xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 6d99a79c)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include <linux/nvme-fc-driver.h>
43 
44 #include "lpfc_hw4.h"
45 #include "lpfc_hw.h"
46 #include "lpfc_sli.h"
47 #include "lpfc_sli4.h"
48 #include "lpfc_nl.h"
49 #include "lpfc_disc.h"
50 #include "lpfc.h"
51 #include "lpfc_scsi.h"
52 #include "lpfc_nvme.h"
53 #include "lpfc_nvmet.h"
54 #include "lpfc_crtn.h"
55 #include "lpfc_logmsg.h"
56 #include "lpfc_compat.h"
57 #include "lpfc_debugfs.h"
58 #include "lpfc_vport.h"
59 #include "lpfc_version.h"
60 
61 /* There are only four IOCB completion types. */
62 typedef enum _lpfc_iocb_type {
63 	LPFC_UNKNOWN_IOCB,
64 	LPFC_UNSOL_IOCB,
65 	LPFC_SOL_IOCB,
66 	LPFC_ABORT_IOCB
67 } lpfc_iocb_type;
68 
69 
70 /* Provide function prototypes local to this module. */
71 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 				  uint32_t);
73 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
74 			      uint8_t *, uint32_t *);
75 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
76 							 struct lpfc_iocbq *);
77 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
78 				      struct hbq_dmabuf *);
79 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
80 					  struct hbq_dmabuf *dmabuf);
81 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *,
82 				    struct lpfc_cqe *);
83 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
84 				       int);
85 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
86 				     struct lpfc_eqe *eqe, uint32_t qidx);
87 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
88 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
89 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba,
90 				   struct lpfc_sli_ring *pring,
91 				   struct lpfc_iocbq *cmdiocb);
92 
93 static IOCB_t *
94 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
95 {
96 	return &iocbq->iocb;
97 }
98 
99 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
100 /**
101  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
102  * @srcp: Source memory pointer.
103  * @destp: Destination memory pointer.
104  * @cnt: Number of words required to be copied.
105  *       Must be a multiple of sizeof(uint64_t)
106  *
107  * This function is used for copying data between driver memory
108  * and the SLI WQ. This function also changes the endianness
109  * of each word if native endianness is different from SLI
110  * endianness. This function can be called with or without
111  * lock.
112  **/
113 void
114 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
115 {
116 	uint64_t *src = srcp;
117 	uint64_t *dest = destp;
118 	int i;
119 
120 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
121 		*dest++ = *src++;
122 }
123 #else
124 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
125 #endif
126 
127 /**
128  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
129  * @q: The Work Queue to operate on.
130  * @wqe: The work Queue Entry to put on the Work queue.
131  *
132  * This routine will copy the contents of @wqe to the next available entry on
133  * the @q. This function will then ring the Work Queue Doorbell to signal the
134  * HBA to start processing the Work Queue Entry. This function returns 0 if
135  * successful. If no entries are available on @q then this function will return
136  * -ENOMEM.
137  * The caller is expected to hold the hbalock when calling this routine.
138  **/
139 static int
140 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
141 {
142 	union lpfc_wqe *temp_wqe;
143 	struct lpfc_register doorbell;
144 	uint32_t host_index;
145 	uint32_t idx;
146 	uint32_t i = 0;
147 	uint8_t *tmp;
148 	u32 if_type;
149 
150 	/* sanity check on queue memory */
151 	if (unlikely(!q))
152 		return -ENOMEM;
153 	temp_wqe = q->qe[q->host_index].wqe;
154 
155 	/* If the host has not yet processed the next entry then we are done */
156 	idx = ((q->host_index + 1) % q->entry_count);
157 	if (idx == q->hba_index) {
158 		q->WQ_overflow++;
159 		return -EBUSY;
160 	}
161 	q->WQ_posted++;
162 	/* set consumption flag every once in a while */
163 	if (!((q->host_index + 1) % q->entry_repost))
164 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
165 	else
166 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
167 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
168 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
169 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
170 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
171 		/* write to DPP aperture taking advatage of Combined Writes */
172 		tmp = (uint8_t *)temp_wqe;
173 #ifdef __raw_writeq
174 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
175 			__raw_writeq(*((uint64_t *)(tmp + i)),
176 					q->dpp_regaddr + i);
177 #else
178 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
179 			__raw_writel(*((uint32_t *)(tmp + i)),
180 					q->dpp_regaddr + i);
181 #endif
182 	}
183 	/* ensure WQE bcopy and DPP flushed before doorbell write */
184 	wmb();
185 
186 	/* Update the host index before invoking device */
187 	host_index = q->host_index;
188 
189 	q->host_index = idx;
190 
191 	/* Ring Doorbell */
192 	doorbell.word0 = 0;
193 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
194 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
195 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
196 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
197 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
198 			    q->dpp_id);
199 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
200 			    q->queue_id);
201 		} else {
202 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
203 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
204 
205 			/* Leave bits <23:16> clear for if_type 6 dpp */
206 			if_type = bf_get(lpfc_sli_intf_if_type,
207 					 &q->phba->sli4_hba.sli_intf);
208 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
209 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
210 				       host_index);
211 		}
212 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
213 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
214 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
215 	} else {
216 		return -EINVAL;
217 	}
218 	writel(doorbell.word0, q->db_regaddr);
219 
220 	return 0;
221 }
222 
223 /**
224  * lpfc_sli4_wq_release - Updates internal hba index for WQ
225  * @q: The Work Queue to operate on.
226  * @index: The index to advance the hba index to.
227  *
228  * This routine will update the HBA index of a queue to reflect consumption of
229  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
230  * an entry the host calls this function to update the queue's internal
231  * pointers. This routine returns the number of entries that were consumed by
232  * the HBA.
233  **/
234 static uint32_t
235 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
236 {
237 	uint32_t released = 0;
238 
239 	/* sanity check on queue memory */
240 	if (unlikely(!q))
241 		return 0;
242 
243 	if (q->hba_index == index)
244 		return 0;
245 	do {
246 		q->hba_index = ((q->hba_index + 1) % q->entry_count);
247 		released++;
248 	} while (q->hba_index != index);
249 	return released;
250 }
251 
252 /**
253  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
254  * @q: The Mailbox Queue to operate on.
255  * @wqe: The Mailbox Queue Entry to put on the Work queue.
256  *
257  * This routine will copy the contents of @mqe to the next available entry on
258  * the @q. This function will then ring the Work Queue Doorbell to signal the
259  * HBA to start processing the Work Queue Entry. This function returns 0 if
260  * successful. If no entries are available on @q then this function will return
261  * -ENOMEM.
262  * The caller is expected to hold the hbalock when calling this routine.
263  **/
264 static uint32_t
265 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
266 {
267 	struct lpfc_mqe *temp_mqe;
268 	struct lpfc_register doorbell;
269 
270 	/* sanity check on queue memory */
271 	if (unlikely(!q))
272 		return -ENOMEM;
273 	temp_mqe = q->qe[q->host_index].mqe;
274 
275 	/* If the host has not yet processed the next entry then we are done */
276 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
277 		return -ENOMEM;
278 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
279 	/* Save off the mailbox pointer for completion */
280 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
281 
282 	/* Update the host index before invoking device */
283 	q->host_index = ((q->host_index + 1) % q->entry_count);
284 
285 	/* Ring Doorbell */
286 	doorbell.word0 = 0;
287 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
288 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
289 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
290 	return 0;
291 }
292 
293 /**
294  * lpfc_sli4_mq_release - Updates internal hba index for MQ
295  * @q: The Mailbox Queue to operate on.
296  *
297  * This routine will update the HBA index of a queue to reflect consumption of
298  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
299  * an entry the host calls this function to update the queue's internal
300  * pointers. This routine returns the number of entries that were consumed by
301  * the HBA.
302  **/
303 static uint32_t
304 lpfc_sli4_mq_release(struct lpfc_queue *q)
305 {
306 	/* sanity check on queue memory */
307 	if (unlikely(!q))
308 		return 0;
309 
310 	/* Clear the mailbox pointer for completion */
311 	q->phba->mbox = NULL;
312 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
313 	return 1;
314 }
315 
316 /**
317  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
318  * @q: The Event Queue to get the first valid EQE from
319  *
320  * This routine will get the first valid Event Queue Entry from @q, update
321  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
322  * the Queue (no more work to do), or the Queue is full of EQEs that have been
323  * processed, but not popped back to the HBA then this routine will return NULL.
324  **/
325 static struct lpfc_eqe *
326 lpfc_sli4_eq_get(struct lpfc_queue *q)
327 {
328 	struct lpfc_hba *phba;
329 	struct lpfc_eqe *eqe;
330 	uint32_t idx;
331 
332 	/* sanity check on queue memory */
333 	if (unlikely(!q))
334 		return NULL;
335 	phba = q->phba;
336 	eqe = q->qe[q->hba_index].eqe;
337 
338 	/* If the next EQE is not valid then we are done */
339 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
340 		return NULL;
341 	/* If the host has not yet processed the next entry then we are done */
342 	idx = ((q->hba_index + 1) % q->entry_count);
343 	if (idx == q->host_index)
344 		return NULL;
345 
346 	q->hba_index = idx;
347 	/* if the index wrapped around, toggle the valid bit */
348 	if (phba->sli4_hba.pc_sli4_params.eqav && !q->hba_index)
349 		q->qe_valid = (q->qe_valid) ? 0 : 1;
350 
351 
352 	/*
353 	 * insert barrier for instruction interlock : data from the hardware
354 	 * must have the valid bit checked before it can be copied and acted
355 	 * upon. Speculative instructions were allowing a bcopy at the start
356 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
357 	 * after our return, to copy data before the valid bit check above
358 	 * was done. As such, some of the copied data was stale. The barrier
359 	 * ensures the check is before any data is copied.
360 	 */
361 	mb();
362 	return eqe;
363 }
364 
365 /**
366  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
367  * @q: The Event Queue to disable interrupts
368  *
369  **/
370 inline void
371 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
372 {
373 	struct lpfc_register doorbell;
374 
375 	doorbell.word0 = 0;
376 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
377 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
378 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
379 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
380 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
381 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
382 }
383 
384 /**
385  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
386  * @q: The Event Queue to disable interrupts
387  *
388  **/
389 inline void
390 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
391 {
392 	struct lpfc_register doorbell;
393 
394 	doorbell.word0 = 0;
395 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
396 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
397 }
398 
399 /**
400  * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
401  * @q: The Event Queue that the host has completed processing for.
402  * @arm: Indicates whether the host wants to arms this CQ.
403  *
404  * This routine will mark all Event Queue Entries on @q, from the last
405  * known completed entry to the last entry that was processed, as completed
406  * by clearing the valid bit for each completion queue entry. Then it will
407  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
408  * The internal host index in the @q will be updated by this routine to indicate
409  * that the host has finished processing the entries. The @arm parameter
410  * indicates that the queue should be rearmed when ringing the doorbell.
411  *
412  * This function will return the number of EQEs that were popped.
413  **/
414 uint32_t
415 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
416 {
417 	uint32_t released = 0;
418 	struct lpfc_hba *phba;
419 	struct lpfc_eqe *temp_eqe;
420 	struct lpfc_register doorbell;
421 
422 	/* sanity check on queue memory */
423 	if (unlikely(!q))
424 		return 0;
425 	phba = q->phba;
426 
427 	/* while there are valid entries */
428 	while (q->hba_index != q->host_index) {
429 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
430 			temp_eqe = q->qe[q->host_index].eqe;
431 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
432 		}
433 		released++;
434 		q->host_index = ((q->host_index + 1) % q->entry_count);
435 	}
436 	if (unlikely(released == 0 && !arm))
437 		return 0;
438 
439 	/* ring doorbell for number popped */
440 	doorbell.word0 = 0;
441 	if (arm) {
442 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
443 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
444 	}
445 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
446 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
447 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
448 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
449 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
450 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
451 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
452 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
453 		readl(q->phba->sli4_hba.EQDBregaddr);
454 	return released;
455 }
456 
457 /**
458  * lpfc_sli4_if6_eq_release - Indicates the host has finished processing an EQ
459  * @q: The Event Queue that the host has completed processing for.
460  * @arm: Indicates whether the host wants to arms this CQ.
461  *
462  * This routine will mark all Event Queue Entries on @q, from the last
463  * known completed entry to the last entry that was processed, as completed
464  * by clearing the valid bit for each completion queue entry. Then it will
465  * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
466  * The internal host index in the @q will be updated by this routine to indicate
467  * that the host has finished processing the entries. The @arm parameter
468  * indicates that the queue should be rearmed when ringing the doorbell.
469  *
470  * This function will return the number of EQEs that were popped.
471  **/
472 uint32_t
473 lpfc_sli4_if6_eq_release(struct lpfc_queue *q, bool arm)
474 {
475 	uint32_t released = 0;
476 	struct lpfc_hba *phba;
477 	struct lpfc_eqe *temp_eqe;
478 	struct lpfc_register doorbell;
479 
480 	/* sanity check on queue memory */
481 	if (unlikely(!q))
482 		return 0;
483 	phba = q->phba;
484 
485 	/* while there are valid entries */
486 	while (q->hba_index != q->host_index) {
487 		if (!phba->sli4_hba.pc_sli4_params.eqav) {
488 			temp_eqe = q->qe[q->host_index].eqe;
489 			bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
490 		}
491 		released++;
492 		q->host_index = ((q->host_index + 1) % q->entry_count);
493 	}
494 	if (unlikely(released == 0 && !arm))
495 		return 0;
496 
497 	/* ring doorbell for number popped */
498 	doorbell.word0 = 0;
499 	if (arm)
500 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
501 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, released);
502 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
503 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
504 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
505 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
506 		readl(q->phba->sli4_hba.EQDBregaddr);
507 	return released;
508 }
509 
510 /**
511  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
512  * @q: The Completion Queue to get the first valid CQE from
513  *
514  * This routine will get the first valid Completion Queue Entry from @q, update
515  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
516  * the Queue (no more work to do), or the Queue is full of CQEs that have been
517  * processed, but not popped back to the HBA then this routine will return NULL.
518  **/
519 static struct lpfc_cqe *
520 lpfc_sli4_cq_get(struct lpfc_queue *q)
521 {
522 	struct lpfc_hba *phba;
523 	struct lpfc_cqe *cqe;
524 	uint32_t idx;
525 
526 	/* sanity check on queue memory */
527 	if (unlikely(!q))
528 		return NULL;
529 	phba = q->phba;
530 	cqe = q->qe[q->hba_index].cqe;
531 
532 	/* If the next CQE is not valid then we are done */
533 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
534 		return NULL;
535 	/* If the host has not yet processed the next entry then we are done */
536 	idx = ((q->hba_index + 1) % q->entry_count);
537 	if (idx == q->host_index)
538 		return NULL;
539 
540 	q->hba_index = idx;
541 	/* if the index wrapped around, toggle the valid bit */
542 	if (phba->sli4_hba.pc_sli4_params.cqav && !q->hba_index)
543 		q->qe_valid = (q->qe_valid) ? 0 : 1;
544 
545 	/*
546 	 * insert barrier for instruction interlock : data from the hardware
547 	 * must have the valid bit checked before it can be copied and acted
548 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
549 	 * instructions allowing action on content before valid bit checked,
550 	 * add barrier here as well. May not be needed as "content" is a
551 	 * single 32-bit entity here (vs multi word structure for cq's).
552 	 */
553 	mb();
554 	return cqe;
555 }
556 
557 /**
558  * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
559  * @q: The Completion Queue that the host has completed processing for.
560  * @arm: Indicates whether the host wants to arms this CQ.
561  *
562  * This routine will mark all Completion queue entries on @q, from the last
563  * known completed entry to the last entry that was processed, as completed
564  * by clearing the valid bit for each completion queue entry. Then it will
565  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
566  * The internal host index in the @q will be updated by this routine to indicate
567  * that the host has finished processing the entries. The @arm parameter
568  * indicates that the queue should be rearmed when ringing the doorbell.
569  *
570  * This function will return the number of CQEs that were released.
571  **/
572 uint32_t
573 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
574 {
575 	uint32_t released = 0;
576 	struct lpfc_hba *phba;
577 	struct lpfc_cqe *temp_qe;
578 	struct lpfc_register doorbell;
579 
580 	/* sanity check on queue memory */
581 	if (unlikely(!q))
582 		return 0;
583 	phba = q->phba;
584 
585 	/* while there are valid entries */
586 	while (q->hba_index != q->host_index) {
587 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
588 			temp_qe = q->qe[q->host_index].cqe;
589 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
590 		}
591 		released++;
592 		q->host_index = ((q->host_index + 1) % q->entry_count);
593 	}
594 	if (unlikely(released == 0 && !arm))
595 		return 0;
596 
597 	/* ring doorbell for number popped */
598 	doorbell.word0 = 0;
599 	if (arm)
600 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
601 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
602 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
603 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
604 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
605 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
606 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
607 	return released;
608 }
609 
610 /**
611  * lpfc_sli4_if6_cq_release - Indicates the host has finished processing a CQ
612  * @q: The Completion Queue that the host has completed processing for.
613  * @arm: Indicates whether the host wants to arms this CQ.
614  *
615  * This routine will mark all Completion queue entries on @q, from the last
616  * known completed entry to the last entry that was processed, as completed
617  * by clearing the valid bit for each completion queue entry. Then it will
618  * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
619  * The internal host index in the @q will be updated by this routine to indicate
620  * that the host has finished processing the entries. The @arm parameter
621  * indicates that the queue should be rearmed when ringing the doorbell.
622  *
623  * This function will return the number of CQEs that were released.
624  **/
625 uint32_t
626 lpfc_sli4_if6_cq_release(struct lpfc_queue *q, bool arm)
627 {
628 	uint32_t released = 0;
629 	struct lpfc_hba *phba;
630 	struct lpfc_cqe *temp_qe;
631 	struct lpfc_register doorbell;
632 
633 	/* sanity check on queue memory */
634 	if (unlikely(!q))
635 		return 0;
636 	phba = q->phba;
637 
638 	/* while there are valid entries */
639 	while (q->hba_index != q->host_index) {
640 		if (!phba->sli4_hba.pc_sli4_params.cqav) {
641 			temp_qe = q->qe[q->host_index].cqe;
642 			bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
643 		}
644 		released++;
645 		q->host_index = ((q->host_index + 1) % q->entry_count);
646 	}
647 	if (unlikely(released == 0 && !arm))
648 		return 0;
649 
650 	/* ring doorbell for number popped */
651 	doorbell.word0 = 0;
652 	if (arm)
653 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
654 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, released);
655 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
656 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
657 	return released;
658 }
659 
660 /**
661  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
662  * @q: The Header Receive Queue to operate on.
663  * @wqe: The Receive Queue Entry to put on the Receive queue.
664  *
665  * This routine will copy the contents of @wqe to the next available entry on
666  * the @q. This function will then ring the Receive Queue Doorbell to signal the
667  * HBA to start processing the Receive Queue Entry. This function returns the
668  * index that the rqe was copied to if successful. If no entries are available
669  * on @q then this function will return -ENOMEM.
670  * The caller is expected to hold the hbalock when calling this routine.
671  **/
672 int
673 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
674 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
675 {
676 	struct lpfc_rqe *temp_hrqe;
677 	struct lpfc_rqe *temp_drqe;
678 	struct lpfc_register doorbell;
679 	int hq_put_index;
680 	int dq_put_index;
681 
682 	/* sanity check on queue memory */
683 	if (unlikely(!hq) || unlikely(!dq))
684 		return -ENOMEM;
685 	hq_put_index = hq->host_index;
686 	dq_put_index = dq->host_index;
687 	temp_hrqe = hq->qe[hq_put_index].rqe;
688 	temp_drqe = dq->qe[dq_put_index].rqe;
689 
690 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
691 		return -EINVAL;
692 	if (hq_put_index != dq_put_index)
693 		return -EINVAL;
694 	/* If the host has not yet processed the next entry then we are done */
695 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
696 		return -EBUSY;
697 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
698 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
699 
700 	/* Update the host index to point to the next slot */
701 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
702 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
703 	hq->RQ_buf_posted++;
704 
705 	/* Ring The Header Receive Queue Doorbell */
706 	if (!(hq->host_index % hq->entry_repost)) {
707 		doorbell.word0 = 0;
708 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
709 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
710 			       hq->entry_repost);
711 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
712 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
713 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
714 			       hq->entry_repost);
715 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
716 			       hq->host_index);
717 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
718 		} else {
719 			return -EINVAL;
720 		}
721 		writel(doorbell.word0, hq->db_regaddr);
722 	}
723 	return hq_put_index;
724 }
725 
726 /**
727  * lpfc_sli4_rq_release - Updates internal hba index for RQ
728  * @q: The Header Receive Queue to operate on.
729  *
730  * This routine will update the HBA index of a queue to reflect consumption of
731  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
732  * consumed an entry the host calls this function to update the queue's
733  * internal pointers. This routine returns the number of entries that were
734  * consumed by the HBA.
735  **/
736 static uint32_t
737 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
738 {
739 	/* sanity check on queue memory */
740 	if (unlikely(!hq) || unlikely(!dq))
741 		return 0;
742 
743 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
744 		return 0;
745 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
746 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
747 	return 1;
748 }
749 
750 /**
751  * lpfc_cmd_iocb - Get next command iocb entry in the ring
752  * @phba: Pointer to HBA context object.
753  * @pring: Pointer to driver SLI ring object.
754  *
755  * This function returns pointer to next command iocb entry
756  * in the command ring. The caller must hold hbalock to prevent
757  * other threads consume the next command iocb.
758  * SLI-2/SLI-3 provide different sized iocbs.
759  **/
760 static inline IOCB_t *
761 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
762 {
763 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
764 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
765 }
766 
767 /**
768  * lpfc_resp_iocb - Get next response iocb entry in the ring
769  * @phba: Pointer to HBA context object.
770  * @pring: Pointer to driver SLI ring object.
771  *
772  * This function returns pointer to next response iocb entry
773  * in the response ring. The caller must hold hbalock to make sure
774  * that no other thread consume the next response iocb.
775  * SLI-2/SLI-3 provide different sized iocbs.
776  **/
777 static inline IOCB_t *
778 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
779 {
780 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
781 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
782 }
783 
784 /**
785  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
786  * @phba: Pointer to HBA context object.
787  *
788  * This function is called with hbalock held. This function
789  * allocates a new driver iocb object from the iocb pool. If the
790  * allocation is successful, it returns pointer to the newly
791  * allocated iocb object else it returns NULL.
792  **/
793 struct lpfc_iocbq *
794 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
795 {
796 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
797 	struct lpfc_iocbq * iocbq = NULL;
798 
799 	lockdep_assert_held(&phba->hbalock);
800 
801 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
802 	if (iocbq)
803 		phba->iocb_cnt++;
804 	if (phba->iocb_cnt > phba->iocb_max)
805 		phba->iocb_max = phba->iocb_cnt;
806 	return iocbq;
807 }
808 
809 /**
810  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
811  * @phba: Pointer to HBA context object.
812  * @xritag: XRI value.
813  *
814  * This function clears the sglq pointer from the array of acive
815  * sglq's. The xritag that is passed in is used to index into the
816  * array. Before the xritag can be used it needs to be adjusted
817  * by subtracting the xribase.
818  *
819  * Returns sglq ponter = success, NULL = Failure.
820  **/
821 struct lpfc_sglq *
822 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
823 {
824 	struct lpfc_sglq *sglq;
825 
826 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
827 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
828 	return sglq;
829 }
830 
831 /**
832  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
833  * @phba: Pointer to HBA context object.
834  * @xritag: XRI value.
835  *
836  * This function returns the sglq pointer from the array of acive
837  * sglq's. The xritag that is passed in is used to index into the
838  * array. Before the xritag can be used it needs to be adjusted
839  * by subtracting the xribase.
840  *
841  * Returns sglq ponter = success, NULL = Failure.
842  **/
843 struct lpfc_sglq *
844 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
845 {
846 	struct lpfc_sglq *sglq;
847 
848 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
849 	return sglq;
850 }
851 
852 /**
853  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
854  * @phba: Pointer to HBA context object.
855  * @xritag: xri used in this exchange.
856  * @rrq: The RRQ to be cleared.
857  *
858  **/
859 void
860 lpfc_clr_rrq_active(struct lpfc_hba *phba,
861 		    uint16_t xritag,
862 		    struct lpfc_node_rrq *rrq)
863 {
864 	struct lpfc_nodelist *ndlp = NULL;
865 
866 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
867 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
868 
869 	/* The target DID could have been swapped (cable swap)
870 	 * we should use the ndlp from the findnode if it is
871 	 * available.
872 	 */
873 	if ((!ndlp) && rrq->ndlp)
874 		ndlp = rrq->ndlp;
875 
876 	if (!ndlp)
877 		goto out;
878 
879 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
880 		rrq->send_rrq = 0;
881 		rrq->xritag = 0;
882 		rrq->rrq_stop_time = 0;
883 	}
884 out:
885 	mempool_free(rrq, phba->rrq_pool);
886 }
887 
888 /**
889  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
890  * @phba: Pointer to HBA context object.
891  *
892  * This function is called with hbalock held. This function
893  * Checks if stop_time (ratov from setting rrq active) has
894  * been reached, if it has and the send_rrq flag is set then
895  * it will call lpfc_send_rrq. If the send_rrq flag is not set
896  * then it will just call the routine to clear the rrq and
897  * free the rrq resource.
898  * The timer is set to the next rrq that is going to expire before
899  * leaving the routine.
900  *
901  **/
902 void
903 lpfc_handle_rrq_active(struct lpfc_hba *phba)
904 {
905 	struct lpfc_node_rrq *rrq;
906 	struct lpfc_node_rrq *nextrrq;
907 	unsigned long next_time;
908 	unsigned long iflags;
909 	LIST_HEAD(send_rrq);
910 
911 	spin_lock_irqsave(&phba->hbalock, iflags);
912 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
913 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
914 	list_for_each_entry_safe(rrq, nextrrq,
915 				 &phba->active_rrq_list, list) {
916 		if (time_after(jiffies, rrq->rrq_stop_time))
917 			list_move(&rrq->list, &send_rrq);
918 		else if (time_before(rrq->rrq_stop_time, next_time))
919 			next_time = rrq->rrq_stop_time;
920 	}
921 	spin_unlock_irqrestore(&phba->hbalock, iflags);
922 	if ((!list_empty(&phba->active_rrq_list)) &&
923 	    (!(phba->pport->load_flag & FC_UNLOADING)))
924 		mod_timer(&phba->rrq_tmr, next_time);
925 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
926 		list_del(&rrq->list);
927 		if (!rrq->send_rrq)
928 			/* this call will free the rrq */
929 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
930 		else if (lpfc_send_rrq(phba, rrq)) {
931 			/* if we send the rrq then the completion handler
932 			*  will clear the bit in the xribitmap.
933 			*/
934 			lpfc_clr_rrq_active(phba, rrq->xritag,
935 					    rrq);
936 		}
937 	}
938 }
939 
940 /**
941  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
942  * @vport: Pointer to vport context object.
943  * @xri: The xri used in the exchange.
944  * @did: The targets DID for this exchange.
945  *
946  * returns NULL = rrq not found in the phba->active_rrq_list.
947  *         rrq = rrq for this xri and target.
948  **/
949 struct lpfc_node_rrq *
950 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
951 {
952 	struct lpfc_hba *phba = vport->phba;
953 	struct lpfc_node_rrq *rrq;
954 	struct lpfc_node_rrq *nextrrq;
955 	unsigned long iflags;
956 
957 	if (phba->sli_rev != LPFC_SLI_REV4)
958 		return NULL;
959 	spin_lock_irqsave(&phba->hbalock, iflags);
960 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
961 		if (rrq->vport == vport && rrq->xritag == xri &&
962 				rrq->nlp_DID == did){
963 			list_del(&rrq->list);
964 			spin_unlock_irqrestore(&phba->hbalock, iflags);
965 			return rrq;
966 		}
967 	}
968 	spin_unlock_irqrestore(&phba->hbalock, iflags);
969 	return NULL;
970 }
971 
972 /**
973  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
974  * @vport: Pointer to vport context object.
975  * @ndlp: Pointer to the lpfc_node_list structure.
976  * If ndlp is NULL Remove all active RRQs for this vport from the
977  * phba->active_rrq_list and clear the rrq.
978  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
979  **/
980 void
981 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
982 
983 {
984 	struct lpfc_hba *phba = vport->phba;
985 	struct lpfc_node_rrq *rrq;
986 	struct lpfc_node_rrq *nextrrq;
987 	unsigned long iflags;
988 	LIST_HEAD(rrq_list);
989 
990 	if (phba->sli_rev != LPFC_SLI_REV4)
991 		return;
992 	if (!ndlp) {
993 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
994 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
995 	}
996 	spin_lock_irqsave(&phba->hbalock, iflags);
997 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
998 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
999 			list_move(&rrq->list, &rrq_list);
1000 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1001 
1002 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1003 		list_del(&rrq->list);
1004 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1005 	}
1006 }
1007 
1008 /**
1009  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1010  * @phba: Pointer to HBA context object.
1011  * @ndlp: Targets nodelist pointer for this exchange.
1012  * @xritag the xri in the bitmap to test.
1013  *
1014  * This function is called with hbalock held. This function
1015  * returns 0 = rrq not active for this xri
1016  *         1 = rrq is valid for this xri.
1017  **/
1018 int
1019 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1020 			uint16_t  xritag)
1021 {
1022 	lockdep_assert_held(&phba->hbalock);
1023 	if (!ndlp)
1024 		return 0;
1025 	if (!ndlp->active_rrqs_xri_bitmap)
1026 		return 0;
1027 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1028 			return 1;
1029 	else
1030 		return 0;
1031 }
1032 
1033 /**
1034  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1035  * @phba: Pointer to HBA context object.
1036  * @ndlp: nodelist pointer for this target.
1037  * @xritag: xri used in this exchange.
1038  * @rxid: Remote Exchange ID.
1039  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1040  *
1041  * This function takes the hbalock.
1042  * The active bit is always set in the active rrq xri_bitmap even
1043  * if there is no slot avaiable for the other rrq information.
1044  *
1045  * returns 0 rrq actived for this xri
1046  *         < 0 No memory or invalid ndlp.
1047  **/
1048 int
1049 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1050 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1051 {
1052 	unsigned long iflags;
1053 	struct lpfc_node_rrq *rrq;
1054 	int empty;
1055 
1056 	if (!ndlp)
1057 		return -EINVAL;
1058 
1059 	if (!phba->cfg_enable_rrq)
1060 		return -EINVAL;
1061 
1062 	spin_lock_irqsave(&phba->hbalock, iflags);
1063 	if (phba->pport->load_flag & FC_UNLOADING) {
1064 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * set the active bit even if there is no mem available.
1070 	 */
1071 	if (NLP_CHK_FREE_REQ(ndlp))
1072 		goto out;
1073 
1074 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1075 		goto out;
1076 
1077 	if (!ndlp->active_rrqs_xri_bitmap)
1078 		goto out;
1079 
1080 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1081 		goto out;
1082 
1083 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1084 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1085 	if (!rrq) {
1086 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1087 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1088 				" DID:0x%x Send:%d\n",
1089 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1090 		return -EINVAL;
1091 	}
1092 	if (phba->cfg_enable_rrq == 1)
1093 		rrq->send_rrq = send_rrq;
1094 	else
1095 		rrq->send_rrq = 0;
1096 	rrq->xritag = xritag;
1097 	rrq->rrq_stop_time = jiffies +
1098 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1099 	rrq->ndlp = ndlp;
1100 	rrq->nlp_DID = ndlp->nlp_DID;
1101 	rrq->vport = ndlp->vport;
1102 	rrq->rxid = rxid;
1103 	spin_lock_irqsave(&phba->hbalock, iflags);
1104 	empty = list_empty(&phba->active_rrq_list);
1105 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1106 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1107 	if (empty)
1108 		lpfc_worker_wake_up(phba);
1109 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1110 	return 0;
1111 out:
1112 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1113 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1114 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1115 			" DID:0x%x Send:%d\n",
1116 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1117 	return -EINVAL;
1118 }
1119 
1120 /**
1121  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1122  * @phba: Pointer to HBA context object.
1123  * @piocb: Pointer to the iocbq.
1124  *
1125  * This function is called with the ring lock held. This function
1126  * gets a new driver sglq object from the sglq list. If the
1127  * list is not empty then it is successful, it returns pointer to the newly
1128  * allocated sglq object else it returns NULL.
1129  **/
1130 static struct lpfc_sglq *
1131 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1132 {
1133 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1134 	struct lpfc_sglq *sglq = NULL;
1135 	struct lpfc_sglq *start_sglq = NULL;
1136 	struct lpfc_scsi_buf *lpfc_cmd;
1137 	struct lpfc_nodelist *ndlp;
1138 	int found = 0;
1139 
1140 	lockdep_assert_held(&phba->hbalock);
1141 
1142 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1143 		lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
1144 		ndlp = lpfc_cmd->rdata->pnode;
1145 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1146 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1147 		ndlp = piocbq->context_un.ndlp;
1148 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1149 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1150 			ndlp = NULL;
1151 		else
1152 			ndlp = piocbq->context_un.ndlp;
1153 	} else {
1154 		ndlp = piocbq->context1;
1155 	}
1156 
1157 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1158 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1159 	start_sglq = sglq;
1160 	while (!found) {
1161 		if (!sglq)
1162 			break;
1163 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1164 		    test_bit(sglq->sli4_lxritag,
1165 		    ndlp->active_rrqs_xri_bitmap)) {
1166 			/* This xri has an rrq outstanding for this DID.
1167 			 * put it back in the list and get another xri.
1168 			 */
1169 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1170 			sglq = NULL;
1171 			list_remove_head(lpfc_els_sgl_list, sglq,
1172 						struct lpfc_sglq, list);
1173 			if (sglq == start_sglq) {
1174 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1175 				sglq = NULL;
1176 				break;
1177 			} else
1178 				continue;
1179 		}
1180 		sglq->ndlp = ndlp;
1181 		found = 1;
1182 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1183 		sglq->state = SGL_ALLOCATED;
1184 	}
1185 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1186 	return sglq;
1187 }
1188 
1189 /**
1190  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1191  * @phba: Pointer to HBA context object.
1192  * @piocb: Pointer to the iocbq.
1193  *
1194  * This function is called with the sgl_list lock held. This function
1195  * gets a new driver sglq object from the sglq list. If the
1196  * list is not empty then it is successful, it returns pointer to the newly
1197  * allocated sglq object else it returns NULL.
1198  **/
1199 struct lpfc_sglq *
1200 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1201 {
1202 	struct list_head *lpfc_nvmet_sgl_list;
1203 	struct lpfc_sglq *sglq = NULL;
1204 
1205 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1206 
1207 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1208 
1209 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1210 	if (!sglq)
1211 		return NULL;
1212 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1213 	sglq->state = SGL_ALLOCATED;
1214 	return sglq;
1215 }
1216 
1217 /**
1218  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1219  * @phba: Pointer to HBA context object.
1220  *
1221  * This function is called with no lock held. This function
1222  * allocates a new driver iocb object from the iocb pool. If the
1223  * allocation is successful, it returns pointer to the newly
1224  * allocated iocb object else it returns NULL.
1225  **/
1226 struct lpfc_iocbq *
1227 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1228 {
1229 	struct lpfc_iocbq * iocbq = NULL;
1230 	unsigned long iflags;
1231 
1232 	spin_lock_irqsave(&phba->hbalock, iflags);
1233 	iocbq = __lpfc_sli_get_iocbq(phba);
1234 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1235 	return iocbq;
1236 }
1237 
1238 /**
1239  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1240  * @phba: Pointer to HBA context object.
1241  * @iocbq: Pointer to driver iocb object.
1242  *
1243  * This function is called with hbalock held to release driver
1244  * iocb object to the iocb pool. The iotag in the iocb object
1245  * does not change for each use of the iocb object. This function
1246  * clears all other fields of the iocb object when it is freed.
1247  * The sqlq structure that holds the xritag and phys and virtual
1248  * mappings for the scatter gather list is retrieved from the
1249  * active array of sglq. The get of the sglq pointer also clears
1250  * the entry in the array. If the status of the IO indiactes that
1251  * this IO was aborted then the sglq entry it put on the
1252  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1253  * IO has good status or fails for any other reason then the sglq
1254  * entry is added to the free list (lpfc_els_sgl_list).
1255  **/
1256 static void
1257 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1258 {
1259 	struct lpfc_sglq *sglq;
1260 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1261 	unsigned long iflag = 0;
1262 	struct lpfc_sli_ring *pring;
1263 
1264 	lockdep_assert_held(&phba->hbalock);
1265 
1266 	if (iocbq->sli4_xritag == NO_XRI)
1267 		sglq = NULL;
1268 	else
1269 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1270 
1271 
1272 	if (sglq)  {
1273 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1274 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1275 					  iflag);
1276 			sglq->state = SGL_FREED;
1277 			sglq->ndlp = NULL;
1278 			list_add_tail(&sglq->list,
1279 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1280 			spin_unlock_irqrestore(
1281 				&phba->sli4_hba.sgl_list_lock, iflag);
1282 			goto out;
1283 		}
1284 
1285 		pring = phba->sli4_hba.els_wq->pring;
1286 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1287 			(sglq->state != SGL_XRI_ABORTED)) {
1288 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1289 					  iflag);
1290 			list_add(&sglq->list,
1291 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1292 			spin_unlock_irqrestore(
1293 				&phba->sli4_hba.sgl_list_lock, iflag);
1294 		} else {
1295 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1296 					  iflag);
1297 			sglq->state = SGL_FREED;
1298 			sglq->ndlp = NULL;
1299 			list_add_tail(&sglq->list,
1300 				      &phba->sli4_hba.lpfc_els_sgl_list);
1301 			spin_unlock_irqrestore(
1302 				&phba->sli4_hba.sgl_list_lock, iflag);
1303 
1304 			/* Check if TXQ queue needs to be serviced */
1305 			if (!list_empty(&pring->txq))
1306 				lpfc_worker_wake_up(phba);
1307 		}
1308 	}
1309 
1310 out:
1311 	/*
1312 	 * Clean all volatile data fields, preserve iotag and node struct.
1313 	 */
1314 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1315 	iocbq->sli4_lxritag = NO_XRI;
1316 	iocbq->sli4_xritag = NO_XRI;
1317 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1318 			      LPFC_IO_NVME_LS);
1319 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1320 }
1321 
1322 
1323 /**
1324  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1325  * @phba: Pointer to HBA context object.
1326  * @iocbq: Pointer to driver iocb object.
1327  *
1328  * This function is called with hbalock held to release driver
1329  * iocb object to the iocb pool. The iotag in the iocb object
1330  * does not change for each use of the iocb object. This function
1331  * clears all other fields of the iocb object when it is freed.
1332  **/
1333 static void
1334 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1335 {
1336 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1337 
1338 	lockdep_assert_held(&phba->hbalock);
1339 
1340 	/*
1341 	 * Clean all volatile data fields, preserve iotag and node struct.
1342 	 */
1343 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1344 	iocbq->sli4_xritag = NO_XRI;
1345 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1346 }
1347 
1348 /**
1349  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1350  * @phba: Pointer to HBA context object.
1351  * @iocbq: Pointer to driver iocb object.
1352  *
1353  * This function is called with hbalock held to release driver
1354  * iocb object to the iocb pool. The iotag in the iocb object
1355  * does not change for each use of the iocb object. This function
1356  * clears all other fields of the iocb object when it is freed.
1357  **/
1358 static void
1359 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1360 {
1361 	lockdep_assert_held(&phba->hbalock);
1362 
1363 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1364 	phba->iocb_cnt--;
1365 }
1366 
1367 /**
1368  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1369  * @phba: Pointer to HBA context object.
1370  * @iocbq: Pointer to driver iocb object.
1371  *
1372  * This function is called with no lock held to release the iocb to
1373  * iocb pool.
1374  **/
1375 void
1376 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1377 {
1378 	unsigned long iflags;
1379 
1380 	/*
1381 	 * Clean all volatile data fields, preserve iotag and node struct.
1382 	 */
1383 	spin_lock_irqsave(&phba->hbalock, iflags);
1384 	__lpfc_sli_release_iocbq(phba, iocbq);
1385 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1386 }
1387 
1388 /**
1389  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1390  * @phba: Pointer to HBA context object.
1391  * @iocblist: List of IOCBs.
1392  * @ulpstatus: ULP status in IOCB command field.
1393  * @ulpWord4: ULP word-4 in IOCB command field.
1394  *
1395  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1396  * on the list by invoking the complete callback function associated with the
1397  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1398  * fields.
1399  **/
1400 void
1401 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1402 		      uint32_t ulpstatus, uint32_t ulpWord4)
1403 {
1404 	struct lpfc_iocbq *piocb;
1405 
1406 	while (!list_empty(iocblist)) {
1407 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1408 		if (!piocb->iocb_cmpl)
1409 			lpfc_sli_release_iocbq(phba, piocb);
1410 		else {
1411 			piocb->iocb.ulpStatus = ulpstatus;
1412 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1413 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1414 		}
1415 	}
1416 	return;
1417 }
1418 
1419 /**
1420  * lpfc_sli_iocb_cmd_type - Get the iocb type
1421  * @iocb_cmnd: iocb command code.
1422  *
1423  * This function is called by ring event handler function to get the iocb type.
1424  * This function translates the iocb command to an iocb command type used to
1425  * decide the final disposition of each completed IOCB.
1426  * The function returns
1427  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1428  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1429  * LPFC_ABORT_IOCB   if it is an abort iocb
1430  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1431  *
1432  * The caller is not required to hold any lock.
1433  **/
1434 static lpfc_iocb_type
1435 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1436 {
1437 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1438 
1439 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1440 		return 0;
1441 
1442 	switch (iocb_cmnd) {
1443 	case CMD_XMIT_SEQUENCE_CR:
1444 	case CMD_XMIT_SEQUENCE_CX:
1445 	case CMD_XMIT_BCAST_CN:
1446 	case CMD_XMIT_BCAST_CX:
1447 	case CMD_ELS_REQUEST_CR:
1448 	case CMD_ELS_REQUEST_CX:
1449 	case CMD_CREATE_XRI_CR:
1450 	case CMD_CREATE_XRI_CX:
1451 	case CMD_GET_RPI_CN:
1452 	case CMD_XMIT_ELS_RSP_CX:
1453 	case CMD_GET_RPI_CR:
1454 	case CMD_FCP_IWRITE_CR:
1455 	case CMD_FCP_IWRITE_CX:
1456 	case CMD_FCP_IREAD_CR:
1457 	case CMD_FCP_IREAD_CX:
1458 	case CMD_FCP_ICMND_CR:
1459 	case CMD_FCP_ICMND_CX:
1460 	case CMD_FCP_TSEND_CX:
1461 	case CMD_FCP_TRSP_CX:
1462 	case CMD_FCP_TRECEIVE_CX:
1463 	case CMD_FCP_AUTO_TRSP_CX:
1464 	case CMD_ADAPTER_MSG:
1465 	case CMD_ADAPTER_DUMP:
1466 	case CMD_XMIT_SEQUENCE64_CR:
1467 	case CMD_XMIT_SEQUENCE64_CX:
1468 	case CMD_XMIT_BCAST64_CN:
1469 	case CMD_XMIT_BCAST64_CX:
1470 	case CMD_ELS_REQUEST64_CR:
1471 	case CMD_ELS_REQUEST64_CX:
1472 	case CMD_FCP_IWRITE64_CR:
1473 	case CMD_FCP_IWRITE64_CX:
1474 	case CMD_FCP_IREAD64_CR:
1475 	case CMD_FCP_IREAD64_CX:
1476 	case CMD_FCP_ICMND64_CR:
1477 	case CMD_FCP_ICMND64_CX:
1478 	case CMD_FCP_TSEND64_CX:
1479 	case CMD_FCP_TRSP64_CX:
1480 	case CMD_FCP_TRECEIVE64_CX:
1481 	case CMD_GEN_REQUEST64_CR:
1482 	case CMD_GEN_REQUEST64_CX:
1483 	case CMD_XMIT_ELS_RSP64_CX:
1484 	case DSSCMD_IWRITE64_CR:
1485 	case DSSCMD_IWRITE64_CX:
1486 	case DSSCMD_IREAD64_CR:
1487 	case DSSCMD_IREAD64_CX:
1488 		type = LPFC_SOL_IOCB;
1489 		break;
1490 	case CMD_ABORT_XRI_CN:
1491 	case CMD_ABORT_XRI_CX:
1492 	case CMD_CLOSE_XRI_CN:
1493 	case CMD_CLOSE_XRI_CX:
1494 	case CMD_XRI_ABORTED_CX:
1495 	case CMD_ABORT_MXRI64_CN:
1496 	case CMD_XMIT_BLS_RSP64_CX:
1497 		type = LPFC_ABORT_IOCB;
1498 		break;
1499 	case CMD_RCV_SEQUENCE_CX:
1500 	case CMD_RCV_ELS_REQ_CX:
1501 	case CMD_RCV_SEQUENCE64_CX:
1502 	case CMD_RCV_ELS_REQ64_CX:
1503 	case CMD_ASYNC_STATUS:
1504 	case CMD_IOCB_RCV_SEQ64_CX:
1505 	case CMD_IOCB_RCV_ELS64_CX:
1506 	case CMD_IOCB_RCV_CONT64_CX:
1507 	case CMD_IOCB_RET_XRI64_CX:
1508 		type = LPFC_UNSOL_IOCB;
1509 		break;
1510 	case CMD_IOCB_XMIT_MSEQ64_CR:
1511 	case CMD_IOCB_XMIT_MSEQ64_CX:
1512 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1513 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1514 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1515 	case CMD_IOCB_ABORT_EXTENDED_CN:
1516 	case CMD_IOCB_RET_HBQE64_CN:
1517 	case CMD_IOCB_FCP_IBIDIR64_CR:
1518 	case CMD_IOCB_FCP_IBIDIR64_CX:
1519 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1520 	case CMD_IOCB_LOGENTRY_CN:
1521 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1522 		printk("%s - Unhandled SLI-3 Command x%x\n",
1523 				__func__, iocb_cmnd);
1524 		type = LPFC_UNKNOWN_IOCB;
1525 		break;
1526 	default:
1527 		type = LPFC_UNKNOWN_IOCB;
1528 		break;
1529 	}
1530 
1531 	return type;
1532 }
1533 
1534 /**
1535  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1536  * @phba: Pointer to HBA context object.
1537  *
1538  * This function is called from SLI initialization code
1539  * to configure every ring of the HBA's SLI interface. The
1540  * caller is not required to hold any lock. This function issues
1541  * a config_ring mailbox command for each ring.
1542  * This function returns zero if successful else returns a negative
1543  * error code.
1544  **/
1545 static int
1546 lpfc_sli_ring_map(struct lpfc_hba *phba)
1547 {
1548 	struct lpfc_sli *psli = &phba->sli;
1549 	LPFC_MBOXQ_t *pmb;
1550 	MAILBOX_t *pmbox;
1551 	int i, rc, ret = 0;
1552 
1553 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1554 	if (!pmb)
1555 		return -ENOMEM;
1556 	pmbox = &pmb->u.mb;
1557 	phba->link_state = LPFC_INIT_MBX_CMDS;
1558 	for (i = 0; i < psli->num_rings; i++) {
1559 		lpfc_config_ring(phba, i, pmb);
1560 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1561 		if (rc != MBX_SUCCESS) {
1562 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1563 					"0446 Adapter failed to init (%d), "
1564 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1565 					"ring %d\n",
1566 					rc, pmbox->mbxCommand,
1567 					pmbox->mbxStatus, i);
1568 			phba->link_state = LPFC_HBA_ERROR;
1569 			ret = -ENXIO;
1570 			break;
1571 		}
1572 	}
1573 	mempool_free(pmb, phba->mbox_mem_pool);
1574 	return ret;
1575 }
1576 
1577 /**
1578  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1579  * @phba: Pointer to HBA context object.
1580  * @pring: Pointer to driver SLI ring object.
1581  * @piocb: Pointer to the driver iocb object.
1582  *
1583  * This function is called with hbalock held. The function adds the
1584  * new iocb to txcmplq of the given ring. This function always returns
1585  * 0. If this function is called for ELS ring, this function checks if
1586  * there is a vport associated with the ELS command. This function also
1587  * starts els_tmofunc timer if this is an ELS command.
1588  **/
1589 static int
1590 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1591 			struct lpfc_iocbq *piocb)
1592 {
1593 	lockdep_assert_held(&phba->hbalock);
1594 
1595 	BUG_ON(!piocb);
1596 
1597 	list_add_tail(&piocb->list, &pring->txcmplq);
1598 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1599 
1600 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1601 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1602 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1603 		BUG_ON(!piocb->vport);
1604 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1605 			mod_timer(&piocb->vport->els_tmofunc,
1606 				  jiffies +
1607 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /**
1614  * lpfc_sli_ringtx_get - Get first element of the txq
1615  * @phba: Pointer to HBA context object.
1616  * @pring: Pointer to driver SLI ring object.
1617  *
1618  * This function is called with hbalock held to get next
1619  * iocb in txq of the given ring. If there is any iocb in
1620  * the txq, the function returns first iocb in the list after
1621  * removing the iocb from the list, else it returns NULL.
1622  **/
1623 struct lpfc_iocbq *
1624 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1625 {
1626 	struct lpfc_iocbq *cmd_iocb;
1627 
1628 	lockdep_assert_held(&phba->hbalock);
1629 
1630 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1631 	return cmd_iocb;
1632 }
1633 
1634 /**
1635  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1636  * @phba: Pointer to HBA context object.
1637  * @pring: Pointer to driver SLI ring object.
1638  *
1639  * This function is called with hbalock held and the caller must post the
1640  * iocb without releasing the lock. If the caller releases the lock,
1641  * iocb slot returned by the function is not guaranteed to be available.
1642  * The function returns pointer to the next available iocb slot if there
1643  * is available slot in the ring, else it returns NULL.
1644  * If the get index of the ring is ahead of the put index, the function
1645  * will post an error attention event to the worker thread to take the
1646  * HBA to offline state.
1647  **/
1648 static IOCB_t *
1649 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1650 {
1651 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1652 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1653 
1654 	lockdep_assert_held(&phba->hbalock);
1655 
1656 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1657 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1658 		pring->sli.sli3.next_cmdidx = 0;
1659 
1660 	if (unlikely(pring->sli.sli3.local_getidx ==
1661 		pring->sli.sli3.next_cmdidx)) {
1662 
1663 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1664 
1665 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1666 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1667 					"0315 Ring %d issue: portCmdGet %d "
1668 					"is bigger than cmd ring %d\n",
1669 					pring->ringno,
1670 					pring->sli.sli3.local_getidx,
1671 					max_cmd_idx);
1672 
1673 			phba->link_state = LPFC_HBA_ERROR;
1674 			/*
1675 			 * All error attention handlers are posted to
1676 			 * worker thread
1677 			 */
1678 			phba->work_ha |= HA_ERATT;
1679 			phba->work_hs = HS_FFER3;
1680 
1681 			lpfc_worker_wake_up(phba);
1682 
1683 			return NULL;
1684 		}
1685 
1686 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1687 			return NULL;
1688 	}
1689 
1690 	return lpfc_cmd_iocb(phba, pring);
1691 }
1692 
1693 /**
1694  * lpfc_sli_next_iotag - Get an iotag for the iocb
1695  * @phba: Pointer to HBA context object.
1696  * @iocbq: Pointer to driver iocb object.
1697  *
1698  * This function gets an iotag for the iocb. If there is no unused iotag and
1699  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1700  * array and assigns a new iotag.
1701  * The function returns the allocated iotag if successful, else returns zero.
1702  * Zero is not a valid iotag.
1703  * The caller is not required to hold any lock.
1704  **/
1705 uint16_t
1706 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1707 {
1708 	struct lpfc_iocbq **new_arr;
1709 	struct lpfc_iocbq **old_arr;
1710 	size_t new_len;
1711 	struct lpfc_sli *psli = &phba->sli;
1712 	uint16_t iotag;
1713 
1714 	spin_lock_irq(&phba->hbalock);
1715 	iotag = psli->last_iotag;
1716 	if(++iotag < psli->iocbq_lookup_len) {
1717 		psli->last_iotag = iotag;
1718 		psli->iocbq_lookup[iotag] = iocbq;
1719 		spin_unlock_irq(&phba->hbalock);
1720 		iocbq->iotag = iotag;
1721 		return iotag;
1722 	} else if (psli->iocbq_lookup_len < (0xffff
1723 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1724 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1725 		spin_unlock_irq(&phba->hbalock);
1726 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1727 				  GFP_KERNEL);
1728 		if (new_arr) {
1729 			spin_lock_irq(&phba->hbalock);
1730 			old_arr = psli->iocbq_lookup;
1731 			if (new_len <= psli->iocbq_lookup_len) {
1732 				/* highly unprobable case */
1733 				kfree(new_arr);
1734 				iotag = psli->last_iotag;
1735 				if(++iotag < psli->iocbq_lookup_len) {
1736 					psli->last_iotag = iotag;
1737 					psli->iocbq_lookup[iotag] = iocbq;
1738 					spin_unlock_irq(&phba->hbalock);
1739 					iocbq->iotag = iotag;
1740 					return iotag;
1741 				}
1742 				spin_unlock_irq(&phba->hbalock);
1743 				return 0;
1744 			}
1745 			if (psli->iocbq_lookup)
1746 				memcpy(new_arr, old_arr,
1747 				       ((psli->last_iotag  + 1) *
1748 					sizeof (struct lpfc_iocbq *)));
1749 			psli->iocbq_lookup = new_arr;
1750 			psli->iocbq_lookup_len = new_len;
1751 			psli->last_iotag = iotag;
1752 			psli->iocbq_lookup[iotag] = iocbq;
1753 			spin_unlock_irq(&phba->hbalock);
1754 			iocbq->iotag = iotag;
1755 			kfree(old_arr);
1756 			return iotag;
1757 		}
1758 	} else
1759 		spin_unlock_irq(&phba->hbalock);
1760 
1761 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1762 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1763 			psli->last_iotag);
1764 
1765 	return 0;
1766 }
1767 
1768 /**
1769  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1770  * @phba: Pointer to HBA context object.
1771  * @pring: Pointer to driver SLI ring object.
1772  * @iocb: Pointer to iocb slot in the ring.
1773  * @nextiocb: Pointer to driver iocb object which need to be
1774  *            posted to firmware.
1775  *
1776  * This function is called with hbalock held to post a new iocb to
1777  * the firmware. This function copies the new iocb to ring iocb slot and
1778  * updates the ring pointers. It adds the new iocb to txcmplq if there is
1779  * a completion call back for this iocb else the function will free the
1780  * iocb object.
1781  **/
1782 static void
1783 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1784 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1785 {
1786 	lockdep_assert_held(&phba->hbalock);
1787 	/*
1788 	 * Set up an iotag
1789 	 */
1790 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1791 
1792 
1793 	if (pring->ringno == LPFC_ELS_RING) {
1794 		lpfc_debugfs_slow_ring_trc(phba,
1795 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1796 			*(((uint32_t *) &nextiocb->iocb) + 4),
1797 			*(((uint32_t *) &nextiocb->iocb) + 6),
1798 			*(((uint32_t *) &nextiocb->iocb) + 7));
1799 	}
1800 
1801 	/*
1802 	 * Issue iocb command to adapter
1803 	 */
1804 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1805 	wmb();
1806 	pring->stats.iocb_cmd++;
1807 
1808 	/*
1809 	 * If there is no completion routine to call, we can release the
1810 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1811 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1812 	 */
1813 	if (nextiocb->iocb_cmpl)
1814 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1815 	else
1816 		__lpfc_sli_release_iocbq(phba, nextiocb);
1817 
1818 	/*
1819 	 * Let the HBA know what IOCB slot will be the next one the
1820 	 * driver will put a command into.
1821 	 */
1822 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1823 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1824 }
1825 
1826 /**
1827  * lpfc_sli_update_full_ring - Update the chip attention register
1828  * @phba: Pointer to HBA context object.
1829  * @pring: Pointer to driver SLI ring object.
1830  *
1831  * The caller is not required to hold any lock for calling this function.
1832  * This function updates the chip attention bits for the ring to inform firmware
1833  * that there are pending work to be done for this ring and requests an
1834  * interrupt when there is space available in the ring. This function is
1835  * called when the driver is unable to post more iocbs to the ring due
1836  * to unavailability of space in the ring.
1837  **/
1838 static void
1839 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1840 {
1841 	int ringno = pring->ringno;
1842 
1843 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1844 
1845 	wmb();
1846 
1847 	/*
1848 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1849 	 * The HBA will tell us when an IOCB entry is available.
1850 	 */
1851 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1852 	readl(phba->CAregaddr); /* flush */
1853 
1854 	pring->stats.iocb_cmd_full++;
1855 }
1856 
1857 /**
1858  * lpfc_sli_update_ring - Update chip attention register
1859  * @phba: Pointer to HBA context object.
1860  * @pring: Pointer to driver SLI ring object.
1861  *
1862  * This function updates the chip attention register bit for the
1863  * given ring to inform HBA that there is more work to be done
1864  * in this ring. The caller is not required to hold any lock.
1865  **/
1866 static void
1867 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1868 {
1869 	int ringno = pring->ringno;
1870 
1871 	/*
1872 	 * Tell the HBA that there is work to do in this ring.
1873 	 */
1874 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1875 		wmb();
1876 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1877 		readl(phba->CAregaddr); /* flush */
1878 	}
1879 }
1880 
1881 /**
1882  * lpfc_sli_resume_iocb - Process iocbs in the txq
1883  * @phba: Pointer to HBA context object.
1884  * @pring: Pointer to driver SLI ring object.
1885  *
1886  * This function is called with hbalock held to post pending iocbs
1887  * in the txq to the firmware. This function is called when driver
1888  * detects space available in the ring.
1889  **/
1890 static void
1891 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1892 {
1893 	IOCB_t *iocb;
1894 	struct lpfc_iocbq *nextiocb;
1895 
1896 	lockdep_assert_held(&phba->hbalock);
1897 
1898 	/*
1899 	 * Check to see if:
1900 	 *  (a) there is anything on the txq to send
1901 	 *  (b) link is up
1902 	 *  (c) link attention events can be processed (fcp ring only)
1903 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1904 	 */
1905 
1906 	if (lpfc_is_link_up(phba) &&
1907 	    (!list_empty(&pring->txq)) &&
1908 	    (pring->ringno != LPFC_FCP_RING ||
1909 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1910 
1911 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1912 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1913 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1914 
1915 		if (iocb)
1916 			lpfc_sli_update_ring(phba, pring);
1917 		else
1918 			lpfc_sli_update_full_ring(phba, pring);
1919 	}
1920 
1921 	return;
1922 }
1923 
1924 /**
1925  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1926  * @phba: Pointer to HBA context object.
1927  * @hbqno: HBQ number.
1928  *
1929  * This function is called with hbalock held to get the next
1930  * available slot for the given HBQ. If there is free slot
1931  * available for the HBQ it will return pointer to the next available
1932  * HBQ entry else it will return NULL.
1933  **/
1934 static struct lpfc_hbq_entry *
1935 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1936 {
1937 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1938 
1939 	lockdep_assert_held(&phba->hbalock);
1940 
1941 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1942 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1943 		hbqp->next_hbqPutIdx = 0;
1944 
1945 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1946 		uint32_t raw_index = phba->hbq_get[hbqno];
1947 		uint32_t getidx = le32_to_cpu(raw_index);
1948 
1949 		hbqp->local_hbqGetIdx = getidx;
1950 
1951 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1952 			lpfc_printf_log(phba, KERN_ERR,
1953 					LOG_SLI | LOG_VPORT,
1954 					"1802 HBQ %d: local_hbqGetIdx "
1955 					"%u is > than hbqp->entry_count %u\n",
1956 					hbqno, hbqp->local_hbqGetIdx,
1957 					hbqp->entry_count);
1958 
1959 			phba->link_state = LPFC_HBA_ERROR;
1960 			return NULL;
1961 		}
1962 
1963 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1964 			return NULL;
1965 	}
1966 
1967 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1968 			hbqp->hbqPutIdx;
1969 }
1970 
1971 /**
1972  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1973  * @phba: Pointer to HBA context object.
1974  *
1975  * This function is called with no lock held to free all the
1976  * hbq buffers while uninitializing the SLI interface. It also
1977  * frees the HBQ buffers returned by the firmware but not yet
1978  * processed by the upper layers.
1979  **/
1980 void
1981 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1982 {
1983 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1984 	struct hbq_dmabuf *hbq_buf;
1985 	unsigned long flags;
1986 	int i, hbq_count;
1987 
1988 	hbq_count = lpfc_sli_hbq_count();
1989 	/* Return all memory used by all HBQs */
1990 	spin_lock_irqsave(&phba->hbalock, flags);
1991 	for (i = 0; i < hbq_count; ++i) {
1992 		list_for_each_entry_safe(dmabuf, next_dmabuf,
1993 				&phba->hbqs[i].hbq_buffer_list, list) {
1994 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1995 			list_del(&hbq_buf->dbuf.list);
1996 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1997 		}
1998 		phba->hbqs[i].buffer_count = 0;
1999 	}
2000 
2001 	/* Mark the HBQs not in use */
2002 	phba->hbq_in_use = 0;
2003 	spin_unlock_irqrestore(&phba->hbalock, flags);
2004 }
2005 
2006 /**
2007  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2008  * @phba: Pointer to HBA context object.
2009  * @hbqno: HBQ number.
2010  * @hbq_buf: Pointer to HBQ buffer.
2011  *
2012  * This function is called with the hbalock held to post a
2013  * hbq buffer to the firmware. If the function finds an empty
2014  * slot in the HBQ, it will post the buffer. The function will return
2015  * pointer to the hbq entry if it successfully post the buffer
2016  * else it will return NULL.
2017  **/
2018 static int
2019 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2020 			 struct hbq_dmabuf *hbq_buf)
2021 {
2022 	lockdep_assert_held(&phba->hbalock);
2023 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2024 }
2025 
2026 /**
2027  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2028  * @phba: Pointer to HBA context object.
2029  * @hbqno: HBQ number.
2030  * @hbq_buf: Pointer to HBQ buffer.
2031  *
2032  * This function is called with the hbalock held to post a hbq buffer to the
2033  * firmware. If the function finds an empty slot in the HBQ, it will post the
2034  * buffer and place it on the hbq_buffer_list. The function will return zero if
2035  * it successfully post the buffer else it will return an error.
2036  **/
2037 static int
2038 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2039 			    struct hbq_dmabuf *hbq_buf)
2040 {
2041 	struct lpfc_hbq_entry *hbqe;
2042 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2043 
2044 	lockdep_assert_held(&phba->hbalock);
2045 	/* Get next HBQ entry slot to use */
2046 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2047 	if (hbqe) {
2048 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2049 
2050 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2051 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2052 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2053 		hbqe->bde.tus.f.bdeFlags = 0;
2054 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2055 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2056 				/* Sync SLIM */
2057 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2058 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2059 				/* flush */
2060 		readl(phba->hbq_put + hbqno);
2061 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2062 		return 0;
2063 	} else
2064 		return -ENOMEM;
2065 }
2066 
2067 /**
2068  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2069  * @phba: Pointer to HBA context object.
2070  * @hbqno: HBQ number.
2071  * @hbq_buf: Pointer to HBQ buffer.
2072  *
2073  * This function is called with the hbalock held to post an RQE to the SLI4
2074  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2075  * the hbq_buffer_list and return zero, otherwise it will return an error.
2076  **/
2077 static int
2078 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2079 			    struct hbq_dmabuf *hbq_buf)
2080 {
2081 	int rc;
2082 	struct lpfc_rqe hrqe;
2083 	struct lpfc_rqe drqe;
2084 	struct lpfc_queue *hrq;
2085 	struct lpfc_queue *drq;
2086 
2087 	if (hbqno != LPFC_ELS_HBQ)
2088 		return 1;
2089 	hrq = phba->sli4_hba.hdr_rq;
2090 	drq = phba->sli4_hba.dat_rq;
2091 
2092 	lockdep_assert_held(&phba->hbalock);
2093 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2094 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2095 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2096 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2097 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2098 	if (rc < 0)
2099 		return rc;
2100 	hbq_buf->tag = (rc | (hbqno << 16));
2101 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2102 	return 0;
2103 }
2104 
2105 /* HBQ for ELS and CT traffic. */
2106 static struct lpfc_hbq_init lpfc_els_hbq = {
2107 	.rn = 1,
2108 	.entry_count = 256,
2109 	.mask_count = 0,
2110 	.profile = 0,
2111 	.ring_mask = (1 << LPFC_ELS_RING),
2112 	.buffer_count = 0,
2113 	.init_count = 40,
2114 	.add_count = 40,
2115 };
2116 
2117 /* Array of HBQs */
2118 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2119 	&lpfc_els_hbq,
2120 };
2121 
2122 /**
2123  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2124  * @phba: Pointer to HBA context object.
2125  * @hbqno: HBQ number.
2126  * @count: Number of HBQ buffers to be posted.
2127  *
2128  * This function is called with no lock held to post more hbq buffers to the
2129  * given HBQ. The function returns the number of HBQ buffers successfully
2130  * posted.
2131  **/
2132 static int
2133 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2134 {
2135 	uint32_t i, posted = 0;
2136 	unsigned long flags;
2137 	struct hbq_dmabuf *hbq_buffer;
2138 	LIST_HEAD(hbq_buf_list);
2139 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2140 		return 0;
2141 
2142 	if ((phba->hbqs[hbqno].buffer_count + count) >
2143 	    lpfc_hbq_defs[hbqno]->entry_count)
2144 		count = lpfc_hbq_defs[hbqno]->entry_count -
2145 					phba->hbqs[hbqno].buffer_count;
2146 	if (!count)
2147 		return 0;
2148 	/* Allocate HBQ entries */
2149 	for (i = 0; i < count; i++) {
2150 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2151 		if (!hbq_buffer)
2152 			break;
2153 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2154 	}
2155 	/* Check whether HBQ is still in use */
2156 	spin_lock_irqsave(&phba->hbalock, flags);
2157 	if (!phba->hbq_in_use)
2158 		goto err;
2159 	while (!list_empty(&hbq_buf_list)) {
2160 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2161 				 dbuf.list);
2162 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2163 				      (hbqno << 16));
2164 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2165 			phba->hbqs[hbqno].buffer_count++;
2166 			posted++;
2167 		} else
2168 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2169 	}
2170 	spin_unlock_irqrestore(&phba->hbalock, flags);
2171 	return posted;
2172 err:
2173 	spin_unlock_irqrestore(&phba->hbalock, flags);
2174 	while (!list_empty(&hbq_buf_list)) {
2175 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2176 				 dbuf.list);
2177 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2178 	}
2179 	return 0;
2180 }
2181 
2182 /**
2183  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2184  * @phba: Pointer to HBA context object.
2185  * @qno: HBQ number.
2186  *
2187  * This function posts more buffers to the HBQ. This function
2188  * is called with no lock held. The function returns the number of HBQ entries
2189  * successfully allocated.
2190  **/
2191 int
2192 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2193 {
2194 	if (phba->sli_rev == LPFC_SLI_REV4)
2195 		return 0;
2196 	else
2197 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2198 					 lpfc_hbq_defs[qno]->add_count);
2199 }
2200 
2201 /**
2202  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2203  * @phba: Pointer to HBA context object.
2204  * @qno:  HBQ queue number.
2205  *
2206  * This function is called from SLI initialization code path with
2207  * no lock held to post initial HBQ buffers to firmware. The
2208  * function returns the number of HBQ entries successfully allocated.
2209  **/
2210 static int
2211 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2212 {
2213 	if (phba->sli_rev == LPFC_SLI_REV4)
2214 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2215 					lpfc_hbq_defs[qno]->entry_count);
2216 	else
2217 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2218 					 lpfc_hbq_defs[qno]->init_count);
2219 }
2220 
2221 /**
2222  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2223  * @phba: Pointer to HBA context object.
2224  * @hbqno: HBQ number.
2225  *
2226  * This function removes the first hbq buffer on an hbq list and returns a
2227  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2228  **/
2229 static struct hbq_dmabuf *
2230 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2231 {
2232 	struct lpfc_dmabuf *d_buf;
2233 
2234 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2235 	if (!d_buf)
2236 		return NULL;
2237 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2238 }
2239 
2240 /**
2241  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2242  * @phba: Pointer to HBA context object.
2243  * @hbqno: HBQ number.
2244  *
2245  * This function removes the first RQ buffer on an RQ buffer list and returns a
2246  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2247  **/
2248 static struct rqb_dmabuf *
2249 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2250 {
2251 	struct lpfc_dmabuf *h_buf;
2252 	struct lpfc_rqb *rqbp;
2253 
2254 	rqbp = hrq->rqbp;
2255 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2256 			 struct lpfc_dmabuf, list);
2257 	if (!h_buf)
2258 		return NULL;
2259 	rqbp->buffer_count--;
2260 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2261 }
2262 
2263 /**
2264  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2265  * @phba: Pointer to HBA context object.
2266  * @tag: Tag of the hbq buffer.
2267  *
2268  * This function searches for the hbq buffer associated with the given tag in
2269  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2270  * otherwise it returns NULL.
2271  **/
2272 static struct hbq_dmabuf *
2273 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2274 {
2275 	struct lpfc_dmabuf *d_buf;
2276 	struct hbq_dmabuf *hbq_buf;
2277 	uint32_t hbqno;
2278 
2279 	hbqno = tag >> 16;
2280 	if (hbqno >= LPFC_MAX_HBQS)
2281 		return NULL;
2282 
2283 	spin_lock_irq(&phba->hbalock);
2284 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2285 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2286 		if (hbq_buf->tag == tag) {
2287 			spin_unlock_irq(&phba->hbalock);
2288 			return hbq_buf;
2289 		}
2290 	}
2291 	spin_unlock_irq(&phba->hbalock);
2292 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2293 			"1803 Bad hbq tag. Data: x%x x%x\n",
2294 			tag, phba->hbqs[tag >> 16].buffer_count);
2295 	return NULL;
2296 }
2297 
2298 /**
2299  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2300  * @phba: Pointer to HBA context object.
2301  * @hbq_buffer: Pointer to HBQ buffer.
2302  *
2303  * This function is called with hbalock. This function gives back
2304  * the hbq buffer to firmware. If the HBQ does not have space to
2305  * post the buffer, it will free the buffer.
2306  **/
2307 void
2308 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2309 {
2310 	uint32_t hbqno;
2311 
2312 	if (hbq_buffer) {
2313 		hbqno = hbq_buffer->tag >> 16;
2314 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2315 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2316 	}
2317 }
2318 
2319 /**
2320  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2321  * @mbxCommand: mailbox command code.
2322  *
2323  * This function is called by the mailbox event handler function to verify
2324  * that the completed mailbox command is a legitimate mailbox command. If the
2325  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2326  * and the mailbox event handler will take the HBA offline.
2327  **/
2328 static int
2329 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2330 {
2331 	uint8_t ret;
2332 
2333 	switch (mbxCommand) {
2334 	case MBX_LOAD_SM:
2335 	case MBX_READ_NV:
2336 	case MBX_WRITE_NV:
2337 	case MBX_WRITE_VPARMS:
2338 	case MBX_RUN_BIU_DIAG:
2339 	case MBX_INIT_LINK:
2340 	case MBX_DOWN_LINK:
2341 	case MBX_CONFIG_LINK:
2342 	case MBX_CONFIG_RING:
2343 	case MBX_RESET_RING:
2344 	case MBX_READ_CONFIG:
2345 	case MBX_READ_RCONFIG:
2346 	case MBX_READ_SPARM:
2347 	case MBX_READ_STATUS:
2348 	case MBX_READ_RPI:
2349 	case MBX_READ_XRI:
2350 	case MBX_READ_REV:
2351 	case MBX_READ_LNK_STAT:
2352 	case MBX_REG_LOGIN:
2353 	case MBX_UNREG_LOGIN:
2354 	case MBX_CLEAR_LA:
2355 	case MBX_DUMP_MEMORY:
2356 	case MBX_DUMP_CONTEXT:
2357 	case MBX_RUN_DIAGS:
2358 	case MBX_RESTART:
2359 	case MBX_UPDATE_CFG:
2360 	case MBX_DOWN_LOAD:
2361 	case MBX_DEL_LD_ENTRY:
2362 	case MBX_RUN_PROGRAM:
2363 	case MBX_SET_MASK:
2364 	case MBX_SET_VARIABLE:
2365 	case MBX_UNREG_D_ID:
2366 	case MBX_KILL_BOARD:
2367 	case MBX_CONFIG_FARP:
2368 	case MBX_BEACON:
2369 	case MBX_LOAD_AREA:
2370 	case MBX_RUN_BIU_DIAG64:
2371 	case MBX_CONFIG_PORT:
2372 	case MBX_READ_SPARM64:
2373 	case MBX_READ_RPI64:
2374 	case MBX_REG_LOGIN64:
2375 	case MBX_READ_TOPOLOGY:
2376 	case MBX_WRITE_WWN:
2377 	case MBX_SET_DEBUG:
2378 	case MBX_LOAD_EXP_ROM:
2379 	case MBX_ASYNCEVT_ENABLE:
2380 	case MBX_REG_VPI:
2381 	case MBX_UNREG_VPI:
2382 	case MBX_HEARTBEAT:
2383 	case MBX_PORT_CAPABILITIES:
2384 	case MBX_PORT_IOV_CONTROL:
2385 	case MBX_SLI4_CONFIG:
2386 	case MBX_SLI4_REQ_FTRS:
2387 	case MBX_REG_FCFI:
2388 	case MBX_UNREG_FCFI:
2389 	case MBX_REG_VFI:
2390 	case MBX_UNREG_VFI:
2391 	case MBX_INIT_VPI:
2392 	case MBX_INIT_VFI:
2393 	case MBX_RESUME_RPI:
2394 	case MBX_READ_EVENT_LOG_STATUS:
2395 	case MBX_READ_EVENT_LOG:
2396 	case MBX_SECURITY_MGMT:
2397 	case MBX_AUTH_PORT:
2398 	case MBX_ACCESS_VDATA:
2399 		ret = mbxCommand;
2400 		break;
2401 	default:
2402 		ret = MBX_SHUTDOWN;
2403 		break;
2404 	}
2405 	return ret;
2406 }
2407 
2408 /**
2409  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2410  * @phba: Pointer to HBA context object.
2411  * @pmboxq: Pointer to mailbox command.
2412  *
2413  * This is completion handler function for mailbox commands issued from
2414  * lpfc_sli_issue_mbox_wait function. This function is called by the
2415  * mailbox event handler function with no lock held. This function
2416  * will wake up thread waiting on the wait queue pointed by context1
2417  * of the mailbox.
2418  **/
2419 void
2420 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2421 {
2422 	unsigned long drvr_flag;
2423 	struct completion *pmbox_done;
2424 
2425 	/*
2426 	 * If pmbox_done is empty, the driver thread gave up waiting and
2427 	 * continued running.
2428 	 */
2429 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2430 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2431 	pmbox_done = (struct completion *)pmboxq->context3;
2432 	if (pmbox_done)
2433 		complete(pmbox_done);
2434 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2435 	return;
2436 }
2437 
2438 
2439 /**
2440  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2441  * @phba: Pointer to HBA context object.
2442  * @pmb: Pointer to mailbox object.
2443  *
2444  * This function is the default mailbox completion handler. It
2445  * frees the memory resources associated with the completed mailbox
2446  * command. If the completed command is a REG_LOGIN mailbox command,
2447  * this function will issue a UREG_LOGIN to re-claim the RPI.
2448  **/
2449 void
2450 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2451 {
2452 	struct lpfc_vport  *vport = pmb->vport;
2453 	struct lpfc_dmabuf *mp;
2454 	struct lpfc_nodelist *ndlp;
2455 	struct Scsi_Host *shost;
2456 	uint16_t rpi, vpi;
2457 	int rc;
2458 
2459 	mp = (struct lpfc_dmabuf *) (pmb->context1);
2460 
2461 	if (mp) {
2462 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2463 		kfree(mp);
2464 	}
2465 
2466 	/*
2467 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2468 	 * is in re-discovery driver need to cleanup the RPI.
2469 	 */
2470 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2471 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2472 	    !pmb->u.mb.mbxStatus) {
2473 		rpi = pmb->u.mb.un.varWords[0];
2474 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2475 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2476 		pmb->vport = vport;
2477 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2478 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2479 		if (rc != MBX_NOT_FINISHED)
2480 			return;
2481 	}
2482 
2483 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2484 		!(phba->pport->load_flag & FC_UNLOADING) &&
2485 		!pmb->u.mb.mbxStatus) {
2486 		shost = lpfc_shost_from_vport(vport);
2487 		spin_lock_irq(shost->host_lock);
2488 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2489 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2490 		spin_unlock_irq(shost->host_lock);
2491 	}
2492 
2493 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2494 		ndlp = (struct lpfc_nodelist *)pmb->context2;
2495 		lpfc_nlp_put(ndlp);
2496 		pmb->context2 = NULL;
2497 	}
2498 
2499 	/* Check security permission status on INIT_LINK mailbox command */
2500 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2501 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2502 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2503 				"2860 SLI authentication is required "
2504 				"for INIT_LINK but has not done yet\n");
2505 
2506 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2507 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2508 	else
2509 		mempool_free(pmb, phba->mbox_mem_pool);
2510 }
2511  /**
2512  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2513  * @phba: Pointer to HBA context object.
2514  * @pmb: Pointer to mailbox object.
2515  *
2516  * This function is the unreg rpi mailbox completion handler. It
2517  * frees the memory resources associated with the completed mailbox
2518  * command. An additional refrenece is put on the ndlp to prevent
2519  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2520  * the unreg mailbox command completes, this routine puts the
2521  * reference back.
2522  *
2523  **/
2524 void
2525 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2526 {
2527 	struct lpfc_vport  *vport = pmb->vport;
2528 	struct lpfc_nodelist *ndlp;
2529 
2530 	ndlp = pmb->context1;
2531 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2532 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2533 		    (bf_get(lpfc_sli_intf_if_type,
2534 		     &phba->sli4_hba.sli_intf) >=
2535 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2536 			if (ndlp) {
2537 				lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
2538 						 "0010 UNREG_LOGIN vpi:%x "
2539 						 "rpi:%x DID:%x map:%x %p\n",
2540 						 vport->vpi, ndlp->nlp_rpi,
2541 						 ndlp->nlp_DID,
2542 						 ndlp->nlp_usg_map, ndlp);
2543 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2544 				lpfc_nlp_put(ndlp);
2545 			}
2546 		}
2547 	}
2548 
2549 	mempool_free(pmb, phba->mbox_mem_pool);
2550 }
2551 
2552 /**
2553  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2554  * @phba: Pointer to HBA context object.
2555  *
2556  * This function is called with no lock held. This function processes all
2557  * the completed mailbox commands and gives it to upper layers. The interrupt
2558  * service routine processes mailbox completion interrupt and adds completed
2559  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2560  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2561  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2562  * function returns the mailbox commands to the upper layer by calling the
2563  * completion handler function of each mailbox.
2564  **/
2565 int
2566 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2567 {
2568 	MAILBOX_t *pmbox;
2569 	LPFC_MBOXQ_t *pmb;
2570 	int rc;
2571 	LIST_HEAD(cmplq);
2572 
2573 	phba->sli.slistat.mbox_event++;
2574 
2575 	/* Get all completed mailboxe buffers into the cmplq */
2576 	spin_lock_irq(&phba->hbalock);
2577 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2578 	spin_unlock_irq(&phba->hbalock);
2579 
2580 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2581 	do {
2582 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2583 		if (pmb == NULL)
2584 			break;
2585 
2586 		pmbox = &pmb->u.mb;
2587 
2588 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2589 			if (pmb->vport) {
2590 				lpfc_debugfs_disc_trc(pmb->vport,
2591 					LPFC_DISC_TRC_MBOX_VPORT,
2592 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2593 					(uint32_t)pmbox->mbxCommand,
2594 					pmbox->un.varWords[0],
2595 					pmbox->un.varWords[1]);
2596 			}
2597 			else {
2598 				lpfc_debugfs_disc_trc(phba->pport,
2599 					LPFC_DISC_TRC_MBOX,
2600 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2601 					(uint32_t)pmbox->mbxCommand,
2602 					pmbox->un.varWords[0],
2603 					pmbox->un.varWords[1]);
2604 			}
2605 		}
2606 
2607 		/*
2608 		 * It is a fatal error if unknown mbox command completion.
2609 		 */
2610 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2611 		    MBX_SHUTDOWN) {
2612 			/* Unknown mailbox command compl */
2613 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2614 					"(%d):0323 Unknown Mailbox command "
2615 					"x%x (x%x/x%x) Cmpl\n",
2616 					pmb->vport ? pmb->vport->vpi : 0,
2617 					pmbox->mbxCommand,
2618 					lpfc_sli_config_mbox_subsys_get(phba,
2619 									pmb),
2620 					lpfc_sli_config_mbox_opcode_get(phba,
2621 									pmb));
2622 			phba->link_state = LPFC_HBA_ERROR;
2623 			phba->work_hs = HS_FFER3;
2624 			lpfc_handle_eratt(phba);
2625 			continue;
2626 		}
2627 
2628 		if (pmbox->mbxStatus) {
2629 			phba->sli.slistat.mbox_stat_err++;
2630 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2631 				/* Mbox cmd cmpl error - RETRYing */
2632 				lpfc_printf_log(phba, KERN_INFO,
2633 					LOG_MBOX | LOG_SLI,
2634 					"(%d):0305 Mbox cmd cmpl "
2635 					"error - RETRYing Data: x%x "
2636 					"(x%x/x%x) x%x x%x x%x\n",
2637 					pmb->vport ? pmb->vport->vpi : 0,
2638 					pmbox->mbxCommand,
2639 					lpfc_sli_config_mbox_subsys_get(phba,
2640 									pmb),
2641 					lpfc_sli_config_mbox_opcode_get(phba,
2642 									pmb),
2643 					pmbox->mbxStatus,
2644 					pmbox->un.varWords[0],
2645 					pmb->vport->port_state);
2646 				pmbox->mbxStatus = 0;
2647 				pmbox->mbxOwner = OWN_HOST;
2648 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2649 				if (rc != MBX_NOT_FINISHED)
2650 					continue;
2651 			}
2652 		}
2653 
2654 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2655 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2656 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2657 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2658 				"x%x x%x x%x\n",
2659 				pmb->vport ? pmb->vport->vpi : 0,
2660 				pmbox->mbxCommand,
2661 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2662 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2663 				pmb->mbox_cmpl,
2664 				*((uint32_t *) pmbox),
2665 				pmbox->un.varWords[0],
2666 				pmbox->un.varWords[1],
2667 				pmbox->un.varWords[2],
2668 				pmbox->un.varWords[3],
2669 				pmbox->un.varWords[4],
2670 				pmbox->un.varWords[5],
2671 				pmbox->un.varWords[6],
2672 				pmbox->un.varWords[7],
2673 				pmbox->un.varWords[8],
2674 				pmbox->un.varWords[9],
2675 				pmbox->un.varWords[10]);
2676 
2677 		if (pmb->mbox_cmpl)
2678 			pmb->mbox_cmpl(phba,pmb);
2679 	} while (1);
2680 	return 0;
2681 }
2682 
2683 /**
2684  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2685  * @phba: Pointer to HBA context object.
2686  * @pring: Pointer to driver SLI ring object.
2687  * @tag: buffer tag.
2688  *
2689  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2690  * is set in the tag the buffer is posted for a particular exchange,
2691  * the function will return the buffer without replacing the buffer.
2692  * If the buffer is for unsolicited ELS or CT traffic, this function
2693  * returns the buffer and also posts another buffer to the firmware.
2694  **/
2695 static struct lpfc_dmabuf *
2696 lpfc_sli_get_buff(struct lpfc_hba *phba,
2697 		  struct lpfc_sli_ring *pring,
2698 		  uint32_t tag)
2699 {
2700 	struct hbq_dmabuf *hbq_entry;
2701 
2702 	if (tag & QUE_BUFTAG_BIT)
2703 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2704 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2705 	if (!hbq_entry)
2706 		return NULL;
2707 	return &hbq_entry->dbuf;
2708 }
2709 
2710 /**
2711  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2712  * @phba: Pointer to HBA context object.
2713  * @pring: Pointer to driver SLI ring object.
2714  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2715  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2716  * @fch_type: the type for the first frame of the sequence.
2717  *
2718  * This function is called with no lock held. This function uses the r_ctl and
2719  * type of the received sequence to find the correct callback function to call
2720  * to process the sequence.
2721  **/
2722 static int
2723 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2724 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2725 			 uint32_t fch_type)
2726 {
2727 	int i;
2728 
2729 	switch (fch_type) {
2730 	case FC_TYPE_NVME:
2731 		lpfc_nvmet_unsol_ls_event(phba, pring, saveq);
2732 		return 1;
2733 	default:
2734 		break;
2735 	}
2736 
2737 	/* unSolicited Responses */
2738 	if (pring->prt[0].profile) {
2739 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2740 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2741 									saveq);
2742 		return 1;
2743 	}
2744 	/* We must search, based on rctl / type
2745 	   for the right routine */
2746 	for (i = 0; i < pring->num_mask; i++) {
2747 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2748 		    (pring->prt[i].type == fch_type)) {
2749 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2750 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2751 						(phba, pring, saveq);
2752 			return 1;
2753 		}
2754 	}
2755 	return 0;
2756 }
2757 
2758 /**
2759  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2760  * @phba: Pointer to HBA context object.
2761  * @pring: Pointer to driver SLI ring object.
2762  * @saveq: Pointer to the unsolicited iocb.
2763  *
2764  * This function is called with no lock held by the ring event handler
2765  * when there is an unsolicited iocb posted to the response ring by the
2766  * firmware. This function gets the buffer associated with the iocbs
2767  * and calls the event handler for the ring. This function handles both
2768  * qring buffers and hbq buffers.
2769  * When the function returns 1 the caller can free the iocb object otherwise
2770  * upper layer functions will free the iocb objects.
2771  **/
2772 static int
2773 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2774 			    struct lpfc_iocbq *saveq)
2775 {
2776 	IOCB_t           * irsp;
2777 	WORD5            * w5p;
2778 	uint32_t           Rctl, Type;
2779 	struct lpfc_iocbq *iocbq;
2780 	struct lpfc_dmabuf *dmzbuf;
2781 
2782 	irsp = &(saveq->iocb);
2783 
2784 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2785 		if (pring->lpfc_sli_rcv_async_status)
2786 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2787 		else
2788 			lpfc_printf_log(phba,
2789 					KERN_WARNING,
2790 					LOG_SLI,
2791 					"0316 Ring %d handler: unexpected "
2792 					"ASYNC_STATUS iocb received evt_code "
2793 					"0x%x\n",
2794 					pring->ringno,
2795 					irsp->un.asyncstat.evt_code);
2796 		return 1;
2797 	}
2798 
2799 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2800 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2801 		if (irsp->ulpBdeCount > 0) {
2802 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2803 					irsp->un.ulpWord[3]);
2804 			lpfc_in_buf_free(phba, dmzbuf);
2805 		}
2806 
2807 		if (irsp->ulpBdeCount > 1) {
2808 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2809 					irsp->unsli3.sli3Words[3]);
2810 			lpfc_in_buf_free(phba, dmzbuf);
2811 		}
2812 
2813 		if (irsp->ulpBdeCount > 2) {
2814 			dmzbuf = lpfc_sli_get_buff(phba, pring,
2815 				irsp->unsli3.sli3Words[7]);
2816 			lpfc_in_buf_free(phba, dmzbuf);
2817 		}
2818 
2819 		return 1;
2820 	}
2821 
2822 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2823 		if (irsp->ulpBdeCount != 0) {
2824 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
2825 						irsp->un.ulpWord[3]);
2826 			if (!saveq->context2)
2827 				lpfc_printf_log(phba,
2828 					KERN_ERR,
2829 					LOG_SLI,
2830 					"0341 Ring %d Cannot find buffer for "
2831 					"an unsolicited iocb. tag 0x%x\n",
2832 					pring->ringno,
2833 					irsp->un.ulpWord[3]);
2834 		}
2835 		if (irsp->ulpBdeCount == 2) {
2836 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
2837 						irsp->unsli3.sli3Words[7]);
2838 			if (!saveq->context3)
2839 				lpfc_printf_log(phba,
2840 					KERN_ERR,
2841 					LOG_SLI,
2842 					"0342 Ring %d Cannot find buffer for an"
2843 					" unsolicited iocb. tag 0x%x\n",
2844 					pring->ringno,
2845 					irsp->unsli3.sli3Words[7]);
2846 		}
2847 		list_for_each_entry(iocbq, &saveq->list, list) {
2848 			irsp = &(iocbq->iocb);
2849 			if (irsp->ulpBdeCount != 0) {
2850 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2851 							irsp->un.ulpWord[3]);
2852 				if (!iocbq->context2)
2853 					lpfc_printf_log(phba,
2854 						KERN_ERR,
2855 						LOG_SLI,
2856 						"0343 Ring %d Cannot find "
2857 						"buffer for an unsolicited iocb"
2858 						". tag 0x%x\n", pring->ringno,
2859 						irsp->un.ulpWord[3]);
2860 			}
2861 			if (irsp->ulpBdeCount == 2) {
2862 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2863 						irsp->unsli3.sli3Words[7]);
2864 				if (!iocbq->context3)
2865 					lpfc_printf_log(phba,
2866 						KERN_ERR,
2867 						LOG_SLI,
2868 						"0344 Ring %d Cannot find "
2869 						"buffer for an unsolicited "
2870 						"iocb. tag 0x%x\n",
2871 						pring->ringno,
2872 						irsp->unsli3.sli3Words[7]);
2873 			}
2874 		}
2875 	}
2876 	if (irsp->ulpBdeCount != 0 &&
2877 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2878 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2879 		int found = 0;
2880 
2881 		/* search continue save q for same XRI */
2882 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2883 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2884 				saveq->iocb.unsli3.rcvsli3.ox_id) {
2885 				list_add_tail(&saveq->list, &iocbq->list);
2886 				found = 1;
2887 				break;
2888 			}
2889 		}
2890 		if (!found)
2891 			list_add_tail(&saveq->clist,
2892 				      &pring->iocb_continue_saveq);
2893 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2894 			list_del_init(&iocbq->clist);
2895 			saveq = iocbq;
2896 			irsp = &(saveq->iocb);
2897 		} else
2898 			return 0;
2899 	}
2900 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2901 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2902 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2903 		Rctl = FC_RCTL_ELS_REQ;
2904 		Type = FC_TYPE_ELS;
2905 	} else {
2906 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2907 		Rctl = w5p->hcsw.Rctl;
2908 		Type = w5p->hcsw.Type;
2909 
2910 		/* Firmware Workaround */
2911 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2912 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2913 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2914 			Rctl = FC_RCTL_ELS_REQ;
2915 			Type = FC_TYPE_ELS;
2916 			w5p->hcsw.Rctl = Rctl;
2917 			w5p->hcsw.Type = Type;
2918 		}
2919 	}
2920 
2921 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2922 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2923 				"0313 Ring %d handler: unexpected Rctl x%x "
2924 				"Type x%x received\n",
2925 				pring->ringno, Rctl, Type);
2926 
2927 	return 1;
2928 }
2929 
2930 /**
2931  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2932  * @phba: Pointer to HBA context object.
2933  * @pring: Pointer to driver SLI ring object.
2934  * @prspiocb: Pointer to response iocb object.
2935  *
2936  * This function looks up the iocb_lookup table to get the command iocb
2937  * corresponding to the given response iocb using the iotag of the
2938  * response iocb. This function is called with the hbalock held
2939  * for sli3 devices or the ring_lock for sli4 devices.
2940  * This function returns the command iocb object if it finds the command
2941  * iocb else returns NULL.
2942  **/
2943 static struct lpfc_iocbq *
2944 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2945 		      struct lpfc_sli_ring *pring,
2946 		      struct lpfc_iocbq *prspiocb)
2947 {
2948 	struct lpfc_iocbq *cmd_iocb = NULL;
2949 	uint16_t iotag;
2950 	lockdep_assert_held(&phba->hbalock);
2951 
2952 	iotag = prspiocb->iocb.ulpIoTag;
2953 
2954 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2955 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2956 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2957 			/* remove from txcmpl queue list */
2958 			list_del_init(&cmd_iocb->list);
2959 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2960 			return cmd_iocb;
2961 		}
2962 	}
2963 
2964 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2965 			"0317 iotag x%x is out of "
2966 			"range: max iotag x%x wd0 x%x\n",
2967 			iotag, phba->sli.last_iotag,
2968 			*(((uint32_t *) &prspiocb->iocb) + 7));
2969 	return NULL;
2970 }
2971 
2972 /**
2973  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2974  * @phba: Pointer to HBA context object.
2975  * @pring: Pointer to driver SLI ring object.
2976  * @iotag: IOCB tag.
2977  *
2978  * This function looks up the iocb_lookup table to get the command iocb
2979  * corresponding to the given iotag. This function is called with the
2980  * hbalock held.
2981  * This function returns the command iocb object if it finds the command
2982  * iocb else returns NULL.
2983  **/
2984 static struct lpfc_iocbq *
2985 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2986 			     struct lpfc_sli_ring *pring, uint16_t iotag)
2987 {
2988 	struct lpfc_iocbq *cmd_iocb = NULL;
2989 
2990 	lockdep_assert_held(&phba->hbalock);
2991 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2992 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
2993 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
2994 			/* remove from txcmpl queue list */
2995 			list_del_init(&cmd_iocb->list);
2996 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
2997 			return cmd_iocb;
2998 		}
2999 	}
3000 
3001 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3002 			"0372 iotag x%x lookup error: max iotag (x%x) "
3003 			"iocb_flag x%x\n",
3004 			iotag, phba->sli.last_iotag,
3005 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3006 	return NULL;
3007 }
3008 
3009 /**
3010  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3011  * @phba: Pointer to HBA context object.
3012  * @pring: Pointer to driver SLI ring object.
3013  * @saveq: Pointer to the response iocb to be processed.
3014  *
3015  * This function is called by the ring event handler for non-fcp
3016  * rings when there is a new response iocb in the response ring.
3017  * The caller is not required to hold any locks. This function
3018  * gets the command iocb associated with the response iocb and
3019  * calls the completion handler for the command iocb. If there
3020  * is no completion handler, the function will free the resources
3021  * associated with command iocb. If the response iocb is for
3022  * an already aborted command iocb, the status of the completion
3023  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3024  * This function always returns 1.
3025  **/
3026 static int
3027 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3028 			  struct lpfc_iocbq *saveq)
3029 {
3030 	struct lpfc_iocbq *cmdiocbp;
3031 	int rc = 1;
3032 	unsigned long iflag;
3033 
3034 	/* Based on the iotag field, get the cmd IOCB from the txcmplq */
3035 	if (phba->sli_rev == LPFC_SLI_REV4)
3036 		spin_lock_irqsave(&pring->ring_lock, iflag);
3037 	else
3038 		spin_lock_irqsave(&phba->hbalock, iflag);
3039 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3040 	if (phba->sli_rev == LPFC_SLI_REV4)
3041 		spin_unlock_irqrestore(&pring->ring_lock, iflag);
3042 	else
3043 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3044 
3045 	if (cmdiocbp) {
3046 		if (cmdiocbp->iocb_cmpl) {
3047 			/*
3048 			 * If an ELS command failed send an event to mgmt
3049 			 * application.
3050 			 */
3051 			if (saveq->iocb.ulpStatus &&
3052 			     (pring->ringno == LPFC_ELS_RING) &&
3053 			     (cmdiocbp->iocb.ulpCommand ==
3054 				CMD_ELS_REQUEST64_CR))
3055 				lpfc_send_els_failure_event(phba,
3056 					cmdiocbp, saveq);
3057 
3058 			/*
3059 			 * Post all ELS completions to the worker thread.
3060 			 * All other are passed to the completion callback.
3061 			 */
3062 			if (pring->ringno == LPFC_ELS_RING) {
3063 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3064 				    (cmdiocbp->iocb_flag &
3065 							LPFC_DRIVER_ABORTED)) {
3066 					spin_lock_irqsave(&phba->hbalock,
3067 							  iflag);
3068 					cmdiocbp->iocb_flag &=
3069 						~LPFC_DRIVER_ABORTED;
3070 					spin_unlock_irqrestore(&phba->hbalock,
3071 							       iflag);
3072 					saveq->iocb.ulpStatus =
3073 						IOSTAT_LOCAL_REJECT;
3074 					saveq->iocb.un.ulpWord[4] =
3075 						IOERR_SLI_ABORTED;
3076 
3077 					/* Firmware could still be in progress
3078 					 * of DMAing payload, so don't free data
3079 					 * buffer till after a hbeat.
3080 					 */
3081 					spin_lock_irqsave(&phba->hbalock,
3082 							  iflag);
3083 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3084 					spin_unlock_irqrestore(&phba->hbalock,
3085 							       iflag);
3086 				}
3087 				if (phba->sli_rev == LPFC_SLI_REV4) {
3088 					if (saveq->iocb_flag &
3089 					    LPFC_EXCHANGE_BUSY) {
3090 						/* Set cmdiocb flag for the
3091 						 * exchange busy so sgl (xri)
3092 						 * will not be released until
3093 						 * the abort xri is received
3094 						 * from hba.
3095 						 */
3096 						spin_lock_irqsave(
3097 							&phba->hbalock, iflag);
3098 						cmdiocbp->iocb_flag |=
3099 							LPFC_EXCHANGE_BUSY;
3100 						spin_unlock_irqrestore(
3101 							&phba->hbalock, iflag);
3102 					}
3103 					if (cmdiocbp->iocb_flag &
3104 					    LPFC_DRIVER_ABORTED) {
3105 						/*
3106 						 * Clear LPFC_DRIVER_ABORTED
3107 						 * bit in case it was driver
3108 						 * initiated abort.
3109 						 */
3110 						spin_lock_irqsave(
3111 							&phba->hbalock, iflag);
3112 						cmdiocbp->iocb_flag &=
3113 							~LPFC_DRIVER_ABORTED;
3114 						spin_unlock_irqrestore(
3115 							&phba->hbalock, iflag);
3116 						cmdiocbp->iocb.ulpStatus =
3117 							IOSTAT_LOCAL_REJECT;
3118 						cmdiocbp->iocb.un.ulpWord[4] =
3119 							IOERR_ABORT_REQUESTED;
3120 						/*
3121 						 * For SLI4, irsiocb contains
3122 						 * NO_XRI in sli_xritag, it
3123 						 * shall not affect releasing
3124 						 * sgl (xri) process.
3125 						 */
3126 						saveq->iocb.ulpStatus =
3127 							IOSTAT_LOCAL_REJECT;
3128 						saveq->iocb.un.ulpWord[4] =
3129 							IOERR_SLI_ABORTED;
3130 						spin_lock_irqsave(
3131 							&phba->hbalock, iflag);
3132 						saveq->iocb_flag |=
3133 							LPFC_DELAY_MEM_FREE;
3134 						spin_unlock_irqrestore(
3135 							&phba->hbalock, iflag);
3136 					}
3137 				}
3138 			}
3139 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3140 		} else
3141 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3142 	} else {
3143 		/*
3144 		 * Unknown initiating command based on the response iotag.
3145 		 * This could be the case on the ELS ring because of
3146 		 * lpfc_els_abort().
3147 		 */
3148 		if (pring->ringno != LPFC_ELS_RING) {
3149 			/*
3150 			 * Ring <ringno> handler: unexpected completion IoTag
3151 			 * <IoTag>
3152 			 */
3153 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3154 					 "0322 Ring %d handler: "
3155 					 "unexpected completion IoTag x%x "
3156 					 "Data: x%x x%x x%x x%x\n",
3157 					 pring->ringno,
3158 					 saveq->iocb.ulpIoTag,
3159 					 saveq->iocb.ulpStatus,
3160 					 saveq->iocb.un.ulpWord[4],
3161 					 saveq->iocb.ulpCommand,
3162 					 saveq->iocb.ulpContext);
3163 		}
3164 	}
3165 
3166 	return rc;
3167 }
3168 
3169 /**
3170  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3171  * @phba: Pointer to HBA context object.
3172  * @pring: Pointer to driver SLI ring object.
3173  *
3174  * This function is called from the iocb ring event handlers when
3175  * put pointer is ahead of the get pointer for a ring. This function signal
3176  * an error attention condition to the worker thread and the worker
3177  * thread will transition the HBA to offline state.
3178  **/
3179 static void
3180 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3181 {
3182 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3183 	/*
3184 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3185 	 * rsp ring <portRspMax>
3186 	 */
3187 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3188 			"0312 Ring %d handler: portRspPut %d "
3189 			"is bigger than rsp ring %d\n",
3190 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3191 			pring->sli.sli3.numRiocb);
3192 
3193 	phba->link_state = LPFC_HBA_ERROR;
3194 
3195 	/*
3196 	 * All error attention handlers are posted to
3197 	 * worker thread
3198 	 */
3199 	phba->work_ha |= HA_ERATT;
3200 	phba->work_hs = HS_FFER3;
3201 
3202 	lpfc_worker_wake_up(phba);
3203 
3204 	return;
3205 }
3206 
3207 /**
3208  * lpfc_poll_eratt - Error attention polling timer timeout handler
3209  * @ptr: Pointer to address of HBA context object.
3210  *
3211  * This function is invoked by the Error Attention polling timer when the
3212  * timer times out. It will check the SLI Error Attention register for
3213  * possible attention events. If so, it will post an Error Attention event
3214  * and wake up worker thread to process it. Otherwise, it will set up the
3215  * Error Attention polling timer for the next poll.
3216  **/
3217 void lpfc_poll_eratt(struct timer_list *t)
3218 {
3219 	struct lpfc_hba *phba;
3220 	uint32_t eratt = 0;
3221 	uint64_t sli_intr, cnt;
3222 
3223 	phba = from_timer(phba, t, eratt_poll);
3224 
3225 	/* Here we will also keep track of interrupts per sec of the hba */
3226 	sli_intr = phba->sli.slistat.sli_intr;
3227 
3228 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3229 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3230 			sli_intr);
3231 	else
3232 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3233 
3234 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3235 	do_div(cnt, phba->eratt_poll_interval);
3236 	phba->sli.slistat.sli_ips = cnt;
3237 
3238 	phba->sli.slistat.sli_prev_intr = sli_intr;
3239 
3240 	/* Check chip HA register for error event */
3241 	eratt = lpfc_sli_check_eratt(phba);
3242 
3243 	if (eratt)
3244 		/* Tell the worker thread there is work to do */
3245 		lpfc_worker_wake_up(phba);
3246 	else
3247 		/* Restart the timer for next eratt poll */
3248 		mod_timer(&phba->eratt_poll,
3249 			  jiffies +
3250 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3251 	return;
3252 }
3253 
3254 
3255 /**
3256  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3257  * @phba: Pointer to HBA context object.
3258  * @pring: Pointer to driver SLI ring object.
3259  * @mask: Host attention register mask for this ring.
3260  *
3261  * This function is called from the interrupt context when there is a ring
3262  * event for the fcp ring. The caller does not hold any lock.
3263  * The function processes each response iocb in the response ring until it
3264  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3265  * LE bit set. The function will call the completion handler of the command iocb
3266  * if the response iocb indicates a completion for a command iocb or it is
3267  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3268  * function if this is an unsolicited iocb.
3269  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3270  * to check it explicitly.
3271  */
3272 int
3273 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3274 				struct lpfc_sli_ring *pring, uint32_t mask)
3275 {
3276 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3277 	IOCB_t *irsp = NULL;
3278 	IOCB_t *entry = NULL;
3279 	struct lpfc_iocbq *cmdiocbq = NULL;
3280 	struct lpfc_iocbq rspiocbq;
3281 	uint32_t status;
3282 	uint32_t portRspPut, portRspMax;
3283 	int rc = 1;
3284 	lpfc_iocb_type type;
3285 	unsigned long iflag;
3286 	uint32_t rsp_cmpl = 0;
3287 
3288 	spin_lock_irqsave(&phba->hbalock, iflag);
3289 	pring->stats.iocb_event++;
3290 
3291 	/*
3292 	 * The next available response entry should never exceed the maximum
3293 	 * entries.  If it does, treat it as an adapter hardware error.
3294 	 */
3295 	portRspMax = pring->sli.sli3.numRiocb;
3296 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3297 	if (unlikely(portRspPut >= portRspMax)) {
3298 		lpfc_sli_rsp_pointers_error(phba, pring);
3299 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3300 		return 1;
3301 	}
3302 	if (phba->fcp_ring_in_use) {
3303 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3304 		return 1;
3305 	} else
3306 		phba->fcp_ring_in_use = 1;
3307 
3308 	rmb();
3309 	while (pring->sli.sli3.rspidx != portRspPut) {
3310 		/*
3311 		 * Fetch an entry off the ring and copy it into a local data
3312 		 * structure.  The copy involves a byte-swap since the
3313 		 * network byte order and pci byte orders are different.
3314 		 */
3315 		entry = lpfc_resp_iocb(phba, pring);
3316 		phba->last_completion_time = jiffies;
3317 
3318 		if (++pring->sli.sli3.rspidx >= portRspMax)
3319 			pring->sli.sli3.rspidx = 0;
3320 
3321 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3322 				      (uint32_t *) &rspiocbq.iocb,
3323 				      phba->iocb_rsp_size);
3324 		INIT_LIST_HEAD(&(rspiocbq.list));
3325 		irsp = &rspiocbq.iocb;
3326 
3327 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3328 		pring->stats.iocb_rsp++;
3329 		rsp_cmpl++;
3330 
3331 		if (unlikely(irsp->ulpStatus)) {
3332 			/*
3333 			 * If resource errors reported from HBA, reduce
3334 			 * queuedepths of the SCSI device.
3335 			 */
3336 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3337 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3338 			     IOERR_NO_RESOURCES)) {
3339 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3340 				phba->lpfc_rampdown_queue_depth(phba);
3341 				spin_lock_irqsave(&phba->hbalock, iflag);
3342 			}
3343 
3344 			/* Rsp ring <ringno> error: IOCB */
3345 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3346 					"0336 Rsp Ring %d error: IOCB Data: "
3347 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3348 					pring->ringno,
3349 					irsp->un.ulpWord[0],
3350 					irsp->un.ulpWord[1],
3351 					irsp->un.ulpWord[2],
3352 					irsp->un.ulpWord[3],
3353 					irsp->un.ulpWord[4],
3354 					irsp->un.ulpWord[5],
3355 					*(uint32_t *)&irsp->un1,
3356 					*((uint32_t *)&irsp->un1 + 1));
3357 		}
3358 
3359 		switch (type) {
3360 		case LPFC_ABORT_IOCB:
3361 		case LPFC_SOL_IOCB:
3362 			/*
3363 			 * Idle exchange closed via ABTS from port.  No iocb
3364 			 * resources need to be recovered.
3365 			 */
3366 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3367 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3368 						"0333 IOCB cmd 0x%x"
3369 						" processed. Skipping"
3370 						" completion\n",
3371 						irsp->ulpCommand);
3372 				break;
3373 			}
3374 
3375 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3376 							 &rspiocbq);
3377 			if (unlikely(!cmdiocbq))
3378 				break;
3379 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3380 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3381 			if (cmdiocbq->iocb_cmpl) {
3382 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3383 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3384 						      &rspiocbq);
3385 				spin_lock_irqsave(&phba->hbalock, iflag);
3386 			}
3387 			break;
3388 		case LPFC_UNSOL_IOCB:
3389 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3390 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3391 			spin_lock_irqsave(&phba->hbalock, iflag);
3392 			break;
3393 		default:
3394 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3395 				char adaptermsg[LPFC_MAX_ADPTMSG];
3396 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3397 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3398 				       MAX_MSG_DATA);
3399 				dev_warn(&((phba->pcidev)->dev),
3400 					 "lpfc%d: %s\n",
3401 					 phba->brd_no, adaptermsg);
3402 			} else {
3403 				/* Unknown IOCB command */
3404 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3405 						"0334 Unknown IOCB command "
3406 						"Data: x%x, x%x x%x x%x x%x\n",
3407 						type, irsp->ulpCommand,
3408 						irsp->ulpStatus,
3409 						irsp->ulpIoTag,
3410 						irsp->ulpContext);
3411 			}
3412 			break;
3413 		}
3414 
3415 		/*
3416 		 * The response IOCB has been processed.  Update the ring
3417 		 * pointer in SLIM.  If the port response put pointer has not
3418 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3419 		 * response put pointer.
3420 		 */
3421 		writel(pring->sli.sli3.rspidx,
3422 			&phba->host_gp[pring->ringno].rspGetInx);
3423 
3424 		if (pring->sli.sli3.rspidx == portRspPut)
3425 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3426 	}
3427 
3428 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3429 		pring->stats.iocb_rsp_full++;
3430 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3431 		writel(status, phba->CAregaddr);
3432 		readl(phba->CAregaddr);
3433 	}
3434 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3435 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3436 		pring->stats.iocb_cmd_empty++;
3437 
3438 		/* Force update of the local copy of cmdGetInx */
3439 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3440 		lpfc_sli_resume_iocb(phba, pring);
3441 
3442 		if ((pring->lpfc_sli_cmd_available))
3443 			(pring->lpfc_sli_cmd_available) (phba, pring);
3444 
3445 	}
3446 
3447 	phba->fcp_ring_in_use = 0;
3448 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3449 	return rc;
3450 }
3451 
3452 /**
3453  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3454  * @phba: Pointer to HBA context object.
3455  * @pring: Pointer to driver SLI ring object.
3456  * @rspiocbp: Pointer to driver response IOCB object.
3457  *
3458  * This function is called from the worker thread when there is a slow-path
3459  * response IOCB to process. This function chains all the response iocbs until
3460  * seeing the iocb with the LE bit set. The function will call
3461  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3462  * completion of a command iocb. The function will call the
3463  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3464  * The function frees the resources or calls the completion handler if this
3465  * iocb is an abort completion. The function returns NULL when the response
3466  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3467  * this function shall chain the iocb on to the iocb_continueq and return the
3468  * response iocb passed in.
3469  **/
3470 static struct lpfc_iocbq *
3471 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3472 			struct lpfc_iocbq *rspiocbp)
3473 {
3474 	struct lpfc_iocbq *saveq;
3475 	struct lpfc_iocbq *cmdiocbp;
3476 	struct lpfc_iocbq *next_iocb;
3477 	IOCB_t *irsp = NULL;
3478 	uint32_t free_saveq;
3479 	uint8_t iocb_cmd_type;
3480 	lpfc_iocb_type type;
3481 	unsigned long iflag;
3482 	int rc;
3483 
3484 	spin_lock_irqsave(&phba->hbalock, iflag);
3485 	/* First add the response iocb to the countinueq list */
3486 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3487 	pring->iocb_continueq_cnt++;
3488 
3489 	/* Now, determine whether the list is completed for processing */
3490 	irsp = &rspiocbp->iocb;
3491 	if (irsp->ulpLe) {
3492 		/*
3493 		 * By default, the driver expects to free all resources
3494 		 * associated with this iocb completion.
3495 		 */
3496 		free_saveq = 1;
3497 		saveq = list_get_first(&pring->iocb_continueq,
3498 				       struct lpfc_iocbq, list);
3499 		irsp = &(saveq->iocb);
3500 		list_del_init(&pring->iocb_continueq);
3501 		pring->iocb_continueq_cnt = 0;
3502 
3503 		pring->stats.iocb_rsp++;
3504 
3505 		/*
3506 		 * If resource errors reported from HBA, reduce
3507 		 * queuedepths of the SCSI device.
3508 		 */
3509 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3510 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3511 		     IOERR_NO_RESOURCES)) {
3512 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3513 			phba->lpfc_rampdown_queue_depth(phba);
3514 			spin_lock_irqsave(&phba->hbalock, iflag);
3515 		}
3516 
3517 		if (irsp->ulpStatus) {
3518 			/* Rsp ring <ringno> error: IOCB */
3519 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3520 					"0328 Rsp Ring %d error: "
3521 					"IOCB Data: "
3522 					"x%x x%x x%x x%x "
3523 					"x%x x%x x%x x%x "
3524 					"x%x x%x x%x x%x "
3525 					"x%x x%x x%x x%x\n",
3526 					pring->ringno,
3527 					irsp->un.ulpWord[0],
3528 					irsp->un.ulpWord[1],
3529 					irsp->un.ulpWord[2],
3530 					irsp->un.ulpWord[3],
3531 					irsp->un.ulpWord[4],
3532 					irsp->un.ulpWord[5],
3533 					*(((uint32_t *) irsp) + 6),
3534 					*(((uint32_t *) irsp) + 7),
3535 					*(((uint32_t *) irsp) + 8),
3536 					*(((uint32_t *) irsp) + 9),
3537 					*(((uint32_t *) irsp) + 10),
3538 					*(((uint32_t *) irsp) + 11),
3539 					*(((uint32_t *) irsp) + 12),
3540 					*(((uint32_t *) irsp) + 13),
3541 					*(((uint32_t *) irsp) + 14),
3542 					*(((uint32_t *) irsp) + 15));
3543 		}
3544 
3545 		/*
3546 		 * Fetch the IOCB command type and call the correct completion
3547 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3548 		 * get freed back to the lpfc_iocb_list by the discovery
3549 		 * kernel thread.
3550 		 */
3551 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3552 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3553 		switch (type) {
3554 		case LPFC_SOL_IOCB:
3555 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3556 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3557 			spin_lock_irqsave(&phba->hbalock, iflag);
3558 			break;
3559 
3560 		case LPFC_UNSOL_IOCB:
3561 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3562 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3563 			spin_lock_irqsave(&phba->hbalock, iflag);
3564 			if (!rc)
3565 				free_saveq = 0;
3566 			break;
3567 
3568 		case LPFC_ABORT_IOCB:
3569 			cmdiocbp = NULL;
3570 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3571 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3572 								 saveq);
3573 			if (cmdiocbp) {
3574 				/* Call the specified completion routine */
3575 				if (cmdiocbp->iocb_cmpl) {
3576 					spin_unlock_irqrestore(&phba->hbalock,
3577 							       iflag);
3578 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3579 							      saveq);
3580 					spin_lock_irqsave(&phba->hbalock,
3581 							  iflag);
3582 				} else
3583 					__lpfc_sli_release_iocbq(phba,
3584 								 cmdiocbp);
3585 			}
3586 			break;
3587 
3588 		case LPFC_UNKNOWN_IOCB:
3589 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3590 				char adaptermsg[LPFC_MAX_ADPTMSG];
3591 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3592 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3593 				       MAX_MSG_DATA);
3594 				dev_warn(&((phba->pcidev)->dev),
3595 					 "lpfc%d: %s\n",
3596 					 phba->brd_no, adaptermsg);
3597 			} else {
3598 				/* Unknown IOCB command */
3599 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3600 						"0335 Unknown IOCB "
3601 						"command Data: x%x "
3602 						"x%x x%x x%x\n",
3603 						irsp->ulpCommand,
3604 						irsp->ulpStatus,
3605 						irsp->ulpIoTag,
3606 						irsp->ulpContext);
3607 			}
3608 			break;
3609 		}
3610 
3611 		if (free_saveq) {
3612 			list_for_each_entry_safe(rspiocbp, next_iocb,
3613 						 &saveq->list, list) {
3614 				list_del_init(&rspiocbp->list);
3615 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3616 			}
3617 			__lpfc_sli_release_iocbq(phba, saveq);
3618 		}
3619 		rspiocbp = NULL;
3620 	}
3621 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3622 	return rspiocbp;
3623 }
3624 
3625 /**
3626  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3627  * @phba: Pointer to HBA context object.
3628  * @pring: Pointer to driver SLI ring object.
3629  * @mask: Host attention register mask for this ring.
3630  *
3631  * This routine wraps the actual slow_ring event process routine from the
3632  * API jump table function pointer from the lpfc_hba struct.
3633  **/
3634 void
3635 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3636 				struct lpfc_sli_ring *pring, uint32_t mask)
3637 {
3638 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3639 }
3640 
3641 /**
3642  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3643  * @phba: Pointer to HBA context object.
3644  * @pring: Pointer to driver SLI ring object.
3645  * @mask: Host attention register mask for this ring.
3646  *
3647  * This function is called from the worker thread when there is a ring event
3648  * for non-fcp rings. The caller does not hold any lock. The function will
3649  * remove each response iocb in the response ring and calls the handle
3650  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3651  **/
3652 static void
3653 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3654 				   struct lpfc_sli_ring *pring, uint32_t mask)
3655 {
3656 	struct lpfc_pgp *pgp;
3657 	IOCB_t *entry;
3658 	IOCB_t *irsp = NULL;
3659 	struct lpfc_iocbq *rspiocbp = NULL;
3660 	uint32_t portRspPut, portRspMax;
3661 	unsigned long iflag;
3662 	uint32_t status;
3663 
3664 	pgp = &phba->port_gp[pring->ringno];
3665 	spin_lock_irqsave(&phba->hbalock, iflag);
3666 	pring->stats.iocb_event++;
3667 
3668 	/*
3669 	 * The next available response entry should never exceed the maximum
3670 	 * entries.  If it does, treat it as an adapter hardware error.
3671 	 */
3672 	portRspMax = pring->sli.sli3.numRiocb;
3673 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3674 	if (portRspPut >= portRspMax) {
3675 		/*
3676 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3677 		 * rsp ring <portRspMax>
3678 		 */
3679 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3680 				"0303 Ring %d handler: portRspPut %d "
3681 				"is bigger than rsp ring %d\n",
3682 				pring->ringno, portRspPut, portRspMax);
3683 
3684 		phba->link_state = LPFC_HBA_ERROR;
3685 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3686 
3687 		phba->work_hs = HS_FFER3;
3688 		lpfc_handle_eratt(phba);
3689 
3690 		return;
3691 	}
3692 
3693 	rmb();
3694 	while (pring->sli.sli3.rspidx != portRspPut) {
3695 		/*
3696 		 * Build a completion list and call the appropriate handler.
3697 		 * The process is to get the next available response iocb, get
3698 		 * a free iocb from the list, copy the response data into the
3699 		 * free iocb, insert to the continuation list, and update the
3700 		 * next response index to slim.  This process makes response
3701 		 * iocb's in the ring available to DMA as fast as possible but
3702 		 * pays a penalty for a copy operation.  Since the iocb is
3703 		 * only 32 bytes, this penalty is considered small relative to
3704 		 * the PCI reads for register values and a slim write.  When
3705 		 * the ulpLe field is set, the entire Command has been
3706 		 * received.
3707 		 */
3708 		entry = lpfc_resp_iocb(phba, pring);
3709 
3710 		phba->last_completion_time = jiffies;
3711 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3712 		if (rspiocbp == NULL) {
3713 			printk(KERN_ERR "%s: out of buffers! Failing "
3714 			       "completion.\n", __func__);
3715 			break;
3716 		}
3717 
3718 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3719 				      phba->iocb_rsp_size);
3720 		irsp = &rspiocbp->iocb;
3721 
3722 		if (++pring->sli.sli3.rspidx >= portRspMax)
3723 			pring->sli.sli3.rspidx = 0;
3724 
3725 		if (pring->ringno == LPFC_ELS_RING) {
3726 			lpfc_debugfs_slow_ring_trc(phba,
3727 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3728 				*(((uint32_t *) irsp) + 4),
3729 				*(((uint32_t *) irsp) + 6),
3730 				*(((uint32_t *) irsp) + 7));
3731 		}
3732 
3733 		writel(pring->sli.sli3.rspidx,
3734 			&phba->host_gp[pring->ringno].rspGetInx);
3735 
3736 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3737 		/* Handle the response IOCB */
3738 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3739 		spin_lock_irqsave(&phba->hbalock, iflag);
3740 
3741 		/*
3742 		 * If the port response put pointer has not been updated, sync
3743 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3744 		 * response put pointer.
3745 		 */
3746 		if (pring->sli.sli3.rspidx == portRspPut) {
3747 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3748 		}
3749 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3750 
3751 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3752 		/* At least one response entry has been freed */
3753 		pring->stats.iocb_rsp_full++;
3754 		/* SET RxRE_RSP in Chip Att register */
3755 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3756 		writel(status, phba->CAregaddr);
3757 		readl(phba->CAregaddr); /* flush */
3758 	}
3759 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3760 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3761 		pring->stats.iocb_cmd_empty++;
3762 
3763 		/* Force update of the local copy of cmdGetInx */
3764 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3765 		lpfc_sli_resume_iocb(phba, pring);
3766 
3767 		if ((pring->lpfc_sli_cmd_available))
3768 			(pring->lpfc_sli_cmd_available) (phba, pring);
3769 
3770 	}
3771 
3772 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3773 	return;
3774 }
3775 
3776 /**
3777  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3778  * @phba: Pointer to HBA context object.
3779  * @pring: Pointer to driver SLI ring object.
3780  * @mask: Host attention register mask for this ring.
3781  *
3782  * This function is called from the worker thread when there is a pending
3783  * ELS response iocb on the driver internal slow-path response iocb worker
3784  * queue. The caller does not hold any lock. The function will remove each
3785  * response iocb from the response worker queue and calls the handle
3786  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3787  **/
3788 static void
3789 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3790 				   struct lpfc_sli_ring *pring, uint32_t mask)
3791 {
3792 	struct lpfc_iocbq *irspiocbq;
3793 	struct hbq_dmabuf *dmabuf;
3794 	struct lpfc_cq_event *cq_event;
3795 	unsigned long iflag;
3796 	int count = 0;
3797 
3798 	spin_lock_irqsave(&phba->hbalock, iflag);
3799 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3800 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3801 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3802 		/* Get the response iocb from the head of work queue */
3803 		spin_lock_irqsave(&phba->hbalock, iflag);
3804 		list_remove_head(&phba->sli4_hba.sp_queue_event,
3805 				 cq_event, struct lpfc_cq_event, list);
3806 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3807 
3808 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3809 		case CQE_CODE_COMPL_WQE:
3810 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3811 						 cq_event);
3812 			/* Translate ELS WCQE to response IOCBQ */
3813 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3814 								   irspiocbq);
3815 			if (irspiocbq)
3816 				lpfc_sli_sp_handle_rspiocb(phba, pring,
3817 							   irspiocbq);
3818 			count++;
3819 			break;
3820 		case CQE_CODE_RECEIVE:
3821 		case CQE_CODE_RECEIVE_V1:
3822 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
3823 					      cq_event);
3824 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
3825 			count++;
3826 			break;
3827 		default:
3828 			break;
3829 		}
3830 
3831 		/* Limit the number of events to 64 to avoid soft lockups */
3832 		if (count == 64)
3833 			break;
3834 	}
3835 }
3836 
3837 /**
3838  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3839  * @phba: Pointer to HBA context object.
3840  * @pring: Pointer to driver SLI ring object.
3841  *
3842  * This function aborts all iocbs in the given ring and frees all the iocb
3843  * objects in txq. This function issues an abort iocb for all the iocb commands
3844  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3845  * the return of this function. The caller is not required to hold any locks.
3846  **/
3847 void
3848 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3849 {
3850 	LIST_HEAD(completions);
3851 	struct lpfc_iocbq *iocb, *next_iocb;
3852 
3853 	if (pring->ringno == LPFC_ELS_RING) {
3854 		lpfc_fabric_abort_hba(phba);
3855 	}
3856 
3857 	/* Error everything on txq and txcmplq
3858 	 * First do the txq.
3859 	 */
3860 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3861 		spin_lock_irq(&pring->ring_lock);
3862 		list_splice_init(&pring->txq, &completions);
3863 		pring->txq_cnt = 0;
3864 		spin_unlock_irq(&pring->ring_lock);
3865 
3866 		spin_lock_irq(&phba->hbalock);
3867 		/* Next issue ABTS for everything on the txcmplq */
3868 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3869 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3870 		spin_unlock_irq(&phba->hbalock);
3871 	} else {
3872 		spin_lock_irq(&phba->hbalock);
3873 		list_splice_init(&pring->txq, &completions);
3874 		pring->txq_cnt = 0;
3875 
3876 		/* Next issue ABTS for everything on the txcmplq */
3877 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3878 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3879 		spin_unlock_irq(&phba->hbalock);
3880 	}
3881 
3882 	/* Cancel all the IOCBs from the completions list */
3883 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3884 			      IOERR_SLI_ABORTED);
3885 }
3886 
3887 /**
3888  * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring
3889  * @phba: Pointer to HBA context object.
3890  * @pring: Pointer to driver SLI ring object.
3891  *
3892  * This function aborts all iocbs in the given ring and frees all the iocb
3893  * objects in txq. This function issues an abort iocb for all the iocb commands
3894  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3895  * the return of this function. The caller is not required to hold any locks.
3896  **/
3897 void
3898 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3899 {
3900 	LIST_HEAD(completions);
3901 	struct lpfc_iocbq *iocb, *next_iocb;
3902 
3903 	if (pring->ringno == LPFC_ELS_RING)
3904 		lpfc_fabric_abort_hba(phba);
3905 
3906 	spin_lock_irq(&phba->hbalock);
3907 	/* Next issue ABTS for everything on the txcmplq */
3908 	list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3909 		lpfc_sli4_abort_nvme_io(phba, pring, iocb);
3910 	spin_unlock_irq(&phba->hbalock);
3911 }
3912 
3913 
3914 /**
3915  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
3916  * @phba: Pointer to HBA context object.
3917  * @pring: Pointer to driver SLI ring object.
3918  *
3919  * This function aborts all iocbs in FCP rings and frees all the iocb
3920  * objects in txq. This function issues an abort iocb for all the iocb commands
3921  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3922  * the return of this function. The caller is not required to hold any locks.
3923  **/
3924 void
3925 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
3926 {
3927 	struct lpfc_sli *psli = &phba->sli;
3928 	struct lpfc_sli_ring  *pring;
3929 	uint32_t i;
3930 
3931 	/* Look on all the FCP Rings for the iotag */
3932 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3933 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3934 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3935 			lpfc_sli_abort_iocb_ring(phba, pring);
3936 		}
3937 	} else {
3938 		pring = &psli->sli3_ring[LPFC_FCP_RING];
3939 		lpfc_sli_abort_iocb_ring(phba, pring);
3940 	}
3941 }
3942 
3943 /**
3944  * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings
3945  * @phba: Pointer to HBA context object.
3946  *
3947  * This function aborts all wqes in NVME rings. This function issues an
3948  * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in
3949  * the txcmplq is not guaranteed to complete before the return of this
3950  * function. The caller is not required to hold any locks.
3951  **/
3952 void
3953 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba)
3954 {
3955 	struct lpfc_sli_ring  *pring;
3956 	uint32_t i;
3957 
3958 	if (phba->sli_rev < LPFC_SLI_REV4)
3959 		return;
3960 
3961 	/* Abort all IO on each NVME ring. */
3962 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
3963 		pring = phba->sli4_hba.nvme_wq[i]->pring;
3964 		lpfc_sli_abort_wqe_ring(phba, pring);
3965 	}
3966 }
3967 
3968 
3969 /**
3970  * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3971  * @phba: Pointer to HBA context object.
3972  *
3973  * This function flushes all iocbs in the fcp ring and frees all the iocb
3974  * objects in txq and txcmplq. This function will not issue abort iocbs
3975  * for all the iocb commands in txcmplq, they will just be returned with
3976  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3977  * slot has been permanently disabled.
3978  **/
3979 void
3980 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3981 {
3982 	LIST_HEAD(txq);
3983 	LIST_HEAD(txcmplq);
3984 	struct lpfc_sli *psli = &phba->sli;
3985 	struct lpfc_sli_ring  *pring;
3986 	uint32_t i;
3987 	struct lpfc_iocbq *piocb, *next_iocb;
3988 
3989 	spin_lock_irq(&phba->hbalock);
3990 	/* Indicate the I/O queues are flushed */
3991 	phba->hba_flag |= HBA_FCP_IOQ_FLUSH;
3992 	spin_unlock_irq(&phba->hbalock);
3993 
3994 	/* Look on all the FCP Rings for the iotag */
3995 	if (phba->sli_rev >= LPFC_SLI_REV4) {
3996 		for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
3997 			pring = phba->sli4_hba.fcp_wq[i]->pring;
3998 
3999 			spin_lock_irq(&pring->ring_lock);
4000 			/* Retrieve everything on txq */
4001 			list_splice_init(&pring->txq, &txq);
4002 			list_for_each_entry_safe(piocb, next_iocb,
4003 						 &pring->txcmplq, list)
4004 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4005 			/* Retrieve everything on the txcmplq */
4006 			list_splice_init(&pring->txcmplq, &txcmplq);
4007 			pring->txq_cnt = 0;
4008 			pring->txcmplq_cnt = 0;
4009 			spin_unlock_irq(&pring->ring_lock);
4010 
4011 			/* Flush the txq */
4012 			lpfc_sli_cancel_iocbs(phba, &txq,
4013 					      IOSTAT_LOCAL_REJECT,
4014 					      IOERR_SLI_DOWN);
4015 			/* Flush the txcmpq */
4016 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4017 					      IOSTAT_LOCAL_REJECT,
4018 					      IOERR_SLI_DOWN);
4019 		}
4020 	} else {
4021 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4022 
4023 		spin_lock_irq(&phba->hbalock);
4024 		/* Retrieve everything on txq */
4025 		list_splice_init(&pring->txq, &txq);
4026 		list_for_each_entry_safe(piocb, next_iocb,
4027 					 &pring->txcmplq, list)
4028 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4029 		/* Retrieve everything on the txcmplq */
4030 		list_splice_init(&pring->txcmplq, &txcmplq);
4031 		pring->txq_cnt = 0;
4032 		pring->txcmplq_cnt = 0;
4033 		spin_unlock_irq(&phba->hbalock);
4034 
4035 		/* Flush the txq */
4036 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4037 				      IOERR_SLI_DOWN);
4038 		/* Flush the txcmpq */
4039 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4040 				      IOERR_SLI_DOWN);
4041 	}
4042 }
4043 
4044 /**
4045  * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings
4046  * @phba: Pointer to HBA context object.
4047  *
4048  * This function flushes all wqes in the nvme rings and frees all resources
4049  * in the txcmplq. This function does not issue abort wqes for the IO
4050  * commands in txcmplq, they will just be returned with
4051  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4052  * slot has been permanently disabled.
4053  **/
4054 void
4055 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba)
4056 {
4057 	LIST_HEAD(txcmplq);
4058 	struct lpfc_sli_ring  *pring;
4059 	uint32_t i;
4060 	struct lpfc_iocbq *piocb, *next_iocb;
4061 
4062 	if (phba->sli_rev < LPFC_SLI_REV4)
4063 		return;
4064 
4065 	/* Hint to other driver operations that a flush is in progress. */
4066 	spin_lock_irq(&phba->hbalock);
4067 	phba->hba_flag |= HBA_NVME_IOQ_FLUSH;
4068 	spin_unlock_irq(&phba->hbalock);
4069 
4070 	/* Cycle through all NVME rings and complete each IO with
4071 	 * a local driver reason code.  This is a flush so no
4072 	 * abort exchange to FW.
4073 	 */
4074 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
4075 		pring = phba->sli4_hba.nvme_wq[i]->pring;
4076 
4077 		spin_lock_irq(&pring->ring_lock);
4078 		list_for_each_entry_safe(piocb, next_iocb,
4079 					 &pring->txcmplq, list)
4080 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4081 		/* Retrieve everything on the txcmplq */
4082 		list_splice_init(&pring->txcmplq, &txcmplq);
4083 		pring->txcmplq_cnt = 0;
4084 		spin_unlock_irq(&pring->ring_lock);
4085 
4086 		/* Flush the txcmpq &&&PAE */
4087 		lpfc_sli_cancel_iocbs(phba, &txcmplq,
4088 				      IOSTAT_LOCAL_REJECT,
4089 				      IOERR_SLI_DOWN);
4090 	}
4091 }
4092 
4093 /**
4094  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4095  * @phba: Pointer to HBA context object.
4096  * @mask: Bit mask to be checked.
4097  *
4098  * This function reads the host status register and compares
4099  * with the provided bit mask to check if HBA completed
4100  * the restart. This function will wait in a loop for the
4101  * HBA to complete restart. If the HBA does not restart within
4102  * 15 iterations, the function will reset the HBA again. The
4103  * function returns 1 when HBA fail to restart otherwise returns
4104  * zero.
4105  **/
4106 static int
4107 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4108 {
4109 	uint32_t status;
4110 	int i = 0;
4111 	int retval = 0;
4112 
4113 	/* Read the HBA Host Status Register */
4114 	if (lpfc_readl(phba->HSregaddr, &status))
4115 		return 1;
4116 
4117 	/*
4118 	 * Check status register every 100ms for 5 retries, then every
4119 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4120 	 * every 2.5 sec for 4.
4121 	 * Break our of the loop if errors occurred during init.
4122 	 */
4123 	while (((status & mask) != mask) &&
4124 	       !(status & HS_FFERM) &&
4125 	       i++ < 20) {
4126 
4127 		if (i <= 5)
4128 			msleep(10);
4129 		else if (i <= 10)
4130 			msleep(500);
4131 		else
4132 			msleep(2500);
4133 
4134 		if (i == 15) {
4135 				/* Do post */
4136 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4137 			lpfc_sli_brdrestart(phba);
4138 		}
4139 		/* Read the HBA Host Status Register */
4140 		if (lpfc_readl(phba->HSregaddr, &status)) {
4141 			retval = 1;
4142 			break;
4143 		}
4144 	}
4145 
4146 	/* Check to see if any errors occurred during init */
4147 	if ((status & HS_FFERM) || (i >= 20)) {
4148 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4149 				"2751 Adapter failed to restart, "
4150 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4151 				status,
4152 				readl(phba->MBslimaddr + 0xa8),
4153 				readl(phba->MBslimaddr + 0xac));
4154 		phba->link_state = LPFC_HBA_ERROR;
4155 		retval = 1;
4156 	}
4157 
4158 	return retval;
4159 }
4160 
4161 /**
4162  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4163  * @phba: Pointer to HBA context object.
4164  * @mask: Bit mask to be checked.
4165  *
4166  * This function checks the host status register to check if HBA is
4167  * ready. This function will wait in a loop for the HBA to be ready
4168  * If the HBA is not ready , the function will will reset the HBA PCI
4169  * function again. The function returns 1 when HBA fail to be ready
4170  * otherwise returns zero.
4171  **/
4172 static int
4173 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4174 {
4175 	uint32_t status;
4176 	int retval = 0;
4177 
4178 	/* Read the HBA Host Status Register */
4179 	status = lpfc_sli4_post_status_check(phba);
4180 
4181 	if (status) {
4182 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4183 		lpfc_sli_brdrestart(phba);
4184 		status = lpfc_sli4_post_status_check(phba);
4185 	}
4186 
4187 	/* Check to see if any errors occurred during init */
4188 	if (status) {
4189 		phba->link_state = LPFC_HBA_ERROR;
4190 		retval = 1;
4191 	} else
4192 		phba->sli4_hba.intr_enable = 0;
4193 
4194 	return retval;
4195 }
4196 
4197 /**
4198  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4199  * @phba: Pointer to HBA context object.
4200  * @mask: Bit mask to be checked.
4201  *
4202  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4203  * from the API jump table function pointer from the lpfc_hba struct.
4204  **/
4205 int
4206 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4207 {
4208 	return phba->lpfc_sli_brdready(phba, mask);
4209 }
4210 
4211 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4212 
4213 /**
4214  * lpfc_reset_barrier - Make HBA ready for HBA reset
4215  * @phba: Pointer to HBA context object.
4216  *
4217  * This function is called before resetting an HBA. This function is called
4218  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4219  **/
4220 void lpfc_reset_barrier(struct lpfc_hba *phba)
4221 {
4222 	uint32_t __iomem *resp_buf;
4223 	uint32_t __iomem *mbox_buf;
4224 	volatile uint32_t mbox;
4225 	uint32_t hc_copy, ha_copy, resp_data;
4226 	int  i;
4227 	uint8_t hdrtype;
4228 
4229 	lockdep_assert_held(&phba->hbalock);
4230 
4231 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4232 	if (hdrtype != 0x80 ||
4233 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4234 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4235 		return;
4236 
4237 	/*
4238 	 * Tell the other part of the chip to suspend temporarily all
4239 	 * its DMA activity.
4240 	 */
4241 	resp_buf = phba->MBslimaddr;
4242 
4243 	/* Disable the error attention */
4244 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4245 		return;
4246 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4247 	readl(phba->HCregaddr); /* flush */
4248 	phba->link_flag |= LS_IGNORE_ERATT;
4249 
4250 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4251 		return;
4252 	if (ha_copy & HA_ERATT) {
4253 		/* Clear Chip error bit */
4254 		writel(HA_ERATT, phba->HAregaddr);
4255 		phba->pport->stopped = 1;
4256 	}
4257 
4258 	mbox = 0;
4259 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4260 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4261 
4262 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4263 	mbox_buf = phba->MBslimaddr;
4264 	writel(mbox, mbox_buf);
4265 
4266 	for (i = 0; i < 50; i++) {
4267 		if (lpfc_readl((resp_buf + 1), &resp_data))
4268 			return;
4269 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4270 			mdelay(1);
4271 		else
4272 			break;
4273 	}
4274 	resp_data = 0;
4275 	if (lpfc_readl((resp_buf + 1), &resp_data))
4276 		return;
4277 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4278 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4279 		    phba->pport->stopped)
4280 			goto restore_hc;
4281 		else
4282 			goto clear_errat;
4283 	}
4284 
4285 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4286 	resp_data = 0;
4287 	for (i = 0; i < 500; i++) {
4288 		if (lpfc_readl(resp_buf, &resp_data))
4289 			return;
4290 		if (resp_data != mbox)
4291 			mdelay(1);
4292 		else
4293 			break;
4294 	}
4295 
4296 clear_errat:
4297 
4298 	while (++i < 500) {
4299 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4300 			return;
4301 		if (!(ha_copy & HA_ERATT))
4302 			mdelay(1);
4303 		else
4304 			break;
4305 	}
4306 
4307 	if (readl(phba->HAregaddr) & HA_ERATT) {
4308 		writel(HA_ERATT, phba->HAregaddr);
4309 		phba->pport->stopped = 1;
4310 	}
4311 
4312 restore_hc:
4313 	phba->link_flag &= ~LS_IGNORE_ERATT;
4314 	writel(hc_copy, phba->HCregaddr);
4315 	readl(phba->HCregaddr); /* flush */
4316 }
4317 
4318 /**
4319  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4320  * @phba: Pointer to HBA context object.
4321  *
4322  * This function issues a kill_board mailbox command and waits for
4323  * the error attention interrupt. This function is called for stopping
4324  * the firmware processing. The caller is not required to hold any
4325  * locks. This function calls lpfc_hba_down_post function to free
4326  * any pending commands after the kill. The function will return 1 when it
4327  * fails to kill the board else will return 0.
4328  **/
4329 int
4330 lpfc_sli_brdkill(struct lpfc_hba *phba)
4331 {
4332 	struct lpfc_sli *psli;
4333 	LPFC_MBOXQ_t *pmb;
4334 	uint32_t status;
4335 	uint32_t ha_copy;
4336 	int retval;
4337 	int i = 0;
4338 
4339 	psli = &phba->sli;
4340 
4341 	/* Kill HBA */
4342 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4343 			"0329 Kill HBA Data: x%x x%x\n",
4344 			phba->pport->port_state, psli->sli_flag);
4345 
4346 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4347 	if (!pmb)
4348 		return 1;
4349 
4350 	/* Disable the error attention */
4351 	spin_lock_irq(&phba->hbalock);
4352 	if (lpfc_readl(phba->HCregaddr, &status)) {
4353 		spin_unlock_irq(&phba->hbalock);
4354 		mempool_free(pmb, phba->mbox_mem_pool);
4355 		return 1;
4356 	}
4357 	status &= ~HC_ERINT_ENA;
4358 	writel(status, phba->HCregaddr);
4359 	readl(phba->HCregaddr); /* flush */
4360 	phba->link_flag |= LS_IGNORE_ERATT;
4361 	spin_unlock_irq(&phba->hbalock);
4362 
4363 	lpfc_kill_board(phba, pmb);
4364 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4365 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4366 
4367 	if (retval != MBX_SUCCESS) {
4368 		if (retval != MBX_BUSY)
4369 			mempool_free(pmb, phba->mbox_mem_pool);
4370 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4371 				"2752 KILL_BOARD command failed retval %d\n",
4372 				retval);
4373 		spin_lock_irq(&phba->hbalock);
4374 		phba->link_flag &= ~LS_IGNORE_ERATT;
4375 		spin_unlock_irq(&phba->hbalock);
4376 		return 1;
4377 	}
4378 
4379 	spin_lock_irq(&phba->hbalock);
4380 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4381 	spin_unlock_irq(&phba->hbalock);
4382 
4383 	mempool_free(pmb, phba->mbox_mem_pool);
4384 
4385 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4386 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4387 	 * 3 seconds we still set HBA_ERROR state because the status of the
4388 	 * board is now undefined.
4389 	 */
4390 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4391 		return 1;
4392 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4393 		mdelay(100);
4394 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4395 			return 1;
4396 	}
4397 
4398 	del_timer_sync(&psli->mbox_tmo);
4399 	if (ha_copy & HA_ERATT) {
4400 		writel(HA_ERATT, phba->HAregaddr);
4401 		phba->pport->stopped = 1;
4402 	}
4403 	spin_lock_irq(&phba->hbalock);
4404 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4405 	psli->mbox_active = NULL;
4406 	phba->link_flag &= ~LS_IGNORE_ERATT;
4407 	spin_unlock_irq(&phba->hbalock);
4408 
4409 	lpfc_hba_down_post(phba);
4410 	phba->link_state = LPFC_HBA_ERROR;
4411 
4412 	return ha_copy & HA_ERATT ? 0 : 1;
4413 }
4414 
4415 /**
4416  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4417  * @phba: Pointer to HBA context object.
4418  *
4419  * This function resets the HBA by writing HC_INITFF to the control
4420  * register. After the HBA resets, this function resets all the iocb ring
4421  * indices. This function disables PCI layer parity checking during
4422  * the reset.
4423  * This function returns 0 always.
4424  * The caller is not required to hold any locks.
4425  **/
4426 int
4427 lpfc_sli_brdreset(struct lpfc_hba *phba)
4428 {
4429 	struct lpfc_sli *psli;
4430 	struct lpfc_sli_ring *pring;
4431 	uint16_t cfg_value;
4432 	int i;
4433 
4434 	psli = &phba->sli;
4435 
4436 	/* Reset HBA */
4437 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4438 			"0325 Reset HBA Data: x%x x%x\n",
4439 			(phba->pport) ? phba->pport->port_state : 0,
4440 			psli->sli_flag);
4441 
4442 	/* perform board reset */
4443 	phba->fc_eventTag = 0;
4444 	phba->link_events = 0;
4445 	if (phba->pport) {
4446 		phba->pport->fc_myDID = 0;
4447 		phba->pport->fc_prevDID = 0;
4448 	}
4449 
4450 	/* Turn off parity checking and serr during the physical reset */
4451 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4452 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4453 			      (cfg_value &
4454 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4455 
4456 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4457 
4458 	/* Now toggle INITFF bit in the Host Control Register */
4459 	writel(HC_INITFF, phba->HCregaddr);
4460 	mdelay(1);
4461 	readl(phba->HCregaddr); /* flush */
4462 	writel(0, phba->HCregaddr);
4463 	readl(phba->HCregaddr); /* flush */
4464 
4465 	/* Restore PCI cmd register */
4466 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4467 
4468 	/* Initialize relevant SLI info */
4469 	for (i = 0; i < psli->num_rings; i++) {
4470 		pring = &psli->sli3_ring[i];
4471 		pring->flag = 0;
4472 		pring->sli.sli3.rspidx = 0;
4473 		pring->sli.sli3.next_cmdidx  = 0;
4474 		pring->sli.sli3.local_getidx = 0;
4475 		pring->sli.sli3.cmdidx = 0;
4476 		pring->missbufcnt = 0;
4477 	}
4478 
4479 	phba->link_state = LPFC_WARM_START;
4480 	return 0;
4481 }
4482 
4483 /**
4484  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4485  * @phba: Pointer to HBA context object.
4486  *
4487  * This function resets a SLI4 HBA. This function disables PCI layer parity
4488  * checking during resets the device. The caller is not required to hold
4489  * any locks.
4490  *
4491  * This function returns 0 always.
4492  **/
4493 int
4494 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4495 {
4496 	struct lpfc_sli *psli = &phba->sli;
4497 	uint16_t cfg_value;
4498 	int rc = 0;
4499 
4500 	/* Reset HBA */
4501 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4502 			"0295 Reset HBA Data: x%x x%x x%x\n",
4503 			phba->pport->port_state, psli->sli_flag,
4504 			phba->hba_flag);
4505 
4506 	/* perform board reset */
4507 	phba->fc_eventTag = 0;
4508 	phba->link_events = 0;
4509 	phba->pport->fc_myDID = 0;
4510 	phba->pport->fc_prevDID = 0;
4511 
4512 	spin_lock_irq(&phba->hbalock);
4513 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4514 	phba->fcf.fcf_flag = 0;
4515 	spin_unlock_irq(&phba->hbalock);
4516 
4517 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4518 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4519 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4520 		return rc;
4521 	}
4522 
4523 	/* Now physically reset the device */
4524 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4525 			"0389 Performing PCI function reset!\n");
4526 
4527 	/* Turn off parity checking and serr during the physical reset */
4528 	pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
4529 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4530 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4531 
4532 	/* Perform FCoE PCI function reset before freeing queue memory */
4533 	rc = lpfc_pci_function_reset(phba);
4534 
4535 	/* Restore PCI cmd register */
4536 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4537 
4538 	return rc;
4539 }
4540 
4541 /**
4542  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4543  * @phba: Pointer to HBA context object.
4544  *
4545  * This function is called in the SLI initialization code path to
4546  * restart the HBA. The caller is not required to hold any lock.
4547  * This function writes MBX_RESTART mailbox command to the SLIM and
4548  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4549  * function to free any pending commands. The function enables
4550  * POST only during the first initialization. The function returns zero.
4551  * The function does not guarantee completion of MBX_RESTART mailbox
4552  * command before the return of this function.
4553  **/
4554 static int
4555 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4556 {
4557 	MAILBOX_t *mb;
4558 	struct lpfc_sli *psli;
4559 	volatile uint32_t word0;
4560 	void __iomem *to_slim;
4561 	uint32_t hba_aer_enabled;
4562 
4563 	spin_lock_irq(&phba->hbalock);
4564 
4565 	/* Take PCIe device Advanced Error Reporting (AER) state */
4566 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4567 
4568 	psli = &phba->sli;
4569 
4570 	/* Restart HBA */
4571 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4572 			"0337 Restart HBA Data: x%x x%x\n",
4573 			(phba->pport) ? phba->pport->port_state : 0,
4574 			psli->sli_flag);
4575 
4576 	word0 = 0;
4577 	mb = (MAILBOX_t *) &word0;
4578 	mb->mbxCommand = MBX_RESTART;
4579 	mb->mbxHc = 1;
4580 
4581 	lpfc_reset_barrier(phba);
4582 
4583 	to_slim = phba->MBslimaddr;
4584 	writel(*(uint32_t *) mb, to_slim);
4585 	readl(to_slim); /* flush */
4586 
4587 	/* Only skip post after fc_ffinit is completed */
4588 	if (phba->pport && phba->pport->port_state)
4589 		word0 = 1;	/* This is really setting up word1 */
4590 	else
4591 		word0 = 0;	/* This is really setting up word1 */
4592 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4593 	writel(*(uint32_t *) mb, to_slim);
4594 	readl(to_slim); /* flush */
4595 
4596 	lpfc_sli_brdreset(phba);
4597 	if (phba->pport)
4598 		phba->pport->stopped = 0;
4599 	phba->link_state = LPFC_INIT_START;
4600 	phba->hba_flag = 0;
4601 	spin_unlock_irq(&phba->hbalock);
4602 
4603 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4604 	psli->stats_start = ktime_get_seconds();
4605 
4606 	/* Give the INITFF and Post time to settle. */
4607 	mdelay(100);
4608 
4609 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4610 	if (hba_aer_enabled)
4611 		pci_disable_pcie_error_reporting(phba->pcidev);
4612 
4613 	lpfc_hba_down_post(phba);
4614 
4615 	return 0;
4616 }
4617 
4618 /**
4619  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4620  * @phba: Pointer to HBA context object.
4621  *
4622  * This function is called in the SLI initialization code path to restart
4623  * a SLI4 HBA. The caller is not required to hold any lock.
4624  * At the end of the function, it calls lpfc_hba_down_post function to
4625  * free any pending commands.
4626  **/
4627 static int
4628 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4629 {
4630 	struct lpfc_sli *psli = &phba->sli;
4631 	uint32_t hba_aer_enabled;
4632 	int rc;
4633 
4634 	/* Restart HBA */
4635 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4636 			"0296 Restart HBA Data: x%x x%x\n",
4637 			phba->pport->port_state, psli->sli_flag);
4638 
4639 	/* Take PCIe device Advanced Error Reporting (AER) state */
4640 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4641 
4642 	rc = lpfc_sli4_brdreset(phba);
4643 
4644 	spin_lock_irq(&phba->hbalock);
4645 	phba->pport->stopped = 0;
4646 	phba->link_state = LPFC_INIT_START;
4647 	phba->hba_flag = 0;
4648 	spin_unlock_irq(&phba->hbalock);
4649 
4650 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4651 	psli->stats_start = ktime_get_seconds();
4652 
4653 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4654 	if (hba_aer_enabled)
4655 		pci_disable_pcie_error_reporting(phba->pcidev);
4656 
4657 	lpfc_hba_down_post(phba);
4658 	lpfc_sli4_queue_destroy(phba);
4659 
4660 	return rc;
4661 }
4662 
4663 /**
4664  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4665  * @phba: Pointer to HBA context object.
4666  *
4667  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4668  * API jump table function pointer from the lpfc_hba struct.
4669 **/
4670 int
4671 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4672 {
4673 	return phba->lpfc_sli_brdrestart(phba);
4674 }
4675 
4676 /**
4677  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4678  * @phba: Pointer to HBA context object.
4679  *
4680  * This function is called after a HBA restart to wait for successful
4681  * restart of the HBA. Successful restart of the HBA is indicated by
4682  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4683  * iteration, the function will restart the HBA again. The function returns
4684  * zero if HBA successfully restarted else returns negative error code.
4685  **/
4686 int
4687 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4688 {
4689 	uint32_t status, i = 0;
4690 
4691 	/* Read the HBA Host Status Register */
4692 	if (lpfc_readl(phba->HSregaddr, &status))
4693 		return -EIO;
4694 
4695 	/* Check status register to see what current state is */
4696 	i = 0;
4697 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4698 
4699 		/* Check every 10ms for 10 retries, then every 100ms for 90
4700 		 * retries, then every 1 sec for 50 retires for a total of
4701 		 * ~60 seconds before reset the board again and check every
4702 		 * 1 sec for 50 retries. The up to 60 seconds before the
4703 		 * board ready is required by the Falcon FIPS zeroization
4704 		 * complete, and any reset the board in between shall cause
4705 		 * restart of zeroization, further delay the board ready.
4706 		 */
4707 		if (i++ >= 200) {
4708 			/* Adapter failed to init, timeout, status reg
4709 			   <status> */
4710 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4711 					"0436 Adapter failed to init, "
4712 					"timeout, status reg x%x, "
4713 					"FW Data: A8 x%x AC x%x\n", status,
4714 					readl(phba->MBslimaddr + 0xa8),
4715 					readl(phba->MBslimaddr + 0xac));
4716 			phba->link_state = LPFC_HBA_ERROR;
4717 			return -ETIMEDOUT;
4718 		}
4719 
4720 		/* Check to see if any errors occurred during init */
4721 		if (status & HS_FFERM) {
4722 			/* ERROR: During chipset initialization */
4723 			/* Adapter failed to init, chipset, status reg
4724 			   <status> */
4725 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4726 					"0437 Adapter failed to init, "
4727 					"chipset, status reg x%x, "
4728 					"FW Data: A8 x%x AC x%x\n", status,
4729 					readl(phba->MBslimaddr + 0xa8),
4730 					readl(phba->MBslimaddr + 0xac));
4731 			phba->link_state = LPFC_HBA_ERROR;
4732 			return -EIO;
4733 		}
4734 
4735 		if (i <= 10)
4736 			msleep(10);
4737 		else if (i <= 100)
4738 			msleep(100);
4739 		else
4740 			msleep(1000);
4741 
4742 		if (i == 150) {
4743 			/* Do post */
4744 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4745 			lpfc_sli_brdrestart(phba);
4746 		}
4747 		/* Read the HBA Host Status Register */
4748 		if (lpfc_readl(phba->HSregaddr, &status))
4749 			return -EIO;
4750 	}
4751 
4752 	/* Check to see if any errors occurred during init */
4753 	if (status & HS_FFERM) {
4754 		/* ERROR: During chipset initialization */
4755 		/* Adapter failed to init, chipset, status reg <status> */
4756 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4757 				"0438 Adapter failed to init, chipset, "
4758 				"status reg x%x, "
4759 				"FW Data: A8 x%x AC x%x\n", status,
4760 				readl(phba->MBslimaddr + 0xa8),
4761 				readl(phba->MBslimaddr + 0xac));
4762 		phba->link_state = LPFC_HBA_ERROR;
4763 		return -EIO;
4764 	}
4765 
4766 	/* Clear all interrupt enable conditions */
4767 	writel(0, phba->HCregaddr);
4768 	readl(phba->HCregaddr); /* flush */
4769 
4770 	/* setup host attn register */
4771 	writel(0xffffffff, phba->HAregaddr);
4772 	readl(phba->HAregaddr); /* flush */
4773 	return 0;
4774 }
4775 
4776 /**
4777  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4778  *
4779  * This function calculates and returns the number of HBQs required to be
4780  * configured.
4781  **/
4782 int
4783 lpfc_sli_hbq_count(void)
4784 {
4785 	return ARRAY_SIZE(lpfc_hbq_defs);
4786 }
4787 
4788 /**
4789  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4790  *
4791  * This function adds the number of hbq entries in every HBQ to get
4792  * the total number of hbq entries required for the HBA and returns
4793  * the total count.
4794  **/
4795 static int
4796 lpfc_sli_hbq_entry_count(void)
4797 {
4798 	int  hbq_count = lpfc_sli_hbq_count();
4799 	int  count = 0;
4800 	int  i;
4801 
4802 	for (i = 0; i < hbq_count; ++i)
4803 		count += lpfc_hbq_defs[i]->entry_count;
4804 	return count;
4805 }
4806 
4807 /**
4808  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4809  *
4810  * This function calculates amount of memory required for all hbq entries
4811  * to be configured and returns the total memory required.
4812  **/
4813 int
4814 lpfc_sli_hbq_size(void)
4815 {
4816 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4817 }
4818 
4819 /**
4820  * lpfc_sli_hbq_setup - configure and initialize HBQs
4821  * @phba: Pointer to HBA context object.
4822  *
4823  * This function is called during the SLI initialization to configure
4824  * all the HBQs and post buffers to the HBQ. The caller is not
4825  * required to hold any locks. This function will return zero if successful
4826  * else it will return negative error code.
4827  **/
4828 static int
4829 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4830 {
4831 	int  hbq_count = lpfc_sli_hbq_count();
4832 	LPFC_MBOXQ_t *pmb;
4833 	MAILBOX_t *pmbox;
4834 	uint32_t hbqno;
4835 	uint32_t hbq_entry_index;
4836 
4837 				/* Get a Mailbox buffer to setup mailbox
4838 				 * commands for HBA initialization
4839 				 */
4840 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4841 
4842 	if (!pmb)
4843 		return -ENOMEM;
4844 
4845 	pmbox = &pmb->u.mb;
4846 
4847 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4848 	phba->link_state = LPFC_INIT_MBX_CMDS;
4849 	phba->hbq_in_use = 1;
4850 
4851 	hbq_entry_index = 0;
4852 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4853 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4854 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4855 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4856 		phba->hbqs[hbqno].entry_count =
4857 			lpfc_hbq_defs[hbqno]->entry_count;
4858 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4859 			hbq_entry_index, pmb);
4860 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4861 
4862 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4863 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4864 			   mbxStatus <status>, ring <num> */
4865 
4866 			lpfc_printf_log(phba, KERN_ERR,
4867 					LOG_SLI | LOG_VPORT,
4868 					"1805 Adapter failed to init. "
4869 					"Data: x%x x%x x%x\n",
4870 					pmbox->mbxCommand,
4871 					pmbox->mbxStatus, hbqno);
4872 
4873 			phba->link_state = LPFC_HBA_ERROR;
4874 			mempool_free(pmb, phba->mbox_mem_pool);
4875 			return -ENXIO;
4876 		}
4877 	}
4878 	phba->hbq_count = hbq_count;
4879 
4880 	mempool_free(pmb, phba->mbox_mem_pool);
4881 
4882 	/* Initially populate or replenish the HBQs */
4883 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4884 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4885 	return 0;
4886 }
4887 
4888 /**
4889  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4890  * @phba: Pointer to HBA context object.
4891  *
4892  * This function is called during the SLI initialization to configure
4893  * all the HBQs and post buffers to the HBQ. The caller is not
4894  * required to hold any locks. This function will return zero if successful
4895  * else it will return negative error code.
4896  **/
4897 static int
4898 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4899 {
4900 	phba->hbq_in_use = 1;
4901 	phba->hbqs[LPFC_ELS_HBQ].entry_count =
4902 		lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
4903 	phba->hbq_count = 1;
4904 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
4905 	/* Initially populate or replenish the HBQs */
4906 	return 0;
4907 }
4908 
4909 /**
4910  * lpfc_sli_config_port - Issue config port mailbox command
4911  * @phba: Pointer to HBA context object.
4912  * @sli_mode: sli mode - 2/3
4913  *
4914  * This function is called by the sli initialization code path
4915  * to issue config_port mailbox command. This function restarts the
4916  * HBA firmware and issues a config_port mailbox command to configure
4917  * the SLI interface in the sli mode specified by sli_mode
4918  * variable. The caller is not required to hold any locks.
4919  * The function returns 0 if successful, else returns negative error
4920  * code.
4921  **/
4922 int
4923 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4924 {
4925 	LPFC_MBOXQ_t *pmb;
4926 	uint32_t resetcount = 0, rc = 0, done = 0;
4927 
4928 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4929 	if (!pmb) {
4930 		phba->link_state = LPFC_HBA_ERROR;
4931 		return -ENOMEM;
4932 	}
4933 
4934 	phba->sli_rev = sli_mode;
4935 	while (resetcount < 2 && !done) {
4936 		spin_lock_irq(&phba->hbalock);
4937 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4938 		spin_unlock_irq(&phba->hbalock);
4939 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4940 		lpfc_sli_brdrestart(phba);
4941 		rc = lpfc_sli_chipset_init(phba);
4942 		if (rc)
4943 			break;
4944 
4945 		spin_lock_irq(&phba->hbalock);
4946 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4947 		spin_unlock_irq(&phba->hbalock);
4948 		resetcount++;
4949 
4950 		/* Call pre CONFIG_PORT mailbox command initialization.  A
4951 		 * value of 0 means the call was successful.  Any other
4952 		 * nonzero value is a failure, but if ERESTART is returned,
4953 		 * the driver may reset the HBA and try again.
4954 		 */
4955 		rc = lpfc_config_port_prep(phba);
4956 		if (rc == -ERESTART) {
4957 			phba->link_state = LPFC_LINK_UNKNOWN;
4958 			continue;
4959 		} else if (rc)
4960 			break;
4961 
4962 		phba->link_state = LPFC_INIT_MBX_CMDS;
4963 		lpfc_config_port(phba, pmb);
4964 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4965 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4966 					LPFC_SLI3_HBQ_ENABLED |
4967 					LPFC_SLI3_CRP_ENABLED |
4968 					LPFC_SLI3_BG_ENABLED |
4969 					LPFC_SLI3_DSS_ENABLED);
4970 		if (rc != MBX_SUCCESS) {
4971 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4972 				"0442 Adapter failed to init, mbxCmd x%x "
4973 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4974 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4975 			spin_lock_irq(&phba->hbalock);
4976 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4977 			spin_unlock_irq(&phba->hbalock);
4978 			rc = -ENXIO;
4979 		} else {
4980 			/* Allow asynchronous mailbox command to go through */
4981 			spin_lock_irq(&phba->hbalock);
4982 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4983 			spin_unlock_irq(&phba->hbalock);
4984 			done = 1;
4985 
4986 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4987 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
4988 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4989 					"3110 Port did not grant ASABT\n");
4990 		}
4991 	}
4992 	if (!done) {
4993 		rc = -EINVAL;
4994 		goto do_prep_failed;
4995 	}
4996 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4997 		if (!pmb->u.mb.un.varCfgPort.cMA) {
4998 			rc = -ENXIO;
4999 			goto do_prep_failed;
5000 		}
5001 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5002 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5003 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5004 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5005 				phba->max_vpi : phba->max_vports;
5006 
5007 		} else
5008 			phba->max_vpi = 0;
5009 		phba->fips_level = 0;
5010 		phba->fips_spec_rev = 0;
5011 		if (pmb->u.mb.un.varCfgPort.gdss) {
5012 			phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
5013 			phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
5014 			phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
5015 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5016 					"2850 Security Crypto Active. FIPS x%d "
5017 					"(Spec Rev: x%d)",
5018 					phba->fips_level, phba->fips_spec_rev);
5019 		}
5020 		if (pmb->u.mb.un.varCfgPort.sec_err) {
5021 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5022 					"2856 Config Port Security Crypto "
5023 					"Error: x%x ",
5024 					pmb->u.mb.un.varCfgPort.sec_err);
5025 		}
5026 		if (pmb->u.mb.un.varCfgPort.gerbm)
5027 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5028 		if (pmb->u.mb.un.varCfgPort.gcrp)
5029 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5030 
5031 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5032 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5033 
5034 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5035 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5036 				phba->cfg_enable_bg = 0;
5037 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5038 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5039 						"0443 Adapter did not grant "
5040 						"BlockGuard\n");
5041 			}
5042 		}
5043 	} else {
5044 		phba->hbq_get = NULL;
5045 		phba->port_gp = phba->mbox->us.s2.port;
5046 		phba->max_vpi = 0;
5047 	}
5048 do_prep_failed:
5049 	mempool_free(pmb, phba->mbox_mem_pool);
5050 	return rc;
5051 }
5052 
5053 
5054 /**
5055  * lpfc_sli_hba_setup - SLI initialization function
5056  * @phba: Pointer to HBA context object.
5057  *
5058  * This function is the main SLI initialization function. This function
5059  * is called by the HBA initialization code, HBA reset code and HBA
5060  * error attention handler code. Caller is not required to hold any
5061  * locks. This function issues config_port mailbox command to configure
5062  * the SLI, setup iocb rings and HBQ rings. In the end the function
5063  * calls the config_port_post function to issue init_link mailbox
5064  * command and to start the discovery. The function will return zero
5065  * if successful, else it will return negative error code.
5066  **/
5067 int
5068 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5069 {
5070 	uint32_t rc;
5071 	int  mode = 3, i;
5072 	int longs;
5073 
5074 	switch (phba->cfg_sli_mode) {
5075 	case 2:
5076 		if (phba->cfg_enable_npiv) {
5077 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5078 				"1824 NPIV enabled: Override sli_mode "
5079 				"parameter (%d) to auto (0).\n",
5080 				phba->cfg_sli_mode);
5081 			break;
5082 		}
5083 		mode = 2;
5084 		break;
5085 	case 0:
5086 	case 3:
5087 		break;
5088 	default:
5089 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5090 				"1819 Unrecognized sli_mode parameter: %d.\n",
5091 				phba->cfg_sli_mode);
5092 
5093 		break;
5094 	}
5095 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5096 
5097 	rc = lpfc_sli_config_port(phba, mode);
5098 
5099 	if (rc && phba->cfg_sli_mode == 3)
5100 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5101 				"1820 Unable to select SLI-3.  "
5102 				"Not supported by adapter.\n");
5103 	if (rc && mode != 2)
5104 		rc = lpfc_sli_config_port(phba, 2);
5105 	else if (rc && mode == 2)
5106 		rc = lpfc_sli_config_port(phba, 3);
5107 	if (rc)
5108 		goto lpfc_sli_hba_setup_error;
5109 
5110 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5111 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5112 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5113 		if (!rc) {
5114 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5115 					"2709 This device supports "
5116 					"Advanced Error Reporting (AER)\n");
5117 			spin_lock_irq(&phba->hbalock);
5118 			phba->hba_flag |= HBA_AER_ENABLED;
5119 			spin_unlock_irq(&phba->hbalock);
5120 		} else {
5121 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5122 					"2708 This device does not support "
5123 					"Advanced Error Reporting (AER): %d\n",
5124 					rc);
5125 			phba->cfg_aer_support = 0;
5126 		}
5127 	}
5128 
5129 	if (phba->sli_rev == 3) {
5130 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5131 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5132 	} else {
5133 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5134 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5135 		phba->sli3_options = 0;
5136 	}
5137 
5138 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5139 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5140 			phba->sli_rev, phba->max_vpi);
5141 	rc = lpfc_sli_ring_map(phba);
5142 
5143 	if (rc)
5144 		goto lpfc_sli_hba_setup_error;
5145 
5146 	/* Initialize VPIs. */
5147 	if (phba->sli_rev == LPFC_SLI_REV3) {
5148 		/*
5149 		 * The VPI bitmask and physical ID array are allocated
5150 		 * and initialized once only - at driver load.  A port
5151 		 * reset doesn't need to reinitialize this memory.
5152 		 */
5153 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5154 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5155 			phba->vpi_bmask = kcalloc(longs,
5156 						  sizeof(unsigned long),
5157 						  GFP_KERNEL);
5158 			if (!phba->vpi_bmask) {
5159 				rc = -ENOMEM;
5160 				goto lpfc_sli_hba_setup_error;
5161 			}
5162 
5163 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5164 						sizeof(uint16_t),
5165 						GFP_KERNEL);
5166 			if (!phba->vpi_ids) {
5167 				kfree(phba->vpi_bmask);
5168 				rc = -ENOMEM;
5169 				goto lpfc_sli_hba_setup_error;
5170 			}
5171 			for (i = 0; i < phba->max_vpi; i++)
5172 				phba->vpi_ids[i] = i;
5173 		}
5174 	}
5175 
5176 	/* Init HBQs */
5177 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5178 		rc = lpfc_sli_hbq_setup(phba);
5179 		if (rc)
5180 			goto lpfc_sli_hba_setup_error;
5181 	}
5182 	spin_lock_irq(&phba->hbalock);
5183 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5184 	spin_unlock_irq(&phba->hbalock);
5185 
5186 	rc = lpfc_config_port_post(phba);
5187 	if (rc)
5188 		goto lpfc_sli_hba_setup_error;
5189 
5190 	return rc;
5191 
5192 lpfc_sli_hba_setup_error:
5193 	phba->link_state = LPFC_HBA_ERROR;
5194 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5195 			"0445 Firmware initialization failed\n");
5196 	return rc;
5197 }
5198 
5199 /**
5200  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5201  * @phba: Pointer to HBA context object.
5202  * @mboxq: mailbox pointer.
5203  * This function issue a dump mailbox command to read config region
5204  * 23 and parse the records in the region and populate driver
5205  * data structure.
5206  **/
5207 static int
5208 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5209 {
5210 	LPFC_MBOXQ_t *mboxq;
5211 	struct lpfc_dmabuf *mp;
5212 	struct lpfc_mqe *mqe;
5213 	uint32_t data_length;
5214 	int rc;
5215 
5216 	/* Program the default value of vlan_id and fc_map */
5217 	phba->valid_vlan = 0;
5218 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5219 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5220 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5221 
5222 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5223 	if (!mboxq)
5224 		return -ENOMEM;
5225 
5226 	mqe = &mboxq->u.mqe;
5227 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5228 		rc = -ENOMEM;
5229 		goto out_free_mboxq;
5230 	}
5231 
5232 	mp = (struct lpfc_dmabuf *) mboxq->context1;
5233 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5234 
5235 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5236 			"(%d):2571 Mailbox cmd x%x Status x%x "
5237 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5238 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5239 			"CQ: x%x x%x x%x x%x\n",
5240 			mboxq->vport ? mboxq->vport->vpi : 0,
5241 			bf_get(lpfc_mqe_command, mqe),
5242 			bf_get(lpfc_mqe_status, mqe),
5243 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5244 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5245 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5246 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5247 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5248 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5249 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5250 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5251 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5252 			mboxq->mcqe.word0,
5253 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5254 			mboxq->mcqe.trailer);
5255 
5256 	if (rc) {
5257 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5258 		kfree(mp);
5259 		rc = -EIO;
5260 		goto out_free_mboxq;
5261 	}
5262 	data_length = mqe->un.mb_words[5];
5263 	if (data_length > DMP_RGN23_SIZE) {
5264 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5265 		kfree(mp);
5266 		rc = -EIO;
5267 		goto out_free_mboxq;
5268 	}
5269 
5270 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5271 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5272 	kfree(mp);
5273 	rc = 0;
5274 
5275 out_free_mboxq:
5276 	mempool_free(mboxq, phba->mbox_mem_pool);
5277 	return rc;
5278 }
5279 
5280 /**
5281  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5282  * @phba: pointer to lpfc hba data structure.
5283  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5284  * @vpd: pointer to the memory to hold resulting port vpd data.
5285  * @vpd_size: On input, the number of bytes allocated to @vpd.
5286  *	      On output, the number of data bytes in @vpd.
5287  *
5288  * This routine executes a READ_REV SLI4 mailbox command.  In
5289  * addition, this routine gets the port vpd data.
5290  *
5291  * Return codes
5292  * 	0 - successful
5293  * 	-ENOMEM - could not allocated memory.
5294  **/
5295 static int
5296 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5297 		    uint8_t *vpd, uint32_t *vpd_size)
5298 {
5299 	int rc = 0;
5300 	uint32_t dma_size;
5301 	struct lpfc_dmabuf *dmabuf;
5302 	struct lpfc_mqe *mqe;
5303 
5304 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5305 	if (!dmabuf)
5306 		return -ENOMEM;
5307 
5308 	/*
5309 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5310 	 * mailbox command.
5311 	 */
5312 	dma_size = *vpd_size;
5313 	dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size,
5314 					   &dmabuf->phys, GFP_KERNEL);
5315 	if (!dmabuf->virt) {
5316 		kfree(dmabuf);
5317 		return -ENOMEM;
5318 	}
5319 
5320 	/*
5321 	 * The SLI4 implementation of READ_REV conflicts at word1,
5322 	 * bits 31:16 and SLI4 adds vpd functionality not present
5323 	 * in SLI3.  This code corrects the conflicts.
5324 	 */
5325 	lpfc_read_rev(phba, mboxq);
5326 	mqe = &mboxq->u.mqe;
5327 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5328 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5329 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5330 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5331 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5332 
5333 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5334 	if (rc) {
5335 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5336 				  dmabuf->virt, dmabuf->phys);
5337 		kfree(dmabuf);
5338 		return -EIO;
5339 	}
5340 
5341 	/*
5342 	 * The available vpd length cannot be bigger than the
5343 	 * DMA buffer passed to the port.  Catch the less than
5344 	 * case and update the caller's size.
5345 	 */
5346 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5347 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5348 
5349 	memcpy(vpd, dmabuf->virt, *vpd_size);
5350 
5351 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5352 			  dmabuf->virt, dmabuf->phys);
5353 	kfree(dmabuf);
5354 	return 0;
5355 }
5356 
5357 /**
5358  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5359  * @phba: pointer to lpfc hba data structure.
5360  *
5361  * This routine retrieves SLI4 device physical port name this PCI function
5362  * is attached to.
5363  *
5364  * Return codes
5365  *      0 - successful
5366  *      otherwise - failed to retrieve physical port name
5367  **/
5368 static int
5369 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5370 {
5371 	LPFC_MBOXQ_t *mboxq;
5372 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5373 	struct lpfc_controller_attribute *cntl_attr;
5374 	struct lpfc_mbx_get_port_name *get_port_name;
5375 	void *virtaddr = NULL;
5376 	uint32_t alloclen, reqlen;
5377 	uint32_t shdr_status, shdr_add_status;
5378 	union lpfc_sli4_cfg_shdr *shdr;
5379 	char cport_name = 0;
5380 	int rc;
5381 
5382 	/* We assume nothing at this point */
5383 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5384 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5385 
5386 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5387 	if (!mboxq)
5388 		return -ENOMEM;
5389 	/* obtain link type and link number via READ_CONFIG */
5390 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5391 	lpfc_sli4_read_config(phba);
5392 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5393 		goto retrieve_ppname;
5394 
5395 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5396 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5397 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5398 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5399 			LPFC_SLI4_MBX_NEMBED);
5400 	if (alloclen < reqlen) {
5401 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5402 				"3084 Allocated DMA memory size (%d) is "
5403 				"less than the requested DMA memory size "
5404 				"(%d)\n", alloclen, reqlen);
5405 		rc = -ENOMEM;
5406 		goto out_free_mboxq;
5407 	}
5408 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5409 	virtaddr = mboxq->sge_array->addr[0];
5410 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5411 	shdr = &mbx_cntl_attr->cfg_shdr;
5412 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5413 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5414 	if (shdr_status || shdr_add_status || rc) {
5415 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5416 				"3085 Mailbox x%x (x%x/x%x) failed, "
5417 				"rc:x%x, status:x%x, add_status:x%x\n",
5418 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5419 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5420 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5421 				rc, shdr_status, shdr_add_status);
5422 		rc = -ENXIO;
5423 		goto out_free_mboxq;
5424 	}
5425 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5426 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5427 	phba->sli4_hba.lnk_info.lnk_tp =
5428 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5429 	phba->sli4_hba.lnk_info.lnk_no =
5430 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5431 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5432 			"3086 lnk_type:%d, lnk_numb:%d\n",
5433 			phba->sli4_hba.lnk_info.lnk_tp,
5434 			phba->sli4_hba.lnk_info.lnk_no);
5435 
5436 retrieve_ppname:
5437 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5438 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5439 		sizeof(struct lpfc_mbx_get_port_name) -
5440 		sizeof(struct lpfc_sli4_cfg_mhdr),
5441 		LPFC_SLI4_MBX_EMBED);
5442 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5443 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5444 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5445 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5446 		phba->sli4_hba.lnk_info.lnk_tp);
5447 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5448 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5449 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5450 	if (shdr_status || shdr_add_status || rc) {
5451 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5452 				"3087 Mailbox x%x (x%x/x%x) failed: "
5453 				"rc:x%x, status:x%x, add_status:x%x\n",
5454 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5455 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5456 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5457 				rc, shdr_status, shdr_add_status);
5458 		rc = -ENXIO;
5459 		goto out_free_mboxq;
5460 	}
5461 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5462 	case LPFC_LINK_NUMBER_0:
5463 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5464 				&get_port_name->u.response);
5465 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5466 		break;
5467 	case LPFC_LINK_NUMBER_1:
5468 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5469 				&get_port_name->u.response);
5470 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5471 		break;
5472 	case LPFC_LINK_NUMBER_2:
5473 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5474 				&get_port_name->u.response);
5475 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5476 		break;
5477 	case LPFC_LINK_NUMBER_3:
5478 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5479 				&get_port_name->u.response);
5480 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5481 		break;
5482 	default:
5483 		break;
5484 	}
5485 
5486 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5487 		phba->Port[0] = cport_name;
5488 		phba->Port[1] = '\0';
5489 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5490 				"3091 SLI get port name: %s\n", phba->Port);
5491 	}
5492 
5493 out_free_mboxq:
5494 	if (rc != MBX_TIMEOUT) {
5495 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5496 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5497 		else
5498 			mempool_free(mboxq, phba->mbox_mem_pool);
5499 	}
5500 	return rc;
5501 }
5502 
5503 /**
5504  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5505  * @phba: pointer to lpfc hba data structure.
5506  *
5507  * This routine is called to explicitly arm the SLI4 device's completion and
5508  * event queues
5509  **/
5510 static void
5511 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5512 {
5513 	int qidx;
5514 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5515 
5516 	sli4_hba->sli4_cq_release(sli4_hba->mbx_cq, LPFC_QUEUE_REARM);
5517 	sli4_hba->sli4_cq_release(sli4_hba->els_cq, LPFC_QUEUE_REARM);
5518 	if (sli4_hba->nvmels_cq)
5519 		sli4_hba->sli4_cq_release(sli4_hba->nvmels_cq,
5520 						LPFC_QUEUE_REARM);
5521 
5522 	if (sli4_hba->fcp_cq)
5523 		for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++)
5524 			sli4_hba->sli4_cq_release(sli4_hba->fcp_cq[qidx],
5525 						LPFC_QUEUE_REARM);
5526 
5527 	if (sli4_hba->nvme_cq)
5528 		for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++)
5529 			sli4_hba->sli4_cq_release(sli4_hba->nvme_cq[qidx],
5530 						LPFC_QUEUE_REARM);
5531 
5532 	if (phba->cfg_fof)
5533 		sli4_hba->sli4_cq_release(sli4_hba->oas_cq, LPFC_QUEUE_REARM);
5534 
5535 	if (sli4_hba->hba_eq)
5536 		for (qidx = 0; qidx < phba->io_channel_irqs; qidx++)
5537 			sli4_hba->sli4_eq_release(sli4_hba->hba_eq[qidx],
5538 							LPFC_QUEUE_REARM);
5539 
5540 	if (phba->nvmet_support) {
5541 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5542 			sli4_hba->sli4_cq_release(
5543 				sli4_hba->nvmet_cqset[qidx],
5544 				LPFC_QUEUE_REARM);
5545 		}
5546 	}
5547 
5548 	if (phba->cfg_fof)
5549 		sli4_hba->sli4_eq_release(sli4_hba->fof_eq, LPFC_QUEUE_REARM);
5550 }
5551 
5552 /**
5553  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5554  * @phba: Pointer to HBA context object.
5555  * @type: The resource extent type.
5556  * @extnt_count: buffer to hold port available extent count.
5557  * @extnt_size: buffer to hold element count per extent.
5558  *
5559  * This function calls the port and retrievs the number of available
5560  * extents and their size for a particular extent type.
5561  *
5562  * Returns: 0 if successful.  Nonzero otherwise.
5563  **/
5564 int
5565 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5566 			       uint16_t *extnt_count, uint16_t *extnt_size)
5567 {
5568 	int rc = 0;
5569 	uint32_t length;
5570 	uint32_t mbox_tmo;
5571 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5572 	LPFC_MBOXQ_t *mbox;
5573 
5574 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5575 	if (!mbox)
5576 		return -ENOMEM;
5577 
5578 	/* Find out how many extents are available for this resource type */
5579 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5580 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5581 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5582 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5583 			 length, LPFC_SLI4_MBX_EMBED);
5584 
5585 	/* Send an extents count of 0 - the GET doesn't use it. */
5586 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5587 					LPFC_SLI4_MBX_EMBED);
5588 	if (unlikely(rc)) {
5589 		rc = -EIO;
5590 		goto err_exit;
5591 	}
5592 
5593 	if (!phba->sli4_hba.intr_enable)
5594 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5595 	else {
5596 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5597 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5598 	}
5599 	if (unlikely(rc)) {
5600 		rc = -EIO;
5601 		goto err_exit;
5602 	}
5603 
5604 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5605 	if (bf_get(lpfc_mbox_hdr_status,
5606 		   &rsrc_info->header.cfg_shdr.response)) {
5607 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5608 				"2930 Failed to get resource extents "
5609 				"Status 0x%x Add'l Status 0x%x\n",
5610 				bf_get(lpfc_mbox_hdr_status,
5611 				       &rsrc_info->header.cfg_shdr.response),
5612 				bf_get(lpfc_mbox_hdr_add_status,
5613 				       &rsrc_info->header.cfg_shdr.response));
5614 		rc = -EIO;
5615 		goto err_exit;
5616 	}
5617 
5618 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5619 			      &rsrc_info->u.rsp);
5620 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5621 			     &rsrc_info->u.rsp);
5622 
5623 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5624 			"3162 Retrieved extents type-%d from port: count:%d, "
5625 			"size:%d\n", type, *extnt_count, *extnt_size);
5626 
5627 err_exit:
5628 	mempool_free(mbox, phba->mbox_mem_pool);
5629 	return rc;
5630 }
5631 
5632 /**
5633  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5634  * @phba: Pointer to HBA context object.
5635  * @type: The extent type to check.
5636  *
5637  * This function reads the current available extents from the port and checks
5638  * if the extent count or extent size has changed since the last access.
5639  * Callers use this routine post port reset to understand if there is a
5640  * extent reprovisioning requirement.
5641  *
5642  * Returns:
5643  *   -Error: error indicates problem.
5644  *   1: Extent count or size has changed.
5645  *   0: No changes.
5646  **/
5647 static int
5648 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5649 {
5650 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5651 	uint16_t size_diff, rsrc_ext_size;
5652 	int rc = 0;
5653 	struct lpfc_rsrc_blks *rsrc_entry;
5654 	struct list_head *rsrc_blk_list = NULL;
5655 
5656 	size_diff = 0;
5657 	curr_ext_cnt = 0;
5658 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5659 					    &rsrc_ext_cnt,
5660 					    &rsrc_ext_size);
5661 	if (unlikely(rc))
5662 		return -EIO;
5663 
5664 	switch (type) {
5665 	case LPFC_RSC_TYPE_FCOE_RPI:
5666 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5667 		break;
5668 	case LPFC_RSC_TYPE_FCOE_VPI:
5669 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5670 		break;
5671 	case LPFC_RSC_TYPE_FCOE_XRI:
5672 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5673 		break;
5674 	case LPFC_RSC_TYPE_FCOE_VFI:
5675 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5676 		break;
5677 	default:
5678 		break;
5679 	}
5680 
5681 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5682 		curr_ext_cnt++;
5683 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5684 			size_diff++;
5685 	}
5686 
5687 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5688 		rc = 1;
5689 
5690 	return rc;
5691 }
5692 
5693 /**
5694  * lpfc_sli4_cfg_post_extnts -
5695  * @phba: Pointer to HBA context object.
5696  * @extnt_cnt - number of available extents.
5697  * @type - the extent type (rpi, xri, vfi, vpi).
5698  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5699  * @mbox - pointer to the caller's allocated mailbox structure.
5700  *
5701  * This function executes the extents allocation request.  It also
5702  * takes care of the amount of memory needed to allocate or get the
5703  * allocated extents. It is the caller's responsibility to evaluate
5704  * the response.
5705  *
5706  * Returns:
5707  *   -Error:  Error value describes the condition found.
5708  *   0: if successful
5709  **/
5710 static int
5711 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5712 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5713 {
5714 	int rc = 0;
5715 	uint32_t req_len;
5716 	uint32_t emb_len;
5717 	uint32_t alloc_len, mbox_tmo;
5718 
5719 	/* Calculate the total requested length of the dma memory */
5720 	req_len = extnt_cnt * sizeof(uint16_t);
5721 
5722 	/*
5723 	 * Calculate the size of an embedded mailbox.  The uint32_t
5724 	 * accounts for extents-specific word.
5725 	 */
5726 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5727 		sizeof(uint32_t);
5728 
5729 	/*
5730 	 * Presume the allocation and response will fit into an embedded
5731 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5732 	 */
5733 	*emb = LPFC_SLI4_MBX_EMBED;
5734 	if (req_len > emb_len) {
5735 		req_len = extnt_cnt * sizeof(uint16_t) +
5736 			sizeof(union lpfc_sli4_cfg_shdr) +
5737 			sizeof(uint32_t);
5738 		*emb = LPFC_SLI4_MBX_NEMBED;
5739 	}
5740 
5741 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5742 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5743 				     req_len, *emb);
5744 	if (alloc_len < req_len) {
5745 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5746 			"2982 Allocated DMA memory size (x%x) is "
5747 			"less than the requested DMA memory "
5748 			"size (x%x)\n", alloc_len, req_len);
5749 		return -ENOMEM;
5750 	}
5751 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5752 	if (unlikely(rc))
5753 		return -EIO;
5754 
5755 	if (!phba->sli4_hba.intr_enable)
5756 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5757 	else {
5758 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5759 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5760 	}
5761 
5762 	if (unlikely(rc))
5763 		rc = -EIO;
5764 	return rc;
5765 }
5766 
5767 /**
5768  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5769  * @phba: Pointer to HBA context object.
5770  * @type:  The resource extent type to allocate.
5771  *
5772  * This function allocates the number of elements for the specified
5773  * resource type.
5774  **/
5775 static int
5776 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5777 {
5778 	bool emb = false;
5779 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5780 	uint16_t rsrc_id, rsrc_start, j, k;
5781 	uint16_t *ids;
5782 	int i, rc;
5783 	unsigned long longs;
5784 	unsigned long *bmask;
5785 	struct lpfc_rsrc_blks *rsrc_blks;
5786 	LPFC_MBOXQ_t *mbox;
5787 	uint32_t length;
5788 	struct lpfc_id_range *id_array = NULL;
5789 	void *virtaddr = NULL;
5790 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5791 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5792 	struct list_head *ext_blk_list;
5793 
5794 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5795 					    &rsrc_cnt,
5796 					    &rsrc_size);
5797 	if (unlikely(rc))
5798 		return -EIO;
5799 
5800 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5801 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5802 			"3009 No available Resource Extents "
5803 			"for resource type 0x%x: Count: 0x%x, "
5804 			"Size 0x%x\n", type, rsrc_cnt,
5805 			rsrc_size);
5806 		return -ENOMEM;
5807 	}
5808 
5809 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5810 			"2903 Post resource extents type-0x%x: "
5811 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5812 
5813 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5814 	if (!mbox)
5815 		return -ENOMEM;
5816 
5817 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5818 	if (unlikely(rc)) {
5819 		rc = -EIO;
5820 		goto err_exit;
5821 	}
5822 
5823 	/*
5824 	 * Figure out where the response is located.  Then get local pointers
5825 	 * to the response data.  The port does not guarantee to respond to
5826 	 * all extents counts request so update the local variable with the
5827 	 * allocated count from the port.
5828 	 */
5829 	if (emb == LPFC_SLI4_MBX_EMBED) {
5830 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5831 		id_array = &rsrc_ext->u.rsp.id[0];
5832 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5833 	} else {
5834 		virtaddr = mbox->sge_array->addr[0];
5835 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5836 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5837 		id_array = &n_rsrc->id;
5838 	}
5839 
5840 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5841 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
5842 
5843 	/*
5844 	 * Based on the resource size and count, correct the base and max
5845 	 * resource values.
5846 	 */
5847 	length = sizeof(struct lpfc_rsrc_blks);
5848 	switch (type) {
5849 	case LPFC_RSC_TYPE_FCOE_RPI:
5850 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
5851 						   sizeof(unsigned long),
5852 						   GFP_KERNEL);
5853 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5854 			rc = -ENOMEM;
5855 			goto err_exit;
5856 		}
5857 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
5858 						 sizeof(uint16_t),
5859 						 GFP_KERNEL);
5860 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
5861 			kfree(phba->sli4_hba.rpi_bmask);
5862 			rc = -ENOMEM;
5863 			goto err_exit;
5864 		}
5865 
5866 		/*
5867 		 * The next_rpi was initialized with the maximum available
5868 		 * count but the port may allocate a smaller number.  Catch
5869 		 * that case and update the next_rpi.
5870 		 */
5871 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
5872 
5873 		/* Initialize local ptrs for common extent processing later. */
5874 		bmask = phba->sli4_hba.rpi_bmask;
5875 		ids = phba->sli4_hba.rpi_ids;
5876 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5877 		break;
5878 	case LPFC_RSC_TYPE_FCOE_VPI:
5879 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
5880 					  GFP_KERNEL);
5881 		if (unlikely(!phba->vpi_bmask)) {
5882 			rc = -ENOMEM;
5883 			goto err_exit;
5884 		}
5885 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
5886 					 GFP_KERNEL);
5887 		if (unlikely(!phba->vpi_ids)) {
5888 			kfree(phba->vpi_bmask);
5889 			rc = -ENOMEM;
5890 			goto err_exit;
5891 		}
5892 
5893 		/* Initialize local ptrs for common extent processing later. */
5894 		bmask = phba->vpi_bmask;
5895 		ids = phba->vpi_ids;
5896 		ext_blk_list = &phba->lpfc_vpi_blk_list;
5897 		break;
5898 	case LPFC_RSC_TYPE_FCOE_XRI:
5899 		phba->sli4_hba.xri_bmask = kcalloc(longs,
5900 						   sizeof(unsigned long),
5901 						   GFP_KERNEL);
5902 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
5903 			rc = -ENOMEM;
5904 			goto err_exit;
5905 		}
5906 		phba->sli4_hba.max_cfg_param.xri_used = 0;
5907 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
5908 						 sizeof(uint16_t),
5909 						 GFP_KERNEL);
5910 		if (unlikely(!phba->sli4_hba.xri_ids)) {
5911 			kfree(phba->sli4_hba.xri_bmask);
5912 			rc = -ENOMEM;
5913 			goto err_exit;
5914 		}
5915 
5916 		/* Initialize local ptrs for common extent processing later. */
5917 		bmask = phba->sli4_hba.xri_bmask;
5918 		ids = phba->sli4_hba.xri_ids;
5919 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5920 		break;
5921 	case LPFC_RSC_TYPE_FCOE_VFI:
5922 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
5923 						   sizeof(unsigned long),
5924 						   GFP_KERNEL);
5925 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5926 			rc = -ENOMEM;
5927 			goto err_exit;
5928 		}
5929 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
5930 						 sizeof(uint16_t),
5931 						 GFP_KERNEL);
5932 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
5933 			kfree(phba->sli4_hba.vfi_bmask);
5934 			rc = -ENOMEM;
5935 			goto err_exit;
5936 		}
5937 
5938 		/* Initialize local ptrs for common extent processing later. */
5939 		bmask = phba->sli4_hba.vfi_bmask;
5940 		ids = phba->sli4_hba.vfi_ids;
5941 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5942 		break;
5943 	default:
5944 		/* Unsupported Opcode.  Fail call. */
5945 		id_array = NULL;
5946 		bmask = NULL;
5947 		ids = NULL;
5948 		ext_blk_list = NULL;
5949 		goto err_exit;
5950 	}
5951 
5952 	/*
5953 	 * Complete initializing the extent configuration with the
5954 	 * allocated ids assigned to this function.  The bitmask serves
5955 	 * as an index into the array and manages the available ids.  The
5956 	 * array just stores the ids communicated to the port via the wqes.
5957 	 */
5958 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5959 		if ((i % 2) == 0)
5960 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5961 					 &id_array[k]);
5962 		else
5963 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5964 					 &id_array[k]);
5965 
5966 		rsrc_blks = kzalloc(length, GFP_KERNEL);
5967 		if (unlikely(!rsrc_blks)) {
5968 			rc = -ENOMEM;
5969 			kfree(bmask);
5970 			kfree(ids);
5971 			goto err_exit;
5972 		}
5973 		rsrc_blks->rsrc_start = rsrc_id;
5974 		rsrc_blks->rsrc_size = rsrc_size;
5975 		list_add_tail(&rsrc_blks->list, ext_blk_list);
5976 		rsrc_start = rsrc_id;
5977 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
5978 			phba->sli4_hba.scsi_xri_start = rsrc_start +
5979 				lpfc_sli4_get_iocb_cnt(phba);
5980 			phba->sli4_hba.nvme_xri_start =
5981 				phba->sli4_hba.scsi_xri_start +
5982 				phba->sli4_hba.scsi_xri_max;
5983 		}
5984 
5985 		while (rsrc_id < (rsrc_start + rsrc_size)) {
5986 			ids[j] = rsrc_id;
5987 			rsrc_id++;
5988 			j++;
5989 		}
5990 		/* Entire word processed.  Get next word.*/
5991 		if ((i % 2) == 1)
5992 			k++;
5993 	}
5994  err_exit:
5995 	lpfc_sli4_mbox_cmd_free(phba, mbox);
5996 	return rc;
5997 }
5998 
5999 
6000 
6001 /**
6002  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6003  * @phba: Pointer to HBA context object.
6004  * @type: the extent's type.
6005  *
6006  * This function deallocates all extents of a particular resource type.
6007  * SLI4 does not allow for deallocating a particular extent range.  It
6008  * is the caller's responsibility to release all kernel memory resources.
6009  **/
6010 static int
6011 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6012 {
6013 	int rc;
6014 	uint32_t length, mbox_tmo = 0;
6015 	LPFC_MBOXQ_t *mbox;
6016 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6017 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6018 
6019 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6020 	if (!mbox)
6021 		return -ENOMEM;
6022 
6023 	/*
6024 	 * This function sends an embedded mailbox because it only sends the
6025 	 * the resource type.  All extents of this type are released by the
6026 	 * port.
6027 	 */
6028 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6029 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6030 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6031 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6032 			 length, LPFC_SLI4_MBX_EMBED);
6033 
6034 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6035 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6036 					LPFC_SLI4_MBX_EMBED);
6037 	if (unlikely(rc)) {
6038 		rc = -EIO;
6039 		goto out_free_mbox;
6040 	}
6041 	if (!phba->sli4_hba.intr_enable)
6042 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6043 	else {
6044 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6045 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6046 	}
6047 	if (unlikely(rc)) {
6048 		rc = -EIO;
6049 		goto out_free_mbox;
6050 	}
6051 
6052 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6053 	if (bf_get(lpfc_mbox_hdr_status,
6054 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6055 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6056 				"2919 Failed to release resource extents "
6057 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6058 				"Resource memory not released.\n",
6059 				type,
6060 				bf_get(lpfc_mbox_hdr_status,
6061 				    &dealloc_rsrc->header.cfg_shdr.response),
6062 				bf_get(lpfc_mbox_hdr_add_status,
6063 				    &dealloc_rsrc->header.cfg_shdr.response));
6064 		rc = -EIO;
6065 		goto out_free_mbox;
6066 	}
6067 
6068 	/* Release kernel memory resources for the specific type. */
6069 	switch (type) {
6070 	case LPFC_RSC_TYPE_FCOE_VPI:
6071 		kfree(phba->vpi_bmask);
6072 		kfree(phba->vpi_ids);
6073 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6074 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6075 				    &phba->lpfc_vpi_blk_list, list) {
6076 			list_del_init(&rsrc_blk->list);
6077 			kfree(rsrc_blk);
6078 		}
6079 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6080 		break;
6081 	case LPFC_RSC_TYPE_FCOE_XRI:
6082 		kfree(phba->sli4_hba.xri_bmask);
6083 		kfree(phba->sli4_hba.xri_ids);
6084 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6085 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6086 			list_del_init(&rsrc_blk->list);
6087 			kfree(rsrc_blk);
6088 		}
6089 		break;
6090 	case LPFC_RSC_TYPE_FCOE_VFI:
6091 		kfree(phba->sli4_hba.vfi_bmask);
6092 		kfree(phba->sli4_hba.vfi_ids);
6093 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6094 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6095 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6096 			list_del_init(&rsrc_blk->list);
6097 			kfree(rsrc_blk);
6098 		}
6099 		break;
6100 	case LPFC_RSC_TYPE_FCOE_RPI:
6101 		/* RPI bitmask and physical id array are cleaned up earlier. */
6102 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6103 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6104 			list_del_init(&rsrc_blk->list);
6105 			kfree(rsrc_blk);
6106 		}
6107 		break;
6108 	default:
6109 		break;
6110 	}
6111 
6112 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6113 
6114  out_free_mbox:
6115 	mempool_free(mbox, phba->mbox_mem_pool);
6116 	return rc;
6117 }
6118 
6119 static void
6120 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6121 		  uint32_t feature)
6122 {
6123 	uint32_t len;
6124 
6125 	len = sizeof(struct lpfc_mbx_set_feature) -
6126 		sizeof(struct lpfc_sli4_cfg_mhdr);
6127 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6128 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6129 			 LPFC_SLI4_MBX_EMBED);
6130 
6131 	switch (feature) {
6132 	case LPFC_SET_UE_RECOVERY:
6133 		bf_set(lpfc_mbx_set_feature_UER,
6134 		       &mbox->u.mqe.un.set_feature, 1);
6135 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6136 		mbox->u.mqe.un.set_feature.param_len = 8;
6137 		break;
6138 	case LPFC_SET_MDS_DIAGS:
6139 		bf_set(lpfc_mbx_set_feature_mds,
6140 		       &mbox->u.mqe.un.set_feature, 1);
6141 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6142 		       &mbox->u.mqe.un.set_feature, 1);
6143 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6144 		mbox->u.mqe.un.set_feature.param_len = 8;
6145 		break;
6146 	}
6147 
6148 	return;
6149 }
6150 
6151 /**
6152  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6153  * @phba: Pointer to HBA context object.
6154  *
6155  * This function is called to free memory allocated for RAS FW logging
6156  * support in the driver.
6157  **/
6158 void
6159 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6160 {
6161 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6162 	struct lpfc_dmabuf *dmabuf, *next;
6163 
6164 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6165 		list_for_each_entry_safe(dmabuf, next,
6166 				    &ras_fwlog->fwlog_buff_list,
6167 				    list) {
6168 			list_del(&dmabuf->list);
6169 			dma_free_coherent(&phba->pcidev->dev,
6170 					  LPFC_RAS_MAX_ENTRY_SIZE,
6171 					  dmabuf->virt, dmabuf->phys);
6172 			kfree(dmabuf);
6173 		}
6174 	}
6175 
6176 	if (ras_fwlog->lwpd.virt) {
6177 		dma_free_coherent(&phba->pcidev->dev,
6178 				  sizeof(uint32_t) * 2,
6179 				  ras_fwlog->lwpd.virt,
6180 				  ras_fwlog->lwpd.phys);
6181 		ras_fwlog->lwpd.virt = NULL;
6182 	}
6183 
6184 	ras_fwlog->ras_active = false;
6185 }
6186 
6187 /**
6188  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6189  * @phba: Pointer to HBA context object.
6190  * @fwlog_buff_count: Count of buffers to be created.
6191  *
6192  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6193  * to update FW log is posted to the adapter.
6194  * Buffer count is calculated based on module param ras_fwlog_buffsize
6195  * Size of each buffer posted to FW is 64K.
6196  **/
6197 
6198 static int
6199 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6200 			uint32_t fwlog_buff_count)
6201 {
6202 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6203 	struct lpfc_dmabuf *dmabuf;
6204 	int rc = 0, i = 0;
6205 
6206 	/* Initialize List */
6207 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6208 
6209 	/* Allocate memory for the LWPD */
6210 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6211 					    sizeof(uint32_t) * 2,
6212 					    &ras_fwlog->lwpd.phys,
6213 					    GFP_KERNEL);
6214 	if (!ras_fwlog->lwpd.virt) {
6215 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6216 				"6185 LWPD Memory Alloc Failed\n");
6217 
6218 		return -ENOMEM;
6219 	}
6220 
6221 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6222 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6223 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6224 				 GFP_KERNEL);
6225 		if (!dmabuf) {
6226 			rc = -ENOMEM;
6227 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6228 					"6186 Memory Alloc failed FW logging");
6229 			goto free_mem;
6230 		}
6231 
6232 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6233 						  LPFC_RAS_MAX_ENTRY_SIZE,
6234 						  &dmabuf->phys,
6235 						  GFP_KERNEL);
6236 		if (!dmabuf->virt) {
6237 			kfree(dmabuf);
6238 			rc = -ENOMEM;
6239 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6240 					"6187 DMA Alloc Failed FW logging");
6241 			goto free_mem;
6242 		}
6243 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6244 		dmabuf->buffer_tag = i;
6245 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6246 	}
6247 
6248 free_mem:
6249 	if (rc)
6250 		lpfc_sli4_ras_dma_free(phba);
6251 
6252 	return rc;
6253 }
6254 
6255 /**
6256  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6257  * @phba: pointer to lpfc hba data structure.
6258  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6259  *
6260  * Completion handler for driver's RAS MBX command to the device.
6261  **/
6262 static void
6263 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6264 {
6265 	MAILBOX_t *mb;
6266 	union lpfc_sli4_cfg_shdr *shdr;
6267 	uint32_t shdr_status, shdr_add_status;
6268 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6269 
6270 	mb = &pmb->u.mb;
6271 
6272 	shdr = (union lpfc_sli4_cfg_shdr *)
6273 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6274 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6275 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6276 
6277 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6278 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX,
6279 				"6188 FW LOG mailbox "
6280 				"completed with status x%x add_status x%x,"
6281 				" mbx status x%x\n",
6282 				shdr_status, shdr_add_status, mb->mbxStatus);
6283 		goto disable_ras;
6284 	}
6285 
6286 	ras_fwlog->ras_active = true;
6287 	mempool_free(pmb, phba->mbox_mem_pool);
6288 
6289 	return;
6290 
6291 disable_ras:
6292 	/* Free RAS DMA memory */
6293 	lpfc_sli4_ras_dma_free(phba);
6294 	mempool_free(pmb, phba->mbox_mem_pool);
6295 }
6296 
6297 /**
6298  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6299  * @phba: pointer to lpfc hba data structure.
6300  * @fwlog_level: Logging verbosity level.
6301  * @fwlog_enable: Enable/Disable logging.
6302  *
6303  * Initialize memory and post mailbox command to enable FW logging in host
6304  * memory.
6305  **/
6306 int
6307 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6308 			 uint32_t fwlog_level,
6309 			 uint32_t fwlog_enable)
6310 {
6311 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6312 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6313 	struct lpfc_dmabuf *dmabuf;
6314 	LPFC_MBOXQ_t *mbox;
6315 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6316 	int rc = 0;
6317 
6318 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6319 			  phba->cfg_ras_fwlog_buffsize);
6320 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6321 
6322 	/*
6323 	 * If re-enabling FW logging support use earlier allocated
6324 	 * DMA buffers while posting MBX command.
6325 	 **/
6326 	if (!ras_fwlog->lwpd.virt) {
6327 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6328 		if (rc) {
6329 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6330 					"6189 RAS FW Log Support Not Enabled");
6331 			return rc;
6332 		}
6333 	}
6334 
6335 	/* Setup Mailbox command */
6336 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6337 	if (!mbox) {
6338 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6339 				"6190 RAS MBX Alloc Failed");
6340 		rc = -ENOMEM;
6341 		goto mem_free;
6342 	}
6343 
6344 	ras_fwlog->fw_loglevel = fwlog_level;
6345 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6346 		sizeof(struct lpfc_sli4_cfg_mhdr));
6347 
6348 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6349 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6350 			 len, LPFC_SLI4_MBX_EMBED);
6351 
6352 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6353 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6354 	       fwlog_enable);
6355 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6356 	       ras_fwlog->fw_loglevel);
6357 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6358 	       ras_fwlog->fw_buffcount);
6359 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6360 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6361 
6362 	/* Update DMA buffer address */
6363 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6364 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6365 
6366 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6367 			putPaddrLow(dmabuf->phys);
6368 
6369 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6370 			putPaddrHigh(dmabuf->phys);
6371 	}
6372 
6373 	/* Update LPWD address */
6374 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6375 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6376 
6377 	mbox->vport = phba->pport;
6378 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6379 
6380 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6381 
6382 	if (rc == MBX_NOT_FINISHED) {
6383 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6384 				"6191 RAS Mailbox failed. "
6385 				"status %d mbxStatus : x%x", rc,
6386 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6387 		mempool_free(mbox, phba->mbox_mem_pool);
6388 		rc = -EIO;
6389 		goto mem_free;
6390 	} else
6391 		rc = 0;
6392 mem_free:
6393 	if (rc)
6394 		lpfc_sli4_ras_dma_free(phba);
6395 
6396 	return rc;
6397 }
6398 
6399 /**
6400  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6401  * @phba: Pointer to HBA context object.
6402  *
6403  * Check if RAS is supported on the adapter and initialize it.
6404  **/
6405 void
6406 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6407 {
6408 	/* Check RAS FW Log needs to be enabled or not */
6409 	if (lpfc_check_fwlog_support(phba))
6410 		return;
6411 
6412 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6413 				 LPFC_RAS_ENABLE_LOGGING);
6414 }
6415 
6416 /**
6417  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6418  * @phba: Pointer to HBA context object.
6419  *
6420  * This function allocates all SLI4 resource identifiers.
6421  **/
6422 int
6423 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6424 {
6425 	int i, rc, error = 0;
6426 	uint16_t count, base;
6427 	unsigned long longs;
6428 
6429 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6430 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6431 	if (phba->sli4_hba.extents_in_use) {
6432 		/*
6433 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6434 		 * resource extent count must be read and allocated before
6435 		 * provisioning the resource id arrays.
6436 		 */
6437 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6438 		    LPFC_IDX_RSRC_RDY) {
6439 			/*
6440 			 * Extent-based resources are set - the driver could
6441 			 * be in a port reset. Figure out if any corrective
6442 			 * actions need to be taken.
6443 			 */
6444 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6445 						 LPFC_RSC_TYPE_FCOE_VFI);
6446 			if (rc != 0)
6447 				error++;
6448 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6449 						 LPFC_RSC_TYPE_FCOE_VPI);
6450 			if (rc != 0)
6451 				error++;
6452 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6453 						 LPFC_RSC_TYPE_FCOE_XRI);
6454 			if (rc != 0)
6455 				error++;
6456 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6457 						 LPFC_RSC_TYPE_FCOE_RPI);
6458 			if (rc != 0)
6459 				error++;
6460 
6461 			/*
6462 			 * It's possible that the number of resources
6463 			 * provided to this port instance changed between
6464 			 * resets.  Detect this condition and reallocate
6465 			 * resources.  Otherwise, there is no action.
6466 			 */
6467 			if (error) {
6468 				lpfc_printf_log(phba, KERN_INFO,
6469 						LOG_MBOX | LOG_INIT,
6470 						"2931 Detected extent resource "
6471 						"change.  Reallocating all "
6472 						"extents.\n");
6473 				rc = lpfc_sli4_dealloc_extent(phba,
6474 						 LPFC_RSC_TYPE_FCOE_VFI);
6475 				rc = lpfc_sli4_dealloc_extent(phba,
6476 						 LPFC_RSC_TYPE_FCOE_VPI);
6477 				rc = lpfc_sli4_dealloc_extent(phba,
6478 						 LPFC_RSC_TYPE_FCOE_XRI);
6479 				rc = lpfc_sli4_dealloc_extent(phba,
6480 						 LPFC_RSC_TYPE_FCOE_RPI);
6481 			} else
6482 				return 0;
6483 		}
6484 
6485 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6486 		if (unlikely(rc))
6487 			goto err_exit;
6488 
6489 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6490 		if (unlikely(rc))
6491 			goto err_exit;
6492 
6493 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6494 		if (unlikely(rc))
6495 			goto err_exit;
6496 
6497 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6498 		if (unlikely(rc))
6499 			goto err_exit;
6500 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6501 		       LPFC_IDX_RSRC_RDY);
6502 		return rc;
6503 	} else {
6504 		/*
6505 		 * The port does not support resource extents.  The XRI, VPI,
6506 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6507 		 * Just allocate the bitmasks and provision the resource id
6508 		 * arrays.  If a port reset is active, the resources don't
6509 		 * need any action - just exit.
6510 		 */
6511 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6512 		    LPFC_IDX_RSRC_RDY) {
6513 			lpfc_sli4_dealloc_resource_identifiers(phba);
6514 			lpfc_sli4_remove_rpis(phba);
6515 		}
6516 		/* RPIs. */
6517 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6518 		if (count <= 0) {
6519 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6520 					"3279 Invalid provisioning of "
6521 					"rpi:%d\n", count);
6522 			rc = -EINVAL;
6523 			goto err_exit;
6524 		}
6525 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6526 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6527 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6528 						   sizeof(unsigned long),
6529 						   GFP_KERNEL);
6530 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6531 			rc = -ENOMEM;
6532 			goto err_exit;
6533 		}
6534 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6535 						 GFP_KERNEL);
6536 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6537 			rc = -ENOMEM;
6538 			goto free_rpi_bmask;
6539 		}
6540 
6541 		for (i = 0; i < count; i++)
6542 			phba->sli4_hba.rpi_ids[i] = base + i;
6543 
6544 		/* VPIs. */
6545 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6546 		if (count <= 0) {
6547 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6548 					"3280 Invalid provisioning of "
6549 					"vpi:%d\n", count);
6550 			rc = -EINVAL;
6551 			goto free_rpi_ids;
6552 		}
6553 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6554 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6555 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6556 					  GFP_KERNEL);
6557 		if (unlikely(!phba->vpi_bmask)) {
6558 			rc = -ENOMEM;
6559 			goto free_rpi_ids;
6560 		}
6561 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6562 					GFP_KERNEL);
6563 		if (unlikely(!phba->vpi_ids)) {
6564 			rc = -ENOMEM;
6565 			goto free_vpi_bmask;
6566 		}
6567 
6568 		for (i = 0; i < count; i++)
6569 			phba->vpi_ids[i] = base + i;
6570 
6571 		/* XRIs. */
6572 		count = phba->sli4_hba.max_cfg_param.max_xri;
6573 		if (count <= 0) {
6574 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6575 					"3281 Invalid provisioning of "
6576 					"xri:%d\n", count);
6577 			rc = -EINVAL;
6578 			goto free_vpi_ids;
6579 		}
6580 		base = phba->sli4_hba.max_cfg_param.xri_base;
6581 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6582 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6583 						   sizeof(unsigned long),
6584 						   GFP_KERNEL);
6585 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6586 			rc = -ENOMEM;
6587 			goto free_vpi_ids;
6588 		}
6589 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6590 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6591 						 GFP_KERNEL);
6592 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6593 			rc = -ENOMEM;
6594 			goto free_xri_bmask;
6595 		}
6596 
6597 		for (i = 0; i < count; i++)
6598 			phba->sli4_hba.xri_ids[i] = base + i;
6599 
6600 		/* VFIs. */
6601 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6602 		if (count <= 0) {
6603 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6604 					"3282 Invalid provisioning of "
6605 					"vfi:%d\n", count);
6606 			rc = -EINVAL;
6607 			goto free_xri_ids;
6608 		}
6609 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6610 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6611 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6612 						   sizeof(unsigned long),
6613 						   GFP_KERNEL);
6614 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6615 			rc = -ENOMEM;
6616 			goto free_xri_ids;
6617 		}
6618 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6619 						 GFP_KERNEL);
6620 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6621 			rc = -ENOMEM;
6622 			goto free_vfi_bmask;
6623 		}
6624 
6625 		for (i = 0; i < count; i++)
6626 			phba->sli4_hba.vfi_ids[i] = base + i;
6627 
6628 		/*
6629 		 * Mark all resources ready.  An HBA reset doesn't need
6630 		 * to reset the initialization.
6631 		 */
6632 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6633 		       LPFC_IDX_RSRC_RDY);
6634 		return 0;
6635 	}
6636 
6637  free_vfi_bmask:
6638 	kfree(phba->sli4_hba.vfi_bmask);
6639 	phba->sli4_hba.vfi_bmask = NULL;
6640  free_xri_ids:
6641 	kfree(phba->sli4_hba.xri_ids);
6642 	phba->sli4_hba.xri_ids = NULL;
6643  free_xri_bmask:
6644 	kfree(phba->sli4_hba.xri_bmask);
6645 	phba->sli4_hba.xri_bmask = NULL;
6646  free_vpi_ids:
6647 	kfree(phba->vpi_ids);
6648 	phba->vpi_ids = NULL;
6649  free_vpi_bmask:
6650 	kfree(phba->vpi_bmask);
6651 	phba->vpi_bmask = NULL;
6652  free_rpi_ids:
6653 	kfree(phba->sli4_hba.rpi_ids);
6654 	phba->sli4_hba.rpi_ids = NULL;
6655  free_rpi_bmask:
6656 	kfree(phba->sli4_hba.rpi_bmask);
6657 	phba->sli4_hba.rpi_bmask = NULL;
6658  err_exit:
6659 	return rc;
6660 }
6661 
6662 /**
6663  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6664  * @phba: Pointer to HBA context object.
6665  *
6666  * This function allocates the number of elements for the specified
6667  * resource type.
6668  **/
6669 int
6670 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6671 {
6672 	if (phba->sli4_hba.extents_in_use) {
6673 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6674 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6675 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6676 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6677 	} else {
6678 		kfree(phba->vpi_bmask);
6679 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6680 		kfree(phba->vpi_ids);
6681 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6682 		kfree(phba->sli4_hba.xri_bmask);
6683 		kfree(phba->sli4_hba.xri_ids);
6684 		kfree(phba->sli4_hba.vfi_bmask);
6685 		kfree(phba->sli4_hba.vfi_ids);
6686 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6687 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6688 	}
6689 
6690 	return 0;
6691 }
6692 
6693 /**
6694  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6695  * @phba: Pointer to HBA context object.
6696  * @type: The resource extent type.
6697  * @extnt_count: buffer to hold port extent count response
6698  * @extnt_size: buffer to hold port extent size response.
6699  *
6700  * This function calls the port to read the host allocated extents
6701  * for a particular type.
6702  **/
6703 int
6704 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6705 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6706 {
6707 	bool emb;
6708 	int rc = 0;
6709 	uint16_t curr_blks = 0;
6710 	uint32_t req_len, emb_len;
6711 	uint32_t alloc_len, mbox_tmo;
6712 	struct list_head *blk_list_head;
6713 	struct lpfc_rsrc_blks *rsrc_blk;
6714 	LPFC_MBOXQ_t *mbox;
6715 	void *virtaddr = NULL;
6716 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6717 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6718 	union  lpfc_sli4_cfg_shdr *shdr;
6719 
6720 	switch (type) {
6721 	case LPFC_RSC_TYPE_FCOE_VPI:
6722 		blk_list_head = &phba->lpfc_vpi_blk_list;
6723 		break;
6724 	case LPFC_RSC_TYPE_FCOE_XRI:
6725 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6726 		break;
6727 	case LPFC_RSC_TYPE_FCOE_VFI:
6728 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6729 		break;
6730 	case LPFC_RSC_TYPE_FCOE_RPI:
6731 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6732 		break;
6733 	default:
6734 		return -EIO;
6735 	}
6736 
6737 	/* Count the number of extents currently allocatd for this type. */
6738 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6739 		if (curr_blks == 0) {
6740 			/*
6741 			 * The GET_ALLOCATED mailbox does not return the size,
6742 			 * just the count.  The size should be just the size
6743 			 * stored in the current allocated block and all sizes
6744 			 * for an extent type are the same so set the return
6745 			 * value now.
6746 			 */
6747 			*extnt_size = rsrc_blk->rsrc_size;
6748 		}
6749 		curr_blks++;
6750 	}
6751 
6752 	/*
6753 	 * Calculate the size of an embedded mailbox.  The uint32_t
6754 	 * accounts for extents-specific word.
6755 	 */
6756 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6757 		sizeof(uint32_t);
6758 
6759 	/*
6760 	 * Presume the allocation and response will fit into an embedded
6761 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6762 	 */
6763 	emb = LPFC_SLI4_MBX_EMBED;
6764 	req_len = emb_len;
6765 	if (req_len > emb_len) {
6766 		req_len = curr_blks * sizeof(uint16_t) +
6767 			sizeof(union lpfc_sli4_cfg_shdr) +
6768 			sizeof(uint32_t);
6769 		emb = LPFC_SLI4_MBX_NEMBED;
6770 	}
6771 
6772 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6773 	if (!mbox)
6774 		return -ENOMEM;
6775 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6776 
6777 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6778 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6779 				     req_len, emb);
6780 	if (alloc_len < req_len) {
6781 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6782 			"2983 Allocated DMA memory size (x%x) is "
6783 			"less than the requested DMA memory "
6784 			"size (x%x)\n", alloc_len, req_len);
6785 		rc = -ENOMEM;
6786 		goto err_exit;
6787 	}
6788 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6789 	if (unlikely(rc)) {
6790 		rc = -EIO;
6791 		goto err_exit;
6792 	}
6793 
6794 	if (!phba->sli4_hba.intr_enable)
6795 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6796 	else {
6797 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6798 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6799 	}
6800 
6801 	if (unlikely(rc)) {
6802 		rc = -EIO;
6803 		goto err_exit;
6804 	}
6805 
6806 	/*
6807 	 * Figure out where the response is located.  Then get local pointers
6808 	 * to the response data.  The port does not guarantee to respond to
6809 	 * all extents counts request so update the local variable with the
6810 	 * allocated count from the port.
6811 	 */
6812 	if (emb == LPFC_SLI4_MBX_EMBED) {
6813 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6814 		shdr = &rsrc_ext->header.cfg_shdr;
6815 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6816 	} else {
6817 		virtaddr = mbox->sge_array->addr[0];
6818 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6819 		shdr = &n_rsrc->cfg_shdr;
6820 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6821 	}
6822 
6823 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
6824 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6825 			"2984 Failed to read allocated resources "
6826 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
6827 			type,
6828 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
6829 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
6830 		rc = -EIO;
6831 		goto err_exit;
6832 	}
6833  err_exit:
6834 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6835 	return rc;
6836 }
6837 
6838 /**
6839  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
6840  * @phba: pointer to lpfc hba data structure.
6841  * @pring: Pointer to driver SLI ring object.
6842  * @sgl_list: linked link of sgl buffers to post
6843  * @cnt: number of linked list buffers
6844  *
6845  * This routine walks the list of buffers that have been allocated and
6846  * repost them to the port by using SGL block post. This is needed after a
6847  * pci_function_reset/warm_start or start. It attempts to construct blocks
6848  * of buffer sgls which contains contiguous xris and uses the non-embedded
6849  * SGL block post mailbox commands to post them to the port. For single
6850  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
6851  * mailbox command for posting.
6852  *
6853  * Returns: 0 = success, non-zero failure.
6854  **/
6855 static int
6856 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
6857 			  struct list_head *sgl_list, int cnt)
6858 {
6859 	struct lpfc_sglq *sglq_entry = NULL;
6860 	struct lpfc_sglq *sglq_entry_next = NULL;
6861 	struct lpfc_sglq *sglq_entry_first = NULL;
6862 	int status, total_cnt;
6863 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
6864 	int last_xritag = NO_XRI;
6865 	LIST_HEAD(prep_sgl_list);
6866 	LIST_HEAD(blck_sgl_list);
6867 	LIST_HEAD(allc_sgl_list);
6868 	LIST_HEAD(post_sgl_list);
6869 	LIST_HEAD(free_sgl_list);
6870 
6871 	spin_lock_irq(&phba->hbalock);
6872 	spin_lock(&phba->sli4_hba.sgl_list_lock);
6873 	list_splice_init(sgl_list, &allc_sgl_list);
6874 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
6875 	spin_unlock_irq(&phba->hbalock);
6876 
6877 	total_cnt = cnt;
6878 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
6879 				 &allc_sgl_list, list) {
6880 		list_del_init(&sglq_entry->list);
6881 		block_cnt++;
6882 		if ((last_xritag != NO_XRI) &&
6883 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
6884 			/* a hole in xri block, form a sgl posting block */
6885 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
6886 			post_cnt = block_cnt - 1;
6887 			/* prepare list for next posting block */
6888 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6889 			block_cnt = 1;
6890 		} else {
6891 			/* prepare list for next posting block */
6892 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
6893 			/* enough sgls for non-embed sgl mbox command */
6894 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
6895 				list_splice_init(&prep_sgl_list,
6896 						 &blck_sgl_list);
6897 				post_cnt = block_cnt;
6898 				block_cnt = 0;
6899 			}
6900 		}
6901 		num_posted++;
6902 
6903 		/* keep track of last sgl's xritag */
6904 		last_xritag = sglq_entry->sli4_xritag;
6905 
6906 		/* end of repost sgl list condition for buffers */
6907 		if (num_posted == total_cnt) {
6908 			if (post_cnt == 0) {
6909 				list_splice_init(&prep_sgl_list,
6910 						 &blck_sgl_list);
6911 				post_cnt = block_cnt;
6912 			} else if (block_cnt == 1) {
6913 				status = lpfc_sli4_post_sgl(phba,
6914 						sglq_entry->phys, 0,
6915 						sglq_entry->sli4_xritag);
6916 				if (!status) {
6917 					/* successful, put sgl to posted list */
6918 					list_add_tail(&sglq_entry->list,
6919 						      &post_sgl_list);
6920 				} else {
6921 					/* Failure, put sgl to free list */
6922 					lpfc_printf_log(phba, KERN_WARNING,
6923 						LOG_SLI,
6924 						"3159 Failed to post "
6925 						"sgl, xritag:x%x\n",
6926 						sglq_entry->sli4_xritag);
6927 					list_add_tail(&sglq_entry->list,
6928 						      &free_sgl_list);
6929 					total_cnt--;
6930 				}
6931 			}
6932 		}
6933 
6934 		/* continue until a nembed page worth of sgls */
6935 		if (post_cnt == 0)
6936 			continue;
6937 
6938 		/* post the buffer list sgls as a block */
6939 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
6940 						 post_cnt);
6941 
6942 		if (!status) {
6943 			/* success, put sgl list to posted sgl list */
6944 			list_splice_init(&blck_sgl_list, &post_sgl_list);
6945 		} else {
6946 			/* Failure, put sgl list to free sgl list */
6947 			sglq_entry_first = list_first_entry(&blck_sgl_list,
6948 							    struct lpfc_sglq,
6949 							    list);
6950 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
6951 					"3160 Failed to post sgl-list, "
6952 					"xritag:x%x-x%x\n",
6953 					sglq_entry_first->sli4_xritag,
6954 					(sglq_entry_first->sli4_xritag +
6955 					 post_cnt - 1));
6956 			list_splice_init(&blck_sgl_list, &free_sgl_list);
6957 			total_cnt -= post_cnt;
6958 		}
6959 
6960 		/* don't reset xirtag due to hole in xri block */
6961 		if (block_cnt == 0)
6962 			last_xritag = NO_XRI;
6963 
6964 		/* reset sgl post count for next round of posting */
6965 		post_cnt = 0;
6966 	}
6967 
6968 	/* free the sgls failed to post */
6969 	lpfc_free_sgl_list(phba, &free_sgl_list);
6970 
6971 	/* push sgls posted to the available list */
6972 	if (!list_empty(&post_sgl_list)) {
6973 		spin_lock_irq(&phba->hbalock);
6974 		spin_lock(&phba->sli4_hba.sgl_list_lock);
6975 		list_splice_init(&post_sgl_list, sgl_list);
6976 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
6977 		spin_unlock_irq(&phba->hbalock);
6978 	} else {
6979 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6980 				"3161 Failure to post sgl to port.\n");
6981 		return -EIO;
6982 	}
6983 
6984 	/* return the number of XRIs actually posted */
6985 	return total_cnt;
6986 }
6987 
6988 void
6989 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
6990 {
6991 	uint32_t len;
6992 
6993 	len = sizeof(struct lpfc_mbx_set_host_data) -
6994 		sizeof(struct lpfc_sli4_cfg_mhdr);
6995 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6996 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
6997 			 LPFC_SLI4_MBX_EMBED);
6998 
6999 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7000 	mbox->u.mqe.un.set_host_data.param_len =
7001 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7002 	snprintf(mbox->u.mqe.un.set_host_data.data,
7003 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7004 		 "Linux %s v"LPFC_DRIVER_VERSION,
7005 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7006 }
7007 
7008 int
7009 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7010 		    struct lpfc_queue *drq, int count, int idx)
7011 {
7012 	int rc, i;
7013 	struct lpfc_rqe hrqe;
7014 	struct lpfc_rqe drqe;
7015 	struct lpfc_rqb *rqbp;
7016 	unsigned long flags;
7017 	struct rqb_dmabuf *rqb_buffer;
7018 	LIST_HEAD(rqb_buf_list);
7019 
7020 	spin_lock_irqsave(&phba->hbalock, flags);
7021 	rqbp = hrq->rqbp;
7022 	for (i = 0; i < count; i++) {
7023 		/* IF RQ is already full, don't bother */
7024 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7025 			break;
7026 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7027 		if (!rqb_buffer)
7028 			break;
7029 		rqb_buffer->hrq = hrq;
7030 		rqb_buffer->drq = drq;
7031 		rqb_buffer->idx = idx;
7032 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7033 	}
7034 	while (!list_empty(&rqb_buf_list)) {
7035 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7036 				 hbuf.list);
7037 
7038 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7039 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7040 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7041 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7042 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7043 		if (rc < 0) {
7044 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7045 					"6421 Cannot post to HRQ %d: %x %x %x "
7046 					"DRQ %x %x\n",
7047 					hrq->queue_id,
7048 					hrq->host_index,
7049 					hrq->hba_index,
7050 					hrq->entry_count,
7051 					drq->host_index,
7052 					drq->hba_index);
7053 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7054 		} else {
7055 			list_add_tail(&rqb_buffer->hbuf.list,
7056 				      &rqbp->rqb_buffer_list);
7057 			rqbp->buffer_count++;
7058 		}
7059 	}
7060 	spin_unlock_irqrestore(&phba->hbalock, flags);
7061 	return 1;
7062 }
7063 
7064 /**
7065  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7066  * @phba: Pointer to HBA context object.
7067  *
7068  * This function is the main SLI4 device initialization PCI function. This
7069  * function is called by the HBA initialization code, HBA reset code and
7070  * HBA error attention handler code. Caller is not required to hold any
7071  * locks.
7072  **/
7073 int
7074 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7075 {
7076 	int rc, i, cnt;
7077 	LPFC_MBOXQ_t *mboxq;
7078 	struct lpfc_mqe *mqe;
7079 	uint8_t *vpd;
7080 	uint32_t vpd_size;
7081 	uint32_t ftr_rsp = 0;
7082 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7083 	struct lpfc_vport *vport = phba->pport;
7084 	struct lpfc_dmabuf *mp;
7085 	struct lpfc_rqb *rqbp;
7086 
7087 	/* Perform a PCI function reset to start from clean */
7088 	rc = lpfc_pci_function_reset(phba);
7089 	if (unlikely(rc))
7090 		return -ENODEV;
7091 
7092 	/* Check the HBA Host Status Register for readyness */
7093 	rc = lpfc_sli4_post_status_check(phba);
7094 	if (unlikely(rc))
7095 		return -ENODEV;
7096 	else {
7097 		spin_lock_irq(&phba->hbalock);
7098 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7099 		spin_unlock_irq(&phba->hbalock);
7100 	}
7101 
7102 	/*
7103 	 * Allocate a single mailbox container for initializing the
7104 	 * port.
7105 	 */
7106 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7107 	if (!mboxq)
7108 		return -ENOMEM;
7109 
7110 	/* Issue READ_REV to collect vpd and FW information. */
7111 	vpd_size = SLI4_PAGE_SIZE;
7112 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7113 	if (!vpd) {
7114 		rc = -ENOMEM;
7115 		goto out_free_mbox;
7116 	}
7117 
7118 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7119 	if (unlikely(rc)) {
7120 		kfree(vpd);
7121 		goto out_free_mbox;
7122 	}
7123 
7124 	mqe = &mboxq->u.mqe;
7125 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7126 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7127 		phba->hba_flag |= HBA_FCOE_MODE;
7128 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7129 	} else {
7130 		phba->hba_flag &= ~HBA_FCOE_MODE;
7131 	}
7132 
7133 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7134 		LPFC_DCBX_CEE_MODE)
7135 		phba->hba_flag |= HBA_FIP_SUPPORT;
7136 	else
7137 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7138 
7139 	phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH;
7140 
7141 	if (phba->sli_rev != LPFC_SLI_REV4) {
7142 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7143 			"0376 READ_REV Error. SLI Level %d "
7144 			"FCoE enabled %d\n",
7145 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7146 		rc = -EIO;
7147 		kfree(vpd);
7148 		goto out_free_mbox;
7149 	}
7150 
7151 	/*
7152 	 * Continue initialization with default values even if driver failed
7153 	 * to read FCoE param config regions, only read parameters if the
7154 	 * board is FCoE
7155 	 */
7156 	if (phba->hba_flag & HBA_FCOE_MODE &&
7157 	    lpfc_sli4_read_fcoe_params(phba))
7158 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7159 			"2570 Failed to read FCoE parameters\n");
7160 
7161 	/*
7162 	 * Retrieve sli4 device physical port name, failure of doing it
7163 	 * is considered as non-fatal.
7164 	 */
7165 	rc = lpfc_sli4_retrieve_pport_name(phba);
7166 	if (!rc)
7167 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7168 				"3080 Successful retrieving SLI4 device "
7169 				"physical port name: %s.\n", phba->Port);
7170 
7171 	/*
7172 	 * Evaluate the read rev and vpd data. Populate the driver
7173 	 * state with the results. If this routine fails, the failure
7174 	 * is not fatal as the driver will use generic values.
7175 	 */
7176 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7177 	if (unlikely(!rc)) {
7178 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7179 				"0377 Error %d parsing vpd. "
7180 				"Using defaults.\n", rc);
7181 		rc = 0;
7182 	}
7183 	kfree(vpd);
7184 
7185 	/* Save information as VPD data */
7186 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7187 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7188 
7189 	/*
7190 	 * This is because first G7 ASIC doesn't support the standard
7191 	 * 0x5a NVME cmd descriptor type/subtype
7192 	 */
7193 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7194 			LPFC_SLI_INTF_IF_TYPE_6) &&
7195 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7196 	    (phba->vpd.rev.smRev == 0) &&
7197 	    (phba->cfg_nvme_embed_cmd == 1))
7198 		phba->cfg_nvme_embed_cmd = 0;
7199 
7200 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7201 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7202 					 &mqe->un.read_rev);
7203 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7204 				       &mqe->un.read_rev);
7205 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7206 					    &mqe->un.read_rev);
7207 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7208 					   &mqe->un.read_rev);
7209 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7210 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7211 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7212 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7213 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7214 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7215 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7216 			"(%d):0380 READ_REV Status x%x "
7217 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7218 			mboxq->vport ? mboxq->vport->vpi : 0,
7219 			bf_get(lpfc_mqe_status, mqe),
7220 			phba->vpd.rev.opFwName,
7221 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7222 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7223 
7224 	/* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3)  */
7225 	rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3);
7226 	if (phba->pport->cfg_lun_queue_depth > rc) {
7227 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
7228 				"3362 LUN queue depth changed from %d to %d\n",
7229 				phba->pport->cfg_lun_queue_depth, rc);
7230 		phba->pport->cfg_lun_queue_depth = rc;
7231 	}
7232 
7233 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7234 	    LPFC_SLI_INTF_IF_TYPE_0) {
7235 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7236 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7237 		if (rc == MBX_SUCCESS) {
7238 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7239 			/* Set 1Sec interval to detect UE */
7240 			phba->eratt_poll_interval = 1;
7241 			phba->sli4_hba.ue_to_sr = bf_get(
7242 					lpfc_mbx_set_feature_UESR,
7243 					&mboxq->u.mqe.un.set_feature);
7244 			phba->sli4_hba.ue_to_rp = bf_get(
7245 					lpfc_mbx_set_feature_UERP,
7246 					&mboxq->u.mqe.un.set_feature);
7247 		}
7248 	}
7249 
7250 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7251 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7252 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7253 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7254 		if (rc != MBX_SUCCESS)
7255 			phba->mds_diags_support = 0;
7256 	}
7257 
7258 	/*
7259 	 * Discover the port's supported feature set and match it against the
7260 	 * hosts requests.
7261 	 */
7262 	lpfc_request_features(phba, mboxq);
7263 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7264 	if (unlikely(rc)) {
7265 		rc = -EIO;
7266 		goto out_free_mbox;
7267 	}
7268 
7269 	/*
7270 	 * The port must support FCP initiator mode as this is the
7271 	 * only mode running in the host.
7272 	 */
7273 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7274 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7275 				"0378 No support for fcpi mode.\n");
7276 		ftr_rsp++;
7277 	}
7278 
7279 	/* Performance Hints are ONLY for FCoE */
7280 	if (phba->hba_flag & HBA_FCOE_MODE) {
7281 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7282 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7283 		else
7284 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7285 	}
7286 
7287 	/*
7288 	 * If the port cannot support the host's requested features
7289 	 * then turn off the global config parameters to disable the
7290 	 * feature in the driver.  This is not a fatal error.
7291 	 */
7292 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7293 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7294 			phba->cfg_enable_bg = 0;
7295 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7296 			ftr_rsp++;
7297 		}
7298 	}
7299 
7300 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7301 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7302 		ftr_rsp++;
7303 
7304 	if (ftr_rsp) {
7305 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7306 				"0379 Feature Mismatch Data: x%08x %08x "
7307 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7308 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7309 				phba->cfg_enable_npiv, phba->max_vpi);
7310 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7311 			phba->cfg_enable_bg = 0;
7312 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7313 			phba->cfg_enable_npiv = 0;
7314 	}
7315 
7316 	/* These SLI3 features are assumed in SLI4 */
7317 	spin_lock_irq(&phba->hbalock);
7318 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7319 	spin_unlock_irq(&phba->hbalock);
7320 
7321 	/*
7322 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7323 	 * calls depends on these resources to complete port setup.
7324 	 */
7325 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7326 	if (rc) {
7327 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7328 				"2920 Failed to alloc Resource IDs "
7329 				"rc = x%x\n", rc);
7330 		goto out_free_mbox;
7331 	}
7332 
7333 	lpfc_set_host_data(phba, mboxq);
7334 
7335 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7336 	if (rc) {
7337 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7338 				"2134 Failed to set host os driver version %x",
7339 				rc);
7340 	}
7341 
7342 	/* Read the port's service parameters. */
7343 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7344 	if (rc) {
7345 		phba->link_state = LPFC_HBA_ERROR;
7346 		rc = -ENOMEM;
7347 		goto out_free_mbox;
7348 	}
7349 
7350 	mboxq->vport = vport;
7351 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7352 	mp = (struct lpfc_dmabuf *) mboxq->context1;
7353 	if (rc == MBX_SUCCESS) {
7354 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7355 		rc = 0;
7356 	}
7357 
7358 	/*
7359 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7360 	 * it to the mbuf pool.
7361 	 */
7362 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7363 	kfree(mp);
7364 	mboxq->context1 = NULL;
7365 	if (unlikely(rc)) {
7366 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7367 				"0382 READ_SPARAM command failed "
7368 				"status %d, mbxStatus x%x\n",
7369 				rc, bf_get(lpfc_mqe_status, mqe));
7370 		phba->link_state = LPFC_HBA_ERROR;
7371 		rc = -EIO;
7372 		goto out_free_mbox;
7373 	}
7374 
7375 	lpfc_update_vport_wwn(vport);
7376 
7377 	/* Update the fc_host data structures with new wwn. */
7378 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7379 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7380 
7381 	/* Create all the SLI4 queues */
7382 	rc = lpfc_sli4_queue_create(phba);
7383 	if (rc) {
7384 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7385 				"3089 Failed to allocate queues\n");
7386 		rc = -ENODEV;
7387 		goto out_free_mbox;
7388 	}
7389 	/* Set up all the queues to the device */
7390 	rc = lpfc_sli4_queue_setup(phba);
7391 	if (unlikely(rc)) {
7392 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7393 				"0381 Error %d during queue setup.\n ", rc);
7394 		goto out_stop_timers;
7395 	}
7396 	/* Initialize the driver internal SLI layer lists. */
7397 	lpfc_sli4_setup(phba);
7398 	lpfc_sli4_queue_init(phba);
7399 
7400 	/* update host els xri-sgl sizes and mappings */
7401 	rc = lpfc_sli4_els_sgl_update(phba);
7402 	if (unlikely(rc)) {
7403 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7404 				"1400 Failed to update xri-sgl size and "
7405 				"mapping: %d\n", rc);
7406 		goto out_destroy_queue;
7407 	}
7408 
7409 	/* register the els sgl pool to the port */
7410 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7411 				       phba->sli4_hba.els_xri_cnt);
7412 	if (unlikely(rc < 0)) {
7413 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7414 				"0582 Error %d during els sgl post "
7415 				"operation\n", rc);
7416 		rc = -ENODEV;
7417 		goto out_destroy_queue;
7418 	}
7419 	phba->sli4_hba.els_xri_cnt = rc;
7420 
7421 	if (phba->nvmet_support) {
7422 		/* update host nvmet xri-sgl sizes and mappings */
7423 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7424 		if (unlikely(rc)) {
7425 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7426 					"6308 Failed to update nvmet-sgl size "
7427 					"and mapping: %d\n", rc);
7428 			goto out_destroy_queue;
7429 		}
7430 
7431 		/* register the nvmet sgl pool to the port */
7432 		rc = lpfc_sli4_repost_sgl_list(
7433 			phba,
7434 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7435 			phba->sli4_hba.nvmet_xri_cnt);
7436 		if (unlikely(rc < 0)) {
7437 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7438 					"3117 Error %d during nvmet "
7439 					"sgl post\n", rc);
7440 			rc = -ENODEV;
7441 			goto out_destroy_queue;
7442 		}
7443 		phba->sli4_hba.nvmet_xri_cnt = rc;
7444 
7445 		cnt = phba->cfg_iocb_cnt * 1024;
7446 		/* We need 1 iocbq for every SGL, for IO processing */
7447 		cnt += phba->sli4_hba.nvmet_xri_cnt;
7448 	} else {
7449 		/* update host scsi xri-sgl sizes and mappings */
7450 		rc = lpfc_sli4_scsi_sgl_update(phba);
7451 		if (unlikely(rc)) {
7452 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7453 					"6309 Failed to update scsi-sgl size "
7454 					"and mapping: %d\n", rc);
7455 			goto out_destroy_queue;
7456 		}
7457 
7458 		/* update host nvme xri-sgl sizes and mappings */
7459 		rc = lpfc_sli4_nvme_sgl_update(phba);
7460 		if (unlikely(rc)) {
7461 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7462 					"6082 Failed to update nvme-sgl size "
7463 					"and mapping: %d\n", rc);
7464 			goto out_destroy_queue;
7465 		}
7466 
7467 		cnt = phba->cfg_iocb_cnt * 1024;
7468 	}
7469 
7470 	if (!phba->sli.iocbq_lookup) {
7471 		/* Initialize and populate the iocb list per host */
7472 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7473 				"2821 initialize iocb list %d total %d\n",
7474 				phba->cfg_iocb_cnt, cnt);
7475 		rc = lpfc_init_iocb_list(phba, cnt);
7476 		if (rc) {
7477 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7478 					"1413 Failed to init iocb list.\n");
7479 			goto out_destroy_queue;
7480 		}
7481 	}
7482 
7483 	if (phba->nvmet_support)
7484 		lpfc_nvmet_create_targetport(phba);
7485 
7486 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7487 		/* Post initial buffers to all RQs created */
7488 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7489 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7490 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7491 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7492 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7493 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7494 			rqbp->buffer_count = 0;
7495 
7496 			lpfc_post_rq_buffer(
7497 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7498 				phba->sli4_hba.nvmet_mrq_data[i],
7499 				phba->cfg_nvmet_mrq_post, i);
7500 		}
7501 	}
7502 
7503 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) {
7504 		/* register the allocated scsi sgl pool to the port */
7505 		rc = lpfc_sli4_repost_scsi_sgl_list(phba);
7506 		if (unlikely(rc)) {
7507 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7508 					"0383 Error %d during scsi sgl post "
7509 					"operation\n", rc);
7510 			/* Some Scsi buffers were moved to abort scsi list */
7511 			/* A pci function reset will repost them */
7512 			rc = -ENODEV;
7513 			goto out_destroy_queue;
7514 		}
7515 	}
7516 
7517 	if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) &&
7518 	    (phba->nvmet_support == 0)) {
7519 
7520 		/* register the allocated nvme sgl pool to the port */
7521 		rc = lpfc_repost_nvme_sgl_list(phba);
7522 		if (unlikely(rc)) {
7523 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7524 					"6116 Error %d during nvme sgl post "
7525 					"operation\n", rc);
7526 			/* Some NVME buffers were moved to abort nvme list */
7527 			/* A pci function reset will repost them */
7528 			rc = -ENODEV;
7529 			goto out_destroy_queue;
7530 		}
7531 	}
7532 
7533 	/* Post the rpi header region to the device. */
7534 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7535 	if (unlikely(rc)) {
7536 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7537 				"0393 Error %d during rpi post operation\n",
7538 				rc);
7539 		rc = -ENODEV;
7540 		goto out_destroy_queue;
7541 	}
7542 	lpfc_sli4_node_prep(phba);
7543 
7544 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7545 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7546 			/*
7547 			 * The FC Port needs to register FCFI (index 0)
7548 			 */
7549 			lpfc_reg_fcfi(phba, mboxq);
7550 			mboxq->vport = phba->pport;
7551 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7552 			if (rc != MBX_SUCCESS)
7553 				goto out_unset_queue;
7554 			rc = 0;
7555 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7556 						&mboxq->u.mqe.un.reg_fcfi);
7557 		} else {
7558 			/* We are a NVME Target mode with MRQ > 1 */
7559 
7560 			/* First register the FCFI */
7561 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7562 			mboxq->vport = phba->pport;
7563 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7564 			if (rc != MBX_SUCCESS)
7565 				goto out_unset_queue;
7566 			rc = 0;
7567 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7568 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7569 
7570 			/* Next register the MRQs */
7571 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7572 			mboxq->vport = phba->pport;
7573 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7574 			if (rc != MBX_SUCCESS)
7575 				goto out_unset_queue;
7576 			rc = 0;
7577 		}
7578 		/* Check if the port is configured to be disabled */
7579 		lpfc_sli_read_link_ste(phba);
7580 	}
7581 
7582 	/* Arm the CQs and then EQs on device */
7583 	lpfc_sli4_arm_cqeq_intr(phba);
7584 
7585 	/* Indicate device interrupt mode */
7586 	phba->sli4_hba.intr_enable = 1;
7587 
7588 	/* Allow asynchronous mailbox command to go through */
7589 	spin_lock_irq(&phba->hbalock);
7590 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7591 	spin_unlock_irq(&phba->hbalock);
7592 
7593 	/* Post receive buffers to the device */
7594 	lpfc_sli4_rb_setup(phba);
7595 
7596 	/* Reset HBA FCF states after HBA reset */
7597 	phba->fcf.fcf_flag = 0;
7598 	phba->fcf.current_rec.flag = 0;
7599 
7600 	/* Start the ELS watchdog timer */
7601 	mod_timer(&vport->els_tmofunc,
7602 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7603 
7604 	/* Start heart beat timer */
7605 	mod_timer(&phba->hb_tmofunc,
7606 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7607 	phba->hb_outstanding = 0;
7608 	phba->last_completion_time = jiffies;
7609 
7610 	/* Start error attention (ERATT) polling timer */
7611 	mod_timer(&phba->eratt_poll,
7612 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7613 
7614 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7615 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7616 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7617 		if (!rc) {
7618 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7619 					"2829 This device supports "
7620 					"Advanced Error Reporting (AER)\n");
7621 			spin_lock_irq(&phba->hbalock);
7622 			phba->hba_flag |= HBA_AER_ENABLED;
7623 			spin_unlock_irq(&phba->hbalock);
7624 		} else {
7625 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7626 					"2830 This device does not support "
7627 					"Advanced Error Reporting (AER)\n");
7628 			phba->cfg_aer_support = 0;
7629 		}
7630 		rc = 0;
7631 	}
7632 
7633 	/*
7634 	 * The port is ready, set the host's link state to LINK_DOWN
7635 	 * in preparation for link interrupts.
7636 	 */
7637 	spin_lock_irq(&phba->hbalock);
7638 	phba->link_state = LPFC_LINK_DOWN;
7639 	spin_unlock_irq(&phba->hbalock);
7640 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7641 	    (phba->hba_flag & LINK_DISABLED)) {
7642 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7643 				"3103 Adapter Link is disabled.\n");
7644 		lpfc_down_link(phba, mboxq);
7645 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7646 		if (rc != MBX_SUCCESS) {
7647 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7648 					"3104 Adapter failed to issue "
7649 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7650 			goto out_unset_queue;
7651 		}
7652 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7653 		/* don't perform init_link on SLI4 FC port loopback test */
7654 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7655 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7656 			if (rc)
7657 				goto out_unset_queue;
7658 		}
7659 	}
7660 	mempool_free(mboxq, phba->mbox_mem_pool);
7661 	return rc;
7662 out_unset_queue:
7663 	/* Unset all the queues set up in this routine when error out */
7664 	lpfc_sli4_queue_unset(phba);
7665 out_destroy_queue:
7666 	lpfc_free_iocb_list(phba);
7667 	lpfc_sli4_queue_destroy(phba);
7668 out_stop_timers:
7669 	lpfc_stop_hba_timers(phba);
7670 out_free_mbox:
7671 	mempool_free(mboxq, phba->mbox_mem_pool);
7672 	return rc;
7673 }
7674 
7675 /**
7676  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7677  * @ptr: context object - pointer to hba structure.
7678  *
7679  * This is the callback function for mailbox timer. The mailbox
7680  * timer is armed when a new mailbox command is issued and the timer
7681  * is deleted when the mailbox complete. The function is called by
7682  * the kernel timer code when a mailbox does not complete within
7683  * expected time. This function wakes up the worker thread to
7684  * process the mailbox timeout and returns. All the processing is
7685  * done by the worker thread function lpfc_mbox_timeout_handler.
7686  **/
7687 void
7688 lpfc_mbox_timeout(struct timer_list *t)
7689 {
7690 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7691 	unsigned long iflag;
7692 	uint32_t tmo_posted;
7693 
7694 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7695 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7696 	if (!tmo_posted)
7697 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7698 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7699 
7700 	if (!tmo_posted)
7701 		lpfc_worker_wake_up(phba);
7702 	return;
7703 }
7704 
7705 /**
7706  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7707  *                                    are pending
7708  * @phba: Pointer to HBA context object.
7709  *
7710  * This function checks if any mailbox completions are present on the mailbox
7711  * completion queue.
7712  **/
7713 static bool
7714 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7715 {
7716 
7717 	uint32_t idx;
7718 	struct lpfc_queue *mcq;
7719 	struct lpfc_mcqe *mcqe;
7720 	bool pending_completions = false;
7721 	uint8_t	qe_valid;
7722 
7723 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7724 		return false;
7725 
7726 	/* Check for completions on mailbox completion queue */
7727 
7728 	mcq = phba->sli4_hba.mbx_cq;
7729 	idx = mcq->hba_index;
7730 	qe_valid = mcq->qe_valid;
7731 	while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe) == qe_valid) {
7732 		mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe;
7733 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
7734 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
7735 			pending_completions = true;
7736 			break;
7737 		}
7738 		idx = (idx + 1) % mcq->entry_count;
7739 		if (mcq->hba_index == idx)
7740 			break;
7741 
7742 		/* if the index wrapped around, toggle the valid bit */
7743 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
7744 			qe_valid = (qe_valid) ? 0 : 1;
7745 	}
7746 	return pending_completions;
7747 
7748 }
7749 
7750 /**
7751  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
7752  *					      that were missed.
7753  * @phba: Pointer to HBA context object.
7754  *
7755  * For sli4, it is possible to miss an interrupt. As such mbox completions
7756  * maybe missed causing erroneous mailbox timeouts to occur. This function
7757  * checks to see if mbox completions are on the mailbox completion queue
7758  * and will process all the completions associated with the eq for the
7759  * mailbox completion queue.
7760  **/
7761 bool
7762 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
7763 {
7764 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
7765 	uint32_t eqidx;
7766 	struct lpfc_queue *fpeq = NULL;
7767 	struct lpfc_eqe *eqe;
7768 	bool mbox_pending;
7769 
7770 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7771 		return false;
7772 
7773 	/* Find the eq associated with the mcq */
7774 
7775 	if (sli4_hba->hba_eq)
7776 		for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++)
7777 			if (sli4_hba->hba_eq[eqidx]->queue_id ==
7778 			    sli4_hba->mbx_cq->assoc_qid) {
7779 				fpeq = sli4_hba->hba_eq[eqidx];
7780 				break;
7781 			}
7782 	if (!fpeq)
7783 		return false;
7784 
7785 	/* Turn off interrupts from this EQ */
7786 
7787 	sli4_hba->sli4_eq_clr_intr(fpeq);
7788 
7789 	/* Check to see if a mbox completion is pending */
7790 
7791 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
7792 
7793 	/*
7794 	 * If a mbox completion is pending, process all the events on EQ
7795 	 * associated with the mbox completion queue (this could include
7796 	 * mailbox commands, async events, els commands, receive queue data
7797 	 * and fcp commands)
7798 	 */
7799 
7800 	if (mbox_pending)
7801 		while ((eqe = lpfc_sli4_eq_get(fpeq))) {
7802 			lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx);
7803 			fpeq->EQ_processed++;
7804 		}
7805 
7806 	/* Always clear and re-arm the EQ */
7807 
7808 	sli4_hba->sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
7809 
7810 	return mbox_pending;
7811 
7812 }
7813 
7814 /**
7815  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
7816  * @phba: Pointer to HBA context object.
7817  *
7818  * This function is called from worker thread when a mailbox command times out.
7819  * The caller is not required to hold any locks. This function will reset the
7820  * HBA and recover all the pending commands.
7821  **/
7822 void
7823 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
7824 {
7825 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
7826 	MAILBOX_t *mb = NULL;
7827 
7828 	struct lpfc_sli *psli = &phba->sli;
7829 
7830 	/* If the mailbox completed, process the completion and return */
7831 	if (lpfc_sli4_process_missed_mbox_completions(phba))
7832 		return;
7833 
7834 	if (pmbox != NULL)
7835 		mb = &pmbox->u.mb;
7836 	/* Check the pmbox pointer first.  There is a race condition
7837 	 * between the mbox timeout handler getting executed in the
7838 	 * worklist and the mailbox actually completing. When this
7839 	 * race condition occurs, the mbox_active will be NULL.
7840 	 */
7841 	spin_lock_irq(&phba->hbalock);
7842 	if (pmbox == NULL) {
7843 		lpfc_printf_log(phba, KERN_WARNING,
7844 				LOG_MBOX | LOG_SLI,
7845 				"0353 Active Mailbox cleared - mailbox timeout "
7846 				"exiting\n");
7847 		spin_unlock_irq(&phba->hbalock);
7848 		return;
7849 	}
7850 
7851 	/* Mbox cmd <mbxCommand> timeout */
7852 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7853 			"0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
7854 			mb->mbxCommand,
7855 			phba->pport->port_state,
7856 			phba->sli.sli_flag,
7857 			phba->sli.mbox_active);
7858 	spin_unlock_irq(&phba->hbalock);
7859 
7860 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
7861 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
7862 	 * it to fail all outstanding SCSI IO.
7863 	 */
7864 	spin_lock_irq(&phba->pport->work_port_lock);
7865 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
7866 	spin_unlock_irq(&phba->pport->work_port_lock);
7867 	spin_lock_irq(&phba->hbalock);
7868 	phba->link_state = LPFC_LINK_UNKNOWN;
7869 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
7870 	spin_unlock_irq(&phba->hbalock);
7871 
7872 	lpfc_sli_abort_fcp_rings(phba);
7873 
7874 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7875 			"0345 Resetting board due to mailbox timeout\n");
7876 
7877 	/* Reset the HBA device */
7878 	lpfc_reset_hba(phba);
7879 }
7880 
7881 /**
7882  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
7883  * @phba: Pointer to HBA context object.
7884  * @pmbox: Pointer to mailbox object.
7885  * @flag: Flag indicating how the mailbox need to be processed.
7886  *
7887  * This function is called by discovery code and HBA management code
7888  * to submit a mailbox command to firmware with SLI-3 interface spec. This
7889  * function gets the hbalock to protect the data structures.
7890  * The mailbox command can be submitted in polling mode, in which case
7891  * this function will wait in a polling loop for the completion of the
7892  * mailbox.
7893  * If the mailbox is submitted in no_wait mode (not polling) the
7894  * function will submit the command and returns immediately without waiting
7895  * for the mailbox completion. The no_wait is supported only when HBA
7896  * is in SLI2/SLI3 mode - interrupts are enabled.
7897  * The SLI interface allows only one mailbox pending at a time. If the
7898  * mailbox is issued in polling mode and there is already a mailbox
7899  * pending, then the function will return an error. If the mailbox is issued
7900  * in NO_WAIT mode and there is a mailbox pending already, the function
7901  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
7902  * The sli layer owns the mailbox object until the completion of mailbox
7903  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
7904  * return codes the caller owns the mailbox command after the return of
7905  * the function.
7906  **/
7907 static int
7908 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
7909 		       uint32_t flag)
7910 {
7911 	MAILBOX_t *mbx;
7912 	struct lpfc_sli *psli = &phba->sli;
7913 	uint32_t status, evtctr;
7914 	uint32_t ha_copy, hc_copy;
7915 	int i;
7916 	unsigned long timeout;
7917 	unsigned long drvr_flag = 0;
7918 	uint32_t word0, ldata;
7919 	void __iomem *to_slim;
7920 	int processing_queue = 0;
7921 
7922 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
7923 	if (!pmbox) {
7924 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7925 		/* processing mbox queue from intr_handler */
7926 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7927 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7928 			return MBX_SUCCESS;
7929 		}
7930 		processing_queue = 1;
7931 		pmbox = lpfc_mbox_get(phba);
7932 		if (!pmbox) {
7933 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7934 			return MBX_SUCCESS;
7935 		}
7936 	}
7937 
7938 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
7939 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
7940 		if(!pmbox->vport) {
7941 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7942 			lpfc_printf_log(phba, KERN_ERR,
7943 					LOG_MBOX | LOG_VPORT,
7944 					"1806 Mbox x%x failed. No vport\n",
7945 					pmbox->u.mb.mbxCommand);
7946 			dump_stack();
7947 			goto out_not_finished;
7948 		}
7949 	}
7950 
7951 	/* If the PCI channel is in offline state, do not post mbox. */
7952 	if (unlikely(pci_channel_offline(phba->pcidev))) {
7953 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7954 		goto out_not_finished;
7955 	}
7956 
7957 	/* If HBA has a deferred error attention, fail the iocb. */
7958 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
7959 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7960 		goto out_not_finished;
7961 	}
7962 
7963 	psli = &phba->sli;
7964 
7965 	mbx = &pmbox->u.mb;
7966 	status = MBX_SUCCESS;
7967 
7968 	if (phba->link_state == LPFC_HBA_ERROR) {
7969 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7970 
7971 		/* Mbox command <mbxCommand> cannot issue */
7972 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7973 				"(%d):0311 Mailbox command x%x cannot "
7974 				"issue Data: x%x x%x\n",
7975 				pmbox->vport ? pmbox->vport->vpi : 0,
7976 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7977 		goto out_not_finished;
7978 	}
7979 
7980 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
7981 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
7982 			!(hc_copy & HC_MBINT_ENA)) {
7983 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
7984 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7985 				"(%d):2528 Mailbox command x%x cannot "
7986 				"issue Data: x%x x%x\n",
7987 				pmbox->vport ? pmbox->vport->vpi : 0,
7988 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
7989 			goto out_not_finished;
7990 		}
7991 	}
7992 
7993 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7994 		/* Polling for a mbox command when another one is already active
7995 		 * is not allowed in SLI. Also, the driver must have established
7996 		 * SLI2 mode to queue and process multiple mbox commands.
7997 		 */
7998 
7999 		if (flag & MBX_POLL) {
8000 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8001 
8002 			/* Mbox command <mbxCommand> cannot issue */
8003 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8004 					"(%d):2529 Mailbox command x%x "
8005 					"cannot issue Data: x%x x%x\n",
8006 					pmbox->vport ? pmbox->vport->vpi : 0,
8007 					pmbox->u.mb.mbxCommand,
8008 					psli->sli_flag, flag);
8009 			goto out_not_finished;
8010 		}
8011 
8012 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8013 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8014 			/* Mbox command <mbxCommand> cannot issue */
8015 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8016 					"(%d):2530 Mailbox command x%x "
8017 					"cannot issue Data: x%x x%x\n",
8018 					pmbox->vport ? pmbox->vport->vpi : 0,
8019 					pmbox->u.mb.mbxCommand,
8020 					psli->sli_flag, flag);
8021 			goto out_not_finished;
8022 		}
8023 
8024 		/* Another mailbox command is still being processed, queue this
8025 		 * command to be processed later.
8026 		 */
8027 		lpfc_mbox_put(phba, pmbox);
8028 
8029 		/* Mbox cmd issue - BUSY */
8030 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8031 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8032 				"x%x x%x x%x x%x\n",
8033 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8034 				mbx->mbxCommand,
8035 				phba->pport ? phba->pport->port_state : 0xff,
8036 				psli->sli_flag, flag);
8037 
8038 		psli->slistat.mbox_busy++;
8039 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8040 
8041 		if (pmbox->vport) {
8042 			lpfc_debugfs_disc_trc(pmbox->vport,
8043 				LPFC_DISC_TRC_MBOX_VPORT,
8044 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8045 				(uint32_t)mbx->mbxCommand,
8046 				mbx->un.varWords[0], mbx->un.varWords[1]);
8047 		}
8048 		else {
8049 			lpfc_debugfs_disc_trc(phba->pport,
8050 				LPFC_DISC_TRC_MBOX,
8051 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8052 				(uint32_t)mbx->mbxCommand,
8053 				mbx->un.varWords[0], mbx->un.varWords[1]);
8054 		}
8055 
8056 		return MBX_BUSY;
8057 	}
8058 
8059 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8060 
8061 	/* If we are not polling, we MUST be in SLI2 mode */
8062 	if (flag != MBX_POLL) {
8063 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8064 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8065 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8066 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8067 			/* Mbox command <mbxCommand> cannot issue */
8068 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8069 					"(%d):2531 Mailbox command x%x "
8070 					"cannot issue Data: x%x x%x\n",
8071 					pmbox->vport ? pmbox->vport->vpi : 0,
8072 					pmbox->u.mb.mbxCommand,
8073 					psli->sli_flag, flag);
8074 			goto out_not_finished;
8075 		}
8076 		/* timeout active mbox command */
8077 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8078 					   1000);
8079 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8080 	}
8081 
8082 	/* Mailbox cmd <cmd> issue */
8083 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8084 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8085 			"x%x\n",
8086 			pmbox->vport ? pmbox->vport->vpi : 0,
8087 			mbx->mbxCommand,
8088 			phba->pport ? phba->pport->port_state : 0xff,
8089 			psli->sli_flag, flag);
8090 
8091 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8092 		if (pmbox->vport) {
8093 			lpfc_debugfs_disc_trc(pmbox->vport,
8094 				LPFC_DISC_TRC_MBOX_VPORT,
8095 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8096 				(uint32_t)mbx->mbxCommand,
8097 				mbx->un.varWords[0], mbx->un.varWords[1]);
8098 		}
8099 		else {
8100 			lpfc_debugfs_disc_trc(phba->pport,
8101 				LPFC_DISC_TRC_MBOX,
8102 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8103 				(uint32_t)mbx->mbxCommand,
8104 				mbx->un.varWords[0], mbx->un.varWords[1]);
8105 		}
8106 	}
8107 
8108 	psli->slistat.mbox_cmd++;
8109 	evtctr = psli->slistat.mbox_event;
8110 
8111 	/* next set own bit for the adapter and copy over command word */
8112 	mbx->mbxOwner = OWN_CHIP;
8113 
8114 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8115 		/* Populate mbox extension offset word. */
8116 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8117 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8118 				= (uint8_t *)phba->mbox_ext
8119 				  - (uint8_t *)phba->mbox;
8120 		}
8121 
8122 		/* Copy the mailbox extension data */
8123 		if (pmbox->in_ext_byte_len && pmbox->context2) {
8124 			lpfc_sli_pcimem_bcopy(pmbox->context2,
8125 				(uint8_t *)phba->mbox_ext,
8126 				pmbox->in_ext_byte_len);
8127 		}
8128 		/* Copy command data to host SLIM area */
8129 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8130 	} else {
8131 		/* Populate mbox extension offset word. */
8132 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8133 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8134 				= MAILBOX_HBA_EXT_OFFSET;
8135 
8136 		/* Copy the mailbox extension data */
8137 		if (pmbox->in_ext_byte_len && pmbox->context2)
8138 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8139 				MAILBOX_HBA_EXT_OFFSET,
8140 				pmbox->context2, pmbox->in_ext_byte_len);
8141 
8142 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8143 			/* copy command data into host mbox for cmpl */
8144 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8145 					      MAILBOX_CMD_SIZE);
8146 
8147 		/* First copy mbox command data to HBA SLIM, skip past first
8148 		   word */
8149 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8150 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8151 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8152 
8153 		/* Next copy over first word, with mbxOwner set */
8154 		ldata = *((uint32_t *)mbx);
8155 		to_slim = phba->MBslimaddr;
8156 		writel(ldata, to_slim);
8157 		readl(to_slim); /* flush */
8158 
8159 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8160 			/* switch over to host mailbox */
8161 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8162 	}
8163 
8164 	wmb();
8165 
8166 	switch (flag) {
8167 	case MBX_NOWAIT:
8168 		/* Set up reference to mailbox command */
8169 		psli->mbox_active = pmbox;
8170 		/* Interrupt board to do it */
8171 		writel(CA_MBATT, phba->CAregaddr);
8172 		readl(phba->CAregaddr); /* flush */
8173 		/* Don't wait for it to finish, just return */
8174 		break;
8175 
8176 	case MBX_POLL:
8177 		/* Set up null reference to mailbox command */
8178 		psli->mbox_active = NULL;
8179 		/* Interrupt board to do it */
8180 		writel(CA_MBATT, phba->CAregaddr);
8181 		readl(phba->CAregaddr); /* flush */
8182 
8183 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8184 			/* First read mbox status word */
8185 			word0 = *((uint32_t *)phba->mbox);
8186 			word0 = le32_to_cpu(word0);
8187 		} else {
8188 			/* First read mbox status word */
8189 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8190 				spin_unlock_irqrestore(&phba->hbalock,
8191 						       drvr_flag);
8192 				goto out_not_finished;
8193 			}
8194 		}
8195 
8196 		/* Read the HBA Host Attention Register */
8197 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8198 			spin_unlock_irqrestore(&phba->hbalock,
8199 						       drvr_flag);
8200 			goto out_not_finished;
8201 		}
8202 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8203 							1000) + jiffies;
8204 		i = 0;
8205 		/* Wait for command to complete */
8206 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8207 		       (!(ha_copy & HA_MBATT) &&
8208 			(phba->link_state > LPFC_WARM_START))) {
8209 			if (time_after(jiffies, timeout)) {
8210 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8211 				spin_unlock_irqrestore(&phba->hbalock,
8212 						       drvr_flag);
8213 				goto out_not_finished;
8214 			}
8215 
8216 			/* Check if we took a mbox interrupt while we were
8217 			   polling */
8218 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8219 			    && (evtctr != psli->slistat.mbox_event))
8220 				break;
8221 
8222 			if (i++ > 10) {
8223 				spin_unlock_irqrestore(&phba->hbalock,
8224 						       drvr_flag);
8225 				msleep(1);
8226 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8227 			}
8228 
8229 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8230 				/* First copy command data */
8231 				word0 = *((uint32_t *)phba->mbox);
8232 				word0 = le32_to_cpu(word0);
8233 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8234 					MAILBOX_t *slimmb;
8235 					uint32_t slimword0;
8236 					/* Check real SLIM for any errors */
8237 					slimword0 = readl(phba->MBslimaddr);
8238 					slimmb = (MAILBOX_t *) & slimword0;
8239 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8240 					    && slimmb->mbxStatus) {
8241 						psli->sli_flag &=
8242 						    ~LPFC_SLI_ACTIVE;
8243 						word0 = slimword0;
8244 					}
8245 				}
8246 			} else {
8247 				/* First copy command data */
8248 				word0 = readl(phba->MBslimaddr);
8249 			}
8250 			/* Read the HBA Host Attention Register */
8251 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8252 				spin_unlock_irqrestore(&phba->hbalock,
8253 						       drvr_flag);
8254 				goto out_not_finished;
8255 			}
8256 		}
8257 
8258 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8259 			/* copy results back to user */
8260 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8261 						MAILBOX_CMD_SIZE);
8262 			/* Copy the mailbox extension data */
8263 			if (pmbox->out_ext_byte_len && pmbox->context2) {
8264 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8265 						      pmbox->context2,
8266 						      pmbox->out_ext_byte_len);
8267 			}
8268 		} else {
8269 			/* First copy command data */
8270 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8271 						MAILBOX_CMD_SIZE);
8272 			/* Copy the mailbox extension data */
8273 			if (pmbox->out_ext_byte_len && pmbox->context2) {
8274 				lpfc_memcpy_from_slim(pmbox->context2,
8275 					phba->MBslimaddr +
8276 					MAILBOX_HBA_EXT_OFFSET,
8277 					pmbox->out_ext_byte_len);
8278 			}
8279 		}
8280 
8281 		writel(HA_MBATT, phba->HAregaddr);
8282 		readl(phba->HAregaddr); /* flush */
8283 
8284 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8285 		status = mbx->mbxStatus;
8286 	}
8287 
8288 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8289 	return status;
8290 
8291 out_not_finished:
8292 	if (processing_queue) {
8293 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8294 		lpfc_mbox_cmpl_put(phba, pmbox);
8295 	}
8296 	return MBX_NOT_FINISHED;
8297 }
8298 
8299 /**
8300  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8301  * @phba: Pointer to HBA context object.
8302  *
8303  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8304  * the driver internal pending mailbox queue. It will then try to wait out the
8305  * possible outstanding mailbox command before return.
8306  *
8307  * Returns:
8308  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8309  * 	the outstanding mailbox command timed out.
8310  **/
8311 static int
8312 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8313 {
8314 	struct lpfc_sli *psli = &phba->sli;
8315 	int rc = 0;
8316 	unsigned long timeout = 0;
8317 
8318 	/* Mark the asynchronous mailbox command posting as blocked */
8319 	spin_lock_irq(&phba->hbalock);
8320 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8321 	/* Determine how long we might wait for the active mailbox
8322 	 * command to be gracefully completed by firmware.
8323 	 */
8324 	if (phba->sli.mbox_active)
8325 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8326 						phba->sli.mbox_active) *
8327 						1000) + jiffies;
8328 	spin_unlock_irq(&phba->hbalock);
8329 
8330 	/* Make sure the mailbox is really active */
8331 	if (timeout)
8332 		lpfc_sli4_process_missed_mbox_completions(phba);
8333 
8334 	/* Wait for the outstnading mailbox command to complete */
8335 	while (phba->sli.mbox_active) {
8336 		/* Check active mailbox complete status every 2ms */
8337 		msleep(2);
8338 		if (time_after(jiffies, timeout)) {
8339 			/* Timeout, marked the outstanding cmd not complete */
8340 			rc = 1;
8341 			break;
8342 		}
8343 	}
8344 
8345 	/* Can not cleanly block async mailbox command, fails it */
8346 	if (rc) {
8347 		spin_lock_irq(&phba->hbalock);
8348 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8349 		spin_unlock_irq(&phba->hbalock);
8350 	}
8351 	return rc;
8352 }
8353 
8354 /**
8355  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8356  * @phba: Pointer to HBA context object.
8357  *
8358  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8359  * commands from the driver internal pending mailbox queue. It makes sure
8360  * that there is no outstanding mailbox command before resuming posting
8361  * asynchronous mailbox commands. If, for any reason, there is outstanding
8362  * mailbox command, it will try to wait it out before resuming asynchronous
8363  * mailbox command posting.
8364  **/
8365 static void
8366 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8367 {
8368 	struct lpfc_sli *psli = &phba->sli;
8369 
8370 	spin_lock_irq(&phba->hbalock);
8371 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8372 		/* Asynchronous mailbox posting is not blocked, do nothing */
8373 		spin_unlock_irq(&phba->hbalock);
8374 		return;
8375 	}
8376 
8377 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8378 	 * successful or timeout, after timing-out the outstanding mailbox
8379 	 * command shall always be removed, so just unblock posting async
8380 	 * mailbox command and resume
8381 	 */
8382 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8383 	spin_unlock_irq(&phba->hbalock);
8384 
8385 	/* wake up worker thread to post asynchronlous mailbox command */
8386 	lpfc_worker_wake_up(phba);
8387 }
8388 
8389 /**
8390  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8391  * @phba: Pointer to HBA context object.
8392  * @mboxq: Pointer to mailbox object.
8393  *
8394  * The function waits for the bootstrap mailbox register ready bit from
8395  * port for twice the regular mailbox command timeout value.
8396  *
8397  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8398  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8399  **/
8400 static int
8401 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8402 {
8403 	uint32_t db_ready;
8404 	unsigned long timeout;
8405 	struct lpfc_register bmbx_reg;
8406 
8407 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8408 				   * 1000) + jiffies;
8409 
8410 	do {
8411 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8412 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8413 		if (!db_ready)
8414 			msleep(2);
8415 
8416 		if (time_after(jiffies, timeout))
8417 			return MBXERR_ERROR;
8418 	} while (!db_ready);
8419 
8420 	return 0;
8421 }
8422 
8423 /**
8424  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8425  * @phba: Pointer to HBA context object.
8426  * @mboxq: Pointer to mailbox object.
8427  *
8428  * The function posts a mailbox to the port.  The mailbox is expected
8429  * to be comletely filled in and ready for the port to operate on it.
8430  * This routine executes a synchronous completion operation on the
8431  * mailbox by polling for its completion.
8432  *
8433  * The caller must not be holding any locks when calling this routine.
8434  *
8435  * Returns:
8436  *	MBX_SUCCESS - mailbox posted successfully
8437  *	Any of the MBX error values.
8438  **/
8439 static int
8440 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8441 {
8442 	int rc = MBX_SUCCESS;
8443 	unsigned long iflag;
8444 	uint32_t mcqe_status;
8445 	uint32_t mbx_cmnd;
8446 	struct lpfc_sli *psli = &phba->sli;
8447 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8448 	struct lpfc_bmbx_create *mbox_rgn;
8449 	struct dma_address *dma_address;
8450 
8451 	/*
8452 	 * Only one mailbox can be active to the bootstrap mailbox region
8453 	 * at a time and there is no queueing provided.
8454 	 */
8455 	spin_lock_irqsave(&phba->hbalock, iflag);
8456 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8457 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8458 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8459 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8460 				"cannot issue Data: x%x x%x\n",
8461 				mboxq->vport ? mboxq->vport->vpi : 0,
8462 				mboxq->u.mb.mbxCommand,
8463 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8464 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8465 				psli->sli_flag, MBX_POLL);
8466 		return MBXERR_ERROR;
8467 	}
8468 	/* The server grabs the token and owns it until release */
8469 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8470 	phba->sli.mbox_active = mboxq;
8471 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8472 
8473 	/* wait for bootstrap mbox register for readyness */
8474 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8475 	if (rc)
8476 		goto exit;
8477 
8478 	/*
8479 	 * Initialize the bootstrap memory region to avoid stale data areas
8480 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8481 	 * the bmbx mailbox region.
8482 	 */
8483 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8484 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8485 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8486 			       sizeof(struct lpfc_mqe));
8487 
8488 	/* Post the high mailbox dma address to the port and wait for ready. */
8489 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8490 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8491 
8492 	/* wait for bootstrap mbox register for hi-address write done */
8493 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8494 	if (rc)
8495 		goto exit;
8496 
8497 	/* Post the low mailbox dma address to the port. */
8498 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8499 
8500 	/* wait for bootstrap mbox register for low address write done */
8501 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8502 	if (rc)
8503 		goto exit;
8504 
8505 	/*
8506 	 * Read the CQ to ensure the mailbox has completed.
8507 	 * If so, update the mailbox status so that the upper layers
8508 	 * can complete the request normally.
8509 	 */
8510 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8511 			       sizeof(struct lpfc_mqe));
8512 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8513 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8514 			       sizeof(struct lpfc_mcqe));
8515 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8516 	/*
8517 	 * When the CQE status indicates a failure and the mailbox status
8518 	 * indicates success then copy the CQE status into the mailbox status
8519 	 * (and prefix it with x4000).
8520 	 */
8521 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8522 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8523 			bf_set(lpfc_mqe_status, mb,
8524 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8525 		rc = MBXERR_ERROR;
8526 	} else
8527 		lpfc_sli4_swap_str(phba, mboxq);
8528 
8529 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8530 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8531 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8532 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8533 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8534 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8535 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8536 			bf_get(lpfc_mqe_status, mb),
8537 			mb->un.mb_words[0], mb->un.mb_words[1],
8538 			mb->un.mb_words[2], mb->un.mb_words[3],
8539 			mb->un.mb_words[4], mb->un.mb_words[5],
8540 			mb->un.mb_words[6], mb->un.mb_words[7],
8541 			mb->un.mb_words[8], mb->un.mb_words[9],
8542 			mb->un.mb_words[10], mb->un.mb_words[11],
8543 			mb->un.mb_words[12], mboxq->mcqe.word0,
8544 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8545 			mboxq->mcqe.trailer);
8546 exit:
8547 	/* We are holding the token, no needed for lock when release */
8548 	spin_lock_irqsave(&phba->hbalock, iflag);
8549 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8550 	phba->sli.mbox_active = NULL;
8551 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8552 	return rc;
8553 }
8554 
8555 /**
8556  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8557  * @phba: Pointer to HBA context object.
8558  * @pmbox: Pointer to mailbox object.
8559  * @flag: Flag indicating how the mailbox need to be processed.
8560  *
8561  * This function is called by discovery code and HBA management code to submit
8562  * a mailbox command to firmware with SLI-4 interface spec.
8563  *
8564  * Return codes the caller owns the mailbox command after the return of the
8565  * function.
8566  **/
8567 static int
8568 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8569 		       uint32_t flag)
8570 {
8571 	struct lpfc_sli *psli = &phba->sli;
8572 	unsigned long iflags;
8573 	int rc;
8574 
8575 	/* dump from issue mailbox command if setup */
8576 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8577 
8578 	rc = lpfc_mbox_dev_check(phba);
8579 	if (unlikely(rc)) {
8580 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8581 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8582 				"cannot issue Data: x%x x%x\n",
8583 				mboxq->vport ? mboxq->vport->vpi : 0,
8584 				mboxq->u.mb.mbxCommand,
8585 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8586 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8587 				psli->sli_flag, flag);
8588 		goto out_not_finished;
8589 	}
8590 
8591 	/* Detect polling mode and jump to a handler */
8592 	if (!phba->sli4_hba.intr_enable) {
8593 		if (flag == MBX_POLL)
8594 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8595 		else
8596 			rc = -EIO;
8597 		if (rc != MBX_SUCCESS)
8598 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8599 					"(%d):2541 Mailbox command x%x "
8600 					"(x%x/x%x) failure: "
8601 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8602 					"Data: x%x x%x\n,",
8603 					mboxq->vport ? mboxq->vport->vpi : 0,
8604 					mboxq->u.mb.mbxCommand,
8605 					lpfc_sli_config_mbox_subsys_get(phba,
8606 									mboxq),
8607 					lpfc_sli_config_mbox_opcode_get(phba,
8608 									mboxq),
8609 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8610 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8611 					bf_get(lpfc_mcqe_ext_status,
8612 					       &mboxq->mcqe),
8613 					psli->sli_flag, flag);
8614 		return rc;
8615 	} else if (flag == MBX_POLL) {
8616 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8617 				"(%d):2542 Try to issue mailbox command "
8618 				"x%x (x%x/x%x) synchronously ahead of async "
8619 				"mailbox command queue: x%x x%x\n",
8620 				mboxq->vport ? mboxq->vport->vpi : 0,
8621 				mboxq->u.mb.mbxCommand,
8622 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8623 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8624 				psli->sli_flag, flag);
8625 		/* Try to block the asynchronous mailbox posting */
8626 		rc = lpfc_sli4_async_mbox_block(phba);
8627 		if (!rc) {
8628 			/* Successfully blocked, now issue sync mbox cmd */
8629 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8630 			if (rc != MBX_SUCCESS)
8631 				lpfc_printf_log(phba, KERN_WARNING,
8632 					LOG_MBOX | LOG_SLI,
8633 					"(%d):2597 Sync Mailbox command "
8634 					"x%x (x%x/x%x) failure: "
8635 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8636 					"Data: x%x x%x\n,",
8637 					mboxq->vport ? mboxq->vport->vpi : 0,
8638 					mboxq->u.mb.mbxCommand,
8639 					lpfc_sli_config_mbox_subsys_get(phba,
8640 									mboxq),
8641 					lpfc_sli_config_mbox_opcode_get(phba,
8642 									mboxq),
8643 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8644 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8645 					bf_get(lpfc_mcqe_ext_status,
8646 					       &mboxq->mcqe),
8647 					psli->sli_flag, flag);
8648 			/* Unblock the async mailbox posting afterward */
8649 			lpfc_sli4_async_mbox_unblock(phba);
8650 		}
8651 		return rc;
8652 	}
8653 
8654 	/* Now, interrupt mode asynchrous mailbox command */
8655 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8656 	if (rc) {
8657 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8658 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8659 				"cannot issue Data: x%x x%x\n",
8660 				mboxq->vport ? mboxq->vport->vpi : 0,
8661 				mboxq->u.mb.mbxCommand,
8662 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8663 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8664 				psli->sli_flag, flag);
8665 		goto out_not_finished;
8666 	}
8667 
8668 	/* Put the mailbox command to the driver internal FIFO */
8669 	psli->slistat.mbox_busy++;
8670 	spin_lock_irqsave(&phba->hbalock, iflags);
8671 	lpfc_mbox_put(phba, mboxq);
8672 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8673 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8674 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8675 			"x%x (x%x/x%x) x%x x%x x%x\n",
8676 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8677 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8678 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8679 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8680 			phba->pport->port_state,
8681 			psli->sli_flag, MBX_NOWAIT);
8682 	/* Wake up worker thread to transport mailbox command from head */
8683 	lpfc_worker_wake_up(phba);
8684 
8685 	return MBX_BUSY;
8686 
8687 out_not_finished:
8688 	return MBX_NOT_FINISHED;
8689 }
8690 
8691 /**
8692  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8693  * @phba: Pointer to HBA context object.
8694  *
8695  * This function is called by worker thread to send a mailbox command to
8696  * SLI4 HBA firmware.
8697  *
8698  **/
8699 int
8700 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8701 {
8702 	struct lpfc_sli *psli = &phba->sli;
8703 	LPFC_MBOXQ_t *mboxq;
8704 	int rc = MBX_SUCCESS;
8705 	unsigned long iflags;
8706 	struct lpfc_mqe *mqe;
8707 	uint32_t mbx_cmnd;
8708 
8709 	/* Check interrupt mode before post async mailbox command */
8710 	if (unlikely(!phba->sli4_hba.intr_enable))
8711 		return MBX_NOT_FINISHED;
8712 
8713 	/* Check for mailbox command service token */
8714 	spin_lock_irqsave(&phba->hbalock, iflags);
8715 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8716 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8717 		return MBX_NOT_FINISHED;
8718 	}
8719 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8720 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8721 		return MBX_NOT_FINISHED;
8722 	}
8723 	if (unlikely(phba->sli.mbox_active)) {
8724 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8725 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8726 				"0384 There is pending active mailbox cmd\n");
8727 		return MBX_NOT_FINISHED;
8728 	}
8729 	/* Take the mailbox command service token */
8730 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8731 
8732 	/* Get the next mailbox command from head of queue */
8733 	mboxq = lpfc_mbox_get(phba);
8734 
8735 	/* If no more mailbox command waiting for post, we're done */
8736 	if (!mboxq) {
8737 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8738 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8739 		return MBX_SUCCESS;
8740 	}
8741 	phba->sli.mbox_active = mboxq;
8742 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8743 
8744 	/* Check device readiness for posting mailbox command */
8745 	rc = lpfc_mbox_dev_check(phba);
8746 	if (unlikely(rc))
8747 		/* Driver clean routine will clean up pending mailbox */
8748 		goto out_not_finished;
8749 
8750 	/* Prepare the mbox command to be posted */
8751 	mqe = &mboxq->u.mqe;
8752 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
8753 
8754 	/* Start timer for the mbox_tmo and log some mailbox post messages */
8755 	mod_timer(&psli->mbox_tmo, (jiffies +
8756 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
8757 
8758 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8759 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
8760 			"x%x x%x\n",
8761 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8762 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8763 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8764 			phba->pport->port_state, psli->sli_flag);
8765 
8766 	if (mbx_cmnd != MBX_HEARTBEAT) {
8767 		if (mboxq->vport) {
8768 			lpfc_debugfs_disc_trc(mboxq->vport,
8769 				LPFC_DISC_TRC_MBOX_VPORT,
8770 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8771 				mbx_cmnd, mqe->un.mb_words[0],
8772 				mqe->un.mb_words[1]);
8773 		} else {
8774 			lpfc_debugfs_disc_trc(phba->pport,
8775 				LPFC_DISC_TRC_MBOX,
8776 				"MBOX Send: cmd:x%x mb:x%x x%x",
8777 				mbx_cmnd, mqe->un.mb_words[0],
8778 				mqe->un.mb_words[1]);
8779 		}
8780 	}
8781 	psli->slistat.mbox_cmd++;
8782 
8783 	/* Post the mailbox command to the port */
8784 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
8785 	if (rc != MBX_SUCCESS) {
8786 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8787 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
8788 				"cannot issue Data: x%x x%x\n",
8789 				mboxq->vport ? mboxq->vport->vpi : 0,
8790 				mboxq->u.mb.mbxCommand,
8791 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8792 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8793 				psli->sli_flag, MBX_NOWAIT);
8794 		goto out_not_finished;
8795 	}
8796 
8797 	return rc;
8798 
8799 out_not_finished:
8800 	spin_lock_irqsave(&phba->hbalock, iflags);
8801 	if (phba->sli.mbox_active) {
8802 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
8803 		__lpfc_mbox_cmpl_put(phba, mboxq);
8804 		/* Release the token */
8805 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8806 		phba->sli.mbox_active = NULL;
8807 	}
8808 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8809 
8810 	return MBX_NOT_FINISHED;
8811 }
8812 
8813 /**
8814  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
8815  * @phba: Pointer to HBA context object.
8816  * @pmbox: Pointer to mailbox object.
8817  * @flag: Flag indicating how the mailbox need to be processed.
8818  *
8819  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
8820  * the API jump table function pointer from the lpfc_hba struct.
8821  *
8822  * Return codes the caller owns the mailbox command after the return of the
8823  * function.
8824  **/
8825 int
8826 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
8827 {
8828 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
8829 }
8830 
8831 /**
8832  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
8833  * @phba: The hba struct for which this call is being executed.
8834  * @dev_grp: The HBA PCI-Device group number.
8835  *
8836  * This routine sets up the mbox interface API function jump table in @phba
8837  * struct.
8838  * Returns: 0 - success, -ENODEV - failure.
8839  **/
8840 int
8841 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8842 {
8843 
8844 	switch (dev_grp) {
8845 	case LPFC_PCI_DEV_LP:
8846 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
8847 		phba->lpfc_sli_handle_slow_ring_event =
8848 				lpfc_sli_handle_slow_ring_event_s3;
8849 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
8850 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
8851 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
8852 		break;
8853 	case LPFC_PCI_DEV_OC:
8854 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
8855 		phba->lpfc_sli_handle_slow_ring_event =
8856 				lpfc_sli_handle_slow_ring_event_s4;
8857 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
8858 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
8859 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
8860 		break;
8861 	default:
8862 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8863 				"1420 Invalid HBA PCI-device group: 0x%x\n",
8864 				dev_grp);
8865 		return -ENODEV;
8866 		break;
8867 	}
8868 	return 0;
8869 }
8870 
8871 /**
8872  * __lpfc_sli_ringtx_put - Add an iocb to the txq
8873  * @phba: Pointer to HBA context object.
8874  * @pring: Pointer to driver SLI ring object.
8875  * @piocb: Pointer to address of newly added command iocb.
8876  *
8877  * This function is called with hbalock held to add a command
8878  * iocb to the txq when SLI layer cannot submit the command iocb
8879  * to the ring.
8880  **/
8881 void
8882 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8883 		    struct lpfc_iocbq *piocb)
8884 {
8885 	lockdep_assert_held(&phba->hbalock);
8886 	/* Insert the caller's iocb in the txq tail for later processing. */
8887 	list_add_tail(&piocb->list, &pring->txq);
8888 }
8889 
8890 /**
8891  * lpfc_sli_next_iocb - Get the next iocb in the txq
8892  * @phba: Pointer to HBA context object.
8893  * @pring: Pointer to driver SLI ring object.
8894  * @piocb: Pointer to address of newly added command iocb.
8895  *
8896  * This function is called with hbalock held before a new
8897  * iocb is submitted to the firmware. This function checks
8898  * txq to flush the iocbs in txq to Firmware before
8899  * submitting new iocbs to the Firmware.
8900  * If there are iocbs in the txq which need to be submitted
8901  * to firmware, lpfc_sli_next_iocb returns the first element
8902  * of the txq after dequeuing it from txq.
8903  * If there is no iocb in the txq then the function will return
8904  * *piocb and *piocb is set to NULL. Caller needs to check
8905  * *piocb to find if there are more commands in the txq.
8906  **/
8907 static struct lpfc_iocbq *
8908 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8909 		   struct lpfc_iocbq **piocb)
8910 {
8911 	struct lpfc_iocbq * nextiocb;
8912 
8913 	lockdep_assert_held(&phba->hbalock);
8914 
8915 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
8916 	if (!nextiocb) {
8917 		nextiocb = *piocb;
8918 		*piocb = NULL;
8919 	}
8920 
8921 	return nextiocb;
8922 }
8923 
8924 /**
8925  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
8926  * @phba: Pointer to HBA context object.
8927  * @ring_number: SLI ring number to issue iocb on.
8928  * @piocb: Pointer to command iocb.
8929  * @flag: Flag indicating if this command can be put into txq.
8930  *
8931  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
8932  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
8933  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
8934  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
8935  * this function allows only iocbs for posting buffers. This function finds
8936  * next available slot in the command ring and posts the command to the
8937  * available slot and writes the port attention register to request HBA start
8938  * processing new iocb. If there is no slot available in the ring and
8939  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
8940  * the function returns IOCB_BUSY.
8941  *
8942  * This function is called with hbalock held. The function will return success
8943  * after it successfully submit the iocb to firmware or after adding to the
8944  * txq.
8945  **/
8946 static int
8947 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
8948 		    struct lpfc_iocbq *piocb, uint32_t flag)
8949 {
8950 	struct lpfc_iocbq *nextiocb;
8951 	IOCB_t *iocb;
8952 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
8953 
8954 	lockdep_assert_held(&phba->hbalock);
8955 
8956 	if (piocb->iocb_cmpl && (!piocb->vport) &&
8957 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
8958 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
8959 		lpfc_printf_log(phba, KERN_ERR,
8960 				LOG_SLI | LOG_VPORT,
8961 				"1807 IOCB x%x failed. No vport\n",
8962 				piocb->iocb.ulpCommand);
8963 		dump_stack();
8964 		return IOCB_ERROR;
8965 	}
8966 
8967 
8968 	/* If the PCI channel is in offline state, do not post iocbs. */
8969 	if (unlikely(pci_channel_offline(phba->pcidev)))
8970 		return IOCB_ERROR;
8971 
8972 	/* If HBA has a deferred error attention, fail the iocb. */
8973 	if (unlikely(phba->hba_flag & DEFER_ERATT))
8974 		return IOCB_ERROR;
8975 
8976 	/*
8977 	 * We should never get an IOCB if we are in a < LINK_DOWN state
8978 	 */
8979 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
8980 		return IOCB_ERROR;
8981 
8982 	/*
8983 	 * Check to see if we are blocking IOCB processing because of a
8984 	 * outstanding event.
8985 	 */
8986 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
8987 		goto iocb_busy;
8988 
8989 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
8990 		/*
8991 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
8992 		 * can be issued if the link is not up.
8993 		 */
8994 		switch (piocb->iocb.ulpCommand) {
8995 		case CMD_GEN_REQUEST64_CR:
8996 		case CMD_GEN_REQUEST64_CX:
8997 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
8998 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
8999 					FC_RCTL_DD_UNSOL_CMD) ||
9000 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9001 					MENLO_TRANSPORT_TYPE))
9002 
9003 				goto iocb_busy;
9004 			break;
9005 		case CMD_QUE_RING_BUF_CN:
9006 		case CMD_QUE_RING_BUF64_CN:
9007 			/*
9008 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9009 			 * completion, iocb_cmpl MUST be 0.
9010 			 */
9011 			if (piocb->iocb_cmpl)
9012 				piocb->iocb_cmpl = NULL;
9013 			/*FALLTHROUGH*/
9014 		case CMD_CREATE_XRI_CR:
9015 		case CMD_CLOSE_XRI_CN:
9016 		case CMD_CLOSE_XRI_CX:
9017 			break;
9018 		default:
9019 			goto iocb_busy;
9020 		}
9021 
9022 	/*
9023 	 * For FCP commands, we must be in a state where we can process link
9024 	 * attention events.
9025 	 */
9026 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9027 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9028 		goto iocb_busy;
9029 	}
9030 
9031 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9032 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9033 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9034 
9035 	if (iocb)
9036 		lpfc_sli_update_ring(phba, pring);
9037 	else
9038 		lpfc_sli_update_full_ring(phba, pring);
9039 
9040 	if (!piocb)
9041 		return IOCB_SUCCESS;
9042 
9043 	goto out_busy;
9044 
9045  iocb_busy:
9046 	pring->stats.iocb_cmd_delay++;
9047 
9048  out_busy:
9049 
9050 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9051 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9052 		return IOCB_SUCCESS;
9053 	}
9054 
9055 	return IOCB_BUSY;
9056 }
9057 
9058 /**
9059  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9060  * @phba: Pointer to HBA context object.
9061  * @piocb: Pointer to command iocb.
9062  * @sglq: Pointer to the scatter gather queue object.
9063  *
9064  * This routine converts the bpl or bde that is in the IOCB
9065  * to a sgl list for the sli4 hardware. The physical address
9066  * of the bpl/bde is converted back to a virtual address.
9067  * If the IOCB contains a BPL then the list of BDE's is
9068  * converted to sli4_sge's. If the IOCB contains a single
9069  * BDE then it is converted to a single sli_sge.
9070  * The IOCB is still in cpu endianess so the contents of
9071  * the bpl can be used without byte swapping.
9072  *
9073  * Returns valid XRI = Success, NO_XRI = Failure.
9074 **/
9075 static uint16_t
9076 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9077 		struct lpfc_sglq *sglq)
9078 {
9079 	uint16_t xritag = NO_XRI;
9080 	struct ulp_bde64 *bpl = NULL;
9081 	struct ulp_bde64 bde;
9082 	struct sli4_sge *sgl  = NULL;
9083 	struct lpfc_dmabuf *dmabuf;
9084 	IOCB_t *icmd;
9085 	int numBdes = 0;
9086 	int i = 0;
9087 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9088 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9089 
9090 	if (!piocbq || !sglq)
9091 		return xritag;
9092 
9093 	sgl  = (struct sli4_sge *)sglq->sgl;
9094 	icmd = &piocbq->iocb;
9095 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9096 		return sglq->sli4_xritag;
9097 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9098 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9099 				sizeof(struct ulp_bde64);
9100 		/* The addrHigh and addrLow fields within the IOCB
9101 		 * have not been byteswapped yet so there is no
9102 		 * need to swap them back.
9103 		 */
9104 		if (piocbq->context3)
9105 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9106 		else
9107 			return xritag;
9108 
9109 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9110 		if (!bpl)
9111 			return xritag;
9112 
9113 		for (i = 0; i < numBdes; i++) {
9114 			/* Should already be byte swapped. */
9115 			sgl->addr_hi = bpl->addrHigh;
9116 			sgl->addr_lo = bpl->addrLow;
9117 
9118 			sgl->word2 = le32_to_cpu(sgl->word2);
9119 			if ((i+1) == numBdes)
9120 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9121 			else
9122 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9123 			/* swap the size field back to the cpu so we
9124 			 * can assign it to the sgl.
9125 			 */
9126 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9127 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9128 			/* The offsets in the sgl need to be accumulated
9129 			 * separately for the request and reply lists.
9130 			 * The request is always first, the reply follows.
9131 			 */
9132 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9133 				/* add up the reply sg entries */
9134 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9135 					inbound++;
9136 				/* first inbound? reset the offset */
9137 				if (inbound == 1)
9138 					offset = 0;
9139 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9140 				bf_set(lpfc_sli4_sge_type, sgl,
9141 					LPFC_SGE_TYPE_DATA);
9142 				offset += bde.tus.f.bdeSize;
9143 			}
9144 			sgl->word2 = cpu_to_le32(sgl->word2);
9145 			bpl++;
9146 			sgl++;
9147 		}
9148 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9149 			/* The addrHigh and addrLow fields of the BDE have not
9150 			 * been byteswapped yet so they need to be swapped
9151 			 * before putting them in the sgl.
9152 			 */
9153 			sgl->addr_hi =
9154 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9155 			sgl->addr_lo =
9156 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9157 			sgl->word2 = le32_to_cpu(sgl->word2);
9158 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9159 			sgl->word2 = cpu_to_le32(sgl->word2);
9160 			sgl->sge_len =
9161 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9162 	}
9163 	return sglq->sli4_xritag;
9164 }
9165 
9166 /**
9167  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9168  * @phba: Pointer to HBA context object.
9169  * @piocb: Pointer to command iocb.
9170  * @wqe: Pointer to the work queue entry.
9171  *
9172  * This routine converts the iocb command to its Work Queue Entry
9173  * equivalent. The wqe pointer should not have any fields set when
9174  * this routine is called because it will memcpy over them.
9175  * This routine does not set the CQ_ID or the WQEC bits in the
9176  * wqe.
9177  *
9178  * Returns: 0 = Success, IOCB_ERROR = Failure.
9179  **/
9180 static int
9181 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9182 		union lpfc_wqe128 *wqe)
9183 {
9184 	uint32_t xmit_len = 0, total_len = 0;
9185 	uint8_t ct = 0;
9186 	uint32_t fip;
9187 	uint32_t abort_tag;
9188 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9189 	uint8_t cmnd;
9190 	uint16_t xritag;
9191 	uint16_t abrt_iotag;
9192 	struct lpfc_iocbq *abrtiocbq;
9193 	struct ulp_bde64 *bpl = NULL;
9194 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9195 	int numBdes, i;
9196 	struct ulp_bde64 bde;
9197 	struct lpfc_nodelist *ndlp;
9198 	uint32_t *pcmd;
9199 	uint32_t if_type;
9200 
9201 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9202 	/* The fcp commands will set command type */
9203 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9204 		command_type = FCP_COMMAND;
9205 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9206 		command_type = ELS_COMMAND_FIP;
9207 	else
9208 		command_type = ELS_COMMAND_NON_FIP;
9209 
9210 	if (phba->fcp_embed_io)
9211 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9212 	/* Some of the fields are in the right position already */
9213 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9214 	if (iocbq->iocb.ulpCommand != CMD_SEND_FRAME) {
9215 		/* The ct field has moved so reset */
9216 		wqe->generic.wqe_com.word7 = 0;
9217 		wqe->generic.wqe_com.word10 = 0;
9218 	}
9219 
9220 	abort_tag = (uint32_t) iocbq->iotag;
9221 	xritag = iocbq->sli4_xritag;
9222 	/* words0-2 bpl convert bde */
9223 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9224 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9225 				sizeof(struct ulp_bde64);
9226 		bpl  = (struct ulp_bde64 *)
9227 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9228 		if (!bpl)
9229 			return IOCB_ERROR;
9230 
9231 		/* Should already be byte swapped. */
9232 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9233 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9234 		/* swap the size field back to the cpu so we
9235 		 * can assign it to the sgl.
9236 		 */
9237 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9238 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9239 		total_len = 0;
9240 		for (i = 0; i < numBdes; i++) {
9241 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9242 			total_len += bde.tus.f.bdeSize;
9243 		}
9244 	} else
9245 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9246 
9247 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9248 	cmnd = iocbq->iocb.ulpCommand;
9249 
9250 	switch (iocbq->iocb.ulpCommand) {
9251 	case CMD_ELS_REQUEST64_CR:
9252 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9253 			ndlp = iocbq->context_un.ndlp;
9254 		else
9255 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9256 		if (!iocbq->iocb.ulpLe) {
9257 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9258 				"2007 Only Limited Edition cmd Format"
9259 				" supported 0x%x\n",
9260 				iocbq->iocb.ulpCommand);
9261 			return IOCB_ERROR;
9262 		}
9263 
9264 		wqe->els_req.payload_len = xmit_len;
9265 		/* Els_reguest64 has a TMO */
9266 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9267 			iocbq->iocb.ulpTimeout);
9268 		/* Need a VF for word 4 set the vf bit*/
9269 		bf_set(els_req64_vf, &wqe->els_req, 0);
9270 		/* And a VFID for word 12 */
9271 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9272 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9273 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9274 		       iocbq->iocb.ulpContext);
9275 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9276 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9277 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9278 		if (command_type == ELS_COMMAND_FIP)
9279 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9280 					>> LPFC_FIP_ELS_ID_SHIFT);
9281 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9282 					iocbq->context2)->virt);
9283 		if_type = bf_get(lpfc_sli_intf_if_type,
9284 					&phba->sli4_hba.sli_intf);
9285 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9286 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9287 				*pcmd == ELS_CMD_SCR ||
9288 				*pcmd == ELS_CMD_FDISC ||
9289 				*pcmd == ELS_CMD_LOGO ||
9290 				*pcmd == ELS_CMD_PLOGI)) {
9291 				bf_set(els_req64_sp, &wqe->els_req, 1);
9292 				bf_set(els_req64_sid, &wqe->els_req,
9293 					iocbq->vport->fc_myDID);
9294 				if ((*pcmd == ELS_CMD_FLOGI) &&
9295 					!(phba->fc_topology ==
9296 						LPFC_TOPOLOGY_LOOP))
9297 					bf_set(els_req64_sid, &wqe->els_req, 0);
9298 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9299 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9300 					phba->vpi_ids[iocbq->vport->vpi]);
9301 			} else if (pcmd && iocbq->context1) {
9302 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9303 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9304 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9305 			}
9306 		}
9307 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9308 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9309 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9310 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9311 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9312 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9313 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9314 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9315 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9316 		break;
9317 	case CMD_XMIT_SEQUENCE64_CX:
9318 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9319 		       iocbq->iocb.un.ulpWord[3]);
9320 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9321 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9322 		/* The entire sequence is transmitted for this IOCB */
9323 		xmit_len = total_len;
9324 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9325 		if (phba->link_flag & LS_LOOPBACK_MODE)
9326 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9327 	case CMD_XMIT_SEQUENCE64_CR:
9328 		/* word3 iocb=io_tag32 wqe=reserved */
9329 		wqe->xmit_sequence.rsvd3 = 0;
9330 		/* word4 relative_offset memcpy */
9331 		/* word5 r_ctl/df_ctl memcpy */
9332 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9333 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9334 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9335 		       LPFC_WQE_IOD_WRITE);
9336 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9337 		       LPFC_WQE_LENLOC_WORD12);
9338 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9339 		wqe->xmit_sequence.xmit_len = xmit_len;
9340 		command_type = OTHER_COMMAND;
9341 		break;
9342 	case CMD_XMIT_BCAST64_CN:
9343 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9344 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9345 		/* word4 iocb=rsvd wqe=rsvd */
9346 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9347 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9348 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9349 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9350 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9351 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9352 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9353 		       LPFC_WQE_LENLOC_WORD3);
9354 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9355 		break;
9356 	case CMD_FCP_IWRITE64_CR:
9357 		command_type = FCP_COMMAND_DATA_OUT;
9358 		/* word3 iocb=iotag wqe=payload_offset_len */
9359 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9360 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9361 		       xmit_len + sizeof(struct fcp_rsp));
9362 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9363 		       0);
9364 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9365 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9366 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9367 		       iocbq->iocb.ulpFCP2Rcvy);
9368 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9369 		/* Always open the exchange */
9370 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9371 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9372 		       LPFC_WQE_LENLOC_WORD4);
9373 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9374 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9375 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9376 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9377 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9378 			if (iocbq->priority) {
9379 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9380 				       (iocbq->priority << 1));
9381 			} else {
9382 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9383 				       (phba->cfg_XLanePriority << 1));
9384 			}
9385 		}
9386 		/* Note, word 10 is already initialized to 0 */
9387 
9388 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9389 		if (phba->cfg_enable_pbde)
9390 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9391 		else
9392 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9393 
9394 		if (phba->fcp_embed_io) {
9395 			struct lpfc_scsi_buf *lpfc_cmd;
9396 			struct sli4_sge *sgl;
9397 			struct fcp_cmnd *fcp_cmnd;
9398 			uint32_t *ptr;
9399 
9400 			/* 128 byte wqe support here */
9401 
9402 			lpfc_cmd = iocbq->context1;
9403 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9404 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9405 
9406 			/* Word 0-2 - FCP_CMND */
9407 			wqe->generic.bde.tus.f.bdeFlags =
9408 				BUFF_TYPE_BDE_IMMED;
9409 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9410 			wqe->generic.bde.addrHigh = 0;
9411 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9412 
9413 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9414 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9415 
9416 			/* Word 22-29  FCP CMND Payload */
9417 			ptr = &wqe->words[22];
9418 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9419 		}
9420 		break;
9421 	case CMD_FCP_IREAD64_CR:
9422 		/* word3 iocb=iotag wqe=payload_offset_len */
9423 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9424 		bf_set(payload_offset_len, &wqe->fcp_iread,
9425 		       xmit_len + sizeof(struct fcp_rsp));
9426 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9427 		       0);
9428 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9429 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9430 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9431 		       iocbq->iocb.ulpFCP2Rcvy);
9432 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9433 		/* Always open the exchange */
9434 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9435 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9436 		       LPFC_WQE_LENLOC_WORD4);
9437 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9438 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9439 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9440 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9441 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9442 			if (iocbq->priority) {
9443 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9444 				       (iocbq->priority << 1));
9445 			} else {
9446 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9447 				       (phba->cfg_XLanePriority << 1));
9448 			}
9449 		}
9450 		/* Note, word 10 is already initialized to 0 */
9451 
9452 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9453 		if (phba->cfg_enable_pbde)
9454 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9455 		else
9456 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9457 
9458 		if (phba->fcp_embed_io) {
9459 			struct lpfc_scsi_buf *lpfc_cmd;
9460 			struct sli4_sge *sgl;
9461 			struct fcp_cmnd *fcp_cmnd;
9462 			uint32_t *ptr;
9463 
9464 			/* 128 byte wqe support here */
9465 
9466 			lpfc_cmd = iocbq->context1;
9467 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9468 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9469 
9470 			/* Word 0-2 - FCP_CMND */
9471 			wqe->generic.bde.tus.f.bdeFlags =
9472 				BUFF_TYPE_BDE_IMMED;
9473 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9474 			wqe->generic.bde.addrHigh = 0;
9475 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9476 
9477 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9478 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9479 
9480 			/* Word 22-29  FCP CMND Payload */
9481 			ptr = &wqe->words[22];
9482 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9483 		}
9484 		break;
9485 	case CMD_FCP_ICMND64_CR:
9486 		/* word3 iocb=iotag wqe=payload_offset_len */
9487 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9488 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9489 		       xmit_len + sizeof(struct fcp_rsp));
9490 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9491 		       0);
9492 		/* word3 iocb=IO_TAG wqe=reserved */
9493 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9494 		/* Always open the exchange */
9495 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9496 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9497 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9498 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9499 		       LPFC_WQE_LENLOC_NONE);
9500 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9501 		       iocbq->iocb.ulpFCP2Rcvy);
9502 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9503 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9504 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9505 			if (iocbq->priority) {
9506 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9507 				       (iocbq->priority << 1));
9508 			} else {
9509 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9510 				       (phba->cfg_XLanePriority << 1));
9511 			}
9512 		}
9513 		/* Note, word 10 is already initialized to 0 */
9514 
9515 		if (phba->fcp_embed_io) {
9516 			struct lpfc_scsi_buf *lpfc_cmd;
9517 			struct sli4_sge *sgl;
9518 			struct fcp_cmnd *fcp_cmnd;
9519 			uint32_t *ptr;
9520 
9521 			/* 128 byte wqe support here */
9522 
9523 			lpfc_cmd = iocbq->context1;
9524 			sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
9525 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9526 
9527 			/* Word 0-2 - FCP_CMND */
9528 			wqe->generic.bde.tus.f.bdeFlags =
9529 				BUFF_TYPE_BDE_IMMED;
9530 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9531 			wqe->generic.bde.addrHigh = 0;
9532 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9533 
9534 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9535 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9536 
9537 			/* Word 22-29  FCP CMND Payload */
9538 			ptr = &wqe->words[22];
9539 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9540 		}
9541 		break;
9542 	case CMD_GEN_REQUEST64_CR:
9543 		/* For this command calculate the xmit length of the
9544 		 * request bde.
9545 		 */
9546 		xmit_len = 0;
9547 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9548 			sizeof(struct ulp_bde64);
9549 		for (i = 0; i < numBdes; i++) {
9550 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9551 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9552 				break;
9553 			xmit_len += bde.tus.f.bdeSize;
9554 		}
9555 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9556 		wqe->gen_req.request_payload_len = xmit_len;
9557 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9558 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9559 		/* word6 context tag copied in memcpy */
9560 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9561 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9562 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9563 				"2015 Invalid CT %x command 0x%x\n",
9564 				ct, iocbq->iocb.ulpCommand);
9565 			return IOCB_ERROR;
9566 		}
9567 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9568 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9569 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9570 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9571 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9572 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9573 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9574 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9575 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9576 		command_type = OTHER_COMMAND;
9577 		break;
9578 	case CMD_XMIT_ELS_RSP64_CX:
9579 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9580 		/* words0-2 BDE memcpy */
9581 		/* word3 iocb=iotag32 wqe=response_payload_len */
9582 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9583 		/* word4 */
9584 		wqe->xmit_els_rsp.word4 = 0;
9585 		/* word5 iocb=rsvd wge=did */
9586 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9587 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9588 
9589 		if_type = bf_get(lpfc_sli_intf_if_type,
9590 					&phba->sli4_hba.sli_intf);
9591 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9592 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9593 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9594 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9595 					iocbq->vport->fc_myDID);
9596 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9597 					bf_set(wqe_els_did,
9598 						&wqe->xmit_els_rsp.wqe_dest, 0);
9599 				}
9600 			}
9601 		}
9602 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9603 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9604 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9605 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9606 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9607 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9608 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9609 			       phba->vpi_ids[iocbq->vport->vpi]);
9610 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9611 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9612 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9613 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9614 		       LPFC_WQE_LENLOC_WORD3);
9615 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9616 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9617 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9618 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9619 					iocbq->context2)->virt);
9620 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9621 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9622 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9623 					iocbq->vport->fc_myDID);
9624 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9625 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9626 					phba->vpi_ids[phba->pport->vpi]);
9627 		}
9628 		command_type = OTHER_COMMAND;
9629 		break;
9630 	case CMD_CLOSE_XRI_CN:
9631 	case CMD_ABORT_XRI_CN:
9632 	case CMD_ABORT_XRI_CX:
9633 		/* words 0-2 memcpy should be 0 rserved */
9634 		/* port will send abts */
9635 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9636 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9637 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9638 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9639 		} else
9640 			fip = 0;
9641 
9642 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9643 			/*
9644 			 * The link is down, or the command was ELS_FIP
9645 			 * so the fw does not need to send abts
9646 			 * on the wire.
9647 			 */
9648 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9649 		else
9650 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9651 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9652 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9653 		wqe->abort_cmd.rsrvd5 = 0;
9654 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9655 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9656 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9657 		/*
9658 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9659 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9660 		 */
9661 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9662 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9663 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9664 		       LPFC_WQE_LENLOC_NONE);
9665 		cmnd = CMD_ABORT_XRI_CX;
9666 		command_type = OTHER_COMMAND;
9667 		xritag = 0;
9668 		break;
9669 	case CMD_XMIT_BLS_RSP64_CX:
9670 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9671 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9672 		 * we re-construct this WQE here based on information in
9673 		 * iocbq from scratch.
9674 		 */
9675 		memset(wqe, 0, sizeof(union lpfc_wqe));
9676 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9677 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9678 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9679 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9680 		    LPFC_ABTS_UNSOL_INT) {
9681 			/* ABTS sent by initiator to CT exchange, the
9682 			 * RX_ID field will be filled with the newly
9683 			 * allocated responder XRI.
9684 			 */
9685 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9686 			       iocbq->sli4_xritag);
9687 		} else {
9688 			/* ABTS sent by responder to CT exchange, the
9689 			 * RX_ID field will be filled with the responder
9690 			 * RX_ID from ABTS.
9691 			 */
9692 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9693 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9694 		}
9695 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9696 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9697 
9698 		/* Use CT=VPI */
9699 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9700 			ndlp->nlp_DID);
9701 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9702 			iocbq->iocb.ulpContext);
9703 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9704 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9705 			phba->vpi_ids[phba->pport->vpi]);
9706 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9707 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9708 		       LPFC_WQE_LENLOC_NONE);
9709 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9710 		command_type = OTHER_COMMAND;
9711 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9712 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9713 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9714 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9715 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9716 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9717 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9718 		}
9719 
9720 		break;
9721 	case CMD_SEND_FRAME:
9722 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9723 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9724 		return 0;
9725 	case CMD_XRI_ABORTED_CX:
9726 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
9727 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
9728 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
9729 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
9730 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
9731 	default:
9732 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9733 				"2014 Invalid command 0x%x\n",
9734 				iocbq->iocb.ulpCommand);
9735 		return IOCB_ERROR;
9736 		break;
9737 	}
9738 
9739 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
9740 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
9741 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
9742 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
9743 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
9744 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
9745 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
9746 			      LPFC_IO_DIF_INSERT);
9747 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
9748 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
9749 	wqe->generic.wqe_com.abort_tag = abort_tag;
9750 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
9751 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
9752 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
9753 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
9754 	return 0;
9755 }
9756 
9757 /**
9758  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
9759  * @phba: Pointer to HBA context object.
9760  * @ring_number: SLI ring number to issue iocb on.
9761  * @piocb: Pointer to command iocb.
9762  * @flag: Flag indicating if this command can be put into txq.
9763  *
9764  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
9765  * an iocb command to an HBA with SLI-4 interface spec.
9766  *
9767  * This function is called with hbalock held. The function will return success
9768  * after it successfully submit the iocb to firmware or after adding to the
9769  * txq.
9770  **/
9771 static int
9772 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
9773 			 struct lpfc_iocbq *piocb, uint32_t flag)
9774 {
9775 	struct lpfc_sglq *sglq;
9776 	union lpfc_wqe128 wqe;
9777 	struct lpfc_queue *wq;
9778 	struct lpfc_sli_ring *pring;
9779 
9780 	/* Get the WQ */
9781 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
9782 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9783 		if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS)))
9784 			wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx];
9785 		else
9786 			wq = phba->sli4_hba.oas_wq;
9787 	} else {
9788 		wq = phba->sli4_hba.els_wq;
9789 	}
9790 
9791 	/* Get corresponding ring */
9792 	pring = wq->pring;
9793 
9794 	/*
9795 	 * The WQE can be either 64 or 128 bytes,
9796 	 */
9797 
9798 	lockdep_assert_held(&phba->hbalock);
9799 
9800 	if (piocb->sli4_xritag == NO_XRI) {
9801 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
9802 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
9803 			sglq = NULL;
9804 		else {
9805 			if (!list_empty(&pring->txq)) {
9806 				if (!(flag & SLI_IOCB_RET_IOCB)) {
9807 					__lpfc_sli_ringtx_put(phba,
9808 						pring, piocb);
9809 					return IOCB_SUCCESS;
9810 				} else {
9811 					return IOCB_BUSY;
9812 				}
9813 			} else {
9814 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
9815 				if (!sglq) {
9816 					if (!(flag & SLI_IOCB_RET_IOCB)) {
9817 						__lpfc_sli_ringtx_put(phba,
9818 								pring,
9819 								piocb);
9820 						return IOCB_SUCCESS;
9821 					} else
9822 						return IOCB_BUSY;
9823 				}
9824 			}
9825 		}
9826 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
9827 		/* These IO's already have an XRI and a mapped sgl. */
9828 		sglq = NULL;
9829 	else {
9830 		/*
9831 		 * This is a continuation of a commandi,(CX) so this
9832 		 * sglq is on the active list
9833 		 */
9834 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
9835 		if (!sglq)
9836 			return IOCB_ERROR;
9837 	}
9838 
9839 	if (sglq) {
9840 		piocb->sli4_lxritag = sglq->sli4_lxritag;
9841 		piocb->sli4_xritag = sglq->sli4_xritag;
9842 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
9843 			return IOCB_ERROR;
9844 	}
9845 
9846 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
9847 		return IOCB_ERROR;
9848 
9849 	if (lpfc_sli4_wq_put(wq, &wqe))
9850 		return IOCB_ERROR;
9851 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
9852 
9853 	return 0;
9854 }
9855 
9856 /**
9857  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
9858  *
9859  * This routine wraps the actual lockless version for issusing IOCB function
9860  * pointer from the lpfc_hba struct.
9861  *
9862  * Return codes:
9863  * IOCB_ERROR - Error
9864  * IOCB_SUCCESS - Success
9865  * IOCB_BUSY - Busy
9866  **/
9867 int
9868 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9869 		struct lpfc_iocbq *piocb, uint32_t flag)
9870 {
9871 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9872 }
9873 
9874 /**
9875  * lpfc_sli_api_table_setup - Set up sli api function jump table
9876  * @phba: The hba struct for which this call is being executed.
9877  * @dev_grp: The HBA PCI-Device group number.
9878  *
9879  * This routine sets up the SLI interface API function jump table in @phba
9880  * struct.
9881  * Returns: 0 - success, -ENODEV - failure.
9882  **/
9883 int
9884 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9885 {
9886 
9887 	switch (dev_grp) {
9888 	case LPFC_PCI_DEV_LP:
9889 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
9890 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
9891 		break;
9892 	case LPFC_PCI_DEV_OC:
9893 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
9894 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
9895 		break;
9896 	default:
9897 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9898 				"1419 Invalid HBA PCI-device group: 0x%x\n",
9899 				dev_grp);
9900 		return -ENODEV;
9901 		break;
9902 	}
9903 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
9904 	return 0;
9905 }
9906 
9907 /**
9908  * lpfc_sli4_calc_ring - Calculates which ring to use
9909  * @phba: Pointer to HBA context object.
9910  * @piocb: Pointer to command iocb.
9911  *
9912  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
9913  * hba_wqidx, thus we need to calculate the corresponding ring.
9914  * Since ABORTS must go on the same WQ of the command they are
9915  * aborting, we use command's hba_wqidx.
9916  */
9917 struct lpfc_sli_ring *
9918 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
9919 {
9920 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
9921 		if (!(phba->cfg_fof) ||
9922 		    (!(piocb->iocb_flag & LPFC_IO_FOF))) {
9923 			if (unlikely(!phba->sli4_hba.fcp_wq))
9924 				return NULL;
9925 			/*
9926 			 * for abort iocb hba_wqidx should already
9927 			 * be setup based on what work queue we used.
9928 			 */
9929 			if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
9930 				piocb->hba_wqidx =
9931 					lpfc_sli4_scmd_to_wqidx_distr(phba,
9932 							      piocb->context1);
9933 				piocb->hba_wqidx = piocb->hba_wqidx %
9934 					phba->cfg_fcp_io_channel;
9935 			}
9936 			return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring;
9937 		} else {
9938 			if (unlikely(!phba->sli4_hba.oas_wq))
9939 				return NULL;
9940 			piocb->hba_wqidx = 0;
9941 			return phba->sli4_hba.oas_wq->pring;
9942 		}
9943 	} else {
9944 		if (unlikely(!phba->sli4_hba.els_wq))
9945 			return NULL;
9946 		piocb->hba_wqidx = 0;
9947 		return phba->sli4_hba.els_wq->pring;
9948 	}
9949 }
9950 
9951 /**
9952  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
9953  * @phba: Pointer to HBA context object.
9954  * @pring: Pointer to driver SLI ring object.
9955  * @piocb: Pointer to command iocb.
9956  * @flag: Flag indicating if this command can be put into txq.
9957  *
9958  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
9959  * function. This function gets the hbalock and calls
9960  * __lpfc_sli_issue_iocb function and will return the error returned
9961  * by __lpfc_sli_issue_iocb function. This wrapper is used by
9962  * functions which do not hold hbalock.
9963  **/
9964 int
9965 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
9966 		    struct lpfc_iocbq *piocb, uint32_t flag)
9967 {
9968 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
9969 	struct lpfc_sli_ring *pring;
9970 	struct lpfc_queue *fpeq;
9971 	struct lpfc_eqe *eqe;
9972 	unsigned long iflags;
9973 	int rc, idx;
9974 
9975 	if (phba->sli_rev == LPFC_SLI_REV4) {
9976 		pring = lpfc_sli4_calc_ring(phba, piocb);
9977 		if (unlikely(pring == NULL))
9978 			return IOCB_ERROR;
9979 
9980 		spin_lock_irqsave(&pring->ring_lock, iflags);
9981 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
9982 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
9983 
9984 		if (lpfc_fcp_look_ahead && (piocb->iocb_flag &  LPFC_IO_FCP)) {
9985 			idx = piocb->hba_wqidx;
9986 			hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx];
9987 
9988 			if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) {
9989 
9990 				/* Get associated EQ with this index */
9991 				fpeq = phba->sli4_hba.hba_eq[idx];
9992 
9993 				/* Turn off interrupts from this EQ */
9994 				phba->sli4_hba.sli4_eq_clr_intr(fpeq);
9995 
9996 				/*
9997 				 * Process all the events on FCP EQ
9998 				 */
9999 				while ((eqe = lpfc_sli4_eq_get(fpeq))) {
10000 					lpfc_sli4_hba_handle_eqe(phba,
10001 						eqe, idx);
10002 					fpeq->EQ_processed++;
10003 				}
10004 
10005 				/* Always clear and re-arm the EQ */
10006 				phba->sli4_hba.sli4_eq_release(fpeq,
10007 					LPFC_QUEUE_REARM);
10008 			}
10009 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
10010 		}
10011 	} else {
10012 		/* For now, SLI2/3 will still use hbalock */
10013 		spin_lock_irqsave(&phba->hbalock, iflags);
10014 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10015 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10016 	}
10017 	return rc;
10018 }
10019 
10020 /**
10021  * lpfc_extra_ring_setup - Extra ring setup function
10022  * @phba: Pointer to HBA context object.
10023  *
10024  * This function is called while driver attaches with the
10025  * HBA to setup the extra ring. The extra ring is used
10026  * only when driver needs to support target mode functionality
10027  * or IP over FC functionalities.
10028  *
10029  * This function is called with no lock held. SLI3 only.
10030  **/
10031 static int
10032 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10033 {
10034 	struct lpfc_sli *psli;
10035 	struct lpfc_sli_ring *pring;
10036 
10037 	psli = &phba->sli;
10038 
10039 	/* Adjust cmd/rsp ring iocb entries more evenly */
10040 
10041 	/* Take some away from the FCP ring */
10042 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10043 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10044 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10045 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10046 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10047 
10048 	/* and give them to the extra ring */
10049 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10050 
10051 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10052 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10053 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10054 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10055 
10056 	/* Setup default profile for this ring */
10057 	pring->iotag_max = 4096;
10058 	pring->num_mask = 1;
10059 	pring->prt[0].profile = 0;      /* Mask 0 */
10060 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10061 	pring->prt[0].type = phba->cfg_multi_ring_type;
10062 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10063 	return 0;
10064 }
10065 
10066 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10067  * @phba: Pointer to HBA context object.
10068  * @iocbq: Pointer to iocb object.
10069  *
10070  * The async_event handler calls this routine when it receives
10071  * an ASYNC_STATUS_CN event from the port.  The port generates
10072  * this event when an Abort Sequence request to an rport fails
10073  * twice in succession.  The abort could be originated by the
10074  * driver or by the port.  The ABTS could have been for an ELS
10075  * or FCP IO.  The port only generates this event when an ABTS
10076  * fails to complete after one retry.
10077  */
10078 static void
10079 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10080 			  struct lpfc_iocbq *iocbq)
10081 {
10082 	struct lpfc_nodelist *ndlp = NULL;
10083 	uint16_t rpi = 0, vpi = 0;
10084 	struct lpfc_vport *vport = NULL;
10085 
10086 	/* The rpi in the ulpContext is vport-sensitive. */
10087 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10088 	rpi = iocbq->iocb.ulpContext;
10089 
10090 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10091 			"3092 Port generated ABTS async event "
10092 			"on vpi %d rpi %d status 0x%x\n",
10093 			vpi, rpi, iocbq->iocb.ulpStatus);
10094 
10095 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10096 	if (!vport)
10097 		goto err_exit;
10098 	ndlp = lpfc_findnode_rpi(vport, rpi);
10099 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10100 		goto err_exit;
10101 
10102 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10103 		lpfc_sli_abts_recover_port(vport, ndlp);
10104 	return;
10105 
10106  err_exit:
10107 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10108 			"3095 Event Context not found, no "
10109 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10110 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10111 			vpi, rpi);
10112 }
10113 
10114 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10115  * @phba: pointer to HBA context object.
10116  * @ndlp: nodelist pointer for the impacted rport.
10117  * @axri: pointer to the wcqe containing the failed exchange.
10118  *
10119  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10120  * port.  The port generates this event when an abort exchange request to an
10121  * rport fails twice in succession with no reply.  The abort could be originated
10122  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10123  */
10124 void
10125 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10126 			   struct lpfc_nodelist *ndlp,
10127 			   struct sli4_wcqe_xri_aborted *axri)
10128 {
10129 	struct lpfc_vport *vport;
10130 	uint32_t ext_status = 0;
10131 
10132 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10133 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10134 				"3115 Node Context not found, driver "
10135 				"ignoring abts err event\n");
10136 		return;
10137 	}
10138 
10139 	vport = ndlp->vport;
10140 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10141 			"3116 Port generated FCP XRI ABORT event on "
10142 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10143 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10144 			bf_get(lpfc_wcqe_xa_xri, axri),
10145 			bf_get(lpfc_wcqe_xa_status, axri),
10146 			axri->parameter);
10147 
10148 	/*
10149 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10150 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10151 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10152 	 */
10153 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10154 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10155 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10156 		lpfc_sli_abts_recover_port(vport, ndlp);
10157 }
10158 
10159 /**
10160  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10161  * @phba: Pointer to HBA context object.
10162  * @pring: Pointer to driver SLI ring object.
10163  * @iocbq: Pointer to iocb object.
10164  *
10165  * This function is called by the slow ring event handler
10166  * function when there is an ASYNC event iocb in the ring.
10167  * This function is called with no lock held.
10168  * Currently this function handles only temperature related
10169  * ASYNC events. The function decodes the temperature sensor
10170  * event message and posts events for the management applications.
10171  **/
10172 static void
10173 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10174 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10175 {
10176 	IOCB_t *icmd;
10177 	uint16_t evt_code;
10178 	struct temp_event temp_event_data;
10179 	struct Scsi_Host *shost;
10180 	uint32_t *iocb_w;
10181 
10182 	icmd = &iocbq->iocb;
10183 	evt_code = icmd->un.asyncstat.evt_code;
10184 
10185 	switch (evt_code) {
10186 	case ASYNC_TEMP_WARN:
10187 	case ASYNC_TEMP_SAFE:
10188 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10189 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10190 		if (evt_code == ASYNC_TEMP_WARN) {
10191 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10192 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10193 				"0347 Adapter is very hot, please take "
10194 				"corrective action. temperature : %d Celsius\n",
10195 				(uint32_t) icmd->ulpContext);
10196 		} else {
10197 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10198 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10199 				"0340 Adapter temperature is OK now. "
10200 				"temperature : %d Celsius\n",
10201 				(uint32_t) icmd->ulpContext);
10202 		}
10203 
10204 		/* Send temperature change event to applications */
10205 		shost = lpfc_shost_from_vport(phba->pport);
10206 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10207 			sizeof(temp_event_data), (char *) &temp_event_data,
10208 			LPFC_NL_VENDOR_ID);
10209 		break;
10210 	case ASYNC_STATUS_CN:
10211 		lpfc_sli_abts_err_handler(phba, iocbq);
10212 		break;
10213 	default:
10214 		iocb_w = (uint32_t *) icmd;
10215 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10216 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10217 			" evt_code 0x%x\n"
10218 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10219 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10220 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10221 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10222 			pring->ringno, icmd->un.asyncstat.evt_code,
10223 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10224 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10225 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10226 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10227 
10228 		break;
10229 	}
10230 }
10231 
10232 
10233 /**
10234  * lpfc_sli4_setup - SLI ring setup function
10235  * @phba: Pointer to HBA context object.
10236  *
10237  * lpfc_sli_setup sets up rings of the SLI interface with
10238  * number of iocbs per ring and iotags. This function is
10239  * called while driver attach to the HBA and before the
10240  * interrupts are enabled. So there is no need for locking.
10241  *
10242  * This function always returns 0.
10243  **/
10244 int
10245 lpfc_sli4_setup(struct lpfc_hba *phba)
10246 {
10247 	struct lpfc_sli_ring *pring;
10248 
10249 	pring = phba->sli4_hba.els_wq->pring;
10250 	pring->num_mask = LPFC_MAX_RING_MASK;
10251 	pring->prt[0].profile = 0;	/* Mask 0 */
10252 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10253 	pring->prt[0].type = FC_TYPE_ELS;
10254 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10255 	    lpfc_els_unsol_event;
10256 	pring->prt[1].profile = 0;	/* Mask 1 */
10257 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10258 	pring->prt[1].type = FC_TYPE_ELS;
10259 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10260 	    lpfc_els_unsol_event;
10261 	pring->prt[2].profile = 0;	/* Mask 2 */
10262 	/* NameServer Inquiry */
10263 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10264 	/* NameServer */
10265 	pring->prt[2].type = FC_TYPE_CT;
10266 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10267 	    lpfc_ct_unsol_event;
10268 	pring->prt[3].profile = 0;	/* Mask 3 */
10269 	/* NameServer response */
10270 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10271 	/* NameServer */
10272 	pring->prt[3].type = FC_TYPE_CT;
10273 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10274 	    lpfc_ct_unsol_event;
10275 	return 0;
10276 }
10277 
10278 /**
10279  * lpfc_sli_setup - SLI ring setup function
10280  * @phba: Pointer to HBA context object.
10281  *
10282  * lpfc_sli_setup sets up rings of the SLI interface with
10283  * number of iocbs per ring and iotags. This function is
10284  * called while driver attach to the HBA and before the
10285  * interrupts are enabled. So there is no need for locking.
10286  *
10287  * This function always returns 0. SLI3 only.
10288  **/
10289 int
10290 lpfc_sli_setup(struct lpfc_hba *phba)
10291 {
10292 	int i, totiocbsize = 0;
10293 	struct lpfc_sli *psli = &phba->sli;
10294 	struct lpfc_sli_ring *pring;
10295 
10296 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10297 	psli->sli_flag = 0;
10298 
10299 	psli->iocbq_lookup = NULL;
10300 	psli->iocbq_lookup_len = 0;
10301 	psli->last_iotag = 0;
10302 
10303 	for (i = 0; i < psli->num_rings; i++) {
10304 		pring = &psli->sli3_ring[i];
10305 		switch (i) {
10306 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10307 			/* numCiocb and numRiocb are used in config_port */
10308 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10309 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10310 			pring->sli.sli3.numCiocb +=
10311 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10312 			pring->sli.sli3.numRiocb +=
10313 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10314 			pring->sli.sli3.numCiocb +=
10315 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10316 			pring->sli.sli3.numRiocb +=
10317 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10318 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10319 							SLI3_IOCB_CMD_SIZE :
10320 							SLI2_IOCB_CMD_SIZE;
10321 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10322 							SLI3_IOCB_RSP_SIZE :
10323 							SLI2_IOCB_RSP_SIZE;
10324 			pring->iotag_ctr = 0;
10325 			pring->iotag_max =
10326 			    (phba->cfg_hba_queue_depth * 2);
10327 			pring->fast_iotag = pring->iotag_max;
10328 			pring->num_mask = 0;
10329 			break;
10330 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10331 			/* numCiocb and numRiocb are used in config_port */
10332 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10333 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10334 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10335 							SLI3_IOCB_CMD_SIZE :
10336 							SLI2_IOCB_CMD_SIZE;
10337 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10338 							SLI3_IOCB_RSP_SIZE :
10339 							SLI2_IOCB_RSP_SIZE;
10340 			pring->iotag_max = phba->cfg_hba_queue_depth;
10341 			pring->num_mask = 0;
10342 			break;
10343 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10344 			/* numCiocb and numRiocb are used in config_port */
10345 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10346 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10347 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10348 							SLI3_IOCB_CMD_SIZE :
10349 							SLI2_IOCB_CMD_SIZE;
10350 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10351 							SLI3_IOCB_RSP_SIZE :
10352 							SLI2_IOCB_RSP_SIZE;
10353 			pring->fast_iotag = 0;
10354 			pring->iotag_ctr = 0;
10355 			pring->iotag_max = 4096;
10356 			pring->lpfc_sli_rcv_async_status =
10357 				lpfc_sli_async_event_handler;
10358 			pring->num_mask = LPFC_MAX_RING_MASK;
10359 			pring->prt[0].profile = 0;	/* Mask 0 */
10360 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10361 			pring->prt[0].type = FC_TYPE_ELS;
10362 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10363 			    lpfc_els_unsol_event;
10364 			pring->prt[1].profile = 0;	/* Mask 1 */
10365 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10366 			pring->prt[1].type = FC_TYPE_ELS;
10367 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10368 			    lpfc_els_unsol_event;
10369 			pring->prt[2].profile = 0;	/* Mask 2 */
10370 			/* NameServer Inquiry */
10371 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10372 			/* NameServer */
10373 			pring->prt[2].type = FC_TYPE_CT;
10374 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10375 			    lpfc_ct_unsol_event;
10376 			pring->prt[3].profile = 0;	/* Mask 3 */
10377 			/* NameServer response */
10378 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10379 			/* NameServer */
10380 			pring->prt[3].type = FC_TYPE_CT;
10381 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10382 			    lpfc_ct_unsol_event;
10383 			break;
10384 		}
10385 		totiocbsize += (pring->sli.sli3.numCiocb *
10386 			pring->sli.sli3.sizeCiocb) +
10387 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10388 	}
10389 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10390 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10391 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10392 		       "SLI2 SLIM Data: x%x x%lx\n",
10393 		       phba->brd_no, totiocbsize,
10394 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10395 	}
10396 	if (phba->cfg_multi_ring_support == 2)
10397 		lpfc_extra_ring_setup(phba);
10398 
10399 	return 0;
10400 }
10401 
10402 /**
10403  * lpfc_sli4_queue_init - Queue initialization function
10404  * @phba: Pointer to HBA context object.
10405  *
10406  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10407  * ring. This function also initializes ring indices of each ring.
10408  * This function is called during the initialization of the SLI
10409  * interface of an HBA.
10410  * This function is called with no lock held and always returns
10411  * 1.
10412  **/
10413 void
10414 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10415 {
10416 	struct lpfc_sli *psli;
10417 	struct lpfc_sli_ring *pring;
10418 	int i;
10419 
10420 	psli = &phba->sli;
10421 	spin_lock_irq(&phba->hbalock);
10422 	INIT_LIST_HEAD(&psli->mboxq);
10423 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10424 	/* Initialize list headers for txq and txcmplq as double linked lists */
10425 	for (i = 0; i < phba->cfg_fcp_io_channel; i++) {
10426 		pring = phba->sli4_hba.fcp_wq[i]->pring;
10427 		pring->flag = 0;
10428 		pring->ringno = LPFC_FCP_RING;
10429 		INIT_LIST_HEAD(&pring->txq);
10430 		INIT_LIST_HEAD(&pring->txcmplq);
10431 		INIT_LIST_HEAD(&pring->iocb_continueq);
10432 		spin_lock_init(&pring->ring_lock);
10433 	}
10434 	for (i = 0; i < phba->cfg_nvme_io_channel; i++) {
10435 		pring = phba->sli4_hba.nvme_wq[i]->pring;
10436 		pring->flag = 0;
10437 		pring->ringno = LPFC_FCP_RING;
10438 		INIT_LIST_HEAD(&pring->txq);
10439 		INIT_LIST_HEAD(&pring->txcmplq);
10440 		INIT_LIST_HEAD(&pring->iocb_continueq);
10441 		spin_lock_init(&pring->ring_lock);
10442 	}
10443 	pring = phba->sli4_hba.els_wq->pring;
10444 	pring->flag = 0;
10445 	pring->ringno = LPFC_ELS_RING;
10446 	INIT_LIST_HEAD(&pring->txq);
10447 	INIT_LIST_HEAD(&pring->txcmplq);
10448 	INIT_LIST_HEAD(&pring->iocb_continueq);
10449 	spin_lock_init(&pring->ring_lock);
10450 
10451 	if (phba->cfg_nvme_io_channel) {
10452 		pring = phba->sli4_hba.nvmels_wq->pring;
10453 		pring->flag = 0;
10454 		pring->ringno = LPFC_ELS_RING;
10455 		INIT_LIST_HEAD(&pring->txq);
10456 		INIT_LIST_HEAD(&pring->txcmplq);
10457 		INIT_LIST_HEAD(&pring->iocb_continueq);
10458 		spin_lock_init(&pring->ring_lock);
10459 	}
10460 
10461 	if (phba->cfg_fof) {
10462 		pring = phba->sli4_hba.oas_wq->pring;
10463 		pring->flag = 0;
10464 		pring->ringno = LPFC_FCP_RING;
10465 		INIT_LIST_HEAD(&pring->txq);
10466 		INIT_LIST_HEAD(&pring->txcmplq);
10467 		INIT_LIST_HEAD(&pring->iocb_continueq);
10468 		spin_lock_init(&pring->ring_lock);
10469 	}
10470 
10471 	spin_unlock_irq(&phba->hbalock);
10472 }
10473 
10474 /**
10475  * lpfc_sli_queue_init - Queue initialization function
10476  * @phba: Pointer to HBA context object.
10477  *
10478  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10479  * ring. This function also initializes ring indices of each ring.
10480  * This function is called during the initialization of the SLI
10481  * interface of an HBA.
10482  * This function is called with no lock held and always returns
10483  * 1.
10484  **/
10485 void
10486 lpfc_sli_queue_init(struct lpfc_hba *phba)
10487 {
10488 	struct lpfc_sli *psli;
10489 	struct lpfc_sli_ring *pring;
10490 	int i;
10491 
10492 	psli = &phba->sli;
10493 	spin_lock_irq(&phba->hbalock);
10494 	INIT_LIST_HEAD(&psli->mboxq);
10495 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10496 	/* Initialize list headers for txq and txcmplq as double linked lists */
10497 	for (i = 0; i < psli->num_rings; i++) {
10498 		pring = &psli->sli3_ring[i];
10499 		pring->ringno = i;
10500 		pring->sli.sli3.next_cmdidx  = 0;
10501 		pring->sli.sli3.local_getidx = 0;
10502 		pring->sli.sli3.cmdidx = 0;
10503 		INIT_LIST_HEAD(&pring->iocb_continueq);
10504 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10505 		INIT_LIST_HEAD(&pring->postbufq);
10506 		pring->flag = 0;
10507 		INIT_LIST_HEAD(&pring->txq);
10508 		INIT_LIST_HEAD(&pring->txcmplq);
10509 		spin_lock_init(&pring->ring_lock);
10510 	}
10511 	spin_unlock_irq(&phba->hbalock);
10512 }
10513 
10514 /**
10515  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10516  * @phba: Pointer to HBA context object.
10517  *
10518  * This routine flushes the mailbox command subsystem. It will unconditionally
10519  * flush all the mailbox commands in the three possible stages in the mailbox
10520  * command sub-system: pending mailbox command queue; the outstanding mailbox
10521  * command; and completed mailbox command queue. It is caller's responsibility
10522  * to make sure that the driver is in the proper state to flush the mailbox
10523  * command sub-system. Namely, the posting of mailbox commands into the
10524  * pending mailbox command queue from the various clients must be stopped;
10525  * either the HBA is in a state that it will never works on the outstanding
10526  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10527  * mailbox command has been completed.
10528  **/
10529 static void
10530 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10531 {
10532 	LIST_HEAD(completions);
10533 	struct lpfc_sli *psli = &phba->sli;
10534 	LPFC_MBOXQ_t *pmb;
10535 	unsigned long iflag;
10536 
10537 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10538 	local_bh_disable();
10539 
10540 	/* Flush all the mailbox commands in the mbox system */
10541 	spin_lock_irqsave(&phba->hbalock, iflag);
10542 
10543 	/* The pending mailbox command queue */
10544 	list_splice_init(&phba->sli.mboxq, &completions);
10545 	/* The outstanding active mailbox command */
10546 	if (psli->mbox_active) {
10547 		list_add_tail(&psli->mbox_active->list, &completions);
10548 		psli->mbox_active = NULL;
10549 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10550 	}
10551 	/* The completed mailbox command queue */
10552 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10553 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10554 
10555 	/* Enable softirqs again, done with phba->hbalock */
10556 	local_bh_enable();
10557 
10558 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10559 	while (!list_empty(&completions)) {
10560 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10561 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10562 		if (pmb->mbox_cmpl)
10563 			pmb->mbox_cmpl(phba, pmb);
10564 	}
10565 }
10566 
10567 /**
10568  * lpfc_sli_host_down - Vport cleanup function
10569  * @vport: Pointer to virtual port object.
10570  *
10571  * lpfc_sli_host_down is called to clean up the resources
10572  * associated with a vport before destroying virtual
10573  * port data structures.
10574  * This function does following operations:
10575  * - Free discovery resources associated with this virtual
10576  *   port.
10577  * - Free iocbs associated with this virtual port in
10578  *   the txq.
10579  * - Send abort for all iocb commands associated with this
10580  *   vport in txcmplq.
10581  *
10582  * This function is called with no lock held and always returns 1.
10583  **/
10584 int
10585 lpfc_sli_host_down(struct lpfc_vport *vport)
10586 {
10587 	LIST_HEAD(completions);
10588 	struct lpfc_hba *phba = vport->phba;
10589 	struct lpfc_sli *psli = &phba->sli;
10590 	struct lpfc_queue *qp = NULL;
10591 	struct lpfc_sli_ring *pring;
10592 	struct lpfc_iocbq *iocb, *next_iocb;
10593 	int i;
10594 	unsigned long flags = 0;
10595 	uint16_t prev_pring_flag;
10596 
10597 	lpfc_cleanup_discovery_resources(vport);
10598 
10599 	spin_lock_irqsave(&phba->hbalock, flags);
10600 
10601 	/*
10602 	 * Error everything on the txq since these iocbs
10603 	 * have not been given to the FW yet.
10604 	 * Also issue ABTS for everything on the txcmplq
10605 	 */
10606 	if (phba->sli_rev != LPFC_SLI_REV4) {
10607 		for (i = 0; i < psli->num_rings; i++) {
10608 			pring = &psli->sli3_ring[i];
10609 			prev_pring_flag = pring->flag;
10610 			/* Only slow rings */
10611 			if (pring->ringno == LPFC_ELS_RING) {
10612 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10613 				/* Set the lpfc data pending flag */
10614 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10615 			}
10616 			list_for_each_entry_safe(iocb, next_iocb,
10617 						 &pring->txq, list) {
10618 				if (iocb->vport != vport)
10619 					continue;
10620 				list_move_tail(&iocb->list, &completions);
10621 			}
10622 			list_for_each_entry_safe(iocb, next_iocb,
10623 						 &pring->txcmplq, list) {
10624 				if (iocb->vport != vport)
10625 					continue;
10626 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10627 			}
10628 			pring->flag = prev_pring_flag;
10629 		}
10630 	} else {
10631 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10632 			pring = qp->pring;
10633 			if (!pring)
10634 				continue;
10635 			if (pring == phba->sli4_hba.els_wq->pring) {
10636 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10637 				/* Set the lpfc data pending flag */
10638 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10639 			}
10640 			prev_pring_flag = pring->flag;
10641 			spin_lock_irq(&pring->ring_lock);
10642 			list_for_each_entry_safe(iocb, next_iocb,
10643 						 &pring->txq, list) {
10644 				if (iocb->vport != vport)
10645 					continue;
10646 				list_move_tail(&iocb->list, &completions);
10647 			}
10648 			spin_unlock_irq(&pring->ring_lock);
10649 			list_for_each_entry_safe(iocb, next_iocb,
10650 						 &pring->txcmplq, list) {
10651 				if (iocb->vport != vport)
10652 					continue;
10653 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10654 			}
10655 			pring->flag = prev_pring_flag;
10656 		}
10657 	}
10658 	spin_unlock_irqrestore(&phba->hbalock, flags);
10659 
10660 	/* Cancel all the IOCBs from the completions list */
10661 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10662 			      IOERR_SLI_DOWN);
10663 	return 1;
10664 }
10665 
10666 /**
10667  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10668  * @phba: Pointer to HBA context object.
10669  *
10670  * This function cleans up all iocb, buffers, mailbox commands
10671  * while shutting down the HBA. This function is called with no
10672  * lock held and always returns 1.
10673  * This function does the following to cleanup driver resources:
10674  * - Free discovery resources for each virtual port
10675  * - Cleanup any pending fabric iocbs
10676  * - Iterate through the iocb txq and free each entry
10677  *   in the list.
10678  * - Free up any buffer posted to the HBA
10679  * - Free mailbox commands in the mailbox queue.
10680  **/
10681 int
10682 lpfc_sli_hba_down(struct lpfc_hba *phba)
10683 {
10684 	LIST_HEAD(completions);
10685 	struct lpfc_sli *psli = &phba->sli;
10686 	struct lpfc_queue *qp = NULL;
10687 	struct lpfc_sli_ring *pring;
10688 	struct lpfc_dmabuf *buf_ptr;
10689 	unsigned long flags = 0;
10690 	int i;
10691 
10692 	/* Shutdown the mailbox command sub-system */
10693 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10694 
10695 	lpfc_hba_down_prep(phba);
10696 
10697 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10698 	local_bh_disable();
10699 
10700 	lpfc_fabric_abort_hba(phba);
10701 
10702 	spin_lock_irqsave(&phba->hbalock, flags);
10703 
10704 	/*
10705 	 * Error everything on the txq since these iocbs
10706 	 * have not been given to the FW yet.
10707 	 */
10708 	if (phba->sli_rev != LPFC_SLI_REV4) {
10709 		for (i = 0; i < psli->num_rings; i++) {
10710 			pring = &psli->sli3_ring[i];
10711 			/* Only slow rings */
10712 			if (pring->ringno == LPFC_ELS_RING) {
10713 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10714 				/* Set the lpfc data pending flag */
10715 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10716 			}
10717 			list_splice_init(&pring->txq, &completions);
10718 		}
10719 	} else {
10720 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10721 			pring = qp->pring;
10722 			if (!pring)
10723 				continue;
10724 			spin_lock_irq(&pring->ring_lock);
10725 			list_splice_init(&pring->txq, &completions);
10726 			spin_unlock_irq(&pring->ring_lock);
10727 			if (pring == phba->sli4_hba.els_wq->pring) {
10728 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10729 				/* Set the lpfc data pending flag */
10730 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10731 			}
10732 		}
10733 	}
10734 	spin_unlock_irqrestore(&phba->hbalock, flags);
10735 
10736 	/* Cancel all the IOCBs from the completions list */
10737 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10738 			      IOERR_SLI_DOWN);
10739 
10740 	spin_lock_irqsave(&phba->hbalock, flags);
10741 	list_splice_init(&phba->elsbuf, &completions);
10742 	phba->elsbuf_cnt = 0;
10743 	phba->elsbuf_prev_cnt = 0;
10744 	spin_unlock_irqrestore(&phba->hbalock, flags);
10745 
10746 	while (!list_empty(&completions)) {
10747 		list_remove_head(&completions, buf_ptr,
10748 			struct lpfc_dmabuf, list);
10749 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10750 		kfree(buf_ptr);
10751 	}
10752 
10753 	/* Enable softirqs again, done with phba->hbalock */
10754 	local_bh_enable();
10755 
10756 	/* Return any active mbox cmds */
10757 	del_timer_sync(&psli->mbox_tmo);
10758 
10759 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10760 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10761 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10762 
10763 	return 1;
10764 }
10765 
10766 /**
10767  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10768  * @srcp: Source memory pointer.
10769  * @destp: Destination memory pointer.
10770  * @cnt: Number of words required to be copied.
10771  *
10772  * This function is used for copying data between driver memory
10773  * and the SLI memory. This function also changes the endianness
10774  * of each word if native endianness is different from SLI
10775  * endianness. This function can be called with or without
10776  * lock.
10777  **/
10778 void
10779 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
10780 {
10781 	uint32_t *src = srcp;
10782 	uint32_t *dest = destp;
10783 	uint32_t ldata;
10784 	int i;
10785 
10786 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
10787 		ldata = *src;
10788 		ldata = le32_to_cpu(ldata);
10789 		*dest = ldata;
10790 		src++;
10791 		dest++;
10792 	}
10793 }
10794 
10795 
10796 /**
10797  * lpfc_sli_bemem_bcopy - SLI memory copy function
10798  * @srcp: Source memory pointer.
10799  * @destp: Destination memory pointer.
10800  * @cnt: Number of words required to be copied.
10801  *
10802  * This function is used for copying data between a data structure
10803  * with big endian representation to local endianness.
10804  * This function can be called with or without lock.
10805  **/
10806 void
10807 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
10808 {
10809 	uint32_t *src = srcp;
10810 	uint32_t *dest = destp;
10811 	uint32_t ldata;
10812 	int i;
10813 
10814 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
10815 		ldata = *src;
10816 		ldata = be32_to_cpu(ldata);
10817 		*dest = ldata;
10818 		src++;
10819 		dest++;
10820 	}
10821 }
10822 
10823 /**
10824  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
10825  * @phba: Pointer to HBA context object.
10826  * @pring: Pointer to driver SLI ring object.
10827  * @mp: Pointer to driver buffer object.
10828  *
10829  * This function is called with no lock held.
10830  * It always return zero after adding the buffer to the postbufq
10831  * buffer list.
10832  **/
10833 int
10834 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10835 			 struct lpfc_dmabuf *mp)
10836 {
10837 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
10838 	   later */
10839 	spin_lock_irq(&phba->hbalock);
10840 	list_add_tail(&mp->list, &pring->postbufq);
10841 	pring->postbufq_cnt++;
10842 	spin_unlock_irq(&phba->hbalock);
10843 	return 0;
10844 }
10845 
10846 /**
10847  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
10848  * @phba: Pointer to HBA context object.
10849  *
10850  * When HBQ is enabled, buffers are searched based on tags. This function
10851  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
10852  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
10853  * does not conflict with tags of buffer posted for unsolicited events.
10854  * The function returns the allocated tag. The function is called with
10855  * no locks held.
10856  **/
10857 uint32_t
10858 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
10859 {
10860 	spin_lock_irq(&phba->hbalock);
10861 	phba->buffer_tag_count++;
10862 	/*
10863 	 * Always set the QUE_BUFTAG_BIT to distiguish between
10864 	 * a tag assigned by HBQ.
10865 	 */
10866 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
10867 	spin_unlock_irq(&phba->hbalock);
10868 	return phba->buffer_tag_count;
10869 }
10870 
10871 /**
10872  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
10873  * @phba: Pointer to HBA context object.
10874  * @pring: Pointer to driver SLI ring object.
10875  * @tag: Buffer tag.
10876  *
10877  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
10878  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
10879  * iocb is posted to the response ring with the tag of the buffer.
10880  * This function searches the pring->postbufq list using the tag
10881  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
10882  * iocb. If the buffer is found then lpfc_dmabuf object of the
10883  * buffer is returned to the caller else NULL is returned.
10884  * This function is called with no lock held.
10885  **/
10886 struct lpfc_dmabuf *
10887 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10888 			uint32_t tag)
10889 {
10890 	struct lpfc_dmabuf *mp, *next_mp;
10891 	struct list_head *slp = &pring->postbufq;
10892 
10893 	/* Search postbufq, from the beginning, looking for a match on tag */
10894 	spin_lock_irq(&phba->hbalock);
10895 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10896 		if (mp->buffer_tag == tag) {
10897 			list_del_init(&mp->list);
10898 			pring->postbufq_cnt--;
10899 			spin_unlock_irq(&phba->hbalock);
10900 			return mp;
10901 		}
10902 	}
10903 
10904 	spin_unlock_irq(&phba->hbalock);
10905 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10906 			"0402 Cannot find virtual addr for buffer tag on "
10907 			"ring %d Data x%lx x%p x%p x%x\n",
10908 			pring->ringno, (unsigned long) tag,
10909 			slp->next, slp->prev, pring->postbufq_cnt);
10910 
10911 	return NULL;
10912 }
10913 
10914 /**
10915  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
10916  * @phba: Pointer to HBA context object.
10917  * @pring: Pointer to driver SLI ring object.
10918  * @phys: DMA address of the buffer.
10919  *
10920  * This function searches the buffer list using the dma_address
10921  * of unsolicited event to find the driver's lpfc_dmabuf object
10922  * corresponding to the dma_address. The function returns the
10923  * lpfc_dmabuf object if a buffer is found else it returns NULL.
10924  * This function is called by the ct and els unsolicited event
10925  * handlers to get the buffer associated with the unsolicited
10926  * event.
10927  *
10928  * This function is called with no lock held.
10929  **/
10930 struct lpfc_dmabuf *
10931 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
10932 			 dma_addr_t phys)
10933 {
10934 	struct lpfc_dmabuf *mp, *next_mp;
10935 	struct list_head *slp = &pring->postbufq;
10936 
10937 	/* Search postbufq, from the beginning, looking for a match on phys */
10938 	spin_lock_irq(&phba->hbalock);
10939 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
10940 		if (mp->phys == phys) {
10941 			list_del_init(&mp->list);
10942 			pring->postbufq_cnt--;
10943 			spin_unlock_irq(&phba->hbalock);
10944 			return mp;
10945 		}
10946 	}
10947 
10948 	spin_unlock_irq(&phba->hbalock);
10949 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10950 			"0410 Cannot find virtual addr for mapped buf on "
10951 			"ring %d Data x%llx x%p x%p x%x\n",
10952 			pring->ringno, (unsigned long long)phys,
10953 			slp->next, slp->prev, pring->postbufq_cnt);
10954 	return NULL;
10955 }
10956 
10957 /**
10958  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
10959  * @phba: Pointer to HBA context object.
10960  * @cmdiocb: Pointer to driver command iocb object.
10961  * @rspiocb: Pointer to driver response iocb object.
10962  *
10963  * This function is the completion handler for the abort iocbs for
10964  * ELS commands. This function is called from the ELS ring event
10965  * handler with no lock held. This function frees memory resources
10966  * associated with the abort iocb.
10967  **/
10968 static void
10969 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
10970 			struct lpfc_iocbq *rspiocb)
10971 {
10972 	IOCB_t *irsp = &rspiocb->iocb;
10973 	uint16_t abort_iotag, abort_context;
10974 	struct lpfc_iocbq *abort_iocb = NULL;
10975 
10976 	if (irsp->ulpStatus) {
10977 
10978 		/*
10979 		 * Assume that the port already completed and returned, or
10980 		 * will return the iocb. Just Log the message.
10981 		 */
10982 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
10983 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
10984 
10985 		spin_lock_irq(&phba->hbalock);
10986 		if (phba->sli_rev < LPFC_SLI_REV4) {
10987 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
10988 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
10989 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
10990 				spin_unlock_irq(&phba->hbalock);
10991 				goto release_iocb;
10992 			}
10993 			if (abort_iotag != 0 &&
10994 				abort_iotag <= phba->sli.last_iotag)
10995 				abort_iocb =
10996 					phba->sli.iocbq_lookup[abort_iotag];
10997 		} else
10998 			/* For sli4 the abort_tag is the XRI,
10999 			 * so the abort routine puts the iotag  of the iocb
11000 			 * being aborted in the context field of the abort
11001 			 * IOCB.
11002 			 */
11003 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11004 
11005 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11006 				"0327 Cannot abort els iocb %p "
11007 				"with tag %x context %x, abort status %x, "
11008 				"abort code %x\n",
11009 				abort_iocb, abort_iotag, abort_context,
11010 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11011 
11012 		spin_unlock_irq(&phba->hbalock);
11013 	}
11014 release_iocb:
11015 	lpfc_sli_release_iocbq(phba, cmdiocb);
11016 	return;
11017 }
11018 
11019 /**
11020  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11021  * @phba: Pointer to HBA context object.
11022  * @cmdiocb: Pointer to driver command iocb object.
11023  * @rspiocb: Pointer to driver response iocb object.
11024  *
11025  * The function is called from SLI ring event handler with no
11026  * lock held. This function is the completion handler for ELS commands
11027  * which are aborted. The function frees memory resources used for
11028  * the aborted ELS commands.
11029  **/
11030 static void
11031 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11032 		     struct lpfc_iocbq *rspiocb)
11033 {
11034 	IOCB_t *irsp = &rspiocb->iocb;
11035 
11036 	/* ELS cmd tag <ulpIoTag> completes */
11037 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11038 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11039 			"x%x x%x x%x\n",
11040 			irsp->ulpIoTag, irsp->ulpStatus,
11041 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11042 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11043 		lpfc_ct_free_iocb(phba, cmdiocb);
11044 	else
11045 		lpfc_els_free_iocb(phba, cmdiocb);
11046 	return;
11047 }
11048 
11049 /**
11050  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11051  * @phba: Pointer to HBA context object.
11052  * @pring: Pointer to driver SLI ring object.
11053  * @cmdiocb: Pointer to driver command iocb object.
11054  *
11055  * This function issues an abort iocb for the provided command iocb down to
11056  * the port. Other than the case the outstanding command iocb is an abort
11057  * request, this function issues abort out unconditionally. This function is
11058  * called with hbalock held. The function returns 0 when it fails due to
11059  * memory allocation failure or when the command iocb is an abort request.
11060  **/
11061 static int
11062 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11063 			   struct lpfc_iocbq *cmdiocb)
11064 {
11065 	struct lpfc_vport *vport = cmdiocb->vport;
11066 	struct lpfc_iocbq *abtsiocbp;
11067 	IOCB_t *icmd = NULL;
11068 	IOCB_t *iabt = NULL;
11069 	int retval;
11070 	unsigned long iflags;
11071 	struct lpfc_nodelist *ndlp;
11072 
11073 	lockdep_assert_held(&phba->hbalock);
11074 
11075 	/*
11076 	 * There are certain command types we don't want to abort.  And we
11077 	 * don't want to abort commands that are already in the process of
11078 	 * being aborted.
11079 	 */
11080 	icmd = &cmdiocb->iocb;
11081 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11082 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11083 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11084 		return 0;
11085 
11086 	/* issue ABTS for this IOCB based on iotag */
11087 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11088 	if (abtsiocbp == NULL)
11089 		return 0;
11090 
11091 	/* This signals the response to set the correct status
11092 	 * before calling the completion handler
11093 	 */
11094 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11095 
11096 	iabt = &abtsiocbp->iocb;
11097 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11098 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11099 	if (phba->sli_rev == LPFC_SLI_REV4) {
11100 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11101 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11102 	} else {
11103 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11104 		if (pring->ringno == LPFC_ELS_RING) {
11105 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11106 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11107 		}
11108 	}
11109 	iabt->ulpLe = 1;
11110 	iabt->ulpClass = icmd->ulpClass;
11111 
11112 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11113 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11114 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11115 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11116 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11117 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11118 
11119 	if (phba->link_state >= LPFC_LINK_UP)
11120 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11121 	else
11122 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11123 
11124 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11125 	abtsiocbp->vport = vport;
11126 
11127 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11128 			 "0339 Abort xri x%x, original iotag x%x, "
11129 			 "abort cmd iotag x%x\n",
11130 			 iabt->un.acxri.abortIoTag,
11131 			 iabt->un.acxri.abortContextTag,
11132 			 abtsiocbp->iotag);
11133 
11134 	if (phba->sli_rev == LPFC_SLI_REV4) {
11135 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11136 		if (unlikely(pring == NULL))
11137 			return 0;
11138 		/* Note: both hbalock and ring_lock need to be set here */
11139 		spin_lock_irqsave(&pring->ring_lock, iflags);
11140 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11141 			abtsiocbp, 0);
11142 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11143 	} else {
11144 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11145 			abtsiocbp, 0);
11146 	}
11147 
11148 	if (retval)
11149 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11150 
11151 	/*
11152 	 * Caller to this routine should check for IOCB_ERROR
11153 	 * and handle it properly.  This routine no longer removes
11154 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11155 	 */
11156 	return retval;
11157 }
11158 
11159 /**
11160  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11161  * @phba: Pointer to HBA context object.
11162  * @pring: Pointer to driver SLI ring object.
11163  * @cmdiocb: Pointer to driver command iocb object.
11164  *
11165  * This function issues an abort iocb for the provided command iocb. In case
11166  * of unloading, the abort iocb will not be issued to commands on the ELS
11167  * ring. Instead, the callback function shall be changed to those commands
11168  * so that nothing happens when them finishes. This function is called with
11169  * hbalock held. The function returns 0 when the command iocb is an abort
11170  * request.
11171  **/
11172 int
11173 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11174 			   struct lpfc_iocbq *cmdiocb)
11175 {
11176 	struct lpfc_vport *vport = cmdiocb->vport;
11177 	int retval = IOCB_ERROR;
11178 	IOCB_t *icmd = NULL;
11179 
11180 	lockdep_assert_held(&phba->hbalock);
11181 
11182 	/*
11183 	 * There are certain command types we don't want to abort.  And we
11184 	 * don't want to abort commands that are already in the process of
11185 	 * being aborted.
11186 	 */
11187 	icmd = &cmdiocb->iocb;
11188 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11189 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11190 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11191 		return 0;
11192 
11193 	if (!pring) {
11194 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11195 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11196 		else
11197 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11198 		goto abort_iotag_exit;
11199 	}
11200 
11201 	/*
11202 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11203 	 * the callback so that nothing happens when it finishes.
11204 	 */
11205 	if ((vport->load_flag & FC_UNLOADING) &&
11206 	    (pring->ringno == LPFC_ELS_RING)) {
11207 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11208 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11209 		else
11210 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11211 		goto abort_iotag_exit;
11212 	}
11213 
11214 	/* Now, we try to issue the abort to the cmdiocb out */
11215 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11216 
11217 abort_iotag_exit:
11218 	/*
11219 	 * Caller to this routine should check for IOCB_ERROR
11220 	 * and handle it properly.  This routine no longer removes
11221 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11222 	 */
11223 	return retval;
11224 }
11225 
11226 /**
11227  * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb
11228  * @phba: Pointer to HBA context object.
11229  * @pring: Pointer to driver SLI ring object.
11230  * @cmdiocb: Pointer to driver command iocb object.
11231  *
11232  * This function issues an abort iocb for the provided command iocb down to
11233  * the port. Other than the case the outstanding command iocb is an abort
11234  * request, this function issues abort out unconditionally. This function is
11235  * called with hbalock held. The function returns 0 when it fails due to
11236  * memory allocation failure or when the command iocb is an abort request.
11237  **/
11238 static int
11239 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11240 			struct lpfc_iocbq *cmdiocb)
11241 {
11242 	struct lpfc_vport *vport = cmdiocb->vport;
11243 	struct lpfc_iocbq *abtsiocbp;
11244 	union lpfc_wqe128 *abts_wqe;
11245 	int retval;
11246 
11247 	/*
11248 	 * There are certain command types we don't want to abort.  And we
11249 	 * don't want to abort commands that are already in the process of
11250 	 * being aborted.
11251 	 */
11252 	if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
11253 	    cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN ||
11254 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11255 		return 0;
11256 
11257 	/* issue ABTS for this io based on iotag */
11258 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11259 	if (abtsiocbp == NULL)
11260 		return 0;
11261 
11262 	/* This signals the response to set the correct status
11263 	 * before calling the completion handler
11264 	 */
11265 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11266 
11267 	/* Complete prepping the abort wqe and issue to the FW. */
11268 	abts_wqe = &abtsiocbp->wqe;
11269 	bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0);
11270 	bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG);
11271 
11272 	/* Explicitly set reserved fields to zero.*/
11273 	abts_wqe->abort_cmd.rsrvd4 = 0;
11274 	abts_wqe->abort_cmd.rsrvd5 = 0;
11275 
11276 	/* WQE Common - word 6.  Context is XRI tag.  Set 0. */
11277 	bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0);
11278 	bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0);
11279 
11280 	/* word 7 */
11281 	bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0);
11282 	bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
11283 	bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com,
11284 	       cmdiocb->iocb.ulpClass);
11285 
11286 	/* word 8 - tell the FW to abort the IO associated with this
11287 	 * outstanding exchange ID.
11288 	 */
11289 	abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag;
11290 
11291 	/* word 9 - this is the iotag for the abts_wqe completion. */
11292 	bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com,
11293 	       abtsiocbp->iotag);
11294 
11295 	/* word 10 */
11296 	bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx);
11297 	bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1);
11298 	bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
11299 
11300 	/* word 11 */
11301 	bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND);
11302 	bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1);
11303 	bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
11304 
11305 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11306 	abtsiocbp->iocb_flag |= LPFC_IO_NVME;
11307 	abtsiocbp->vport = vport;
11308 	abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl;
11309 	retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp);
11310 	if (retval) {
11311 		lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11312 				 "6147 Failed abts issue_wqe with status x%x "
11313 				 "for oxid x%x\n",
11314 				 retval, cmdiocb->sli4_xritag);
11315 		lpfc_sli_release_iocbq(phba, abtsiocbp);
11316 		return retval;
11317 	}
11318 
11319 	lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME,
11320 			 "6148 Drv Abort NVME Request Issued for "
11321 			 "ox_id x%x on reqtag x%x\n",
11322 			 cmdiocb->sli4_xritag,
11323 			 abtsiocbp->iotag);
11324 
11325 	return retval;
11326 }
11327 
11328 /**
11329  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11330  * @phba: pointer to lpfc HBA data structure.
11331  *
11332  * This routine will abort all pending and outstanding iocbs to an HBA.
11333  **/
11334 void
11335 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11336 {
11337 	struct lpfc_sli *psli = &phba->sli;
11338 	struct lpfc_sli_ring *pring;
11339 	struct lpfc_queue *qp = NULL;
11340 	int i;
11341 
11342 	if (phba->sli_rev != LPFC_SLI_REV4) {
11343 		for (i = 0; i < psli->num_rings; i++) {
11344 			pring = &psli->sli3_ring[i];
11345 			lpfc_sli_abort_iocb_ring(phba, pring);
11346 		}
11347 		return;
11348 	}
11349 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11350 		pring = qp->pring;
11351 		if (!pring)
11352 			continue;
11353 		lpfc_sli_abort_iocb_ring(phba, pring);
11354 	}
11355 }
11356 
11357 /**
11358  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11359  * @iocbq: Pointer to driver iocb object.
11360  * @vport: Pointer to driver virtual port object.
11361  * @tgt_id: SCSI ID of the target.
11362  * @lun_id: LUN ID of the scsi device.
11363  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11364  *
11365  * This function acts as an iocb filter for functions which abort or count
11366  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11367  * 0 if the filtering criteria is met for the given iocb and will return
11368  * 1 if the filtering criteria is not met.
11369  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11370  * given iocb is for the SCSI device specified by vport, tgt_id and
11371  * lun_id parameter.
11372  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11373  * given iocb is for the SCSI target specified by vport and tgt_id
11374  * parameters.
11375  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11376  * given iocb is for the SCSI host associated with the given vport.
11377  * This function is called with no locks held.
11378  **/
11379 static int
11380 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11381 			   uint16_t tgt_id, uint64_t lun_id,
11382 			   lpfc_ctx_cmd ctx_cmd)
11383 {
11384 	struct lpfc_scsi_buf *lpfc_cmd;
11385 	int rc = 1;
11386 
11387 	if (iocbq->vport != vport)
11388 		return rc;
11389 
11390 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11391 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11392 		return rc;
11393 
11394 	lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11395 
11396 	if (lpfc_cmd->pCmd == NULL)
11397 		return rc;
11398 
11399 	switch (ctx_cmd) {
11400 	case LPFC_CTX_LUN:
11401 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11402 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11403 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11404 			rc = 0;
11405 		break;
11406 	case LPFC_CTX_TGT:
11407 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11408 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11409 			rc = 0;
11410 		break;
11411 	case LPFC_CTX_HOST:
11412 		rc = 0;
11413 		break;
11414 	default:
11415 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11416 			__func__, ctx_cmd);
11417 		break;
11418 	}
11419 
11420 	return rc;
11421 }
11422 
11423 /**
11424  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11425  * @vport: Pointer to virtual port.
11426  * @tgt_id: SCSI ID of the target.
11427  * @lun_id: LUN ID of the scsi device.
11428  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11429  *
11430  * This function returns number of FCP commands pending for the vport.
11431  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11432  * commands pending on the vport associated with SCSI device specified
11433  * by tgt_id and lun_id parameters.
11434  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11435  * commands pending on the vport associated with SCSI target specified
11436  * by tgt_id parameter.
11437  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11438  * commands pending on the vport.
11439  * This function returns the number of iocbs which satisfy the filter.
11440  * This function is called without any lock held.
11441  **/
11442 int
11443 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11444 		  lpfc_ctx_cmd ctx_cmd)
11445 {
11446 	struct lpfc_hba *phba = vport->phba;
11447 	struct lpfc_iocbq *iocbq;
11448 	int sum, i;
11449 
11450 	spin_lock_irq(&phba->hbalock);
11451 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11452 		iocbq = phba->sli.iocbq_lookup[i];
11453 
11454 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11455 						ctx_cmd) == 0)
11456 			sum++;
11457 	}
11458 	spin_unlock_irq(&phba->hbalock);
11459 
11460 	return sum;
11461 }
11462 
11463 /**
11464  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11465  * @phba: Pointer to HBA context object
11466  * @cmdiocb: Pointer to command iocb object.
11467  * @rspiocb: Pointer to response iocb object.
11468  *
11469  * This function is called when an aborted FCP iocb completes. This
11470  * function is called by the ring event handler with no lock held.
11471  * This function frees the iocb.
11472  **/
11473 void
11474 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11475 			struct lpfc_iocbq *rspiocb)
11476 {
11477 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11478 			"3096 ABORT_XRI_CN completing on rpi x%x "
11479 			"original iotag x%x, abort cmd iotag x%x "
11480 			"status 0x%x, reason 0x%x\n",
11481 			cmdiocb->iocb.un.acxri.abortContextTag,
11482 			cmdiocb->iocb.un.acxri.abortIoTag,
11483 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11484 			rspiocb->iocb.un.ulpWord[4]);
11485 	lpfc_sli_release_iocbq(phba, cmdiocb);
11486 	return;
11487 }
11488 
11489 /**
11490  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11491  * @vport: Pointer to virtual port.
11492  * @pring: Pointer to driver SLI ring object.
11493  * @tgt_id: SCSI ID of the target.
11494  * @lun_id: LUN ID of the scsi device.
11495  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11496  *
11497  * This function sends an abort command for every SCSI command
11498  * associated with the given virtual port pending on the ring
11499  * filtered by lpfc_sli_validate_fcp_iocb function.
11500  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11501  * FCP iocbs associated with lun specified by tgt_id and lun_id
11502  * parameters
11503  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11504  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11505  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11506  * FCP iocbs associated with virtual port.
11507  * This function returns number of iocbs it failed to abort.
11508  * This function is called with no locks held.
11509  **/
11510 int
11511 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11512 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11513 {
11514 	struct lpfc_hba *phba = vport->phba;
11515 	struct lpfc_iocbq *iocbq;
11516 	struct lpfc_iocbq *abtsiocb;
11517 	struct lpfc_sli_ring *pring_s4;
11518 	IOCB_t *cmd = NULL;
11519 	int errcnt = 0, ret_val = 0;
11520 	int i;
11521 
11522 	/* all I/Os are in process of being flushed */
11523 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH)
11524 		return errcnt;
11525 
11526 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11527 		iocbq = phba->sli.iocbq_lookup[i];
11528 
11529 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11530 					       abort_cmd) != 0)
11531 			continue;
11532 
11533 		/*
11534 		 * If the iocbq is already being aborted, don't take a second
11535 		 * action, but do count it.
11536 		 */
11537 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11538 			continue;
11539 
11540 		/* issue ABTS for this IOCB based on iotag */
11541 		abtsiocb = lpfc_sli_get_iocbq(phba);
11542 		if (abtsiocb == NULL) {
11543 			errcnt++;
11544 			continue;
11545 		}
11546 
11547 		/* indicate the IO is being aborted by the driver. */
11548 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11549 
11550 		cmd = &iocbq->iocb;
11551 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11552 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11553 		if (phba->sli_rev == LPFC_SLI_REV4)
11554 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11555 		else
11556 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11557 		abtsiocb->iocb.ulpLe = 1;
11558 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11559 		abtsiocb->vport = vport;
11560 
11561 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11562 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11563 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11564 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11565 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11566 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11567 
11568 		if (lpfc_is_link_up(phba))
11569 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11570 		else
11571 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11572 
11573 		/* Setup callback routine and issue the command. */
11574 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11575 		if (phba->sli_rev == LPFC_SLI_REV4) {
11576 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11577 			if (!pring_s4)
11578 				continue;
11579 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11580 						      abtsiocb, 0);
11581 		} else
11582 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11583 						      abtsiocb, 0);
11584 		if (ret_val == IOCB_ERROR) {
11585 			lpfc_sli_release_iocbq(phba, abtsiocb);
11586 			errcnt++;
11587 			continue;
11588 		}
11589 	}
11590 
11591 	return errcnt;
11592 }
11593 
11594 /**
11595  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11596  * @vport: Pointer to virtual port.
11597  * @pring: Pointer to driver SLI ring object.
11598  * @tgt_id: SCSI ID of the target.
11599  * @lun_id: LUN ID of the scsi device.
11600  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11601  *
11602  * This function sends an abort command for every SCSI command
11603  * associated with the given virtual port pending on the ring
11604  * filtered by lpfc_sli_validate_fcp_iocb function.
11605  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11606  * FCP iocbs associated with lun specified by tgt_id and lun_id
11607  * parameters
11608  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11609  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11610  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11611  * FCP iocbs associated with virtual port.
11612  * This function returns number of iocbs it aborted .
11613  * This function is called with no locks held right after a taskmgmt
11614  * command is sent.
11615  **/
11616 int
11617 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11618 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11619 {
11620 	struct lpfc_hba *phba = vport->phba;
11621 	struct lpfc_scsi_buf *lpfc_cmd;
11622 	struct lpfc_iocbq *abtsiocbq;
11623 	struct lpfc_nodelist *ndlp;
11624 	struct lpfc_iocbq *iocbq;
11625 	IOCB_t *icmd;
11626 	int sum, i, ret_val;
11627 	unsigned long iflags;
11628 	struct lpfc_sli_ring *pring_s4;
11629 
11630 	spin_lock_irqsave(&phba->hbalock, iflags);
11631 
11632 	/* all I/Os are in process of being flushed */
11633 	if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) {
11634 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11635 		return 0;
11636 	}
11637 	sum = 0;
11638 
11639 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11640 		iocbq = phba->sli.iocbq_lookup[i];
11641 
11642 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11643 					       cmd) != 0)
11644 			continue;
11645 
11646 		/*
11647 		 * If the iocbq is already being aborted, don't take a second
11648 		 * action, but do count it.
11649 		 */
11650 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11651 			continue;
11652 
11653 		/* issue ABTS for this IOCB based on iotag */
11654 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11655 		if (abtsiocbq == NULL)
11656 			continue;
11657 
11658 		icmd = &iocbq->iocb;
11659 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11660 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11661 		if (phba->sli_rev == LPFC_SLI_REV4)
11662 			abtsiocbq->iocb.un.acxri.abortIoTag =
11663 							 iocbq->sli4_xritag;
11664 		else
11665 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11666 		abtsiocbq->iocb.ulpLe = 1;
11667 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11668 		abtsiocbq->vport = vport;
11669 
11670 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11671 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11672 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11673 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11674 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11675 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11676 
11677 		lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
11678 		ndlp = lpfc_cmd->rdata->pnode;
11679 
11680 		if (lpfc_is_link_up(phba) &&
11681 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11682 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11683 		else
11684 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11685 
11686 		/* Setup callback routine and issue the command. */
11687 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11688 
11689 		/*
11690 		 * Indicate the IO is being aborted by the driver and set
11691 		 * the caller's flag into the aborted IO.
11692 		 */
11693 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11694 
11695 		if (phba->sli_rev == LPFC_SLI_REV4) {
11696 			pring_s4 = lpfc_sli4_calc_ring(phba, abtsiocbq);
11697 			if (!pring_s4)
11698 				continue;
11699 			/* Note: both hbalock and ring_lock must be set here */
11700 			spin_lock(&pring_s4->ring_lock);
11701 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11702 							abtsiocbq, 0);
11703 			spin_unlock(&pring_s4->ring_lock);
11704 		} else {
11705 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11706 							abtsiocbq, 0);
11707 		}
11708 
11709 
11710 		if (ret_val == IOCB_ERROR)
11711 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11712 		else
11713 			sum++;
11714 	}
11715 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11716 	return sum;
11717 }
11718 
11719 /**
11720  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11721  * @phba: Pointer to HBA context object.
11722  * @cmdiocbq: Pointer to command iocb.
11723  * @rspiocbq: Pointer to response iocb.
11724  *
11725  * This function is the completion handler for iocbs issued using
11726  * lpfc_sli_issue_iocb_wait function. This function is called by the
11727  * ring event handler function without any lock held. This function
11728  * can be called from both worker thread context and interrupt
11729  * context. This function also can be called from other thread which
11730  * cleans up the SLI layer objects.
11731  * This function copy the contents of the response iocb to the
11732  * response iocb memory object provided by the caller of
11733  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11734  * sleeps for the iocb completion.
11735  **/
11736 static void
11737 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11738 			struct lpfc_iocbq *cmdiocbq,
11739 			struct lpfc_iocbq *rspiocbq)
11740 {
11741 	wait_queue_head_t *pdone_q;
11742 	unsigned long iflags;
11743 	struct lpfc_scsi_buf *lpfc_cmd;
11744 
11745 	spin_lock_irqsave(&phba->hbalock, iflags);
11746 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11747 
11748 		/*
11749 		 * A time out has occurred for the iocb.  If a time out
11750 		 * completion handler has been supplied, call it.  Otherwise,
11751 		 * just free the iocbq.
11752 		 */
11753 
11754 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11755 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11756 		cmdiocbq->wait_iocb_cmpl = NULL;
11757 		if (cmdiocbq->iocb_cmpl)
11758 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11759 		else
11760 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11761 		return;
11762 	}
11763 
11764 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11765 	if (cmdiocbq->context2 && rspiocbq)
11766 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11767 		       &rspiocbq->iocb, sizeof(IOCB_t));
11768 
11769 	/* Set the exchange busy flag for task management commands */
11770 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11771 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11772 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
11773 			cur_iocbq);
11774 		lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
11775 	}
11776 
11777 	pdone_q = cmdiocbq->context_un.wait_queue;
11778 	if (pdone_q)
11779 		wake_up(pdone_q);
11780 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11781 	return;
11782 }
11783 
11784 /**
11785  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11786  * @phba: Pointer to HBA context object..
11787  * @piocbq: Pointer to command iocb.
11788  * @flag: Flag to test.
11789  *
11790  * This routine grabs the hbalock and then test the iocb_flag to
11791  * see if the passed in flag is set.
11792  * Returns:
11793  * 1 if flag is set.
11794  * 0 if flag is not set.
11795  **/
11796 static int
11797 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11798 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11799 {
11800 	unsigned long iflags;
11801 	int ret;
11802 
11803 	spin_lock_irqsave(&phba->hbalock, iflags);
11804 	ret = piocbq->iocb_flag & flag;
11805 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11806 	return ret;
11807 
11808 }
11809 
11810 /**
11811  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11812  * @phba: Pointer to HBA context object..
11813  * @pring: Pointer to sli ring.
11814  * @piocb: Pointer to command iocb.
11815  * @prspiocbq: Pointer to response iocb.
11816  * @timeout: Timeout in number of seconds.
11817  *
11818  * This function issues the iocb to firmware and waits for the
11819  * iocb to complete. The iocb_cmpl field of the shall be used
11820  * to handle iocbs which time out. If the field is NULL, the
11821  * function shall free the iocbq structure.  If more clean up is
11822  * needed, the caller is expected to provide a completion function
11823  * that will provide the needed clean up.  If the iocb command is
11824  * not completed within timeout seconds, the function will either
11825  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11826  * completion function set in the iocb_cmpl field and then return
11827  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11828  * resources if this function returns IOCB_TIMEDOUT.
11829  * The function waits for the iocb completion using an
11830  * non-interruptible wait.
11831  * This function will sleep while waiting for iocb completion.
11832  * So, this function should not be called from any context which
11833  * does not allow sleeping. Due to the same reason, this function
11834  * cannot be called with interrupt disabled.
11835  * This function assumes that the iocb completions occur while
11836  * this function sleep. So, this function cannot be called from
11837  * the thread which process iocb completion for this ring.
11838  * This function clears the iocb_flag of the iocb object before
11839  * issuing the iocb and the iocb completion handler sets this
11840  * flag and wakes this thread when the iocb completes.
11841  * The contents of the response iocb will be copied to prspiocbq
11842  * by the completion handler when the command completes.
11843  * This function returns IOCB_SUCCESS when success.
11844  * This function is called with no lock held.
11845  **/
11846 int
11847 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11848 			 uint32_t ring_number,
11849 			 struct lpfc_iocbq *piocb,
11850 			 struct lpfc_iocbq *prspiocbq,
11851 			 uint32_t timeout)
11852 {
11853 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
11854 	long timeleft, timeout_req = 0;
11855 	int retval = IOCB_SUCCESS;
11856 	uint32_t creg_val;
11857 	struct lpfc_iocbq *iocb;
11858 	int txq_cnt = 0;
11859 	int txcmplq_cnt = 0;
11860 	struct lpfc_sli_ring *pring;
11861 	unsigned long iflags;
11862 	bool iocb_completed = true;
11863 
11864 	if (phba->sli_rev >= LPFC_SLI_REV4)
11865 		pring = lpfc_sli4_calc_ring(phba, piocb);
11866 	else
11867 		pring = &phba->sli.sli3_ring[ring_number];
11868 	/*
11869 	 * If the caller has provided a response iocbq buffer, then context2
11870 	 * is NULL or its an error.
11871 	 */
11872 	if (prspiocbq) {
11873 		if (piocb->context2)
11874 			return IOCB_ERROR;
11875 		piocb->context2 = prspiocbq;
11876 	}
11877 
11878 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
11879 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
11880 	piocb->context_un.wait_queue = &done_q;
11881 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
11882 
11883 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11884 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11885 			return IOCB_ERROR;
11886 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
11887 		writel(creg_val, phba->HCregaddr);
11888 		readl(phba->HCregaddr); /* flush */
11889 	}
11890 
11891 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
11892 				     SLI_IOCB_RET_IOCB);
11893 	if (retval == IOCB_SUCCESS) {
11894 		timeout_req = msecs_to_jiffies(timeout * 1000);
11895 		timeleft = wait_event_timeout(done_q,
11896 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
11897 				timeout_req);
11898 		spin_lock_irqsave(&phba->hbalock, iflags);
11899 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
11900 
11901 			/*
11902 			 * IOCB timed out.  Inform the wake iocb wait
11903 			 * completion function and set local status
11904 			 */
11905 
11906 			iocb_completed = false;
11907 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
11908 		}
11909 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11910 		if (iocb_completed) {
11911 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11912 					"0331 IOCB wake signaled\n");
11913 			/* Note: we are not indicating if the IOCB has a success
11914 			 * status or not - that's for the caller to check.
11915 			 * IOCB_SUCCESS means just that the command was sent and
11916 			 * completed. Not that it completed successfully.
11917 			 * */
11918 		} else if (timeleft == 0) {
11919 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11920 					"0338 IOCB wait timeout error - no "
11921 					"wake response Data x%x\n", timeout);
11922 			retval = IOCB_TIMEDOUT;
11923 		} else {
11924 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11925 					"0330 IOCB wake NOT set, "
11926 					"Data x%x x%lx\n",
11927 					timeout, (timeleft / jiffies));
11928 			retval = IOCB_TIMEDOUT;
11929 		}
11930 	} else if (retval == IOCB_BUSY) {
11931 		if (phba->cfg_log_verbose & LOG_SLI) {
11932 			list_for_each_entry(iocb, &pring->txq, list) {
11933 				txq_cnt++;
11934 			}
11935 			list_for_each_entry(iocb, &pring->txcmplq, list) {
11936 				txcmplq_cnt++;
11937 			}
11938 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11939 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
11940 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
11941 		}
11942 		return retval;
11943 	} else {
11944 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11945 				"0332 IOCB wait issue failed, Data x%x\n",
11946 				retval);
11947 		retval = IOCB_ERROR;
11948 	}
11949 
11950 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
11951 		if (lpfc_readl(phba->HCregaddr, &creg_val))
11952 			return IOCB_ERROR;
11953 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
11954 		writel(creg_val, phba->HCregaddr);
11955 		readl(phba->HCregaddr); /* flush */
11956 	}
11957 
11958 	if (prspiocbq)
11959 		piocb->context2 = NULL;
11960 
11961 	piocb->context_un.wait_queue = NULL;
11962 	piocb->iocb_cmpl = NULL;
11963 	return retval;
11964 }
11965 
11966 /**
11967  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
11968  * @phba: Pointer to HBA context object.
11969  * @pmboxq: Pointer to driver mailbox object.
11970  * @timeout: Timeout in number of seconds.
11971  *
11972  * This function issues the mailbox to firmware and waits for the
11973  * mailbox command to complete. If the mailbox command is not
11974  * completed within timeout seconds, it returns MBX_TIMEOUT.
11975  * The function waits for the mailbox completion using an
11976  * interruptible wait. If the thread is woken up due to a
11977  * signal, MBX_TIMEOUT error is returned to the caller. Caller
11978  * should not free the mailbox resources, if this function returns
11979  * MBX_TIMEOUT.
11980  * This function will sleep while waiting for mailbox completion.
11981  * So, this function should not be called from any context which
11982  * does not allow sleeping. Due to the same reason, this function
11983  * cannot be called with interrupt disabled.
11984  * This function assumes that the mailbox completion occurs while
11985  * this function sleep. So, this function cannot be called from
11986  * the worker thread which processes mailbox completion.
11987  * This function is called in the context of HBA management
11988  * applications.
11989  * This function returns MBX_SUCCESS when successful.
11990  * This function is called with no lock held.
11991  **/
11992 int
11993 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
11994 			 uint32_t timeout)
11995 {
11996 	struct completion mbox_done;
11997 	int retval;
11998 	unsigned long flag;
11999 
12000 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12001 	/* setup wake call as IOCB callback */
12002 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12003 
12004 	/* setup context3 field to pass wait_queue pointer to wake function  */
12005 	init_completion(&mbox_done);
12006 	pmboxq->context3 = &mbox_done;
12007 	/* now issue the command */
12008 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12009 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12010 		wait_for_completion_timeout(&mbox_done,
12011 					    msecs_to_jiffies(timeout * 1000));
12012 
12013 		spin_lock_irqsave(&phba->hbalock, flag);
12014 		pmboxq->context3 = NULL;
12015 		/*
12016 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12017 		 * else do not free the resources.
12018 		 */
12019 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12020 			retval = MBX_SUCCESS;
12021 		} else {
12022 			retval = MBX_TIMEOUT;
12023 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12024 		}
12025 		spin_unlock_irqrestore(&phba->hbalock, flag);
12026 	}
12027 	return retval;
12028 }
12029 
12030 /**
12031  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12032  * @phba: Pointer to HBA context.
12033  *
12034  * This function is called to shutdown the driver's mailbox sub-system.
12035  * It first marks the mailbox sub-system is in a block state to prevent
12036  * the asynchronous mailbox command from issued off the pending mailbox
12037  * command queue. If the mailbox command sub-system shutdown is due to
12038  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12039  * the mailbox sub-system flush routine to forcefully bring down the
12040  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12041  * as with offline or HBA function reset), this routine will wait for the
12042  * outstanding mailbox command to complete before invoking the mailbox
12043  * sub-system flush routine to gracefully bring down mailbox sub-system.
12044  **/
12045 void
12046 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12047 {
12048 	struct lpfc_sli *psli = &phba->sli;
12049 	unsigned long timeout;
12050 
12051 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12052 		/* delay 100ms for port state */
12053 		msleep(100);
12054 		lpfc_sli_mbox_sys_flush(phba);
12055 		return;
12056 	}
12057 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12058 
12059 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12060 	local_bh_disable();
12061 
12062 	spin_lock_irq(&phba->hbalock);
12063 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12064 
12065 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12066 		/* Determine how long we might wait for the active mailbox
12067 		 * command to be gracefully completed by firmware.
12068 		 */
12069 		if (phba->sli.mbox_active)
12070 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12071 						phba->sli.mbox_active) *
12072 						1000) + jiffies;
12073 		spin_unlock_irq(&phba->hbalock);
12074 
12075 		/* Enable softirqs again, done with phba->hbalock */
12076 		local_bh_enable();
12077 
12078 		while (phba->sli.mbox_active) {
12079 			/* Check active mailbox complete status every 2ms */
12080 			msleep(2);
12081 			if (time_after(jiffies, timeout))
12082 				/* Timeout, let the mailbox flush routine to
12083 				 * forcefully release active mailbox command
12084 				 */
12085 				break;
12086 		}
12087 	} else {
12088 		spin_unlock_irq(&phba->hbalock);
12089 
12090 		/* Enable softirqs again, done with phba->hbalock */
12091 		local_bh_enable();
12092 	}
12093 
12094 	lpfc_sli_mbox_sys_flush(phba);
12095 }
12096 
12097 /**
12098  * lpfc_sli_eratt_read - read sli-3 error attention events
12099  * @phba: Pointer to HBA context.
12100  *
12101  * This function is called to read the SLI3 device error attention registers
12102  * for possible error attention events. The caller must hold the hostlock
12103  * with spin_lock_irq().
12104  *
12105  * This function returns 1 when there is Error Attention in the Host Attention
12106  * Register and returns 0 otherwise.
12107  **/
12108 static int
12109 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12110 {
12111 	uint32_t ha_copy;
12112 
12113 	/* Read chip Host Attention (HA) register */
12114 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12115 		goto unplug_err;
12116 
12117 	if (ha_copy & HA_ERATT) {
12118 		/* Read host status register to retrieve error event */
12119 		if (lpfc_sli_read_hs(phba))
12120 			goto unplug_err;
12121 
12122 		/* Check if there is a deferred error condition is active */
12123 		if ((HS_FFER1 & phba->work_hs) &&
12124 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12125 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12126 			phba->hba_flag |= DEFER_ERATT;
12127 			/* Clear all interrupt enable conditions */
12128 			writel(0, phba->HCregaddr);
12129 			readl(phba->HCregaddr);
12130 		}
12131 
12132 		/* Set the driver HA work bitmap */
12133 		phba->work_ha |= HA_ERATT;
12134 		/* Indicate polling handles this ERATT */
12135 		phba->hba_flag |= HBA_ERATT_HANDLED;
12136 		return 1;
12137 	}
12138 	return 0;
12139 
12140 unplug_err:
12141 	/* Set the driver HS work bitmap */
12142 	phba->work_hs |= UNPLUG_ERR;
12143 	/* Set the driver HA work bitmap */
12144 	phba->work_ha |= HA_ERATT;
12145 	/* Indicate polling handles this ERATT */
12146 	phba->hba_flag |= HBA_ERATT_HANDLED;
12147 	return 1;
12148 }
12149 
12150 /**
12151  * lpfc_sli4_eratt_read - read sli-4 error attention events
12152  * @phba: Pointer to HBA context.
12153  *
12154  * This function is called to read the SLI4 device error attention registers
12155  * for possible error attention events. The caller must hold the hostlock
12156  * with spin_lock_irq().
12157  *
12158  * This function returns 1 when there is Error Attention in the Host Attention
12159  * Register and returns 0 otherwise.
12160  **/
12161 static int
12162 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12163 {
12164 	uint32_t uerr_sta_hi, uerr_sta_lo;
12165 	uint32_t if_type, portsmphr;
12166 	struct lpfc_register portstat_reg;
12167 
12168 	/*
12169 	 * For now, use the SLI4 device internal unrecoverable error
12170 	 * registers for error attention. This can be changed later.
12171 	 */
12172 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12173 	switch (if_type) {
12174 	case LPFC_SLI_INTF_IF_TYPE_0:
12175 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12176 			&uerr_sta_lo) ||
12177 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12178 			&uerr_sta_hi)) {
12179 			phba->work_hs |= UNPLUG_ERR;
12180 			phba->work_ha |= HA_ERATT;
12181 			phba->hba_flag |= HBA_ERATT_HANDLED;
12182 			return 1;
12183 		}
12184 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12185 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12186 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12187 					"1423 HBA Unrecoverable error: "
12188 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12189 					"ue_mask_lo_reg=0x%x, "
12190 					"ue_mask_hi_reg=0x%x\n",
12191 					uerr_sta_lo, uerr_sta_hi,
12192 					phba->sli4_hba.ue_mask_lo,
12193 					phba->sli4_hba.ue_mask_hi);
12194 			phba->work_status[0] = uerr_sta_lo;
12195 			phba->work_status[1] = uerr_sta_hi;
12196 			phba->work_ha |= HA_ERATT;
12197 			phba->hba_flag |= HBA_ERATT_HANDLED;
12198 			return 1;
12199 		}
12200 		break;
12201 	case LPFC_SLI_INTF_IF_TYPE_2:
12202 	case LPFC_SLI_INTF_IF_TYPE_6:
12203 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12204 			&portstat_reg.word0) ||
12205 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12206 			&portsmphr)){
12207 			phba->work_hs |= UNPLUG_ERR;
12208 			phba->work_ha |= HA_ERATT;
12209 			phba->hba_flag |= HBA_ERATT_HANDLED;
12210 			return 1;
12211 		}
12212 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12213 			phba->work_status[0] =
12214 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12215 			phba->work_status[1] =
12216 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12217 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12218 					"2885 Port Status Event: "
12219 					"port status reg 0x%x, "
12220 					"port smphr reg 0x%x, "
12221 					"error 1=0x%x, error 2=0x%x\n",
12222 					portstat_reg.word0,
12223 					portsmphr,
12224 					phba->work_status[0],
12225 					phba->work_status[1]);
12226 			phba->work_ha |= HA_ERATT;
12227 			phba->hba_flag |= HBA_ERATT_HANDLED;
12228 			return 1;
12229 		}
12230 		break;
12231 	case LPFC_SLI_INTF_IF_TYPE_1:
12232 	default:
12233 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12234 				"2886 HBA Error Attention on unsupported "
12235 				"if type %d.", if_type);
12236 		return 1;
12237 	}
12238 
12239 	return 0;
12240 }
12241 
12242 /**
12243  * lpfc_sli_check_eratt - check error attention events
12244  * @phba: Pointer to HBA context.
12245  *
12246  * This function is called from timer soft interrupt context to check HBA's
12247  * error attention register bit for error attention events.
12248  *
12249  * This function returns 1 when there is Error Attention in the Host Attention
12250  * Register and returns 0 otherwise.
12251  **/
12252 int
12253 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12254 {
12255 	uint32_t ha_copy;
12256 
12257 	/* If somebody is waiting to handle an eratt, don't process it
12258 	 * here. The brdkill function will do this.
12259 	 */
12260 	if (phba->link_flag & LS_IGNORE_ERATT)
12261 		return 0;
12262 
12263 	/* Check if interrupt handler handles this ERATT */
12264 	spin_lock_irq(&phba->hbalock);
12265 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12266 		/* Interrupt handler has handled ERATT */
12267 		spin_unlock_irq(&phba->hbalock);
12268 		return 0;
12269 	}
12270 
12271 	/*
12272 	 * If there is deferred error attention, do not check for error
12273 	 * attention
12274 	 */
12275 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12276 		spin_unlock_irq(&phba->hbalock);
12277 		return 0;
12278 	}
12279 
12280 	/* If PCI channel is offline, don't process it */
12281 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12282 		spin_unlock_irq(&phba->hbalock);
12283 		return 0;
12284 	}
12285 
12286 	switch (phba->sli_rev) {
12287 	case LPFC_SLI_REV2:
12288 	case LPFC_SLI_REV3:
12289 		/* Read chip Host Attention (HA) register */
12290 		ha_copy = lpfc_sli_eratt_read(phba);
12291 		break;
12292 	case LPFC_SLI_REV4:
12293 		/* Read device Uncoverable Error (UERR) registers */
12294 		ha_copy = lpfc_sli4_eratt_read(phba);
12295 		break;
12296 	default:
12297 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12298 				"0299 Invalid SLI revision (%d)\n",
12299 				phba->sli_rev);
12300 		ha_copy = 0;
12301 		break;
12302 	}
12303 	spin_unlock_irq(&phba->hbalock);
12304 
12305 	return ha_copy;
12306 }
12307 
12308 /**
12309  * lpfc_intr_state_check - Check device state for interrupt handling
12310  * @phba: Pointer to HBA context.
12311  *
12312  * This inline routine checks whether a device or its PCI slot is in a state
12313  * that the interrupt should be handled.
12314  *
12315  * This function returns 0 if the device or the PCI slot is in a state that
12316  * interrupt should be handled, otherwise -EIO.
12317  */
12318 static inline int
12319 lpfc_intr_state_check(struct lpfc_hba *phba)
12320 {
12321 	/* If the pci channel is offline, ignore all the interrupts */
12322 	if (unlikely(pci_channel_offline(phba->pcidev)))
12323 		return -EIO;
12324 
12325 	/* Update device level interrupt statistics */
12326 	phba->sli.slistat.sli_intr++;
12327 
12328 	/* Ignore all interrupts during initialization. */
12329 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12330 		return -EIO;
12331 
12332 	return 0;
12333 }
12334 
12335 /**
12336  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12337  * @irq: Interrupt number.
12338  * @dev_id: The device context pointer.
12339  *
12340  * This function is directly called from the PCI layer as an interrupt
12341  * service routine when device with SLI-3 interface spec is enabled with
12342  * MSI-X multi-message interrupt mode and there are slow-path events in
12343  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12344  * interrupt mode, this function is called as part of the device-level
12345  * interrupt handler. When the PCI slot is in error recovery or the HBA
12346  * is undergoing initialization, the interrupt handler will not process
12347  * the interrupt. The link attention and ELS ring attention events are
12348  * handled by the worker thread. The interrupt handler signals the worker
12349  * thread and returns for these events. This function is called without
12350  * any lock held. It gets the hbalock to access and update SLI data
12351  * structures.
12352  *
12353  * This function returns IRQ_HANDLED when interrupt is handled else it
12354  * returns IRQ_NONE.
12355  **/
12356 irqreturn_t
12357 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12358 {
12359 	struct lpfc_hba  *phba;
12360 	uint32_t ha_copy, hc_copy;
12361 	uint32_t work_ha_copy;
12362 	unsigned long status;
12363 	unsigned long iflag;
12364 	uint32_t control;
12365 
12366 	MAILBOX_t *mbox, *pmbox;
12367 	struct lpfc_vport *vport;
12368 	struct lpfc_nodelist *ndlp;
12369 	struct lpfc_dmabuf *mp;
12370 	LPFC_MBOXQ_t *pmb;
12371 	int rc;
12372 
12373 	/*
12374 	 * Get the driver's phba structure from the dev_id and
12375 	 * assume the HBA is not interrupting.
12376 	 */
12377 	phba = (struct lpfc_hba *)dev_id;
12378 
12379 	if (unlikely(!phba))
12380 		return IRQ_NONE;
12381 
12382 	/*
12383 	 * Stuff needs to be attented to when this function is invoked as an
12384 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12385 	 */
12386 	if (phba->intr_type == MSIX) {
12387 		/* Check device state for handling interrupt */
12388 		if (lpfc_intr_state_check(phba))
12389 			return IRQ_NONE;
12390 		/* Need to read HA REG for slow-path events */
12391 		spin_lock_irqsave(&phba->hbalock, iflag);
12392 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12393 			goto unplug_error;
12394 		/* If somebody is waiting to handle an eratt don't process it
12395 		 * here. The brdkill function will do this.
12396 		 */
12397 		if (phba->link_flag & LS_IGNORE_ERATT)
12398 			ha_copy &= ~HA_ERATT;
12399 		/* Check the need for handling ERATT in interrupt handler */
12400 		if (ha_copy & HA_ERATT) {
12401 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12402 				/* ERATT polling has handled ERATT */
12403 				ha_copy &= ~HA_ERATT;
12404 			else
12405 				/* Indicate interrupt handler handles ERATT */
12406 				phba->hba_flag |= HBA_ERATT_HANDLED;
12407 		}
12408 
12409 		/*
12410 		 * If there is deferred error attention, do not check for any
12411 		 * interrupt.
12412 		 */
12413 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12414 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12415 			return IRQ_NONE;
12416 		}
12417 
12418 		/* Clear up only attention source related to slow-path */
12419 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12420 			goto unplug_error;
12421 
12422 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12423 			HC_LAINT_ENA | HC_ERINT_ENA),
12424 			phba->HCregaddr);
12425 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12426 			phba->HAregaddr);
12427 		writel(hc_copy, phba->HCregaddr);
12428 		readl(phba->HAregaddr); /* flush */
12429 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12430 	} else
12431 		ha_copy = phba->ha_copy;
12432 
12433 	work_ha_copy = ha_copy & phba->work_ha_mask;
12434 
12435 	if (work_ha_copy) {
12436 		if (work_ha_copy & HA_LATT) {
12437 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12438 				/*
12439 				 * Turn off Link Attention interrupts
12440 				 * until CLEAR_LA done
12441 				 */
12442 				spin_lock_irqsave(&phba->hbalock, iflag);
12443 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12444 				if (lpfc_readl(phba->HCregaddr, &control))
12445 					goto unplug_error;
12446 				control &= ~HC_LAINT_ENA;
12447 				writel(control, phba->HCregaddr);
12448 				readl(phba->HCregaddr); /* flush */
12449 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12450 			}
12451 			else
12452 				work_ha_copy &= ~HA_LATT;
12453 		}
12454 
12455 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12456 			/*
12457 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12458 			 * the only slow ring.
12459 			 */
12460 			status = (work_ha_copy &
12461 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12462 			status >>= (4*LPFC_ELS_RING);
12463 			if (status & HA_RXMASK) {
12464 				spin_lock_irqsave(&phba->hbalock, iflag);
12465 				if (lpfc_readl(phba->HCregaddr, &control))
12466 					goto unplug_error;
12467 
12468 				lpfc_debugfs_slow_ring_trc(phba,
12469 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12470 				control, status,
12471 				(uint32_t)phba->sli.slistat.sli_intr);
12472 
12473 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12474 					lpfc_debugfs_slow_ring_trc(phba,
12475 						"ISR Disable ring:"
12476 						"pwork:x%x hawork:x%x wait:x%x",
12477 						phba->work_ha, work_ha_copy,
12478 						(uint32_t)((unsigned long)
12479 						&phba->work_waitq));
12480 
12481 					control &=
12482 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12483 					writel(control, phba->HCregaddr);
12484 					readl(phba->HCregaddr); /* flush */
12485 				}
12486 				else {
12487 					lpfc_debugfs_slow_ring_trc(phba,
12488 						"ISR slow ring:   pwork:"
12489 						"x%x hawork:x%x wait:x%x",
12490 						phba->work_ha, work_ha_copy,
12491 						(uint32_t)((unsigned long)
12492 						&phba->work_waitq));
12493 				}
12494 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12495 			}
12496 		}
12497 		spin_lock_irqsave(&phba->hbalock, iflag);
12498 		if (work_ha_copy & HA_ERATT) {
12499 			if (lpfc_sli_read_hs(phba))
12500 				goto unplug_error;
12501 			/*
12502 			 * Check if there is a deferred error condition
12503 			 * is active
12504 			 */
12505 			if ((HS_FFER1 & phba->work_hs) &&
12506 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12507 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12508 				  phba->work_hs)) {
12509 				phba->hba_flag |= DEFER_ERATT;
12510 				/* Clear all interrupt enable conditions */
12511 				writel(0, phba->HCregaddr);
12512 				readl(phba->HCregaddr);
12513 			}
12514 		}
12515 
12516 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12517 			pmb = phba->sli.mbox_active;
12518 			pmbox = &pmb->u.mb;
12519 			mbox = phba->mbox;
12520 			vport = pmb->vport;
12521 
12522 			/* First check out the status word */
12523 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12524 			if (pmbox->mbxOwner != OWN_HOST) {
12525 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12526 				/*
12527 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12528 				 * mbxStatus <status>
12529 				 */
12530 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12531 						LOG_SLI,
12532 						"(%d):0304 Stray Mailbox "
12533 						"Interrupt mbxCommand x%x "
12534 						"mbxStatus x%x\n",
12535 						(vport ? vport->vpi : 0),
12536 						pmbox->mbxCommand,
12537 						pmbox->mbxStatus);
12538 				/* clear mailbox attention bit */
12539 				work_ha_copy &= ~HA_MBATT;
12540 			} else {
12541 				phba->sli.mbox_active = NULL;
12542 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12543 				phba->last_completion_time = jiffies;
12544 				del_timer(&phba->sli.mbox_tmo);
12545 				if (pmb->mbox_cmpl) {
12546 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12547 							MAILBOX_CMD_SIZE);
12548 					if (pmb->out_ext_byte_len &&
12549 						pmb->context2)
12550 						lpfc_sli_pcimem_bcopy(
12551 						phba->mbox_ext,
12552 						pmb->context2,
12553 						pmb->out_ext_byte_len);
12554 				}
12555 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12556 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12557 
12558 					lpfc_debugfs_disc_trc(vport,
12559 						LPFC_DISC_TRC_MBOX_VPORT,
12560 						"MBOX dflt rpi: : "
12561 						"status:x%x rpi:x%x",
12562 						(uint32_t)pmbox->mbxStatus,
12563 						pmbox->un.varWords[0], 0);
12564 
12565 					if (!pmbox->mbxStatus) {
12566 						mp = (struct lpfc_dmabuf *)
12567 							(pmb->context1);
12568 						ndlp = (struct lpfc_nodelist *)
12569 							pmb->context2;
12570 
12571 						/* Reg_LOGIN of dflt RPI was
12572 						 * successful. new lets get
12573 						 * rid of the RPI using the
12574 						 * same mbox buffer.
12575 						 */
12576 						lpfc_unreg_login(phba,
12577 							vport->vpi,
12578 							pmbox->un.varWords[0],
12579 							pmb);
12580 						pmb->mbox_cmpl =
12581 							lpfc_mbx_cmpl_dflt_rpi;
12582 						pmb->context1 = mp;
12583 						pmb->context2 = ndlp;
12584 						pmb->vport = vport;
12585 						rc = lpfc_sli_issue_mbox(phba,
12586 								pmb,
12587 								MBX_NOWAIT);
12588 						if (rc != MBX_BUSY)
12589 							lpfc_printf_log(phba,
12590 							KERN_ERR,
12591 							LOG_MBOX | LOG_SLI,
12592 							"0350 rc should have"
12593 							"been MBX_BUSY\n");
12594 						if (rc != MBX_NOT_FINISHED)
12595 							goto send_current_mbox;
12596 					}
12597 				}
12598 				spin_lock_irqsave(
12599 						&phba->pport->work_port_lock,
12600 						iflag);
12601 				phba->pport->work_port_events &=
12602 					~WORKER_MBOX_TMO;
12603 				spin_unlock_irqrestore(
12604 						&phba->pport->work_port_lock,
12605 						iflag);
12606 				lpfc_mbox_cmpl_put(phba, pmb);
12607 			}
12608 		} else
12609 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12610 
12611 		if ((work_ha_copy & HA_MBATT) &&
12612 		    (phba->sli.mbox_active == NULL)) {
12613 send_current_mbox:
12614 			/* Process next mailbox command if there is one */
12615 			do {
12616 				rc = lpfc_sli_issue_mbox(phba, NULL,
12617 							 MBX_NOWAIT);
12618 			} while (rc == MBX_NOT_FINISHED);
12619 			if (rc != MBX_SUCCESS)
12620 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12621 						LOG_SLI, "0349 rc should be "
12622 						"MBX_SUCCESS\n");
12623 		}
12624 
12625 		spin_lock_irqsave(&phba->hbalock, iflag);
12626 		phba->work_ha |= work_ha_copy;
12627 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12628 		lpfc_worker_wake_up(phba);
12629 	}
12630 	return IRQ_HANDLED;
12631 unplug_error:
12632 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12633 	return IRQ_HANDLED;
12634 
12635 } /* lpfc_sli_sp_intr_handler */
12636 
12637 /**
12638  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12639  * @irq: Interrupt number.
12640  * @dev_id: The device context pointer.
12641  *
12642  * This function is directly called from the PCI layer as an interrupt
12643  * service routine when device with SLI-3 interface spec is enabled with
12644  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12645  * ring event in the HBA. However, when the device is enabled with either
12646  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12647  * device-level interrupt handler. When the PCI slot is in error recovery
12648  * or the HBA is undergoing initialization, the interrupt handler will not
12649  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12650  * the intrrupt context. This function is called without any lock held.
12651  * It gets the hbalock to access and update SLI data structures.
12652  *
12653  * This function returns IRQ_HANDLED when interrupt is handled else it
12654  * returns IRQ_NONE.
12655  **/
12656 irqreturn_t
12657 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12658 {
12659 	struct lpfc_hba  *phba;
12660 	uint32_t ha_copy;
12661 	unsigned long status;
12662 	unsigned long iflag;
12663 	struct lpfc_sli_ring *pring;
12664 
12665 	/* Get the driver's phba structure from the dev_id and
12666 	 * assume the HBA is not interrupting.
12667 	 */
12668 	phba = (struct lpfc_hba *) dev_id;
12669 
12670 	if (unlikely(!phba))
12671 		return IRQ_NONE;
12672 
12673 	/*
12674 	 * Stuff needs to be attented to when this function is invoked as an
12675 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12676 	 */
12677 	if (phba->intr_type == MSIX) {
12678 		/* Check device state for handling interrupt */
12679 		if (lpfc_intr_state_check(phba))
12680 			return IRQ_NONE;
12681 		/* Need to read HA REG for FCP ring and other ring events */
12682 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12683 			return IRQ_HANDLED;
12684 		/* Clear up only attention source related to fast-path */
12685 		spin_lock_irqsave(&phba->hbalock, iflag);
12686 		/*
12687 		 * If there is deferred error attention, do not check for
12688 		 * any interrupt.
12689 		 */
12690 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12691 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12692 			return IRQ_NONE;
12693 		}
12694 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12695 			phba->HAregaddr);
12696 		readl(phba->HAregaddr); /* flush */
12697 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12698 	} else
12699 		ha_copy = phba->ha_copy;
12700 
12701 	/*
12702 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12703 	 */
12704 	ha_copy &= ~(phba->work_ha_mask);
12705 
12706 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12707 	status >>= (4*LPFC_FCP_RING);
12708 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12709 	if (status & HA_RXMASK)
12710 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12711 
12712 	if (phba->cfg_multi_ring_support == 2) {
12713 		/*
12714 		 * Process all events on extra ring. Take the optimized path
12715 		 * for extra ring IO.
12716 		 */
12717 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12718 		status >>= (4*LPFC_EXTRA_RING);
12719 		if (status & HA_RXMASK) {
12720 			lpfc_sli_handle_fast_ring_event(phba,
12721 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12722 					status);
12723 		}
12724 	}
12725 	return IRQ_HANDLED;
12726 }  /* lpfc_sli_fp_intr_handler */
12727 
12728 /**
12729  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12730  * @irq: Interrupt number.
12731  * @dev_id: The device context pointer.
12732  *
12733  * This function is the HBA device-level interrupt handler to device with
12734  * SLI-3 interface spec, called from the PCI layer when either MSI or
12735  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12736  * requires driver attention. This function invokes the slow-path interrupt
12737  * attention handling function and fast-path interrupt attention handling
12738  * function in turn to process the relevant HBA attention events. This
12739  * function is called without any lock held. It gets the hbalock to access
12740  * and update SLI data structures.
12741  *
12742  * This function returns IRQ_HANDLED when interrupt is handled, else it
12743  * returns IRQ_NONE.
12744  **/
12745 irqreturn_t
12746 lpfc_sli_intr_handler(int irq, void *dev_id)
12747 {
12748 	struct lpfc_hba  *phba;
12749 	irqreturn_t sp_irq_rc, fp_irq_rc;
12750 	unsigned long status1, status2;
12751 	uint32_t hc_copy;
12752 
12753 	/*
12754 	 * Get the driver's phba structure from the dev_id and
12755 	 * assume the HBA is not interrupting.
12756 	 */
12757 	phba = (struct lpfc_hba *) dev_id;
12758 
12759 	if (unlikely(!phba))
12760 		return IRQ_NONE;
12761 
12762 	/* Check device state for handling interrupt */
12763 	if (lpfc_intr_state_check(phba))
12764 		return IRQ_NONE;
12765 
12766 	spin_lock(&phba->hbalock);
12767 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12768 		spin_unlock(&phba->hbalock);
12769 		return IRQ_HANDLED;
12770 	}
12771 
12772 	if (unlikely(!phba->ha_copy)) {
12773 		spin_unlock(&phba->hbalock);
12774 		return IRQ_NONE;
12775 	} else if (phba->ha_copy & HA_ERATT) {
12776 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12777 			/* ERATT polling has handled ERATT */
12778 			phba->ha_copy &= ~HA_ERATT;
12779 		else
12780 			/* Indicate interrupt handler handles ERATT */
12781 			phba->hba_flag |= HBA_ERATT_HANDLED;
12782 	}
12783 
12784 	/*
12785 	 * If there is deferred error attention, do not check for any interrupt.
12786 	 */
12787 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12788 		spin_unlock(&phba->hbalock);
12789 		return IRQ_NONE;
12790 	}
12791 
12792 	/* Clear attention sources except link and error attentions */
12793 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12794 		spin_unlock(&phba->hbalock);
12795 		return IRQ_HANDLED;
12796 	}
12797 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12798 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12799 		phba->HCregaddr);
12800 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12801 	writel(hc_copy, phba->HCregaddr);
12802 	readl(phba->HAregaddr); /* flush */
12803 	spin_unlock(&phba->hbalock);
12804 
12805 	/*
12806 	 * Invokes slow-path host attention interrupt handling as appropriate.
12807 	 */
12808 
12809 	/* status of events with mailbox and link attention */
12810 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12811 
12812 	/* status of events with ELS ring */
12813 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12814 	status2 >>= (4*LPFC_ELS_RING);
12815 
12816 	if (status1 || (status2 & HA_RXMASK))
12817 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12818 	else
12819 		sp_irq_rc = IRQ_NONE;
12820 
12821 	/*
12822 	 * Invoke fast-path host attention interrupt handling as appropriate.
12823 	 */
12824 
12825 	/* status of events with FCP ring */
12826 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12827 	status1 >>= (4*LPFC_FCP_RING);
12828 
12829 	/* status of events with extra ring */
12830 	if (phba->cfg_multi_ring_support == 2) {
12831 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12832 		status2 >>= (4*LPFC_EXTRA_RING);
12833 	} else
12834 		status2 = 0;
12835 
12836 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12837 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12838 	else
12839 		fp_irq_rc = IRQ_NONE;
12840 
12841 	/* Return device-level interrupt handling status */
12842 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12843 }  /* lpfc_sli_intr_handler */
12844 
12845 /**
12846  * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
12847  * @phba: pointer to lpfc hba data structure.
12848  *
12849  * This routine is invoked by the worker thread to process all the pending
12850  * SLI4 FCP abort XRI events.
12851  **/
12852 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
12853 {
12854 	struct lpfc_cq_event *cq_event;
12855 
12856 	/* First, declare the fcp xri abort event has been handled */
12857 	spin_lock_irq(&phba->hbalock);
12858 	phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
12859 	spin_unlock_irq(&phba->hbalock);
12860 	/* Now, handle all the fcp xri abort events */
12861 	while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
12862 		/* Get the first event from the head of the event queue */
12863 		spin_lock_irq(&phba->hbalock);
12864 		list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
12865 				 cq_event, struct lpfc_cq_event, list);
12866 		spin_unlock_irq(&phba->hbalock);
12867 		/* Notify aborted XRI for FCP work queue */
12868 		lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12869 		/* Free the event processed back to the free pool */
12870 		lpfc_sli4_cq_event_release(phba, cq_event);
12871 	}
12872 }
12873 
12874 /**
12875  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12876  * @phba: pointer to lpfc hba data structure.
12877  *
12878  * This routine is invoked by the worker thread to process all the pending
12879  * SLI4 els abort xri events.
12880  **/
12881 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
12882 {
12883 	struct lpfc_cq_event *cq_event;
12884 
12885 	/* First, declare the els xri abort event has been handled */
12886 	spin_lock_irq(&phba->hbalock);
12887 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
12888 	spin_unlock_irq(&phba->hbalock);
12889 	/* Now, handle all the els xri abort events */
12890 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
12891 		/* Get the first event from the head of the event queue */
12892 		spin_lock_irq(&phba->hbalock);
12893 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
12894 				 cq_event, struct lpfc_cq_event, list);
12895 		spin_unlock_irq(&phba->hbalock);
12896 		/* Notify aborted XRI for ELS work queue */
12897 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
12898 		/* Free the event processed back to the free pool */
12899 		lpfc_sli4_cq_event_release(phba, cq_event);
12900 	}
12901 }
12902 
12903 /**
12904  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
12905  * @phba: pointer to lpfc hba data structure
12906  * @pIocbIn: pointer to the rspiocbq
12907  * @pIocbOut: pointer to the cmdiocbq
12908  * @wcqe: pointer to the complete wcqe
12909  *
12910  * This routine transfers the fields of a command iocbq to a response iocbq
12911  * by copying all the IOCB fields from command iocbq and transferring the
12912  * completion status information from the complete wcqe.
12913  **/
12914 static void
12915 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
12916 			      struct lpfc_iocbq *pIocbIn,
12917 			      struct lpfc_iocbq *pIocbOut,
12918 			      struct lpfc_wcqe_complete *wcqe)
12919 {
12920 	int numBdes, i;
12921 	unsigned long iflags;
12922 	uint32_t status, max_response;
12923 	struct lpfc_dmabuf *dmabuf;
12924 	struct ulp_bde64 *bpl, bde;
12925 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
12926 
12927 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
12928 	       sizeof(struct lpfc_iocbq) - offset);
12929 	/* Map WCQE parameters into irspiocb parameters */
12930 	status = bf_get(lpfc_wcqe_c_status, wcqe);
12931 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
12932 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
12933 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
12934 			pIocbIn->iocb.un.fcpi.fcpi_parm =
12935 					pIocbOut->iocb.un.fcpi.fcpi_parm -
12936 					wcqe->total_data_placed;
12937 		else
12938 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12939 	else {
12940 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
12941 		switch (pIocbOut->iocb.ulpCommand) {
12942 		case CMD_ELS_REQUEST64_CR:
12943 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12944 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
12945 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
12946 			max_response = bde.tus.f.bdeSize;
12947 			break;
12948 		case CMD_GEN_REQUEST64_CR:
12949 			max_response = 0;
12950 			if (!pIocbOut->context3)
12951 				break;
12952 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
12953 					sizeof(struct ulp_bde64);
12954 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
12955 			bpl = (struct ulp_bde64 *)dmabuf->virt;
12956 			for (i = 0; i < numBdes; i++) {
12957 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
12958 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
12959 					max_response += bde.tus.f.bdeSize;
12960 			}
12961 			break;
12962 		default:
12963 			max_response = wcqe->total_data_placed;
12964 			break;
12965 		}
12966 		if (max_response < wcqe->total_data_placed)
12967 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
12968 		else
12969 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
12970 				wcqe->total_data_placed;
12971 	}
12972 
12973 	/* Convert BG errors for completion status */
12974 	if (status == CQE_STATUS_DI_ERROR) {
12975 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
12976 
12977 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
12978 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
12979 		else
12980 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
12981 
12982 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
12983 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
12984 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12985 				BGS_GUARD_ERR_MASK;
12986 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
12987 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12988 				BGS_APPTAG_ERR_MASK;
12989 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
12990 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12991 				BGS_REFTAG_ERR_MASK;
12992 
12993 		/* Check to see if there was any good data before the error */
12994 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
12995 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
12996 				BGS_HI_WATER_MARK_PRESENT_MASK;
12997 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
12998 				wcqe->total_data_placed;
12999 		}
13000 
13001 		/*
13002 		* Set ALL the error bits to indicate we don't know what
13003 		* type of error it is.
13004 		*/
13005 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13006 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13007 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13008 				BGS_GUARD_ERR_MASK);
13009 	}
13010 
13011 	/* Pick up HBA exchange busy condition */
13012 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13013 		spin_lock_irqsave(&phba->hbalock, iflags);
13014 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13015 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13016 	}
13017 }
13018 
13019 /**
13020  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13021  * @phba: Pointer to HBA context object.
13022  * @wcqe: Pointer to work-queue completion queue entry.
13023  *
13024  * This routine handles an ELS work-queue completion event and construct
13025  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13026  * discovery engine to handle.
13027  *
13028  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13029  **/
13030 static struct lpfc_iocbq *
13031 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13032 			       struct lpfc_iocbq *irspiocbq)
13033 {
13034 	struct lpfc_sli_ring *pring;
13035 	struct lpfc_iocbq *cmdiocbq;
13036 	struct lpfc_wcqe_complete *wcqe;
13037 	unsigned long iflags;
13038 
13039 	pring = lpfc_phba_elsring(phba);
13040 	if (unlikely(!pring))
13041 		return NULL;
13042 
13043 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13044 	spin_lock_irqsave(&pring->ring_lock, iflags);
13045 	pring->stats.iocb_event++;
13046 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13047 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13048 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13049 	if (unlikely(!cmdiocbq)) {
13050 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
13051 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13052 				"0386 ELS complete with no corresponding "
13053 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13054 				wcqe->word0, wcqe->total_data_placed,
13055 				wcqe->parameter, wcqe->word3);
13056 		lpfc_sli_release_iocbq(phba, irspiocbq);
13057 		return NULL;
13058 	}
13059 
13060 	/* Put the iocb back on the txcmplq */
13061 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13062 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13063 
13064 	/* Fake the irspiocbq and copy necessary response information */
13065 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13066 
13067 	return irspiocbq;
13068 }
13069 
13070 inline struct lpfc_cq_event *
13071 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13072 {
13073 	struct lpfc_cq_event *cq_event;
13074 
13075 	/* Allocate a new internal CQ_EVENT entry */
13076 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13077 	if (!cq_event) {
13078 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13079 				"0602 Failed to alloc CQ_EVENT entry\n");
13080 		return NULL;
13081 	}
13082 
13083 	/* Move the CQE into the event */
13084 	memcpy(&cq_event->cqe, entry, size);
13085 	return cq_event;
13086 }
13087 
13088 /**
13089  * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
13090  * @phba: Pointer to HBA context object.
13091  * @cqe: Pointer to mailbox completion queue entry.
13092  *
13093  * This routine process a mailbox completion queue entry with asynchrous
13094  * event.
13095  *
13096  * Return: true if work posted to worker thread, otherwise false.
13097  **/
13098 static bool
13099 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13100 {
13101 	struct lpfc_cq_event *cq_event;
13102 	unsigned long iflags;
13103 
13104 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13105 			"0392 Async Event: word0:x%x, word1:x%x, "
13106 			"word2:x%x, word3:x%x\n", mcqe->word0,
13107 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13108 
13109 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13110 	if (!cq_event)
13111 		return false;
13112 	spin_lock_irqsave(&phba->hbalock, iflags);
13113 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13114 	/* Set the async event flag */
13115 	phba->hba_flag |= ASYNC_EVENT;
13116 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13117 
13118 	return true;
13119 }
13120 
13121 /**
13122  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13123  * @phba: Pointer to HBA context object.
13124  * @cqe: Pointer to mailbox completion queue entry.
13125  *
13126  * This routine process a mailbox completion queue entry with mailbox
13127  * completion event.
13128  *
13129  * Return: true if work posted to worker thread, otherwise false.
13130  **/
13131 static bool
13132 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13133 {
13134 	uint32_t mcqe_status;
13135 	MAILBOX_t *mbox, *pmbox;
13136 	struct lpfc_mqe *mqe;
13137 	struct lpfc_vport *vport;
13138 	struct lpfc_nodelist *ndlp;
13139 	struct lpfc_dmabuf *mp;
13140 	unsigned long iflags;
13141 	LPFC_MBOXQ_t *pmb;
13142 	bool workposted = false;
13143 	int rc;
13144 
13145 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13146 	if (!bf_get(lpfc_trailer_completed, mcqe))
13147 		goto out_no_mqe_complete;
13148 
13149 	/* Get the reference to the active mbox command */
13150 	spin_lock_irqsave(&phba->hbalock, iflags);
13151 	pmb = phba->sli.mbox_active;
13152 	if (unlikely(!pmb)) {
13153 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13154 				"1832 No pending MBOX command to handle\n");
13155 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13156 		goto out_no_mqe_complete;
13157 	}
13158 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13159 	mqe = &pmb->u.mqe;
13160 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13161 	mbox = phba->mbox;
13162 	vport = pmb->vport;
13163 
13164 	/* Reset heartbeat timer */
13165 	phba->last_completion_time = jiffies;
13166 	del_timer(&phba->sli.mbox_tmo);
13167 
13168 	/* Move mbox data to caller's mailbox region, do endian swapping */
13169 	if (pmb->mbox_cmpl && mbox)
13170 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13171 
13172 	/*
13173 	 * For mcqe errors, conditionally move a modified error code to
13174 	 * the mbox so that the error will not be missed.
13175 	 */
13176 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13177 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13178 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13179 			bf_set(lpfc_mqe_status, mqe,
13180 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13181 	}
13182 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13183 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13184 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13185 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13186 				      mcqe_status,
13187 				      pmbox->un.varWords[0], 0);
13188 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13189 			mp = (struct lpfc_dmabuf *)(pmb->context1);
13190 			ndlp = (struct lpfc_nodelist *)pmb->context2;
13191 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13192 			 * RID of the PPI using the same mbox buffer.
13193 			 */
13194 			lpfc_unreg_login(phba, vport->vpi,
13195 					 pmbox->un.varWords[0], pmb);
13196 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13197 			pmb->context1 = mp;
13198 			pmb->context2 = ndlp;
13199 			pmb->vport = vport;
13200 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13201 			if (rc != MBX_BUSY)
13202 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13203 						LOG_SLI, "0385 rc should "
13204 						"have been MBX_BUSY\n");
13205 			if (rc != MBX_NOT_FINISHED)
13206 				goto send_current_mbox;
13207 		}
13208 	}
13209 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13210 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13211 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13212 
13213 	/* There is mailbox completion work to do */
13214 	spin_lock_irqsave(&phba->hbalock, iflags);
13215 	__lpfc_mbox_cmpl_put(phba, pmb);
13216 	phba->work_ha |= HA_MBATT;
13217 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13218 	workposted = true;
13219 
13220 send_current_mbox:
13221 	spin_lock_irqsave(&phba->hbalock, iflags);
13222 	/* Release the mailbox command posting token */
13223 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13224 	/* Setting active mailbox pointer need to be in sync to flag clear */
13225 	phba->sli.mbox_active = NULL;
13226 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13227 	/* Wake up worker thread to post the next pending mailbox command */
13228 	lpfc_worker_wake_up(phba);
13229 out_no_mqe_complete:
13230 	if (bf_get(lpfc_trailer_consumed, mcqe))
13231 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13232 	return workposted;
13233 }
13234 
13235 /**
13236  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13237  * @phba: Pointer to HBA context object.
13238  * @cqe: Pointer to mailbox completion queue entry.
13239  *
13240  * This routine process a mailbox completion queue entry, it invokes the
13241  * proper mailbox complete handling or asynchrous event handling routine
13242  * according to the MCQE's async bit.
13243  *
13244  * Return: true if work posted to worker thread, otherwise false.
13245  **/
13246 static bool
13247 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
13248 {
13249 	struct lpfc_mcqe mcqe;
13250 	bool workposted;
13251 
13252 	/* Copy the mailbox MCQE and convert endian order as needed */
13253 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13254 
13255 	/* Invoke the proper event handling routine */
13256 	if (!bf_get(lpfc_trailer_async, &mcqe))
13257 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13258 	else
13259 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13260 	return workposted;
13261 }
13262 
13263 /**
13264  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13265  * @phba: Pointer to HBA context object.
13266  * @cq: Pointer to associated CQ
13267  * @wcqe: Pointer to work-queue completion queue entry.
13268  *
13269  * This routine handles an ELS work-queue completion event.
13270  *
13271  * Return: true if work posted to worker thread, otherwise false.
13272  **/
13273 static bool
13274 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13275 			     struct lpfc_wcqe_complete *wcqe)
13276 {
13277 	struct lpfc_iocbq *irspiocbq;
13278 	unsigned long iflags;
13279 	struct lpfc_sli_ring *pring = cq->pring;
13280 	int txq_cnt = 0;
13281 	int txcmplq_cnt = 0;
13282 	int fcp_txcmplq_cnt = 0;
13283 
13284 	/* Check for response status */
13285 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13286 		/* Log the error status */
13287 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13288 				"0357 ELS CQE error: status=x%x: "
13289 				"CQE: %08x %08x %08x %08x\n",
13290 				bf_get(lpfc_wcqe_c_status, wcqe),
13291 				wcqe->word0, wcqe->total_data_placed,
13292 				wcqe->parameter, wcqe->word3);
13293 	}
13294 
13295 	/* Get an irspiocbq for later ELS response processing use */
13296 	irspiocbq = lpfc_sli_get_iocbq(phba);
13297 	if (!irspiocbq) {
13298 		if (!list_empty(&pring->txq))
13299 			txq_cnt++;
13300 		if (!list_empty(&pring->txcmplq))
13301 			txcmplq_cnt++;
13302 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13303 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13304 			"fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
13305 			txq_cnt, phba->iocb_cnt,
13306 			fcp_txcmplq_cnt,
13307 			txcmplq_cnt);
13308 		return false;
13309 	}
13310 
13311 	/* Save off the slow-path queue event for work thread to process */
13312 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13313 	spin_lock_irqsave(&phba->hbalock, iflags);
13314 	list_add_tail(&irspiocbq->cq_event.list,
13315 		      &phba->sli4_hba.sp_queue_event);
13316 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13317 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13318 
13319 	return true;
13320 }
13321 
13322 /**
13323  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13324  * @phba: Pointer to HBA context object.
13325  * @wcqe: Pointer to work-queue completion queue entry.
13326  *
13327  * This routine handles slow-path WQ entry consumed event by invoking the
13328  * proper WQ release routine to the slow-path WQ.
13329  **/
13330 static void
13331 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13332 			     struct lpfc_wcqe_release *wcqe)
13333 {
13334 	/* sanity check on queue memory */
13335 	if (unlikely(!phba->sli4_hba.els_wq))
13336 		return;
13337 	/* Check for the slow-path ELS work queue */
13338 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13339 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13340 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13341 	else
13342 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13343 				"2579 Slow-path wqe consume event carries "
13344 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13345 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13346 				phba->sli4_hba.els_wq->queue_id);
13347 }
13348 
13349 /**
13350  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13351  * @phba: Pointer to HBA context object.
13352  * @cq: Pointer to a WQ completion queue.
13353  * @wcqe: Pointer to work-queue completion queue entry.
13354  *
13355  * This routine handles an XRI abort event.
13356  *
13357  * Return: true if work posted to worker thread, otherwise false.
13358  **/
13359 static bool
13360 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13361 				   struct lpfc_queue *cq,
13362 				   struct sli4_wcqe_xri_aborted *wcqe)
13363 {
13364 	bool workposted = false;
13365 	struct lpfc_cq_event *cq_event;
13366 	unsigned long iflags;
13367 
13368 	switch (cq->subtype) {
13369 	case LPFC_FCP:
13370 		cq_event = lpfc_cq_event_setup(
13371 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13372 		if (!cq_event)
13373 			return false;
13374 		spin_lock_irqsave(&phba->hbalock, iflags);
13375 		list_add_tail(&cq_event->list,
13376 			      &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
13377 		/* Set the fcp xri abort event flag */
13378 		phba->hba_flag |= FCP_XRI_ABORT_EVENT;
13379 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13380 		workposted = true;
13381 		break;
13382 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13383 	case LPFC_ELS:
13384 		cq_event = lpfc_cq_event_setup(
13385 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13386 		if (!cq_event)
13387 			return false;
13388 		spin_lock_irqsave(&phba->hbalock, iflags);
13389 		list_add_tail(&cq_event->list,
13390 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13391 		/* Set the els xri abort event flag */
13392 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13393 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13394 		workposted = true;
13395 		break;
13396 	case LPFC_NVME:
13397 		/* Notify aborted XRI for NVME work queue */
13398 		if (phba->nvmet_support)
13399 			lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13400 		else
13401 			lpfc_sli4_nvme_xri_aborted(phba, wcqe);
13402 
13403 		workposted = false;
13404 		break;
13405 	default:
13406 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13407 				"0603 Invalid CQ subtype %d: "
13408 				"%08x %08x %08x %08x\n",
13409 				cq->subtype, wcqe->word0, wcqe->parameter,
13410 				wcqe->word2, wcqe->word3);
13411 		workposted = false;
13412 		break;
13413 	}
13414 	return workposted;
13415 }
13416 
13417 /**
13418  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13419  * @phba: Pointer to HBA context object.
13420  * @rcqe: Pointer to receive-queue completion queue entry.
13421  *
13422  * This routine process a receive-queue completion queue entry.
13423  *
13424  * Return: true if work posted to worker thread, otherwise false.
13425  **/
13426 static bool
13427 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13428 {
13429 	bool workposted = false;
13430 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13431 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13432 	struct lpfc_nvmet_tgtport *tgtp;
13433 	struct hbq_dmabuf *dma_buf;
13434 	uint32_t status, rq_id;
13435 	unsigned long iflags;
13436 
13437 	/* sanity check on queue memory */
13438 	if (unlikely(!hrq) || unlikely(!drq))
13439 		return workposted;
13440 
13441 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13442 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13443 	else
13444 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13445 	if (rq_id != hrq->queue_id)
13446 		goto out;
13447 
13448 	status = bf_get(lpfc_rcqe_status, rcqe);
13449 	switch (status) {
13450 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13451 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13452 				"2537 Receive Frame Truncated!!\n");
13453 	case FC_STATUS_RQ_SUCCESS:
13454 		spin_lock_irqsave(&phba->hbalock, iflags);
13455 		lpfc_sli4_rq_release(hrq, drq);
13456 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13457 		if (!dma_buf) {
13458 			hrq->RQ_no_buf_found++;
13459 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13460 			goto out;
13461 		}
13462 		hrq->RQ_rcv_buf++;
13463 		hrq->RQ_buf_posted--;
13464 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13465 
13466 		/* save off the frame for the word thread to process */
13467 		list_add_tail(&dma_buf->cq_event.list,
13468 			      &phba->sli4_hba.sp_queue_event);
13469 		/* Frame received */
13470 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13471 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13472 		workposted = true;
13473 		break;
13474 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13475 		if (phba->nvmet_support) {
13476 			tgtp = phba->targetport->private;
13477 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13478 					"6402 RQE Error x%x, posted %d err_cnt "
13479 					"%d: %x %x %x\n",
13480 					status, hrq->RQ_buf_posted,
13481 					hrq->RQ_no_posted_buf,
13482 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13483 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13484 					atomic_read(&tgtp->xmt_fcp_release));
13485 		}
13486 		/* fallthrough */
13487 
13488 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13489 		hrq->RQ_no_posted_buf++;
13490 		/* Post more buffers if possible */
13491 		spin_lock_irqsave(&phba->hbalock, iflags);
13492 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13493 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13494 		workposted = true;
13495 		break;
13496 	}
13497 out:
13498 	return workposted;
13499 }
13500 
13501 /**
13502  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13503  * @phba: Pointer to HBA context object.
13504  * @cq: Pointer to the completion queue.
13505  * @wcqe: Pointer to a completion queue entry.
13506  *
13507  * This routine process a slow-path work-queue or receive queue completion queue
13508  * entry.
13509  *
13510  * Return: true if work posted to worker thread, otherwise false.
13511  **/
13512 static bool
13513 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13514 			 struct lpfc_cqe *cqe)
13515 {
13516 	struct lpfc_cqe cqevt;
13517 	bool workposted = false;
13518 
13519 	/* Copy the work queue CQE and convert endian order if needed */
13520 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13521 
13522 	/* Check and process for different type of WCQE and dispatch */
13523 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13524 	case CQE_CODE_COMPL_WQE:
13525 		/* Process the WQ/RQ complete event */
13526 		phba->last_completion_time = jiffies;
13527 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13528 				(struct lpfc_wcqe_complete *)&cqevt);
13529 		break;
13530 	case CQE_CODE_RELEASE_WQE:
13531 		/* Process the WQ release event */
13532 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13533 				(struct lpfc_wcqe_release *)&cqevt);
13534 		break;
13535 	case CQE_CODE_XRI_ABORTED:
13536 		/* Process the WQ XRI abort event */
13537 		phba->last_completion_time = jiffies;
13538 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13539 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13540 		break;
13541 	case CQE_CODE_RECEIVE:
13542 	case CQE_CODE_RECEIVE_V1:
13543 		/* Process the RQ event */
13544 		phba->last_completion_time = jiffies;
13545 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13546 				(struct lpfc_rcqe *)&cqevt);
13547 		break;
13548 	default:
13549 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13550 				"0388 Not a valid WCQE code: x%x\n",
13551 				bf_get(lpfc_cqe_code, &cqevt));
13552 		break;
13553 	}
13554 	return workposted;
13555 }
13556 
13557 /**
13558  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13559  * @phba: Pointer to HBA context object.
13560  * @eqe: Pointer to fast-path event queue entry.
13561  *
13562  * This routine process a event queue entry from the slow-path event queue.
13563  * It will check the MajorCode and MinorCode to determine this is for a
13564  * completion event on a completion queue, if not, an error shall be logged
13565  * and just return. Otherwise, it will get to the corresponding completion
13566  * queue and process all the entries on that completion queue, rearm the
13567  * completion queue, and then return.
13568  *
13569  **/
13570 static void
13571 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13572 	struct lpfc_queue *speq)
13573 {
13574 	struct lpfc_queue *cq = NULL, *childq;
13575 	uint16_t cqid;
13576 
13577 	/* Get the reference to the corresponding CQ */
13578 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13579 
13580 	list_for_each_entry(childq, &speq->child_list, list) {
13581 		if (childq->queue_id == cqid) {
13582 			cq = childq;
13583 			break;
13584 		}
13585 	}
13586 	if (unlikely(!cq)) {
13587 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13588 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13589 					"0365 Slow-path CQ identifier "
13590 					"(%d) does not exist\n", cqid);
13591 		return;
13592 	}
13593 
13594 	/* Save EQ associated with this CQ */
13595 	cq->assoc_qp = speq;
13596 
13597 	if (!queue_work(phba->wq, &cq->spwork))
13598 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13599 				"0390 Cannot schedule soft IRQ "
13600 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13601 				cqid, cq->queue_id, smp_processor_id());
13602 }
13603 
13604 /**
13605  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13606  * @phba: Pointer to HBA context object.
13607  *
13608  * This routine process a event queue entry from the slow-path event queue.
13609  * It will check the MajorCode and MinorCode to determine this is for a
13610  * completion event on a completion queue, if not, an error shall be logged
13611  * and just return. Otherwise, it will get to the corresponding completion
13612  * queue and process all the entries on that completion queue, rearm the
13613  * completion queue, and then return.
13614  *
13615  **/
13616 static void
13617 lpfc_sli4_sp_process_cq(struct work_struct *work)
13618 {
13619 	struct lpfc_queue *cq =
13620 		container_of(work, struct lpfc_queue, spwork);
13621 	struct lpfc_hba *phba = cq->phba;
13622 	struct lpfc_cqe *cqe;
13623 	bool workposted = false;
13624 	int ccount = 0;
13625 
13626 	/* Process all the entries to the CQ */
13627 	switch (cq->type) {
13628 	case LPFC_MCQ:
13629 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13630 			workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
13631 			if (!(++ccount % cq->entry_repost))
13632 				break;
13633 			cq->CQ_mbox++;
13634 		}
13635 		break;
13636 	case LPFC_WCQ:
13637 		while ((cqe = lpfc_sli4_cq_get(cq))) {
13638 			if (cq->subtype == LPFC_FCP ||
13639 			    cq->subtype == LPFC_NVME) {
13640 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13641 				if (phba->ktime_on)
13642 					cq->isr_timestamp = ktime_get_ns();
13643 				else
13644 					cq->isr_timestamp = 0;
13645 #endif
13646 				workposted |= lpfc_sli4_fp_handle_cqe(phba, cq,
13647 								       cqe);
13648 			} else {
13649 				workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
13650 								      cqe);
13651 			}
13652 			if (!(++ccount % cq->entry_repost))
13653 				break;
13654 		}
13655 
13656 		/* Track the max number of CQEs processed in 1 EQ */
13657 		if (ccount > cq->CQ_max_cqe)
13658 			cq->CQ_max_cqe = ccount;
13659 		break;
13660 	default:
13661 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13662 				"0370 Invalid completion queue type (%d)\n",
13663 				cq->type);
13664 		return;
13665 	}
13666 
13667 	/* Catch the no cq entry condition, log an error */
13668 	if (unlikely(ccount == 0))
13669 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13670 				"0371 No entry from the CQ: identifier "
13671 				"(x%x), type (%d)\n", cq->queue_id, cq->type);
13672 
13673 	/* In any case, flash and re-arm the RCQ */
13674 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
13675 
13676 	/* wake up worker thread if there are works to be done */
13677 	if (workposted)
13678 		lpfc_worker_wake_up(phba);
13679 }
13680 
13681 /**
13682  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13683  * @phba: Pointer to HBA context object.
13684  * @cq: Pointer to associated CQ
13685  * @wcqe: Pointer to work-queue completion queue entry.
13686  *
13687  * This routine process a fast-path work queue completion entry from fast-path
13688  * event queue for FCP command response completion.
13689  **/
13690 static void
13691 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13692 			     struct lpfc_wcqe_complete *wcqe)
13693 {
13694 	struct lpfc_sli_ring *pring = cq->pring;
13695 	struct lpfc_iocbq *cmdiocbq;
13696 	struct lpfc_iocbq irspiocbq;
13697 	unsigned long iflags;
13698 
13699 	/* Check for response status */
13700 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13701 		/* If resource errors reported from HBA, reduce queue
13702 		 * depth of the SCSI device.
13703 		 */
13704 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13705 		     IOSTAT_LOCAL_REJECT)) &&
13706 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13707 		     IOERR_NO_RESOURCES))
13708 			phba->lpfc_rampdown_queue_depth(phba);
13709 
13710 		/* Log the error status */
13711 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13712 				"0373 FCP CQE error: status=x%x: "
13713 				"CQE: %08x %08x %08x %08x\n",
13714 				bf_get(lpfc_wcqe_c_status, wcqe),
13715 				wcqe->word0, wcqe->total_data_placed,
13716 				wcqe->parameter, wcqe->word3);
13717 	}
13718 
13719 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13720 	spin_lock_irqsave(&pring->ring_lock, iflags);
13721 	pring->stats.iocb_event++;
13722 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13723 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13724 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13725 	if (unlikely(!cmdiocbq)) {
13726 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13727 				"0374 FCP complete with no corresponding "
13728 				"cmdiocb: iotag (%d)\n",
13729 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13730 		return;
13731 	}
13732 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13733 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13734 #endif
13735 	if (cmdiocbq->iocb_cmpl == NULL) {
13736 		if (cmdiocbq->wqe_cmpl) {
13737 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13738 				spin_lock_irqsave(&phba->hbalock, iflags);
13739 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13740 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13741 			}
13742 
13743 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13744 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13745 			return;
13746 		}
13747 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13748 				"0375 FCP cmdiocb not callback function "
13749 				"iotag: (%d)\n",
13750 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13751 		return;
13752 	}
13753 
13754 	/* Fake the irspiocb and copy necessary response information */
13755 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13756 
13757 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13758 		spin_lock_irqsave(&phba->hbalock, iflags);
13759 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13760 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13761 	}
13762 
13763 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13764 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13765 }
13766 
13767 /**
13768  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13769  * @phba: Pointer to HBA context object.
13770  * @cq: Pointer to completion queue.
13771  * @wcqe: Pointer to work-queue completion queue entry.
13772  *
13773  * This routine handles an fast-path WQ entry consumed event by invoking the
13774  * proper WQ release routine to the slow-path WQ.
13775  **/
13776 static void
13777 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13778 			     struct lpfc_wcqe_release *wcqe)
13779 {
13780 	struct lpfc_queue *childwq;
13781 	bool wqid_matched = false;
13782 	uint16_t hba_wqid;
13783 
13784 	/* Check for fast-path FCP work queue release */
13785 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
13786 	list_for_each_entry(childwq, &cq->child_list, list) {
13787 		if (childwq->queue_id == hba_wqid) {
13788 			lpfc_sli4_wq_release(childwq,
13789 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13790 			if (childwq->q_flag & HBA_NVMET_WQFULL)
13791 				lpfc_nvmet_wqfull_process(phba, childwq);
13792 			wqid_matched = true;
13793 			break;
13794 		}
13795 	}
13796 	/* Report warning log message if no match found */
13797 	if (wqid_matched != true)
13798 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13799 				"2580 Fast-path wqe consume event carries "
13800 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
13801 }
13802 
13803 /**
13804  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
13805  * @phba: Pointer to HBA context object.
13806  * @rcqe: Pointer to receive-queue completion queue entry.
13807  *
13808  * This routine process a receive-queue completion queue entry.
13809  *
13810  * Return: true if work posted to worker thread, otherwise false.
13811  **/
13812 static bool
13813 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13814 			    struct lpfc_rcqe *rcqe)
13815 {
13816 	bool workposted = false;
13817 	struct lpfc_queue *hrq;
13818 	struct lpfc_queue *drq;
13819 	struct rqb_dmabuf *dma_buf;
13820 	struct fc_frame_header *fc_hdr;
13821 	struct lpfc_nvmet_tgtport *tgtp;
13822 	uint32_t status, rq_id;
13823 	unsigned long iflags;
13824 	uint32_t fctl, idx;
13825 
13826 	if ((phba->nvmet_support == 0) ||
13827 	    (phba->sli4_hba.nvmet_cqset == NULL))
13828 		return workposted;
13829 
13830 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
13831 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
13832 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
13833 
13834 	/* sanity check on queue memory */
13835 	if (unlikely(!hrq) || unlikely(!drq))
13836 		return workposted;
13837 
13838 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13839 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13840 	else
13841 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13842 
13843 	if ((phba->nvmet_support == 0) ||
13844 	    (rq_id != hrq->queue_id))
13845 		return workposted;
13846 
13847 	status = bf_get(lpfc_rcqe_status, rcqe);
13848 	switch (status) {
13849 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13850 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13851 				"6126 Receive Frame Truncated!!\n");
13852 		/* Drop thru */
13853 	case FC_STATUS_RQ_SUCCESS:
13854 		spin_lock_irqsave(&phba->hbalock, iflags);
13855 		lpfc_sli4_rq_release(hrq, drq);
13856 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
13857 		if (!dma_buf) {
13858 			hrq->RQ_no_buf_found++;
13859 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13860 			goto out;
13861 		}
13862 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13863 		hrq->RQ_rcv_buf++;
13864 		hrq->RQ_buf_posted--;
13865 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13866 
13867 		/* Just some basic sanity checks on FCP Command frame */
13868 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
13869 		fc_hdr->fh_f_ctl[1] << 8 |
13870 		fc_hdr->fh_f_ctl[2]);
13871 		if (((fctl &
13872 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
13873 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
13874 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
13875 			goto drop;
13876 
13877 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
13878 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length,  rcqe);
13879 			lpfc_nvmet_unsol_fcp_event(
13880 				phba, idx, dma_buf,
13881 				cq->isr_timestamp);
13882 			return false;
13883 		}
13884 drop:
13885 		lpfc_in_buf_free(phba, &dma_buf->dbuf);
13886 		break;
13887 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13888 		if (phba->nvmet_support) {
13889 			tgtp = phba->targetport->private;
13890 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13891 					"6401 RQE Error x%x, posted %d err_cnt "
13892 					"%d: %x %x %x\n",
13893 					status, hrq->RQ_buf_posted,
13894 					hrq->RQ_no_posted_buf,
13895 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13896 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13897 					atomic_read(&tgtp->xmt_fcp_release));
13898 		}
13899 		/* fallthrough */
13900 
13901 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13902 		hrq->RQ_no_posted_buf++;
13903 		/* Post more buffers if possible */
13904 		break;
13905 	}
13906 out:
13907 	return workposted;
13908 }
13909 
13910 /**
13911  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
13912  * @cq: Pointer to the completion queue.
13913  * @eqe: Pointer to fast-path completion queue entry.
13914  *
13915  * This routine process a fast-path work queue completion entry from fast-path
13916  * event queue for FCP command response completion.
13917  **/
13918 static int
13919 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13920 			 struct lpfc_cqe *cqe)
13921 {
13922 	struct lpfc_wcqe_release wcqe;
13923 	bool workposted = false;
13924 
13925 	/* Copy the work queue CQE and convert endian order if needed */
13926 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
13927 
13928 	/* Check and process for different type of WCQE and dispatch */
13929 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
13930 	case CQE_CODE_COMPL_WQE:
13931 	case CQE_CODE_NVME_ERSP:
13932 		cq->CQ_wq++;
13933 		/* Process the WQ complete event */
13934 		phba->last_completion_time = jiffies;
13935 		if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME))
13936 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13937 				(struct lpfc_wcqe_complete *)&wcqe);
13938 		if (cq->subtype == LPFC_NVME_LS)
13939 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
13940 				(struct lpfc_wcqe_complete *)&wcqe);
13941 		break;
13942 	case CQE_CODE_RELEASE_WQE:
13943 		cq->CQ_release_wqe++;
13944 		/* Process the WQ release event */
13945 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
13946 				(struct lpfc_wcqe_release *)&wcqe);
13947 		break;
13948 	case CQE_CODE_XRI_ABORTED:
13949 		cq->CQ_xri_aborted++;
13950 		/* Process the WQ XRI abort event */
13951 		phba->last_completion_time = jiffies;
13952 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13953 				(struct sli4_wcqe_xri_aborted *)&wcqe);
13954 		break;
13955 	case CQE_CODE_RECEIVE_V1:
13956 	case CQE_CODE_RECEIVE:
13957 		phba->last_completion_time = jiffies;
13958 		if (cq->subtype == LPFC_NVMET) {
13959 			workposted = lpfc_sli4_nvmet_handle_rcqe(
13960 				phba, cq, (struct lpfc_rcqe *)&wcqe);
13961 		}
13962 		break;
13963 	default:
13964 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13965 				"0144 Not a valid CQE code: x%x\n",
13966 				bf_get(lpfc_wcqe_c_code, &wcqe));
13967 		break;
13968 	}
13969 	return workposted;
13970 }
13971 
13972 /**
13973  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
13974  * @phba: Pointer to HBA context object.
13975  * @eqe: Pointer to fast-path event queue entry.
13976  *
13977  * This routine process a event queue entry from the fast-path event queue.
13978  * It will check the MajorCode and MinorCode to determine this is for a
13979  * completion event on a completion queue, if not, an error shall be logged
13980  * and just return. Otherwise, it will get to the corresponding completion
13981  * queue and process all the entries on the completion queue, rearm the
13982  * completion queue, and then return.
13983  **/
13984 static void
13985 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13986 			uint32_t qidx)
13987 {
13988 	struct lpfc_queue *cq = NULL;
13989 	uint16_t cqid, id;
13990 
13991 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
13992 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13993 				"0366 Not a valid completion "
13994 				"event: majorcode=x%x, minorcode=x%x\n",
13995 				bf_get_le32(lpfc_eqe_major_code, eqe),
13996 				bf_get_le32(lpfc_eqe_minor_code, eqe));
13997 		return;
13998 	}
13999 
14000 	/* Get the reference to the corresponding CQ */
14001 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14002 
14003 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14004 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14005 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14006 			/* Process NVMET unsol rcv */
14007 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14008 			goto  process_cq;
14009 		}
14010 	}
14011 
14012 	if (phba->sli4_hba.nvme_cq_map &&
14013 	    (cqid == phba->sli4_hba.nvme_cq_map[qidx])) {
14014 		/* Process NVME / NVMET command completion */
14015 		cq = phba->sli4_hba.nvme_cq[qidx];
14016 		goto  process_cq;
14017 	}
14018 
14019 	if (phba->sli4_hba.fcp_cq_map &&
14020 	    (cqid == phba->sli4_hba.fcp_cq_map[qidx])) {
14021 		/* Process FCP command completion */
14022 		cq = phba->sli4_hba.fcp_cq[qidx];
14023 		goto  process_cq;
14024 	}
14025 
14026 	if (phba->sli4_hba.nvmels_cq &&
14027 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14028 		/* Process NVME unsol rcv */
14029 		cq = phba->sli4_hba.nvmels_cq;
14030 	}
14031 
14032 	/* Otherwise this is a Slow path event */
14033 	if (cq == NULL) {
14034 		lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]);
14035 		return;
14036 	}
14037 
14038 process_cq:
14039 	if (unlikely(cqid != cq->queue_id)) {
14040 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14041 				"0368 Miss-matched fast-path completion "
14042 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14043 				cqid, cq->queue_id);
14044 		return;
14045 	}
14046 
14047 	/* Save EQ associated with this CQ */
14048 	cq->assoc_qp = phba->sli4_hba.hba_eq[qidx];
14049 
14050 	if (!queue_work(phba->wq, &cq->irqwork))
14051 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14052 				"0363 Cannot schedule soft IRQ "
14053 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14054 				cqid, cq->queue_id, smp_processor_id());
14055 }
14056 
14057 /**
14058  * lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14059  * @phba: Pointer to HBA context object.
14060  * @eqe: Pointer to fast-path event queue entry.
14061  *
14062  * This routine process a event queue entry from the fast-path event queue.
14063  * It will check the MajorCode and MinorCode to determine this is for a
14064  * completion event on a completion queue, if not, an error shall be logged
14065  * and just return. Otherwise, it will get to the corresponding completion
14066  * queue and process all the entries on the completion queue, rearm the
14067  * completion queue, and then return.
14068  **/
14069 static void
14070 lpfc_sli4_hba_process_cq(struct work_struct *work)
14071 {
14072 	struct lpfc_queue *cq =
14073 		container_of(work, struct lpfc_queue, irqwork);
14074 	struct lpfc_hba *phba = cq->phba;
14075 	struct lpfc_cqe *cqe;
14076 	bool workposted = false;
14077 	int ccount = 0;
14078 
14079 	/* Process all the entries to the CQ */
14080 	while ((cqe = lpfc_sli4_cq_get(cq))) {
14081 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14082 		if (phba->ktime_on)
14083 			cq->isr_timestamp = ktime_get_ns();
14084 		else
14085 			cq->isr_timestamp = 0;
14086 #endif
14087 		workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe);
14088 		if (!(++ccount % cq->entry_repost))
14089 			break;
14090 	}
14091 
14092 	/* Track the max number of CQEs processed in 1 EQ */
14093 	if (ccount > cq->CQ_max_cqe)
14094 		cq->CQ_max_cqe = ccount;
14095 	cq->assoc_qp->EQ_cqe_cnt += ccount;
14096 
14097 	/* Catch the no cq entry condition */
14098 	if (unlikely(ccount == 0))
14099 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14100 				"0369 No entry from fast-path completion "
14101 				"queue fcpcqid=%d\n", cq->queue_id);
14102 
14103 	/* In any case, flash and re-arm the CQ */
14104 	phba->sli4_hba.sli4_cq_release(cq, LPFC_QUEUE_REARM);
14105 
14106 	/* wake up worker thread if there are works to be done */
14107 	if (workposted)
14108 		lpfc_worker_wake_up(phba);
14109 }
14110 
14111 static void
14112 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
14113 {
14114 	struct lpfc_eqe *eqe;
14115 
14116 	/* walk all the EQ entries and drop on the floor */
14117 	while ((eqe = lpfc_sli4_eq_get(eq)))
14118 		;
14119 
14120 	/* Clear and re-arm the EQ */
14121 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14122 }
14123 
14124 
14125 /**
14126  * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue
14127  *			     entry
14128  * @phba: Pointer to HBA context object.
14129  * @eqe: Pointer to fast-path event queue entry.
14130  *
14131  * This routine process a event queue entry from the Flash Optimized Fabric
14132  * event queue.  It will check the MajorCode and MinorCode to determine this
14133  * is for a completion event on a completion queue, if not, an error shall be
14134  * logged and just return. Otherwise, it will get to the corresponding
14135  * completion queue and process all the entries on the completion queue, rearm
14136  * the completion queue, and then return.
14137  **/
14138 static void
14139 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
14140 {
14141 	struct lpfc_queue *cq;
14142 	uint16_t cqid;
14143 
14144 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14145 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14146 				"9147 Not a valid completion "
14147 				"event: majorcode=x%x, minorcode=x%x\n",
14148 				bf_get_le32(lpfc_eqe_major_code, eqe),
14149 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14150 		return;
14151 	}
14152 
14153 	/* Get the reference to the corresponding CQ */
14154 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14155 
14156 	/* Next check for OAS */
14157 	cq = phba->sli4_hba.oas_cq;
14158 	if (unlikely(!cq)) {
14159 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14160 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14161 					"9148 OAS completion queue "
14162 					"does not exist\n");
14163 		return;
14164 	}
14165 
14166 	if (unlikely(cqid != cq->queue_id)) {
14167 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14168 				"9149 Miss-matched fast-path compl "
14169 				"queue id: eqcqid=%d, fcpcqid=%d\n",
14170 				cqid, cq->queue_id);
14171 		return;
14172 	}
14173 
14174 	/* Save EQ associated with this CQ */
14175 	cq->assoc_qp = phba->sli4_hba.fof_eq;
14176 
14177 	/* CQ work will be processed on CPU affinitized to this IRQ */
14178 	if (!queue_work(phba->wq, &cq->irqwork))
14179 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14180 				"0367 Cannot schedule soft IRQ "
14181 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14182 				cqid, cq->queue_id, smp_processor_id());
14183 }
14184 
14185 /**
14186  * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device
14187  * @irq: Interrupt number.
14188  * @dev_id: The device context pointer.
14189  *
14190  * This function is directly called from the PCI layer as an interrupt
14191  * service routine when device with SLI-4 interface spec is enabled with
14192  * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric
14193  * IOCB ring event in the HBA. However, when the device is enabled with either
14194  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14195  * device-level interrupt handler. When the PCI slot is in error recovery
14196  * or the HBA is undergoing initialization, the interrupt handler will not
14197  * process the interrupt. The Flash Optimized Fabric ring event are handled in
14198  * the intrrupt context. This function is called without any lock held.
14199  * It gets the hbalock to access and update SLI data structures. Note that,
14200  * the EQ to CQ are one-to-one map such that the EQ index is
14201  * equal to that of CQ index.
14202  *
14203  * This function returns IRQ_HANDLED when interrupt is handled else it
14204  * returns IRQ_NONE.
14205  **/
14206 irqreturn_t
14207 lpfc_sli4_fof_intr_handler(int irq, void *dev_id)
14208 {
14209 	struct lpfc_hba *phba;
14210 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14211 	struct lpfc_queue *eq;
14212 	struct lpfc_eqe *eqe;
14213 	unsigned long iflag;
14214 	int ecount = 0;
14215 
14216 	/* Get the driver's phba structure from the dev_id */
14217 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14218 	phba = hba_eq_hdl->phba;
14219 
14220 	if (unlikely(!phba))
14221 		return IRQ_NONE;
14222 
14223 	/* Get to the EQ struct associated with this vector */
14224 	eq = phba->sli4_hba.fof_eq;
14225 	if (unlikely(!eq))
14226 		return IRQ_NONE;
14227 
14228 	/* Check device state for handling interrupt */
14229 	if (unlikely(lpfc_intr_state_check(phba))) {
14230 		/* Check again for link_state with lock held */
14231 		spin_lock_irqsave(&phba->hbalock, iflag);
14232 		if (phba->link_state < LPFC_LINK_DOWN)
14233 			/* Flush, clear interrupt, and rearm the EQ */
14234 			lpfc_sli4_eq_flush(phba, eq);
14235 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14236 		return IRQ_NONE;
14237 	}
14238 
14239 	/*
14240 	 * Process all the event on FCP fast-path EQ
14241 	 */
14242 	while ((eqe = lpfc_sli4_eq_get(eq))) {
14243 		lpfc_sli4_fof_handle_eqe(phba, eqe);
14244 		if (!(++ecount % eq->entry_repost))
14245 			break;
14246 		eq->EQ_processed++;
14247 	}
14248 
14249 	/* Track the max number of EQEs processed in 1 intr */
14250 	if (ecount > eq->EQ_max_eqe)
14251 		eq->EQ_max_eqe = ecount;
14252 
14253 
14254 	if (unlikely(ecount == 0)) {
14255 		eq->EQ_no_entry++;
14256 
14257 		if (phba->intr_type == MSIX)
14258 			/* MSI-X treated interrupt served as no EQ share INT */
14259 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14260 					"9145 MSI-X interrupt with no EQE\n");
14261 		else {
14262 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14263 					"9146 ISR interrupt with no EQE\n");
14264 			/* Non MSI-X treated on interrupt as EQ share INT */
14265 			return IRQ_NONE;
14266 		}
14267 	}
14268 	/* Always clear and re-arm the fast-path EQ */
14269 	phba->sli4_hba.sli4_eq_release(eq, LPFC_QUEUE_REARM);
14270 	return IRQ_HANDLED;
14271 }
14272 
14273 /**
14274  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14275  * @irq: Interrupt number.
14276  * @dev_id: The device context pointer.
14277  *
14278  * This function is directly called from the PCI layer as an interrupt
14279  * service routine when device with SLI-4 interface spec is enabled with
14280  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14281  * ring event in the HBA. However, when the device is enabled with either
14282  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14283  * device-level interrupt handler. When the PCI slot is in error recovery
14284  * or the HBA is undergoing initialization, the interrupt handler will not
14285  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14286  * the intrrupt context. This function is called without any lock held.
14287  * It gets the hbalock to access and update SLI data structures. Note that,
14288  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14289  * equal to that of FCP CQ index.
14290  *
14291  * The link attention and ELS ring attention events are handled
14292  * by the worker thread. The interrupt handler signals the worker thread
14293  * and returns for these events. This function is called without any lock
14294  * held. It gets the hbalock to access and update SLI data structures.
14295  *
14296  * This function returns IRQ_HANDLED when interrupt is handled else it
14297  * returns IRQ_NONE.
14298  **/
14299 irqreturn_t
14300 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14301 {
14302 	struct lpfc_hba *phba;
14303 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14304 	struct lpfc_queue *fpeq;
14305 	struct lpfc_eqe *eqe;
14306 	unsigned long iflag;
14307 	int ecount = 0;
14308 	int hba_eqidx;
14309 
14310 	/* Get the driver's phba structure from the dev_id */
14311 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14312 	phba = hba_eq_hdl->phba;
14313 	hba_eqidx = hba_eq_hdl->idx;
14314 
14315 	if (unlikely(!phba))
14316 		return IRQ_NONE;
14317 	if (unlikely(!phba->sli4_hba.hba_eq))
14318 		return IRQ_NONE;
14319 
14320 	/* Get to the EQ struct associated with this vector */
14321 	fpeq = phba->sli4_hba.hba_eq[hba_eqidx];
14322 	if (unlikely(!fpeq))
14323 		return IRQ_NONE;
14324 
14325 	if (lpfc_fcp_look_ahead) {
14326 		if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use))
14327 			phba->sli4_hba.sli4_eq_clr_intr(fpeq);
14328 		else {
14329 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14330 			return IRQ_NONE;
14331 		}
14332 	}
14333 
14334 	/* Check device state for handling interrupt */
14335 	if (unlikely(lpfc_intr_state_check(phba))) {
14336 		/* Check again for link_state with lock held */
14337 		spin_lock_irqsave(&phba->hbalock, iflag);
14338 		if (phba->link_state < LPFC_LINK_DOWN)
14339 			/* Flush, clear interrupt, and rearm the EQ */
14340 			lpfc_sli4_eq_flush(phba, fpeq);
14341 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14342 		if (lpfc_fcp_look_ahead)
14343 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14344 		return IRQ_NONE;
14345 	}
14346 
14347 	/*
14348 	 * Process all the event on FCP fast-path EQ
14349 	 */
14350 	while ((eqe = lpfc_sli4_eq_get(fpeq))) {
14351 		lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx);
14352 		if (!(++ecount % fpeq->entry_repost))
14353 			break;
14354 		fpeq->EQ_processed++;
14355 	}
14356 
14357 	/* Track the max number of EQEs processed in 1 intr */
14358 	if (ecount > fpeq->EQ_max_eqe)
14359 		fpeq->EQ_max_eqe = ecount;
14360 
14361 	/* Always clear and re-arm the fast-path EQ */
14362 	phba->sli4_hba.sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
14363 
14364 	if (unlikely(ecount == 0)) {
14365 		fpeq->EQ_no_entry++;
14366 
14367 		if (lpfc_fcp_look_ahead) {
14368 			atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14369 			return IRQ_NONE;
14370 		}
14371 
14372 		if (phba->intr_type == MSIX)
14373 			/* MSI-X treated interrupt served as no EQ share INT */
14374 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14375 					"0358 MSI-X interrupt with no EQE\n");
14376 		else
14377 			/* Non MSI-X treated on interrupt as EQ share INT */
14378 			return IRQ_NONE;
14379 	}
14380 
14381 	if (lpfc_fcp_look_ahead)
14382 		atomic_inc(&hba_eq_hdl->hba_eq_in_use);
14383 
14384 	return IRQ_HANDLED;
14385 } /* lpfc_sli4_fp_intr_handler */
14386 
14387 /**
14388  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14389  * @irq: Interrupt number.
14390  * @dev_id: The device context pointer.
14391  *
14392  * This function is the device-level interrupt handler to device with SLI-4
14393  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14394  * interrupt mode is enabled and there is an event in the HBA which requires
14395  * driver attention. This function invokes the slow-path interrupt attention
14396  * handling function and fast-path interrupt attention handling function in
14397  * turn to process the relevant HBA attention events. This function is called
14398  * without any lock held. It gets the hbalock to access and update SLI data
14399  * structures.
14400  *
14401  * This function returns IRQ_HANDLED when interrupt is handled, else it
14402  * returns IRQ_NONE.
14403  **/
14404 irqreturn_t
14405 lpfc_sli4_intr_handler(int irq, void *dev_id)
14406 {
14407 	struct lpfc_hba  *phba;
14408 	irqreturn_t hba_irq_rc;
14409 	bool hba_handled = false;
14410 	int qidx;
14411 
14412 	/* Get the driver's phba structure from the dev_id */
14413 	phba = (struct lpfc_hba *)dev_id;
14414 
14415 	if (unlikely(!phba))
14416 		return IRQ_NONE;
14417 
14418 	/*
14419 	 * Invoke fast-path host attention interrupt handling as appropriate.
14420 	 */
14421 	for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) {
14422 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14423 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14424 		if (hba_irq_rc == IRQ_HANDLED)
14425 			hba_handled |= true;
14426 	}
14427 
14428 	if (phba->cfg_fof) {
14429 		hba_irq_rc = lpfc_sli4_fof_intr_handler(irq,
14430 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14431 		if (hba_irq_rc == IRQ_HANDLED)
14432 			hba_handled |= true;
14433 	}
14434 
14435 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14436 } /* lpfc_sli4_intr_handler */
14437 
14438 /**
14439  * lpfc_sli4_queue_free - free a queue structure and associated memory
14440  * @queue: The queue structure to free.
14441  *
14442  * This function frees a queue structure and the DMAable memory used for
14443  * the host resident queue. This function must be called after destroying the
14444  * queue on the HBA.
14445  **/
14446 void
14447 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14448 {
14449 	struct lpfc_dmabuf *dmabuf;
14450 
14451 	if (!queue)
14452 		return;
14453 
14454 	while (!list_empty(&queue->page_list)) {
14455 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14456 				 list);
14457 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14458 				  dmabuf->virt, dmabuf->phys);
14459 		kfree(dmabuf);
14460 	}
14461 	if (queue->rqbp) {
14462 		lpfc_free_rq_buffer(queue->phba, queue);
14463 		kfree(queue->rqbp);
14464 	}
14465 
14466 	if (!list_empty(&queue->wq_list))
14467 		list_del(&queue->wq_list);
14468 
14469 	kfree(queue);
14470 	return;
14471 }
14472 
14473 /**
14474  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14475  * @phba: The HBA that this queue is being created on.
14476  * @page_size: The size of a queue page
14477  * @entry_size: The size of each queue entry for this queue.
14478  * @entry count: The number of entries that this queue will handle.
14479  *
14480  * This function allocates a queue structure and the DMAable memory used for
14481  * the host resident queue. This function must be called before creating the
14482  * queue on the HBA.
14483  **/
14484 struct lpfc_queue *
14485 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14486 		      uint32_t entry_size, uint32_t entry_count)
14487 {
14488 	struct lpfc_queue *queue;
14489 	struct lpfc_dmabuf *dmabuf;
14490 	int x, total_qe_count;
14491 	void *dma_pointer;
14492 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14493 
14494 	if (!phba->sli4_hba.pc_sli4_params.supported)
14495 		hw_page_size = page_size;
14496 
14497 	queue = kzalloc(sizeof(struct lpfc_queue) +
14498 			(sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
14499 	if (!queue)
14500 		return NULL;
14501 	queue->page_count = (ALIGN(entry_size * entry_count,
14502 			hw_page_size))/hw_page_size;
14503 
14504 	/* If needed, Adjust page count to match the max the adapter supports */
14505 	if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt)
14506 		queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt;
14507 
14508 	INIT_LIST_HEAD(&queue->list);
14509 	INIT_LIST_HEAD(&queue->wq_list);
14510 	INIT_LIST_HEAD(&queue->wqfull_list);
14511 	INIT_LIST_HEAD(&queue->page_list);
14512 	INIT_LIST_HEAD(&queue->child_list);
14513 
14514 	/* Set queue parameters now.  If the system cannot provide memory
14515 	 * resources, the free routine needs to know what was allocated.
14516 	 */
14517 	queue->entry_size = entry_size;
14518 	queue->entry_count = entry_count;
14519 	queue->page_size = hw_page_size;
14520 	queue->phba = phba;
14521 
14522 	for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
14523 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
14524 		if (!dmabuf)
14525 			goto out_fail;
14526 		dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev,
14527 						   hw_page_size, &dmabuf->phys,
14528 						   GFP_KERNEL);
14529 		if (!dmabuf->virt) {
14530 			kfree(dmabuf);
14531 			goto out_fail;
14532 		}
14533 		dmabuf->buffer_tag = x;
14534 		list_add_tail(&dmabuf->list, &queue->page_list);
14535 		/* initialize queue's entry array */
14536 		dma_pointer = dmabuf->virt;
14537 		for (; total_qe_count < entry_count &&
14538 		     dma_pointer < (hw_page_size + dmabuf->virt);
14539 		     total_qe_count++, dma_pointer += entry_size) {
14540 			queue->qe[total_qe_count].address = dma_pointer;
14541 		}
14542 	}
14543 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14544 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14545 
14546 	/* entry_repost will be set during q creation */
14547 
14548 	return queue;
14549 out_fail:
14550 	lpfc_sli4_queue_free(queue);
14551 	return NULL;
14552 }
14553 
14554 /**
14555  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14556  * @phba: HBA structure that indicates port to create a queue on.
14557  * @pci_barset: PCI BAR set flag.
14558  *
14559  * This function shall perform iomap of the specified PCI BAR address to host
14560  * memory address if not already done so and return it. The returned host
14561  * memory address can be NULL.
14562  */
14563 static void __iomem *
14564 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14565 {
14566 	if (!phba->pcidev)
14567 		return NULL;
14568 
14569 	switch (pci_barset) {
14570 	case WQ_PCI_BAR_0_AND_1:
14571 		return phba->pci_bar0_memmap_p;
14572 	case WQ_PCI_BAR_2_AND_3:
14573 		return phba->pci_bar2_memmap_p;
14574 	case WQ_PCI_BAR_4_AND_5:
14575 		return phba->pci_bar4_memmap_p;
14576 	default:
14577 		break;
14578 	}
14579 	return NULL;
14580 }
14581 
14582 /**
14583  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs
14584  * @phba: HBA structure that indicates port to create a queue on.
14585  * @startq: The starting FCP EQ to modify
14586  *
14587  * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA.
14588  * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be
14589  * updated in one mailbox command.
14590  *
14591  * The @phba struct is used to send mailbox command to HBA. The @startq
14592  * is used to get the starting FCP EQ to change.
14593  * This function is asynchronous and will wait for the mailbox
14594  * command to finish before continuing.
14595  *
14596  * On success this function will return a zero. If unable to allocate enough
14597  * memory this function will return -ENOMEM. If the queue create mailbox command
14598  * fails this function will return -ENXIO.
14599  **/
14600 int
14601 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14602 			 uint32_t numq, uint32_t imax)
14603 {
14604 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14605 	LPFC_MBOXQ_t *mbox;
14606 	struct lpfc_queue *eq;
14607 	int cnt, rc, length, status = 0;
14608 	uint32_t shdr_status, shdr_add_status;
14609 	uint32_t result, val;
14610 	int qidx;
14611 	union lpfc_sli4_cfg_shdr *shdr;
14612 	uint16_t dmult;
14613 
14614 	if (startq >= phba->io_channel_irqs)
14615 		return 0;
14616 
14617 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14618 	if (!mbox)
14619 		return -ENOMEM;
14620 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14621 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14622 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14623 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14624 			 length, LPFC_SLI4_MBX_EMBED);
14625 	eq_delay = &mbox->u.mqe.un.eq_delay;
14626 
14627 	/* Calculate delay multiper from maximum interrupt per second */
14628 	result = imax / phba->io_channel_irqs;
14629 	if (result > LPFC_DMULT_CONST || result == 0)
14630 		dmult = 0;
14631 	else
14632 		dmult = LPFC_DMULT_CONST/result - 1;
14633 	if (dmult > LPFC_DMULT_MAX)
14634 		dmult = LPFC_DMULT_MAX;
14635 
14636 	cnt = 0;
14637 	for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) {
14638 		eq = phba->sli4_hba.hba_eq[qidx];
14639 		if (!eq)
14640 			continue;
14641 		eq->q_mode = imax;
14642 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14643 		eq_delay->u.request.eq[cnt].phase = 0;
14644 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14645 		cnt++;
14646 
14647 		/* q_mode is only used for auto_imax */
14648 		if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14649 			/* Use EQ Delay Register method for q_mode */
14650 
14651 			/* Convert for EQ Delay register */
14652 			val =  phba->cfg_fcp_imax;
14653 			if (val) {
14654 				/* First, interrupts per sec per EQ */
14655 				val = phba->cfg_fcp_imax /
14656 					phba->io_channel_irqs;
14657 
14658 				/* us delay between each interrupt */
14659 				val = LPFC_SEC_TO_USEC / val;
14660 			}
14661 			eq->q_mode = val;
14662 		} else {
14663 			eq->q_mode = imax;
14664 		}
14665 
14666 		if (cnt >= numq)
14667 			break;
14668 	}
14669 	eq_delay->u.request.num_eq = cnt;
14670 
14671 	mbox->vport = phba->pport;
14672 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14673 	mbox->context1 = NULL;
14674 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14675 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14676 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14677 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14678 	if (shdr_status || shdr_add_status || rc) {
14679 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14680 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14681 				"status x%x add_status x%x, mbx status x%x\n",
14682 				shdr_status, shdr_add_status, rc);
14683 		status = -ENXIO;
14684 	}
14685 	mempool_free(mbox, phba->mbox_mem_pool);
14686 	return status;
14687 }
14688 
14689 /**
14690  * lpfc_eq_create - Create an Event Queue on the HBA
14691  * @phba: HBA structure that indicates port to create a queue on.
14692  * @eq: The queue structure to use to create the event queue.
14693  * @imax: The maximum interrupt per second limit.
14694  *
14695  * This function creates an event queue, as detailed in @eq, on a port,
14696  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14697  *
14698  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14699  * is used to get the entry count and entry size that are necessary to
14700  * determine the number of pages to allocate and use for this queue. This
14701  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14702  * event queue. This function is asynchronous and will wait for the mailbox
14703  * command to finish before continuing.
14704  *
14705  * On success this function will return a zero. If unable to allocate enough
14706  * memory this function will return -ENOMEM. If the queue create mailbox command
14707  * fails this function will return -ENXIO.
14708  **/
14709 int
14710 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14711 {
14712 	struct lpfc_mbx_eq_create *eq_create;
14713 	LPFC_MBOXQ_t *mbox;
14714 	int rc, length, status = 0;
14715 	struct lpfc_dmabuf *dmabuf;
14716 	uint32_t shdr_status, shdr_add_status;
14717 	union lpfc_sli4_cfg_shdr *shdr;
14718 	uint16_t dmult;
14719 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14720 
14721 	/* sanity check on queue memory */
14722 	if (!eq)
14723 		return -ENODEV;
14724 	if (!phba->sli4_hba.pc_sli4_params.supported)
14725 		hw_page_size = SLI4_PAGE_SIZE;
14726 
14727 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14728 	if (!mbox)
14729 		return -ENOMEM;
14730 	length = (sizeof(struct lpfc_mbx_eq_create) -
14731 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14732 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14733 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14734 			 length, LPFC_SLI4_MBX_EMBED);
14735 	eq_create = &mbox->u.mqe.un.eq_create;
14736 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14737 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14738 	       eq->page_count);
14739 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14740 	       LPFC_EQE_SIZE);
14741 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14742 
14743 	/* Use version 2 of CREATE_EQ if eqav is set */
14744 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14745 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14746 		       LPFC_Q_CREATE_VERSION_2);
14747 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14748 		       phba->sli4_hba.pc_sli4_params.eqav);
14749 	}
14750 
14751 	/* don't setup delay multiplier using EQ_CREATE */
14752 	dmult = 0;
14753 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14754 	       dmult);
14755 	switch (eq->entry_count) {
14756 	default:
14757 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14758 				"0360 Unsupported EQ count. (%d)\n",
14759 				eq->entry_count);
14760 		if (eq->entry_count < 256)
14761 			return -EINVAL;
14762 		/* otherwise default to smallest count (drop through) */
14763 	case 256:
14764 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14765 		       LPFC_EQ_CNT_256);
14766 		break;
14767 	case 512:
14768 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14769 		       LPFC_EQ_CNT_512);
14770 		break;
14771 	case 1024:
14772 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14773 		       LPFC_EQ_CNT_1024);
14774 		break;
14775 	case 2048:
14776 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14777 		       LPFC_EQ_CNT_2048);
14778 		break;
14779 	case 4096:
14780 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14781 		       LPFC_EQ_CNT_4096);
14782 		break;
14783 	}
14784 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14785 		memset(dmabuf->virt, 0, hw_page_size);
14786 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14787 					putPaddrLow(dmabuf->phys);
14788 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14789 					putPaddrHigh(dmabuf->phys);
14790 	}
14791 	mbox->vport = phba->pport;
14792 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14793 	mbox->context1 = NULL;
14794 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14795 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14796 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14797 	if (shdr_status || shdr_add_status || rc) {
14798 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14799 				"2500 EQ_CREATE mailbox failed with "
14800 				"status x%x add_status x%x, mbx status x%x\n",
14801 				shdr_status, shdr_add_status, rc);
14802 		status = -ENXIO;
14803 	}
14804 	eq->type = LPFC_EQ;
14805 	eq->subtype = LPFC_NONE;
14806 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
14807 	if (eq->queue_id == 0xFFFF)
14808 		status = -ENXIO;
14809 	eq->host_index = 0;
14810 	eq->hba_index = 0;
14811 	eq->entry_repost = LPFC_EQ_REPOST;
14812 
14813 	mempool_free(mbox, phba->mbox_mem_pool);
14814 	return status;
14815 }
14816 
14817 /**
14818  * lpfc_cq_create - Create a Completion Queue on the HBA
14819  * @phba: HBA structure that indicates port to create a queue on.
14820  * @cq: The queue structure to use to create the completion queue.
14821  * @eq: The event queue to bind this completion queue to.
14822  *
14823  * This function creates a completion queue, as detailed in @wq, on a port,
14824  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
14825  *
14826  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14827  * is used to get the entry count and entry size that are necessary to
14828  * determine the number of pages to allocate and use for this queue. The @eq
14829  * is used to indicate which event queue to bind this completion queue to. This
14830  * function will send the CQ_CREATE mailbox command to the HBA to setup the
14831  * completion queue. This function is asynchronous and will wait for the mailbox
14832  * command to finish before continuing.
14833  *
14834  * On success this function will return a zero. If unable to allocate enough
14835  * memory this function will return -ENOMEM. If the queue create mailbox command
14836  * fails this function will return -ENXIO.
14837  **/
14838 int
14839 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
14840 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
14841 {
14842 	struct lpfc_mbx_cq_create *cq_create;
14843 	struct lpfc_dmabuf *dmabuf;
14844 	LPFC_MBOXQ_t *mbox;
14845 	int rc, length, status = 0;
14846 	uint32_t shdr_status, shdr_add_status;
14847 	union lpfc_sli4_cfg_shdr *shdr;
14848 
14849 	/* sanity check on queue memory */
14850 	if (!cq || !eq)
14851 		return -ENODEV;
14852 
14853 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14854 	if (!mbox)
14855 		return -ENOMEM;
14856 	length = (sizeof(struct lpfc_mbx_cq_create) -
14857 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14858 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14859 			 LPFC_MBOX_OPCODE_CQ_CREATE,
14860 			 length, LPFC_SLI4_MBX_EMBED);
14861 	cq_create = &mbox->u.mqe.un.cq_create;
14862 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
14863 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
14864 		    cq->page_count);
14865 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
14866 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
14867 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
14868 	       phba->sli4_hba.pc_sli4_params.cqv);
14869 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
14870 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
14871 		       (cq->page_size / SLI4_PAGE_SIZE));
14872 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
14873 		       eq->queue_id);
14874 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
14875 		       phba->sli4_hba.pc_sli4_params.cqav);
14876 	} else {
14877 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
14878 		       eq->queue_id);
14879 	}
14880 	switch (cq->entry_count) {
14881 	case 2048:
14882 	case 4096:
14883 		if (phba->sli4_hba.pc_sli4_params.cqv ==
14884 		    LPFC_Q_CREATE_VERSION_2) {
14885 			cq_create->u.request.context.lpfc_cq_context_count =
14886 				cq->entry_count;
14887 			bf_set(lpfc_cq_context_count,
14888 			       &cq_create->u.request.context,
14889 			       LPFC_CQ_CNT_WORD7);
14890 			break;
14891 		}
14892 		/* Fall Thru */
14893 	default:
14894 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14895 				"0361 Unsupported CQ count: "
14896 				"entry cnt %d sz %d pg cnt %d\n",
14897 				cq->entry_count, cq->entry_size,
14898 				cq->page_count);
14899 		if (cq->entry_count < 256) {
14900 			status = -EINVAL;
14901 			goto out;
14902 		}
14903 		/* otherwise default to smallest count (drop through) */
14904 	case 256:
14905 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14906 		       LPFC_CQ_CNT_256);
14907 		break;
14908 	case 512:
14909 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14910 		       LPFC_CQ_CNT_512);
14911 		break;
14912 	case 1024:
14913 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
14914 		       LPFC_CQ_CNT_1024);
14915 		break;
14916 	}
14917 	list_for_each_entry(dmabuf, &cq->page_list, list) {
14918 		memset(dmabuf->virt, 0, cq->page_size);
14919 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14920 					putPaddrLow(dmabuf->phys);
14921 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14922 					putPaddrHigh(dmabuf->phys);
14923 	}
14924 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14925 
14926 	/* The IOCTL status is embedded in the mailbox subheader. */
14927 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14928 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14929 	if (shdr_status || shdr_add_status || rc) {
14930 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14931 				"2501 CQ_CREATE mailbox failed with "
14932 				"status x%x add_status x%x, mbx status x%x\n",
14933 				shdr_status, shdr_add_status, rc);
14934 		status = -ENXIO;
14935 		goto out;
14936 	}
14937 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14938 	if (cq->queue_id == 0xFFFF) {
14939 		status = -ENXIO;
14940 		goto out;
14941 	}
14942 	/* link the cq onto the parent eq child list */
14943 	list_add_tail(&cq->list, &eq->child_list);
14944 	/* Set up completion queue's type and subtype */
14945 	cq->type = type;
14946 	cq->subtype = subtype;
14947 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
14948 	cq->assoc_qid = eq->queue_id;
14949 	cq->host_index = 0;
14950 	cq->hba_index = 0;
14951 	cq->entry_repost = LPFC_CQ_REPOST;
14952 
14953 out:
14954 	mempool_free(mbox, phba->mbox_mem_pool);
14955 	return status;
14956 }
14957 
14958 /**
14959  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
14960  * @phba: HBA structure that indicates port to create a queue on.
14961  * @cqp: The queue structure array to use to create the completion queues.
14962  * @eqp: The event queue array to bind these completion queues to.
14963  *
14964  * This function creates a set of  completion queue, s to support MRQ
14965  * as detailed in @cqp, on a port,
14966  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
14967  *
14968  * The @phba struct is used to send mailbox command to HBA. The @cq struct
14969  * is used to get the entry count and entry size that are necessary to
14970  * determine the number of pages to allocate and use for this queue. The @eq
14971  * is used to indicate which event queue to bind this completion queue to. This
14972  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
14973  * completion queue. This function is asynchronous and will wait for the mailbox
14974  * command to finish before continuing.
14975  *
14976  * On success this function will return a zero. If unable to allocate enough
14977  * memory this function will return -ENOMEM. If the queue create mailbox command
14978  * fails this function will return -ENXIO.
14979  **/
14980 int
14981 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
14982 		   struct lpfc_queue **eqp, uint32_t type, uint32_t subtype)
14983 {
14984 	struct lpfc_queue *cq;
14985 	struct lpfc_queue *eq;
14986 	struct lpfc_mbx_cq_create_set *cq_set;
14987 	struct lpfc_dmabuf *dmabuf;
14988 	LPFC_MBOXQ_t *mbox;
14989 	int rc, length, alloclen, status = 0;
14990 	int cnt, idx, numcq, page_idx = 0;
14991 	uint32_t shdr_status, shdr_add_status;
14992 	union lpfc_sli4_cfg_shdr *shdr;
14993 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14994 
14995 	/* sanity check on queue memory */
14996 	numcq = phba->cfg_nvmet_mrq;
14997 	if (!cqp || !eqp || !numcq)
14998 		return -ENODEV;
14999 
15000 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15001 	if (!mbox)
15002 		return -ENOMEM;
15003 
15004 	length = sizeof(struct lpfc_mbx_cq_create_set);
15005 	length += ((numcq * cqp[0]->page_count) *
15006 		   sizeof(struct dma_address));
15007 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15008 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15009 			LPFC_SLI4_MBX_NEMBED);
15010 	if (alloclen < length) {
15011 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15012 				"3098 Allocated DMA memory size (%d) is "
15013 				"less than the requested DMA memory size "
15014 				"(%d)\n", alloclen, length);
15015 		status = -ENOMEM;
15016 		goto out;
15017 	}
15018 	cq_set = mbox->sge_array->addr[0];
15019 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15020 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15021 
15022 	for (idx = 0; idx < numcq; idx++) {
15023 		cq = cqp[idx];
15024 		eq = eqp[idx];
15025 		if (!cq || !eq) {
15026 			status = -ENOMEM;
15027 			goto out;
15028 		}
15029 		if (!phba->sli4_hba.pc_sli4_params.supported)
15030 			hw_page_size = cq->page_size;
15031 
15032 		switch (idx) {
15033 		case 0:
15034 			bf_set(lpfc_mbx_cq_create_set_page_size,
15035 			       &cq_set->u.request,
15036 			       (hw_page_size / SLI4_PAGE_SIZE));
15037 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15038 			       &cq_set->u.request, cq->page_count);
15039 			bf_set(lpfc_mbx_cq_create_set_evt,
15040 			       &cq_set->u.request, 1);
15041 			bf_set(lpfc_mbx_cq_create_set_valid,
15042 			       &cq_set->u.request, 1);
15043 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15044 			       &cq_set->u.request, 0);
15045 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15046 			       &cq_set->u.request, numcq);
15047 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15048 			       &cq_set->u.request,
15049 			       phba->sli4_hba.pc_sli4_params.cqav);
15050 			switch (cq->entry_count) {
15051 			case 2048:
15052 			case 4096:
15053 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15054 				    LPFC_Q_CREATE_VERSION_2) {
15055 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15056 					       &cq_set->u.request,
15057 						cq->entry_count);
15058 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15059 					       &cq_set->u.request,
15060 					       LPFC_CQ_CNT_WORD7);
15061 					break;
15062 				}
15063 				/* Fall Thru */
15064 			default:
15065 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15066 						"3118 Bad CQ count. (%d)\n",
15067 						cq->entry_count);
15068 				if (cq->entry_count < 256) {
15069 					status = -EINVAL;
15070 					goto out;
15071 				}
15072 				/* otherwise default to smallest (drop thru) */
15073 			case 256:
15074 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15075 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15076 				break;
15077 			case 512:
15078 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15079 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15080 				break;
15081 			case 1024:
15082 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15083 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15084 				break;
15085 			}
15086 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15087 			       &cq_set->u.request, eq->queue_id);
15088 			break;
15089 		case 1:
15090 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15091 			       &cq_set->u.request, eq->queue_id);
15092 			break;
15093 		case 2:
15094 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15095 			       &cq_set->u.request, eq->queue_id);
15096 			break;
15097 		case 3:
15098 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15099 			       &cq_set->u.request, eq->queue_id);
15100 			break;
15101 		case 4:
15102 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15103 			       &cq_set->u.request, eq->queue_id);
15104 			break;
15105 		case 5:
15106 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15107 			       &cq_set->u.request, eq->queue_id);
15108 			break;
15109 		case 6:
15110 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15111 			       &cq_set->u.request, eq->queue_id);
15112 			break;
15113 		case 7:
15114 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15115 			       &cq_set->u.request, eq->queue_id);
15116 			break;
15117 		case 8:
15118 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15119 			       &cq_set->u.request, eq->queue_id);
15120 			break;
15121 		case 9:
15122 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15123 			       &cq_set->u.request, eq->queue_id);
15124 			break;
15125 		case 10:
15126 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15127 			       &cq_set->u.request, eq->queue_id);
15128 			break;
15129 		case 11:
15130 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15131 			       &cq_set->u.request, eq->queue_id);
15132 			break;
15133 		case 12:
15134 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15135 			       &cq_set->u.request, eq->queue_id);
15136 			break;
15137 		case 13:
15138 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15139 			       &cq_set->u.request, eq->queue_id);
15140 			break;
15141 		case 14:
15142 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15143 			       &cq_set->u.request, eq->queue_id);
15144 			break;
15145 		case 15:
15146 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15147 			       &cq_set->u.request, eq->queue_id);
15148 			break;
15149 		}
15150 
15151 		/* link the cq onto the parent eq child list */
15152 		list_add_tail(&cq->list, &eq->child_list);
15153 		/* Set up completion queue's type and subtype */
15154 		cq->type = type;
15155 		cq->subtype = subtype;
15156 		cq->assoc_qid = eq->queue_id;
15157 		cq->host_index = 0;
15158 		cq->hba_index = 0;
15159 		cq->entry_repost = LPFC_CQ_REPOST;
15160 		cq->chann = idx;
15161 
15162 		rc = 0;
15163 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15164 			memset(dmabuf->virt, 0, hw_page_size);
15165 			cnt = page_idx + dmabuf->buffer_tag;
15166 			cq_set->u.request.page[cnt].addr_lo =
15167 					putPaddrLow(dmabuf->phys);
15168 			cq_set->u.request.page[cnt].addr_hi =
15169 					putPaddrHigh(dmabuf->phys);
15170 			rc++;
15171 		}
15172 		page_idx += rc;
15173 	}
15174 
15175 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15176 
15177 	/* The IOCTL status is embedded in the mailbox subheader. */
15178 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15179 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15180 	if (shdr_status || shdr_add_status || rc) {
15181 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15182 				"3119 CQ_CREATE_SET mailbox failed with "
15183 				"status x%x add_status x%x, mbx status x%x\n",
15184 				shdr_status, shdr_add_status, rc);
15185 		status = -ENXIO;
15186 		goto out;
15187 	}
15188 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15189 	if (rc == 0xFFFF) {
15190 		status = -ENXIO;
15191 		goto out;
15192 	}
15193 
15194 	for (idx = 0; idx < numcq; idx++) {
15195 		cq = cqp[idx];
15196 		cq->queue_id = rc + idx;
15197 	}
15198 
15199 out:
15200 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15201 	return status;
15202 }
15203 
15204 /**
15205  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15206  * @phba: HBA structure that indicates port to create a queue on.
15207  * @mq: The queue structure to use to create the mailbox queue.
15208  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15209  * @cq: The completion queue to associate with this cq.
15210  *
15211  * This function provides failback (fb) functionality when the
15212  * mq_create_ext fails on older FW generations.  It's purpose is identical
15213  * to mq_create_ext otherwise.
15214  *
15215  * This routine cannot fail as all attributes were previously accessed and
15216  * initialized in mq_create_ext.
15217  **/
15218 static void
15219 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15220 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15221 {
15222 	struct lpfc_mbx_mq_create *mq_create;
15223 	struct lpfc_dmabuf *dmabuf;
15224 	int length;
15225 
15226 	length = (sizeof(struct lpfc_mbx_mq_create) -
15227 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15228 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15229 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15230 			 length, LPFC_SLI4_MBX_EMBED);
15231 	mq_create = &mbox->u.mqe.un.mq_create;
15232 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15233 	       mq->page_count);
15234 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15235 	       cq->queue_id);
15236 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15237 	switch (mq->entry_count) {
15238 	case 16:
15239 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15240 		       LPFC_MQ_RING_SIZE_16);
15241 		break;
15242 	case 32:
15243 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15244 		       LPFC_MQ_RING_SIZE_32);
15245 		break;
15246 	case 64:
15247 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15248 		       LPFC_MQ_RING_SIZE_64);
15249 		break;
15250 	case 128:
15251 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15252 		       LPFC_MQ_RING_SIZE_128);
15253 		break;
15254 	}
15255 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15256 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15257 			putPaddrLow(dmabuf->phys);
15258 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15259 			putPaddrHigh(dmabuf->phys);
15260 	}
15261 }
15262 
15263 /**
15264  * lpfc_mq_create - Create a mailbox Queue on the HBA
15265  * @phba: HBA structure that indicates port to create a queue on.
15266  * @mq: The queue structure to use to create the mailbox queue.
15267  * @cq: The completion queue to associate with this cq.
15268  * @subtype: The queue's subtype.
15269  *
15270  * This function creates a mailbox queue, as detailed in @mq, on a port,
15271  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15272  *
15273  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15274  * is used to get the entry count and entry size that are necessary to
15275  * determine the number of pages to allocate and use for this queue. This
15276  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15277  * mailbox queue. This function is asynchronous and will wait for the mailbox
15278  * command to finish before continuing.
15279  *
15280  * On success this function will return a zero. If unable to allocate enough
15281  * memory this function will return -ENOMEM. If the queue create mailbox command
15282  * fails this function will return -ENXIO.
15283  **/
15284 int32_t
15285 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15286 	       struct lpfc_queue *cq, uint32_t subtype)
15287 {
15288 	struct lpfc_mbx_mq_create *mq_create;
15289 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15290 	struct lpfc_dmabuf *dmabuf;
15291 	LPFC_MBOXQ_t *mbox;
15292 	int rc, length, status = 0;
15293 	uint32_t shdr_status, shdr_add_status;
15294 	union lpfc_sli4_cfg_shdr *shdr;
15295 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15296 
15297 	/* sanity check on queue memory */
15298 	if (!mq || !cq)
15299 		return -ENODEV;
15300 	if (!phba->sli4_hba.pc_sli4_params.supported)
15301 		hw_page_size = SLI4_PAGE_SIZE;
15302 
15303 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15304 	if (!mbox)
15305 		return -ENOMEM;
15306 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15307 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15308 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15309 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15310 			 length, LPFC_SLI4_MBX_EMBED);
15311 
15312 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15313 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15314 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15315 	       &mq_create_ext->u.request, mq->page_count);
15316 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15317 	       &mq_create_ext->u.request, 1);
15318 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15319 	       &mq_create_ext->u.request, 1);
15320 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15321 	       &mq_create_ext->u.request, 1);
15322 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15323 	       &mq_create_ext->u.request, 1);
15324 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15325 	       &mq_create_ext->u.request, 1);
15326 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15327 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15328 	       phba->sli4_hba.pc_sli4_params.mqv);
15329 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15330 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15331 		       cq->queue_id);
15332 	else
15333 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15334 		       cq->queue_id);
15335 	switch (mq->entry_count) {
15336 	default:
15337 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15338 				"0362 Unsupported MQ count. (%d)\n",
15339 				mq->entry_count);
15340 		if (mq->entry_count < 16) {
15341 			status = -EINVAL;
15342 			goto out;
15343 		}
15344 		/* otherwise default to smallest count (drop through) */
15345 	case 16:
15346 		bf_set(lpfc_mq_context_ring_size,
15347 		       &mq_create_ext->u.request.context,
15348 		       LPFC_MQ_RING_SIZE_16);
15349 		break;
15350 	case 32:
15351 		bf_set(lpfc_mq_context_ring_size,
15352 		       &mq_create_ext->u.request.context,
15353 		       LPFC_MQ_RING_SIZE_32);
15354 		break;
15355 	case 64:
15356 		bf_set(lpfc_mq_context_ring_size,
15357 		       &mq_create_ext->u.request.context,
15358 		       LPFC_MQ_RING_SIZE_64);
15359 		break;
15360 	case 128:
15361 		bf_set(lpfc_mq_context_ring_size,
15362 		       &mq_create_ext->u.request.context,
15363 		       LPFC_MQ_RING_SIZE_128);
15364 		break;
15365 	}
15366 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15367 		memset(dmabuf->virt, 0, hw_page_size);
15368 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15369 					putPaddrLow(dmabuf->phys);
15370 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15371 					putPaddrHigh(dmabuf->phys);
15372 	}
15373 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15374 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15375 			      &mq_create_ext->u.response);
15376 	if (rc != MBX_SUCCESS) {
15377 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15378 				"2795 MQ_CREATE_EXT failed with "
15379 				"status x%x. Failback to MQ_CREATE.\n",
15380 				rc);
15381 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15382 		mq_create = &mbox->u.mqe.un.mq_create;
15383 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15384 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15385 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15386 				      &mq_create->u.response);
15387 	}
15388 
15389 	/* The IOCTL status is embedded in the mailbox subheader. */
15390 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15391 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15392 	if (shdr_status || shdr_add_status || rc) {
15393 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15394 				"2502 MQ_CREATE mailbox failed with "
15395 				"status x%x add_status x%x, mbx status x%x\n",
15396 				shdr_status, shdr_add_status, rc);
15397 		status = -ENXIO;
15398 		goto out;
15399 	}
15400 	if (mq->queue_id == 0xFFFF) {
15401 		status = -ENXIO;
15402 		goto out;
15403 	}
15404 	mq->type = LPFC_MQ;
15405 	mq->assoc_qid = cq->queue_id;
15406 	mq->subtype = subtype;
15407 	mq->host_index = 0;
15408 	mq->hba_index = 0;
15409 	mq->entry_repost = LPFC_MQ_REPOST;
15410 
15411 	/* link the mq onto the parent cq child list */
15412 	list_add_tail(&mq->list, &cq->child_list);
15413 out:
15414 	mempool_free(mbox, phba->mbox_mem_pool);
15415 	return status;
15416 }
15417 
15418 /**
15419  * lpfc_wq_create - Create a Work Queue on the HBA
15420  * @phba: HBA structure that indicates port to create a queue on.
15421  * @wq: The queue structure to use to create the work queue.
15422  * @cq: The completion queue to bind this work queue to.
15423  * @subtype: The subtype of the work queue indicating its functionality.
15424  *
15425  * This function creates a work queue, as detailed in @wq, on a port, described
15426  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15427  *
15428  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15429  * is used to get the entry count and entry size that are necessary to
15430  * determine the number of pages to allocate and use for this queue. The @cq
15431  * is used to indicate which completion queue to bind this work queue to. This
15432  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15433  * work queue. This function is asynchronous and will wait for the mailbox
15434  * command to finish before continuing.
15435  *
15436  * On success this function will return a zero. If unable to allocate enough
15437  * memory this function will return -ENOMEM. If the queue create mailbox command
15438  * fails this function will return -ENXIO.
15439  **/
15440 int
15441 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15442 	       struct lpfc_queue *cq, uint32_t subtype)
15443 {
15444 	struct lpfc_mbx_wq_create *wq_create;
15445 	struct lpfc_dmabuf *dmabuf;
15446 	LPFC_MBOXQ_t *mbox;
15447 	int rc, length, status = 0;
15448 	uint32_t shdr_status, shdr_add_status;
15449 	union lpfc_sli4_cfg_shdr *shdr;
15450 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15451 	struct dma_address *page;
15452 	void __iomem *bar_memmap_p;
15453 	uint32_t db_offset;
15454 	uint16_t pci_barset;
15455 	uint8_t dpp_barset;
15456 	uint32_t dpp_offset;
15457 	unsigned long pg_addr;
15458 	uint8_t wq_create_version;
15459 
15460 	/* sanity check on queue memory */
15461 	if (!wq || !cq)
15462 		return -ENODEV;
15463 	if (!phba->sli4_hba.pc_sli4_params.supported)
15464 		hw_page_size = wq->page_size;
15465 
15466 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15467 	if (!mbox)
15468 		return -ENOMEM;
15469 	length = (sizeof(struct lpfc_mbx_wq_create) -
15470 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15471 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15472 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15473 			 length, LPFC_SLI4_MBX_EMBED);
15474 	wq_create = &mbox->u.mqe.un.wq_create;
15475 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15476 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15477 		    wq->page_count);
15478 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15479 		    cq->queue_id);
15480 
15481 	/* wqv is the earliest version supported, NOT the latest */
15482 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15483 	       phba->sli4_hba.pc_sli4_params.wqv);
15484 
15485 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15486 	    (wq->page_size > SLI4_PAGE_SIZE))
15487 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15488 	else
15489 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15490 
15491 
15492 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15493 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15494 	else
15495 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15496 
15497 	switch (wq_create_version) {
15498 	case LPFC_Q_CREATE_VERSION_1:
15499 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15500 		       wq->entry_count);
15501 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15502 		       LPFC_Q_CREATE_VERSION_1);
15503 
15504 		switch (wq->entry_size) {
15505 		default:
15506 		case 64:
15507 			bf_set(lpfc_mbx_wq_create_wqe_size,
15508 			       &wq_create->u.request_1,
15509 			       LPFC_WQ_WQE_SIZE_64);
15510 			break;
15511 		case 128:
15512 			bf_set(lpfc_mbx_wq_create_wqe_size,
15513 			       &wq_create->u.request_1,
15514 			       LPFC_WQ_WQE_SIZE_128);
15515 			break;
15516 		}
15517 		/* Request DPP by default */
15518 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15519 		bf_set(lpfc_mbx_wq_create_page_size,
15520 		       &wq_create->u.request_1,
15521 		       (wq->page_size / SLI4_PAGE_SIZE));
15522 		page = wq_create->u.request_1.page;
15523 		break;
15524 	default:
15525 		page = wq_create->u.request.page;
15526 		break;
15527 	}
15528 
15529 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15530 		memset(dmabuf->virt, 0, hw_page_size);
15531 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15532 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15533 	}
15534 
15535 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15536 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15537 
15538 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15539 	/* The IOCTL status is embedded in the mailbox subheader. */
15540 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15541 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15542 	if (shdr_status || shdr_add_status || rc) {
15543 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15544 				"2503 WQ_CREATE mailbox failed with "
15545 				"status x%x add_status x%x, mbx status x%x\n",
15546 				shdr_status, shdr_add_status, rc);
15547 		status = -ENXIO;
15548 		goto out;
15549 	}
15550 
15551 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15552 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15553 					&wq_create->u.response);
15554 	else
15555 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15556 					&wq_create->u.response_1);
15557 
15558 	if (wq->queue_id == 0xFFFF) {
15559 		status = -ENXIO;
15560 		goto out;
15561 	}
15562 
15563 	wq->db_format = LPFC_DB_LIST_FORMAT;
15564 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15565 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15566 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15567 					       &wq_create->u.response);
15568 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15569 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15570 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15571 						"3265 WQ[%d] doorbell format "
15572 						"not supported: x%x\n",
15573 						wq->queue_id, wq->db_format);
15574 				status = -EINVAL;
15575 				goto out;
15576 			}
15577 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15578 					    &wq_create->u.response);
15579 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15580 								   pci_barset);
15581 			if (!bar_memmap_p) {
15582 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15583 						"3263 WQ[%d] failed to memmap "
15584 						"pci barset:x%x\n",
15585 						wq->queue_id, pci_barset);
15586 				status = -ENOMEM;
15587 				goto out;
15588 			}
15589 			db_offset = wq_create->u.response.doorbell_offset;
15590 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15591 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15592 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15593 						"3252 WQ[%d] doorbell offset "
15594 						"not supported: x%x\n",
15595 						wq->queue_id, db_offset);
15596 				status = -EINVAL;
15597 				goto out;
15598 			}
15599 			wq->db_regaddr = bar_memmap_p + db_offset;
15600 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15601 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15602 					"format:x%x\n", wq->queue_id,
15603 					pci_barset, db_offset, wq->db_format);
15604 		} else
15605 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15606 	} else {
15607 		/* Check if DPP was honored by the firmware */
15608 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15609 				    &wq_create->u.response_1);
15610 		if (wq->dpp_enable) {
15611 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15612 					    &wq_create->u.response_1);
15613 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15614 								   pci_barset);
15615 			if (!bar_memmap_p) {
15616 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15617 						"3267 WQ[%d] failed to memmap "
15618 						"pci barset:x%x\n",
15619 						wq->queue_id, pci_barset);
15620 				status = -ENOMEM;
15621 				goto out;
15622 			}
15623 			db_offset = wq_create->u.response_1.doorbell_offset;
15624 			wq->db_regaddr = bar_memmap_p + db_offset;
15625 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15626 					    &wq_create->u.response_1);
15627 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15628 					    &wq_create->u.response_1);
15629 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15630 								   dpp_barset);
15631 			if (!bar_memmap_p) {
15632 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15633 						"3268 WQ[%d] failed to memmap "
15634 						"pci barset:x%x\n",
15635 						wq->queue_id, dpp_barset);
15636 				status = -ENOMEM;
15637 				goto out;
15638 			}
15639 			dpp_offset = wq_create->u.response_1.dpp_offset;
15640 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15641 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15642 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15643 					"dpp_id:x%x dpp_barset:x%x "
15644 					"dpp_offset:x%x\n",
15645 					wq->queue_id, pci_barset, db_offset,
15646 					wq->dpp_id, dpp_barset, dpp_offset);
15647 
15648 			/* Enable combined writes for DPP aperture */
15649 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15650 #ifdef CONFIG_X86
15651 			rc = set_memory_wc(pg_addr, 1);
15652 			if (rc) {
15653 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15654 					"3272 Cannot setup Combined "
15655 					"Write on WQ[%d] - disable DPP\n",
15656 					wq->queue_id);
15657 				phba->cfg_enable_dpp = 0;
15658 			}
15659 #else
15660 			phba->cfg_enable_dpp = 0;
15661 #endif
15662 		} else
15663 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15664 	}
15665 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15666 	if (wq->pring == NULL) {
15667 		status = -ENOMEM;
15668 		goto out;
15669 	}
15670 	wq->type = LPFC_WQ;
15671 	wq->assoc_qid = cq->queue_id;
15672 	wq->subtype = subtype;
15673 	wq->host_index = 0;
15674 	wq->hba_index = 0;
15675 	wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
15676 
15677 	/* link the wq onto the parent cq child list */
15678 	list_add_tail(&wq->list, &cq->child_list);
15679 out:
15680 	mempool_free(mbox, phba->mbox_mem_pool);
15681 	return status;
15682 }
15683 
15684 /**
15685  * lpfc_rq_create - Create a Receive Queue on the HBA
15686  * @phba: HBA structure that indicates port to create a queue on.
15687  * @hrq: The queue structure to use to create the header receive queue.
15688  * @drq: The queue structure to use to create the data receive queue.
15689  * @cq: The completion queue to bind this work queue to.
15690  *
15691  * This function creates a receive buffer queue pair , as detailed in @hrq and
15692  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15693  * to the HBA.
15694  *
15695  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15696  * struct is used to get the entry count that is necessary to determine the
15697  * number of pages to use for this queue. The @cq is used to indicate which
15698  * completion queue to bind received buffers that are posted to these queues to.
15699  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15700  * receive queue pair. This function is asynchronous and will wait for the
15701  * mailbox command to finish before continuing.
15702  *
15703  * On success this function will return a zero. If unable to allocate enough
15704  * memory this function will return -ENOMEM. If the queue create mailbox command
15705  * fails this function will return -ENXIO.
15706  **/
15707 int
15708 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15709 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15710 {
15711 	struct lpfc_mbx_rq_create *rq_create;
15712 	struct lpfc_dmabuf *dmabuf;
15713 	LPFC_MBOXQ_t *mbox;
15714 	int rc, length, status = 0;
15715 	uint32_t shdr_status, shdr_add_status;
15716 	union lpfc_sli4_cfg_shdr *shdr;
15717 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15718 	void __iomem *bar_memmap_p;
15719 	uint32_t db_offset;
15720 	uint16_t pci_barset;
15721 
15722 	/* sanity check on queue memory */
15723 	if (!hrq || !drq || !cq)
15724 		return -ENODEV;
15725 	if (!phba->sli4_hba.pc_sli4_params.supported)
15726 		hw_page_size = SLI4_PAGE_SIZE;
15727 
15728 	if (hrq->entry_count != drq->entry_count)
15729 		return -EINVAL;
15730 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15731 	if (!mbox)
15732 		return -ENOMEM;
15733 	length = (sizeof(struct lpfc_mbx_rq_create) -
15734 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15735 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15736 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15737 			 length, LPFC_SLI4_MBX_EMBED);
15738 	rq_create = &mbox->u.mqe.un.rq_create;
15739 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15740 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15741 	       phba->sli4_hba.pc_sli4_params.rqv);
15742 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15743 		bf_set(lpfc_rq_context_rqe_count_1,
15744 		       &rq_create->u.request.context,
15745 		       hrq->entry_count);
15746 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15747 		bf_set(lpfc_rq_context_rqe_size,
15748 		       &rq_create->u.request.context,
15749 		       LPFC_RQE_SIZE_8);
15750 		bf_set(lpfc_rq_context_page_size,
15751 		       &rq_create->u.request.context,
15752 		       LPFC_RQ_PAGE_SIZE_4096);
15753 	} else {
15754 		switch (hrq->entry_count) {
15755 		default:
15756 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15757 					"2535 Unsupported RQ count. (%d)\n",
15758 					hrq->entry_count);
15759 			if (hrq->entry_count < 512) {
15760 				status = -EINVAL;
15761 				goto out;
15762 			}
15763 			/* otherwise default to smallest count (drop through) */
15764 		case 512:
15765 			bf_set(lpfc_rq_context_rqe_count,
15766 			       &rq_create->u.request.context,
15767 			       LPFC_RQ_RING_SIZE_512);
15768 			break;
15769 		case 1024:
15770 			bf_set(lpfc_rq_context_rqe_count,
15771 			       &rq_create->u.request.context,
15772 			       LPFC_RQ_RING_SIZE_1024);
15773 			break;
15774 		case 2048:
15775 			bf_set(lpfc_rq_context_rqe_count,
15776 			       &rq_create->u.request.context,
15777 			       LPFC_RQ_RING_SIZE_2048);
15778 			break;
15779 		case 4096:
15780 			bf_set(lpfc_rq_context_rqe_count,
15781 			       &rq_create->u.request.context,
15782 			       LPFC_RQ_RING_SIZE_4096);
15783 			break;
15784 		}
15785 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
15786 		       LPFC_HDR_BUF_SIZE);
15787 	}
15788 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15789 	       cq->queue_id);
15790 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15791 	       hrq->page_count);
15792 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
15793 		memset(dmabuf->virt, 0, hw_page_size);
15794 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15795 					putPaddrLow(dmabuf->phys);
15796 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15797 					putPaddrHigh(dmabuf->phys);
15798 	}
15799 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15800 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15801 
15802 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15803 	/* The IOCTL status is embedded in the mailbox subheader. */
15804 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15805 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15806 	if (shdr_status || shdr_add_status || rc) {
15807 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15808 				"2504 RQ_CREATE mailbox failed with "
15809 				"status x%x add_status x%x, mbx status x%x\n",
15810 				shdr_status, shdr_add_status, rc);
15811 		status = -ENXIO;
15812 		goto out;
15813 	}
15814 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15815 	if (hrq->queue_id == 0xFFFF) {
15816 		status = -ENXIO;
15817 		goto out;
15818 	}
15819 
15820 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15821 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
15822 					&rq_create->u.response);
15823 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
15824 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
15825 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15826 					"3262 RQ [%d] doorbell format not "
15827 					"supported: x%x\n", hrq->queue_id,
15828 					hrq->db_format);
15829 			status = -EINVAL;
15830 			goto out;
15831 		}
15832 
15833 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
15834 				    &rq_create->u.response);
15835 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
15836 		if (!bar_memmap_p) {
15837 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15838 					"3269 RQ[%d] failed to memmap pci "
15839 					"barset:x%x\n", hrq->queue_id,
15840 					pci_barset);
15841 			status = -ENOMEM;
15842 			goto out;
15843 		}
15844 
15845 		db_offset = rq_create->u.response.doorbell_offset;
15846 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
15847 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
15848 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15849 					"3270 RQ[%d] doorbell offset not "
15850 					"supported: x%x\n", hrq->queue_id,
15851 					db_offset);
15852 			status = -EINVAL;
15853 			goto out;
15854 		}
15855 		hrq->db_regaddr = bar_memmap_p + db_offset;
15856 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15857 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
15858 				"format:x%x\n", hrq->queue_id, pci_barset,
15859 				db_offset, hrq->db_format);
15860 	} else {
15861 		hrq->db_format = LPFC_DB_RING_FORMAT;
15862 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
15863 	}
15864 	hrq->type = LPFC_HRQ;
15865 	hrq->assoc_qid = cq->queue_id;
15866 	hrq->subtype = subtype;
15867 	hrq->host_index = 0;
15868 	hrq->hba_index = 0;
15869 	hrq->entry_repost = LPFC_RQ_REPOST;
15870 
15871 	/* now create the data queue */
15872 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15873 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15874 			 length, LPFC_SLI4_MBX_EMBED);
15875 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15876 	       phba->sli4_hba.pc_sli4_params.rqv);
15877 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15878 		bf_set(lpfc_rq_context_rqe_count_1,
15879 		       &rq_create->u.request.context, hrq->entry_count);
15880 		if (subtype == LPFC_NVMET)
15881 			rq_create->u.request.context.buffer_size =
15882 				LPFC_NVMET_DATA_BUF_SIZE;
15883 		else
15884 			rq_create->u.request.context.buffer_size =
15885 				LPFC_DATA_BUF_SIZE;
15886 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
15887 		       LPFC_RQE_SIZE_8);
15888 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
15889 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
15890 	} else {
15891 		switch (drq->entry_count) {
15892 		default:
15893 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15894 					"2536 Unsupported RQ count. (%d)\n",
15895 					drq->entry_count);
15896 			if (drq->entry_count < 512) {
15897 				status = -EINVAL;
15898 				goto out;
15899 			}
15900 			/* otherwise default to smallest count (drop through) */
15901 		case 512:
15902 			bf_set(lpfc_rq_context_rqe_count,
15903 			       &rq_create->u.request.context,
15904 			       LPFC_RQ_RING_SIZE_512);
15905 			break;
15906 		case 1024:
15907 			bf_set(lpfc_rq_context_rqe_count,
15908 			       &rq_create->u.request.context,
15909 			       LPFC_RQ_RING_SIZE_1024);
15910 			break;
15911 		case 2048:
15912 			bf_set(lpfc_rq_context_rqe_count,
15913 			       &rq_create->u.request.context,
15914 			       LPFC_RQ_RING_SIZE_2048);
15915 			break;
15916 		case 4096:
15917 			bf_set(lpfc_rq_context_rqe_count,
15918 			       &rq_create->u.request.context,
15919 			       LPFC_RQ_RING_SIZE_4096);
15920 			break;
15921 		}
15922 		if (subtype == LPFC_NVMET)
15923 			bf_set(lpfc_rq_context_buf_size,
15924 			       &rq_create->u.request.context,
15925 			       LPFC_NVMET_DATA_BUF_SIZE);
15926 		else
15927 			bf_set(lpfc_rq_context_buf_size,
15928 			       &rq_create->u.request.context,
15929 			       LPFC_DATA_BUF_SIZE);
15930 	}
15931 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
15932 	       cq->queue_id);
15933 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
15934 	       drq->page_count);
15935 	list_for_each_entry(dmabuf, &drq->page_list, list) {
15936 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15937 					putPaddrLow(dmabuf->phys);
15938 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15939 					putPaddrHigh(dmabuf->phys);
15940 	}
15941 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15942 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
15943 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15944 	/* The IOCTL status is embedded in the mailbox subheader. */
15945 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15946 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15947 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15948 	if (shdr_status || shdr_add_status || rc) {
15949 		status = -ENXIO;
15950 		goto out;
15951 	}
15952 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
15953 	if (drq->queue_id == 0xFFFF) {
15954 		status = -ENXIO;
15955 		goto out;
15956 	}
15957 	drq->type = LPFC_DRQ;
15958 	drq->assoc_qid = cq->queue_id;
15959 	drq->subtype = subtype;
15960 	drq->host_index = 0;
15961 	drq->hba_index = 0;
15962 	drq->entry_repost = LPFC_RQ_REPOST;
15963 
15964 	/* link the header and data RQs onto the parent cq child list */
15965 	list_add_tail(&hrq->list, &cq->child_list);
15966 	list_add_tail(&drq->list, &cq->child_list);
15967 
15968 out:
15969 	mempool_free(mbox, phba->mbox_mem_pool);
15970 	return status;
15971 }
15972 
15973 /**
15974  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
15975  * @phba: HBA structure that indicates port to create a queue on.
15976  * @hrqp: The queue structure array to use to create the header receive queues.
15977  * @drqp: The queue structure array to use to create the data receive queues.
15978  * @cqp: The completion queue array to bind these receive queues to.
15979  *
15980  * This function creates a receive buffer queue pair , as detailed in @hrq and
15981  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15982  * to the HBA.
15983  *
15984  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15985  * struct is used to get the entry count that is necessary to determine the
15986  * number of pages to use for this queue. The @cq is used to indicate which
15987  * completion queue to bind received buffers that are posted to these queues to.
15988  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15989  * receive queue pair. This function is asynchronous and will wait for the
15990  * mailbox command to finish before continuing.
15991  *
15992  * On success this function will return a zero. If unable to allocate enough
15993  * memory this function will return -ENOMEM. If the queue create mailbox command
15994  * fails this function will return -ENXIO.
15995  **/
15996 int
15997 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
15998 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
15999 		uint32_t subtype)
16000 {
16001 	struct lpfc_queue *hrq, *drq, *cq;
16002 	struct lpfc_mbx_rq_create_v2 *rq_create;
16003 	struct lpfc_dmabuf *dmabuf;
16004 	LPFC_MBOXQ_t *mbox;
16005 	int rc, length, alloclen, status = 0;
16006 	int cnt, idx, numrq, page_idx = 0;
16007 	uint32_t shdr_status, shdr_add_status;
16008 	union lpfc_sli4_cfg_shdr *shdr;
16009 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16010 
16011 	numrq = phba->cfg_nvmet_mrq;
16012 	/* sanity check on array memory */
16013 	if (!hrqp || !drqp || !cqp || !numrq)
16014 		return -ENODEV;
16015 	if (!phba->sli4_hba.pc_sli4_params.supported)
16016 		hw_page_size = SLI4_PAGE_SIZE;
16017 
16018 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16019 	if (!mbox)
16020 		return -ENOMEM;
16021 
16022 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16023 	length += ((2 * numrq * hrqp[0]->page_count) *
16024 		   sizeof(struct dma_address));
16025 
16026 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16027 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16028 				    LPFC_SLI4_MBX_NEMBED);
16029 	if (alloclen < length) {
16030 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16031 				"3099 Allocated DMA memory size (%d) is "
16032 				"less than the requested DMA memory size "
16033 				"(%d)\n", alloclen, length);
16034 		status = -ENOMEM;
16035 		goto out;
16036 	}
16037 
16038 
16039 
16040 	rq_create = mbox->sge_array->addr[0];
16041 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16042 
16043 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16044 	cnt = 0;
16045 
16046 	for (idx = 0; idx < numrq; idx++) {
16047 		hrq = hrqp[idx];
16048 		drq = drqp[idx];
16049 		cq  = cqp[idx];
16050 
16051 		/* sanity check on queue memory */
16052 		if (!hrq || !drq || !cq) {
16053 			status = -ENODEV;
16054 			goto out;
16055 		}
16056 
16057 		if (hrq->entry_count != drq->entry_count) {
16058 			status = -EINVAL;
16059 			goto out;
16060 		}
16061 
16062 		if (idx == 0) {
16063 			bf_set(lpfc_mbx_rq_create_num_pages,
16064 			       &rq_create->u.request,
16065 			       hrq->page_count);
16066 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16067 			       &rq_create->u.request, (numrq * 2));
16068 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16069 			       1);
16070 			bf_set(lpfc_rq_context_base_cq,
16071 			       &rq_create->u.request.context,
16072 			       cq->queue_id);
16073 			bf_set(lpfc_rq_context_data_size,
16074 			       &rq_create->u.request.context,
16075 			       LPFC_NVMET_DATA_BUF_SIZE);
16076 			bf_set(lpfc_rq_context_hdr_size,
16077 			       &rq_create->u.request.context,
16078 			       LPFC_HDR_BUF_SIZE);
16079 			bf_set(lpfc_rq_context_rqe_count_1,
16080 			       &rq_create->u.request.context,
16081 			       hrq->entry_count);
16082 			bf_set(lpfc_rq_context_rqe_size,
16083 			       &rq_create->u.request.context,
16084 			       LPFC_RQE_SIZE_8);
16085 			bf_set(lpfc_rq_context_page_size,
16086 			       &rq_create->u.request.context,
16087 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16088 		}
16089 		rc = 0;
16090 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16091 			memset(dmabuf->virt, 0, hw_page_size);
16092 			cnt = page_idx + dmabuf->buffer_tag;
16093 			rq_create->u.request.page[cnt].addr_lo =
16094 					putPaddrLow(dmabuf->phys);
16095 			rq_create->u.request.page[cnt].addr_hi =
16096 					putPaddrHigh(dmabuf->phys);
16097 			rc++;
16098 		}
16099 		page_idx += rc;
16100 
16101 		rc = 0;
16102 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16103 			memset(dmabuf->virt, 0, hw_page_size);
16104 			cnt = page_idx + dmabuf->buffer_tag;
16105 			rq_create->u.request.page[cnt].addr_lo =
16106 					putPaddrLow(dmabuf->phys);
16107 			rq_create->u.request.page[cnt].addr_hi =
16108 					putPaddrHigh(dmabuf->phys);
16109 			rc++;
16110 		}
16111 		page_idx += rc;
16112 
16113 		hrq->db_format = LPFC_DB_RING_FORMAT;
16114 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16115 		hrq->type = LPFC_HRQ;
16116 		hrq->assoc_qid = cq->queue_id;
16117 		hrq->subtype = subtype;
16118 		hrq->host_index = 0;
16119 		hrq->hba_index = 0;
16120 		hrq->entry_repost = LPFC_RQ_REPOST;
16121 
16122 		drq->db_format = LPFC_DB_RING_FORMAT;
16123 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16124 		drq->type = LPFC_DRQ;
16125 		drq->assoc_qid = cq->queue_id;
16126 		drq->subtype = subtype;
16127 		drq->host_index = 0;
16128 		drq->hba_index = 0;
16129 		drq->entry_repost = LPFC_RQ_REPOST;
16130 
16131 		list_add_tail(&hrq->list, &cq->child_list);
16132 		list_add_tail(&drq->list, &cq->child_list);
16133 	}
16134 
16135 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16136 	/* The IOCTL status is embedded in the mailbox subheader. */
16137 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16138 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16139 	if (shdr_status || shdr_add_status || rc) {
16140 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16141 				"3120 RQ_CREATE mailbox failed with "
16142 				"status x%x add_status x%x, mbx status x%x\n",
16143 				shdr_status, shdr_add_status, rc);
16144 		status = -ENXIO;
16145 		goto out;
16146 	}
16147 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16148 	if (rc == 0xFFFF) {
16149 		status = -ENXIO;
16150 		goto out;
16151 	}
16152 
16153 	/* Initialize all RQs with associated queue id */
16154 	for (idx = 0; idx < numrq; idx++) {
16155 		hrq = hrqp[idx];
16156 		hrq->queue_id = rc + (2 * idx);
16157 		drq = drqp[idx];
16158 		drq->queue_id = rc + (2 * idx) + 1;
16159 	}
16160 
16161 out:
16162 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16163 	return status;
16164 }
16165 
16166 /**
16167  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16168  * @eq: The queue structure associated with the queue to destroy.
16169  *
16170  * This function destroys a queue, as detailed in @eq by sending an mailbox
16171  * command, specific to the type of queue, to the HBA.
16172  *
16173  * The @eq struct is used to get the queue ID of the queue to destroy.
16174  *
16175  * On success this function will return a zero. If the queue destroy mailbox
16176  * command fails this function will return -ENXIO.
16177  **/
16178 int
16179 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16180 {
16181 	LPFC_MBOXQ_t *mbox;
16182 	int rc, length, status = 0;
16183 	uint32_t shdr_status, shdr_add_status;
16184 	union lpfc_sli4_cfg_shdr *shdr;
16185 
16186 	/* sanity check on queue memory */
16187 	if (!eq)
16188 		return -ENODEV;
16189 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16190 	if (!mbox)
16191 		return -ENOMEM;
16192 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16193 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16194 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16195 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16196 			 length, LPFC_SLI4_MBX_EMBED);
16197 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16198 	       eq->queue_id);
16199 	mbox->vport = eq->phba->pport;
16200 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16201 
16202 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16203 	/* The IOCTL status is embedded in the mailbox subheader. */
16204 	shdr = (union lpfc_sli4_cfg_shdr *)
16205 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16206 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16207 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16208 	if (shdr_status || shdr_add_status || rc) {
16209 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16210 				"2505 EQ_DESTROY mailbox failed with "
16211 				"status x%x add_status x%x, mbx status x%x\n",
16212 				shdr_status, shdr_add_status, rc);
16213 		status = -ENXIO;
16214 	}
16215 
16216 	/* Remove eq from any list */
16217 	list_del_init(&eq->list);
16218 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16219 	return status;
16220 }
16221 
16222 /**
16223  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16224  * @cq: The queue structure associated with the queue to destroy.
16225  *
16226  * This function destroys a queue, as detailed in @cq by sending an mailbox
16227  * command, specific to the type of queue, to the HBA.
16228  *
16229  * The @cq struct is used to get the queue ID of the queue to destroy.
16230  *
16231  * On success this function will return a zero. If the queue destroy mailbox
16232  * command fails this function will return -ENXIO.
16233  **/
16234 int
16235 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16236 {
16237 	LPFC_MBOXQ_t *mbox;
16238 	int rc, length, status = 0;
16239 	uint32_t shdr_status, shdr_add_status;
16240 	union lpfc_sli4_cfg_shdr *shdr;
16241 
16242 	/* sanity check on queue memory */
16243 	if (!cq)
16244 		return -ENODEV;
16245 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16246 	if (!mbox)
16247 		return -ENOMEM;
16248 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16249 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16250 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16251 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16252 			 length, LPFC_SLI4_MBX_EMBED);
16253 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16254 	       cq->queue_id);
16255 	mbox->vport = cq->phba->pport;
16256 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16257 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16258 	/* The IOCTL status is embedded in the mailbox subheader. */
16259 	shdr = (union lpfc_sli4_cfg_shdr *)
16260 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16261 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16262 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16263 	if (shdr_status || shdr_add_status || rc) {
16264 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16265 				"2506 CQ_DESTROY mailbox failed with "
16266 				"status x%x add_status x%x, mbx status x%x\n",
16267 				shdr_status, shdr_add_status, rc);
16268 		status = -ENXIO;
16269 	}
16270 	/* Remove cq from any list */
16271 	list_del_init(&cq->list);
16272 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16273 	return status;
16274 }
16275 
16276 /**
16277  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16278  * @qm: The queue structure associated with the queue to destroy.
16279  *
16280  * This function destroys a queue, as detailed in @mq by sending an mailbox
16281  * command, specific to the type of queue, to the HBA.
16282  *
16283  * The @mq struct is used to get the queue ID of the queue to destroy.
16284  *
16285  * On success this function will return a zero. If the queue destroy mailbox
16286  * command fails this function will return -ENXIO.
16287  **/
16288 int
16289 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16290 {
16291 	LPFC_MBOXQ_t *mbox;
16292 	int rc, length, status = 0;
16293 	uint32_t shdr_status, shdr_add_status;
16294 	union lpfc_sli4_cfg_shdr *shdr;
16295 
16296 	/* sanity check on queue memory */
16297 	if (!mq)
16298 		return -ENODEV;
16299 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16300 	if (!mbox)
16301 		return -ENOMEM;
16302 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16303 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16304 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16305 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16306 			 length, LPFC_SLI4_MBX_EMBED);
16307 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16308 	       mq->queue_id);
16309 	mbox->vport = mq->phba->pport;
16310 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16311 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16312 	/* The IOCTL status is embedded in the mailbox subheader. */
16313 	shdr = (union lpfc_sli4_cfg_shdr *)
16314 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16315 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16316 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16317 	if (shdr_status || shdr_add_status || rc) {
16318 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16319 				"2507 MQ_DESTROY mailbox failed with "
16320 				"status x%x add_status x%x, mbx status x%x\n",
16321 				shdr_status, shdr_add_status, rc);
16322 		status = -ENXIO;
16323 	}
16324 	/* Remove mq from any list */
16325 	list_del_init(&mq->list);
16326 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16327 	return status;
16328 }
16329 
16330 /**
16331  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16332  * @wq: The queue structure associated with the queue to destroy.
16333  *
16334  * This function destroys a queue, as detailed in @wq by sending an mailbox
16335  * command, specific to the type of queue, to the HBA.
16336  *
16337  * The @wq struct is used to get the queue ID of the queue to destroy.
16338  *
16339  * On success this function will return a zero. If the queue destroy mailbox
16340  * command fails this function will return -ENXIO.
16341  **/
16342 int
16343 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16344 {
16345 	LPFC_MBOXQ_t *mbox;
16346 	int rc, length, status = 0;
16347 	uint32_t shdr_status, shdr_add_status;
16348 	union lpfc_sli4_cfg_shdr *shdr;
16349 
16350 	/* sanity check on queue memory */
16351 	if (!wq)
16352 		return -ENODEV;
16353 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16354 	if (!mbox)
16355 		return -ENOMEM;
16356 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16357 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16358 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16359 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16360 			 length, LPFC_SLI4_MBX_EMBED);
16361 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16362 	       wq->queue_id);
16363 	mbox->vport = wq->phba->pport;
16364 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16365 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16366 	shdr = (union lpfc_sli4_cfg_shdr *)
16367 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16368 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16369 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16370 	if (shdr_status || shdr_add_status || rc) {
16371 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16372 				"2508 WQ_DESTROY mailbox failed with "
16373 				"status x%x add_status x%x, mbx status x%x\n",
16374 				shdr_status, shdr_add_status, rc);
16375 		status = -ENXIO;
16376 	}
16377 	/* Remove wq from any list */
16378 	list_del_init(&wq->list);
16379 	kfree(wq->pring);
16380 	wq->pring = NULL;
16381 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16382 	return status;
16383 }
16384 
16385 /**
16386  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16387  * @rq: The queue structure associated with the queue to destroy.
16388  *
16389  * This function destroys a queue, as detailed in @rq by sending an mailbox
16390  * command, specific to the type of queue, to the HBA.
16391  *
16392  * The @rq struct is used to get the queue ID of the queue to destroy.
16393  *
16394  * On success this function will return a zero. If the queue destroy mailbox
16395  * command fails this function will return -ENXIO.
16396  **/
16397 int
16398 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16399 		struct lpfc_queue *drq)
16400 {
16401 	LPFC_MBOXQ_t *mbox;
16402 	int rc, length, status = 0;
16403 	uint32_t shdr_status, shdr_add_status;
16404 	union lpfc_sli4_cfg_shdr *shdr;
16405 
16406 	/* sanity check on queue memory */
16407 	if (!hrq || !drq)
16408 		return -ENODEV;
16409 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16410 	if (!mbox)
16411 		return -ENOMEM;
16412 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16413 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16414 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16415 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16416 			 length, LPFC_SLI4_MBX_EMBED);
16417 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16418 	       hrq->queue_id);
16419 	mbox->vport = hrq->phba->pport;
16420 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16421 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16422 	/* The IOCTL status is embedded in the mailbox subheader. */
16423 	shdr = (union lpfc_sli4_cfg_shdr *)
16424 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16425 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16426 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16427 	if (shdr_status || shdr_add_status || rc) {
16428 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16429 				"2509 RQ_DESTROY mailbox failed with "
16430 				"status x%x add_status x%x, mbx status x%x\n",
16431 				shdr_status, shdr_add_status, rc);
16432 		if (rc != MBX_TIMEOUT)
16433 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16434 		return -ENXIO;
16435 	}
16436 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16437 	       drq->queue_id);
16438 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16439 	shdr = (union lpfc_sli4_cfg_shdr *)
16440 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16441 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16442 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16443 	if (shdr_status || shdr_add_status || rc) {
16444 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16445 				"2510 RQ_DESTROY mailbox failed with "
16446 				"status x%x add_status x%x, mbx status x%x\n",
16447 				shdr_status, shdr_add_status, rc);
16448 		status = -ENXIO;
16449 	}
16450 	list_del_init(&hrq->list);
16451 	list_del_init(&drq->list);
16452 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16453 	return status;
16454 }
16455 
16456 /**
16457  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16458  * @phba: The virtual port for which this call being executed.
16459  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16460  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16461  * @xritag: the xritag that ties this io to the SGL pages.
16462  *
16463  * This routine will post the sgl pages for the IO that has the xritag
16464  * that is in the iocbq structure. The xritag is assigned during iocbq
16465  * creation and persists for as long as the driver is loaded.
16466  * if the caller has fewer than 256 scatter gather segments to map then
16467  * pdma_phys_addr1 should be 0.
16468  * If the caller needs to map more than 256 scatter gather segment then
16469  * pdma_phys_addr1 should be a valid physical address.
16470  * physical address for SGLs must be 64 byte aligned.
16471  * If you are going to map 2 SGL's then the first one must have 256 entries
16472  * the second sgl can have between 1 and 256 entries.
16473  *
16474  * Return codes:
16475  * 	0 - Success
16476  * 	-ENXIO, -ENOMEM - Failure
16477  **/
16478 int
16479 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16480 		dma_addr_t pdma_phys_addr0,
16481 		dma_addr_t pdma_phys_addr1,
16482 		uint16_t xritag)
16483 {
16484 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16485 	LPFC_MBOXQ_t *mbox;
16486 	int rc;
16487 	uint32_t shdr_status, shdr_add_status;
16488 	uint32_t mbox_tmo;
16489 	union lpfc_sli4_cfg_shdr *shdr;
16490 
16491 	if (xritag == NO_XRI) {
16492 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16493 				"0364 Invalid param:\n");
16494 		return -EINVAL;
16495 	}
16496 
16497 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16498 	if (!mbox)
16499 		return -ENOMEM;
16500 
16501 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16502 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16503 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16504 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16505 
16506 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16507 				&mbox->u.mqe.un.post_sgl_pages;
16508 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16509 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16510 
16511 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16512 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16513 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16514 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16515 
16516 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16517 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16518 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16519 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16520 	if (!phba->sli4_hba.intr_enable)
16521 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16522 	else {
16523 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16524 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16525 	}
16526 	/* The IOCTL status is embedded in the mailbox subheader. */
16527 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16528 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16529 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16530 	if (rc != MBX_TIMEOUT)
16531 		mempool_free(mbox, phba->mbox_mem_pool);
16532 	if (shdr_status || shdr_add_status || rc) {
16533 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16534 				"2511 POST_SGL mailbox failed with "
16535 				"status x%x add_status x%x, mbx status x%x\n",
16536 				shdr_status, shdr_add_status, rc);
16537 	}
16538 	return 0;
16539 }
16540 
16541 /**
16542  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16543  * @phba: pointer to lpfc hba data structure.
16544  *
16545  * This routine is invoked to post rpi header templates to the
16546  * HBA consistent with the SLI-4 interface spec.  This routine
16547  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16548  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16549  *
16550  * Returns
16551  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16552  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16553  **/
16554 static uint16_t
16555 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16556 {
16557 	unsigned long xri;
16558 
16559 	/*
16560 	 * Fetch the next logical xri.  Because this index is logical,
16561 	 * the driver starts at 0 each time.
16562 	 */
16563 	spin_lock_irq(&phba->hbalock);
16564 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16565 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16566 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16567 		spin_unlock_irq(&phba->hbalock);
16568 		return NO_XRI;
16569 	} else {
16570 		set_bit(xri, phba->sli4_hba.xri_bmask);
16571 		phba->sli4_hba.max_cfg_param.xri_used++;
16572 	}
16573 	spin_unlock_irq(&phba->hbalock);
16574 	return xri;
16575 }
16576 
16577 /**
16578  * lpfc_sli4_free_xri - Release an xri for reuse.
16579  * @phba: pointer to lpfc hba data structure.
16580  *
16581  * This routine is invoked to release an xri to the pool of
16582  * available rpis maintained by the driver.
16583  **/
16584 static void
16585 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16586 {
16587 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16588 		phba->sli4_hba.max_cfg_param.xri_used--;
16589 	}
16590 }
16591 
16592 /**
16593  * lpfc_sli4_free_xri - Release an xri for reuse.
16594  * @phba: pointer to lpfc hba data structure.
16595  *
16596  * This routine is invoked to release an xri to the pool of
16597  * available rpis maintained by the driver.
16598  **/
16599 void
16600 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16601 {
16602 	spin_lock_irq(&phba->hbalock);
16603 	__lpfc_sli4_free_xri(phba, xri);
16604 	spin_unlock_irq(&phba->hbalock);
16605 }
16606 
16607 /**
16608  * lpfc_sli4_next_xritag - Get an xritag for the io
16609  * @phba: Pointer to HBA context object.
16610  *
16611  * This function gets an xritag for the iocb. If there is no unused xritag
16612  * it will return 0xffff.
16613  * The function returns the allocated xritag if successful, else returns zero.
16614  * Zero is not a valid xritag.
16615  * The caller is not required to hold any lock.
16616  **/
16617 uint16_t
16618 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16619 {
16620 	uint16_t xri_index;
16621 
16622 	xri_index = lpfc_sli4_alloc_xri(phba);
16623 	if (xri_index == NO_XRI)
16624 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16625 				"2004 Failed to allocate XRI.last XRITAG is %d"
16626 				" Max XRI is %d, Used XRI is %d\n",
16627 				xri_index,
16628 				phba->sli4_hba.max_cfg_param.max_xri,
16629 				phba->sli4_hba.max_cfg_param.xri_used);
16630 	return xri_index;
16631 }
16632 
16633 /**
16634  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16635  * @phba: pointer to lpfc hba data structure.
16636  * @post_sgl_list: pointer to els sgl entry list.
16637  * @count: number of els sgl entries on the list.
16638  *
16639  * This routine is invoked to post a block of driver's sgl pages to the
16640  * HBA using non-embedded mailbox command. No Lock is held. This routine
16641  * is only called when the driver is loading and after all IO has been
16642  * stopped.
16643  **/
16644 static int
16645 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16646 			    struct list_head *post_sgl_list,
16647 			    int post_cnt)
16648 {
16649 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16650 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16651 	struct sgl_page_pairs *sgl_pg_pairs;
16652 	void *viraddr;
16653 	LPFC_MBOXQ_t *mbox;
16654 	uint32_t reqlen, alloclen, pg_pairs;
16655 	uint32_t mbox_tmo;
16656 	uint16_t xritag_start = 0;
16657 	int rc = 0;
16658 	uint32_t shdr_status, shdr_add_status;
16659 	union lpfc_sli4_cfg_shdr *shdr;
16660 
16661 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16662 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16663 	if (reqlen > SLI4_PAGE_SIZE) {
16664 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16665 				"2559 Block sgl registration required DMA "
16666 				"size (%d) great than a page\n", reqlen);
16667 		return -ENOMEM;
16668 	}
16669 
16670 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16671 	if (!mbox)
16672 		return -ENOMEM;
16673 
16674 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16675 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16676 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16677 			 LPFC_SLI4_MBX_NEMBED);
16678 
16679 	if (alloclen < reqlen) {
16680 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16681 				"0285 Allocated DMA memory size (%d) is "
16682 				"less than the requested DMA memory "
16683 				"size (%d)\n", alloclen, reqlen);
16684 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16685 		return -ENOMEM;
16686 	}
16687 	/* Set up the SGL pages in the non-embedded DMA pages */
16688 	viraddr = mbox->sge_array->addr[0];
16689 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16690 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16691 
16692 	pg_pairs = 0;
16693 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16694 		/* Set up the sge entry */
16695 		sgl_pg_pairs->sgl_pg0_addr_lo =
16696 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16697 		sgl_pg_pairs->sgl_pg0_addr_hi =
16698 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16699 		sgl_pg_pairs->sgl_pg1_addr_lo =
16700 				cpu_to_le32(putPaddrLow(0));
16701 		sgl_pg_pairs->sgl_pg1_addr_hi =
16702 				cpu_to_le32(putPaddrHigh(0));
16703 
16704 		/* Keep the first xritag on the list */
16705 		if (pg_pairs == 0)
16706 			xritag_start = sglq_entry->sli4_xritag;
16707 		sgl_pg_pairs++;
16708 		pg_pairs++;
16709 	}
16710 
16711 	/* Complete initialization and perform endian conversion. */
16712 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16713 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16714 	sgl->word0 = cpu_to_le32(sgl->word0);
16715 
16716 	if (!phba->sli4_hba.intr_enable)
16717 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16718 	else {
16719 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16720 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16721 	}
16722 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16723 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16724 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16725 	if (rc != MBX_TIMEOUT)
16726 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16727 	if (shdr_status || shdr_add_status || rc) {
16728 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16729 				"2513 POST_SGL_BLOCK mailbox command failed "
16730 				"status x%x add_status x%x mbx status x%x\n",
16731 				shdr_status, shdr_add_status, rc);
16732 		rc = -ENXIO;
16733 	}
16734 	return rc;
16735 }
16736 
16737 /**
16738  * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
16739  * @phba: pointer to lpfc hba data structure.
16740  * @sblist: pointer to scsi buffer list.
16741  * @count: number of scsi buffers on the list.
16742  *
16743  * This routine is invoked to post a block of @count scsi sgl pages from a
16744  * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
16745  * No Lock is held.
16746  *
16747  **/
16748 int
16749 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba,
16750 			      struct list_head *sblist,
16751 			      int count)
16752 {
16753 	struct lpfc_scsi_buf *psb;
16754 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16755 	struct sgl_page_pairs *sgl_pg_pairs;
16756 	void *viraddr;
16757 	LPFC_MBOXQ_t *mbox;
16758 	uint32_t reqlen, alloclen, pg_pairs;
16759 	uint32_t mbox_tmo;
16760 	uint16_t xritag_start = 0;
16761 	int rc = 0;
16762 	uint32_t shdr_status, shdr_add_status;
16763 	dma_addr_t pdma_phys_bpl1;
16764 	union lpfc_sli4_cfg_shdr *shdr;
16765 
16766 	/* Calculate the requested length of the dma memory */
16767 	reqlen = count * sizeof(struct sgl_page_pairs) +
16768 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16769 	if (reqlen > SLI4_PAGE_SIZE) {
16770 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16771 				"0217 Block sgl registration required DMA "
16772 				"size (%d) great than a page\n", reqlen);
16773 		return -ENOMEM;
16774 	}
16775 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16776 	if (!mbox) {
16777 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16778 				"0283 Failed to allocate mbox cmd memory\n");
16779 		return -ENOMEM;
16780 	}
16781 
16782 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16783 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16784 				LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16785 				LPFC_SLI4_MBX_NEMBED);
16786 
16787 	if (alloclen < reqlen) {
16788 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16789 				"2561 Allocated DMA memory size (%d) is "
16790 				"less than the requested DMA memory "
16791 				"size (%d)\n", alloclen, reqlen);
16792 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16793 		return -ENOMEM;
16794 	}
16795 
16796 	/* Get the first SGE entry from the non-embedded DMA memory */
16797 	viraddr = mbox->sge_array->addr[0];
16798 
16799 	/* Set up the SGL pages in the non-embedded DMA pages */
16800 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16801 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16802 
16803 	pg_pairs = 0;
16804 	list_for_each_entry(psb, sblist, list) {
16805 		/* Set up the sge entry */
16806 		sgl_pg_pairs->sgl_pg0_addr_lo =
16807 			cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
16808 		sgl_pg_pairs->sgl_pg0_addr_hi =
16809 			cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
16810 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
16811 			pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
16812 		else
16813 			pdma_phys_bpl1 = 0;
16814 		sgl_pg_pairs->sgl_pg1_addr_lo =
16815 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
16816 		sgl_pg_pairs->sgl_pg1_addr_hi =
16817 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
16818 		/* Keep the first xritag on the list */
16819 		if (pg_pairs == 0)
16820 			xritag_start = psb->cur_iocbq.sli4_xritag;
16821 		sgl_pg_pairs++;
16822 		pg_pairs++;
16823 	}
16824 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16825 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
16826 	/* Perform endian conversion if necessary */
16827 	sgl->word0 = cpu_to_le32(sgl->word0);
16828 
16829 	if (!phba->sli4_hba.intr_enable)
16830 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16831 	else {
16832 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16833 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16834 	}
16835 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16836 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16837 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16838 	if (rc != MBX_TIMEOUT)
16839 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16840 	if (shdr_status || shdr_add_status || rc) {
16841 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16842 				"2564 POST_SGL_BLOCK mailbox command failed "
16843 				"status x%x add_status x%x mbx status x%x\n",
16844 				shdr_status, shdr_add_status, rc);
16845 		rc = -ENXIO;
16846 	}
16847 	return rc;
16848 }
16849 
16850 /**
16851  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
16852  * @phba: pointer to lpfc_hba struct that the frame was received on
16853  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16854  *
16855  * This function checks the fields in the @fc_hdr to see if the FC frame is a
16856  * valid type of frame that the LPFC driver will handle. This function will
16857  * return a zero if the frame is a valid frame or a non zero value when the
16858  * frame does not pass the check.
16859  **/
16860 static int
16861 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
16862 {
16863 	/*  make rctl_names static to save stack space */
16864 	struct fc_vft_header *fc_vft_hdr;
16865 	uint32_t *header = (uint32_t *) fc_hdr;
16866 
16867 #define FC_RCTL_MDS_DIAGS	0xF4
16868 
16869 	switch (fc_hdr->fh_r_ctl) {
16870 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
16871 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
16872 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
16873 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
16874 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
16875 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
16876 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
16877 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
16878 	case FC_RCTL_ELS_REQ:	/* extended link services request */
16879 	case FC_RCTL_ELS_REP:	/* extended link services reply */
16880 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
16881 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
16882 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
16883 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
16884 	case FC_RCTL_BA_RMC: 	/* remove connection */
16885 	case FC_RCTL_BA_ACC:	/* basic accept */
16886 	case FC_RCTL_BA_RJT:	/* basic reject */
16887 	case FC_RCTL_BA_PRMT:
16888 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
16889 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
16890 	case FC_RCTL_P_RJT:	/* port reject */
16891 	case FC_RCTL_F_RJT:	/* fabric reject */
16892 	case FC_RCTL_P_BSY:	/* port busy */
16893 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
16894 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
16895 	case FC_RCTL_LCR:	/* link credit reset */
16896 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
16897 	case FC_RCTL_END:	/* end */
16898 		break;
16899 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
16900 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16901 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
16902 		return lpfc_fc_frame_check(phba, fc_hdr);
16903 	default:
16904 		goto drop;
16905 	}
16906 
16907 #define FC_TYPE_VENDOR_UNIQUE	0xFF
16908 
16909 	switch (fc_hdr->fh_type) {
16910 	case FC_TYPE_BLS:
16911 	case FC_TYPE_ELS:
16912 	case FC_TYPE_FCP:
16913 	case FC_TYPE_CT:
16914 	case FC_TYPE_NVME:
16915 	case FC_TYPE_VENDOR_UNIQUE:
16916 		break;
16917 	case FC_TYPE_IP:
16918 	case FC_TYPE_ILS:
16919 	default:
16920 		goto drop;
16921 	}
16922 
16923 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
16924 			"2538 Received frame rctl:x%x, type:x%x, "
16925 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
16926 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
16927 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
16928 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
16929 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
16930 			be32_to_cpu(header[6]));
16931 	return 0;
16932 drop:
16933 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
16934 			"2539 Dropped frame rctl:x%x type:x%x\n",
16935 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
16936 	return 1;
16937 }
16938 
16939 /**
16940  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
16941  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16942  *
16943  * This function processes the FC header to retrieve the VFI from the VF
16944  * header, if one exists. This function will return the VFI if one exists
16945  * or 0 if no VSAN Header exists.
16946  **/
16947 static uint32_t
16948 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
16949 {
16950 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
16951 
16952 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
16953 		return 0;
16954 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
16955 }
16956 
16957 /**
16958  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
16959  * @phba: Pointer to the HBA structure to search for the vport on
16960  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
16961  * @fcfi: The FC Fabric ID that the frame came from
16962  *
16963  * This function searches the @phba for a vport that matches the content of the
16964  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
16965  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
16966  * returns the matching vport pointer or NULL if unable to match frame to a
16967  * vport.
16968  **/
16969 static struct lpfc_vport *
16970 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
16971 		       uint16_t fcfi, uint32_t did)
16972 {
16973 	struct lpfc_vport **vports;
16974 	struct lpfc_vport *vport = NULL;
16975 	int i;
16976 
16977 	if (did == Fabric_DID)
16978 		return phba->pport;
16979 	if ((phba->pport->fc_flag & FC_PT2PT) &&
16980 		!(phba->link_state == LPFC_HBA_READY))
16981 		return phba->pport;
16982 
16983 	vports = lpfc_create_vport_work_array(phba);
16984 	if (vports != NULL) {
16985 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
16986 			if (phba->fcf.fcfi == fcfi &&
16987 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
16988 			    vports[i]->fc_myDID == did) {
16989 				vport = vports[i];
16990 				break;
16991 			}
16992 		}
16993 	}
16994 	lpfc_destroy_vport_work_array(phba, vports);
16995 	return vport;
16996 }
16997 
16998 /**
16999  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17000  * @vport: The vport to work on.
17001  *
17002  * This function updates the receive sequence time stamp for this vport. The
17003  * receive sequence time stamp indicates the time that the last frame of the
17004  * the sequence that has been idle for the longest amount of time was received.
17005  * the driver uses this time stamp to indicate if any received sequences have
17006  * timed out.
17007  **/
17008 static void
17009 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17010 {
17011 	struct lpfc_dmabuf *h_buf;
17012 	struct hbq_dmabuf *dmabuf = NULL;
17013 
17014 	/* get the oldest sequence on the rcv list */
17015 	h_buf = list_get_first(&vport->rcv_buffer_list,
17016 			       struct lpfc_dmabuf, list);
17017 	if (!h_buf)
17018 		return;
17019 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17020 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17021 }
17022 
17023 /**
17024  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17025  * @vport: The vport that the received sequences were sent to.
17026  *
17027  * This function cleans up all outstanding received sequences. This is called
17028  * by the driver when a link event or user action invalidates all the received
17029  * sequences.
17030  **/
17031 void
17032 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17033 {
17034 	struct lpfc_dmabuf *h_buf, *hnext;
17035 	struct lpfc_dmabuf *d_buf, *dnext;
17036 	struct hbq_dmabuf *dmabuf = NULL;
17037 
17038 	/* start with the oldest sequence on the rcv list */
17039 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17040 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17041 		list_del_init(&dmabuf->hbuf.list);
17042 		list_for_each_entry_safe(d_buf, dnext,
17043 					 &dmabuf->dbuf.list, list) {
17044 			list_del_init(&d_buf->list);
17045 			lpfc_in_buf_free(vport->phba, d_buf);
17046 		}
17047 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17048 	}
17049 }
17050 
17051 /**
17052  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17053  * @vport: The vport that the received sequences were sent to.
17054  *
17055  * This function determines whether any received sequences have timed out by
17056  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17057  * indicates that there is at least one timed out sequence this routine will
17058  * go through the received sequences one at a time from most inactive to most
17059  * active to determine which ones need to be cleaned up. Once it has determined
17060  * that a sequence needs to be cleaned up it will simply free up the resources
17061  * without sending an abort.
17062  **/
17063 void
17064 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17065 {
17066 	struct lpfc_dmabuf *h_buf, *hnext;
17067 	struct lpfc_dmabuf *d_buf, *dnext;
17068 	struct hbq_dmabuf *dmabuf = NULL;
17069 	unsigned long timeout;
17070 	int abort_count = 0;
17071 
17072 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17073 		   vport->rcv_buffer_time_stamp);
17074 	if (list_empty(&vport->rcv_buffer_list) ||
17075 	    time_before(jiffies, timeout))
17076 		return;
17077 	/* start with the oldest sequence on the rcv list */
17078 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17079 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17080 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17081 			   dmabuf->time_stamp);
17082 		if (time_before(jiffies, timeout))
17083 			break;
17084 		abort_count++;
17085 		list_del_init(&dmabuf->hbuf.list);
17086 		list_for_each_entry_safe(d_buf, dnext,
17087 					 &dmabuf->dbuf.list, list) {
17088 			list_del_init(&d_buf->list);
17089 			lpfc_in_buf_free(vport->phba, d_buf);
17090 		}
17091 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17092 	}
17093 	if (abort_count)
17094 		lpfc_update_rcv_time_stamp(vport);
17095 }
17096 
17097 /**
17098  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17099  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17100  *
17101  * This function searches through the existing incomplete sequences that have
17102  * been sent to this @vport. If the frame matches one of the incomplete
17103  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17104  * make up that sequence. If no sequence is found that matches this frame then
17105  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17106  * This function returns a pointer to the first dmabuf in the sequence list that
17107  * the frame was linked to.
17108  **/
17109 static struct hbq_dmabuf *
17110 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17111 {
17112 	struct fc_frame_header *new_hdr;
17113 	struct fc_frame_header *temp_hdr;
17114 	struct lpfc_dmabuf *d_buf;
17115 	struct lpfc_dmabuf *h_buf;
17116 	struct hbq_dmabuf *seq_dmabuf = NULL;
17117 	struct hbq_dmabuf *temp_dmabuf = NULL;
17118 	uint8_t	found = 0;
17119 
17120 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17121 	dmabuf->time_stamp = jiffies;
17122 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17123 
17124 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17125 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17126 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17127 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17128 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17129 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17130 			continue;
17131 		/* found a pending sequence that matches this frame */
17132 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17133 		break;
17134 	}
17135 	if (!seq_dmabuf) {
17136 		/*
17137 		 * This indicates first frame received for this sequence.
17138 		 * Queue the buffer on the vport's rcv_buffer_list.
17139 		 */
17140 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17141 		lpfc_update_rcv_time_stamp(vport);
17142 		return dmabuf;
17143 	}
17144 	temp_hdr = seq_dmabuf->hbuf.virt;
17145 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17146 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17147 		list_del_init(&seq_dmabuf->hbuf.list);
17148 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17149 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17150 		lpfc_update_rcv_time_stamp(vport);
17151 		return dmabuf;
17152 	}
17153 	/* move this sequence to the tail to indicate a young sequence */
17154 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17155 	seq_dmabuf->time_stamp = jiffies;
17156 	lpfc_update_rcv_time_stamp(vport);
17157 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17158 		temp_hdr = dmabuf->hbuf.virt;
17159 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17160 		return seq_dmabuf;
17161 	}
17162 	/* find the correct place in the sequence to insert this frame */
17163 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17164 	while (!found) {
17165 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17166 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17167 		/*
17168 		 * If the frame's sequence count is greater than the frame on
17169 		 * the list then insert the frame right after this frame
17170 		 */
17171 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17172 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17173 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17174 			found = 1;
17175 			break;
17176 		}
17177 
17178 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17179 			break;
17180 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17181 	}
17182 
17183 	if (found)
17184 		return seq_dmabuf;
17185 	return NULL;
17186 }
17187 
17188 /**
17189  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17190  * @vport: pointer to a vitural port
17191  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17192  *
17193  * This function tries to abort from the partially assembed sequence, described
17194  * by the information from basic abbort @dmabuf. It checks to see whether such
17195  * partially assembled sequence held by the driver. If so, it shall free up all
17196  * the frames from the partially assembled sequence.
17197  *
17198  * Return
17199  * true  -- if there is matching partially assembled sequence present and all
17200  *          the frames freed with the sequence;
17201  * false -- if there is no matching partially assembled sequence present so
17202  *          nothing got aborted in the lower layer driver
17203  **/
17204 static bool
17205 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17206 			    struct hbq_dmabuf *dmabuf)
17207 {
17208 	struct fc_frame_header *new_hdr;
17209 	struct fc_frame_header *temp_hdr;
17210 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17211 	struct hbq_dmabuf *seq_dmabuf = NULL;
17212 
17213 	/* Use the hdr_buf to find the sequence that matches this frame */
17214 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17215 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17216 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17217 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17218 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17219 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17220 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17221 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17222 			continue;
17223 		/* found a pending sequence that matches this frame */
17224 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17225 		break;
17226 	}
17227 
17228 	/* Free up all the frames from the partially assembled sequence */
17229 	if (seq_dmabuf) {
17230 		list_for_each_entry_safe(d_buf, n_buf,
17231 					 &seq_dmabuf->dbuf.list, list) {
17232 			list_del_init(&d_buf->list);
17233 			lpfc_in_buf_free(vport->phba, d_buf);
17234 		}
17235 		return true;
17236 	}
17237 	return false;
17238 }
17239 
17240 /**
17241  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17242  * @vport: pointer to a vitural port
17243  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17244  *
17245  * This function tries to abort from the assembed sequence from upper level
17246  * protocol, described by the information from basic abbort @dmabuf. It
17247  * checks to see whether such pending context exists at upper level protocol.
17248  * If so, it shall clean up the pending context.
17249  *
17250  * Return
17251  * true  -- if there is matching pending context of the sequence cleaned
17252  *          at ulp;
17253  * false -- if there is no matching pending context of the sequence present
17254  *          at ulp.
17255  **/
17256 static bool
17257 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17258 {
17259 	struct lpfc_hba *phba = vport->phba;
17260 	int handled;
17261 
17262 	/* Accepting abort at ulp with SLI4 only */
17263 	if (phba->sli_rev < LPFC_SLI_REV4)
17264 		return false;
17265 
17266 	/* Register all caring upper level protocols to attend abort */
17267 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17268 	if (handled)
17269 		return true;
17270 
17271 	return false;
17272 }
17273 
17274 /**
17275  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17276  * @phba: Pointer to HBA context object.
17277  * @cmd_iocbq: pointer to the command iocbq structure.
17278  * @rsp_iocbq: pointer to the response iocbq structure.
17279  *
17280  * This function handles the sequence abort response iocb command complete
17281  * event. It properly releases the memory allocated to the sequence abort
17282  * accept iocb.
17283  **/
17284 static void
17285 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17286 			     struct lpfc_iocbq *cmd_iocbq,
17287 			     struct lpfc_iocbq *rsp_iocbq)
17288 {
17289 	struct lpfc_nodelist *ndlp;
17290 
17291 	if (cmd_iocbq) {
17292 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17293 		lpfc_nlp_put(ndlp);
17294 		lpfc_nlp_not_used(ndlp);
17295 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17296 	}
17297 
17298 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17299 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17300 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17301 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17302 			rsp_iocbq->iocb.ulpStatus,
17303 			rsp_iocbq->iocb.un.ulpWord[4]);
17304 }
17305 
17306 /**
17307  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17308  * @phba: Pointer to HBA context object.
17309  * @xri: xri id in transaction.
17310  *
17311  * This function validates the xri maps to the known range of XRIs allocated an
17312  * used by the driver.
17313  **/
17314 uint16_t
17315 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17316 		      uint16_t xri)
17317 {
17318 	uint16_t i;
17319 
17320 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17321 		if (xri == phba->sli4_hba.xri_ids[i])
17322 			return i;
17323 	}
17324 	return NO_XRI;
17325 }
17326 
17327 /**
17328  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17329  * @phba: Pointer to HBA context object.
17330  * @fc_hdr: pointer to a FC frame header.
17331  *
17332  * This function sends a basic response to a previous unsol sequence abort
17333  * event after aborting the sequence handling.
17334  **/
17335 void
17336 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17337 			struct fc_frame_header *fc_hdr, bool aborted)
17338 {
17339 	struct lpfc_hba *phba = vport->phba;
17340 	struct lpfc_iocbq *ctiocb = NULL;
17341 	struct lpfc_nodelist *ndlp;
17342 	uint16_t oxid, rxid, xri, lxri;
17343 	uint32_t sid, fctl;
17344 	IOCB_t *icmd;
17345 	int rc;
17346 
17347 	if (!lpfc_is_link_up(phba))
17348 		return;
17349 
17350 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17351 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17352 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17353 
17354 	ndlp = lpfc_findnode_did(vport, sid);
17355 	if (!ndlp) {
17356 		ndlp = lpfc_nlp_init(vport, sid);
17357 		if (!ndlp) {
17358 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17359 					 "1268 Failed to allocate ndlp for "
17360 					 "oxid:x%x SID:x%x\n", oxid, sid);
17361 			return;
17362 		}
17363 		/* Put ndlp onto pport node list */
17364 		lpfc_enqueue_node(vport, ndlp);
17365 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17366 		/* re-setup ndlp without removing from node list */
17367 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17368 		if (!ndlp) {
17369 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17370 					 "3275 Failed to active ndlp found "
17371 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17372 			return;
17373 		}
17374 	}
17375 
17376 	/* Allocate buffer for rsp iocb */
17377 	ctiocb = lpfc_sli_get_iocbq(phba);
17378 	if (!ctiocb)
17379 		return;
17380 
17381 	/* Extract the F_CTL field from FC_HDR */
17382 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17383 
17384 	icmd = &ctiocb->iocb;
17385 	icmd->un.xseq64.bdl.bdeSize = 0;
17386 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17387 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17388 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17389 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17390 
17391 	/* Fill in the rest of iocb fields */
17392 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17393 	icmd->ulpBdeCount = 0;
17394 	icmd->ulpLe = 1;
17395 	icmd->ulpClass = CLASS3;
17396 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17397 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17398 
17399 	ctiocb->iocb_cmpl = NULL;
17400 	ctiocb->vport = phba->pport;
17401 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17402 	ctiocb->sli4_lxritag = NO_XRI;
17403 	ctiocb->sli4_xritag = NO_XRI;
17404 
17405 	if (fctl & FC_FC_EX_CTX)
17406 		/* Exchange responder sent the abort so we
17407 		 * own the oxid.
17408 		 */
17409 		xri = oxid;
17410 	else
17411 		xri = rxid;
17412 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17413 	if (lxri != NO_XRI)
17414 		lpfc_set_rrq_active(phba, ndlp, lxri,
17415 			(xri == oxid) ? rxid : oxid, 0);
17416 	/* For BA_ABTS from exchange responder, if the logical xri with
17417 	 * the oxid maps to the FCP XRI range, the port no longer has
17418 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17419 	 * a BA_RJT.
17420 	 */
17421 	if ((fctl & FC_FC_EX_CTX) &&
17422 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17423 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17424 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17425 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17426 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17427 	}
17428 
17429 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17430 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17431 	 * the IOCB for a BA_RJT.
17432 	 */
17433 	if (aborted == false) {
17434 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17435 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17436 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17437 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17438 	}
17439 
17440 	if (fctl & FC_FC_EX_CTX) {
17441 		/* ABTS sent by responder to CT exchange, construction
17442 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17443 		 * field and RX_ID from ABTS for RX_ID field.
17444 		 */
17445 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17446 	} else {
17447 		/* ABTS sent by initiator to CT exchange, construction
17448 		 * of BA_ACC will need to allocate a new XRI as for the
17449 		 * XRI_TAG field.
17450 		 */
17451 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17452 	}
17453 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17454 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17455 
17456 	/* Xmit CT abts response on exchange <xid> */
17457 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17458 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17459 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17460 
17461 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17462 	if (rc == IOCB_ERROR) {
17463 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17464 				 "2925 Failed to issue CT ABTS RSP x%x on "
17465 				 "xri x%x, Data x%x\n",
17466 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17467 				 phba->link_state);
17468 		lpfc_nlp_put(ndlp);
17469 		ctiocb->context1 = NULL;
17470 		lpfc_sli_release_iocbq(phba, ctiocb);
17471 	}
17472 }
17473 
17474 /**
17475  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17476  * @vport: Pointer to the vport on which this sequence was received
17477  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17478  *
17479  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17480  * receive sequence is only partially assembed by the driver, it shall abort
17481  * the partially assembled frames for the sequence. Otherwise, if the
17482  * unsolicited receive sequence has been completely assembled and passed to
17483  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17484  * unsolicited sequence has been aborted. After that, it will issue a basic
17485  * accept to accept the abort.
17486  **/
17487 static void
17488 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17489 			     struct hbq_dmabuf *dmabuf)
17490 {
17491 	struct lpfc_hba *phba = vport->phba;
17492 	struct fc_frame_header fc_hdr;
17493 	uint32_t fctl;
17494 	bool aborted;
17495 
17496 	/* Make a copy of fc_hdr before the dmabuf being released */
17497 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17498 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17499 
17500 	if (fctl & FC_FC_EX_CTX) {
17501 		/* ABTS by responder to exchange, no cleanup needed */
17502 		aborted = true;
17503 	} else {
17504 		/* ABTS by initiator to exchange, need to do cleanup */
17505 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17506 		if (aborted == false)
17507 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17508 	}
17509 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17510 
17511 	if (phba->nvmet_support) {
17512 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17513 		return;
17514 	}
17515 
17516 	/* Respond with BA_ACC or BA_RJT accordingly */
17517 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17518 }
17519 
17520 /**
17521  * lpfc_seq_complete - Indicates if a sequence is complete
17522  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17523  *
17524  * This function checks the sequence, starting with the frame described by
17525  * @dmabuf, to see if all the frames associated with this sequence are present.
17526  * the frames associated with this sequence are linked to the @dmabuf using the
17527  * dbuf list. This function looks for two major things. 1) That the first frame
17528  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17529  * set. 3) That there are no holes in the sequence count. The function will
17530  * return 1 when the sequence is complete, otherwise it will return 0.
17531  **/
17532 static int
17533 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17534 {
17535 	struct fc_frame_header *hdr;
17536 	struct lpfc_dmabuf *d_buf;
17537 	struct hbq_dmabuf *seq_dmabuf;
17538 	uint32_t fctl;
17539 	int seq_count = 0;
17540 
17541 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17542 	/* make sure first fame of sequence has a sequence count of zero */
17543 	if (hdr->fh_seq_cnt != seq_count)
17544 		return 0;
17545 	fctl = (hdr->fh_f_ctl[0] << 16 |
17546 		hdr->fh_f_ctl[1] << 8 |
17547 		hdr->fh_f_ctl[2]);
17548 	/* If last frame of sequence we can return success. */
17549 	if (fctl & FC_FC_END_SEQ)
17550 		return 1;
17551 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17552 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17553 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17554 		/* If there is a hole in the sequence count then fail. */
17555 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17556 			return 0;
17557 		fctl = (hdr->fh_f_ctl[0] << 16 |
17558 			hdr->fh_f_ctl[1] << 8 |
17559 			hdr->fh_f_ctl[2]);
17560 		/* If last frame of sequence we can return success. */
17561 		if (fctl & FC_FC_END_SEQ)
17562 			return 1;
17563 	}
17564 	return 0;
17565 }
17566 
17567 /**
17568  * lpfc_prep_seq - Prep sequence for ULP processing
17569  * @vport: Pointer to the vport on which this sequence was received
17570  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17571  *
17572  * This function takes a sequence, described by a list of frames, and creates
17573  * a list of iocbq structures to describe the sequence. This iocbq list will be
17574  * used to issue to the generic unsolicited sequence handler. This routine
17575  * returns a pointer to the first iocbq in the list. If the function is unable
17576  * to allocate an iocbq then it throw out the received frames that were not
17577  * able to be described and return a pointer to the first iocbq. If unable to
17578  * allocate any iocbqs (including the first) this function will return NULL.
17579  **/
17580 static struct lpfc_iocbq *
17581 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17582 {
17583 	struct hbq_dmabuf *hbq_buf;
17584 	struct lpfc_dmabuf *d_buf, *n_buf;
17585 	struct lpfc_iocbq *first_iocbq, *iocbq;
17586 	struct fc_frame_header *fc_hdr;
17587 	uint32_t sid;
17588 	uint32_t len, tot_len;
17589 	struct ulp_bde64 *pbde;
17590 
17591 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17592 	/* remove from receive buffer list */
17593 	list_del_init(&seq_dmabuf->hbuf.list);
17594 	lpfc_update_rcv_time_stamp(vport);
17595 	/* get the Remote Port's SID */
17596 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17597 	tot_len = 0;
17598 	/* Get an iocbq struct to fill in. */
17599 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17600 	if (first_iocbq) {
17601 		/* Initialize the first IOCB. */
17602 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17603 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17604 		first_iocbq->vport = vport;
17605 
17606 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17607 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17608 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17609 			first_iocbq->iocb.un.rcvels.parmRo =
17610 				sli4_did_from_fc_hdr(fc_hdr);
17611 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17612 		} else
17613 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17614 		first_iocbq->iocb.ulpContext = NO_XRI;
17615 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17616 			be16_to_cpu(fc_hdr->fh_ox_id);
17617 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17618 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17619 			vport->phba->vpi_ids[vport->vpi];
17620 		/* put the first buffer into the first IOCBq */
17621 		tot_len = bf_get(lpfc_rcqe_length,
17622 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17623 
17624 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17625 		first_iocbq->context3 = NULL;
17626 		first_iocbq->iocb.ulpBdeCount = 1;
17627 		if (tot_len > LPFC_DATA_BUF_SIZE)
17628 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17629 							LPFC_DATA_BUF_SIZE;
17630 		else
17631 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17632 
17633 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17634 
17635 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17636 	}
17637 	iocbq = first_iocbq;
17638 	/*
17639 	 * Each IOCBq can have two Buffers assigned, so go through the list
17640 	 * of buffers for this sequence and save two buffers in each IOCBq
17641 	 */
17642 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17643 		if (!iocbq) {
17644 			lpfc_in_buf_free(vport->phba, d_buf);
17645 			continue;
17646 		}
17647 		if (!iocbq->context3) {
17648 			iocbq->context3 = d_buf;
17649 			iocbq->iocb.ulpBdeCount++;
17650 			/* We need to get the size out of the right CQE */
17651 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17652 			len = bf_get(lpfc_rcqe_length,
17653 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17654 			pbde = (struct ulp_bde64 *)
17655 					&iocbq->iocb.unsli3.sli3Words[4];
17656 			if (len > LPFC_DATA_BUF_SIZE)
17657 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17658 			else
17659 				pbde->tus.f.bdeSize = len;
17660 
17661 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
17662 			tot_len += len;
17663 		} else {
17664 			iocbq = lpfc_sli_get_iocbq(vport->phba);
17665 			if (!iocbq) {
17666 				if (first_iocbq) {
17667 					first_iocbq->iocb.ulpStatus =
17668 							IOSTAT_FCP_RSP_ERROR;
17669 					first_iocbq->iocb.un.ulpWord[4] =
17670 							IOERR_NO_RESOURCES;
17671 				}
17672 				lpfc_in_buf_free(vport->phba, d_buf);
17673 				continue;
17674 			}
17675 			/* We need to get the size out of the right CQE */
17676 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17677 			len = bf_get(lpfc_rcqe_length,
17678 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17679 			iocbq->context2 = d_buf;
17680 			iocbq->context3 = NULL;
17681 			iocbq->iocb.ulpBdeCount = 1;
17682 			if (len > LPFC_DATA_BUF_SIZE)
17683 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17684 							LPFC_DATA_BUF_SIZE;
17685 			else
17686 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
17687 
17688 			tot_len += len;
17689 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17690 
17691 			iocbq->iocb.un.rcvels.remoteID = sid;
17692 			list_add_tail(&iocbq->list, &first_iocbq->list);
17693 		}
17694 	}
17695 	return first_iocbq;
17696 }
17697 
17698 static void
17699 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
17700 			  struct hbq_dmabuf *seq_dmabuf)
17701 {
17702 	struct fc_frame_header *fc_hdr;
17703 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
17704 	struct lpfc_hba *phba = vport->phba;
17705 
17706 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17707 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
17708 	if (!iocbq) {
17709 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17710 				"2707 Ring %d handler: Failed to allocate "
17711 				"iocb Rctl x%x Type x%x received\n",
17712 				LPFC_ELS_RING,
17713 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17714 		return;
17715 	}
17716 	if (!lpfc_complete_unsol_iocb(phba,
17717 				      phba->sli4_hba.els_wq->pring,
17718 				      iocbq, fc_hdr->fh_r_ctl,
17719 				      fc_hdr->fh_type))
17720 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17721 				"2540 Ring %d handler: unexpected Rctl "
17722 				"x%x Type x%x received\n",
17723 				LPFC_ELS_RING,
17724 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17725 
17726 	/* Free iocb created in lpfc_prep_seq */
17727 	list_for_each_entry_safe(curr_iocb, next_iocb,
17728 		&iocbq->list, list) {
17729 		list_del_init(&curr_iocb->list);
17730 		lpfc_sli_release_iocbq(phba, curr_iocb);
17731 	}
17732 	lpfc_sli_release_iocbq(phba, iocbq);
17733 }
17734 
17735 static void
17736 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
17737 			    struct lpfc_iocbq *rspiocb)
17738 {
17739 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
17740 
17741 	if (pcmd && pcmd->virt)
17742 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17743 	kfree(pcmd);
17744 	lpfc_sli_release_iocbq(phba, cmdiocb);
17745 }
17746 
17747 static void
17748 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
17749 			      struct hbq_dmabuf *dmabuf)
17750 {
17751 	struct fc_frame_header *fc_hdr;
17752 	struct lpfc_hba *phba = vport->phba;
17753 	struct lpfc_iocbq *iocbq = NULL;
17754 	union  lpfc_wqe *wqe;
17755 	struct lpfc_dmabuf *pcmd = NULL;
17756 	uint32_t frame_len;
17757 	int rc;
17758 
17759 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17760 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
17761 
17762 	/* Send the received frame back */
17763 	iocbq = lpfc_sli_get_iocbq(phba);
17764 	if (!iocbq)
17765 		goto exit;
17766 
17767 	/* Allocate buffer for command payload */
17768 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
17769 	if (pcmd)
17770 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
17771 					    &pcmd->phys);
17772 	if (!pcmd || !pcmd->virt)
17773 		goto exit;
17774 
17775 	INIT_LIST_HEAD(&pcmd->list);
17776 
17777 	/* copyin the payload */
17778 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
17779 
17780 	/* fill in BDE's for command */
17781 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
17782 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
17783 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
17784 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
17785 
17786 	iocbq->context2 = pcmd;
17787 	iocbq->vport = vport;
17788 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
17789 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
17790 
17791 	/*
17792 	 * Setup rest of the iocb as though it were a WQE
17793 	 * Build the SEND_FRAME WQE
17794 	 */
17795 	wqe = (union lpfc_wqe *)&iocbq->iocb;
17796 
17797 	wqe->send_frame.frame_len = frame_len;
17798 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
17799 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
17800 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
17801 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
17802 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
17803 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
17804 
17805 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
17806 	iocbq->iocb.ulpLe = 1;
17807 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
17808 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
17809 	if (rc == IOCB_ERROR)
17810 		goto exit;
17811 
17812 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17813 	return;
17814 
17815 exit:
17816 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17817 			"2023 Unable to process MDS loopback frame\n");
17818 	if (pcmd && pcmd->virt)
17819 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
17820 	kfree(pcmd);
17821 	if (iocbq)
17822 		lpfc_sli_release_iocbq(phba, iocbq);
17823 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17824 }
17825 
17826 /**
17827  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
17828  * @phba: Pointer to HBA context object.
17829  *
17830  * This function is called with no lock held. This function processes all
17831  * the received buffers and gives it to upper layers when a received buffer
17832  * indicates that it is the final frame in the sequence. The interrupt
17833  * service routine processes received buffers at interrupt contexts.
17834  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
17835  * appropriate receive function when the final frame in a sequence is received.
17836  **/
17837 void
17838 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
17839 				 struct hbq_dmabuf *dmabuf)
17840 {
17841 	struct hbq_dmabuf *seq_dmabuf;
17842 	struct fc_frame_header *fc_hdr;
17843 	struct lpfc_vport *vport;
17844 	uint32_t fcfi;
17845 	uint32_t did;
17846 
17847 	/* Process each received buffer */
17848 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17849 
17850 	/* check to see if this a valid type of frame */
17851 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
17852 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17853 		return;
17854 	}
17855 
17856 	if ((bf_get(lpfc_cqe_code,
17857 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
17858 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
17859 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17860 	else
17861 		fcfi = bf_get(lpfc_rcqe_fcf_id,
17862 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
17863 
17864 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
17865 		vport = phba->pport;
17866 		/* Handle MDS Loopback frames */
17867 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
17868 		return;
17869 	}
17870 
17871 	/* d_id this frame is directed to */
17872 	did = sli4_did_from_fc_hdr(fc_hdr);
17873 
17874 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
17875 	if (!vport) {
17876 		/* throw out the frame */
17877 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17878 		return;
17879 	}
17880 
17881 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
17882 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
17883 		(did != Fabric_DID)) {
17884 		/*
17885 		 * Throw out the frame if we are not pt2pt.
17886 		 * The pt2pt protocol allows for discovery frames
17887 		 * to be received without a registered VPI.
17888 		 */
17889 		if (!(vport->fc_flag & FC_PT2PT) ||
17890 			(phba->link_state == LPFC_HBA_READY)) {
17891 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
17892 			return;
17893 		}
17894 	}
17895 
17896 	/* Handle the basic abort sequence (BA_ABTS) event */
17897 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
17898 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
17899 		return;
17900 	}
17901 
17902 	/* Link this frame */
17903 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
17904 	if (!seq_dmabuf) {
17905 		/* unable to add frame to vport - throw it out */
17906 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
17907 		return;
17908 	}
17909 	/* If not last frame in sequence continue processing frames. */
17910 	if (!lpfc_seq_complete(seq_dmabuf))
17911 		return;
17912 
17913 	/* Send the complete sequence to the upper layer protocol */
17914 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
17915 }
17916 
17917 /**
17918  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
17919  * @phba: pointer to lpfc hba data structure.
17920  *
17921  * This routine is invoked to post rpi header templates to the
17922  * HBA consistent with the SLI-4 interface spec.  This routine
17923  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17924  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17925  *
17926  * This routine does not require any locks.  It's usage is expected
17927  * to be driver load or reset recovery when the driver is
17928  * sequential.
17929  *
17930  * Return codes
17931  * 	0 - successful
17932  *      -EIO - The mailbox failed to complete successfully.
17933  * 	When this error occurs, the driver is not guaranteed
17934  *	to have any rpi regions posted to the device and
17935  *	must either attempt to repost the regions or take a
17936  *	fatal error.
17937  **/
17938 int
17939 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
17940 {
17941 	struct lpfc_rpi_hdr *rpi_page;
17942 	uint32_t rc = 0;
17943 	uint16_t lrpi = 0;
17944 
17945 	/* SLI4 ports that support extents do not require RPI headers. */
17946 	if (!phba->sli4_hba.rpi_hdrs_in_use)
17947 		goto exit;
17948 	if (phba->sli4_hba.extents_in_use)
17949 		return -EIO;
17950 
17951 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
17952 		/*
17953 		 * Assign the rpi headers a physical rpi only if the driver
17954 		 * has not initialized those resources.  A port reset only
17955 		 * needs the headers posted.
17956 		 */
17957 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
17958 		    LPFC_RPI_RSRC_RDY)
17959 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
17960 
17961 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
17962 		if (rc != MBX_SUCCESS) {
17963 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17964 					"2008 Error %d posting all rpi "
17965 					"headers\n", rc);
17966 			rc = -EIO;
17967 			break;
17968 		}
17969 	}
17970 
17971  exit:
17972 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
17973 	       LPFC_RPI_RSRC_RDY);
17974 	return rc;
17975 }
17976 
17977 /**
17978  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
17979  * @phba: pointer to lpfc hba data structure.
17980  * @rpi_page:  pointer to the rpi memory region.
17981  *
17982  * This routine is invoked to post a single rpi header to the
17983  * HBA consistent with the SLI-4 interface spec.  This memory region
17984  * maps up to 64 rpi context regions.
17985  *
17986  * Return codes
17987  * 	0 - successful
17988  * 	-ENOMEM - No available memory
17989  *      -EIO - The mailbox failed to complete successfully.
17990  **/
17991 int
17992 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
17993 {
17994 	LPFC_MBOXQ_t *mboxq;
17995 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
17996 	uint32_t rc = 0;
17997 	uint32_t shdr_status, shdr_add_status;
17998 	union lpfc_sli4_cfg_shdr *shdr;
17999 
18000 	/* SLI4 ports that support extents do not require RPI headers. */
18001 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18002 		return rc;
18003 	if (phba->sli4_hba.extents_in_use)
18004 		return -EIO;
18005 
18006 	/* The port is notified of the header region via a mailbox command. */
18007 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18008 	if (!mboxq) {
18009 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18010 				"2001 Unable to allocate memory for issuing "
18011 				"SLI_CONFIG_SPECIAL mailbox command\n");
18012 		return -ENOMEM;
18013 	}
18014 
18015 	/* Post all rpi memory regions to the port. */
18016 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18017 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18018 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18019 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18020 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18021 			 LPFC_SLI4_MBX_EMBED);
18022 
18023 
18024 	/* Post the physical rpi to the port for this rpi header. */
18025 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18026 	       rpi_page->start_rpi);
18027 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18028 	       hdr_tmpl, rpi_page->page_count);
18029 
18030 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18031 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18032 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18033 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18034 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18035 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18036 	if (rc != MBX_TIMEOUT)
18037 		mempool_free(mboxq, phba->mbox_mem_pool);
18038 	if (shdr_status || shdr_add_status || rc) {
18039 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18040 				"2514 POST_RPI_HDR mailbox failed with "
18041 				"status x%x add_status x%x, mbx status x%x\n",
18042 				shdr_status, shdr_add_status, rc);
18043 		rc = -ENXIO;
18044 	} else {
18045 		/*
18046 		 * The next_rpi stores the next logical module-64 rpi value used
18047 		 * to post physical rpis in subsequent rpi postings.
18048 		 */
18049 		spin_lock_irq(&phba->hbalock);
18050 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18051 		spin_unlock_irq(&phba->hbalock);
18052 	}
18053 	return rc;
18054 }
18055 
18056 /**
18057  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18058  * @phba: pointer to lpfc hba data structure.
18059  *
18060  * This routine is invoked to post rpi header templates to the
18061  * HBA consistent with the SLI-4 interface spec.  This routine
18062  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18063  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18064  *
18065  * Returns
18066  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18067  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18068  **/
18069 int
18070 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18071 {
18072 	unsigned long rpi;
18073 	uint16_t max_rpi, rpi_limit;
18074 	uint16_t rpi_remaining, lrpi = 0;
18075 	struct lpfc_rpi_hdr *rpi_hdr;
18076 	unsigned long iflag;
18077 
18078 	/*
18079 	 * Fetch the next logical rpi.  Because this index is logical,
18080 	 * the  driver starts at 0 each time.
18081 	 */
18082 	spin_lock_irqsave(&phba->hbalock, iflag);
18083 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18084 	rpi_limit = phba->sli4_hba.next_rpi;
18085 
18086 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18087 	if (rpi >= rpi_limit)
18088 		rpi = LPFC_RPI_ALLOC_ERROR;
18089 	else {
18090 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18091 		phba->sli4_hba.max_cfg_param.rpi_used++;
18092 		phba->sli4_hba.rpi_count++;
18093 	}
18094 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18095 			"0001 rpi:%x max:%x lim:%x\n",
18096 			(int) rpi, max_rpi, rpi_limit);
18097 
18098 	/*
18099 	 * Don't try to allocate more rpi header regions if the device limit
18100 	 * has been exhausted.
18101 	 */
18102 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18103 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18104 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18105 		return rpi;
18106 	}
18107 
18108 	/*
18109 	 * RPI header postings are not required for SLI4 ports capable of
18110 	 * extents.
18111 	 */
18112 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18113 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18114 		return rpi;
18115 	}
18116 
18117 	/*
18118 	 * If the driver is running low on rpi resources, allocate another
18119 	 * page now.  Note that the next_rpi value is used because
18120 	 * it represents how many are actually in use whereas max_rpi notes
18121 	 * how many are supported max by the device.
18122 	 */
18123 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18124 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18125 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18126 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18127 		if (!rpi_hdr) {
18128 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18129 					"2002 Error Could not grow rpi "
18130 					"count\n");
18131 		} else {
18132 			lrpi = rpi_hdr->start_rpi;
18133 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18134 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18135 		}
18136 	}
18137 
18138 	return rpi;
18139 }
18140 
18141 /**
18142  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18143  * @phba: pointer to lpfc hba data structure.
18144  *
18145  * This routine is invoked to release an rpi to the pool of
18146  * available rpis maintained by the driver.
18147  **/
18148 static void
18149 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18150 {
18151 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18152 		phba->sli4_hba.rpi_count--;
18153 		phba->sli4_hba.max_cfg_param.rpi_used--;
18154 	}
18155 }
18156 
18157 /**
18158  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18159  * @phba: pointer to lpfc hba data structure.
18160  *
18161  * This routine is invoked to release an rpi to the pool of
18162  * available rpis maintained by the driver.
18163  **/
18164 void
18165 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18166 {
18167 	spin_lock_irq(&phba->hbalock);
18168 	__lpfc_sli4_free_rpi(phba, rpi);
18169 	spin_unlock_irq(&phba->hbalock);
18170 }
18171 
18172 /**
18173  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18174  * @phba: pointer to lpfc hba data structure.
18175  *
18176  * This routine is invoked to remove the memory region that
18177  * provided rpi via a bitmask.
18178  **/
18179 void
18180 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18181 {
18182 	kfree(phba->sli4_hba.rpi_bmask);
18183 	kfree(phba->sli4_hba.rpi_ids);
18184 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18185 }
18186 
18187 /**
18188  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18189  * @phba: pointer to lpfc hba data structure.
18190  *
18191  * This routine is invoked to remove the memory region that
18192  * provided rpi via a bitmask.
18193  **/
18194 int
18195 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18196 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18197 {
18198 	LPFC_MBOXQ_t *mboxq;
18199 	struct lpfc_hba *phba = ndlp->phba;
18200 	int rc;
18201 
18202 	/* The port is notified of the header region via a mailbox command. */
18203 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18204 	if (!mboxq)
18205 		return -ENOMEM;
18206 
18207 	/* Post all rpi memory regions to the port. */
18208 	lpfc_resume_rpi(mboxq, ndlp);
18209 	if (cmpl) {
18210 		mboxq->mbox_cmpl = cmpl;
18211 		mboxq->context1 = arg;
18212 		mboxq->context2 = ndlp;
18213 	} else
18214 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18215 	mboxq->vport = ndlp->vport;
18216 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18217 	if (rc == MBX_NOT_FINISHED) {
18218 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18219 				"2010 Resume RPI Mailbox failed "
18220 				"status %d, mbxStatus x%x\n", rc,
18221 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18222 		mempool_free(mboxq, phba->mbox_mem_pool);
18223 		return -EIO;
18224 	}
18225 	return 0;
18226 }
18227 
18228 /**
18229  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18230  * @vport: Pointer to the vport for which the vpi is being initialized
18231  *
18232  * This routine is invoked to activate a vpi with the port.
18233  *
18234  * Returns:
18235  *    0 success
18236  *    -Evalue otherwise
18237  **/
18238 int
18239 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18240 {
18241 	LPFC_MBOXQ_t *mboxq;
18242 	int rc = 0;
18243 	int retval = MBX_SUCCESS;
18244 	uint32_t mbox_tmo;
18245 	struct lpfc_hba *phba = vport->phba;
18246 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18247 	if (!mboxq)
18248 		return -ENOMEM;
18249 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18250 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18251 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18252 	if (rc != MBX_SUCCESS) {
18253 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18254 				"2022 INIT VPI Mailbox failed "
18255 				"status %d, mbxStatus x%x\n", rc,
18256 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18257 		retval = -EIO;
18258 	}
18259 	if (rc != MBX_TIMEOUT)
18260 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18261 
18262 	return retval;
18263 }
18264 
18265 /**
18266  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18267  * @phba: pointer to lpfc hba data structure.
18268  * @mboxq: Pointer to mailbox object.
18269  *
18270  * This routine is invoked to manually add a single FCF record. The caller
18271  * must pass a completely initialized FCF_Record.  This routine takes
18272  * care of the nonembedded mailbox operations.
18273  **/
18274 static void
18275 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18276 {
18277 	void *virt_addr;
18278 	union lpfc_sli4_cfg_shdr *shdr;
18279 	uint32_t shdr_status, shdr_add_status;
18280 
18281 	virt_addr = mboxq->sge_array->addr[0];
18282 	/* The IOCTL status is embedded in the mailbox subheader. */
18283 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18284 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18285 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18286 
18287 	if ((shdr_status || shdr_add_status) &&
18288 		(shdr_status != STATUS_FCF_IN_USE))
18289 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18290 			"2558 ADD_FCF_RECORD mailbox failed with "
18291 			"status x%x add_status x%x\n",
18292 			shdr_status, shdr_add_status);
18293 
18294 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18295 }
18296 
18297 /**
18298  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18299  * @phba: pointer to lpfc hba data structure.
18300  * @fcf_record:  pointer to the initialized fcf record to add.
18301  *
18302  * This routine is invoked to manually add a single FCF record. The caller
18303  * must pass a completely initialized FCF_Record.  This routine takes
18304  * care of the nonembedded mailbox operations.
18305  **/
18306 int
18307 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18308 {
18309 	int rc = 0;
18310 	LPFC_MBOXQ_t *mboxq;
18311 	uint8_t *bytep;
18312 	void *virt_addr;
18313 	struct lpfc_mbx_sge sge;
18314 	uint32_t alloc_len, req_len;
18315 	uint32_t fcfindex;
18316 
18317 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18318 	if (!mboxq) {
18319 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18320 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18321 		return -ENOMEM;
18322 	}
18323 
18324 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18325 		  sizeof(uint32_t);
18326 
18327 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18328 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18329 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18330 				     req_len, LPFC_SLI4_MBX_NEMBED);
18331 	if (alloc_len < req_len) {
18332 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18333 			"2523 Allocated DMA memory size (x%x) is "
18334 			"less than the requested DMA memory "
18335 			"size (x%x)\n", alloc_len, req_len);
18336 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18337 		return -ENOMEM;
18338 	}
18339 
18340 	/*
18341 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18342 	 * routine only uses a single SGE.
18343 	 */
18344 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18345 	virt_addr = mboxq->sge_array->addr[0];
18346 	/*
18347 	 * Configure the FCF record for FCFI 0.  This is the driver's
18348 	 * hardcoded default and gets used in nonFIP mode.
18349 	 */
18350 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18351 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18352 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18353 
18354 	/*
18355 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18356 	 * the FCoE header plus word10. The data copy needs to be endian
18357 	 * correct.
18358 	 */
18359 	bytep += sizeof(uint32_t);
18360 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18361 	mboxq->vport = phba->pport;
18362 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18363 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18364 	if (rc == MBX_NOT_FINISHED) {
18365 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18366 			"2515 ADD_FCF_RECORD mailbox failed with "
18367 			"status 0x%x\n", rc);
18368 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18369 		rc = -EIO;
18370 	} else
18371 		rc = 0;
18372 
18373 	return rc;
18374 }
18375 
18376 /**
18377  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18378  * @phba: pointer to lpfc hba data structure.
18379  * @fcf_record:  pointer to the fcf record to write the default data.
18380  * @fcf_index: FCF table entry index.
18381  *
18382  * This routine is invoked to build the driver's default FCF record.  The
18383  * values used are hardcoded.  This routine handles memory initialization.
18384  *
18385  **/
18386 void
18387 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18388 				struct fcf_record *fcf_record,
18389 				uint16_t fcf_index)
18390 {
18391 	memset(fcf_record, 0, sizeof(struct fcf_record));
18392 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18393 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18394 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18395 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18396 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18397 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18398 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18399 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18400 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18401 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18402 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18403 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18404 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18405 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18406 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18407 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18408 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18409 	/* Set the VLAN bit map */
18410 	if (phba->valid_vlan) {
18411 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18412 			= 1 << (phba->vlan_id % 8);
18413 	}
18414 }
18415 
18416 /**
18417  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18418  * @phba: pointer to lpfc hba data structure.
18419  * @fcf_index: FCF table entry offset.
18420  *
18421  * This routine is invoked to scan the entire FCF table by reading FCF
18422  * record and processing it one at a time starting from the @fcf_index
18423  * for initial FCF discovery or fast FCF failover rediscovery.
18424  *
18425  * Return 0 if the mailbox command is submitted successfully, none 0
18426  * otherwise.
18427  **/
18428 int
18429 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18430 {
18431 	int rc = 0, error;
18432 	LPFC_MBOXQ_t *mboxq;
18433 
18434 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18435 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18436 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18437 	if (!mboxq) {
18438 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18439 				"2000 Failed to allocate mbox for "
18440 				"READ_FCF cmd\n");
18441 		error = -ENOMEM;
18442 		goto fail_fcf_scan;
18443 	}
18444 	/* Construct the read FCF record mailbox command */
18445 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18446 	if (rc) {
18447 		error = -EINVAL;
18448 		goto fail_fcf_scan;
18449 	}
18450 	/* Issue the mailbox command asynchronously */
18451 	mboxq->vport = phba->pport;
18452 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18453 
18454 	spin_lock_irq(&phba->hbalock);
18455 	phba->hba_flag |= FCF_TS_INPROG;
18456 	spin_unlock_irq(&phba->hbalock);
18457 
18458 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18459 	if (rc == MBX_NOT_FINISHED)
18460 		error = -EIO;
18461 	else {
18462 		/* Reset eligible FCF count for new scan */
18463 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18464 			phba->fcf.eligible_fcf_cnt = 0;
18465 		error = 0;
18466 	}
18467 fail_fcf_scan:
18468 	if (error) {
18469 		if (mboxq)
18470 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18471 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18472 		spin_lock_irq(&phba->hbalock);
18473 		phba->hba_flag &= ~FCF_TS_INPROG;
18474 		spin_unlock_irq(&phba->hbalock);
18475 	}
18476 	return error;
18477 }
18478 
18479 /**
18480  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18481  * @phba: pointer to lpfc hba data structure.
18482  * @fcf_index: FCF table entry offset.
18483  *
18484  * This routine is invoked to read an FCF record indicated by @fcf_index
18485  * and to use it for FLOGI roundrobin FCF failover.
18486  *
18487  * Return 0 if the mailbox command is submitted successfully, none 0
18488  * otherwise.
18489  **/
18490 int
18491 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18492 {
18493 	int rc = 0, error;
18494 	LPFC_MBOXQ_t *mboxq;
18495 
18496 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18497 	if (!mboxq) {
18498 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18499 				"2763 Failed to allocate mbox for "
18500 				"READ_FCF cmd\n");
18501 		error = -ENOMEM;
18502 		goto fail_fcf_read;
18503 	}
18504 	/* Construct the read FCF record mailbox command */
18505 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18506 	if (rc) {
18507 		error = -EINVAL;
18508 		goto fail_fcf_read;
18509 	}
18510 	/* Issue the mailbox command asynchronously */
18511 	mboxq->vport = phba->pport;
18512 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18513 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18514 	if (rc == MBX_NOT_FINISHED)
18515 		error = -EIO;
18516 	else
18517 		error = 0;
18518 
18519 fail_fcf_read:
18520 	if (error && mboxq)
18521 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18522 	return error;
18523 }
18524 
18525 /**
18526  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18527  * @phba: pointer to lpfc hba data structure.
18528  * @fcf_index: FCF table entry offset.
18529  *
18530  * This routine is invoked to read an FCF record indicated by @fcf_index to
18531  * determine whether it's eligible for FLOGI roundrobin failover list.
18532  *
18533  * Return 0 if the mailbox command is submitted successfully, none 0
18534  * otherwise.
18535  **/
18536 int
18537 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18538 {
18539 	int rc = 0, error;
18540 	LPFC_MBOXQ_t *mboxq;
18541 
18542 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18543 	if (!mboxq) {
18544 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18545 				"2758 Failed to allocate mbox for "
18546 				"READ_FCF cmd\n");
18547 				error = -ENOMEM;
18548 				goto fail_fcf_read;
18549 	}
18550 	/* Construct the read FCF record mailbox command */
18551 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18552 	if (rc) {
18553 		error = -EINVAL;
18554 		goto fail_fcf_read;
18555 	}
18556 	/* Issue the mailbox command asynchronously */
18557 	mboxq->vport = phba->pport;
18558 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18559 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18560 	if (rc == MBX_NOT_FINISHED)
18561 		error = -EIO;
18562 	else
18563 		error = 0;
18564 
18565 fail_fcf_read:
18566 	if (error && mboxq)
18567 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18568 	return error;
18569 }
18570 
18571 /**
18572  * lpfc_check_next_fcf_pri_level
18573  * phba pointer to the lpfc_hba struct for this port.
18574  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18575  * routine when the rr_bmask is empty. The FCF indecies are put into the
18576  * rr_bmask based on their priority level. Starting from the highest priority
18577  * to the lowest. The most likely FCF candidate will be in the highest
18578  * priority group. When this routine is called it searches the fcf_pri list for
18579  * next lowest priority group and repopulates the rr_bmask with only those
18580  * fcf_indexes.
18581  * returns:
18582  * 1=success 0=failure
18583  **/
18584 static int
18585 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18586 {
18587 	uint16_t next_fcf_pri;
18588 	uint16_t last_index;
18589 	struct lpfc_fcf_pri *fcf_pri;
18590 	int rc;
18591 	int ret = 0;
18592 
18593 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18594 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18595 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18596 			"3060 Last IDX %d\n", last_index);
18597 
18598 	/* Verify the priority list has 2 or more entries */
18599 	spin_lock_irq(&phba->hbalock);
18600 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18601 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18602 		spin_unlock_irq(&phba->hbalock);
18603 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18604 			"3061 Last IDX %d\n", last_index);
18605 		return 0; /* Empty rr list */
18606 	}
18607 	spin_unlock_irq(&phba->hbalock);
18608 
18609 	next_fcf_pri = 0;
18610 	/*
18611 	 * Clear the rr_bmask and set all of the bits that are at this
18612 	 * priority.
18613 	 */
18614 	memset(phba->fcf.fcf_rr_bmask, 0,
18615 			sizeof(*phba->fcf.fcf_rr_bmask));
18616 	spin_lock_irq(&phba->hbalock);
18617 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18618 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18619 			continue;
18620 		/*
18621 		 * the 1st priority that has not FLOGI failed
18622 		 * will be the highest.
18623 		 */
18624 		if (!next_fcf_pri)
18625 			next_fcf_pri = fcf_pri->fcf_rec.priority;
18626 		spin_unlock_irq(&phba->hbalock);
18627 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18628 			rc = lpfc_sli4_fcf_rr_index_set(phba,
18629 						fcf_pri->fcf_rec.fcf_index);
18630 			if (rc)
18631 				return 0;
18632 		}
18633 		spin_lock_irq(&phba->hbalock);
18634 	}
18635 	/*
18636 	 * if next_fcf_pri was not set above and the list is not empty then
18637 	 * we have failed flogis on all of them. So reset flogi failed
18638 	 * and start at the beginning.
18639 	 */
18640 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
18641 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18642 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
18643 			/*
18644 			 * the 1st priority that has not FLOGI failed
18645 			 * will be the highest.
18646 			 */
18647 			if (!next_fcf_pri)
18648 				next_fcf_pri = fcf_pri->fcf_rec.priority;
18649 			spin_unlock_irq(&phba->hbalock);
18650 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
18651 				rc = lpfc_sli4_fcf_rr_index_set(phba,
18652 						fcf_pri->fcf_rec.fcf_index);
18653 				if (rc)
18654 					return 0;
18655 			}
18656 			spin_lock_irq(&phba->hbalock);
18657 		}
18658 	} else
18659 		ret = 1;
18660 	spin_unlock_irq(&phba->hbalock);
18661 
18662 	return ret;
18663 }
18664 /**
18665  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
18666  * @phba: pointer to lpfc hba data structure.
18667  *
18668  * This routine is to get the next eligible FCF record index in a round
18669  * robin fashion. If the next eligible FCF record index equals to the
18670  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
18671  * shall be returned, otherwise, the next eligible FCF record's index
18672  * shall be returned.
18673  **/
18674 uint16_t
18675 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
18676 {
18677 	uint16_t next_fcf_index;
18678 
18679 initial_priority:
18680 	/* Search start from next bit of currently registered FCF index */
18681 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
18682 
18683 next_priority:
18684 	/* Determine the next fcf index to check */
18685 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
18686 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18687 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
18688 				       next_fcf_index);
18689 
18690 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
18691 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18692 		/*
18693 		 * If we have wrapped then we need to clear the bits that
18694 		 * have been tested so that we can detect when we should
18695 		 * change the priority level.
18696 		 */
18697 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
18698 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
18699 	}
18700 
18701 
18702 	/* Check roundrobin failover list empty condition */
18703 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
18704 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
18705 		/*
18706 		 * If next fcf index is not found check if there are lower
18707 		 * Priority level fcf's in the fcf_priority list.
18708 		 * Set up the rr_bmask with all of the avaiable fcf bits
18709 		 * at that level and continue the selection process.
18710 		 */
18711 		if (lpfc_check_next_fcf_pri_level(phba))
18712 			goto initial_priority;
18713 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18714 				"2844 No roundrobin failover FCF available\n");
18715 		if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
18716 			return LPFC_FCOE_FCF_NEXT_NONE;
18717 		else {
18718 			lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
18719 				"3063 Only FCF available idx %d, flag %x\n",
18720 				next_fcf_index,
18721 			phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
18722 			return next_fcf_index;
18723 		}
18724 	}
18725 
18726 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
18727 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
18728 		LPFC_FCF_FLOGI_FAILED) {
18729 		if (list_is_singular(&phba->fcf.fcf_pri_list))
18730 			return LPFC_FCOE_FCF_NEXT_NONE;
18731 
18732 		goto next_priority;
18733 	}
18734 
18735 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18736 			"2845 Get next roundrobin failover FCF (x%x)\n",
18737 			next_fcf_index);
18738 
18739 	return next_fcf_index;
18740 }
18741 
18742 /**
18743  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
18744  * @phba: pointer to lpfc hba data structure.
18745  *
18746  * This routine sets the FCF record index in to the eligible bmask for
18747  * roundrobin failover search. It checks to make sure that the index
18748  * does not go beyond the range of the driver allocated bmask dimension
18749  * before setting the bit.
18750  *
18751  * Returns 0 if the index bit successfully set, otherwise, it returns
18752  * -EINVAL.
18753  **/
18754 int
18755 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
18756 {
18757 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18758 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18759 				"2610 FCF (x%x) reached driver's book "
18760 				"keeping dimension:x%x\n",
18761 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18762 		return -EINVAL;
18763 	}
18764 	/* Set the eligible FCF record index bmask */
18765 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18766 
18767 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18768 			"2790 Set FCF (x%x) to roundrobin FCF failover "
18769 			"bmask\n", fcf_index);
18770 
18771 	return 0;
18772 }
18773 
18774 /**
18775  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
18776  * @phba: pointer to lpfc hba data structure.
18777  *
18778  * This routine clears the FCF record index from the eligible bmask for
18779  * roundrobin failover search. It checks to make sure that the index
18780  * does not go beyond the range of the driver allocated bmask dimension
18781  * before clearing the bit.
18782  **/
18783 void
18784 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
18785 {
18786 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
18787 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
18788 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18789 				"2762 FCF (x%x) reached driver's book "
18790 				"keeping dimension:x%x\n",
18791 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
18792 		return;
18793 	}
18794 	/* Clear the eligible FCF record index bmask */
18795 	spin_lock_irq(&phba->hbalock);
18796 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
18797 				 list) {
18798 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
18799 			list_del_init(&fcf_pri->list);
18800 			break;
18801 		}
18802 	}
18803 	spin_unlock_irq(&phba->hbalock);
18804 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
18805 
18806 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18807 			"2791 Clear FCF (x%x) from roundrobin failover "
18808 			"bmask\n", fcf_index);
18809 }
18810 
18811 /**
18812  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
18813  * @phba: pointer to lpfc hba data structure.
18814  *
18815  * This routine is the completion routine for the rediscover FCF table mailbox
18816  * command. If the mailbox command returned failure, it will try to stop the
18817  * FCF rediscover wait timer.
18818  **/
18819 static void
18820 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
18821 {
18822 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18823 	uint32_t shdr_status, shdr_add_status;
18824 
18825 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18826 
18827 	shdr_status = bf_get(lpfc_mbox_hdr_status,
18828 			     &redisc_fcf->header.cfg_shdr.response);
18829 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
18830 			     &redisc_fcf->header.cfg_shdr.response);
18831 	if (shdr_status || shdr_add_status) {
18832 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18833 				"2746 Requesting for FCF rediscovery failed "
18834 				"status x%x add_status x%x\n",
18835 				shdr_status, shdr_add_status);
18836 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
18837 			spin_lock_irq(&phba->hbalock);
18838 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
18839 			spin_unlock_irq(&phba->hbalock);
18840 			/*
18841 			 * CVL event triggered FCF rediscover request failed,
18842 			 * last resort to re-try current registered FCF entry.
18843 			 */
18844 			lpfc_retry_pport_discovery(phba);
18845 		} else {
18846 			spin_lock_irq(&phba->hbalock);
18847 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
18848 			spin_unlock_irq(&phba->hbalock);
18849 			/*
18850 			 * DEAD FCF event triggered FCF rediscover request
18851 			 * failed, last resort to fail over as a link down
18852 			 * to FCF registration.
18853 			 */
18854 			lpfc_sli4_fcf_dead_failthrough(phba);
18855 		}
18856 	} else {
18857 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18858 				"2775 Start FCF rediscover quiescent timer\n");
18859 		/*
18860 		 * Start FCF rediscovery wait timer for pending FCF
18861 		 * before rescan FCF record table.
18862 		 */
18863 		lpfc_fcf_redisc_wait_start_timer(phba);
18864 	}
18865 
18866 	mempool_free(mbox, phba->mbox_mem_pool);
18867 }
18868 
18869 /**
18870  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
18871  * @phba: pointer to lpfc hba data structure.
18872  *
18873  * This routine is invoked to request for rediscovery of the entire FCF table
18874  * by the port.
18875  **/
18876 int
18877 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
18878 {
18879 	LPFC_MBOXQ_t *mbox;
18880 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
18881 	int rc, length;
18882 
18883 	/* Cancel retry delay timers to all vports before FCF rediscover */
18884 	lpfc_cancel_all_vport_retry_delay_timer(phba);
18885 
18886 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18887 	if (!mbox) {
18888 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18889 				"2745 Failed to allocate mbox for "
18890 				"requesting FCF rediscover.\n");
18891 		return -ENOMEM;
18892 	}
18893 
18894 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
18895 		  sizeof(struct lpfc_sli4_cfg_mhdr));
18896 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
18897 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
18898 			 length, LPFC_SLI4_MBX_EMBED);
18899 
18900 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
18901 	/* Set count to 0 for invalidating the entire FCF database */
18902 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
18903 
18904 	/* Issue the mailbox command asynchronously */
18905 	mbox->vport = phba->pport;
18906 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
18907 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
18908 
18909 	if (rc == MBX_NOT_FINISHED) {
18910 		mempool_free(mbox, phba->mbox_mem_pool);
18911 		return -EIO;
18912 	}
18913 	return 0;
18914 }
18915 
18916 /**
18917  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
18918  * @phba: pointer to lpfc hba data structure.
18919  *
18920  * This function is the failover routine as a last resort to the FCF DEAD
18921  * event when driver failed to perform fast FCF failover.
18922  **/
18923 void
18924 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
18925 {
18926 	uint32_t link_state;
18927 
18928 	/*
18929 	 * Last resort as FCF DEAD event failover will treat this as
18930 	 * a link down, but save the link state because we don't want
18931 	 * it to be changed to Link Down unless it is already down.
18932 	 */
18933 	link_state = phba->link_state;
18934 	lpfc_linkdown(phba);
18935 	phba->link_state = link_state;
18936 
18937 	/* Unregister FCF if no devices connected to it */
18938 	lpfc_unregister_unused_fcf(phba);
18939 }
18940 
18941 /**
18942  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
18943  * @phba: pointer to lpfc hba data structure.
18944  * @rgn23_data: pointer to configure region 23 data.
18945  *
18946  * This function gets SLI3 port configure region 23 data through memory dump
18947  * mailbox command. When it successfully retrieves data, the size of the data
18948  * will be returned, otherwise, 0 will be returned.
18949  **/
18950 static uint32_t
18951 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
18952 {
18953 	LPFC_MBOXQ_t *pmb = NULL;
18954 	MAILBOX_t *mb;
18955 	uint32_t offset = 0;
18956 	int rc;
18957 
18958 	if (!rgn23_data)
18959 		return 0;
18960 
18961 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18962 	if (!pmb) {
18963 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18964 				"2600 failed to allocate mailbox memory\n");
18965 		return 0;
18966 	}
18967 	mb = &pmb->u.mb;
18968 
18969 	do {
18970 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
18971 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
18972 
18973 		if (rc != MBX_SUCCESS) {
18974 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
18975 					"2601 failed to read config "
18976 					"region 23, rc 0x%x Status 0x%x\n",
18977 					rc, mb->mbxStatus);
18978 			mb->un.varDmp.word_cnt = 0;
18979 		}
18980 		/*
18981 		 * dump mem may return a zero when finished or we got a
18982 		 * mailbox error, either way we are done.
18983 		 */
18984 		if (mb->un.varDmp.word_cnt == 0)
18985 			break;
18986 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
18987 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
18988 
18989 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
18990 				       rgn23_data + offset,
18991 				       mb->un.varDmp.word_cnt);
18992 		offset += mb->un.varDmp.word_cnt;
18993 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
18994 
18995 	mempool_free(pmb, phba->mbox_mem_pool);
18996 	return offset;
18997 }
18998 
18999 /**
19000  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19001  * @phba: pointer to lpfc hba data structure.
19002  * @rgn23_data: pointer to configure region 23 data.
19003  *
19004  * This function gets SLI4 port configure region 23 data through memory dump
19005  * mailbox command. When it successfully retrieves data, the size of the data
19006  * will be returned, otherwise, 0 will be returned.
19007  **/
19008 static uint32_t
19009 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19010 {
19011 	LPFC_MBOXQ_t *mboxq = NULL;
19012 	struct lpfc_dmabuf *mp = NULL;
19013 	struct lpfc_mqe *mqe;
19014 	uint32_t data_length = 0;
19015 	int rc;
19016 
19017 	if (!rgn23_data)
19018 		return 0;
19019 
19020 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19021 	if (!mboxq) {
19022 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19023 				"3105 failed to allocate mailbox memory\n");
19024 		return 0;
19025 	}
19026 
19027 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19028 		goto out;
19029 	mqe = &mboxq->u.mqe;
19030 	mp = (struct lpfc_dmabuf *) mboxq->context1;
19031 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19032 	if (rc)
19033 		goto out;
19034 	data_length = mqe->un.mb_words[5];
19035 	if (data_length == 0)
19036 		goto out;
19037 	if (data_length > DMP_RGN23_SIZE) {
19038 		data_length = 0;
19039 		goto out;
19040 	}
19041 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19042 out:
19043 	mempool_free(mboxq, phba->mbox_mem_pool);
19044 	if (mp) {
19045 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19046 		kfree(mp);
19047 	}
19048 	return data_length;
19049 }
19050 
19051 /**
19052  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19053  * @phba: pointer to lpfc hba data structure.
19054  *
19055  * This function read region 23 and parse TLV for port status to
19056  * decide if the user disaled the port. If the TLV indicates the
19057  * port is disabled, the hba_flag is set accordingly.
19058  **/
19059 void
19060 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19061 {
19062 	uint8_t *rgn23_data = NULL;
19063 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19064 	uint32_t offset = 0;
19065 
19066 	/* Get adapter Region 23 data */
19067 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19068 	if (!rgn23_data)
19069 		goto out;
19070 
19071 	if (phba->sli_rev < LPFC_SLI_REV4)
19072 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19073 	else {
19074 		if_type = bf_get(lpfc_sli_intf_if_type,
19075 				 &phba->sli4_hba.sli_intf);
19076 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19077 			goto out;
19078 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19079 	}
19080 
19081 	if (!data_size)
19082 		goto out;
19083 
19084 	/* Check the region signature first */
19085 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19086 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19087 			"2619 Config region 23 has bad signature\n");
19088 			goto out;
19089 	}
19090 	offset += 4;
19091 
19092 	/* Check the data structure version */
19093 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19094 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19095 			"2620 Config region 23 has bad version\n");
19096 		goto out;
19097 	}
19098 	offset += 4;
19099 
19100 	/* Parse TLV entries in the region */
19101 	while (offset < data_size) {
19102 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19103 			break;
19104 		/*
19105 		 * If the TLV is not driver specific TLV or driver id is
19106 		 * not linux driver id, skip the record.
19107 		 */
19108 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19109 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19110 		    (rgn23_data[offset + 3] != 0)) {
19111 			offset += rgn23_data[offset + 1] * 4 + 4;
19112 			continue;
19113 		}
19114 
19115 		/* Driver found a driver specific TLV in the config region */
19116 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19117 		offset += 4;
19118 		tlv_offset = 0;
19119 
19120 		/*
19121 		 * Search for configured port state sub-TLV.
19122 		 */
19123 		while ((offset < data_size) &&
19124 			(tlv_offset < sub_tlv_len)) {
19125 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19126 				offset += 4;
19127 				tlv_offset += 4;
19128 				break;
19129 			}
19130 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19131 				offset += rgn23_data[offset + 1] * 4 + 4;
19132 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19133 				continue;
19134 			}
19135 
19136 			/* This HBA contains PORT_STE configured */
19137 			if (!rgn23_data[offset + 2])
19138 				phba->hba_flag |= LINK_DISABLED;
19139 
19140 			goto out;
19141 		}
19142 	}
19143 
19144 out:
19145 	kfree(rgn23_data);
19146 	return;
19147 }
19148 
19149 /**
19150  * lpfc_wr_object - write an object to the firmware
19151  * @phba: HBA structure that indicates port to create a queue on.
19152  * @dmabuf_list: list of dmabufs to write to the port.
19153  * @size: the total byte value of the objects to write to the port.
19154  * @offset: the current offset to be used to start the transfer.
19155  *
19156  * This routine will create a wr_object mailbox command to send to the port.
19157  * the mailbox command will be constructed using the dma buffers described in
19158  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19159  * BDEs that the imbedded mailbox can support. The @offset variable will be
19160  * used to indicate the starting offset of the transfer and will also return
19161  * the offset after the write object mailbox has completed. @size is used to
19162  * determine the end of the object and whether the eof bit should be set.
19163  *
19164  * Return 0 is successful and offset will contain the the new offset to use
19165  * for the next write.
19166  * Return negative value for error cases.
19167  **/
19168 int
19169 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19170 	       uint32_t size, uint32_t *offset)
19171 {
19172 	struct lpfc_mbx_wr_object *wr_object;
19173 	LPFC_MBOXQ_t *mbox;
19174 	int rc = 0, i = 0;
19175 	uint32_t shdr_status, shdr_add_status;
19176 	uint32_t mbox_tmo;
19177 	union lpfc_sli4_cfg_shdr *shdr;
19178 	struct lpfc_dmabuf *dmabuf;
19179 	uint32_t written = 0;
19180 
19181 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19182 	if (!mbox)
19183 		return -ENOMEM;
19184 
19185 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19186 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19187 			sizeof(struct lpfc_mbx_wr_object) -
19188 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19189 
19190 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19191 	wr_object->u.request.write_offset = *offset;
19192 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19193 	wr_object->u.request.object_name[0] =
19194 		cpu_to_le32(wr_object->u.request.object_name[0]);
19195 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19196 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19197 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19198 			break;
19199 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19200 		wr_object->u.request.bde[i].addrHigh =
19201 			putPaddrHigh(dmabuf->phys);
19202 		if (written + SLI4_PAGE_SIZE >= size) {
19203 			wr_object->u.request.bde[i].tus.f.bdeSize =
19204 				(size - written);
19205 			written += (size - written);
19206 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19207 		} else {
19208 			wr_object->u.request.bde[i].tus.f.bdeSize =
19209 				SLI4_PAGE_SIZE;
19210 			written += SLI4_PAGE_SIZE;
19211 		}
19212 		i++;
19213 	}
19214 	wr_object->u.request.bde_count = i;
19215 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19216 	if (!phba->sli4_hba.intr_enable)
19217 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19218 	else {
19219 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19220 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19221 	}
19222 	/* The IOCTL status is embedded in the mailbox subheader. */
19223 	shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
19224 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19225 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19226 	if (rc != MBX_TIMEOUT)
19227 		mempool_free(mbox, phba->mbox_mem_pool);
19228 	if (shdr_status || shdr_add_status || rc) {
19229 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19230 				"3025 Write Object mailbox failed with "
19231 				"status x%x add_status x%x, mbx status x%x\n",
19232 				shdr_status, shdr_add_status, rc);
19233 		rc = -ENXIO;
19234 		*offset = shdr_add_status;
19235 	} else
19236 		*offset += wr_object->u.response.actual_write_length;
19237 	return rc;
19238 }
19239 
19240 /**
19241  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19242  * @vport: pointer to vport data structure.
19243  *
19244  * This function iterate through the mailboxq and clean up all REG_LOGIN
19245  * and REG_VPI mailbox commands associated with the vport. This function
19246  * is called when driver want to restart discovery of the vport due to
19247  * a Clear Virtual Link event.
19248  **/
19249 void
19250 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19251 {
19252 	struct lpfc_hba *phba = vport->phba;
19253 	LPFC_MBOXQ_t *mb, *nextmb;
19254 	struct lpfc_dmabuf *mp;
19255 	struct lpfc_nodelist *ndlp;
19256 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19257 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19258 	LIST_HEAD(mbox_cmd_list);
19259 	uint8_t restart_loop;
19260 
19261 	/* Clean up internally queued mailbox commands with the vport */
19262 	spin_lock_irq(&phba->hbalock);
19263 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19264 		if (mb->vport != vport)
19265 			continue;
19266 
19267 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19268 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19269 			continue;
19270 
19271 		list_del(&mb->list);
19272 		list_add_tail(&mb->list, &mbox_cmd_list);
19273 	}
19274 	/* Clean up active mailbox command with the vport */
19275 	mb = phba->sli.mbox_active;
19276 	if (mb && (mb->vport == vport)) {
19277 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19278 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19279 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19280 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19281 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
19282 			/* Put reference count for delayed processing */
19283 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19284 			/* Unregister the RPI when mailbox complete */
19285 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19286 		}
19287 	}
19288 	/* Cleanup any mailbox completions which are not yet processed */
19289 	do {
19290 		restart_loop = 0;
19291 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19292 			/*
19293 			 * If this mailox is already processed or it is
19294 			 * for another vport ignore it.
19295 			 */
19296 			if ((mb->vport != vport) ||
19297 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19298 				continue;
19299 
19300 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19301 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19302 				continue;
19303 
19304 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19305 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19306 				ndlp = (struct lpfc_nodelist *)mb->context2;
19307 				/* Unregister the RPI when mailbox complete */
19308 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19309 				restart_loop = 1;
19310 				spin_unlock_irq(&phba->hbalock);
19311 				spin_lock(shost->host_lock);
19312 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19313 				spin_unlock(shost->host_lock);
19314 				spin_lock_irq(&phba->hbalock);
19315 				break;
19316 			}
19317 		}
19318 	} while (restart_loop);
19319 
19320 	spin_unlock_irq(&phba->hbalock);
19321 
19322 	/* Release the cleaned-up mailbox commands */
19323 	while (!list_empty(&mbox_cmd_list)) {
19324 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19325 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19326 			mp = (struct lpfc_dmabuf *) (mb->context1);
19327 			if (mp) {
19328 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19329 				kfree(mp);
19330 			}
19331 			ndlp = (struct lpfc_nodelist *) mb->context2;
19332 			mb->context2 = NULL;
19333 			if (ndlp) {
19334 				spin_lock(shost->host_lock);
19335 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19336 				spin_unlock(shost->host_lock);
19337 				lpfc_nlp_put(ndlp);
19338 			}
19339 		}
19340 		mempool_free(mb, phba->mbox_mem_pool);
19341 	}
19342 
19343 	/* Release the ndlp with the cleaned-up active mailbox command */
19344 	if (act_mbx_ndlp) {
19345 		spin_lock(shost->host_lock);
19346 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19347 		spin_unlock(shost->host_lock);
19348 		lpfc_nlp_put(act_mbx_ndlp);
19349 	}
19350 }
19351 
19352 /**
19353  * lpfc_drain_txq - Drain the txq
19354  * @phba: Pointer to HBA context object.
19355  *
19356  * This function attempt to submit IOCBs on the txq
19357  * to the adapter.  For SLI4 adapters, the txq contains
19358  * ELS IOCBs that have been deferred because the there
19359  * are no SGLs.  This congestion can occur with large
19360  * vport counts during node discovery.
19361  **/
19362 
19363 uint32_t
19364 lpfc_drain_txq(struct lpfc_hba *phba)
19365 {
19366 	LIST_HEAD(completions);
19367 	struct lpfc_sli_ring *pring;
19368 	struct lpfc_iocbq *piocbq = NULL;
19369 	unsigned long iflags = 0;
19370 	char *fail_msg = NULL;
19371 	struct lpfc_sglq *sglq;
19372 	union lpfc_wqe128 wqe;
19373 	uint32_t txq_cnt = 0;
19374 	struct lpfc_queue *wq;
19375 
19376 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19377 		/* MDS WQE are posted only to first WQ*/
19378 		wq = phba->sli4_hba.fcp_wq[0];
19379 		if (unlikely(!wq))
19380 			return 0;
19381 		pring = wq->pring;
19382 	} else {
19383 		wq = phba->sli4_hba.els_wq;
19384 		if (unlikely(!wq))
19385 			return 0;
19386 		pring = lpfc_phba_elsring(phba);
19387 	}
19388 
19389 	if (unlikely(!pring) || list_empty(&pring->txq))
19390 		return 0;
19391 
19392 	spin_lock_irqsave(&pring->ring_lock, iflags);
19393 	list_for_each_entry(piocbq, &pring->txq, list) {
19394 		txq_cnt++;
19395 	}
19396 
19397 	if (txq_cnt > pring->txq_max)
19398 		pring->txq_max = txq_cnt;
19399 
19400 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19401 
19402 	while (!list_empty(&pring->txq)) {
19403 		spin_lock_irqsave(&pring->ring_lock, iflags);
19404 
19405 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19406 		if (!piocbq) {
19407 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19408 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19409 				"2823 txq empty and txq_cnt is %d\n ",
19410 				txq_cnt);
19411 			break;
19412 		}
19413 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19414 		if (!sglq) {
19415 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19416 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19417 			break;
19418 		}
19419 		txq_cnt--;
19420 
19421 		/* The xri and iocb resources secured,
19422 		 * attempt to issue request
19423 		 */
19424 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19425 		piocbq->sli4_xritag = sglq->sli4_xritag;
19426 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19427 			fail_msg = "to convert bpl to sgl";
19428 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19429 			fail_msg = "to convert iocb to wqe";
19430 		else if (lpfc_sli4_wq_put(wq, &wqe))
19431 			fail_msg = " - Wq is full";
19432 		else
19433 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19434 
19435 		if (fail_msg) {
19436 			/* Failed means we can't issue and need to cancel */
19437 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19438 					"2822 IOCB failed %s iotag 0x%x "
19439 					"xri 0x%x\n",
19440 					fail_msg,
19441 					piocbq->iotag, piocbq->sli4_xritag);
19442 			list_add_tail(&piocbq->list, &completions);
19443 		}
19444 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19445 	}
19446 
19447 	/* Cancel all the IOCBs that cannot be issued */
19448 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19449 				IOERR_SLI_ABORTED);
19450 
19451 	return txq_cnt;
19452 }
19453 
19454 /**
19455  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19456  * @phba: Pointer to HBA context object.
19457  * @pwqe: Pointer to command WQE.
19458  * @sglq: Pointer to the scatter gather queue object.
19459  *
19460  * This routine converts the bpl or bde that is in the WQE
19461  * to a sgl list for the sli4 hardware. The physical address
19462  * of the bpl/bde is converted back to a virtual address.
19463  * If the WQE contains a BPL then the list of BDE's is
19464  * converted to sli4_sge's. If the WQE contains a single
19465  * BDE then it is converted to a single sli_sge.
19466  * The WQE is still in cpu endianness so the contents of
19467  * the bpl can be used without byte swapping.
19468  *
19469  * Returns valid XRI = Success, NO_XRI = Failure.
19470  */
19471 static uint16_t
19472 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19473 		 struct lpfc_sglq *sglq)
19474 {
19475 	uint16_t xritag = NO_XRI;
19476 	struct ulp_bde64 *bpl = NULL;
19477 	struct ulp_bde64 bde;
19478 	struct sli4_sge *sgl  = NULL;
19479 	struct lpfc_dmabuf *dmabuf;
19480 	union lpfc_wqe128 *wqe;
19481 	int numBdes = 0;
19482 	int i = 0;
19483 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19484 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19485 	uint32_t cmd;
19486 
19487 	if (!pwqeq || !sglq)
19488 		return xritag;
19489 
19490 	sgl  = (struct sli4_sge *)sglq->sgl;
19491 	wqe = &pwqeq->wqe;
19492 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19493 
19494 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19495 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19496 		return sglq->sli4_xritag;
19497 	numBdes = pwqeq->rsvd2;
19498 	if (numBdes) {
19499 		/* The addrHigh and addrLow fields within the WQE
19500 		 * have not been byteswapped yet so there is no
19501 		 * need to swap them back.
19502 		 */
19503 		if (pwqeq->context3)
19504 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19505 		else
19506 			return xritag;
19507 
19508 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19509 		if (!bpl)
19510 			return xritag;
19511 
19512 		for (i = 0; i < numBdes; i++) {
19513 			/* Should already be byte swapped. */
19514 			sgl->addr_hi = bpl->addrHigh;
19515 			sgl->addr_lo = bpl->addrLow;
19516 
19517 			sgl->word2 = le32_to_cpu(sgl->word2);
19518 			if ((i+1) == numBdes)
19519 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19520 			else
19521 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19522 			/* swap the size field back to the cpu so we
19523 			 * can assign it to the sgl.
19524 			 */
19525 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19526 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19527 			/* The offsets in the sgl need to be accumulated
19528 			 * separately for the request and reply lists.
19529 			 * The request is always first, the reply follows.
19530 			 */
19531 			switch (cmd) {
19532 			case CMD_GEN_REQUEST64_WQE:
19533 				/* add up the reply sg entries */
19534 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19535 					inbound++;
19536 				/* first inbound? reset the offset */
19537 				if (inbound == 1)
19538 					offset = 0;
19539 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19540 				bf_set(lpfc_sli4_sge_type, sgl,
19541 					LPFC_SGE_TYPE_DATA);
19542 				offset += bde.tus.f.bdeSize;
19543 				break;
19544 			case CMD_FCP_TRSP64_WQE:
19545 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19546 				bf_set(lpfc_sli4_sge_type, sgl,
19547 					LPFC_SGE_TYPE_DATA);
19548 				break;
19549 			case CMD_FCP_TSEND64_WQE:
19550 			case CMD_FCP_TRECEIVE64_WQE:
19551 				bf_set(lpfc_sli4_sge_type, sgl,
19552 					bpl->tus.f.bdeFlags);
19553 				if (i < 3)
19554 					offset = 0;
19555 				else
19556 					offset += bde.tus.f.bdeSize;
19557 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19558 				break;
19559 			}
19560 			sgl->word2 = cpu_to_le32(sgl->word2);
19561 			bpl++;
19562 			sgl++;
19563 		}
19564 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19565 		/* The addrHigh and addrLow fields of the BDE have not
19566 		 * been byteswapped yet so they need to be swapped
19567 		 * before putting them in the sgl.
19568 		 */
19569 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19570 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19571 		sgl->word2 = le32_to_cpu(sgl->word2);
19572 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19573 		sgl->word2 = cpu_to_le32(sgl->word2);
19574 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19575 	}
19576 	return sglq->sli4_xritag;
19577 }
19578 
19579 /**
19580  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19581  * @phba: Pointer to HBA context object.
19582  * @ring_number: Base sli ring number
19583  * @pwqe: Pointer to command WQE.
19584  **/
19585 int
19586 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number,
19587 		    struct lpfc_iocbq *pwqe)
19588 {
19589 	union lpfc_wqe128 *wqe = &pwqe->wqe;
19590 	struct lpfc_nvmet_rcv_ctx *ctxp;
19591 	struct lpfc_queue *wq;
19592 	struct lpfc_sglq *sglq;
19593 	struct lpfc_sli_ring *pring;
19594 	unsigned long iflags;
19595 	uint32_t ret = 0;
19596 
19597 	/* NVME_LS and NVME_LS ABTS requests. */
19598 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
19599 		pring =  phba->sli4_hba.nvmels_wq->pring;
19600 		spin_lock_irqsave(&pring->ring_lock, iflags);
19601 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
19602 		if (!sglq) {
19603 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19604 			return WQE_BUSY;
19605 		}
19606 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
19607 		pwqe->sli4_xritag = sglq->sli4_xritag;
19608 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
19609 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19610 			return WQE_ERROR;
19611 		}
19612 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19613 		       pwqe->sli4_xritag);
19614 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
19615 		if (ret) {
19616 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19617 			return ret;
19618 		}
19619 
19620 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19621 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19622 		return 0;
19623 	}
19624 
19625 	/* NVME_FCREQ and NVME_ABTS requests */
19626 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
19627 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19628 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19629 
19630 		spin_lock_irqsave(&pring->ring_lock, iflags);
19631 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19632 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19633 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19634 		ret = lpfc_sli4_wq_put(wq, wqe);
19635 		if (ret) {
19636 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19637 			return ret;
19638 		}
19639 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19640 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19641 		return 0;
19642 	}
19643 
19644 	/* NVMET requests */
19645 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
19646 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
19647 		pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring;
19648 
19649 		spin_lock_irqsave(&pring->ring_lock, iflags);
19650 		ctxp = pwqe->context2;
19651 		sglq = ctxp->ctxbuf->sglq;
19652 		if (pwqe->sli4_xritag ==  NO_XRI) {
19653 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
19654 			pwqe->sli4_xritag = sglq->sli4_xritag;
19655 		}
19656 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
19657 		       pwqe->sli4_xritag);
19658 		wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx];
19659 		bf_set(wqe_cqid, &wqe->generic.wqe_com,
19660 		      phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id);
19661 		ret = lpfc_sli4_wq_put(wq, wqe);
19662 		if (ret) {
19663 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19664 			return ret;
19665 		}
19666 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
19667 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19668 		return 0;
19669 	}
19670 	return WQE_ERROR;
19671 }
19672