB_ERROR;
13092 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
13093 		writel(creg_val, phba->HCregaddr);
13094 		readl(phba->HCregaddr); /* flush */
13095 	}
13096 
13097 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
13098 				     SLI_IOCB_RET_IOCB);
13099 	if (retval == IOCB_SUCCESS) {
13100 		timeout_req = msecs_to_jiffies(timeout * 1000);
13101 		timeleft = wait_event_timeout(done_q,
13102 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
13103 				timeout_req);
13104 		spin_lock_irqsave(&phba->hbalock, iflags);
13105 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
13106 
13107 			/*
13108 			 * IOCB timed out.  Inform the wake iocb wait
13109 			 * completion function and set local status
13110 			 */
13111 
13112 			iocb_completed = false;
13113 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
13114 		}
13115 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13116 		if (iocb_completed) {
13117 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13118 					"0331 IOCB wake signaled\n");
13119 			/* Note: we are not indicating if the IOCB has a success
13120 			 * status or not - that's for the caller to check.
13121 			 * IOCB_SUCCESS means just that the command was sent and
13122 			 * completed. Not that it completed successfully.
13123 			 * */
13124 		} else if (timeleft == 0) {
13125 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13126 					"0338 IOCB wait timeout error - no "
13127 					"wake response Data x%x\n", timeout);
13128 			retval = IOCB_TIMEDOUT;
13129 		} else {
13130 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13131 					"0330 IOCB wake NOT set, "
13132 					"Data x%x x%lx\n",
13133 					timeout, (timeleft / jiffies));
13134 			retval = IOCB_TIMEDOUT;
13135 		}
13136 	} else if (retval == IOCB_BUSY) {
13137 		if (phba->cfg_log_verbose & LOG_SLI) {
13138 			list_for_each_entry(iocb, &pring->txq, list) {
13139 				txq_cnt++;
13140 			}
13141 			list_for_each_entry(iocb, &pring->txcmplq, list) {
13142 				txcmplq_cnt++;
13143 			}
13144 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13145 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
13146 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
13147 		}
13148 		return retval;
13149 	} else {
13150 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13151 				"0332 IOCB wait issue failed, Data x%x\n",
13152 				retval);
13153 		retval = IOCB_ERROR;
13154 	}
13155 
13156 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
13157 		if (lpfc_readl(phba->HCregaddr, &creg_val))
13158 			return IOCB_ERROR;
13159 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
13160 		writel(creg_val, phba->HCregaddr);
13161 		readl(phba->HCregaddr); /* flush */
13162 	}
13163 
13164 	if (prspiocbq)
13165 		piocb->context2 = NULL;
13166 
13167 	piocb->context_un.wait_queue = NULL;
13168 	piocb->iocb_cmpl = NULL;
13169 	return retval;
13170 }
13171 
13172 /**
13173  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
13174  * @phba: Pointer to HBA context object.
13175  * @pmboxq: Pointer to driver mailbox object.
13176  * @timeout: Timeout in number of seconds.
13177  *
13178  * This function issues the mailbox to firmware and waits for the
13179  * mailbox command to complete. If the mailbox command is not
13180  * completed within timeout seconds, it returns MBX_TIMEOUT.
13181  * The function waits for the mailbox completion using an
13182  * interruptible wait. If the thread is woken up due to a
13183  * signal, MBX_TIMEOUT error is returned to the caller. Caller
13184  * should not free the mailbox resources, if this function returns
13185  * MBX_TIMEOUT.
13186  * This function will sleep while waiting for mailbox completion.
13187  * So, this function should not be called from any context which
13188  * does not allow sleeping. Due to the same reason, this function
13189  * cannot be called with interrupt disabled.
13190  * This function assumes that the mailbox completion occurs while
13191  * this function sleep. So, this function cannot be called from
13192  * the worker thread which processes mailbox completion.
13193  * This function is called in the context of HBA management
13194  * applications.
13195  * This function returns MBX_SUCCESS when successful.
13196  * This function is called with no lock held.
13197  **/
13198 int
13199 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
13200 			 uint32_t timeout)
13201 {
13202 	struct completion mbox_done;
13203 	int retval;
13204 	unsigned long flag;
13205 
13206 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
13207 	/* setup wake call as IOCB callback */
13208 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
13209 
13210 	/* setup context3 field to pass wait_queue pointer to wake function  */
13211 	init_completion(&mbox_done);
13212 	pmboxq->context3 = &mbox_done;
13213 	/* now issue the command */
13214 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
13215 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
13216 		wait_for_completion_timeout(&mbox_done,
13217 					    msecs_to_jiffies(timeout * 1000));
13218 
13219 		spin_lock_irqsave(&phba->hbalock, flag);
13220 		pmboxq->context3 = NULL;
13221 		/*
13222 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
13223 		 * else do not free the resources.
13224 		 */
13225 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
13226 			retval = MBX_SUCCESS;
13227 		} else {
13228 			retval = MBX_TIMEOUT;
13229 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
13230 		}
13231 		spin_unlock_irqrestore(&phba->hbalock, flag);
13232 	}
13233 	return retval;
13234 }
13235 
13236 /**
13237  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
13238  * @phba: Pointer to HBA context.
13239  * @mbx_action: Mailbox shutdown options.
13240  *
13241  * This function is called to shutdown the driver's mailbox sub-system.
13242  * It first marks the mailbox sub-system is in a block state to prevent
13243  * the asynchronous mailbox command from issued off the pending mailbox
13244  * command queue. If the mailbox command sub-system shutdown is due to
13245  * HBA error conditions such as EEH or ERATT, this routine shall invoke
13246  * the mailbox sub-system flush routine to forcefully bring down the
13247  * mailbox sub-system. Otherwise, if it is due to normal condition (such
13248  * as with offline or HBA function reset), this routine will wait for the
13249  * outstanding mailbox command to complete before invoking the mailbox
13250  * sub-system flush routine to gracefully bring down mailbox sub-system.
13251  **/
13252 void
13253 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
13254 {
13255 	struct lpfc_sli *psli = &phba->sli;
13256 	unsigned long timeout;
13257 
13258 	if (mbx_action == LPFC_MBX_NO_WAIT) {
13259 		/* delay 100ms for port state */
13260 		msleep(100);
13261 		lpfc_sli_mbox_sys_flush(phba);
13262 		return;
13263 	}
13264 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
13265 
13266 	/* Disable softirqs, including timers from obtaining phba->hbalock */
13267 	local_bh_disable();
13268 
13269 	spin_lock_irq(&phba->hbalock);
13270 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
13271 
13272 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
13273 		/* Determine how long we might wait for the active mailbox
13274 		 * command to be gracefully completed by firmware.
13275 		 */
13276 		if (phba->sli.mbox_active)
13277 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
13278 						phba->sli.mbox_active) *
13279 						1000) + jiffies;
13280 		spin_unlock_irq(&phba->hbalock);
13281 
13282 		/* Enable softirqs again, done with phba->hbalock */
13283 		local_bh_enable();
13284 
13285 		while (phba->sli.mbox_active) {
13286 			/* Check active mailbox complete status every 2ms */
13287 			msleep(2);
13288 			if (time_after(jiffies, timeout))
13289 				/* Timeout, let the mailbox flush routine to
13290 				 * forcefully release active mailbox command
13291 				 */
13292 				break;
13293 		}
13294 	} else {
13295 		spin_unlock_irq(&phba->hbalock);
13296 
13297 		/* Enable softirqs again, done with phba->hbalock */
13298 		local_bh_enable();
13299 	}
13300 
13301 	lpfc_sli_mbox_sys_flush(phba);
13302 }
13303 
13304 /**
13305  * lpfc_sli_eratt_read - read sli-3 error attention events
13306  * @phba: Pointer to HBA context.
13307  *
13308  * This function is called to read the SLI3 device error attention registers
13309  * for possible error attention events. The caller must hold the hostlock
13310  * with spin_lock_irq().
13311  *
13312  * This function returns 1 when there is Error Attention in the Host Attention
13313  * Register and returns 0 otherwise.
13314  **/
13315 static int
13316 lpfc_sli_eratt_read(struct lpfc_hba *phba)
13317 {
13318 	uint32_t ha_copy;
13319 
13320 	/* Read chip Host Attention (HA) register */
13321 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
13322 		goto unplug_err;
13323 
13324 	if (ha_copy & HA_ERATT) {
13325 		/* Read host status register to retrieve error event */
13326 		if (lpfc_sli_read_hs(phba))
13327 			goto unplug_err;
13328 
13329 		/* Check if there is a deferred error condition is active */
13330 		if ((HS_FFER1 & phba->work_hs) &&
13331 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13332 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
13333 			phba->hba_flag |= DEFER_ERATT;
13334 			/* Clear all interrupt enable conditions */
13335 			writel(0, phba->HCregaddr);
13336 			readl(phba->HCregaddr);
13337 		}
13338 
13339 		/* Set the driver HA work bitmap */
13340 		phba->work_ha |= HA_ERATT;
13341 		/* Indicate polling handles this ERATT */
13342 		phba->hba_flag |= HBA_ERATT_HANDLED;
13343 		return 1;
13344 	}
13345 	return 0;
13346 
13347 unplug_err:
13348 	/* Set the driver HS work bitmap */
13349 	phba->work_hs |= UNPLUG_ERR;
13350 	/* Set the driver HA work bitmap */
13351 	phba->work_ha |= HA_ERATT;
13352 	/* Indicate polling handles this ERATT */
13353 	phba->hba_flag |= HBA_ERATT_HANDLED;
13354 	return 1;
13355 }
13356 
13357 /**
13358  * lpfc_sli4_eratt_read - read sli-4 error attention events
13359  * @phba: Pointer to HBA context.
13360  *
13361  * This function is called to read the SLI4 device error attention registers
13362  * for possible error attention events. The caller must hold the hostlock
13363  * with spin_lock_irq().
13364  *
13365  * This function returns 1 when there is Error Attention in the Host Attention
13366  * Register and returns 0 otherwise.
13367  **/
13368 static int
13369 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
13370 {
13371 	uint32_t uerr_sta_hi, uerr_sta_lo;
13372 	uint32_t if_type, portsmphr;
13373 	struct lpfc_register portstat_reg;
13374 
13375 	/*
13376 	 * For now, use the SLI4 device internal unrecoverable error
13377 	 * registers for error attention. This can be changed later.
13378 	 */
13379 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
13380 	switch (if_type) {
13381 	case LPFC_SLI_INTF_IF_TYPE_0:
13382 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
13383 			&uerr_sta_lo) ||
13384 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
13385 			&uerr_sta_hi)) {
13386 			phba->work_hs |= UNPLUG_ERR;
13387 			phba->work_ha |= HA_ERATT;
13388 			phba->hba_flag |= HBA_ERATT_HANDLED;
13389 			return 1;
13390 		}
13391 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
13392 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
13393 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13394 					"1423 HBA Unrecoverable error: "
13395 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
13396 					"ue_mask_lo_reg=0x%x, "
13397 					"ue_mask_hi_reg=0x%x\n",
13398 					uerr_sta_lo, uerr_sta_hi,
13399 					phba->sli4_hba.ue_mask_lo,
13400 					phba->sli4_hba.ue_mask_hi);
13401 			phba->work_status[0] = uerr_sta_lo;
13402 			phba->work_status[1] = uerr_sta_hi;
13403 			phba->work_ha |= HA_ERATT;
13404 			phba->hba_flag |= HBA_ERATT_HANDLED;
13405 			return 1;
13406 		}
13407 		break;
13408 	case LPFC_SLI_INTF_IF_TYPE_2:
13409 	case LPFC_SLI_INTF_IF_TYPE_6:
13410 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
13411 			&portstat_reg.word0) ||
13412 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
13413 			&portsmphr)){
13414 			phba->work_hs |= UNPLUG_ERR;
13415 			phba->work_ha |= HA_ERATT;
13416 			phba->hba_flag |= HBA_ERATT_HANDLED;
13417 			return 1;
13418 		}
13419 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
13420 			phba->work_status[0] =
13421 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
13422 			phba->work_status[1] =
13423 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
13424 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13425 					"2885 Port Status Event: "
13426 					"port status reg 0x%x, "
13427 					"port smphr reg 0x%x, "
13428 					"error 1=0x%x, error 2=0x%x\n",
13429 					portstat_reg.word0,
13430 					portsmphr,
13431 					phba->work_status[0],
13432 					phba->work_status[1]);
13433 			phba->work_ha |= HA_ERATT;
13434 			phba->hba_flag |= HBA_ERATT_HANDLED;
13435 			return 1;
13436 		}
13437 		break;
13438 	case LPFC_SLI_INTF_IF_TYPE_1:
13439 	default:
13440 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13441 				"2886 HBA Error Attention on unsupported "
13442 				"if type %d.", if_type);
13443 		return 1;
13444 	}
13445 
13446 	return 0;
13447 }
13448 
13449 /**
13450  * lpfc_sli_check_eratt - check error attention events
13451  * @phba: Pointer to HBA context.
13452  *
13453  * This function is called from timer soft interrupt context to check HBA's
13454  * error attention register bit for error attention events.
13455  *
13456  * This function returns 1 when there is Error Attention in the Host Attention
13457  * Register and returns 0 otherwise.
13458  **/
13459 int
13460 lpfc_sli_check_eratt(struct lpfc_hba *phba)
13461 {
13462 	uint32_t ha_copy;
13463 
13464 	/* If somebody is waiting to handle an eratt, don't process it
13465 	 * here. The brdkill function will do this.
13466 	 */
13467 	if (phba->link_flag & LS_IGNORE_ERATT)
13468 		return 0;
13469 
13470 	/* Check if interrupt handler handles this ERATT */
13471 	spin_lock_irq(&phba->hbalock);
13472 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
13473 		/* Interrupt handler has handled ERATT */
13474 		spin_unlock_irq(&phba->hbalock);
13475 		return 0;
13476 	}
13477 
13478 	/*
13479 	 * If there is deferred error attention, do not check for error
13480 	 * attention
13481 	 */
13482 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13483 		spin_unlock_irq(&phba->hbalock);
13484 		return 0;
13485 	}
13486 
13487 	/* If PCI channel is offline, don't process it */
13488 	if (unlikely(pci_channel_offline(phba->pcidev))) {
13489 		spin_unlock_irq(&phba->hbalock);
13490 		return 0;
13491 	}
13492 
13493 	switch (phba->sli_rev) {
13494 	case LPFC_SLI_REV2:
13495 	case LPFC_SLI_REV3:
13496 		/* Read chip Host Attention (HA) register */
13497 		ha_copy = lpfc_sli_eratt_read(phba);
13498 		break;
13499 	case LPFC_SLI_REV4:
13500 		/* Read device Uncoverable Error (UERR) registers */
13501 		ha_copy = lpfc_sli4_eratt_read(phba);
13502 		break;
13503 	default:
13504 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13505 				"0299 Invalid SLI revision (%d)\n",
13506 				phba->sli_rev);
13507 		ha_copy = 0;
13508 		break;
13509 	}
13510 	spin_unlock_irq(&phba->hbalock);
13511 
13512 	return ha_copy;
13513 }
13514 
13515 /**
13516  * lpfc_intr_state_check - Check device state for interrupt handling
13517  * @phba: Pointer to HBA context.
13518  *
13519  * This inline routine checks whether a device or its PCI slot is in a state
13520  * that the interrupt should be handled.
13521  *
13522  * This function returns 0 if the device or the PCI slot is in a state that
13523  * interrupt should be handled, otherwise -EIO.
13524  */
13525 static inline int
13526 lpfc_intr_state_check(struct lpfc_hba *phba)
13527 {
13528 	/* If the pci channel is offline, ignore all the interrupts */
13529 	if (unlikely(pci_channel_offline(phba->pcidev)))
13530 		return -EIO;
13531 
13532 	/* Update device level interrupt statistics */
13533 	phba->sli.slistat.sli_intr++;
13534 
13535 	/* Ignore all interrupts during initialization. */
13536 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
13537 		return -EIO;
13538 
13539 	return 0;
13540 }
13541 
13542 /**
13543  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
13544  * @irq: Interrupt number.
13545  * @dev_id: The device context pointer.
13546  *
13547  * This function is directly called from the PCI layer as an interrupt
13548  * service routine when device with SLI-3 interface spec is enabled with
13549  * MSI-X multi-message interrupt mode and there are slow-path events in
13550  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
13551  * interrupt mode, this function is called as part of the device-level
13552  * interrupt handler. When the PCI slot is in error recovery or the HBA
13553  * is undergoing initialization, the interrupt handler will not process
13554  * the interrupt. The link attention and ELS ring attention events are
13555  * handled by the worker thread. The interrupt handler signals the worker
13556  * thread and returns for these events. This function is called without
13557  * any lock held. It gets the hbalock to access and update SLI data
13558  * structures.
13559  *
13560  * This function returns IRQ_HANDLED when interrupt is handled else it
13561  * returns IRQ_NONE.
13562  **/
13563 irqreturn_t
13564 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
13565 {
13566 	struct lpfc_hba  *phba;
13567 	uint32_t ha_copy, hc_copy;
13568 	uint32_t work_ha_copy;
13569 	unsigned long status;
13570 	unsigned long iflag;
13571 	uint32_t control;
13572 
13573 	MAILBOX_t *mbox, *pmbox;
13574 	struct lpfc_vport *vport;
13575 	struct lpfc_nodelist *ndlp;
13576 	struct lpfc_dmabuf *mp;
13577 	LPFC_MBOXQ_t *pmb;
13578 	int rc;
13579 
13580 	/*
13581 	 * Get the driver's phba structure from the dev_id and
13582 	 * assume the HBA is not interrupting.
13583 	 */
13584 	phba = (struct lpfc_hba *)dev_id;
13585 
13586 	if (unlikely(!phba))
13587 		return IRQ_NONE;
13588 
13589 	/*
13590 	 * Stuff needs to be attented to when this function is invoked as an
13591 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13592 	 */
13593 	if (phba->intr_type == MSIX) {
13594 		/* Check device state for handling interrupt */
13595 		if (lpfc_intr_state_check(phba))
13596 			return IRQ_NONE;
13597 		/* Need to read HA REG for slow-path events */
13598 		spin_lock_irqsave(&phba->hbalock, iflag);
13599 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13600 			goto unplug_error;
13601 		/* If somebody is waiting to handle an eratt don't process it
13602 		 * here. The brdkill function will do this.
13603 		 */
13604 		if (phba->link_flag & LS_IGNORE_ERATT)
13605 			ha_copy &= ~HA_ERATT;
13606 		/* Check the need for handling ERATT in interrupt handler */
13607 		if (ha_copy & HA_ERATT) {
13608 			if (phba->hba_flag & HBA_ERATT_HANDLED)
13609 				/* ERATT polling has handled ERATT */
13610 				ha_copy &= ~HA_ERATT;
13611 			else
13612 				/* Indicate interrupt handler handles ERATT */
13613 				phba->hba_flag |= HBA_ERATT_HANDLED;
13614 		}
13615 
13616 		/*
13617 		 * If there is deferred error attention, do not check for any
13618 		 * interrupt.
13619 		 */
13620 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13621 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13622 			return IRQ_NONE;
13623 		}
13624 
13625 		/* Clear up only attention source related to slow-path */
13626 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
13627 			goto unplug_error;
13628 
13629 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
13630 			HC_LAINT_ENA | HC_ERINT_ENA),
13631 			phba->HCregaddr);
13632 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
13633 			phba->HAregaddr);
13634 		writel(hc_copy, phba->HCregaddr);
13635 		readl(phba->HAregaddr); /* flush */
13636 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13637 	} else
13638 		ha_copy = phba->ha_copy;
13639 
13640 	work_ha_copy = ha_copy & phba->work_ha_mask;
13641 
13642 	if (work_ha_copy) {
13643 		if (work_ha_copy & HA_LATT) {
13644 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
13645 				/*
13646 				 * Turn off Link Attention interrupts
13647 				 * until CLEAR_LA done
13648 				 */
13649 				spin_lock_irqsave(&phba->hbalock, iflag);
13650 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
13651 				if (lpfc_readl(phba->HCregaddr, &control))
13652 					goto unplug_error;
13653 				control &= ~HC_LAINT_ENA;
13654 				writel(control, phba->HCregaddr);
13655 				readl(phba->HCregaddr); /* flush */
13656 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13657 			}
13658 			else
13659 				work_ha_copy &= ~HA_LATT;
13660 		}
13661 
13662 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
13663 			/*
13664 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
13665 			 * the only slow ring.
13666 			 */
13667 			status = (work_ha_copy &
13668 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
13669 			status >>= (4*LPFC_ELS_RING);
13670 			if (status & HA_RXMASK) {
13671 				spin_lock_irqsave(&phba->hbalock, iflag);
13672 				if (lpfc_readl(phba->HCregaddr, &control))
13673 					goto unplug_error;
13674 
13675 				lpfc_debugfs_slow_ring_trc(phba,
13676 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
13677 				control, status,
13678 				(uint32_t)phba->sli.slistat.sli_intr);
13679 
13680 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
13681 					lpfc_debugfs_slow_ring_trc(phba,
13682 						"ISR Disable ring:"
13683 						"pwork:x%x hawork:x%x wait:x%x",
13684 						phba->work_ha, work_ha_copy,
13685 						(uint32_t)((unsigned long)
13686 						&phba->work_waitq));
13687 
13688 					control &=
13689 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
13690 					writel(control, phba->HCregaddr);
13691 					readl(phba->HCregaddr); /* flush */
13692 				}
13693 				else {
13694 					lpfc_debugfs_slow_ring_trc(phba,
13695 						"ISR slow ring:   pwork:"
13696 						"x%x hawork:x%x wait:x%x",
13697 						phba->work_ha, work_ha_copy,
13698 						(uint32_t)((unsigned long)
13699 						&phba->work_waitq));
13700 				}
13701 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13702 			}
13703 		}
13704 		spin_lock_irqsave(&phba->hbalock, iflag);
13705 		if (work_ha_copy & HA_ERATT) {
13706 			if (lpfc_sli_read_hs(phba))
13707 				goto unplug_error;
13708 			/*
13709 			 * Check if there is a deferred error condition
13710 			 * is active
13711 			 */
13712 			if ((HS_FFER1 & phba->work_hs) &&
13713 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
13714 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
13715 				  phba->work_hs)) {
13716 				phba->hba_flag |= DEFER_ERATT;
13717 				/* Clear all interrupt enable conditions */
13718 				writel(0, phba->HCregaddr);
13719 				readl(phba->HCregaddr);
13720 			}
13721 		}
13722 
13723 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
13724 			pmb = phba->sli.mbox_active;
13725 			pmbox = &pmb->u.mb;
13726 			mbox = phba->mbox;
13727 			vport = pmb->vport;
13728 
13729 			/* First check out the status word */
13730 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
13731 			if (pmbox->mbxOwner != OWN_HOST) {
13732 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13733 				/*
13734 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
13735 				 * mbxStatus <status>
13736 				 */
13737 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13738 						"(%d):0304 Stray Mailbox "
13739 						"Interrupt mbxCommand x%x "
13740 						"mbxStatus x%x\n",
13741 						(vport ? vport->vpi : 0),
13742 						pmbox->mbxCommand,
13743 						pmbox->mbxStatus);
13744 				/* clear mailbox attention bit */
13745 				work_ha_copy &= ~HA_MBATT;
13746 			} else {
13747 				phba->sli.mbox_active = NULL;
13748 				spin_unlock_irqrestore(&phba->hbalock, iflag);
13749 				phba->last_completion_time = jiffies;
13750 				del_timer(&phba->sli.mbox_tmo);
13751 				if (pmb->mbox_cmpl) {
13752 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
13753 							MAILBOX_CMD_SIZE);
13754 					if (pmb->out_ext_byte_len &&
13755 						pmb->ctx_buf)
13756 						lpfc_sli_pcimem_bcopy(
13757 						phba->mbox_ext,
13758 						pmb->ctx_buf,
13759 						pmb->out_ext_byte_len);
13760 				}
13761 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13762 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13763 
13764 					lpfc_debugfs_disc_trc(vport,
13765 						LPFC_DISC_TRC_MBOX_VPORT,
13766 						"MBOX dflt rpi: : "
13767 						"status:x%x rpi:x%x",
13768 						(uint32_t)pmbox->mbxStatus,
13769 						pmbox->un.varWords[0], 0);
13770 
13771 					if (!pmbox->mbxStatus) {
13772 						mp = (struct lpfc_dmabuf *)
13773 							(pmb->ctx_buf);
13774 						ndlp = (struct lpfc_nodelist *)
13775 							pmb->ctx_ndlp;
13776 
13777 						/* Reg_LOGIN of dflt RPI was
13778 						 * successful. new lets get
13779 						 * rid of the RPI using the
13780 						 * same mbox buffer.
13781 						 */
13782 						lpfc_unreg_login(phba,
13783 							vport->vpi,
13784 							pmbox->un.varWords[0],
13785 							pmb);
13786 						pmb->mbox_cmpl =
13787 							lpfc_mbx_cmpl_dflt_rpi;
13788 						pmb->ctx_buf = mp;
13789 						pmb->ctx_ndlp = ndlp;
13790 						pmb->vport = vport;
13791 						rc = lpfc_sli_issue_mbox(phba,
13792 								pmb,
13793 								MBX_NOWAIT);
13794 						if (rc != MBX_BUSY)
13795 							lpfc_printf_log(phba,
13796 							KERN_ERR,
13797 							LOG_TRACE_EVENT,
13798 							"0350 rc should have"
13799 							"been MBX_BUSY\n");
13800 						if (rc != MBX_NOT_FINISHED)
13801 							goto send_current_mbox;
13802 					}
13803 				}
13804 				spin_lock_irqsave(
13805 						&phba->pport->work_port_lock,
13806 						iflag);
13807 				phba->pport->work_port_events &=
13808 					~WORKER_MBOX_TMO;
13809 				spin_unlock_irqrestore(
13810 						&phba->pport->work_port_lock,
13811 						iflag);
13812 
13813 				/* Do NOT queue MBX_HEARTBEAT to the worker
13814 				 * thread for processing.
13815 				 */
13816 				if (pmbox->mbxCommand == MBX_HEARTBEAT) {
13817 					/* Process mbox now */
13818 					phba->sli.mbox_active = NULL;
13819 					phba->sli.sli_flag &=
13820 						~LPFC_SLI_MBOX_ACTIVE;
13821 					if (pmb->mbox_cmpl)
13822 						pmb->mbox_cmpl(phba, pmb);
13823 				} else {
13824 					/* Queue to worker thread to process */
13825 					lpfc_mbox_cmpl_put(phba, pmb);
13826 				}
13827 			}
13828 		} else
13829 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13830 
13831 		if ((work_ha_copy & HA_MBATT) &&
13832 		    (phba->sli.mbox_active == NULL)) {
13833 send_current_mbox:
13834 			/* Process next mailbox command if there is one */
13835 			do {
13836 				rc = lpfc_sli_issue_mbox(phba, NULL,
13837 							 MBX_NOWAIT);
13838 			} while (rc == MBX_NOT_FINISHED);
13839 			if (rc != MBX_SUCCESS)
13840 				lpfc_printf_log(phba, KERN_ERR,
13841 						LOG_TRACE_EVENT,
13842 						"0349 rc should be "
13843 						"MBX_SUCCESS\n");
13844 		}
13845 
13846 		spin_lock_irqsave(&phba->hbalock, iflag);
13847 		phba->work_ha |= work_ha_copy;
13848 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13849 		lpfc_worker_wake_up(phba);
13850 	}
13851 	return IRQ_HANDLED;
13852 unplug_error:
13853 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13854 	return IRQ_HANDLED;
13855 
13856 } /* lpfc_sli_sp_intr_handler */
13857 
13858 /**
13859  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13860  * @irq: Interrupt number.
13861  * @dev_id: The device context pointer.
13862  *
13863  * This function is directly called from the PCI layer as an interrupt
13864  * service routine when device with SLI-3 interface spec is enabled with
13865  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13866  * ring event in the HBA. However, when the device is enabled with either
13867  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13868  * device-level interrupt handler. When the PCI slot is in error recovery
13869  * or the HBA is undergoing initialization, the interrupt handler will not
13870  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13871  * the intrrupt context. This function is called without any lock held.
13872  * It gets the hbalock to access and update SLI data structures.
13873  *
13874  * This function returns IRQ_HANDLED when interrupt is handled else it
13875  * returns IRQ_NONE.
13876  **/
13877 irqreturn_t
13878 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13879 {
13880 	struct lpfc_hba  *phba;
13881 	uint32_t ha_copy;
13882 	unsigned long status;
13883 	unsigned long iflag;
13884 	struct lpfc_sli_ring *pring;
13885 
13886 	/* Get the driver's phba structure from the dev_id and
13887 	 * assume the HBA is not interrupting.
13888 	 */
13889 	phba = (struct lpfc_hba *) dev_id;
13890 
13891 	if (unlikely(!phba))
13892 		return IRQ_NONE;
13893 
13894 	/*
13895 	 * Stuff needs to be attented to when this function is invoked as an
13896 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13897 	 */
13898 	if (phba->intr_type == MSIX) {
13899 		/* Check device state for handling interrupt */
13900 		if (lpfc_intr_state_check(phba))
13901 			return IRQ_NONE;
13902 		/* Need to read HA REG for FCP ring and other ring events */
13903 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13904 			return IRQ_HANDLED;
13905 		/* Clear up only attention source related to fast-path */
13906 		spin_lock_irqsave(&phba->hbalock, iflag);
13907 		/*
13908 		 * If there is deferred error attention, do not check for
13909 		 * any interrupt.
13910 		 */
13911 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13912 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13913 			return IRQ_NONE;
13914 		}
13915 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13916 			phba->HAregaddr);
13917 		readl(phba->HAregaddr); /* flush */
13918 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13919 	} else
13920 		ha_copy = phba->ha_copy;
13921 
13922 	/*
13923 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13924 	 */
13925 	ha_copy &= ~(phba->work_ha_mask);
13926 
13927 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13928 	status >>= (4*LPFC_FCP_RING);
13929 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13930 	if (status & HA_RXMASK)
13931 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13932 
13933 	if (phba->cfg_multi_ring_support == 2) {
13934 		/*
13935 		 * Process all events on extra ring. Take the optimized path
13936 		 * for extra ring IO.
13937 		 */
13938 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13939 		status >>= (4*LPFC_EXTRA_RING);
13940 		if (status & HA_RXMASK) {
13941 			lpfc_sli_handle_fast_ring_event(phba,
13942 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13943 					status);
13944 		}
13945 	}
13946 	return IRQ_HANDLED;
13947 }  /* lpfc_sli_fp_intr_handler */
13948 
13949 /**
13950  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13951  * @irq: Interrupt number.
13952  * @dev_id: The device context pointer.
13953  *
13954  * This function is the HBA device-level interrupt handler to device with
13955  * SLI-3 interface spec, called from the PCI layer when either MSI or
13956  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
13957  * requires driver attention. This function invokes the slow-path interrupt
13958  * attention handling function and fast-path interrupt attention handling
13959  * function in turn to process the relevant HBA attention events. This
13960  * function is called without any lock held. It gets the hbalock to access
13961  * and update SLI data structures.
13962  *
13963  * This function returns IRQ_HANDLED when interrupt is handled, else it
13964  * returns IRQ_NONE.
13965  **/
13966 irqreturn_t
13967 lpfc_sli_intr_handler(int irq, void *dev_id)
13968 {
13969 	struct lpfc_hba  *phba;
13970 	irqreturn_t sp_irq_rc, fp_irq_rc;
13971 	unsigned long status1, status2;
13972 	uint32_t hc_copy;
13973 
13974 	/*
13975 	 * Get the driver's phba structure from the dev_id and
13976 	 * assume the HBA is not interrupting.
13977 	 */
13978 	phba = (struct lpfc_hba *) dev_id;
13979 
13980 	if (unlikely(!phba))
13981 		return IRQ_NONE;
13982 
13983 	/* Check device state for handling interrupt */
13984 	if (lpfc_intr_state_check(phba))
13985 		return IRQ_NONE;
13986 
13987 	spin_lock(&phba->hbalock);
13988 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13989 		spin_unlock(&phba->hbalock);
13990 		return IRQ_HANDLED;
13991 	}
13992 
13993 	if (unlikely(!phba->ha_copy)) {
13994 		spin_unlock(&phba->hbalock);
13995 		return IRQ_NONE;
13996 	} else if (phba->ha_copy & HA_ERATT) {
13997 		if (phba->hba_flag & HBA_ERATT_HANDLED)
13998 			/* ERATT polling has handled ERATT */
13999 			phba->ha_copy &= ~HA_ERATT;
14000 		else
14001 			/* Indicate interrupt handler handles ERATT */
14002 			phba->hba_flag |= HBA_ERATT_HANDLED;
14003 	}
14004 
14005 	/*
14006 	 * If there is deferred error attention, do not check for any interrupt.
14007 	 */
14008 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
14009 		spin_unlock(&phba->hbalock);
14010 		return IRQ_NONE;
14011 	}
14012 
14013 	/* Clear attention sources except link and error attentions */
14014 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
14015 		spin_unlock(&phba->hbalock);
14016 		return IRQ_HANDLED;
14017 	}
14018 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
14019 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
14020 		phba->HCregaddr);
14021 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
14022 	writel(hc_copy, phba->HCregaddr);
14023 	readl(phba->HAregaddr); /* flush */
14024 	spin_unlock(&phba->hbalock);
14025 
14026 	/*
14027 	 * Invokes slow-path host attention interrupt handling as appropriate.
14028 	 */
14029 
14030 	/* status of events with mailbox and link attention */
14031 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
14032 
14033 	/* status of events with ELS ring */
14034 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
14035 	status2 >>= (4*LPFC_ELS_RING);
14036 
14037 	if (status1 || (status2 & HA_RXMASK))
14038 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
14039 	else
14040 		sp_irq_rc = IRQ_NONE;
14041 
14042 	/*
14043 	 * Invoke fast-path host attention interrupt handling as appropriate.
14044 	 */
14045 
14046 	/* status of events with FCP ring */
14047 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
14048 	status1 >>= (4*LPFC_FCP_RING);
14049 
14050 	/* status of events with extra ring */
14051 	if (phba->cfg_multi_ring_support == 2) {
14052 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
14053 		status2 >>= (4*LPFC_EXTRA_RING);
14054 	} else
14055 		status2 = 0;
14056 
14057 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
14058 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
14059 	else
14060 		fp_irq_rc = IRQ_NONE;
14061 
14062 	/* Return device-level interrupt handling status */
14063 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
14064 }  /* lpfc_sli_intr_handler */
14065 
14066 /**
14067  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
14068  * @phba: pointer to lpfc hba data structure.
14069  *
14070  * This routine is invoked by the worker thread to process all the pending
14071  * SLI4 els abort xri events.
14072  **/
14073 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
14074 {
14075 	struct lpfc_cq_event *cq_event;
14076 	unsigned long iflags;
14077 
14078 	/* First, declare the els xri abort event has been handled */
14079 	spin_lock_irqsave(&phba->hbalock, iflags);
14080 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
14081 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14082 
14083 	/* Now, handle all the els xri abort events */
14084 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14085 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
14086 		/* Get the first event from the head of the event queue */
14087 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
14088 				 cq_event, struct lpfc_cq_event, list);
14089 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14090 				       iflags);
14091 		/* Notify aborted XRI for ELS work queue */
14092 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
14093 
14094 		/* Free the event processed back to the free pool */
14095 		lpfc_sli4_cq_event_release(phba, cq_event);
14096 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14097 				  iflags);
14098 	}
14099 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
14100 }
14101 
14102 /**
14103  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
14104  * @phba: pointer to lpfc hba data structure
14105  * @pIocbIn: pointer to the rspiocbq
14106  * @pIocbOut: pointer to the cmdiocbq
14107  * @wcqe: pointer to the complete wcqe
14108  *
14109  * This routine transfers the fields of a command iocbq to a response iocbq
14110  * by copying all the IOCB fields from command iocbq and transferring the
14111  * completion status information from the complete wcqe.
14112  **/
14113 static void
14114 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
14115 			      struct lpfc_iocbq *pIocbIn,
14116 			      struct lpfc_iocbq *pIocbOut,
14117 			      struct lpfc_wcqe_complete *wcqe)
14118 {
14119 	int numBdes, i;
14120 	unsigned long iflags;
14121 	uint32_t status, max_response;
14122 	struct lpfc_dmabuf *dmabuf;
14123 	struct ulp_bde64 *bpl, bde;
14124 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
14125 
14126 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
14127 	       sizeof(struct lpfc_iocbq) - offset);
14128 	/* Map WCQE parameters into irspiocb parameters */
14129 	status = bf_get(lpfc_wcqe_c_status, wcqe);
14130 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
14131 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
14132 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
14133 			pIocbIn->iocb.un.fcpi.fcpi_parm =
14134 					pIocbOut->iocb.un.fcpi.fcpi_parm -
14135 					wcqe->total_data_placed;
14136 		else
14137 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
14138 	else {
14139 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
14140 		switch (pIocbOut->iocb.ulpCommand) {
14141 		case CMD_ELS_REQUEST64_CR:
14142 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
14143 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
14144 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
14145 			max_response = bde.tus.f.bdeSize;
14146 			break;
14147 		case CMD_GEN_REQUEST64_CR:
14148 			max_response = 0;
14149 			if (!pIocbOut->context3)
14150 				break;
14151 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
14152 					sizeof(struct ulp_bde64);
14153 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
14154 			bpl = (struct ulp_bde64 *)dmabuf->virt;
14155 			for (i = 0; i < numBdes; i++) {
14156 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
14157 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
14158 					max_response += bde.tus.f.bdeSize;
14159 			}
14160 			break;
14161 		default:
14162 			max_response = wcqe->total_data_placed;
14163 			break;
14164 		}
14165 		if (max_response < wcqe->total_data_placed)
14166 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
14167 		else
14168 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
14169 				wcqe->total_data_placed;
14170 	}
14171 
14172 	/* Convert BG errors for completion status */
14173 	if (status == CQE_STATUS_DI_ERROR) {
14174 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
14175 
14176 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
14177 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
14178 		else
14179 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
14180 
14181 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
14182 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
14183 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
14184 				BGS_GUARD_ERR_MASK;
14185 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
14186 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
14187 				BGS_APPTAG_ERR_MASK;
14188 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
14189 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
14190 				BGS_REFTAG_ERR_MASK;
14191 
14192 		/* Check to see if there was any good data before the error */
14193 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
14194 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
14195 				BGS_HI_WATER_MARK_PRESENT_MASK;
14196 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
14197 				wcqe->total_data_placed;
14198 		}
14199 
14200 		/*
14201 		* Set ALL the error bits to indicate we don't know what
14202 		* type of error it is.
14203 		*/
14204 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
14205 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
14206 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
14207 				BGS_GUARD_ERR_MASK);
14208 	}
14209 
14210 	/* Pick up HBA exchange busy condition */
14211 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
14212 		spin_lock_irqsave(&phba->hbalock, iflags);
14213 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
14214 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14215 	}
14216 }
14217 
14218 /**
14219  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
14220  * @phba: Pointer to HBA context object.
14221  * @irspiocbq: Pointer to work-queue completion queue entry.
14222  *
14223  * This routine handles an ELS work-queue completion event and construct
14224  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
14225  * discovery engine to handle.
14226  *
14227  * Return: Pointer to the receive IOCBQ, NULL otherwise.
14228  **/
14229 static struct lpfc_iocbq *
14230 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
14231 			       struct lpfc_iocbq *irspiocbq)
14232 {
14233 	struct lpfc_sli_ring *pring;
14234 	struct lpfc_iocbq *cmdiocbq;
14235 	struct lpfc_wcqe_complete *wcqe;
14236 	unsigned long iflags;
14237 
14238 	pring = lpfc_phba_elsring(phba);
14239 	if (unlikely(!pring))
14240 		return NULL;
14241 
14242 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
14243 	pring->stats.iocb_event++;
14244 	/* Look up the ELS command IOCB and create pseudo response IOCB */
14245 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14246 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14247 	if (unlikely(!cmdiocbq)) {
14248 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14249 				"0386 ELS complete with no corresponding "
14250 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
14251 				wcqe->word0, wcqe->total_data_placed,
14252 				wcqe->parameter, wcqe->word3);
14253 		lpfc_sli_release_iocbq(phba, irspiocbq);
14254 		return NULL;
14255 	}
14256 
14257 	spin_lock_irqsave(&pring->ring_lock, iflags);
14258 	/* Put the iocb back on the txcmplq */
14259 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
14260 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14261 
14262 	/* Fake the irspiocbq and copy necessary response information */
14263 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
14264 
14265 	return irspiocbq;
14266 }
14267 
14268 inline struct lpfc_cq_event *
14269 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
14270 {
14271 	struct lpfc_cq_event *cq_event;
14272 
14273 	/* Allocate a new internal CQ_EVENT entry */
14274 	cq_event = lpfc_sli4_cq_event_alloc(phba);
14275 	if (!cq_event) {
14276 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14277 				"0602 Failed to alloc CQ_EVENT entry\n");
14278 		return NULL;
14279 	}
14280 
14281 	/* Move the CQE into the event */
14282 	memcpy(&cq_event->cqe, entry, size);
14283 	return cq_event;
14284 }
14285 
14286 /**
14287  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
14288  * @phba: Pointer to HBA context object.
14289  * @mcqe: Pointer to mailbox completion queue entry.
14290  *
14291  * This routine process a mailbox completion queue entry with asynchronous
14292  * event.
14293  *
14294  * Return: true if work posted to worker thread, otherwise false.
14295  **/
14296 static bool
14297 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14298 {
14299 	struct lpfc_cq_event *cq_event;
14300 	unsigned long iflags;
14301 
14302 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14303 			"0392 Async Event: word0:x%x, word1:x%x, "
14304 			"word2:x%x, word3:x%x\n", mcqe->word0,
14305 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
14306 
14307 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
14308 	if (!cq_event)
14309 		return false;
14310 
14311 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
14312 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
14313 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
14314 
14315 	/* Set the async event flag */
14316 	spin_lock_irqsave(&phba->hbalock, iflags);
14317 	phba->hba_flag |= ASYNC_EVENT;
14318 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14319 
14320 	return true;
14321 }
14322 
14323 /**
14324  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
14325  * @phba: Pointer to HBA context object.
14326  * @mcqe: Pointer to mailbox completion queue entry.
14327  *
14328  * This routine process a mailbox completion queue entry with mailbox
14329  * completion event.
14330  *
14331  * Return: true if work posted to worker thread, otherwise false.
14332  **/
14333 static bool
14334 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
14335 {
14336 	uint32_t mcqe_status;
14337 	MAILBOX_t *mbox, *pmbox;
14338 	struct lpfc_mqe *mqe;
14339 	struct lpfc_vport *vport;
14340 	struct lpfc_nodelist *ndlp;
14341 	struct lpfc_dmabuf *mp;
14342 	unsigned long iflags;
14343 	LPFC_MBOXQ_t *pmb;
14344 	bool workposted = false;
14345 	int rc;
14346 
14347 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
14348 	if (!bf_get(lpfc_trailer_completed, mcqe))
14349 		goto out_no_mqe_complete;
14350 
14351 	/* Get the reference to the active mbox command */
14352 	spin_lock_irqsave(&phba->hbalock, iflags);
14353 	pmb = phba->sli.mbox_active;
14354 	if (unlikely(!pmb)) {
14355 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14356 				"1832 No pending MBOX command to handle\n");
14357 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14358 		goto out_no_mqe_complete;
14359 	}
14360 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14361 	mqe = &pmb->u.mqe;
14362 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
14363 	mbox = phba->mbox;
14364 	vport = pmb->vport;
14365 
14366 	/* Reset heartbeat timer */
14367 	phba->last_completion_time = jiffies;
14368 	del_timer(&phba->sli.mbox_tmo);
14369 
14370 	/* Move mbox data to caller's mailbox region, do endian swapping */
14371 	if (pmb->mbox_cmpl && mbox)
14372 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
14373 
14374 	/*
14375 	 * For mcqe errors, conditionally move a modified error code to
14376 	 * the mbox so that the error will not be missed.
14377 	 */
14378 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
14379 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
14380 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
14381 			bf_set(lpfc_mqe_status, mqe,
14382 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
14383 	}
14384 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
14385 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
14386 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
14387 				      "MBOX dflt rpi: status:x%x rpi:x%x",
14388 				      mcqe_status,
14389 				      pmbox->un.varWords[0], 0);
14390 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
14391 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
14392 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
14393 
14394 			/* Reg_LOGIN of dflt RPI was successful. Mark the
14395 			 * node as having an UNREG_LOGIN in progress to stop
14396 			 * an unsolicited PLOGI from the same NPortId from
14397 			 * starting another mailbox transaction.
14398 			 */
14399 			spin_lock_irqsave(&ndlp->lock, iflags);
14400 			ndlp->nlp_flag |= NLP_UNREG_INP;
14401 			spin_unlock_irqrestore(&ndlp->lock, iflags);
14402 			lpfc_unreg_login(phba, vport->vpi,
14403 					 pmbox->un.varWords[0], pmb);
14404 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
14405 			pmb->ctx_buf = mp;
14406 
14407 			/* No reference taken here.  This is a default
14408 			 * RPI reg/immediate unreg cycle. The reference was
14409 			 * taken in the reg rpi path and is released when
14410 			 * this mailbox completes.
14411 			 */
14412 			pmb->ctx_ndlp = ndlp;
14413 			pmb->vport = vport;
14414 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
14415 			if (rc != MBX_BUSY)
14416 				lpfc_printf_log(phba, KERN_ERR,
14417 						LOG_TRACE_EVENT,
14418 						"0385 rc should "
14419 						"have been MBX_BUSY\n");
14420 			if (rc != MBX_NOT_FINISHED)
14421 				goto send_current_mbox;
14422 		}
14423 	}
14424 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
14425 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
14426 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
14427 
14428 	/* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */
14429 	if (pmbox->mbxCommand == MBX_HEARTBEAT) {
14430 		spin_lock_irqsave(&phba->hbalock, iflags);
14431 		/* Release the mailbox command posting token */
14432 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14433 		phba->sli.mbox_active = NULL;
14434 		if (bf_get(lpfc_trailer_consumed, mcqe))
14435 			lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14436 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14437 
14438 		/* Post the next mbox command, if there is one */
14439 		lpfc_sli4_post_async_mbox(phba);
14440 
14441 		/* Process cmpl now */
14442 		if (pmb->mbox_cmpl)
14443 			pmb->mbox_cmpl(phba, pmb);
14444 		return false;
14445 	}
14446 
14447 	/* There is mailbox completion work to queue to the worker thread */
14448 	spin_lock_irqsave(&phba->hbalock, iflags);
14449 	__lpfc_mbox_cmpl_put(phba, pmb);
14450 	phba->work_ha |= HA_MBATT;
14451 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14452 	workposted = true;
14453 
14454 send_current_mbox:
14455 	spin_lock_irqsave(&phba->hbalock, iflags);
14456 	/* Release the mailbox command posting token */
14457 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
14458 	/* Setting active mailbox pointer need to be in sync to flag clear */
14459 	phba->sli.mbox_active = NULL;
14460 	if (bf_get(lpfc_trailer_consumed, mcqe))
14461 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14462 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14463 	/* Wake up worker thread to post the next pending mailbox command */
14464 	lpfc_worker_wake_up(phba);
14465 	return workposted;
14466 
14467 out_no_mqe_complete:
14468 	spin_lock_irqsave(&phba->hbalock, iflags);
14469 	if (bf_get(lpfc_trailer_consumed, mcqe))
14470 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
14471 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14472 	return false;
14473 }
14474 
14475 /**
14476  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
14477  * @phba: Pointer to HBA context object.
14478  * @cq: Pointer to associated CQ
14479  * @cqe: Pointer to mailbox completion queue entry.
14480  *
14481  * This routine process a mailbox completion queue entry, it invokes the
14482  * proper mailbox complete handling or asynchronous event handling routine
14483  * according to the MCQE's async bit.
14484  *
14485  * Return: true if work posted to worker thread, otherwise false.
14486  **/
14487 static bool
14488 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14489 			 struct lpfc_cqe *cqe)
14490 {
14491 	struct lpfc_mcqe mcqe;
14492 	bool workposted;
14493 
14494 	cq->CQ_mbox++;
14495 
14496 	/* Copy the mailbox MCQE and convert endian order as needed */
14497 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
14498 
14499 	/* Invoke the proper event handling routine */
14500 	if (!bf_get(lpfc_trailer_async, &mcqe))
14501 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
14502 	else
14503 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
14504 	return workposted;
14505 }
14506 
14507 /**
14508  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
14509  * @phba: Pointer to HBA context object.
14510  * @cq: Pointer to associated CQ
14511  * @wcqe: Pointer to work-queue completion queue entry.
14512  *
14513  * This routine handles an ELS work-queue completion event.
14514  *
14515  * Return: true if work posted to worker thread, otherwise false.
14516  **/
14517 static bool
14518 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14519 			     struct lpfc_wcqe_complete *wcqe)
14520 {
14521 	struct lpfc_iocbq *irspiocbq;
14522 	unsigned long iflags;
14523 	struct lpfc_sli_ring *pring = cq->pring;
14524 	int txq_cnt = 0;
14525 	int txcmplq_cnt = 0;
14526 
14527 	/* Check for response status */
14528 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14529 		/* Log the error status */
14530 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14531 				"0357 ELS CQE error: status=x%x: "
14532 				"CQE: %08x %08x %08x %08x\n",
14533 				bf_get(lpfc_wcqe_c_status, wcqe),
14534 				wcqe->word0, wcqe->total_data_placed,
14535 				wcqe->parameter, wcqe->word3);
14536 	}
14537 
14538 	/* Get an irspiocbq for later ELS response processing use */
14539 	irspiocbq = lpfc_sli_get_iocbq(phba);
14540 	if (!irspiocbq) {
14541 		if (!list_empty(&pring->txq))
14542 			txq_cnt++;
14543 		if (!list_empty(&pring->txcmplq))
14544 			txcmplq_cnt++;
14545 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14546 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
14547 			"els_txcmplq_cnt=%d\n",
14548 			txq_cnt, phba->iocb_cnt,
14549 			txcmplq_cnt);
14550 		return false;
14551 	}
14552 
14553 	/* Save off the slow-path queue event for work thread to process */
14554 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
14555 	spin_lock_irqsave(&phba->hbalock, iflags);
14556 	list_add_tail(&irspiocbq->cq_event.list,
14557 		      &phba->sli4_hba.sp_queue_event);
14558 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
14559 	spin_unlock_irqrestore(&phba->hbalock, iflags);
14560 
14561 	return true;
14562 }
14563 
14564 /**
14565  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
14566  * @phba: Pointer to HBA context object.
14567  * @wcqe: Pointer to work-queue completion queue entry.
14568  *
14569  * This routine handles slow-path WQ entry consumed event by invoking the
14570  * proper WQ release routine to the slow-path WQ.
14571  **/
14572 static void
14573 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
14574 			     struct lpfc_wcqe_release *wcqe)
14575 {
14576 	/* sanity check on queue memory */
14577 	if (unlikely(!phba->sli4_hba.els_wq))
14578 		return;
14579 	/* Check for the slow-path ELS work queue */
14580 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
14581 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
14582 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14583 	else
14584 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14585 				"2579 Slow-path wqe consume event carries "
14586 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
14587 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
14588 				phba->sli4_hba.els_wq->queue_id);
14589 }
14590 
14591 /**
14592  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
14593  * @phba: Pointer to HBA context object.
14594  * @cq: Pointer to a WQ completion queue.
14595  * @wcqe: Pointer to work-queue completion queue entry.
14596  *
14597  * This routine handles an XRI abort event.
14598  *
14599  * Return: true if work posted to worker thread, otherwise false.
14600  **/
14601 static bool
14602 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
14603 				   struct lpfc_queue *cq,
14604 				   struct sli4_wcqe_xri_aborted *wcqe)
14605 {
14606 	bool workposted = false;
14607 	struct lpfc_cq_event *cq_event;
14608 	unsigned long iflags;
14609 
14610 	switch (cq->subtype) {
14611 	case LPFC_IO:
14612 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
14613 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
14614 			/* Notify aborted XRI for NVME work queue */
14615 			if (phba->nvmet_support)
14616 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
14617 		}
14618 		workposted = false;
14619 		break;
14620 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
14621 	case LPFC_ELS:
14622 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
14623 		if (!cq_event) {
14624 			workposted = false;
14625 			break;
14626 		}
14627 		cq_event->hdwq = cq->hdwq;
14628 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
14629 				  iflags);
14630 		list_add_tail(&cq_event->list,
14631 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
14632 		/* Set the els xri abort event flag */
14633 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
14634 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
14635 				       iflags);
14636 		workposted = true;
14637 		break;
14638 	default:
14639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14640 				"0603 Invalid CQ subtype %d: "
14641 				"%08x %08x %08x %08x\n",
14642 				cq->subtype, wcqe->word0, wcqe->parameter,
14643 				wcqe->word2, wcqe->word3);
14644 		workposted = false;
14645 		break;
14646 	}
14647 	return workposted;
14648 }
14649 
14650 #define FC_RCTL_MDS_DIAGS	0xF4
14651 
14652 /**
14653  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
14654  * @phba: Pointer to HBA context object.
14655  * @rcqe: Pointer to receive-queue completion queue entry.
14656  *
14657  * This routine process a receive-queue completion queue entry.
14658  *
14659  * Return: true if work posted to worker thread, otherwise false.
14660  **/
14661 static bool
14662 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
14663 {
14664 	bool workposted = false;
14665 	struct fc_frame_header *fc_hdr;
14666 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
14667 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
14668 	struct lpfc_nvmet_tgtport *tgtp;
14669 	struct hbq_dmabuf *dma_buf;
14670 	uint32_t status, rq_id;
14671 	unsigned long iflags;
14672 
14673 	/* sanity check on queue memory */
14674 	if (unlikely(!hrq) || unlikely(!drq))
14675 		return workposted;
14676 
14677 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14678 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14679 	else
14680 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14681 	if (rq_id != hrq->queue_id)
14682 		goto out;
14683 
14684 	status = bf_get(lpfc_rcqe_status, rcqe);
14685 	switch (status) {
14686 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14687 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14688 				"2537 Receive Frame Truncated!!\n");
14689 		fallthrough;
14690 	case FC_STATUS_RQ_SUCCESS:
14691 		spin_lock_irqsave(&phba->hbalock, iflags);
14692 		lpfc_sli4_rq_release(hrq, drq);
14693 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
14694 		if (!dma_buf) {
14695 			hrq->RQ_no_buf_found++;
14696 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14697 			goto out;
14698 		}
14699 		hrq->RQ_rcv_buf++;
14700 		hrq->RQ_buf_posted--;
14701 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
14702 
14703 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14704 
14705 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
14706 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
14707 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14708 			/* Handle MDS Loopback frames */
14709 			if  (!(phba->pport->load_flag & FC_UNLOADING))
14710 				lpfc_sli4_handle_mds_loopback(phba->pport,
14711 							      dma_buf);
14712 			else
14713 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
14714 			break;
14715 		}
14716 
14717 		/* save off the frame for the work thread to process */
14718 		list_add_tail(&dma_buf->cq_event.list,
14719 			      &phba->sli4_hba.sp_queue_event);
14720 		/* Frame received */
14721 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
14722 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14723 		workposted = true;
14724 		break;
14725 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14726 		if (phba->nvmet_support) {
14727 			tgtp = phba->targetport->private;
14728 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14729 					"6402 RQE Error x%x, posted %d err_cnt "
14730 					"%d: %x %x %x\n",
14731 					status, hrq->RQ_buf_posted,
14732 					hrq->RQ_no_posted_buf,
14733 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14734 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14735 					atomic_read(&tgtp->xmt_fcp_release));
14736 		}
14737 		fallthrough;
14738 
14739 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14740 		hrq->RQ_no_posted_buf++;
14741 		/* Post more buffers if possible */
14742 		spin_lock_irqsave(&phba->hbalock, iflags);
14743 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
14744 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14745 		workposted = true;
14746 		break;
14747 	}
14748 out:
14749 	return workposted;
14750 }
14751 
14752 /**
14753  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
14754  * @phba: Pointer to HBA context object.
14755  * @cq: Pointer to the completion queue.
14756  * @cqe: Pointer to a completion queue entry.
14757  *
14758  * This routine process a slow-path work-queue or receive queue completion queue
14759  * entry.
14760  *
14761  * Return: true if work posted to worker thread, otherwise false.
14762  **/
14763 static bool
14764 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14765 			 struct lpfc_cqe *cqe)
14766 {
14767 	struct lpfc_cqe cqevt;
14768 	bool workposted = false;
14769 
14770 	/* Copy the work queue CQE and convert endian order if needed */
14771 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
14772 
14773 	/* Check and process for different type of WCQE and dispatch */
14774 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
14775 	case CQE_CODE_COMPL_WQE:
14776 		/* Process the WQ/RQ complete event */
14777 		phba->last_completion_time = jiffies;
14778 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
14779 				(struct lpfc_wcqe_complete *)&cqevt);
14780 		break;
14781 	case CQE_CODE_RELEASE_WQE:
14782 		/* Process the WQ release event */
14783 		lpfc_sli4_sp_handle_rel_wcqe(phba,
14784 				(struct lpfc_wcqe_release *)&cqevt);
14785 		break;
14786 	case CQE_CODE_XRI_ABORTED:
14787 		/* Process the WQ XRI abort event */
14788 		phba->last_completion_time = jiffies;
14789 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14790 				(struct sli4_wcqe_xri_aborted *)&cqevt);
14791 		break;
14792 	case CQE_CODE_RECEIVE:
14793 	case CQE_CODE_RECEIVE_V1:
14794 		/* Process the RQ event */
14795 		phba->last_completion_time = jiffies;
14796 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
14797 				(struct lpfc_rcqe *)&cqevt);
14798 		break;
14799 	default:
14800 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14801 				"0388 Not a valid WCQE code: x%x\n",
14802 				bf_get(lpfc_cqe_code, &cqevt));
14803 		break;
14804 	}
14805 	return workposted;
14806 }
14807 
14808 /**
14809  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
14810  * @phba: Pointer to HBA context object.
14811  * @eqe: Pointer to fast-path event queue entry.
14812  * @speq: Pointer to slow-path event queue.
14813  *
14814  * This routine process a event queue entry from the slow-path event queue.
14815  * It will check the MajorCode and MinorCode to determine this is for a
14816  * completion event on a completion queue, if not, an error shall be logged
14817  * and just return. Otherwise, it will get to the corresponding completion
14818  * queue and process all the entries on that completion queue, rearm the
14819  * completion queue, and then return.
14820  *
14821  **/
14822 static void
14823 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14824 	struct lpfc_queue *speq)
14825 {
14826 	struct lpfc_queue *cq = NULL, *childq;
14827 	uint16_t cqid;
14828 	int ret = 0;
14829 
14830 	/* Get the reference to the corresponding CQ */
14831 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14832 
14833 	list_for_each_entry(childq, &speq->child_list, list) {
14834 		if (childq->queue_id == cqid) {
14835 			cq = childq;
14836 			break;
14837 		}
14838 	}
14839 	if (unlikely(!cq)) {
14840 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14841 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14842 					"0365 Slow-path CQ identifier "
14843 					"(%d) does not exist\n", cqid);
14844 		return;
14845 	}
14846 
14847 	/* Save EQ associated with this CQ */
14848 	cq->assoc_qp = speq;
14849 
14850 	if (is_kdump_kernel())
14851 		ret = queue_work(phba->wq, &cq->spwork);
14852 	else
14853 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14854 
14855 	if (!ret)
14856 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14857 				"0390 Cannot schedule queue work "
14858 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14859 				cqid, cq->queue_id, raw_smp_processor_id());
14860 }
14861 
14862 /**
14863  * __lpfc_sli4_process_cq - Process elements of a CQ
14864  * @phba: Pointer to HBA context object.
14865  * @cq: Pointer to CQ to be processed
14866  * @handler: Routine to process each cqe
14867  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14868  * @poll_mode: Polling mode we were called from
14869  *
14870  * This routine processes completion queue entries in a CQ. While a valid
14871  * queue element is found, the handler is called. During processing checks
14872  * are made for periodic doorbell writes to let the hardware know of
14873  * element consumption.
14874  *
14875  * If the max limit on cqes to process is hit, or there are no more valid
14876  * entries, the loop stops. If we processed a sufficient number of elements,
14877  * meaning there is sufficient load, rather than rearming and generating
14878  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14879  * indicates no rescheduling.
14880  *
14881  * Returns True if work scheduled, False otherwise.
14882  **/
14883 static bool
14884 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14885 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14886 			struct lpfc_cqe *), unsigned long *delay,
14887 			enum lpfc_poll_mode poll_mode)
14888 {
14889 	struct lpfc_cqe *cqe;
14890 	bool workposted = false;
14891 	int count = 0, consumed = 0;
14892 	bool arm = true;
14893 
14894 	/* default - no reschedule */
14895 	*delay = 0;
14896 
14897 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14898 		goto rearm_and_exit;
14899 
14900 	/* Process all the entries to the CQ */
14901 	cq->q_flag = 0;
14902 	cqe = lpfc_sli4_cq_get(cq);
14903 	while (cqe) {
14904 		workposted |= handler(phba, cq, cqe);
14905 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14906 
14907 		consumed++;
14908 		if (!(++count % cq->max_proc_limit))
14909 			break;
14910 
14911 		if (!(count % cq->notify_interval)) {
14912 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14913 						LPFC_QUEUE_NOARM);
14914 			consumed = 0;
14915 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14916 		}
14917 
14918 		if (count == LPFC_NVMET_CQ_NOTIFY)
14919 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14920 
14921 		cqe = lpfc_sli4_cq_get(cq);
14922 	}
14923 	if (count >= phba->cfg_cq_poll_threshold) {
14924 		*delay = 1;
14925 		arm = false;
14926 	}
14927 
14928 	/* Note: complete the irq_poll softirq before rearming CQ */
14929 	if (poll_mode == LPFC_IRQ_POLL)
14930 		irq_poll_complete(&cq->iop);
14931 
14932 	/* Track the max number of CQEs processed in 1 EQ */
14933 	if (count > cq->CQ_max_cqe)
14934 		cq->CQ_max_cqe = count;
14935 
14936 	cq->assoc_qp->EQ_cqe_cnt += count;
14937 
14938 	/* Catch the no cq entry condition */
14939 	if (unlikely(count == 0))
14940 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14941 				"0369 No entry from completion queue "
14942 				"qid=%d\n", cq->queue_id);
14943 
14944 	xchg(&cq->queue_claimed, 0);
14945 
14946 rearm_and_exit:
14947 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14948 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14949 
14950 	return workposted;
14951 }
14952 
14953 /**
14954  * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14955  * @cq: pointer to CQ to process
14956  *
14957  * This routine calls the cq processing routine with a handler specific
14958  * to the type of queue bound to it.
14959  *
14960  * The CQ routine returns two values: the first is the calling status,
14961  * which indicates whether work was queued to the  background discovery
14962  * thread. If true, the routine should wakeup the discovery thread;
14963  * the second is the delay parameter. If non-zero, rather than rearming
14964  * the CQ and yet another interrupt, the CQ handler should be queued so
14965  * that it is processed in a subsequent polling action. The value of
14966  * the delay indicates when to reschedule it.
14967  **/
14968 static void
14969 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14970 {
14971 	struct lpfc_hba *phba = cq->phba;
14972 	unsigned long delay;
14973 	bool workposted = false;
14974 	int ret = 0;
14975 
14976 	/* Process and rearm the CQ */
14977 	switch (cq->type) {
14978 	case LPFC_MCQ:
14979 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14980 						lpfc_sli4_sp_handle_mcqe,
14981 						&delay, LPFC_QUEUE_WORK);
14982 		break;
14983 	case LPFC_WCQ:
14984 		if (cq->subtype == LPFC_IO)
14985 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14986 						lpfc_sli4_fp_handle_cqe,
14987 						&delay, LPFC_QUEUE_WORK);
14988 		else
14989 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14990 						lpfc_sli4_sp_handle_cqe,
14991 						&delay, LPFC_QUEUE_WORK);
14992 		break;
14993 	default:
14994 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14995 				"0370 Invalid completion queue type (%d)\n",
14996 				cq->type);
14997 		return;
14998 	}
14999 
15000 	if (delay) {
15001 		if (is_kdump_kernel())
15002 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
15003 						delay);
15004 		else
15005 			ret = queue_delayed_work_on(cq->chann, phba->wq,
15006 						&cq->sched_spwork, delay);
15007 		if (!ret)
15008 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15009 				"0394 Cannot schedule queue work "
15010 				"for cqid=%d on CPU %d\n",
15011 				cq->queue_id, cq->chann);
15012 	}
15013 
15014 	/* wake up worker thread if there are works to be done */
15015 	if (workposted)
15016 		lpfc_worker_wake_up(phba);
15017 }
15018 
15019 /**
15020  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
15021  *   interrupt
15022  * @work: pointer to work element
15023  *
15024  * translates from the work handler and calls the slow-path handler.
15025  **/
15026 static void
15027 lpfc_sli4_sp_process_cq(struct work_struct *work)
15028 {
15029 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
15030 
15031 	__lpfc_sli4_sp_process_cq(cq);
15032 }
15033 
15034 /**
15035  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
15036  * @work: pointer to work element
15037  *
15038  * translates from the work handler and calls the slow-path handler.
15039  **/
15040 static void
15041 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
15042 {
15043 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
15044 					struct lpfc_queue, sched_spwork);
15045 
15046 	__lpfc_sli4_sp_process_cq(cq);
15047 }
15048 
15049 /**
15050  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
15051  * @phba: Pointer to HBA context object.
15052  * @cq: Pointer to associated CQ
15053  * @wcqe: Pointer to work-queue completion queue entry.
15054  *
15055  * This routine process a fast-path work queue completion entry from fast-path
15056  * event queue for FCP command response completion.
15057  **/
15058 static void
15059 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15060 			     struct lpfc_wcqe_complete *wcqe)
15061 {
15062 	struct lpfc_sli_ring *pring = cq->pring;
15063 	struct lpfc_iocbq *cmdiocbq;
15064 	struct lpfc_iocbq irspiocbq;
15065 	unsigned long iflags;
15066 
15067 	/* Check for response status */
15068 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
15069 		/* If resource errors reported from HBA, reduce queue
15070 		 * depth of the SCSI device.
15071 		 */
15072 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
15073 		     IOSTAT_LOCAL_REJECT)) &&
15074 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
15075 		     IOERR_NO_RESOURCES))
15076 			phba->lpfc_rampdown_queue_depth(phba);
15077 
15078 		/* Log the cmpl status */
15079 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
15080 				"0373 FCP CQE cmpl: status=x%x: "
15081 				"CQE: %08x %08x %08x %08x\n",
15082 				bf_get(lpfc_wcqe_c_status, wcqe),
15083 				wcqe->word0, wcqe->total_data_placed,
15084 				wcqe->parameter, wcqe->word3);
15085 	}
15086 
15087 	/* Look up the FCP command IOCB and create pseudo response IOCB */
15088 	spin_lock_irqsave(&pring->ring_lock, iflags);
15089 	pring->stats.iocb_event++;
15090 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
15091 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
15092 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15093 	if (unlikely(!cmdiocbq)) {
15094 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15095 				"0374 FCP complete with no corresponding "
15096 				"cmdiocb: iotag (%d)\n",
15097 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15098 		return;
15099 	}
15100 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
15101 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
15102 #endif
15103 	if (cmdiocbq->iocb_cmpl == NULL) {
15104 		if (cmdiocbq->wqe_cmpl) {
15105 			/* For FCP the flag is cleared in wqe_cmpl */
15106 			if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
15107 			    cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
15108 				spin_lock_irqsave(&phba->hbalock, iflags);
15109 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
15110 				spin_unlock_irqrestore(&phba->hbalock, iflags);
15111 			}
15112 
15113 			/* Pass the cmd_iocb and the wcqe to the upper layer */
15114 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
15115 			return;
15116 		}
15117 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15118 				"0375 FCP cmdiocb not callback function "
15119 				"iotag: (%d)\n",
15120 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
15121 		return;
15122 	}
15123 
15124 	/* Only SLI4 non-IO commands stil use IOCB */
15125 	/* Fake the irspiocb and copy necessary response information */
15126 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
15127 
15128 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
15129 		spin_lock_irqsave(&phba->hbalock, iflags);
15130 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
15131 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15132 	}
15133 
15134 	/* Pass the cmd_iocb and the rsp state to the upper layer */
15135 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
15136 }
15137 
15138 /**
15139  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
15140  * @phba: Pointer to HBA context object.
15141  * @cq: Pointer to completion queue.
15142  * @wcqe: Pointer to work-queue completion queue entry.
15143  *
15144  * This routine handles an fast-path WQ entry consumed event by invoking the
15145  * proper WQ release routine to the slow-path WQ.
15146  **/
15147 static void
15148 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15149 			     struct lpfc_wcqe_release *wcqe)
15150 {
15151 	struct lpfc_queue *childwq;
15152 	bool wqid_matched = false;
15153 	uint16_t hba_wqid;
15154 
15155 	/* Check for fast-path FCP work queue release */
15156 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
15157 	list_for_each_entry(childwq, &cq->child_list, list) {
15158 		if (childwq->queue_id == hba_wqid) {
15159 			lpfc_sli4_wq_release(childwq,
15160 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
15161 			if (childwq->q_flag & HBA_NVMET_WQFULL)
15162 				lpfc_nvmet_wqfull_process(phba, childwq);
15163 			wqid_matched = true;
15164 			break;
15165 		}
15166 	}
15167 	/* Report warning log message if no match found */
15168 	if (wqid_matched != true)
15169 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15170 				"2580 Fast-path wqe consume event carries "
15171 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
15172 }
15173 
15174 /**
15175  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
15176  * @phba: Pointer to HBA context object.
15177  * @cq: Pointer to completion queue.
15178  * @rcqe: Pointer to receive-queue completion queue entry.
15179  *
15180  * This routine process a receive-queue completion queue entry.
15181  *
15182  * Return: true if work posted to worker thread, otherwise false.
15183  **/
15184 static bool
15185 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15186 			    struct lpfc_rcqe *rcqe)
15187 {
15188 	bool workposted = false;
15189 	struct lpfc_queue *hrq;
15190 	struct lpfc_queue *drq;
15191 	struct rqb_dmabuf *dma_buf;
15192 	struct fc_frame_header *fc_hdr;
15193 	struct lpfc_nvmet_tgtport *tgtp;
15194 	uint32_t status, rq_id;
15195 	unsigned long iflags;
15196 	uint32_t fctl, idx;
15197 
15198 	if ((phba->nvmet_support == 0) ||
15199 	    (phba->sli4_hba.nvmet_cqset == NULL))
15200 		return workposted;
15201 
15202 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
15203 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
15204 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
15205 
15206 	/* sanity check on queue memory */
15207 	if (unlikely(!hrq) || unlikely(!drq))
15208 		return workposted;
15209 
15210 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
15211 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
15212 	else
15213 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
15214 
15215 	if ((phba->nvmet_support == 0) ||
15216 	    (rq_id != hrq->queue_id))
15217 		return workposted;
15218 
15219 	status = bf_get(lpfc_rcqe_status, rcqe);
15220 	switch (status) {
15221 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
15222 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15223 				"6126 Receive Frame Truncated!!\n");
15224 		fallthrough;
15225 	case FC_STATUS_RQ_SUCCESS:
15226 		spin_lock_irqsave(&phba->hbalock, iflags);
15227 		lpfc_sli4_rq_release(hrq, drq);
15228 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
15229 		if (!dma_buf) {
15230 			hrq->RQ_no_buf_found++;
15231 			spin_unlock_irqrestore(&phba->hbalock, iflags);
15232 			goto out;
15233 		}
15234 		spin_unlock_irqrestore(&phba->hbalock, iflags);
15235 		hrq->RQ_rcv_buf++;
15236 		hrq->RQ_buf_posted--;
15237 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
15238 
15239 		/* Just some basic sanity checks on FCP Command frame */
15240 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
15241 			fc_hdr->fh_f_ctl[1] << 8 |
15242 			fc_hdr->fh_f_ctl[2]);
15243 		if (((fctl &
15244 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
15245 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
15246 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
15247 			goto drop;
15248 
15249 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
15250 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
15251 			lpfc_nvmet_unsol_fcp_event(
15252 				phba, idx, dma_buf, cq->isr_timestamp,
15253 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
15254 			return false;
15255 		}
15256 drop:
15257 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
15258 		break;
15259 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
15260 		if (phba->nvmet_support) {
15261 			tgtp = phba->targetport->private;
15262 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15263 					"6401 RQE Error x%x, posted %d err_cnt "
15264 					"%d: %x %x %x\n",
15265 					status, hrq->RQ_buf_posted,
15266 					hrq->RQ_no_posted_buf,
15267 					atomic_read(&tgtp->rcv_fcp_cmd_in),
15268 					atomic_read(&tgtp->rcv_fcp_cmd_out),
15269 					atomic_read(&tgtp->xmt_fcp_release));
15270 		}
15271 		fallthrough;
15272 
15273 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
15274 		hrq->RQ_no_posted_buf++;
15275 		/* Post more buffers if possible */
15276 		break;
15277 	}
15278 out:
15279 	return workposted;
15280 }
15281 
15282 /**
15283  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
15284  * @phba: adapter with cq
15285  * @cq: Pointer to the completion queue.
15286  * @cqe: Pointer to fast-path completion queue entry.
15287  *
15288  * This routine process a fast-path work queue completion entry from fast-path
15289  * event queue for FCP command response completion.
15290  *
15291  * Return: true if work posted to worker thread, otherwise false.
15292  **/
15293 static bool
15294 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
15295 			 struct lpfc_cqe *cqe)
15296 {
15297 	struct lpfc_wcqe_release wcqe;
15298 	bool workposted = false;
15299 
15300 	/* Copy the work queue CQE and convert endian order if needed */
15301 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
15302 
15303 	/* Check and process for different type of WCQE and dispatch */
15304 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
15305 	case CQE_CODE_COMPL_WQE:
15306 	case CQE_CODE_NVME_ERSP:
15307 		cq->CQ_wq++;
15308 		/* Process the WQ complete event */
15309 		phba->last_completion_time = jiffies;
15310 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
15311 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
15312 				(struct lpfc_wcqe_complete *)&wcqe);
15313 		break;
15314 	case CQE_CODE_RELEASE_WQE:
15315 		cq->CQ_release_wqe++;
15316 		/* Process the WQ release event */
15317 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
15318 				(struct lpfc_wcqe_release *)&wcqe);
15319 		break;
15320 	case CQE_CODE_XRI_ABORTED:
15321 		cq->CQ_xri_aborted++;
15322 		/* Process the WQ XRI abort event */
15323 		phba->last_completion_time = jiffies;
15324 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
15325 				(struct sli4_wcqe_xri_aborted *)&wcqe);
15326 		break;
15327 	case CQE_CODE_RECEIVE_V1:
15328 	case CQE_CODE_RECEIVE:
15329 		phba->last_completion_time = jiffies;
15330 		if (cq->subtype == LPFC_NVMET) {
15331 			workposted = lpfc_sli4_nvmet_handle_rcqe(
15332 				phba, cq, (struct lpfc_rcqe *)&wcqe);
15333 		}
15334 		break;
15335 	default:
15336 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15337 				"0144 Not a valid CQE code: x%x\n",
15338 				bf_get(lpfc_wcqe_c_code, &wcqe));
15339 		break;
15340 	}
15341 	return workposted;
15342 }
15343 
15344 /**
15345  * lpfc_sli4_sched_cq_work - Schedules cq work
15346  * @phba: Pointer to HBA context object.
15347  * @cq: Pointer to CQ
15348  * @cqid: CQ ID
15349  *
15350  * This routine checks the poll mode of the CQ corresponding to
15351  * cq->chann, then either schedules a softirq or queue_work to complete
15352  * cq work.
15353  *
15354  * queue_work path is taken if in NVMET mode, or if poll_mode is in
15355  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
15356  *
15357  **/
15358 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
15359 				    struct lpfc_queue *cq, uint16_t cqid)
15360 {
15361 	int ret = 0;
15362 
15363 	switch (cq->poll_mode) {
15364 	case LPFC_IRQ_POLL:
15365 		/* CGN mgmt is mutually exclusive from softirq processing */
15366 		if (phba->cmf_active_mode == LPFC_CFG_OFF) {
15367 			irq_poll_sched(&cq->iop);
15368 			break;
15369 		}
15370 		fallthrough;
15371 	case LPFC_QUEUE_WORK:
15372 	default:
15373 		if (is_kdump_kernel())
15374 			ret = queue_work(phba->wq, &cq->irqwork);
15375 		else
15376 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
15377 		if (!ret)
15378 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15379 					"0383 Cannot schedule queue work "
15380 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
15381 					cqid, cq->queue_id,
15382 					raw_smp_processor_id());
15383 	}
15384 }
15385 
15386 /**
15387  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
15388  * @phba: Pointer to HBA context object.
15389  * @eq: Pointer to the queue structure.
15390  * @eqe: Pointer to fast-path event queue entry.
15391  *
15392  * This routine process a event queue entry from the fast-path event queue.
15393  * It will check the MajorCode and MinorCode to determine this is for a
15394  * completion event on a completion queue, if not, an error shall be logged
15395  * and just return. Otherwise, it will get to the corresponding completion
15396  * queue and process all the entries on the completion queue, rearm the
15397  * completion queue, and then return.
15398  **/
15399 static void
15400 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
15401 			 struct lpfc_eqe *eqe)
15402 {
15403 	struct lpfc_queue *cq = NULL;
15404 	uint32_t qidx = eq->hdwq;
15405 	uint16_t cqid, id;
15406 
15407 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
15408 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15409 				"0366 Not a valid completion "
15410 				"event: majorcode=x%x, minorcode=x%x\n",
15411 				bf_get_le32(lpfc_eqe_major_code, eqe),
15412 				bf_get_le32(lpfc_eqe_minor_code, eqe));
15413 		return;
15414 	}
15415 
15416 	/* Get the reference to the corresponding CQ */
15417 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
15418 
15419 	/* Use the fast lookup method first */
15420 	if (cqid <= phba->sli4_hba.cq_max) {
15421 		cq = phba->sli4_hba.cq_lookup[cqid];
15422 		if (cq)
15423 			goto  work_cq;
15424 	}
15425 
15426 	/* Next check for NVMET completion */
15427 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
15428 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
15429 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
15430 			/* Process NVMET unsol rcv */
15431 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
15432 			goto  process_cq;
15433 		}
15434 	}
15435 
15436 	if (phba->sli4_hba.nvmels_cq &&
15437 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
15438 		/* Process NVME unsol rcv */
15439 		cq = phba->sli4_hba.nvmels_cq;
15440 	}
15441 
15442 	/* Otherwise this is a Slow path event */
15443 	if (cq == NULL) {
15444 		lpfc_sli4_sp_handle_eqe(phba, eqe,
15445 					phba->sli4_hba.hdwq[qidx].hba_eq);
15446 		return;
15447 	}
15448 
15449 process_cq:
15450 	if (unlikely(cqid != cq->queue_id)) {
15451 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15452 				"0368 Miss-matched fast-path completion "
15453 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
15454 				cqid, cq->queue_id);
15455 		return;
15456 	}
15457 
15458 work_cq:
15459 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
15460 	if (phba->ktime_on)
15461 		cq->isr_timestamp = ktime_get_ns();
15462 	else
15463 		cq->isr_timestamp = 0;
15464 #endif
15465 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
15466 }
15467 
15468 /**
15469  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
15470  * @cq: Pointer to CQ to be processed
15471  * @poll_mode: Enum lpfc_poll_state to determine poll mode
15472  *
15473  * This routine calls the cq processing routine with the handler for
15474  * fast path CQEs.
15475  *
15476  * The CQ routine returns two values: the first is the calling status,
15477  * which indicates whether work was queued to the  background discovery
15478  * thread. If true, the routine should wakeup the discovery thread;
15479  * the second is the delay parameter. If non-zero, rather than rearming
15480  * the CQ and yet another interrupt, the CQ handler should be queued so
15481  * that it is processed in a subsequent polling action. The value of
15482  * the delay indicates when to reschedule it.
15483  **/
15484 static void
15485 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
15486 			   enum lpfc_poll_mode poll_mode)
15487 {
15488 	struct lpfc_hba *phba = cq->phba;
15489 	unsigned long delay;
15490 	bool workposted = false;
15491 	int ret = 0;
15492 
15493 	/* process and rearm the CQ */
15494 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
15495 					     &delay, poll_mode);
15496 
15497 	if (delay) {
15498 		if (is_kdump_kernel())
15499 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
15500 						delay);
15501 		else
15502 			ret = queue_delayed_work_on(cq->chann, phba->wq,
15503 						&cq->sched_irqwork, delay);
15504 		if (!ret)
15505 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15506 					"0367 Cannot schedule queue work "
15507 					"for cqid=%d on CPU %d\n",
15508 					cq->queue_id, cq->chann);
15509 	}
15510 
15511 	/* wake up worker thread if there are works to be done */
15512 	if (workposted)
15513 		lpfc_worker_wake_up(phba);
15514 }
15515 
15516 /**
15517  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
15518  *   interrupt
15519  * @work: pointer to work element
15520  *
15521  * translates from the work handler and calls the fast-path handler.
15522  **/
15523 static void
15524 lpfc_sli4_hba_process_cq(struct work_struct *work)
15525 {
15526 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
15527 
15528 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15529 }
15530 
15531 /**
15532  * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer
15533  * @work: pointer to work element
15534  *
15535  * translates from the work handler and calls the fast-path handler.
15536  **/
15537 static void
15538 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
15539 {
15540 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
15541 					struct lpfc_queue, sched_irqwork);
15542 
15543 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
15544 }
15545 
15546 /**
15547  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
15548  * @irq: Interrupt number.
15549  * @dev_id: The device context pointer.
15550  *
15551  * This function is directly called from the PCI layer as an interrupt
15552  * service routine when device with SLI-4 interface spec is enabled with
15553  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
15554  * ring event in the HBA. However, when the device is enabled with either
15555  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
15556  * device-level interrupt handler. When the PCI slot is in error recovery
15557  * or the HBA is undergoing initialization, the interrupt handler will not
15558  * process the interrupt. The SCSI FCP fast-path ring event are handled in
15559  * the intrrupt context. This function is called without any lock held.
15560  * It gets the hbalock to access and update SLI data structures. Note that,
15561  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
15562  * equal to that of FCP CQ index.
15563  *
15564  * The link attention and ELS ring attention events are handled
15565  * by the worker thread. The interrupt handler signals the worker thread
15566  * and returns for these events. This function is called without any lock
15567  * held. It gets the hbalock to access and update SLI data structures.
15568  *
15569  * This function returns IRQ_HANDLED when interrupt is handled else it
15570  * returns IRQ_NONE.
15571  **/
15572 irqreturn_t
15573 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
15574 {
15575 	struct lpfc_hba *phba;
15576 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
15577 	struct lpfc_queue *fpeq;
15578 	unsigned long iflag;
15579 	int ecount = 0;
15580 	int hba_eqidx;
15581 	struct lpfc_eq_intr_info *eqi;
15582 
15583 	/* Get the driver's phba structure from the dev_id */
15584 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
15585 	phba = hba_eq_hdl->phba;
15586 	hba_eqidx = hba_eq_hdl->idx;
15587 
15588 	if (unlikely(!phba))
15589 		return IRQ_NONE;
15590 	if (unlikely(!phba->sli4_hba.hdwq))
15591 		return IRQ_NONE;
15592 
15593 	/* Get to the EQ struct associated with this vector */
15594 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
15595 	if (unlikely(!fpeq))
15596 		return IRQ_NONE;
15597 
15598 	/* Check device state for handling interrupt */
15599 	if (unlikely(lpfc_intr_state_check(phba))) {
15600 		/* Check again for link_state with lock held */
15601 		spin_lock_irqsave(&phba->hbalock, iflag);
15602 		if (phba->link_state < LPFC_LINK_DOWN)
15603 			/* Flush, clear interrupt, and rearm the EQ */
15604 			lpfc_sli4_eqcq_flush(phba, fpeq);
15605 		spin_unlock_irqrestore(&phba->hbalock, iflag);
15606 		return IRQ_NONE;
15607 	}
15608 
15609 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
15610 	eqi->icnt++;
15611 
15612 	fpeq->last_cpu = raw_smp_processor_id();
15613 
15614 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
15615 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
15616 	    phba->cfg_auto_imax &&
15617 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
15618 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
15619 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
15620 
15621 	/* process and rearm the EQ */
15622 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
15623 
15624 	if (unlikely(ecount == 0)) {
15625 		fpeq->EQ_no_entry++;
15626 		if (phba->intr_type == MSIX)
15627 			/* MSI-X treated interrupt served as no EQ share INT */
15628 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
15629 					"0358 MSI-X interrupt with no EQE\n");
15630 		else
15631 			/* Non MSI-X treated on interrupt as EQ share INT */
15632 			return IRQ_NONE;
15633 	}
15634 
15635 	return IRQ_HANDLED;
15636 } /* lpfc_sli4_hba_intr_handler */
15637 
15638 /**
15639  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
15640  * @irq: Interrupt number.
15641  * @dev_id: The device context pointer.
15642  *
15643  * This function is the device-level interrupt handler to device with SLI-4
15644  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
15645  * interrupt mode is enabled and there is an event in the HBA which requires
15646  * driver attention. This function invokes the slow-path interrupt attention
15647  * handling function and fast-path interrupt attention handling function in
15648  * turn to process the relevant HBA attention events. This function is called
15649  * without any lock held. It gets the hbalock to access and update SLI data
15650  * structures.
15651  *
15652  * This function returns IRQ_HANDLED when interrupt is handled, else it
15653  * returns IRQ_NONE.
15654  **/
15655 irqreturn_t
15656 lpfc_sli4_intr_handler(int irq, void *dev_id)
15657 {
15658 	struct lpfc_hba  *phba;
15659 	irqreturn_t hba_irq_rc;
15660 	bool hba_handled = false;
15661 	int qidx;
15662 
15663 	/* Get the driver's phba structure from the dev_id */
15664 	phba = (struct lpfc_hba *)dev_id;
15665 
15666 	if (unlikely(!phba))
15667 		return IRQ_NONE;
15668 
15669 	/*
15670 	 * Invoke fast-path host attention interrupt handling as appropriate.
15671 	 */
15672 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
15673 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
15674 					&phba->sli4_hba.hba_eq_hdl[qidx]);
15675 		if (hba_irq_rc == IRQ_HANDLED)
15676 			hba_handled |= true;
15677 	}
15678 
15679 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
15680 } /* lpfc_sli4_intr_handler */
15681 
15682 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
15683 {
15684 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
15685 	struct lpfc_queue *eq;
15686 	int i = 0;
15687 
15688 	rcu_read_lock();
15689 
15690 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
15691 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
15692 	if (!list_empty(&phba->poll_list))
15693 		mod_timer(&phba->cpuhp_poll_timer,
15694 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15695 
15696 	rcu_read_unlock();
15697 }
15698 
15699 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
15700 {
15701 	struct lpfc_hba *phba = eq->phba;
15702 	int i = 0;
15703 
15704 	/*
15705 	 * Unlocking an irq is one of the entry point to check
15706 	 * for re-schedule, but we are good for io submission
15707 	 * path as midlayer does a get_cpu to glue us in. Flush
15708 	 * out the invalidate queue so we can see the updated
15709 	 * value for flag.
15710 	 */
15711 	smp_rmb();
15712 
15713 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
15714 		/* We will not likely get the completion for the caller
15715 		 * during this iteration but i guess that's fine.
15716 		 * Future io's coming on this eq should be able to
15717 		 * pick it up.  As for the case of single io's, they
15718 		 * will be handled through a sched from polling timer
15719 		 * function which is currently triggered every 1msec.
15720 		 */
15721 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
15722 
15723 	return i;
15724 }
15725 
15726 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
15727 {
15728 	struct lpfc_hba *phba = eq->phba;
15729 
15730 	/* kickstart slowpath processing if needed */
15731 	if (list_empty(&phba->poll_list))
15732 		mod_timer(&phba->cpuhp_poll_timer,
15733 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
15734 
15735 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
15736 	synchronize_rcu();
15737 }
15738 
15739 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
15740 {
15741 	struct lpfc_hba *phba = eq->phba;
15742 
15743 	/* Disable slowpath processing for this eq.  Kick start the eq
15744 	 * by RE-ARMING the eq's ASAP
15745 	 */
15746 	list_del_rcu(&eq->_poll_list);
15747 	synchronize_rcu();
15748 
15749 	if (list_empty(&phba->poll_list))
15750 		del_timer_sync(&phba->cpuhp_poll_timer);
15751 }
15752 
15753 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
15754 {
15755 	struct lpfc_queue *eq, *next;
15756 
15757 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
15758 		list_del(&eq->_poll_list);
15759 
15760 	INIT_LIST_HEAD(&phba->poll_list);
15761 	synchronize_rcu();
15762 }
15763 
15764 static inline void
15765 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
15766 {
15767 	if (mode == eq->mode)
15768 		return;
15769 	/*
15770 	 * currently this function is only called during a hotplug
15771 	 * event and the cpu on which this function is executing
15772 	 * is going offline.  By now the hotplug has instructed
15773 	 * the scheduler to remove this cpu from cpu active mask.
15774 	 * So we don't need to work about being put aside by the
15775 	 * scheduler for a high priority process.  Yes, the inte-
15776 	 * rrupts could come but they are known to retire ASAP.
15777 	 */
15778 
15779 	/* Disable polling in the fastpath */
15780 	WRITE_ONCE(eq->mode, mode);
15781 	/* flush out the store buffer */
15782 	smp_wmb();
15783 
15784 	/*
15785 	 * Add this eq to the polling list and start polling. For
15786 	 * a grace period both interrupt handler and poller will
15787 	 * try to process the eq _but_ that's fine.  We have a
15788 	 * synchronization mechanism in place (queue_claimed) to
15789 	 * deal with it.  This is just a draining phase for int-
15790 	 * errupt handler (not eq's) as we have guranteed through
15791 	 * barrier that all the CPUs have seen the new CQ_POLLED
15792 	 * state. which will effectively disable the REARMING of
15793 	 * the EQ.  The whole idea is eq's die off eventually as
15794 	 * we are not rearming EQ's anymore.
15795 	 */
15796 	mode ? lpfc_sli4_add_to_poll_list(eq) :
15797 	       lpfc_sli4_remove_from_poll_list(eq);
15798 }
15799 
15800 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
15801 {
15802 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
15803 }
15804 
15805 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
15806 {
15807 	struct lpfc_hba *phba = eq->phba;
15808 
15809 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
15810 
15811 	/* Kick start for the pending io's in h/w.
15812 	 * Once we switch back to interrupt processing on a eq
15813 	 * the io path completion will only arm eq's when it
15814 	 * receives a completion.  But since eq's are in disa-
15815 	 * rmed state it doesn't receive a completion.  This
15816 	 * creates a deadlock scenaro.
15817 	 */
15818 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
15819 }
15820 
15821 /**
15822  * lpfc_sli4_queue_free - free a queue structure and associated memory
15823  * @queue: The queue structure to free.
15824  *
15825  * This function frees a queue structure and the DMAable memory used for
15826  * the host resident queue. This function must be called after destroying the
15827  * queue on the HBA.
15828  **/
15829 void
15830 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15831 {
15832 	struct lpfc_dmabuf *dmabuf;
15833 
15834 	if (!queue)
15835 		return;
15836 
15837 	if (!list_empty(&queue->wq_list))
15838 		list_del(&queue->wq_list);
15839 
15840 	while (!list_empty(&queue->page_list)) {
15841 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15842 				 list);
15843 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15844 				  dmabuf->virt, dmabuf->phys);
15845 		kfree(dmabuf);
15846 	}
15847 	if (queue->rqbp) {
15848 		lpfc_free_rq_buffer(queue->phba, queue);
15849 		kfree(queue->rqbp);
15850 	}
15851 
15852 	if (!list_empty(&queue->cpu_list))
15853 		list_del(&queue->cpu_list);
15854 
15855 	kfree(queue);
15856 	return;
15857 }
15858 
15859 /**
15860  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15861  * @phba: The HBA that this queue is being created on.
15862  * @page_size: The size of a queue page
15863  * @entry_size: The size of each queue entry for this queue.
15864  * @entry_count: The number of entries that this queue will handle.
15865  * @cpu: The cpu that will primarily utilize this queue.
15866  *
15867  * This function allocates a queue structure and the DMAable memory used for
15868  * the host resident queue. This function must be called before creating the
15869  * queue on the HBA.
15870  **/
15871 struct lpfc_queue *
15872 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15873 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15874 {
15875 	struct lpfc_queue *queue;
15876 	struct lpfc_dmabuf *dmabuf;
15877 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15878 	uint16_t x, pgcnt;
15879 
15880 	if (!phba->sli4_hba.pc_sli4_params.supported)
15881 		hw_page_size = page_size;
15882 
15883 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15884 
15885 	/* If needed, Adjust page count to match the max the adapter supports */
15886 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15887 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15888 
15889 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15890 			     GFP_KERNEL, cpu_to_node(cpu));
15891 	if (!queue)
15892 		return NULL;
15893 
15894 	INIT_LIST_HEAD(&queue->list);
15895 	INIT_LIST_HEAD(&queue->_poll_list);
15896 	INIT_LIST_HEAD(&queue->wq_list);
15897 	INIT_LIST_HEAD(&queue->wqfull_list);
15898 	INIT_LIST_HEAD(&queue->page_list);
15899 	INIT_LIST_HEAD(&queue->child_list);
15900 	INIT_LIST_HEAD(&queue->cpu_list);
15901 
15902 	/* Set queue parameters now.  If the system cannot provide memory
15903 	 * resources, the free routine needs to know what was allocated.
15904 	 */
15905 	queue->page_count = pgcnt;
15906 	queue->q_pgs = (void **)&queue[1];
15907 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15908 	queue->entry_size = entry_size;
15909 	queue->entry_count = entry_count;
15910 	queue->page_size = hw_page_size;
15911 	queue->phba = phba;
15912 
15913 	for (x = 0; x < queue->page_count; x++) {
15914 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15915 				      dev_to_node(&phba->pcidev->dev));
15916 		if (!dmabuf)
15917 			goto out_fail;
15918 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15919 						  hw_page_size, &dmabuf->phys,
15920 						  GFP_KERNEL);
15921 		if (!dmabuf->virt) {
15922 			kfree(dmabuf);
15923 			goto out_fail;
15924 		}
15925 		dmabuf->buffer_tag = x;
15926 		list_add_tail(&dmabuf->list, &queue->page_list);
15927 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15928 		queue->q_pgs[x] = dmabuf->virt;
15929 	}
15930 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15931 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15932 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15933 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15934 
15935 	/* notify_interval will be set during q creation */
15936 
15937 	return queue;
15938 out_fail:
15939 	lpfc_sli4_queue_free(queue);
15940 	return NULL;
15941 }
15942 
15943 /**
15944  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15945  * @phba: HBA structure that indicates port to create a queue on.
15946  * @pci_barset: PCI BAR set flag.
15947  *
15948  * This function shall perform iomap of the specified PCI BAR address to host
15949  * memory address if not already done so and return it. The returned host
15950  * memory address can be NULL.
15951  */
15952 static void __iomem *
15953 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15954 {
15955 	if (!phba->pcidev)
15956 		return NULL;
15957 
15958 	switch (pci_barset) {
15959 	case WQ_PCI_BAR_0_AND_1:
15960 		return phba->pci_bar0_memmap_p;
15961 	case WQ_PCI_BAR_2_AND_3:
15962 		return phba->pci_bar2_memmap_p;
15963 	case WQ_PCI_BAR_4_AND_5:
15964 		return phba->pci_bar4_memmap_p;
15965 	default:
15966 		break;
15967 	}
15968 	return NULL;
15969 }
15970 
15971 /**
15972  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15973  * @phba: HBA structure that EQs are on.
15974  * @startq: The starting EQ index to modify
15975  * @numq: The number of EQs (consecutive indexes) to modify
15976  * @usdelay: amount of delay
15977  *
15978  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15979  * is set either by writing to a register (if supported by the SLI Port)
15980  * or by mailbox command. The mailbox command allows several EQs to be
15981  * updated at once.
15982  *
15983  * The @phba struct is used to send a mailbox command to HBA. The @startq
15984  * is used to get the starting EQ index to change. The @numq value is
15985  * used to specify how many consecutive EQ indexes, starting at EQ index,
15986  * are to be changed. This function is asynchronous and will wait for any
15987  * mailbox commands to finish before returning.
15988  *
15989  * On success this function will return a zero. If unable to allocate
15990  * enough memory this function will return -ENOMEM. If a mailbox command
15991  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15992  * have had their delay multipler changed.
15993  **/
15994 void
15995 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15996 			 uint32_t numq, uint32_t usdelay)
15997 {
15998 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15999 	LPFC_MBOXQ_t *mbox;
16000 	struct lpfc_queue *eq;
16001 	int cnt = 0, rc, length;
16002 	uint32_t shdr_status, shdr_add_status;
16003 	uint32_t dmult;
16004 	int qidx;
16005 	union lpfc_sli4_cfg_shdr *shdr;
16006 
16007 	if (startq >= phba->cfg_irq_chann)
16008 		return;
16009 
16010 	if (usdelay > 0xFFFF) {
16011 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
16012 				"6429 usdelay %d too large. Scaled down to "
16013 				"0xFFFF.\n", usdelay);
16014 		usdelay = 0xFFFF;
16015 	}
16016 
16017 	/* set values by EQ_DELAY register if supported */
16018 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
16019 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16020 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16021 			if (!eq)
16022 				continue;
16023 
16024 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
16025 
16026 			if (++cnt >= numq)
16027 				break;
16028 		}
16029 		return;
16030 	}
16031 
16032 	/* Otherwise, set values by mailbox cmd */
16033 
16034 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16035 	if (!mbox) {
16036 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16037 				"6428 Failed allocating mailbox cmd buffer."
16038 				" EQ delay was not set.\n");
16039 		return;
16040 	}
16041 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
16042 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16043 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16044 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
16045 			 length, LPFC_SLI4_MBX_EMBED);
16046 	eq_delay = &mbox->u.mqe.un.eq_delay;
16047 
16048 	/* Calculate delay multiper from maximum interrupt per second */
16049 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
16050 	if (dmult)
16051 		dmult--;
16052 	if (dmult > LPFC_DMULT_MAX)
16053 		dmult = LPFC_DMULT_MAX;
16054 
16055 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
16056 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
16057 		if (!eq)
16058 			continue;
16059 		eq->q_mode = usdelay;
16060 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
16061 		eq_delay->u.request.eq[cnt].phase = 0;
16062 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
16063 
16064 		if (++cnt >= numq)
16065 			break;
16066 	}
16067 	eq_delay->u.request.num_eq = cnt;
16068 
16069 	mbox->vport = phba->pport;
16070 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16071 	mbox->ctx_buf = NULL;
16072 	mbox->ctx_ndlp = NULL;
16073 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16074 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
16075 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16076 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16077 	if (shdr_status || shdr_add_status || rc) {
16078 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16079 				"2512 MODIFY_EQ_DELAY mailbox failed with "
16080 				"status x%x add_status x%x, mbx status x%x\n",
16081 				shdr_status, shdr_add_status, rc);
16082 	}
16083 	mempool_free(mbox, phba->mbox_mem_pool);
16084 	return;
16085 }
16086 
16087 /**
16088  * lpfc_eq_create - Create an Event Queue on the HBA
16089  * @phba: HBA structure that indicates port to create a queue on.
16090  * @eq: The queue structure to use to create the event queue.
16091  * @imax: The maximum interrupt per second limit.
16092  *
16093  * This function creates an event queue, as detailed in @eq, on a port,
16094  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
16095  *
16096  * The @phba struct is used to send mailbox command to HBA. The @eq struct
16097  * is used to get the entry count and entry size that are necessary to
16098  * determine the number of pages to allocate and use for this queue. This
16099  * function will send the EQ_CREATE mailbox command to the HBA to setup the
16100  * event queue. This function is asynchronous and will wait for the mailbox
16101  * command to finish before continuing.
16102  *
16103  * On success this function will return a zero. If unable to allocate enough
16104  * memory this function will return -ENOMEM. If the queue create mailbox command
16105  * fails this function will return -ENXIO.
16106  **/
16107 int
16108 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
16109 {
16110 	struct lpfc_mbx_eq_create *eq_create;
16111 	LPFC_MBOXQ_t *mbox;
16112 	int rc, length, status = 0;
16113 	struct lpfc_dmabuf *dmabuf;
16114 	uint32_t shdr_status, shdr_add_status;
16115 	union lpfc_sli4_cfg_shdr *shdr;
16116 	uint16_t dmult;
16117 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16118 
16119 	/* sanity check on queue memory */
16120 	if (!eq)
16121 		return -ENODEV;
16122 	if (!phba->sli4_hba.pc_sli4_params.supported)
16123 		hw_page_size = SLI4_PAGE_SIZE;
16124 
16125 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16126 	if (!mbox)
16127 		return -ENOMEM;
16128 	length = (sizeof(struct lpfc_mbx_eq_create) -
16129 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16130 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16131 			 LPFC_MBOX_OPCODE_EQ_CREATE,
16132 			 length, LPFC_SLI4_MBX_EMBED);
16133 	eq_create = &mbox->u.mqe.un.eq_create;
16134 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
16135 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
16136 	       eq->page_count);
16137 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
16138 	       LPFC_EQE_SIZE);
16139 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
16140 
16141 	/* Use version 2 of CREATE_EQ if eqav is set */
16142 	if (phba->sli4_hba.pc_sli4_params.eqav) {
16143 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16144 		       LPFC_Q_CREATE_VERSION_2);
16145 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
16146 		       phba->sli4_hba.pc_sli4_params.eqav);
16147 	}
16148 
16149 	/* don't setup delay multiplier using EQ_CREATE */
16150 	dmult = 0;
16151 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
16152 	       dmult);
16153 	switch (eq->entry_count) {
16154 	default:
16155 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16156 				"0360 Unsupported EQ count. (%d)\n",
16157 				eq->entry_count);
16158 		if (eq->entry_count < 256) {
16159 			status = -EINVAL;
16160 			goto out;
16161 		}
16162 		fallthrough;	/* otherwise default to smallest count */
16163 	case 256:
16164 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16165 		       LPFC_EQ_CNT_256);
16166 		break;
16167 	case 512:
16168 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16169 		       LPFC_EQ_CNT_512);
16170 		break;
16171 	case 1024:
16172 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16173 		       LPFC_EQ_CNT_1024);
16174 		break;
16175 	case 2048:
16176 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16177 		       LPFC_EQ_CNT_2048);
16178 		break;
16179 	case 4096:
16180 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
16181 		       LPFC_EQ_CNT_4096);
16182 		break;
16183 	}
16184 	list_for_each_entry(dmabuf, &eq->page_list, list) {
16185 		memset(dmabuf->virt, 0, hw_page_size);
16186 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16187 					putPaddrLow(dmabuf->phys);
16188 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16189 					putPaddrHigh(dmabuf->phys);
16190 	}
16191 	mbox->vport = phba->pport;
16192 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16193 	mbox->ctx_buf = NULL;
16194 	mbox->ctx_ndlp = NULL;
16195 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16196 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16197 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16198 	if (shdr_status || shdr_add_status || rc) {
16199 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16200 				"2500 EQ_CREATE mailbox failed with "
16201 				"status x%x add_status x%x, mbx status x%x\n",
16202 				shdr_status, shdr_add_status, rc);
16203 		status = -ENXIO;
16204 	}
16205 	eq->type = LPFC_EQ;
16206 	eq->subtype = LPFC_NONE;
16207 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
16208 	if (eq->queue_id == 0xFFFF)
16209 		status = -ENXIO;
16210 	eq->host_index = 0;
16211 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
16212 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
16213 out:
16214 	mempool_free(mbox, phba->mbox_mem_pool);
16215 	return status;
16216 }
16217 
16218 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
16219 {
16220 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
16221 
16222 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
16223 
16224 	return 1;
16225 }
16226 
16227 /**
16228  * lpfc_cq_create - Create a Completion Queue on the HBA
16229  * @phba: HBA structure that indicates port to create a queue on.
16230  * @cq: The queue structure to use to create the completion queue.
16231  * @eq: The event queue to bind this completion queue to.
16232  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16233  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16234  *
16235  * This function creates a completion queue, as detailed in @wq, on a port,
16236  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
16237  *
16238  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16239  * is used to get the entry count and entry size that are necessary to
16240  * determine the number of pages to allocate and use for this queue. The @eq
16241  * is used to indicate which event queue to bind this completion queue to. This
16242  * function will send the CQ_CREATE mailbox command to the HBA to setup the
16243  * completion queue. This function is asynchronous and will wait for the mailbox
16244  * command to finish before continuing.
16245  *
16246  * On success this function will return a zero. If unable to allocate enough
16247  * memory this function will return -ENOMEM. If the queue create mailbox command
16248  * fails this function will return -ENXIO.
16249  **/
16250 int
16251 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
16252 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
16253 {
16254 	struct lpfc_mbx_cq_create *cq_create;
16255 	struct lpfc_dmabuf *dmabuf;
16256 	LPFC_MBOXQ_t *mbox;
16257 	int rc, length, status = 0;
16258 	uint32_t shdr_status, shdr_add_status;
16259 	union lpfc_sli4_cfg_shdr *shdr;
16260 
16261 	/* sanity check on queue memory */
16262 	if (!cq || !eq)
16263 		return -ENODEV;
16264 
16265 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16266 	if (!mbox)
16267 		return -ENOMEM;
16268 	length = (sizeof(struct lpfc_mbx_cq_create) -
16269 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16270 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16271 			 LPFC_MBOX_OPCODE_CQ_CREATE,
16272 			 length, LPFC_SLI4_MBX_EMBED);
16273 	cq_create = &mbox->u.mqe.un.cq_create;
16274 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
16275 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
16276 		    cq->page_count);
16277 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
16278 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
16279 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16280 	       phba->sli4_hba.pc_sli4_params.cqv);
16281 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
16282 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
16283 		       (cq->page_size / SLI4_PAGE_SIZE));
16284 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
16285 		       eq->queue_id);
16286 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
16287 		       phba->sli4_hba.pc_sli4_params.cqav);
16288 	} else {
16289 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
16290 		       eq->queue_id);
16291 	}
16292 	switch (cq->entry_count) {
16293 	case 2048:
16294 	case 4096:
16295 		if (phba->sli4_hba.pc_sli4_params.cqv ==
16296 		    LPFC_Q_CREATE_VERSION_2) {
16297 			cq_create->u.request.context.lpfc_cq_context_count =
16298 				cq->entry_count;
16299 			bf_set(lpfc_cq_context_count,
16300 			       &cq_create->u.request.context,
16301 			       LPFC_CQ_CNT_WORD7);
16302 			break;
16303 		}
16304 		fallthrough;
16305 	default:
16306 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16307 				"0361 Unsupported CQ count: "
16308 				"entry cnt %d sz %d pg cnt %d\n",
16309 				cq->entry_count, cq->entry_size,
16310 				cq->page_count);
16311 		if (cq->entry_count < 256) {
16312 			status = -EINVAL;
16313 			goto out;
16314 		}
16315 		fallthrough;	/* otherwise default to smallest count */
16316 	case 256:
16317 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16318 		       LPFC_CQ_CNT_256);
16319 		break;
16320 	case 512:
16321 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16322 		       LPFC_CQ_CNT_512);
16323 		break;
16324 	case 1024:
16325 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
16326 		       LPFC_CQ_CNT_1024);
16327 		break;
16328 	}
16329 	list_for_each_entry(dmabuf, &cq->page_list, list) {
16330 		memset(dmabuf->virt, 0, cq->page_size);
16331 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16332 					putPaddrLow(dmabuf->phys);
16333 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16334 					putPaddrHigh(dmabuf->phys);
16335 	}
16336 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16337 
16338 	/* The IOCTL status is embedded in the mailbox subheader. */
16339 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16340 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16341 	if (shdr_status || shdr_add_status || rc) {
16342 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16343 				"2501 CQ_CREATE mailbox failed with "
16344 				"status x%x add_status x%x, mbx status x%x\n",
16345 				shdr_status, shdr_add_status, rc);
16346 		status = -ENXIO;
16347 		goto out;
16348 	}
16349 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16350 	if (cq->queue_id == 0xFFFF) {
16351 		status = -ENXIO;
16352 		goto out;
16353 	}
16354 	/* link the cq onto the parent eq child list */
16355 	list_add_tail(&cq->list, &eq->child_list);
16356 	/* Set up completion queue's type and subtype */
16357 	cq->type = type;
16358 	cq->subtype = subtype;
16359 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
16360 	cq->assoc_qid = eq->queue_id;
16361 	cq->assoc_qp = eq;
16362 	cq->host_index = 0;
16363 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16364 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
16365 
16366 	if (cq->queue_id > phba->sli4_hba.cq_max)
16367 		phba->sli4_hba.cq_max = cq->queue_id;
16368 
16369 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
16370 out:
16371 	mempool_free(mbox, phba->mbox_mem_pool);
16372 	return status;
16373 }
16374 
16375 /**
16376  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
16377  * @phba: HBA structure that indicates port to create a queue on.
16378  * @cqp: The queue structure array to use to create the completion queues.
16379  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
16380  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
16381  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16382  *
16383  * This function creates a set of  completion queue, s to support MRQ
16384  * as detailed in @cqp, on a port,
16385  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
16386  *
16387  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16388  * is used to get the entry count and entry size that are necessary to
16389  * determine the number of pages to allocate and use for this queue. The @eq
16390  * is used to indicate which event queue to bind this completion queue to. This
16391  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
16392  * completion queue. This function is asynchronous and will wait for the mailbox
16393  * command to finish before continuing.
16394  *
16395  * On success this function will return a zero. If unable to allocate enough
16396  * memory this function will return -ENOMEM. If the queue create mailbox command
16397  * fails this function will return -ENXIO.
16398  **/
16399 int
16400 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
16401 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
16402 		   uint32_t subtype)
16403 {
16404 	struct lpfc_queue *cq;
16405 	struct lpfc_queue *eq;
16406 	struct lpfc_mbx_cq_create_set *cq_set;
16407 	struct lpfc_dmabuf *dmabuf;
16408 	LPFC_MBOXQ_t *mbox;
16409 	int rc, length, alloclen, status = 0;
16410 	int cnt, idx, numcq, page_idx = 0;
16411 	uint32_t shdr_status, shdr_add_status;
16412 	union lpfc_sli4_cfg_shdr *shdr;
16413 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16414 
16415 	/* sanity check on queue memory */
16416 	numcq = phba->cfg_nvmet_mrq;
16417 	if (!cqp || !hdwq || !numcq)
16418 		return -ENODEV;
16419 
16420 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16421 	if (!mbox)
16422 		return -ENOMEM;
16423 
16424 	length = sizeof(struct lpfc_mbx_cq_create_set);
16425 	length += ((numcq * cqp[0]->page_count) *
16426 		   sizeof(struct dma_address));
16427 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16428 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
16429 			LPFC_SLI4_MBX_NEMBED);
16430 	if (alloclen < length) {
16431 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16432 				"3098 Allocated DMA memory size (%d) is "
16433 				"less than the requested DMA memory size "
16434 				"(%d)\n", alloclen, length);
16435 		status = -ENOMEM;
16436 		goto out;
16437 	}
16438 	cq_set = mbox->sge_array->addr[0];
16439 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
16440 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
16441 
16442 	for (idx = 0; idx < numcq; idx++) {
16443 		cq = cqp[idx];
16444 		eq = hdwq[idx].hba_eq;
16445 		if (!cq || !eq) {
16446 			status = -ENOMEM;
16447 			goto out;
16448 		}
16449 		if (!phba->sli4_hba.pc_sli4_params.supported)
16450 			hw_page_size = cq->page_size;
16451 
16452 		switch (idx) {
16453 		case 0:
16454 			bf_set(lpfc_mbx_cq_create_set_page_size,
16455 			       &cq_set->u.request,
16456 			       (hw_page_size / SLI4_PAGE_SIZE));
16457 			bf_set(lpfc_mbx_cq_create_set_num_pages,
16458 			       &cq_set->u.request, cq->page_count);
16459 			bf_set(lpfc_mbx_cq_create_set_evt,
16460 			       &cq_set->u.request, 1);
16461 			bf_set(lpfc_mbx_cq_create_set_valid,
16462 			       &cq_set->u.request, 1);
16463 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
16464 			       &cq_set->u.request, 0);
16465 			bf_set(lpfc_mbx_cq_create_set_num_cq,
16466 			       &cq_set->u.request, numcq);
16467 			bf_set(lpfc_mbx_cq_create_set_autovalid,
16468 			       &cq_set->u.request,
16469 			       phba->sli4_hba.pc_sli4_params.cqav);
16470 			switch (cq->entry_count) {
16471 			case 2048:
16472 			case 4096:
16473 				if (phba->sli4_hba.pc_sli4_params.cqv ==
16474 				    LPFC_Q_CREATE_VERSION_2) {
16475 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16476 					       &cq_set->u.request,
16477 						cq->entry_count);
16478 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16479 					       &cq_set->u.request,
16480 					       LPFC_CQ_CNT_WORD7);
16481 					break;
16482 				}
16483 				fallthrough;
16484 			default:
16485 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16486 						"3118 Bad CQ count. (%d)\n",
16487 						cq->entry_count);
16488 				if (cq->entry_count < 256) {
16489 					status = -EINVAL;
16490 					goto out;
16491 				}
16492 				fallthrough;	/* otherwise default to smallest */
16493 			case 256:
16494 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16495 				       &cq_set->u.request, LPFC_CQ_CNT_256);
16496 				break;
16497 			case 512:
16498 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16499 				       &cq_set->u.request, LPFC_CQ_CNT_512);
16500 				break;
16501 			case 1024:
16502 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
16503 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
16504 				break;
16505 			}
16506 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
16507 			       &cq_set->u.request, eq->queue_id);
16508 			break;
16509 		case 1:
16510 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
16511 			       &cq_set->u.request, eq->queue_id);
16512 			break;
16513 		case 2:
16514 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
16515 			       &cq_set->u.request, eq->queue_id);
16516 			break;
16517 		case 3:
16518 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
16519 			       &cq_set->u.request, eq->queue_id);
16520 			break;
16521 		case 4:
16522 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
16523 			       &cq_set->u.request, eq->queue_id);
16524 			break;
16525 		case 5:
16526 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
16527 			       &cq_set->u.request, eq->queue_id);
16528 			break;
16529 		case 6:
16530 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
16531 			       &cq_set->u.request, eq->queue_id);
16532 			break;
16533 		case 7:
16534 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
16535 			       &cq_set->u.request, eq->queue_id);
16536 			break;
16537 		case 8:
16538 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
16539 			       &cq_set->u.request, eq->queue_id);
16540 			break;
16541 		case 9:
16542 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
16543 			       &cq_set->u.request, eq->queue_id);
16544 			break;
16545 		case 10:
16546 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
16547 			       &cq_set->u.request, eq->queue_id);
16548 			break;
16549 		case 11:
16550 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
16551 			       &cq_set->u.request, eq->queue_id);
16552 			break;
16553 		case 12:
16554 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
16555 			       &cq_set->u.request, eq->queue_id);
16556 			break;
16557 		case 13:
16558 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
16559 			       &cq_set->u.request, eq->queue_id);
16560 			break;
16561 		case 14:
16562 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
16563 			       &cq_set->u.request, eq->queue_id);
16564 			break;
16565 		case 15:
16566 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
16567 			       &cq_set->u.request, eq->queue_id);
16568 			break;
16569 		}
16570 
16571 		/* link the cq onto the parent eq child list */
16572 		list_add_tail(&cq->list, &eq->child_list);
16573 		/* Set up completion queue's type and subtype */
16574 		cq->type = type;
16575 		cq->subtype = subtype;
16576 		cq->assoc_qid = eq->queue_id;
16577 		cq->assoc_qp = eq;
16578 		cq->host_index = 0;
16579 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
16580 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
16581 					 cq->entry_count);
16582 		cq->chann = idx;
16583 
16584 		rc = 0;
16585 		list_for_each_entry(dmabuf, &cq->page_list, list) {
16586 			memset(dmabuf->virt, 0, hw_page_size);
16587 			cnt = page_idx + dmabuf->buffer_tag;
16588 			cq_set->u.request.page[cnt].addr_lo =
16589 					putPaddrLow(dmabuf->phys);
16590 			cq_set->u.request.page[cnt].addr_hi =
16591 					putPaddrHigh(dmabuf->phys);
16592 			rc++;
16593 		}
16594 		page_idx += rc;
16595 	}
16596 
16597 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16598 
16599 	/* The IOCTL status is embedded in the mailbox subheader. */
16600 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16601 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16602 	if (shdr_status || shdr_add_status || rc) {
16603 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16604 				"3119 CQ_CREATE_SET mailbox failed with "
16605 				"status x%x add_status x%x, mbx status x%x\n",
16606 				shdr_status, shdr_add_status, rc);
16607 		status = -ENXIO;
16608 		goto out;
16609 	}
16610 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
16611 	if (rc == 0xFFFF) {
16612 		status = -ENXIO;
16613 		goto out;
16614 	}
16615 
16616 	for (idx = 0; idx < numcq; idx++) {
16617 		cq = cqp[idx];
16618 		cq->queue_id = rc + idx;
16619 		if (cq->queue_id > phba->sli4_hba.cq_max)
16620 			phba->sli4_hba.cq_max = cq->queue_id;
16621 	}
16622 
16623 out:
16624 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16625 	return status;
16626 }
16627 
16628 /**
16629  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
16630  * @phba: HBA structure that indicates port to create a queue on.
16631  * @mq: The queue structure to use to create the mailbox queue.
16632  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
16633  * @cq: The completion queue to associate with this cq.
16634  *
16635  * This function provides failback (fb) functionality when the
16636  * mq_create_ext fails on older FW generations.  It's purpose is identical
16637  * to mq_create_ext otherwise.
16638  *
16639  * This routine cannot fail as all attributes were previously accessed and
16640  * initialized in mq_create_ext.
16641  **/
16642 static void
16643 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
16644 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
16645 {
16646 	struct lpfc_mbx_mq_create *mq_create;
16647 	struct lpfc_dmabuf *dmabuf;
16648 	int length;
16649 
16650 	length = (sizeof(struct lpfc_mbx_mq_create) -
16651 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16652 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16653 			 LPFC_MBOX_OPCODE_MQ_CREATE,
16654 			 length, LPFC_SLI4_MBX_EMBED);
16655 	mq_create = &mbox->u.mqe.un.mq_create;
16656 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
16657 	       mq->page_count);
16658 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
16659 	       cq->queue_id);
16660 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
16661 	switch (mq->entry_count) {
16662 	case 16:
16663 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16664 		       LPFC_MQ_RING_SIZE_16);
16665 		break;
16666 	case 32:
16667 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16668 		       LPFC_MQ_RING_SIZE_32);
16669 		break;
16670 	case 64:
16671 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16672 		       LPFC_MQ_RING_SIZE_64);
16673 		break;
16674 	case 128:
16675 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
16676 		       LPFC_MQ_RING_SIZE_128);
16677 		break;
16678 	}
16679 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16680 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16681 			putPaddrLow(dmabuf->phys);
16682 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16683 			putPaddrHigh(dmabuf->phys);
16684 	}
16685 }
16686 
16687 /**
16688  * lpfc_mq_create - Create a mailbox Queue on the HBA
16689  * @phba: HBA structure that indicates port to create a queue on.
16690  * @mq: The queue structure to use to create the mailbox queue.
16691  * @cq: The completion queue to associate with this cq.
16692  * @subtype: The queue's subtype.
16693  *
16694  * This function creates a mailbox queue, as detailed in @mq, on a port,
16695  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
16696  *
16697  * The @phba struct is used to send mailbox command to HBA. The @cq struct
16698  * is used to get the entry count and entry size that are necessary to
16699  * determine the number of pages to allocate and use for this queue. This
16700  * function will send the MQ_CREATE mailbox command to the HBA to setup the
16701  * mailbox queue. This function is asynchronous and will wait for the mailbox
16702  * command to finish before continuing.
16703  *
16704  * On success this function will return a zero. If unable to allocate enough
16705  * memory this function will return -ENOMEM. If the queue create mailbox command
16706  * fails this function will return -ENXIO.
16707  **/
16708 int32_t
16709 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
16710 	       struct lpfc_queue *cq, uint32_t subtype)
16711 {
16712 	struct lpfc_mbx_mq_create *mq_create;
16713 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
16714 	struct lpfc_dmabuf *dmabuf;
16715 	LPFC_MBOXQ_t *mbox;
16716 	int rc, length, status = 0;
16717 	uint32_t shdr_status, shdr_add_status;
16718 	union lpfc_sli4_cfg_shdr *shdr;
16719 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16720 
16721 	/* sanity check on queue memory */
16722 	if (!mq || !cq)
16723 		return -ENODEV;
16724 	if (!phba->sli4_hba.pc_sli4_params.supported)
16725 		hw_page_size = SLI4_PAGE_SIZE;
16726 
16727 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16728 	if (!mbox)
16729 		return -ENOMEM;
16730 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
16731 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16732 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16733 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
16734 			 length, LPFC_SLI4_MBX_EMBED);
16735 
16736 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
16737 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
16738 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
16739 	       &mq_create_ext->u.request, mq->page_count);
16740 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
16741 	       &mq_create_ext->u.request, 1);
16742 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
16743 	       &mq_create_ext->u.request, 1);
16744 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
16745 	       &mq_create_ext->u.request, 1);
16746 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
16747 	       &mq_create_ext->u.request, 1);
16748 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
16749 	       &mq_create_ext->u.request, 1);
16750 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
16751 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16752 	       phba->sli4_hba.pc_sli4_params.mqv);
16753 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
16754 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
16755 		       cq->queue_id);
16756 	else
16757 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
16758 		       cq->queue_id);
16759 	switch (mq->entry_count) {
16760 	default:
16761 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16762 				"0362 Unsupported MQ count. (%d)\n",
16763 				mq->entry_count);
16764 		if (mq->entry_count < 16) {
16765 			status = -EINVAL;
16766 			goto out;
16767 		}
16768 		fallthrough;	/* otherwise default to smallest count */
16769 	case 16:
16770 		bf_set(lpfc_mq_context_ring_size,
16771 		       &mq_create_ext->u.request.context,
16772 		       LPFC_MQ_RING_SIZE_16);
16773 		break;
16774 	case 32:
16775 		bf_set(lpfc_mq_context_ring_size,
16776 		       &mq_create_ext->u.request.context,
16777 		       LPFC_MQ_RING_SIZE_32);
16778 		break;
16779 	case 64:
16780 		bf_set(lpfc_mq_context_ring_size,
16781 		       &mq_create_ext->u.request.context,
16782 		       LPFC_MQ_RING_SIZE_64);
16783 		break;
16784 	case 128:
16785 		bf_set(lpfc_mq_context_ring_size,
16786 		       &mq_create_ext->u.request.context,
16787 		       LPFC_MQ_RING_SIZE_128);
16788 		break;
16789 	}
16790 	list_for_each_entry(dmabuf, &mq->page_list, list) {
16791 		memset(dmabuf->virt, 0, hw_page_size);
16792 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
16793 					putPaddrLow(dmabuf->phys);
16794 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
16795 					putPaddrHigh(dmabuf->phys);
16796 	}
16797 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16798 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16799 			      &mq_create_ext->u.response);
16800 	if (rc != MBX_SUCCESS) {
16801 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16802 				"2795 MQ_CREATE_EXT failed with "
16803 				"status x%x. Failback to MQ_CREATE.\n",
16804 				rc);
16805 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
16806 		mq_create = &mbox->u.mqe.un.mq_create;
16807 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16808 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
16809 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
16810 				      &mq_create->u.response);
16811 	}
16812 
16813 	/* The IOCTL status is embedded in the mailbox subheader. */
16814 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16815 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16816 	if (shdr_status || shdr_add_status || rc) {
16817 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16818 				"2502 MQ_CREATE mailbox failed with "
16819 				"status x%x add_status x%x, mbx status x%x\n",
16820 				shdr_status, shdr_add_status, rc);
16821 		status = -ENXIO;
16822 		goto out;
16823 	}
16824 	if (mq->queue_id == 0xFFFF) {
16825 		status = -ENXIO;
16826 		goto out;
16827 	}
16828 	mq->type = LPFC_MQ;
16829 	mq->assoc_qid = cq->queue_id;
16830 	mq->subtype = subtype;
16831 	mq->host_index = 0;
16832 	mq->hba_index = 0;
16833 
16834 	/* link the mq onto the parent cq child list */
16835 	list_add_tail(&mq->list, &cq->child_list);
16836 out:
16837 	mempool_free(mbox, phba->mbox_mem_pool);
16838 	return status;
16839 }
16840 
16841 /**
16842  * lpfc_wq_create - Create a Work Queue on the HBA
16843  * @phba: HBA structure that indicates port to create a queue on.
16844  * @wq: The queue structure to use to create the work queue.
16845  * @cq: The completion queue to bind this work queue to.
16846  * @subtype: The subtype of the work queue indicating its functionality.
16847  *
16848  * This function creates a work queue, as detailed in @wq, on a port, described
16849  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16850  *
16851  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16852  * is used to get the entry count and entry size that are necessary to
16853  * determine the number of pages to allocate and use for this queue. The @cq
16854  * is used to indicate which completion queue to bind this work queue to. This
16855  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16856  * work queue. This function is asynchronous and will wait for the mailbox
16857  * command to finish before continuing.
16858  *
16859  * On success this function will return a zero. If unable to allocate enough
16860  * memory this function will return -ENOMEM. If the queue create mailbox command
16861  * fails this function will return -ENXIO.
16862  **/
16863 int
16864 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16865 	       struct lpfc_queue *cq, uint32_t subtype)
16866 {
16867 	struct lpfc_mbx_wq_create *wq_create;
16868 	struct lpfc_dmabuf *dmabuf;
16869 	LPFC_MBOXQ_t *mbox;
16870 	int rc, length, status = 0;
16871 	uint32_t shdr_status, shdr_add_status;
16872 	union lpfc_sli4_cfg_shdr *shdr;
16873 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16874 	struct dma_address *page;
16875 	void __iomem *bar_memmap_p;
16876 	uint32_t db_offset;
16877 	uint16_t pci_barset;
16878 	uint8_t dpp_barset;
16879 	uint32_t dpp_offset;
16880 	uint8_t wq_create_version;
16881 #ifdef CONFIG_X86
16882 	unsigned long pg_addr;
16883 #endif
16884 
16885 	/* sanity check on queue memory */
16886 	if (!wq || !cq)
16887 		return -ENODEV;
16888 	if (!phba->sli4_hba.pc_sli4_params.supported)
16889 		hw_page_size = wq->page_size;
16890 
16891 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16892 	if (!mbox)
16893 		return -ENOMEM;
16894 	length = (sizeof(struct lpfc_mbx_wq_create) -
16895 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16896 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16897 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16898 			 length, LPFC_SLI4_MBX_EMBED);
16899 	wq_create = &mbox->u.mqe.un.wq_create;
16900 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16901 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16902 		    wq->page_count);
16903 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16904 		    cq->queue_id);
16905 
16906 	/* wqv is the earliest version supported, NOT the latest */
16907 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16908 	       phba->sli4_hba.pc_sli4_params.wqv);
16909 
16910 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16911 	    (wq->page_size > SLI4_PAGE_SIZE))
16912 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16913 	else
16914 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16915 
16916 	switch (wq_create_version) {
16917 	case LPFC_Q_CREATE_VERSION_1:
16918 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16919 		       wq->entry_count);
16920 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16921 		       LPFC_Q_CREATE_VERSION_1);
16922 
16923 		switch (wq->entry_size) {
16924 		default:
16925 		case 64:
16926 			bf_set(lpfc_mbx_wq_create_wqe_size,
16927 			       &wq_create->u.request_1,
16928 			       LPFC_WQ_WQE_SIZE_64);
16929 			break;
16930 		case 128:
16931 			bf_set(lpfc_mbx_wq_create_wqe_size,
16932 			       &wq_create->u.request_1,
16933 			       LPFC_WQ_WQE_SIZE_128);
16934 			break;
16935 		}
16936 		/* Request DPP by default */
16937 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16938 		bf_set(lpfc_mbx_wq_create_page_size,
16939 		       &wq_create->u.request_1,
16940 		       (wq->page_size / SLI4_PAGE_SIZE));
16941 		page = wq_create->u.request_1.page;
16942 		break;
16943 	default:
16944 		page = wq_create->u.request.page;
16945 		break;
16946 	}
16947 
16948 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16949 		memset(dmabuf->virt, 0, hw_page_size);
16950 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16951 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16952 	}
16953 
16954 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16955 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16956 
16957 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16958 	/* The IOCTL status is embedded in the mailbox subheader. */
16959 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16960 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16961 	if (shdr_status || shdr_add_status || rc) {
16962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16963 				"2503 WQ_CREATE mailbox failed with "
16964 				"status x%x add_status x%x, mbx status x%x\n",
16965 				shdr_status, shdr_add_status, rc);
16966 		status = -ENXIO;
16967 		goto out;
16968 	}
16969 
16970 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16971 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16972 					&wq_create->u.response);
16973 	else
16974 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16975 					&wq_create->u.response_1);
16976 
16977 	if (wq->queue_id == 0xFFFF) {
16978 		status = -ENXIO;
16979 		goto out;
16980 	}
16981 
16982 	wq->db_format = LPFC_DB_LIST_FORMAT;
16983 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16984 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16985 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16986 					       &wq_create->u.response);
16987 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16988 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16989 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16990 						"3265 WQ[%d] doorbell format "
16991 						"not supported: x%x\n",
16992 						wq->queue_id, wq->db_format);
16993 				status = -EINVAL;
16994 				goto out;
16995 			}
16996 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16997 					    &wq_create->u.response);
16998 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16999 								   pci_barset);
17000 			if (!bar_memmap_p) {
17001 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17002 						"3263 WQ[%d] failed to memmap "
17003 						"pci barset:x%x\n",
17004 						wq->queue_id, pci_barset);
17005 				status = -ENOMEM;
17006 				goto out;
17007 			}
17008 			db_offset = wq_create->u.response.doorbell_offset;
17009 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
17010 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
17011 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17012 						"3252 WQ[%d] doorbell offset "
17013 						"not supported: x%x\n",
17014 						wq->queue_id, db_offset);
17015 				status = -EINVAL;
17016 				goto out;
17017 			}
17018 			wq->db_regaddr = bar_memmap_p + db_offset;
17019 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17020 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
17021 					"format:x%x\n", wq->queue_id,
17022 					pci_barset, db_offset, wq->db_format);
17023 		} else
17024 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17025 	} else {
17026 		/* Check if DPP was honored by the firmware */
17027 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
17028 				    &wq_create->u.response_1);
17029 		if (wq->dpp_enable) {
17030 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
17031 					    &wq_create->u.response_1);
17032 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17033 								   pci_barset);
17034 			if (!bar_memmap_p) {
17035 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17036 						"3267 WQ[%d] failed to memmap "
17037 						"pci barset:x%x\n",
17038 						wq->queue_id, pci_barset);
17039 				status = -ENOMEM;
17040 				goto out;
17041 			}
17042 			db_offset = wq_create->u.response_1.doorbell_offset;
17043 			wq->db_regaddr = bar_memmap_p + db_offset;
17044 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
17045 					    &wq_create->u.response_1);
17046 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
17047 					    &wq_create->u.response_1);
17048 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
17049 								   dpp_barset);
17050 			if (!bar_memmap_p) {
17051 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17052 						"3268 WQ[%d] failed to memmap "
17053 						"pci barset:x%x\n",
17054 						wq->queue_id, dpp_barset);
17055 				status = -ENOMEM;
17056 				goto out;
17057 			}
17058 			dpp_offset = wq_create->u.response_1.dpp_offset;
17059 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
17060 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17061 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
17062 					"dpp_id:x%x dpp_barset:x%x "
17063 					"dpp_offset:x%x\n",
17064 					wq->queue_id, pci_barset, db_offset,
17065 					wq->dpp_id, dpp_barset, dpp_offset);
17066 
17067 #ifdef CONFIG_X86
17068 			/* Enable combined writes for DPP aperture */
17069 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
17070 			rc = set_memory_wc(pg_addr, 1);
17071 			if (rc) {
17072 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17073 					"3272 Cannot setup Combined "
17074 					"Write on WQ[%d] - disable DPP\n",
17075 					wq->queue_id);
17076 				phba->cfg_enable_dpp = 0;
17077 			}
17078 #else
17079 			phba->cfg_enable_dpp = 0;
17080 #endif
17081 		} else
17082 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
17083 	}
17084 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
17085 	if (wq->pring == NULL) {
17086 		status = -ENOMEM;
17087 		goto out;
17088 	}
17089 	wq->type = LPFC_WQ;
17090 	wq->assoc_qid = cq->queue_id;
17091 	wq->subtype = subtype;
17092 	wq->host_index = 0;
17093 	wq->hba_index = 0;
17094 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
17095 
17096 	/* link the wq onto the parent cq child list */
17097 	list_add_tail(&wq->list, &cq->child_list);
17098 out:
17099 	mempool_free(mbox, phba->mbox_mem_pool);
17100 	return status;
17101 }
17102 
17103 /**
17104  * lpfc_rq_create - Create a Receive Queue on the HBA
17105  * @phba: HBA structure that indicates port to create a queue on.
17106  * @hrq: The queue structure to use to create the header receive queue.
17107  * @drq: The queue structure to use to create the data receive queue.
17108  * @cq: The completion queue to bind this work queue to.
17109  * @subtype: The subtype of the work queue indicating its functionality.
17110  *
17111  * This function creates a receive buffer queue pair , as detailed in @hrq and
17112  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17113  * to the HBA.
17114  *
17115  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17116  * struct is used to get the entry count that is necessary to determine the
17117  * number of pages to use for this queue. The @cq is used to indicate which
17118  * completion queue to bind received buffers that are posted to these queues to.
17119  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17120  * receive queue pair. This function is asynchronous and will wait for the
17121  * mailbox command to finish before continuing.
17122  *
17123  * On success this function will return a zero. If unable to allocate enough
17124  * memory this function will return -ENOMEM. If the queue create mailbox command
17125  * fails this function will return -ENXIO.
17126  **/
17127 int
17128 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17129 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
17130 {
17131 	struct lpfc_mbx_rq_create *rq_create;
17132 	struct lpfc_dmabuf *dmabuf;
17133 	LPFC_MBOXQ_t *mbox;
17134 	int rc, length, status = 0;
17135 	uint32_t shdr_status, shdr_add_status;
17136 	union lpfc_sli4_cfg_shdr *shdr;
17137 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17138 	void __iomem *bar_memmap_p;
17139 	uint32_t db_offset;
17140 	uint16_t pci_barset;
17141 
17142 	/* sanity check on queue memory */
17143 	if (!hrq || !drq || !cq)
17144 		return -ENODEV;
17145 	if (!phba->sli4_hba.pc_sli4_params.supported)
17146 		hw_page_size = SLI4_PAGE_SIZE;
17147 
17148 	if (hrq->entry_count != drq->entry_count)
17149 		return -EINVAL;
17150 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17151 	if (!mbox)
17152 		return -ENOMEM;
17153 	length = (sizeof(struct lpfc_mbx_rq_create) -
17154 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17155 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17156 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17157 			 length, LPFC_SLI4_MBX_EMBED);
17158 	rq_create = &mbox->u.mqe.un.rq_create;
17159 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17160 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17161 	       phba->sli4_hba.pc_sli4_params.rqv);
17162 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17163 		bf_set(lpfc_rq_context_rqe_count_1,
17164 		       &rq_create->u.request.context,
17165 		       hrq->entry_count);
17166 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
17167 		bf_set(lpfc_rq_context_rqe_size,
17168 		       &rq_create->u.request.context,
17169 		       LPFC_RQE_SIZE_8);
17170 		bf_set(lpfc_rq_context_page_size,
17171 		       &rq_create->u.request.context,
17172 		       LPFC_RQ_PAGE_SIZE_4096);
17173 	} else {
17174 		switch (hrq->entry_count) {
17175 		default:
17176 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17177 					"2535 Unsupported RQ count. (%d)\n",
17178 					hrq->entry_count);
17179 			if (hrq->entry_count < 512) {
17180 				status = -EINVAL;
17181 				goto out;
17182 			}
17183 			fallthrough;	/* otherwise default to smallest count */
17184 		case 512:
17185 			bf_set(lpfc_rq_context_rqe_count,
17186 			       &rq_create->u.request.context,
17187 			       LPFC_RQ_RING_SIZE_512);
17188 			break;
17189 		case 1024:
17190 			bf_set(lpfc_rq_context_rqe_count,
17191 			       &rq_create->u.request.context,
17192 			       LPFC_RQ_RING_SIZE_1024);
17193 			break;
17194 		case 2048:
17195 			bf_set(lpfc_rq_context_rqe_count,
17196 			       &rq_create->u.request.context,
17197 			       LPFC_RQ_RING_SIZE_2048);
17198 			break;
17199 		case 4096:
17200 			bf_set(lpfc_rq_context_rqe_count,
17201 			       &rq_create->u.request.context,
17202 			       LPFC_RQ_RING_SIZE_4096);
17203 			break;
17204 		}
17205 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
17206 		       LPFC_HDR_BUF_SIZE);
17207 	}
17208 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17209 	       cq->queue_id);
17210 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17211 	       hrq->page_count);
17212 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
17213 		memset(dmabuf->virt, 0, hw_page_size);
17214 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17215 					putPaddrLow(dmabuf->phys);
17216 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17217 					putPaddrHigh(dmabuf->phys);
17218 	}
17219 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17220 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17221 
17222 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17223 	/* The IOCTL status is embedded in the mailbox subheader. */
17224 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17225 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17226 	if (shdr_status || shdr_add_status || rc) {
17227 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17228 				"2504 RQ_CREATE mailbox failed with "
17229 				"status x%x add_status x%x, mbx status x%x\n",
17230 				shdr_status, shdr_add_status, rc);
17231 		status = -ENXIO;
17232 		goto out;
17233 	}
17234 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17235 	if (hrq->queue_id == 0xFFFF) {
17236 		status = -ENXIO;
17237 		goto out;
17238 	}
17239 
17240 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
17241 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
17242 					&rq_create->u.response);
17243 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
17244 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
17245 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17246 					"3262 RQ [%d] doorbell format not "
17247 					"supported: x%x\n", hrq->queue_id,
17248 					hrq->db_format);
17249 			status = -EINVAL;
17250 			goto out;
17251 		}
17252 
17253 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
17254 				    &rq_create->u.response);
17255 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
17256 		if (!bar_memmap_p) {
17257 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17258 					"3269 RQ[%d] failed to memmap pci "
17259 					"barset:x%x\n", hrq->queue_id,
17260 					pci_barset);
17261 			status = -ENOMEM;
17262 			goto out;
17263 		}
17264 
17265 		db_offset = rq_create->u.response.doorbell_offset;
17266 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
17267 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
17268 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17269 					"3270 RQ[%d] doorbell offset not "
17270 					"supported: x%x\n", hrq->queue_id,
17271 					db_offset);
17272 			status = -EINVAL;
17273 			goto out;
17274 		}
17275 		hrq->db_regaddr = bar_memmap_p + db_offset;
17276 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
17277 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
17278 				"format:x%x\n", hrq->queue_id, pci_barset,
17279 				db_offset, hrq->db_format);
17280 	} else {
17281 		hrq->db_format = LPFC_DB_RING_FORMAT;
17282 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17283 	}
17284 	hrq->type = LPFC_HRQ;
17285 	hrq->assoc_qid = cq->queue_id;
17286 	hrq->subtype = subtype;
17287 	hrq->host_index = 0;
17288 	hrq->hba_index = 0;
17289 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17290 
17291 	/* now create the data queue */
17292 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17293 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
17294 			 length, LPFC_SLI4_MBX_EMBED);
17295 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
17296 	       phba->sli4_hba.pc_sli4_params.rqv);
17297 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
17298 		bf_set(lpfc_rq_context_rqe_count_1,
17299 		       &rq_create->u.request.context, hrq->entry_count);
17300 		if (subtype == LPFC_NVMET)
17301 			rq_create->u.request.context.buffer_size =
17302 				LPFC_NVMET_DATA_BUF_SIZE;
17303 		else
17304 			rq_create->u.request.context.buffer_size =
17305 				LPFC_DATA_BUF_SIZE;
17306 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
17307 		       LPFC_RQE_SIZE_8);
17308 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
17309 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
17310 	} else {
17311 		switch (drq->entry_count) {
17312 		default:
17313 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17314 					"2536 Unsupported RQ count. (%d)\n",
17315 					drq->entry_count);
17316 			if (drq->entry_count < 512) {
17317 				status = -EINVAL;
17318 				goto out;
17319 			}
17320 			fallthrough;	/* otherwise default to smallest count */
17321 		case 512:
17322 			bf_set(lpfc_rq_context_rqe_count,
17323 			       &rq_create->u.request.context,
17324 			       LPFC_RQ_RING_SIZE_512);
17325 			break;
17326 		case 1024:
17327 			bf_set(lpfc_rq_context_rqe_count,
17328 			       &rq_create->u.request.context,
17329 			       LPFC_RQ_RING_SIZE_1024);
17330 			break;
17331 		case 2048:
17332 			bf_set(lpfc_rq_context_rqe_count,
17333 			       &rq_create->u.request.context,
17334 			       LPFC_RQ_RING_SIZE_2048);
17335 			break;
17336 		case 4096:
17337 			bf_set(lpfc_rq_context_rqe_count,
17338 			       &rq_create->u.request.context,
17339 			       LPFC_RQ_RING_SIZE_4096);
17340 			break;
17341 		}
17342 		if (subtype == LPFC_NVMET)
17343 			bf_set(lpfc_rq_context_buf_size,
17344 			       &rq_create->u.request.context,
17345 			       LPFC_NVMET_DATA_BUF_SIZE);
17346 		else
17347 			bf_set(lpfc_rq_context_buf_size,
17348 			       &rq_create->u.request.context,
17349 			       LPFC_DATA_BUF_SIZE);
17350 	}
17351 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
17352 	       cq->queue_id);
17353 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
17354 	       drq->page_count);
17355 	list_for_each_entry(dmabuf, &drq->page_list, list) {
17356 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
17357 					putPaddrLow(dmabuf->phys);
17358 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
17359 					putPaddrHigh(dmabuf->phys);
17360 	}
17361 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
17362 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
17363 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17364 	/* The IOCTL status is embedded in the mailbox subheader. */
17365 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
17366 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17367 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17368 	if (shdr_status || shdr_add_status || rc) {
17369 		status = -ENXIO;
17370 		goto out;
17371 	}
17372 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17373 	if (drq->queue_id == 0xFFFF) {
17374 		status = -ENXIO;
17375 		goto out;
17376 	}
17377 	drq->type = LPFC_DRQ;
17378 	drq->assoc_qid = cq->queue_id;
17379 	drq->subtype = subtype;
17380 	drq->host_index = 0;
17381 	drq->hba_index = 0;
17382 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17383 
17384 	/* link the header and data RQs onto the parent cq child list */
17385 	list_add_tail(&hrq->list, &cq->child_list);
17386 	list_add_tail(&drq->list, &cq->child_list);
17387 
17388 out:
17389 	mempool_free(mbox, phba->mbox_mem_pool);
17390 	return status;
17391 }
17392 
17393 /**
17394  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
17395  * @phba: HBA structure that indicates port to create a queue on.
17396  * @hrqp: The queue structure array to use to create the header receive queues.
17397  * @drqp: The queue structure array to use to create the data receive queues.
17398  * @cqp: The completion queue array to bind these receive queues to.
17399  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
17400  *
17401  * This function creates a receive buffer queue pair , as detailed in @hrq and
17402  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
17403  * to the HBA.
17404  *
17405  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
17406  * struct is used to get the entry count that is necessary to determine the
17407  * number of pages to use for this queue. The @cq is used to indicate which
17408  * completion queue to bind received buffers that are posted to these queues to.
17409  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
17410  * receive queue pair. This function is asynchronous and will wait for the
17411  * mailbox command to finish before continuing.
17412  *
17413  * On success this function will return a zero. If unable to allocate enough
17414  * memory this function will return -ENOMEM. If the queue create mailbox command
17415  * fails this function will return -ENXIO.
17416  **/
17417 int
17418 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
17419 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
17420 		uint32_t subtype)
17421 {
17422 	struct lpfc_queue *hrq, *drq, *cq;
17423 	struct lpfc_mbx_rq_create_v2 *rq_create;
17424 	struct lpfc_dmabuf *dmabuf;
17425 	LPFC_MBOXQ_t *mbox;
17426 	int rc, length, alloclen, status = 0;
17427 	int cnt, idx, numrq, page_idx = 0;
17428 	uint32_t shdr_status, shdr_add_status;
17429 	union lpfc_sli4_cfg_shdr *shdr;
17430 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
17431 
17432 	numrq = phba->cfg_nvmet_mrq;
17433 	/* sanity check on array memory */
17434 	if (!hrqp || !drqp || !cqp || !numrq)
17435 		return -ENODEV;
17436 	if (!phba->sli4_hba.pc_sli4_params.supported)
17437 		hw_page_size = SLI4_PAGE_SIZE;
17438 
17439 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17440 	if (!mbox)
17441 		return -ENOMEM;
17442 
17443 	length = sizeof(struct lpfc_mbx_rq_create_v2);
17444 	length += ((2 * numrq * hrqp[0]->page_count) *
17445 		   sizeof(struct dma_address));
17446 
17447 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17448 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
17449 				    LPFC_SLI4_MBX_NEMBED);
17450 	if (alloclen < length) {
17451 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17452 				"3099 Allocated DMA memory size (%d) is "
17453 				"less than the requested DMA memory size "
17454 				"(%d)\n", alloclen, length);
17455 		status = -ENOMEM;
17456 		goto out;
17457 	}
17458 
17459 
17460 
17461 	rq_create = mbox->sge_array->addr[0];
17462 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
17463 
17464 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
17465 	cnt = 0;
17466 
17467 	for (idx = 0; idx < numrq; idx++) {
17468 		hrq = hrqp[idx];
17469 		drq = drqp[idx];
17470 		cq  = cqp[idx];
17471 
17472 		/* sanity check on queue memory */
17473 		if (!hrq || !drq || !cq) {
17474 			status = -ENODEV;
17475 			goto out;
17476 		}
17477 
17478 		if (hrq->entry_count != drq->entry_count) {
17479 			status = -EINVAL;
17480 			goto out;
17481 		}
17482 
17483 		if (idx == 0) {
17484 			bf_set(lpfc_mbx_rq_create_num_pages,
17485 			       &rq_create->u.request,
17486 			       hrq->page_count);
17487 			bf_set(lpfc_mbx_rq_create_rq_cnt,
17488 			       &rq_create->u.request, (numrq * 2));
17489 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
17490 			       1);
17491 			bf_set(lpfc_rq_context_base_cq,
17492 			       &rq_create->u.request.context,
17493 			       cq->queue_id);
17494 			bf_set(lpfc_rq_context_data_size,
17495 			       &rq_create->u.request.context,
17496 			       LPFC_NVMET_DATA_BUF_SIZE);
17497 			bf_set(lpfc_rq_context_hdr_size,
17498 			       &rq_create->u.request.context,
17499 			       LPFC_HDR_BUF_SIZE);
17500 			bf_set(lpfc_rq_context_rqe_count_1,
17501 			       &rq_create->u.request.context,
17502 			       hrq->entry_count);
17503 			bf_set(lpfc_rq_context_rqe_size,
17504 			       &rq_create->u.request.context,
17505 			       LPFC_RQE_SIZE_8);
17506 			bf_set(lpfc_rq_context_page_size,
17507 			       &rq_create->u.request.context,
17508 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
17509 		}
17510 		rc = 0;
17511 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
17512 			memset(dmabuf->virt, 0, hw_page_size);
17513 			cnt = page_idx + dmabuf->buffer_tag;
17514 			rq_create->u.request.page[cnt].addr_lo =
17515 					putPaddrLow(dmabuf->phys);
17516 			rq_create->u.request.page[cnt].addr_hi =
17517 					putPaddrHigh(dmabuf->phys);
17518 			rc++;
17519 		}
17520 		page_idx += rc;
17521 
17522 		rc = 0;
17523 		list_for_each_entry(dmabuf, &drq->page_list, list) {
17524 			memset(dmabuf->virt, 0, hw_page_size);
17525 			cnt = page_idx + dmabuf->buffer_tag;
17526 			rq_create->u.request.page[cnt].addr_lo =
17527 					putPaddrLow(dmabuf->phys);
17528 			rq_create->u.request.page[cnt].addr_hi =
17529 					putPaddrHigh(dmabuf->phys);
17530 			rc++;
17531 		}
17532 		page_idx += rc;
17533 
17534 		hrq->db_format = LPFC_DB_RING_FORMAT;
17535 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17536 		hrq->type = LPFC_HRQ;
17537 		hrq->assoc_qid = cq->queue_id;
17538 		hrq->subtype = subtype;
17539 		hrq->host_index = 0;
17540 		hrq->hba_index = 0;
17541 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17542 
17543 		drq->db_format = LPFC_DB_RING_FORMAT;
17544 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
17545 		drq->type = LPFC_DRQ;
17546 		drq->assoc_qid = cq->queue_id;
17547 		drq->subtype = subtype;
17548 		drq->host_index = 0;
17549 		drq->hba_index = 0;
17550 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
17551 
17552 		list_add_tail(&hrq->list, &cq->child_list);
17553 		list_add_tail(&drq->list, &cq->child_list);
17554 	}
17555 
17556 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17557 	/* The IOCTL status is embedded in the mailbox subheader. */
17558 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17559 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17560 	if (shdr_status || shdr_add_status || rc) {
17561 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17562 				"3120 RQ_CREATE mailbox failed with "
17563 				"status x%x add_status x%x, mbx status x%x\n",
17564 				shdr_status, shdr_add_status, rc);
17565 		status = -ENXIO;
17566 		goto out;
17567 	}
17568 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
17569 	if (rc == 0xFFFF) {
17570 		status = -ENXIO;
17571 		goto out;
17572 	}
17573 
17574 	/* Initialize all RQs with associated queue id */
17575 	for (idx = 0; idx < numrq; idx++) {
17576 		hrq = hrqp[idx];
17577 		hrq->queue_id = rc + (2 * idx);
17578 		drq = drqp[idx];
17579 		drq->queue_id = rc + (2 * idx) + 1;
17580 	}
17581 
17582 out:
17583 	lpfc_sli4_mbox_cmd_free(phba, mbox);
17584 	return status;
17585 }
17586 
17587 /**
17588  * lpfc_eq_destroy - Destroy an event Queue on the HBA
17589  * @phba: HBA structure that indicates port to destroy a queue on.
17590  * @eq: The queue structure associated with the queue to destroy.
17591  *
17592  * This function destroys a queue, as detailed in @eq by sending an mailbox
17593  * command, specific to the type of queue, to the HBA.
17594  *
17595  * The @eq struct is used to get the queue ID of the queue to destroy.
17596  *
17597  * On success this function will return a zero. If the queue destroy mailbox
17598  * command fails this function will return -ENXIO.
17599  **/
17600 int
17601 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
17602 {
17603 	LPFC_MBOXQ_t *mbox;
17604 	int rc, length, status = 0;
17605 	uint32_t shdr_status, shdr_add_status;
17606 	union lpfc_sli4_cfg_shdr *shdr;
17607 
17608 	/* sanity check on queue memory */
17609 	if (!eq)
17610 		return -ENODEV;
17611 
17612 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
17613 	if (!mbox)
17614 		return -ENOMEM;
17615 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
17616 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17617 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17618 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
17619 			 length, LPFC_SLI4_MBX_EMBED);
17620 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
17621 	       eq->queue_id);
17622 	mbox->vport = eq->phba->pport;
17623 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17624 
17625 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
17626 	/* The IOCTL status is embedded in the mailbox subheader. */
17627 	shdr = (union lpfc_sli4_cfg_shdr *)
17628 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
17629 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17630 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17631 	if (shdr_status || shdr_add_status || rc) {
17632 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17633 				"2505 EQ_DESTROY mailbox failed with "
17634 				"status x%x add_status x%x, mbx status x%x\n",
17635 				shdr_status, shdr_add_status, rc);
17636 		status = -ENXIO;
17637 	}
17638 
17639 	/* Remove eq from any list */
17640 	list_del_init(&eq->list);
17641 	mempool_free(mbox, eq->phba->mbox_mem_pool);
17642 	return status;
17643 }
17644 
17645 /**
17646  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
17647  * @phba: HBA structure that indicates port to destroy a queue on.
17648  * @cq: The queue structure associated with the queue to destroy.
17649  *
17650  * This function destroys a queue, as detailed in @cq by sending an mailbox
17651  * command, specific to the type of queue, to the HBA.
17652  *
17653  * The @cq struct is used to get the queue ID of the queue to destroy.
17654  *
17655  * On success this function will return a zero. If the queue destroy mailbox
17656  * command fails this function will return -ENXIO.
17657  **/
17658 int
17659 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
17660 {
17661 	LPFC_MBOXQ_t *mbox;
17662 	int rc, length, status = 0;
17663 	uint32_t shdr_status, shdr_add_status;
17664 	union lpfc_sli4_cfg_shdr *shdr;
17665 
17666 	/* sanity check on queue memory */
17667 	if (!cq)
17668 		return -ENODEV;
17669 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
17670 	if (!mbox)
17671 		return -ENOMEM;
17672 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
17673 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17674 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17675 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
17676 			 length, LPFC_SLI4_MBX_EMBED);
17677 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
17678 	       cq->queue_id);
17679 	mbox->vport = cq->phba->pport;
17680 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17681 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
17682 	/* The IOCTL status is embedded in the mailbox subheader. */
17683 	shdr = (union lpfc_sli4_cfg_shdr *)
17684 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
17685 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17686 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17687 	if (shdr_status || shdr_add_status || rc) {
17688 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17689 				"2506 CQ_DESTROY mailbox failed with "
17690 				"status x%x add_status x%x, mbx status x%x\n",
17691 				shdr_status, shdr_add_status, rc);
17692 		status = -ENXIO;
17693 	}
17694 	/* Remove cq from any list */
17695 	list_del_init(&cq->list);
17696 	mempool_free(mbox, cq->phba->mbox_mem_pool);
17697 	return status;
17698 }
17699 
17700 /**
17701  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
17702  * @phba: HBA structure that indicates port to destroy a queue on.
17703  * @mq: The queue structure associated with the queue to destroy.
17704  *
17705  * This function destroys a queue, as detailed in @mq by sending an mailbox
17706  * command, specific to the type of queue, to the HBA.
17707  *
17708  * The @mq struct is used to get the queue ID of the queue to destroy.
17709  *
17710  * On success this function will return a zero. If the queue destroy mailbox
17711  * command fails this function will return -ENXIO.
17712  **/
17713 int
17714 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
17715 {
17716 	LPFC_MBOXQ_t *mbox;
17717 	int rc, length, status = 0;
17718 	uint32_t shdr_status, shdr_add_status;
17719 	union lpfc_sli4_cfg_shdr *shdr;
17720 
17721 	/* sanity check on queue memory */
17722 	if (!mq)
17723 		return -ENODEV;
17724 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
17725 	if (!mbox)
17726 		return -ENOMEM;
17727 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
17728 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17729 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
17730 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
17731 			 length, LPFC_SLI4_MBX_EMBED);
17732 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
17733 	       mq->queue_id);
17734 	mbox->vport = mq->phba->pport;
17735 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17736 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
17737 	/* The IOCTL status is embedded in the mailbox subheader. */
17738 	shdr = (union lpfc_sli4_cfg_shdr *)
17739 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
17740 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17741 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17742 	if (shdr_status || shdr_add_status || rc) {
17743 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17744 				"2507 MQ_DESTROY mailbox failed with "
17745 				"status x%x add_status x%x, mbx status x%x\n",
17746 				shdr_status, shdr_add_status, rc);
17747 		status = -ENXIO;
17748 	}
17749 	/* Remove mq from any list */
17750 	list_del_init(&mq->list);
17751 	mempool_free(mbox, mq->phba->mbox_mem_pool);
17752 	return status;
17753 }
17754 
17755 /**
17756  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
17757  * @phba: HBA structure that indicates port to destroy a queue on.
17758  * @wq: The queue structure associated with the queue to destroy.
17759  *
17760  * This function destroys a queue, as detailed in @wq by sending an mailbox
17761  * command, specific to the type of queue, to the HBA.
17762  *
17763  * The @wq struct is used to get the queue ID of the queue to destroy.
17764  *
17765  * On success this function will return a zero. If the queue destroy mailbox
17766  * command fails this function will return -ENXIO.
17767  **/
17768 int
17769 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
17770 {
17771 	LPFC_MBOXQ_t *mbox;
17772 	int rc, length, status = 0;
17773 	uint32_t shdr_status, shdr_add_status;
17774 	union lpfc_sli4_cfg_shdr *shdr;
17775 
17776 	/* sanity check on queue memory */
17777 	if (!wq)
17778 		return -ENODEV;
17779 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
17780 	if (!mbox)
17781 		return -ENOMEM;
17782 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
17783 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17784 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17785 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
17786 			 length, LPFC_SLI4_MBX_EMBED);
17787 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
17788 	       wq->queue_id);
17789 	mbox->vport = wq->phba->pport;
17790 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17791 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
17792 	shdr = (union lpfc_sli4_cfg_shdr *)
17793 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
17794 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17795 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17796 	if (shdr_status || shdr_add_status || rc) {
17797 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17798 				"2508 WQ_DESTROY mailbox failed with "
17799 				"status x%x add_status x%x, mbx status x%x\n",
17800 				shdr_status, shdr_add_status, rc);
17801 		status = -ENXIO;
17802 	}
17803 	/* Remove wq from any list */
17804 	list_del_init(&wq->list);
17805 	kfree(wq->pring);
17806 	wq->pring = NULL;
17807 	mempool_free(mbox, wq->phba->mbox_mem_pool);
17808 	return status;
17809 }
17810 
17811 /**
17812  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
17813  * @phba: HBA structure that indicates port to destroy a queue on.
17814  * @hrq: The queue structure associated with the queue to destroy.
17815  * @drq: The queue structure associated with the queue to destroy.
17816  *
17817  * This function destroys a queue, as detailed in @rq by sending an mailbox
17818  * command, specific to the type of queue, to the HBA.
17819  *
17820  * The @rq struct is used to get the queue ID of the queue to destroy.
17821  *
17822  * On success this function will return a zero. If the queue destroy mailbox
17823  * command fails this function will return -ENXIO.
17824  **/
17825 int
17826 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17827 		struct lpfc_queue *drq)
17828 {
17829 	LPFC_MBOXQ_t *mbox;
17830 	int rc, length, status = 0;
17831 	uint32_t shdr_status, shdr_add_status;
17832 	union lpfc_sli4_cfg_shdr *shdr;
17833 
17834 	/* sanity check on queue memory */
17835 	if (!hrq || !drq)
17836 		return -ENODEV;
17837 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17838 	if (!mbox)
17839 		return -ENOMEM;
17840 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17841 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17842 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17843 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17844 			 length, LPFC_SLI4_MBX_EMBED);
17845 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17846 	       hrq->queue_id);
17847 	mbox->vport = hrq->phba->pport;
17848 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17849 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17850 	/* The IOCTL status is embedded in the mailbox subheader. */
17851 	shdr = (union lpfc_sli4_cfg_shdr *)
17852 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17853 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17854 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17855 	if (shdr_status || shdr_add_status || rc) {
17856 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17857 				"2509 RQ_DESTROY mailbox failed with "
17858 				"status x%x add_status x%x, mbx status x%x\n",
17859 				shdr_status, shdr_add_status, rc);
17860 		mempool_free(mbox, hrq->phba->mbox_mem_pool);
17861 		return -ENXIO;
17862 	}
17863 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17864 	       drq->queue_id);
17865 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17866 	shdr = (union lpfc_sli4_cfg_shdr *)
17867 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17868 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17869 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17870 	if (shdr_status || shdr_add_status || rc) {
17871 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17872 				"2510 RQ_DESTROY mailbox failed with "
17873 				"status x%x add_status x%x, mbx status x%x\n",
17874 				shdr_status, shdr_add_status, rc);
17875 		status = -ENXIO;
17876 	}
17877 	list_del_init(&hrq->list);
17878 	list_del_init(&drq->list);
17879 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17880 	return status;
17881 }
17882 
17883 /**
17884  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17885  * @phba: The virtual port for which this call being executed.
17886  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17887  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17888  * @xritag: the xritag that ties this io to the SGL pages.
17889  *
17890  * This routine will post the sgl pages for the IO that has the xritag
17891  * that is in the iocbq structure. The xritag is assigned during iocbq
17892  * creation and persists for as long as the driver is loaded.
17893  * if the caller has fewer than 256 scatter gather segments to map then
17894  * pdma_phys_addr1 should be 0.
17895  * If the caller needs to map more than 256 scatter gather segment then
17896  * pdma_phys_addr1 should be a valid physical address.
17897  * physical address for SGLs must be 64 byte aligned.
17898  * If you are going to map 2 SGL's then the first one must have 256 entries
17899  * the second sgl can have between 1 and 256 entries.
17900  *
17901  * Return codes:
17902  * 	0 - Success
17903  * 	-ENXIO, -ENOMEM - Failure
17904  **/
17905 int
17906 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17907 		dma_addr_t pdma_phys_addr0,
17908 		dma_addr_t pdma_phys_addr1,
17909 		uint16_t xritag)
17910 {
17911 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17912 	LPFC_MBOXQ_t *mbox;
17913 	int rc;
17914 	uint32_t shdr_status, shdr_add_status;
17915 	uint32_t mbox_tmo;
17916 	union lpfc_sli4_cfg_shdr *shdr;
17917 
17918 	if (xritag == NO_XRI) {
17919 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17920 				"0364 Invalid param:\n");
17921 		return -EINVAL;
17922 	}
17923 
17924 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17925 	if (!mbox)
17926 		return -ENOMEM;
17927 
17928 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17929 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17930 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17931 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17932 
17933 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17934 				&mbox->u.mqe.un.post_sgl_pages;
17935 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17936 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17937 
17938 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17939 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17940 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17941 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17942 
17943 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17944 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17945 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17946 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17947 	if (!phba->sli4_hba.intr_enable)
17948 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17949 	else {
17950 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17951 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17952 	}
17953 	/* The IOCTL status is embedded in the mailbox subheader. */
17954 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17955 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17956 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17957 	if (!phba->sli4_hba.intr_enable)
17958 		mempool_free(mbox, phba->mbox_mem_pool);
17959 	else if (rc != MBX_TIMEOUT)
17960 		mempool_free(mbox, phba->mbox_mem_pool);
17961 	if (shdr_status || shdr_add_status || rc) {
17962 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17963 				"2511 POST_SGL mailbox failed with "
17964 				"status x%x add_status x%x, mbx status x%x\n",
17965 				shdr_status, shdr_add_status, rc);
17966 	}
17967 	return 0;
17968 }
17969 
17970 /**
17971  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17972  * @phba: pointer to lpfc hba data structure.
17973  *
17974  * This routine is invoked to post rpi header templates to the
17975  * HBA consistent with the SLI-4 interface spec.  This routine
17976  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17977  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17978  *
17979  * Returns
17980  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17981  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17982  **/
17983 static uint16_t
17984 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17985 {
17986 	unsigned long xri;
17987 
17988 	/*
17989 	 * Fetch the next logical xri.  Because this index is logical,
17990 	 * the driver starts at 0 each time.
17991 	 */
17992 	spin_lock_irq(&phba->hbalock);
17993 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
17994 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
17995 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17996 		spin_unlock_irq(&phba->hbalock);
17997 		return NO_XRI;
17998 	} else {
17999 		set_bit(xri, phba->sli4_hba.xri_bmask);
18000 		phba->sli4_hba.max_cfg_param.xri_used++;
18001 	}
18002 	spin_unlock_irq(&phba->hbalock);
18003 	return xri;
18004 }
18005 
18006 /**
18007  * __lpfc_sli4_free_xri - Release an xri for reuse.
18008  * @phba: pointer to lpfc hba data structure.
18009  * @xri: xri to release.
18010  *
18011  * This routine is invoked to release an xri to the pool of
18012  * available rpis maintained by the driver.
18013  **/
18014 static void
18015 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18016 {
18017 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
18018 		phba->sli4_hba.max_cfg_param.xri_used--;
18019 	}
18020 }
18021 
18022 /**
18023  * lpfc_sli4_free_xri - Release an xri for reuse.
18024  * @phba: pointer to lpfc hba data structure.
18025  * @xri: xri to release.
18026  *
18027  * This routine is invoked to release an xri to the pool of
18028  * available rpis maintained by the driver.
18029  **/
18030 void
18031 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
18032 {
18033 	spin_lock_irq(&phba->hbalock);
18034 	__lpfc_sli4_free_xri(phba, xri);
18035 	spin_unlock_irq(&phba->hbalock);
18036 }
18037 
18038 /**
18039  * lpfc_sli4_next_xritag - Get an xritag for the io
18040  * @phba: Pointer to HBA context object.
18041  *
18042  * This function gets an xritag for the iocb. If there is no unused xritag
18043  * it will return 0xffff.
18044  * The function returns the allocated xritag if successful, else returns zero.
18045  * Zero is not a valid xritag.
18046  * The caller is not required to hold any lock.
18047  **/
18048 uint16_t
18049 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
18050 {
18051 	uint16_t xri_index;
18052 
18053 	xri_index = lpfc_sli4_alloc_xri(phba);
18054 	if (xri_index == NO_XRI)
18055 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18056 				"2004 Failed to allocate XRI.last XRITAG is %d"
18057 				" Max XRI is %d, Used XRI is %d\n",
18058 				xri_index,
18059 				phba->sli4_hba.max_cfg_param.max_xri,
18060 				phba->sli4_hba.max_cfg_param.xri_used);
18061 	return xri_index;
18062 }
18063 
18064 /**
18065  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
18066  * @phba: pointer to lpfc hba data structure.
18067  * @post_sgl_list: pointer to els sgl entry list.
18068  * @post_cnt: number of els sgl entries on the list.
18069  *
18070  * This routine is invoked to post a block of driver's sgl pages to the
18071  * HBA using non-embedded mailbox command. No Lock is held. This routine
18072  * is only called when the driver is loading and after all IO has been
18073  * stopped.
18074  **/
18075 static int
18076 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
18077 			    struct list_head *post_sgl_list,
18078 			    int post_cnt)
18079 {
18080 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
18081 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18082 	struct sgl_page_pairs *sgl_pg_pairs;
18083 	void *viraddr;
18084 	LPFC_MBOXQ_t *mbox;
18085 	uint32_t reqlen, alloclen, pg_pairs;
18086 	uint32_t mbox_tmo;
18087 	uint16_t xritag_start = 0;
18088 	int rc = 0;
18089 	uint32_t shdr_status, shdr_add_status;
18090 	union lpfc_sli4_cfg_shdr *shdr;
18091 
18092 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
18093 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18094 	if (reqlen > SLI4_PAGE_SIZE) {
18095 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18096 				"2559 Block sgl registration required DMA "
18097 				"size (%d) great than a page\n", reqlen);
18098 		return -ENOMEM;
18099 	}
18100 
18101 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18102 	if (!mbox)
18103 		return -ENOMEM;
18104 
18105 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18106 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18107 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
18108 			 LPFC_SLI4_MBX_NEMBED);
18109 
18110 	if (alloclen < reqlen) {
18111 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18112 				"0285 Allocated DMA memory size (%d) is "
18113 				"less than the requested DMA memory "
18114 				"size (%d)\n", alloclen, reqlen);
18115 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18116 		return -ENOMEM;
18117 	}
18118 	/* Set up the SGL pages in the non-embedded DMA pages */
18119 	viraddr = mbox->sge_array->addr[0];
18120 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18121 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18122 
18123 	pg_pairs = 0;
18124 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
18125 		/* Set up the sge entry */
18126 		sgl_pg_pairs->sgl_pg0_addr_lo =
18127 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
18128 		sgl_pg_pairs->sgl_pg0_addr_hi =
18129 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
18130 		sgl_pg_pairs->sgl_pg1_addr_lo =
18131 				cpu_to_le32(putPaddrLow(0));
18132 		sgl_pg_pairs->sgl_pg1_addr_hi =
18133 				cpu_to_le32(putPaddrHigh(0));
18134 
18135 		/* Keep the first xritag on the list */
18136 		if (pg_pairs == 0)
18137 			xritag_start = sglq_entry->sli4_xritag;
18138 		sgl_pg_pairs++;
18139 		pg_pairs++;
18140 	}
18141 
18142 	/* Complete initialization and perform endian conversion. */
18143 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18144 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
18145 	sgl->word0 = cpu_to_le32(sgl->word0);
18146 
18147 	if (!phba->sli4_hba.intr_enable)
18148 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18149 	else {
18150 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18151 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18152 	}
18153 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
18154 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18155 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18156 	if (!phba->sli4_hba.intr_enable)
18157 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18158 	else if (rc != MBX_TIMEOUT)
18159 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18160 	if (shdr_status || shdr_add_status || rc) {
18161 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18162 				"2513 POST_SGL_BLOCK mailbox command failed "
18163 				"status x%x add_status x%x mbx status x%x\n",
18164 				shdr_status, shdr_add_status, rc);
18165 		rc = -ENXIO;
18166 	}
18167 	return rc;
18168 }
18169 
18170 /**
18171  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
18172  * @phba: pointer to lpfc hba data structure.
18173  * @nblist: pointer to nvme buffer list.
18174  * @count: number of scsi buffers on the list.
18175  *
18176  * This routine is invoked to post a block of @count scsi sgl pages from a
18177  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
18178  * No Lock is held.
18179  *
18180  **/
18181 static int
18182 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
18183 			    int count)
18184 {
18185 	struct lpfc_io_buf *lpfc_ncmd;
18186 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
18187 	struct sgl_page_pairs *sgl_pg_pairs;
18188 	void *viraddr;
18189 	LPFC_MBOXQ_t *mbox;
18190 	uint32_t reqlen, alloclen, pg_pairs;
18191 	uint32_t mbox_tmo;
18192 	uint16_t xritag_start = 0;
18193 	int rc = 0;
18194 	uint32_t shdr_status, shdr_add_status;
18195 	dma_addr_t pdma_phys_bpl1;
18196 	union lpfc_sli4_cfg_shdr *shdr;
18197 
18198 	/* Calculate the requested length of the dma memory */
18199 	reqlen = count * sizeof(struct sgl_page_pairs) +
18200 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
18201 	if (reqlen > SLI4_PAGE_SIZE) {
18202 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
18203 				"6118 Block sgl registration required DMA "
18204 				"size (%d) great than a page\n", reqlen);
18205 		return -ENOMEM;
18206 	}
18207 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18208 	if (!mbox) {
18209 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18210 				"6119 Failed to allocate mbox cmd memory\n");
18211 		return -ENOMEM;
18212 	}
18213 
18214 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18215 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18216 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
18217 				    reqlen, LPFC_SLI4_MBX_NEMBED);
18218 
18219 	if (alloclen < reqlen) {
18220 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18221 				"6120 Allocated DMA memory size (%d) is "
18222 				"less than the requested DMA memory "
18223 				"size (%d)\n", alloclen, reqlen);
18224 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18225 		return -ENOMEM;
18226 	}
18227 
18228 	/* Get the first SGE entry from the non-embedded DMA memory */
18229 	viraddr = mbox->sge_array->addr[0];
18230 
18231 	/* Set up the SGL pages in the non-embedded DMA pages */
18232 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
18233 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
18234 
18235 	pg_pairs = 0;
18236 	list_for_each_entry(lpfc_ncmd, nblist, list) {
18237 		/* Set up the sge entry */
18238 		sgl_pg_pairs->sgl_pg0_addr_lo =
18239 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
18240 		sgl_pg_pairs->sgl_pg0_addr_hi =
18241 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
18242 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
18243 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
18244 						SGL_PAGE_SIZE;
18245 		else
18246 			pdma_phys_bpl1 = 0;
18247 		sgl_pg_pairs->sgl_pg1_addr_lo =
18248 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
18249 		sgl_pg_pairs->sgl_pg1_addr_hi =
18250 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
18251 		/* Keep the first xritag on the list */
18252 		if (pg_pairs == 0)
18253 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
18254 		sgl_pg_pairs++;
18255 		pg_pairs++;
18256 	}
18257 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
18258 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
18259 	/* Perform endian conversion if necessary */
18260 	sgl->word0 = cpu_to_le32(sgl->word0);
18261 
18262 	if (!phba->sli4_hba.intr_enable) {
18263 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
18264 	} else {
18265 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
18266 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
18267 	}
18268 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
18269 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18270 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18271 	if (!phba->sli4_hba.intr_enable)
18272 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18273 	else if (rc != MBX_TIMEOUT)
18274 		lpfc_sli4_mbox_cmd_free(phba, mbox);
18275 	if (shdr_status || shdr_add_status || rc) {
18276 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18277 				"6125 POST_SGL_BLOCK mailbox command failed "
18278 				"status x%x add_status x%x mbx status x%x\n",
18279 				shdr_status, shdr_add_status, rc);
18280 		rc = -ENXIO;
18281 	}
18282 	return rc;
18283 }
18284 
18285 /**
18286  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
18287  * @phba: pointer to lpfc hba data structure.
18288  * @post_nblist: pointer to the nvme buffer list.
18289  * @sb_count: number of nvme buffers.
18290  *
18291  * This routine walks a list of nvme buffers that was passed in. It attempts
18292  * to construct blocks of nvme buffer sgls which contains contiguous xris and
18293  * uses the non-embedded SGL block post mailbox commands to post to the port.
18294  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
18295  * embedded SGL post mailbox command for posting. The @post_nblist passed in
18296  * must be local list, thus no lock is needed when manipulate the list.
18297  *
18298  * Returns: 0 = failure, non-zero number of successfully posted buffers.
18299  **/
18300 int
18301 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
18302 			   struct list_head *post_nblist, int sb_count)
18303 {
18304 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
18305 	int status, sgl_size;
18306 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
18307 	dma_addr_t pdma_phys_sgl1;
18308 	int last_xritag = NO_XRI;
18309 	int cur_xritag;
18310 	LIST_HEAD(prep_nblist);
18311 	LIST_HEAD(blck_nblist);
18312 	LIST_HEAD(nvme_nblist);
18313 
18314 	/* sanity check */
18315 	if (sb_count <= 0)
18316 		return -EINVAL;
18317 
18318 	sgl_size = phba->cfg_sg_dma_buf_size;
18319 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
18320 		list_del_init(&lpfc_ncmd->list);
18321 		block_cnt++;
18322 		if ((last_xritag != NO_XRI) &&
18323 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
18324 			/* a hole in xri block, form a sgl posting block */
18325 			list_splice_init(&prep_nblist, &blck_nblist);
18326 			post_cnt = block_cnt - 1;
18327 			/* prepare list for next posting block */
18328 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18329 			block_cnt = 1;
18330 		} else {
18331 			/* prepare list for next posting block */
18332 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
18333 			/* enough sgls for non-embed sgl mbox command */
18334 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
18335 				list_splice_init(&prep_nblist, &blck_nblist);
18336 				post_cnt = block_cnt;
18337 				block_cnt = 0;
18338 			}
18339 		}
18340 		num_posting++;
18341 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18342 
18343 		/* end of repost sgl list condition for NVME buffers */
18344 		if (num_posting == sb_count) {
18345 			if (post_cnt == 0) {
18346 				/* last sgl posting block */
18347 				list_splice_init(&prep_nblist, &blck_nblist);
18348 				post_cnt = block_cnt;
18349 			} else if (block_cnt == 1) {
18350 				/* last single sgl with non-contiguous xri */
18351 				if (sgl_size > SGL_PAGE_SIZE)
18352 					pdma_phys_sgl1 =
18353 						lpfc_ncmd->dma_phys_sgl +
18354 						SGL_PAGE_SIZE;
18355 				else
18356 					pdma_phys_sgl1 = 0;
18357 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
18358 				status = lpfc_sli4_post_sgl(
18359 						phba, lpfc_ncmd->dma_phys_sgl,
18360 						pdma_phys_sgl1, cur_xritag);
18361 				if (status) {
18362 					/* Post error.  Buffer unavailable. */
18363 					lpfc_ncmd->flags |=
18364 						LPFC_SBUF_NOT_POSTED;
18365 				} else {
18366 					/* Post success. Bffer available. */
18367 					lpfc_ncmd->flags &=
18368 						~LPFC_SBUF_NOT_POSTED;
18369 					lpfc_ncmd->status = IOSTAT_SUCCESS;
18370 					num_posted++;
18371 				}
18372 				/* success, put on NVME buffer sgl list */
18373 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18374 			}
18375 		}
18376 
18377 		/* continue until a nembed page worth of sgls */
18378 		if (post_cnt == 0)
18379 			continue;
18380 
18381 		/* post block of NVME buffer list sgls */
18382 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
18383 						     post_cnt);
18384 
18385 		/* don't reset xirtag due to hole in xri block */
18386 		if (block_cnt == 0)
18387 			last_xritag = NO_XRI;
18388 
18389 		/* reset NVME buffer post count for next round of posting */
18390 		post_cnt = 0;
18391 
18392 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
18393 		while (!list_empty(&blck_nblist)) {
18394 			list_remove_head(&blck_nblist, lpfc_ncmd,
18395 					 struct lpfc_io_buf, list);
18396 			if (status) {
18397 				/* Post error.  Mark buffer unavailable. */
18398 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
18399 			} else {
18400 				/* Post success, Mark buffer available. */
18401 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
18402 				lpfc_ncmd->status = IOSTAT_SUCCESS;
18403 				num_posted++;
18404 			}
18405 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
18406 		}
18407 	}
18408 	/* Push NVME buffers with sgl posted to the available list */
18409 	lpfc_io_buf_replenish(phba, &nvme_nblist);
18410 
18411 	return num_posted;
18412 }
18413 
18414 /**
18415  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
18416  * @phba: pointer to lpfc_hba struct that the frame was received on
18417  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18418  *
18419  * This function checks the fields in the @fc_hdr to see if the FC frame is a
18420  * valid type of frame that the LPFC driver will handle. This function will
18421  * return a zero if the frame is a valid frame or a non zero value when the
18422  * frame does not pass the check.
18423  **/
18424 static int
18425 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
18426 {
18427 	/*  make rctl_names static to save stack space */
18428 	struct fc_vft_header *fc_vft_hdr;
18429 	uint32_t *header = (uint32_t *) fc_hdr;
18430 
18431 #define FC_RCTL_MDS_DIAGS	0xF4
18432 
18433 	switch (fc_hdr->fh_r_ctl) {
18434 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
18435 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
18436 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
18437 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
18438 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
18439 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
18440 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
18441 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
18442 	case FC_RCTL_ELS_REQ:	/* extended link services request */
18443 	case FC_RCTL_ELS_REP:	/* extended link services reply */
18444 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
18445 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
18446 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
18447 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
18448 	case FC_RCTL_BA_RMC: 	/* remove connection */
18449 	case FC_RCTL_BA_ACC:	/* basic accept */
18450 	case FC_RCTL_BA_RJT:	/* basic reject */
18451 	case FC_RCTL_BA_PRMT:
18452 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
18453 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
18454 	case FC_RCTL_P_RJT:	/* port reject */
18455 	case FC_RCTL_F_RJT:	/* fabric reject */
18456 	case FC_RCTL_P_BSY:	/* port busy */
18457 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
18458 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
18459 	case FC_RCTL_LCR:	/* link credit reset */
18460 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
18461 	case FC_RCTL_END:	/* end */
18462 		break;
18463 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
18464 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18465 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
18466 		return lpfc_fc_frame_check(phba, fc_hdr);
18467 	default:
18468 		goto drop;
18469 	}
18470 
18471 	switch (fc_hdr->fh_type) {
18472 	case FC_TYPE_BLS:
18473 	case FC_TYPE_ELS:
18474 	case FC_TYPE_FCP:
18475 	case FC_TYPE_CT:
18476 	case FC_TYPE_NVME:
18477 		break;
18478 	case FC_TYPE_IP:
18479 	case FC_TYPE_ILS:
18480 	default:
18481 		goto drop;
18482 	}
18483 
18484 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
18485 			"2538 Received frame rctl:x%x, type:x%x, "
18486 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
18487 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
18488 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
18489 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
18490 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
18491 			be32_to_cpu(header[6]));
18492 	return 0;
18493 drop:
18494 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
18495 			"2539 Dropped frame rctl:x%x type:x%x\n",
18496 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18497 	return 1;
18498 }
18499 
18500 /**
18501  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
18502  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18503  *
18504  * This function processes the FC header to retrieve the VFI from the VF
18505  * header, if one exists. This function will return the VFI if one exists
18506  * or 0 if no VSAN Header exists.
18507  **/
18508 static uint32_t
18509 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
18510 {
18511 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
18512 
18513 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
18514 		return 0;
18515 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
18516 }
18517 
18518 /**
18519  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
18520  * @phba: Pointer to the HBA structure to search for the vport on
18521  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
18522  * @fcfi: The FC Fabric ID that the frame came from
18523  * @did: Destination ID to match against
18524  *
18525  * This function searches the @phba for a vport that matches the content of the
18526  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
18527  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
18528  * returns the matching vport pointer or NULL if unable to match frame to a
18529  * vport.
18530  **/
18531 static struct lpfc_vport *
18532 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
18533 		       uint16_t fcfi, uint32_t did)
18534 {
18535 	struct lpfc_vport **vports;
18536 	struct lpfc_vport *vport = NULL;
18537 	int i;
18538 
18539 	if (did == Fabric_DID)
18540 		return phba->pport;
18541 	if ((phba->pport->fc_flag & FC_PT2PT) &&
18542 		!(phba->link_state == LPFC_HBA_READY))
18543 		return phba->pport;
18544 
18545 	vports = lpfc_create_vport_work_array(phba);
18546 	if (vports != NULL) {
18547 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
18548 			if (phba->fcf.fcfi == fcfi &&
18549 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
18550 			    vports[i]->fc_myDID == did) {
18551 				vport = vports[i];
18552 				break;
18553 			}
18554 		}
18555 	}
18556 	lpfc_destroy_vport_work_array(phba, vports);
18557 	return vport;
18558 }
18559 
18560 /**
18561  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
18562  * @vport: The vport to work on.
18563  *
18564  * This function updates the receive sequence time stamp for this vport. The
18565  * receive sequence time stamp indicates the time that the last frame of the
18566  * the sequence that has been idle for the longest amount of time was received.
18567  * the driver uses this time stamp to indicate if any received sequences have
18568  * timed out.
18569  **/
18570 static void
18571 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
18572 {
18573 	struct lpfc_dmabuf *h_buf;
18574 	struct hbq_dmabuf *dmabuf = NULL;
18575 
18576 	/* get the oldest sequence on the rcv list */
18577 	h_buf = list_get_first(&vport->rcv_buffer_list,
18578 			       struct lpfc_dmabuf, list);
18579 	if (!h_buf)
18580 		return;
18581 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18582 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
18583 }
18584 
18585 /**
18586  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
18587  * @vport: The vport that the received sequences were sent to.
18588  *
18589  * This function cleans up all outstanding received sequences. This is called
18590  * by the driver when a link event or user action invalidates all the received
18591  * sequences.
18592  **/
18593 void
18594 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
18595 {
18596 	struct lpfc_dmabuf *h_buf, *hnext;
18597 	struct lpfc_dmabuf *d_buf, *dnext;
18598 	struct hbq_dmabuf *dmabuf = NULL;
18599 
18600 	/* start with the oldest sequence on the rcv list */
18601 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18602 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18603 		list_del_init(&dmabuf->hbuf.list);
18604 		list_for_each_entry_safe(d_buf, dnext,
18605 					 &dmabuf->dbuf.list, list) {
18606 			list_del_init(&d_buf->list);
18607 			lpfc_in_buf_free(vport->phba, d_buf);
18608 		}
18609 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18610 	}
18611 }
18612 
18613 /**
18614  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
18615  * @vport: The vport that the received sequences were sent to.
18616  *
18617  * This function determines whether any received sequences have timed out by
18618  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
18619  * indicates that there is at least one timed out sequence this routine will
18620  * go through the received sequences one at a time from most inactive to most
18621  * active to determine which ones need to be cleaned up. Once it has determined
18622  * that a sequence needs to be cleaned up it will simply free up the resources
18623  * without sending an abort.
18624  **/
18625 void
18626 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
18627 {
18628 	struct lpfc_dmabuf *h_buf, *hnext;
18629 	struct lpfc_dmabuf *d_buf, *dnext;
18630 	struct hbq_dmabuf *dmabuf = NULL;
18631 	unsigned long timeout;
18632 	int abort_count = 0;
18633 
18634 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18635 		   vport->rcv_buffer_time_stamp);
18636 	if (list_empty(&vport->rcv_buffer_list) ||
18637 	    time_before(jiffies, timeout))
18638 		return;
18639 	/* start with the oldest sequence on the rcv list */
18640 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
18641 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18642 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
18643 			   dmabuf->time_stamp);
18644 		if (time_before(jiffies, timeout))
18645 			break;
18646 		abort_count++;
18647 		list_del_init(&dmabuf->hbuf.list);
18648 		list_for_each_entry_safe(d_buf, dnext,
18649 					 &dmabuf->dbuf.list, list) {
18650 			list_del_init(&d_buf->list);
18651 			lpfc_in_buf_free(vport->phba, d_buf);
18652 		}
18653 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
18654 	}
18655 	if (abort_count)
18656 		lpfc_update_rcv_time_stamp(vport);
18657 }
18658 
18659 /**
18660  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
18661  * @vport: pointer to a vitural port
18662  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
18663  *
18664  * This function searches through the existing incomplete sequences that have
18665  * been sent to this @vport. If the frame matches one of the incomplete
18666  * sequences then the dbuf in the @dmabuf is added to the list of frames that
18667  * make up that sequence. If no sequence is found that matches this frame then
18668  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
18669  * This function returns a pointer to the first dmabuf in the sequence list that
18670  * the frame was linked to.
18671  **/
18672 static struct hbq_dmabuf *
18673 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18674 {
18675 	struct fc_frame_header *new_hdr;
18676 	struct fc_frame_header *temp_hdr;
18677 	struct lpfc_dmabuf *d_buf;
18678 	struct lpfc_dmabuf *h_buf;
18679 	struct hbq_dmabuf *seq_dmabuf = NULL;
18680 	struct hbq_dmabuf *temp_dmabuf = NULL;
18681 	uint8_t	found = 0;
18682 
18683 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18684 	dmabuf->time_stamp = jiffies;
18685 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18686 
18687 	/* Use the hdr_buf to find the sequence that this frame belongs to */
18688 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18689 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18690 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18691 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18692 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18693 			continue;
18694 		/* found a pending sequence that matches this frame */
18695 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18696 		break;
18697 	}
18698 	if (!seq_dmabuf) {
18699 		/*
18700 		 * This indicates first frame received for this sequence.
18701 		 * Queue the buffer on the vport's rcv_buffer_list.
18702 		 */
18703 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18704 		lpfc_update_rcv_time_stamp(vport);
18705 		return dmabuf;
18706 	}
18707 	temp_hdr = seq_dmabuf->hbuf.virt;
18708 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
18709 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18710 		list_del_init(&seq_dmabuf->hbuf.list);
18711 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
18712 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18713 		lpfc_update_rcv_time_stamp(vport);
18714 		return dmabuf;
18715 	}
18716 	/* move this sequence to the tail to indicate a young sequence */
18717 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
18718 	seq_dmabuf->time_stamp = jiffies;
18719 	lpfc_update_rcv_time_stamp(vport);
18720 	if (list_empty(&seq_dmabuf->dbuf.list)) {
18721 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
18722 		return seq_dmabuf;
18723 	}
18724 	/* find the correct place in the sequence to insert this frame */
18725 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
18726 	while (!found) {
18727 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18728 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
18729 		/*
18730 		 * If the frame's sequence count is greater than the frame on
18731 		 * the list then insert the frame right after this frame
18732 		 */
18733 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
18734 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
18735 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
18736 			found = 1;
18737 			break;
18738 		}
18739 
18740 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
18741 			break;
18742 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
18743 	}
18744 
18745 	if (found)
18746 		return seq_dmabuf;
18747 	return NULL;
18748 }
18749 
18750 /**
18751  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
18752  * @vport: pointer to a vitural port
18753  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18754  *
18755  * This function tries to abort from the partially assembed sequence, described
18756  * by the information from basic abbort @dmabuf. It checks to see whether such
18757  * partially assembled sequence held by the driver. If so, it shall free up all
18758  * the frames from the partially assembled sequence.
18759  *
18760  * Return
18761  * true  -- if there is matching partially assembled sequence present and all
18762  *          the frames freed with the sequence;
18763  * false -- if there is no matching partially assembled sequence present so
18764  *          nothing got aborted in the lower layer driver
18765  **/
18766 static bool
18767 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
18768 			    struct hbq_dmabuf *dmabuf)
18769 {
18770 	struct fc_frame_header *new_hdr;
18771 	struct fc_frame_header *temp_hdr;
18772 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
18773 	struct hbq_dmabuf *seq_dmabuf = NULL;
18774 
18775 	/* Use the hdr_buf to find the sequence that matches this frame */
18776 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
18777 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
18778 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18779 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
18780 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
18781 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
18782 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
18783 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
18784 			continue;
18785 		/* found a pending sequence that matches this frame */
18786 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
18787 		break;
18788 	}
18789 
18790 	/* Free up all the frames from the partially assembled sequence */
18791 	if (seq_dmabuf) {
18792 		list_for_each_entry_safe(d_buf, n_buf,
18793 					 &seq_dmabuf->dbuf.list, list) {
18794 			list_del_init(&d_buf->list);
18795 			lpfc_in_buf_free(vport->phba, d_buf);
18796 		}
18797 		return true;
18798 	}
18799 	return false;
18800 }
18801 
18802 /**
18803  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
18804  * @vport: pointer to a vitural port
18805  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18806  *
18807  * This function tries to abort from the assembed sequence from upper level
18808  * protocol, described by the information from basic abbort @dmabuf. It
18809  * checks to see whether such pending context exists at upper level protocol.
18810  * If so, it shall clean up the pending context.
18811  *
18812  * Return
18813  * true  -- if there is matching pending context of the sequence cleaned
18814  *          at ulp;
18815  * false -- if there is no matching pending context of the sequence present
18816  *          at ulp.
18817  **/
18818 static bool
18819 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
18820 {
18821 	struct lpfc_hba *phba = vport->phba;
18822 	int handled;
18823 
18824 	/* Accepting abort at ulp with SLI4 only */
18825 	if (phba->sli_rev < LPFC_SLI_REV4)
18826 		return false;
18827 
18828 	/* Register all caring upper level protocols to attend abort */
18829 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18830 	if (handled)
18831 		return true;
18832 
18833 	return false;
18834 }
18835 
18836 /**
18837  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18838  * @phba: Pointer to HBA context object.
18839  * @cmd_iocbq: pointer to the command iocbq structure.
18840  * @rsp_iocbq: pointer to the response iocbq structure.
18841  *
18842  * This function handles the sequence abort response iocb command complete
18843  * event. It properly releases the memory allocated to the sequence abort
18844  * accept iocb.
18845  **/
18846 static void
18847 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18848 			     struct lpfc_iocbq *cmd_iocbq,
18849 			     struct lpfc_iocbq *rsp_iocbq)
18850 {
18851 	struct lpfc_nodelist *ndlp;
18852 
18853 	if (cmd_iocbq) {
18854 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
18855 		lpfc_nlp_put(ndlp);
18856 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18857 	}
18858 
18859 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18860 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18861 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18862 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18863 			rsp_iocbq->iocb.ulpStatus,
18864 			rsp_iocbq->iocb.un.ulpWord[4]);
18865 }
18866 
18867 /**
18868  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18869  * @phba: Pointer to HBA context object.
18870  * @xri: xri id in transaction.
18871  *
18872  * This function validates the xri maps to the known range of XRIs allocated an
18873  * used by the driver.
18874  **/
18875 uint16_t
18876 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18877 		      uint16_t xri)
18878 {
18879 	uint16_t i;
18880 
18881 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18882 		if (xri == phba->sli4_hba.xri_ids[i])
18883 			return i;
18884 	}
18885 	return NO_XRI;
18886 }
18887 
18888 /**
18889  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18890  * @vport: pointer to a virtual port.
18891  * @fc_hdr: pointer to a FC frame header.
18892  * @aborted: was the partially assembled receive sequence successfully aborted
18893  *
18894  * This function sends a basic response to a previous unsol sequence abort
18895  * event after aborting the sequence handling.
18896  **/
18897 void
18898 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18899 			struct fc_frame_header *fc_hdr, bool aborted)
18900 {
18901 	struct lpfc_hba *phba = vport->phba;
18902 	struct lpfc_iocbq *ctiocb = NULL;
18903 	struct lpfc_nodelist *ndlp;
18904 	uint16_t oxid, rxid, xri, lxri;
18905 	uint32_t sid, fctl;
18906 	IOCB_t *icmd;
18907 	int rc;
18908 
18909 	if (!lpfc_is_link_up(phba))
18910 		return;
18911 
18912 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18913 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18914 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18915 
18916 	ndlp = lpfc_findnode_did(vport, sid);
18917 	if (!ndlp) {
18918 		ndlp = lpfc_nlp_init(vport, sid);
18919 		if (!ndlp) {
18920 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18921 					 "1268 Failed to allocate ndlp for "
18922 					 "oxid:x%x SID:x%x\n", oxid, sid);
18923 			return;
18924 		}
18925 		/* Put ndlp onto pport node list */
18926 		lpfc_enqueue_node(vport, ndlp);
18927 	}
18928 
18929 	/* Allocate buffer for rsp iocb */
18930 	ctiocb = lpfc_sli_get_iocbq(phba);
18931 	if (!ctiocb)
18932 		return;
18933 
18934 	/* Extract the F_CTL field from FC_HDR */
18935 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18936 
18937 	icmd = &ctiocb->iocb;
18938 	icmd->un.xseq64.bdl.bdeSize = 0;
18939 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
18940 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
18941 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
18942 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
18943 
18944 	/* Fill in the rest of iocb fields */
18945 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
18946 	icmd->ulpBdeCount = 0;
18947 	icmd->ulpLe = 1;
18948 	icmd->ulpClass = CLASS3;
18949 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
18950 	ctiocb->context1 = lpfc_nlp_get(ndlp);
18951 	if (!ctiocb->context1) {
18952 		lpfc_sli_release_iocbq(phba, ctiocb);
18953 		return;
18954 	}
18955 
18956 	ctiocb->vport = phba->pport;
18957 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18958 	ctiocb->sli4_lxritag = NO_XRI;
18959 	ctiocb->sli4_xritag = NO_XRI;
18960 
18961 	if (fctl & FC_FC_EX_CTX)
18962 		/* Exchange responder sent the abort so we
18963 		 * own the oxid.
18964 		 */
18965 		xri = oxid;
18966 	else
18967 		xri = rxid;
18968 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18969 	if (lxri != NO_XRI)
18970 		lpfc_set_rrq_active(phba, ndlp, lxri,
18971 			(xri == oxid) ? rxid : oxid, 0);
18972 	/* For BA_ABTS from exchange responder, if the logical xri with
18973 	 * the oxid maps to the FCP XRI range, the port no longer has
18974 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18975 	 * a BA_RJT.
18976 	 */
18977 	if ((fctl & FC_FC_EX_CTX) &&
18978 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18979 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18980 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18981 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18982 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18983 	}
18984 
18985 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18986 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18987 	 * the IOCB for a BA_RJT.
18988 	 */
18989 	if (aborted == false) {
18990 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18991 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18992 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18993 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18994 	}
18995 
18996 	if (fctl & FC_FC_EX_CTX) {
18997 		/* ABTS sent by responder to CT exchange, construction
18998 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18999 		 * field and RX_ID from ABTS for RX_ID field.
19000 		 */
19001 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
19002 	} else {
19003 		/* ABTS sent by initiator to CT exchange, construction
19004 		 * of BA_ACC will need to allocate a new XRI as for the
19005 		 * XRI_TAG field.
19006 		 */
19007 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
19008 	}
19009 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
19010 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
19011 
19012 	/* Xmit CT abts response on exchange <xid> */
19013 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
19014 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
19015 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
19016 
19017 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
19018 	if (rc == IOCB_ERROR) {
19019 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19020 				 "2925 Failed to issue CT ABTS RSP x%x on "
19021 				 "xri x%x, Data x%x\n",
19022 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
19023 				 phba->link_state);
19024 		lpfc_nlp_put(ndlp);
19025 		ctiocb->context1 = NULL;
19026 		lpfc_sli_release_iocbq(phba, ctiocb);
19027 	}
19028 }
19029 
19030 /**
19031  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
19032  * @vport: Pointer to the vport on which this sequence was received
19033  * @dmabuf: pointer to a dmabuf that describes the FC sequence
19034  *
19035  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
19036  * receive sequence is only partially assembed by the driver, it shall abort
19037  * the partially assembled frames for the sequence. Otherwise, if the
19038  * unsolicited receive sequence has been completely assembled and passed to
19039  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
19040  * unsolicited sequence has been aborted. After that, it will issue a basic
19041  * accept to accept the abort.
19042  **/
19043 static void
19044 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
19045 			     struct hbq_dmabuf *dmabuf)
19046 {
19047 	struct lpfc_hba *phba = vport->phba;
19048 	struct fc_frame_header fc_hdr;
19049 	uint32_t fctl;
19050 	bool aborted;
19051 
19052 	/* Make a copy of fc_hdr before the dmabuf being released */
19053 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
19054 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
19055 
19056 	if (fctl & FC_FC_EX_CTX) {
19057 		/* ABTS by responder to exchange, no cleanup needed */
19058 		aborted = true;
19059 	} else {
19060 		/* ABTS by initiator to exchange, need to do cleanup */
19061 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
19062 		if (aborted == false)
19063 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
19064 	}
19065 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19066 
19067 	if (phba->nvmet_support) {
19068 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
19069 		return;
19070 	}
19071 
19072 	/* Respond with BA_ACC or BA_RJT accordingly */
19073 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
19074 }
19075 
19076 /**
19077  * lpfc_seq_complete - Indicates if a sequence is complete
19078  * @dmabuf: pointer to a dmabuf that describes the FC sequence
19079  *
19080  * This function checks the sequence, starting with the frame described by
19081  * @dmabuf, to see if all the frames associated with this sequence are present.
19082  * the frames associated with this sequence are linked to the @dmabuf using the
19083  * dbuf list. This function looks for two major things. 1) That the first frame
19084  * has a sequence count of zero. 2) There is a frame with last frame of sequence
19085  * set. 3) That there are no holes in the sequence count. The function will
19086  * return 1 when the sequence is complete, otherwise it will return 0.
19087  **/
19088 static int
19089 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
19090 {
19091 	struct fc_frame_header *hdr;
19092 	struct lpfc_dmabuf *d_buf;
19093 	struct hbq_dmabuf *seq_dmabuf;
19094 	uint32_t fctl;
19095 	int seq_count = 0;
19096 
19097 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19098 	/* make sure first fame of sequence has a sequence count of zero */
19099 	if (hdr->fh_seq_cnt != seq_count)
19100 		return 0;
19101 	fctl = (hdr->fh_f_ctl[0] << 16 |
19102 		hdr->fh_f_ctl[1] << 8 |
19103 		hdr->fh_f_ctl[2]);
19104 	/* If last frame of sequence we can return success. */
19105 	if (fctl & FC_FC_END_SEQ)
19106 		return 1;
19107 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
19108 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19109 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19110 		/* If there is a hole in the sequence count then fail. */
19111 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
19112 			return 0;
19113 		fctl = (hdr->fh_f_ctl[0] << 16 |
19114 			hdr->fh_f_ctl[1] << 8 |
19115 			hdr->fh_f_ctl[2]);
19116 		/* If last frame of sequence we can return success. */
19117 		if (fctl & FC_FC_END_SEQ)
19118 			return 1;
19119 	}
19120 	return 0;
19121 }
19122 
19123 /**
19124  * lpfc_prep_seq - Prep sequence for ULP processing
19125  * @vport: Pointer to the vport on which this sequence was received
19126  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
19127  *
19128  * This function takes a sequence, described by a list of frames, and creates
19129  * a list of iocbq structures to describe the sequence. This iocbq list will be
19130  * used to issue to the generic unsolicited sequence handler. This routine
19131  * returns a pointer to the first iocbq in the list. If the function is unable
19132  * to allocate an iocbq then it throw out the received frames that were not
19133  * able to be described and return a pointer to the first iocbq. If unable to
19134  * allocate any iocbqs (including the first) this function will return NULL.
19135  **/
19136 static struct lpfc_iocbq *
19137 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
19138 {
19139 	struct hbq_dmabuf *hbq_buf;
19140 	struct lpfc_dmabuf *d_buf, *n_buf;
19141 	struct lpfc_iocbq *first_iocbq, *iocbq;
19142 	struct fc_frame_header *fc_hdr;
19143 	uint32_t sid;
19144 	uint32_t len, tot_len;
19145 	struct ulp_bde64 *pbde;
19146 
19147 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19148 	/* remove from receive buffer list */
19149 	list_del_init(&seq_dmabuf->hbuf.list);
19150 	lpfc_update_rcv_time_stamp(vport);
19151 	/* get the Remote Port's SID */
19152 	sid = sli4_sid_from_fc_hdr(fc_hdr);
19153 	tot_len = 0;
19154 	/* Get an iocbq struct to fill in. */
19155 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
19156 	if (first_iocbq) {
19157 		/* Initialize the first IOCB. */
19158 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
19159 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
19160 		first_iocbq->vport = vport;
19161 
19162 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
19163 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
19164 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
19165 			first_iocbq->iocb.un.rcvels.parmRo =
19166 				sli4_did_from_fc_hdr(fc_hdr);
19167 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
19168 		} else
19169 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
19170 		first_iocbq->iocb.ulpContext = NO_XRI;
19171 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
19172 			be16_to_cpu(fc_hdr->fh_ox_id);
19173 		/* iocbq is prepped for internal consumption.  Physical vpi. */
19174 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
19175 			vport->phba->vpi_ids[vport->vpi];
19176 		/* put the first buffer into the first IOCBq */
19177 		tot_len = bf_get(lpfc_rcqe_length,
19178 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
19179 
19180 		first_iocbq->context2 = &seq_dmabuf->dbuf;
19181 		first_iocbq->context3 = NULL;
19182 		first_iocbq->iocb.ulpBdeCount = 1;
19183 		if (tot_len > LPFC_DATA_BUF_SIZE)
19184 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
19185 							LPFC_DATA_BUF_SIZE;
19186 		else
19187 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
19188 
19189 		first_iocbq->iocb.un.rcvels.remoteID = sid;
19190 
19191 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
19192 	}
19193 	iocbq = first_iocbq;
19194 	/*
19195 	 * Each IOCBq can have two Buffers assigned, so go through the list
19196 	 * of buffers for this sequence and save two buffers in each IOCBq
19197 	 */
19198 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
19199 		if (!iocbq) {
19200 			lpfc_in_buf_free(vport->phba, d_buf);
19201 			continue;
19202 		}
19203 		if (!iocbq->context3) {
19204 			iocbq->context3 = d_buf;
19205 			iocbq->iocb.ulpBdeCount++;
19206 			/* We need to get the size out of the right CQE */
19207 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19208 			len = bf_get(lpfc_rcqe_length,
19209 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19210 			pbde = (struct ulp_bde64 *)
19211 					&iocbq->iocb.unsli3.sli3Words[4];
19212 			if (len > LPFC_DATA_BUF_SIZE)
19213 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
19214 			else
19215 				pbde->tus.f.bdeSize = len;
19216 
19217 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
19218 			tot_len += len;
19219 		} else {
19220 			iocbq = lpfc_sli_get_iocbq(vport->phba);
19221 			if (!iocbq) {
19222 				if (first_iocbq) {
19223 					first_iocbq->iocb.ulpStatus =
19224 							IOSTAT_FCP_RSP_ERROR;
19225 					first_iocbq->iocb.un.ulpWord[4] =
19226 							IOERR_NO_RESOURCES;
19227 				}
19228 				lpfc_in_buf_free(vport->phba, d_buf);
19229 				continue;
19230 			}
19231 			/* We need to get the size out of the right CQE */
19232 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
19233 			len = bf_get(lpfc_rcqe_length,
19234 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
19235 			iocbq->context2 = d_buf;
19236 			iocbq->context3 = NULL;
19237 			iocbq->iocb.ulpBdeCount = 1;
19238 			if (len > LPFC_DATA_BUF_SIZE)
19239 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
19240 							LPFC_DATA_BUF_SIZE;
19241 			else
19242 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
19243 
19244 			tot_len += len;
19245 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
19246 
19247 			iocbq->iocb.un.rcvels.remoteID = sid;
19248 			list_add_tail(&iocbq->list, &first_iocbq->list);
19249 		}
19250 	}
19251 	/* Free the sequence's header buffer */
19252 	if (!first_iocbq)
19253 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
19254 
19255 	return first_iocbq;
19256 }
19257 
19258 static void
19259 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
19260 			  struct hbq_dmabuf *seq_dmabuf)
19261 {
19262 	struct fc_frame_header *fc_hdr;
19263 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
19264 	struct lpfc_hba *phba = vport->phba;
19265 
19266 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
19267 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
19268 	if (!iocbq) {
19269 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19270 				"2707 Ring %d handler: Failed to allocate "
19271 				"iocb Rctl x%x Type x%x received\n",
19272 				LPFC_ELS_RING,
19273 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19274 		return;
19275 	}
19276 	if (!lpfc_complete_unsol_iocb(phba,
19277 				      phba->sli4_hba.els_wq->pring,
19278 				      iocbq, fc_hdr->fh_r_ctl,
19279 				      fc_hdr->fh_type))
19280 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19281 				"2540 Ring %d handler: unexpected Rctl "
19282 				"x%x Type x%x received\n",
19283 				LPFC_ELS_RING,
19284 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
19285 
19286 	/* Free iocb created in lpfc_prep_seq */
19287 	list_for_each_entry_safe(curr_iocb, next_iocb,
19288 		&iocbq->list, list) {
19289 		list_del_init(&curr_iocb->list);
19290 		lpfc_sli_release_iocbq(phba, curr_iocb);
19291 	}
19292 	lpfc_sli_release_iocbq(phba, iocbq);
19293 }
19294 
19295 static void
19296 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
19297 			    struct lpfc_iocbq *rspiocb)
19298 {
19299 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
19300 
19301 	if (pcmd && pcmd->virt)
19302 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19303 	kfree(pcmd);
19304 	lpfc_sli_release_iocbq(phba, cmdiocb);
19305 	lpfc_drain_txq(phba);
19306 }
19307 
19308 static void
19309 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
19310 			      struct hbq_dmabuf *dmabuf)
19311 {
19312 	struct fc_frame_header *fc_hdr;
19313 	struct lpfc_hba *phba = vport->phba;
19314 	struct lpfc_iocbq *iocbq = NULL;
19315 	union  lpfc_wqe *wqe;
19316 	struct lpfc_dmabuf *pcmd = NULL;
19317 	uint32_t frame_len;
19318 	int rc;
19319 	unsigned long iflags;
19320 
19321 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19322 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
19323 
19324 	/* Send the received frame back */
19325 	iocbq = lpfc_sli_get_iocbq(phba);
19326 	if (!iocbq) {
19327 		/* Queue cq event and wakeup worker thread to process it */
19328 		spin_lock_irqsave(&phba->hbalock, iflags);
19329 		list_add_tail(&dmabuf->cq_event.list,
19330 			      &phba->sli4_hba.sp_queue_event);
19331 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
19332 		spin_unlock_irqrestore(&phba->hbalock, iflags);
19333 		lpfc_worker_wake_up(phba);
19334 		return;
19335 	}
19336 
19337 	/* Allocate buffer for command payload */
19338 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
19339 	if (pcmd)
19340 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
19341 					    &pcmd->phys);
19342 	if (!pcmd || !pcmd->virt)
19343 		goto exit;
19344 
19345 	INIT_LIST_HEAD(&pcmd->list);
19346 
19347 	/* copyin the payload */
19348 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
19349 
19350 	/* fill in BDE's for command */
19351 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
19352 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
19353 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
19354 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
19355 
19356 	iocbq->context2 = pcmd;
19357 	iocbq->vport = vport;
19358 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
19359 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
19360 
19361 	/*
19362 	 * Setup rest of the iocb as though it were a WQE
19363 	 * Build the SEND_FRAME WQE
19364 	 */
19365 	wqe = (union lpfc_wqe *)&iocbq->iocb;
19366 
19367 	wqe->send_frame.frame_len = frame_len;
19368 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
19369 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
19370 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
19371 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
19372 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
19373 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
19374 
19375 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
19376 	iocbq->iocb.ulpLe = 1;
19377 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
19378 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
19379 	if (rc == IOCB_ERROR)
19380 		goto exit;
19381 
19382 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19383 	return;
19384 
19385 exit:
19386 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
19387 			"2023 Unable to process MDS loopback frame\n");
19388 	if (pcmd && pcmd->virt)
19389 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
19390 	kfree(pcmd);
19391 	if (iocbq)
19392 		lpfc_sli_release_iocbq(phba, iocbq);
19393 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
19394 }
19395 
19396 /**
19397  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
19398  * @phba: Pointer to HBA context object.
19399  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
19400  *
19401  * This function is called with no lock held. This function processes all
19402  * the received buffers and gives it to upper layers when a received buffer
19403  * indicates that it is the final frame in the sequence. The interrupt
19404  * service routine processes received buffers at interrupt contexts.
19405  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
19406  * appropriate receive function when the final frame in a sequence is received.
19407  **/
19408 void
19409 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
19410 				 struct hbq_dmabuf *dmabuf)
19411 {
19412 	struct hbq_dmabuf *seq_dmabuf;
19413 	struct fc_frame_header *fc_hdr;
19414 	struct lpfc_vport *vport;
19415 	uint32_t fcfi;
19416 	uint32_t did;
19417 
19418 	/* Process each received buffer */
19419 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
19420 
19421 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
19422 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
19423 		vport = phba->pport;
19424 		/* Handle MDS Loopback frames */
19425 		if  (!(phba->pport->load_flag & FC_UNLOADING))
19426 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19427 		else
19428 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19429 		return;
19430 	}
19431 
19432 	/* check to see if this a valid type of frame */
19433 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
19434 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19435 		return;
19436 	}
19437 
19438 	if ((bf_get(lpfc_cqe_code,
19439 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
19440 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
19441 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19442 	else
19443 		fcfi = bf_get(lpfc_rcqe_fcf_id,
19444 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
19445 
19446 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
19447 		vport = phba->pport;
19448 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
19449 				"2023 MDS Loopback %d bytes\n",
19450 				bf_get(lpfc_rcqe_length,
19451 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
19452 		/* Handle MDS Loopback frames */
19453 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
19454 		return;
19455 	}
19456 
19457 	/* d_id this frame is directed to */
19458 	did = sli4_did_from_fc_hdr(fc_hdr);
19459 
19460 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
19461 	if (!vport) {
19462 		/* throw out the frame */
19463 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19464 		return;
19465 	}
19466 
19467 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
19468 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
19469 		(did != Fabric_DID)) {
19470 		/*
19471 		 * Throw out the frame if we are not pt2pt.
19472 		 * The pt2pt protocol allows for discovery frames
19473 		 * to be received without a registered VPI.
19474 		 */
19475 		if (!(vport->fc_flag & FC_PT2PT) ||
19476 			(phba->link_state == LPFC_HBA_READY)) {
19477 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
19478 			return;
19479 		}
19480 	}
19481 
19482 	/* Handle the basic abort sequence (BA_ABTS) event */
19483 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
19484 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
19485 		return;
19486 	}
19487 
19488 	/* Link this frame */
19489 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
19490 	if (!seq_dmabuf) {
19491 		/* unable to add frame to vport - throw it out */
19492 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
19493 		return;
19494 	}
19495 	/* If not last frame in sequence continue processing frames. */
19496 	if (!lpfc_seq_complete(seq_dmabuf))
19497 		return;
19498 
19499 	/* Send the complete sequence to the upper layer protocol */
19500 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
19501 }
19502 
19503 /**
19504  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
19505  * @phba: pointer to lpfc hba data structure.
19506  *
19507  * This routine is invoked to post rpi header templates to the
19508  * HBA consistent with the SLI-4 interface spec.  This routine
19509  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19510  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19511  *
19512  * This routine does not require any locks.  It's usage is expected
19513  * to be driver load or reset recovery when the driver is
19514  * sequential.
19515  *
19516  * Return codes
19517  * 	0 - successful
19518  *      -EIO - The mailbox failed to complete successfully.
19519  * 	When this error occurs, the driver is not guaranteed
19520  *	to have any rpi regions posted to the device and
19521  *	must either attempt to repost the regions or take a
19522  *	fatal error.
19523  **/
19524 int
19525 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
19526 {
19527 	struct lpfc_rpi_hdr *rpi_page;
19528 	uint32_t rc = 0;
19529 	uint16_t lrpi = 0;
19530 
19531 	/* SLI4 ports that support extents do not require RPI headers. */
19532 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19533 		goto exit;
19534 	if (phba->sli4_hba.extents_in_use)
19535 		return -EIO;
19536 
19537 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
19538 		/*
19539 		 * Assign the rpi headers a physical rpi only if the driver
19540 		 * has not initialized those resources.  A port reset only
19541 		 * needs the headers posted.
19542 		 */
19543 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
19544 		    LPFC_RPI_RSRC_RDY)
19545 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19546 
19547 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
19548 		if (rc != MBX_SUCCESS) {
19549 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19550 					"2008 Error %d posting all rpi "
19551 					"headers\n", rc);
19552 			rc = -EIO;
19553 			break;
19554 		}
19555 	}
19556 
19557  exit:
19558 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
19559 	       LPFC_RPI_RSRC_RDY);
19560 	return rc;
19561 }
19562 
19563 /**
19564  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
19565  * @phba: pointer to lpfc hba data structure.
19566  * @rpi_page:  pointer to the rpi memory region.
19567  *
19568  * This routine is invoked to post a single rpi header to the
19569  * HBA consistent with the SLI-4 interface spec.  This memory region
19570  * maps up to 64 rpi context regions.
19571  *
19572  * Return codes
19573  * 	0 - successful
19574  * 	-ENOMEM - No available memory
19575  *      -EIO - The mailbox failed to complete successfully.
19576  **/
19577 int
19578 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
19579 {
19580 	LPFC_MBOXQ_t *mboxq;
19581 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
19582 	uint32_t rc = 0;
19583 	uint32_t shdr_status, shdr_add_status;
19584 	union lpfc_sli4_cfg_shdr *shdr;
19585 
19586 	/* SLI4 ports that support extents do not require RPI headers. */
19587 	if (!phba->sli4_hba.rpi_hdrs_in_use)
19588 		return rc;
19589 	if (phba->sli4_hba.extents_in_use)
19590 		return -EIO;
19591 
19592 	/* The port is notified of the header region via a mailbox command. */
19593 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19594 	if (!mboxq) {
19595 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19596 				"2001 Unable to allocate memory for issuing "
19597 				"SLI_CONFIG_SPECIAL mailbox command\n");
19598 		return -ENOMEM;
19599 	}
19600 
19601 	/* Post all rpi memory regions to the port. */
19602 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
19603 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19604 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
19605 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
19606 			 sizeof(struct lpfc_sli4_cfg_mhdr),
19607 			 LPFC_SLI4_MBX_EMBED);
19608 
19609 
19610 	/* Post the physical rpi to the port for this rpi header. */
19611 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
19612 	       rpi_page->start_rpi);
19613 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
19614 	       hdr_tmpl, rpi_page->page_count);
19615 
19616 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
19617 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
19618 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19619 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
19620 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19621 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19622 	mempool_free(mboxq, phba->mbox_mem_pool);
19623 	if (shdr_status || shdr_add_status || rc) {
19624 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19625 				"2514 POST_RPI_HDR mailbox failed with "
19626 				"status x%x add_status x%x, mbx status x%x\n",
19627 				shdr_status, shdr_add_status, rc);
19628 		rc = -ENXIO;
19629 	} else {
19630 		/*
19631 		 * The next_rpi stores the next logical module-64 rpi value used
19632 		 * to post physical rpis in subsequent rpi postings.
19633 		 */
19634 		spin_lock_irq(&phba->hbalock);
19635 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
19636 		spin_unlock_irq(&phba->hbalock);
19637 	}
19638 	return rc;
19639 }
19640 
19641 /**
19642  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
19643  * @phba: pointer to lpfc hba data structure.
19644  *
19645  * This routine is invoked to post rpi header templates to the
19646  * HBA consistent with the SLI-4 interface spec.  This routine
19647  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
19648  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
19649  *
19650  * Returns
19651  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
19652  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
19653  **/
19654 int
19655 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
19656 {
19657 	unsigned long rpi;
19658 	uint16_t max_rpi, rpi_limit;
19659 	uint16_t rpi_remaining, lrpi = 0;
19660 	struct lpfc_rpi_hdr *rpi_hdr;
19661 	unsigned long iflag;
19662 
19663 	/*
19664 	 * Fetch the next logical rpi.  Because this index is logical,
19665 	 * the  driver starts at 0 each time.
19666 	 */
19667 	spin_lock_irqsave(&phba->hbalock, iflag);
19668 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
19669 	rpi_limit = phba->sli4_hba.next_rpi;
19670 
19671 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
19672 	if (rpi >= rpi_limit)
19673 		rpi = LPFC_RPI_ALLOC_ERROR;
19674 	else {
19675 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
19676 		phba->sli4_hba.max_cfg_param.rpi_used++;
19677 		phba->sli4_hba.rpi_count++;
19678 	}
19679 	lpfc_printf_log(phba, KERN_INFO,
19680 			LOG_NODE | LOG_DISCOVERY,
19681 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
19682 			(int) rpi, max_rpi, rpi_limit);
19683 
19684 	/*
19685 	 * Don't try to allocate more rpi header regions if the device limit
19686 	 * has been exhausted.
19687 	 */
19688 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
19689 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
19690 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19691 		return rpi;
19692 	}
19693 
19694 	/*
19695 	 * RPI header postings are not required for SLI4 ports capable of
19696 	 * extents.
19697 	 */
19698 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
19699 		spin_unlock_irqrestore(&phba->hbalock, iflag);
19700 		return rpi;
19701 	}
19702 
19703 	/*
19704 	 * If the driver is running low on rpi resources, allocate another
19705 	 * page now.  Note that the next_rpi value is used because
19706 	 * it represents how many are actually in use whereas max_rpi notes
19707 	 * how many are supported max by the device.
19708 	 */
19709 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
19710 	spin_unlock_irqrestore(&phba->hbalock, iflag);
19711 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
19712 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
19713 		if (!rpi_hdr) {
19714 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19715 					"2002 Error Could not grow rpi "
19716 					"count\n");
19717 		} else {
19718 			lrpi = rpi_hdr->start_rpi;
19719 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
19720 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
19721 		}
19722 	}
19723 
19724 	return rpi;
19725 }
19726 
19727 /**
19728  * __lpfc_sli4_free_rpi - Release an rpi for reuse.
19729  * @phba: pointer to lpfc hba data structure.
19730  * @rpi: rpi to free
19731  *
19732  * This routine is invoked to release an rpi to the pool of
19733  * available rpis maintained by the driver.
19734  **/
19735 static void
19736 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19737 {
19738 	/*
19739 	 * if the rpi value indicates a prior unreg has already
19740 	 * been done, skip the unreg.
19741 	 */
19742 	if (rpi == LPFC_RPI_ALLOC_ERROR)
19743 		return;
19744 
19745 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
19746 		phba->sli4_hba.rpi_count--;
19747 		phba->sli4_hba.max_cfg_param.rpi_used--;
19748 	} else {
19749 		lpfc_printf_log(phba, KERN_INFO,
19750 				LOG_NODE | LOG_DISCOVERY,
19751 				"2016 rpi %x not inuse\n",
19752 				rpi);
19753 	}
19754 }
19755 
19756 /**
19757  * lpfc_sli4_free_rpi - Release an rpi for reuse.
19758  * @phba: pointer to lpfc hba data structure.
19759  * @rpi: rpi to free
19760  *
19761  * This routine is invoked to release an rpi to the pool of
19762  * available rpis maintained by the driver.
19763  **/
19764 void
19765 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
19766 {
19767 	spin_lock_irq(&phba->hbalock);
19768 	__lpfc_sli4_free_rpi(phba, rpi);
19769 	spin_unlock_irq(&phba->hbalock);
19770 }
19771 
19772 /**
19773  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
19774  * @phba: pointer to lpfc hba data structure.
19775  *
19776  * This routine is invoked to remove the memory region that
19777  * provided rpi via a bitmask.
19778  **/
19779 void
19780 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
19781 {
19782 	kfree(phba->sli4_hba.rpi_bmask);
19783 	kfree(phba->sli4_hba.rpi_ids);
19784 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
19785 }
19786 
19787 /**
19788  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
19789  * @ndlp: pointer to lpfc nodelist data structure.
19790  * @cmpl: completion call-back.
19791  * @arg: data to load as MBox 'caller buffer information'
19792  *
19793  * This routine is invoked to remove the memory region that
19794  * provided rpi via a bitmask.
19795  **/
19796 int
19797 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
19798 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
19799 {
19800 	LPFC_MBOXQ_t *mboxq;
19801 	struct lpfc_hba *phba = ndlp->phba;
19802 	int rc;
19803 
19804 	/* The port is notified of the header region via a mailbox command. */
19805 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19806 	if (!mboxq)
19807 		return -ENOMEM;
19808 
19809 	/* If cmpl assigned, then this nlp_get pairs with
19810 	 * lpfc_mbx_cmpl_resume_rpi.
19811 	 *
19812 	 * Else cmpl is NULL, then this nlp_get pairs with
19813 	 * lpfc_sli_def_mbox_cmpl.
19814 	 */
19815 	if (!lpfc_nlp_get(ndlp)) {
19816 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19817 				"2122 %s: Failed to get nlp ref\n",
19818 				__func__);
19819 		mempool_free(mboxq, phba->mbox_mem_pool);
19820 		return -EIO;
19821 	}
19822 
19823 	/* Post all rpi memory regions to the port. */
19824 	lpfc_resume_rpi(mboxq, ndlp);
19825 	if (cmpl) {
19826 		mboxq->mbox_cmpl = cmpl;
19827 		mboxq->ctx_buf = arg;
19828 	} else
19829 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19830 	mboxq->ctx_ndlp = ndlp;
19831 	mboxq->vport = ndlp->vport;
19832 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19833 	if (rc == MBX_NOT_FINISHED) {
19834 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19835 				"2010 Resume RPI Mailbox failed "
19836 				"status %d, mbxStatus x%x\n", rc,
19837 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19838 		lpfc_nlp_put(ndlp);
19839 		mempool_free(mboxq, phba->mbox_mem_pool);
19840 		return -EIO;
19841 	}
19842 	return 0;
19843 }
19844 
19845 /**
19846  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19847  * @vport: Pointer to the vport for which the vpi is being initialized
19848  *
19849  * This routine is invoked to activate a vpi with the port.
19850  *
19851  * Returns:
19852  *    0 success
19853  *    -Evalue otherwise
19854  **/
19855 int
19856 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19857 {
19858 	LPFC_MBOXQ_t *mboxq;
19859 	int rc = 0;
19860 	int retval = MBX_SUCCESS;
19861 	uint32_t mbox_tmo;
19862 	struct lpfc_hba *phba = vport->phba;
19863 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19864 	if (!mboxq)
19865 		return -ENOMEM;
19866 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19867 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19868 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19869 	if (rc != MBX_SUCCESS) {
19870 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19871 				"2022 INIT VPI Mailbox failed "
19872 				"status %d, mbxStatus x%x\n", rc,
19873 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19874 		retval = -EIO;
19875 	}
19876 	if (rc != MBX_TIMEOUT)
19877 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19878 
19879 	return retval;
19880 }
19881 
19882 /**
19883  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19884  * @phba: pointer to lpfc hba data structure.
19885  * @mboxq: Pointer to mailbox object.
19886  *
19887  * This routine is invoked to manually add a single FCF record. The caller
19888  * must pass a completely initialized FCF_Record.  This routine takes
19889  * care of the nonembedded mailbox operations.
19890  **/
19891 static void
19892 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19893 {
19894 	void *virt_addr;
19895 	union lpfc_sli4_cfg_shdr *shdr;
19896 	uint32_t shdr_status, shdr_add_status;
19897 
19898 	virt_addr = mboxq->sge_array->addr[0];
19899 	/* The IOCTL status is embedded in the mailbox subheader. */
19900 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19901 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19902 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19903 
19904 	if ((shdr_status || shdr_add_status) &&
19905 		(shdr_status != STATUS_FCF_IN_USE))
19906 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19907 			"2558 ADD_FCF_RECORD mailbox failed with "
19908 			"status x%x add_status x%x\n",
19909 			shdr_status, shdr_add_status);
19910 
19911 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19912 }
19913 
19914 /**
19915  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19916  * @phba: pointer to lpfc hba data structure.
19917  * @fcf_record:  pointer to the initialized fcf record to add.
19918  *
19919  * This routine is invoked to manually add a single FCF record. The caller
19920  * must pass a completely initialized FCF_Record.  This routine takes
19921  * care of the nonembedded mailbox operations.
19922  **/
19923 int
19924 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19925 {
19926 	int rc = 0;
19927 	LPFC_MBOXQ_t *mboxq;
19928 	uint8_t *bytep;
19929 	void *virt_addr;
19930 	struct lpfc_mbx_sge sge;
19931 	uint32_t alloc_len, req_len;
19932 	uint32_t fcfindex;
19933 
19934 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19935 	if (!mboxq) {
19936 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19937 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19938 		return -ENOMEM;
19939 	}
19940 
19941 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19942 		  sizeof(uint32_t);
19943 
19944 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19945 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19946 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19947 				     req_len, LPFC_SLI4_MBX_NEMBED);
19948 	if (alloc_len < req_len) {
19949 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19950 			"2523 Allocated DMA memory size (x%x) is "
19951 			"less than the requested DMA memory "
19952 			"size (x%x)\n", alloc_len, req_len);
19953 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19954 		return -ENOMEM;
19955 	}
19956 
19957 	/*
19958 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19959 	 * routine only uses a single SGE.
19960 	 */
19961 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19962 	virt_addr = mboxq->sge_array->addr[0];
19963 	/*
19964 	 * Configure the FCF record for FCFI 0.  This is the driver's
19965 	 * hardcoded default and gets used in nonFIP mode.
19966 	 */
19967 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19968 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19969 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19970 
19971 	/*
19972 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19973 	 * the FCoE header plus word10. The data copy needs to be endian
19974 	 * correct.
19975 	 */
19976 	bytep += sizeof(uint32_t);
19977 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19978 	mboxq->vport = phba->pport;
19979 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19980 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19981 	if (rc == MBX_NOT_FINISHED) {
19982 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19983 			"2515 ADD_FCF_RECORD mailbox failed with "
19984 			"status 0x%x\n", rc);
19985 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19986 		rc = -EIO;
19987 	} else
19988 		rc = 0;
19989 
19990 	return rc;
19991 }
19992 
19993 /**
19994  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19995  * @phba: pointer to lpfc hba data structure.
19996  * @fcf_record:  pointer to the fcf record to write the default data.
19997  * @fcf_index: FCF table entry index.
19998  *
19999  * This routine is invoked to build the driver's default FCF record.  The
20000  * values used are hardcoded.  This routine handles memory initialization.
20001  *
20002  **/
20003 void
20004 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
20005 				struct fcf_record *fcf_record,
20006 				uint16_t fcf_index)
20007 {
20008 	memset(fcf_record, 0, sizeof(struct fcf_record));
20009 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
20010 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
20011 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
20012 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
20013 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
20014 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
20015 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
20016 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
20017 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
20018 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
20019 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
20020 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
20021 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
20022 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
20023 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
20024 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
20025 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
20026 	/* Set the VLAN bit map */
20027 	if (phba->valid_vlan) {
20028 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
20029 			= 1 << (phba->vlan_id % 8);
20030 	}
20031 }
20032 
20033 /**
20034  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
20035  * @phba: pointer to lpfc hba data structure.
20036  * @fcf_index: FCF table entry offset.
20037  *
20038  * This routine is invoked to scan the entire FCF table by reading FCF
20039  * record and processing it one at a time starting from the @fcf_index
20040  * for initial FCF discovery or fast FCF failover rediscovery.
20041  *
20042  * Return 0 if the mailbox command is submitted successfully, none 0
20043  * otherwise.
20044  **/
20045 int
20046 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20047 {
20048 	int rc = 0, error;
20049 	LPFC_MBOXQ_t *mboxq;
20050 
20051 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
20052 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
20053 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20054 	if (!mboxq) {
20055 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20056 				"2000 Failed to allocate mbox for "
20057 				"READ_FCF cmd\n");
20058 		error = -ENOMEM;
20059 		goto fail_fcf_scan;
20060 	}
20061 	/* Construct the read FCF record mailbox command */
20062 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20063 	if (rc) {
20064 		error = -EINVAL;
20065 		goto fail_fcf_scan;
20066 	}
20067 	/* Issue the mailbox command asynchronously */
20068 	mboxq->vport = phba->pport;
20069 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
20070 
20071 	spin_lock_irq(&phba->hbalock);
20072 	phba->hba_flag |= FCF_TS_INPROG;
20073 	spin_unlock_irq(&phba->hbalock);
20074 
20075 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20076 	if (rc == MBX_NOT_FINISHED)
20077 		error = -EIO;
20078 	else {
20079 		/* Reset eligible FCF count for new scan */
20080 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
20081 			phba->fcf.eligible_fcf_cnt = 0;
20082 		error = 0;
20083 	}
20084 fail_fcf_scan:
20085 	if (error) {
20086 		if (mboxq)
20087 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
20088 		/* FCF scan failed, clear FCF_TS_INPROG flag */
20089 		spin_lock_irq(&phba->hbalock);
20090 		phba->hba_flag &= ~FCF_TS_INPROG;
20091 		spin_unlock_irq(&phba->hbalock);
20092 	}
20093 	return error;
20094 }
20095 
20096 /**
20097  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
20098  * @phba: pointer to lpfc hba data structure.
20099  * @fcf_index: FCF table entry offset.
20100  *
20101  * This routine is invoked to read an FCF record indicated by @fcf_index
20102  * and to use it for FLOGI roundrobin FCF failover.
20103  *
20104  * Return 0 if the mailbox command is submitted successfully, none 0
20105  * otherwise.
20106  **/
20107 int
20108 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20109 {
20110 	int rc = 0, error;
20111 	LPFC_MBOXQ_t *mboxq;
20112 
20113 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20114 	if (!mboxq) {
20115 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20116 				"2763 Failed to allocate mbox for "
20117 				"READ_FCF cmd\n");
20118 		error = -ENOMEM;
20119 		goto fail_fcf_read;
20120 	}
20121 	/* Construct the read FCF record mailbox command */
20122 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20123 	if (rc) {
20124 		error = -EINVAL;
20125 		goto fail_fcf_read;
20126 	}
20127 	/* Issue the mailbox command asynchronously */
20128 	mboxq->vport = phba->pport;
20129 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
20130 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20131 	if (rc == MBX_NOT_FINISHED)
20132 		error = -EIO;
20133 	else
20134 		error = 0;
20135 
20136 fail_fcf_read:
20137 	if (error && mboxq)
20138 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20139 	return error;
20140 }
20141 
20142 /**
20143  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
20144  * @phba: pointer to lpfc hba data structure.
20145  * @fcf_index: FCF table entry offset.
20146  *
20147  * This routine is invoked to read an FCF record indicated by @fcf_index to
20148  * determine whether it's eligible for FLOGI roundrobin failover list.
20149  *
20150  * Return 0 if the mailbox command is submitted successfully, none 0
20151  * otherwise.
20152  **/
20153 int
20154 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
20155 {
20156 	int rc = 0, error;
20157 	LPFC_MBOXQ_t *mboxq;
20158 
20159 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20160 	if (!mboxq) {
20161 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
20162 				"2758 Failed to allocate mbox for "
20163 				"READ_FCF cmd\n");
20164 				error = -ENOMEM;
20165 				goto fail_fcf_read;
20166 	}
20167 	/* Construct the read FCF record mailbox command */
20168 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
20169 	if (rc) {
20170 		error = -EINVAL;
20171 		goto fail_fcf_read;
20172 	}
20173 	/* Issue the mailbox command asynchronously */
20174 	mboxq->vport = phba->pport;
20175 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
20176 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
20177 	if (rc == MBX_NOT_FINISHED)
20178 		error = -EIO;
20179 	else
20180 		error = 0;
20181 
20182 fail_fcf_read:
20183 	if (error && mboxq)
20184 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
20185 	return error;
20186 }
20187 
20188 /**
20189  * lpfc_check_next_fcf_pri_level
20190  * @phba: pointer to the lpfc_hba struct for this port.
20191  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
20192  * routine when the rr_bmask is empty. The FCF indecies are put into the
20193  * rr_bmask based on their priority level. Starting from the highest priority
20194  * to the lowest. The most likely FCF candidate will be in the highest
20195  * priority group. When this routine is called it searches the fcf_pri list for
20196  * next lowest priority group and repopulates the rr_bmask with only those
20197  * fcf_indexes.
20198  * returns:
20199  * 1=success 0=failure
20200  **/
20201 static int
20202 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
20203 {
20204 	uint16_t next_fcf_pri;
20205 	uint16_t last_index;
20206 	struct lpfc_fcf_pri *fcf_pri;
20207 	int rc;
20208 	int ret = 0;
20209 
20210 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
20211 			LPFC_SLI4_FCF_TBL_INDX_MAX);
20212 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20213 			"3060 Last IDX %d\n", last_index);
20214 
20215 	/* Verify the priority list has 2 or more entries */
20216 	spin_lock_irq(&phba->hbalock);
20217 	if (list_empty(&phba->fcf.fcf_pri_list) ||
20218 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
20219 		spin_unlock_irq(&phba->hbalock);
20220 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20221 			"3061 Last IDX %d\n", last_index);
20222 		return 0; /* Empty rr list */
20223 	}
20224 	spin_unlock_irq(&phba->hbalock);
20225 
20226 	next_fcf_pri = 0;
20227 	/*
20228 	 * Clear the rr_bmask and set all of the bits that are at this
20229 	 * priority.
20230 	 */
20231 	memset(phba->fcf.fcf_rr_bmask, 0,
20232 			sizeof(*phba->fcf.fcf_rr_bmask));
20233 	spin_lock_irq(&phba->hbalock);
20234 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20235 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
20236 			continue;
20237 		/*
20238 		 * the 1st priority that has not FLOGI failed
20239 		 * will be the highest.
20240 		 */
20241 		if (!next_fcf_pri)
20242 			next_fcf_pri = fcf_pri->fcf_rec.priority;
20243 		spin_unlock_irq(&phba->hbalock);
20244 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20245 			rc = lpfc_sli4_fcf_rr_index_set(phba,
20246 						fcf_pri->fcf_rec.fcf_index);
20247 			if (rc)
20248 				return 0;
20249 		}
20250 		spin_lock_irq(&phba->hbalock);
20251 	}
20252 	/*
20253 	 * if next_fcf_pri was not set above and the list is not empty then
20254 	 * we have failed flogis on all of them. So reset flogi failed
20255 	 * and start at the beginning.
20256 	 */
20257 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
20258 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
20259 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
20260 			/*
20261 			 * the 1st priority that has not FLOGI failed
20262 			 * will be the highest.
20263 			 */
20264 			if (!next_fcf_pri)
20265 				next_fcf_pri = fcf_pri->fcf_rec.priority;
20266 			spin_unlock_irq(&phba->hbalock);
20267 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
20268 				rc = lpfc_sli4_fcf_rr_index_set(phba,
20269 						fcf_pri->fcf_rec.fcf_index);
20270 				if (rc)
20271 					return 0;
20272 			}
20273 			spin_lock_irq(&phba->hbalock);
20274 		}
20275 	} else
20276 		ret = 1;
20277 	spin_unlock_irq(&phba->hbalock);
20278 
20279 	return ret;
20280 }
20281 /**
20282  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
20283  * @phba: pointer to lpfc hba data structure.
20284  *
20285  * This routine is to get the next eligible FCF record index in a round
20286  * robin fashion. If the next eligible FCF record index equals to the
20287  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
20288  * shall be returned, otherwise, the next eligible FCF record's index
20289  * shall be returned.
20290  **/
20291 uint16_t
20292 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
20293 {
20294 	uint16_t next_fcf_index;
20295 
20296 initial_priority:
20297 	/* Search start from next bit of currently registered FCF index */
20298 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
20299 
20300 next_priority:
20301 	/* Determine the next fcf index to check */
20302 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
20303 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20304 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
20305 				       next_fcf_index);
20306 
20307 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
20308 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20309 		/*
20310 		 * If we have wrapped then we need to clear the bits that
20311 		 * have been tested so that we can detect when we should
20312 		 * change the priority level.
20313 		 */
20314 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
20315 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
20316 	}
20317 
20318 
20319 	/* Check roundrobin failover list empty condition */
20320 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
20321 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
20322 		/*
20323 		 * If next fcf index is not found check if there are lower
20324 		 * Priority level fcf's in the fcf_priority list.
20325 		 * Set up the rr_bmask with all of the avaiable fcf bits
20326 		 * at that level and continue the selection process.
20327 		 */
20328 		if (lpfc_check_next_fcf_pri_level(phba))
20329 			goto initial_priority;
20330 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
20331 				"2844 No roundrobin failover FCF available\n");
20332 
20333 		return LPFC_FCOE_FCF_NEXT_NONE;
20334 	}
20335 
20336 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
20337 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
20338 		LPFC_FCF_FLOGI_FAILED) {
20339 		if (list_is_singular(&phba->fcf.fcf_pri_list))
20340 			return LPFC_FCOE_FCF_NEXT_NONE;
20341 
20342 		goto next_priority;
20343 	}
20344 
20345 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20346 			"2845 Get next roundrobin failover FCF (x%x)\n",
20347 			next_fcf_index);
20348 
20349 	return next_fcf_index;
20350 }
20351 
20352 /**
20353  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
20354  * @phba: pointer to lpfc hba data structure.
20355  * @fcf_index: index into the FCF table to 'set'
20356  *
20357  * This routine sets the FCF record index in to the eligible bmask for
20358  * roundrobin failover search. It checks to make sure that the index
20359  * does not go beyond the range of the driver allocated bmask dimension
20360  * before setting the bit.
20361  *
20362  * Returns 0 if the index bit successfully set, otherwise, it returns
20363  * -EINVAL.
20364  **/
20365 int
20366 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
20367 {
20368 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20369 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20370 				"2610 FCF (x%x) reached driver's book "
20371 				"keeping dimension:x%x\n",
20372 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20373 		return -EINVAL;
20374 	}
20375 	/* Set the eligible FCF record index bmask */
20376 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20377 
20378 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20379 			"2790 Set FCF (x%x) to roundrobin FCF failover "
20380 			"bmask\n", fcf_index);
20381 
20382 	return 0;
20383 }
20384 
20385 /**
20386  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
20387  * @phba: pointer to lpfc hba data structure.
20388  * @fcf_index: index into the FCF table to 'clear'
20389  *
20390  * This routine clears the FCF record index from the eligible bmask for
20391  * roundrobin failover search. It checks to make sure that the index
20392  * does not go beyond the range of the driver allocated bmask dimension
20393  * before clearing the bit.
20394  **/
20395 void
20396 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
20397 {
20398 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
20399 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
20400 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20401 				"2762 FCF (x%x) reached driver's book "
20402 				"keeping dimension:x%x\n",
20403 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
20404 		return;
20405 	}
20406 	/* Clear the eligible FCF record index bmask */
20407 	spin_lock_irq(&phba->hbalock);
20408 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
20409 				 list) {
20410 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
20411 			list_del_init(&fcf_pri->list);
20412 			break;
20413 		}
20414 	}
20415 	spin_unlock_irq(&phba->hbalock);
20416 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
20417 
20418 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20419 			"2791 Clear FCF (x%x) from roundrobin failover "
20420 			"bmask\n", fcf_index);
20421 }
20422 
20423 /**
20424  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
20425  * @phba: pointer to lpfc hba data structure.
20426  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
20427  *
20428  * This routine is the completion routine for the rediscover FCF table mailbox
20429  * command. If the mailbox command returned failure, it will try to stop the
20430  * FCF rediscover wait timer.
20431  **/
20432 static void
20433 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
20434 {
20435 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20436 	uint32_t shdr_status, shdr_add_status;
20437 
20438 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20439 
20440 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20441 			     &redisc_fcf->header.cfg_shdr.response);
20442 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20443 			     &redisc_fcf->header.cfg_shdr.response);
20444 	if (shdr_status || shdr_add_status) {
20445 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
20446 				"2746 Requesting for FCF rediscovery failed "
20447 				"status x%x add_status x%x\n",
20448 				shdr_status, shdr_add_status);
20449 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
20450 			spin_lock_irq(&phba->hbalock);
20451 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
20452 			spin_unlock_irq(&phba->hbalock);
20453 			/*
20454 			 * CVL event triggered FCF rediscover request failed,
20455 			 * last resort to re-try current registered FCF entry.
20456 			 */
20457 			lpfc_retry_pport_discovery(phba);
20458 		} else {
20459 			spin_lock_irq(&phba->hbalock);
20460 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
20461 			spin_unlock_irq(&phba->hbalock);
20462 			/*
20463 			 * DEAD FCF event triggered FCF rediscover request
20464 			 * failed, last resort to fail over as a link down
20465 			 * to FCF registration.
20466 			 */
20467 			lpfc_sli4_fcf_dead_failthrough(phba);
20468 		}
20469 	} else {
20470 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
20471 				"2775 Start FCF rediscover quiescent timer\n");
20472 		/*
20473 		 * Start FCF rediscovery wait timer for pending FCF
20474 		 * before rescan FCF record table.
20475 		 */
20476 		lpfc_fcf_redisc_wait_start_timer(phba);
20477 	}
20478 
20479 	mempool_free(mbox, phba->mbox_mem_pool);
20480 }
20481 
20482 /**
20483  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
20484  * @phba: pointer to lpfc hba data structure.
20485  *
20486  * This routine is invoked to request for rediscovery of the entire FCF table
20487  * by the port.
20488  **/
20489 int
20490 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
20491 {
20492 	LPFC_MBOXQ_t *mbox;
20493 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
20494 	int rc, length;
20495 
20496 	/* Cancel retry delay timers to all vports before FCF rediscover */
20497 	lpfc_cancel_all_vport_retry_delay_timer(phba);
20498 
20499 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20500 	if (!mbox) {
20501 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20502 				"2745 Failed to allocate mbox for "
20503 				"requesting FCF rediscover.\n");
20504 		return -ENOMEM;
20505 	}
20506 
20507 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
20508 		  sizeof(struct lpfc_sli4_cfg_mhdr));
20509 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
20510 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
20511 			 length, LPFC_SLI4_MBX_EMBED);
20512 
20513 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
20514 	/* Set count to 0 for invalidating the entire FCF database */
20515 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
20516 
20517 	/* Issue the mailbox command asynchronously */
20518 	mbox->vport = phba->pport;
20519 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
20520 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
20521 
20522 	if (rc == MBX_NOT_FINISHED) {
20523 		mempool_free(mbox, phba->mbox_mem_pool);
20524 		return -EIO;
20525 	}
20526 	return 0;
20527 }
20528 
20529 /**
20530  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
20531  * @phba: pointer to lpfc hba data structure.
20532  *
20533  * This function is the failover routine as a last resort to the FCF DEAD
20534  * event when driver failed to perform fast FCF failover.
20535  **/
20536 void
20537 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
20538 {
20539 	uint32_t link_state;
20540 
20541 	/*
20542 	 * Last resort as FCF DEAD event failover will treat this as
20543 	 * a link down, but save the link state because we don't want
20544 	 * it to be changed to Link Down unless it is already down.
20545 	 */
20546 	link_state = phba->link_state;
20547 	lpfc_linkdown(phba);
20548 	phba->link_state = link_state;
20549 
20550 	/* Unregister FCF if no devices connected to it */
20551 	lpfc_unregister_unused_fcf(phba);
20552 }
20553 
20554 /**
20555  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
20556  * @phba: pointer to lpfc hba data structure.
20557  * @rgn23_data: pointer to configure region 23 data.
20558  *
20559  * This function gets SLI3 port configure region 23 data through memory dump
20560  * mailbox command. When it successfully retrieves data, the size of the data
20561  * will be returned, otherwise, 0 will be returned.
20562  **/
20563 static uint32_t
20564 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20565 {
20566 	LPFC_MBOXQ_t *pmb = NULL;
20567 	MAILBOX_t *mb;
20568 	uint32_t offset = 0;
20569 	int rc;
20570 
20571 	if (!rgn23_data)
20572 		return 0;
20573 
20574 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20575 	if (!pmb) {
20576 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20577 				"2600 failed to allocate mailbox memory\n");
20578 		return 0;
20579 	}
20580 	mb = &pmb->u.mb;
20581 
20582 	do {
20583 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
20584 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
20585 
20586 		if (rc != MBX_SUCCESS) {
20587 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20588 					"2601 failed to read config "
20589 					"region 23, rc 0x%x Status 0x%x\n",
20590 					rc, mb->mbxStatus);
20591 			mb->un.varDmp.word_cnt = 0;
20592 		}
20593 		/*
20594 		 * dump mem may return a zero when finished or we got a
20595 		 * mailbox error, either way we are done.
20596 		 */
20597 		if (mb->un.varDmp.word_cnt == 0)
20598 			break;
20599 
20600 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
20601 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
20602 
20603 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
20604 				       rgn23_data + offset,
20605 				       mb->un.varDmp.word_cnt);
20606 		offset += mb->un.varDmp.word_cnt;
20607 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
20608 
20609 	mempool_free(pmb, phba->mbox_mem_pool);
20610 	return offset;
20611 }
20612 
20613 /**
20614  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
20615  * @phba: pointer to lpfc hba data structure.
20616  * @rgn23_data: pointer to configure region 23 data.
20617  *
20618  * This function gets SLI4 port configure region 23 data through memory dump
20619  * mailbox command. When it successfully retrieves data, the size of the data
20620  * will be returned, otherwise, 0 will be returned.
20621  **/
20622 static uint32_t
20623 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
20624 {
20625 	LPFC_MBOXQ_t *mboxq = NULL;
20626 	struct lpfc_dmabuf *mp = NULL;
20627 	struct lpfc_mqe *mqe;
20628 	uint32_t data_length = 0;
20629 	int rc;
20630 
20631 	if (!rgn23_data)
20632 		return 0;
20633 
20634 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20635 	if (!mboxq) {
20636 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20637 				"3105 failed to allocate mailbox memory\n");
20638 		return 0;
20639 	}
20640 
20641 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
20642 		goto out;
20643 	mqe = &mboxq->u.mqe;
20644 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
20645 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
20646 	if (rc)
20647 		goto out;
20648 	data_length = mqe->un.mb_words[5];
20649 	if (data_length == 0)
20650 		goto out;
20651 	if (data_length > DMP_RGN23_SIZE) {
20652 		data_length = 0;
20653 		goto out;
20654 	}
20655 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
20656 out:
20657 	mempool_free(mboxq, phba->mbox_mem_pool);
20658 	if (mp) {
20659 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
20660 		kfree(mp);
20661 	}
20662 	return data_length;
20663 }
20664 
20665 /**
20666  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
20667  * @phba: pointer to lpfc hba data structure.
20668  *
20669  * This function read region 23 and parse TLV for port status to
20670  * decide if the user disaled the port. If the TLV indicates the
20671  * port is disabled, the hba_flag is set accordingly.
20672  **/
20673 void
20674 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
20675 {
20676 	uint8_t *rgn23_data = NULL;
20677 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
20678 	uint32_t offset = 0;
20679 
20680 	/* Get adapter Region 23 data */
20681 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
20682 	if (!rgn23_data)
20683 		goto out;
20684 
20685 	if (phba->sli_rev < LPFC_SLI_REV4)
20686 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
20687 	else {
20688 		if_type = bf_get(lpfc_sli_intf_if_type,
20689 				 &phba->sli4_hba.sli_intf);
20690 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
20691 			goto out;
20692 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
20693 	}
20694 
20695 	if (!data_size)
20696 		goto out;
20697 
20698 	/* Check the region signature first */
20699 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
20700 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20701 			"2619 Config region 23 has bad signature\n");
20702 			goto out;
20703 	}
20704 	offset += 4;
20705 
20706 	/* Check the data structure version */
20707 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
20708 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20709 			"2620 Config region 23 has bad version\n");
20710 		goto out;
20711 	}
20712 	offset += 4;
20713 
20714 	/* Parse TLV entries in the region */
20715 	while (offset < data_size) {
20716 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
20717 			break;
20718 		/*
20719 		 * If the TLV is not driver specific TLV or driver id is
20720 		 * not linux driver id, skip the record.
20721 		 */
20722 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
20723 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
20724 		    (rgn23_data[offset + 3] != 0)) {
20725 			offset += rgn23_data[offset + 1] * 4 + 4;
20726 			continue;
20727 		}
20728 
20729 		/* Driver found a driver specific TLV in the config region */
20730 		sub_tlv_len = rgn23_data[offset + 1] * 4;
20731 		offset += 4;
20732 		tlv_offset = 0;
20733 
20734 		/*
20735 		 * Search for configured port state sub-TLV.
20736 		 */
20737 		while ((offset < data_size) &&
20738 			(tlv_offset < sub_tlv_len)) {
20739 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
20740 				offset += 4;
20741 				tlv_offset += 4;
20742 				break;
20743 			}
20744 			if (rgn23_data[offset] != PORT_STE_TYPE) {
20745 				offset += rgn23_data[offset + 1] * 4 + 4;
20746 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
20747 				continue;
20748 			}
20749 
20750 			/* This HBA contains PORT_STE configured */
20751 			if (!rgn23_data[offset + 2])
20752 				phba->hba_flag |= LINK_DISABLED;
20753 
20754 			goto out;
20755 		}
20756 	}
20757 
20758 out:
20759 	kfree(rgn23_data);
20760 	return;
20761 }
20762 
20763 /**
20764  * lpfc_log_fw_write_cmpl - logs firmware write completion status
20765  * @phba: pointer to lpfc hba data structure
20766  * @shdr_status: wr_object rsp's status field
20767  * @shdr_add_status: wr_object rsp's add_status field
20768  * @shdr_add_status_2: wr_object rsp's add_status_2 field
20769  * @shdr_change_status: wr_object rsp's change_status field
20770  * @shdr_csf: wr_object rsp's csf bit
20771  *
20772  * This routine is intended to be called after a firmware write completes.
20773  * It will log next action items to be performed by the user to instantiate
20774  * the newly downloaded firmware or reason for incompatibility.
20775  **/
20776 static void
20777 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status,
20778 		       u32 shdr_add_status, u32 shdr_add_status_2,
20779 		       u32 shdr_change_status, u32 shdr_csf)
20780 {
20781 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20782 			"4198 %s: flash_id x%02x, asic_rev x%02x, "
20783 			"status x%02x, add_status x%02x, add_status_2 x%02x, "
20784 			"change_status x%02x, csf %01x\n", __func__,
20785 			phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev,
20786 			shdr_status, shdr_add_status, shdr_add_status_2,
20787 			shdr_change_status, shdr_csf);
20788 
20789 	if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) {
20790 		switch (shdr_add_status_2) {
20791 		case LPFC_ADD_STATUS_2_INCOMPAT_FLASH:
20792 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20793 					"4199 Firmware write failed: "
20794 					"image incompatible with flash x%02x\n",
20795 					phba->sli4_hba.flash_id);
20796 			break;
20797 		case LPFC_ADD_STATUS_2_INCORRECT_ASIC:
20798 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20799 					"4200 Firmware write failed: "
20800 					"image incompatible with ASIC "
20801 					"architecture x%02x\n",
20802 					phba->sli4_hba.asic_rev);
20803 			break;
20804 		default:
20805 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
20806 					"4210 Firmware write failed: "
20807 					"add_status_2 x%02x\n",
20808 					shdr_add_status_2);
20809 			break;
20810 		}
20811 	} else if (!shdr_status && !shdr_add_status) {
20812 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20813 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20814 			if (shdr_csf)
20815 				shdr_change_status =
20816 						   LPFC_CHANGE_STATUS_PCI_RESET;
20817 		}
20818 
20819 		switch (shdr_change_status) {
20820 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20821 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20822 					"3198 Firmware write complete: System "
20823 					"reboot required to instantiate\n");
20824 			break;
20825 		case (LPFC_CHANGE_STATUS_FW_RESET):
20826 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20827 					"3199 Firmware write complete: "
20828 					"Firmware reset required to "
20829 					"instantiate\n");
20830 			break;
20831 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20832 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20833 					"3200 Firmware write complete: Port "
20834 					"Migration or PCI Reset required to "
20835 					"instantiate\n");
20836 			break;
20837 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20838 			lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
20839 					"3201 Firmware write complete: PCI "
20840 					"Reset required to instantiate\n");
20841 			break;
20842 		default:
20843 			break;
20844 		}
20845 	}
20846 }
20847 
20848 /**
20849  * lpfc_wr_object - write an object to the firmware
20850  * @phba: HBA structure that indicates port to create a queue on.
20851  * @dmabuf_list: list of dmabufs to write to the port.
20852  * @size: the total byte value of the objects to write to the port.
20853  * @offset: the current offset to be used to start the transfer.
20854  *
20855  * This routine will create a wr_object mailbox command to send to the port.
20856  * the mailbox command will be constructed using the dma buffers described in
20857  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
20858  * BDEs that the imbedded mailbox can support. The @offset variable will be
20859  * used to indicate the starting offset of the transfer and will also return
20860  * the offset after the write object mailbox has completed. @size is used to
20861  * determine the end of the object and whether the eof bit should be set.
20862  *
20863  * Return 0 is successful and offset will contain the the new offset to use
20864  * for the next write.
20865  * Return negative value for error cases.
20866  **/
20867 int
20868 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
20869 	       uint32_t size, uint32_t *offset)
20870 {
20871 	struct lpfc_mbx_wr_object *wr_object;
20872 	LPFC_MBOXQ_t *mbox;
20873 	int rc = 0, i = 0;
20874 	uint32_t shdr_status, shdr_add_status, shdr_add_status_2;
20875 	uint32_t shdr_change_status = 0, shdr_csf = 0;
20876 	uint32_t mbox_tmo;
20877 	struct lpfc_dmabuf *dmabuf;
20878 	uint32_t written = 0;
20879 	bool check_change_status = false;
20880 
20881 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
20882 	if (!mbox)
20883 		return -ENOMEM;
20884 
20885 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
20886 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
20887 			sizeof(struct lpfc_mbx_wr_object) -
20888 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
20889 
20890 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
20891 	wr_object->u.request.write_offset = *offset;
20892 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
20893 	wr_object->u.request.object_name[0] =
20894 		cpu_to_le32(wr_object->u.request.object_name[0]);
20895 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
20896 	list_for_each_entry(dmabuf, dmabuf_list, list) {
20897 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
20898 			break;
20899 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
20900 		wr_object->u.request.bde[i].addrHigh =
20901 			putPaddrHigh(dmabuf->phys);
20902 		if (written + SLI4_PAGE_SIZE >= size) {
20903 			wr_object->u.request.bde[i].tus.f.bdeSize =
20904 				(size - written);
20905 			written += (size - written);
20906 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
20907 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
20908 			check_change_status = true;
20909 		} else {
20910 			wr_object->u.request.bde[i].tus.f.bdeSize =
20911 				SLI4_PAGE_SIZE;
20912 			written += SLI4_PAGE_SIZE;
20913 		}
20914 		i++;
20915 	}
20916 	wr_object->u.request.bde_count = i;
20917 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
20918 	if (!phba->sli4_hba.intr_enable)
20919 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
20920 	else {
20921 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
20922 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
20923 	}
20924 	/* The IOCTL status is embedded in the mailbox subheader. */
20925 	shdr_status = bf_get(lpfc_mbox_hdr_status,
20926 			     &wr_object->header.cfg_shdr.response);
20927 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
20928 				 &wr_object->header.cfg_shdr.response);
20929 	shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2,
20930 				   &wr_object->header.cfg_shdr.response);
20931 	if (check_change_status) {
20932 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20933 					    &wr_object->u.response);
20934 		shdr_csf = bf_get(lpfc_wr_object_csf,
20935 				  &wr_object->u.response);
20936 	}
20937 
20938 	if (!phba->sli4_hba.intr_enable)
20939 		mempool_free(mbox, phba->mbox_mem_pool);
20940 	else if (rc != MBX_TIMEOUT)
20941 		mempool_free(mbox, phba->mbox_mem_pool);
20942 	if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) {
20943 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20944 				"3025 Write Object mailbox failed with "
20945 				"status x%x add_status x%x, add_status_2 x%x, "
20946 				"mbx status x%x\n",
20947 				shdr_status, shdr_add_status, shdr_add_status_2,
20948 				rc);
20949 		rc = -ENXIO;
20950 		*offset = shdr_add_status;
20951 	} else {
20952 		*offset += wr_object->u.response.actual_write_length;
20953 	}
20954 
20955 	if (rc || check_change_status)
20956 		lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status,
20957 				       shdr_add_status_2, shdr_change_status,
20958 				       shdr_csf);
20959 	return rc;
20960 }
20961 
20962 /**
20963  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20964  * @vport: pointer to vport data structure.
20965  *
20966  * This function iterate through the mailboxq and clean up all REG_LOGIN
20967  * and REG_VPI mailbox commands associated with the vport. This function
20968  * is called when driver want to restart discovery of the vport due to
20969  * a Clear Virtual Link event.
20970  **/
20971 void
20972 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20973 {
20974 	struct lpfc_hba *phba = vport->phba;
20975 	LPFC_MBOXQ_t *mb, *nextmb;
20976 	struct lpfc_dmabuf *mp;
20977 	struct lpfc_nodelist *ndlp;
20978 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20979 	LIST_HEAD(mbox_cmd_list);
20980 	uint8_t restart_loop;
20981 
20982 	/* Clean up internally queued mailbox commands with the vport */
20983 	spin_lock_irq(&phba->hbalock);
20984 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20985 		if (mb->vport != vport)
20986 			continue;
20987 
20988 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20989 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20990 			continue;
20991 
20992 		list_move_tail(&mb->list, &mbox_cmd_list);
20993 	}
20994 	/* Clean up active mailbox command with the vport */
20995 	mb = phba->sli.mbox_active;
20996 	if (mb && (mb->vport == vport)) {
20997 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20998 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20999 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21000 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21001 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21002 			/* Put reference count for delayed processing */
21003 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
21004 			/* Unregister the RPI when mailbox complete */
21005 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21006 		}
21007 	}
21008 	/* Cleanup any mailbox completions which are not yet processed */
21009 	do {
21010 		restart_loop = 0;
21011 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
21012 			/*
21013 			 * If this mailox is already processed or it is
21014 			 * for another vport ignore it.
21015 			 */
21016 			if ((mb->vport != vport) ||
21017 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
21018 				continue;
21019 
21020 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
21021 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
21022 				continue;
21023 
21024 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
21025 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21026 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21027 				/* Unregister the RPI when mailbox complete */
21028 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
21029 				restart_loop = 1;
21030 				spin_unlock_irq(&phba->hbalock);
21031 				spin_lock(&ndlp->lock);
21032 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21033 				spin_unlock(&ndlp->lock);
21034 				spin_lock_irq(&phba->hbalock);
21035 				break;
21036 			}
21037 		}
21038 	} while (restart_loop);
21039 
21040 	spin_unlock_irq(&phba->hbalock);
21041 
21042 	/* Release the cleaned-up mailbox commands */
21043 	while (!list_empty(&mbox_cmd_list)) {
21044 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
21045 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
21046 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
21047 			if (mp) {
21048 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
21049 				kfree(mp);
21050 			}
21051 			mb->ctx_buf = NULL;
21052 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
21053 			mb->ctx_ndlp = NULL;
21054 			if (ndlp) {
21055 				spin_lock(&ndlp->lock);
21056 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21057 				spin_unlock(&ndlp->lock);
21058 				lpfc_nlp_put(ndlp);
21059 			}
21060 		}
21061 		mempool_free(mb, phba->mbox_mem_pool);
21062 	}
21063 
21064 	/* Release the ndlp with the cleaned-up active mailbox command */
21065 	if (act_mbx_ndlp) {
21066 		spin_lock(&act_mbx_ndlp->lock);
21067 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
21068 		spin_unlock(&act_mbx_ndlp->lock);
21069 		lpfc_nlp_put(act_mbx_ndlp);
21070 	}
21071 }
21072 
21073 /**
21074  * lpfc_drain_txq - Drain the txq
21075  * @phba: Pointer to HBA context object.
21076  *
21077  * This function attempt to submit IOCBs on the txq
21078  * to the adapter.  For SLI4 adapters, the txq contains
21079  * ELS IOCBs that have been deferred because the there
21080  * are no SGLs.  This congestion can occur with large
21081  * vport counts during node discovery.
21082  **/
21083 
21084 uint32_t
21085 lpfc_drain_txq(struct lpfc_hba *phba)
21086 {
21087 	LIST_HEAD(completions);
21088 	struct lpfc_sli_ring *pring;
21089 	struct lpfc_iocbq *piocbq = NULL;
21090 	unsigned long iflags = 0;
21091 	char *fail_msg = NULL;
21092 	struct lpfc_sglq *sglq;
21093 	union lpfc_wqe128 wqe;
21094 	uint32_t txq_cnt = 0;
21095 	struct lpfc_queue *wq;
21096 
21097 	if (phba->link_flag & LS_MDS_LOOPBACK) {
21098 		/* MDS WQE are posted only to first WQ*/
21099 		wq = phba->sli4_hba.hdwq[0].io_wq;
21100 		if (unlikely(!wq))
21101 			return 0;
21102 		pring = wq->pring;
21103 	} else {
21104 		wq = phba->sli4_hba.els_wq;
21105 		if (unlikely(!wq))
21106 			return 0;
21107 		pring = lpfc_phba_elsring(phba);
21108 	}
21109 
21110 	if (unlikely(!pring) || list_empty(&pring->txq))
21111 		return 0;
21112 
21113 	spin_lock_irqsave(&pring->ring_lock, iflags);
21114 	list_for_each_entry(piocbq, &pring->txq, list) {
21115 		txq_cnt++;
21116 	}
21117 
21118 	if (txq_cnt > pring->txq_max)
21119 		pring->txq_max = txq_cnt;
21120 
21121 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
21122 
21123 	while (!list_empty(&pring->txq)) {
21124 		spin_lock_irqsave(&pring->ring_lock, iflags);
21125 
21126 		piocbq = lpfc_sli_ringtx_get(phba, pring);
21127 		if (!piocbq) {
21128 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21129 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21130 				"2823 txq empty and txq_cnt is %d\n ",
21131 				txq_cnt);
21132 			break;
21133 		}
21134 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
21135 		if (!sglq) {
21136 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
21137 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21138 			break;
21139 		}
21140 		txq_cnt--;
21141 
21142 		/* The xri and iocb resources secured,
21143 		 * attempt to issue request
21144 		 */
21145 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
21146 		piocbq->sli4_xritag = sglq->sli4_xritag;
21147 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
21148 			fail_msg = "to convert bpl to sgl";
21149 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
21150 			fail_msg = "to convert iocb to wqe";
21151 		else if (lpfc_sli4_wq_put(wq, &wqe))
21152 			fail_msg = " - Wq is full";
21153 		else
21154 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
21155 
21156 		if (fail_msg) {
21157 			/* Failed means we can't issue and need to cancel */
21158 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
21159 					"2822 IOCB failed %s iotag 0x%x "
21160 					"xri 0x%x\n",
21161 					fail_msg,
21162 					piocbq->iotag, piocbq->sli4_xritag);
21163 			list_add_tail(&piocbq->list, &completions);
21164 			fail_msg = NULL;
21165 		}
21166 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21167 	}
21168 
21169 	/* Cancel all the IOCBs that cannot be issued */
21170 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
21171 				IOERR_SLI_ABORTED);
21172 
21173 	return txq_cnt;
21174 }
21175 
21176 /**
21177  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
21178  * @phba: Pointer to HBA context object.
21179  * @pwqeq: Pointer to command WQE.
21180  * @sglq: Pointer to the scatter gather queue object.
21181  *
21182  * This routine converts the bpl or bde that is in the WQE
21183  * to a sgl list for the sli4 hardware. The physical address
21184  * of the bpl/bde is converted back to a virtual address.
21185  * If the WQE contains a BPL then the list of BDE's is
21186  * converted to sli4_sge's. If the WQE contains a single
21187  * BDE then it is converted to a single sli_sge.
21188  * The WQE is still in cpu endianness so the contents of
21189  * the bpl can be used without byte swapping.
21190  *
21191  * Returns valid XRI = Success, NO_XRI = Failure.
21192  */
21193 static uint16_t
21194 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
21195 		 struct lpfc_sglq *sglq)
21196 {
21197 	uint16_t xritag = NO_XRI;
21198 	struct ulp_bde64 *bpl = NULL;
21199 	struct ulp_bde64 bde;
21200 	struct sli4_sge *sgl  = NULL;
21201 	struct lpfc_dmabuf *dmabuf;
21202 	union lpfc_wqe128 *wqe;
21203 	int numBdes = 0;
21204 	int i = 0;
21205 	uint32_t offset = 0; /* accumulated offset in the sg request list */
21206 	int inbound = 0; /* number of sg reply entries inbound from firmware */
21207 	uint32_t cmd;
21208 
21209 	if (!pwqeq || !sglq)
21210 		return xritag;
21211 
21212 	sgl  = (struct sli4_sge *)sglq->sgl;
21213 	wqe = &pwqeq->wqe;
21214 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
21215 
21216 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
21217 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
21218 		return sglq->sli4_xritag;
21219 	numBdes = pwqeq->rsvd2;
21220 	if (numBdes) {
21221 		/* The addrHigh and addrLow fields within the WQE
21222 		 * have not been byteswapped yet so there is no
21223 		 * need to swap them back.
21224 		 */
21225 		if (pwqeq->context3)
21226 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
21227 		else
21228 			return xritag;
21229 
21230 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
21231 		if (!bpl)
21232 			return xritag;
21233 
21234 		for (i = 0; i < numBdes; i++) {
21235 			/* Should already be byte swapped. */
21236 			sgl->addr_hi = bpl->addrHigh;
21237 			sgl->addr_lo = bpl->addrLow;
21238 
21239 			sgl->word2 = le32_to_cpu(sgl->word2);
21240 			if ((i+1) == numBdes)
21241 				bf_set(lpfc_sli4_sge_last, sgl, 1);
21242 			else
21243 				bf_set(lpfc_sli4_sge_last, sgl, 0);
21244 			/* swap the size field back to the cpu so we
21245 			 * can assign it to the sgl.
21246 			 */
21247 			bde.tus.w = le32_to_cpu(bpl->tus.w);
21248 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
21249 			/* The offsets in the sgl need to be accumulated
21250 			 * separately for the request and reply lists.
21251 			 * The request is always first, the reply follows.
21252 			 */
21253 			switch (cmd) {
21254 			case CMD_GEN_REQUEST64_WQE:
21255 				/* add up the reply sg entries */
21256 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
21257 					inbound++;
21258 				/* first inbound? reset the offset */
21259 				if (inbound == 1)
21260 					offset = 0;
21261 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21262 				bf_set(lpfc_sli4_sge_type, sgl,
21263 					LPFC_SGE_TYPE_DATA);
21264 				offset += bde.tus.f.bdeSize;
21265 				break;
21266 			case CMD_FCP_TRSP64_WQE:
21267 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
21268 				bf_set(lpfc_sli4_sge_type, sgl,
21269 					LPFC_SGE_TYPE_DATA);
21270 				break;
21271 			case CMD_FCP_TSEND64_WQE:
21272 			case CMD_FCP_TRECEIVE64_WQE:
21273 				bf_set(lpfc_sli4_sge_type, sgl,
21274 					bpl->tus.f.bdeFlags);
21275 				if (i < 3)
21276 					offset = 0;
21277 				else
21278 					offset += bde.tus.f.bdeSize;
21279 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
21280 				break;
21281 			}
21282 			sgl->word2 = cpu_to_le32(sgl->word2);
21283 			bpl++;
21284 			sgl++;
21285 		}
21286 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
21287 		/* The addrHigh and addrLow fields of the BDE have not
21288 		 * been byteswapped yet so they need to be swapped
21289 		 * before putting them in the sgl.
21290 		 */
21291 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
21292 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
21293 		sgl->word2 = le32_to_cpu(sgl->word2);
21294 		bf_set(lpfc_sli4_sge_last, sgl, 1);
21295 		sgl->word2 = cpu_to_le32(sgl->word2);
21296 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
21297 	}
21298 	return sglq->sli4_xritag;
21299 }
21300 
21301 /**
21302  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
21303  * @phba: Pointer to HBA context object.
21304  * @qp: Pointer to HDW queue.
21305  * @pwqe: Pointer to command WQE.
21306  **/
21307 int
21308 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21309 		    struct lpfc_iocbq *pwqe)
21310 {
21311 	union lpfc_wqe128 *wqe = &pwqe->wqe;
21312 	struct lpfc_async_xchg_ctx *ctxp;
21313 	struct lpfc_queue *wq;
21314 	struct lpfc_sglq *sglq;
21315 	struct lpfc_sli_ring *pring;
21316 	unsigned long iflags;
21317 	uint32_t ret = 0;
21318 
21319 	/* NVME_LS and NVME_LS ABTS requests. */
21320 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
21321 		pring =  phba->sli4_hba.nvmels_wq->pring;
21322 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21323 					  qp, wq_access);
21324 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
21325 		if (!sglq) {
21326 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21327 			return WQE_BUSY;
21328 		}
21329 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
21330 		pwqe->sli4_xritag = sglq->sli4_xritag;
21331 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
21332 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21333 			return WQE_ERROR;
21334 		}
21335 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21336 		       pwqe->sli4_xritag);
21337 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
21338 		if (ret) {
21339 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21340 			return ret;
21341 		}
21342 
21343 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21344 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21345 
21346 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21347 		return 0;
21348 	}
21349 
21350 	/* NVME_FCREQ and NVME_ABTS requests */
21351 	if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) {
21352 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21353 		wq = qp->io_wq;
21354 		pring = wq->pring;
21355 
21356 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21357 
21358 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21359 					  qp, wq_access);
21360 		ret = lpfc_sli4_wq_put(wq, wqe);
21361 		if (ret) {
21362 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21363 			return ret;
21364 		}
21365 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21366 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21367 
21368 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21369 		return 0;
21370 	}
21371 
21372 	/* NVMET requests */
21373 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
21374 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
21375 		wq = qp->io_wq;
21376 		pring = wq->pring;
21377 
21378 		ctxp = pwqe->context2;
21379 		sglq = ctxp->ctxbuf->sglq;
21380 		if (pwqe->sli4_xritag ==  NO_XRI) {
21381 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
21382 			pwqe->sli4_xritag = sglq->sli4_xritag;
21383 		}
21384 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
21385 		       pwqe->sli4_xritag);
21386 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
21387 
21388 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
21389 					  qp, wq_access);
21390 		ret = lpfc_sli4_wq_put(wq, wqe);
21391 		if (ret) {
21392 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
21393 			return ret;
21394 		}
21395 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
21396 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
21397 
21398 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
21399 		return 0;
21400 	}
21401 	return WQE_ERROR;
21402 }
21403 
21404 /**
21405  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
21406  * @phba: Pointer to HBA context object.
21407  * @cmdiocb: Pointer to driver command iocb object.
21408  * @cmpl: completion function.
21409  *
21410  * Fill the appropriate fields for the abort WQE and call
21411  * internal routine lpfc_sli4_issue_wqe to send the WQE
21412  * This function is called with hbalock held and no ring_lock held.
21413  *
21414  * RETURNS 0 - SUCCESS
21415  **/
21416 
21417 int
21418 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
21419 			    void *cmpl)
21420 {
21421 	struct lpfc_vport *vport = cmdiocb->vport;
21422 	struct lpfc_iocbq *abtsiocb = NULL;
21423 	union lpfc_wqe128 *abtswqe;
21424 	struct lpfc_io_buf *lpfc_cmd;
21425 	int retval = IOCB_ERROR;
21426 	u16 xritag = cmdiocb->sli4_xritag;
21427 
21428 	/*
21429 	 * The scsi command can not be in txq and it is in flight because the
21430 	 * pCmd is still pointing at the SCSI command we have to abort. There
21431 	 * is no need to search the txcmplq. Just send an abort to the FW.
21432 	 */
21433 
21434 	abtsiocb = __lpfc_sli_get_iocbq(phba);
21435 	if (!abtsiocb)
21436 		return WQE_NORESOURCE;
21437 
21438 	/* Indicate the IO is being aborted by the driver. */
21439 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
21440 
21441 	abtswqe = &abtsiocb->wqe;
21442 	memset(abtswqe, 0, sizeof(*abtswqe));
21443 
21444 	if (!lpfc_is_link_up(phba))
21445 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
21446 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
21447 	abtswqe->abort_cmd.rsrvd5 = 0;
21448 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
21449 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
21450 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
21451 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
21452 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
21453 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
21454 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
21455 
21456 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
21457 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
21458 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
21459 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
21460 		abtsiocb->iocb_flag |= LPFC_IO_FCP;
21461 	if (cmdiocb->iocb_flag & LPFC_IO_NVME)
21462 		abtsiocb->iocb_flag |= LPFC_IO_NVME;
21463 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
21464 		abtsiocb->iocb_flag |= LPFC_IO_FOF;
21465 	abtsiocb->vport = vport;
21466 	abtsiocb->wqe_cmpl = cmpl;
21467 
21468 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
21469 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
21470 
21471 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
21472 			 "0359 Abort xri x%x, original iotag x%x, "
21473 			 "abort cmd iotag x%x retval x%x\n",
21474 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
21475 
21476 	if (retval) {
21477 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
21478 		__lpfc_sli_release_iocbq(phba, abtsiocb);
21479 	}
21480 
21481 	return retval;
21482 }
21483 
21484 #ifdef LPFC_MXP_STAT
21485 /**
21486  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
21487  * @phba: pointer to lpfc hba data structure.
21488  * @hwqid: belong to which HWQ.
21489  *
21490  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
21491  * 15 seconds after a test case is running.
21492  *
21493  * The user should call lpfc_debugfs_multixripools_write before running a test
21494  * case to clear stat_snapshot_taken. Then the user starts a test case. During
21495  * test case is running, stat_snapshot_taken is incremented by 1 every time when
21496  * this routine is called from heartbeat timer. When stat_snapshot_taken is
21497  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
21498  **/
21499 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
21500 {
21501 	struct lpfc_sli4_hdw_queue *qp;
21502 	struct lpfc_multixri_pool *multixri_pool;
21503 	struct lpfc_pvt_pool *pvt_pool;
21504 	struct lpfc_pbl_pool *pbl_pool;
21505 	u32 txcmplq_cnt;
21506 
21507 	qp = &phba->sli4_hba.hdwq[hwqid];
21508 	multixri_pool = qp->p_multixri_pool;
21509 	if (!multixri_pool)
21510 		return;
21511 
21512 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
21513 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21514 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21515 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21516 
21517 		multixri_pool->stat_pbl_count = pbl_pool->count;
21518 		multixri_pool->stat_pvt_count = pvt_pool->count;
21519 		multixri_pool->stat_busy_count = txcmplq_cnt;
21520 	}
21521 
21522 	multixri_pool->stat_snapshot_taken++;
21523 }
21524 #endif
21525 
21526 /**
21527  * lpfc_adjust_pvt_pool_count - Adjust private pool count
21528  * @phba: pointer to lpfc hba data structure.
21529  * @hwqid: belong to which HWQ.
21530  *
21531  * This routine moves some XRIs from private to public pool when private pool
21532  * is not busy.
21533  **/
21534 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
21535 {
21536 	struct lpfc_multixri_pool *multixri_pool;
21537 	u32 io_req_count;
21538 	u32 prev_io_req_count;
21539 
21540 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21541 	if (!multixri_pool)
21542 		return;
21543 	io_req_count = multixri_pool->io_req_count;
21544 	prev_io_req_count = multixri_pool->prev_io_req_count;
21545 
21546 	if (prev_io_req_count != io_req_count) {
21547 		/* Private pool is busy */
21548 		multixri_pool->prev_io_req_count = io_req_count;
21549 	} else {
21550 		/* Private pool is not busy.
21551 		 * Move XRIs from private to public pool.
21552 		 */
21553 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
21554 	}
21555 }
21556 
21557 /**
21558  * lpfc_adjust_high_watermark - Adjust high watermark
21559  * @phba: pointer to lpfc hba data structure.
21560  * @hwqid: belong to which HWQ.
21561  *
21562  * This routine sets high watermark as number of outstanding XRIs,
21563  * but make sure the new value is between xri_limit/2 and xri_limit.
21564  **/
21565 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
21566 {
21567 	u32 new_watermark;
21568 	u32 watermark_max;
21569 	u32 watermark_min;
21570 	u32 xri_limit;
21571 	u32 txcmplq_cnt;
21572 	u32 abts_io_bufs;
21573 	struct lpfc_multixri_pool *multixri_pool;
21574 	struct lpfc_sli4_hdw_queue *qp;
21575 
21576 	qp = &phba->sli4_hba.hdwq[hwqid];
21577 	multixri_pool = qp->p_multixri_pool;
21578 	if (!multixri_pool)
21579 		return;
21580 	xri_limit = multixri_pool->xri_limit;
21581 
21582 	watermark_max = xri_limit;
21583 	watermark_min = xri_limit / 2;
21584 
21585 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21586 	abts_io_bufs = qp->abts_scsi_io_bufs;
21587 	abts_io_bufs += qp->abts_nvme_io_bufs;
21588 
21589 	new_watermark = txcmplq_cnt + abts_io_bufs;
21590 	new_watermark = min(watermark_max, new_watermark);
21591 	new_watermark = max(watermark_min, new_watermark);
21592 	multixri_pool->pvt_pool.high_watermark = new_watermark;
21593 
21594 #ifdef LPFC_MXP_STAT
21595 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
21596 					  new_watermark);
21597 #endif
21598 }
21599 
21600 /**
21601  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
21602  * @phba: pointer to lpfc hba data structure.
21603  * @hwqid: belong to which HWQ.
21604  *
21605  * This routine is called from hearbeat timer when pvt_pool is idle.
21606  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
21607  * The first step moves (all - low_watermark) amount of XRIs.
21608  * The second step moves the rest of XRIs.
21609  **/
21610 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
21611 {
21612 	struct lpfc_pbl_pool *pbl_pool;
21613 	struct lpfc_pvt_pool *pvt_pool;
21614 	struct lpfc_sli4_hdw_queue *qp;
21615 	struct lpfc_io_buf *lpfc_ncmd;
21616 	struct lpfc_io_buf *lpfc_ncmd_next;
21617 	unsigned long iflag;
21618 	struct list_head tmp_list;
21619 	u32 tmp_count;
21620 
21621 	qp = &phba->sli4_hba.hdwq[hwqid];
21622 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
21623 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
21624 	tmp_count = 0;
21625 
21626 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
21627 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
21628 
21629 	if (pvt_pool->count > pvt_pool->low_watermark) {
21630 		/* Step 1: move (all - low_watermark) from pvt_pool
21631 		 * to pbl_pool
21632 		 */
21633 
21634 		/* Move low watermark of bufs from pvt_pool to tmp_list */
21635 		INIT_LIST_HEAD(&tmp_list);
21636 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21637 					 &pvt_pool->list, list) {
21638 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
21639 			tmp_count++;
21640 			if (tmp_count >= pvt_pool->low_watermark)
21641 				break;
21642 		}
21643 
21644 		/* Move all bufs from pvt_pool to pbl_pool */
21645 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21646 
21647 		/* Move all bufs from tmp_list to pvt_pool */
21648 		list_splice(&tmp_list, &pvt_pool->list);
21649 
21650 		pbl_pool->count += (pvt_pool->count - tmp_count);
21651 		pvt_pool->count = tmp_count;
21652 	} else {
21653 		/* Step 2: move the rest from pvt_pool to pbl_pool */
21654 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
21655 		pbl_pool->count += pvt_pool->count;
21656 		pvt_pool->count = 0;
21657 	}
21658 
21659 	spin_unlock(&pvt_pool->lock);
21660 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21661 }
21662 
21663 /**
21664  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21665  * @phba: pointer to lpfc hba data structure
21666  * @qp: pointer to HDW queue
21667  * @pbl_pool: specified public free XRI pool
21668  * @pvt_pool: specified private free XRI pool
21669  * @count: number of XRIs to move
21670  *
21671  * This routine tries to move some free common bufs from the specified pbl_pool
21672  * to the specified pvt_pool. It might move less than count XRIs if there's not
21673  * enough in public pool.
21674  *
21675  * Return:
21676  *   true - if XRIs are successfully moved from the specified pbl_pool to the
21677  *          specified pvt_pool
21678  *   false - if the specified pbl_pool is empty or locked by someone else
21679  **/
21680 static bool
21681 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
21682 			  struct lpfc_pbl_pool *pbl_pool,
21683 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
21684 {
21685 	struct lpfc_io_buf *lpfc_ncmd;
21686 	struct lpfc_io_buf *lpfc_ncmd_next;
21687 	unsigned long iflag;
21688 	int ret;
21689 
21690 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
21691 	if (ret) {
21692 		if (pbl_pool->count) {
21693 			/* Move a batch of XRIs from public to private pool */
21694 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
21695 			list_for_each_entry_safe(lpfc_ncmd,
21696 						 lpfc_ncmd_next,
21697 						 &pbl_pool->list,
21698 						 list) {
21699 				list_move_tail(&lpfc_ncmd->list,
21700 					       &pvt_pool->list);
21701 				pvt_pool->count++;
21702 				pbl_pool->count--;
21703 				count--;
21704 				if (count == 0)
21705 					break;
21706 			}
21707 
21708 			spin_unlock(&pvt_pool->lock);
21709 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21710 			return true;
21711 		}
21712 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21713 	}
21714 
21715 	return false;
21716 }
21717 
21718 /**
21719  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
21720  * @phba: pointer to lpfc hba data structure.
21721  * @hwqid: belong to which HWQ.
21722  * @count: number of XRIs to move
21723  *
21724  * This routine tries to find some free common bufs in one of public pools with
21725  * Round Robin method. The search always starts from local hwqid, then the next
21726  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
21727  * a batch of free common bufs are moved to private pool on hwqid.
21728  * It might move less than count XRIs if there's not enough in public pool.
21729  **/
21730 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
21731 {
21732 	struct lpfc_multixri_pool *multixri_pool;
21733 	struct lpfc_multixri_pool *next_multixri_pool;
21734 	struct lpfc_pvt_pool *pvt_pool;
21735 	struct lpfc_pbl_pool *pbl_pool;
21736 	struct lpfc_sli4_hdw_queue *qp;
21737 	u32 next_hwqid;
21738 	u32 hwq_count;
21739 	int ret;
21740 
21741 	qp = &phba->sli4_hba.hdwq[hwqid];
21742 	multixri_pool = qp->p_multixri_pool;
21743 	pvt_pool = &multixri_pool->pvt_pool;
21744 	pbl_pool = &multixri_pool->pbl_pool;
21745 
21746 	/* Check if local pbl_pool is available */
21747 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
21748 	if (ret) {
21749 #ifdef LPFC_MXP_STAT
21750 		multixri_pool->local_pbl_hit_count++;
21751 #endif
21752 		return;
21753 	}
21754 
21755 	hwq_count = phba->cfg_hdw_queue;
21756 
21757 	/* Get the next hwqid which was found last time */
21758 	next_hwqid = multixri_pool->rrb_next_hwqid;
21759 
21760 	do {
21761 		/* Go to next hwq */
21762 		next_hwqid = (next_hwqid + 1) % hwq_count;
21763 
21764 		next_multixri_pool =
21765 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
21766 		pbl_pool = &next_multixri_pool->pbl_pool;
21767 
21768 		/* Check if the public free xri pool is available */
21769 		ret = _lpfc_move_xri_pbl_to_pvt(
21770 			phba, qp, pbl_pool, pvt_pool, count);
21771 
21772 		/* Exit while-loop if success or all hwqid are checked */
21773 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
21774 
21775 	/* Starting point for the next time */
21776 	multixri_pool->rrb_next_hwqid = next_hwqid;
21777 
21778 	if (!ret) {
21779 		/* stats: all public pools are empty*/
21780 		multixri_pool->pbl_empty_count++;
21781 	}
21782 
21783 #ifdef LPFC_MXP_STAT
21784 	if (ret) {
21785 		if (next_hwqid == hwqid)
21786 			multixri_pool->local_pbl_hit_count++;
21787 		else
21788 			multixri_pool->other_pbl_hit_count++;
21789 	}
21790 #endif
21791 }
21792 
21793 /**
21794  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
21795  * @phba: pointer to lpfc hba data structure.
21796  * @hwqid: belong to which HWQ.
21797  *
21798  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
21799  * low watermark.
21800  **/
21801 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
21802 {
21803 	struct lpfc_multixri_pool *multixri_pool;
21804 	struct lpfc_pvt_pool *pvt_pool;
21805 
21806 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
21807 	pvt_pool = &multixri_pool->pvt_pool;
21808 
21809 	if (pvt_pool->count < pvt_pool->low_watermark)
21810 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21811 }
21812 
21813 /**
21814  * lpfc_release_io_buf - Return one IO buf back to free pool
21815  * @phba: pointer to lpfc hba data structure.
21816  * @lpfc_ncmd: IO buf to be returned.
21817  * @qp: belong to which HWQ.
21818  *
21819  * This routine returns one IO buf back to free pool. If this is an urgent IO,
21820  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
21821  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
21822  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
21823  * lpfc_io_buf_list_put.
21824  **/
21825 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
21826 			 struct lpfc_sli4_hdw_queue *qp)
21827 {
21828 	unsigned long iflag;
21829 	struct lpfc_pbl_pool *pbl_pool;
21830 	struct lpfc_pvt_pool *pvt_pool;
21831 	struct lpfc_epd_pool *epd_pool;
21832 	u32 txcmplq_cnt;
21833 	u32 xri_owned;
21834 	u32 xri_limit;
21835 	u32 abts_io_bufs;
21836 
21837 	/* MUST zero fields if buffer is reused by another protocol */
21838 	lpfc_ncmd->nvmeCmd = NULL;
21839 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
21840 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
21841 
21842 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
21843 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
21844 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
21845 
21846 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
21847 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
21848 
21849 	if (phba->cfg_xri_rebalancing) {
21850 		if (lpfc_ncmd->expedite) {
21851 			/* Return to expedite pool */
21852 			epd_pool = &phba->epd_pool;
21853 			spin_lock_irqsave(&epd_pool->lock, iflag);
21854 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
21855 			epd_pool->count++;
21856 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
21857 			return;
21858 		}
21859 
21860 		/* Avoid invalid access if an IO sneaks in and is being rejected
21861 		 * just _after_ xri pools are destroyed in lpfc_offline.
21862 		 * Nothing much can be done at this point.
21863 		 */
21864 		if (!qp->p_multixri_pool)
21865 			return;
21866 
21867 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
21868 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
21869 
21870 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
21871 		abts_io_bufs = qp->abts_scsi_io_bufs;
21872 		abts_io_bufs += qp->abts_nvme_io_bufs;
21873 
21874 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
21875 		xri_limit = qp->p_multixri_pool->xri_limit;
21876 
21877 #ifdef LPFC_MXP_STAT
21878 		if (xri_owned <= xri_limit)
21879 			qp->p_multixri_pool->below_limit_count++;
21880 		else
21881 			qp->p_multixri_pool->above_limit_count++;
21882 #endif
21883 
21884 		/* XRI goes to either public or private free xri pool
21885 		 *     based on watermark and xri_limit
21886 		 */
21887 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
21888 		    (xri_owned < xri_limit &&
21889 		     pvt_pool->count < pvt_pool->high_watermark)) {
21890 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
21891 						  qp, free_pvt_pool);
21892 			list_add_tail(&lpfc_ncmd->list,
21893 				      &pvt_pool->list);
21894 			pvt_pool->count++;
21895 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21896 		} else {
21897 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
21898 						  qp, free_pub_pool);
21899 			list_add_tail(&lpfc_ncmd->list,
21900 				      &pbl_pool->list);
21901 			pbl_pool->count++;
21902 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
21903 		}
21904 	} else {
21905 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
21906 					  qp, free_xri);
21907 		list_add_tail(&lpfc_ncmd->list,
21908 			      &qp->lpfc_io_buf_list_put);
21909 		qp->put_io_bufs++;
21910 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21911 				       iflag);
21912 	}
21913 }
21914 
21915 /**
21916  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21917  * @phba: pointer to lpfc hba data structure.
21918  * @qp: pointer to HDW queue
21919  * @pvt_pool: pointer to private pool data structure.
21920  * @ndlp: pointer to lpfc nodelist data structure.
21921  *
21922  * This routine tries to get one free IO buf from private pool.
21923  *
21924  * Return:
21925  *   pointer to one free IO buf - if private pool is not empty
21926  *   NULL - if private pool is empty
21927  **/
21928 static struct lpfc_io_buf *
21929 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21930 				  struct lpfc_sli4_hdw_queue *qp,
21931 				  struct lpfc_pvt_pool *pvt_pool,
21932 				  struct lpfc_nodelist *ndlp)
21933 {
21934 	struct lpfc_io_buf *lpfc_ncmd;
21935 	struct lpfc_io_buf *lpfc_ncmd_next;
21936 	unsigned long iflag;
21937 
21938 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21939 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21940 				 &pvt_pool->list, list) {
21941 		if (lpfc_test_rrq_active(
21942 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21943 			continue;
21944 		list_del(&lpfc_ncmd->list);
21945 		pvt_pool->count--;
21946 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21947 		return lpfc_ncmd;
21948 	}
21949 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21950 
21951 	return NULL;
21952 }
21953 
21954 /**
21955  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21956  * @phba: pointer to lpfc hba data structure.
21957  *
21958  * This routine tries to get one free IO buf from expedite pool.
21959  *
21960  * Return:
21961  *   pointer to one free IO buf - if expedite pool is not empty
21962  *   NULL - if expedite pool is empty
21963  **/
21964 static struct lpfc_io_buf *
21965 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21966 {
21967 	struct lpfc_io_buf *lpfc_ncmd;
21968 	struct lpfc_io_buf *lpfc_ncmd_next;
21969 	unsigned long iflag;
21970 	struct lpfc_epd_pool *epd_pool;
21971 
21972 	epd_pool = &phba->epd_pool;
21973 	lpfc_ncmd = NULL;
21974 
21975 	spin_lock_irqsave(&epd_pool->lock, iflag);
21976 	if (epd_pool->count > 0) {
21977 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21978 					 &epd_pool->list, list) {
21979 			list_del(&lpfc_ncmd->list);
21980 			epd_pool->count--;
21981 			break;
21982 		}
21983 	}
21984 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21985 
21986 	return lpfc_ncmd;
21987 }
21988 
21989 /**
21990  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21991  * @phba: pointer to lpfc hba data structure.
21992  * @ndlp: pointer to lpfc nodelist data structure.
21993  * @hwqid: belong to which HWQ
21994  * @expedite: 1 means this request is urgent.
21995  *
21996  * This routine will do the following actions and then return a pointer to
21997  * one free IO buf.
21998  *
21999  * 1. If private free xri count is empty, move some XRIs from public to
22000  *    private pool.
22001  * 2. Get one XRI from private free xri pool.
22002  * 3. If we fail to get one from pvt_pool and this is an expedite request,
22003  *    get one free xri from expedite pool.
22004  *
22005  * Note: ndlp is only used on SCSI side for RRQ testing.
22006  *       The caller should pass NULL for ndlp on NVME side.
22007  *
22008  * Return:
22009  *   pointer to one free IO buf - if private pool is not empty
22010  *   NULL - if private pool is empty
22011  **/
22012 static struct lpfc_io_buf *
22013 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
22014 				    struct lpfc_nodelist *ndlp,
22015 				    int hwqid, int expedite)
22016 {
22017 	struct lpfc_sli4_hdw_queue *qp;
22018 	struct lpfc_multixri_pool *multixri_pool;
22019 	struct lpfc_pvt_pool *pvt_pool;
22020 	struct lpfc_io_buf *lpfc_ncmd;
22021 
22022 	qp = &phba->sli4_hba.hdwq[hwqid];
22023 	lpfc_ncmd = NULL;
22024 	if (!qp) {
22025 		lpfc_printf_log(phba, KERN_INFO,
22026 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22027 				"5556 NULL qp for hwqid  x%x\n", hwqid);
22028 		return lpfc_ncmd;
22029 	}
22030 	multixri_pool = qp->p_multixri_pool;
22031 	if (!multixri_pool) {
22032 		lpfc_printf_log(phba, KERN_INFO,
22033 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22034 				"5557 NULL multixri for hwqid  x%x\n", hwqid);
22035 		return lpfc_ncmd;
22036 	}
22037 	pvt_pool = &multixri_pool->pvt_pool;
22038 	if (!pvt_pool) {
22039 		lpfc_printf_log(phba, KERN_INFO,
22040 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22041 				"5558 NULL pvt_pool for hwqid  x%x\n", hwqid);
22042 		return lpfc_ncmd;
22043 	}
22044 	multixri_pool->io_req_count++;
22045 
22046 	/* If pvt_pool is empty, move some XRIs from public to private pool */
22047 	if (pvt_pool->count == 0)
22048 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
22049 
22050 	/* Get one XRI from private free xri pool */
22051 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
22052 
22053 	if (lpfc_ncmd) {
22054 		lpfc_ncmd->hdwq = qp;
22055 		lpfc_ncmd->hdwq_no = hwqid;
22056 	} else if (expedite) {
22057 		/* If we fail to get one from pvt_pool and this is an expedite
22058 		 * request, get one free xri from expedite pool.
22059 		 */
22060 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
22061 	}
22062 
22063 	return lpfc_ncmd;
22064 }
22065 
22066 static inline struct lpfc_io_buf *
22067 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
22068 {
22069 	struct lpfc_sli4_hdw_queue *qp;
22070 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
22071 
22072 	qp = &phba->sli4_hba.hdwq[idx];
22073 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
22074 				 &qp->lpfc_io_buf_list_get, list) {
22075 		if (lpfc_test_rrq_active(phba, ndlp,
22076 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
22077 			continue;
22078 
22079 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
22080 			continue;
22081 
22082 		list_del_init(&lpfc_cmd->list);
22083 		qp->get_io_bufs--;
22084 		lpfc_cmd->hdwq = qp;
22085 		lpfc_cmd->hdwq_no = idx;
22086 		return lpfc_cmd;
22087 	}
22088 	return NULL;
22089 }
22090 
22091 /**
22092  * lpfc_get_io_buf - Get one IO buffer from free pool
22093  * @phba: The HBA for which this call is being executed.
22094  * @ndlp: pointer to lpfc nodelist data structure.
22095  * @hwqid: belong to which HWQ
22096  * @expedite: 1 means this request is urgent.
22097  *
22098  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
22099  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
22100  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
22101  *
22102  * Note: ndlp is only used on SCSI side for RRQ testing.
22103  *       The caller should pass NULL for ndlp on NVME side.
22104  *
22105  * Return codes:
22106  *   NULL - Error
22107  *   Pointer to lpfc_io_buf - Success
22108  **/
22109 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
22110 				    struct lpfc_nodelist *ndlp,
22111 				    u32 hwqid, int expedite)
22112 {
22113 	struct lpfc_sli4_hdw_queue *qp;
22114 	unsigned long iflag;
22115 	struct lpfc_io_buf *lpfc_cmd;
22116 
22117 	qp = &phba->sli4_hba.hdwq[hwqid];
22118 	lpfc_cmd = NULL;
22119 	if (!qp) {
22120 		lpfc_printf_log(phba, KERN_WARNING,
22121 				LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
22122 				"5555 NULL qp for hwqid  x%x\n", hwqid);
22123 		return lpfc_cmd;
22124 	}
22125 
22126 	if (phba->cfg_xri_rebalancing)
22127 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
22128 			phba, ndlp, hwqid, expedite);
22129 	else {
22130 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
22131 					  qp, alloc_xri_get);
22132 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
22133 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22134 		if (!lpfc_cmd) {
22135 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
22136 					  qp, alloc_xri_put);
22137 			list_splice(&qp->lpfc_io_buf_list_put,
22138 				    &qp->lpfc_io_buf_list_get);
22139 			qp->get_io_bufs += qp->put_io_bufs;
22140 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
22141 			qp->put_io_bufs = 0;
22142 			spin_unlock(&qp->io_buf_list_put_lock);
22143 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
22144 			    expedite)
22145 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
22146 		}
22147 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
22148 	}
22149 
22150 	return lpfc_cmd;
22151 }
22152 
22153 /**
22154  * lpfc_read_object - Retrieve object data from HBA
22155  * @phba: The HBA for which this call is being executed.
22156  * @rdobject: Pathname of object data we want to read.
22157  * @datap: Pointer to where data will be copied to.
22158  * @datasz: size of data area
22159  *
22160  * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less.
22161  * The data will be truncated if datasz is not large enough.
22162  * Version 1 is not supported with Embedded mbox cmd, so we must use version 0.
22163  * Returns the actual bytes read from the object.
22164  */
22165 int
22166 lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap,
22167 		 uint32_t datasz)
22168 {
22169 	struct lpfc_mbx_read_object *read_object;
22170 	LPFC_MBOXQ_t *mbox;
22171 	int rc, length, eof, j, byte_cnt = 0;
22172 	uint32_t shdr_status, shdr_add_status;
22173 	union lpfc_sli4_cfg_shdr *shdr;
22174 	struct lpfc_dmabuf *pcmd;
22175 	u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0};
22176 
22177 	/* sanity check on queue memory */
22178 	if (!datap)
22179 		return -ENODEV;
22180 
22181 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
22182 	if (!mbox)
22183 		return -ENOMEM;
22184 	length = (sizeof(struct lpfc_mbx_read_object) -
22185 		  sizeof(struct lpfc_sli4_cfg_mhdr));
22186 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
22187 			 LPFC_MBOX_OPCODE_READ_OBJECT,
22188 			 length, LPFC_SLI4_MBX_EMBED);
22189 	read_object = &mbox->u.mqe.un.read_object;
22190 	shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr;
22191 
22192 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0);
22193 	bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz);
22194 	read_object->u.request.rd_object_offset = 0;
22195 	read_object->u.request.rd_object_cnt = 1;
22196 
22197 	memset((void *)read_object->u.request.rd_object_name, 0,
22198 	       LPFC_OBJ_NAME_SZ);
22199 	scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject);
22200 	for (j = 0; j < strlen(rdobject); j++)
22201 		read_object->u.request.rd_object_name[j] =
22202 			cpu_to_le32(rd_object_name[j]);
22203 
22204 	pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL);
22205 	if (pcmd)
22206 		pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys);
22207 	if (!pcmd || !pcmd->virt) {
22208 		kfree(pcmd);
22209 		mempool_free(mbox, phba->mbox_mem_pool);
22210 		return -ENOMEM;
22211 	}
22212 	memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE);
22213 	read_object->u.request.rd_object_hbuf[0].pa_lo =
22214 		putPaddrLow(pcmd->phys);
22215 	read_object->u.request.rd_object_hbuf[0].pa_hi =
22216 		putPaddrHigh(pcmd->phys);
22217 	read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE;
22218 
22219 	mbox->vport = phba->pport;
22220 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
22221 	mbox->ctx_buf = NULL;
22222 	mbox->ctx_ndlp = NULL;
22223 
22224 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
22225 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
22226 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
22227 
22228 	if (shdr_status == STATUS_FAILED &&
22229 	    shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) {
22230 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22231 				"4674 No port cfg file in FW.\n");
22232 		byte_cnt = -ENOENT;
22233 	} else if (shdr_status || shdr_add_status || rc) {
22234 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT,
22235 				"2625 READ_OBJECT mailbox failed with "
22236 				"status x%x add_status x%x, mbx status x%x\n",
22237 				shdr_status, shdr_add_status, rc);
22238 		byte_cnt = -ENXIO;
22239 	} else {
22240 		/* Success */
22241 		length = read_object->u.response.rd_object_actual_rlen;
22242 		eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response);
22243 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT,
22244 				"2626 READ_OBJECT Success len %d:%d, EOF %d\n",
22245 				length, datasz, eof);
22246 
22247 		/* Detect the port config file exists but is empty */
22248 		if (!length && eof) {
22249 			byte_cnt = 0;
22250 			goto exit;
22251 		}
22252 
22253 		byte_cnt = length;
22254 		lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt);
22255 	}
22256 
22257  exit:
22258 	lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys);
22259 	kfree(pcmd);
22260 	mempool_free(mbox, phba->mbox_mem_pool);
22261 	return byte_cnt;
22262 }
22263 
22264 /**
22265  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
22266  * @phba: The HBA for which this call is being executed.
22267  * @lpfc_buf: IO buf structure to append the SGL chunk
22268  *
22269  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
22270  * and will allocate an SGL chunk if the pool is empty.
22271  *
22272  * Return codes:
22273  *   NULL - Error
22274  *   Pointer to sli4_hybrid_sgl - Success
22275  **/
22276 struct sli4_hybrid_sgl *
22277 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22278 {
22279 	struct sli4_hybrid_sgl *list_entry = NULL;
22280 	struct sli4_hybrid_sgl *tmp = NULL;
22281 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
22282 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22283 	struct list_head *buf_list = &hdwq->sgl_list;
22284 	unsigned long iflags;
22285 
22286 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22287 
22288 	if (likely(!list_empty(buf_list))) {
22289 		/* break off 1 chunk from the sgl_list */
22290 		list_for_each_entry_safe(list_entry, tmp,
22291 					 buf_list, list_node) {
22292 			list_move_tail(&list_entry->list_node,
22293 				       &lpfc_buf->dma_sgl_xtra_list);
22294 			break;
22295 		}
22296 	} else {
22297 		/* allocate more */
22298 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22299 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22300 				   cpu_to_node(hdwq->io_wq->chann));
22301 		if (!tmp) {
22302 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22303 					"8353 error kmalloc memory for HDWQ "
22304 					"%d %s\n",
22305 					lpfc_buf->hdwq_no, __func__);
22306 			return NULL;
22307 		}
22308 
22309 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
22310 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
22311 		if (!tmp->dma_sgl) {
22312 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22313 					"8354 error pool_alloc memory for HDWQ "
22314 					"%d %s\n",
22315 					lpfc_buf->hdwq_no, __func__);
22316 			kfree(tmp);
22317 			return NULL;
22318 		}
22319 
22320 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22321 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
22322 	}
22323 
22324 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
22325 					struct sli4_hybrid_sgl,
22326 					list_node);
22327 
22328 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22329 
22330 	return allocated_sgl;
22331 }
22332 
22333 /**
22334  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
22335  * @phba: The HBA for which this call is being executed.
22336  * @lpfc_buf: IO buf structure with the SGL chunk
22337  *
22338  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
22339  *
22340  * Return codes:
22341  *   0 - Success
22342  *   -EINVAL - Error
22343  **/
22344 int
22345 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
22346 {
22347 	int rc = 0;
22348 	struct sli4_hybrid_sgl *list_entry = NULL;
22349 	struct sli4_hybrid_sgl *tmp = NULL;
22350 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22351 	struct list_head *buf_list = &hdwq->sgl_list;
22352 	unsigned long iflags;
22353 
22354 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22355 
22356 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
22357 		list_for_each_entry_safe(list_entry, tmp,
22358 					 &lpfc_buf->dma_sgl_xtra_list,
22359 					 list_node) {
22360 			list_move_tail(&list_entry->list_node,
22361 				       buf_list);
22362 		}
22363 	} else {
22364 		rc = -EINVAL;
22365 	}
22366 
22367 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22368 	return rc;
22369 }
22370 
22371 /**
22372  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
22373  * @phba: phba object
22374  * @hdwq: hdwq to cleanup sgl buff resources on
22375  *
22376  * This routine frees all SGL chunks of hdwq SGL chunk pool.
22377  *
22378  * Return codes:
22379  *   None
22380  **/
22381 void
22382 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
22383 		       struct lpfc_sli4_hdw_queue *hdwq)
22384 {
22385 	struct list_head *buf_list = &hdwq->sgl_list;
22386 	struct sli4_hybrid_sgl *list_entry = NULL;
22387 	struct sli4_hybrid_sgl *tmp = NULL;
22388 	unsigned long iflags;
22389 
22390 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22391 
22392 	/* Free sgl pool */
22393 	list_for_each_entry_safe(list_entry, tmp,
22394 				 buf_list, list_node) {
22395 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
22396 			      list_entry->dma_sgl,
22397 			      list_entry->dma_phys_sgl);
22398 		list_del(&list_entry->list_node);
22399 		kfree(list_entry);
22400 	}
22401 
22402 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22403 }
22404 
22405 /**
22406  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
22407  * @phba: The HBA for which this call is being executed.
22408  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
22409  *
22410  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
22411  * and will allocate an CMD/RSP buffer if the pool is empty.
22412  *
22413  * Return codes:
22414  *   NULL - Error
22415  *   Pointer to fcp_cmd_rsp_buf - Success
22416  **/
22417 struct fcp_cmd_rsp_buf *
22418 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22419 			      struct lpfc_io_buf *lpfc_buf)
22420 {
22421 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22422 	struct fcp_cmd_rsp_buf *tmp = NULL;
22423 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
22424 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22425 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22426 	unsigned long iflags;
22427 
22428 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22429 
22430 	if (likely(!list_empty(buf_list))) {
22431 		/* break off 1 chunk from the list */
22432 		list_for_each_entry_safe(list_entry, tmp,
22433 					 buf_list,
22434 					 list_node) {
22435 			list_move_tail(&list_entry->list_node,
22436 				       &lpfc_buf->dma_cmd_rsp_list);
22437 			break;
22438 		}
22439 	} else {
22440 		/* allocate more */
22441 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22442 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
22443 				   cpu_to_node(hdwq->io_wq->chann));
22444 		if (!tmp) {
22445 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22446 					"8355 error kmalloc memory for HDWQ "
22447 					"%d %s\n",
22448 					lpfc_buf->hdwq_no, __func__);
22449 			return NULL;
22450 		}
22451 
22452 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
22453 						GFP_ATOMIC,
22454 						&tmp->fcp_cmd_rsp_dma_handle);
22455 
22456 		if (!tmp->fcp_cmnd) {
22457 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
22458 					"8356 error pool_alloc memory for HDWQ "
22459 					"%d %s\n",
22460 					lpfc_buf->hdwq_no, __func__);
22461 			kfree(tmp);
22462 			return NULL;
22463 		}
22464 
22465 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
22466 				sizeof(struct fcp_cmnd));
22467 
22468 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22469 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
22470 	}
22471 
22472 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
22473 					struct fcp_cmd_rsp_buf,
22474 					list_node);
22475 
22476 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22477 
22478 	return allocated_buf;
22479 }
22480 
22481 /**
22482  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
22483  * @phba: The HBA for which this call is being executed.
22484  * @lpfc_buf: IO buf structure with the CMD/RSP buf
22485  *
22486  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
22487  *
22488  * Return codes:
22489  *   0 - Success
22490  *   -EINVAL - Error
22491  **/
22492 int
22493 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22494 			      struct lpfc_io_buf *lpfc_buf)
22495 {
22496 	int rc = 0;
22497 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22498 	struct fcp_cmd_rsp_buf *tmp = NULL;
22499 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
22500 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22501 	unsigned long iflags;
22502 
22503 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22504 
22505 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
22506 		list_for_each_entry_safe(list_entry, tmp,
22507 					 &lpfc_buf->dma_cmd_rsp_list,
22508 					 list_node) {
22509 			list_move_tail(&list_entry->list_node,
22510 				       buf_list);
22511 		}
22512 	} else {
22513 		rc = -EINVAL;
22514 	}
22515 
22516 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22517 	return rc;
22518 }
22519 
22520 /**
22521  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
22522  * @phba: phba object
22523  * @hdwq: hdwq to cleanup cmd rsp buff resources on
22524  *
22525  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
22526  *
22527  * Return codes:
22528  *   None
22529  **/
22530 void
22531 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
22532 			       struct lpfc_sli4_hdw_queue *hdwq)
22533 {
22534 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
22535 	struct fcp_cmd_rsp_buf *list_entry = NULL;
22536 	struct fcp_cmd_rsp_buf *tmp = NULL;
22537 	unsigned long iflags;
22538 
22539 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
22540 
22541 	/* Free cmd_rsp buf pool */
22542 	list_for_each_entry_safe(list_entry, tmp,
22543 				 buf_list,
22544 				 list_node) {
22545 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
22546 			      list_entry->fcp_cmnd,
22547 			      list_entry->fcp_cmd_rsp_dma_handle);
22548 		list_del(&list_entry->list_node);
22549 		kfree(list_entry);
22550 	}
22551 
22552 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
22553 }
22554