1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #include <linux/crash_dump.h> 39 #ifdef CONFIG_X86 40 #include <asm/set_memory.h> 41 #endif 42 43 #include "lpfc_hw4.h" 44 #include "lpfc_hw.h" 45 #include "lpfc_sli.h" 46 #include "lpfc_sli4.h" 47 #include "lpfc_nl.h" 48 #include "lpfc_disc.h" 49 #include "lpfc.h" 50 #include "lpfc_scsi.h" 51 #include "lpfc_nvme.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 78 struct hbq_dmabuf *dmabuf); 79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 80 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 82 int); 83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 84 struct lpfc_queue *eq, 85 struct lpfc_eqe *eqe); 86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 90 struct lpfc_queue *cq, 91 struct lpfc_cqe *cqe); 92 93 union lpfc_wqe128 lpfc_iread_cmd_template; 94 union lpfc_wqe128 lpfc_iwrite_cmd_template; 95 union lpfc_wqe128 lpfc_icmnd_cmd_template; 96 97 static IOCB_t * 98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 99 { 100 return &iocbq->iocb; 101 } 102 103 /* Setup WQE templates for IOs */ 104 void lpfc_wqe_cmd_template(void) 105 { 106 union lpfc_wqe128 *wqe; 107 108 /* IREAD template */ 109 wqe = &lpfc_iread_cmd_template; 110 memset(wqe, 0, sizeof(union lpfc_wqe128)); 111 112 /* Word 0, 1, 2 - BDE is variable */ 113 114 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 115 116 /* Word 4 - total_xfer_len is variable */ 117 118 /* Word 5 - is zero */ 119 120 /* Word 6 - ctxt_tag, xri_tag is variable */ 121 122 /* Word 7 */ 123 bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); 124 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); 125 bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); 126 bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); 127 128 /* Word 8 - abort_tag is variable */ 129 130 /* Word 9 - reqtag is variable */ 131 132 /* Word 10 - dbde, wqes is variable */ 133 bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); 134 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 135 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); 136 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 137 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 138 139 /* Word 11 - pbde is variable */ 140 bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); 141 bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 142 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 143 144 /* Word 12 - is zero */ 145 146 /* Word 13, 14, 15 - PBDE is variable */ 147 148 /* IWRITE template */ 149 wqe = &lpfc_iwrite_cmd_template; 150 memset(wqe, 0, sizeof(union lpfc_wqe128)); 151 152 /* Word 0, 1, 2 - BDE is variable */ 153 154 /* Word 3 - cmd_buff_len, payload_offset_len is zero */ 155 156 /* Word 4 - total_xfer_len is variable */ 157 158 /* Word 5 - initial_xfer_len is variable */ 159 160 /* Word 6 - ctxt_tag, xri_tag is variable */ 161 162 /* Word 7 */ 163 bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); 164 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); 165 bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); 166 bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); 167 168 /* Word 8 - abort_tag is variable */ 169 170 /* Word 9 - reqtag is variable */ 171 172 /* Word 10 - dbde, wqes is variable */ 173 bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); 174 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 175 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); 176 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 177 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 178 179 /* Word 11 - pbde is variable */ 180 bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); 181 bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 182 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 183 184 /* Word 12 - is zero */ 185 186 /* Word 13, 14, 15 - PBDE is variable */ 187 188 /* ICMND template */ 189 wqe = &lpfc_icmnd_cmd_template; 190 memset(wqe, 0, sizeof(union lpfc_wqe128)); 191 192 /* Word 0, 1, 2 - BDE is variable */ 193 194 /* Word 3 - payload_offset_len is variable */ 195 196 /* Word 4, 5 - is zero */ 197 198 /* Word 6 - ctxt_tag, xri_tag is variable */ 199 200 /* Word 7 */ 201 bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); 202 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 203 bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); 204 bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); 205 206 /* Word 8 - abort_tag is variable */ 207 208 /* Word 9 - reqtag is variable */ 209 210 /* Word 10 - dbde, wqes is variable */ 211 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 212 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); 213 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); 214 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 215 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 216 217 /* Word 11 */ 218 bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); 219 bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 220 bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); 221 222 /* Word 12, 13, 14, 15 - is zero */ 223 } 224 225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 226 /** 227 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 228 * @srcp: Source memory pointer. 229 * @destp: Destination memory pointer. 230 * @cnt: Number of words required to be copied. 231 * Must be a multiple of sizeof(uint64_t) 232 * 233 * This function is used for copying data between driver memory 234 * and the SLI WQ. This function also changes the endianness 235 * of each word if native endianness is different from SLI 236 * endianness. This function can be called with or without 237 * lock. 238 **/ 239 static void 240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 241 { 242 uint64_t *src = srcp; 243 uint64_t *dest = destp; 244 int i; 245 246 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 247 *dest++ = *src++; 248 } 249 #else 250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 251 #endif 252 253 /** 254 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 255 * @q: The Work Queue to operate on. 256 * @wqe: The work Queue Entry to put on the Work queue. 257 * 258 * This routine will copy the contents of @wqe to the next available entry on 259 * the @q. This function will then ring the Work Queue Doorbell to signal the 260 * HBA to start processing the Work Queue Entry. This function returns 0 if 261 * successful. If no entries are available on @q then this function will return 262 * -ENOMEM. 263 * The caller is expected to hold the hbalock when calling this routine. 264 **/ 265 static int 266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 267 { 268 union lpfc_wqe *temp_wqe; 269 struct lpfc_register doorbell; 270 uint32_t host_index; 271 uint32_t idx; 272 uint32_t i = 0; 273 uint8_t *tmp; 274 u32 if_type; 275 276 /* sanity check on queue memory */ 277 if (unlikely(!q)) 278 return -ENOMEM; 279 280 temp_wqe = lpfc_sli4_qe(q, q->host_index); 281 282 /* If the host has not yet processed the next entry then we are done */ 283 idx = ((q->host_index + 1) % q->entry_count); 284 if (idx == q->hba_index) { 285 q->WQ_overflow++; 286 return -EBUSY; 287 } 288 q->WQ_posted++; 289 /* set consumption flag every once in a while */ 290 if (!((q->host_index + 1) % q->notify_interval)) 291 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 292 else 293 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 294 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 295 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 296 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 297 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 298 /* write to DPP aperture taking advatage of Combined Writes */ 299 tmp = (uint8_t *)temp_wqe; 300 #ifdef __raw_writeq 301 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 302 __raw_writeq(*((uint64_t *)(tmp + i)), 303 q->dpp_regaddr + i); 304 #else 305 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 306 __raw_writel(*((uint32_t *)(tmp + i)), 307 q->dpp_regaddr + i); 308 #endif 309 } 310 /* ensure WQE bcopy and DPP flushed before doorbell write */ 311 wmb(); 312 313 /* Update the host index before invoking device */ 314 host_index = q->host_index; 315 316 q->host_index = idx; 317 318 /* Ring Doorbell */ 319 doorbell.word0 = 0; 320 if (q->db_format == LPFC_DB_LIST_FORMAT) { 321 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 322 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 323 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 324 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 325 q->dpp_id); 326 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 327 q->queue_id); 328 } else { 329 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 330 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 331 332 /* Leave bits <23:16> clear for if_type 6 dpp */ 333 if_type = bf_get(lpfc_sli_intf_if_type, 334 &q->phba->sli4_hba.sli_intf); 335 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 336 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 337 host_index); 338 } 339 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 340 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 341 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 342 } else { 343 return -EINVAL; 344 } 345 writel(doorbell.word0, q->db_regaddr); 346 347 return 0; 348 } 349 350 /** 351 * lpfc_sli4_wq_release - Updates internal hba index for WQ 352 * @q: The Work Queue to operate on. 353 * @index: The index to advance the hba index to. 354 * 355 * This routine will update the HBA index of a queue to reflect consumption of 356 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 357 * an entry the host calls this function to update the queue's internal 358 * pointers. 359 **/ 360 static void 361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 362 { 363 /* sanity check on queue memory */ 364 if (unlikely(!q)) 365 return; 366 367 q->hba_index = index; 368 } 369 370 /** 371 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 372 * @q: The Mailbox Queue to operate on. 373 * @mqe: The Mailbox Queue Entry to put on the Work queue. 374 * 375 * This routine will copy the contents of @mqe to the next available entry on 376 * the @q. This function will then ring the Work Queue Doorbell to signal the 377 * HBA to start processing the Work Queue Entry. This function returns 0 if 378 * successful. If no entries are available on @q then this function will return 379 * -ENOMEM. 380 * The caller is expected to hold the hbalock when calling this routine. 381 **/ 382 static uint32_t 383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 384 { 385 struct lpfc_mqe *temp_mqe; 386 struct lpfc_register doorbell; 387 388 /* sanity check on queue memory */ 389 if (unlikely(!q)) 390 return -ENOMEM; 391 temp_mqe = lpfc_sli4_qe(q, q->host_index); 392 393 /* If the host has not yet processed the next entry then we are done */ 394 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 395 return -ENOMEM; 396 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 397 /* Save off the mailbox pointer for completion */ 398 q->phba->mbox = (MAILBOX_t *)temp_mqe; 399 400 /* Update the host index before invoking device */ 401 q->host_index = ((q->host_index + 1) % q->entry_count); 402 403 /* Ring Doorbell */ 404 doorbell.word0 = 0; 405 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 406 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 407 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 408 return 0; 409 } 410 411 /** 412 * lpfc_sli4_mq_release - Updates internal hba index for MQ 413 * @q: The Mailbox Queue to operate on. 414 * 415 * This routine will update the HBA index of a queue to reflect consumption of 416 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 417 * an entry the host calls this function to update the queue's internal 418 * pointers. This routine returns the number of entries that were consumed by 419 * the HBA. 420 **/ 421 static uint32_t 422 lpfc_sli4_mq_release(struct lpfc_queue *q) 423 { 424 /* sanity check on queue memory */ 425 if (unlikely(!q)) 426 return 0; 427 428 /* Clear the mailbox pointer for completion */ 429 q->phba->mbox = NULL; 430 q->hba_index = ((q->hba_index + 1) % q->entry_count); 431 return 1; 432 } 433 434 /** 435 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 436 * @q: The Event Queue to get the first valid EQE from 437 * 438 * This routine will get the first valid Event Queue Entry from @q, update 439 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 440 * the Queue (no more work to do), or the Queue is full of EQEs that have been 441 * processed, but not popped back to the HBA then this routine will return NULL. 442 **/ 443 static struct lpfc_eqe * 444 lpfc_sli4_eq_get(struct lpfc_queue *q) 445 { 446 struct lpfc_eqe *eqe; 447 448 /* sanity check on queue memory */ 449 if (unlikely(!q)) 450 return NULL; 451 eqe = lpfc_sli4_qe(q, q->host_index); 452 453 /* If the next EQE is not valid then we are done */ 454 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 455 return NULL; 456 457 /* 458 * insert barrier for instruction interlock : data from the hardware 459 * must have the valid bit checked before it can be copied and acted 460 * upon. Speculative instructions were allowing a bcopy at the start 461 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 462 * after our return, to copy data before the valid bit check above 463 * was done. As such, some of the copied data was stale. The barrier 464 * ensures the check is before any data is copied. 465 */ 466 mb(); 467 return eqe; 468 } 469 470 /** 471 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 472 * @q: The Event Queue to disable interrupts 473 * 474 **/ 475 void 476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 477 { 478 struct lpfc_register doorbell; 479 480 doorbell.word0 = 0; 481 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 482 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 483 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 484 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 485 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 486 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 487 } 488 489 /** 490 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 491 * @q: The Event Queue to disable interrupts 492 * 493 **/ 494 void 495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 496 { 497 struct lpfc_register doorbell; 498 499 doorbell.word0 = 0; 500 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 501 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 502 } 503 504 /** 505 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 506 * @phba: adapter with EQ 507 * @q: The Event Queue that the host has completed processing for. 508 * @count: Number of elements that have been consumed 509 * @arm: Indicates whether the host wants to arms this CQ. 510 * 511 * This routine will notify the HBA, by ringing the doorbell, that count 512 * number of EQEs have been processed. The @arm parameter indicates whether 513 * the queue should be rearmed when ringing the doorbell. 514 **/ 515 void 516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 517 uint32_t count, bool arm) 518 { 519 struct lpfc_register doorbell; 520 521 /* sanity check on queue memory */ 522 if (unlikely(!q || (count == 0 && !arm))) 523 return; 524 525 /* ring doorbell for number popped */ 526 doorbell.word0 = 0; 527 if (arm) { 528 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 529 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 530 } 531 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 532 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 533 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 534 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 535 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 536 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 537 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 538 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 539 readl(q->phba->sli4_hba.EQDBregaddr); 540 } 541 542 /** 543 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 544 * @phba: adapter with EQ 545 * @q: The Event Queue that the host has completed processing for. 546 * @count: Number of elements that have been consumed 547 * @arm: Indicates whether the host wants to arms this CQ. 548 * 549 * This routine will notify the HBA, by ringing the doorbell, that count 550 * number of EQEs have been processed. The @arm parameter indicates whether 551 * the queue should be rearmed when ringing the doorbell. 552 **/ 553 void 554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 555 uint32_t count, bool arm) 556 { 557 struct lpfc_register doorbell; 558 559 /* sanity check on queue memory */ 560 if (unlikely(!q || (count == 0 && !arm))) 561 return; 562 563 /* ring doorbell for number popped */ 564 doorbell.word0 = 0; 565 if (arm) 566 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 567 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 568 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 569 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 570 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 571 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 572 readl(q->phba->sli4_hba.EQDBregaddr); 573 } 574 575 static void 576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 577 struct lpfc_eqe *eqe) 578 { 579 if (!phba->sli4_hba.pc_sli4_params.eqav) 580 bf_set_le32(lpfc_eqe_valid, eqe, 0); 581 582 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 583 584 /* if the index wrapped around, toggle the valid bit */ 585 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 586 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 587 } 588 589 static void 590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 591 { 592 struct lpfc_eqe *eqe = NULL; 593 u32 eq_count = 0, cq_count = 0; 594 struct lpfc_cqe *cqe = NULL; 595 struct lpfc_queue *cq = NULL, *childq = NULL; 596 int cqid = 0; 597 598 /* walk all the EQ entries and drop on the floor */ 599 eqe = lpfc_sli4_eq_get(eq); 600 while (eqe) { 601 /* Get the reference to the corresponding CQ */ 602 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 603 cq = NULL; 604 605 list_for_each_entry(childq, &eq->child_list, list) { 606 if (childq->queue_id == cqid) { 607 cq = childq; 608 break; 609 } 610 } 611 /* If CQ is valid, iterate through it and drop all the CQEs */ 612 if (cq) { 613 cqe = lpfc_sli4_cq_get(cq); 614 while (cqe) { 615 __lpfc_sli4_consume_cqe(phba, cq, cqe); 616 cq_count++; 617 cqe = lpfc_sli4_cq_get(cq); 618 } 619 /* Clear and re-arm the CQ */ 620 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 621 LPFC_QUEUE_REARM); 622 cq_count = 0; 623 } 624 __lpfc_sli4_consume_eqe(phba, eq, eqe); 625 eq_count++; 626 eqe = lpfc_sli4_eq_get(eq); 627 } 628 629 /* Clear and re-arm the EQ */ 630 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 631 } 632 633 static int 634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 635 uint8_t rearm) 636 { 637 struct lpfc_eqe *eqe; 638 int count = 0, consumed = 0; 639 640 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 641 goto rearm_and_exit; 642 643 eqe = lpfc_sli4_eq_get(eq); 644 while (eqe) { 645 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 646 __lpfc_sli4_consume_eqe(phba, eq, eqe); 647 648 consumed++; 649 if (!(++count % eq->max_proc_limit)) 650 break; 651 652 if (!(count % eq->notify_interval)) { 653 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 654 LPFC_QUEUE_NOARM); 655 consumed = 0; 656 } 657 658 eqe = lpfc_sli4_eq_get(eq); 659 } 660 eq->EQ_processed += count; 661 662 /* Track the max number of EQEs processed in 1 intr */ 663 if (count > eq->EQ_max_eqe) 664 eq->EQ_max_eqe = count; 665 666 xchg(&eq->queue_claimed, 0); 667 668 rearm_and_exit: 669 /* Always clear the EQ. */ 670 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 671 672 return count; 673 } 674 675 /** 676 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 677 * @q: The Completion Queue to get the first valid CQE from 678 * 679 * This routine will get the first valid Completion Queue Entry from @q, update 680 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 681 * the Queue (no more work to do), or the Queue is full of CQEs that have been 682 * processed, but not popped back to the HBA then this routine will return NULL. 683 **/ 684 static struct lpfc_cqe * 685 lpfc_sli4_cq_get(struct lpfc_queue *q) 686 { 687 struct lpfc_cqe *cqe; 688 689 /* sanity check on queue memory */ 690 if (unlikely(!q)) 691 return NULL; 692 cqe = lpfc_sli4_qe(q, q->host_index); 693 694 /* If the next CQE is not valid then we are done */ 695 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 696 return NULL; 697 698 /* 699 * insert barrier for instruction interlock : data from the hardware 700 * must have the valid bit checked before it can be copied and acted 701 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 702 * instructions allowing action on content before valid bit checked, 703 * add barrier here as well. May not be needed as "content" is a 704 * single 32-bit entity here (vs multi word structure for cq's). 705 */ 706 mb(); 707 return cqe; 708 } 709 710 static void 711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 712 struct lpfc_cqe *cqe) 713 { 714 if (!phba->sli4_hba.pc_sli4_params.cqav) 715 bf_set_le32(lpfc_cqe_valid, cqe, 0); 716 717 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 718 719 /* if the index wrapped around, toggle the valid bit */ 720 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 721 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 722 } 723 724 /** 725 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 726 * @phba: the adapter with the CQ 727 * @q: The Completion Queue that the host has completed processing for. 728 * @count: the number of elements that were consumed 729 * @arm: Indicates whether the host wants to arms this CQ. 730 * 731 * This routine will notify the HBA, by ringing the doorbell, that the 732 * CQEs have been processed. The @arm parameter specifies whether the 733 * queue should be rearmed when ringing the doorbell. 734 **/ 735 void 736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 737 uint32_t count, bool arm) 738 { 739 struct lpfc_register doorbell; 740 741 /* sanity check on queue memory */ 742 if (unlikely(!q || (count == 0 && !arm))) 743 return; 744 745 /* ring doorbell for number popped */ 746 doorbell.word0 = 0; 747 if (arm) 748 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 749 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 750 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 751 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 752 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 753 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 754 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 755 } 756 757 /** 758 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 759 * @phba: the adapter with the CQ 760 * @q: The Completion Queue that the host has completed processing for. 761 * @count: the number of elements that were consumed 762 * @arm: Indicates whether the host wants to arms this CQ. 763 * 764 * This routine will notify the HBA, by ringing the doorbell, that the 765 * CQEs have been processed. The @arm parameter specifies whether the 766 * queue should be rearmed when ringing the doorbell. 767 **/ 768 void 769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 770 uint32_t count, bool arm) 771 { 772 struct lpfc_register doorbell; 773 774 /* sanity check on queue memory */ 775 if (unlikely(!q || (count == 0 && !arm))) 776 return; 777 778 /* ring doorbell for number popped */ 779 doorbell.word0 = 0; 780 if (arm) 781 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 782 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 783 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 784 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 785 } 786 787 /* 788 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 789 * 790 * This routine will copy the contents of @wqe to the next available entry on 791 * the @q. This function will then ring the Receive Queue Doorbell to signal the 792 * HBA to start processing the Receive Queue Entry. This function returns the 793 * index that the rqe was copied to if successful. If no entries are available 794 * on @q then this function will return -ENOMEM. 795 * The caller is expected to hold the hbalock when calling this routine. 796 **/ 797 int 798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 799 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 800 { 801 struct lpfc_rqe *temp_hrqe; 802 struct lpfc_rqe *temp_drqe; 803 struct lpfc_register doorbell; 804 int hq_put_index; 805 int dq_put_index; 806 807 /* sanity check on queue memory */ 808 if (unlikely(!hq) || unlikely(!dq)) 809 return -ENOMEM; 810 hq_put_index = hq->host_index; 811 dq_put_index = dq->host_index; 812 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 813 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 814 815 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 816 return -EINVAL; 817 if (hq_put_index != dq_put_index) 818 return -EINVAL; 819 /* If the host has not yet processed the next entry then we are done */ 820 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 821 return -EBUSY; 822 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 823 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 824 825 /* Update the host index to point to the next slot */ 826 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 827 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 828 hq->RQ_buf_posted++; 829 830 /* Ring The Header Receive Queue Doorbell */ 831 if (!(hq->host_index % hq->notify_interval)) { 832 doorbell.word0 = 0; 833 if (hq->db_format == LPFC_DB_RING_FORMAT) { 834 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 835 hq->notify_interval); 836 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 837 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 838 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 839 hq->notify_interval); 840 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 841 hq->host_index); 842 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 843 } else { 844 return -EINVAL; 845 } 846 writel(doorbell.word0, hq->db_regaddr); 847 } 848 return hq_put_index; 849 } 850 851 /* 852 * lpfc_sli4_rq_release - Updates internal hba index for RQ 853 * 854 * This routine will update the HBA index of a queue to reflect consumption of 855 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 856 * consumed an entry the host calls this function to update the queue's 857 * internal pointers. This routine returns the number of entries that were 858 * consumed by the HBA. 859 **/ 860 static uint32_t 861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 862 { 863 /* sanity check on queue memory */ 864 if (unlikely(!hq) || unlikely(!dq)) 865 return 0; 866 867 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 868 return 0; 869 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 870 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 871 return 1; 872 } 873 874 /** 875 * lpfc_cmd_iocb - Get next command iocb entry in the ring 876 * @phba: Pointer to HBA context object. 877 * @pring: Pointer to driver SLI ring object. 878 * 879 * This function returns pointer to next command iocb entry 880 * in the command ring. The caller must hold hbalock to prevent 881 * other threads consume the next command iocb. 882 * SLI-2/SLI-3 provide different sized iocbs. 883 **/ 884 static inline IOCB_t * 885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 886 { 887 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 888 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 889 } 890 891 /** 892 * lpfc_resp_iocb - Get next response iocb entry in the ring 893 * @phba: Pointer to HBA context object. 894 * @pring: Pointer to driver SLI ring object. 895 * 896 * This function returns pointer to next response iocb entry 897 * in the response ring. The caller must hold hbalock to make sure 898 * that no other thread consume the next response iocb. 899 * SLI-2/SLI-3 provide different sized iocbs. 900 **/ 901 static inline IOCB_t * 902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 903 { 904 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 905 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 906 } 907 908 /** 909 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 910 * @phba: Pointer to HBA context object. 911 * 912 * This function is called with hbalock held. This function 913 * allocates a new driver iocb object from the iocb pool. If the 914 * allocation is successful, it returns pointer to the newly 915 * allocated iocb object else it returns NULL. 916 **/ 917 struct lpfc_iocbq * 918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 919 { 920 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 921 struct lpfc_iocbq * iocbq = NULL; 922 923 lockdep_assert_held(&phba->hbalock); 924 925 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 926 if (iocbq) 927 phba->iocb_cnt++; 928 if (phba->iocb_cnt > phba->iocb_max) 929 phba->iocb_max = phba->iocb_cnt; 930 return iocbq; 931 } 932 933 /** 934 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 935 * @phba: Pointer to HBA context object. 936 * @xritag: XRI value. 937 * 938 * This function clears the sglq pointer from the array of active 939 * sglq's. The xritag that is passed in is used to index into the 940 * array. Before the xritag can be used it needs to be adjusted 941 * by subtracting the xribase. 942 * 943 * Returns sglq ponter = success, NULL = Failure. 944 **/ 945 struct lpfc_sglq * 946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 947 { 948 struct lpfc_sglq *sglq; 949 950 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 951 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 952 return sglq; 953 } 954 955 /** 956 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 957 * @phba: Pointer to HBA context object. 958 * @xritag: XRI value. 959 * 960 * This function returns the sglq pointer from the array of active 961 * sglq's. The xritag that is passed in is used to index into the 962 * array. Before the xritag can be used it needs to be adjusted 963 * by subtracting the xribase. 964 * 965 * Returns sglq ponter = success, NULL = Failure. 966 **/ 967 struct lpfc_sglq * 968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 969 { 970 struct lpfc_sglq *sglq; 971 972 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 973 return sglq; 974 } 975 976 /** 977 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 978 * @phba: Pointer to HBA context object. 979 * @xritag: xri used in this exchange. 980 * @rrq: The RRQ to be cleared. 981 * 982 **/ 983 void 984 lpfc_clr_rrq_active(struct lpfc_hba *phba, 985 uint16_t xritag, 986 struct lpfc_node_rrq *rrq) 987 { 988 struct lpfc_nodelist *ndlp = NULL; 989 990 /* Lookup did to verify if did is still active on this vport */ 991 if (rrq->vport) 992 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 993 994 if (!ndlp) 995 goto out; 996 997 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 998 rrq->send_rrq = 0; 999 rrq->xritag = 0; 1000 rrq->rrq_stop_time = 0; 1001 } 1002 out: 1003 mempool_free(rrq, phba->rrq_pool); 1004 } 1005 1006 /** 1007 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 1008 * @phba: Pointer to HBA context object. 1009 * 1010 * This function is called with hbalock held. This function 1011 * Checks if stop_time (ratov from setting rrq active) has 1012 * been reached, if it has and the send_rrq flag is set then 1013 * it will call lpfc_send_rrq. If the send_rrq flag is not set 1014 * then it will just call the routine to clear the rrq and 1015 * free the rrq resource. 1016 * The timer is set to the next rrq that is going to expire before 1017 * leaving the routine. 1018 * 1019 **/ 1020 void 1021 lpfc_handle_rrq_active(struct lpfc_hba *phba) 1022 { 1023 struct lpfc_node_rrq *rrq; 1024 struct lpfc_node_rrq *nextrrq; 1025 unsigned long next_time; 1026 unsigned long iflags; 1027 LIST_HEAD(send_rrq); 1028 1029 spin_lock_irqsave(&phba->hbalock, iflags); 1030 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1031 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1032 list_for_each_entry_safe(rrq, nextrrq, 1033 &phba->active_rrq_list, list) { 1034 if (time_after(jiffies, rrq->rrq_stop_time)) 1035 list_move(&rrq->list, &send_rrq); 1036 else if (time_before(rrq->rrq_stop_time, next_time)) 1037 next_time = rrq->rrq_stop_time; 1038 } 1039 spin_unlock_irqrestore(&phba->hbalock, iflags); 1040 if ((!list_empty(&phba->active_rrq_list)) && 1041 (!(phba->pport->load_flag & FC_UNLOADING))) 1042 mod_timer(&phba->rrq_tmr, next_time); 1043 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 1044 list_del(&rrq->list); 1045 if (!rrq->send_rrq) { 1046 /* this call will free the rrq */ 1047 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1048 } else if (lpfc_send_rrq(phba, rrq)) { 1049 /* if we send the rrq then the completion handler 1050 * will clear the bit in the xribitmap. 1051 */ 1052 lpfc_clr_rrq_active(phba, rrq->xritag, 1053 rrq); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 1060 * @vport: Pointer to vport context object. 1061 * @xri: The xri used in the exchange. 1062 * @did: The targets DID for this exchange. 1063 * 1064 * returns NULL = rrq not found in the phba->active_rrq_list. 1065 * rrq = rrq for this xri and target. 1066 **/ 1067 struct lpfc_node_rrq * 1068 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 1069 { 1070 struct lpfc_hba *phba = vport->phba; 1071 struct lpfc_node_rrq *rrq; 1072 struct lpfc_node_rrq *nextrrq; 1073 unsigned long iflags; 1074 1075 if (phba->sli_rev != LPFC_SLI_REV4) 1076 return NULL; 1077 spin_lock_irqsave(&phba->hbalock, iflags); 1078 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1079 if (rrq->vport == vport && rrq->xritag == xri && 1080 rrq->nlp_DID == did){ 1081 list_del(&rrq->list); 1082 spin_unlock_irqrestore(&phba->hbalock, iflags); 1083 return rrq; 1084 } 1085 } 1086 spin_unlock_irqrestore(&phba->hbalock, iflags); 1087 return NULL; 1088 } 1089 1090 /** 1091 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 1092 * @vport: Pointer to vport context object. 1093 * @ndlp: Pointer to the lpfc_node_list structure. 1094 * If ndlp is NULL Remove all active RRQs for this vport from the 1095 * phba->active_rrq_list and clear the rrq. 1096 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 1097 **/ 1098 void 1099 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 1100 1101 { 1102 struct lpfc_hba *phba = vport->phba; 1103 struct lpfc_node_rrq *rrq; 1104 struct lpfc_node_rrq *nextrrq; 1105 unsigned long iflags; 1106 LIST_HEAD(rrq_list); 1107 1108 if (phba->sli_rev != LPFC_SLI_REV4) 1109 return; 1110 if (!ndlp) { 1111 lpfc_sli4_vport_delete_els_xri_aborted(vport); 1112 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 1113 } 1114 spin_lock_irqsave(&phba->hbalock, iflags); 1115 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 1116 if (rrq->vport != vport) 1117 continue; 1118 1119 if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) 1120 list_move(&rrq->list, &rrq_list); 1121 1122 } 1123 spin_unlock_irqrestore(&phba->hbalock, iflags); 1124 1125 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1126 list_del(&rrq->list); 1127 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1128 } 1129 } 1130 1131 /** 1132 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1133 * @phba: Pointer to HBA context object. 1134 * @ndlp: Targets nodelist pointer for this exchange. 1135 * @xritag: the xri in the bitmap to test. 1136 * 1137 * This function returns: 1138 * 0 = rrq not active for this xri 1139 * 1 = rrq is valid for this xri. 1140 **/ 1141 int 1142 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1143 uint16_t xritag) 1144 { 1145 if (!ndlp) 1146 return 0; 1147 if (!ndlp->active_rrqs_xri_bitmap) 1148 return 0; 1149 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1150 return 1; 1151 else 1152 return 0; 1153 } 1154 1155 /** 1156 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1157 * @phba: Pointer to HBA context object. 1158 * @ndlp: nodelist pointer for this target. 1159 * @xritag: xri used in this exchange. 1160 * @rxid: Remote Exchange ID. 1161 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1162 * 1163 * This function takes the hbalock. 1164 * The active bit is always set in the active rrq xri_bitmap even 1165 * if there is no slot avaiable for the other rrq information. 1166 * 1167 * returns 0 rrq actived for this xri 1168 * < 0 No memory or invalid ndlp. 1169 **/ 1170 int 1171 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1172 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1173 { 1174 unsigned long iflags; 1175 struct lpfc_node_rrq *rrq; 1176 int empty; 1177 1178 if (!ndlp) 1179 return -EINVAL; 1180 1181 if (!phba->cfg_enable_rrq) 1182 return -EINVAL; 1183 1184 spin_lock_irqsave(&phba->hbalock, iflags); 1185 if (phba->pport->load_flag & FC_UNLOADING) { 1186 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1187 goto out; 1188 } 1189 1190 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1191 goto out; 1192 1193 if (!ndlp->active_rrqs_xri_bitmap) 1194 goto out; 1195 1196 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1197 goto out; 1198 1199 spin_unlock_irqrestore(&phba->hbalock, iflags); 1200 rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); 1201 if (!rrq) { 1202 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1203 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1204 " DID:0x%x Send:%d\n", 1205 xritag, rxid, ndlp->nlp_DID, send_rrq); 1206 return -EINVAL; 1207 } 1208 if (phba->cfg_enable_rrq == 1) 1209 rrq->send_rrq = send_rrq; 1210 else 1211 rrq->send_rrq = 0; 1212 rrq->xritag = xritag; 1213 rrq->rrq_stop_time = jiffies + 1214 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1215 rrq->nlp_DID = ndlp->nlp_DID; 1216 rrq->vport = ndlp->vport; 1217 rrq->rxid = rxid; 1218 spin_lock_irqsave(&phba->hbalock, iflags); 1219 empty = list_empty(&phba->active_rrq_list); 1220 list_add_tail(&rrq->list, &phba->active_rrq_list); 1221 phba->hba_flag |= HBA_RRQ_ACTIVE; 1222 if (empty) 1223 lpfc_worker_wake_up(phba); 1224 spin_unlock_irqrestore(&phba->hbalock, iflags); 1225 return 0; 1226 out: 1227 spin_unlock_irqrestore(&phba->hbalock, iflags); 1228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1229 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1230 " DID:0x%x Send:%d\n", 1231 xritag, rxid, ndlp->nlp_DID, send_rrq); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1237 * @phba: Pointer to HBA context object. 1238 * @piocbq: Pointer to the iocbq. 1239 * 1240 * The driver calls this function with either the nvme ls ring lock 1241 * or the fc els ring lock held depending on the iocb usage. This function 1242 * gets a new driver sglq object from the sglq list. If the list is not empty 1243 * then it is successful, it returns pointer to the newly allocated sglq 1244 * object else it returns NULL. 1245 **/ 1246 static struct lpfc_sglq * 1247 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1248 { 1249 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1250 struct lpfc_sglq *sglq = NULL; 1251 struct lpfc_sglq *start_sglq = NULL; 1252 struct lpfc_io_buf *lpfc_cmd; 1253 struct lpfc_nodelist *ndlp; 1254 struct lpfc_sli_ring *pring = NULL; 1255 int found = 0; 1256 1257 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1258 pring = phba->sli4_hba.nvmels_wq->pring; 1259 else 1260 pring = lpfc_phba_elsring(phba); 1261 1262 lockdep_assert_held(&pring->ring_lock); 1263 1264 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1265 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1266 ndlp = lpfc_cmd->rdata->pnode; 1267 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1268 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1269 ndlp = piocbq->context_un.ndlp; 1270 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1271 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1272 ndlp = NULL; 1273 else 1274 ndlp = piocbq->context_un.ndlp; 1275 } else { 1276 ndlp = piocbq->context1; 1277 } 1278 1279 spin_lock(&phba->sli4_hba.sgl_list_lock); 1280 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1281 start_sglq = sglq; 1282 while (!found) { 1283 if (!sglq) 1284 break; 1285 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1286 test_bit(sglq->sli4_lxritag, 1287 ndlp->active_rrqs_xri_bitmap)) { 1288 /* This xri has an rrq outstanding for this DID. 1289 * put it back in the list and get another xri. 1290 */ 1291 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1292 sglq = NULL; 1293 list_remove_head(lpfc_els_sgl_list, sglq, 1294 struct lpfc_sglq, list); 1295 if (sglq == start_sglq) { 1296 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1297 sglq = NULL; 1298 break; 1299 } else 1300 continue; 1301 } 1302 sglq->ndlp = ndlp; 1303 found = 1; 1304 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1305 sglq->state = SGL_ALLOCATED; 1306 } 1307 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1308 return sglq; 1309 } 1310 1311 /** 1312 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1313 * @phba: Pointer to HBA context object. 1314 * @piocbq: Pointer to the iocbq. 1315 * 1316 * This function is called with the sgl_list lock held. This function 1317 * gets a new driver sglq object from the sglq list. If the 1318 * list is not empty then it is successful, it returns pointer to the newly 1319 * allocated sglq object else it returns NULL. 1320 **/ 1321 struct lpfc_sglq * 1322 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1323 { 1324 struct list_head *lpfc_nvmet_sgl_list; 1325 struct lpfc_sglq *sglq = NULL; 1326 1327 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1328 1329 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1330 1331 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1332 if (!sglq) 1333 return NULL; 1334 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1335 sglq->state = SGL_ALLOCATED; 1336 return sglq; 1337 } 1338 1339 /** 1340 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1341 * @phba: Pointer to HBA context object. 1342 * 1343 * This function is called with no lock held. This function 1344 * allocates a new driver iocb object from the iocb pool. If the 1345 * allocation is successful, it returns pointer to the newly 1346 * allocated iocb object else it returns NULL. 1347 **/ 1348 struct lpfc_iocbq * 1349 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1350 { 1351 struct lpfc_iocbq * iocbq = NULL; 1352 unsigned long iflags; 1353 1354 spin_lock_irqsave(&phba->hbalock, iflags); 1355 iocbq = __lpfc_sli_get_iocbq(phba); 1356 spin_unlock_irqrestore(&phba->hbalock, iflags); 1357 return iocbq; 1358 } 1359 1360 /** 1361 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1362 * @phba: Pointer to HBA context object. 1363 * @iocbq: Pointer to driver iocb object. 1364 * 1365 * This function is called to release the driver iocb object 1366 * to the iocb pool. The iotag in the iocb object 1367 * does not change for each use of the iocb object. This function 1368 * clears all other fields of the iocb object when it is freed. 1369 * The sqlq structure that holds the xritag and phys and virtual 1370 * mappings for the scatter gather list is retrieved from the 1371 * active array of sglq. The get of the sglq pointer also clears 1372 * the entry in the array. If the status of the IO indiactes that 1373 * this IO was aborted then the sglq entry it put on the 1374 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1375 * IO has good status or fails for any other reason then the sglq 1376 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1377 * asserted held in the code path calling this routine. 1378 **/ 1379 static void 1380 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1381 { 1382 struct lpfc_sglq *sglq; 1383 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1384 unsigned long iflag = 0; 1385 struct lpfc_sli_ring *pring; 1386 1387 if (iocbq->sli4_xritag == NO_XRI) 1388 sglq = NULL; 1389 else 1390 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1391 1392 1393 if (sglq) { 1394 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1395 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1396 iflag); 1397 sglq->state = SGL_FREED; 1398 sglq->ndlp = NULL; 1399 list_add_tail(&sglq->list, 1400 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1401 spin_unlock_irqrestore( 1402 &phba->sli4_hba.sgl_list_lock, iflag); 1403 goto out; 1404 } 1405 1406 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1407 (sglq->state != SGL_XRI_ABORTED)) { 1408 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1409 iflag); 1410 1411 /* Check if we can get a reference on ndlp */ 1412 if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) 1413 sglq->ndlp = NULL; 1414 1415 list_add(&sglq->list, 1416 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1417 spin_unlock_irqrestore( 1418 &phba->sli4_hba.sgl_list_lock, iflag); 1419 } else { 1420 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1421 iflag); 1422 sglq->state = SGL_FREED; 1423 sglq->ndlp = NULL; 1424 list_add_tail(&sglq->list, 1425 &phba->sli4_hba.lpfc_els_sgl_list); 1426 spin_unlock_irqrestore( 1427 &phba->sli4_hba.sgl_list_lock, iflag); 1428 pring = lpfc_phba_elsring(phba); 1429 /* Check if TXQ queue needs to be serviced */ 1430 if (pring && (!list_empty(&pring->txq))) 1431 lpfc_worker_wake_up(phba); 1432 } 1433 } 1434 1435 out: 1436 /* 1437 * Clean all volatile data fields, preserve iotag and node struct. 1438 */ 1439 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1440 iocbq->sli4_lxritag = NO_XRI; 1441 iocbq->sli4_xritag = NO_XRI; 1442 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1443 LPFC_IO_NVME_LS); 1444 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1445 } 1446 1447 1448 /** 1449 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1450 * @phba: Pointer to HBA context object. 1451 * @iocbq: Pointer to driver iocb object. 1452 * 1453 * This function is called to release the driver iocb object to the 1454 * iocb pool. The iotag in the iocb object does not change for each 1455 * use of the iocb object. This function clears all other fields of 1456 * the iocb object when it is freed. The hbalock is asserted held in 1457 * the code path calling this routine. 1458 **/ 1459 static void 1460 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1461 { 1462 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1463 1464 /* 1465 * Clean all volatile data fields, preserve iotag and node struct. 1466 */ 1467 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1468 iocbq->sli4_xritag = NO_XRI; 1469 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1470 } 1471 1472 /** 1473 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1474 * @phba: Pointer to HBA context object. 1475 * @iocbq: Pointer to driver iocb object. 1476 * 1477 * This function is called with hbalock held to release driver 1478 * iocb object to the iocb pool. The iotag in the iocb object 1479 * does not change for each use of the iocb object. This function 1480 * clears all other fields of the iocb object when it is freed. 1481 **/ 1482 static void 1483 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1484 { 1485 lockdep_assert_held(&phba->hbalock); 1486 1487 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1488 phba->iocb_cnt--; 1489 } 1490 1491 /** 1492 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1493 * @phba: Pointer to HBA context object. 1494 * @iocbq: Pointer to driver iocb object. 1495 * 1496 * This function is called with no lock held to release the iocb to 1497 * iocb pool. 1498 **/ 1499 void 1500 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1501 { 1502 unsigned long iflags; 1503 1504 /* 1505 * Clean all volatile data fields, preserve iotag and node struct. 1506 */ 1507 spin_lock_irqsave(&phba->hbalock, iflags); 1508 __lpfc_sli_release_iocbq(phba, iocbq); 1509 spin_unlock_irqrestore(&phba->hbalock, iflags); 1510 } 1511 1512 /** 1513 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1514 * @phba: Pointer to HBA context object. 1515 * @iocblist: List of IOCBs. 1516 * @ulpstatus: ULP status in IOCB command field. 1517 * @ulpWord4: ULP word-4 in IOCB command field. 1518 * 1519 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1520 * on the list by invoking the complete callback function associated with the 1521 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1522 * fields. 1523 **/ 1524 void 1525 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1526 uint32_t ulpstatus, uint32_t ulpWord4) 1527 { 1528 struct lpfc_iocbq *piocb; 1529 1530 while (!list_empty(iocblist)) { 1531 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1532 if (piocb->wqe_cmpl) { 1533 if (piocb->iocb_flag & LPFC_IO_NVME) 1534 lpfc_nvme_cancel_iocb(phba, piocb, 1535 ulpstatus, ulpWord4); 1536 else 1537 lpfc_sli_release_iocbq(phba, piocb); 1538 1539 } else if (piocb->iocb_cmpl) { 1540 piocb->iocb.ulpStatus = ulpstatus; 1541 piocb->iocb.un.ulpWord[4] = ulpWord4; 1542 (piocb->iocb_cmpl) (phba, piocb, piocb); 1543 } else { 1544 lpfc_sli_release_iocbq(phba, piocb); 1545 } 1546 } 1547 return; 1548 } 1549 1550 /** 1551 * lpfc_sli_iocb_cmd_type - Get the iocb type 1552 * @iocb_cmnd: iocb command code. 1553 * 1554 * This function is called by ring event handler function to get the iocb type. 1555 * This function translates the iocb command to an iocb command type used to 1556 * decide the final disposition of each completed IOCB. 1557 * The function returns 1558 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1559 * LPFC_SOL_IOCB if it is a solicited iocb completion 1560 * LPFC_ABORT_IOCB if it is an abort iocb 1561 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1562 * 1563 * The caller is not required to hold any lock. 1564 **/ 1565 static lpfc_iocb_type 1566 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1567 { 1568 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1569 1570 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1571 return 0; 1572 1573 switch (iocb_cmnd) { 1574 case CMD_XMIT_SEQUENCE_CR: 1575 case CMD_XMIT_SEQUENCE_CX: 1576 case CMD_XMIT_BCAST_CN: 1577 case CMD_XMIT_BCAST_CX: 1578 case CMD_ELS_REQUEST_CR: 1579 case CMD_ELS_REQUEST_CX: 1580 case CMD_CREATE_XRI_CR: 1581 case CMD_CREATE_XRI_CX: 1582 case CMD_GET_RPI_CN: 1583 case CMD_XMIT_ELS_RSP_CX: 1584 case CMD_GET_RPI_CR: 1585 case CMD_FCP_IWRITE_CR: 1586 case CMD_FCP_IWRITE_CX: 1587 case CMD_FCP_IREAD_CR: 1588 case CMD_FCP_IREAD_CX: 1589 case CMD_FCP_ICMND_CR: 1590 case CMD_FCP_ICMND_CX: 1591 case CMD_FCP_TSEND_CX: 1592 case CMD_FCP_TRSP_CX: 1593 case CMD_FCP_TRECEIVE_CX: 1594 case CMD_FCP_AUTO_TRSP_CX: 1595 case CMD_ADAPTER_MSG: 1596 case CMD_ADAPTER_DUMP: 1597 case CMD_XMIT_SEQUENCE64_CR: 1598 case CMD_XMIT_SEQUENCE64_CX: 1599 case CMD_XMIT_BCAST64_CN: 1600 case CMD_XMIT_BCAST64_CX: 1601 case CMD_ELS_REQUEST64_CR: 1602 case CMD_ELS_REQUEST64_CX: 1603 case CMD_FCP_IWRITE64_CR: 1604 case CMD_FCP_IWRITE64_CX: 1605 case CMD_FCP_IREAD64_CR: 1606 case CMD_FCP_IREAD64_CX: 1607 case CMD_FCP_ICMND64_CR: 1608 case CMD_FCP_ICMND64_CX: 1609 case CMD_FCP_TSEND64_CX: 1610 case CMD_FCP_TRSP64_CX: 1611 case CMD_FCP_TRECEIVE64_CX: 1612 case CMD_GEN_REQUEST64_CR: 1613 case CMD_GEN_REQUEST64_CX: 1614 case CMD_XMIT_ELS_RSP64_CX: 1615 case DSSCMD_IWRITE64_CR: 1616 case DSSCMD_IWRITE64_CX: 1617 case DSSCMD_IREAD64_CR: 1618 case DSSCMD_IREAD64_CX: 1619 case CMD_SEND_FRAME: 1620 type = LPFC_SOL_IOCB; 1621 break; 1622 case CMD_ABORT_XRI_CN: 1623 case CMD_ABORT_XRI_CX: 1624 case CMD_CLOSE_XRI_CN: 1625 case CMD_CLOSE_XRI_CX: 1626 case CMD_XRI_ABORTED_CX: 1627 case CMD_ABORT_MXRI64_CN: 1628 case CMD_XMIT_BLS_RSP64_CX: 1629 type = LPFC_ABORT_IOCB; 1630 break; 1631 case CMD_RCV_SEQUENCE_CX: 1632 case CMD_RCV_ELS_REQ_CX: 1633 case CMD_RCV_SEQUENCE64_CX: 1634 case CMD_RCV_ELS_REQ64_CX: 1635 case CMD_ASYNC_STATUS: 1636 case CMD_IOCB_RCV_SEQ64_CX: 1637 case CMD_IOCB_RCV_ELS64_CX: 1638 case CMD_IOCB_RCV_CONT64_CX: 1639 case CMD_IOCB_RET_XRI64_CX: 1640 type = LPFC_UNSOL_IOCB; 1641 break; 1642 case CMD_IOCB_XMIT_MSEQ64_CR: 1643 case CMD_IOCB_XMIT_MSEQ64_CX: 1644 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1645 case CMD_IOCB_RCV_ELS_LIST64_CX: 1646 case CMD_IOCB_CLOSE_EXTENDED_CN: 1647 case CMD_IOCB_ABORT_EXTENDED_CN: 1648 case CMD_IOCB_RET_HBQE64_CN: 1649 case CMD_IOCB_FCP_IBIDIR64_CR: 1650 case CMD_IOCB_FCP_IBIDIR64_CX: 1651 case CMD_IOCB_FCP_ITASKMGT64_CX: 1652 case CMD_IOCB_LOGENTRY_CN: 1653 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1654 printk("%s - Unhandled SLI-3 Command x%x\n", 1655 __func__, iocb_cmnd); 1656 type = LPFC_UNKNOWN_IOCB; 1657 break; 1658 default: 1659 type = LPFC_UNKNOWN_IOCB; 1660 break; 1661 } 1662 1663 return type; 1664 } 1665 1666 /** 1667 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1668 * @phba: Pointer to HBA context object. 1669 * 1670 * This function is called from SLI initialization code 1671 * to configure every ring of the HBA's SLI interface. The 1672 * caller is not required to hold any lock. This function issues 1673 * a config_ring mailbox command for each ring. 1674 * This function returns zero if successful else returns a negative 1675 * error code. 1676 **/ 1677 static int 1678 lpfc_sli_ring_map(struct lpfc_hba *phba) 1679 { 1680 struct lpfc_sli *psli = &phba->sli; 1681 LPFC_MBOXQ_t *pmb; 1682 MAILBOX_t *pmbox; 1683 int i, rc, ret = 0; 1684 1685 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1686 if (!pmb) 1687 return -ENOMEM; 1688 pmbox = &pmb->u.mb; 1689 phba->link_state = LPFC_INIT_MBX_CMDS; 1690 for (i = 0; i < psli->num_rings; i++) { 1691 lpfc_config_ring(phba, i, pmb); 1692 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1693 if (rc != MBX_SUCCESS) { 1694 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1695 "0446 Adapter failed to init (%d), " 1696 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1697 "ring %d\n", 1698 rc, pmbox->mbxCommand, 1699 pmbox->mbxStatus, i); 1700 phba->link_state = LPFC_HBA_ERROR; 1701 ret = -ENXIO; 1702 break; 1703 } 1704 } 1705 mempool_free(pmb, phba->mbox_mem_pool); 1706 return ret; 1707 } 1708 1709 /** 1710 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1711 * @phba: Pointer to HBA context object. 1712 * @pring: Pointer to driver SLI ring object. 1713 * @piocb: Pointer to the driver iocb object. 1714 * 1715 * The driver calls this function with the hbalock held for SLI3 ports or 1716 * the ring lock held for SLI4 ports. The function adds the 1717 * new iocb to txcmplq of the given ring. This function always returns 1718 * 0. If this function is called for ELS ring, this function checks if 1719 * there is a vport associated with the ELS command. This function also 1720 * starts els_tmofunc timer if this is an ELS command. 1721 **/ 1722 static int 1723 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1724 struct lpfc_iocbq *piocb) 1725 { 1726 if (phba->sli_rev == LPFC_SLI_REV4) 1727 lockdep_assert_held(&pring->ring_lock); 1728 else 1729 lockdep_assert_held(&phba->hbalock); 1730 1731 BUG_ON(!piocb); 1732 1733 list_add_tail(&piocb->list, &pring->txcmplq); 1734 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1735 pring->txcmplq_cnt++; 1736 1737 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1738 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1739 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1740 BUG_ON(!piocb->vport); 1741 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1742 mod_timer(&piocb->vport->els_tmofunc, 1743 jiffies + 1744 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1745 } 1746 1747 return 0; 1748 } 1749 1750 /** 1751 * lpfc_sli_ringtx_get - Get first element of the txq 1752 * @phba: Pointer to HBA context object. 1753 * @pring: Pointer to driver SLI ring object. 1754 * 1755 * This function is called with hbalock held to get next 1756 * iocb in txq of the given ring. If there is any iocb in 1757 * the txq, the function returns first iocb in the list after 1758 * removing the iocb from the list, else it returns NULL. 1759 **/ 1760 struct lpfc_iocbq * 1761 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1762 { 1763 struct lpfc_iocbq *cmd_iocb; 1764 1765 lockdep_assert_held(&phba->hbalock); 1766 1767 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1768 return cmd_iocb; 1769 } 1770 1771 /** 1772 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1773 * @phba: Pointer to HBA context object. 1774 * @pring: Pointer to driver SLI ring object. 1775 * 1776 * This function is called with hbalock held and the caller must post the 1777 * iocb without releasing the lock. If the caller releases the lock, 1778 * iocb slot returned by the function is not guaranteed to be available. 1779 * The function returns pointer to the next available iocb slot if there 1780 * is available slot in the ring, else it returns NULL. 1781 * If the get index of the ring is ahead of the put index, the function 1782 * will post an error attention event to the worker thread to take the 1783 * HBA to offline state. 1784 **/ 1785 static IOCB_t * 1786 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1787 { 1788 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1789 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1790 1791 lockdep_assert_held(&phba->hbalock); 1792 1793 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1794 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1795 pring->sli.sli3.next_cmdidx = 0; 1796 1797 if (unlikely(pring->sli.sli3.local_getidx == 1798 pring->sli.sli3.next_cmdidx)) { 1799 1800 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1801 1802 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1803 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1804 "0315 Ring %d issue: portCmdGet %d " 1805 "is bigger than cmd ring %d\n", 1806 pring->ringno, 1807 pring->sli.sli3.local_getidx, 1808 max_cmd_idx); 1809 1810 phba->link_state = LPFC_HBA_ERROR; 1811 /* 1812 * All error attention handlers are posted to 1813 * worker thread 1814 */ 1815 phba->work_ha |= HA_ERATT; 1816 phba->work_hs = HS_FFER3; 1817 1818 lpfc_worker_wake_up(phba); 1819 1820 return NULL; 1821 } 1822 1823 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1824 return NULL; 1825 } 1826 1827 return lpfc_cmd_iocb(phba, pring); 1828 } 1829 1830 /** 1831 * lpfc_sli_next_iotag - Get an iotag for the iocb 1832 * @phba: Pointer to HBA context object. 1833 * @iocbq: Pointer to driver iocb object. 1834 * 1835 * This function gets an iotag for the iocb. If there is no unused iotag and 1836 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1837 * array and assigns a new iotag. 1838 * The function returns the allocated iotag if successful, else returns zero. 1839 * Zero is not a valid iotag. 1840 * The caller is not required to hold any lock. 1841 **/ 1842 uint16_t 1843 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1844 { 1845 struct lpfc_iocbq **new_arr; 1846 struct lpfc_iocbq **old_arr; 1847 size_t new_len; 1848 struct lpfc_sli *psli = &phba->sli; 1849 uint16_t iotag; 1850 1851 spin_lock_irq(&phba->hbalock); 1852 iotag = psli->last_iotag; 1853 if(++iotag < psli->iocbq_lookup_len) { 1854 psli->last_iotag = iotag; 1855 psli->iocbq_lookup[iotag] = iocbq; 1856 spin_unlock_irq(&phba->hbalock); 1857 iocbq->iotag = iotag; 1858 return iotag; 1859 } else if (psli->iocbq_lookup_len < (0xffff 1860 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1861 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1862 spin_unlock_irq(&phba->hbalock); 1863 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1864 GFP_KERNEL); 1865 if (new_arr) { 1866 spin_lock_irq(&phba->hbalock); 1867 old_arr = psli->iocbq_lookup; 1868 if (new_len <= psli->iocbq_lookup_len) { 1869 /* highly unprobable case */ 1870 kfree(new_arr); 1871 iotag = psli->last_iotag; 1872 if(++iotag < psli->iocbq_lookup_len) { 1873 psli->last_iotag = iotag; 1874 psli->iocbq_lookup[iotag] = iocbq; 1875 spin_unlock_irq(&phba->hbalock); 1876 iocbq->iotag = iotag; 1877 return iotag; 1878 } 1879 spin_unlock_irq(&phba->hbalock); 1880 return 0; 1881 } 1882 if (psli->iocbq_lookup) 1883 memcpy(new_arr, old_arr, 1884 ((psli->last_iotag + 1) * 1885 sizeof (struct lpfc_iocbq *))); 1886 psli->iocbq_lookup = new_arr; 1887 psli->iocbq_lookup_len = new_len; 1888 psli->last_iotag = iotag; 1889 psli->iocbq_lookup[iotag] = iocbq; 1890 spin_unlock_irq(&phba->hbalock); 1891 iocbq->iotag = iotag; 1892 kfree(old_arr); 1893 return iotag; 1894 } 1895 } else 1896 spin_unlock_irq(&phba->hbalock); 1897 1898 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1899 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1900 psli->last_iotag); 1901 1902 return 0; 1903 } 1904 1905 /** 1906 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1907 * @phba: Pointer to HBA context object. 1908 * @pring: Pointer to driver SLI ring object. 1909 * @iocb: Pointer to iocb slot in the ring. 1910 * @nextiocb: Pointer to driver iocb object which need to be 1911 * posted to firmware. 1912 * 1913 * This function is called to post a new iocb to the firmware. This 1914 * function copies the new iocb to ring iocb slot and updates the 1915 * ring pointers. It adds the new iocb to txcmplq if there is 1916 * a completion call back for this iocb else the function will free the 1917 * iocb object. The hbalock is asserted held in the code path calling 1918 * this routine. 1919 **/ 1920 static void 1921 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1922 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1923 { 1924 /* 1925 * Set up an iotag 1926 */ 1927 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1928 1929 1930 if (pring->ringno == LPFC_ELS_RING) { 1931 lpfc_debugfs_slow_ring_trc(phba, 1932 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1933 *(((uint32_t *) &nextiocb->iocb) + 4), 1934 *(((uint32_t *) &nextiocb->iocb) + 6), 1935 *(((uint32_t *) &nextiocb->iocb) + 7)); 1936 } 1937 1938 /* 1939 * Issue iocb command to adapter 1940 */ 1941 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1942 wmb(); 1943 pring->stats.iocb_cmd++; 1944 1945 /* 1946 * If there is no completion routine to call, we can release the 1947 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1948 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1949 */ 1950 if (nextiocb->iocb_cmpl) 1951 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1952 else 1953 __lpfc_sli_release_iocbq(phba, nextiocb); 1954 1955 /* 1956 * Let the HBA know what IOCB slot will be the next one the 1957 * driver will put a command into. 1958 */ 1959 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1960 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1961 } 1962 1963 /** 1964 * lpfc_sli_update_full_ring - Update the chip attention register 1965 * @phba: Pointer to HBA context object. 1966 * @pring: Pointer to driver SLI ring object. 1967 * 1968 * The caller is not required to hold any lock for calling this function. 1969 * This function updates the chip attention bits for the ring to inform firmware 1970 * that there are pending work to be done for this ring and requests an 1971 * interrupt when there is space available in the ring. This function is 1972 * called when the driver is unable to post more iocbs to the ring due 1973 * to unavailability of space in the ring. 1974 **/ 1975 static void 1976 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1977 { 1978 int ringno = pring->ringno; 1979 1980 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1981 1982 wmb(); 1983 1984 /* 1985 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1986 * The HBA will tell us when an IOCB entry is available. 1987 */ 1988 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1989 readl(phba->CAregaddr); /* flush */ 1990 1991 pring->stats.iocb_cmd_full++; 1992 } 1993 1994 /** 1995 * lpfc_sli_update_ring - Update chip attention register 1996 * @phba: Pointer to HBA context object. 1997 * @pring: Pointer to driver SLI ring object. 1998 * 1999 * This function updates the chip attention register bit for the 2000 * given ring to inform HBA that there is more work to be done 2001 * in this ring. The caller is not required to hold any lock. 2002 **/ 2003 static void 2004 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2005 { 2006 int ringno = pring->ringno; 2007 2008 /* 2009 * Tell the HBA that there is work to do in this ring. 2010 */ 2011 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 2012 wmb(); 2013 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 2014 readl(phba->CAregaddr); /* flush */ 2015 } 2016 } 2017 2018 /** 2019 * lpfc_sli_resume_iocb - Process iocbs in the txq 2020 * @phba: Pointer to HBA context object. 2021 * @pring: Pointer to driver SLI ring object. 2022 * 2023 * This function is called with hbalock held to post pending iocbs 2024 * in the txq to the firmware. This function is called when driver 2025 * detects space available in the ring. 2026 **/ 2027 static void 2028 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2029 { 2030 IOCB_t *iocb; 2031 struct lpfc_iocbq *nextiocb; 2032 2033 lockdep_assert_held(&phba->hbalock); 2034 2035 /* 2036 * Check to see if: 2037 * (a) there is anything on the txq to send 2038 * (b) link is up 2039 * (c) link attention events can be processed (fcp ring only) 2040 * (d) IOCB processing is not blocked by the outstanding mbox command. 2041 */ 2042 2043 if (lpfc_is_link_up(phba) && 2044 (!list_empty(&pring->txq)) && 2045 (pring->ringno != LPFC_FCP_RING || 2046 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 2047 2048 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 2049 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 2050 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 2051 2052 if (iocb) 2053 lpfc_sli_update_ring(phba, pring); 2054 else 2055 lpfc_sli_update_full_ring(phba, pring); 2056 } 2057 2058 return; 2059 } 2060 2061 /** 2062 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 2063 * @phba: Pointer to HBA context object. 2064 * @hbqno: HBQ number. 2065 * 2066 * This function is called with hbalock held to get the next 2067 * available slot for the given HBQ. If there is free slot 2068 * available for the HBQ it will return pointer to the next available 2069 * HBQ entry else it will return NULL. 2070 **/ 2071 static struct lpfc_hbq_entry * 2072 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 2073 { 2074 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2075 2076 lockdep_assert_held(&phba->hbalock); 2077 2078 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 2079 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 2080 hbqp->next_hbqPutIdx = 0; 2081 2082 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 2083 uint32_t raw_index = phba->hbq_get[hbqno]; 2084 uint32_t getidx = le32_to_cpu(raw_index); 2085 2086 hbqp->local_hbqGetIdx = getidx; 2087 2088 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 2089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2090 "1802 HBQ %d: local_hbqGetIdx " 2091 "%u is > than hbqp->entry_count %u\n", 2092 hbqno, hbqp->local_hbqGetIdx, 2093 hbqp->entry_count); 2094 2095 phba->link_state = LPFC_HBA_ERROR; 2096 return NULL; 2097 } 2098 2099 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 2100 return NULL; 2101 } 2102 2103 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 2104 hbqp->hbqPutIdx; 2105 } 2106 2107 /** 2108 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 2109 * @phba: Pointer to HBA context object. 2110 * 2111 * This function is called with no lock held to free all the 2112 * hbq buffers while uninitializing the SLI interface. It also 2113 * frees the HBQ buffers returned by the firmware but not yet 2114 * processed by the upper layers. 2115 **/ 2116 void 2117 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 2118 { 2119 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 2120 struct hbq_dmabuf *hbq_buf; 2121 unsigned long flags; 2122 int i, hbq_count; 2123 2124 hbq_count = lpfc_sli_hbq_count(); 2125 /* Return all memory used by all HBQs */ 2126 spin_lock_irqsave(&phba->hbalock, flags); 2127 for (i = 0; i < hbq_count; ++i) { 2128 list_for_each_entry_safe(dmabuf, next_dmabuf, 2129 &phba->hbqs[i].hbq_buffer_list, list) { 2130 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2131 list_del(&hbq_buf->dbuf.list); 2132 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2133 } 2134 phba->hbqs[i].buffer_count = 0; 2135 } 2136 2137 /* Mark the HBQs not in use */ 2138 phba->hbq_in_use = 0; 2139 spin_unlock_irqrestore(&phba->hbalock, flags); 2140 } 2141 2142 /** 2143 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2144 * @phba: Pointer to HBA context object. 2145 * @hbqno: HBQ number. 2146 * @hbq_buf: Pointer to HBQ buffer. 2147 * 2148 * This function is called with the hbalock held to post a 2149 * hbq buffer to the firmware. If the function finds an empty 2150 * slot in the HBQ, it will post the buffer. The function will return 2151 * pointer to the hbq entry if it successfully post the buffer 2152 * else it will return NULL. 2153 **/ 2154 static int 2155 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2156 struct hbq_dmabuf *hbq_buf) 2157 { 2158 lockdep_assert_held(&phba->hbalock); 2159 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2160 } 2161 2162 /** 2163 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2164 * @phba: Pointer to HBA context object. 2165 * @hbqno: HBQ number. 2166 * @hbq_buf: Pointer to HBQ buffer. 2167 * 2168 * This function is called with the hbalock held to post a hbq buffer to the 2169 * firmware. If the function finds an empty slot in the HBQ, it will post the 2170 * buffer and place it on the hbq_buffer_list. The function will return zero if 2171 * it successfully post the buffer else it will return an error. 2172 **/ 2173 static int 2174 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2175 struct hbq_dmabuf *hbq_buf) 2176 { 2177 struct lpfc_hbq_entry *hbqe; 2178 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2179 2180 lockdep_assert_held(&phba->hbalock); 2181 /* Get next HBQ entry slot to use */ 2182 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2183 if (hbqe) { 2184 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2185 2186 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2187 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2188 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2189 hbqe->bde.tus.f.bdeFlags = 0; 2190 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2191 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2192 /* Sync SLIM */ 2193 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2194 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2195 /* flush */ 2196 readl(phba->hbq_put + hbqno); 2197 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2198 return 0; 2199 } else 2200 return -ENOMEM; 2201 } 2202 2203 /** 2204 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2205 * @phba: Pointer to HBA context object. 2206 * @hbqno: HBQ number. 2207 * @hbq_buf: Pointer to HBQ buffer. 2208 * 2209 * This function is called with the hbalock held to post an RQE to the SLI4 2210 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2211 * the hbq_buffer_list and return zero, otherwise it will return an error. 2212 **/ 2213 static int 2214 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2215 struct hbq_dmabuf *hbq_buf) 2216 { 2217 int rc; 2218 struct lpfc_rqe hrqe; 2219 struct lpfc_rqe drqe; 2220 struct lpfc_queue *hrq; 2221 struct lpfc_queue *drq; 2222 2223 if (hbqno != LPFC_ELS_HBQ) 2224 return 1; 2225 hrq = phba->sli4_hba.hdr_rq; 2226 drq = phba->sli4_hba.dat_rq; 2227 2228 lockdep_assert_held(&phba->hbalock); 2229 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2230 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2231 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2232 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2233 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2234 if (rc < 0) 2235 return rc; 2236 hbq_buf->tag = (rc | (hbqno << 16)); 2237 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2238 return 0; 2239 } 2240 2241 /* HBQ for ELS and CT traffic. */ 2242 static struct lpfc_hbq_init lpfc_els_hbq = { 2243 .rn = 1, 2244 .entry_count = 256, 2245 .mask_count = 0, 2246 .profile = 0, 2247 .ring_mask = (1 << LPFC_ELS_RING), 2248 .buffer_count = 0, 2249 .init_count = 40, 2250 .add_count = 40, 2251 }; 2252 2253 /* Array of HBQs */ 2254 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2255 &lpfc_els_hbq, 2256 }; 2257 2258 /** 2259 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2260 * @phba: Pointer to HBA context object. 2261 * @hbqno: HBQ number. 2262 * @count: Number of HBQ buffers to be posted. 2263 * 2264 * This function is called with no lock held to post more hbq buffers to the 2265 * given HBQ. The function returns the number of HBQ buffers successfully 2266 * posted. 2267 **/ 2268 static int 2269 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2270 { 2271 uint32_t i, posted = 0; 2272 unsigned long flags; 2273 struct hbq_dmabuf *hbq_buffer; 2274 LIST_HEAD(hbq_buf_list); 2275 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2276 return 0; 2277 2278 if ((phba->hbqs[hbqno].buffer_count + count) > 2279 lpfc_hbq_defs[hbqno]->entry_count) 2280 count = lpfc_hbq_defs[hbqno]->entry_count - 2281 phba->hbqs[hbqno].buffer_count; 2282 if (!count) 2283 return 0; 2284 /* Allocate HBQ entries */ 2285 for (i = 0; i < count; i++) { 2286 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2287 if (!hbq_buffer) 2288 break; 2289 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2290 } 2291 /* Check whether HBQ is still in use */ 2292 spin_lock_irqsave(&phba->hbalock, flags); 2293 if (!phba->hbq_in_use) 2294 goto err; 2295 while (!list_empty(&hbq_buf_list)) { 2296 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2297 dbuf.list); 2298 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2299 (hbqno << 16)); 2300 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2301 phba->hbqs[hbqno].buffer_count++; 2302 posted++; 2303 } else 2304 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2305 } 2306 spin_unlock_irqrestore(&phba->hbalock, flags); 2307 return posted; 2308 err: 2309 spin_unlock_irqrestore(&phba->hbalock, flags); 2310 while (!list_empty(&hbq_buf_list)) { 2311 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2312 dbuf.list); 2313 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2314 } 2315 return 0; 2316 } 2317 2318 /** 2319 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2320 * @phba: Pointer to HBA context object. 2321 * @qno: HBQ number. 2322 * 2323 * This function posts more buffers to the HBQ. This function 2324 * is called with no lock held. The function returns the number of HBQ entries 2325 * successfully allocated. 2326 **/ 2327 int 2328 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2329 { 2330 if (phba->sli_rev == LPFC_SLI_REV4) 2331 return 0; 2332 else 2333 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2334 lpfc_hbq_defs[qno]->add_count); 2335 } 2336 2337 /** 2338 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2339 * @phba: Pointer to HBA context object. 2340 * @qno: HBQ queue number. 2341 * 2342 * This function is called from SLI initialization code path with 2343 * no lock held to post initial HBQ buffers to firmware. The 2344 * function returns the number of HBQ entries successfully allocated. 2345 **/ 2346 static int 2347 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2348 { 2349 if (phba->sli_rev == LPFC_SLI_REV4) 2350 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2351 lpfc_hbq_defs[qno]->entry_count); 2352 else 2353 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2354 lpfc_hbq_defs[qno]->init_count); 2355 } 2356 2357 /* 2358 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2359 * 2360 * This function removes the first hbq buffer on an hbq list and returns a 2361 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2362 **/ 2363 static struct hbq_dmabuf * 2364 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2365 { 2366 struct lpfc_dmabuf *d_buf; 2367 2368 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2369 if (!d_buf) 2370 return NULL; 2371 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2372 } 2373 2374 /** 2375 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2376 * @phba: Pointer to HBA context object. 2377 * @hrq: HBQ number. 2378 * 2379 * This function removes the first RQ buffer on an RQ buffer list and returns a 2380 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2381 **/ 2382 static struct rqb_dmabuf * 2383 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2384 { 2385 struct lpfc_dmabuf *h_buf; 2386 struct lpfc_rqb *rqbp; 2387 2388 rqbp = hrq->rqbp; 2389 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2390 struct lpfc_dmabuf, list); 2391 if (!h_buf) 2392 return NULL; 2393 rqbp->buffer_count--; 2394 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2395 } 2396 2397 /** 2398 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2399 * @phba: Pointer to HBA context object. 2400 * @tag: Tag of the hbq buffer. 2401 * 2402 * This function searches for the hbq buffer associated with the given tag in 2403 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2404 * otherwise it returns NULL. 2405 **/ 2406 static struct hbq_dmabuf * 2407 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2408 { 2409 struct lpfc_dmabuf *d_buf; 2410 struct hbq_dmabuf *hbq_buf; 2411 uint32_t hbqno; 2412 2413 hbqno = tag >> 16; 2414 if (hbqno >= LPFC_MAX_HBQS) 2415 return NULL; 2416 2417 spin_lock_irq(&phba->hbalock); 2418 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2419 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2420 if (hbq_buf->tag == tag) { 2421 spin_unlock_irq(&phba->hbalock); 2422 return hbq_buf; 2423 } 2424 } 2425 spin_unlock_irq(&phba->hbalock); 2426 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2427 "1803 Bad hbq tag. Data: x%x x%x\n", 2428 tag, phba->hbqs[tag >> 16].buffer_count); 2429 return NULL; 2430 } 2431 2432 /** 2433 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2434 * @phba: Pointer to HBA context object. 2435 * @hbq_buffer: Pointer to HBQ buffer. 2436 * 2437 * This function is called with hbalock. This function gives back 2438 * the hbq buffer to firmware. If the HBQ does not have space to 2439 * post the buffer, it will free the buffer. 2440 **/ 2441 void 2442 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2443 { 2444 uint32_t hbqno; 2445 2446 if (hbq_buffer) { 2447 hbqno = hbq_buffer->tag >> 16; 2448 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2449 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2450 } 2451 } 2452 2453 /** 2454 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2455 * @mbxCommand: mailbox command code. 2456 * 2457 * This function is called by the mailbox event handler function to verify 2458 * that the completed mailbox command is a legitimate mailbox command. If the 2459 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2460 * and the mailbox event handler will take the HBA offline. 2461 **/ 2462 static int 2463 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2464 { 2465 uint8_t ret; 2466 2467 switch (mbxCommand) { 2468 case MBX_LOAD_SM: 2469 case MBX_READ_NV: 2470 case MBX_WRITE_NV: 2471 case MBX_WRITE_VPARMS: 2472 case MBX_RUN_BIU_DIAG: 2473 case MBX_INIT_LINK: 2474 case MBX_DOWN_LINK: 2475 case MBX_CONFIG_LINK: 2476 case MBX_CONFIG_RING: 2477 case MBX_RESET_RING: 2478 case MBX_READ_CONFIG: 2479 case MBX_READ_RCONFIG: 2480 case MBX_READ_SPARM: 2481 case MBX_READ_STATUS: 2482 case MBX_READ_RPI: 2483 case MBX_READ_XRI: 2484 case MBX_READ_REV: 2485 case MBX_READ_LNK_STAT: 2486 case MBX_REG_LOGIN: 2487 case MBX_UNREG_LOGIN: 2488 case MBX_CLEAR_LA: 2489 case MBX_DUMP_MEMORY: 2490 case MBX_DUMP_CONTEXT: 2491 case MBX_RUN_DIAGS: 2492 case MBX_RESTART: 2493 case MBX_UPDATE_CFG: 2494 case MBX_DOWN_LOAD: 2495 case MBX_DEL_LD_ENTRY: 2496 case MBX_RUN_PROGRAM: 2497 case MBX_SET_MASK: 2498 case MBX_SET_VARIABLE: 2499 case MBX_UNREG_D_ID: 2500 case MBX_KILL_BOARD: 2501 case MBX_CONFIG_FARP: 2502 case MBX_BEACON: 2503 case MBX_LOAD_AREA: 2504 case MBX_RUN_BIU_DIAG64: 2505 case MBX_CONFIG_PORT: 2506 case MBX_READ_SPARM64: 2507 case MBX_READ_RPI64: 2508 case MBX_REG_LOGIN64: 2509 case MBX_READ_TOPOLOGY: 2510 case MBX_WRITE_WWN: 2511 case MBX_SET_DEBUG: 2512 case MBX_LOAD_EXP_ROM: 2513 case MBX_ASYNCEVT_ENABLE: 2514 case MBX_REG_VPI: 2515 case MBX_UNREG_VPI: 2516 case MBX_HEARTBEAT: 2517 case MBX_PORT_CAPABILITIES: 2518 case MBX_PORT_IOV_CONTROL: 2519 case MBX_SLI4_CONFIG: 2520 case MBX_SLI4_REQ_FTRS: 2521 case MBX_REG_FCFI: 2522 case MBX_UNREG_FCFI: 2523 case MBX_REG_VFI: 2524 case MBX_UNREG_VFI: 2525 case MBX_INIT_VPI: 2526 case MBX_INIT_VFI: 2527 case MBX_RESUME_RPI: 2528 case MBX_READ_EVENT_LOG_STATUS: 2529 case MBX_READ_EVENT_LOG: 2530 case MBX_SECURITY_MGMT: 2531 case MBX_AUTH_PORT: 2532 case MBX_ACCESS_VDATA: 2533 ret = mbxCommand; 2534 break; 2535 default: 2536 ret = MBX_SHUTDOWN; 2537 break; 2538 } 2539 return ret; 2540 } 2541 2542 /** 2543 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2544 * @phba: Pointer to HBA context object. 2545 * @pmboxq: Pointer to mailbox command. 2546 * 2547 * This is completion handler function for mailbox commands issued from 2548 * lpfc_sli_issue_mbox_wait function. This function is called by the 2549 * mailbox event handler function with no lock held. This function 2550 * will wake up thread waiting on the wait queue pointed by context1 2551 * of the mailbox. 2552 **/ 2553 void 2554 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2555 { 2556 unsigned long drvr_flag; 2557 struct completion *pmbox_done; 2558 2559 /* 2560 * If pmbox_done is empty, the driver thread gave up waiting and 2561 * continued running. 2562 */ 2563 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2564 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2565 pmbox_done = (struct completion *)pmboxq->context3; 2566 if (pmbox_done) 2567 complete(pmbox_done); 2568 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2569 return; 2570 } 2571 2572 static void 2573 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2574 { 2575 unsigned long iflags; 2576 2577 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2578 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2579 spin_lock_irqsave(&ndlp->lock, iflags); 2580 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2581 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2582 spin_unlock_irqrestore(&ndlp->lock, iflags); 2583 } 2584 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2585 } 2586 2587 /** 2588 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2589 * @phba: Pointer to HBA context object. 2590 * @pmb: Pointer to mailbox object. 2591 * 2592 * This function is the default mailbox completion handler. It 2593 * frees the memory resources associated with the completed mailbox 2594 * command. If the completed command is a REG_LOGIN mailbox command, 2595 * this function will issue a UREG_LOGIN to re-claim the RPI. 2596 **/ 2597 void 2598 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2599 { 2600 struct lpfc_vport *vport = pmb->vport; 2601 struct lpfc_dmabuf *mp; 2602 struct lpfc_nodelist *ndlp; 2603 struct Scsi_Host *shost; 2604 uint16_t rpi, vpi; 2605 int rc; 2606 2607 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2608 2609 if (mp) { 2610 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2611 kfree(mp); 2612 } 2613 2614 /* 2615 * If a REG_LOGIN succeeded after node is destroyed or node 2616 * is in re-discovery driver need to cleanup the RPI. 2617 */ 2618 if (!(phba->pport->load_flag & FC_UNLOADING) && 2619 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2620 !pmb->u.mb.mbxStatus) { 2621 rpi = pmb->u.mb.un.varWords[0]; 2622 vpi = pmb->u.mb.un.varRegLogin.vpi; 2623 if (phba->sli_rev == LPFC_SLI_REV4) 2624 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2625 lpfc_unreg_login(phba, vpi, rpi, pmb); 2626 pmb->vport = vport; 2627 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2628 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2629 if (rc != MBX_NOT_FINISHED) 2630 return; 2631 } 2632 2633 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2634 !(phba->pport->load_flag & FC_UNLOADING) && 2635 !pmb->u.mb.mbxStatus) { 2636 shost = lpfc_shost_from_vport(vport); 2637 spin_lock_irq(shost->host_lock); 2638 vport->vpi_state |= LPFC_VPI_REGISTERED; 2639 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2640 spin_unlock_irq(shost->host_lock); 2641 } 2642 2643 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2644 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2645 lpfc_nlp_put(ndlp); 2646 pmb->ctx_buf = NULL; 2647 pmb->ctx_ndlp = NULL; 2648 } 2649 2650 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2651 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2652 2653 /* Check to see if there are any deferred events to process */ 2654 if (ndlp) { 2655 lpfc_printf_vlog( 2656 vport, 2657 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2658 "1438 UNREG cmpl deferred mbox x%x " 2659 "on NPort x%x Data: x%x x%x x%px x%x x%x\n", 2660 ndlp->nlp_rpi, ndlp->nlp_DID, 2661 ndlp->nlp_flag, ndlp->nlp_defer_did, 2662 ndlp, vport->load_flag, kref_read(&ndlp->kref)); 2663 2664 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2665 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2666 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2667 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2668 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2669 } else { 2670 __lpfc_sli_rpi_release(vport, ndlp); 2671 } 2672 2673 /* The unreg_login mailbox is complete and had a 2674 * reference that has to be released. The PLOGI 2675 * got its own ref. 2676 */ 2677 lpfc_nlp_put(ndlp); 2678 pmb->ctx_ndlp = NULL; 2679 } 2680 } 2681 2682 /* This nlp_put pairs with lpfc_sli4_resume_rpi */ 2683 if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { 2684 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2685 lpfc_nlp_put(ndlp); 2686 } 2687 2688 /* Check security permission status on INIT_LINK mailbox command */ 2689 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2690 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2691 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2692 "2860 SLI authentication is required " 2693 "for INIT_LINK but has not done yet\n"); 2694 2695 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2696 lpfc_sli4_mbox_cmd_free(phba, pmb); 2697 else 2698 mempool_free(pmb, phba->mbox_mem_pool); 2699 } 2700 /** 2701 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2702 * @phba: Pointer to HBA context object. 2703 * @pmb: Pointer to mailbox object. 2704 * 2705 * This function is the unreg rpi mailbox completion handler. It 2706 * frees the memory resources associated with the completed mailbox 2707 * command. An additional reference is put on the ndlp to prevent 2708 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2709 * the unreg mailbox command completes, this routine puts the 2710 * reference back. 2711 * 2712 **/ 2713 void 2714 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2715 { 2716 struct lpfc_vport *vport = pmb->vport; 2717 struct lpfc_nodelist *ndlp; 2718 2719 ndlp = pmb->ctx_ndlp; 2720 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2721 if (phba->sli_rev == LPFC_SLI_REV4 && 2722 (bf_get(lpfc_sli_intf_if_type, 2723 &phba->sli4_hba.sli_intf) >= 2724 LPFC_SLI_INTF_IF_TYPE_2)) { 2725 if (ndlp) { 2726 lpfc_printf_vlog( 2727 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2728 "0010 UNREG_LOGIN vpi:%x " 2729 "rpi:%x DID:%x defer x%x flg x%x " 2730 "x%px\n", 2731 vport->vpi, ndlp->nlp_rpi, 2732 ndlp->nlp_DID, ndlp->nlp_defer_did, 2733 ndlp->nlp_flag, 2734 ndlp); 2735 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2736 2737 /* Check to see if there are any deferred 2738 * events to process 2739 */ 2740 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2741 (ndlp->nlp_defer_did != 2742 NLP_EVT_NOTHING_PENDING)) { 2743 lpfc_printf_vlog( 2744 vport, KERN_INFO, LOG_DISCOVERY, 2745 "4111 UNREG cmpl deferred " 2746 "clr x%x on " 2747 "NPort x%x Data: x%x x%px\n", 2748 ndlp->nlp_rpi, ndlp->nlp_DID, 2749 ndlp->nlp_defer_did, ndlp); 2750 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2751 ndlp->nlp_defer_did = 2752 NLP_EVT_NOTHING_PENDING; 2753 lpfc_issue_els_plogi( 2754 vport, ndlp->nlp_DID, 0); 2755 } else { 2756 __lpfc_sli_rpi_release(vport, ndlp); 2757 } 2758 lpfc_nlp_put(ndlp); 2759 } 2760 } 2761 } 2762 2763 mempool_free(pmb, phba->mbox_mem_pool); 2764 } 2765 2766 /** 2767 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2768 * @phba: Pointer to HBA context object. 2769 * 2770 * This function is called with no lock held. This function processes all 2771 * the completed mailbox commands and gives it to upper layers. The interrupt 2772 * service routine processes mailbox completion interrupt and adds completed 2773 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2774 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2775 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2776 * function returns the mailbox commands to the upper layer by calling the 2777 * completion handler function of each mailbox. 2778 **/ 2779 int 2780 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2781 { 2782 MAILBOX_t *pmbox; 2783 LPFC_MBOXQ_t *pmb; 2784 int rc; 2785 LIST_HEAD(cmplq); 2786 2787 phba->sli.slistat.mbox_event++; 2788 2789 /* Get all completed mailboxe buffers into the cmplq */ 2790 spin_lock_irq(&phba->hbalock); 2791 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2792 spin_unlock_irq(&phba->hbalock); 2793 2794 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2795 do { 2796 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2797 if (pmb == NULL) 2798 break; 2799 2800 pmbox = &pmb->u.mb; 2801 2802 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2803 if (pmb->vport) { 2804 lpfc_debugfs_disc_trc(pmb->vport, 2805 LPFC_DISC_TRC_MBOX_VPORT, 2806 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2807 (uint32_t)pmbox->mbxCommand, 2808 pmbox->un.varWords[0], 2809 pmbox->un.varWords[1]); 2810 } 2811 else { 2812 lpfc_debugfs_disc_trc(phba->pport, 2813 LPFC_DISC_TRC_MBOX, 2814 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2815 (uint32_t)pmbox->mbxCommand, 2816 pmbox->un.varWords[0], 2817 pmbox->un.varWords[1]); 2818 } 2819 } 2820 2821 /* 2822 * It is a fatal error if unknown mbox command completion. 2823 */ 2824 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2825 MBX_SHUTDOWN) { 2826 /* Unknown mailbox command compl */ 2827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2828 "(%d):0323 Unknown Mailbox command " 2829 "x%x (x%x/x%x) Cmpl\n", 2830 pmb->vport ? pmb->vport->vpi : 2831 LPFC_VPORT_UNKNOWN, 2832 pmbox->mbxCommand, 2833 lpfc_sli_config_mbox_subsys_get(phba, 2834 pmb), 2835 lpfc_sli_config_mbox_opcode_get(phba, 2836 pmb)); 2837 phba->link_state = LPFC_HBA_ERROR; 2838 phba->work_hs = HS_FFER3; 2839 lpfc_handle_eratt(phba); 2840 continue; 2841 } 2842 2843 if (pmbox->mbxStatus) { 2844 phba->sli.slistat.mbox_stat_err++; 2845 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2846 /* Mbox cmd cmpl error - RETRYing */ 2847 lpfc_printf_log(phba, KERN_INFO, 2848 LOG_MBOX | LOG_SLI, 2849 "(%d):0305 Mbox cmd cmpl " 2850 "error - RETRYing Data: x%x " 2851 "(x%x/x%x) x%x x%x x%x\n", 2852 pmb->vport ? pmb->vport->vpi : 2853 LPFC_VPORT_UNKNOWN, 2854 pmbox->mbxCommand, 2855 lpfc_sli_config_mbox_subsys_get(phba, 2856 pmb), 2857 lpfc_sli_config_mbox_opcode_get(phba, 2858 pmb), 2859 pmbox->mbxStatus, 2860 pmbox->un.varWords[0], 2861 pmb->vport ? pmb->vport->port_state : 2862 LPFC_VPORT_UNKNOWN); 2863 pmbox->mbxStatus = 0; 2864 pmbox->mbxOwner = OWN_HOST; 2865 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2866 if (rc != MBX_NOT_FINISHED) 2867 continue; 2868 } 2869 } 2870 2871 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2872 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2873 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2874 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2875 "x%x x%x x%x\n", 2876 pmb->vport ? pmb->vport->vpi : 0, 2877 pmbox->mbxCommand, 2878 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2879 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2880 pmb->mbox_cmpl, 2881 *((uint32_t *) pmbox), 2882 pmbox->un.varWords[0], 2883 pmbox->un.varWords[1], 2884 pmbox->un.varWords[2], 2885 pmbox->un.varWords[3], 2886 pmbox->un.varWords[4], 2887 pmbox->un.varWords[5], 2888 pmbox->un.varWords[6], 2889 pmbox->un.varWords[7], 2890 pmbox->un.varWords[8], 2891 pmbox->un.varWords[9], 2892 pmbox->un.varWords[10]); 2893 2894 if (pmb->mbox_cmpl) 2895 pmb->mbox_cmpl(phba,pmb); 2896 } while (1); 2897 return 0; 2898 } 2899 2900 /** 2901 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2902 * @phba: Pointer to HBA context object. 2903 * @pring: Pointer to driver SLI ring object. 2904 * @tag: buffer tag. 2905 * 2906 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2907 * is set in the tag the buffer is posted for a particular exchange, 2908 * the function will return the buffer without replacing the buffer. 2909 * If the buffer is for unsolicited ELS or CT traffic, this function 2910 * returns the buffer and also posts another buffer to the firmware. 2911 **/ 2912 static struct lpfc_dmabuf * 2913 lpfc_sli_get_buff(struct lpfc_hba *phba, 2914 struct lpfc_sli_ring *pring, 2915 uint32_t tag) 2916 { 2917 struct hbq_dmabuf *hbq_entry; 2918 2919 if (tag & QUE_BUFTAG_BIT) 2920 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2921 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2922 if (!hbq_entry) 2923 return NULL; 2924 return &hbq_entry->dbuf; 2925 } 2926 2927 /** 2928 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2929 * containing a NVME LS request. 2930 * @phba: pointer to lpfc hba data structure. 2931 * @piocb: pointer to the iocbq struct representing the sequence starting 2932 * frame. 2933 * 2934 * This routine initially validates the NVME LS, validates there is a login 2935 * with the port that sent the LS, and then calls the appropriate nvme host 2936 * or target LS request handler. 2937 **/ 2938 static void 2939 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2940 { 2941 struct lpfc_nodelist *ndlp; 2942 struct lpfc_dmabuf *d_buf; 2943 struct hbq_dmabuf *nvmebuf; 2944 struct fc_frame_header *fc_hdr; 2945 struct lpfc_async_xchg_ctx *axchg = NULL; 2946 char *failwhy = NULL; 2947 uint32_t oxid, sid, did, fctl, size; 2948 int ret = 1; 2949 2950 d_buf = piocb->context2; 2951 2952 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2953 fc_hdr = nvmebuf->hbuf.virt; 2954 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2955 sid = sli4_sid_from_fc_hdr(fc_hdr); 2956 did = sli4_did_from_fc_hdr(fc_hdr); 2957 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2958 fc_hdr->fh_f_ctl[1] << 8 | 2959 fc_hdr->fh_f_ctl[2]); 2960 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2961 2962 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2963 oxid, size, sid); 2964 2965 if (phba->pport->load_flag & FC_UNLOADING) { 2966 failwhy = "Driver Unloading"; 2967 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2968 failwhy = "NVME FC4 Disabled"; 2969 } else if (!phba->nvmet_support && !phba->pport->localport) { 2970 failwhy = "No Localport"; 2971 } else if (phba->nvmet_support && !phba->targetport) { 2972 failwhy = "No Targetport"; 2973 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2974 failwhy = "Bad NVME LS R_CTL"; 2975 } else if (unlikely((fctl & 0x00FF0000) != 2976 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2977 failwhy = "Bad NVME LS F_CTL"; 2978 } else { 2979 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2980 if (!axchg) 2981 failwhy = "No CTX memory"; 2982 } 2983 2984 if (unlikely(failwhy)) { 2985 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2986 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2987 sid, oxid, failwhy); 2988 goto out_fail; 2989 } 2990 2991 /* validate the source of the LS is logged in */ 2992 ndlp = lpfc_findnode_did(phba->pport, sid); 2993 if (!ndlp || 2994 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2995 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2996 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2997 "6216 NVME Unsol rcv: No ndlp: " 2998 "NPort_ID x%x oxid x%x\n", 2999 sid, oxid); 3000 goto out_fail; 3001 } 3002 3003 axchg->phba = phba; 3004 axchg->ndlp = ndlp; 3005 axchg->size = size; 3006 axchg->oxid = oxid; 3007 axchg->sid = sid; 3008 axchg->wqeq = NULL; 3009 axchg->state = LPFC_NVME_STE_LS_RCV; 3010 axchg->entry_cnt = 1; 3011 axchg->rqb_buffer = (void *)nvmebuf; 3012 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 3013 axchg->payload = nvmebuf->dbuf.virt; 3014 INIT_LIST_HEAD(&axchg->list); 3015 3016 if (phba->nvmet_support) { 3017 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 3018 spin_lock_irq(&ndlp->lock); 3019 if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { 3020 ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; 3021 spin_unlock_irq(&ndlp->lock); 3022 3023 /* This reference is a single occurrence to hold the 3024 * node valid until the nvmet transport calls 3025 * host_release. 3026 */ 3027 if (!lpfc_nlp_get(ndlp)) 3028 goto out_fail; 3029 3030 lpfc_printf_log(phba, KERN_ERR, LOG_NODE, 3031 "6206 NVMET unsol ls_req ndlp x%px " 3032 "DID x%x xflags x%x refcnt %d\n", 3033 ndlp, ndlp->nlp_DID, 3034 ndlp->fc4_xpt_flags, 3035 kref_read(&ndlp->kref)); 3036 } else { 3037 spin_unlock_irq(&ndlp->lock); 3038 } 3039 } else { 3040 ret = lpfc_nvme_handle_lsreq(phba, axchg); 3041 } 3042 3043 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 3044 if (!ret) 3045 return; 3046 3047 out_fail: 3048 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3049 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 3050 "NVMe%s handler failed %d\n", 3051 did, sid, oxid, 3052 (phba->nvmet_support) ? "T" : "I", ret); 3053 3054 /* recycle receive buffer */ 3055 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 3056 3057 /* If start of new exchange, abort it */ 3058 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 3059 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 3060 3061 if (ret) 3062 kfree(axchg); 3063 } 3064 3065 /** 3066 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 3067 * @phba: Pointer to HBA context object. 3068 * @pring: Pointer to driver SLI ring object. 3069 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 3070 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 3071 * @fch_type: the type for the first frame of the sequence. 3072 * 3073 * This function is called with no lock held. This function uses the r_ctl and 3074 * type of the received sequence to find the correct callback function to call 3075 * to process the sequence. 3076 **/ 3077 static int 3078 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3079 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 3080 uint32_t fch_type) 3081 { 3082 int i; 3083 3084 switch (fch_type) { 3085 case FC_TYPE_NVME: 3086 lpfc_nvme_unsol_ls_handler(phba, saveq); 3087 return 1; 3088 default: 3089 break; 3090 } 3091 3092 /* unSolicited Responses */ 3093 if (pring->prt[0].profile) { 3094 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 3095 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 3096 saveq); 3097 return 1; 3098 } 3099 /* We must search, based on rctl / type 3100 for the right routine */ 3101 for (i = 0; i < pring->num_mask; i++) { 3102 if ((pring->prt[i].rctl == fch_r_ctl) && 3103 (pring->prt[i].type == fch_type)) { 3104 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 3105 (pring->prt[i].lpfc_sli_rcv_unsol_event) 3106 (phba, pring, saveq); 3107 return 1; 3108 } 3109 } 3110 return 0; 3111 } 3112 3113 /** 3114 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 3115 * @phba: Pointer to HBA context object. 3116 * @pring: Pointer to driver SLI ring object. 3117 * @saveq: Pointer to the unsolicited iocb. 3118 * 3119 * This function is called with no lock held by the ring event handler 3120 * when there is an unsolicited iocb posted to the response ring by the 3121 * firmware. This function gets the buffer associated with the iocbs 3122 * and calls the event handler for the ring. This function handles both 3123 * qring buffers and hbq buffers. 3124 * When the function returns 1 the caller can free the iocb object otherwise 3125 * upper layer functions will free the iocb objects. 3126 **/ 3127 static int 3128 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3129 struct lpfc_iocbq *saveq) 3130 { 3131 IOCB_t * irsp; 3132 WORD5 * w5p; 3133 uint32_t Rctl, Type; 3134 struct lpfc_iocbq *iocbq; 3135 struct lpfc_dmabuf *dmzbuf; 3136 3137 irsp = &(saveq->iocb); 3138 3139 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 3140 if (pring->lpfc_sli_rcv_async_status) 3141 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 3142 else 3143 lpfc_printf_log(phba, 3144 KERN_WARNING, 3145 LOG_SLI, 3146 "0316 Ring %d handler: unexpected " 3147 "ASYNC_STATUS iocb received evt_code " 3148 "0x%x\n", 3149 pring->ringno, 3150 irsp->un.asyncstat.evt_code); 3151 return 1; 3152 } 3153 3154 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3155 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3156 if (irsp->ulpBdeCount > 0) { 3157 dmzbuf = lpfc_sli_get_buff(phba, pring, 3158 irsp->un.ulpWord[3]); 3159 lpfc_in_buf_free(phba, dmzbuf); 3160 } 3161 3162 if (irsp->ulpBdeCount > 1) { 3163 dmzbuf = lpfc_sli_get_buff(phba, pring, 3164 irsp->unsli3.sli3Words[3]); 3165 lpfc_in_buf_free(phba, dmzbuf); 3166 } 3167 3168 if (irsp->ulpBdeCount > 2) { 3169 dmzbuf = lpfc_sli_get_buff(phba, pring, 3170 irsp->unsli3.sli3Words[7]); 3171 lpfc_in_buf_free(phba, dmzbuf); 3172 } 3173 3174 return 1; 3175 } 3176 3177 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3178 if (irsp->ulpBdeCount != 0) { 3179 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3180 irsp->un.ulpWord[3]); 3181 if (!saveq->context2) 3182 lpfc_printf_log(phba, 3183 KERN_ERR, 3184 LOG_SLI, 3185 "0341 Ring %d Cannot find buffer for " 3186 "an unsolicited iocb. tag 0x%x\n", 3187 pring->ringno, 3188 irsp->un.ulpWord[3]); 3189 } 3190 if (irsp->ulpBdeCount == 2) { 3191 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3192 irsp->unsli3.sli3Words[7]); 3193 if (!saveq->context3) 3194 lpfc_printf_log(phba, 3195 KERN_ERR, 3196 LOG_SLI, 3197 "0342 Ring %d Cannot find buffer for an" 3198 " unsolicited iocb. tag 0x%x\n", 3199 pring->ringno, 3200 irsp->unsli3.sli3Words[7]); 3201 } 3202 list_for_each_entry(iocbq, &saveq->list, list) { 3203 irsp = &(iocbq->iocb); 3204 if (irsp->ulpBdeCount != 0) { 3205 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3206 irsp->un.ulpWord[3]); 3207 if (!iocbq->context2) 3208 lpfc_printf_log(phba, 3209 KERN_ERR, 3210 LOG_SLI, 3211 "0343 Ring %d Cannot find " 3212 "buffer for an unsolicited iocb" 3213 ". tag 0x%x\n", pring->ringno, 3214 irsp->un.ulpWord[3]); 3215 } 3216 if (irsp->ulpBdeCount == 2) { 3217 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3218 irsp->unsli3.sli3Words[7]); 3219 if (!iocbq->context3) 3220 lpfc_printf_log(phba, 3221 KERN_ERR, 3222 LOG_SLI, 3223 "0344 Ring %d Cannot find " 3224 "buffer for an unsolicited " 3225 "iocb. tag 0x%x\n", 3226 pring->ringno, 3227 irsp->unsli3.sli3Words[7]); 3228 } 3229 } 3230 } 3231 if (irsp->ulpBdeCount != 0 && 3232 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3233 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3234 int found = 0; 3235 3236 /* search continue save q for same XRI */ 3237 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3238 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3239 saveq->iocb.unsli3.rcvsli3.ox_id) { 3240 list_add_tail(&saveq->list, &iocbq->list); 3241 found = 1; 3242 break; 3243 } 3244 } 3245 if (!found) 3246 list_add_tail(&saveq->clist, 3247 &pring->iocb_continue_saveq); 3248 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3249 list_del_init(&iocbq->clist); 3250 saveq = iocbq; 3251 irsp = &(saveq->iocb); 3252 } else 3253 return 0; 3254 } 3255 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3256 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3257 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3258 Rctl = FC_RCTL_ELS_REQ; 3259 Type = FC_TYPE_ELS; 3260 } else { 3261 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3262 Rctl = w5p->hcsw.Rctl; 3263 Type = w5p->hcsw.Type; 3264 3265 /* Firmware Workaround */ 3266 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3267 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3268 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3269 Rctl = FC_RCTL_ELS_REQ; 3270 Type = FC_TYPE_ELS; 3271 w5p->hcsw.Rctl = Rctl; 3272 w5p->hcsw.Type = Type; 3273 } 3274 } 3275 3276 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3277 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3278 "0313 Ring %d handler: unexpected Rctl x%x " 3279 "Type x%x received\n", 3280 pring->ringno, Rctl, Type); 3281 3282 return 1; 3283 } 3284 3285 /** 3286 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3287 * @phba: Pointer to HBA context object. 3288 * @pring: Pointer to driver SLI ring object. 3289 * @prspiocb: Pointer to response iocb object. 3290 * 3291 * This function looks up the iocb_lookup table to get the command iocb 3292 * corresponding to the given response iocb using the iotag of the 3293 * response iocb. The driver calls this function with the hbalock held 3294 * for SLI3 ports or the ring lock held for SLI4 ports. 3295 * This function returns the command iocb object if it finds the command 3296 * iocb else returns NULL. 3297 **/ 3298 static struct lpfc_iocbq * 3299 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3300 struct lpfc_sli_ring *pring, 3301 struct lpfc_iocbq *prspiocb) 3302 { 3303 struct lpfc_iocbq *cmd_iocb = NULL; 3304 uint16_t iotag; 3305 spinlock_t *temp_lock = NULL; 3306 unsigned long iflag = 0; 3307 3308 if (phba->sli_rev == LPFC_SLI_REV4) 3309 temp_lock = &pring->ring_lock; 3310 else 3311 temp_lock = &phba->hbalock; 3312 3313 spin_lock_irqsave(temp_lock, iflag); 3314 iotag = prspiocb->iocb.ulpIoTag; 3315 3316 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3317 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3318 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3319 /* remove from txcmpl queue list */ 3320 list_del_init(&cmd_iocb->list); 3321 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3322 pring->txcmplq_cnt--; 3323 spin_unlock_irqrestore(temp_lock, iflag); 3324 return cmd_iocb; 3325 } 3326 } 3327 3328 spin_unlock_irqrestore(temp_lock, iflag); 3329 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3330 "0317 iotag x%x is out of " 3331 "range: max iotag x%x wd0 x%x\n", 3332 iotag, phba->sli.last_iotag, 3333 *(((uint32_t *) &prspiocb->iocb) + 7)); 3334 return NULL; 3335 } 3336 3337 /** 3338 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3339 * @phba: Pointer to HBA context object. 3340 * @pring: Pointer to driver SLI ring object. 3341 * @iotag: IOCB tag. 3342 * 3343 * This function looks up the iocb_lookup table to get the command iocb 3344 * corresponding to the given iotag. The driver calls this function with 3345 * the ring lock held because this function is an SLI4 port only helper. 3346 * This function returns the command iocb object if it finds the command 3347 * iocb else returns NULL. 3348 **/ 3349 static struct lpfc_iocbq * 3350 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3351 struct lpfc_sli_ring *pring, uint16_t iotag) 3352 { 3353 struct lpfc_iocbq *cmd_iocb = NULL; 3354 spinlock_t *temp_lock = NULL; 3355 unsigned long iflag = 0; 3356 3357 if (phba->sli_rev == LPFC_SLI_REV4) 3358 temp_lock = &pring->ring_lock; 3359 else 3360 temp_lock = &phba->hbalock; 3361 3362 spin_lock_irqsave(temp_lock, iflag); 3363 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3364 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3365 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3366 /* remove from txcmpl queue list */ 3367 list_del_init(&cmd_iocb->list); 3368 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3369 pring->txcmplq_cnt--; 3370 spin_unlock_irqrestore(temp_lock, iflag); 3371 return cmd_iocb; 3372 } 3373 } 3374 3375 spin_unlock_irqrestore(temp_lock, iflag); 3376 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3377 "0372 iotag x%x lookup error: max iotag (x%x) " 3378 "iocb_flag x%x\n", 3379 iotag, phba->sli.last_iotag, 3380 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3381 return NULL; 3382 } 3383 3384 /** 3385 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3386 * @phba: Pointer to HBA context object. 3387 * @pring: Pointer to driver SLI ring object. 3388 * @saveq: Pointer to the response iocb to be processed. 3389 * 3390 * This function is called by the ring event handler for non-fcp 3391 * rings when there is a new response iocb in the response ring. 3392 * The caller is not required to hold any locks. This function 3393 * gets the command iocb associated with the response iocb and 3394 * calls the completion handler for the command iocb. If there 3395 * is no completion handler, the function will free the resources 3396 * associated with command iocb. If the response iocb is for 3397 * an already aborted command iocb, the status of the completion 3398 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3399 * This function always returns 1. 3400 **/ 3401 static int 3402 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3403 struct lpfc_iocbq *saveq) 3404 { 3405 struct lpfc_iocbq *cmdiocbp; 3406 int rc = 1; 3407 unsigned long iflag; 3408 3409 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3410 if (cmdiocbp) { 3411 if (cmdiocbp->iocb_cmpl) { 3412 /* 3413 * If an ELS command failed send an event to mgmt 3414 * application. 3415 */ 3416 if (saveq->iocb.ulpStatus && 3417 (pring->ringno == LPFC_ELS_RING) && 3418 (cmdiocbp->iocb.ulpCommand == 3419 CMD_ELS_REQUEST64_CR)) 3420 lpfc_send_els_failure_event(phba, 3421 cmdiocbp, saveq); 3422 3423 /* 3424 * Post all ELS completions to the worker thread. 3425 * All other are passed to the completion callback. 3426 */ 3427 if (pring->ringno == LPFC_ELS_RING) { 3428 if ((phba->sli_rev < LPFC_SLI_REV4) && 3429 (cmdiocbp->iocb_flag & 3430 LPFC_DRIVER_ABORTED)) { 3431 spin_lock_irqsave(&phba->hbalock, 3432 iflag); 3433 cmdiocbp->iocb_flag &= 3434 ~LPFC_DRIVER_ABORTED; 3435 spin_unlock_irqrestore(&phba->hbalock, 3436 iflag); 3437 saveq->iocb.ulpStatus = 3438 IOSTAT_LOCAL_REJECT; 3439 saveq->iocb.un.ulpWord[4] = 3440 IOERR_SLI_ABORTED; 3441 3442 /* Firmware could still be in progress 3443 * of DMAing payload, so don't free data 3444 * buffer till after a hbeat. 3445 */ 3446 spin_lock_irqsave(&phba->hbalock, 3447 iflag); 3448 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3449 spin_unlock_irqrestore(&phba->hbalock, 3450 iflag); 3451 } 3452 if (phba->sli_rev == LPFC_SLI_REV4) { 3453 if (saveq->iocb_flag & 3454 LPFC_EXCHANGE_BUSY) { 3455 /* Set cmdiocb flag for the 3456 * exchange busy so sgl (xri) 3457 * will not be released until 3458 * the abort xri is received 3459 * from hba. 3460 */ 3461 spin_lock_irqsave( 3462 &phba->hbalock, iflag); 3463 cmdiocbp->iocb_flag |= 3464 LPFC_EXCHANGE_BUSY; 3465 spin_unlock_irqrestore( 3466 &phba->hbalock, iflag); 3467 } 3468 if (cmdiocbp->iocb_flag & 3469 LPFC_DRIVER_ABORTED) { 3470 /* 3471 * Clear LPFC_DRIVER_ABORTED 3472 * bit in case it was driver 3473 * initiated abort. 3474 */ 3475 spin_lock_irqsave( 3476 &phba->hbalock, iflag); 3477 cmdiocbp->iocb_flag &= 3478 ~LPFC_DRIVER_ABORTED; 3479 spin_unlock_irqrestore( 3480 &phba->hbalock, iflag); 3481 cmdiocbp->iocb.ulpStatus = 3482 IOSTAT_LOCAL_REJECT; 3483 cmdiocbp->iocb.un.ulpWord[4] = 3484 IOERR_ABORT_REQUESTED; 3485 /* 3486 * For SLI4, irsiocb contains 3487 * NO_XRI in sli_xritag, it 3488 * shall not affect releasing 3489 * sgl (xri) process. 3490 */ 3491 saveq->iocb.ulpStatus = 3492 IOSTAT_LOCAL_REJECT; 3493 saveq->iocb.un.ulpWord[4] = 3494 IOERR_SLI_ABORTED; 3495 spin_lock_irqsave( 3496 &phba->hbalock, iflag); 3497 saveq->iocb_flag |= 3498 LPFC_DELAY_MEM_FREE; 3499 spin_unlock_irqrestore( 3500 &phba->hbalock, iflag); 3501 } 3502 } 3503 } 3504 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3505 } else 3506 lpfc_sli_release_iocbq(phba, cmdiocbp); 3507 } else { 3508 /* 3509 * Unknown initiating command based on the response iotag. 3510 * This could be the case on the ELS ring because of 3511 * lpfc_els_abort(). 3512 */ 3513 if (pring->ringno != LPFC_ELS_RING) { 3514 /* 3515 * Ring <ringno> handler: unexpected completion IoTag 3516 * <IoTag> 3517 */ 3518 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3519 "0322 Ring %d handler: " 3520 "unexpected completion IoTag x%x " 3521 "Data: x%x x%x x%x x%x\n", 3522 pring->ringno, 3523 saveq->iocb.ulpIoTag, 3524 saveq->iocb.ulpStatus, 3525 saveq->iocb.un.ulpWord[4], 3526 saveq->iocb.ulpCommand, 3527 saveq->iocb.ulpContext); 3528 } 3529 } 3530 3531 return rc; 3532 } 3533 3534 /** 3535 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3536 * @phba: Pointer to HBA context object. 3537 * @pring: Pointer to driver SLI ring object. 3538 * 3539 * This function is called from the iocb ring event handlers when 3540 * put pointer is ahead of the get pointer for a ring. This function signal 3541 * an error attention condition to the worker thread and the worker 3542 * thread will transition the HBA to offline state. 3543 **/ 3544 static void 3545 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3546 { 3547 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3548 /* 3549 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3550 * rsp ring <portRspMax> 3551 */ 3552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3553 "0312 Ring %d handler: portRspPut %d " 3554 "is bigger than rsp ring %d\n", 3555 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3556 pring->sli.sli3.numRiocb); 3557 3558 phba->link_state = LPFC_HBA_ERROR; 3559 3560 /* 3561 * All error attention handlers are posted to 3562 * worker thread 3563 */ 3564 phba->work_ha |= HA_ERATT; 3565 phba->work_hs = HS_FFER3; 3566 3567 lpfc_worker_wake_up(phba); 3568 3569 return; 3570 } 3571 3572 /** 3573 * lpfc_poll_eratt - Error attention polling timer timeout handler 3574 * @t: Context to fetch pointer to address of HBA context object from. 3575 * 3576 * This function is invoked by the Error Attention polling timer when the 3577 * timer times out. It will check the SLI Error Attention register for 3578 * possible attention events. If so, it will post an Error Attention event 3579 * and wake up worker thread to process it. Otherwise, it will set up the 3580 * Error Attention polling timer for the next poll. 3581 **/ 3582 void lpfc_poll_eratt(struct timer_list *t) 3583 { 3584 struct lpfc_hba *phba; 3585 uint32_t eratt = 0; 3586 uint64_t sli_intr, cnt; 3587 3588 phba = from_timer(phba, t, eratt_poll); 3589 3590 /* Here we will also keep track of interrupts per sec of the hba */ 3591 sli_intr = phba->sli.slistat.sli_intr; 3592 3593 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3594 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3595 sli_intr); 3596 else 3597 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3598 3599 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3600 do_div(cnt, phba->eratt_poll_interval); 3601 phba->sli.slistat.sli_ips = cnt; 3602 3603 phba->sli.slistat.sli_prev_intr = sli_intr; 3604 3605 /* Check chip HA register for error event */ 3606 eratt = lpfc_sli_check_eratt(phba); 3607 3608 if (eratt) 3609 /* Tell the worker thread there is work to do */ 3610 lpfc_worker_wake_up(phba); 3611 else 3612 /* Restart the timer for next eratt poll */ 3613 mod_timer(&phba->eratt_poll, 3614 jiffies + 3615 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3616 return; 3617 } 3618 3619 3620 /** 3621 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3622 * @phba: Pointer to HBA context object. 3623 * @pring: Pointer to driver SLI ring object. 3624 * @mask: Host attention register mask for this ring. 3625 * 3626 * This function is called from the interrupt context when there is a ring 3627 * event for the fcp ring. The caller does not hold any lock. 3628 * The function processes each response iocb in the response ring until it 3629 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3630 * LE bit set. The function will call the completion handler of the command iocb 3631 * if the response iocb indicates a completion for a command iocb or it is 3632 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3633 * function if this is an unsolicited iocb. 3634 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3635 * to check it explicitly. 3636 */ 3637 int 3638 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3639 struct lpfc_sli_ring *pring, uint32_t mask) 3640 { 3641 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3642 IOCB_t *irsp = NULL; 3643 IOCB_t *entry = NULL; 3644 struct lpfc_iocbq *cmdiocbq = NULL; 3645 struct lpfc_iocbq rspiocbq; 3646 uint32_t status; 3647 uint32_t portRspPut, portRspMax; 3648 int rc = 1; 3649 lpfc_iocb_type type; 3650 unsigned long iflag; 3651 uint32_t rsp_cmpl = 0; 3652 3653 spin_lock_irqsave(&phba->hbalock, iflag); 3654 pring->stats.iocb_event++; 3655 3656 /* 3657 * The next available response entry should never exceed the maximum 3658 * entries. If it does, treat it as an adapter hardware error. 3659 */ 3660 portRspMax = pring->sli.sli3.numRiocb; 3661 portRspPut = le32_to_cpu(pgp->rspPutInx); 3662 if (unlikely(portRspPut >= portRspMax)) { 3663 lpfc_sli_rsp_pointers_error(phba, pring); 3664 spin_unlock_irqrestore(&phba->hbalock, iflag); 3665 return 1; 3666 } 3667 if (phba->fcp_ring_in_use) { 3668 spin_unlock_irqrestore(&phba->hbalock, iflag); 3669 return 1; 3670 } else 3671 phba->fcp_ring_in_use = 1; 3672 3673 rmb(); 3674 while (pring->sli.sli3.rspidx != portRspPut) { 3675 /* 3676 * Fetch an entry off the ring and copy it into a local data 3677 * structure. The copy involves a byte-swap since the 3678 * network byte order and pci byte orders are different. 3679 */ 3680 entry = lpfc_resp_iocb(phba, pring); 3681 phba->last_completion_time = jiffies; 3682 3683 if (++pring->sli.sli3.rspidx >= portRspMax) 3684 pring->sli.sli3.rspidx = 0; 3685 3686 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3687 (uint32_t *) &rspiocbq.iocb, 3688 phba->iocb_rsp_size); 3689 INIT_LIST_HEAD(&(rspiocbq.list)); 3690 irsp = &rspiocbq.iocb; 3691 3692 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3693 pring->stats.iocb_rsp++; 3694 rsp_cmpl++; 3695 3696 if (unlikely(irsp->ulpStatus)) { 3697 /* 3698 * If resource errors reported from HBA, reduce 3699 * queuedepths of the SCSI device. 3700 */ 3701 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3702 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3703 IOERR_NO_RESOURCES)) { 3704 spin_unlock_irqrestore(&phba->hbalock, iflag); 3705 phba->lpfc_rampdown_queue_depth(phba); 3706 spin_lock_irqsave(&phba->hbalock, iflag); 3707 } 3708 3709 /* Rsp ring <ringno> error: IOCB */ 3710 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3711 "0336 Rsp Ring %d error: IOCB Data: " 3712 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3713 pring->ringno, 3714 irsp->un.ulpWord[0], 3715 irsp->un.ulpWord[1], 3716 irsp->un.ulpWord[2], 3717 irsp->un.ulpWord[3], 3718 irsp->un.ulpWord[4], 3719 irsp->un.ulpWord[5], 3720 *(uint32_t *)&irsp->un1, 3721 *((uint32_t *)&irsp->un1 + 1)); 3722 } 3723 3724 switch (type) { 3725 case LPFC_ABORT_IOCB: 3726 case LPFC_SOL_IOCB: 3727 /* 3728 * Idle exchange closed via ABTS from port. No iocb 3729 * resources need to be recovered. 3730 */ 3731 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3732 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3733 "0333 IOCB cmd 0x%x" 3734 " processed. Skipping" 3735 " completion\n", 3736 irsp->ulpCommand); 3737 break; 3738 } 3739 3740 spin_unlock_irqrestore(&phba->hbalock, iflag); 3741 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3742 &rspiocbq); 3743 spin_lock_irqsave(&phba->hbalock, iflag); 3744 if (unlikely(!cmdiocbq)) 3745 break; 3746 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3747 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3748 if (cmdiocbq->iocb_cmpl) { 3749 spin_unlock_irqrestore(&phba->hbalock, iflag); 3750 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3751 &rspiocbq); 3752 spin_lock_irqsave(&phba->hbalock, iflag); 3753 } 3754 break; 3755 case LPFC_UNSOL_IOCB: 3756 spin_unlock_irqrestore(&phba->hbalock, iflag); 3757 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3758 spin_lock_irqsave(&phba->hbalock, iflag); 3759 break; 3760 default: 3761 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3762 char adaptermsg[LPFC_MAX_ADPTMSG]; 3763 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3764 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3765 MAX_MSG_DATA); 3766 dev_warn(&((phba->pcidev)->dev), 3767 "lpfc%d: %s\n", 3768 phba->brd_no, adaptermsg); 3769 } else { 3770 /* Unknown IOCB command */ 3771 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3772 "0334 Unknown IOCB command " 3773 "Data: x%x, x%x x%x x%x x%x\n", 3774 type, irsp->ulpCommand, 3775 irsp->ulpStatus, 3776 irsp->ulpIoTag, 3777 irsp->ulpContext); 3778 } 3779 break; 3780 } 3781 3782 /* 3783 * The response IOCB has been processed. Update the ring 3784 * pointer in SLIM. If the port response put pointer has not 3785 * been updated, sync the pgp->rspPutInx and fetch the new port 3786 * response put pointer. 3787 */ 3788 writel(pring->sli.sli3.rspidx, 3789 &phba->host_gp[pring->ringno].rspGetInx); 3790 3791 if (pring->sli.sli3.rspidx == portRspPut) 3792 portRspPut = le32_to_cpu(pgp->rspPutInx); 3793 } 3794 3795 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3796 pring->stats.iocb_rsp_full++; 3797 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3798 writel(status, phba->CAregaddr); 3799 readl(phba->CAregaddr); 3800 } 3801 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3802 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3803 pring->stats.iocb_cmd_empty++; 3804 3805 /* Force update of the local copy of cmdGetInx */ 3806 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3807 lpfc_sli_resume_iocb(phba, pring); 3808 3809 if ((pring->lpfc_sli_cmd_available)) 3810 (pring->lpfc_sli_cmd_available) (phba, pring); 3811 3812 } 3813 3814 phba->fcp_ring_in_use = 0; 3815 spin_unlock_irqrestore(&phba->hbalock, iflag); 3816 return rc; 3817 } 3818 3819 /** 3820 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3821 * @phba: Pointer to HBA context object. 3822 * @pring: Pointer to driver SLI ring object. 3823 * @rspiocbp: Pointer to driver response IOCB object. 3824 * 3825 * This function is called from the worker thread when there is a slow-path 3826 * response IOCB to process. This function chains all the response iocbs until 3827 * seeing the iocb with the LE bit set. The function will call 3828 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3829 * completion of a command iocb. The function will call the 3830 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3831 * The function frees the resources or calls the completion handler if this 3832 * iocb is an abort completion. The function returns NULL when the response 3833 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3834 * this function shall chain the iocb on to the iocb_continueq and return the 3835 * response iocb passed in. 3836 **/ 3837 static struct lpfc_iocbq * 3838 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3839 struct lpfc_iocbq *rspiocbp) 3840 { 3841 struct lpfc_iocbq *saveq; 3842 struct lpfc_iocbq *cmdiocbp; 3843 struct lpfc_iocbq *next_iocb; 3844 IOCB_t *irsp = NULL; 3845 uint32_t free_saveq; 3846 uint8_t iocb_cmd_type; 3847 lpfc_iocb_type type; 3848 unsigned long iflag; 3849 int rc; 3850 3851 spin_lock_irqsave(&phba->hbalock, iflag); 3852 /* First add the response iocb to the countinueq list */ 3853 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3854 pring->iocb_continueq_cnt++; 3855 3856 /* Now, determine whether the list is completed for processing */ 3857 irsp = &rspiocbp->iocb; 3858 if (irsp->ulpLe) { 3859 /* 3860 * By default, the driver expects to free all resources 3861 * associated with this iocb completion. 3862 */ 3863 free_saveq = 1; 3864 saveq = list_get_first(&pring->iocb_continueq, 3865 struct lpfc_iocbq, list); 3866 irsp = &(saveq->iocb); 3867 list_del_init(&pring->iocb_continueq); 3868 pring->iocb_continueq_cnt = 0; 3869 3870 pring->stats.iocb_rsp++; 3871 3872 /* 3873 * If resource errors reported from HBA, reduce 3874 * queuedepths of the SCSI device. 3875 */ 3876 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3877 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3878 IOERR_NO_RESOURCES)) { 3879 spin_unlock_irqrestore(&phba->hbalock, iflag); 3880 phba->lpfc_rampdown_queue_depth(phba); 3881 spin_lock_irqsave(&phba->hbalock, iflag); 3882 } 3883 3884 if (irsp->ulpStatus) { 3885 /* Rsp ring <ringno> error: IOCB */ 3886 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3887 "0328 Rsp Ring %d error: " 3888 "IOCB Data: " 3889 "x%x x%x x%x x%x " 3890 "x%x x%x x%x x%x " 3891 "x%x x%x x%x x%x " 3892 "x%x x%x x%x x%x\n", 3893 pring->ringno, 3894 irsp->un.ulpWord[0], 3895 irsp->un.ulpWord[1], 3896 irsp->un.ulpWord[2], 3897 irsp->un.ulpWord[3], 3898 irsp->un.ulpWord[4], 3899 irsp->un.ulpWord[5], 3900 *(((uint32_t *) irsp) + 6), 3901 *(((uint32_t *) irsp) + 7), 3902 *(((uint32_t *) irsp) + 8), 3903 *(((uint32_t *) irsp) + 9), 3904 *(((uint32_t *) irsp) + 10), 3905 *(((uint32_t *) irsp) + 11), 3906 *(((uint32_t *) irsp) + 12), 3907 *(((uint32_t *) irsp) + 13), 3908 *(((uint32_t *) irsp) + 14), 3909 *(((uint32_t *) irsp) + 15)); 3910 } 3911 3912 /* 3913 * Fetch the IOCB command type and call the correct completion 3914 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3915 * get freed back to the lpfc_iocb_list by the discovery 3916 * kernel thread. 3917 */ 3918 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3919 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3920 switch (type) { 3921 case LPFC_SOL_IOCB: 3922 spin_unlock_irqrestore(&phba->hbalock, iflag); 3923 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3924 spin_lock_irqsave(&phba->hbalock, iflag); 3925 break; 3926 3927 case LPFC_UNSOL_IOCB: 3928 spin_unlock_irqrestore(&phba->hbalock, iflag); 3929 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3930 spin_lock_irqsave(&phba->hbalock, iflag); 3931 if (!rc) 3932 free_saveq = 0; 3933 break; 3934 3935 case LPFC_ABORT_IOCB: 3936 cmdiocbp = NULL; 3937 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3938 spin_unlock_irqrestore(&phba->hbalock, iflag); 3939 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3940 saveq); 3941 spin_lock_irqsave(&phba->hbalock, iflag); 3942 } 3943 if (cmdiocbp) { 3944 /* Call the specified completion routine */ 3945 if (cmdiocbp->iocb_cmpl) { 3946 spin_unlock_irqrestore(&phba->hbalock, 3947 iflag); 3948 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3949 saveq); 3950 spin_lock_irqsave(&phba->hbalock, 3951 iflag); 3952 } else 3953 __lpfc_sli_release_iocbq(phba, 3954 cmdiocbp); 3955 } 3956 break; 3957 3958 case LPFC_UNKNOWN_IOCB: 3959 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3960 char adaptermsg[LPFC_MAX_ADPTMSG]; 3961 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3962 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3963 MAX_MSG_DATA); 3964 dev_warn(&((phba->pcidev)->dev), 3965 "lpfc%d: %s\n", 3966 phba->brd_no, adaptermsg); 3967 } else { 3968 /* Unknown IOCB command */ 3969 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3970 "0335 Unknown IOCB " 3971 "command Data: x%x " 3972 "x%x x%x x%x\n", 3973 irsp->ulpCommand, 3974 irsp->ulpStatus, 3975 irsp->ulpIoTag, 3976 irsp->ulpContext); 3977 } 3978 break; 3979 } 3980 3981 if (free_saveq) { 3982 list_for_each_entry_safe(rspiocbp, next_iocb, 3983 &saveq->list, list) { 3984 list_del_init(&rspiocbp->list); 3985 __lpfc_sli_release_iocbq(phba, rspiocbp); 3986 } 3987 __lpfc_sli_release_iocbq(phba, saveq); 3988 } 3989 rspiocbp = NULL; 3990 } 3991 spin_unlock_irqrestore(&phba->hbalock, iflag); 3992 return rspiocbp; 3993 } 3994 3995 /** 3996 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3997 * @phba: Pointer to HBA context object. 3998 * @pring: Pointer to driver SLI ring object. 3999 * @mask: Host attention register mask for this ring. 4000 * 4001 * This routine wraps the actual slow_ring event process routine from the 4002 * API jump table function pointer from the lpfc_hba struct. 4003 **/ 4004 void 4005 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 4006 struct lpfc_sli_ring *pring, uint32_t mask) 4007 { 4008 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 4009 } 4010 4011 /** 4012 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 4013 * @phba: Pointer to HBA context object. 4014 * @pring: Pointer to driver SLI ring object. 4015 * @mask: Host attention register mask for this ring. 4016 * 4017 * This function is called from the worker thread when there is a ring event 4018 * for non-fcp rings. The caller does not hold any lock. The function will 4019 * remove each response iocb in the response ring and calls the handle 4020 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4021 **/ 4022 static void 4023 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 4024 struct lpfc_sli_ring *pring, uint32_t mask) 4025 { 4026 struct lpfc_pgp *pgp; 4027 IOCB_t *entry; 4028 IOCB_t *irsp = NULL; 4029 struct lpfc_iocbq *rspiocbp = NULL; 4030 uint32_t portRspPut, portRspMax; 4031 unsigned long iflag; 4032 uint32_t status; 4033 4034 pgp = &phba->port_gp[pring->ringno]; 4035 spin_lock_irqsave(&phba->hbalock, iflag); 4036 pring->stats.iocb_event++; 4037 4038 /* 4039 * The next available response entry should never exceed the maximum 4040 * entries. If it does, treat it as an adapter hardware error. 4041 */ 4042 portRspMax = pring->sli.sli3.numRiocb; 4043 portRspPut = le32_to_cpu(pgp->rspPutInx); 4044 if (portRspPut >= portRspMax) { 4045 /* 4046 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 4047 * rsp ring <portRspMax> 4048 */ 4049 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4050 "0303 Ring %d handler: portRspPut %d " 4051 "is bigger than rsp ring %d\n", 4052 pring->ringno, portRspPut, portRspMax); 4053 4054 phba->link_state = LPFC_HBA_ERROR; 4055 spin_unlock_irqrestore(&phba->hbalock, iflag); 4056 4057 phba->work_hs = HS_FFER3; 4058 lpfc_handle_eratt(phba); 4059 4060 return; 4061 } 4062 4063 rmb(); 4064 while (pring->sli.sli3.rspidx != portRspPut) { 4065 /* 4066 * Build a completion list and call the appropriate handler. 4067 * The process is to get the next available response iocb, get 4068 * a free iocb from the list, copy the response data into the 4069 * free iocb, insert to the continuation list, and update the 4070 * next response index to slim. This process makes response 4071 * iocb's in the ring available to DMA as fast as possible but 4072 * pays a penalty for a copy operation. Since the iocb is 4073 * only 32 bytes, this penalty is considered small relative to 4074 * the PCI reads for register values and a slim write. When 4075 * the ulpLe field is set, the entire Command has been 4076 * received. 4077 */ 4078 entry = lpfc_resp_iocb(phba, pring); 4079 4080 phba->last_completion_time = jiffies; 4081 rspiocbp = __lpfc_sli_get_iocbq(phba); 4082 if (rspiocbp == NULL) { 4083 printk(KERN_ERR "%s: out of buffers! Failing " 4084 "completion.\n", __func__); 4085 break; 4086 } 4087 4088 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 4089 phba->iocb_rsp_size); 4090 irsp = &rspiocbp->iocb; 4091 4092 if (++pring->sli.sli3.rspidx >= portRspMax) 4093 pring->sli.sli3.rspidx = 0; 4094 4095 if (pring->ringno == LPFC_ELS_RING) { 4096 lpfc_debugfs_slow_ring_trc(phba, 4097 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 4098 *(((uint32_t *) irsp) + 4), 4099 *(((uint32_t *) irsp) + 6), 4100 *(((uint32_t *) irsp) + 7)); 4101 } 4102 4103 writel(pring->sli.sli3.rspidx, 4104 &phba->host_gp[pring->ringno].rspGetInx); 4105 4106 spin_unlock_irqrestore(&phba->hbalock, iflag); 4107 /* Handle the response IOCB */ 4108 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 4109 spin_lock_irqsave(&phba->hbalock, iflag); 4110 4111 /* 4112 * If the port response put pointer has not been updated, sync 4113 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 4114 * response put pointer. 4115 */ 4116 if (pring->sli.sli3.rspidx == portRspPut) { 4117 portRspPut = le32_to_cpu(pgp->rspPutInx); 4118 } 4119 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 4120 4121 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 4122 /* At least one response entry has been freed */ 4123 pring->stats.iocb_rsp_full++; 4124 /* SET RxRE_RSP in Chip Att register */ 4125 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 4126 writel(status, phba->CAregaddr); 4127 readl(phba->CAregaddr); /* flush */ 4128 } 4129 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 4130 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 4131 pring->stats.iocb_cmd_empty++; 4132 4133 /* Force update of the local copy of cmdGetInx */ 4134 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 4135 lpfc_sli_resume_iocb(phba, pring); 4136 4137 if ((pring->lpfc_sli_cmd_available)) 4138 (pring->lpfc_sli_cmd_available) (phba, pring); 4139 4140 } 4141 4142 spin_unlock_irqrestore(&phba->hbalock, iflag); 4143 return; 4144 } 4145 4146 /** 4147 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 4148 * @phba: Pointer to HBA context object. 4149 * @pring: Pointer to driver SLI ring object. 4150 * @mask: Host attention register mask for this ring. 4151 * 4152 * This function is called from the worker thread when there is a pending 4153 * ELS response iocb on the driver internal slow-path response iocb worker 4154 * queue. The caller does not hold any lock. The function will remove each 4155 * response iocb from the response worker queue and calls the handle 4156 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4157 **/ 4158 static void 4159 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4160 struct lpfc_sli_ring *pring, uint32_t mask) 4161 { 4162 struct lpfc_iocbq *irspiocbq; 4163 struct hbq_dmabuf *dmabuf; 4164 struct lpfc_cq_event *cq_event; 4165 unsigned long iflag; 4166 int count = 0; 4167 4168 spin_lock_irqsave(&phba->hbalock, iflag); 4169 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4170 spin_unlock_irqrestore(&phba->hbalock, iflag); 4171 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4172 /* Get the response iocb from the head of work queue */ 4173 spin_lock_irqsave(&phba->hbalock, iflag); 4174 list_remove_head(&phba->sli4_hba.sp_queue_event, 4175 cq_event, struct lpfc_cq_event, list); 4176 spin_unlock_irqrestore(&phba->hbalock, iflag); 4177 4178 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4179 case CQE_CODE_COMPL_WQE: 4180 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4181 cq_event); 4182 /* Translate ELS WCQE to response IOCBQ */ 4183 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4184 irspiocbq); 4185 if (irspiocbq) 4186 lpfc_sli_sp_handle_rspiocb(phba, pring, 4187 irspiocbq); 4188 count++; 4189 break; 4190 case CQE_CODE_RECEIVE: 4191 case CQE_CODE_RECEIVE_V1: 4192 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4193 cq_event); 4194 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4195 count++; 4196 break; 4197 default: 4198 break; 4199 } 4200 4201 /* Limit the number of events to 64 to avoid soft lockups */ 4202 if (count == 64) 4203 break; 4204 } 4205 } 4206 4207 /** 4208 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4209 * @phba: Pointer to HBA context object. 4210 * @pring: Pointer to driver SLI ring object. 4211 * 4212 * This function aborts all iocbs in the given ring and frees all the iocb 4213 * objects in txq. This function issues an abort iocb for all the iocb commands 4214 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4215 * the return of this function. The caller is not required to hold any locks. 4216 **/ 4217 void 4218 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4219 { 4220 LIST_HEAD(completions); 4221 struct lpfc_iocbq *iocb, *next_iocb; 4222 4223 if (pring->ringno == LPFC_ELS_RING) { 4224 lpfc_fabric_abort_hba(phba); 4225 } 4226 4227 /* Error everything on txq and txcmplq 4228 * First do the txq. 4229 */ 4230 if (phba->sli_rev >= LPFC_SLI_REV4) { 4231 spin_lock_irq(&pring->ring_lock); 4232 list_splice_init(&pring->txq, &completions); 4233 pring->txq_cnt = 0; 4234 spin_unlock_irq(&pring->ring_lock); 4235 4236 spin_lock_irq(&phba->hbalock); 4237 /* Next issue ABTS for everything on the txcmplq */ 4238 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4239 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4240 spin_unlock_irq(&phba->hbalock); 4241 } else { 4242 spin_lock_irq(&phba->hbalock); 4243 list_splice_init(&pring->txq, &completions); 4244 pring->txq_cnt = 0; 4245 4246 /* Next issue ABTS for everything on the txcmplq */ 4247 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4248 lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); 4249 spin_unlock_irq(&phba->hbalock); 4250 } 4251 /* Make sure HBA is alive */ 4252 lpfc_issue_hb_tmo(phba); 4253 4254 /* Cancel all the IOCBs from the completions list */ 4255 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4256 IOERR_SLI_ABORTED); 4257 } 4258 4259 /** 4260 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4261 * @phba: Pointer to HBA context object. 4262 * 4263 * This function aborts all iocbs in FCP rings and frees all the iocb 4264 * objects in txq. This function issues an abort iocb for all the iocb commands 4265 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4266 * the return of this function. The caller is not required to hold any locks. 4267 **/ 4268 void 4269 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4270 { 4271 struct lpfc_sli *psli = &phba->sli; 4272 struct lpfc_sli_ring *pring; 4273 uint32_t i; 4274 4275 /* Look on all the FCP Rings for the iotag */ 4276 if (phba->sli_rev >= LPFC_SLI_REV4) { 4277 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4278 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4279 lpfc_sli_abort_iocb_ring(phba, pring); 4280 } 4281 } else { 4282 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4283 lpfc_sli_abort_iocb_ring(phba, pring); 4284 } 4285 } 4286 4287 /** 4288 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4289 * @phba: Pointer to HBA context object. 4290 * 4291 * This function flushes all iocbs in the IO ring and frees all the iocb 4292 * objects in txq and txcmplq. This function will not issue abort iocbs 4293 * for all the iocb commands in txcmplq, they will just be returned with 4294 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4295 * slot has been permanently disabled. 4296 **/ 4297 void 4298 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4299 { 4300 LIST_HEAD(txq); 4301 LIST_HEAD(txcmplq); 4302 struct lpfc_sli *psli = &phba->sli; 4303 struct lpfc_sli_ring *pring; 4304 uint32_t i; 4305 struct lpfc_iocbq *piocb, *next_iocb; 4306 4307 spin_lock_irq(&phba->hbalock); 4308 if (phba->hba_flag & HBA_IOQ_FLUSH || 4309 !phba->sli4_hba.hdwq) { 4310 spin_unlock_irq(&phba->hbalock); 4311 return; 4312 } 4313 /* Indicate the I/O queues are flushed */ 4314 phba->hba_flag |= HBA_IOQ_FLUSH; 4315 spin_unlock_irq(&phba->hbalock); 4316 4317 /* Look on all the FCP Rings for the iotag */ 4318 if (phba->sli_rev >= LPFC_SLI_REV4) { 4319 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4320 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4321 4322 spin_lock_irq(&pring->ring_lock); 4323 /* Retrieve everything on txq */ 4324 list_splice_init(&pring->txq, &txq); 4325 list_for_each_entry_safe(piocb, next_iocb, 4326 &pring->txcmplq, list) 4327 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4328 /* Retrieve everything on the txcmplq */ 4329 list_splice_init(&pring->txcmplq, &txcmplq); 4330 pring->txq_cnt = 0; 4331 pring->txcmplq_cnt = 0; 4332 spin_unlock_irq(&pring->ring_lock); 4333 4334 /* Flush the txq */ 4335 lpfc_sli_cancel_iocbs(phba, &txq, 4336 IOSTAT_LOCAL_REJECT, 4337 IOERR_SLI_DOWN); 4338 /* Flush the txcmpq */ 4339 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4340 IOSTAT_LOCAL_REJECT, 4341 IOERR_SLI_DOWN); 4342 } 4343 } else { 4344 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4345 4346 spin_lock_irq(&phba->hbalock); 4347 /* Retrieve everything on txq */ 4348 list_splice_init(&pring->txq, &txq); 4349 list_for_each_entry_safe(piocb, next_iocb, 4350 &pring->txcmplq, list) 4351 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4352 /* Retrieve everything on the txcmplq */ 4353 list_splice_init(&pring->txcmplq, &txcmplq); 4354 pring->txq_cnt = 0; 4355 pring->txcmplq_cnt = 0; 4356 spin_unlock_irq(&phba->hbalock); 4357 4358 /* Flush the txq */ 4359 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4360 IOERR_SLI_DOWN); 4361 /* Flush the txcmpq */ 4362 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4363 IOERR_SLI_DOWN); 4364 } 4365 } 4366 4367 /** 4368 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4369 * @phba: Pointer to HBA context object. 4370 * @mask: Bit mask to be checked. 4371 * 4372 * This function reads the host status register and compares 4373 * with the provided bit mask to check if HBA completed 4374 * the restart. This function will wait in a loop for the 4375 * HBA to complete restart. If the HBA does not restart within 4376 * 15 iterations, the function will reset the HBA again. The 4377 * function returns 1 when HBA fail to restart otherwise returns 4378 * zero. 4379 **/ 4380 static int 4381 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4382 { 4383 uint32_t status; 4384 int i = 0; 4385 int retval = 0; 4386 4387 /* Read the HBA Host Status Register */ 4388 if (lpfc_readl(phba->HSregaddr, &status)) 4389 return 1; 4390 4391 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4392 4393 /* 4394 * Check status register every 100ms for 5 retries, then every 4395 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4396 * every 2.5 sec for 4. 4397 * Break our of the loop if errors occurred during init. 4398 */ 4399 while (((status & mask) != mask) && 4400 !(status & HS_FFERM) && 4401 i++ < 20) { 4402 4403 if (i <= 5) 4404 msleep(10); 4405 else if (i <= 10) 4406 msleep(500); 4407 else 4408 msleep(2500); 4409 4410 if (i == 15) { 4411 /* Do post */ 4412 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4413 lpfc_sli_brdrestart(phba); 4414 } 4415 /* Read the HBA Host Status Register */ 4416 if (lpfc_readl(phba->HSregaddr, &status)) { 4417 retval = 1; 4418 break; 4419 } 4420 } 4421 4422 /* Check to see if any errors occurred during init */ 4423 if ((status & HS_FFERM) || (i >= 20)) { 4424 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4425 "2751 Adapter failed to restart, " 4426 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4427 status, 4428 readl(phba->MBslimaddr + 0xa8), 4429 readl(phba->MBslimaddr + 0xac)); 4430 phba->link_state = LPFC_HBA_ERROR; 4431 retval = 1; 4432 } 4433 4434 return retval; 4435 } 4436 4437 /** 4438 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4439 * @phba: Pointer to HBA context object. 4440 * @mask: Bit mask to be checked. 4441 * 4442 * This function checks the host status register to check if HBA is 4443 * ready. This function will wait in a loop for the HBA to be ready 4444 * If the HBA is not ready , the function will will reset the HBA PCI 4445 * function again. The function returns 1 when HBA fail to be ready 4446 * otherwise returns zero. 4447 **/ 4448 static int 4449 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4450 { 4451 uint32_t status; 4452 int retval = 0; 4453 4454 /* Read the HBA Host Status Register */ 4455 status = lpfc_sli4_post_status_check(phba); 4456 4457 if (status) { 4458 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4459 lpfc_sli_brdrestart(phba); 4460 status = lpfc_sli4_post_status_check(phba); 4461 } 4462 4463 /* Check to see if any errors occurred during init */ 4464 if (status) { 4465 phba->link_state = LPFC_HBA_ERROR; 4466 retval = 1; 4467 } else 4468 phba->sli4_hba.intr_enable = 0; 4469 4470 return retval; 4471 } 4472 4473 /** 4474 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4475 * @phba: Pointer to HBA context object. 4476 * @mask: Bit mask to be checked. 4477 * 4478 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4479 * from the API jump table function pointer from the lpfc_hba struct. 4480 **/ 4481 int 4482 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4483 { 4484 return phba->lpfc_sli_brdready(phba, mask); 4485 } 4486 4487 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4488 4489 /** 4490 * lpfc_reset_barrier - Make HBA ready for HBA reset 4491 * @phba: Pointer to HBA context object. 4492 * 4493 * This function is called before resetting an HBA. This function is called 4494 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4495 **/ 4496 void lpfc_reset_barrier(struct lpfc_hba *phba) 4497 { 4498 uint32_t __iomem *resp_buf; 4499 uint32_t __iomem *mbox_buf; 4500 volatile uint32_t mbox; 4501 uint32_t hc_copy, ha_copy, resp_data; 4502 int i; 4503 uint8_t hdrtype; 4504 4505 lockdep_assert_held(&phba->hbalock); 4506 4507 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4508 if (hdrtype != 0x80 || 4509 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4510 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4511 return; 4512 4513 /* 4514 * Tell the other part of the chip to suspend temporarily all 4515 * its DMA activity. 4516 */ 4517 resp_buf = phba->MBslimaddr; 4518 4519 /* Disable the error attention */ 4520 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4521 return; 4522 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4523 readl(phba->HCregaddr); /* flush */ 4524 phba->link_flag |= LS_IGNORE_ERATT; 4525 4526 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4527 return; 4528 if (ha_copy & HA_ERATT) { 4529 /* Clear Chip error bit */ 4530 writel(HA_ERATT, phba->HAregaddr); 4531 phba->pport->stopped = 1; 4532 } 4533 4534 mbox = 0; 4535 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4536 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4537 4538 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4539 mbox_buf = phba->MBslimaddr; 4540 writel(mbox, mbox_buf); 4541 4542 for (i = 0; i < 50; i++) { 4543 if (lpfc_readl((resp_buf + 1), &resp_data)) 4544 return; 4545 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4546 mdelay(1); 4547 else 4548 break; 4549 } 4550 resp_data = 0; 4551 if (lpfc_readl((resp_buf + 1), &resp_data)) 4552 return; 4553 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4554 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4555 phba->pport->stopped) 4556 goto restore_hc; 4557 else 4558 goto clear_errat; 4559 } 4560 4561 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4562 resp_data = 0; 4563 for (i = 0; i < 500; i++) { 4564 if (lpfc_readl(resp_buf, &resp_data)) 4565 return; 4566 if (resp_data != mbox) 4567 mdelay(1); 4568 else 4569 break; 4570 } 4571 4572 clear_errat: 4573 4574 while (++i < 500) { 4575 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4576 return; 4577 if (!(ha_copy & HA_ERATT)) 4578 mdelay(1); 4579 else 4580 break; 4581 } 4582 4583 if (readl(phba->HAregaddr) & HA_ERATT) { 4584 writel(HA_ERATT, phba->HAregaddr); 4585 phba->pport->stopped = 1; 4586 } 4587 4588 restore_hc: 4589 phba->link_flag &= ~LS_IGNORE_ERATT; 4590 writel(hc_copy, phba->HCregaddr); 4591 readl(phba->HCregaddr); /* flush */ 4592 } 4593 4594 /** 4595 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4596 * @phba: Pointer to HBA context object. 4597 * 4598 * This function issues a kill_board mailbox command and waits for 4599 * the error attention interrupt. This function is called for stopping 4600 * the firmware processing. The caller is not required to hold any 4601 * locks. This function calls lpfc_hba_down_post function to free 4602 * any pending commands after the kill. The function will return 1 when it 4603 * fails to kill the board else will return 0. 4604 **/ 4605 int 4606 lpfc_sli_brdkill(struct lpfc_hba *phba) 4607 { 4608 struct lpfc_sli *psli; 4609 LPFC_MBOXQ_t *pmb; 4610 uint32_t status; 4611 uint32_t ha_copy; 4612 int retval; 4613 int i = 0; 4614 4615 psli = &phba->sli; 4616 4617 /* Kill HBA */ 4618 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4619 "0329 Kill HBA Data: x%x x%x\n", 4620 phba->pport->port_state, psli->sli_flag); 4621 4622 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4623 if (!pmb) 4624 return 1; 4625 4626 /* Disable the error attention */ 4627 spin_lock_irq(&phba->hbalock); 4628 if (lpfc_readl(phba->HCregaddr, &status)) { 4629 spin_unlock_irq(&phba->hbalock); 4630 mempool_free(pmb, phba->mbox_mem_pool); 4631 return 1; 4632 } 4633 status &= ~HC_ERINT_ENA; 4634 writel(status, phba->HCregaddr); 4635 readl(phba->HCregaddr); /* flush */ 4636 phba->link_flag |= LS_IGNORE_ERATT; 4637 spin_unlock_irq(&phba->hbalock); 4638 4639 lpfc_kill_board(phba, pmb); 4640 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4641 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4642 4643 if (retval != MBX_SUCCESS) { 4644 if (retval != MBX_BUSY) 4645 mempool_free(pmb, phba->mbox_mem_pool); 4646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 4647 "2752 KILL_BOARD command failed retval %d\n", 4648 retval); 4649 spin_lock_irq(&phba->hbalock); 4650 phba->link_flag &= ~LS_IGNORE_ERATT; 4651 spin_unlock_irq(&phba->hbalock); 4652 return 1; 4653 } 4654 4655 spin_lock_irq(&phba->hbalock); 4656 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4657 spin_unlock_irq(&phba->hbalock); 4658 4659 mempool_free(pmb, phba->mbox_mem_pool); 4660 4661 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4662 * attention every 100ms for 3 seconds. If we don't get ERATT after 4663 * 3 seconds we still set HBA_ERROR state because the status of the 4664 * board is now undefined. 4665 */ 4666 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4667 return 1; 4668 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4669 mdelay(100); 4670 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4671 return 1; 4672 } 4673 4674 del_timer_sync(&psli->mbox_tmo); 4675 if (ha_copy & HA_ERATT) { 4676 writel(HA_ERATT, phba->HAregaddr); 4677 phba->pport->stopped = 1; 4678 } 4679 spin_lock_irq(&phba->hbalock); 4680 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4681 psli->mbox_active = NULL; 4682 phba->link_flag &= ~LS_IGNORE_ERATT; 4683 spin_unlock_irq(&phba->hbalock); 4684 4685 lpfc_hba_down_post(phba); 4686 phba->link_state = LPFC_HBA_ERROR; 4687 4688 return ha_copy & HA_ERATT ? 0 : 1; 4689 } 4690 4691 /** 4692 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4693 * @phba: Pointer to HBA context object. 4694 * 4695 * This function resets the HBA by writing HC_INITFF to the control 4696 * register. After the HBA resets, this function resets all the iocb ring 4697 * indices. This function disables PCI layer parity checking during 4698 * the reset. 4699 * This function returns 0 always. 4700 * The caller is not required to hold any locks. 4701 **/ 4702 int 4703 lpfc_sli_brdreset(struct lpfc_hba *phba) 4704 { 4705 struct lpfc_sli *psli; 4706 struct lpfc_sli_ring *pring; 4707 uint16_t cfg_value; 4708 int i; 4709 4710 psli = &phba->sli; 4711 4712 /* Reset HBA */ 4713 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4714 "0325 Reset HBA Data: x%x x%x\n", 4715 (phba->pport) ? phba->pport->port_state : 0, 4716 psli->sli_flag); 4717 4718 /* perform board reset */ 4719 phba->fc_eventTag = 0; 4720 phba->link_events = 0; 4721 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 4722 if (phba->pport) { 4723 phba->pport->fc_myDID = 0; 4724 phba->pport->fc_prevDID = 0; 4725 } 4726 4727 /* Turn off parity checking and serr during the physical reset */ 4728 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4729 return -EIO; 4730 4731 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4732 (cfg_value & 4733 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4734 4735 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4736 4737 /* Now toggle INITFF bit in the Host Control Register */ 4738 writel(HC_INITFF, phba->HCregaddr); 4739 mdelay(1); 4740 readl(phba->HCregaddr); /* flush */ 4741 writel(0, phba->HCregaddr); 4742 readl(phba->HCregaddr); /* flush */ 4743 4744 /* Restore PCI cmd register */ 4745 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4746 4747 /* Initialize relevant SLI info */ 4748 for (i = 0; i < psli->num_rings; i++) { 4749 pring = &psli->sli3_ring[i]; 4750 pring->flag = 0; 4751 pring->sli.sli3.rspidx = 0; 4752 pring->sli.sli3.next_cmdidx = 0; 4753 pring->sli.sli3.local_getidx = 0; 4754 pring->sli.sli3.cmdidx = 0; 4755 pring->missbufcnt = 0; 4756 } 4757 4758 phba->link_state = LPFC_WARM_START; 4759 return 0; 4760 } 4761 4762 /** 4763 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4764 * @phba: Pointer to HBA context object. 4765 * 4766 * This function resets a SLI4 HBA. This function disables PCI layer parity 4767 * checking during resets the device. The caller is not required to hold 4768 * any locks. 4769 * 4770 * This function returns 0 on success else returns negative error code. 4771 **/ 4772 int 4773 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4774 { 4775 struct lpfc_sli *psli = &phba->sli; 4776 uint16_t cfg_value; 4777 int rc = 0; 4778 4779 /* Reset HBA */ 4780 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4781 "0295 Reset HBA Data: x%x x%x x%x\n", 4782 phba->pport->port_state, psli->sli_flag, 4783 phba->hba_flag); 4784 4785 /* perform board reset */ 4786 phba->fc_eventTag = 0; 4787 phba->link_events = 0; 4788 phba->pport->fc_myDID = 0; 4789 phba->pport->fc_prevDID = 0; 4790 4791 spin_lock_irq(&phba->hbalock); 4792 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4793 phba->fcf.fcf_flag = 0; 4794 spin_unlock_irq(&phba->hbalock); 4795 4796 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4797 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4798 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4799 return rc; 4800 } 4801 4802 /* Now physically reset the device */ 4803 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4804 "0389 Performing PCI function reset!\n"); 4805 4806 /* Turn off parity checking and serr during the physical reset */ 4807 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4808 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4809 "3205 PCI read Config failed\n"); 4810 return -EIO; 4811 } 4812 4813 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4814 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4815 4816 /* Perform FCoE PCI function reset before freeing queue memory */ 4817 rc = lpfc_pci_function_reset(phba); 4818 4819 /* Restore PCI cmd register */ 4820 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4821 4822 return rc; 4823 } 4824 4825 /** 4826 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4827 * @phba: Pointer to HBA context object. 4828 * 4829 * This function is called in the SLI initialization code path to 4830 * restart the HBA. The caller is not required to hold any lock. 4831 * This function writes MBX_RESTART mailbox command to the SLIM and 4832 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4833 * function to free any pending commands. The function enables 4834 * POST only during the first initialization. The function returns zero. 4835 * The function does not guarantee completion of MBX_RESTART mailbox 4836 * command before the return of this function. 4837 **/ 4838 static int 4839 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4840 { 4841 MAILBOX_t *mb; 4842 struct lpfc_sli *psli; 4843 volatile uint32_t word0; 4844 void __iomem *to_slim; 4845 uint32_t hba_aer_enabled; 4846 4847 spin_lock_irq(&phba->hbalock); 4848 4849 /* Take PCIe device Advanced Error Reporting (AER) state */ 4850 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4851 4852 psli = &phba->sli; 4853 4854 /* Restart HBA */ 4855 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4856 "0337 Restart HBA Data: x%x x%x\n", 4857 (phba->pport) ? phba->pport->port_state : 0, 4858 psli->sli_flag); 4859 4860 word0 = 0; 4861 mb = (MAILBOX_t *) &word0; 4862 mb->mbxCommand = MBX_RESTART; 4863 mb->mbxHc = 1; 4864 4865 lpfc_reset_barrier(phba); 4866 4867 to_slim = phba->MBslimaddr; 4868 writel(*(uint32_t *) mb, to_slim); 4869 readl(to_slim); /* flush */ 4870 4871 /* Only skip post after fc_ffinit is completed */ 4872 if (phba->pport && phba->pport->port_state) 4873 word0 = 1; /* This is really setting up word1 */ 4874 else 4875 word0 = 0; /* This is really setting up word1 */ 4876 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4877 writel(*(uint32_t *) mb, to_slim); 4878 readl(to_slim); /* flush */ 4879 4880 lpfc_sli_brdreset(phba); 4881 if (phba->pport) 4882 phba->pport->stopped = 0; 4883 phba->link_state = LPFC_INIT_START; 4884 phba->hba_flag = 0; 4885 spin_unlock_irq(&phba->hbalock); 4886 4887 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4888 psli->stats_start = ktime_get_seconds(); 4889 4890 /* Give the INITFF and Post time to settle. */ 4891 mdelay(100); 4892 4893 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4894 if (hba_aer_enabled) 4895 pci_disable_pcie_error_reporting(phba->pcidev); 4896 4897 lpfc_hba_down_post(phba); 4898 4899 return 0; 4900 } 4901 4902 /** 4903 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4904 * @phba: Pointer to HBA context object. 4905 * 4906 * This function is called in the SLI initialization code path to restart 4907 * a SLI4 HBA. The caller is not required to hold any lock. 4908 * At the end of the function, it calls lpfc_hba_down_post function to 4909 * free any pending commands. 4910 **/ 4911 static int 4912 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4913 { 4914 struct lpfc_sli *psli = &phba->sli; 4915 uint32_t hba_aer_enabled; 4916 int rc; 4917 4918 /* Restart HBA */ 4919 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4920 "0296 Restart HBA Data: x%x x%x\n", 4921 phba->pport->port_state, psli->sli_flag); 4922 4923 /* Take PCIe device Advanced Error Reporting (AER) state */ 4924 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4925 4926 rc = lpfc_sli4_brdreset(phba); 4927 if (rc) { 4928 phba->link_state = LPFC_HBA_ERROR; 4929 goto hba_down_queue; 4930 } 4931 4932 spin_lock_irq(&phba->hbalock); 4933 phba->pport->stopped = 0; 4934 phba->link_state = LPFC_INIT_START; 4935 phba->hba_flag = 0; 4936 spin_unlock_irq(&phba->hbalock); 4937 4938 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4939 psli->stats_start = ktime_get_seconds(); 4940 4941 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4942 if (hba_aer_enabled) 4943 pci_disable_pcie_error_reporting(phba->pcidev); 4944 4945 hba_down_queue: 4946 lpfc_hba_down_post(phba); 4947 lpfc_sli4_queue_destroy(phba); 4948 4949 return rc; 4950 } 4951 4952 /** 4953 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4954 * @phba: Pointer to HBA context object. 4955 * 4956 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4957 * API jump table function pointer from the lpfc_hba struct. 4958 **/ 4959 int 4960 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4961 { 4962 return phba->lpfc_sli_brdrestart(phba); 4963 } 4964 4965 /** 4966 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4967 * @phba: Pointer to HBA context object. 4968 * 4969 * This function is called after a HBA restart to wait for successful 4970 * restart of the HBA. Successful restart of the HBA is indicated by 4971 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4972 * iteration, the function will restart the HBA again. The function returns 4973 * zero if HBA successfully restarted else returns negative error code. 4974 **/ 4975 int 4976 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4977 { 4978 uint32_t status, i = 0; 4979 4980 /* Read the HBA Host Status Register */ 4981 if (lpfc_readl(phba->HSregaddr, &status)) 4982 return -EIO; 4983 4984 /* Check status register to see what current state is */ 4985 i = 0; 4986 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4987 4988 /* Check every 10ms for 10 retries, then every 100ms for 90 4989 * retries, then every 1 sec for 50 retires for a total of 4990 * ~60 seconds before reset the board again and check every 4991 * 1 sec for 50 retries. The up to 60 seconds before the 4992 * board ready is required by the Falcon FIPS zeroization 4993 * complete, and any reset the board in between shall cause 4994 * restart of zeroization, further delay the board ready. 4995 */ 4996 if (i++ >= 200) { 4997 /* Adapter failed to init, timeout, status reg 4998 <status> */ 4999 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5000 "0436 Adapter failed to init, " 5001 "timeout, status reg x%x, " 5002 "FW Data: A8 x%x AC x%x\n", status, 5003 readl(phba->MBslimaddr + 0xa8), 5004 readl(phba->MBslimaddr + 0xac)); 5005 phba->link_state = LPFC_HBA_ERROR; 5006 return -ETIMEDOUT; 5007 } 5008 5009 /* Check to see if any errors occurred during init */ 5010 if (status & HS_FFERM) { 5011 /* ERROR: During chipset initialization */ 5012 /* Adapter failed to init, chipset, status reg 5013 <status> */ 5014 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5015 "0437 Adapter failed to init, " 5016 "chipset, status reg x%x, " 5017 "FW Data: A8 x%x AC x%x\n", status, 5018 readl(phba->MBslimaddr + 0xa8), 5019 readl(phba->MBslimaddr + 0xac)); 5020 phba->link_state = LPFC_HBA_ERROR; 5021 return -EIO; 5022 } 5023 5024 if (i <= 10) 5025 msleep(10); 5026 else if (i <= 100) 5027 msleep(100); 5028 else 5029 msleep(1000); 5030 5031 if (i == 150) { 5032 /* Do post */ 5033 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5034 lpfc_sli_brdrestart(phba); 5035 } 5036 /* Read the HBA Host Status Register */ 5037 if (lpfc_readl(phba->HSregaddr, &status)) 5038 return -EIO; 5039 } 5040 5041 /* Check to see if any errors occurred during init */ 5042 if (status & HS_FFERM) { 5043 /* ERROR: During chipset initialization */ 5044 /* Adapter failed to init, chipset, status reg <status> */ 5045 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5046 "0438 Adapter failed to init, chipset, " 5047 "status reg x%x, " 5048 "FW Data: A8 x%x AC x%x\n", status, 5049 readl(phba->MBslimaddr + 0xa8), 5050 readl(phba->MBslimaddr + 0xac)); 5051 phba->link_state = LPFC_HBA_ERROR; 5052 return -EIO; 5053 } 5054 5055 phba->hba_flag |= HBA_NEEDS_CFG_PORT; 5056 5057 /* Clear all interrupt enable conditions */ 5058 writel(0, phba->HCregaddr); 5059 readl(phba->HCregaddr); /* flush */ 5060 5061 /* setup host attn register */ 5062 writel(0xffffffff, phba->HAregaddr); 5063 readl(phba->HAregaddr); /* flush */ 5064 return 0; 5065 } 5066 5067 /** 5068 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 5069 * 5070 * This function calculates and returns the number of HBQs required to be 5071 * configured. 5072 **/ 5073 int 5074 lpfc_sli_hbq_count(void) 5075 { 5076 return ARRAY_SIZE(lpfc_hbq_defs); 5077 } 5078 5079 /** 5080 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 5081 * 5082 * This function adds the number of hbq entries in every HBQ to get 5083 * the total number of hbq entries required for the HBA and returns 5084 * the total count. 5085 **/ 5086 static int 5087 lpfc_sli_hbq_entry_count(void) 5088 { 5089 int hbq_count = lpfc_sli_hbq_count(); 5090 int count = 0; 5091 int i; 5092 5093 for (i = 0; i < hbq_count; ++i) 5094 count += lpfc_hbq_defs[i]->entry_count; 5095 return count; 5096 } 5097 5098 /** 5099 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 5100 * 5101 * This function calculates amount of memory required for all hbq entries 5102 * to be configured and returns the total memory required. 5103 **/ 5104 int 5105 lpfc_sli_hbq_size(void) 5106 { 5107 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 5108 } 5109 5110 /** 5111 * lpfc_sli_hbq_setup - configure and initialize HBQs 5112 * @phba: Pointer to HBA context object. 5113 * 5114 * This function is called during the SLI initialization to configure 5115 * all the HBQs and post buffers to the HBQ. The caller is not 5116 * required to hold any locks. This function will return zero if successful 5117 * else it will return negative error code. 5118 **/ 5119 static int 5120 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 5121 { 5122 int hbq_count = lpfc_sli_hbq_count(); 5123 LPFC_MBOXQ_t *pmb; 5124 MAILBOX_t *pmbox; 5125 uint32_t hbqno; 5126 uint32_t hbq_entry_index; 5127 5128 /* Get a Mailbox buffer to setup mailbox 5129 * commands for HBA initialization 5130 */ 5131 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5132 5133 if (!pmb) 5134 return -ENOMEM; 5135 5136 pmbox = &pmb->u.mb; 5137 5138 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 5139 phba->link_state = LPFC_INIT_MBX_CMDS; 5140 phba->hbq_in_use = 1; 5141 5142 hbq_entry_index = 0; 5143 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 5144 phba->hbqs[hbqno].next_hbqPutIdx = 0; 5145 phba->hbqs[hbqno].hbqPutIdx = 0; 5146 phba->hbqs[hbqno].local_hbqGetIdx = 0; 5147 phba->hbqs[hbqno].entry_count = 5148 lpfc_hbq_defs[hbqno]->entry_count; 5149 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 5150 hbq_entry_index, pmb); 5151 hbq_entry_index += phba->hbqs[hbqno].entry_count; 5152 5153 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 5154 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 5155 mbxStatus <status>, ring <num> */ 5156 5157 lpfc_printf_log(phba, KERN_ERR, 5158 LOG_SLI | LOG_VPORT, 5159 "1805 Adapter failed to init. " 5160 "Data: x%x x%x x%x\n", 5161 pmbox->mbxCommand, 5162 pmbox->mbxStatus, hbqno); 5163 5164 phba->link_state = LPFC_HBA_ERROR; 5165 mempool_free(pmb, phba->mbox_mem_pool); 5166 return -ENXIO; 5167 } 5168 } 5169 phba->hbq_count = hbq_count; 5170 5171 mempool_free(pmb, phba->mbox_mem_pool); 5172 5173 /* Initially populate or replenish the HBQs */ 5174 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5175 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5176 return 0; 5177 } 5178 5179 /** 5180 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5181 * @phba: Pointer to HBA context object. 5182 * 5183 * This function is called during the SLI initialization to configure 5184 * all the HBQs and post buffers to the HBQ. The caller is not 5185 * required to hold any locks. This function will return zero if successful 5186 * else it will return negative error code. 5187 **/ 5188 static int 5189 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5190 { 5191 phba->hbq_in_use = 1; 5192 /** 5193 * Specific case when the MDS diagnostics is enabled and supported. 5194 * The receive buffer count is truncated to manage the incoming 5195 * traffic. 5196 **/ 5197 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5198 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5199 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5200 else 5201 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5202 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5203 phba->hbq_count = 1; 5204 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5205 /* Initially populate or replenish the HBQs */ 5206 return 0; 5207 } 5208 5209 /** 5210 * lpfc_sli_config_port - Issue config port mailbox command 5211 * @phba: Pointer to HBA context object. 5212 * @sli_mode: sli mode - 2/3 5213 * 5214 * This function is called by the sli initialization code path 5215 * to issue config_port mailbox command. This function restarts the 5216 * HBA firmware and issues a config_port mailbox command to configure 5217 * the SLI interface in the sli mode specified by sli_mode 5218 * variable. The caller is not required to hold any locks. 5219 * The function returns 0 if successful, else returns negative error 5220 * code. 5221 **/ 5222 int 5223 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5224 { 5225 LPFC_MBOXQ_t *pmb; 5226 uint32_t resetcount = 0, rc = 0, done = 0; 5227 5228 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5229 if (!pmb) { 5230 phba->link_state = LPFC_HBA_ERROR; 5231 return -ENOMEM; 5232 } 5233 5234 phba->sli_rev = sli_mode; 5235 while (resetcount < 2 && !done) { 5236 spin_lock_irq(&phba->hbalock); 5237 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5238 spin_unlock_irq(&phba->hbalock); 5239 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5240 lpfc_sli_brdrestart(phba); 5241 rc = lpfc_sli_chipset_init(phba); 5242 if (rc) 5243 break; 5244 5245 spin_lock_irq(&phba->hbalock); 5246 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5247 spin_unlock_irq(&phba->hbalock); 5248 resetcount++; 5249 5250 /* Call pre CONFIG_PORT mailbox command initialization. A 5251 * value of 0 means the call was successful. Any other 5252 * nonzero value is a failure, but if ERESTART is returned, 5253 * the driver may reset the HBA and try again. 5254 */ 5255 rc = lpfc_config_port_prep(phba); 5256 if (rc == -ERESTART) { 5257 phba->link_state = LPFC_LINK_UNKNOWN; 5258 continue; 5259 } else if (rc) 5260 break; 5261 5262 phba->link_state = LPFC_INIT_MBX_CMDS; 5263 lpfc_config_port(phba, pmb); 5264 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5265 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5266 LPFC_SLI3_HBQ_ENABLED | 5267 LPFC_SLI3_CRP_ENABLED | 5268 LPFC_SLI3_DSS_ENABLED); 5269 if (rc != MBX_SUCCESS) { 5270 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5271 "0442 Adapter failed to init, mbxCmd x%x " 5272 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5273 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5274 spin_lock_irq(&phba->hbalock); 5275 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5276 spin_unlock_irq(&phba->hbalock); 5277 rc = -ENXIO; 5278 } else { 5279 /* Allow asynchronous mailbox command to go through */ 5280 spin_lock_irq(&phba->hbalock); 5281 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5282 spin_unlock_irq(&phba->hbalock); 5283 done = 1; 5284 5285 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5286 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5287 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5288 "3110 Port did not grant ASABT\n"); 5289 } 5290 } 5291 if (!done) { 5292 rc = -EINVAL; 5293 goto do_prep_failed; 5294 } 5295 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5296 if (!pmb->u.mb.un.varCfgPort.cMA) { 5297 rc = -ENXIO; 5298 goto do_prep_failed; 5299 } 5300 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5301 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5302 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5303 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5304 phba->max_vpi : phba->max_vports; 5305 5306 } else 5307 phba->max_vpi = 0; 5308 if (pmb->u.mb.un.varCfgPort.gerbm) 5309 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5310 if (pmb->u.mb.un.varCfgPort.gcrp) 5311 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5312 5313 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5314 phba->port_gp = phba->mbox->us.s3_pgp.port; 5315 5316 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5317 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5318 phba->cfg_enable_bg = 0; 5319 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5320 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5321 "0443 Adapter did not grant " 5322 "BlockGuard\n"); 5323 } 5324 } 5325 } else { 5326 phba->hbq_get = NULL; 5327 phba->port_gp = phba->mbox->us.s2.port; 5328 phba->max_vpi = 0; 5329 } 5330 do_prep_failed: 5331 mempool_free(pmb, phba->mbox_mem_pool); 5332 return rc; 5333 } 5334 5335 5336 /** 5337 * lpfc_sli_hba_setup - SLI initialization function 5338 * @phba: Pointer to HBA context object. 5339 * 5340 * This function is the main SLI initialization function. This function 5341 * is called by the HBA initialization code, HBA reset code and HBA 5342 * error attention handler code. Caller is not required to hold any 5343 * locks. This function issues config_port mailbox command to configure 5344 * the SLI, setup iocb rings and HBQ rings. In the end the function 5345 * calls the config_port_post function to issue init_link mailbox 5346 * command and to start the discovery. The function will return zero 5347 * if successful, else it will return negative error code. 5348 **/ 5349 int 5350 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5351 { 5352 uint32_t rc; 5353 int i; 5354 int longs; 5355 5356 /* Enable ISR already does config_port because of config_msi mbx */ 5357 if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { 5358 rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); 5359 if (rc) 5360 return -EIO; 5361 phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; 5362 } 5363 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5364 5365 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5366 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5367 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5368 if (!rc) { 5369 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5370 "2709 This device supports " 5371 "Advanced Error Reporting (AER)\n"); 5372 spin_lock_irq(&phba->hbalock); 5373 phba->hba_flag |= HBA_AER_ENABLED; 5374 spin_unlock_irq(&phba->hbalock); 5375 } else { 5376 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5377 "2708 This device does not support " 5378 "Advanced Error Reporting (AER): %d\n", 5379 rc); 5380 phba->cfg_aer_support = 0; 5381 } 5382 } 5383 5384 if (phba->sli_rev == 3) { 5385 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5386 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5387 } else { 5388 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5389 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5390 phba->sli3_options = 0; 5391 } 5392 5393 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5394 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5395 phba->sli_rev, phba->max_vpi); 5396 rc = lpfc_sli_ring_map(phba); 5397 5398 if (rc) 5399 goto lpfc_sli_hba_setup_error; 5400 5401 /* Initialize VPIs. */ 5402 if (phba->sli_rev == LPFC_SLI_REV3) { 5403 /* 5404 * The VPI bitmask and physical ID array are allocated 5405 * and initialized once only - at driver load. A port 5406 * reset doesn't need to reinitialize this memory. 5407 */ 5408 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5409 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5410 phba->vpi_bmask = kcalloc(longs, 5411 sizeof(unsigned long), 5412 GFP_KERNEL); 5413 if (!phba->vpi_bmask) { 5414 rc = -ENOMEM; 5415 goto lpfc_sli_hba_setup_error; 5416 } 5417 5418 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5419 sizeof(uint16_t), 5420 GFP_KERNEL); 5421 if (!phba->vpi_ids) { 5422 kfree(phba->vpi_bmask); 5423 rc = -ENOMEM; 5424 goto lpfc_sli_hba_setup_error; 5425 } 5426 for (i = 0; i < phba->max_vpi; i++) 5427 phba->vpi_ids[i] = i; 5428 } 5429 } 5430 5431 /* Init HBQs */ 5432 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5433 rc = lpfc_sli_hbq_setup(phba); 5434 if (rc) 5435 goto lpfc_sli_hba_setup_error; 5436 } 5437 spin_lock_irq(&phba->hbalock); 5438 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5439 spin_unlock_irq(&phba->hbalock); 5440 5441 rc = lpfc_config_port_post(phba); 5442 if (rc) 5443 goto lpfc_sli_hba_setup_error; 5444 5445 return rc; 5446 5447 lpfc_sli_hba_setup_error: 5448 phba->link_state = LPFC_HBA_ERROR; 5449 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5450 "0445 Firmware initialization failed\n"); 5451 return rc; 5452 } 5453 5454 /** 5455 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5456 * @phba: Pointer to HBA context object. 5457 * 5458 * This function issue a dump mailbox command to read config region 5459 * 23 and parse the records in the region and populate driver 5460 * data structure. 5461 **/ 5462 static int 5463 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5464 { 5465 LPFC_MBOXQ_t *mboxq; 5466 struct lpfc_dmabuf *mp; 5467 struct lpfc_mqe *mqe; 5468 uint32_t data_length; 5469 int rc; 5470 5471 /* Program the default value of vlan_id and fc_map */ 5472 phba->valid_vlan = 0; 5473 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5474 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5475 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5476 5477 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5478 if (!mboxq) 5479 return -ENOMEM; 5480 5481 mqe = &mboxq->u.mqe; 5482 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5483 rc = -ENOMEM; 5484 goto out_free_mboxq; 5485 } 5486 5487 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5488 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5489 5490 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5491 "(%d):2571 Mailbox cmd x%x Status x%x " 5492 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5493 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5494 "CQ: x%x x%x x%x x%x\n", 5495 mboxq->vport ? mboxq->vport->vpi : 0, 5496 bf_get(lpfc_mqe_command, mqe), 5497 bf_get(lpfc_mqe_status, mqe), 5498 mqe->un.mb_words[0], mqe->un.mb_words[1], 5499 mqe->un.mb_words[2], mqe->un.mb_words[3], 5500 mqe->un.mb_words[4], mqe->un.mb_words[5], 5501 mqe->un.mb_words[6], mqe->un.mb_words[7], 5502 mqe->un.mb_words[8], mqe->un.mb_words[9], 5503 mqe->un.mb_words[10], mqe->un.mb_words[11], 5504 mqe->un.mb_words[12], mqe->un.mb_words[13], 5505 mqe->un.mb_words[14], mqe->un.mb_words[15], 5506 mqe->un.mb_words[16], mqe->un.mb_words[50], 5507 mboxq->mcqe.word0, 5508 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5509 mboxq->mcqe.trailer); 5510 5511 if (rc) { 5512 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5513 kfree(mp); 5514 rc = -EIO; 5515 goto out_free_mboxq; 5516 } 5517 data_length = mqe->un.mb_words[5]; 5518 if (data_length > DMP_RGN23_SIZE) { 5519 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5520 kfree(mp); 5521 rc = -EIO; 5522 goto out_free_mboxq; 5523 } 5524 5525 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5526 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5527 kfree(mp); 5528 rc = 0; 5529 5530 out_free_mboxq: 5531 mempool_free(mboxq, phba->mbox_mem_pool); 5532 return rc; 5533 } 5534 5535 /** 5536 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5537 * @phba: pointer to lpfc hba data structure. 5538 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5539 * @vpd: pointer to the memory to hold resulting port vpd data. 5540 * @vpd_size: On input, the number of bytes allocated to @vpd. 5541 * On output, the number of data bytes in @vpd. 5542 * 5543 * This routine executes a READ_REV SLI4 mailbox command. In 5544 * addition, this routine gets the port vpd data. 5545 * 5546 * Return codes 5547 * 0 - successful 5548 * -ENOMEM - could not allocated memory. 5549 **/ 5550 static int 5551 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5552 uint8_t *vpd, uint32_t *vpd_size) 5553 { 5554 int rc = 0; 5555 uint32_t dma_size; 5556 struct lpfc_dmabuf *dmabuf; 5557 struct lpfc_mqe *mqe; 5558 5559 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5560 if (!dmabuf) 5561 return -ENOMEM; 5562 5563 /* 5564 * Get a DMA buffer for the vpd data resulting from the READ_REV 5565 * mailbox command. 5566 */ 5567 dma_size = *vpd_size; 5568 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5569 &dmabuf->phys, GFP_KERNEL); 5570 if (!dmabuf->virt) { 5571 kfree(dmabuf); 5572 return -ENOMEM; 5573 } 5574 5575 /* 5576 * The SLI4 implementation of READ_REV conflicts at word1, 5577 * bits 31:16 and SLI4 adds vpd functionality not present 5578 * in SLI3. This code corrects the conflicts. 5579 */ 5580 lpfc_read_rev(phba, mboxq); 5581 mqe = &mboxq->u.mqe; 5582 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5583 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5584 mqe->un.read_rev.word1 &= 0x0000FFFF; 5585 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5586 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5587 5588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5589 if (rc) { 5590 dma_free_coherent(&phba->pcidev->dev, dma_size, 5591 dmabuf->virt, dmabuf->phys); 5592 kfree(dmabuf); 5593 return -EIO; 5594 } 5595 5596 /* 5597 * The available vpd length cannot be bigger than the 5598 * DMA buffer passed to the port. Catch the less than 5599 * case and update the caller's size. 5600 */ 5601 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5602 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5603 5604 memcpy(vpd, dmabuf->virt, *vpd_size); 5605 5606 dma_free_coherent(&phba->pcidev->dev, dma_size, 5607 dmabuf->virt, dmabuf->phys); 5608 kfree(dmabuf); 5609 return 0; 5610 } 5611 5612 /** 5613 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5614 * @phba: pointer to lpfc hba data structure. 5615 * 5616 * This routine retrieves SLI4 device physical port name this PCI function 5617 * is attached to. 5618 * 5619 * Return codes 5620 * 0 - successful 5621 * otherwise - failed to retrieve controller attributes 5622 **/ 5623 static int 5624 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5625 { 5626 LPFC_MBOXQ_t *mboxq; 5627 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5628 struct lpfc_controller_attribute *cntl_attr; 5629 void *virtaddr = NULL; 5630 uint32_t alloclen, reqlen; 5631 uint32_t shdr_status, shdr_add_status; 5632 union lpfc_sli4_cfg_shdr *shdr; 5633 int rc; 5634 5635 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5636 if (!mboxq) 5637 return -ENOMEM; 5638 5639 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5640 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5641 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5642 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5643 LPFC_SLI4_MBX_NEMBED); 5644 5645 if (alloclen < reqlen) { 5646 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5647 "3084 Allocated DMA memory size (%d) is " 5648 "less than the requested DMA memory size " 5649 "(%d)\n", alloclen, reqlen); 5650 rc = -ENOMEM; 5651 goto out_free_mboxq; 5652 } 5653 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5654 virtaddr = mboxq->sge_array->addr[0]; 5655 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5656 shdr = &mbx_cntl_attr->cfg_shdr; 5657 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5658 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5659 if (shdr_status || shdr_add_status || rc) { 5660 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5661 "3085 Mailbox x%x (x%x/x%x) failed, " 5662 "rc:x%x, status:x%x, add_status:x%x\n", 5663 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5664 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5665 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5666 rc, shdr_status, shdr_add_status); 5667 rc = -ENXIO; 5668 goto out_free_mboxq; 5669 } 5670 5671 cntl_attr = &mbx_cntl_attr->cntl_attr; 5672 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5673 phba->sli4_hba.lnk_info.lnk_tp = 5674 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5675 phba->sli4_hba.lnk_info.lnk_no = 5676 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5677 phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); 5678 phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); 5679 5680 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5681 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5682 sizeof(phba->BIOSVersion)); 5683 5684 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5685 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " 5686 "flash_id: x%02x, asic_rev: x%02x\n", 5687 phba->sli4_hba.lnk_info.lnk_tp, 5688 phba->sli4_hba.lnk_info.lnk_no, 5689 phba->BIOSVersion, phba->sli4_hba.flash_id, 5690 phba->sli4_hba.asic_rev); 5691 out_free_mboxq: 5692 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5693 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5694 else 5695 mempool_free(mboxq, phba->mbox_mem_pool); 5696 return rc; 5697 } 5698 5699 /** 5700 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5701 * @phba: pointer to lpfc hba data structure. 5702 * 5703 * This routine retrieves SLI4 device physical port name this PCI function 5704 * is attached to. 5705 * 5706 * Return codes 5707 * 0 - successful 5708 * otherwise - failed to retrieve physical port name 5709 **/ 5710 static int 5711 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5712 { 5713 LPFC_MBOXQ_t *mboxq; 5714 struct lpfc_mbx_get_port_name *get_port_name; 5715 uint32_t shdr_status, shdr_add_status; 5716 union lpfc_sli4_cfg_shdr *shdr; 5717 char cport_name = 0; 5718 int rc; 5719 5720 /* We assume nothing at this point */ 5721 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5722 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5723 5724 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5725 if (!mboxq) 5726 return -ENOMEM; 5727 /* obtain link type and link number via READ_CONFIG */ 5728 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5729 lpfc_sli4_read_config(phba); 5730 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5731 goto retrieve_ppname; 5732 5733 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5734 rc = lpfc_sli4_get_ctl_attr(phba); 5735 if (rc) 5736 goto out_free_mboxq; 5737 5738 retrieve_ppname: 5739 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5740 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5741 sizeof(struct lpfc_mbx_get_port_name) - 5742 sizeof(struct lpfc_sli4_cfg_mhdr), 5743 LPFC_SLI4_MBX_EMBED); 5744 get_port_name = &mboxq->u.mqe.un.get_port_name; 5745 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5746 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5747 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5748 phba->sli4_hba.lnk_info.lnk_tp); 5749 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5750 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5751 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5752 if (shdr_status || shdr_add_status || rc) { 5753 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5754 "3087 Mailbox x%x (x%x/x%x) failed: " 5755 "rc:x%x, status:x%x, add_status:x%x\n", 5756 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5757 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5758 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5759 rc, shdr_status, shdr_add_status); 5760 rc = -ENXIO; 5761 goto out_free_mboxq; 5762 } 5763 switch (phba->sli4_hba.lnk_info.lnk_no) { 5764 case LPFC_LINK_NUMBER_0: 5765 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5766 &get_port_name->u.response); 5767 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5768 break; 5769 case LPFC_LINK_NUMBER_1: 5770 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5771 &get_port_name->u.response); 5772 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5773 break; 5774 case LPFC_LINK_NUMBER_2: 5775 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5776 &get_port_name->u.response); 5777 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5778 break; 5779 case LPFC_LINK_NUMBER_3: 5780 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5781 &get_port_name->u.response); 5782 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5783 break; 5784 default: 5785 break; 5786 } 5787 5788 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5789 phba->Port[0] = cport_name; 5790 phba->Port[1] = '\0'; 5791 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5792 "3091 SLI get port name: %s\n", phba->Port); 5793 } 5794 5795 out_free_mboxq: 5796 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5797 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5798 else 5799 mempool_free(mboxq, phba->mbox_mem_pool); 5800 return rc; 5801 } 5802 5803 /** 5804 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5805 * @phba: pointer to lpfc hba data structure. 5806 * 5807 * This routine is called to explicitly arm the SLI4 device's completion and 5808 * event queues 5809 **/ 5810 static void 5811 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5812 { 5813 int qidx; 5814 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5815 struct lpfc_sli4_hdw_queue *qp; 5816 struct lpfc_queue *eq; 5817 5818 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5819 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5820 if (sli4_hba->nvmels_cq) 5821 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5822 LPFC_QUEUE_REARM); 5823 5824 if (sli4_hba->hdwq) { 5825 /* Loop thru all Hardware Queues */ 5826 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5827 qp = &sli4_hba->hdwq[qidx]; 5828 /* ARM the corresponding CQ */ 5829 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5830 LPFC_QUEUE_REARM); 5831 } 5832 5833 /* Loop thru all IRQ vectors */ 5834 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5835 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5836 /* ARM the corresponding EQ */ 5837 sli4_hba->sli4_write_eq_db(phba, eq, 5838 0, LPFC_QUEUE_REARM); 5839 } 5840 } 5841 5842 if (phba->nvmet_support) { 5843 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5844 sli4_hba->sli4_write_cq_db(phba, 5845 sli4_hba->nvmet_cqset[qidx], 0, 5846 LPFC_QUEUE_REARM); 5847 } 5848 } 5849 } 5850 5851 /** 5852 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5853 * @phba: Pointer to HBA context object. 5854 * @type: The resource extent type. 5855 * @extnt_count: buffer to hold port available extent count. 5856 * @extnt_size: buffer to hold element count per extent. 5857 * 5858 * This function calls the port and retrievs the number of available 5859 * extents and their size for a particular extent type. 5860 * 5861 * Returns: 0 if successful. Nonzero otherwise. 5862 **/ 5863 int 5864 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5865 uint16_t *extnt_count, uint16_t *extnt_size) 5866 { 5867 int rc = 0; 5868 uint32_t length; 5869 uint32_t mbox_tmo; 5870 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5871 LPFC_MBOXQ_t *mbox; 5872 5873 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5874 if (!mbox) 5875 return -ENOMEM; 5876 5877 /* Find out how many extents are available for this resource type */ 5878 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5879 sizeof(struct lpfc_sli4_cfg_mhdr)); 5880 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5881 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5882 length, LPFC_SLI4_MBX_EMBED); 5883 5884 /* Send an extents count of 0 - the GET doesn't use it. */ 5885 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5886 LPFC_SLI4_MBX_EMBED); 5887 if (unlikely(rc)) { 5888 rc = -EIO; 5889 goto err_exit; 5890 } 5891 5892 if (!phba->sli4_hba.intr_enable) 5893 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5894 else { 5895 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5896 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5897 } 5898 if (unlikely(rc)) { 5899 rc = -EIO; 5900 goto err_exit; 5901 } 5902 5903 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5904 if (bf_get(lpfc_mbox_hdr_status, 5905 &rsrc_info->header.cfg_shdr.response)) { 5906 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 5907 "2930 Failed to get resource extents " 5908 "Status 0x%x Add'l Status 0x%x\n", 5909 bf_get(lpfc_mbox_hdr_status, 5910 &rsrc_info->header.cfg_shdr.response), 5911 bf_get(lpfc_mbox_hdr_add_status, 5912 &rsrc_info->header.cfg_shdr.response)); 5913 rc = -EIO; 5914 goto err_exit; 5915 } 5916 5917 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5918 &rsrc_info->u.rsp); 5919 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5920 &rsrc_info->u.rsp); 5921 5922 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5923 "3162 Retrieved extents type-%d from port: count:%d, " 5924 "size:%d\n", type, *extnt_count, *extnt_size); 5925 5926 err_exit: 5927 mempool_free(mbox, phba->mbox_mem_pool); 5928 return rc; 5929 } 5930 5931 /** 5932 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5933 * @phba: Pointer to HBA context object. 5934 * @type: The extent type to check. 5935 * 5936 * This function reads the current available extents from the port and checks 5937 * if the extent count or extent size has changed since the last access. 5938 * Callers use this routine post port reset to understand if there is a 5939 * extent reprovisioning requirement. 5940 * 5941 * Returns: 5942 * -Error: error indicates problem. 5943 * 1: Extent count or size has changed. 5944 * 0: No changes. 5945 **/ 5946 static int 5947 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5948 { 5949 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5950 uint16_t size_diff, rsrc_ext_size; 5951 int rc = 0; 5952 struct lpfc_rsrc_blks *rsrc_entry; 5953 struct list_head *rsrc_blk_list = NULL; 5954 5955 size_diff = 0; 5956 curr_ext_cnt = 0; 5957 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5958 &rsrc_ext_cnt, 5959 &rsrc_ext_size); 5960 if (unlikely(rc)) 5961 return -EIO; 5962 5963 switch (type) { 5964 case LPFC_RSC_TYPE_FCOE_RPI: 5965 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5966 break; 5967 case LPFC_RSC_TYPE_FCOE_VPI: 5968 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5969 break; 5970 case LPFC_RSC_TYPE_FCOE_XRI: 5971 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5972 break; 5973 case LPFC_RSC_TYPE_FCOE_VFI: 5974 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5975 break; 5976 default: 5977 break; 5978 } 5979 5980 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5981 curr_ext_cnt++; 5982 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5983 size_diff++; 5984 } 5985 5986 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5987 rc = 1; 5988 5989 return rc; 5990 } 5991 5992 /** 5993 * lpfc_sli4_cfg_post_extnts - 5994 * @phba: Pointer to HBA context object. 5995 * @extnt_cnt: number of available extents. 5996 * @type: the extent type (rpi, xri, vfi, vpi). 5997 * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5998 * @mbox: pointer to the caller's allocated mailbox structure. 5999 * 6000 * This function executes the extents allocation request. It also 6001 * takes care of the amount of memory needed to allocate or get the 6002 * allocated extents. It is the caller's responsibility to evaluate 6003 * the response. 6004 * 6005 * Returns: 6006 * -Error: Error value describes the condition found. 6007 * 0: if successful 6008 **/ 6009 static int 6010 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 6011 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 6012 { 6013 int rc = 0; 6014 uint32_t req_len; 6015 uint32_t emb_len; 6016 uint32_t alloc_len, mbox_tmo; 6017 6018 /* Calculate the total requested length of the dma memory */ 6019 req_len = extnt_cnt * sizeof(uint16_t); 6020 6021 /* 6022 * Calculate the size of an embedded mailbox. The uint32_t 6023 * accounts for extents-specific word. 6024 */ 6025 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6026 sizeof(uint32_t); 6027 6028 /* 6029 * Presume the allocation and response will fit into an embedded 6030 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6031 */ 6032 *emb = LPFC_SLI4_MBX_EMBED; 6033 if (req_len > emb_len) { 6034 req_len = extnt_cnt * sizeof(uint16_t) + 6035 sizeof(union lpfc_sli4_cfg_shdr) + 6036 sizeof(uint32_t); 6037 *emb = LPFC_SLI4_MBX_NEMBED; 6038 } 6039 6040 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6041 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 6042 req_len, *emb); 6043 if (alloc_len < req_len) { 6044 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6045 "2982 Allocated DMA memory size (x%x) is " 6046 "less than the requested DMA memory " 6047 "size (x%x)\n", alloc_len, req_len); 6048 return -ENOMEM; 6049 } 6050 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 6051 if (unlikely(rc)) 6052 return -EIO; 6053 6054 if (!phba->sli4_hba.intr_enable) 6055 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6056 else { 6057 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6058 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6059 } 6060 6061 if (unlikely(rc)) 6062 rc = -EIO; 6063 return rc; 6064 } 6065 6066 /** 6067 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 6068 * @phba: Pointer to HBA context object. 6069 * @type: The resource extent type to allocate. 6070 * 6071 * This function allocates the number of elements for the specified 6072 * resource type. 6073 **/ 6074 static int 6075 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 6076 { 6077 bool emb = false; 6078 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 6079 uint16_t rsrc_id, rsrc_start, j, k; 6080 uint16_t *ids; 6081 int i, rc; 6082 unsigned long longs; 6083 unsigned long *bmask; 6084 struct lpfc_rsrc_blks *rsrc_blks; 6085 LPFC_MBOXQ_t *mbox; 6086 uint32_t length; 6087 struct lpfc_id_range *id_array = NULL; 6088 void *virtaddr = NULL; 6089 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6090 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6091 struct list_head *ext_blk_list; 6092 6093 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 6094 &rsrc_cnt, 6095 &rsrc_size); 6096 if (unlikely(rc)) 6097 return -EIO; 6098 6099 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 6100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6101 "3009 No available Resource Extents " 6102 "for resource type 0x%x: Count: 0x%x, " 6103 "Size 0x%x\n", type, rsrc_cnt, 6104 rsrc_size); 6105 return -ENOMEM; 6106 } 6107 6108 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 6109 "2903 Post resource extents type-0x%x: " 6110 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 6111 6112 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6113 if (!mbox) 6114 return -ENOMEM; 6115 6116 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 6117 if (unlikely(rc)) { 6118 rc = -EIO; 6119 goto err_exit; 6120 } 6121 6122 /* 6123 * Figure out where the response is located. Then get local pointers 6124 * to the response data. The port does not guarantee to respond to 6125 * all extents counts request so update the local variable with the 6126 * allocated count from the port. 6127 */ 6128 if (emb == LPFC_SLI4_MBX_EMBED) { 6129 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6130 id_array = &rsrc_ext->u.rsp.id[0]; 6131 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6132 } else { 6133 virtaddr = mbox->sge_array->addr[0]; 6134 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6135 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6136 id_array = &n_rsrc->id; 6137 } 6138 6139 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6140 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6141 6142 /* 6143 * Based on the resource size and count, correct the base and max 6144 * resource values. 6145 */ 6146 length = sizeof(struct lpfc_rsrc_blks); 6147 switch (type) { 6148 case LPFC_RSC_TYPE_FCOE_RPI: 6149 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6150 sizeof(unsigned long), 6151 GFP_KERNEL); 6152 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6153 rc = -ENOMEM; 6154 goto err_exit; 6155 } 6156 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6157 sizeof(uint16_t), 6158 GFP_KERNEL); 6159 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6160 kfree(phba->sli4_hba.rpi_bmask); 6161 rc = -ENOMEM; 6162 goto err_exit; 6163 } 6164 6165 /* 6166 * The next_rpi was initialized with the maximum available 6167 * count but the port may allocate a smaller number. Catch 6168 * that case and update the next_rpi. 6169 */ 6170 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6171 6172 /* Initialize local ptrs for common extent processing later. */ 6173 bmask = phba->sli4_hba.rpi_bmask; 6174 ids = phba->sli4_hba.rpi_ids; 6175 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6176 break; 6177 case LPFC_RSC_TYPE_FCOE_VPI: 6178 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6179 GFP_KERNEL); 6180 if (unlikely(!phba->vpi_bmask)) { 6181 rc = -ENOMEM; 6182 goto err_exit; 6183 } 6184 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6185 GFP_KERNEL); 6186 if (unlikely(!phba->vpi_ids)) { 6187 kfree(phba->vpi_bmask); 6188 rc = -ENOMEM; 6189 goto err_exit; 6190 } 6191 6192 /* Initialize local ptrs for common extent processing later. */ 6193 bmask = phba->vpi_bmask; 6194 ids = phba->vpi_ids; 6195 ext_blk_list = &phba->lpfc_vpi_blk_list; 6196 break; 6197 case LPFC_RSC_TYPE_FCOE_XRI: 6198 phba->sli4_hba.xri_bmask = kcalloc(longs, 6199 sizeof(unsigned long), 6200 GFP_KERNEL); 6201 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6202 rc = -ENOMEM; 6203 goto err_exit; 6204 } 6205 phba->sli4_hba.max_cfg_param.xri_used = 0; 6206 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6207 sizeof(uint16_t), 6208 GFP_KERNEL); 6209 if (unlikely(!phba->sli4_hba.xri_ids)) { 6210 kfree(phba->sli4_hba.xri_bmask); 6211 rc = -ENOMEM; 6212 goto err_exit; 6213 } 6214 6215 /* Initialize local ptrs for common extent processing later. */ 6216 bmask = phba->sli4_hba.xri_bmask; 6217 ids = phba->sli4_hba.xri_ids; 6218 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6219 break; 6220 case LPFC_RSC_TYPE_FCOE_VFI: 6221 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6222 sizeof(unsigned long), 6223 GFP_KERNEL); 6224 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6225 rc = -ENOMEM; 6226 goto err_exit; 6227 } 6228 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6229 sizeof(uint16_t), 6230 GFP_KERNEL); 6231 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6232 kfree(phba->sli4_hba.vfi_bmask); 6233 rc = -ENOMEM; 6234 goto err_exit; 6235 } 6236 6237 /* Initialize local ptrs for common extent processing later. */ 6238 bmask = phba->sli4_hba.vfi_bmask; 6239 ids = phba->sli4_hba.vfi_ids; 6240 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6241 break; 6242 default: 6243 /* Unsupported Opcode. Fail call. */ 6244 id_array = NULL; 6245 bmask = NULL; 6246 ids = NULL; 6247 ext_blk_list = NULL; 6248 goto err_exit; 6249 } 6250 6251 /* 6252 * Complete initializing the extent configuration with the 6253 * allocated ids assigned to this function. The bitmask serves 6254 * as an index into the array and manages the available ids. The 6255 * array just stores the ids communicated to the port via the wqes. 6256 */ 6257 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6258 if ((i % 2) == 0) 6259 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6260 &id_array[k]); 6261 else 6262 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6263 &id_array[k]); 6264 6265 rsrc_blks = kzalloc(length, GFP_KERNEL); 6266 if (unlikely(!rsrc_blks)) { 6267 rc = -ENOMEM; 6268 kfree(bmask); 6269 kfree(ids); 6270 goto err_exit; 6271 } 6272 rsrc_blks->rsrc_start = rsrc_id; 6273 rsrc_blks->rsrc_size = rsrc_size; 6274 list_add_tail(&rsrc_blks->list, ext_blk_list); 6275 rsrc_start = rsrc_id; 6276 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6277 phba->sli4_hba.io_xri_start = rsrc_start + 6278 lpfc_sli4_get_iocb_cnt(phba); 6279 } 6280 6281 while (rsrc_id < (rsrc_start + rsrc_size)) { 6282 ids[j] = rsrc_id; 6283 rsrc_id++; 6284 j++; 6285 } 6286 /* Entire word processed. Get next word.*/ 6287 if ((i % 2) == 1) 6288 k++; 6289 } 6290 err_exit: 6291 lpfc_sli4_mbox_cmd_free(phba, mbox); 6292 return rc; 6293 } 6294 6295 6296 6297 /** 6298 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6299 * @phba: Pointer to HBA context object. 6300 * @type: the extent's type. 6301 * 6302 * This function deallocates all extents of a particular resource type. 6303 * SLI4 does not allow for deallocating a particular extent range. It 6304 * is the caller's responsibility to release all kernel memory resources. 6305 **/ 6306 static int 6307 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6308 { 6309 int rc; 6310 uint32_t length, mbox_tmo = 0; 6311 LPFC_MBOXQ_t *mbox; 6312 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6313 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6314 6315 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6316 if (!mbox) 6317 return -ENOMEM; 6318 6319 /* 6320 * This function sends an embedded mailbox because it only sends the 6321 * the resource type. All extents of this type are released by the 6322 * port. 6323 */ 6324 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6325 sizeof(struct lpfc_sli4_cfg_mhdr)); 6326 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6327 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6328 length, LPFC_SLI4_MBX_EMBED); 6329 6330 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6331 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6332 LPFC_SLI4_MBX_EMBED); 6333 if (unlikely(rc)) { 6334 rc = -EIO; 6335 goto out_free_mbox; 6336 } 6337 if (!phba->sli4_hba.intr_enable) 6338 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6339 else { 6340 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6341 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6342 } 6343 if (unlikely(rc)) { 6344 rc = -EIO; 6345 goto out_free_mbox; 6346 } 6347 6348 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6349 if (bf_get(lpfc_mbox_hdr_status, 6350 &dealloc_rsrc->header.cfg_shdr.response)) { 6351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6352 "2919 Failed to release resource extents " 6353 "for type %d - Status 0x%x Add'l Status 0x%x. " 6354 "Resource memory not released.\n", 6355 type, 6356 bf_get(lpfc_mbox_hdr_status, 6357 &dealloc_rsrc->header.cfg_shdr.response), 6358 bf_get(lpfc_mbox_hdr_add_status, 6359 &dealloc_rsrc->header.cfg_shdr.response)); 6360 rc = -EIO; 6361 goto out_free_mbox; 6362 } 6363 6364 /* Release kernel memory resources for the specific type. */ 6365 switch (type) { 6366 case LPFC_RSC_TYPE_FCOE_VPI: 6367 kfree(phba->vpi_bmask); 6368 kfree(phba->vpi_ids); 6369 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6370 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6371 &phba->lpfc_vpi_blk_list, list) { 6372 list_del_init(&rsrc_blk->list); 6373 kfree(rsrc_blk); 6374 } 6375 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6376 break; 6377 case LPFC_RSC_TYPE_FCOE_XRI: 6378 kfree(phba->sli4_hba.xri_bmask); 6379 kfree(phba->sli4_hba.xri_ids); 6380 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6381 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6382 list_del_init(&rsrc_blk->list); 6383 kfree(rsrc_blk); 6384 } 6385 break; 6386 case LPFC_RSC_TYPE_FCOE_VFI: 6387 kfree(phba->sli4_hba.vfi_bmask); 6388 kfree(phba->sli4_hba.vfi_ids); 6389 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6390 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6391 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6392 list_del_init(&rsrc_blk->list); 6393 kfree(rsrc_blk); 6394 } 6395 break; 6396 case LPFC_RSC_TYPE_FCOE_RPI: 6397 /* RPI bitmask and physical id array are cleaned up earlier. */ 6398 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6399 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6400 list_del_init(&rsrc_blk->list); 6401 kfree(rsrc_blk); 6402 } 6403 break; 6404 default: 6405 break; 6406 } 6407 6408 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6409 6410 out_free_mbox: 6411 mempool_free(mbox, phba->mbox_mem_pool); 6412 return rc; 6413 } 6414 6415 static void 6416 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6417 uint32_t feature) 6418 { 6419 uint32_t len; 6420 6421 len = sizeof(struct lpfc_mbx_set_feature) - 6422 sizeof(struct lpfc_sli4_cfg_mhdr); 6423 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6424 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6425 LPFC_SLI4_MBX_EMBED); 6426 6427 switch (feature) { 6428 case LPFC_SET_UE_RECOVERY: 6429 bf_set(lpfc_mbx_set_feature_UER, 6430 &mbox->u.mqe.un.set_feature, 1); 6431 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6432 mbox->u.mqe.un.set_feature.param_len = 8; 6433 break; 6434 case LPFC_SET_MDS_DIAGS: 6435 bf_set(lpfc_mbx_set_feature_mds, 6436 &mbox->u.mqe.un.set_feature, 1); 6437 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6438 &mbox->u.mqe.un.set_feature, 1); 6439 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6440 mbox->u.mqe.un.set_feature.param_len = 8; 6441 break; 6442 case LPFC_SET_DUAL_DUMP: 6443 bf_set(lpfc_mbx_set_feature_dd, 6444 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6445 bf_set(lpfc_mbx_set_feature_ddquery, 6446 &mbox->u.mqe.un.set_feature, 0); 6447 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6448 mbox->u.mqe.un.set_feature.param_len = 4; 6449 break; 6450 } 6451 6452 return; 6453 } 6454 6455 /** 6456 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6457 * @phba: Pointer to HBA context object. 6458 * 6459 * Disable FW logging into host memory on the adapter. To 6460 * be done before reading logs from the host memory. 6461 **/ 6462 void 6463 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6464 { 6465 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6466 6467 spin_lock_irq(&phba->hbalock); 6468 ras_fwlog->state = INACTIVE; 6469 spin_unlock_irq(&phba->hbalock); 6470 6471 /* Disable FW logging to host memory */ 6472 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6473 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6474 6475 /* Wait 10ms for firmware to stop using DMA buffer */ 6476 usleep_range(10 * 1000, 20 * 1000); 6477 } 6478 6479 /** 6480 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6481 * @phba: Pointer to HBA context object. 6482 * 6483 * This function is called to free memory allocated for RAS FW logging 6484 * support in the driver. 6485 **/ 6486 void 6487 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6488 { 6489 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6490 struct lpfc_dmabuf *dmabuf, *next; 6491 6492 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6493 list_for_each_entry_safe(dmabuf, next, 6494 &ras_fwlog->fwlog_buff_list, 6495 list) { 6496 list_del(&dmabuf->list); 6497 dma_free_coherent(&phba->pcidev->dev, 6498 LPFC_RAS_MAX_ENTRY_SIZE, 6499 dmabuf->virt, dmabuf->phys); 6500 kfree(dmabuf); 6501 } 6502 } 6503 6504 if (ras_fwlog->lwpd.virt) { 6505 dma_free_coherent(&phba->pcidev->dev, 6506 sizeof(uint32_t) * 2, 6507 ras_fwlog->lwpd.virt, 6508 ras_fwlog->lwpd.phys); 6509 ras_fwlog->lwpd.virt = NULL; 6510 } 6511 6512 spin_lock_irq(&phba->hbalock); 6513 ras_fwlog->state = INACTIVE; 6514 spin_unlock_irq(&phba->hbalock); 6515 } 6516 6517 /** 6518 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6519 * @phba: Pointer to HBA context object. 6520 * @fwlog_buff_count: Count of buffers to be created. 6521 * 6522 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6523 * to update FW log is posted to the adapter. 6524 * Buffer count is calculated based on module param ras_fwlog_buffsize 6525 * Size of each buffer posted to FW is 64K. 6526 **/ 6527 6528 static int 6529 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6530 uint32_t fwlog_buff_count) 6531 { 6532 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6533 struct lpfc_dmabuf *dmabuf; 6534 int rc = 0, i = 0; 6535 6536 /* Initialize List */ 6537 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6538 6539 /* Allocate memory for the LWPD */ 6540 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6541 sizeof(uint32_t) * 2, 6542 &ras_fwlog->lwpd.phys, 6543 GFP_KERNEL); 6544 if (!ras_fwlog->lwpd.virt) { 6545 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6546 "6185 LWPD Memory Alloc Failed\n"); 6547 6548 return -ENOMEM; 6549 } 6550 6551 ras_fwlog->fw_buffcount = fwlog_buff_count; 6552 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6553 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6554 GFP_KERNEL); 6555 if (!dmabuf) { 6556 rc = -ENOMEM; 6557 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6558 "6186 Memory Alloc failed FW logging"); 6559 goto free_mem; 6560 } 6561 6562 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6563 LPFC_RAS_MAX_ENTRY_SIZE, 6564 &dmabuf->phys, GFP_KERNEL); 6565 if (!dmabuf->virt) { 6566 kfree(dmabuf); 6567 rc = -ENOMEM; 6568 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6569 "6187 DMA Alloc Failed FW logging"); 6570 goto free_mem; 6571 } 6572 dmabuf->buffer_tag = i; 6573 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6574 } 6575 6576 free_mem: 6577 if (rc) 6578 lpfc_sli4_ras_dma_free(phba); 6579 6580 return rc; 6581 } 6582 6583 /** 6584 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6585 * @phba: pointer to lpfc hba data structure. 6586 * @pmb: pointer to the driver internal queue element for mailbox command. 6587 * 6588 * Completion handler for driver's RAS MBX command to the device. 6589 **/ 6590 static void 6591 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6592 { 6593 MAILBOX_t *mb; 6594 union lpfc_sli4_cfg_shdr *shdr; 6595 uint32_t shdr_status, shdr_add_status; 6596 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6597 6598 mb = &pmb->u.mb; 6599 6600 shdr = (union lpfc_sli4_cfg_shdr *) 6601 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6602 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6603 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6604 6605 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6607 "6188 FW LOG mailbox " 6608 "completed with status x%x add_status x%x," 6609 " mbx status x%x\n", 6610 shdr_status, shdr_add_status, mb->mbxStatus); 6611 6612 ras_fwlog->ras_hwsupport = false; 6613 goto disable_ras; 6614 } 6615 6616 spin_lock_irq(&phba->hbalock); 6617 ras_fwlog->state = ACTIVE; 6618 spin_unlock_irq(&phba->hbalock); 6619 mempool_free(pmb, phba->mbox_mem_pool); 6620 6621 return; 6622 6623 disable_ras: 6624 /* Free RAS DMA memory */ 6625 lpfc_sli4_ras_dma_free(phba); 6626 mempool_free(pmb, phba->mbox_mem_pool); 6627 } 6628 6629 /** 6630 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6631 * @phba: pointer to lpfc hba data structure. 6632 * @fwlog_level: Logging verbosity level. 6633 * @fwlog_enable: Enable/Disable logging. 6634 * 6635 * Initialize memory and post mailbox command to enable FW logging in host 6636 * memory. 6637 **/ 6638 int 6639 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6640 uint32_t fwlog_level, 6641 uint32_t fwlog_enable) 6642 { 6643 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6644 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6645 struct lpfc_dmabuf *dmabuf; 6646 LPFC_MBOXQ_t *mbox; 6647 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6648 int rc = 0; 6649 6650 spin_lock_irq(&phba->hbalock); 6651 ras_fwlog->state = INACTIVE; 6652 spin_unlock_irq(&phba->hbalock); 6653 6654 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6655 phba->cfg_ras_fwlog_buffsize); 6656 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6657 6658 /* 6659 * If re-enabling FW logging support use earlier allocated 6660 * DMA buffers while posting MBX command. 6661 **/ 6662 if (!ras_fwlog->lwpd.virt) { 6663 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6664 if (rc) { 6665 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6666 "6189 FW Log Memory Allocation Failed"); 6667 return rc; 6668 } 6669 } 6670 6671 /* Setup Mailbox command */ 6672 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6673 if (!mbox) { 6674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6675 "6190 RAS MBX Alloc Failed"); 6676 rc = -ENOMEM; 6677 goto mem_free; 6678 } 6679 6680 ras_fwlog->fw_loglevel = fwlog_level; 6681 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6682 sizeof(struct lpfc_sli4_cfg_mhdr)); 6683 6684 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6685 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6686 len, LPFC_SLI4_MBX_EMBED); 6687 6688 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6689 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6690 fwlog_enable); 6691 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6692 ras_fwlog->fw_loglevel); 6693 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6694 ras_fwlog->fw_buffcount); 6695 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6696 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6697 6698 /* Update DMA buffer address */ 6699 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6700 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6701 6702 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6703 putPaddrLow(dmabuf->phys); 6704 6705 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6706 putPaddrHigh(dmabuf->phys); 6707 } 6708 6709 /* Update LPWD address */ 6710 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6711 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6712 6713 spin_lock_irq(&phba->hbalock); 6714 ras_fwlog->state = REG_INPROGRESS; 6715 spin_unlock_irq(&phba->hbalock); 6716 mbox->vport = phba->pport; 6717 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6718 6719 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6720 6721 if (rc == MBX_NOT_FINISHED) { 6722 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6723 "6191 FW-Log Mailbox failed. " 6724 "status %d mbxStatus : x%x", rc, 6725 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6726 mempool_free(mbox, phba->mbox_mem_pool); 6727 rc = -EIO; 6728 goto mem_free; 6729 } else 6730 rc = 0; 6731 mem_free: 6732 if (rc) 6733 lpfc_sli4_ras_dma_free(phba); 6734 6735 return rc; 6736 } 6737 6738 /** 6739 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6740 * @phba: Pointer to HBA context object. 6741 * 6742 * Check if RAS is supported on the adapter and initialize it. 6743 **/ 6744 void 6745 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6746 { 6747 /* Check RAS FW Log needs to be enabled or not */ 6748 if (lpfc_check_fwlog_support(phba)) 6749 return; 6750 6751 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6752 LPFC_RAS_ENABLE_LOGGING); 6753 } 6754 6755 /** 6756 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6757 * @phba: Pointer to HBA context object. 6758 * 6759 * This function allocates all SLI4 resource identifiers. 6760 **/ 6761 int 6762 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6763 { 6764 int i, rc, error = 0; 6765 uint16_t count, base; 6766 unsigned long longs; 6767 6768 if (!phba->sli4_hba.rpi_hdrs_in_use) 6769 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6770 if (phba->sli4_hba.extents_in_use) { 6771 /* 6772 * The port supports resource extents. The XRI, VPI, VFI, RPI 6773 * resource extent count must be read and allocated before 6774 * provisioning the resource id arrays. 6775 */ 6776 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6777 LPFC_IDX_RSRC_RDY) { 6778 /* 6779 * Extent-based resources are set - the driver could 6780 * be in a port reset. Figure out if any corrective 6781 * actions need to be taken. 6782 */ 6783 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6784 LPFC_RSC_TYPE_FCOE_VFI); 6785 if (rc != 0) 6786 error++; 6787 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6788 LPFC_RSC_TYPE_FCOE_VPI); 6789 if (rc != 0) 6790 error++; 6791 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6792 LPFC_RSC_TYPE_FCOE_XRI); 6793 if (rc != 0) 6794 error++; 6795 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6796 LPFC_RSC_TYPE_FCOE_RPI); 6797 if (rc != 0) 6798 error++; 6799 6800 /* 6801 * It's possible that the number of resources 6802 * provided to this port instance changed between 6803 * resets. Detect this condition and reallocate 6804 * resources. Otherwise, there is no action. 6805 */ 6806 if (error) { 6807 lpfc_printf_log(phba, KERN_INFO, 6808 LOG_MBOX | LOG_INIT, 6809 "2931 Detected extent resource " 6810 "change. Reallocating all " 6811 "extents.\n"); 6812 rc = lpfc_sli4_dealloc_extent(phba, 6813 LPFC_RSC_TYPE_FCOE_VFI); 6814 rc = lpfc_sli4_dealloc_extent(phba, 6815 LPFC_RSC_TYPE_FCOE_VPI); 6816 rc = lpfc_sli4_dealloc_extent(phba, 6817 LPFC_RSC_TYPE_FCOE_XRI); 6818 rc = lpfc_sli4_dealloc_extent(phba, 6819 LPFC_RSC_TYPE_FCOE_RPI); 6820 } else 6821 return 0; 6822 } 6823 6824 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6825 if (unlikely(rc)) 6826 goto err_exit; 6827 6828 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6829 if (unlikely(rc)) 6830 goto err_exit; 6831 6832 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6833 if (unlikely(rc)) 6834 goto err_exit; 6835 6836 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6837 if (unlikely(rc)) 6838 goto err_exit; 6839 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6840 LPFC_IDX_RSRC_RDY); 6841 return rc; 6842 } else { 6843 /* 6844 * The port does not support resource extents. The XRI, VPI, 6845 * VFI, RPI resource ids were determined from READ_CONFIG. 6846 * Just allocate the bitmasks and provision the resource id 6847 * arrays. If a port reset is active, the resources don't 6848 * need any action - just exit. 6849 */ 6850 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6851 LPFC_IDX_RSRC_RDY) { 6852 lpfc_sli4_dealloc_resource_identifiers(phba); 6853 lpfc_sli4_remove_rpis(phba); 6854 } 6855 /* RPIs. */ 6856 count = phba->sli4_hba.max_cfg_param.max_rpi; 6857 if (count <= 0) { 6858 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6859 "3279 Invalid provisioning of " 6860 "rpi:%d\n", count); 6861 rc = -EINVAL; 6862 goto err_exit; 6863 } 6864 base = phba->sli4_hba.max_cfg_param.rpi_base; 6865 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6866 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6867 sizeof(unsigned long), 6868 GFP_KERNEL); 6869 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6870 rc = -ENOMEM; 6871 goto err_exit; 6872 } 6873 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6874 GFP_KERNEL); 6875 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6876 rc = -ENOMEM; 6877 goto free_rpi_bmask; 6878 } 6879 6880 for (i = 0; i < count; i++) 6881 phba->sli4_hba.rpi_ids[i] = base + i; 6882 6883 /* VPIs. */ 6884 count = phba->sli4_hba.max_cfg_param.max_vpi; 6885 if (count <= 0) { 6886 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6887 "3280 Invalid provisioning of " 6888 "vpi:%d\n", count); 6889 rc = -EINVAL; 6890 goto free_rpi_ids; 6891 } 6892 base = phba->sli4_hba.max_cfg_param.vpi_base; 6893 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6894 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6895 GFP_KERNEL); 6896 if (unlikely(!phba->vpi_bmask)) { 6897 rc = -ENOMEM; 6898 goto free_rpi_ids; 6899 } 6900 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6901 GFP_KERNEL); 6902 if (unlikely(!phba->vpi_ids)) { 6903 rc = -ENOMEM; 6904 goto free_vpi_bmask; 6905 } 6906 6907 for (i = 0; i < count; i++) 6908 phba->vpi_ids[i] = base + i; 6909 6910 /* XRIs. */ 6911 count = phba->sli4_hba.max_cfg_param.max_xri; 6912 if (count <= 0) { 6913 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6914 "3281 Invalid provisioning of " 6915 "xri:%d\n", count); 6916 rc = -EINVAL; 6917 goto free_vpi_ids; 6918 } 6919 base = phba->sli4_hba.max_cfg_param.xri_base; 6920 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6921 phba->sli4_hba.xri_bmask = kcalloc(longs, 6922 sizeof(unsigned long), 6923 GFP_KERNEL); 6924 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6925 rc = -ENOMEM; 6926 goto free_vpi_ids; 6927 } 6928 phba->sli4_hba.max_cfg_param.xri_used = 0; 6929 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6930 GFP_KERNEL); 6931 if (unlikely(!phba->sli4_hba.xri_ids)) { 6932 rc = -ENOMEM; 6933 goto free_xri_bmask; 6934 } 6935 6936 for (i = 0; i < count; i++) 6937 phba->sli4_hba.xri_ids[i] = base + i; 6938 6939 /* VFIs. */ 6940 count = phba->sli4_hba.max_cfg_param.max_vfi; 6941 if (count <= 0) { 6942 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 6943 "3282 Invalid provisioning of " 6944 "vfi:%d\n", count); 6945 rc = -EINVAL; 6946 goto free_xri_ids; 6947 } 6948 base = phba->sli4_hba.max_cfg_param.vfi_base; 6949 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6950 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6951 sizeof(unsigned long), 6952 GFP_KERNEL); 6953 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6954 rc = -ENOMEM; 6955 goto free_xri_ids; 6956 } 6957 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6958 GFP_KERNEL); 6959 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6960 rc = -ENOMEM; 6961 goto free_vfi_bmask; 6962 } 6963 6964 for (i = 0; i < count; i++) 6965 phba->sli4_hba.vfi_ids[i] = base + i; 6966 6967 /* 6968 * Mark all resources ready. An HBA reset doesn't need 6969 * to reset the initialization. 6970 */ 6971 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6972 LPFC_IDX_RSRC_RDY); 6973 return 0; 6974 } 6975 6976 free_vfi_bmask: 6977 kfree(phba->sli4_hba.vfi_bmask); 6978 phba->sli4_hba.vfi_bmask = NULL; 6979 free_xri_ids: 6980 kfree(phba->sli4_hba.xri_ids); 6981 phba->sli4_hba.xri_ids = NULL; 6982 free_xri_bmask: 6983 kfree(phba->sli4_hba.xri_bmask); 6984 phba->sli4_hba.xri_bmask = NULL; 6985 free_vpi_ids: 6986 kfree(phba->vpi_ids); 6987 phba->vpi_ids = NULL; 6988 free_vpi_bmask: 6989 kfree(phba->vpi_bmask); 6990 phba->vpi_bmask = NULL; 6991 free_rpi_ids: 6992 kfree(phba->sli4_hba.rpi_ids); 6993 phba->sli4_hba.rpi_ids = NULL; 6994 free_rpi_bmask: 6995 kfree(phba->sli4_hba.rpi_bmask); 6996 phba->sli4_hba.rpi_bmask = NULL; 6997 err_exit: 6998 return rc; 6999 } 7000 7001 /** 7002 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 7003 * @phba: Pointer to HBA context object. 7004 * 7005 * This function allocates the number of elements for the specified 7006 * resource type. 7007 **/ 7008 int 7009 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 7010 { 7011 if (phba->sli4_hba.extents_in_use) { 7012 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 7013 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 7014 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 7015 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 7016 } else { 7017 kfree(phba->vpi_bmask); 7018 phba->sli4_hba.max_cfg_param.vpi_used = 0; 7019 kfree(phba->vpi_ids); 7020 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7021 kfree(phba->sli4_hba.xri_bmask); 7022 kfree(phba->sli4_hba.xri_ids); 7023 kfree(phba->sli4_hba.vfi_bmask); 7024 kfree(phba->sli4_hba.vfi_ids); 7025 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7026 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 7027 } 7028 7029 return 0; 7030 } 7031 7032 /** 7033 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 7034 * @phba: Pointer to HBA context object. 7035 * @type: The resource extent type. 7036 * @extnt_cnt: buffer to hold port extent count response 7037 * @extnt_size: buffer to hold port extent size response. 7038 * 7039 * This function calls the port to read the host allocated extents 7040 * for a particular type. 7041 **/ 7042 int 7043 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 7044 uint16_t *extnt_cnt, uint16_t *extnt_size) 7045 { 7046 bool emb; 7047 int rc = 0; 7048 uint16_t curr_blks = 0; 7049 uint32_t req_len, emb_len; 7050 uint32_t alloc_len, mbox_tmo; 7051 struct list_head *blk_list_head; 7052 struct lpfc_rsrc_blks *rsrc_blk; 7053 LPFC_MBOXQ_t *mbox; 7054 void *virtaddr = NULL; 7055 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 7056 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 7057 union lpfc_sli4_cfg_shdr *shdr; 7058 7059 switch (type) { 7060 case LPFC_RSC_TYPE_FCOE_VPI: 7061 blk_list_head = &phba->lpfc_vpi_blk_list; 7062 break; 7063 case LPFC_RSC_TYPE_FCOE_XRI: 7064 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 7065 break; 7066 case LPFC_RSC_TYPE_FCOE_VFI: 7067 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 7068 break; 7069 case LPFC_RSC_TYPE_FCOE_RPI: 7070 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 7071 break; 7072 default: 7073 return -EIO; 7074 } 7075 7076 /* Count the number of extents currently allocatd for this type. */ 7077 list_for_each_entry(rsrc_blk, blk_list_head, list) { 7078 if (curr_blks == 0) { 7079 /* 7080 * The GET_ALLOCATED mailbox does not return the size, 7081 * just the count. The size should be just the size 7082 * stored in the current allocated block and all sizes 7083 * for an extent type are the same so set the return 7084 * value now. 7085 */ 7086 *extnt_size = rsrc_blk->rsrc_size; 7087 } 7088 curr_blks++; 7089 } 7090 7091 /* 7092 * Calculate the size of an embedded mailbox. The uint32_t 7093 * accounts for extents-specific word. 7094 */ 7095 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 7096 sizeof(uint32_t); 7097 7098 /* 7099 * Presume the allocation and response will fit into an embedded 7100 * mailbox. If not true, reconfigure to a non-embedded mailbox. 7101 */ 7102 emb = LPFC_SLI4_MBX_EMBED; 7103 req_len = emb_len; 7104 if (req_len > emb_len) { 7105 req_len = curr_blks * sizeof(uint16_t) + 7106 sizeof(union lpfc_sli4_cfg_shdr) + 7107 sizeof(uint32_t); 7108 emb = LPFC_SLI4_MBX_NEMBED; 7109 } 7110 7111 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7112 if (!mbox) 7113 return -ENOMEM; 7114 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 7115 7116 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7117 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 7118 req_len, emb); 7119 if (alloc_len < req_len) { 7120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7121 "2983 Allocated DMA memory size (x%x) is " 7122 "less than the requested DMA memory " 7123 "size (x%x)\n", alloc_len, req_len); 7124 rc = -ENOMEM; 7125 goto err_exit; 7126 } 7127 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 7128 if (unlikely(rc)) { 7129 rc = -EIO; 7130 goto err_exit; 7131 } 7132 7133 if (!phba->sli4_hba.intr_enable) 7134 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7135 else { 7136 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7137 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7138 } 7139 7140 if (unlikely(rc)) { 7141 rc = -EIO; 7142 goto err_exit; 7143 } 7144 7145 /* 7146 * Figure out where the response is located. Then get local pointers 7147 * to the response data. The port does not guarantee to respond to 7148 * all extents counts request so update the local variable with the 7149 * allocated count from the port. 7150 */ 7151 if (emb == LPFC_SLI4_MBX_EMBED) { 7152 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7153 shdr = &rsrc_ext->header.cfg_shdr; 7154 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7155 } else { 7156 virtaddr = mbox->sge_array->addr[0]; 7157 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7158 shdr = &n_rsrc->cfg_shdr; 7159 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7160 } 7161 7162 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7163 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7164 "2984 Failed to read allocated resources " 7165 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7166 type, 7167 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7168 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7169 rc = -EIO; 7170 goto err_exit; 7171 } 7172 err_exit: 7173 lpfc_sli4_mbox_cmd_free(phba, mbox); 7174 return rc; 7175 } 7176 7177 /** 7178 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7179 * @phba: pointer to lpfc hba data structure. 7180 * @sgl_list: linked link of sgl buffers to post 7181 * @cnt: number of linked list buffers 7182 * 7183 * This routine walks the list of buffers that have been allocated and 7184 * repost them to the port by using SGL block post. This is needed after a 7185 * pci_function_reset/warm_start or start. It attempts to construct blocks 7186 * of buffer sgls which contains contiguous xris and uses the non-embedded 7187 * SGL block post mailbox commands to post them to the port. For single 7188 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7189 * mailbox command for posting. 7190 * 7191 * Returns: 0 = success, non-zero failure. 7192 **/ 7193 static int 7194 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7195 struct list_head *sgl_list, int cnt) 7196 { 7197 struct lpfc_sglq *sglq_entry = NULL; 7198 struct lpfc_sglq *sglq_entry_next = NULL; 7199 struct lpfc_sglq *sglq_entry_first = NULL; 7200 int status, total_cnt; 7201 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7202 int last_xritag = NO_XRI; 7203 LIST_HEAD(prep_sgl_list); 7204 LIST_HEAD(blck_sgl_list); 7205 LIST_HEAD(allc_sgl_list); 7206 LIST_HEAD(post_sgl_list); 7207 LIST_HEAD(free_sgl_list); 7208 7209 spin_lock_irq(&phba->hbalock); 7210 spin_lock(&phba->sli4_hba.sgl_list_lock); 7211 list_splice_init(sgl_list, &allc_sgl_list); 7212 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7213 spin_unlock_irq(&phba->hbalock); 7214 7215 total_cnt = cnt; 7216 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7217 &allc_sgl_list, list) { 7218 list_del_init(&sglq_entry->list); 7219 block_cnt++; 7220 if ((last_xritag != NO_XRI) && 7221 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7222 /* a hole in xri block, form a sgl posting block */ 7223 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7224 post_cnt = block_cnt - 1; 7225 /* prepare list for next posting block */ 7226 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7227 block_cnt = 1; 7228 } else { 7229 /* prepare list for next posting block */ 7230 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7231 /* enough sgls for non-embed sgl mbox command */ 7232 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7233 list_splice_init(&prep_sgl_list, 7234 &blck_sgl_list); 7235 post_cnt = block_cnt; 7236 block_cnt = 0; 7237 } 7238 } 7239 num_posted++; 7240 7241 /* keep track of last sgl's xritag */ 7242 last_xritag = sglq_entry->sli4_xritag; 7243 7244 /* end of repost sgl list condition for buffers */ 7245 if (num_posted == total_cnt) { 7246 if (post_cnt == 0) { 7247 list_splice_init(&prep_sgl_list, 7248 &blck_sgl_list); 7249 post_cnt = block_cnt; 7250 } else if (block_cnt == 1) { 7251 status = lpfc_sli4_post_sgl(phba, 7252 sglq_entry->phys, 0, 7253 sglq_entry->sli4_xritag); 7254 if (!status) { 7255 /* successful, put sgl to posted list */ 7256 list_add_tail(&sglq_entry->list, 7257 &post_sgl_list); 7258 } else { 7259 /* Failure, put sgl to free list */ 7260 lpfc_printf_log(phba, KERN_WARNING, 7261 LOG_SLI, 7262 "3159 Failed to post " 7263 "sgl, xritag:x%x\n", 7264 sglq_entry->sli4_xritag); 7265 list_add_tail(&sglq_entry->list, 7266 &free_sgl_list); 7267 total_cnt--; 7268 } 7269 } 7270 } 7271 7272 /* continue until a nembed page worth of sgls */ 7273 if (post_cnt == 0) 7274 continue; 7275 7276 /* post the buffer list sgls as a block */ 7277 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7278 post_cnt); 7279 7280 if (!status) { 7281 /* success, put sgl list to posted sgl list */ 7282 list_splice_init(&blck_sgl_list, &post_sgl_list); 7283 } else { 7284 /* Failure, put sgl list to free sgl list */ 7285 sglq_entry_first = list_first_entry(&blck_sgl_list, 7286 struct lpfc_sglq, 7287 list); 7288 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7289 "3160 Failed to post sgl-list, " 7290 "xritag:x%x-x%x\n", 7291 sglq_entry_first->sli4_xritag, 7292 (sglq_entry_first->sli4_xritag + 7293 post_cnt - 1)); 7294 list_splice_init(&blck_sgl_list, &free_sgl_list); 7295 total_cnt -= post_cnt; 7296 } 7297 7298 /* don't reset xirtag due to hole in xri block */ 7299 if (block_cnt == 0) 7300 last_xritag = NO_XRI; 7301 7302 /* reset sgl post count for next round of posting */ 7303 post_cnt = 0; 7304 } 7305 7306 /* free the sgls failed to post */ 7307 lpfc_free_sgl_list(phba, &free_sgl_list); 7308 7309 /* push sgls posted to the available list */ 7310 if (!list_empty(&post_sgl_list)) { 7311 spin_lock_irq(&phba->hbalock); 7312 spin_lock(&phba->sli4_hba.sgl_list_lock); 7313 list_splice_init(&post_sgl_list, sgl_list); 7314 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7315 spin_unlock_irq(&phba->hbalock); 7316 } else { 7317 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7318 "3161 Failure to post sgl to port.\n"); 7319 return -EIO; 7320 } 7321 7322 /* return the number of XRIs actually posted */ 7323 return total_cnt; 7324 } 7325 7326 /** 7327 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7328 * @phba: pointer to lpfc hba data structure. 7329 * 7330 * This routine walks the list of nvme buffers that have been allocated and 7331 * repost them to the port by using SGL block post. This is needed after a 7332 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7333 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7334 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7335 * 7336 * Returns: 0 = success, non-zero failure. 7337 **/ 7338 static int 7339 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7340 { 7341 LIST_HEAD(post_nblist); 7342 int num_posted, rc = 0; 7343 7344 /* get all NVME buffers need to repost to a local list */ 7345 lpfc_io_buf_flush(phba, &post_nblist); 7346 7347 /* post the list of nvme buffer sgls to port if available */ 7348 if (!list_empty(&post_nblist)) { 7349 num_posted = lpfc_sli4_post_io_sgl_list( 7350 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7351 /* failed to post any nvme buffer, return error */ 7352 if (num_posted == 0) 7353 rc = -EIO; 7354 } 7355 return rc; 7356 } 7357 7358 static void 7359 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7360 { 7361 uint32_t len; 7362 7363 len = sizeof(struct lpfc_mbx_set_host_data) - 7364 sizeof(struct lpfc_sli4_cfg_mhdr); 7365 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7366 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7367 LPFC_SLI4_MBX_EMBED); 7368 7369 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7370 mbox->u.mqe.un.set_host_data.param_len = 7371 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7372 snprintf(mbox->u.mqe.un.set_host_data.data, 7373 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7374 "Linux %s v"LPFC_DRIVER_VERSION, 7375 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7376 } 7377 7378 int 7379 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7380 struct lpfc_queue *drq, int count, int idx) 7381 { 7382 int rc, i; 7383 struct lpfc_rqe hrqe; 7384 struct lpfc_rqe drqe; 7385 struct lpfc_rqb *rqbp; 7386 unsigned long flags; 7387 struct rqb_dmabuf *rqb_buffer; 7388 LIST_HEAD(rqb_buf_list); 7389 7390 rqbp = hrq->rqbp; 7391 for (i = 0; i < count; i++) { 7392 spin_lock_irqsave(&phba->hbalock, flags); 7393 /* IF RQ is already full, don't bother */ 7394 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { 7395 spin_unlock_irqrestore(&phba->hbalock, flags); 7396 break; 7397 } 7398 spin_unlock_irqrestore(&phba->hbalock, flags); 7399 7400 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7401 if (!rqb_buffer) 7402 break; 7403 rqb_buffer->hrq = hrq; 7404 rqb_buffer->drq = drq; 7405 rqb_buffer->idx = idx; 7406 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7407 } 7408 7409 spin_lock_irqsave(&phba->hbalock, flags); 7410 while (!list_empty(&rqb_buf_list)) { 7411 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7412 hbuf.list); 7413 7414 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7415 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7416 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7417 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7418 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7419 if (rc < 0) { 7420 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7421 "6421 Cannot post to HRQ %d: %x %x %x " 7422 "DRQ %x %x\n", 7423 hrq->queue_id, 7424 hrq->host_index, 7425 hrq->hba_index, 7426 hrq->entry_count, 7427 drq->host_index, 7428 drq->hba_index); 7429 rqbp->rqb_free_buffer(phba, rqb_buffer); 7430 } else { 7431 list_add_tail(&rqb_buffer->hbuf.list, 7432 &rqbp->rqb_buffer_list); 7433 rqbp->buffer_count++; 7434 } 7435 } 7436 spin_unlock_irqrestore(&phba->hbalock, flags); 7437 return 1; 7438 } 7439 7440 /** 7441 * lpfc_init_idle_stat_hb - Initialize idle_stat tracking 7442 * @phba: pointer to lpfc hba data structure. 7443 * 7444 * This routine initializes the per-cq idle_stat to dynamically dictate 7445 * polling decisions. 7446 * 7447 * Return codes: 7448 * None 7449 **/ 7450 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) 7451 { 7452 int i; 7453 struct lpfc_sli4_hdw_queue *hdwq; 7454 struct lpfc_queue *cq; 7455 struct lpfc_idle_stat *idle_stat; 7456 u64 wall; 7457 7458 for_each_present_cpu(i) { 7459 hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; 7460 cq = hdwq->io_cq; 7461 7462 /* Skip if we've already handled this cq's primary CPU */ 7463 if (cq->chann != i) 7464 continue; 7465 7466 idle_stat = &phba->sli4_hba.idle_stat[i]; 7467 7468 idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); 7469 idle_stat->prev_wall = wall; 7470 7471 if (phba->nvmet_support) 7472 cq->poll_mode = LPFC_QUEUE_WORK; 7473 else 7474 cq->poll_mode = LPFC_IRQ_POLL; 7475 } 7476 7477 if (!phba->nvmet_support) 7478 schedule_delayed_work(&phba->idle_stat_delay_work, 7479 msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); 7480 } 7481 7482 static void lpfc_sli4_dip(struct lpfc_hba *phba) 7483 { 7484 uint32_t if_type; 7485 7486 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 7487 if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || 7488 if_type == LPFC_SLI_INTF_IF_TYPE_6) { 7489 struct lpfc_register reg_data; 7490 7491 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 7492 ®_data.word0)) 7493 return; 7494 7495 if (bf_get(lpfc_sliport_status_dip, ®_data)) 7496 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7497 "2904 Firmware Dump Image Present" 7498 " on Adapter"); 7499 } 7500 } 7501 7502 /** 7503 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7504 * @phba: Pointer to HBA context object. 7505 * 7506 * This function is the main SLI4 device initialization PCI function. This 7507 * function is called by the HBA initialization code, HBA reset code and 7508 * HBA error attention handler code. Caller is not required to hold any 7509 * locks. 7510 **/ 7511 int 7512 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7513 { 7514 int rc, i, cnt, len, dd; 7515 LPFC_MBOXQ_t *mboxq; 7516 struct lpfc_mqe *mqe; 7517 uint8_t *vpd; 7518 uint32_t vpd_size; 7519 uint32_t ftr_rsp = 0; 7520 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7521 struct lpfc_vport *vport = phba->pport; 7522 struct lpfc_dmabuf *mp; 7523 struct lpfc_rqb *rqbp; 7524 7525 /* Perform a PCI function reset to start from clean */ 7526 rc = lpfc_pci_function_reset(phba); 7527 if (unlikely(rc)) 7528 return -ENODEV; 7529 7530 /* Check the HBA Host Status Register for readyness */ 7531 rc = lpfc_sli4_post_status_check(phba); 7532 if (unlikely(rc)) 7533 return -ENODEV; 7534 else { 7535 spin_lock_irq(&phba->hbalock); 7536 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7537 spin_unlock_irq(&phba->hbalock); 7538 } 7539 7540 lpfc_sli4_dip(phba); 7541 7542 /* 7543 * Allocate a single mailbox container for initializing the 7544 * port. 7545 */ 7546 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7547 if (!mboxq) 7548 return -ENOMEM; 7549 7550 /* Issue READ_REV to collect vpd and FW information. */ 7551 vpd_size = SLI4_PAGE_SIZE; 7552 vpd = kzalloc(vpd_size, GFP_KERNEL); 7553 if (!vpd) { 7554 rc = -ENOMEM; 7555 goto out_free_mbox; 7556 } 7557 7558 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7559 if (unlikely(rc)) { 7560 kfree(vpd); 7561 goto out_free_mbox; 7562 } 7563 7564 mqe = &mboxq->u.mqe; 7565 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7566 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7567 phba->hba_flag |= HBA_FCOE_MODE; 7568 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7569 } else { 7570 phba->hba_flag &= ~HBA_FCOE_MODE; 7571 } 7572 7573 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7574 LPFC_DCBX_CEE_MODE) 7575 phba->hba_flag |= HBA_FIP_SUPPORT; 7576 else 7577 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7578 7579 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7580 7581 if (phba->sli_rev != LPFC_SLI_REV4) { 7582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7583 "0376 READ_REV Error. SLI Level %d " 7584 "FCoE enabled %d\n", 7585 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7586 rc = -EIO; 7587 kfree(vpd); 7588 goto out_free_mbox; 7589 } 7590 7591 /* 7592 * Continue initialization with default values even if driver failed 7593 * to read FCoE param config regions, only read parameters if the 7594 * board is FCoE 7595 */ 7596 if (phba->hba_flag & HBA_FCOE_MODE && 7597 lpfc_sli4_read_fcoe_params(phba)) 7598 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7599 "2570 Failed to read FCoE parameters\n"); 7600 7601 /* 7602 * Retrieve sli4 device physical port name, failure of doing it 7603 * is considered as non-fatal. 7604 */ 7605 rc = lpfc_sli4_retrieve_pport_name(phba); 7606 if (!rc) 7607 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7608 "3080 Successful retrieving SLI4 device " 7609 "physical port name: %s.\n", phba->Port); 7610 7611 rc = lpfc_sli4_get_ctl_attr(phba); 7612 if (!rc) 7613 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7614 "8351 Successful retrieving SLI4 device " 7615 "CTL ATTR\n"); 7616 7617 /* 7618 * Evaluate the read rev and vpd data. Populate the driver 7619 * state with the results. If this routine fails, the failure 7620 * is not fatal as the driver will use generic values. 7621 */ 7622 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7623 if (unlikely(!rc)) { 7624 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7625 "0377 Error %d parsing vpd. " 7626 "Using defaults.\n", rc); 7627 rc = 0; 7628 } 7629 kfree(vpd); 7630 7631 /* Save information as VPD data */ 7632 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7633 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7634 7635 /* 7636 * This is because first G7 ASIC doesn't support the standard 7637 * 0x5a NVME cmd descriptor type/subtype 7638 */ 7639 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7640 LPFC_SLI_INTF_IF_TYPE_6) && 7641 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7642 (phba->vpd.rev.smRev == 0) && 7643 (phba->cfg_nvme_embed_cmd == 1)) 7644 phba->cfg_nvme_embed_cmd = 0; 7645 7646 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7647 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7648 &mqe->un.read_rev); 7649 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7650 &mqe->un.read_rev); 7651 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7652 &mqe->un.read_rev); 7653 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7654 &mqe->un.read_rev); 7655 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7656 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7657 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7658 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7659 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7660 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7661 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7662 "(%d):0380 READ_REV Status x%x " 7663 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7664 mboxq->vport ? mboxq->vport->vpi : 0, 7665 bf_get(lpfc_mqe_status, mqe), 7666 phba->vpd.rev.opFwName, 7667 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7668 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7669 7670 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7671 LPFC_SLI_INTF_IF_TYPE_0) { 7672 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7673 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7674 if (rc == MBX_SUCCESS) { 7675 phba->hba_flag |= HBA_RECOVERABLE_UE; 7676 /* Set 1Sec interval to detect UE */ 7677 phba->eratt_poll_interval = 1; 7678 phba->sli4_hba.ue_to_sr = bf_get( 7679 lpfc_mbx_set_feature_UESR, 7680 &mboxq->u.mqe.un.set_feature); 7681 phba->sli4_hba.ue_to_rp = bf_get( 7682 lpfc_mbx_set_feature_UERP, 7683 &mboxq->u.mqe.un.set_feature); 7684 } 7685 } 7686 7687 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7688 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7689 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7690 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7691 if (rc != MBX_SUCCESS) 7692 phba->mds_diags_support = 0; 7693 } 7694 7695 /* 7696 * Discover the port's supported feature set and match it against the 7697 * hosts requests. 7698 */ 7699 lpfc_request_features(phba, mboxq); 7700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7701 if (unlikely(rc)) { 7702 rc = -EIO; 7703 goto out_free_mbox; 7704 } 7705 7706 /* Disable VMID if app header is not supported */ 7707 if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, 7708 &mqe->un.req_ftrs))) { 7709 bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); 7710 phba->cfg_vmid_app_header = 0; 7711 lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, 7712 "1242 vmid feature not supported\n"); 7713 } 7714 7715 /* 7716 * The port must support FCP initiator mode as this is the 7717 * only mode running in the host. 7718 */ 7719 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7720 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7721 "0378 No support for fcpi mode.\n"); 7722 ftr_rsp++; 7723 } 7724 7725 /* Performance Hints are ONLY for FCoE */ 7726 if (phba->hba_flag & HBA_FCOE_MODE) { 7727 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7728 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7729 else 7730 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7731 } 7732 7733 /* 7734 * If the port cannot support the host's requested features 7735 * then turn off the global config parameters to disable the 7736 * feature in the driver. This is not a fatal error. 7737 */ 7738 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7739 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7740 phba->cfg_enable_bg = 0; 7741 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7742 ftr_rsp++; 7743 } 7744 } 7745 7746 if (phba->max_vpi && phba->cfg_enable_npiv && 7747 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7748 ftr_rsp++; 7749 7750 if (ftr_rsp) { 7751 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7752 "0379 Feature Mismatch Data: x%08x %08x " 7753 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7754 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7755 phba->cfg_enable_npiv, phba->max_vpi); 7756 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7757 phba->cfg_enable_bg = 0; 7758 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7759 phba->cfg_enable_npiv = 0; 7760 } 7761 7762 /* These SLI3 features are assumed in SLI4 */ 7763 spin_lock_irq(&phba->hbalock); 7764 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7765 spin_unlock_irq(&phba->hbalock); 7766 7767 /* Always try to enable dual dump feature if we can */ 7768 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7769 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7770 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7771 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7772 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7773 "6448 Dual Dump is enabled\n"); 7774 else 7775 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7776 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7777 "rc:x%x dd:x%x\n", 7778 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7779 lpfc_sli_config_mbox_subsys_get( 7780 phba, mboxq), 7781 lpfc_sli_config_mbox_opcode_get( 7782 phba, mboxq), 7783 rc, dd); 7784 /* 7785 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7786 * calls depends on these resources to complete port setup. 7787 */ 7788 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7789 if (rc) { 7790 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7791 "2920 Failed to alloc Resource IDs " 7792 "rc = x%x\n", rc); 7793 goto out_free_mbox; 7794 } 7795 7796 lpfc_set_host_data(phba, mboxq); 7797 7798 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7799 if (rc) { 7800 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7801 "2134 Failed to set host os driver version %x", 7802 rc); 7803 } 7804 7805 /* Read the port's service parameters. */ 7806 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7807 if (rc) { 7808 phba->link_state = LPFC_HBA_ERROR; 7809 rc = -ENOMEM; 7810 goto out_free_mbox; 7811 } 7812 7813 mboxq->vport = vport; 7814 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7815 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7816 if (rc == MBX_SUCCESS) { 7817 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7818 rc = 0; 7819 } 7820 7821 /* 7822 * This memory was allocated by the lpfc_read_sparam routine. Release 7823 * it to the mbuf pool. 7824 */ 7825 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7826 kfree(mp); 7827 mboxq->ctx_buf = NULL; 7828 if (unlikely(rc)) { 7829 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7830 "0382 READ_SPARAM command failed " 7831 "status %d, mbxStatus x%x\n", 7832 rc, bf_get(lpfc_mqe_status, mqe)); 7833 phba->link_state = LPFC_HBA_ERROR; 7834 rc = -EIO; 7835 goto out_free_mbox; 7836 } 7837 7838 lpfc_update_vport_wwn(vport); 7839 7840 /* Update the fc_host data structures with new wwn. */ 7841 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7842 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7843 7844 /* Create all the SLI4 queues */ 7845 rc = lpfc_sli4_queue_create(phba); 7846 if (rc) { 7847 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7848 "3089 Failed to allocate queues\n"); 7849 rc = -ENODEV; 7850 goto out_free_mbox; 7851 } 7852 /* Set up all the queues to the device */ 7853 rc = lpfc_sli4_queue_setup(phba); 7854 if (unlikely(rc)) { 7855 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7856 "0381 Error %d during queue setup.\n ", rc); 7857 goto out_stop_timers; 7858 } 7859 /* Initialize the driver internal SLI layer lists. */ 7860 lpfc_sli4_setup(phba); 7861 lpfc_sli4_queue_init(phba); 7862 7863 /* update host els xri-sgl sizes and mappings */ 7864 rc = lpfc_sli4_els_sgl_update(phba); 7865 if (unlikely(rc)) { 7866 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7867 "1400 Failed to update xri-sgl size and " 7868 "mapping: %d\n", rc); 7869 goto out_destroy_queue; 7870 } 7871 7872 /* register the els sgl pool to the port */ 7873 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7874 phba->sli4_hba.els_xri_cnt); 7875 if (unlikely(rc < 0)) { 7876 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7877 "0582 Error %d during els sgl post " 7878 "operation\n", rc); 7879 rc = -ENODEV; 7880 goto out_destroy_queue; 7881 } 7882 phba->sli4_hba.els_xri_cnt = rc; 7883 7884 if (phba->nvmet_support) { 7885 /* update host nvmet xri-sgl sizes and mappings */ 7886 rc = lpfc_sli4_nvmet_sgl_update(phba); 7887 if (unlikely(rc)) { 7888 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7889 "6308 Failed to update nvmet-sgl size " 7890 "and mapping: %d\n", rc); 7891 goto out_destroy_queue; 7892 } 7893 7894 /* register the nvmet sgl pool to the port */ 7895 rc = lpfc_sli4_repost_sgl_list( 7896 phba, 7897 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7898 phba->sli4_hba.nvmet_xri_cnt); 7899 if (unlikely(rc < 0)) { 7900 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7901 "3117 Error %d during nvmet " 7902 "sgl post\n", rc); 7903 rc = -ENODEV; 7904 goto out_destroy_queue; 7905 } 7906 phba->sli4_hba.nvmet_xri_cnt = rc; 7907 7908 /* We allocate an iocbq for every receive context SGL. 7909 * The additional allocation is for abort and ls handling. 7910 */ 7911 cnt = phba->sli4_hba.nvmet_xri_cnt + 7912 phba->sli4_hba.max_cfg_param.max_xri; 7913 } else { 7914 /* update host common xri-sgl sizes and mappings */ 7915 rc = lpfc_sli4_io_sgl_update(phba); 7916 if (unlikely(rc)) { 7917 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7918 "6082 Failed to update nvme-sgl size " 7919 "and mapping: %d\n", rc); 7920 goto out_destroy_queue; 7921 } 7922 7923 /* register the allocated common sgl pool to the port */ 7924 rc = lpfc_sli4_repost_io_sgl_list(phba); 7925 if (unlikely(rc)) { 7926 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7927 "6116 Error %d during nvme sgl post " 7928 "operation\n", rc); 7929 /* Some NVME buffers were moved to abort nvme list */ 7930 /* A pci function reset will repost them */ 7931 rc = -ENODEV; 7932 goto out_destroy_queue; 7933 } 7934 /* Each lpfc_io_buf job structure has an iocbq element. 7935 * This cnt provides for abort, els, ct and ls requests. 7936 */ 7937 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7938 } 7939 7940 if (!phba->sli.iocbq_lookup) { 7941 /* Initialize and populate the iocb list per host */ 7942 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7943 "2821 initialize iocb list with %d entries\n", 7944 cnt); 7945 rc = lpfc_init_iocb_list(phba, cnt); 7946 if (rc) { 7947 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7948 "1413 Failed to init iocb list.\n"); 7949 goto out_destroy_queue; 7950 } 7951 } 7952 7953 if (phba->nvmet_support) 7954 lpfc_nvmet_create_targetport(phba); 7955 7956 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7957 /* Post initial buffers to all RQs created */ 7958 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7959 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7960 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7961 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7962 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7963 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7964 rqbp->buffer_count = 0; 7965 7966 lpfc_post_rq_buffer( 7967 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7968 phba->sli4_hba.nvmet_mrq_data[i], 7969 phba->cfg_nvmet_mrq_post, i); 7970 } 7971 } 7972 7973 /* Post the rpi header region to the device. */ 7974 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7975 if (unlikely(rc)) { 7976 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 7977 "0393 Error %d during rpi post operation\n", 7978 rc); 7979 rc = -ENODEV; 7980 goto out_free_iocblist; 7981 } 7982 lpfc_sli4_node_prep(phba); 7983 7984 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7985 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7986 /* 7987 * The FC Port needs to register FCFI (index 0) 7988 */ 7989 lpfc_reg_fcfi(phba, mboxq); 7990 mboxq->vport = phba->pport; 7991 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7992 if (rc != MBX_SUCCESS) 7993 goto out_unset_queue; 7994 rc = 0; 7995 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7996 &mboxq->u.mqe.un.reg_fcfi); 7997 } else { 7998 /* We are a NVME Target mode with MRQ > 1 */ 7999 8000 /* First register the FCFI */ 8001 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 8002 mboxq->vport = phba->pport; 8003 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8004 if (rc != MBX_SUCCESS) 8005 goto out_unset_queue; 8006 rc = 0; 8007 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 8008 &mboxq->u.mqe.un.reg_fcfi_mrq); 8009 8010 /* Next register the MRQs */ 8011 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 8012 mboxq->vport = phba->pport; 8013 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8014 if (rc != MBX_SUCCESS) 8015 goto out_unset_queue; 8016 rc = 0; 8017 } 8018 /* Check if the port is configured to be disabled */ 8019 lpfc_sli_read_link_ste(phba); 8020 } 8021 8022 /* Don't post more new bufs if repost already recovered 8023 * the nvme sgls. 8024 */ 8025 if (phba->nvmet_support == 0) { 8026 if (phba->sli4_hba.io_xri_cnt == 0) { 8027 len = lpfc_new_io_buf( 8028 phba, phba->sli4_hba.io_xri_max); 8029 if (len == 0) { 8030 rc = -ENOMEM; 8031 goto out_unset_queue; 8032 } 8033 8034 if (phba->cfg_xri_rebalancing) 8035 lpfc_create_multixri_pools(phba); 8036 } 8037 } else { 8038 phba->cfg_xri_rebalancing = 0; 8039 } 8040 8041 /* Allow asynchronous mailbox command to go through */ 8042 spin_lock_irq(&phba->hbalock); 8043 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8044 spin_unlock_irq(&phba->hbalock); 8045 8046 /* Post receive buffers to the device */ 8047 lpfc_sli4_rb_setup(phba); 8048 8049 /* Reset HBA FCF states after HBA reset */ 8050 phba->fcf.fcf_flag = 0; 8051 phba->fcf.current_rec.flag = 0; 8052 8053 /* Start the ELS watchdog timer */ 8054 mod_timer(&vport->els_tmofunc, 8055 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 8056 8057 /* Start heart beat timer */ 8058 mod_timer(&phba->hb_tmofunc, 8059 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 8060 phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); 8061 phba->last_completion_time = jiffies; 8062 8063 /* start eq_delay heartbeat */ 8064 if (phba->cfg_auto_imax) 8065 queue_delayed_work(phba->wq, &phba->eq_delay_work, 8066 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 8067 8068 /* start per phba idle_stat_delay heartbeat */ 8069 lpfc_init_idle_stat_hb(phba); 8070 8071 /* Start error attention (ERATT) polling timer */ 8072 mod_timer(&phba->eratt_poll, 8073 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 8074 8075 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 8076 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 8077 rc = pci_enable_pcie_error_reporting(phba->pcidev); 8078 if (!rc) { 8079 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8080 "2829 This device supports " 8081 "Advanced Error Reporting (AER)\n"); 8082 spin_lock_irq(&phba->hbalock); 8083 phba->hba_flag |= HBA_AER_ENABLED; 8084 spin_unlock_irq(&phba->hbalock); 8085 } else { 8086 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 8087 "2830 This device does not support " 8088 "Advanced Error Reporting (AER)\n"); 8089 phba->cfg_aer_support = 0; 8090 } 8091 rc = 0; 8092 } 8093 8094 /* 8095 * The port is ready, set the host's link state to LINK_DOWN 8096 * in preparation for link interrupts. 8097 */ 8098 spin_lock_irq(&phba->hbalock); 8099 phba->link_state = LPFC_LINK_DOWN; 8100 8101 /* Check if physical ports are trunked */ 8102 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 8103 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 8104 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 8105 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 8106 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 8107 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 8108 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 8109 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 8110 spin_unlock_irq(&phba->hbalock); 8111 8112 /* Arm the CQs and then EQs on device */ 8113 lpfc_sli4_arm_cqeq_intr(phba); 8114 8115 /* Indicate device interrupt mode */ 8116 phba->sli4_hba.intr_enable = 1; 8117 8118 if (!(phba->hba_flag & HBA_FCOE_MODE) && 8119 (phba->hba_flag & LINK_DISABLED)) { 8120 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8121 "3103 Adapter Link is disabled.\n"); 8122 lpfc_down_link(phba, mboxq); 8123 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 8124 if (rc != MBX_SUCCESS) { 8125 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8126 "3104 Adapter failed to issue " 8127 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 8128 goto out_io_buff_free; 8129 } 8130 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 8131 /* don't perform init_link on SLI4 FC port loopback test */ 8132 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 8133 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 8134 if (rc) 8135 goto out_io_buff_free; 8136 } 8137 } 8138 mempool_free(mboxq, phba->mbox_mem_pool); 8139 return rc; 8140 out_io_buff_free: 8141 /* Free allocated IO Buffers */ 8142 lpfc_io_free(phba); 8143 out_unset_queue: 8144 /* Unset all the queues set up in this routine when error out */ 8145 lpfc_sli4_queue_unset(phba); 8146 out_free_iocblist: 8147 lpfc_free_iocb_list(phba); 8148 out_destroy_queue: 8149 lpfc_sli4_queue_destroy(phba); 8150 out_stop_timers: 8151 lpfc_stop_hba_timers(phba); 8152 out_free_mbox: 8153 mempool_free(mboxq, phba->mbox_mem_pool); 8154 return rc; 8155 } 8156 8157 /** 8158 * lpfc_mbox_timeout - Timeout call back function for mbox timer 8159 * @t: Context to fetch pointer to hba structure from. 8160 * 8161 * This is the callback function for mailbox timer. The mailbox 8162 * timer is armed when a new mailbox command is issued and the timer 8163 * is deleted when the mailbox complete. The function is called by 8164 * the kernel timer code when a mailbox does not complete within 8165 * expected time. This function wakes up the worker thread to 8166 * process the mailbox timeout and returns. All the processing is 8167 * done by the worker thread function lpfc_mbox_timeout_handler. 8168 **/ 8169 void 8170 lpfc_mbox_timeout(struct timer_list *t) 8171 { 8172 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 8173 unsigned long iflag; 8174 uint32_t tmo_posted; 8175 8176 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 8177 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 8178 if (!tmo_posted) 8179 phba->pport->work_port_events |= WORKER_MBOX_TMO; 8180 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 8181 8182 if (!tmo_posted) 8183 lpfc_worker_wake_up(phba); 8184 return; 8185 } 8186 8187 /** 8188 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 8189 * are pending 8190 * @phba: Pointer to HBA context object. 8191 * 8192 * This function checks if any mailbox completions are present on the mailbox 8193 * completion queue. 8194 **/ 8195 static bool 8196 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 8197 { 8198 8199 uint32_t idx; 8200 struct lpfc_queue *mcq; 8201 struct lpfc_mcqe *mcqe; 8202 bool pending_completions = false; 8203 uint8_t qe_valid; 8204 8205 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8206 return false; 8207 8208 /* Check for completions on mailbox completion queue */ 8209 8210 mcq = phba->sli4_hba.mbx_cq; 8211 idx = mcq->hba_index; 8212 qe_valid = mcq->qe_valid; 8213 while (bf_get_le32(lpfc_cqe_valid, 8214 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8215 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8216 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8217 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8218 pending_completions = true; 8219 break; 8220 } 8221 idx = (idx + 1) % mcq->entry_count; 8222 if (mcq->hba_index == idx) 8223 break; 8224 8225 /* if the index wrapped around, toggle the valid bit */ 8226 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8227 qe_valid = (qe_valid) ? 0 : 1; 8228 } 8229 return pending_completions; 8230 8231 } 8232 8233 /** 8234 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8235 * that were missed. 8236 * @phba: Pointer to HBA context object. 8237 * 8238 * For sli4, it is possible to miss an interrupt. As such mbox completions 8239 * maybe missed causing erroneous mailbox timeouts to occur. This function 8240 * checks to see if mbox completions are on the mailbox completion queue 8241 * and will process all the completions associated with the eq for the 8242 * mailbox completion queue. 8243 **/ 8244 static bool 8245 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8246 { 8247 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8248 uint32_t eqidx; 8249 struct lpfc_queue *fpeq = NULL; 8250 struct lpfc_queue *eq; 8251 bool mbox_pending; 8252 8253 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8254 return false; 8255 8256 /* Find the EQ associated with the mbox CQ */ 8257 if (sli4_hba->hdwq) { 8258 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8259 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8260 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8261 fpeq = eq; 8262 break; 8263 } 8264 } 8265 } 8266 if (!fpeq) 8267 return false; 8268 8269 /* Turn off interrupts from this EQ */ 8270 8271 sli4_hba->sli4_eq_clr_intr(fpeq); 8272 8273 /* Check to see if a mbox completion is pending */ 8274 8275 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8276 8277 /* 8278 * If a mbox completion is pending, process all the events on EQ 8279 * associated with the mbox completion queue (this could include 8280 * mailbox commands, async events, els commands, receive queue data 8281 * and fcp commands) 8282 */ 8283 8284 if (mbox_pending) 8285 /* process and rearm the EQ */ 8286 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8287 else 8288 /* Always clear and re-arm the EQ */ 8289 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8290 8291 return mbox_pending; 8292 8293 } 8294 8295 /** 8296 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8297 * @phba: Pointer to HBA context object. 8298 * 8299 * This function is called from worker thread when a mailbox command times out. 8300 * The caller is not required to hold any locks. This function will reset the 8301 * HBA and recover all the pending commands. 8302 **/ 8303 void 8304 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8305 { 8306 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8307 MAILBOX_t *mb = NULL; 8308 8309 struct lpfc_sli *psli = &phba->sli; 8310 8311 /* If the mailbox completed, process the completion */ 8312 lpfc_sli4_process_missed_mbox_completions(phba); 8313 8314 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) 8315 return; 8316 8317 if (pmbox != NULL) 8318 mb = &pmbox->u.mb; 8319 /* Check the pmbox pointer first. There is a race condition 8320 * between the mbox timeout handler getting executed in the 8321 * worklist and the mailbox actually completing. When this 8322 * race condition occurs, the mbox_active will be NULL. 8323 */ 8324 spin_lock_irq(&phba->hbalock); 8325 if (pmbox == NULL) { 8326 lpfc_printf_log(phba, KERN_WARNING, 8327 LOG_MBOX | LOG_SLI, 8328 "0353 Active Mailbox cleared - mailbox timeout " 8329 "exiting\n"); 8330 spin_unlock_irq(&phba->hbalock); 8331 return; 8332 } 8333 8334 /* Mbox cmd <mbxCommand> timeout */ 8335 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8336 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8337 mb->mbxCommand, 8338 phba->pport->port_state, 8339 phba->sli.sli_flag, 8340 phba->sli.mbox_active); 8341 spin_unlock_irq(&phba->hbalock); 8342 8343 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8344 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8345 * it to fail all outstanding SCSI IO. 8346 */ 8347 spin_lock_irq(&phba->pport->work_port_lock); 8348 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8349 spin_unlock_irq(&phba->pport->work_port_lock); 8350 spin_lock_irq(&phba->hbalock); 8351 phba->link_state = LPFC_LINK_UNKNOWN; 8352 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8353 spin_unlock_irq(&phba->hbalock); 8354 8355 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8356 "0345 Resetting board due to mailbox timeout\n"); 8357 8358 /* Reset the HBA device */ 8359 lpfc_reset_hba(phba); 8360 } 8361 8362 /** 8363 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8364 * @phba: Pointer to HBA context object. 8365 * @pmbox: Pointer to mailbox object. 8366 * @flag: Flag indicating how the mailbox need to be processed. 8367 * 8368 * This function is called by discovery code and HBA management code 8369 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8370 * function gets the hbalock to protect the data structures. 8371 * The mailbox command can be submitted in polling mode, in which case 8372 * this function will wait in a polling loop for the completion of the 8373 * mailbox. 8374 * If the mailbox is submitted in no_wait mode (not polling) the 8375 * function will submit the command and returns immediately without waiting 8376 * for the mailbox completion. The no_wait is supported only when HBA 8377 * is in SLI2/SLI3 mode - interrupts are enabled. 8378 * The SLI interface allows only one mailbox pending at a time. If the 8379 * mailbox is issued in polling mode and there is already a mailbox 8380 * pending, then the function will return an error. If the mailbox is issued 8381 * in NO_WAIT mode and there is a mailbox pending already, the function 8382 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8383 * The sli layer owns the mailbox object until the completion of mailbox 8384 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8385 * return codes the caller owns the mailbox command after the return of 8386 * the function. 8387 **/ 8388 static int 8389 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8390 uint32_t flag) 8391 { 8392 MAILBOX_t *mbx; 8393 struct lpfc_sli *psli = &phba->sli; 8394 uint32_t status, evtctr; 8395 uint32_t ha_copy, hc_copy; 8396 int i; 8397 unsigned long timeout; 8398 unsigned long drvr_flag = 0; 8399 uint32_t word0, ldata; 8400 void __iomem *to_slim; 8401 int processing_queue = 0; 8402 8403 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8404 if (!pmbox) { 8405 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8406 /* processing mbox queue from intr_handler */ 8407 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8408 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8409 return MBX_SUCCESS; 8410 } 8411 processing_queue = 1; 8412 pmbox = lpfc_mbox_get(phba); 8413 if (!pmbox) { 8414 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8415 return MBX_SUCCESS; 8416 } 8417 } 8418 8419 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8420 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8421 if(!pmbox->vport) { 8422 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8423 lpfc_printf_log(phba, KERN_ERR, 8424 LOG_MBOX | LOG_VPORT, 8425 "1806 Mbox x%x failed. No vport\n", 8426 pmbox->u.mb.mbxCommand); 8427 dump_stack(); 8428 goto out_not_finished; 8429 } 8430 } 8431 8432 /* If the PCI channel is in offline state, do not post mbox. */ 8433 if (unlikely(pci_channel_offline(phba->pcidev))) { 8434 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8435 goto out_not_finished; 8436 } 8437 8438 /* If HBA has a deferred error attention, fail the iocb. */ 8439 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8440 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8441 goto out_not_finished; 8442 } 8443 8444 psli = &phba->sli; 8445 8446 mbx = &pmbox->u.mb; 8447 status = MBX_SUCCESS; 8448 8449 if (phba->link_state == LPFC_HBA_ERROR) { 8450 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8451 8452 /* Mbox command <mbxCommand> cannot issue */ 8453 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8454 "(%d):0311 Mailbox command x%x cannot " 8455 "issue Data: x%x x%x\n", 8456 pmbox->vport ? pmbox->vport->vpi : 0, 8457 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8458 goto out_not_finished; 8459 } 8460 8461 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8462 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8463 !(hc_copy & HC_MBINT_ENA)) { 8464 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8466 "(%d):2528 Mailbox command x%x cannot " 8467 "issue Data: x%x x%x\n", 8468 pmbox->vport ? pmbox->vport->vpi : 0, 8469 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8470 goto out_not_finished; 8471 } 8472 } 8473 8474 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8475 /* Polling for a mbox command when another one is already active 8476 * is not allowed in SLI. Also, the driver must have established 8477 * SLI2 mode to queue and process multiple mbox commands. 8478 */ 8479 8480 if (flag & MBX_POLL) { 8481 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8482 8483 /* Mbox command <mbxCommand> cannot issue */ 8484 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8485 "(%d):2529 Mailbox command x%x " 8486 "cannot issue Data: x%x x%x\n", 8487 pmbox->vport ? pmbox->vport->vpi : 0, 8488 pmbox->u.mb.mbxCommand, 8489 psli->sli_flag, flag); 8490 goto out_not_finished; 8491 } 8492 8493 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8494 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8495 /* Mbox command <mbxCommand> cannot issue */ 8496 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8497 "(%d):2530 Mailbox command x%x " 8498 "cannot issue Data: x%x x%x\n", 8499 pmbox->vport ? pmbox->vport->vpi : 0, 8500 pmbox->u.mb.mbxCommand, 8501 psli->sli_flag, flag); 8502 goto out_not_finished; 8503 } 8504 8505 /* Another mailbox command is still being processed, queue this 8506 * command to be processed later. 8507 */ 8508 lpfc_mbox_put(phba, pmbox); 8509 8510 /* Mbox cmd issue - BUSY */ 8511 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8512 "(%d):0308 Mbox cmd issue - BUSY Data: " 8513 "x%x x%x x%x x%x\n", 8514 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8515 mbx->mbxCommand, 8516 phba->pport ? phba->pport->port_state : 0xff, 8517 psli->sli_flag, flag); 8518 8519 psli->slistat.mbox_busy++; 8520 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8521 8522 if (pmbox->vport) { 8523 lpfc_debugfs_disc_trc(pmbox->vport, 8524 LPFC_DISC_TRC_MBOX_VPORT, 8525 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8526 (uint32_t)mbx->mbxCommand, 8527 mbx->un.varWords[0], mbx->un.varWords[1]); 8528 } 8529 else { 8530 lpfc_debugfs_disc_trc(phba->pport, 8531 LPFC_DISC_TRC_MBOX, 8532 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8533 (uint32_t)mbx->mbxCommand, 8534 mbx->un.varWords[0], mbx->un.varWords[1]); 8535 } 8536 8537 return MBX_BUSY; 8538 } 8539 8540 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8541 8542 /* If we are not polling, we MUST be in SLI2 mode */ 8543 if (flag != MBX_POLL) { 8544 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8545 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8546 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8547 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8548 /* Mbox command <mbxCommand> cannot issue */ 8549 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8550 "(%d):2531 Mailbox command x%x " 8551 "cannot issue Data: x%x x%x\n", 8552 pmbox->vport ? pmbox->vport->vpi : 0, 8553 pmbox->u.mb.mbxCommand, 8554 psli->sli_flag, flag); 8555 goto out_not_finished; 8556 } 8557 /* timeout active mbox command */ 8558 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8559 1000); 8560 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8561 } 8562 8563 /* Mailbox cmd <cmd> issue */ 8564 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8565 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8566 "x%x\n", 8567 pmbox->vport ? pmbox->vport->vpi : 0, 8568 mbx->mbxCommand, 8569 phba->pport ? phba->pport->port_state : 0xff, 8570 psli->sli_flag, flag); 8571 8572 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8573 if (pmbox->vport) { 8574 lpfc_debugfs_disc_trc(pmbox->vport, 8575 LPFC_DISC_TRC_MBOX_VPORT, 8576 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8577 (uint32_t)mbx->mbxCommand, 8578 mbx->un.varWords[0], mbx->un.varWords[1]); 8579 } 8580 else { 8581 lpfc_debugfs_disc_trc(phba->pport, 8582 LPFC_DISC_TRC_MBOX, 8583 "MBOX Send: cmd:x%x mb:x%x x%x", 8584 (uint32_t)mbx->mbxCommand, 8585 mbx->un.varWords[0], mbx->un.varWords[1]); 8586 } 8587 } 8588 8589 psli->slistat.mbox_cmd++; 8590 evtctr = psli->slistat.mbox_event; 8591 8592 /* next set own bit for the adapter and copy over command word */ 8593 mbx->mbxOwner = OWN_CHIP; 8594 8595 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8596 /* Populate mbox extension offset word. */ 8597 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8598 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8599 = (uint8_t *)phba->mbox_ext 8600 - (uint8_t *)phba->mbox; 8601 } 8602 8603 /* Copy the mailbox extension data */ 8604 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8605 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8606 (uint8_t *)phba->mbox_ext, 8607 pmbox->in_ext_byte_len); 8608 } 8609 /* Copy command data to host SLIM area */ 8610 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8611 } else { 8612 /* Populate mbox extension offset word. */ 8613 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8614 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8615 = MAILBOX_HBA_EXT_OFFSET; 8616 8617 /* Copy the mailbox extension data */ 8618 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8619 lpfc_memcpy_to_slim(phba->MBslimaddr + 8620 MAILBOX_HBA_EXT_OFFSET, 8621 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8622 8623 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8624 /* copy command data into host mbox for cmpl */ 8625 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8626 MAILBOX_CMD_SIZE); 8627 8628 /* First copy mbox command data to HBA SLIM, skip past first 8629 word */ 8630 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8631 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8632 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8633 8634 /* Next copy over first word, with mbxOwner set */ 8635 ldata = *((uint32_t *)mbx); 8636 to_slim = phba->MBslimaddr; 8637 writel(ldata, to_slim); 8638 readl(to_slim); /* flush */ 8639 8640 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8641 /* switch over to host mailbox */ 8642 psli->sli_flag |= LPFC_SLI_ACTIVE; 8643 } 8644 8645 wmb(); 8646 8647 switch (flag) { 8648 case MBX_NOWAIT: 8649 /* Set up reference to mailbox command */ 8650 psli->mbox_active = pmbox; 8651 /* Interrupt board to do it */ 8652 writel(CA_MBATT, phba->CAregaddr); 8653 readl(phba->CAregaddr); /* flush */ 8654 /* Don't wait for it to finish, just return */ 8655 break; 8656 8657 case MBX_POLL: 8658 /* Set up null reference to mailbox command */ 8659 psli->mbox_active = NULL; 8660 /* Interrupt board to do it */ 8661 writel(CA_MBATT, phba->CAregaddr); 8662 readl(phba->CAregaddr); /* flush */ 8663 8664 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8665 /* First read mbox status word */ 8666 word0 = *((uint32_t *)phba->mbox); 8667 word0 = le32_to_cpu(word0); 8668 } else { 8669 /* First read mbox status word */ 8670 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8671 spin_unlock_irqrestore(&phba->hbalock, 8672 drvr_flag); 8673 goto out_not_finished; 8674 } 8675 } 8676 8677 /* Read the HBA Host Attention Register */ 8678 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8679 spin_unlock_irqrestore(&phba->hbalock, 8680 drvr_flag); 8681 goto out_not_finished; 8682 } 8683 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8684 1000) + jiffies; 8685 i = 0; 8686 /* Wait for command to complete */ 8687 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8688 (!(ha_copy & HA_MBATT) && 8689 (phba->link_state > LPFC_WARM_START))) { 8690 if (time_after(jiffies, timeout)) { 8691 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8692 spin_unlock_irqrestore(&phba->hbalock, 8693 drvr_flag); 8694 goto out_not_finished; 8695 } 8696 8697 /* Check if we took a mbox interrupt while we were 8698 polling */ 8699 if (((word0 & OWN_CHIP) != OWN_CHIP) 8700 && (evtctr != psli->slistat.mbox_event)) 8701 break; 8702 8703 if (i++ > 10) { 8704 spin_unlock_irqrestore(&phba->hbalock, 8705 drvr_flag); 8706 msleep(1); 8707 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8708 } 8709 8710 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8711 /* First copy command data */ 8712 word0 = *((uint32_t *)phba->mbox); 8713 word0 = le32_to_cpu(word0); 8714 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8715 MAILBOX_t *slimmb; 8716 uint32_t slimword0; 8717 /* Check real SLIM for any errors */ 8718 slimword0 = readl(phba->MBslimaddr); 8719 slimmb = (MAILBOX_t *) & slimword0; 8720 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8721 && slimmb->mbxStatus) { 8722 psli->sli_flag &= 8723 ~LPFC_SLI_ACTIVE; 8724 word0 = slimword0; 8725 } 8726 } 8727 } else { 8728 /* First copy command data */ 8729 word0 = readl(phba->MBslimaddr); 8730 } 8731 /* Read the HBA Host Attention Register */ 8732 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8733 spin_unlock_irqrestore(&phba->hbalock, 8734 drvr_flag); 8735 goto out_not_finished; 8736 } 8737 } 8738 8739 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8740 /* copy results back to user */ 8741 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8742 MAILBOX_CMD_SIZE); 8743 /* Copy the mailbox extension data */ 8744 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8745 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8746 pmbox->ctx_buf, 8747 pmbox->out_ext_byte_len); 8748 } 8749 } else { 8750 /* First copy command data */ 8751 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8752 MAILBOX_CMD_SIZE); 8753 /* Copy the mailbox extension data */ 8754 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8755 lpfc_memcpy_from_slim( 8756 pmbox->ctx_buf, 8757 phba->MBslimaddr + 8758 MAILBOX_HBA_EXT_OFFSET, 8759 pmbox->out_ext_byte_len); 8760 } 8761 } 8762 8763 writel(HA_MBATT, phba->HAregaddr); 8764 readl(phba->HAregaddr); /* flush */ 8765 8766 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8767 status = mbx->mbxStatus; 8768 } 8769 8770 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8771 return status; 8772 8773 out_not_finished: 8774 if (processing_queue) { 8775 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8776 lpfc_mbox_cmpl_put(phba, pmbox); 8777 } 8778 return MBX_NOT_FINISHED; 8779 } 8780 8781 /** 8782 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8783 * @phba: Pointer to HBA context object. 8784 * 8785 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8786 * the driver internal pending mailbox queue. It will then try to wait out the 8787 * possible outstanding mailbox command before return. 8788 * 8789 * Returns: 8790 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8791 * the outstanding mailbox command timed out. 8792 **/ 8793 static int 8794 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8795 { 8796 struct lpfc_sli *psli = &phba->sli; 8797 LPFC_MBOXQ_t *mboxq; 8798 int rc = 0; 8799 unsigned long timeout = 0; 8800 u32 sli_flag; 8801 u8 cmd, subsys, opcode; 8802 8803 /* Mark the asynchronous mailbox command posting as blocked */ 8804 spin_lock_irq(&phba->hbalock); 8805 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8806 /* Determine how long we might wait for the active mailbox 8807 * command to be gracefully completed by firmware. 8808 */ 8809 if (phba->sli.mbox_active) 8810 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8811 phba->sli.mbox_active) * 8812 1000) + jiffies; 8813 spin_unlock_irq(&phba->hbalock); 8814 8815 /* Make sure the mailbox is really active */ 8816 if (timeout) 8817 lpfc_sli4_process_missed_mbox_completions(phba); 8818 8819 /* Wait for the outstanding mailbox command to complete */ 8820 while (phba->sli.mbox_active) { 8821 /* Check active mailbox complete status every 2ms */ 8822 msleep(2); 8823 if (time_after(jiffies, timeout)) { 8824 /* Timeout, mark the outstanding cmd not complete */ 8825 8826 /* Sanity check sli.mbox_active has not completed or 8827 * cancelled from another context during last 2ms sleep, 8828 * so take hbalock to be sure before logging. 8829 */ 8830 spin_lock_irq(&phba->hbalock); 8831 if (phba->sli.mbox_active) { 8832 mboxq = phba->sli.mbox_active; 8833 cmd = mboxq->u.mb.mbxCommand; 8834 subsys = lpfc_sli_config_mbox_subsys_get(phba, 8835 mboxq); 8836 opcode = lpfc_sli_config_mbox_opcode_get(phba, 8837 mboxq); 8838 sli_flag = psli->sli_flag; 8839 spin_unlock_irq(&phba->hbalock); 8840 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8841 "2352 Mailbox command x%x " 8842 "(x%x/x%x) sli_flag x%x could " 8843 "not complete\n", 8844 cmd, subsys, opcode, 8845 sli_flag); 8846 } else { 8847 spin_unlock_irq(&phba->hbalock); 8848 } 8849 8850 rc = 1; 8851 break; 8852 } 8853 } 8854 8855 /* Can not cleanly block async mailbox command, fails it */ 8856 if (rc) { 8857 spin_lock_irq(&phba->hbalock); 8858 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8859 spin_unlock_irq(&phba->hbalock); 8860 } 8861 return rc; 8862 } 8863 8864 /** 8865 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8866 * @phba: Pointer to HBA context object. 8867 * 8868 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8869 * commands from the driver internal pending mailbox queue. It makes sure 8870 * that there is no outstanding mailbox command before resuming posting 8871 * asynchronous mailbox commands. If, for any reason, there is outstanding 8872 * mailbox command, it will try to wait it out before resuming asynchronous 8873 * mailbox command posting. 8874 **/ 8875 static void 8876 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8877 { 8878 struct lpfc_sli *psli = &phba->sli; 8879 8880 spin_lock_irq(&phba->hbalock); 8881 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8882 /* Asynchronous mailbox posting is not blocked, do nothing */ 8883 spin_unlock_irq(&phba->hbalock); 8884 return; 8885 } 8886 8887 /* Outstanding synchronous mailbox command is guaranteed to be done, 8888 * successful or timeout, after timing-out the outstanding mailbox 8889 * command shall always be removed, so just unblock posting async 8890 * mailbox command and resume 8891 */ 8892 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8893 spin_unlock_irq(&phba->hbalock); 8894 8895 /* wake up worker thread to post asynchronous mailbox command */ 8896 lpfc_worker_wake_up(phba); 8897 } 8898 8899 /** 8900 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8901 * @phba: Pointer to HBA context object. 8902 * @mboxq: Pointer to mailbox object. 8903 * 8904 * The function waits for the bootstrap mailbox register ready bit from 8905 * port for twice the regular mailbox command timeout value. 8906 * 8907 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8908 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8909 **/ 8910 static int 8911 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8912 { 8913 uint32_t db_ready; 8914 unsigned long timeout; 8915 struct lpfc_register bmbx_reg; 8916 8917 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8918 * 1000) + jiffies; 8919 8920 do { 8921 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8922 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8923 if (!db_ready) 8924 mdelay(2); 8925 8926 if (time_after(jiffies, timeout)) 8927 return MBXERR_ERROR; 8928 } while (!db_ready); 8929 8930 return 0; 8931 } 8932 8933 /** 8934 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8935 * @phba: Pointer to HBA context object. 8936 * @mboxq: Pointer to mailbox object. 8937 * 8938 * The function posts a mailbox to the port. The mailbox is expected 8939 * to be comletely filled in and ready for the port to operate on it. 8940 * This routine executes a synchronous completion operation on the 8941 * mailbox by polling for its completion. 8942 * 8943 * The caller must not be holding any locks when calling this routine. 8944 * 8945 * Returns: 8946 * MBX_SUCCESS - mailbox posted successfully 8947 * Any of the MBX error values. 8948 **/ 8949 static int 8950 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8951 { 8952 int rc = MBX_SUCCESS; 8953 unsigned long iflag; 8954 uint32_t mcqe_status; 8955 uint32_t mbx_cmnd; 8956 struct lpfc_sli *psli = &phba->sli; 8957 struct lpfc_mqe *mb = &mboxq->u.mqe; 8958 struct lpfc_bmbx_create *mbox_rgn; 8959 struct dma_address *dma_address; 8960 8961 /* 8962 * Only one mailbox can be active to the bootstrap mailbox region 8963 * at a time and there is no queueing provided. 8964 */ 8965 spin_lock_irqsave(&phba->hbalock, iflag); 8966 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8967 spin_unlock_irqrestore(&phba->hbalock, iflag); 8968 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 8969 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8970 "cannot issue Data: x%x x%x\n", 8971 mboxq->vport ? mboxq->vport->vpi : 0, 8972 mboxq->u.mb.mbxCommand, 8973 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8974 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8975 psli->sli_flag, MBX_POLL); 8976 return MBXERR_ERROR; 8977 } 8978 /* The server grabs the token and owns it until release */ 8979 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8980 phba->sli.mbox_active = mboxq; 8981 spin_unlock_irqrestore(&phba->hbalock, iflag); 8982 8983 /* wait for bootstrap mbox register for readyness */ 8984 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8985 if (rc) 8986 goto exit; 8987 /* 8988 * Initialize the bootstrap memory region to avoid stale data areas 8989 * in the mailbox post. Then copy the caller's mailbox contents to 8990 * the bmbx mailbox region. 8991 */ 8992 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8993 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8994 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8995 sizeof(struct lpfc_mqe)); 8996 8997 /* Post the high mailbox dma address to the port and wait for ready. */ 8998 dma_address = &phba->sli4_hba.bmbx.dma_address; 8999 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 9000 9001 /* wait for bootstrap mbox register for hi-address write done */ 9002 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9003 if (rc) 9004 goto exit; 9005 9006 /* Post the low mailbox dma address to the port. */ 9007 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 9008 9009 /* wait for bootstrap mbox register for low address write done */ 9010 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 9011 if (rc) 9012 goto exit; 9013 9014 /* 9015 * Read the CQ to ensure the mailbox has completed. 9016 * If so, update the mailbox status so that the upper layers 9017 * can complete the request normally. 9018 */ 9019 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 9020 sizeof(struct lpfc_mqe)); 9021 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 9022 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 9023 sizeof(struct lpfc_mcqe)); 9024 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 9025 /* 9026 * When the CQE status indicates a failure and the mailbox status 9027 * indicates success then copy the CQE status into the mailbox status 9028 * (and prefix it with x4000). 9029 */ 9030 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 9031 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 9032 bf_set(lpfc_mqe_status, mb, 9033 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 9034 rc = MBXERR_ERROR; 9035 } else 9036 lpfc_sli4_swap_str(phba, mboxq); 9037 9038 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9039 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 9040 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 9041 " x%x x%x CQ: x%x x%x x%x x%x\n", 9042 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9043 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9044 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9045 bf_get(lpfc_mqe_status, mb), 9046 mb->un.mb_words[0], mb->un.mb_words[1], 9047 mb->un.mb_words[2], mb->un.mb_words[3], 9048 mb->un.mb_words[4], mb->un.mb_words[5], 9049 mb->un.mb_words[6], mb->un.mb_words[7], 9050 mb->un.mb_words[8], mb->un.mb_words[9], 9051 mb->un.mb_words[10], mb->un.mb_words[11], 9052 mb->un.mb_words[12], mboxq->mcqe.word0, 9053 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 9054 mboxq->mcqe.trailer); 9055 exit: 9056 /* We are holding the token, no needed for lock when release */ 9057 spin_lock_irqsave(&phba->hbalock, iflag); 9058 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9059 phba->sli.mbox_active = NULL; 9060 spin_unlock_irqrestore(&phba->hbalock, iflag); 9061 return rc; 9062 } 9063 9064 /** 9065 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 9066 * @phba: Pointer to HBA context object. 9067 * @mboxq: Pointer to mailbox object. 9068 * @flag: Flag indicating how the mailbox need to be processed. 9069 * 9070 * This function is called by discovery code and HBA management code to submit 9071 * a mailbox command to firmware with SLI-4 interface spec. 9072 * 9073 * Return codes the caller owns the mailbox command after the return of the 9074 * function. 9075 **/ 9076 static int 9077 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 9078 uint32_t flag) 9079 { 9080 struct lpfc_sli *psli = &phba->sli; 9081 unsigned long iflags; 9082 int rc; 9083 9084 /* dump from issue mailbox command if setup */ 9085 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 9086 9087 rc = lpfc_mbox_dev_check(phba); 9088 if (unlikely(rc)) { 9089 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9090 "(%d):2544 Mailbox command x%x (x%x/x%x) " 9091 "cannot issue Data: x%x x%x\n", 9092 mboxq->vport ? mboxq->vport->vpi : 0, 9093 mboxq->u.mb.mbxCommand, 9094 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9095 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9096 psli->sli_flag, flag); 9097 goto out_not_finished; 9098 } 9099 9100 /* Detect polling mode and jump to a handler */ 9101 if (!phba->sli4_hba.intr_enable) { 9102 if (flag == MBX_POLL) 9103 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9104 else 9105 rc = -EIO; 9106 if (rc != MBX_SUCCESS) 9107 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9108 "(%d):2541 Mailbox command x%x " 9109 "(x%x/x%x) failure: " 9110 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9111 "Data: x%x x%x\n,", 9112 mboxq->vport ? mboxq->vport->vpi : 0, 9113 mboxq->u.mb.mbxCommand, 9114 lpfc_sli_config_mbox_subsys_get(phba, 9115 mboxq), 9116 lpfc_sli_config_mbox_opcode_get(phba, 9117 mboxq), 9118 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9119 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9120 bf_get(lpfc_mcqe_ext_status, 9121 &mboxq->mcqe), 9122 psli->sli_flag, flag); 9123 return rc; 9124 } else if (flag == MBX_POLL) { 9125 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 9126 "(%d):2542 Try to issue mailbox command " 9127 "x%x (x%x/x%x) synchronously ahead of async " 9128 "mailbox command queue: x%x x%x\n", 9129 mboxq->vport ? mboxq->vport->vpi : 0, 9130 mboxq->u.mb.mbxCommand, 9131 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9132 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9133 psli->sli_flag, flag); 9134 /* Try to block the asynchronous mailbox posting */ 9135 rc = lpfc_sli4_async_mbox_block(phba); 9136 if (!rc) { 9137 /* Successfully blocked, now issue sync mbox cmd */ 9138 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 9139 if (rc != MBX_SUCCESS) 9140 lpfc_printf_log(phba, KERN_WARNING, 9141 LOG_MBOX | LOG_SLI, 9142 "(%d):2597 Sync Mailbox command " 9143 "x%x (x%x/x%x) failure: " 9144 "mqe_sta: x%x mcqe_sta: x%x/x%x " 9145 "Data: x%x x%x\n,", 9146 mboxq->vport ? mboxq->vport->vpi : 0, 9147 mboxq->u.mb.mbxCommand, 9148 lpfc_sli_config_mbox_subsys_get(phba, 9149 mboxq), 9150 lpfc_sli_config_mbox_opcode_get(phba, 9151 mboxq), 9152 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 9153 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 9154 bf_get(lpfc_mcqe_ext_status, 9155 &mboxq->mcqe), 9156 psli->sli_flag, flag); 9157 /* Unblock the async mailbox posting afterward */ 9158 lpfc_sli4_async_mbox_unblock(phba); 9159 } 9160 return rc; 9161 } 9162 9163 /* Now, interrupt mode asynchronous mailbox command */ 9164 rc = lpfc_mbox_cmd_check(phba, mboxq); 9165 if (rc) { 9166 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9167 "(%d):2543 Mailbox command x%x (x%x/x%x) " 9168 "cannot issue Data: x%x x%x\n", 9169 mboxq->vport ? mboxq->vport->vpi : 0, 9170 mboxq->u.mb.mbxCommand, 9171 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9172 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9173 psli->sli_flag, flag); 9174 goto out_not_finished; 9175 } 9176 9177 /* Put the mailbox command to the driver internal FIFO */ 9178 psli->slistat.mbox_busy++; 9179 spin_lock_irqsave(&phba->hbalock, iflags); 9180 lpfc_mbox_put(phba, mboxq); 9181 spin_unlock_irqrestore(&phba->hbalock, iflags); 9182 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9183 "(%d):0354 Mbox cmd issue - Enqueue Data: " 9184 "x%x (x%x/x%x) x%x x%x x%x\n", 9185 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 9186 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 9187 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9188 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9189 phba->pport->port_state, 9190 psli->sli_flag, MBX_NOWAIT); 9191 /* Wake up worker thread to transport mailbox command from head */ 9192 lpfc_worker_wake_up(phba); 9193 9194 return MBX_BUSY; 9195 9196 out_not_finished: 9197 return MBX_NOT_FINISHED; 9198 } 9199 9200 /** 9201 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 9202 * @phba: Pointer to HBA context object. 9203 * 9204 * This function is called by worker thread to send a mailbox command to 9205 * SLI4 HBA firmware. 9206 * 9207 **/ 9208 int 9209 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 9210 { 9211 struct lpfc_sli *psli = &phba->sli; 9212 LPFC_MBOXQ_t *mboxq; 9213 int rc = MBX_SUCCESS; 9214 unsigned long iflags; 9215 struct lpfc_mqe *mqe; 9216 uint32_t mbx_cmnd; 9217 9218 /* Check interrupt mode before post async mailbox command */ 9219 if (unlikely(!phba->sli4_hba.intr_enable)) 9220 return MBX_NOT_FINISHED; 9221 9222 /* Check for mailbox command service token */ 9223 spin_lock_irqsave(&phba->hbalock, iflags); 9224 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 9225 spin_unlock_irqrestore(&phba->hbalock, iflags); 9226 return MBX_NOT_FINISHED; 9227 } 9228 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 9229 spin_unlock_irqrestore(&phba->hbalock, iflags); 9230 return MBX_NOT_FINISHED; 9231 } 9232 if (unlikely(phba->sli.mbox_active)) { 9233 spin_unlock_irqrestore(&phba->hbalock, iflags); 9234 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9235 "0384 There is pending active mailbox cmd\n"); 9236 return MBX_NOT_FINISHED; 9237 } 9238 /* Take the mailbox command service token */ 9239 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 9240 9241 /* Get the next mailbox command from head of queue */ 9242 mboxq = lpfc_mbox_get(phba); 9243 9244 /* If no more mailbox command waiting for post, we're done */ 9245 if (!mboxq) { 9246 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9247 spin_unlock_irqrestore(&phba->hbalock, iflags); 9248 return MBX_SUCCESS; 9249 } 9250 phba->sli.mbox_active = mboxq; 9251 spin_unlock_irqrestore(&phba->hbalock, iflags); 9252 9253 /* Check device readiness for posting mailbox command */ 9254 rc = lpfc_mbox_dev_check(phba); 9255 if (unlikely(rc)) 9256 /* Driver clean routine will clean up pending mailbox */ 9257 goto out_not_finished; 9258 9259 /* Prepare the mbox command to be posted */ 9260 mqe = &mboxq->u.mqe; 9261 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9262 9263 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9264 mod_timer(&psli->mbox_tmo, (jiffies + 9265 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9266 9267 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9268 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9269 "x%x x%x\n", 9270 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9271 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9272 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9273 phba->pport->port_state, psli->sli_flag); 9274 9275 if (mbx_cmnd != MBX_HEARTBEAT) { 9276 if (mboxq->vport) { 9277 lpfc_debugfs_disc_trc(mboxq->vport, 9278 LPFC_DISC_TRC_MBOX_VPORT, 9279 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9280 mbx_cmnd, mqe->un.mb_words[0], 9281 mqe->un.mb_words[1]); 9282 } else { 9283 lpfc_debugfs_disc_trc(phba->pport, 9284 LPFC_DISC_TRC_MBOX, 9285 "MBOX Send: cmd:x%x mb:x%x x%x", 9286 mbx_cmnd, mqe->un.mb_words[0], 9287 mqe->un.mb_words[1]); 9288 } 9289 } 9290 psli->slistat.mbox_cmd++; 9291 9292 /* Post the mailbox command to the port */ 9293 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9294 if (rc != MBX_SUCCESS) { 9295 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9296 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9297 "cannot issue Data: x%x x%x\n", 9298 mboxq->vport ? mboxq->vport->vpi : 0, 9299 mboxq->u.mb.mbxCommand, 9300 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9301 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9302 psli->sli_flag, MBX_NOWAIT); 9303 goto out_not_finished; 9304 } 9305 9306 return rc; 9307 9308 out_not_finished: 9309 spin_lock_irqsave(&phba->hbalock, iflags); 9310 if (phba->sli.mbox_active) { 9311 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9312 __lpfc_mbox_cmpl_put(phba, mboxq); 9313 /* Release the token */ 9314 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9315 phba->sli.mbox_active = NULL; 9316 } 9317 spin_unlock_irqrestore(&phba->hbalock, iflags); 9318 9319 return MBX_NOT_FINISHED; 9320 } 9321 9322 /** 9323 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9324 * @phba: Pointer to HBA context object. 9325 * @pmbox: Pointer to mailbox object. 9326 * @flag: Flag indicating how the mailbox need to be processed. 9327 * 9328 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9329 * the API jump table function pointer from the lpfc_hba struct. 9330 * 9331 * Return codes the caller owns the mailbox command after the return of the 9332 * function. 9333 **/ 9334 int 9335 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9336 { 9337 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9338 } 9339 9340 /** 9341 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9342 * @phba: The hba struct for which this call is being executed. 9343 * @dev_grp: The HBA PCI-Device group number. 9344 * 9345 * This routine sets up the mbox interface API function jump table in @phba 9346 * struct. 9347 * Returns: 0 - success, -ENODEV - failure. 9348 **/ 9349 int 9350 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9351 { 9352 9353 switch (dev_grp) { 9354 case LPFC_PCI_DEV_LP: 9355 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9356 phba->lpfc_sli_handle_slow_ring_event = 9357 lpfc_sli_handle_slow_ring_event_s3; 9358 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9359 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9360 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9361 break; 9362 case LPFC_PCI_DEV_OC: 9363 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9364 phba->lpfc_sli_handle_slow_ring_event = 9365 lpfc_sli_handle_slow_ring_event_s4; 9366 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9367 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9368 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9369 break; 9370 default: 9371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9372 "1420 Invalid HBA PCI-device group: 0x%x\n", 9373 dev_grp); 9374 return -ENODEV; 9375 } 9376 return 0; 9377 } 9378 9379 /** 9380 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9381 * @phba: Pointer to HBA context object. 9382 * @pring: Pointer to driver SLI ring object. 9383 * @piocb: Pointer to address of newly added command iocb. 9384 * 9385 * This function is called with hbalock held for SLI3 ports or 9386 * the ring lock held for SLI4 ports to add a command 9387 * iocb to the txq when SLI layer cannot submit the command iocb 9388 * to the ring. 9389 **/ 9390 void 9391 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9392 struct lpfc_iocbq *piocb) 9393 { 9394 if (phba->sli_rev == LPFC_SLI_REV4) 9395 lockdep_assert_held(&pring->ring_lock); 9396 else 9397 lockdep_assert_held(&phba->hbalock); 9398 /* Insert the caller's iocb in the txq tail for later processing. */ 9399 list_add_tail(&piocb->list, &pring->txq); 9400 } 9401 9402 /** 9403 * lpfc_sli_next_iocb - Get the next iocb in the txq 9404 * @phba: Pointer to HBA context object. 9405 * @pring: Pointer to driver SLI ring object. 9406 * @piocb: Pointer to address of newly added command iocb. 9407 * 9408 * This function is called with hbalock held before a new 9409 * iocb is submitted to the firmware. This function checks 9410 * txq to flush the iocbs in txq to Firmware before 9411 * submitting new iocbs to the Firmware. 9412 * If there are iocbs in the txq which need to be submitted 9413 * to firmware, lpfc_sli_next_iocb returns the first element 9414 * of the txq after dequeuing it from txq. 9415 * If there is no iocb in the txq then the function will return 9416 * *piocb and *piocb is set to NULL. Caller needs to check 9417 * *piocb to find if there are more commands in the txq. 9418 **/ 9419 static struct lpfc_iocbq * 9420 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9421 struct lpfc_iocbq **piocb) 9422 { 9423 struct lpfc_iocbq * nextiocb; 9424 9425 lockdep_assert_held(&phba->hbalock); 9426 9427 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9428 if (!nextiocb) { 9429 nextiocb = *piocb; 9430 *piocb = NULL; 9431 } 9432 9433 return nextiocb; 9434 } 9435 9436 /** 9437 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9438 * @phba: Pointer to HBA context object. 9439 * @ring_number: SLI ring number to issue iocb on. 9440 * @piocb: Pointer to command iocb. 9441 * @flag: Flag indicating if this command can be put into txq. 9442 * 9443 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9444 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9445 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9446 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9447 * this function allows only iocbs for posting buffers. This function finds 9448 * next available slot in the command ring and posts the command to the 9449 * available slot and writes the port attention register to request HBA start 9450 * processing new iocb. If there is no slot available in the ring and 9451 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9452 * the function returns IOCB_BUSY. 9453 * 9454 * This function is called with hbalock held. The function will return success 9455 * after it successfully submit the iocb to firmware or after adding to the 9456 * txq. 9457 **/ 9458 static int 9459 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9460 struct lpfc_iocbq *piocb, uint32_t flag) 9461 { 9462 struct lpfc_iocbq *nextiocb; 9463 IOCB_t *iocb; 9464 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9465 9466 lockdep_assert_held(&phba->hbalock); 9467 9468 if (piocb->iocb_cmpl && (!piocb->vport) && 9469 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9470 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9471 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9472 "1807 IOCB x%x failed. No vport\n", 9473 piocb->iocb.ulpCommand); 9474 dump_stack(); 9475 return IOCB_ERROR; 9476 } 9477 9478 9479 /* If the PCI channel is in offline state, do not post iocbs. */ 9480 if (unlikely(pci_channel_offline(phba->pcidev))) 9481 return IOCB_ERROR; 9482 9483 /* If HBA has a deferred error attention, fail the iocb. */ 9484 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9485 return IOCB_ERROR; 9486 9487 /* 9488 * We should never get an IOCB if we are in a < LINK_DOWN state 9489 */ 9490 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9491 return IOCB_ERROR; 9492 9493 /* 9494 * Check to see if we are blocking IOCB processing because of a 9495 * outstanding event. 9496 */ 9497 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9498 goto iocb_busy; 9499 9500 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9501 /* 9502 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9503 * can be issued if the link is not up. 9504 */ 9505 switch (piocb->iocb.ulpCommand) { 9506 case CMD_GEN_REQUEST64_CR: 9507 case CMD_GEN_REQUEST64_CX: 9508 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9509 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9510 FC_RCTL_DD_UNSOL_CMD) || 9511 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9512 MENLO_TRANSPORT_TYPE)) 9513 9514 goto iocb_busy; 9515 break; 9516 case CMD_QUE_RING_BUF_CN: 9517 case CMD_QUE_RING_BUF64_CN: 9518 /* 9519 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9520 * completion, iocb_cmpl MUST be 0. 9521 */ 9522 if (piocb->iocb_cmpl) 9523 piocb->iocb_cmpl = NULL; 9524 fallthrough; 9525 case CMD_CREATE_XRI_CR: 9526 case CMD_CLOSE_XRI_CN: 9527 case CMD_CLOSE_XRI_CX: 9528 break; 9529 default: 9530 goto iocb_busy; 9531 } 9532 9533 /* 9534 * For FCP commands, we must be in a state where we can process link 9535 * attention events. 9536 */ 9537 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9538 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9539 goto iocb_busy; 9540 } 9541 9542 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9543 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9544 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9545 9546 if (iocb) 9547 lpfc_sli_update_ring(phba, pring); 9548 else 9549 lpfc_sli_update_full_ring(phba, pring); 9550 9551 if (!piocb) 9552 return IOCB_SUCCESS; 9553 9554 goto out_busy; 9555 9556 iocb_busy: 9557 pring->stats.iocb_cmd_delay++; 9558 9559 out_busy: 9560 9561 if (!(flag & SLI_IOCB_RET_IOCB)) { 9562 __lpfc_sli_ringtx_put(phba, pring, piocb); 9563 return IOCB_SUCCESS; 9564 } 9565 9566 return IOCB_BUSY; 9567 } 9568 9569 /** 9570 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9571 * @phba: Pointer to HBA context object. 9572 * @piocbq: Pointer to command iocb. 9573 * @sglq: Pointer to the scatter gather queue object. 9574 * 9575 * This routine converts the bpl or bde that is in the IOCB 9576 * to a sgl list for the sli4 hardware. The physical address 9577 * of the bpl/bde is converted back to a virtual address. 9578 * If the IOCB contains a BPL then the list of BDE's is 9579 * converted to sli4_sge's. If the IOCB contains a single 9580 * BDE then it is converted to a single sli_sge. 9581 * The IOCB is still in cpu endianess so the contents of 9582 * the bpl can be used without byte swapping. 9583 * 9584 * Returns valid XRI = Success, NO_XRI = Failure. 9585 **/ 9586 static uint16_t 9587 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9588 struct lpfc_sglq *sglq) 9589 { 9590 uint16_t xritag = NO_XRI; 9591 struct ulp_bde64 *bpl = NULL; 9592 struct ulp_bde64 bde; 9593 struct sli4_sge *sgl = NULL; 9594 struct lpfc_dmabuf *dmabuf; 9595 IOCB_t *icmd; 9596 int numBdes = 0; 9597 int i = 0; 9598 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9599 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9600 9601 if (!piocbq || !sglq) 9602 return xritag; 9603 9604 sgl = (struct sli4_sge *)sglq->sgl; 9605 icmd = &piocbq->iocb; 9606 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9607 return sglq->sli4_xritag; 9608 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9609 numBdes = icmd->un.genreq64.bdl.bdeSize / 9610 sizeof(struct ulp_bde64); 9611 /* The addrHigh and addrLow fields within the IOCB 9612 * have not been byteswapped yet so there is no 9613 * need to swap them back. 9614 */ 9615 if (piocbq->context3) 9616 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9617 else 9618 return xritag; 9619 9620 bpl = (struct ulp_bde64 *)dmabuf->virt; 9621 if (!bpl) 9622 return xritag; 9623 9624 for (i = 0; i < numBdes; i++) { 9625 /* Should already be byte swapped. */ 9626 sgl->addr_hi = bpl->addrHigh; 9627 sgl->addr_lo = bpl->addrLow; 9628 9629 sgl->word2 = le32_to_cpu(sgl->word2); 9630 if ((i+1) == numBdes) 9631 bf_set(lpfc_sli4_sge_last, sgl, 1); 9632 else 9633 bf_set(lpfc_sli4_sge_last, sgl, 0); 9634 /* swap the size field back to the cpu so we 9635 * can assign it to the sgl. 9636 */ 9637 bde.tus.w = le32_to_cpu(bpl->tus.w); 9638 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9639 /* The offsets in the sgl need to be accumulated 9640 * separately for the request and reply lists. 9641 * The request is always first, the reply follows. 9642 */ 9643 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9644 /* add up the reply sg entries */ 9645 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9646 inbound++; 9647 /* first inbound? reset the offset */ 9648 if (inbound == 1) 9649 offset = 0; 9650 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9651 bf_set(lpfc_sli4_sge_type, sgl, 9652 LPFC_SGE_TYPE_DATA); 9653 offset += bde.tus.f.bdeSize; 9654 } 9655 sgl->word2 = cpu_to_le32(sgl->word2); 9656 bpl++; 9657 sgl++; 9658 } 9659 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9660 /* The addrHigh and addrLow fields of the BDE have not 9661 * been byteswapped yet so they need to be swapped 9662 * before putting them in the sgl. 9663 */ 9664 sgl->addr_hi = 9665 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9666 sgl->addr_lo = 9667 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9668 sgl->word2 = le32_to_cpu(sgl->word2); 9669 bf_set(lpfc_sli4_sge_last, sgl, 1); 9670 sgl->word2 = cpu_to_le32(sgl->word2); 9671 sgl->sge_len = 9672 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9673 } 9674 return sglq->sli4_xritag; 9675 } 9676 9677 /** 9678 * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. 9679 * @phba: Pointer to HBA context object. 9680 * @iocbq: Pointer to command iocb. 9681 * @wqe: Pointer to the work queue entry. 9682 * 9683 * This routine converts the iocb command to its Work Queue Entry 9684 * equivalent. The wqe pointer should not have any fields set when 9685 * this routine is called because it will memcpy over them. 9686 * This routine does not set the CQ_ID or the WQEC bits in the 9687 * wqe. 9688 * 9689 * Returns: 0 = Success, IOCB_ERROR = Failure. 9690 **/ 9691 static int 9692 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9693 union lpfc_wqe128 *wqe) 9694 { 9695 uint32_t xmit_len = 0, total_len = 0; 9696 uint8_t ct = 0; 9697 uint32_t fip; 9698 uint32_t abort_tag; 9699 uint8_t command_type = ELS_COMMAND_NON_FIP; 9700 uint8_t cmnd; 9701 uint16_t xritag; 9702 uint16_t abrt_iotag; 9703 struct lpfc_iocbq *abrtiocbq; 9704 struct ulp_bde64 *bpl = NULL; 9705 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9706 int numBdes, i; 9707 struct ulp_bde64 bde; 9708 struct lpfc_nodelist *ndlp; 9709 uint32_t *pcmd; 9710 uint32_t if_type; 9711 9712 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9713 /* The fcp commands will set command type */ 9714 if (iocbq->iocb_flag & LPFC_IO_FCP) 9715 command_type = FCP_COMMAND; 9716 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9717 command_type = ELS_COMMAND_FIP; 9718 else 9719 command_type = ELS_COMMAND_NON_FIP; 9720 9721 if (phba->fcp_embed_io) 9722 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9723 /* Some of the fields are in the right position already */ 9724 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9725 /* The ct field has moved so reset */ 9726 wqe->generic.wqe_com.word7 = 0; 9727 wqe->generic.wqe_com.word10 = 0; 9728 9729 abort_tag = (uint32_t) iocbq->iotag; 9730 xritag = iocbq->sli4_xritag; 9731 /* words0-2 bpl convert bde */ 9732 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9733 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9734 sizeof(struct ulp_bde64); 9735 bpl = (struct ulp_bde64 *) 9736 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9737 if (!bpl) 9738 return IOCB_ERROR; 9739 9740 /* Should already be byte swapped. */ 9741 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9742 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9743 /* swap the size field back to the cpu so we 9744 * can assign it to the sgl. 9745 */ 9746 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9747 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9748 total_len = 0; 9749 for (i = 0; i < numBdes; i++) { 9750 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9751 total_len += bde.tus.f.bdeSize; 9752 } 9753 } else 9754 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9755 9756 iocbq->iocb.ulpIoTag = iocbq->iotag; 9757 cmnd = iocbq->iocb.ulpCommand; 9758 9759 switch (iocbq->iocb.ulpCommand) { 9760 case CMD_ELS_REQUEST64_CR: 9761 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9762 ndlp = iocbq->context_un.ndlp; 9763 else 9764 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9765 if (!iocbq->iocb.ulpLe) { 9766 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 9767 "2007 Only Limited Edition cmd Format" 9768 " supported 0x%x\n", 9769 iocbq->iocb.ulpCommand); 9770 return IOCB_ERROR; 9771 } 9772 9773 wqe->els_req.payload_len = xmit_len; 9774 /* Els_reguest64 has a TMO */ 9775 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9776 iocbq->iocb.ulpTimeout); 9777 /* Need a VF for word 4 set the vf bit*/ 9778 bf_set(els_req64_vf, &wqe->els_req, 0); 9779 /* And a VFID for word 12 */ 9780 bf_set(els_req64_vfid, &wqe->els_req, 0); 9781 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9782 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9783 iocbq->iocb.ulpContext); 9784 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9785 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9786 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9787 if (command_type == ELS_COMMAND_FIP) 9788 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9789 >> LPFC_FIP_ELS_ID_SHIFT); 9790 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9791 iocbq->context2)->virt); 9792 if_type = bf_get(lpfc_sli_intf_if_type, 9793 &phba->sli4_hba.sli_intf); 9794 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9795 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9796 *pcmd == ELS_CMD_SCR || 9797 *pcmd == ELS_CMD_RDF || 9798 *pcmd == ELS_CMD_RSCN_XMT || 9799 *pcmd == ELS_CMD_FDISC || 9800 *pcmd == ELS_CMD_LOGO || 9801 *pcmd == ELS_CMD_QFPA || 9802 *pcmd == ELS_CMD_UVEM || 9803 *pcmd == ELS_CMD_PLOGI)) { 9804 bf_set(els_req64_sp, &wqe->els_req, 1); 9805 bf_set(els_req64_sid, &wqe->els_req, 9806 iocbq->vport->fc_myDID); 9807 if ((*pcmd == ELS_CMD_FLOGI) && 9808 !(phba->fc_topology == 9809 LPFC_TOPOLOGY_LOOP)) 9810 bf_set(els_req64_sid, &wqe->els_req, 0); 9811 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9812 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9813 phba->vpi_ids[iocbq->vport->vpi]); 9814 } else if (pcmd && iocbq->context1) { 9815 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9816 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9817 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9818 } 9819 } 9820 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9821 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9822 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9823 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9824 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9825 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9826 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9827 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9828 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9829 break; 9830 case CMD_XMIT_SEQUENCE64_CX: 9831 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9832 iocbq->iocb.un.ulpWord[3]); 9833 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9834 iocbq->iocb.unsli3.rcvsli3.ox_id); 9835 /* The entire sequence is transmitted for this IOCB */ 9836 xmit_len = total_len; 9837 cmnd = CMD_XMIT_SEQUENCE64_CR; 9838 if (phba->link_flag & LS_LOOPBACK_MODE) 9839 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9840 fallthrough; 9841 case CMD_XMIT_SEQUENCE64_CR: 9842 /* word3 iocb=io_tag32 wqe=reserved */ 9843 wqe->xmit_sequence.rsvd3 = 0; 9844 /* word4 relative_offset memcpy */ 9845 /* word5 r_ctl/df_ctl memcpy */ 9846 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9847 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9848 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9849 LPFC_WQE_IOD_WRITE); 9850 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9851 LPFC_WQE_LENLOC_WORD12); 9852 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9853 wqe->xmit_sequence.xmit_len = xmit_len; 9854 command_type = OTHER_COMMAND; 9855 break; 9856 case CMD_XMIT_BCAST64_CN: 9857 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9858 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9859 /* word4 iocb=rsvd wqe=rsvd */ 9860 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9861 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9862 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9863 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9864 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9865 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9866 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9867 LPFC_WQE_LENLOC_WORD3); 9868 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9869 break; 9870 case CMD_FCP_IWRITE64_CR: 9871 command_type = FCP_COMMAND_DATA_OUT; 9872 /* word3 iocb=iotag wqe=payload_offset_len */ 9873 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9874 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9875 xmit_len + sizeof(struct fcp_rsp)); 9876 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9877 0); 9878 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9879 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9880 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9881 iocbq->iocb.ulpFCP2Rcvy); 9882 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9883 /* Always open the exchange */ 9884 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9885 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9886 LPFC_WQE_LENLOC_WORD4); 9887 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9888 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9889 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9890 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9891 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9892 if (iocbq->priority) { 9893 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9894 (iocbq->priority << 1)); 9895 } else { 9896 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9897 (phba->cfg_XLanePriority << 1)); 9898 } 9899 } 9900 /* Note, word 10 is already initialized to 0 */ 9901 9902 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9903 if (phba->cfg_enable_pbde) 9904 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9905 else 9906 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9907 9908 if (phba->fcp_embed_io) { 9909 struct lpfc_io_buf *lpfc_cmd; 9910 struct sli4_sge *sgl; 9911 struct fcp_cmnd *fcp_cmnd; 9912 uint32_t *ptr; 9913 9914 /* 128 byte wqe support here */ 9915 9916 lpfc_cmd = iocbq->context1; 9917 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9918 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9919 9920 /* Word 0-2 - FCP_CMND */ 9921 wqe->generic.bde.tus.f.bdeFlags = 9922 BUFF_TYPE_BDE_IMMED; 9923 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9924 wqe->generic.bde.addrHigh = 0; 9925 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9926 9927 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9928 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9929 9930 /* Word 22-29 FCP CMND Payload */ 9931 ptr = &wqe->words[22]; 9932 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9933 } 9934 break; 9935 case CMD_FCP_IREAD64_CR: 9936 /* word3 iocb=iotag wqe=payload_offset_len */ 9937 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9938 bf_set(payload_offset_len, &wqe->fcp_iread, 9939 xmit_len + sizeof(struct fcp_rsp)); 9940 bf_set(cmd_buff_len, &wqe->fcp_iread, 9941 0); 9942 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9943 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9944 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9945 iocbq->iocb.ulpFCP2Rcvy); 9946 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9947 /* Always open the exchange */ 9948 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9949 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9950 LPFC_WQE_LENLOC_WORD4); 9951 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9952 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9953 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9954 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9955 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9956 if (iocbq->priority) { 9957 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9958 (iocbq->priority << 1)); 9959 } else { 9960 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9961 (phba->cfg_XLanePriority << 1)); 9962 } 9963 } 9964 /* Note, word 10 is already initialized to 0 */ 9965 9966 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9967 if (phba->cfg_enable_pbde) 9968 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9969 else 9970 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9971 9972 if (phba->fcp_embed_io) { 9973 struct lpfc_io_buf *lpfc_cmd; 9974 struct sli4_sge *sgl; 9975 struct fcp_cmnd *fcp_cmnd; 9976 uint32_t *ptr; 9977 9978 /* 128 byte wqe support here */ 9979 9980 lpfc_cmd = iocbq->context1; 9981 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9982 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9983 9984 /* Word 0-2 - FCP_CMND */ 9985 wqe->generic.bde.tus.f.bdeFlags = 9986 BUFF_TYPE_BDE_IMMED; 9987 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9988 wqe->generic.bde.addrHigh = 0; 9989 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9990 9991 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9992 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9993 9994 /* Word 22-29 FCP CMND Payload */ 9995 ptr = &wqe->words[22]; 9996 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9997 } 9998 break; 9999 case CMD_FCP_ICMND64_CR: 10000 /* word3 iocb=iotag wqe=payload_offset_len */ 10001 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 10002 bf_set(payload_offset_len, &wqe->fcp_icmd, 10003 xmit_len + sizeof(struct fcp_rsp)); 10004 bf_set(cmd_buff_len, &wqe->fcp_icmd, 10005 0); 10006 /* word3 iocb=IO_TAG wqe=reserved */ 10007 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 10008 /* Always open the exchange */ 10009 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 10010 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 10011 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 10012 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 10013 LPFC_WQE_LENLOC_NONE); 10014 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 10015 iocbq->iocb.ulpFCP2Rcvy); 10016 if (iocbq->iocb_flag & LPFC_IO_OAS) { 10017 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 10018 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 10019 if (iocbq->priority) { 10020 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10021 (iocbq->priority << 1)); 10022 } else { 10023 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 10024 (phba->cfg_XLanePriority << 1)); 10025 } 10026 } 10027 /* Note, word 10 is already initialized to 0 */ 10028 10029 if (phba->fcp_embed_io) { 10030 struct lpfc_io_buf *lpfc_cmd; 10031 struct sli4_sge *sgl; 10032 struct fcp_cmnd *fcp_cmnd; 10033 uint32_t *ptr; 10034 10035 /* 128 byte wqe support here */ 10036 10037 lpfc_cmd = iocbq->context1; 10038 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10039 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10040 10041 /* Word 0-2 - FCP_CMND */ 10042 wqe->generic.bde.tus.f.bdeFlags = 10043 BUFF_TYPE_BDE_IMMED; 10044 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10045 wqe->generic.bde.addrHigh = 0; 10046 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10047 10048 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 10049 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 10050 10051 /* Word 22-29 FCP CMND Payload */ 10052 ptr = &wqe->words[22]; 10053 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10054 } 10055 break; 10056 case CMD_GEN_REQUEST64_CR: 10057 /* For this command calculate the xmit length of the 10058 * request bde. 10059 */ 10060 xmit_len = 0; 10061 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 10062 sizeof(struct ulp_bde64); 10063 for (i = 0; i < numBdes; i++) { 10064 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 10065 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 10066 break; 10067 xmit_len += bde.tus.f.bdeSize; 10068 } 10069 /* word3 iocb=IO_TAG wqe=request_payload_len */ 10070 wqe->gen_req.request_payload_len = xmit_len; 10071 /* word4 iocb=parameter wqe=relative_offset memcpy */ 10072 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 10073 /* word6 context tag copied in memcpy */ 10074 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 10075 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 10076 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10077 "2015 Invalid CT %x command 0x%x\n", 10078 ct, iocbq->iocb.ulpCommand); 10079 return IOCB_ERROR; 10080 } 10081 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 10082 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 10083 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 10084 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 10085 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 10086 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 10087 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 10088 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 10089 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 10090 command_type = OTHER_COMMAND; 10091 break; 10092 case CMD_XMIT_ELS_RSP64_CX: 10093 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10094 /* words0-2 BDE memcpy */ 10095 /* word3 iocb=iotag32 wqe=response_payload_len */ 10096 wqe->xmit_els_rsp.response_payload_len = xmit_len; 10097 /* word4 */ 10098 wqe->xmit_els_rsp.word4 = 0; 10099 /* word5 iocb=rsvd wge=did */ 10100 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 10101 iocbq->iocb.un.xseq64.xmit_els_remoteID); 10102 10103 if_type = bf_get(lpfc_sli_intf_if_type, 10104 &phba->sli4_hba.sli_intf); 10105 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 10106 if (iocbq->vport->fc_flag & FC_PT2PT) { 10107 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10108 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10109 iocbq->vport->fc_myDID); 10110 if (iocbq->vport->fc_myDID == Fabric_DID) { 10111 bf_set(wqe_els_did, 10112 &wqe->xmit_els_rsp.wqe_dest, 0); 10113 } 10114 } 10115 } 10116 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 10117 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10118 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 10119 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 10120 iocbq->iocb.unsli3.rcvsli3.ox_id); 10121 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 10122 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10123 phba->vpi_ids[iocbq->vport->vpi]); 10124 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 10125 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 10126 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 10127 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 10128 LPFC_WQE_LENLOC_WORD3); 10129 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 10130 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 10131 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 10132 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 10133 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 10134 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 10135 iocbq->vport->fc_myDID); 10136 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 10137 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 10138 phba->vpi_ids[phba->pport->vpi]); 10139 } 10140 command_type = OTHER_COMMAND; 10141 break; 10142 case CMD_CLOSE_XRI_CN: 10143 case CMD_ABORT_XRI_CN: 10144 case CMD_ABORT_XRI_CX: 10145 /* words 0-2 memcpy should be 0 rserved */ 10146 /* port will send abts */ 10147 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 10148 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 10149 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 10150 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 10151 } else 10152 fip = 0; 10153 10154 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 10155 /* 10156 * The link is down, or the command was ELS_FIP 10157 * so the fw does not need to send abts 10158 * on the wire. 10159 */ 10160 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 10161 else 10162 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 10163 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 10164 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 10165 wqe->abort_cmd.rsrvd5 = 0; 10166 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 10167 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 10168 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 10169 /* 10170 * The abort handler will send us CMD_ABORT_XRI_CN or 10171 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 10172 */ 10173 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10174 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 10175 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 10176 LPFC_WQE_LENLOC_NONE); 10177 cmnd = CMD_ABORT_XRI_CX; 10178 command_type = OTHER_COMMAND; 10179 xritag = 0; 10180 break; 10181 case CMD_XMIT_BLS_RSP64_CX: 10182 ndlp = (struct lpfc_nodelist *)iocbq->context1; 10183 /* As BLS ABTS RSP WQE is very different from other WQEs, 10184 * we re-construct this WQE here based on information in 10185 * iocbq from scratch. 10186 */ 10187 memset(wqe, 0, sizeof(*wqe)); 10188 /* OX_ID is invariable to who sent ABTS to CT exchange */ 10189 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 10190 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 10191 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 10192 LPFC_ABTS_UNSOL_INT) { 10193 /* ABTS sent by initiator to CT exchange, the 10194 * RX_ID field will be filled with the newly 10195 * allocated responder XRI. 10196 */ 10197 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10198 iocbq->sli4_xritag); 10199 } else { 10200 /* ABTS sent by responder to CT exchange, the 10201 * RX_ID field will be filled with the responder 10202 * RX_ID from ABTS. 10203 */ 10204 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 10205 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 10206 } 10207 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 10208 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 10209 10210 /* Use CT=VPI */ 10211 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 10212 ndlp->nlp_DID); 10213 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 10214 iocbq->iocb.ulpContext); 10215 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 10216 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 10217 phba->vpi_ids[phba->pport->vpi]); 10218 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 10219 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 10220 LPFC_WQE_LENLOC_NONE); 10221 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 10222 command_type = OTHER_COMMAND; 10223 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 10224 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 10225 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 10226 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 10227 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 10228 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 10229 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 10230 } 10231 10232 break; 10233 case CMD_SEND_FRAME: 10234 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 10235 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 10236 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 10237 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 10238 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 10239 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10240 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10241 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10242 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10243 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10244 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10245 return 0; 10246 case CMD_XRI_ABORTED_CX: 10247 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10248 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10249 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10250 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10251 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10252 default: 10253 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10254 "2014 Invalid command 0x%x\n", 10255 iocbq->iocb.ulpCommand); 10256 return IOCB_ERROR; 10257 } 10258 10259 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10260 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10261 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10262 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10263 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10264 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10265 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10266 LPFC_IO_DIF_INSERT); 10267 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10268 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10269 wqe->generic.wqe_com.abort_tag = abort_tag; 10270 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10271 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10272 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10273 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10274 return 0; 10275 } 10276 10277 /** 10278 * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb 10279 * @phba: Pointer to HBA context object. 10280 * @ring_number: SLI ring number to issue wqe on. 10281 * @piocb: Pointer to command iocb. 10282 * @flag: Flag indicating if this command can be put into txq. 10283 * 10284 * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to 10285 * send an iocb command to an HBA with SLI-4 interface spec. 10286 * 10287 * This function takes the hbalock before invoking the lockless version. 10288 * The function will return success after it successfully submit the wqe to 10289 * firmware or after adding to the txq. 10290 **/ 10291 static int 10292 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, 10293 struct lpfc_iocbq *piocb, uint32_t flag) 10294 { 10295 unsigned long iflags; 10296 int rc; 10297 10298 spin_lock_irqsave(&phba->hbalock, iflags); 10299 rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); 10300 spin_unlock_irqrestore(&phba->hbalock, iflags); 10301 10302 return rc; 10303 } 10304 10305 /** 10306 * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe 10307 * @phba: Pointer to HBA context object. 10308 * @ring_number: SLI ring number to issue wqe on. 10309 * @piocb: Pointer to command iocb. 10310 * @flag: Flag indicating if this command can be put into txq. 10311 * 10312 * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue 10313 * an wqe command to an HBA with SLI-4 interface spec. 10314 * 10315 * This function is a lockless version. The function will return success 10316 * after it successfully submit the wqe to firmware or after adding to the 10317 * txq. 10318 **/ 10319 static int 10320 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, 10321 struct lpfc_iocbq *piocb, uint32_t flag) 10322 { 10323 int rc; 10324 struct lpfc_io_buf *lpfc_cmd = 10325 (struct lpfc_io_buf *)piocb->context1; 10326 union lpfc_wqe128 *wqe = &piocb->wqe; 10327 struct sli4_sge *sgl; 10328 10329 /* 128 byte wqe support here */ 10330 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 10331 10332 if (phba->fcp_embed_io) { 10333 struct fcp_cmnd *fcp_cmnd; 10334 u32 *ptr; 10335 10336 fcp_cmnd = lpfc_cmd->fcp_cmnd; 10337 10338 /* Word 0-2 - FCP_CMND */ 10339 wqe->generic.bde.tus.f.bdeFlags = 10340 BUFF_TYPE_BDE_IMMED; 10341 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 10342 wqe->generic.bde.addrHigh = 0; 10343 wqe->generic.bde.addrLow = 88; /* Word 22 */ 10344 10345 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10346 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 10347 10348 /* Word 22-29 FCP CMND Payload */ 10349 ptr = &wqe->words[22]; 10350 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 10351 } else { 10352 /* Word 0-2 - Inline BDE */ 10353 wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 10354 wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); 10355 wqe->generic.bde.addrHigh = sgl->addr_hi; 10356 wqe->generic.bde.addrLow = sgl->addr_lo; 10357 10358 /* Word 10 */ 10359 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10360 bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); 10361 } 10362 10363 /* add the VMID tags as per switch response */ 10364 if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { 10365 if (phba->pport->vmid_priority_tagging) { 10366 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 10367 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 10368 (piocb->vmid_tag.cs_ctl_vmid)); 10369 } else { 10370 bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); 10371 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 10372 wqe->words[31] = piocb->vmid_tag.app_id; 10373 } 10374 } 10375 rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); 10376 return rc; 10377 } 10378 10379 /** 10380 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10381 * @phba: Pointer to HBA context object. 10382 * @ring_number: SLI ring number to issue iocb on. 10383 * @piocb: Pointer to command iocb. 10384 * @flag: Flag indicating if this command can be put into txq. 10385 * 10386 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10387 * an iocb command to an HBA with SLI-4 interface spec. 10388 * 10389 * This function is called with ringlock held. The function will return success 10390 * after it successfully submit the iocb to firmware or after adding to the 10391 * txq. 10392 **/ 10393 static int 10394 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10395 struct lpfc_iocbq *piocb, uint32_t flag) 10396 { 10397 struct lpfc_sglq *sglq; 10398 union lpfc_wqe128 wqe; 10399 struct lpfc_queue *wq; 10400 struct lpfc_sli_ring *pring; 10401 10402 /* Get the WQ */ 10403 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10404 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10405 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10406 } else { 10407 wq = phba->sli4_hba.els_wq; 10408 } 10409 10410 /* Get corresponding ring */ 10411 pring = wq->pring; 10412 10413 /* 10414 * The WQE can be either 64 or 128 bytes, 10415 */ 10416 10417 lockdep_assert_held(&pring->ring_lock); 10418 10419 if (piocb->sli4_xritag == NO_XRI) { 10420 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10421 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10422 sglq = NULL; 10423 else { 10424 if (!list_empty(&pring->txq)) { 10425 if (!(flag & SLI_IOCB_RET_IOCB)) { 10426 __lpfc_sli_ringtx_put(phba, 10427 pring, piocb); 10428 return IOCB_SUCCESS; 10429 } else { 10430 return IOCB_BUSY; 10431 } 10432 } else { 10433 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10434 if (!sglq) { 10435 if (!(flag & SLI_IOCB_RET_IOCB)) { 10436 __lpfc_sli_ringtx_put(phba, 10437 pring, 10438 piocb); 10439 return IOCB_SUCCESS; 10440 } else 10441 return IOCB_BUSY; 10442 } 10443 } 10444 } 10445 } else if (piocb->iocb_flag & LPFC_IO_FCP) { 10446 /* These IO's already have an XRI and a mapped sgl. */ 10447 sglq = NULL; 10448 } 10449 else { 10450 /* 10451 * This is a continuation of a commandi,(CX) so this 10452 * sglq is on the active list 10453 */ 10454 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10455 if (!sglq) 10456 return IOCB_ERROR; 10457 } 10458 10459 if (sglq) { 10460 piocb->sli4_lxritag = sglq->sli4_lxritag; 10461 piocb->sli4_xritag = sglq->sli4_xritag; 10462 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10463 return IOCB_ERROR; 10464 } 10465 10466 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10467 return IOCB_ERROR; 10468 10469 if (lpfc_sli4_wq_put(wq, &wqe)) 10470 return IOCB_ERROR; 10471 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10472 10473 return 0; 10474 } 10475 10476 /* 10477 * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o 10478 * 10479 * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 10480 * or IOCB for sli-3 function. 10481 * pointer from the lpfc_hba struct. 10482 * 10483 * Return codes: 10484 * IOCB_ERROR - Error 10485 * IOCB_SUCCESS - Success 10486 * IOCB_BUSY - Busy 10487 **/ 10488 int 10489 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, 10490 struct lpfc_iocbq *piocb, uint32_t flag) 10491 { 10492 return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); 10493 } 10494 10495 /* 10496 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10497 * 10498 * This routine wraps the actual lockless version for issusing IOCB function 10499 * pointer from the lpfc_hba struct. 10500 * 10501 * Return codes: 10502 * IOCB_ERROR - Error 10503 * IOCB_SUCCESS - Success 10504 * IOCB_BUSY - Busy 10505 **/ 10506 int 10507 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10508 struct lpfc_iocbq *piocb, uint32_t flag) 10509 { 10510 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10511 } 10512 10513 /** 10514 * lpfc_sli_api_table_setup - Set up sli api function jump table 10515 * @phba: The hba struct for which this call is being executed. 10516 * @dev_grp: The HBA PCI-Device group number. 10517 * 10518 * This routine sets up the SLI interface API function jump table in @phba 10519 * struct. 10520 * Returns: 0 - success, -ENODEV - failure. 10521 **/ 10522 int 10523 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10524 { 10525 10526 switch (dev_grp) { 10527 case LPFC_PCI_DEV_LP: 10528 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10529 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10530 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; 10531 break; 10532 case LPFC_PCI_DEV_OC: 10533 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10534 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10535 phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; 10536 break; 10537 default: 10538 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10539 "1419 Invalid HBA PCI-device group: 0x%x\n", 10540 dev_grp); 10541 return -ENODEV; 10542 } 10543 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10544 return 0; 10545 } 10546 10547 /** 10548 * lpfc_sli4_calc_ring - Calculates which ring to use 10549 * @phba: Pointer to HBA context object. 10550 * @piocb: Pointer to command iocb. 10551 * 10552 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10553 * hba_wqidx, thus we need to calculate the corresponding ring. 10554 * Since ABORTS must go on the same WQ of the command they are 10555 * aborting, we use command's hba_wqidx. 10556 */ 10557 struct lpfc_sli_ring * 10558 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10559 { 10560 struct lpfc_io_buf *lpfc_cmd; 10561 10562 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10563 if (unlikely(!phba->sli4_hba.hdwq)) 10564 return NULL; 10565 /* 10566 * for abort iocb hba_wqidx should already 10567 * be setup based on what work queue we used. 10568 */ 10569 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10570 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10571 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10572 } 10573 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10574 } else { 10575 if (unlikely(!phba->sli4_hba.els_wq)) 10576 return NULL; 10577 piocb->hba_wqidx = 0; 10578 return phba->sli4_hba.els_wq->pring; 10579 } 10580 } 10581 10582 /** 10583 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10584 * @phba: Pointer to HBA context object. 10585 * @ring_number: Ring number 10586 * @piocb: Pointer to command iocb. 10587 * @flag: Flag indicating if this command can be put into txq. 10588 * 10589 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10590 * function. This function gets the hbalock and calls 10591 * __lpfc_sli_issue_iocb function and will return the error returned 10592 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10593 * functions which do not hold hbalock. 10594 **/ 10595 int 10596 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10597 struct lpfc_iocbq *piocb, uint32_t flag) 10598 { 10599 struct lpfc_sli_ring *pring; 10600 struct lpfc_queue *eq; 10601 unsigned long iflags; 10602 int rc; 10603 10604 if (phba->sli_rev == LPFC_SLI_REV4) { 10605 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10606 10607 pring = lpfc_sli4_calc_ring(phba, piocb); 10608 if (unlikely(pring == NULL)) 10609 return IOCB_ERROR; 10610 10611 spin_lock_irqsave(&pring->ring_lock, iflags); 10612 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10613 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10614 10615 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10616 } else { 10617 /* For now, SLI2/3 will still use hbalock */ 10618 spin_lock_irqsave(&phba->hbalock, iflags); 10619 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10620 spin_unlock_irqrestore(&phba->hbalock, iflags); 10621 } 10622 return rc; 10623 } 10624 10625 /** 10626 * lpfc_extra_ring_setup - Extra ring setup function 10627 * @phba: Pointer to HBA context object. 10628 * 10629 * This function is called while driver attaches with the 10630 * HBA to setup the extra ring. The extra ring is used 10631 * only when driver needs to support target mode functionality 10632 * or IP over FC functionalities. 10633 * 10634 * This function is called with no lock held. SLI3 only. 10635 **/ 10636 static int 10637 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10638 { 10639 struct lpfc_sli *psli; 10640 struct lpfc_sli_ring *pring; 10641 10642 psli = &phba->sli; 10643 10644 /* Adjust cmd/rsp ring iocb entries more evenly */ 10645 10646 /* Take some away from the FCP ring */ 10647 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10648 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10649 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10650 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10651 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10652 10653 /* and give them to the extra ring */ 10654 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10655 10656 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10657 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10658 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10659 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10660 10661 /* Setup default profile for this ring */ 10662 pring->iotag_max = 4096; 10663 pring->num_mask = 1; 10664 pring->prt[0].profile = 0; /* Mask 0 */ 10665 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10666 pring->prt[0].type = phba->cfg_multi_ring_type; 10667 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10668 return 0; 10669 } 10670 10671 static void 10672 lpfc_sli_post_recovery_event(struct lpfc_hba *phba, 10673 struct lpfc_nodelist *ndlp) 10674 { 10675 unsigned long iflags; 10676 struct lpfc_work_evt *evtp = &ndlp->recovery_evt; 10677 10678 spin_lock_irqsave(&phba->hbalock, iflags); 10679 if (!list_empty(&evtp->evt_listp)) { 10680 spin_unlock_irqrestore(&phba->hbalock, iflags); 10681 return; 10682 } 10683 10684 /* Incrementing the reference count until the queued work is done. */ 10685 evtp->evt_arg1 = lpfc_nlp_get(ndlp); 10686 if (!evtp->evt_arg1) { 10687 spin_unlock_irqrestore(&phba->hbalock, iflags); 10688 return; 10689 } 10690 evtp->evt = LPFC_EVT_RECOVER_PORT; 10691 list_add_tail(&evtp->evt_listp, &phba->work_list); 10692 spin_unlock_irqrestore(&phba->hbalock, iflags); 10693 10694 lpfc_worker_wake_up(phba); 10695 } 10696 10697 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10698 * @phba: Pointer to HBA context object. 10699 * @iocbq: Pointer to iocb object. 10700 * 10701 * The async_event handler calls this routine when it receives 10702 * an ASYNC_STATUS_CN event from the port. The port generates 10703 * this event when an Abort Sequence request to an rport fails 10704 * twice in succession. The abort could be originated by the 10705 * driver or by the port. The ABTS could have been for an ELS 10706 * or FCP IO. The port only generates this event when an ABTS 10707 * fails to complete after one retry. 10708 */ 10709 static void 10710 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10711 struct lpfc_iocbq *iocbq) 10712 { 10713 struct lpfc_nodelist *ndlp = NULL; 10714 uint16_t rpi = 0, vpi = 0; 10715 struct lpfc_vport *vport = NULL; 10716 10717 /* The rpi in the ulpContext is vport-sensitive. */ 10718 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10719 rpi = iocbq->iocb.ulpContext; 10720 10721 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10722 "3092 Port generated ABTS async event " 10723 "on vpi %d rpi %d status 0x%x\n", 10724 vpi, rpi, iocbq->iocb.ulpStatus); 10725 10726 vport = lpfc_find_vport_by_vpid(phba, vpi); 10727 if (!vport) 10728 goto err_exit; 10729 ndlp = lpfc_findnode_rpi(vport, rpi); 10730 if (!ndlp) 10731 goto err_exit; 10732 10733 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10734 lpfc_sli_abts_recover_port(vport, ndlp); 10735 return; 10736 10737 err_exit: 10738 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10739 "3095 Event Context not found, no " 10740 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10741 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10742 vpi, rpi); 10743 } 10744 10745 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10746 * @phba: pointer to HBA context object. 10747 * @ndlp: nodelist pointer for the impacted rport. 10748 * @axri: pointer to the wcqe containing the failed exchange. 10749 * 10750 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10751 * port. The port generates this event when an abort exchange request to an 10752 * rport fails twice in succession with no reply. The abort could be originated 10753 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10754 */ 10755 void 10756 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10757 struct lpfc_nodelist *ndlp, 10758 struct sli4_wcqe_xri_aborted *axri) 10759 { 10760 uint32_t ext_status = 0; 10761 10762 if (!ndlp) { 10763 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10764 "3115 Node Context not found, driver " 10765 "ignoring abts err event\n"); 10766 return; 10767 } 10768 10769 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10770 "3116 Port generated FCP XRI ABORT event on " 10771 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10772 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10773 bf_get(lpfc_wcqe_xa_xri, axri), 10774 bf_get(lpfc_wcqe_xa_status, axri), 10775 axri->parameter); 10776 10777 /* 10778 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10779 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10780 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10781 */ 10782 ext_status = axri->parameter & IOERR_PARAM_MASK; 10783 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10784 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10785 lpfc_sli_post_recovery_event(phba, ndlp); 10786 } 10787 10788 /** 10789 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10790 * @phba: Pointer to HBA context object. 10791 * @pring: Pointer to driver SLI ring object. 10792 * @iocbq: Pointer to iocb object. 10793 * 10794 * This function is called by the slow ring event handler 10795 * function when there is an ASYNC event iocb in the ring. 10796 * This function is called with no lock held. 10797 * Currently this function handles only temperature related 10798 * ASYNC events. The function decodes the temperature sensor 10799 * event message and posts events for the management applications. 10800 **/ 10801 static void 10802 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10803 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10804 { 10805 IOCB_t *icmd; 10806 uint16_t evt_code; 10807 struct temp_event temp_event_data; 10808 struct Scsi_Host *shost; 10809 uint32_t *iocb_w; 10810 10811 icmd = &iocbq->iocb; 10812 evt_code = icmd->un.asyncstat.evt_code; 10813 10814 switch (evt_code) { 10815 case ASYNC_TEMP_WARN: 10816 case ASYNC_TEMP_SAFE: 10817 temp_event_data.data = (uint32_t) icmd->ulpContext; 10818 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10819 if (evt_code == ASYNC_TEMP_WARN) { 10820 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10821 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10822 "0347 Adapter is very hot, please take " 10823 "corrective action. temperature : %d Celsius\n", 10824 (uint32_t) icmd->ulpContext); 10825 } else { 10826 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10827 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10828 "0340 Adapter temperature is OK now. " 10829 "temperature : %d Celsius\n", 10830 (uint32_t) icmd->ulpContext); 10831 } 10832 10833 /* Send temperature change event to applications */ 10834 shost = lpfc_shost_from_vport(phba->pport); 10835 fc_host_post_vendor_event(shost, fc_get_event_number(), 10836 sizeof(temp_event_data), (char *) &temp_event_data, 10837 LPFC_NL_VENDOR_ID); 10838 break; 10839 case ASYNC_STATUS_CN: 10840 lpfc_sli_abts_err_handler(phba, iocbq); 10841 break; 10842 default: 10843 iocb_w = (uint32_t *) icmd; 10844 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 10845 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10846 " evt_code 0x%x\n" 10847 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10848 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10849 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10850 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10851 pring->ringno, icmd->un.asyncstat.evt_code, 10852 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10853 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10854 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10855 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10856 10857 break; 10858 } 10859 } 10860 10861 10862 /** 10863 * lpfc_sli4_setup - SLI ring setup function 10864 * @phba: Pointer to HBA context object. 10865 * 10866 * lpfc_sli_setup sets up rings of the SLI interface with 10867 * number of iocbs per ring and iotags. This function is 10868 * called while driver attach to the HBA and before the 10869 * interrupts are enabled. So there is no need for locking. 10870 * 10871 * This function always returns 0. 10872 **/ 10873 int 10874 lpfc_sli4_setup(struct lpfc_hba *phba) 10875 { 10876 struct lpfc_sli_ring *pring; 10877 10878 pring = phba->sli4_hba.els_wq->pring; 10879 pring->num_mask = LPFC_MAX_RING_MASK; 10880 pring->prt[0].profile = 0; /* Mask 0 */ 10881 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10882 pring->prt[0].type = FC_TYPE_ELS; 10883 pring->prt[0].lpfc_sli_rcv_unsol_event = 10884 lpfc_els_unsol_event; 10885 pring->prt[1].profile = 0; /* Mask 1 */ 10886 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10887 pring->prt[1].type = FC_TYPE_ELS; 10888 pring->prt[1].lpfc_sli_rcv_unsol_event = 10889 lpfc_els_unsol_event; 10890 pring->prt[2].profile = 0; /* Mask 2 */ 10891 /* NameServer Inquiry */ 10892 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10893 /* NameServer */ 10894 pring->prt[2].type = FC_TYPE_CT; 10895 pring->prt[2].lpfc_sli_rcv_unsol_event = 10896 lpfc_ct_unsol_event; 10897 pring->prt[3].profile = 0; /* Mask 3 */ 10898 /* NameServer response */ 10899 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10900 /* NameServer */ 10901 pring->prt[3].type = FC_TYPE_CT; 10902 pring->prt[3].lpfc_sli_rcv_unsol_event = 10903 lpfc_ct_unsol_event; 10904 return 0; 10905 } 10906 10907 /** 10908 * lpfc_sli_setup - SLI ring setup function 10909 * @phba: Pointer to HBA context object. 10910 * 10911 * lpfc_sli_setup sets up rings of the SLI interface with 10912 * number of iocbs per ring and iotags. This function is 10913 * called while driver attach to the HBA and before the 10914 * interrupts are enabled. So there is no need for locking. 10915 * 10916 * This function always returns 0. SLI3 only. 10917 **/ 10918 int 10919 lpfc_sli_setup(struct lpfc_hba *phba) 10920 { 10921 int i, totiocbsize = 0; 10922 struct lpfc_sli *psli = &phba->sli; 10923 struct lpfc_sli_ring *pring; 10924 10925 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10926 psli->sli_flag = 0; 10927 10928 psli->iocbq_lookup = NULL; 10929 psli->iocbq_lookup_len = 0; 10930 psli->last_iotag = 0; 10931 10932 for (i = 0; i < psli->num_rings; i++) { 10933 pring = &psli->sli3_ring[i]; 10934 switch (i) { 10935 case LPFC_FCP_RING: /* ring 0 - FCP */ 10936 /* numCiocb and numRiocb are used in config_port */ 10937 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10938 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10939 pring->sli.sli3.numCiocb += 10940 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10941 pring->sli.sli3.numRiocb += 10942 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10943 pring->sli.sli3.numCiocb += 10944 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10945 pring->sli.sli3.numRiocb += 10946 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10947 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10948 SLI3_IOCB_CMD_SIZE : 10949 SLI2_IOCB_CMD_SIZE; 10950 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10951 SLI3_IOCB_RSP_SIZE : 10952 SLI2_IOCB_RSP_SIZE; 10953 pring->iotag_ctr = 0; 10954 pring->iotag_max = 10955 (phba->cfg_hba_queue_depth * 2); 10956 pring->fast_iotag = pring->iotag_max; 10957 pring->num_mask = 0; 10958 break; 10959 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10960 /* numCiocb and numRiocb are used in config_port */ 10961 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10962 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10963 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10964 SLI3_IOCB_CMD_SIZE : 10965 SLI2_IOCB_CMD_SIZE; 10966 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10967 SLI3_IOCB_RSP_SIZE : 10968 SLI2_IOCB_RSP_SIZE; 10969 pring->iotag_max = phba->cfg_hba_queue_depth; 10970 pring->num_mask = 0; 10971 break; 10972 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10973 /* numCiocb and numRiocb are used in config_port */ 10974 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10975 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10976 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10977 SLI3_IOCB_CMD_SIZE : 10978 SLI2_IOCB_CMD_SIZE; 10979 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10980 SLI3_IOCB_RSP_SIZE : 10981 SLI2_IOCB_RSP_SIZE; 10982 pring->fast_iotag = 0; 10983 pring->iotag_ctr = 0; 10984 pring->iotag_max = 4096; 10985 pring->lpfc_sli_rcv_async_status = 10986 lpfc_sli_async_event_handler; 10987 pring->num_mask = LPFC_MAX_RING_MASK; 10988 pring->prt[0].profile = 0; /* Mask 0 */ 10989 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10990 pring->prt[0].type = FC_TYPE_ELS; 10991 pring->prt[0].lpfc_sli_rcv_unsol_event = 10992 lpfc_els_unsol_event; 10993 pring->prt[1].profile = 0; /* Mask 1 */ 10994 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10995 pring->prt[1].type = FC_TYPE_ELS; 10996 pring->prt[1].lpfc_sli_rcv_unsol_event = 10997 lpfc_els_unsol_event; 10998 pring->prt[2].profile = 0; /* Mask 2 */ 10999 /* NameServer Inquiry */ 11000 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 11001 /* NameServer */ 11002 pring->prt[2].type = FC_TYPE_CT; 11003 pring->prt[2].lpfc_sli_rcv_unsol_event = 11004 lpfc_ct_unsol_event; 11005 pring->prt[3].profile = 0; /* Mask 3 */ 11006 /* NameServer response */ 11007 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 11008 /* NameServer */ 11009 pring->prt[3].type = FC_TYPE_CT; 11010 pring->prt[3].lpfc_sli_rcv_unsol_event = 11011 lpfc_ct_unsol_event; 11012 break; 11013 } 11014 totiocbsize += (pring->sli.sli3.numCiocb * 11015 pring->sli.sli3.sizeCiocb) + 11016 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 11017 } 11018 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 11019 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 11020 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 11021 "SLI2 SLIM Data: x%x x%lx\n", 11022 phba->brd_no, totiocbsize, 11023 (unsigned long) MAX_SLIM_IOCB_SIZE); 11024 } 11025 if (phba->cfg_multi_ring_support == 2) 11026 lpfc_extra_ring_setup(phba); 11027 11028 return 0; 11029 } 11030 11031 /** 11032 * lpfc_sli4_queue_init - Queue initialization function 11033 * @phba: Pointer to HBA context object. 11034 * 11035 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 11036 * ring. This function also initializes ring indices of each ring. 11037 * This function is called during the initialization of the SLI 11038 * interface of an HBA. 11039 * This function is called with no lock held and always returns 11040 * 1. 11041 **/ 11042 void 11043 lpfc_sli4_queue_init(struct lpfc_hba *phba) 11044 { 11045 struct lpfc_sli *psli; 11046 struct lpfc_sli_ring *pring; 11047 int i; 11048 11049 psli = &phba->sli; 11050 spin_lock_irq(&phba->hbalock); 11051 INIT_LIST_HEAD(&psli->mboxq); 11052 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11053 /* Initialize list headers for txq and txcmplq as double linked lists */ 11054 for (i = 0; i < phba->cfg_hdw_queue; i++) { 11055 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 11056 pring->flag = 0; 11057 pring->ringno = LPFC_FCP_RING; 11058 pring->txcmplq_cnt = 0; 11059 INIT_LIST_HEAD(&pring->txq); 11060 INIT_LIST_HEAD(&pring->txcmplq); 11061 INIT_LIST_HEAD(&pring->iocb_continueq); 11062 spin_lock_init(&pring->ring_lock); 11063 } 11064 pring = phba->sli4_hba.els_wq->pring; 11065 pring->flag = 0; 11066 pring->ringno = LPFC_ELS_RING; 11067 pring->txcmplq_cnt = 0; 11068 INIT_LIST_HEAD(&pring->txq); 11069 INIT_LIST_HEAD(&pring->txcmplq); 11070 INIT_LIST_HEAD(&pring->iocb_continueq); 11071 spin_lock_init(&pring->ring_lock); 11072 11073 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 11074 pring = phba->sli4_hba.nvmels_wq->pring; 11075 pring->flag = 0; 11076 pring->ringno = LPFC_ELS_RING; 11077 pring->txcmplq_cnt = 0; 11078 INIT_LIST_HEAD(&pring->txq); 11079 INIT_LIST_HEAD(&pring->txcmplq); 11080 INIT_LIST_HEAD(&pring->iocb_continueq); 11081 spin_lock_init(&pring->ring_lock); 11082 } 11083 11084 spin_unlock_irq(&phba->hbalock); 11085 } 11086 11087 /** 11088 * lpfc_sli_queue_init - Queue initialization function 11089 * @phba: Pointer to HBA context object. 11090 * 11091 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 11092 * ring. This function also initializes ring indices of each ring. 11093 * This function is called during the initialization of the SLI 11094 * interface of an HBA. 11095 * This function is called with no lock held and always returns 11096 * 1. 11097 **/ 11098 void 11099 lpfc_sli_queue_init(struct lpfc_hba *phba) 11100 { 11101 struct lpfc_sli *psli; 11102 struct lpfc_sli_ring *pring; 11103 int i; 11104 11105 psli = &phba->sli; 11106 spin_lock_irq(&phba->hbalock); 11107 INIT_LIST_HEAD(&psli->mboxq); 11108 INIT_LIST_HEAD(&psli->mboxq_cmpl); 11109 /* Initialize list headers for txq and txcmplq as double linked lists */ 11110 for (i = 0; i < psli->num_rings; i++) { 11111 pring = &psli->sli3_ring[i]; 11112 pring->ringno = i; 11113 pring->sli.sli3.next_cmdidx = 0; 11114 pring->sli.sli3.local_getidx = 0; 11115 pring->sli.sli3.cmdidx = 0; 11116 INIT_LIST_HEAD(&pring->iocb_continueq); 11117 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 11118 INIT_LIST_HEAD(&pring->postbufq); 11119 pring->flag = 0; 11120 INIT_LIST_HEAD(&pring->txq); 11121 INIT_LIST_HEAD(&pring->txcmplq); 11122 spin_lock_init(&pring->ring_lock); 11123 } 11124 spin_unlock_irq(&phba->hbalock); 11125 } 11126 11127 /** 11128 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 11129 * @phba: Pointer to HBA context object. 11130 * 11131 * This routine flushes the mailbox command subsystem. It will unconditionally 11132 * flush all the mailbox commands in the three possible stages in the mailbox 11133 * command sub-system: pending mailbox command queue; the outstanding mailbox 11134 * command; and completed mailbox command queue. It is caller's responsibility 11135 * to make sure that the driver is in the proper state to flush the mailbox 11136 * command sub-system. Namely, the posting of mailbox commands into the 11137 * pending mailbox command queue from the various clients must be stopped; 11138 * either the HBA is in a state that it will never works on the outstanding 11139 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 11140 * mailbox command has been completed. 11141 **/ 11142 static void 11143 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 11144 { 11145 LIST_HEAD(completions); 11146 struct lpfc_sli *psli = &phba->sli; 11147 LPFC_MBOXQ_t *pmb; 11148 unsigned long iflag; 11149 11150 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11151 local_bh_disable(); 11152 11153 /* Flush all the mailbox commands in the mbox system */ 11154 spin_lock_irqsave(&phba->hbalock, iflag); 11155 11156 /* The pending mailbox command queue */ 11157 list_splice_init(&phba->sli.mboxq, &completions); 11158 /* The outstanding active mailbox command */ 11159 if (psli->mbox_active) { 11160 list_add_tail(&psli->mbox_active->list, &completions); 11161 psli->mbox_active = NULL; 11162 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 11163 } 11164 /* The completed mailbox command queue */ 11165 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 11166 spin_unlock_irqrestore(&phba->hbalock, iflag); 11167 11168 /* Enable softirqs again, done with phba->hbalock */ 11169 local_bh_enable(); 11170 11171 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 11172 while (!list_empty(&completions)) { 11173 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 11174 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 11175 if (pmb->mbox_cmpl) 11176 pmb->mbox_cmpl(phba, pmb); 11177 } 11178 } 11179 11180 /** 11181 * lpfc_sli_host_down - Vport cleanup function 11182 * @vport: Pointer to virtual port object. 11183 * 11184 * lpfc_sli_host_down is called to clean up the resources 11185 * associated with a vport before destroying virtual 11186 * port data structures. 11187 * This function does following operations: 11188 * - Free discovery resources associated with this virtual 11189 * port. 11190 * - Free iocbs associated with this virtual port in 11191 * the txq. 11192 * - Send abort for all iocb commands associated with this 11193 * vport in txcmplq. 11194 * 11195 * This function is called with no lock held and always returns 1. 11196 **/ 11197 int 11198 lpfc_sli_host_down(struct lpfc_vport *vport) 11199 { 11200 LIST_HEAD(completions); 11201 struct lpfc_hba *phba = vport->phba; 11202 struct lpfc_sli *psli = &phba->sli; 11203 struct lpfc_queue *qp = NULL; 11204 struct lpfc_sli_ring *pring; 11205 struct lpfc_iocbq *iocb, *next_iocb; 11206 int i; 11207 unsigned long flags = 0; 11208 uint16_t prev_pring_flag; 11209 11210 lpfc_cleanup_discovery_resources(vport); 11211 11212 spin_lock_irqsave(&phba->hbalock, flags); 11213 11214 /* 11215 * Error everything on the txq since these iocbs 11216 * have not been given to the FW yet. 11217 * Also issue ABTS for everything on the txcmplq 11218 */ 11219 if (phba->sli_rev != LPFC_SLI_REV4) { 11220 for (i = 0; i < psli->num_rings; i++) { 11221 pring = &psli->sli3_ring[i]; 11222 prev_pring_flag = pring->flag; 11223 /* Only slow rings */ 11224 if (pring->ringno == LPFC_ELS_RING) { 11225 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11226 /* Set the lpfc data pending flag */ 11227 set_bit(LPFC_DATA_READY, &phba->data_flags); 11228 } 11229 list_for_each_entry_safe(iocb, next_iocb, 11230 &pring->txq, list) { 11231 if (iocb->vport != vport) 11232 continue; 11233 list_move_tail(&iocb->list, &completions); 11234 } 11235 list_for_each_entry_safe(iocb, next_iocb, 11236 &pring->txcmplq, list) { 11237 if (iocb->vport != vport) 11238 continue; 11239 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11240 NULL); 11241 } 11242 pring->flag = prev_pring_flag; 11243 } 11244 } else { 11245 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11246 pring = qp->pring; 11247 if (!pring) 11248 continue; 11249 if (pring == phba->sli4_hba.els_wq->pring) { 11250 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11251 /* Set the lpfc data pending flag */ 11252 set_bit(LPFC_DATA_READY, &phba->data_flags); 11253 } 11254 prev_pring_flag = pring->flag; 11255 spin_lock(&pring->ring_lock); 11256 list_for_each_entry_safe(iocb, next_iocb, 11257 &pring->txq, list) { 11258 if (iocb->vport != vport) 11259 continue; 11260 list_move_tail(&iocb->list, &completions); 11261 } 11262 spin_unlock(&pring->ring_lock); 11263 list_for_each_entry_safe(iocb, next_iocb, 11264 &pring->txcmplq, list) { 11265 if (iocb->vport != vport) 11266 continue; 11267 lpfc_sli_issue_abort_iotag(phba, pring, iocb, 11268 NULL); 11269 } 11270 pring->flag = prev_pring_flag; 11271 } 11272 } 11273 spin_unlock_irqrestore(&phba->hbalock, flags); 11274 11275 /* Make sure HBA is alive */ 11276 lpfc_issue_hb_tmo(phba); 11277 11278 /* Cancel all the IOCBs from the completions list */ 11279 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11280 IOERR_SLI_DOWN); 11281 return 1; 11282 } 11283 11284 /** 11285 * lpfc_sli_hba_down - Resource cleanup function for the HBA 11286 * @phba: Pointer to HBA context object. 11287 * 11288 * This function cleans up all iocb, buffers, mailbox commands 11289 * while shutting down the HBA. This function is called with no 11290 * lock held and always returns 1. 11291 * This function does the following to cleanup driver resources: 11292 * - Free discovery resources for each virtual port 11293 * - Cleanup any pending fabric iocbs 11294 * - Iterate through the iocb txq and free each entry 11295 * in the list. 11296 * - Free up any buffer posted to the HBA 11297 * - Free mailbox commands in the mailbox queue. 11298 **/ 11299 int 11300 lpfc_sli_hba_down(struct lpfc_hba *phba) 11301 { 11302 LIST_HEAD(completions); 11303 struct lpfc_sli *psli = &phba->sli; 11304 struct lpfc_queue *qp = NULL; 11305 struct lpfc_sli_ring *pring; 11306 struct lpfc_dmabuf *buf_ptr; 11307 unsigned long flags = 0; 11308 int i; 11309 11310 /* Shutdown the mailbox command sub-system */ 11311 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 11312 11313 lpfc_hba_down_prep(phba); 11314 11315 /* Disable softirqs, including timers from obtaining phba->hbalock */ 11316 local_bh_disable(); 11317 11318 lpfc_fabric_abort_hba(phba); 11319 11320 spin_lock_irqsave(&phba->hbalock, flags); 11321 11322 /* 11323 * Error everything on the txq since these iocbs 11324 * have not been given to the FW yet. 11325 */ 11326 if (phba->sli_rev != LPFC_SLI_REV4) { 11327 for (i = 0; i < psli->num_rings; i++) { 11328 pring = &psli->sli3_ring[i]; 11329 /* Only slow rings */ 11330 if (pring->ringno == LPFC_ELS_RING) { 11331 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11332 /* Set the lpfc data pending flag */ 11333 set_bit(LPFC_DATA_READY, &phba->data_flags); 11334 } 11335 list_splice_init(&pring->txq, &completions); 11336 } 11337 } else { 11338 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11339 pring = qp->pring; 11340 if (!pring) 11341 continue; 11342 spin_lock(&pring->ring_lock); 11343 list_splice_init(&pring->txq, &completions); 11344 spin_unlock(&pring->ring_lock); 11345 if (pring == phba->sli4_hba.els_wq->pring) { 11346 pring->flag |= LPFC_DEFERRED_RING_EVENT; 11347 /* Set the lpfc data pending flag */ 11348 set_bit(LPFC_DATA_READY, &phba->data_flags); 11349 } 11350 } 11351 } 11352 spin_unlock_irqrestore(&phba->hbalock, flags); 11353 11354 /* Cancel all the IOCBs from the completions list */ 11355 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 11356 IOERR_SLI_DOWN); 11357 11358 spin_lock_irqsave(&phba->hbalock, flags); 11359 list_splice_init(&phba->elsbuf, &completions); 11360 phba->elsbuf_cnt = 0; 11361 phba->elsbuf_prev_cnt = 0; 11362 spin_unlock_irqrestore(&phba->hbalock, flags); 11363 11364 while (!list_empty(&completions)) { 11365 list_remove_head(&completions, buf_ptr, 11366 struct lpfc_dmabuf, list); 11367 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 11368 kfree(buf_ptr); 11369 } 11370 11371 /* Enable softirqs again, done with phba->hbalock */ 11372 local_bh_enable(); 11373 11374 /* Return any active mbox cmds */ 11375 del_timer_sync(&psli->mbox_tmo); 11376 11377 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 11378 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 11379 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 11380 11381 return 1; 11382 } 11383 11384 /** 11385 * lpfc_sli_pcimem_bcopy - SLI memory copy function 11386 * @srcp: Source memory pointer. 11387 * @destp: Destination memory pointer. 11388 * @cnt: Number of words required to be copied. 11389 * 11390 * This function is used for copying data between driver memory 11391 * and the SLI memory. This function also changes the endianness 11392 * of each word if native endianness is different from SLI 11393 * endianness. This function can be called with or without 11394 * lock. 11395 **/ 11396 void 11397 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11398 { 11399 uint32_t *src = srcp; 11400 uint32_t *dest = destp; 11401 uint32_t ldata; 11402 int i; 11403 11404 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11405 ldata = *src; 11406 ldata = le32_to_cpu(ldata); 11407 *dest = ldata; 11408 src++; 11409 dest++; 11410 } 11411 } 11412 11413 11414 /** 11415 * lpfc_sli_bemem_bcopy - SLI memory copy function 11416 * @srcp: Source memory pointer. 11417 * @destp: Destination memory pointer. 11418 * @cnt: Number of words required to be copied. 11419 * 11420 * This function is used for copying data between a data structure 11421 * with big endian representation to local endianness. 11422 * This function can be called with or without lock. 11423 **/ 11424 void 11425 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11426 { 11427 uint32_t *src = srcp; 11428 uint32_t *dest = destp; 11429 uint32_t ldata; 11430 int i; 11431 11432 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11433 ldata = *src; 11434 ldata = be32_to_cpu(ldata); 11435 *dest = ldata; 11436 src++; 11437 dest++; 11438 } 11439 } 11440 11441 /** 11442 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11443 * @phba: Pointer to HBA context object. 11444 * @pring: Pointer to driver SLI ring object. 11445 * @mp: Pointer to driver buffer object. 11446 * 11447 * This function is called with no lock held. 11448 * It always return zero after adding the buffer to the postbufq 11449 * buffer list. 11450 **/ 11451 int 11452 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11453 struct lpfc_dmabuf *mp) 11454 { 11455 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11456 later */ 11457 spin_lock_irq(&phba->hbalock); 11458 list_add_tail(&mp->list, &pring->postbufq); 11459 pring->postbufq_cnt++; 11460 spin_unlock_irq(&phba->hbalock); 11461 return 0; 11462 } 11463 11464 /** 11465 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11466 * @phba: Pointer to HBA context object. 11467 * 11468 * When HBQ is enabled, buffers are searched based on tags. This function 11469 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11470 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11471 * does not conflict with tags of buffer posted for unsolicited events. 11472 * The function returns the allocated tag. The function is called with 11473 * no locks held. 11474 **/ 11475 uint32_t 11476 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11477 { 11478 spin_lock_irq(&phba->hbalock); 11479 phba->buffer_tag_count++; 11480 /* 11481 * Always set the QUE_BUFTAG_BIT to distiguish between 11482 * a tag assigned by HBQ. 11483 */ 11484 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11485 spin_unlock_irq(&phba->hbalock); 11486 return phba->buffer_tag_count; 11487 } 11488 11489 /** 11490 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11491 * @phba: Pointer to HBA context object. 11492 * @pring: Pointer to driver SLI ring object. 11493 * @tag: Buffer tag. 11494 * 11495 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11496 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11497 * iocb is posted to the response ring with the tag of the buffer. 11498 * This function searches the pring->postbufq list using the tag 11499 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11500 * iocb. If the buffer is found then lpfc_dmabuf object of the 11501 * buffer is returned to the caller else NULL is returned. 11502 * This function is called with no lock held. 11503 **/ 11504 struct lpfc_dmabuf * 11505 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11506 uint32_t tag) 11507 { 11508 struct lpfc_dmabuf *mp, *next_mp; 11509 struct list_head *slp = &pring->postbufq; 11510 11511 /* Search postbufq, from the beginning, looking for a match on tag */ 11512 spin_lock_irq(&phba->hbalock); 11513 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11514 if (mp->buffer_tag == tag) { 11515 list_del_init(&mp->list); 11516 pring->postbufq_cnt--; 11517 spin_unlock_irq(&phba->hbalock); 11518 return mp; 11519 } 11520 } 11521 11522 spin_unlock_irq(&phba->hbalock); 11523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11524 "0402 Cannot find virtual addr for buffer tag on " 11525 "ring %d Data x%lx x%px x%px x%x\n", 11526 pring->ringno, (unsigned long) tag, 11527 slp->next, slp->prev, pring->postbufq_cnt); 11528 11529 return NULL; 11530 } 11531 11532 /** 11533 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11534 * @phba: Pointer to HBA context object. 11535 * @pring: Pointer to driver SLI ring object. 11536 * @phys: DMA address of the buffer. 11537 * 11538 * This function searches the buffer list using the dma_address 11539 * of unsolicited event to find the driver's lpfc_dmabuf object 11540 * corresponding to the dma_address. The function returns the 11541 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11542 * This function is called by the ct and els unsolicited event 11543 * handlers to get the buffer associated with the unsolicited 11544 * event. 11545 * 11546 * This function is called with no lock held. 11547 **/ 11548 struct lpfc_dmabuf * 11549 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11550 dma_addr_t phys) 11551 { 11552 struct lpfc_dmabuf *mp, *next_mp; 11553 struct list_head *slp = &pring->postbufq; 11554 11555 /* Search postbufq, from the beginning, looking for a match on phys */ 11556 spin_lock_irq(&phba->hbalock); 11557 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11558 if (mp->phys == phys) { 11559 list_del_init(&mp->list); 11560 pring->postbufq_cnt--; 11561 spin_unlock_irq(&phba->hbalock); 11562 return mp; 11563 } 11564 } 11565 11566 spin_unlock_irq(&phba->hbalock); 11567 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 11568 "0410 Cannot find virtual addr for mapped buf on " 11569 "ring %d Data x%llx x%px x%px x%x\n", 11570 pring->ringno, (unsigned long long)phys, 11571 slp->next, slp->prev, pring->postbufq_cnt); 11572 return NULL; 11573 } 11574 11575 /** 11576 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11577 * @phba: Pointer to HBA context object. 11578 * @cmdiocb: Pointer to driver command iocb object. 11579 * @rspiocb: Pointer to driver response iocb object. 11580 * 11581 * This function is the completion handler for the abort iocbs for 11582 * ELS commands. This function is called from the ELS ring event 11583 * handler with no lock held. This function frees memory resources 11584 * associated with the abort iocb. 11585 **/ 11586 static void 11587 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11588 struct lpfc_iocbq *rspiocb) 11589 { 11590 IOCB_t *irsp = &rspiocb->iocb; 11591 uint16_t abort_iotag, abort_context; 11592 struct lpfc_iocbq *abort_iocb = NULL; 11593 11594 if (irsp->ulpStatus) { 11595 11596 /* 11597 * Assume that the port already completed and returned, or 11598 * will return the iocb. Just Log the message. 11599 */ 11600 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11601 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11602 11603 spin_lock_irq(&phba->hbalock); 11604 if (phba->sli_rev < LPFC_SLI_REV4) { 11605 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11606 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11607 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11608 spin_unlock_irq(&phba->hbalock); 11609 goto release_iocb; 11610 } 11611 if (abort_iotag != 0 && 11612 abort_iotag <= phba->sli.last_iotag) 11613 abort_iocb = 11614 phba->sli.iocbq_lookup[abort_iotag]; 11615 } else 11616 /* For sli4 the abort_tag is the XRI, 11617 * so the abort routine puts the iotag of the iocb 11618 * being aborted in the context field of the abort 11619 * IOCB. 11620 */ 11621 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11622 11623 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11624 "0327 Cannot abort els iocb x%px " 11625 "with tag %x context %x, abort status %x, " 11626 "abort code %x\n", 11627 abort_iocb, abort_iotag, abort_context, 11628 irsp->ulpStatus, irsp->un.ulpWord[4]); 11629 11630 spin_unlock_irq(&phba->hbalock); 11631 } 11632 release_iocb: 11633 lpfc_sli_release_iocbq(phba, cmdiocb); 11634 return; 11635 } 11636 11637 /** 11638 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11639 * @phba: Pointer to HBA context object. 11640 * @cmdiocb: Pointer to driver command iocb object. 11641 * @rspiocb: Pointer to driver response iocb object. 11642 * 11643 * The function is called from SLI ring event handler with no 11644 * lock held. This function is the completion handler for ELS commands 11645 * which are aborted. The function frees memory resources used for 11646 * the aborted ELS commands. 11647 **/ 11648 void 11649 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11650 struct lpfc_iocbq *rspiocb) 11651 { 11652 struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *) cmdiocb->context1; 11653 IOCB_t *irsp = &rspiocb->iocb; 11654 11655 /* ELS cmd tag <ulpIoTag> completes */ 11656 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11657 "0139 Ignoring ELS cmd tag x%x completion Data: " 11658 "x%x x%x x%x\n", 11659 irsp->ulpIoTag, irsp->ulpStatus, 11660 irsp->un.ulpWord[4], irsp->ulpTimeout); 11661 /* 11662 * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp 11663 * if exchange is busy. 11664 */ 11665 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11666 lpfc_ct_free_iocb(phba, cmdiocb); 11667 else 11668 lpfc_els_free_iocb(phba, cmdiocb); 11669 11670 lpfc_nlp_put(ndlp); 11671 } 11672 11673 /** 11674 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11675 * @phba: Pointer to HBA context object. 11676 * @pring: Pointer to driver SLI ring object. 11677 * @cmdiocb: Pointer to driver command iocb object. 11678 * @cmpl: completion function. 11679 * 11680 * This function issues an abort iocb for the provided command iocb. In case 11681 * of unloading, the abort iocb will not be issued to commands on the ELS 11682 * ring. Instead, the callback function shall be changed to those commands 11683 * so that nothing happens when them finishes. This function is called with 11684 * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS 11685 * when the command iocb is an abort request. 11686 * 11687 **/ 11688 int 11689 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11690 struct lpfc_iocbq *cmdiocb, void *cmpl) 11691 { 11692 struct lpfc_vport *vport = cmdiocb->vport; 11693 struct lpfc_iocbq *abtsiocbp; 11694 IOCB_t *icmd = NULL; 11695 IOCB_t *iabt = NULL; 11696 int retval = IOCB_ERROR; 11697 unsigned long iflags; 11698 struct lpfc_nodelist *ndlp; 11699 11700 /* 11701 * There are certain command types we don't want to abort. And we 11702 * don't want to abort commands that are already in the process of 11703 * being aborted. 11704 */ 11705 icmd = &cmdiocb->iocb; 11706 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11707 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11708 cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) 11709 return IOCB_ABORTING; 11710 11711 if (!pring) { 11712 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11713 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11714 else 11715 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11716 return retval; 11717 } 11718 11719 /* 11720 * If we're unloading, don't abort iocb on the ELS ring, but change 11721 * the callback so that nothing happens when it finishes. 11722 */ 11723 if ((vport->load_flag & FC_UNLOADING) && 11724 pring->ringno == LPFC_ELS_RING) { 11725 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11726 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11727 else 11728 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11729 return retval; 11730 } 11731 11732 /* issue ABTS for this IOCB based on iotag */ 11733 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11734 if (abtsiocbp == NULL) 11735 return IOCB_NORESOURCE; 11736 11737 /* This signals the response to set the correct status 11738 * before calling the completion handler 11739 */ 11740 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11741 11742 iabt = &abtsiocbp->iocb; 11743 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11744 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11745 if (phba->sli_rev == LPFC_SLI_REV4) { 11746 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11747 if (pring->ringno == LPFC_ELS_RING) 11748 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11749 } else { 11750 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11751 if (pring->ringno == LPFC_ELS_RING) { 11752 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11753 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11754 } 11755 } 11756 iabt->ulpLe = 1; 11757 iabt->ulpClass = icmd->ulpClass; 11758 11759 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11760 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11761 if (cmdiocb->iocb_flag & LPFC_IO_FCP) { 11762 abtsiocbp->iocb_flag |= LPFC_IO_FCP; 11763 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11764 } 11765 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11766 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11767 11768 if (phba->link_state >= LPFC_LINK_UP) 11769 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11770 else 11771 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11772 11773 if (cmpl) 11774 abtsiocbp->iocb_cmpl = cmpl; 11775 else 11776 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11777 abtsiocbp->vport = vport; 11778 11779 if (phba->sli_rev == LPFC_SLI_REV4) { 11780 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11781 if (unlikely(pring == NULL)) 11782 goto abort_iotag_exit; 11783 /* Note: both hbalock and ring_lock need to be set here */ 11784 spin_lock_irqsave(&pring->ring_lock, iflags); 11785 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11786 abtsiocbp, 0); 11787 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11788 } else { 11789 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11790 abtsiocbp, 0); 11791 } 11792 11793 abort_iotag_exit: 11794 11795 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11796 "0339 Abort xri x%x, original iotag x%x, " 11797 "abort cmd iotag x%x retval x%x\n", 11798 iabt->un.acxri.abortIoTag, 11799 iabt->un.acxri.abortContextTag, 11800 abtsiocbp->iotag, retval); 11801 11802 if (retval) { 11803 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 11804 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11805 } 11806 11807 /* 11808 * Caller to this routine should check for IOCB_ERROR 11809 * and handle it properly. This routine no longer removes 11810 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11811 */ 11812 return retval; 11813 } 11814 11815 /** 11816 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11817 * @phba: pointer to lpfc HBA data structure. 11818 * 11819 * This routine will abort all pending and outstanding iocbs to an HBA. 11820 **/ 11821 void 11822 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11823 { 11824 struct lpfc_sli *psli = &phba->sli; 11825 struct lpfc_sli_ring *pring; 11826 struct lpfc_queue *qp = NULL; 11827 int i; 11828 11829 if (phba->sli_rev != LPFC_SLI_REV4) { 11830 for (i = 0; i < psli->num_rings; i++) { 11831 pring = &psli->sli3_ring[i]; 11832 lpfc_sli_abort_iocb_ring(phba, pring); 11833 } 11834 return; 11835 } 11836 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11837 pring = qp->pring; 11838 if (!pring) 11839 continue; 11840 lpfc_sli_abort_iocb_ring(phba, pring); 11841 } 11842 } 11843 11844 /** 11845 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11846 * @iocbq: Pointer to driver iocb object. 11847 * @vport: Pointer to driver virtual port object. 11848 * @tgt_id: SCSI ID of the target. 11849 * @lun_id: LUN ID of the scsi device. 11850 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11851 * 11852 * This function acts as an iocb filter for functions which abort or count 11853 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11854 * 0 if the filtering criteria is met for the given iocb and will return 11855 * 1 if the filtering criteria is not met. 11856 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11857 * given iocb is for the SCSI device specified by vport, tgt_id and 11858 * lun_id parameter. 11859 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11860 * given iocb is for the SCSI target specified by vport and tgt_id 11861 * parameters. 11862 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11863 * given iocb is for the SCSI host associated with the given vport. 11864 * This function is called with no locks held. 11865 **/ 11866 static int 11867 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11868 uint16_t tgt_id, uint64_t lun_id, 11869 lpfc_ctx_cmd ctx_cmd) 11870 { 11871 struct lpfc_io_buf *lpfc_cmd; 11872 IOCB_t *icmd = NULL; 11873 int rc = 1; 11874 11875 if (!iocbq || iocbq->vport != vport) 11876 return rc; 11877 11878 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11879 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || 11880 iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11881 return rc; 11882 11883 icmd = &iocbq->iocb; 11884 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11885 icmd->ulpCommand == CMD_CLOSE_XRI_CN) 11886 return rc; 11887 11888 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11889 11890 if (lpfc_cmd->pCmd == NULL) 11891 return rc; 11892 11893 switch (ctx_cmd) { 11894 case LPFC_CTX_LUN: 11895 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11896 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11897 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11898 rc = 0; 11899 break; 11900 case LPFC_CTX_TGT: 11901 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11902 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11903 rc = 0; 11904 break; 11905 case LPFC_CTX_HOST: 11906 rc = 0; 11907 break; 11908 default: 11909 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11910 __func__, ctx_cmd); 11911 break; 11912 } 11913 11914 return rc; 11915 } 11916 11917 /** 11918 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11919 * @vport: Pointer to virtual port. 11920 * @tgt_id: SCSI ID of the target. 11921 * @lun_id: LUN ID of the scsi device. 11922 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11923 * 11924 * This function returns number of FCP commands pending for the vport. 11925 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11926 * commands pending on the vport associated with SCSI device specified 11927 * by tgt_id and lun_id parameters. 11928 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11929 * commands pending on the vport associated with SCSI target specified 11930 * by tgt_id parameter. 11931 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11932 * commands pending on the vport. 11933 * This function returns the number of iocbs which satisfy the filter. 11934 * This function is called without any lock held. 11935 **/ 11936 int 11937 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11938 lpfc_ctx_cmd ctx_cmd) 11939 { 11940 struct lpfc_hba *phba = vport->phba; 11941 struct lpfc_iocbq *iocbq; 11942 int sum, i; 11943 11944 spin_lock_irq(&phba->hbalock); 11945 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11946 iocbq = phba->sli.iocbq_lookup[i]; 11947 11948 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11949 ctx_cmd) == 0) 11950 sum++; 11951 } 11952 spin_unlock_irq(&phba->hbalock); 11953 11954 return sum; 11955 } 11956 11957 /** 11958 * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11959 * @phba: Pointer to HBA context object 11960 * @cmdiocb: Pointer to command iocb object. 11961 * @wcqe: pointer to the complete wcqe 11962 * 11963 * This function is called when an aborted FCP iocb completes. This 11964 * function is called by the ring event handler with no lock held. 11965 * This function frees the iocb. It is called for sli-4 adapters. 11966 **/ 11967 void 11968 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11969 struct lpfc_wcqe_complete *wcqe) 11970 { 11971 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11972 "3017 ABORT_XRI_CN completing on rpi x%x " 11973 "original iotag x%x, abort cmd iotag x%x " 11974 "status 0x%x, reason 0x%x\n", 11975 cmdiocb->iocb.un.acxri.abortContextTag, 11976 cmdiocb->iocb.un.acxri.abortIoTag, 11977 cmdiocb->iotag, 11978 (bf_get(lpfc_wcqe_c_status, wcqe) 11979 & LPFC_IOCB_STATUS_MASK), 11980 wcqe->parameter); 11981 lpfc_sli_release_iocbq(phba, cmdiocb); 11982 } 11983 11984 /** 11985 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11986 * @phba: Pointer to HBA context object 11987 * @cmdiocb: Pointer to command iocb object. 11988 * @rspiocb: Pointer to response iocb object. 11989 * 11990 * This function is called when an aborted FCP iocb completes. This 11991 * function is called by the ring event handler with no lock held. 11992 * This function frees the iocb. 11993 **/ 11994 void 11995 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11996 struct lpfc_iocbq *rspiocb) 11997 { 11998 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11999 "3096 ABORT_XRI_CN completing on rpi x%x " 12000 "original iotag x%x, abort cmd iotag x%x " 12001 "status 0x%x, reason 0x%x\n", 12002 cmdiocb->iocb.un.acxri.abortContextTag, 12003 cmdiocb->iocb.un.acxri.abortIoTag, 12004 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 12005 rspiocb->iocb.un.ulpWord[4]); 12006 lpfc_sli_release_iocbq(phba, cmdiocb); 12007 return; 12008 } 12009 12010 /** 12011 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 12012 * @vport: Pointer to virtual port. 12013 * @tgt_id: SCSI ID of the target. 12014 * @lun_id: LUN ID of the scsi device. 12015 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12016 * 12017 * This function sends an abort command for every SCSI command 12018 * associated with the given virtual port pending on the ring 12019 * filtered by lpfc_sli_validate_fcp_iocb function. 12020 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 12021 * FCP iocbs associated with lun specified by tgt_id and lun_id 12022 * parameters 12023 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 12024 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12025 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 12026 * FCP iocbs associated with virtual port. 12027 * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 12028 * lpfc_sli4_calc_ring is used. 12029 * This function returns number of iocbs it failed to abort. 12030 * This function is called with no locks held. 12031 **/ 12032 int 12033 lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, 12034 lpfc_ctx_cmd abort_cmd) 12035 { 12036 struct lpfc_hba *phba = vport->phba; 12037 struct lpfc_sli_ring *pring = NULL; 12038 struct lpfc_iocbq *iocbq; 12039 int errcnt = 0, ret_val = 0; 12040 unsigned long iflags; 12041 int i; 12042 void *fcp_cmpl = NULL; 12043 12044 /* all I/Os are in process of being flushed */ 12045 if (phba->hba_flag & HBA_IOQ_FLUSH) 12046 return errcnt; 12047 12048 for (i = 1; i <= phba->sli.last_iotag; i++) { 12049 iocbq = phba->sli.iocbq_lookup[i]; 12050 12051 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12052 abort_cmd) != 0) 12053 continue; 12054 12055 spin_lock_irqsave(&phba->hbalock, iflags); 12056 if (phba->sli_rev == LPFC_SLI_REV3) { 12057 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12058 fcp_cmpl = lpfc_sli_abort_fcp_cmpl; 12059 } else if (phba->sli_rev == LPFC_SLI_REV4) { 12060 pring = lpfc_sli4_calc_ring(phba, iocbq); 12061 fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; 12062 } 12063 ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, 12064 fcp_cmpl); 12065 spin_unlock_irqrestore(&phba->hbalock, iflags); 12066 if (ret_val != IOCB_SUCCESS) 12067 errcnt++; 12068 } 12069 12070 return errcnt; 12071 } 12072 12073 /** 12074 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 12075 * @vport: Pointer to virtual port. 12076 * @pring: Pointer to driver SLI ring object. 12077 * @tgt_id: SCSI ID of the target. 12078 * @lun_id: LUN ID of the scsi device. 12079 * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 12080 * 12081 * This function sends an abort command for every SCSI command 12082 * associated with the given virtual port pending on the ring 12083 * filtered by lpfc_sli_validate_fcp_iocb function. 12084 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 12085 * FCP iocbs associated with lun specified by tgt_id and lun_id 12086 * parameters 12087 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 12088 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 12089 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 12090 * FCP iocbs associated with virtual port. 12091 * This function returns number of iocbs it aborted . 12092 * This function is called with no locks held right after a taskmgmt 12093 * command is sent. 12094 **/ 12095 int 12096 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 12097 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 12098 { 12099 struct lpfc_hba *phba = vport->phba; 12100 struct lpfc_io_buf *lpfc_cmd; 12101 struct lpfc_iocbq *abtsiocbq; 12102 struct lpfc_nodelist *ndlp; 12103 struct lpfc_iocbq *iocbq; 12104 IOCB_t *icmd; 12105 int sum, i, ret_val; 12106 unsigned long iflags; 12107 struct lpfc_sli_ring *pring_s4 = NULL; 12108 12109 spin_lock_irqsave(&phba->hbalock, iflags); 12110 12111 /* all I/Os are in process of being flushed */ 12112 if (phba->hba_flag & HBA_IOQ_FLUSH) { 12113 spin_unlock_irqrestore(&phba->hbalock, iflags); 12114 return 0; 12115 } 12116 sum = 0; 12117 12118 for (i = 1; i <= phba->sli.last_iotag; i++) { 12119 iocbq = phba->sli.iocbq_lookup[i]; 12120 12121 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 12122 cmd) != 0) 12123 continue; 12124 12125 /* Guard against IO completion being called at same time */ 12126 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 12127 spin_lock(&lpfc_cmd->buf_lock); 12128 12129 if (!lpfc_cmd->pCmd) { 12130 spin_unlock(&lpfc_cmd->buf_lock); 12131 continue; 12132 } 12133 12134 if (phba->sli_rev == LPFC_SLI_REV4) { 12135 pring_s4 = 12136 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 12137 if (!pring_s4) { 12138 spin_unlock(&lpfc_cmd->buf_lock); 12139 continue; 12140 } 12141 /* Note: both hbalock and ring_lock must be set here */ 12142 spin_lock(&pring_s4->ring_lock); 12143 } 12144 12145 /* 12146 * If the iocbq is already being aborted, don't take a second 12147 * action, but do count it. 12148 */ 12149 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 12150 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 12151 if (phba->sli_rev == LPFC_SLI_REV4) 12152 spin_unlock(&pring_s4->ring_lock); 12153 spin_unlock(&lpfc_cmd->buf_lock); 12154 continue; 12155 } 12156 12157 /* issue ABTS for this IOCB based on iotag */ 12158 abtsiocbq = __lpfc_sli_get_iocbq(phba); 12159 if (!abtsiocbq) { 12160 if (phba->sli_rev == LPFC_SLI_REV4) 12161 spin_unlock(&pring_s4->ring_lock); 12162 spin_unlock(&lpfc_cmd->buf_lock); 12163 continue; 12164 } 12165 12166 icmd = &iocbq->iocb; 12167 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 12168 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 12169 if (phba->sli_rev == LPFC_SLI_REV4) 12170 abtsiocbq->iocb.un.acxri.abortIoTag = 12171 iocbq->sli4_xritag; 12172 else 12173 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 12174 abtsiocbq->iocb.ulpLe = 1; 12175 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 12176 abtsiocbq->vport = vport; 12177 12178 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 12179 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 12180 if (iocbq->iocb_flag & LPFC_IO_FCP) 12181 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 12182 if (iocbq->iocb_flag & LPFC_IO_FOF) 12183 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 12184 12185 ndlp = lpfc_cmd->rdata->pnode; 12186 12187 if (lpfc_is_link_up(phba) && 12188 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 12189 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 12190 else 12191 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 12192 12193 /* Setup callback routine and issue the command. */ 12194 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 12195 12196 /* 12197 * Indicate the IO is being aborted by the driver and set 12198 * the caller's flag into the aborted IO. 12199 */ 12200 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 12201 12202 if (phba->sli_rev == LPFC_SLI_REV4) { 12203 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 12204 abtsiocbq, 0); 12205 spin_unlock(&pring_s4->ring_lock); 12206 } else { 12207 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 12208 abtsiocbq, 0); 12209 } 12210 12211 spin_unlock(&lpfc_cmd->buf_lock); 12212 12213 if (ret_val == IOCB_ERROR) 12214 __lpfc_sli_release_iocbq(phba, abtsiocbq); 12215 else 12216 sum++; 12217 } 12218 spin_unlock_irqrestore(&phba->hbalock, iflags); 12219 return sum; 12220 } 12221 12222 /** 12223 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 12224 * @phba: Pointer to HBA context object. 12225 * @cmdiocbq: Pointer to command iocb. 12226 * @rspiocbq: Pointer to response iocb. 12227 * 12228 * This function is the completion handler for iocbs issued using 12229 * lpfc_sli_issue_iocb_wait function. This function is called by the 12230 * ring event handler function without any lock held. This function 12231 * can be called from both worker thread context and interrupt 12232 * context. This function also can be called from other thread which 12233 * cleans up the SLI layer objects. 12234 * This function copy the contents of the response iocb to the 12235 * response iocb memory object provided by the caller of 12236 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 12237 * sleeps for the iocb completion. 12238 **/ 12239 static void 12240 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 12241 struct lpfc_iocbq *cmdiocbq, 12242 struct lpfc_iocbq *rspiocbq) 12243 { 12244 wait_queue_head_t *pdone_q; 12245 unsigned long iflags; 12246 struct lpfc_io_buf *lpfc_cmd; 12247 12248 spin_lock_irqsave(&phba->hbalock, iflags); 12249 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 12250 12251 /* 12252 * A time out has occurred for the iocb. If a time out 12253 * completion handler has been supplied, call it. Otherwise, 12254 * just free the iocbq. 12255 */ 12256 12257 spin_unlock_irqrestore(&phba->hbalock, iflags); 12258 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 12259 cmdiocbq->wait_iocb_cmpl = NULL; 12260 if (cmdiocbq->iocb_cmpl) 12261 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 12262 else 12263 lpfc_sli_release_iocbq(phba, cmdiocbq); 12264 return; 12265 } 12266 12267 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 12268 if (cmdiocbq->context2 && rspiocbq) 12269 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 12270 &rspiocbq->iocb, sizeof(IOCB_t)); 12271 12272 /* Set the exchange busy flag for task management commands */ 12273 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 12274 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 12275 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 12276 cur_iocbq); 12277 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 12278 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 12279 else 12280 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 12281 } 12282 12283 pdone_q = cmdiocbq->context_un.wait_queue; 12284 if (pdone_q) 12285 wake_up(pdone_q); 12286 spin_unlock_irqrestore(&phba->hbalock, iflags); 12287 return; 12288 } 12289 12290 /** 12291 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 12292 * @phba: Pointer to HBA context object.. 12293 * @piocbq: Pointer to command iocb. 12294 * @flag: Flag to test. 12295 * 12296 * This routine grabs the hbalock and then test the iocb_flag to 12297 * see if the passed in flag is set. 12298 * Returns: 12299 * 1 if flag is set. 12300 * 0 if flag is not set. 12301 **/ 12302 static int 12303 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 12304 struct lpfc_iocbq *piocbq, uint32_t flag) 12305 { 12306 unsigned long iflags; 12307 int ret; 12308 12309 spin_lock_irqsave(&phba->hbalock, iflags); 12310 ret = piocbq->iocb_flag & flag; 12311 spin_unlock_irqrestore(&phba->hbalock, iflags); 12312 return ret; 12313 12314 } 12315 12316 /** 12317 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 12318 * @phba: Pointer to HBA context object.. 12319 * @ring_number: Ring number 12320 * @piocb: Pointer to command iocb. 12321 * @prspiocbq: Pointer to response iocb. 12322 * @timeout: Timeout in number of seconds. 12323 * 12324 * This function issues the iocb to firmware and waits for the 12325 * iocb to complete. The iocb_cmpl field of the shall be used 12326 * to handle iocbs which time out. If the field is NULL, the 12327 * function shall free the iocbq structure. If more clean up is 12328 * needed, the caller is expected to provide a completion function 12329 * that will provide the needed clean up. If the iocb command is 12330 * not completed within timeout seconds, the function will either 12331 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 12332 * completion function set in the iocb_cmpl field and then return 12333 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 12334 * resources if this function returns IOCB_TIMEDOUT. 12335 * The function waits for the iocb completion using an 12336 * non-interruptible wait. 12337 * This function will sleep while waiting for iocb completion. 12338 * So, this function should not be called from any context which 12339 * does not allow sleeping. Due to the same reason, this function 12340 * cannot be called with interrupt disabled. 12341 * This function assumes that the iocb completions occur while 12342 * this function sleep. So, this function cannot be called from 12343 * the thread which process iocb completion for this ring. 12344 * This function clears the iocb_flag of the iocb object before 12345 * issuing the iocb and the iocb completion handler sets this 12346 * flag and wakes this thread when the iocb completes. 12347 * The contents of the response iocb will be copied to prspiocbq 12348 * by the completion handler when the command completes. 12349 * This function returns IOCB_SUCCESS when success. 12350 * This function is called with no lock held. 12351 **/ 12352 int 12353 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12354 uint32_t ring_number, 12355 struct lpfc_iocbq *piocb, 12356 struct lpfc_iocbq *prspiocbq, 12357 uint32_t timeout) 12358 { 12359 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12360 long timeleft, timeout_req = 0; 12361 int retval = IOCB_SUCCESS; 12362 uint32_t creg_val; 12363 struct lpfc_iocbq *iocb; 12364 int txq_cnt = 0; 12365 int txcmplq_cnt = 0; 12366 struct lpfc_sli_ring *pring; 12367 unsigned long iflags; 12368 bool iocb_completed = true; 12369 12370 if (phba->sli_rev >= LPFC_SLI_REV4) 12371 pring = lpfc_sli4_calc_ring(phba, piocb); 12372 else 12373 pring = &phba->sli.sli3_ring[ring_number]; 12374 /* 12375 * If the caller has provided a response iocbq buffer, then context2 12376 * is NULL or its an error. 12377 */ 12378 if (prspiocbq) { 12379 if (piocb->context2) 12380 return IOCB_ERROR; 12381 piocb->context2 = prspiocbq; 12382 } 12383 12384 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12385 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12386 piocb->context_un.wait_queue = &done_q; 12387 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12388 12389 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12390 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12391 return IOCB_ERROR; 12392 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12393 writel(creg_val, phba->HCregaddr); 12394 readl(phba->HCregaddr); /* flush */ 12395 } 12396 12397 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12398 SLI_IOCB_RET_IOCB); 12399 if (retval == IOCB_SUCCESS) { 12400 timeout_req = msecs_to_jiffies(timeout * 1000); 12401 timeleft = wait_event_timeout(done_q, 12402 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12403 timeout_req); 12404 spin_lock_irqsave(&phba->hbalock, iflags); 12405 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12406 12407 /* 12408 * IOCB timed out. Inform the wake iocb wait 12409 * completion function and set local status 12410 */ 12411 12412 iocb_completed = false; 12413 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12414 } 12415 spin_unlock_irqrestore(&phba->hbalock, iflags); 12416 if (iocb_completed) { 12417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12418 "0331 IOCB wake signaled\n"); 12419 /* Note: we are not indicating if the IOCB has a success 12420 * status or not - that's for the caller to check. 12421 * IOCB_SUCCESS means just that the command was sent and 12422 * completed. Not that it completed successfully. 12423 * */ 12424 } else if (timeleft == 0) { 12425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12426 "0338 IOCB wait timeout error - no " 12427 "wake response Data x%x\n", timeout); 12428 retval = IOCB_TIMEDOUT; 12429 } else { 12430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12431 "0330 IOCB wake NOT set, " 12432 "Data x%x x%lx\n", 12433 timeout, (timeleft / jiffies)); 12434 retval = IOCB_TIMEDOUT; 12435 } 12436 } else if (retval == IOCB_BUSY) { 12437 if (phba->cfg_log_verbose & LOG_SLI) { 12438 list_for_each_entry(iocb, &pring->txq, list) { 12439 txq_cnt++; 12440 } 12441 list_for_each_entry(iocb, &pring->txcmplq, list) { 12442 txcmplq_cnt++; 12443 } 12444 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12445 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12446 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12447 } 12448 return retval; 12449 } else { 12450 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12451 "0332 IOCB wait issue failed, Data x%x\n", 12452 retval); 12453 retval = IOCB_ERROR; 12454 } 12455 12456 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12457 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12458 return IOCB_ERROR; 12459 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12460 writel(creg_val, phba->HCregaddr); 12461 readl(phba->HCregaddr); /* flush */ 12462 } 12463 12464 if (prspiocbq) 12465 piocb->context2 = NULL; 12466 12467 piocb->context_un.wait_queue = NULL; 12468 piocb->iocb_cmpl = NULL; 12469 return retval; 12470 } 12471 12472 /** 12473 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12474 * @phba: Pointer to HBA context object. 12475 * @pmboxq: Pointer to driver mailbox object. 12476 * @timeout: Timeout in number of seconds. 12477 * 12478 * This function issues the mailbox to firmware and waits for the 12479 * mailbox command to complete. If the mailbox command is not 12480 * completed within timeout seconds, it returns MBX_TIMEOUT. 12481 * The function waits for the mailbox completion using an 12482 * interruptible wait. If the thread is woken up due to a 12483 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12484 * should not free the mailbox resources, if this function returns 12485 * MBX_TIMEOUT. 12486 * This function will sleep while waiting for mailbox completion. 12487 * So, this function should not be called from any context which 12488 * does not allow sleeping. Due to the same reason, this function 12489 * cannot be called with interrupt disabled. 12490 * This function assumes that the mailbox completion occurs while 12491 * this function sleep. So, this function cannot be called from 12492 * the worker thread which processes mailbox completion. 12493 * This function is called in the context of HBA management 12494 * applications. 12495 * This function returns MBX_SUCCESS when successful. 12496 * This function is called with no lock held. 12497 **/ 12498 int 12499 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12500 uint32_t timeout) 12501 { 12502 struct completion mbox_done; 12503 int retval; 12504 unsigned long flag; 12505 12506 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12507 /* setup wake call as IOCB callback */ 12508 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12509 12510 /* setup context3 field to pass wait_queue pointer to wake function */ 12511 init_completion(&mbox_done); 12512 pmboxq->context3 = &mbox_done; 12513 /* now issue the command */ 12514 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12515 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12516 wait_for_completion_timeout(&mbox_done, 12517 msecs_to_jiffies(timeout * 1000)); 12518 12519 spin_lock_irqsave(&phba->hbalock, flag); 12520 pmboxq->context3 = NULL; 12521 /* 12522 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12523 * else do not free the resources. 12524 */ 12525 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12526 retval = MBX_SUCCESS; 12527 } else { 12528 retval = MBX_TIMEOUT; 12529 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12530 } 12531 spin_unlock_irqrestore(&phba->hbalock, flag); 12532 } 12533 return retval; 12534 } 12535 12536 /** 12537 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12538 * @phba: Pointer to HBA context. 12539 * @mbx_action: Mailbox shutdown options. 12540 * 12541 * This function is called to shutdown the driver's mailbox sub-system. 12542 * It first marks the mailbox sub-system is in a block state to prevent 12543 * the asynchronous mailbox command from issued off the pending mailbox 12544 * command queue. If the mailbox command sub-system shutdown is due to 12545 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12546 * the mailbox sub-system flush routine to forcefully bring down the 12547 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12548 * as with offline or HBA function reset), this routine will wait for the 12549 * outstanding mailbox command to complete before invoking the mailbox 12550 * sub-system flush routine to gracefully bring down mailbox sub-system. 12551 **/ 12552 void 12553 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12554 { 12555 struct lpfc_sli *psli = &phba->sli; 12556 unsigned long timeout; 12557 12558 if (mbx_action == LPFC_MBX_NO_WAIT) { 12559 /* delay 100ms for port state */ 12560 msleep(100); 12561 lpfc_sli_mbox_sys_flush(phba); 12562 return; 12563 } 12564 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12565 12566 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12567 local_bh_disable(); 12568 12569 spin_lock_irq(&phba->hbalock); 12570 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12571 12572 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12573 /* Determine how long we might wait for the active mailbox 12574 * command to be gracefully completed by firmware. 12575 */ 12576 if (phba->sli.mbox_active) 12577 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12578 phba->sli.mbox_active) * 12579 1000) + jiffies; 12580 spin_unlock_irq(&phba->hbalock); 12581 12582 /* Enable softirqs again, done with phba->hbalock */ 12583 local_bh_enable(); 12584 12585 while (phba->sli.mbox_active) { 12586 /* Check active mailbox complete status every 2ms */ 12587 msleep(2); 12588 if (time_after(jiffies, timeout)) 12589 /* Timeout, let the mailbox flush routine to 12590 * forcefully release active mailbox command 12591 */ 12592 break; 12593 } 12594 } else { 12595 spin_unlock_irq(&phba->hbalock); 12596 12597 /* Enable softirqs again, done with phba->hbalock */ 12598 local_bh_enable(); 12599 } 12600 12601 lpfc_sli_mbox_sys_flush(phba); 12602 } 12603 12604 /** 12605 * lpfc_sli_eratt_read - read sli-3 error attention events 12606 * @phba: Pointer to HBA context. 12607 * 12608 * This function is called to read the SLI3 device error attention registers 12609 * for possible error attention events. The caller must hold the hostlock 12610 * with spin_lock_irq(). 12611 * 12612 * This function returns 1 when there is Error Attention in the Host Attention 12613 * Register and returns 0 otherwise. 12614 **/ 12615 static int 12616 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12617 { 12618 uint32_t ha_copy; 12619 12620 /* Read chip Host Attention (HA) register */ 12621 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12622 goto unplug_err; 12623 12624 if (ha_copy & HA_ERATT) { 12625 /* Read host status register to retrieve error event */ 12626 if (lpfc_sli_read_hs(phba)) 12627 goto unplug_err; 12628 12629 /* Check if there is a deferred error condition is active */ 12630 if ((HS_FFER1 & phba->work_hs) && 12631 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12632 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12633 phba->hba_flag |= DEFER_ERATT; 12634 /* Clear all interrupt enable conditions */ 12635 writel(0, phba->HCregaddr); 12636 readl(phba->HCregaddr); 12637 } 12638 12639 /* Set the driver HA work bitmap */ 12640 phba->work_ha |= HA_ERATT; 12641 /* Indicate polling handles this ERATT */ 12642 phba->hba_flag |= HBA_ERATT_HANDLED; 12643 return 1; 12644 } 12645 return 0; 12646 12647 unplug_err: 12648 /* Set the driver HS work bitmap */ 12649 phba->work_hs |= UNPLUG_ERR; 12650 /* Set the driver HA work bitmap */ 12651 phba->work_ha |= HA_ERATT; 12652 /* Indicate polling handles this ERATT */ 12653 phba->hba_flag |= HBA_ERATT_HANDLED; 12654 return 1; 12655 } 12656 12657 /** 12658 * lpfc_sli4_eratt_read - read sli-4 error attention events 12659 * @phba: Pointer to HBA context. 12660 * 12661 * This function is called to read the SLI4 device error attention registers 12662 * for possible error attention events. The caller must hold the hostlock 12663 * with spin_lock_irq(). 12664 * 12665 * This function returns 1 when there is Error Attention in the Host Attention 12666 * Register and returns 0 otherwise. 12667 **/ 12668 static int 12669 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12670 { 12671 uint32_t uerr_sta_hi, uerr_sta_lo; 12672 uint32_t if_type, portsmphr; 12673 struct lpfc_register portstat_reg; 12674 12675 /* 12676 * For now, use the SLI4 device internal unrecoverable error 12677 * registers for error attention. This can be changed later. 12678 */ 12679 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12680 switch (if_type) { 12681 case LPFC_SLI_INTF_IF_TYPE_0: 12682 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12683 &uerr_sta_lo) || 12684 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12685 &uerr_sta_hi)) { 12686 phba->work_hs |= UNPLUG_ERR; 12687 phba->work_ha |= HA_ERATT; 12688 phba->hba_flag |= HBA_ERATT_HANDLED; 12689 return 1; 12690 } 12691 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12692 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12693 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12694 "1423 HBA Unrecoverable error: " 12695 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12696 "ue_mask_lo_reg=0x%x, " 12697 "ue_mask_hi_reg=0x%x\n", 12698 uerr_sta_lo, uerr_sta_hi, 12699 phba->sli4_hba.ue_mask_lo, 12700 phba->sli4_hba.ue_mask_hi); 12701 phba->work_status[0] = uerr_sta_lo; 12702 phba->work_status[1] = uerr_sta_hi; 12703 phba->work_ha |= HA_ERATT; 12704 phba->hba_flag |= HBA_ERATT_HANDLED; 12705 return 1; 12706 } 12707 break; 12708 case LPFC_SLI_INTF_IF_TYPE_2: 12709 case LPFC_SLI_INTF_IF_TYPE_6: 12710 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12711 &portstat_reg.word0) || 12712 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12713 &portsmphr)){ 12714 phba->work_hs |= UNPLUG_ERR; 12715 phba->work_ha |= HA_ERATT; 12716 phba->hba_flag |= HBA_ERATT_HANDLED; 12717 return 1; 12718 } 12719 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12720 phba->work_status[0] = 12721 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12722 phba->work_status[1] = 12723 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12724 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12725 "2885 Port Status Event: " 12726 "port status reg 0x%x, " 12727 "port smphr reg 0x%x, " 12728 "error 1=0x%x, error 2=0x%x\n", 12729 portstat_reg.word0, 12730 portsmphr, 12731 phba->work_status[0], 12732 phba->work_status[1]); 12733 phba->work_ha |= HA_ERATT; 12734 phba->hba_flag |= HBA_ERATT_HANDLED; 12735 return 1; 12736 } 12737 break; 12738 case LPFC_SLI_INTF_IF_TYPE_1: 12739 default: 12740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12741 "2886 HBA Error Attention on unsupported " 12742 "if type %d.", if_type); 12743 return 1; 12744 } 12745 12746 return 0; 12747 } 12748 12749 /** 12750 * lpfc_sli_check_eratt - check error attention events 12751 * @phba: Pointer to HBA context. 12752 * 12753 * This function is called from timer soft interrupt context to check HBA's 12754 * error attention register bit for error attention events. 12755 * 12756 * This function returns 1 when there is Error Attention in the Host Attention 12757 * Register and returns 0 otherwise. 12758 **/ 12759 int 12760 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12761 { 12762 uint32_t ha_copy; 12763 12764 /* If somebody is waiting to handle an eratt, don't process it 12765 * here. The brdkill function will do this. 12766 */ 12767 if (phba->link_flag & LS_IGNORE_ERATT) 12768 return 0; 12769 12770 /* Check if interrupt handler handles this ERATT */ 12771 spin_lock_irq(&phba->hbalock); 12772 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12773 /* Interrupt handler has handled ERATT */ 12774 spin_unlock_irq(&phba->hbalock); 12775 return 0; 12776 } 12777 12778 /* 12779 * If there is deferred error attention, do not check for error 12780 * attention 12781 */ 12782 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12783 spin_unlock_irq(&phba->hbalock); 12784 return 0; 12785 } 12786 12787 /* If PCI channel is offline, don't process it */ 12788 if (unlikely(pci_channel_offline(phba->pcidev))) { 12789 spin_unlock_irq(&phba->hbalock); 12790 return 0; 12791 } 12792 12793 switch (phba->sli_rev) { 12794 case LPFC_SLI_REV2: 12795 case LPFC_SLI_REV3: 12796 /* Read chip Host Attention (HA) register */ 12797 ha_copy = lpfc_sli_eratt_read(phba); 12798 break; 12799 case LPFC_SLI_REV4: 12800 /* Read device Uncoverable Error (UERR) registers */ 12801 ha_copy = lpfc_sli4_eratt_read(phba); 12802 break; 12803 default: 12804 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 12805 "0299 Invalid SLI revision (%d)\n", 12806 phba->sli_rev); 12807 ha_copy = 0; 12808 break; 12809 } 12810 spin_unlock_irq(&phba->hbalock); 12811 12812 return ha_copy; 12813 } 12814 12815 /** 12816 * lpfc_intr_state_check - Check device state for interrupt handling 12817 * @phba: Pointer to HBA context. 12818 * 12819 * This inline routine checks whether a device or its PCI slot is in a state 12820 * that the interrupt should be handled. 12821 * 12822 * This function returns 0 if the device or the PCI slot is in a state that 12823 * interrupt should be handled, otherwise -EIO. 12824 */ 12825 static inline int 12826 lpfc_intr_state_check(struct lpfc_hba *phba) 12827 { 12828 /* If the pci channel is offline, ignore all the interrupts */ 12829 if (unlikely(pci_channel_offline(phba->pcidev))) 12830 return -EIO; 12831 12832 /* Update device level interrupt statistics */ 12833 phba->sli.slistat.sli_intr++; 12834 12835 /* Ignore all interrupts during initialization. */ 12836 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12837 return -EIO; 12838 12839 return 0; 12840 } 12841 12842 /** 12843 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12844 * @irq: Interrupt number. 12845 * @dev_id: The device context pointer. 12846 * 12847 * This function is directly called from the PCI layer as an interrupt 12848 * service routine when device with SLI-3 interface spec is enabled with 12849 * MSI-X multi-message interrupt mode and there are slow-path events in 12850 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12851 * interrupt mode, this function is called as part of the device-level 12852 * interrupt handler. When the PCI slot is in error recovery or the HBA 12853 * is undergoing initialization, the interrupt handler will not process 12854 * the interrupt. The link attention and ELS ring attention events are 12855 * handled by the worker thread. The interrupt handler signals the worker 12856 * thread and returns for these events. This function is called without 12857 * any lock held. It gets the hbalock to access and update SLI data 12858 * structures. 12859 * 12860 * This function returns IRQ_HANDLED when interrupt is handled else it 12861 * returns IRQ_NONE. 12862 **/ 12863 irqreturn_t 12864 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12865 { 12866 struct lpfc_hba *phba; 12867 uint32_t ha_copy, hc_copy; 12868 uint32_t work_ha_copy; 12869 unsigned long status; 12870 unsigned long iflag; 12871 uint32_t control; 12872 12873 MAILBOX_t *mbox, *pmbox; 12874 struct lpfc_vport *vport; 12875 struct lpfc_nodelist *ndlp; 12876 struct lpfc_dmabuf *mp; 12877 LPFC_MBOXQ_t *pmb; 12878 int rc; 12879 12880 /* 12881 * Get the driver's phba structure from the dev_id and 12882 * assume the HBA is not interrupting. 12883 */ 12884 phba = (struct lpfc_hba *)dev_id; 12885 12886 if (unlikely(!phba)) 12887 return IRQ_NONE; 12888 12889 /* 12890 * Stuff needs to be attented to when this function is invoked as an 12891 * individual interrupt handler in MSI-X multi-message interrupt mode 12892 */ 12893 if (phba->intr_type == MSIX) { 12894 /* Check device state for handling interrupt */ 12895 if (lpfc_intr_state_check(phba)) 12896 return IRQ_NONE; 12897 /* Need to read HA REG for slow-path events */ 12898 spin_lock_irqsave(&phba->hbalock, iflag); 12899 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12900 goto unplug_error; 12901 /* If somebody is waiting to handle an eratt don't process it 12902 * here. The brdkill function will do this. 12903 */ 12904 if (phba->link_flag & LS_IGNORE_ERATT) 12905 ha_copy &= ~HA_ERATT; 12906 /* Check the need for handling ERATT in interrupt handler */ 12907 if (ha_copy & HA_ERATT) { 12908 if (phba->hba_flag & HBA_ERATT_HANDLED) 12909 /* ERATT polling has handled ERATT */ 12910 ha_copy &= ~HA_ERATT; 12911 else 12912 /* Indicate interrupt handler handles ERATT */ 12913 phba->hba_flag |= HBA_ERATT_HANDLED; 12914 } 12915 12916 /* 12917 * If there is deferred error attention, do not check for any 12918 * interrupt. 12919 */ 12920 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12921 spin_unlock_irqrestore(&phba->hbalock, iflag); 12922 return IRQ_NONE; 12923 } 12924 12925 /* Clear up only attention source related to slow-path */ 12926 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12927 goto unplug_error; 12928 12929 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12930 HC_LAINT_ENA | HC_ERINT_ENA), 12931 phba->HCregaddr); 12932 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12933 phba->HAregaddr); 12934 writel(hc_copy, phba->HCregaddr); 12935 readl(phba->HAregaddr); /* flush */ 12936 spin_unlock_irqrestore(&phba->hbalock, iflag); 12937 } else 12938 ha_copy = phba->ha_copy; 12939 12940 work_ha_copy = ha_copy & phba->work_ha_mask; 12941 12942 if (work_ha_copy) { 12943 if (work_ha_copy & HA_LATT) { 12944 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12945 /* 12946 * Turn off Link Attention interrupts 12947 * until CLEAR_LA done 12948 */ 12949 spin_lock_irqsave(&phba->hbalock, iflag); 12950 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12951 if (lpfc_readl(phba->HCregaddr, &control)) 12952 goto unplug_error; 12953 control &= ~HC_LAINT_ENA; 12954 writel(control, phba->HCregaddr); 12955 readl(phba->HCregaddr); /* flush */ 12956 spin_unlock_irqrestore(&phba->hbalock, iflag); 12957 } 12958 else 12959 work_ha_copy &= ~HA_LATT; 12960 } 12961 12962 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12963 /* 12964 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12965 * the only slow ring. 12966 */ 12967 status = (work_ha_copy & 12968 (HA_RXMASK << (4*LPFC_ELS_RING))); 12969 status >>= (4*LPFC_ELS_RING); 12970 if (status & HA_RXMASK) { 12971 spin_lock_irqsave(&phba->hbalock, iflag); 12972 if (lpfc_readl(phba->HCregaddr, &control)) 12973 goto unplug_error; 12974 12975 lpfc_debugfs_slow_ring_trc(phba, 12976 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12977 control, status, 12978 (uint32_t)phba->sli.slistat.sli_intr); 12979 12980 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12981 lpfc_debugfs_slow_ring_trc(phba, 12982 "ISR Disable ring:" 12983 "pwork:x%x hawork:x%x wait:x%x", 12984 phba->work_ha, work_ha_copy, 12985 (uint32_t)((unsigned long) 12986 &phba->work_waitq)); 12987 12988 control &= 12989 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12990 writel(control, phba->HCregaddr); 12991 readl(phba->HCregaddr); /* flush */ 12992 } 12993 else { 12994 lpfc_debugfs_slow_ring_trc(phba, 12995 "ISR slow ring: pwork:" 12996 "x%x hawork:x%x wait:x%x", 12997 phba->work_ha, work_ha_copy, 12998 (uint32_t)((unsigned long) 12999 &phba->work_waitq)); 13000 } 13001 spin_unlock_irqrestore(&phba->hbalock, iflag); 13002 } 13003 } 13004 spin_lock_irqsave(&phba->hbalock, iflag); 13005 if (work_ha_copy & HA_ERATT) { 13006 if (lpfc_sli_read_hs(phba)) 13007 goto unplug_error; 13008 /* 13009 * Check if there is a deferred error condition 13010 * is active 13011 */ 13012 if ((HS_FFER1 & phba->work_hs) && 13013 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 13014 HS_FFER6 | HS_FFER7 | HS_FFER8) & 13015 phba->work_hs)) { 13016 phba->hba_flag |= DEFER_ERATT; 13017 /* Clear all interrupt enable conditions */ 13018 writel(0, phba->HCregaddr); 13019 readl(phba->HCregaddr); 13020 } 13021 } 13022 13023 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 13024 pmb = phba->sli.mbox_active; 13025 pmbox = &pmb->u.mb; 13026 mbox = phba->mbox; 13027 vport = pmb->vport; 13028 13029 /* First check out the status word */ 13030 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 13031 if (pmbox->mbxOwner != OWN_HOST) { 13032 spin_unlock_irqrestore(&phba->hbalock, iflag); 13033 /* 13034 * Stray Mailbox Interrupt, mbxCommand <cmd> 13035 * mbxStatus <status> 13036 */ 13037 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13038 "(%d):0304 Stray Mailbox " 13039 "Interrupt mbxCommand x%x " 13040 "mbxStatus x%x\n", 13041 (vport ? vport->vpi : 0), 13042 pmbox->mbxCommand, 13043 pmbox->mbxStatus); 13044 /* clear mailbox attention bit */ 13045 work_ha_copy &= ~HA_MBATT; 13046 } else { 13047 phba->sli.mbox_active = NULL; 13048 spin_unlock_irqrestore(&phba->hbalock, iflag); 13049 phba->last_completion_time = jiffies; 13050 del_timer(&phba->sli.mbox_tmo); 13051 if (pmb->mbox_cmpl) { 13052 lpfc_sli_pcimem_bcopy(mbox, pmbox, 13053 MAILBOX_CMD_SIZE); 13054 if (pmb->out_ext_byte_len && 13055 pmb->ctx_buf) 13056 lpfc_sli_pcimem_bcopy( 13057 phba->mbox_ext, 13058 pmb->ctx_buf, 13059 pmb->out_ext_byte_len); 13060 } 13061 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13062 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13063 13064 lpfc_debugfs_disc_trc(vport, 13065 LPFC_DISC_TRC_MBOX_VPORT, 13066 "MBOX dflt rpi: : " 13067 "status:x%x rpi:x%x", 13068 (uint32_t)pmbox->mbxStatus, 13069 pmbox->un.varWords[0], 0); 13070 13071 if (!pmbox->mbxStatus) { 13072 mp = (struct lpfc_dmabuf *) 13073 (pmb->ctx_buf); 13074 ndlp = (struct lpfc_nodelist *) 13075 pmb->ctx_ndlp; 13076 13077 /* Reg_LOGIN of dflt RPI was 13078 * successful. new lets get 13079 * rid of the RPI using the 13080 * same mbox buffer. 13081 */ 13082 lpfc_unreg_login(phba, 13083 vport->vpi, 13084 pmbox->un.varWords[0], 13085 pmb); 13086 pmb->mbox_cmpl = 13087 lpfc_mbx_cmpl_dflt_rpi; 13088 pmb->ctx_buf = mp; 13089 pmb->ctx_ndlp = ndlp; 13090 pmb->vport = vport; 13091 rc = lpfc_sli_issue_mbox(phba, 13092 pmb, 13093 MBX_NOWAIT); 13094 if (rc != MBX_BUSY) 13095 lpfc_printf_log(phba, 13096 KERN_ERR, 13097 LOG_TRACE_EVENT, 13098 "0350 rc should have" 13099 "been MBX_BUSY\n"); 13100 if (rc != MBX_NOT_FINISHED) 13101 goto send_current_mbox; 13102 } 13103 } 13104 spin_lock_irqsave( 13105 &phba->pport->work_port_lock, 13106 iflag); 13107 phba->pport->work_port_events &= 13108 ~WORKER_MBOX_TMO; 13109 spin_unlock_irqrestore( 13110 &phba->pport->work_port_lock, 13111 iflag); 13112 13113 /* Do NOT queue MBX_HEARTBEAT to the worker 13114 * thread for processing. 13115 */ 13116 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13117 /* Process mbox now */ 13118 phba->sli.mbox_active = NULL; 13119 phba->sli.sli_flag &= 13120 ~LPFC_SLI_MBOX_ACTIVE; 13121 if (pmb->mbox_cmpl) 13122 pmb->mbox_cmpl(phba, pmb); 13123 } else { 13124 /* Queue to worker thread to process */ 13125 lpfc_mbox_cmpl_put(phba, pmb); 13126 } 13127 } 13128 } else 13129 spin_unlock_irqrestore(&phba->hbalock, iflag); 13130 13131 if ((work_ha_copy & HA_MBATT) && 13132 (phba->sli.mbox_active == NULL)) { 13133 send_current_mbox: 13134 /* Process next mailbox command if there is one */ 13135 do { 13136 rc = lpfc_sli_issue_mbox(phba, NULL, 13137 MBX_NOWAIT); 13138 } while (rc == MBX_NOT_FINISHED); 13139 if (rc != MBX_SUCCESS) 13140 lpfc_printf_log(phba, KERN_ERR, 13141 LOG_TRACE_EVENT, 13142 "0349 rc should be " 13143 "MBX_SUCCESS\n"); 13144 } 13145 13146 spin_lock_irqsave(&phba->hbalock, iflag); 13147 phba->work_ha |= work_ha_copy; 13148 spin_unlock_irqrestore(&phba->hbalock, iflag); 13149 lpfc_worker_wake_up(phba); 13150 } 13151 return IRQ_HANDLED; 13152 unplug_error: 13153 spin_unlock_irqrestore(&phba->hbalock, iflag); 13154 return IRQ_HANDLED; 13155 13156 } /* lpfc_sli_sp_intr_handler */ 13157 13158 /** 13159 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 13160 * @irq: Interrupt number. 13161 * @dev_id: The device context pointer. 13162 * 13163 * This function is directly called from the PCI layer as an interrupt 13164 * service routine when device with SLI-3 interface spec is enabled with 13165 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13166 * ring event in the HBA. However, when the device is enabled with either 13167 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13168 * device-level interrupt handler. When the PCI slot is in error recovery 13169 * or the HBA is undergoing initialization, the interrupt handler will not 13170 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13171 * the intrrupt context. This function is called without any lock held. 13172 * It gets the hbalock to access and update SLI data structures. 13173 * 13174 * This function returns IRQ_HANDLED when interrupt is handled else it 13175 * returns IRQ_NONE. 13176 **/ 13177 irqreturn_t 13178 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 13179 { 13180 struct lpfc_hba *phba; 13181 uint32_t ha_copy; 13182 unsigned long status; 13183 unsigned long iflag; 13184 struct lpfc_sli_ring *pring; 13185 13186 /* Get the driver's phba structure from the dev_id and 13187 * assume the HBA is not interrupting. 13188 */ 13189 phba = (struct lpfc_hba *) dev_id; 13190 13191 if (unlikely(!phba)) 13192 return IRQ_NONE; 13193 13194 /* 13195 * Stuff needs to be attented to when this function is invoked as an 13196 * individual interrupt handler in MSI-X multi-message interrupt mode 13197 */ 13198 if (phba->intr_type == MSIX) { 13199 /* Check device state for handling interrupt */ 13200 if (lpfc_intr_state_check(phba)) 13201 return IRQ_NONE; 13202 /* Need to read HA REG for FCP ring and other ring events */ 13203 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 13204 return IRQ_HANDLED; 13205 /* Clear up only attention source related to fast-path */ 13206 spin_lock_irqsave(&phba->hbalock, iflag); 13207 /* 13208 * If there is deferred error attention, do not check for 13209 * any interrupt. 13210 */ 13211 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13212 spin_unlock_irqrestore(&phba->hbalock, iflag); 13213 return IRQ_NONE; 13214 } 13215 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 13216 phba->HAregaddr); 13217 readl(phba->HAregaddr); /* flush */ 13218 spin_unlock_irqrestore(&phba->hbalock, iflag); 13219 } else 13220 ha_copy = phba->ha_copy; 13221 13222 /* 13223 * Process all events on FCP ring. Take the optimized path for FCP IO. 13224 */ 13225 ha_copy &= ~(phba->work_ha_mask); 13226 13227 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13228 status >>= (4*LPFC_FCP_RING); 13229 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 13230 if (status & HA_RXMASK) 13231 lpfc_sli_handle_fast_ring_event(phba, pring, status); 13232 13233 if (phba->cfg_multi_ring_support == 2) { 13234 /* 13235 * Process all events on extra ring. Take the optimized path 13236 * for extra ring IO. 13237 */ 13238 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13239 status >>= (4*LPFC_EXTRA_RING); 13240 if (status & HA_RXMASK) { 13241 lpfc_sli_handle_fast_ring_event(phba, 13242 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 13243 status); 13244 } 13245 } 13246 return IRQ_HANDLED; 13247 } /* lpfc_sli_fp_intr_handler */ 13248 13249 /** 13250 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 13251 * @irq: Interrupt number. 13252 * @dev_id: The device context pointer. 13253 * 13254 * This function is the HBA device-level interrupt handler to device with 13255 * SLI-3 interface spec, called from the PCI layer when either MSI or 13256 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 13257 * requires driver attention. This function invokes the slow-path interrupt 13258 * attention handling function and fast-path interrupt attention handling 13259 * function in turn to process the relevant HBA attention events. This 13260 * function is called without any lock held. It gets the hbalock to access 13261 * and update SLI data structures. 13262 * 13263 * This function returns IRQ_HANDLED when interrupt is handled, else it 13264 * returns IRQ_NONE. 13265 **/ 13266 irqreturn_t 13267 lpfc_sli_intr_handler(int irq, void *dev_id) 13268 { 13269 struct lpfc_hba *phba; 13270 irqreturn_t sp_irq_rc, fp_irq_rc; 13271 unsigned long status1, status2; 13272 uint32_t hc_copy; 13273 13274 /* 13275 * Get the driver's phba structure from the dev_id and 13276 * assume the HBA is not interrupting. 13277 */ 13278 phba = (struct lpfc_hba *) dev_id; 13279 13280 if (unlikely(!phba)) 13281 return IRQ_NONE; 13282 13283 /* Check device state for handling interrupt */ 13284 if (lpfc_intr_state_check(phba)) 13285 return IRQ_NONE; 13286 13287 spin_lock(&phba->hbalock); 13288 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 13289 spin_unlock(&phba->hbalock); 13290 return IRQ_HANDLED; 13291 } 13292 13293 if (unlikely(!phba->ha_copy)) { 13294 spin_unlock(&phba->hbalock); 13295 return IRQ_NONE; 13296 } else if (phba->ha_copy & HA_ERATT) { 13297 if (phba->hba_flag & HBA_ERATT_HANDLED) 13298 /* ERATT polling has handled ERATT */ 13299 phba->ha_copy &= ~HA_ERATT; 13300 else 13301 /* Indicate interrupt handler handles ERATT */ 13302 phba->hba_flag |= HBA_ERATT_HANDLED; 13303 } 13304 13305 /* 13306 * If there is deferred error attention, do not check for any interrupt. 13307 */ 13308 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 13309 spin_unlock(&phba->hbalock); 13310 return IRQ_NONE; 13311 } 13312 13313 /* Clear attention sources except link and error attentions */ 13314 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 13315 spin_unlock(&phba->hbalock); 13316 return IRQ_HANDLED; 13317 } 13318 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 13319 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 13320 phba->HCregaddr); 13321 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 13322 writel(hc_copy, phba->HCregaddr); 13323 readl(phba->HAregaddr); /* flush */ 13324 spin_unlock(&phba->hbalock); 13325 13326 /* 13327 * Invokes slow-path host attention interrupt handling as appropriate. 13328 */ 13329 13330 /* status of events with mailbox and link attention */ 13331 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 13332 13333 /* status of events with ELS ring */ 13334 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 13335 status2 >>= (4*LPFC_ELS_RING); 13336 13337 if (status1 || (status2 & HA_RXMASK)) 13338 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 13339 else 13340 sp_irq_rc = IRQ_NONE; 13341 13342 /* 13343 * Invoke fast-path host attention interrupt handling as appropriate. 13344 */ 13345 13346 /* status of events with FCP ring */ 13347 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 13348 status1 >>= (4*LPFC_FCP_RING); 13349 13350 /* status of events with extra ring */ 13351 if (phba->cfg_multi_ring_support == 2) { 13352 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 13353 status2 >>= (4*LPFC_EXTRA_RING); 13354 } else 13355 status2 = 0; 13356 13357 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 13358 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 13359 else 13360 fp_irq_rc = IRQ_NONE; 13361 13362 /* Return device-level interrupt handling status */ 13363 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 13364 } /* lpfc_sli_intr_handler */ 13365 13366 /** 13367 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 13368 * @phba: pointer to lpfc hba data structure. 13369 * 13370 * This routine is invoked by the worker thread to process all the pending 13371 * SLI4 els abort xri events. 13372 **/ 13373 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13374 { 13375 struct lpfc_cq_event *cq_event; 13376 unsigned long iflags; 13377 13378 /* First, declare the els xri abort event has been handled */ 13379 spin_lock_irqsave(&phba->hbalock, iflags); 13380 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13381 spin_unlock_irqrestore(&phba->hbalock, iflags); 13382 13383 /* Now, handle all the els xri abort events */ 13384 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13385 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13386 /* Get the first event from the head of the event queue */ 13387 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13388 cq_event, struct lpfc_cq_event, list); 13389 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13390 iflags); 13391 /* Notify aborted XRI for ELS work queue */ 13392 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13393 13394 /* Free the event processed back to the free pool */ 13395 lpfc_sli4_cq_event_release(phba, cq_event); 13396 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13397 iflags); 13398 } 13399 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); 13400 } 13401 13402 /** 13403 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13404 * @phba: pointer to lpfc hba data structure 13405 * @pIocbIn: pointer to the rspiocbq 13406 * @pIocbOut: pointer to the cmdiocbq 13407 * @wcqe: pointer to the complete wcqe 13408 * 13409 * This routine transfers the fields of a command iocbq to a response iocbq 13410 * by copying all the IOCB fields from command iocbq and transferring the 13411 * completion status information from the complete wcqe. 13412 **/ 13413 static void 13414 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13415 struct lpfc_iocbq *pIocbIn, 13416 struct lpfc_iocbq *pIocbOut, 13417 struct lpfc_wcqe_complete *wcqe) 13418 { 13419 int numBdes, i; 13420 unsigned long iflags; 13421 uint32_t status, max_response; 13422 struct lpfc_dmabuf *dmabuf; 13423 struct ulp_bde64 *bpl, bde; 13424 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13425 13426 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13427 sizeof(struct lpfc_iocbq) - offset); 13428 /* Map WCQE parameters into irspiocb parameters */ 13429 status = bf_get(lpfc_wcqe_c_status, wcqe); 13430 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13431 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13432 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13433 pIocbIn->iocb.un.fcpi.fcpi_parm = 13434 pIocbOut->iocb.un.fcpi.fcpi_parm - 13435 wcqe->total_data_placed; 13436 else 13437 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13438 else { 13439 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13440 switch (pIocbOut->iocb.ulpCommand) { 13441 case CMD_ELS_REQUEST64_CR: 13442 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13443 bpl = (struct ulp_bde64 *)dmabuf->virt; 13444 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13445 max_response = bde.tus.f.bdeSize; 13446 break; 13447 case CMD_GEN_REQUEST64_CR: 13448 max_response = 0; 13449 if (!pIocbOut->context3) 13450 break; 13451 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13452 sizeof(struct ulp_bde64); 13453 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13454 bpl = (struct ulp_bde64 *)dmabuf->virt; 13455 for (i = 0; i < numBdes; i++) { 13456 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13457 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13458 max_response += bde.tus.f.bdeSize; 13459 } 13460 break; 13461 default: 13462 max_response = wcqe->total_data_placed; 13463 break; 13464 } 13465 if (max_response < wcqe->total_data_placed) 13466 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13467 else 13468 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13469 wcqe->total_data_placed; 13470 } 13471 13472 /* Convert BG errors for completion status */ 13473 if (status == CQE_STATUS_DI_ERROR) { 13474 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13475 13476 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13477 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13478 else 13479 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13480 13481 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13482 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13483 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13484 BGS_GUARD_ERR_MASK; 13485 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13486 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13487 BGS_APPTAG_ERR_MASK; 13488 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13489 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13490 BGS_REFTAG_ERR_MASK; 13491 13492 /* Check to see if there was any good data before the error */ 13493 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13494 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13495 BGS_HI_WATER_MARK_PRESENT_MASK; 13496 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13497 wcqe->total_data_placed; 13498 } 13499 13500 /* 13501 * Set ALL the error bits to indicate we don't know what 13502 * type of error it is. 13503 */ 13504 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13505 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13506 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13507 BGS_GUARD_ERR_MASK); 13508 } 13509 13510 /* Pick up HBA exchange busy condition */ 13511 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13512 spin_lock_irqsave(&phba->hbalock, iflags); 13513 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13514 spin_unlock_irqrestore(&phba->hbalock, iflags); 13515 } 13516 } 13517 13518 /** 13519 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13520 * @phba: Pointer to HBA context object. 13521 * @irspiocbq: Pointer to work-queue completion queue entry. 13522 * 13523 * This routine handles an ELS work-queue completion event and construct 13524 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13525 * discovery engine to handle. 13526 * 13527 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13528 **/ 13529 static struct lpfc_iocbq * 13530 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13531 struct lpfc_iocbq *irspiocbq) 13532 { 13533 struct lpfc_sli_ring *pring; 13534 struct lpfc_iocbq *cmdiocbq; 13535 struct lpfc_wcqe_complete *wcqe; 13536 unsigned long iflags; 13537 13538 pring = lpfc_phba_elsring(phba); 13539 if (unlikely(!pring)) 13540 return NULL; 13541 13542 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13543 pring->stats.iocb_event++; 13544 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13545 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13546 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13547 if (unlikely(!cmdiocbq)) { 13548 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13549 "0386 ELS complete with no corresponding " 13550 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13551 wcqe->word0, wcqe->total_data_placed, 13552 wcqe->parameter, wcqe->word3); 13553 lpfc_sli_release_iocbq(phba, irspiocbq); 13554 return NULL; 13555 } 13556 13557 spin_lock_irqsave(&pring->ring_lock, iflags); 13558 /* Put the iocb back on the txcmplq */ 13559 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13560 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13561 13562 /* Fake the irspiocbq and copy necessary response information */ 13563 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13564 13565 return irspiocbq; 13566 } 13567 13568 inline struct lpfc_cq_event * 13569 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13570 { 13571 struct lpfc_cq_event *cq_event; 13572 13573 /* Allocate a new internal CQ_EVENT entry */ 13574 cq_event = lpfc_sli4_cq_event_alloc(phba); 13575 if (!cq_event) { 13576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13577 "0602 Failed to alloc CQ_EVENT entry\n"); 13578 return NULL; 13579 } 13580 13581 /* Move the CQE into the event */ 13582 memcpy(&cq_event->cqe, entry, size); 13583 return cq_event; 13584 } 13585 13586 /** 13587 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13588 * @phba: Pointer to HBA context object. 13589 * @mcqe: Pointer to mailbox completion queue entry. 13590 * 13591 * This routine process a mailbox completion queue entry with asynchronous 13592 * event. 13593 * 13594 * Return: true if work posted to worker thread, otherwise false. 13595 **/ 13596 static bool 13597 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13598 { 13599 struct lpfc_cq_event *cq_event; 13600 unsigned long iflags; 13601 13602 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13603 "0392 Async Event: word0:x%x, word1:x%x, " 13604 "word2:x%x, word3:x%x\n", mcqe->word0, 13605 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13606 13607 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13608 if (!cq_event) 13609 return false; 13610 13611 spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); 13612 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13613 spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); 13614 13615 /* Set the async event flag */ 13616 spin_lock_irqsave(&phba->hbalock, iflags); 13617 phba->hba_flag |= ASYNC_EVENT; 13618 spin_unlock_irqrestore(&phba->hbalock, iflags); 13619 13620 return true; 13621 } 13622 13623 /** 13624 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13625 * @phba: Pointer to HBA context object. 13626 * @mcqe: Pointer to mailbox completion queue entry. 13627 * 13628 * This routine process a mailbox completion queue entry with mailbox 13629 * completion event. 13630 * 13631 * Return: true if work posted to worker thread, otherwise false. 13632 **/ 13633 static bool 13634 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13635 { 13636 uint32_t mcqe_status; 13637 MAILBOX_t *mbox, *pmbox; 13638 struct lpfc_mqe *mqe; 13639 struct lpfc_vport *vport; 13640 struct lpfc_nodelist *ndlp; 13641 struct lpfc_dmabuf *mp; 13642 unsigned long iflags; 13643 LPFC_MBOXQ_t *pmb; 13644 bool workposted = false; 13645 int rc; 13646 13647 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13648 if (!bf_get(lpfc_trailer_completed, mcqe)) 13649 goto out_no_mqe_complete; 13650 13651 /* Get the reference to the active mbox command */ 13652 spin_lock_irqsave(&phba->hbalock, iflags); 13653 pmb = phba->sli.mbox_active; 13654 if (unlikely(!pmb)) { 13655 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13656 "1832 No pending MBOX command to handle\n"); 13657 spin_unlock_irqrestore(&phba->hbalock, iflags); 13658 goto out_no_mqe_complete; 13659 } 13660 spin_unlock_irqrestore(&phba->hbalock, iflags); 13661 mqe = &pmb->u.mqe; 13662 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13663 mbox = phba->mbox; 13664 vport = pmb->vport; 13665 13666 /* Reset heartbeat timer */ 13667 phba->last_completion_time = jiffies; 13668 del_timer(&phba->sli.mbox_tmo); 13669 13670 /* Move mbox data to caller's mailbox region, do endian swapping */ 13671 if (pmb->mbox_cmpl && mbox) 13672 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13673 13674 /* 13675 * For mcqe errors, conditionally move a modified error code to 13676 * the mbox so that the error will not be missed. 13677 */ 13678 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13679 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13680 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13681 bf_set(lpfc_mqe_status, mqe, 13682 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13683 } 13684 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13685 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13686 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13687 "MBOX dflt rpi: status:x%x rpi:x%x", 13688 mcqe_status, 13689 pmbox->un.varWords[0], 0); 13690 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13691 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13692 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13693 13694 /* Reg_LOGIN of dflt RPI was successful. Mark the 13695 * node as having an UNREG_LOGIN in progress to stop 13696 * an unsolicited PLOGI from the same NPortId from 13697 * starting another mailbox transaction. 13698 */ 13699 spin_lock_irqsave(&ndlp->lock, iflags); 13700 ndlp->nlp_flag |= NLP_UNREG_INP; 13701 spin_unlock_irqrestore(&ndlp->lock, iflags); 13702 lpfc_unreg_login(phba, vport->vpi, 13703 pmbox->un.varWords[0], pmb); 13704 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13705 pmb->ctx_buf = mp; 13706 13707 /* No reference taken here. This is a default 13708 * RPI reg/immediate unreg cycle. The reference was 13709 * taken in the reg rpi path and is released when 13710 * this mailbox completes. 13711 */ 13712 pmb->ctx_ndlp = ndlp; 13713 pmb->vport = vport; 13714 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13715 if (rc != MBX_BUSY) 13716 lpfc_printf_log(phba, KERN_ERR, 13717 LOG_TRACE_EVENT, 13718 "0385 rc should " 13719 "have been MBX_BUSY\n"); 13720 if (rc != MBX_NOT_FINISHED) 13721 goto send_current_mbox; 13722 } 13723 } 13724 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13725 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13726 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13727 13728 /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ 13729 if (pmbox->mbxCommand == MBX_HEARTBEAT) { 13730 spin_lock_irqsave(&phba->hbalock, iflags); 13731 /* Release the mailbox command posting token */ 13732 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13733 phba->sli.mbox_active = NULL; 13734 if (bf_get(lpfc_trailer_consumed, mcqe)) 13735 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13736 spin_unlock_irqrestore(&phba->hbalock, iflags); 13737 13738 /* Post the next mbox command, if there is one */ 13739 lpfc_sli4_post_async_mbox(phba); 13740 13741 /* Process cmpl now */ 13742 if (pmb->mbox_cmpl) 13743 pmb->mbox_cmpl(phba, pmb); 13744 return false; 13745 } 13746 13747 /* There is mailbox completion work to queue to the worker thread */ 13748 spin_lock_irqsave(&phba->hbalock, iflags); 13749 __lpfc_mbox_cmpl_put(phba, pmb); 13750 phba->work_ha |= HA_MBATT; 13751 spin_unlock_irqrestore(&phba->hbalock, iflags); 13752 workposted = true; 13753 13754 send_current_mbox: 13755 spin_lock_irqsave(&phba->hbalock, iflags); 13756 /* Release the mailbox command posting token */ 13757 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13758 /* Setting active mailbox pointer need to be in sync to flag clear */ 13759 phba->sli.mbox_active = NULL; 13760 if (bf_get(lpfc_trailer_consumed, mcqe)) 13761 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13762 spin_unlock_irqrestore(&phba->hbalock, iflags); 13763 /* Wake up worker thread to post the next pending mailbox command */ 13764 lpfc_worker_wake_up(phba); 13765 return workposted; 13766 13767 out_no_mqe_complete: 13768 spin_lock_irqsave(&phba->hbalock, iflags); 13769 if (bf_get(lpfc_trailer_consumed, mcqe)) 13770 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13771 spin_unlock_irqrestore(&phba->hbalock, iflags); 13772 return false; 13773 } 13774 13775 /** 13776 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13777 * @phba: Pointer to HBA context object. 13778 * @cq: Pointer to associated CQ 13779 * @cqe: Pointer to mailbox completion queue entry. 13780 * 13781 * This routine process a mailbox completion queue entry, it invokes the 13782 * proper mailbox complete handling or asynchronous event handling routine 13783 * according to the MCQE's async bit. 13784 * 13785 * Return: true if work posted to worker thread, otherwise false. 13786 **/ 13787 static bool 13788 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13789 struct lpfc_cqe *cqe) 13790 { 13791 struct lpfc_mcqe mcqe; 13792 bool workposted; 13793 13794 cq->CQ_mbox++; 13795 13796 /* Copy the mailbox MCQE and convert endian order as needed */ 13797 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13798 13799 /* Invoke the proper event handling routine */ 13800 if (!bf_get(lpfc_trailer_async, &mcqe)) 13801 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13802 else 13803 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13804 return workposted; 13805 } 13806 13807 /** 13808 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13809 * @phba: Pointer to HBA context object. 13810 * @cq: Pointer to associated CQ 13811 * @wcqe: Pointer to work-queue completion queue entry. 13812 * 13813 * This routine handles an ELS work-queue completion event. 13814 * 13815 * Return: true if work posted to worker thread, otherwise false. 13816 **/ 13817 static bool 13818 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13819 struct lpfc_wcqe_complete *wcqe) 13820 { 13821 struct lpfc_iocbq *irspiocbq; 13822 unsigned long iflags; 13823 struct lpfc_sli_ring *pring = cq->pring; 13824 int txq_cnt = 0; 13825 int txcmplq_cnt = 0; 13826 13827 /* Check for response status */ 13828 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13829 /* Log the error status */ 13830 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13831 "0357 ELS CQE error: status=x%x: " 13832 "CQE: %08x %08x %08x %08x\n", 13833 bf_get(lpfc_wcqe_c_status, wcqe), 13834 wcqe->word0, wcqe->total_data_placed, 13835 wcqe->parameter, wcqe->word3); 13836 } 13837 13838 /* Get an irspiocbq for later ELS response processing use */ 13839 irspiocbq = lpfc_sli_get_iocbq(phba); 13840 if (!irspiocbq) { 13841 if (!list_empty(&pring->txq)) 13842 txq_cnt++; 13843 if (!list_empty(&pring->txcmplq)) 13844 txcmplq_cnt++; 13845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13846 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13847 "els_txcmplq_cnt=%d\n", 13848 txq_cnt, phba->iocb_cnt, 13849 txcmplq_cnt); 13850 return false; 13851 } 13852 13853 /* Save off the slow-path queue event for work thread to process */ 13854 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13855 spin_lock_irqsave(&phba->hbalock, iflags); 13856 list_add_tail(&irspiocbq->cq_event.list, 13857 &phba->sli4_hba.sp_queue_event); 13858 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13859 spin_unlock_irqrestore(&phba->hbalock, iflags); 13860 13861 return true; 13862 } 13863 13864 /** 13865 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13866 * @phba: Pointer to HBA context object. 13867 * @wcqe: Pointer to work-queue completion queue entry. 13868 * 13869 * This routine handles slow-path WQ entry consumed event by invoking the 13870 * proper WQ release routine to the slow-path WQ. 13871 **/ 13872 static void 13873 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13874 struct lpfc_wcqe_release *wcqe) 13875 { 13876 /* sanity check on queue memory */ 13877 if (unlikely(!phba->sli4_hba.els_wq)) 13878 return; 13879 /* Check for the slow-path ELS work queue */ 13880 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13881 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13882 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13883 else 13884 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13885 "2579 Slow-path wqe consume event carries " 13886 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13887 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13888 phba->sli4_hba.els_wq->queue_id); 13889 } 13890 13891 /** 13892 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13893 * @phba: Pointer to HBA context object. 13894 * @cq: Pointer to a WQ completion queue. 13895 * @wcqe: Pointer to work-queue completion queue entry. 13896 * 13897 * This routine handles an XRI abort event. 13898 * 13899 * Return: true if work posted to worker thread, otherwise false. 13900 **/ 13901 static bool 13902 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13903 struct lpfc_queue *cq, 13904 struct sli4_wcqe_xri_aborted *wcqe) 13905 { 13906 bool workposted = false; 13907 struct lpfc_cq_event *cq_event; 13908 unsigned long iflags; 13909 13910 switch (cq->subtype) { 13911 case LPFC_IO: 13912 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13913 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13914 /* Notify aborted XRI for NVME work queue */ 13915 if (phba->nvmet_support) 13916 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13917 } 13918 workposted = false; 13919 break; 13920 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13921 case LPFC_ELS: 13922 cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); 13923 if (!cq_event) { 13924 workposted = false; 13925 break; 13926 } 13927 cq_event->hdwq = cq->hdwq; 13928 spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, 13929 iflags); 13930 list_add_tail(&cq_event->list, 13931 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13932 /* Set the els xri abort event flag */ 13933 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13934 spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, 13935 iflags); 13936 workposted = true; 13937 break; 13938 default: 13939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13940 "0603 Invalid CQ subtype %d: " 13941 "%08x %08x %08x %08x\n", 13942 cq->subtype, wcqe->word0, wcqe->parameter, 13943 wcqe->word2, wcqe->word3); 13944 workposted = false; 13945 break; 13946 } 13947 return workposted; 13948 } 13949 13950 #define FC_RCTL_MDS_DIAGS 0xF4 13951 13952 /** 13953 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13954 * @phba: Pointer to HBA context object. 13955 * @rcqe: Pointer to receive-queue completion queue entry. 13956 * 13957 * This routine process a receive-queue completion queue entry. 13958 * 13959 * Return: true if work posted to worker thread, otherwise false. 13960 **/ 13961 static bool 13962 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13963 { 13964 bool workposted = false; 13965 struct fc_frame_header *fc_hdr; 13966 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13967 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13968 struct lpfc_nvmet_tgtport *tgtp; 13969 struct hbq_dmabuf *dma_buf; 13970 uint32_t status, rq_id; 13971 unsigned long iflags; 13972 13973 /* sanity check on queue memory */ 13974 if (unlikely(!hrq) || unlikely(!drq)) 13975 return workposted; 13976 13977 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13978 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13979 else 13980 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13981 if (rq_id != hrq->queue_id) 13982 goto out; 13983 13984 status = bf_get(lpfc_rcqe_status, rcqe); 13985 switch (status) { 13986 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13987 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 13988 "2537 Receive Frame Truncated!!\n"); 13989 fallthrough; 13990 case FC_STATUS_RQ_SUCCESS: 13991 spin_lock_irqsave(&phba->hbalock, iflags); 13992 lpfc_sli4_rq_release(hrq, drq); 13993 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13994 if (!dma_buf) { 13995 hrq->RQ_no_buf_found++; 13996 spin_unlock_irqrestore(&phba->hbalock, iflags); 13997 goto out; 13998 } 13999 hrq->RQ_rcv_buf++; 14000 hrq->RQ_buf_posted--; 14001 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 14002 14003 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14004 14005 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 14006 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 14007 spin_unlock_irqrestore(&phba->hbalock, iflags); 14008 /* Handle MDS Loopback frames */ 14009 if (!(phba->pport->load_flag & FC_UNLOADING)) 14010 lpfc_sli4_handle_mds_loopback(phba->pport, 14011 dma_buf); 14012 else 14013 lpfc_in_buf_free(phba, &dma_buf->dbuf); 14014 break; 14015 } 14016 14017 /* save off the frame for the work thread to process */ 14018 list_add_tail(&dma_buf->cq_event.list, 14019 &phba->sli4_hba.sp_queue_event); 14020 /* Frame received */ 14021 phba->hba_flag |= HBA_SP_QUEUE_EVT; 14022 spin_unlock_irqrestore(&phba->hbalock, iflags); 14023 workposted = true; 14024 break; 14025 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14026 if (phba->nvmet_support) { 14027 tgtp = phba->targetport->private; 14028 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14029 "6402 RQE Error x%x, posted %d err_cnt " 14030 "%d: %x %x %x\n", 14031 status, hrq->RQ_buf_posted, 14032 hrq->RQ_no_posted_buf, 14033 atomic_read(&tgtp->rcv_fcp_cmd_in), 14034 atomic_read(&tgtp->rcv_fcp_cmd_out), 14035 atomic_read(&tgtp->xmt_fcp_release)); 14036 } 14037 fallthrough; 14038 14039 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14040 hrq->RQ_no_posted_buf++; 14041 /* Post more buffers if possible */ 14042 spin_lock_irqsave(&phba->hbalock, iflags); 14043 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 14044 spin_unlock_irqrestore(&phba->hbalock, iflags); 14045 workposted = true; 14046 break; 14047 } 14048 out: 14049 return workposted; 14050 } 14051 14052 /** 14053 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 14054 * @phba: Pointer to HBA context object. 14055 * @cq: Pointer to the completion queue. 14056 * @cqe: Pointer to a completion queue entry. 14057 * 14058 * This routine process a slow-path work-queue or receive queue completion queue 14059 * entry. 14060 * 14061 * Return: true if work posted to worker thread, otherwise false. 14062 **/ 14063 static bool 14064 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14065 struct lpfc_cqe *cqe) 14066 { 14067 struct lpfc_cqe cqevt; 14068 bool workposted = false; 14069 14070 /* Copy the work queue CQE and convert endian order if needed */ 14071 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 14072 14073 /* Check and process for different type of WCQE and dispatch */ 14074 switch (bf_get(lpfc_cqe_code, &cqevt)) { 14075 case CQE_CODE_COMPL_WQE: 14076 /* Process the WQ/RQ complete event */ 14077 phba->last_completion_time = jiffies; 14078 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 14079 (struct lpfc_wcqe_complete *)&cqevt); 14080 break; 14081 case CQE_CODE_RELEASE_WQE: 14082 /* Process the WQ release event */ 14083 lpfc_sli4_sp_handle_rel_wcqe(phba, 14084 (struct lpfc_wcqe_release *)&cqevt); 14085 break; 14086 case CQE_CODE_XRI_ABORTED: 14087 /* Process the WQ XRI abort event */ 14088 phba->last_completion_time = jiffies; 14089 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14090 (struct sli4_wcqe_xri_aborted *)&cqevt); 14091 break; 14092 case CQE_CODE_RECEIVE: 14093 case CQE_CODE_RECEIVE_V1: 14094 /* Process the RQ event */ 14095 phba->last_completion_time = jiffies; 14096 workposted = lpfc_sli4_sp_handle_rcqe(phba, 14097 (struct lpfc_rcqe *)&cqevt); 14098 break; 14099 default: 14100 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14101 "0388 Not a valid WCQE code: x%x\n", 14102 bf_get(lpfc_cqe_code, &cqevt)); 14103 break; 14104 } 14105 return workposted; 14106 } 14107 14108 /** 14109 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 14110 * @phba: Pointer to HBA context object. 14111 * @eqe: Pointer to fast-path event queue entry. 14112 * @speq: Pointer to slow-path event queue. 14113 * 14114 * This routine process a event queue entry from the slow-path event queue. 14115 * It will check the MajorCode and MinorCode to determine this is for a 14116 * completion event on a completion queue, if not, an error shall be logged 14117 * and just return. Otherwise, it will get to the corresponding completion 14118 * queue and process all the entries on that completion queue, rearm the 14119 * completion queue, and then return. 14120 * 14121 **/ 14122 static void 14123 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 14124 struct lpfc_queue *speq) 14125 { 14126 struct lpfc_queue *cq = NULL, *childq; 14127 uint16_t cqid; 14128 int ret = 0; 14129 14130 /* Get the reference to the corresponding CQ */ 14131 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14132 14133 list_for_each_entry(childq, &speq->child_list, list) { 14134 if (childq->queue_id == cqid) { 14135 cq = childq; 14136 break; 14137 } 14138 } 14139 if (unlikely(!cq)) { 14140 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 14141 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14142 "0365 Slow-path CQ identifier " 14143 "(%d) does not exist\n", cqid); 14144 return; 14145 } 14146 14147 /* Save EQ associated with this CQ */ 14148 cq->assoc_qp = speq; 14149 14150 if (is_kdump_kernel()) 14151 ret = queue_work(phba->wq, &cq->spwork); 14152 else 14153 ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); 14154 14155 if (!ret) 14156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14157 "0390 Cannot schedule queue work " 14158 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14159 cqid, cq->queue_id, raw_smp_processor_id()); 14160 } 14161 14162 /** 14163 * __lpfc_sli4_process_cq - Process elements of a CQ 14164 * @phba: Pointer to HBA context object. 14165 * @cq: Pointer to CQ to be processed 14166 * @handler: Routine to process each cqe 14167 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 14168 * @poll_mode: Polling mode we were called from 14169 * 14170 * This routine processes completion queue entries in a CQ. While a valid 14171 * queue element is found, the handler is called. During processing checks 14172 * are made for periodic doorbell writes to let the hardware know of 14173 * element consumption. 14174 * 14175 * If the max limit on cqes to process is hit, or there are no more valid 14176 * entries, the loop stops. If we processed a sufficient number of elements, 14177 * meaning there is sufficient load, rather than rearming and generating 14178 * another interrupt, a cq rescheduling delay will be set. A delay of 0 14179 * indicates no rescheduling. 14180 * 14181 * Returns True if work scheduled, False otherwise. 14182 **/ 14183 static bool 14184 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 14185 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 14186 struct lpfc_cqe *), unsigned long *delay, 14187 enum lpfc_poll_mode poll_mode) 14188 { 14189 struct lpfc_cqe *cqe; 14190 bool workposted = false; 14191 int count = 0, consumed = 0; 14192 bool arm = true; 14193 14194 /* default - no reschedule */ 14195 *delay = 0; 14196 14197 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 14198 goto rearm_and_exit; 14199 14200 /* Process all the entries to the CQ */ 14201 cq->q_flag = 0; 14202 cqe = lpfc_sli4_cq_get(cq); 14203 while (cqe) { 14204 workposted |= handler(phba, cq, cqe); 14205 __lpfc_sli4_consume_cqe(phba, cq, cqe); 14206 14207 consumed++; 14208 if (!(++count % cq->max_proc_limit)) 14209 break; 14210 14211 if (!(count % cq->notify_interval)) { 14212 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14213 LPFC_QUEUE_NOARM); 14214 consumed = 0; 14215 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 14216 } 14217 14218 if (count == LPFC_NVMET_CQ_NOTIFY) 14219 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 14220 14221 cqe = lpfc_sli4_cq_get(cq); 14222 } 14223 if (count >= phba->cfg_cq_poll_threshold) { 14224 *delay = 1; 14225 arm = false; 14226 } 14227 14228 /* Note: complete the irq_poll softirq before rearming CQ */ 14229 if (poll_mode == LPFC_IRQ_POLL) 14230 irq_poll_complete(&cq->iop); 14231 14232 /* Track the max number of CQEs processed in 1 EQ */ 14233 if (count > cq->CQ_max_cqe) 14234 cq->CQ_max_cqe = count; 14235 14236 cq->assoc_qp->EQ_cqe_cnt += count; 14237 14238 /* Catch the no cq entry condition */ 14239 if (unlikely(count == 0)) 14240 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14241 "0369 No entry from completion queue " 14242 "qid=%d\n", cq->queue_id); 14243 14244 xchg(&cq->queue_claimed, 0); 14245 14246 rearm_and_exit: 14247 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 14248 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 14249 14250 return workposted; 14251 } 14252 14253 /** 14254 * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 14255 * @cq: pointer to CQ to process 14256 * 14257 * This routine calls the cq processing routine with a handler specific 14258 * to the type of queue bound to it. 14259 * 14260 * The CQ routine returns two values: the first is the calling status, 14261 * which indicates whether work was queued to the background discovery 14262 * thread. If true, the routine should wakeup the discovery thread; 14263 * the second is the delay parameter. If non-zero, rather than rearming 14264 * the CQ and yet another interrupt, the CQ handler should be queued so 14265 * that it is processed in a subsequent polling action. The value of 14266 * the delay indicates when to reschedule it. 14267 **/ 14268 static void 14269 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 14270 { 14271 struct lpfc_hba *phba = cq->phba; 14272 unsigned long delay; 14273 bool workposted = false; 14274 int ret = 0; 14275 14276 /* Process and rearm the CQ */ 14277 switch (cq->type) { 14278 case LPFC_MCQ: 14279 workposted |= __lpfc_sli4_process_cq(phba, cq, 14280 lpfc_sli4_sp_handle_mcqe, 14281 &delay, LPFC_QUEUE_WORK); 14282 break; 14283 case LPFC_WCQ: 14284 if (cq->subtype == LPFC_IO) 14285 workposted |= __lpfc_sli4_process_cq(phba, cq, 14286 lpfc_sli4_fp_handle_cqe, 14287 &delay, LPFC_QUEUE_WORK); 14288 else 14289 workposted |= __lpfc_sli4_process_cq(phba, cq, 14290 lpfc_sli4_sp_handle_cqe, 14291 &delay, LPFC_QUEUE_WORK); 14292 break; 14293 default: 14294 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14295 "0370 Invalid completion queue type (%d)\n", 14296 cq->type); 14297 return; 14298 } 14299 14300 if (delay) { 14301 if (is_kdump_kernel()) 14302 ret = queue_delayed_work(phba->wq, &cq->sched_spwork, 14303 delay); 14304 else 14305 ret = queue_delayed_work_on(cq->chann, phba->wq, 14306 &cq->sched_spwork, delay); 14307 if (!ret) 14308 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14309 "0394 Cannot schedule queue work " 14310 "for cqid=%d on CPU %d\n", 14311 cq->queue_id, cq->chann); 14312 } 14313 14314 /* wake up worker thread if there are works to be done */ 14315 if (workposted) 14316 lpfc_worker_wake_up(phba); 14317 } 14318 14319 /** 14320 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 14321 * interrupt 14322 * @work: pointer to work element 14323 * 14324 * translates from the work handler and calls the slow-path handler. 14325 **/ 14326 static void 14327 lpfc_sli4_sp_process_cq(struct work_struct *work) 14328 { 14329 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 14330 14331 __lpfc_sli4_sp_process_cq(cq); 14332 } 14333 14334 /** 14335 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 14336 * @work: pointer to work element 14337 * 14338 * translates from the work handler and calls the slow-path handler. 14339 **/ 14340 static void 14341 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 14342 { 14343 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14344 struct lpfc_queue, sched_spwork); 14345 14346 __lpfc_sli4_sp_process_cq(cq); 14347 } 14348 14349 /** 14350 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 14351 * @phba: Pointer to HBA context object. 14352 * @cq: Pointer to associated CQ 14353 * @wcqe: Pointer to work-queue completion queue entry. 14354 * 14355 * This routine process a fast-path work queue completion entry from fast-path 14356 * event queue for FCP command response completion. 14357 **/ 14358 static void 14359 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14360 struct lpfc_wcqe_complete *wcqe) 14361 { 14362 struct lpfc_sli_ring *pring = cq->pring; 14363 struct lpfc_iocbq *cmdiocbq; 14364 struct lpfc_iocbq irspiocbq; 14365 unsigned long iflags; 14366 14367 /* Check for response status */ 14368 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 14369 /* If resource errors reported from HBA, reduce queue 14370 * depth of the SCSI device. 14371 */ 14372 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 14373 IOSTAT_LOCAL_REJECT)) && 14374 ((wcqe->parameter & IOERR_PARAM_MASK) == 14375 IOERR_NO_RESOURCES)) 14376 phba->lpfc_rampdown_queue_depth(phba); 14377 14378 /* Log the cmpl status */ 14379 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 14380 "0373 FCP CQE cmpl: status=x%x: " 14381 "CQE: %08x %08x %08x %08x\n", 14382 bf_get(lpfc_wcqe_c_status, wcqe), 14383 wcqe->word0, wcqe->total_data_placed, 14384 wcqe->parameter, wcqe->word3); 14385 } 14386 14387 /* Look up the FCP command IOCB and create pseudo response IOCB */ 14388 spin_lock_irqsave(&pring->ring_lock, iflags); 14389 pring->stats.iocb_event++; 14390 spin_unlock_irqrestore(&pring->ring_lock, iflags); 14391 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 14392 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14393 if (unlikely(!cmdiocbq)) { 14394 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14395 "0374 FCP complete with no corresponding " 14396 "cmdiocb: iotag (%d)\n", 14397 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14398 return; 14399 } 14400 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 14401 cmdiocbq->isr_timestamp = cq->isr_timestamp; 14402 #endif 14403 if (cmdiocbq->iocb_cmpl == NULL) { 14404 if (cmdiocbq->wqe_cmpl) { 14405 /* For FCP the flag is cleared in wqe_cmpl */ 14406 if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && 14407 cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14408 spin_lock_irqsave(&phba->hbalock, iflags); 14409 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14410 spin_unlock_irqrestore(&phba->hbalock, iflags); 14411 } 14412 14413 /* Pass the cmd_iocb and the wcqe to the upper layer */ 14414 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 14415 return; 14416 } 14417 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14418 "0375 FCP cmdiocb not callback function " 14419 "iotag: (%d)\n", 14420 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 14421 return; 14422 } 14423 14424 /* Only SLI4 non-IO commands stil use IOCB */ 14425 /* Fake the irspiocb and copy necessary response information */ 14426 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 14427 14428 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 14429 spin_lock_irqsave(&phba->hbalock, iflags); 14430 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 14431 spin_unlock_irqrestore(&phba->hbalock, iflags); 14432 } 14433 14434 /* Pass the cmd_iocb and the rsp state to the upper layer */ 14435 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 14436 } 14437 14438 /** 14439 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 14440 * @phba: Pointer to HBA context object. 14441 * @cq: Pointer to completion queue. 14442 * @wcqe: Pointer to work-queue completion queue entry. 14443 * 14444 * This routine handles an fast-path WQ entry consumed event by invoking the 14445 * proper WQ release routine to the slow-path WQ. 14446 **/ 14447 static void 14448 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14449 struct lpfc_wcqe_release *wcqe) 14450 { 14451 struct lpfc_queue *childwq; 14452 bool wqid_matched = false; 14453 uint16_t hba_wqid; 14454 14455 /* Check for fast-path FCP work queue release */ 14456 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14457 list_for_each_entry(childwq, &cq->child_list, list) { 14458 if (childwq->queue_id == hba_wqid) { 14459 lpfc_sli4_wq_release(childwq, 14460 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14461 if (childwq->q_flag & HBA_NVMET_WQFULL) 14462 lpfc_nvmet_wqfull_process(phba, childwq); 14463 wqid_matched = true; 14464 break; 14465 } 14466 } 14467 /* Report warning log message if no match found */ 14468 if (wqid_matched != true) 14469 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14470 "2580 Fast-path wqe consume event carries " 14471 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14472 } 14473 14474 /** 14475 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14476 * @phba: Pointer to HBA context object. 14477 * @cq: Pointer to completion queue. 14478 * @rcqe: Pointer to receive-queue completion queue entry. 14479 * 14480 * This routine process a receive-queue completion queue entry. 14481 * 14482 * Return: true if work posted to worker thread, otherwise false. 14483 **/ 14484 static bool 14485 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14486 struct lpfc_rcqe *rcqe) 14487 { 14488 bool workposted = false; 14489 struct lpfc_queue *hrq; 14490 struct lpfc_queue *drq; 14491 struct rqb_dmabuf *dma_buf; 14492 struct fc_frame_header *fc_hdr; 14493 struct lpfc_nvmet_tgtport *tgtp; 14494 uint32_t status, rq_id; 14495 unsigned long iflags; 14496 uint32_t fctl, idx; 14497 14498 if ((phba->nvmet_support == 0) || 14499 (phba->sli4_hba.nvmet_cqset == NULL)) 14500 return workposted; 14501 14502 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14503 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14504 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14505 14506 /* sanity check on queue memory */ 14507 if (unlikely(!hrq) || unlikely(!drq)) 14508 return workposted; 14509 14510 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14511 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14512 else 14513 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14514 14515 if ((phba->nvmet_support == 0) || 14516 (rq_id != hrq->queue_id)) 14517 return workposted; 14518 14519 status = bf_get(lpfc_rcqe_status, rcqe); 14520 switch (status) { 14521 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14523 "6126 Receive Frame Truncated!!\n"); 14524 fallthrough; 14525 case FC_STATUS_RQ_SUCCESS: 14526 spin_lock_irqsave(&phba->hbalock, iflags); 14527 lpfc_sli4_rq_release(hrq, drq); 14528 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14529 if (!dma_buf) { 14530 hrq->RQ_no_buf_found++; 14531 spin_unlock_irqrestore(&phba->hbalock, iflags); 14532 goto out; 14533 } 14534 spin_unlock_irqrestore(&phba->hbalock, iflags); 14535 hrq->RQ_rcv_buf++; 14536 hrq->RQ_buf_posted--; 14537 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14538 14539 /* Just some basic sanity checks on FCP Command frame */ 14540 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14541 fc_hdr->fh_f_ctl[1] << 8 | 14542 fc_hdr->fh_f_ctl[2]); 14543 if (((fctl & 14544 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14545 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14546 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14547 goto drop; 14548 14549 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14550 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14551 lpfc_nvmet_unsol_fcp_event( 14552 phba, idx, dma_buf, cq->isr_timestamp, 14553 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14554 return false; 14555 } 14556 drop: 14557 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14558 break; 14559 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14560 if (phba->nvmet_support) { 14561 tgtp = phba->targetport->private; 14562 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14563 "6401 RQE Error x%x, posted %d err_cnt " 14564 "%d: %x %x %x\n", 14565 status, hrq->RQ_buf_posted, 14566 hrq->RQ_no_posted_buf, 14567 atomic_read(&tgtp->rcv_fcp_cmd_in), 14568 atomic_read(&tgtp->rcv_fcp_cmd_out), 14569 atomic_read(&tgtp->xmt_fcp_release)); 14570 } 14571 fallthrough; 14572 14573 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14574 hrq->RQ_no_posted_buf++; 14575 /* Post more buffers if possible */ 14576 break; 14577 } 14578 out: 14579 return workposted; 14580 } 14581 14582 /** 14583 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14584 * @phba: adapter with cq 14585 * @cq: Pointer to the completion queue. 14586 * @cqe: Pointer to fast-path completion queue entry. 14587 * 14588 * This routine process a fast-path work queue completion entry from fast-path 14589 * event queue for FCP command response completion. 14590 * 14591 * Return: true if work posted to worker thread, otherwise false. 14592 **/ 14593 static bool 14594 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14595 struct lpfc_cqe *cqe) 14596 { 14597 struct lpfc_wcqe_release wcqe; 14598 bool workposted = false; 14599 14600 /* Copy the work queue CQE and convert endian order if needed */ 14601 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14602 14603 /* Check and process for different type of WCQE and dispatch */ 14604 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14605 case CQE_CODE_COMPL_WQE: 14606 case CQE_CODE_NVME_ERSP: 14607 cq->CQ_wq++; 14608 /* Process the WQ complete event */ 14609 phba->last_completion_time = jiffies; 14610 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14611 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14612 (struct lpfc_wcqe_complete *)&wcqe); 14613 break; 14614 case CQE_CODE_RELEASE_WQE: 14615 cq->CQ_release_wqe++; 14616 /* Process the WQ release event */ 14617 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14618 (struct lpfc_wcqe_release *)&wcqe); 14619 break; 14620 case CQE_CODE_XRI_ABORTED: 14621 cq->CQ_xri_aborted++; 14622 /* Process the WQ XRI abort event */ 14623 phba->last_completion_time = jiffies; 14624 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14625 (struct sli4_wcqe_xri_aborted *)&wcqe); 14626 break; 14627 case CQE_CODE_RECEIVE_V1: 14628 case CQE_CODE_RECEIVE: 14629 phba->last_completion_time = jiffies; 14630 if (cq->subtype == LPFC_NVMET) { 14631 workposted = lpfc_sli4_nvmet_handle_rcqe( 14632 phba, cq, (struct lpfc_rcqe *)&wcqe); 14633 } 14634 break; 14635 default: 14636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14637 "0144 Not a valid CQE code: x%x\n", 14638 bf_get(lpfc_wcqe_c_code, &wcqe)); 14639 break; 14640 } 14641 return workposted; 14642 } 14643 14644 /** 14645 * lpfc_sli4_sched_cq_work - Schedules cq work 14646 * @phba: Pointer to HBA context object. 14647 * @cq: Pointer to CQ 14648 * @cqid: CQ ID 14649 * 14650 * This routine checks the poll mode of the CQ corresponding to 14651 * cq->chann, then either schedules a softirq or queue_work to complete 14652 * cq work. 14653 * 14654 * queue_work path is taken if in NVMET mode, or if poll_mode is in 14655 * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. 14656 * 14657 **/ 14658 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, 14659 struct lpfc_queue *cq, uint16_t cqid) 14660 { 14661 int ret = 0; 14662 14663 switch (cq->poll_mode) { 14664 case LPFC_IRQ_POLL: 14665 irq_poll_sched(&cq->iop); 14666 break; 14667 case LPFC_QUEUE_WORK: 14668 default: 14669 if (is_kdump_kernel()) 14670 ret = queue_work(phba->wq, &cq->irqwork); 14671 else 14672 ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); 14673 if (!ret) 14674 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14675 "0383 Cannot schedule queue work " 14676 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14677 cqid, cq->queue_id, 14678 raw_smp_processor_id()); 14679 } 14680 } 14681 14682 /** 14683 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14684 * @phba: Pointer to HBA context object. 14685 * @eq: Pointer to the queue structure. 14686 * @eqe: Pointer to fast-path event queue entry. 14687 * 14688 * This routine process a event queue entry from the fast-path event queue. 14689 * It will check the MajorCode and MinorCode to determine this is for a 14690 * completion event on a completion queue, if not, an error shall be logged 14691 * and just return. Otherwise, it will get to the corresponding completion 14692 * queue and process all the entries on the completion queue, rearm the 14693 * completion queue, and then return. 14694 **/ 14695 static void 14696 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14697 struct lpfc_eqe *eqe) 14698 { 14699 struct lpfc_queue *cq = NULL; 14700 uint32_t qidx = eq->hdwq; 14701 uint16_t cqid, id; 14702 14703 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14704 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14705 "0366 Not a valid completion " 14706 "event: majorcode=x%x, minorcode=x%x\n", 14707 bf_get_le32(lpfc_eqe_major_code, eqe), 14708 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14709 return; 14710 } 14711 14712 /* Get the reference to the corresponding CQ */ 14713 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14714 14715 /* Use the fast lookup method first */ 14716 if (cqid <= phba->sli4_hba.cq_max) { 14717 cq = phba->sli4_hba.cq_lookup[cqid]; 14718 if (cq) 14719 goto work_cq; 14720 } 14721 14722 /* Next check for NVMET completion */ 14723 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14724 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14725 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14726 /* Process NVMET unsol rcv */ 14727 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14728 goto process_cq; 14729 } 14730 } 14731 14732 if (phba->sli4_hba.nvmels_cq && 14733 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14734 /* Process NVME unsol rcv */ 14735 cq = phba->sli4_hba.nvmels_cq; 14736 } 14737 14738 /* Otherwise this is a Slow path event */ 14739 if (cq == NULL) { 14740 lpfc_sli4_sp_handle_eqe(phba, eqe, 14741 phba->sli4_hba.hdwq[qidx].hba_eq); 14742 return; 14743 } 14744 14745 process_cq: 14746 if (unlikely(cqid != cq->queue_id)) { 14747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14748 "0368 Miss-matched fast-path completion " 14749 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14750 cqid, cq->queue_id); 14751 return; 14752 } 14753 14754 work_cq: 14755 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14756 if (phba->ktime_on) 14757 cq->isr_timestamp = ktime_get_ns(); 14758 else 14759 cq->isr_timestamp = 0; 14760 #endif 14761 lpfc_sli4_sched_cq_work(phba, cq, cqid); 14762 } 14763 14764 /** 14765 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14766 * @cq: Pointer to CQ to be processed 14767 * @poll_mode: Enum lpfc_poll_state to determine poll mode 14768 * 14769 * This routine calls the cq processing routine with the handler for 14770 * fast path CQEs. 14771 * 14772 * The CQ routine returns two values: the first is the calling status, 14773 * which indicates whether work was queued to the background discovery 14774 * thread. If true, the routine should wakeup the discovery thread; 14775 * the second is the delay parameter. If non-zero, rather than rearming 14776 * the CQ and yet another interrupt, the CQ handler should be queued so 14777 * that it is processed in a subsequent polling action. The value of 14778 * the delay indicates when to reschedule it. 14779 **/ 14780 static void 14781 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, 14782 enum lpfc_poll_mode poll_mode) 14783 { 14784 struct lpfc_hba *phba = cq->phba; 14785 unsigned long delay; 14786 bool workposted = false; 14787 int ret = 0; 14788 14789 /* process and rearm the CQ */ 14790 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14791 &delay, poll_mode); 14792 14793 if (delay) { 14794 if (is_kdump_kernel()) 14795 ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, 14796 delay); 14797 else 14798 ret = queue_delayed_work_on(cq->chann, phba->wq, 14799 &cq->sched_irqwork, delay); 14800 if (!ret) 14801 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 14802 "0367 Cannot schedule queue work " 14803 "for cqid=%d on CPU %d\n", 14804 cq->queue_id, cq->chann); 14805 } 14806 14807 /* wake up worker thread if there are works to be done */ 14808 if (workposted) 14809 lpfc_worker_wake_up(phba); 14810 } 14811 14812 /** 14813 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14814 * interrupt 14815 * @work: pointer to work element 14816 * 14817 * translates from the work handler and calls the fast-path handler. 14818 **/ 14819 static void 14820 lpfc_sli4_hba_process_cq(struct work_struct *work) 14821 { 14822 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14823 14824 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14825 } 14826 14827 /** 14828 * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer 14829 * @work: pointer to work element 14830 * 14831 * translates from the work handler and calls the fast-path handler. 14832 **/ 14833 static void 14834 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14835 { 14836 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14837 struct lpfc_queue, sched_irqwork); 14838 14839 __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); 14840 } 14841 14842 /** 14843 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14844 * @irq: Interrupt number. 14845 * @dev_id: The device context pointer. 14846 * 14847 * This function is directly called from the PCI layer as an interrupt 14848 * service routine when device with SLI-4 interface spec is enabled with 14849 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14850 * ring event in the HBA. However, when the device is enabled with either 14851 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14852 * device-level interrupt handler. When the PCI slot is in error recovery 14853 * or the HBA is undergoing initialization, the interrupt handler will not 14854 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14855 * the intrrupt context. This function is called without any lock held. 14856 * It gets the hbalock to access and update SLI data structures. Note that, 14857 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14858 * equal to that of FCP CQ index. 14859 * 14860 * The link attention and ELS ring attention events are handled 14861 * by the worker thread. The interrupt handler signals the worker thread 14862 * and returns for these events. This function is called without any lock 14863 * held. It gets the hbalock to access and update SLI data structures. 14864 * 14865 * This function returns IRQ_HANDLED when interrupt is handled else it 14866 * returns IRQ_NONE. 14867 **/ 14868 irqreturn_t 14869 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14870 { 14871 struct lpfc_hba *phba; 14872 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14873 struct lpfc_queue *fpeq; 14874 unsigned long iflag; 14875 int ecount = 0; 14876 int hba_eqidx; 14877 struct lpfc_eq_intr_info *eqi; 14878 14879 /* Get the driver's phba structure from the dev_id */ 14880 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14881 phba = hba_eq_hdl->phba; 14882 hba_eqidx = hba_eq_hdl->idx; 14883 14884 if (unlikely(!phba)) 14885 return IRQ_NONE; 14886 if (unlikely(!phba->sli4_hba.hdwq)) 14887 return IRQ_NONE; 14888 14889 /* Get to the EQ struct associated with this vector */ 14890 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14891 if (unlikely(!fpeq)) 14892 return IRQ_NONE; 14893 14894 /* Check device state for handling interrupt */ 14895 if (unlikely(lpfc_intr_state_check(phba))) { 14896 /* Check again for link_state with lock held */ 14897 spin_lock_irqsave(&phba->hbalock, iflag); 14898 if (phba->link_state < LPFC_LINK_DOWN) 14899 /* Flush, clear interrupt, and rearm the EQ */ 14900 lpfc_sli4_eqcq_flush(phba, fpeq); 14901 spin_unlock_irqrestore(&phba->hbalock, iflag); 14902 return IRQ_NONE; 14903 } 14904 14905 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14906 eqi->icnt++; 14907 14908 fpeq->last_cpu = raw_smp_processor_id(); 14909 14910 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14911 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14912 phba->cfg_auto_imax && 14913 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14914 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14915 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14916 14917 /* process and rearm the EQ */ 14918 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14919 14920 if (unlikely(ecount == 0)) { 14921 fpeq->EQ_no_entry++; 14922 if (phba->intr_type == MSIX) 14923 /* MSI-X treated interrupt served as no EQ share INT */ 14924 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14925 "0358 MSI-X interrupt with no EQE\n"); 14926 else 14927 /* Non MSI-X treated on interrupt as EQ share INT */ 14928 return IRQ_NONE; 14929 } 14930 14931 return IRQ_HANDLED; 14932 } /* lpfc_sli4_hba_intr_handler */ 14933 14934 /** 14935 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14936 * @irq: Interrupt number. 14937 * @dev_id: The device context pointer. 14938 * 14939 * This function is the device-level interrupt handler to device with SLI-4 14940 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14941 * interrupt mode is enabled and there is an event in the HBA which requires 14942 * driver attention. This function invokes the slow-path interrupt attention 14943 * handling function and fast-path interrupt attention handling function in 14944 * turn to process the relevant HBA attention events. This function is called 14945 * without any lock held. It gets the hbalock to access and update SLI data 14946 * structures. 14947 * 14948 * This function returns IRQ_HANDLED when interrupt is handled, else it 14949 * returns IRQ_NONE. 14950 **/ 14951 irqreturn_t 14952 lpfc_sli4_intr_handler(int irq, void *dev_id) 14953 { 14954 struct lpfc_hba *phba; 14955 irqreturn_t hba_irq_rc; 14956 bool hba_handled = false; 14957 int qidx; 14958 14959 /* Get the driver's phba structure from the dev_id */ 14960 phba = (struct lpfc_hba *)dev_id; 14961 14962 if (unlikely(!phba)) 14963 return IRQ_NONE; 14964 14965 /* 14966 * Invoke fast-path host attention interrupt handling as appropriate. 14967 */ 14968 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14969 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14970 &phba->sli4_hba.hba_eq_hdl[qidx]); 14971 if (hba_irq_rc == IRQ_HANDLED) 14972 hba_handled |= true; 14973 } 14974 14975 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14976 } /* lpfc_sli4_intr_handler */ 14977 14978 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14979 { 14980 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14981 struct lpfc_queue *eq; 14982 int i = 0; 14983 14984 rcu_read_lock(); 14985 14986 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14987 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14988 if (!list_empty(&phba->poll_list)) 14989 mod_timer(&phba->cpuhp_poll_timer, 14990 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14991 14992 rcu_read_unlock(); 14993 } 14994 14995 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14996 { 14997 struct lpfc_hba *phba = eq->phba; 14998 int i = 0; 14999 15000 /* 15001 * Unlocking an irq is one of the entry point to check 15002 * for re-schedule, but we are good for io submission 15003 * path as midlayer does a get_cpu to glue us in. Flush 15004 * out the invalidate queue so we can see the updated 15005 * value for flag. 15006 */ 15007 smp_rmb(); 15008 15009 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 15010 /* We will not likely get the completion for the caller 15011 * during this iteration but i guess that's fine. 15012 * Future io's coming on this eq should be able to 15013 * pick it up. As for the case of single io's, they 15014 * will be handled through a sched from polling timer 15015 * function which is currently triggered every 1msec. 15016 */ 15017 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 15018 15019 return i; 15020 } 15021 15022 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 15023 { 15024 struct lpfc_hba *phba = eq->phba; 15025 15026 /* kickstart slowpath processing if needed */ 15027 if (list_empty(&phba->poll_list)) 15028 mod_timer(&phba->cpuhp_poll_timer, 15029 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 15030 15031 list_add_rcu(&eq->_poll_list, &phba->poll_list); 15032 synchronize_rcu(); 15033 } 15034 15035 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 15036 { 15037 struct lpfc_hba *phba = eq->phba; 15038 15039 /* Disable slowpath processing for this eq. Kick start the eq 15040 * by RE-ARMING the eq's ASAP 15041 */ 15042 list_del_rcu(&eq->_poll_list); 15043 synchronize_rcu(); 15044 15045 if (list_empty(&phba->poll_list)) 15046 del_timer_sync(&phba->cpuhp_poll_timer); 15047 } 15048 15049 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 15050 { 15051 struct lpfc_queue *eq, *next; 15052 15053 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 15054 list_del(&eq->_poll_list); 15055 15056 INIT_LIST_HEAD(&phba->poll_list); 15057 synchronize_rcu(); 15058 } 15059 15060 static inline void 15061 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 15062 { 15063 if (mode == eq->mode) 15064 return; 15065 /* 15066 * currently this function is only called during a hotplug 15067 * event and the cpu on which this function is executing 15068 * is going offline. By now the hotplug has instructed 15069 * the scheduler to remove this cpu from cpu active mask. 15070 * So we don't need to work about being put aside by the 15071 * scheduler for a high priority process. Yes, the inte- 15072 * rrupts could come but they are known to retire ASAP. 15073 */ 15074 15075 /* Disable polling in the fastpath */ 15076 WRITE_ONCE(eq->mode, mode); 15077 /* flush out the store buffer */ 15078 smp_wmb(); 15079 15080 /* 15081 * Add this eq to the polling list and start polling. For 15082 * a grace period both interrupt handler and poller will 15083 * try to process the eq _but_ that's fine. We have a 15084 * synchronization mechanism in place (queue_claimed) to 15085 * deal with it. This is just a draining phase for int- 15086 * errupt handler (not eq's) as we have guranteed through 15087 * barrier that all the CPUs have seen the new CQ_POLLED 15088 * state. which will effectively disable the REARMING of 15089 * the EQ. The whole idea is eq's die off eventually as 15090 * we are not rearming EQ's anymore. 15091 */ 15092 mode ? lpfc_sli4_add_to_poll_list(eq) : 15093 lpfc_sli4_remove_from_poll_list(eq); 15094 } 15095 15096 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 15097 { 15098 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 15099 } 15100 15101 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 15102 { 15103 struct lpfc_hba *phba = eq->phba; 15104 15105 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 15106 15107 /* Kick start for the pending io's in h/w. 15108 * Once we switch back to interrupt processing on a eq 15109 * the io path completion will only arm eq's when it 15110 * receives a completion. But since eq's are in disa- 15111 * rmed state it doesn't receive a completion. This 15112 * creates a deadlock scenaro. 15113 */ 15114 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 15115 } 15116 15117 /** 15118 * lpfc_sli4_queue_free - free a queue structure and associated memory 15119 * @queue: The queue structure to free. 15120 * 15121 * This function frees a queue structure and the DMAable memory used for 15122 * the host resident queue. This function must be called after destroying the 15123 * queue on the HBA. 15124 **/ 15125 void 15126 lpfc_sli4_queue_free(struct lpfc_queue *queue) 15127 { 15128 struct lpfc_dmabuf *dmabuf; 15129 15130 if (!queue) 15131 return; 15132 15133 if (!list_empty(&queue->wq_list)) 15134 list_del(&queue->wq_list); 15135 15136 while (!list_empty(&queue->page_list)) { 15137 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 15138 list); 15139 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 15140 dmabuf->virt, dmabuf->phys); 15141 kfree(dmabuf); 15142 } 15143 if (queue->rqbp) { 15144 lpfc_free_rq_buffer(queue->phba, queue); 15145 kfree(queue->rqbp); 15146 } 15147 15148 if (!list_empty(&queue->cpu_list)) 15149 list_del(&queue->cpu_list); 15150 15151 kfree(queue); 15152 return; 15153 } 15154 15155 /** 15156 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 15157 * @phba: The HBA that this queue is being created on. 15158 * @page_size: The size of a queue page 15159 * @entry_size: The size of each queue entry for this queue. 15160 * @entry_count: The number of entries that this queue will handle. 15161 * @cpu: The cpu that will primarily utilize this queue. 15162 * 15163 * This function allocates a queue structure and the DMAable memory used for 15164 * the host resident queue. This function must be called before creating the 15165 * queue on the HBA. 15166 **/ 15167 struct lpfc_queue * 15168 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 15169 uint32_t entry_size, uint32_t entry_count, int cpu) 15170 { 15171 struct lpfc_queue *queue; 15172 struct lpfc_dmabuf *dmabuf; 15173 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15174 uint16_t x, pgcnt; 15175 15176 if (!phba->sli4_hba.pc_sli4_params.supported) 15177 hw_page_size = page_size; 15178 15179 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 15180 15181 /* If needed, Adjust page count to match the max the adapter supports */ 15182 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 15183 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 15184 15185 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 15186 GFP_KERNEL, cpu_to_node(cpu)); 15187 if (!queue) 15188 return NULL; 15189 15190 INIT_LIST_HEAD(&queue->list); 15191 INIT_LIST_HEAD(&queue->_poll_list); 15192 INIT_LIST_HEAD(&queue->wq_list); 15193 INIT_LIST_HEAD(&queue->wqfull_list); 15194 INIT_LIST_HEAD(&queue->page_list); 15195 INIT_LIST_HEAD(&queue->child_list); 15196 INIT_LIST_HEAD(&queue->cpu_list); 15197 15198 /* Set queue parameters now. If the system cannot provide memory 15199 * resources, the free routine needs to know what was allocated. 15200 */ 15201 queue->page_count = pgcnt; 15202 queue->q_pgs = (void **)&queue[1]; 15203 queue->entry_cnt_per_pg = hw_page_size / entry_size; 15204 queue->entry_size = entry_size; 15205 queue->entry_count = entry_count; 15206 queue->page_size = hw_page_size; 15207 queue->phba = phba; 15208 15209 for (x = 0; x < queue->page_count; x++) { 15210 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 15211 dev_to_node(&phba->pcidev->dev)); 15212 if (!dmabuf) 15213 goto out_fail; 15214 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 15215 hw_page_size, &dmabuf->phys, 15216 GFP_KERNEL); 15217 if (!dmabuf->virt) { 15218 kfree(dmabuf); 15219 goto out_fail; 15220 } 15221 dmabuf->buffer_tag = x; 15222 list_add_tail(&dmabuf->list, &queue->page_list); 15223 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 15224 queue->q_pgs[x] = dmabuf->virt; 15225 } 15226 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 15227 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 15228 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 15229 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 15230 15231 /* notify_interval will be set during q creation */ 15232 15233 return queue; 15234 out_fail: 15235 lpfc_sli4_queue_free(queue); 15236 return NULL; 15237 } 15238 15239 /** 15240 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 15241 * @phba: HBA structure that indicates port to create a queue on. 15242 * @pci_barset: PCI BAR set flag. 15243 * 15244 * This function shall perform iomap of the specified PCI BAR address to host 15245 * memory address if not already done so and return it. The returned host 15246 * memory address can be NULL. 15247 */ 15248 static void __iomem * 15249 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 15250 { 15251 if (!phba->pcidev) 15252 return NULL; 15253 15254 switch (pci_barset) { 15255 case WQ_PCI_BAR_0_AND_1: 15256 return phba->pci_bar0_memmap_p; 15257 case WQ_PCI_BAR_2_AND_3: 15258 return phba->pci_bar2_memmap_p; 15259 case WQ_PCI_BAR_4_AND_5: 15260 return phba->pci_bar4_memmap_p; 15261 default: 15262 break; 15263 } 15264 return NULL; 15265 } 15266 15267 /** 15268 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 15269 * @phba: HBA structure that EQs are on. 15270 * @startq: The starting EQ index to modify 15271 * @numq: The number of EQs (consecutive indexes) to modify 15272 * @usdelay: amount of delay 15273 * 15274 * This function revises the EQ delay on 1 or more EQs. The EQ delay 15275 * is set either by writing to a register (if supported by the SLI Port) 15276 * or by mailbox command. The mailbox command allows several EQs to be 15277 * updated at once. 15278 * 15279 * The @phba struct is used to send a mailbox command to HBA. The @startq 15280 * is used to get the starting EQ index to change. The @numq value is 15281 * used to specify how many consecutive EQ indexes, starting at EQ index, 15282 * are to be changed. This function is asynchronous and will wait for any 15283 * mailbox commands to finish before returning. 15284 * 15285 * On success this function will return a zero. If unable to allocate 15286 * enough memory this function will return -ENOMEM. If a mailbox command 15287 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 15288 * have had their delay multipler changed. 15289 **/ 15290 void 15291 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 15292 uint32_t numq, uint32_t usdelay) 15293 { 15294 struct lpfc_mbx_modify_eq_delay *eq_delay; 15295 LPFC_MBOXQ_t *mbox; 15296 struct lpfc_queue *eq; 15297 int cnt = 0, rc, length; 15298 uint32_t shdr_status, shdr_add_status; 15299 uint32_t dmult; 15300 int qidx; 15301 union lpfc_sli4_cfg_shdr *shdr; 15302 15303 if (startq >= phba->cfg_irq_chann) 15304 return; 15305 15306 if (usdelay > 0xFFFF) { 15307 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 15308 "6429 usdelay %d too large. Scaled down to " 15309 "0xFFFF.\n", usdelay); 15310 usdelay = 0xFFFF; 15311 } 15312 15313 /* set values by EQ_DELAY register if supported */ 15314 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 15315 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15316 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15317 if (!eq) 15318 continue; 15319 15320 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 15321 15322 if (++cnt >= numq) 15323 break; 15324 } 15325 return; 15326 } 15327 15328 /* Otherwise, set values by mailbox cmd */ 15329 15330 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15331 if (!mbox) { 15332 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15333 "6428 Failed allocating mailbox cmd buffer." 15334 " EQ delay was not set.\n"); 15335 return; 15336 } 15337 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 15338 sizeof(struct lpfc_sli4_cfg_mhdr)); 15339 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15340 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 15341 length, LPFC_SLI4_MBX_EMBED); 15342 eq_delay = &mbox->u.mqe.un.eq_delay; 15343 15344 /* Calculate delay multiper from maximum interrupt per second */ 15345 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 15346 if (dmult) 15347 dmult--; 15348 if (dmult > LPFC_DMULT_MAX) 15349 dmult = LPFC_DMULT_MAX; 15350 15351 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 15352 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 15353 if (!eq) 15354 continue; 15355 eq->q_mode = usdelay; 15356 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 15357 eq_delay->u.request.eq[cnt].phase = 0; 15358 eq_delay->u.request.eq[cnt].delay_multi = dmult; 15359 15360 if (++cnt >= numq) 15361 break; 15362 } 15363 eq_delay->u.request.num_eq = cnt; 15364 15365 mbox->vport = phba->pport; 15366 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15367 mbox->ctx_buf = NULL; 15368 mbox->ctx_ndlp = NULL; 15369 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15370 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 15371 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15372 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15373 if (shdr_status || shdr_add_status || rc) { 15374 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15375 "2512 MODIFY_EQ_DELAY mailbox failed with " 15376 "status x%x add_status x%x, mbx status x%x\n", 15377 shdr_status, shdr_add_status, rc); 15378 } 15379 mempool_free(mbox, phba->mbox_mem_pool); 15380 return; 15381 } 15382 15383 /** 15384 * lpfc_eq_create - Create an Event Queue on the HBA 15385 * @phba: HBA structure that indicates port to create a queue on. 15386 * @eq: The queue structure to use to create the event queue. 15387 * @imax: The maximum interrupt per second limit. 15388 * 15389 * This function creates an event queue, as detailed in @eq, on a port, 15390 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 15391 * 15392 * The @phba struct is used to send mailbox command to HBA. The @eq struct 15393 * is used to get the entry count and entry size that are necessary to 15394 * determine the number of pages to allocate and use for this queue. This 15395 * function will send the EQ_CREATE mailbox command to the HBA to setup the 15396 * event queue. This function is asynchronous and will wait for the mailbox 15397 * command to finish before continuing. 15398 * 15399 * On success this function will return a zero. If unable to allocate enough 15400 * memory this function will return -ENOMEM. If the queue create mailbox command 15401 * fails this function will return -ENXIO. 15402 **/ 15403 int 15404 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 15405 { 15406 struct lpfc_mbx_eq_create *eq_create; 15407 LPFC_MBOXQ_t *mbox; 15408 int rc, length, status = 0; 15409 struct lpfc_dmabuf *dmabuf; 15410 uint32_t shdr_status, shdr_add_status; 15411 union lpfc_sli4_cfg_shdr *shdr; 15412 uint16_t dmult; 15413 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15414 15415 /* sanity check on queue memory */ 15416 if (!eq) 15417 return -ENODEV; 15418 if (!phba->sli4_hba.pc_sli4_params.supported) 15419 hw_page_size = SLI4_PAGE_SIZE; 15420 15421 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15422 if (!mbox) 15423 return -ENOMEM; 15424 length = (sizeof(struct lpfc_mbx_eq_create) - 15425 sizeof(struct lpfc_sli4_cfg_mhdr)); 15426 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15427 LPFC_MBOX_OPCODE_EQ_CREATE, 15428 length, LPFC_SLI4_MBX_EMBED); 15429 eq_create = &mbox->u.mqe.un.eq_create; 15430 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 15431 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 15432 eq->page_count); 15433 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 15434 LPFC_EQE_SIZE); 15435 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 15436 15437 /* Use version 2 of CREATE_EQ if eqav is set */ 15438 if (phba->sli4_hba.pc_sli4_params.eqav) { 15439 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15440 LPFC_Q_CREATE_VERSION_2); 15441 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 15442 phba->sli4_hba.pc_sli4_params.eqav); 15443 } 15444 15445 /* don't setup delay multiplier using EQ_CREATE */ 15446 dmult = 0; 15447 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 15448 dmult); 15449 switch (eq->entry_count) { 15450 default: 15451 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15452 "0360 Unsupported EQ count. (%d)\n", 15453 eq->entry_count); 15454 if (eq->entry_count < 256) { 15455 status = -EINVAL; 15456 goto out; 15457 } 15458 fallthrough; /* otherwise default to smallest count */ 15459 case 256: 15460 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15461 LPFC_EQ_CNT_256); 15462 break; 15463 case 512: 15464 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15465 LPFC_EQ_CNT_512); 15466 break; 15467 case 1024: 15468 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15469 LPFC_EQ_CNT_1024); 15470 break; 15471 case 2048: 15472 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15473 LPFC_EQ_CNT_2048); 15474 break; 15475 case 4096: 15476 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 15477 LPFC_EQ_CNT_4096); 15478 break; 15479 } 15480 list_for_each_entry(dmabuf, &eq->page_list, list) { 15481 memset(dmabuf->virt, 0, hw_page_size); 15482 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15483 putPaddrLow(dmabuf->phys); 15484 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15485 putPaddrHigh(dmabuf->phys); 15486 } 15487 mbox->vport = phba->pport; 15488 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15489 mbox->ctx_buf = NULL; 15490 mbox->ctx_ndlp = NULL; 15491 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15492 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15493 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15494 if (shdr_status || shdr_add_status || rc) { 15495 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15496 "2500 EQ_CREATE mailbox failed with " 15497 "status x%x add_status x%x, mbx status x%x\n", 15498 shdr_status, shdr_add_status, rc); 15499 status = -ENXIO; 15500 } 15501 eq->type = LPFC_EQ; 15502 eq->subtype = LPFC_NONE; 15503 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15504 if (eq->queue_id == 0xFFFF) 15505 status = -ENXIO; 15506 eq->host_index = 0; 15507 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15508 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15509 out: 15510 mempool_free(mbox, phba->mbox_mem_pool); 15511 return status; 15512 } 15513 15514 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) 15515 { 15516 struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); 15517 15518 __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); 15519 15520 return 1; 15521 } 15522 15523 /** 15524 * lpfc_cq_create - Create a Completion Queue on the HBA 15525 * @phba: HBA structure that indicates port to create a queue on. 15526 * @cq: The queue structure to use to create the completion queue. 15527 * @eq: The event queue to bind this completion queue to. 15528 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15529 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15530 * 15531 * This function creates a completion queue, as detailed in @wq, on a port, 15532 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15533 * 15534 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15535 * is used to get the entry count and entry size that are necessary to 15536 * determine the number of pages to allocate and use for this queue. The @eq 15537 * is used to indicate which event queue to bind this completion queue to. This 15538 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15539 * completion queue. This function is asynchronous and will wait for the mailbox 15540 * command to finish before continuing. 15541 * 15542 * On success this function will return a zero. If unable to allocate enough 15543 * memory this function will return -ENOMEM. If the queue create mailbox command 15544 * fails this function will return -ENXIO. 15545 **/ 15546 int 15547 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15548 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15549 { 15550 struct lpfc_mbx_cq_create *cq_create; 15551 struct lpfc_dmabuf *dmabuf; 15552 LPFC_MBOXQ_t *mbox; 15553 int rc, length, status = 0; 15554 uint32_t shdr_status, shdr_add_status; 15555 union lpfc_sli4_cfg_shdr *shdr; 15556 15557 /* sanity check on queue memory */ 15558 if (!cq || !eq) 15559 return -ENODEV; 15560 15561 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15562 if (!mbox) 15563 return -ENOMEM; 15564 length = (sizeof(struct lpfc_mbx_cq_create) - 15565 sizeof(struct lpfc_sli4_cfg_mhdr)); 15566 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15567 LPFC_MBOX_OPCODE_CQ_CREATE, 15568 length, LPFC_SLI4_MBX_EMBED); 15569 cq_create = &mbox->u.mqe.un.cq_create; 15570 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15571 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15572 cq->page_count); 15573 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15574 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15575 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15576 phba->sli4_hba.pc_sli4_params.cqv); 15577 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15578 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15579 (cq->page_size / SLI4_PAGE_SIZE)); 15580 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15581 eq->queue_id); 15582 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15583 phba->sli4_hba.pc_sli4_params.cqav); 15584 } else { 15585 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15586 eq->queue_id); 15587 } 15588 switch (cq->entry_count) { 15589 case 2048: 15590 case 4096: 15591 if (phba->sli4_hba.pc_sli4_params.cqv == 15592 LPFC_Q_CREATE_VERSION_2) { 15593 cq_create->u.request.context.lpfc_cq_context_count = 15594 cq->entry_count; 15595 bf_set(lpfc_cq_context_count, 15596 &cq_create->u.request.context, 15597 LPFC_CQ_CNT_WORD7); 15598 break; 15599 } 15600 fallthrough; 15601 default: 15602 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15603 "0361 Unsupported CQ count: " 15604 "entry cnt %d sz %d pg cnt %d\n", 15605 cq->entry_count, cq->entry_size, 15606 cq->page_count); 15607 if (cq->entry_count < 256) { 15608 status = -EINVAL; 15609 goto out; 15610 } 15611 fallthrough; /* otherwise default to smallest count */ 15612 case 256: 15613 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15614 LPFC_CQ_CNT_256); 15615 break; 15616 case 512: 15617 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15618 LPFC_CQ_CNT_512); 15619 break; 15620 case 1024: 15621 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15622 LPFC_CQ_CNT_1024); 15623 break; 15624 } 15625 list_for_each_entry(dmabuf, &cq->page_list, list) { 15626 memset(dmabuf->virt, 0, cq->page_size); 15627 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15628 putPaddrLow(dmabuf->phys); 15629 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15630 putPaddrHigh(dmabuf->phys); 15631 } 15632 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15633 15634 /* The IOCTL status is embedded in the mailbox subheader. */ 15635 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15636 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15637 if (shdr_status || shdr_add_status || rc) { 15638 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15639 "2501 CQ_CREATE mailbox failed with " 15640 "status x%x add_status x%x, mbx status x%x\n", 15641 shdr_status, shdr_add_status, rc); 15642 status = -ENXIO; 15643 goto out; 15644 } 15645 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15646 if (cq->queue_id == 0xFFFF) { 15647 status = -ENXIO; 15648 goto out; 15649 } 15650 /* link the cq onto the parent eq child list */ 15651 list_add_tail(&cq->list, &eq->child_list); 15652 /* Set up completion queue's type and subtype */ 15653 cq->type = type; 15654 cq->subtype = subtype; 15655 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15656 cq->assoc_qid = eq->queue_id; 15657 cq->assoc_qp = eq; 15658 cq->host_index = 0; 15659 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15660 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15661 15662 if (cq->queue_id > phba->sli4_hba.cq_max) 15663 phba->sli4_hba.cq_max = cq->queue_id; 15664 15665 irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); 15666 out: 15667 mempool_free(mbox, phba->mbox_mem_pool); 15668 return status; 15669 } 15670 15671 /** 15672 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15673 * @phba: HBA structure that indicates port to create a queue on. 15674 * @cqp: The queue structure array to use to create the completion queues. 15675 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15676 * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). 15677 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 15678 * 15679 * This function creates a set of completion queue, s to support MRQ 15680 * as detailed in @cqp, on a port, 15681 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15682 * 15683 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15684 * is used to get the entry count and entry size that are necessary to 15685 * determine the number of pages to allocate and use for this queue. The @eq 15686 * is used to indicate which event queue to bind this completion queue to. This 15687 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15688 * completion queue. This function is asynchronous and will wait for the mailbox 15689 * command to finish before continuing. 15690 * 15691 * On success this function will return a zero. If unable to allocate enough 15692 * memory this function will return -ENOMEM. If the queue create mailbox command 15693 * fails this function will return -ENXIO. 15694 **/ 15695 int 15696 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15697 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15698 uint32_t subtype) 15699 { 15700 struct lpfc_queue *cq; 15701 struct lpfc_queue *eq; 15702 struct lpfc_mbx_cq_create_set *cq_set; 15703 struct lpfc_dmabuf *dmabuf; 15704 LPFC_MBOXQ_t *mbox; 15705 int rc, length, alloclen, status = 0; 15706 int cnt, idx, numcq, page_idx = 0; 15707 uint32_t shdr_status, shdr_add_status; 15708 union lpfc_sli4_cfg_shdr *shdr; 15709 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15710 15711 /* sanity check on queue memory */ 15712 numcq = phba->cfg_nvmet_mrq; 15713 if (!cqp || !hdwq || !numcq) 15714 return -ENODEV; 15715 15716 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15717 if (!mbox) 15718 return -ENOMEM; 15719 15720 length = sizeof(struct lpfc_mbx_cq_create_set); 15721 length += ((numcq * cqp[0]->page_count) * 15722 sizeof(struct dma_address)); 15723 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15724 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15725 LPFC_SLI4_MBX_NEMBED); 15726 if (alloclen < length) { 15727 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15728 "3098 Allocated DMA memory size (%d) is " 15729 "less than the requested DMA memory size " 15730 "(%d)\n", alloclen, length); 15731 status = -ENOMEM; 15732 goto out; 15733 } 15734 cq_set = mbox->sge_array->addr[0]; 15735 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15736 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15737 15738 for (idx = 0; idx < numcq; idx++) { 15739 cq = cqp[idx]; 15740 eq = hdwq[idx].hba_eq; 15741 if (!cq || !eq) { 15742 status = -ENOMEM; 15743 goto out; 15744 } 15745 if (!phba->sli4_hba.pc_sli4_params.supported) 15746 hw_page_size = cq->page_size; 15747 15748 switch (idx) { 15749 case 0: 15750 bf_set(lpfc_mbx_cq_create_set_page_size, 15751 &cq_set->u.request, 15752 (hw_page_size / SLI4_PAGE_SIZE)); 15753 bf_set(lpfc_mbx_cq_create_set_num_pages, 15754 &cq_set->u.request, cq->page_count); 15755 bf_set(lpfc_mbx_cq_create_set_evt, 15756 &cq_set->u.request, 1); 15757 bf_set(lpfc_mbx_cq_create_set_valid, 15758 &cq_set->u.request, 1); 15759 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15760 &cq_set->u.request, 0); 15761 bf_set(lpfc_mbx_cq_create_set_num_cq, 15762 &cq_set->u.request, numcq); 15763 bf_set(lpfc_mbx_cq_create_set_autovalid, 15764 &cq_set->u.request, 15765 phba->sli4_hba.pc_sli4_params.cqav); 15766 switch (cq->entry_count) { 15767 case 2048: 15768 case 4096: 15769 if (phba->sli4_hba.pc_sli4_params.cqv == 15770 LPFC_Q_CREATE_VERSION_2) { 15771 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15772 &cq_set->u.request, 15773 cq->entry_count); 15774 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15775 &cq_set->u.request, 15776 LPFC_CQ_CNT_WORD7); 15777 break; 15778 } 15779 fallthrough; 15780 default: 15781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15782 "3118 Bad CQ count. (%d)\n", 15783 cq->entry_count); 15784 if (cq->entry_count < 256) { 15785 status = -EINVAL; 15786 goto out; 15787 } 15788 fallthrough; /* otherwise default to smallest */ 15789 case 256: 15790 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15791 &cq_set->u.request, LPFC_CQ_CNT_256); 15792 break; 15793 case 512: 15794 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15795 &cq_set->u.request, LPFC_CQ_CNT_512); 15796 break; 15797 case 1024: 15798 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15799 &cq_set->u.request, LPFC_CQ_CNT_1024); 15800 break; 15801 } 15802 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15803 &cq_set->u.request, eq->queue_id); 15804 break; 15805 case 1: 15806 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15807 &cq_set->u.request, eq->queue_id); 15808 break; 15809 case 2: 15810 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15811 &cq_set->u.request, eq->queue_id); 15812 break; 15813 case 3: 15814 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15815 &cq_set->u.request, eq->queue_id); 15816 break; 15817 case 4: 15818 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15819 &cq_set->u.request, eq->queue_id); 15820 break; 15821 case 5: 15822 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15823 &cq_set->u.request, eq->queue_id); 15824 break; 15825 case 6: 15826 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15827 &cq_set->u.request, eq->queue_id); 15828 break; 15829 case 7: 15830 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15831 &cq_set->u.request, eq->queue_id); 15832 break; 15833 case 8: 15834 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15835 &cq_set->u.request, eq->queue_id); 15836 break; 15837 case 9: 15838 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15839 &cq_set->u.request, eq->queue_id); 15840 break; 15841 case 10: 15842 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15843 &cq_set->u.request, eq->queue_id); 15844 break; 15845 case 11: 15846 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15847 &cq_set->u.request, eq->queue_id); 15848 break; 15849 case 12: 15850 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15851 &cq_set->u.request, eq->queue_id); 15852 break; 15853 case 13: 15854 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15855 &cq_set->u.request, eq->queue_id); 15856 break; 15857 case 14: 15858 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15859 &cq_set->u.request, eq->queue_id); 15860 break; 15861 case 15: 15862 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15863 &cq_set->u.request, eq->queue_id); 15864 break; 15865 } 15866 15867 /* link the cq onto the parent eq child list */ 15868 list_add_tail(&cq->list, &eq->child_list); 15869 /* Set up completion queue's type and subtype */ 15870 cq->type = type; 15871 cq->subtype = subtype; 15872 cq->assoc_qid = eq->queue_id; 15873 cq->assoc_qp = eq; 15874 cq->host_index = 0; 15875 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15876 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15877 cq->entry_count); 15878 cq->chann = idx; 15879 15880 rc = 0; 15881 list_for_each_entry(dmabuf, &cq->page_list, list) { 15882 memset(dmabuf->virt, 0, hw_page_size); 15883 cnt = page_idx + dmabuf->buffer_tag; 15884 cq_set->u.request.page[cnt].addr_lo = 15885 putPaddrLow(dmabuf->phys); 15886 cq_set->u.request.page[cnt].addr_hi = 15887 putPaddrHigh(dmabuf->phys); 15888 rc++; 15889 } 15890 page_idx += rc; 15891 } 15892 15893 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15894 15895 /* The IOCTL status is embedded in the mailbox subheader. */ 15896 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15897 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15898 if (shdr_status || shdr_add_status || rc) { 15899 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 15900 "3119 CQ_CREATE_SET mailbox failed with " 15901 "status x%x add_status x%x, mbx status x%x\n", 15902 shdr_status, shdr_add_status, rc); 15903 status = -ENXIO; 15904 goto out; 15905 } 15906 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15907 if (rc == 0xFFFF) { 15908 status = -ENXIO; 15909 goto out; 15910 } 15911 15912 for (idx = 0; idx < numcq; idx++) { 15913 cq = cqp[idx]; 15914 cq->queue_id = rc + idx; 15915 if (cq->queue_id > phba->sli4_hba.cq_max) 15916 phba->sli4_hba.cq_max = cq->queue_id; 15917 } 15918 15919 out: 15920 lpfc_sli4_mbox_cmd_free(phba, mbox); 15921 return status; 15922 } 15923 15924 /** 15925 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15926 * @phba: HBA structure that indicates port to create a queue on. 15927 * @mq: The queue structure to use to create the mailbox queue. 15928 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15929 * @cq: The completion queue to associate with this cq. 15930 * 15931 * This function provides failback (fb) functionality when the 15932 * mq_create_ext fails on older FW generations. It's purpose is identical 15933 * to mq_create_ext otherwise. 15934 * 15935 * This routine cannot fail as all attributes were previously accessed and 15936 * initialized in mq_create_ext. 15937 **/ 15938 static void 15939 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15940 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15941 { 15942 struct lpfc_mbx_mq_create *mq_create; 15943 struct lpfc_dmabuf *dmabuf; 15944 int length; 15945 15946 length = (sizeof(struct lpfc_mbx_mq_create) - 15947 sizeof(struct lpfc_sli4_cfg_mhdr)); 15948 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15949 LPFC_MBOX_OPCODE_MQ_CREATE, 15950 length, LPFC_SLI4_MBX_EMBED); 15951 mq_create = &mbox->u.mqe.un.mq_create; 15952 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15953 mq->page_count); 15954 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15955 cq->queue_id); 15956 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15957 switch (mq->entry_count) { 15958 case 16: 15959 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15960 LPFC_MQ_RING_SIZE_16); 15961 break; 15962 case 32: 15963 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15964 LPFC_MQ_RING_SIZE_32); 15965 break; 15966 case 64: 15967 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15968 LPFC_MQ_RING_SIZE_64); 15969 break; 15970 case 128: 15971 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15972 LPFC_MQ_RING_SIZE_128); 15973 break; 15974 } 15975 list_for_each_entry(dmabuf, &mq->page_list, list) { 15976 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15977 putPaddrLow(dmabuf->phys); 15978 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15979 putPaddrHigh(dmabuf->phys); 15980 } 15981 } 15982 15983 /** 15984 * lpfc_mq_create - Create a mailbox Queue on the HBA 15985 * @phba: HBA structure that indicates port to create a queue on. 15986 * @mq: The queue structure to use to create the mailbox queue. 15987 * @cq: The completion queue to associate with this cq. 15988 * @subtype: The queue's subtype. 15989 * 15990 * This function creates a mailbox queue, as detailed in @mq, on a port, 15991 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15992 * 15993 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15994 * is used to get the entry count and entry size that are necessary to 15995 * determine the number of pages to allocate and use for this queue. This 15996 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15997 * mailbox queue. This function is asynchronous and will wait for the mailbox 15998 * command to finish before continuing. 15999 * 16000 * On success this function will return a zero. If unable to allocate enough 16001 * memory this function will return -ENOMEM. If the queue create mailbox command 16002 * fails this function will return -ENXIO. 16003 **/ 16004 int32_t 16005 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 16006 struct lpfc_queue *cq, uint32_t subtype) 16007 { 16008 struct lpfc_mbx_mq_create *mq_create; 16009 struct lpfc_mbx_mq_create_ext *mq_create_ext; 16010 struct lpfc_dmabuf *dmabuf; 16011 LPFC_MBOXQ_t *mbox; 16012 int rc, length, status = 0; 16013 uint32_t shdr_status, shdr_add_status; 16014 union lpfc_sli4_cfg_shdr *shdr; 16015 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16016 16017 /* sanity check on queue memory */ 16018 if (!mq || !cq) 16019 return -ENODEV; 16020 if (!phba->sli4_hba.pc_sli4_params.supported) 16021 hw_page_size = SLI4_PAGE_SIZE; 16022 16023 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16024 if (!mbox) 16025 return -ENOMEM; 16026 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 16027 sizeof(struct lpfc_sli4_cfg_mhdr)); 16028 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16029 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 16030 length, LPFC_SLI4_MBX_EMBED); 16031 16032 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 16033 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 16034 bf_set(lpfc_mbx_mq_create_ext_num_pages, 16035 &mq_create_ext->u.request, mq->page_count); 16036 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 16037 &mq_create_ext->u.request, 1); 16038 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 16039 &mq_create_ext->u.request, 1); 16040 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 16041 &mq_create_ext->u.request, 1); 16042 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 16043 &mq_create_ext->u.request, 1); 16044 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 16045 &mq_create_ext->u.request, 1); 16046 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 16047 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16048 phba->sli4_hba.pc_sli4_params.mqv); 16049 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 16050 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 16051 cq->queue_id); 16052 else 16053 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 16054 cq->queue_id); 16055 switch (mq->entry_count) { 16056 default: 16057 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16058 "0362 Unsupported MQ count. (%d)\n", 16059 mq->entry_count); 16060 if (mq->entry_count < 16) { 16061 status = -EINVAL; 16062 goto out; 16063 } 16064 fallthrough; /* otherwise default to smallest count */ 16065 case 16: 16066 bf_set(lpfc_mq_context_ring_size, 16067 &mq_create_ext->u.request.context, 16068 LPFC_MQ_RING_SIZE_16); 16069 break; 16070 case 32: 16071 bf_set(lpfc_mq_context_ring_size, 16072 &mq_create_ext->u.request.context, 16073 LPFC_MQ_RING_SIZE_32); 16074 break; 16075 case 64: 16076 bf_set(lpfc_mq_context_ring_size, 16077 &mq_create_ext->u.request.context, 16078 LPFC_MQ_RING_SIZE_64); 16079 break; 16080 case 128: 16081 bf_set(lpfc_mq_context_ring_size, 16082 &mq_create_ext->u.request.context, 16083 LPFC_MQ_RING_SIZE_128); 16084 break; 16085 } 16086 list_for_each_entry(dmabuf, &mq->page_list, list) { 16087 memset(dmabuf->virt, 0, hw_page_size); 16088 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 16089 putPaddrLow(dmabuf->phys); 16090 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 16091 putPaddrHigh(dmabuf->phys); 16092 } 16093 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16094 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16095 &mq_create_ext->u.response); 16096 if (rc != MBX_SUCCESS) { 16097 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16098 "2795 MQ_CREATE_EXT failed with " 16099 "status x%x. Failback to MQ_CREATE.\n", 16100 rc); 16101 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 16102 mq_create = &mbox->u.mqe.un.mq_create; 16103 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16104 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 16105 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 16106 &mq_create->u.response); 16107 } 16108 16109 /* The IOCTL status is embedded in the mailbox subheader. */ 16110 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16111 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16112 if (shdr_status || shdr_add_status || rc) { 16113 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16114 "2502 MQ_CREATE mailbox failed with " 16115 "status x%x add_status x%x, mbx status x%x\n", 16116 shdr_status, shdr_add_status, rc); 16117 status = -ENXIO; 16118 goto out; 16119 } 16120 if (mq->queue_id == 0xFFFF) { 16121 status = -ENXIO; 16122 goto out; 16123 } 16124 mq->type = LPFC_MQ; 16125 mq->assoc_qid = cq->queue_id; 16126 mq->subtype = subtype; 16127 mq->host_index = 0; 16128 mq->hba_index = 0; 16129 16130 /* link the mq onto the parent cq child list */ 16131 list_add_tail(&mq->list, &cq->child_list); 16132 out: 16133 mempool_free(mbox, phba->mbox_mem_pool); 16134 return status; 16135 } 16136 16137 /** 16138 * lpfc_wq_create - Create a Work Queue on the HBA 16139 * @phba: HBA structure that indicates port to create a queue on. 16140 * @wq: The queue structure to use to create the work queue. 16141 * @cq: The completion queue to bind this work queue to. 16142 * @subtype: The subtype of the work queue indicating its functionality. 16143 * 16144 * This function creates a work queue, as detailed in @wq, on a port, described 16145 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 16146 * 16147 * The @phba struct is used to send mailbox command to HBA. The @wq struct 16148 * is used to get the entry count and entry size that are necessary to 16149 * determine the number of pages to allocate and use for this queue. The @cq 16150 * is used to indicate which completion queue to bind this work queue to. This 16151 * function will send the WQ_CREATE mailbox command to the HBA to setup the 16152 * work queue. This function is asynchronous and will wait for the mailbox 16153 * command to finish before continuing. 16154 * 16155 * On success this function will return a zero. If unable to allocate enough 16156 * memory this function will return -ENOMEM. If the queue create mailbox command 16157 * fails this function will return -ENXIO. 16158 **/ 16159 int 16160 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 16161 struct lpfc_queue *cq, uint32_t subtype) 16162 { 16163 struct lpfc_mbx_wq_create *wq_create; 16164 struct lpfc_dmabuf *dmabuf; 16165 LPFC_MBOXQ_t *mbox; 16166 int rc, length, status = 0; 16167 uint32_t shdr_status, shdr_add_status; 16168 union lpfc_sli4_cfg_shdr *shdr; 16169 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16170 struct dma_address *page; 16171 void __iomem *bar_memmap_p; 16172 uint32_t db_offset; 16173 uint16_t pci_barset; 16174 uint8_t dpp_barset; 16175 uint32_t dpp_offset; 16176 uint8_t wq_create_version; 16177 #ifdef CONFIG_X86 16178 unsigned long pg_addr; 16179 #endif 16180 16181 /* sanity check on queue memory */ 16182 if (!wq || !cq) 16183 return -ENODEV; 16184 if (!phba->sli4_hba.pc_sli4_params.supported) 16185 hw_page_size = wq->page_size; 16186 16187 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16188 if (!mbox) 16189 return -ENOMEM; 16190 length = (sizeof(struct lpfc_mbx_wq_create) - 16191 sizeof(struct lpfc_sli4_cfg_mhdr)); 16192 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16193 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 16194 length, LPFC_SLI4_MBX_EMBED); 16195 wq_create = &mbox->u.mqe.un.wq_create; 16196 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 16197 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 16198 wq->page_count); 16199 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 16200 cq->queue_id); 16201 16202 /* wqv is the earliest version supported, NOT the latest */ 16203 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16204 phba->sli4_hba.pc_sli4_params.wqv); 16205 16206 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 16207 (wq->page_size > SLI4_PAGE_SIZE)) 16208 wq_create_version = LPFC_Q_CREATE_VERSION_1; 16209 else 16210 wq_create_version = LPFC_Q_CREATE_VERSION_0; 16211 16212 switch (wq_create_version) { 16213 case LPFC_Q_CREATE_VERSION_1: 16214 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 16215 wq->entry_count); 16216 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16217 LPFC_Q_CREATE_VERSION_1); 16218 16219 switch (wq->entry_size) { 16220 default: 16221 case 64: 16222 bf_set(lpfc_mbx_wq_create_wqe_size, 16223 &wq_create->u.request_1, 16224 LPFC_WQ_WQE_SIZE_64); 16225 break; 16226 case 128: 16227 bf_set(lpfc_mbx_wq_create_wqe_size, 16228 &wq_create->u.request_1, 16229 LPFC_WQ_WQE_SIZE_128); 16230 break; 16231 } 16232 /* Request DPP by default */ 16233 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 16234 bf_set(lpfc_mbx_wq_create_page_size, 16235 &wq_create->u.request_1, 16236 (wq->page_size / SLI4_PAGE_SIZE)); 16237 page = wq_create->u.request_1.page; 16238 break; 16239 default: 16240 page = wq_create->u.request.page; 16241 break; 16242 } 16243 16244 list_for_each_entry(dmabuf, &wq->page_list, list) { 16245 memset(dmabuf->virt, 0, hw_page_size); 16246 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 16247 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 16248 } 16249 16250 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16251 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 16252 16253 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16254 /* The IOCTL status is embedded in the mailbox subheader. */ 16255 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16256 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16257 if (shdr_status || shdr_add_status || rc) { 16258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16259 "2503 WQ_CREATE mailbox failed with " 16260 "status x%x add_status x%x, mbx status x%x\n", 16261 shdr_status, shdr_add_status, rc); 16262 status = -ENXIO; 16263 goto out; 16264 } 16265 16266 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 16267 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 16268 &wq_create->u.response); 16269 else 16270 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 16271 &wq_create->u.response_1); 16272 16273 if (wq->queue_id == 0xFFFF) { 16274 status = -ENXIO; 16275 goto out; 16276 } 16277 16278 wq->db_format = LPFC_DB_LIST_FORMAT; 16279 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 16280 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16281 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 16282 &wq_create->u.response); 16283 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 16284 (wq->db_format != LPFC_DB_RING_FORMAT)) { 16285 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16286 "3265 WQ[%d] doorbell format " 16287 "not supported: x%x\n", 16288 wq->queue_id, wq->db_format); 16289 status = -EINVAL; 16290 goto out; 16291 } 16292 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 16293 &wq_create->u.response); 16294 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16295 pci_barset); 16296 if (!bar_memmap_p) { 16297 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16298 "3263 WQ[%d] failed to memmap " 16299 "pci barset:x%x\n", 16300 wq->queue_id, pci_barset); 16301 status = -ENOMEM; 16302 goto out; 16303 } 16304 db_offset = wq_create->u.response.doorbell_offset; 16305 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 16306 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 16307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16308 "3252 WQ[%d] doorbell offset " 16309 "not supported: x%x\n", 16310 wq->queue_id, db_offset); 16311 status = -EINVAL; 16312 goto out; 16313 } 16314 wq->db_regaddr = bar_memmap_p + db_offset; 16315 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16316 "3264 WQ[%d]: barset:x%x, offset:x%x, " 16317 "format:x%x\n", wq->queue_id, 16318 pci_barset, db_offset, wq->db_format); 16319 } else 16320 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16321 } else { 16322 /* Check if DPP was honored by the firmware */ 16323 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 16324 &wq_create->u.response_1); 16325 if (wq->dpp_enable) { 16326 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 16327 &wq_create->u.response_1); 16328 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16329 pci_barset); 16330 if (!bar_memmap_p) { 16331 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16332 "3267 WQ[%d] failed to memmap " 16333 "pci barset:x%x\n", 16334 wq->queue_id, pci_barset); 16335 status = -ENOMEM; 16336 goto out; 16337 } 16338 db_offset = wq_create->u.response_1.doorbell_offset; 16339 wq->db_regaddr = bar_memmap_p + db_offset; 16340 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 16341 &wq_create->u.response_1); 16342 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 16343 &wq_create->u.response_1); 16344 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 16345 dpp_barset); 16346 if (!bar_memmap_p) { 16347 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16348 "3268 WQ[%d] failed to memmap " 16349 "pci barset:x%x\n", 16350 wq->queue_id, dpp_barset); 16351 status = -ENOMEM; 16352 goto out; 16353 } 16354 dpp_offset = wq_create->u.response_1.dpp_offset; 16355 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 16356 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16357 "3271 WQ[%d]: barset:x%x, offset:x%x, " 16358 "dpp_id:x%x dpp_barset:x%x " 16359 "dpp_offset:x%x\n", 16360 wq->queue_id, pci_barset, db_offset, 16361 wq->dpp_id, dpp_barset, dpp_offset); 16362 16363 #ifdef CONFIG_X86 16364 /* Enable combined writes for DPP aperture */ 16365 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 16366 rc = set_memory_wc(pg_addr, 1); 16367 if (rc) { 16368 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16369 "3272 Cannot setup Combined " 16370 "Write on WQ[%d] - disable DPP\n", 16371 wq->queue_id); 16372 phba->cfg_enable_dpp = 0; 16373 } 16374 #else 16375 phba->cfg_enable_dpp = 0; 16376 #endif 16377 } else 16378 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 16379 } 16380 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 16381 if (wq->pring == NULL) { 16382 status = -ENOMEM; 16383 goto out; 16384 } 16385 wq->type = LPFC_WQ; 16386 wq->assoc_qid = cq->queue_id; 16387 wq->subtype = subtype; 16388 wq->host_index = 0; 16389 wq->hba_index = 0; 16390 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 16391 16392 /* link the wq onto the parent cq child list */ 16393 list_add_tail(&wq->list, &cq->child_list); 16394 out: 16395 mempool_free(mbox, phba->mbox_mem_pool); 16396 return status; 16397 } 16398 16399 /** 16400 * lpfc_rq_create - Create a Receive Queue on the HBA 16401 * @phba: HBA structure that indicates port to create a queue on. 16402 * @hrq: The queue structure to use to create the header receive queue. 16403 * @drq: The queue structure to use to create the data receive queue. 16404 * @cq: The completion queue to bind this work queue to. 16405 * @subtype: The subtype of the work queue indicating its functionality. 16406 * 16407 * This function creates a receive buffer queue pair , as detailed in @hrq and 16408 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16409 * to the HBA. 16410 * 16411 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16412 * struct is used to get the entry count that is necessary to determine the 16413 * number of pages to use for this queue. The @cq is used to indicate which 16414 * completion queue to bind received buffers that are posted to these queues to. 16415 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16416 * receive queue pair. This function is asynchronous and will wait for the 16417 * mailbox command to finish before continuing. 16418 * 16419 * On success this function will return a zero. If unable to allocate enough 16420 * memory this function will return -ENOMEM. If the queue create mailbox command 16421 * fails this function will return -ENXIO. 16422 **/ 16423 int 16424 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16425 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 16426 { 16427 struct lpfc_mbx_rq_create *rq_create; 16428 struct lpfc_dmabuf *dmabuf; 16429 LPFC_MBOXQ_t *mbox; 16430 int rc, length, status = 0; 16431 uint32_t shdr_status, shdr_add_status; 16432 union lpfc_sli4_cfg_shdr *shdr; 16433 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16434 void __iomem *bar_memmap_p; 16435 uint32_t db_offset; 16436 uint16_t pci_barset; 16437 16438 /* sanity check on queue memory */ 16439 if (!hrq || !drq || !cq) 16440 return -ENODEV; 16441 if (!phba->sli4_hba.pc_sli4_params.supported) 16442 hw_page_size = SLI4_PAGE_SIZE; 16443 16444 if (hrq->entry_count != drq->entry_count) 16445 return -EINVAL; 16446 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16447 if (!mbox) 16448 return -ENOMEM; 16449 length = (sizeof(struct lpfc_mbx_rq_create) - 16450 sizeof(struct lpfc_sli4_cfg_mhdr)); 16451 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16452 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16453 length, LPFC_SLI4_MBX_EMBED); 16454 rq_create = &mbox->u.mqe.un.rq_create; 16455 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16456 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16457 phba->sli4_hba.pc_sli4_params.rqv); 16458 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16459 bf_set(lpfc_rq_context_rqe_count_1, 16460 &rq_create->u.request.context, 16461 hrq->entry_count); 16462 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 16463 bf_set(lpfc_rq_context_rqe_size, 16464 &rq_create->u.request.context, 16465 LPFC_RQE_SIZE_8); 16466 bf_set(lpfc_rq_context_page_size, 16467 &rq_create->u.request.context, 16468 LPFC_RQ_PAGE_SIZE_4096); 16469 } else { 16470 switch (hrq->entry_count) { 16471 default: 16472 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16473 "2535 Unsupported RQ count. (%d)\n", 16474 hrq->entry_count); 16475 if (hrq->entry_count < 512) { 16476 status = -EINVAL; 16477 goto out; 16478 } 16479 fallthrough; /* otherwise default to smallest count */ 16480 case 512: 16481 bf_set(lpfc_rq_context_rqe_count, 16482 &rq_create->u.request.context, 16483 LPFC_RQ_RING_SIZE_512); 16484 break; 16485 case 1024: 16486 bf_set(lpfc_rq_context_rqe_count, 16487 &rq_create->u.request.context, 16488 LPFC_RQ_RING_SIZE_1024); 16489 break; 16490 case 2048: 16491 bf_set(lpfc_rq_context_rqe_count, 16492 &rq_create->u.request.context, 16493 LPFC_RQ_RING_SIZE_2048); 16494 break; 16495 case 4096: 16496 bf_set(lpfc_rq_context_rqe_count, 16497 &rq_create->u.request.context, 16498 LPFC_RQ_RING_SIZE_4096); 16499 break; 16500 } 16501 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16502 LPFC_HDR_BUF_SIZE); 16503 } 16504 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16505 cq->queue_id); 16506 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16507 hrq->page_count); 16508 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16509 memset(dmabuf->virt, 0, hw_page_size); 16510 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16511 putPaddrLow(dmabuf->phys); 16512 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16513 putPaddrHigh(dmabuf->phys); 16514 } 16515 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16516 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16517 16518 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16519 /* The IOCTL status is embedded in the mailbox subheader. */ 16520 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16521 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16522 if (shdr_status || shdr_add_status || rc) { 16523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16524 "2504 RQ_CREATE mailbox failed with " 16525 "status x%x add_status x%x, mbx status x%x\n", 16526 shdr_status, shdr_add_status, rc); 16527 status = -ENXIO; 16528 goto out; 16529 } 16530 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16531 if (hrq->queue_id == 0xFFFF) { 16532 status = -ENXIO; 16533 goto out; 16534 } 16535 16536 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16537 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16538 &rq_create->u.response); 16539 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16540 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16541 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16542 "3262 RQ [%d] doorbell format not " 16543 "supported: x%x\n", hrq->queue_id, 16544 hrq->db_format); 16545 status = -EINVAL; 16546 goto out; 16547 } 16548 16549 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16550 &rq_create->u.response); 16551 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16552 if (!bar_memmap_p) { 16553 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16554 "3269 RQ[%d] failed to memmap pci " 16555 "barset:x%x\n", hrq->queue_id, 16556 pci_barset); 16557 status = -ENOMEM; 16558 goto out; 16559 } 16560 16561 db_offset = rq_create->u.response.doorbell_offset; 16562 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16563 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16564 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16565 "3270 RQ[%d] doorbell offset not " 16566 "supported: x%x\n", hrq->queue_id, 16567 db_offset); 16568 status = -EINVAL; 16569 goto out; 16570 } 16571 hrq->db_regaddr = bar_memmap_p + db_offset; 16572 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16573 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16574 "format:x%x\n", hrq->queue_id, pci_barset, 16575 db_offset, hrq->db_format); 16576 } else { 16577 hrq->db_format = LPFC_DB_RING_FORMAT; 16578 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16579 } 16580 hrq->type = LPFC_HRQ; 16581 hrq->assoc_qid = cq->queue_id; 16582 hrq->subtype = subtype; 16583 hrq->host_index = 0; 16584 hrq->hba_index = 0; 16585 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16586 16587 /* now create the data queue */ 16588 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16589 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16590 length, LPFC_SLI4_MBX_EMBED); 16591 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16592 phba->sli4_hba.pc_sli4_params.rqv); 16593 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16594 bf_set(lpfc_rq_context_rqe_count_1, 16595 &rq_create->u.request.context, hrq->entry_count); 16596 if (subtype == LPFC_NVMET) 16597 rq_create->u.request.context.buffer_size = 16598 LPFC_NVMET_DATA_BUF_SIZE; 16599 else 16600 rq_create->u.request.context.buffer_size = 16601 LPFC_DATA_BUF_SIZE; 16602 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16603 LPFC_RQE_SIZE_8); 16604 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16605 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16606 } else { 16607 switch (drq->entry_count) { 16608 default: 16609 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16610 "2536 Unsupported RQ count. (%d)\n", 16611 drq->entry_count); 16612 if (drq->entry_count < 512) { 16613 status = -EINVAL; 16614 goto out; 16615 } 16616 fallthrough; /* otherwise default to smallest count */ 16617 case 512: 16618 bf_set(lpfc_rq_context_rqe_count, 16619 &rq_create->u.request.context, 16620 LPFC_RQ_RING_SIZE_512); 16621 break; 16622 case 1024: 16623 bf_set(lpfc_rq_context_rqe_count, 16624 &rq_create->u.request.context, 16625 LPFC_RQ_RING_SIZE_1024); 16626 break; 16627 case 2048: 16628 bf_set(lpfc_rq_context_rqe_count, 16629 &rq_create->u.request.context, 16630 LPFC_RQ_RING_SIZE_2048); 16631 break; 16632 case 4096: 16633 bf_set(lpfc_rq_context_rqe_count, 16634 &rq_create->u.request.context, 16635 LPFC_RQ_RING_SIZE_4096); 16636 break; 16637 } 16638 if (subtype == LPFC_NVMET) 16639 bf_set(lpfc_rq_context_buf_size, 16640 &rq_create->u.request.context, 16641 LPFC_NVMET_DATA_BUF_SIZE); 16642 else 16643 bf_set(lpfc_rq_context_buf_size, 16644 &rq_create->u.request.context, 16645 LPFC_DATA_BUF_SIZE); 16646 } 16647 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16648 cq->queue_id); 16649 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16650 drq->page_count); 16651 list_for_each_entry(dmabuf, &drq->page_list, list) { 16652 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16653 putPaddrLow(dmabuf->phys); 16654 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16655 putPaddrHigh(dmabuf->phys); 16656 } 16657 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16658 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16659 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16660 /* The IOCTL status is embedded in the mailbox subheader. */ 16661 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16662 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16663 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16664 if (shdr_status || shdr_add_status || rc) { 16665 status = -ENXIO; 16666 goto out; 16667 } 16668 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16669 if (drq->queue_id == 0xFFFF) { 16670 status = -ENXIO; 16671 goto out; 16672 } 16673 drq->type = LPFC_DRQ; 16674 drq->assoc_qid = cq->queue_id; 16675 drq->subtype = subtype; 16676 drq->host_index = 0; 16677 drq->hba_index = 0; 16678 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16679 16680 /* link the header and data RQs onto the parent cq child list */ 16681 list_add_tail(&hrq->list, &cq->child_list); 16682 list_add_tail(&drq->list, &cq->child_list); 16683 16684 out: 16685 mempool_free(mbox, phba->mbox_mem_pool); 16686 return status; 16687 } 16688 16689 /** 16690 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16691 * @phba: HBA structure that indicates port to create a queue on. 16692 * @hrqp: The queue structure array to use to create the header receive queues. 16693 * @drqp: The queue structure array to use to create the data receive queues. 16694 * @cqp: The completion queue array to bind these receive queues to. 16695 * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). 16696 * 16697 * This function creates a receive buffer queue pair , as detailed in @hrq and 16698 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16699 * to the HBA. 16700 * 16701 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16702 * struct is used to get the entry count that is necessary to determine the 16703 * number of pages to use for this queue. The @cq is used to indicate which 16704 * completion queue to bind received buffers that are posted to these queues to. 16705 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16706 * receive queue pair. This function is asynchronous and will wait for the 16707 * mailbox command to finish before continuing. 16708 * 16709 * On success this function will return a zero. If unable to allocate enough 16710 * memory this function will return -ENOMEM. If the queue create mailbox command 16711 * fails this function will return -ENXIO. 16712 **/ 16713 int 16714 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16715 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16716 uint32_t subtype) 16717 { 16718 struct lpfc_queue *hrq, *drq, *cq; 16719 struct lpfc_mbx_rq_create_v2 *rq_create; 16720 struct lpfc_dmabuf *dmabuf; 16721 LPFC_MBOXQ_t *mbox; 16722 int rc, length, alloclen, status = 0; 16723 int cnt, idx, numrq, page_idx = 0; 16724 uint32_t shdr_status, shdr_add_status; 16725 union lpfc_sli4_cfg_shdr *shdr; 16726 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16727 16728 numrq = phba->cfg_nvmet_mrq; 16729 /* sanity check on array memory */ 16730 if (!hrqp || !drqp || !cqp || !numrq) 16731 return -ENODEV; 16732 if (!phba->sli4_hba.pc_sli4_params.supported) 16733 hw_page_size = SLI4_PAGE_SIZE; 16734 16735 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16736 if (!mbox) 16737 return -ENOMEM; 16738 16739 length = sizeof(struct lpfc_mbx_rq_create_v2); 16740 length += ((2 * numrq * hrqp[0]->page_count) * 16741 sizeof(struct dma_address)); 16742 16743 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16744 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16745 LPFC_SLI4_MBX_NEMBED); 16746 if (alloclen < length) { 16747 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16748 "3099 Allocated DMA memory size (%d) is " 16749 "less than the requested DMA memory size " 16750 "(%d)\n", alloclen, length); 16751 status = -ENOMEM; 16752 goto out; 16753 } 16754 16755 16756 16757 rq_create = mbox->sge_array->addr[0]; 16758 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16759 16760 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16761 cnt = 0; 16762 16763 for (idx = 0; idx < numrq; idx++) { 16764 hrq = hrqp[idx]; 16765 drq = drqp[idx]; 16766 cq = cqp[idx]; 16767 16768 /* sanity check on queue memory */ 16769 if (!hrq || !drq || !cq) { 16770 status = -ENODEV; 16771 goto out; 16772 } 16773 16774 if (hrq->entry_count != drq->entry_count) { 16775 status = -EINVAL; 16776 goto out; 16777 } 16778 16779 if (idx == 0) { 16780 bf_set(lpfc_mbx_rq_create_num_pages, 16781 &rq_create->u.request, 16782 hrq->page_count); 16783 bf_set(lpfc_mbx_rq_create_rq_cnt, 16784 &rq_create->u.request, (numrq * 2)); 16785 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16786 1); 16787 bf_set(lpfc_rq_context_base_cq, 16788 &rq_create->u.request.context, 16789 cq->queue_id); 16790 bf_set(lpfc_rq_context_data_size, 16791 &rq_create->u.request.context, 16792 LPFC_NVMET_DATA_BUF_SIZE); 16793 bf_set(lpfc_rq_context_hdr_size, 16794 &rq_create->u.request.context, 16795 LPFC_HDR_BUF_SIZE); 16796 bf_set(lpfc_rq_context_rqe_count_1, 16797 &rq_create->u.request.context, 16798 hrq->entry_count); 16799 bf_set(lpfc_rq_context_rqe_size, 16800 &rq_create->u.request.context, 16801 LPFC_RQE_SIZE_8); 16802 bf_set(lpfc_rq_context_page_size, 16803 &rq_create->u.request.context, 16804 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16805 } 16806 rc = 0; 16807 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16808 memset(dmabuf->virt, 0, hw_page_size); 16809 cnt = page_idx + dmabuf->buffer_tag; 16810 rq_create->u.request.page[cnt].addr_lo = 16811 putPaddrLow(dmabuf->phys); 16812 rq_create->u.request.page[cnt].addr_hi = 16813 putPaddrHigh(dmabuf->phys); 16814 rc++; 16815 } 16816 page_idx += rc; 16817 16818 rc = 0; 16819 list_for_each_entry(dmabuf, &drq->page_list, list) { 16820 memset(dmabuf->virt, 0, hw_page_size); 16821 cnt = page_idx + dmabuf->buffer_tag; 16822 rq_create->u.request.page[cnt].addr_lo = 16823 putPaddrLow(dmabuf->phys); 16824 rq_create->u.request.page[cnt].addr_hi = 16825 putPaddrHigh(dmabuf->phys); 16826 rc++; 16827 } 16828 page_idx += rc; 16829 16830 hrq->db_format = LPFC_DB_RING_FORMAT; 16831 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16832 hrq->type = LPFC_HRQ; 16833 hrq->assoc_qid = cq->queue_id; 16834 hrq->subtype = subtype; 16835 hrq->host_index = 0; 16836 hrq->hba_index = 0; 16837 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16838 16839 drq->db_format = LPFC_DB_RING_FORMAT; 16840 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16841 drq->type = LPFC_DRQ; 16842 drq->assoc_qid = cq->queue_id; 16843 drq->subtype = subtype; 16844 drq->host_index = 0; 16845 drq->hba_index = 0; 16846 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16847 16848 list_add_tail(&hrq->list, &cq->child_list); 16849 list_add_tail(&drq->list, &cq->child_list); 16850 } 16851 16852 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16853 /* The IOCTL status is embedded in the mailbox subheader. */ 16854 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16855 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16856 if (shdr_status || shdr_add_status || rc) { 16857 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16858 "3120 RQ_CREATE mailbox failed with " 16859 "status x%x add_status x%x, mbx status x%x\n", 16860 shdr_status, shdr_add_status, rc); 16861 status = -ENXIO; 16862 goto out; 16863 } 16864 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16865 if (rc == 0xFFFF) { 16866 status = -ENXIO; 16867 goto out; 16868 } 16869 16870 /* Initialize all RQs with associated queue id */ 16871 for (idx = 0; idx < numrq; idx++) { 16872 hrq = hrqp[idx]; 16873 hrq->queue_id = rc + (2 * idx); 16874 drq = drqp[idx]; 16875 drq->queue_id = rc + (2 * idx) + 1; 16876 } 16877 16878 out: 16879 lpfc_sli4_mbox_cmd_free(phba, mbox); 16880 return status; 16881 } 16882 16883 /** 16884 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16885 * @phba: HBA structure that indicates port to destroy a queue on. 16886 * @eq: The queue structure associated with the queue to destroy. 16887 * 16888 * This function destroys a queue, as detailed in @eq by sending an mailbox 16889 * command, specific to the type of queue, to the HBA. 16890 * 16891 * The @eq struct is used to get the queue ID of the queue to destroy. 16892 * 16893 * On success this function will return a zero. If the queue destroy mailbox 16894 * command fails this function will return -ENXIO. 16895 **/ 16896 int 16897 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16898 { 16899 LPFC_MBOXQ_t *mbox; 16900 int rc, length, status = 0; 16901 uint32_t shdr_status, shdr_add_status; 16902 union lpfc_sli4_cfg_shdr *shdr; 16903 16904 /* sanity check on queue memory */ 16905 if (!eq) 16906 return -ENODEV; 16907 16908 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16909 if (!mbox) 16910 return -ENOMEM; 16911 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16912 sizeof(struct lpfc_sli4_cfg_mhdr)); 16913 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16914 LPFC_MBOX_OPCODE_EQ_DESTROY, 16915 length, LPFC_SLI4_MBX_EMBED); 16916 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16917 eq->queue_id); 16918 mbox->vport = eq->phba->pport; 16919 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16920 16921 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16922 /* The IOCTL status is embedded in the mailbox subheader. */ 16923 shdr = (union lpfc_sli4_cfg_shdr *) 16924 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16925 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16926 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16927 if (shdr_status || shdr_add_status || rc) { 16928 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16929 "2505 EQ_DESTROY mailbox failed with " 16930 "status x%x add_status x%x, mbx status x%x\n", 16931 shdr_status, shdr_add_status, rc); 16932 status = -ENXIO; 16933 } 16934 16935 /* Remove eq from any list */ 16936 list_del_init(&eq->list); 16937 mempool_free(mbox, eq->phba->mbox_mem_pool); 16938 return status; 16939 } 16940 16941 /** 16942 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16943 * @phba: HBA structure that indicates port to destroy a queue on. 16944 * @cq: The queue structure associated with the queue to destroy. 16945 * 16946 * This function destroys a queue, as detailed in @cq by sending an mailbox 16947 * command, specific to the type of queue, to the HBA. 16948 * 16949 * The @cq struct is used to get the queue ID of the queue to destroy. 16950 * 16951 * On success this function will return a zero. If the queue destroy mailbox 16952 * command fails this function will return -ENXIO. 16953 **/ 16954 int 16955 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16956 { 16957 LPFC_MBOXQ_t *mbox; 16958 int rc, length, status = 0; 16959 uint32_t shdr_status, shdr_add_status; 16960 union lpfc_sli4_cfg_shdr *shdr; 16961 16962 /* sanity check on queue memory */ 16963 if (!cq) 16964 return -ENODEV; 16965 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16966 if (!mbox) 16967 return -ENOMEM; 16968 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16969 sizeof(struct lpfc_sli4_cfg_mhdr)); 16970 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16971 LPFC_MBOX_OPCODE_CQ_DESTROY, 16972 length, LPFC_SLI4_MBX_EMBED); 16973 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16974 cq->queue_id); 16975 mbox->vport = cq->phba->pport; 16976 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16977 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16978 /* The IOCTL status is embedded in the mailbox subheader. */ 16979 shdr = (union lpfc_sli4_cfg_shdr *) 16980 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16981 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16982 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16983 if (shdr_status || shdr_add_status || rc) { 16984 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 16985 "2506 CQ_DESTROY mailbox failed with " 16986 "status x%x add_status x%x, mbx status x%x\n", 16987 shdr_status, shdr_add_status, rc); 16988 status = -ENXIO; 16989 } 16990 /* Remove cq from any list */ 16991 list_del_init(&cq->list); 16992 mempool_free(mbox, cq->phba->mbox_mem_pool); 16993 return status; 16994 } 16995 16996 /** 16997 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16998 * @phba: HBA structure that indicates port to destroy a queue on. 16999 * @mq: The queue structure associated with the queue to destroy. 17000 * 17001 * This function destroys a queue, as detailed in @mq by sending an mailbox 17002 * command, specific to the type of queue, to the HBA. 17003 * 17004 * The @mq struct is used to get the queue ID of the queue to destroy. 17005 * 17006 * On success this function will return a zero. If the queue destroy mailbox 17007 * command fails this function will return -ENXIO. 17008 **/ 17009 int 17010 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 17011 { 17012 LPFC_MBOXQ_t *mbox; 17013 int rc, length, status = 0; 17014 uint32_t shdr_status, shdr_add_status; 17015 union lpfc_sli4_cfg_shdr *shdr; 17016 17017 /* sanity check on queue memory */ 17018 if (!mq) 17019 return -ENODEV; 17020 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 17021 if (!mbox) 17022 return -ENOMEM; 17023 length = (sizeof(struct lpfc_mbx_mq_destroy) - 17024 sizeof(struct lpfc_sli4_cfg_mhdr)); 17025 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 17026 LPFC_MBOX_OPCODE_MQ_DESTROY, 17027 length, LPFC_SLI4_MBX_EMBED); 17028 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 17029 mq->queue_id); 17030 mbox->vport = mq->phba->pport; 17031 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17032 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 17033 /* The IOCTL status is embedded in the mailbox subheader. */ 17034 shdr = (union lpfc_sli4_cfg_shdr *) 17035 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 17036 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17037 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17038 if (shdr_status || shdr_add_status || rc) { 17039 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17040 "2507 MQ_DESTROY mailbox failed with " 17041 "status x%x add_status x%x, mbx status x%x\n", 17042 shdr_status, shdr_add_status, rc); 17043 status = -ENXIO; 17044 } 17045 /* Remove mq from any list */ 17046 list_del_init(&mq->list); 17047 mempool_free(mbox, mq->phba->mbox_mem_pool); 17048 return status; 17049 } 17050 17051 /** 17052 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 17053 * @phba: HBA structure that indicates port to destroy a queue on. 17054 * @wq: The queue structure associated with the queue to destroy. 17055 * 17056 * This function destroys a queue, as detailed in @wq by sending an mailbox 17057 * command, specific to the type of queue, to the HBA. 17058 * 17059 * The @wq struct is used to get the queue ID of the queue to destroy. 17060 * 17061 * On success this function will return a zero. If the queue destroy mailbox 17062 * command fails this function will return -ENXIO. 17063 **/ 17064 int 17065 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 17066 { 17067 LPFC_MBOXQ_t *mbox; 17068 int rc, length, status = 0; 17069 uint32_t shdr_status, shdr_add_status; 17070 union lpfc_sli4_cfg_shdr *shdr; 17071 17072 /* sanity check on queue memory */ 17073 if (!wq) 17074 return -ENODEV; 17075 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 17076 if (!mbox) 17077 return -ENOMEM; 17078 length = (sizeof(struct lpfc_mbx_wq_destroy) - 17079 sizeof(struct lpfc_sli4_cfg_mhdr)); 17080 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17081 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 17082 length, LPFC_SLI4_MBX_EMBED); 17083 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 17084 wq->queue_id); 17085 mbox->vport = wq->phba->pport; 17086 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17087 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 17088 shdr = (union lpfc_sli4_cfg_shdr *) 17089 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 17090 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17091 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17092 if (shdr_status || shdr_add_status || rc) { 17093 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17094 "2508 WQ_DESTROY mailbox failed with " 17095 "status x%x add_status x%x, mbx status x%x\n", 17096 shdr_status, shdr_add_status, rc); 17097 status = -ENXIO; 17098 } 17099 /* Remove wq from any list */ 17100 list_del_init(&wq->list); 17101 kfree(wq->pring); 17102 wq->pring = NULL; 17103 mempool_free(mbox, wq->phba->mbox_mem_pool); 17104 return status; 17105 } 17106 17107 /** 17108 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 17109 * @phba: HBA structure that indicates port to destroy a queue on. 17110 * @hrq: The queue structure associated with the queue to destroy. 17111 * @drq: The queue structure associated with the queue to destroy. 17112 * 17113 * This function destroys a queue, as detailed in @rq by sending an mailbox 17114 * command, specific to the type of queue, to the HBA. 17115 * 17116 * The @rq struct is used to get the queue ID of the queue to destroy. 17117 * 17118 * On success this function will return a zero. If the queue destroy mailbox 17119 * command fails this function will return -ENXIO. 17120 **/ 17121 int 17122 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 17123 struct lpfc_queue *drq) 17124 { 17125 LPFC_MBOXQ_t *mbox; 17126 int rc, length, status = 0; 17127 uint32_t shdr_status, shdr_add_status; 17128 union lpfc_sli4_cfg_shdr *shdr; 17129 17130 /* sanity check on queue memory */ 17131 if (!hrq || !drq) 17132 return -ENODEV; 17133 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 17134 if (!mbox) 17135 return -ENOMEM; 17136 length = (sizeof(struct lpfc_mbx_rq_destroy) - 17137 sizeof(struct lpfc_sli4_cfg_mhdr)); 17138 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17139 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 17140 length, LPFC_SLI4_MBX_EMBED); 17141 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17142 hrq->queue_id); 17143 mbox->vport = hrq->phba->pport; 17144 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17145 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 17146 /* The IOCTL status is embedded in the mailbox subheader. */ 17147 shdr = (union lpfc_sli4_cfg_shdr *) 17148 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17149 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17150 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17151 if (shdr_status || shdr_add_status || rc) { 17152 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17153 "2509 RQ_DESTROY mailbox failed with " 17154 "status x%x add_status x%x, mbx status x%x\n", 17155 shdr_status, shdr_add_status, rc); 17156 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17157 return -ENXIO; 17158 } 17159 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 17160 drq->queue_id); 17161 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 17162 shdr = (union lpfc_sli4_cfg_shdr *) 17163 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 17164 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17165 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17166 if (shdr_status || shdr_add_status || rc) { 17167 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17168 "2510 RQ_DESTROY mailbox failed with " 17169 "status x%x add_status x%x, mbx status x%x\n", 17170 shdr_status, shdr_add_status, rc); 17171 status = -ENXIO; 17172 } 17173 list_del_init(&hrq->list); 17174 list_del_init(&drq->list); 17175 mempool_free(mbox, hrq->phba->mbox_mem_pool); 17176 return status; 17177 } 17178 17179 /** 17180 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 17181 * @phba: The virtual port for which this call being executed. 17182 * @pdma_phys_addr0: Physical address of the 1st SGL page. 17183 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 17184 * @xritag: the xritag that ties this io to the SGL pages. 17185 * 17186 * This routine will post the sgl pages for the IO that has the xritag 17187 * that is in the iocbq structure. The xritag is assigned during iocbq 17188 * creation and persists for as long as the driver is loaded. 17189 * if the caller has fewer than 256 scatter gather segments to map then 17190 * pdma_phys_addr1 should be 0. 17191 * If the caller needs to map more than 256 scatter gather segment then 17192 * pdma_phys_addr1 should be a valid physical address. 17193 * physical address for SGLs must be 64 byte aligned. 17194 * If you are going to map 2 SGL's then the first one must have 256 entries 17195 * the second sgl can have between 1 and 256 entries. 17196 * 17197 * Return codes: 17198 * 0 - Success 17199 * -ENXIO, -ENOMEM - Failure 17200 **/ 17201 int 17202 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 17203 dma_addr_t pdma_phys_addr0, 17204 dma_addr_t pdma_phys_addr1, 17205 uint16_t xritag) 17206 { 17207 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 17208 LPFC_MBOXQ_t *mbox; 17209 int rc; 17210 uint32_t shdr_status, shdr_add_status; 17211 uint32_t mbox_tmo; 17212 union lpfc_sli4_cfg_shdr *shdr; 17213 17214 if (xritag == NO_XRI) { 17215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17216 "0364 Invalid param:\n"); 17217 return -EINVAL; 17218 } 17219 17220 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17221 if (!mbox) 17222 return -ENOMEM; 17223 17224 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17225 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17226 sizeof(struct lpfc_mbx_post_sgl_pages) - 17227 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 17228 17229 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 17230 &mbox->u.mqe.un.post_sgl_pages; 17231 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 17232 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 17233 17234 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 17235 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 17236 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 17237 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 17238 17239 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 17240 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 17241 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 17242 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 17243 if (!phba->sli4_hba.intr_enable) 17244 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17245 else { 17246 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17247 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17248 } 17249 /* The IOCTL status is embedded in the mailbox subheader. */ 17250 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 17251 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17252 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17253 if (!phba->sli4_hba.intr_enable) 17254 mempool_free(mbox, phba->mbox_mem_pool); 17255 else if (rc != MBX_TIMEOUT) 17256 mempool_free(mbox, phba->mbox_mem_pool); 17257 if (shdr_status || shdr_add_status || rc) { 17258 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17259 "2511 POST_SGL mailbox failed with " 17260 "status x%x add_status x%x, mbx status x%x\n", 17261 shdr_status, shdr_add_status, rc); 17262 } 17263 return 0; 17264 } 17265 17266 /** 17267 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 17268 * @phba: pointer to lpfc hba data structure. 17269 * 17270 * This routine is invoked to post rpi header templates to the 17271 * HBA consistent with the SLI-4 interface spec. This routine 17272 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17273 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17274 * 17275 * Returns 17276 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17277 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17278 **/ 17279 static uint16_t 17280 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 17281 { 17282 unsigned long xri; 17283 17284 /* 17285 * Fetch the next logical xri. Because this index is logical, 17286 * the driver starts at 0 each time. 17287 */ 17288 spin_lock_irq(&phba->hbalock); 17289 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 17290 phba->sli4_hba.max_cfg_param.max_xri, 0); 17291 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 17292 spin_unlock_irq(&phba->hbalock); 17293 return NO_XRI; 17294 } else { 17295 set_bit(xri, phba->sli4_hba.xri_bmask); 17296 phba->sli4_hba.max_cfg_param.xri_used++; 17297 } 17298 spin_unlock_irq(&phba->hbalock); 17299 return xri; 17300 } 17301 17302 /** 17303 * __lpfc_sli4_free_xri - Release an xri for reuse. 17304 * @phba: pointer to lpfc hba data structure. 17305 * @xri: xri to release. 17306 * 17307 * This routine is invoked to release an xri to the pool of 17308 * available rpis maintained by the driver. 17309 **/ 17310 static void 17311 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17312 { 17313 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 17314 phba->sli4_hba.max_cfg_param.xri_used--; 17315 } 17316 } 17317 17318 /** 17319 * lpfc_sli4_free_xri - Release an xri for reuse. 17320 * @phba: pointer to lpfc hba data structure. 17321 * @xri: xri to release. 17322 * 17323 * This routine is invoked to release an xri to the pool of 17324 * available rpis maintained by the driver. 17325 **/ 17326 void 17327 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 17328 { 17329 spin_lock_irq(&phba->hbalock); 17330 __lpfc_sli4_free_xri(phba, xri); 17331 spin_unlock_irq(&phba->hbalock); 17332 } 17333 17334 /** 17335 * lpfc_sli4_next_xritag - Get an xritag for the io 17336 * @phba: Pointer to HBA context object. 17337 * 17338 * This function gets an xritag for the iocb. If there is no unused xritag 17339 * it will return 0xffff. 17340 * The function returns the allocated xritag if successful, else returns zero. 17341 * Zero is not a valid xritag. 17342 * The caller is not required to hold any lock. 17343 **/ 17344 uint16_t 17345 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 17346 { 17347 uint16_t xri_index; 17348 17349 xri_index = lpfc_sli4_alloc_xri(phba); 17350 if (xri_index == NO_XRI) 17351 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 17352 "2004 Failed to allocate XRI.last XRITAG is %d" 17353 " Max XRI is %d, Used XRI is %d\n", 17354 xri_index, 17355 phba->sli4_hba.max_cfg_param.max_xri, 17356 phba->sli4_hba.max_cfg_param.xri_used); 17357 return xri_index; 17358 } 17359 17360 /** 17361 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 17362 * @phba: pointer to lpfc hba data structure. 17363 * @post_sgl_list: pointer to els sgl entry list. 17364 * @post_cnt: number of els sgl entries on the list. 17365 * 17366 * This routine is invoked to post a block of driver's sgl pages to the 17367 * HBA using non-embedded mailbox command. No Lock is held. This routine 17368 * is only called when the driver is loading and after all IO has been 17369 * stopped. 17370 **/ 17371 static int 17372 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 17373 struct list_head *post_sgl_list, 17374 int post_cnt) 17375 { 17376 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 17377 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17378 struct sgl_page_pairs *sgl_pg_pairs; 17379 void *viraddr; 17380 LPFC_MBOXQ_t *mbox; 17381 uint32_t reqlen, alloclen, pg_pairs; 17382 uint32_t mbox_tmo; 17383 uint16_t xritag_start = 0; 17384 int rc = 0; 17385 uint32_t shdr_status, shdr_add_status; 17386 union lpfc_sli4_cfg_shdr *shdr; 17387 17388 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 17389 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17390 if (reqlen > SLI4_PAGE_SIZE) { 17391 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17392 "2559 Block sgl registration required DMA " 17393 "size (%d) great than a page\n", reqlen); 17394 return -ENOMEM; 17395 } 17396 17397 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17398 if (!mbox) 17399 return -ENOMEM; 17400 17401 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17402 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17403 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 17404 LPFC_SLI4_MBX_NEMBED); 17405 17406 if (alloclen < reqlen) { 17407 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17408 "0285 Allocated DMA memory size (%d) is " 17409 "less than the requested DMA memory " 17410 "size (%d)\n", alloclen, reqlen); 17411 lpfc_sli4_mbox_cmd_free(phba, mbox); 17412 return -ENOMEM; 17413 } 17414 /* Set up the SGL pages in the non-embedded DMA pages */ 17415 viraddr = mbox->sge_array->addr[0]; 17416 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17417 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17418 17419 pg_pairs = 0; 17420 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 17421 /* Set up the sge entry */ 17422 sgl_pg_pairs->sgl_pg0_addr_lo = 17423 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 17424 sgl_pg_pairs->sgl_pg0_addr_hi = 17425 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 17426 sgl_pg_pairs->sgl_pg1_addr_lo = 17427 cpu_to_le32(putPaddrLow(0)); 17428 sgl_pg_pairs->sgl_pg1_addr_hi = 17429 cpu_to_le32(putPaddrHigh(0)); 17430 17431 /* Keep the first xritag on the list */ 17432 if (pg_pairs == 0) 17433 xritag_start = sglq_entry->sli4_xritag; 17434 sgl_pg_pairs++; 17435 pg_pairs++; 17436 } 17437 17438 /* Complete initialization and perform endian conversion. */ 17439 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17440 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 17441 sgl->word0 = cpu_to_le32(sgl->word0); 17442 17443 if (!phba->sli4_hba.intr_enable) 17444 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17445 else { 17446 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17447 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17448 } 17449 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 17450 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17451 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17452 if (!phba->sli4_hba.intr_enable) 17453 lpfc_sli4_mbox_cmd_free(phba, mbox); 17454 else if (rc != MBX_TIMEOUT) 17455 lpfc_sli4_mbox_cmd_free(phba, mbox); 17456 if (shdr_status || shdr_add_status || rc) { 17457 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17458 "2513 POST_SGL_BLOCK mailbox command failed " 17459 "status x%x add_status x%x mbx status x%x\n", 17460 shdr_status, shdr_add_status, rc); 17461 rc = -ENXIO; 17462 } 17463 return rc; 17464 } 17465 17466 /** 17467 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 17468 * @phba: pointer to lpfc hba data structure. 17469 * @nblist: pointer to nvme buffer list. 17470 * @count: number of scsi buffers on the list. 17471 * 17472 * This routine is invoked to post a block of @count scsi sgl pages from a 17473 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 17474 * No Lock is held. 17475 * 17476 **/ 17477 static int 17478 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 17479 int count) 17480 { 17481 struct lpfc_io_buf *lpfc_ncmd; 17482 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 17483 struct sgl_page_pairs *sgl_pg_pairs; 17484 void *viraddr; 17485 LPFC_MBOXQ_t *mbox; 17486 uint32_t reqlen, alloclen, pg_pairs; 17487 uint32_t mbox_tmo; 17488 uint16_t xritag_start = 0; 17489 int rc = 0; 17490 uint32_t shdr_status, shdr_add_status; 17491 dma_addr_t pdma_phys_bpl1; 17492 union lpfc_sli4_cfg_shdr *shdr; 17493 17494 /* Calculate the requested length of the dma memory */ 17495 reqlen = count * sizeof(struct sgl_page_pairs) + 17496 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 17497 if (reqlen > SLI4_PAGE_SIZE) { 17498 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 17499 "6118 Block sgl registration required DMA " 17500 "size (%d) great than a page\n", reqlen); 17501 return -ENOMEM; 17502 } 17503 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17504 if (!mbox) { 17505 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17506 "6119 Failed to allocate mbox cmd memory\n"); 17507 return -ENOMEM; 17508 } 17509 17510 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17511 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17512 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17513 reqlen, LPFC_SLI4_MBX_NEMBED); 17514 17515 if (alloclen < reqlen) { 17516 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17517 "6120 Allocated DMA memory size (%d) is " 17518 "less than the requested DMA memory " 17519 "size (%d)\n", alloclen, reqlen); 17520 lpfc_sli4_mbox_cmd_free(phba, mbox); 17521 return -ENOMEM; 17522 } 17523 17524 /* Get the first SGE entry from the non-embedded DMA memory */ 17525 viraddr = mbox->sge_array->addr[0]; 17526 17527 /* Set up the SGL pages in the non-embedded DMA pages */ 17528 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17529 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17530 17531 pg_pairs = 0; 17532 list_for_each_entry(lpfc_ncmd, nblist, list) { 17533 /* Set up the sge entry */ 17534 sgl_pg_pairs->sgl_pg0_addr_lo = 17535 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17536 sgl_pg_pairs->sgl_pg0_addr_hi = 17537 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17538 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17539 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17540 SGL_PAGE_SIZE; 17541 else 17542 pdma_phys_bpl1 = 0; 17543 sgl_pg_pairs->sgl_pg1_addr_lo = 17544 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17545 sgl_pg_pairs->sgl_pg1_addr_hi = 17546 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17547 /* Keep the first xritag on the list */ 17548 if (pg_pairs == 0) 17549 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17550 sgl_pg_pairs++; 17551 pg_pairs++; 17552 } 17553 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17554 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17555 /* Perform endian conversion if necessary */ 17556 sgl->word0 = cpu_to_le32(sgl->word0); 17557 17558 if (!phba->sli4_hba.intr_enable) { 17559 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17560 } else { 17561 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17562 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17563 } 17564 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17565 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17566 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17567 if (!phba->sli4_hba.intr_enable) 17568 lpfc_sli4_mbox_cmd_free(phba, mbox); 17569 else if (rc != MBX_TIMEOUT) 17570 lpfc_sli4_mbox_cmd_free(phba, mbox); 17571 if (shdr_status || shdr_add_status || rc) { 17572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 17573 "6125 POST_SGL_BLOCK mailbox command failed " 17574 "status x%x add_status x%x mbx status x%x\n", 17575 shdr_status, shdr_add_status, rc); 17576 rc = -ENXIO; 17577 } 17578 return rc; 17579 } 17580 17581 /** 17582 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17583 * @phba: pointer to lpfc hba data structure. 17584 * @post_nblist: pointer to the nvme buffer list. 17585 * @sb_count: number of nvme buffers. 17586 * 17587 * This routine walks a list of nvme buffers that was passed in. It attempts 17588 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17589 * uses the non-embedded SGL block post mailbox commands to post to the port. 17590 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17591 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17592 * must be local list, thus no lock is needed when manipulate the list. 17593 * 17594 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17595 **/ 17596 int 17597 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17598 struct list_head *post_nblist, int sb_count) 17599 { 17600 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17601 int status, sgl_size; 17602 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17603 dma_addr_t pdma_phys_sgl1; 17604 int last_xritag = NO_XRI; 17605 int cur_xritag; 17606 LIST_HEAD(prep_nblist); 17607 LIST_HEAD(blck_nblist); 17608 LIST_HEAD(nvme_nblist); 17609 17610 /* sanity check */ 17611 if (sb_count <= 0) 17612 return -EINVAL; 17613 17614 sgl_size = phba->cfg_sg_dma_buf_size; 17615 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17616 list_del_init(&lpfc_ncmd->list); 17617 block_cnt++; 17618 if ((last_xritag != NO_XRI) && 17619 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17620 /* a hole in xri block, form a sgl posting block */ 17621 list_splice_init(&prep_nblist, &blck_nblist); 17622 post_cnt = block_cnt - 1; 17623 /* prepare list for next posting block */ 17624 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17625 block_cnt = 1; 17626 } else { 17627 /* prepare list for next posting block */ 17628 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17629 /* enough sgls for non-embed sgl mbox command */ 17630 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17631 list_splice_init(&prep_nblist, &blck_nblist); 17632 post_cnt = block_cnt; 17633 block_cnt = 0; 17634 } 17635 } 17636 num_posting++; 17637 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17638 17639 /* end of repost sgl list condition for NVME buffers */ 17640 if (num_posting == sb_count) { 17641 if (post_cnt == 0) { 17642 /* last sgl posting block */ 17643 list_splice_init(&prep_nblist, &blck_nblist); 17644 post_cnt = block_cnt; 17645 } else if (block_cnt == 1) { 17646 /* last single sgl with non-contiguous xri */ 17647 if (sgl_size > SGL_PAGE_SIZE) 17648 pdma_phys_sgl1 = 17649 lpfc_ncmd->dma_phys_sgl + 17650 SGL_PAGE_SIZE; 17651 else 17652 pdma_phys_sgl1 = 0; 17653 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17654 status = lpfc_sli4_post_sgl( 17655 phba, lpfc_ncmd->dma_phys_sgl, 17656 pdma_phys_sgl1, cur_xritag); 17657 if (status) { 17658 /* Post error. Buffer unavailable. */ 17659 lpfc_ncmd->flags |= 17660 LPFC_SBUF_NOT_POSTED; 17661 } else { 17662 /* Post success. Bffer available. */ 17663 lpfc_ncmd->flags &= 17664 ~LPFC_SBUF_NOT_POSTED; 17665 lpfc_ncmd->status = IOSTAT_SUCCESS; 17666 num_posted++; 17667 } 17668 /* success, put on NVME buffer sgl list */ 17669 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17670 } 17671 } 17672 17673 /* continue until a nembed page worth of sgls */ 17674 if (post_cnt == 0) 17675 continue; 17676 17677 /* post block of NVME buffer list sgls */ 17678 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17679 post_cnt); 17680 17681 /* don't reset xirtag due to hole in xri block */ 17682 if (block_cnt == 0) 17683 last_xritag = NO_XRI; 17684 17685 /* reset NVME buffer post count for next round of posting */ 17686 post_cnt = 0; 17687 17688 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17689 while (!list_empty(&blck_nblist)) { 17690 list_remove_head(&blck_nblist, lpfc_ncmd, 17691 struct lpfc_io_buf, list); 17692 if (status) { 17693 /* Post error. Mark buffer unavailable. */ 17694 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17695 } else { 17696 /* Post success, Mark buffer available. */ 17697 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17698 lpfc_ncmd->status = IOSTAT_SUCCESS; 17699 num_posted++; 17700 } 17701 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17702 } 17703 } 17704 /* Push NVME buffers with sgl posted to the available list */ 17705 lpfc_io_buf_replenish(phba, &nvme_nblist); 17706 17707 return num_posted; 17708 } 17709 17710 /** 17711 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17712 * @phba: pointer to lpfc_hba struct that the frame was received on 17713 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17714 * 17715 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17716 * valid type of frame that the LPFC driver will handle. This function will 17717 * return a zero if the frame is a valid frame or a non zero value when the 17718 * frame does not pass the check. 17719 **/ 17720 static int 17721 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17722 { 17723 /* make rctl_names static to save stack space */ 17724 struct fc_vft_header *fc_vft_hdr; 17725 uint32_t *header = (uint32_t *) fc_hdr; 17726 17727 #define FC_RCTL_MDS_DIAGS 0xF4 17728 17729 switch (fc_hdr->fh_r_ctl) { 17730 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17731 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17732 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17733 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17734 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17735 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17736 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17737 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17738 case FC_RCTL_ELS_REQ: /* extended link services request */ 17739 case FC_RCTL_ELS_REP: /* extended link services reply */ 17740 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17741 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17742 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17743 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17744 case FC_RCTL_BA_RMC: /* remove connection */ 17745 case FC_RCTL_BA_ACC: /* basic accept */ 17746 case FC_RCTL_BA_RJT: /* basic reject */ 17747 case FC_RCTL_BA_PRMT: 17748 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17749 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17750 case FC_RCTL_P_RJT: /* port reject */ 17751 case FC_RCTL_F_RJT: /* fabric reject */ 17752 case FC_RCTL_P_BSY: /* port busy */ 17753 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17754 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17755 case FC_RCTL_LCR: /* link credit reset */ 17756 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17757 case FC_RCTL_END: /* end */ 17758 break; 17759 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17760 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17761 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17762 return lpfc_fc_frame_check(phba, fc_hdr); 17763 default: 17764 goto drop; 17765 } 17766 17767 switch (fc_hdr->fh_type) { 17768 case FC_TYPE_BLS: 17769 case FC_TYPE_ELS: 17770 case FC_TYPE_FCP: 17771 case FC_TYPE_CT: 17772 case FC_TYPE_NVME: 17773 break; 17774 case FC_TYPE_IP: 17775 case FC_TYPE_ILS: 17776 default: 17777 goto drop; 17778 } 17779 17780 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17781 "2538 Received frame rctl:x%x, type:x%x, " 17782 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17783 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17784 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17785 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17786 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17787 be32_to_cpu(header[6])); 17788 return 0; 17789 drop: 17790 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17791 "2539 Dropped frame rctl:x%x type:x%x\n", 17792 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17793 return 1; 17794 } 17795 17796 /** 17797 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17798 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17799 * 17800 * This function processes the FC header to retrieve the VFI from the VF 17801 * header, if one exists. This function will return the VFI if one exists 17802 * or 0 if no VSAN Header exists. 17803 **/ 17804 static uint32_t 17805 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17806 { 17807 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17808 17809 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17810 return 0; 17811 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17812 } 17813 17814 /** 17815 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17816 * @phba: Pointer to the HBA structure to search for the vport on 17817 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17818 * @fcfi: The FC Fabric ID that the frame came from 17819 * @did: Destination ID to match against 17820 * 17821 * This function searches the @phba for a vport that matches the content of the 17822 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17823 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17824 * returns the matching vport pointer or NULL if unable to match frame to a 17825 * vport. 17826 **/ 17827 static struct lpfc_vport * 17828 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17829 uint16_t fcfi, uint32_t did) 17830 { 17831 struct lpfc_vport **vports; 17832 struct lpfc_vport *vport = NULL; 17833 int i; 17834 17835 if (did == Fabric_DID) 17836 return phba->pport; 17837 if ((phba->pport->fc_flag & FC_PT2PT) && 17838 !(phba->link_state == LPFC_HBA_READY)) 17839 return phba->pport; 17840 17841 vports = lpfc_create_vport_work_array(phba); 17842 if (vports != NULL) { 17843 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17844 if (phba->fcf.fcfi == fcfi && 17845 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17846 vports[i]->fc_myDID == did) { 17847 vport = vports[i]; 17848 break; 17849 } 17850 } 17851 } 17852 lpfc_destroy_vport_work_array(phba, vports); 17853 return vport; 17854 } 17855 17856 /** 17857 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17858 * @vport: The vport to work on. 17859 * 17860 * This function updates the receive sequence time stamp for this vport. The 17861 * receive sequence time stamp indicates the time that the last frame of the 17862 * the sequence that has been idle for the longest amount of time was received. 17863 * the driver uses this time stamp to indicate if any received sequences have 17864 * timed out. 17865 **/ 17866 static void 17867 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17868 { 17869 struct lpfc_dmabuf *h_buf; 17870 struct hbq_dmabuf *dmabuf = NULL; 17871 17872 /* get the oldest sequence on the rcv list */ 17873 h_buf = list_get_first(&vport->rcv_buffer_list, 17874 struct lpfc_dmabuf, list); 17875 if (!h_buf) 17876 return; 17877 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17878 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17879 } 17880 17881 /** 17882 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17883 * @vport: The vport that the received sequences were sent to. 17884 * 17885 * This function cleans up all outstanding received sequences. This is called 17886 * by the driver when a link event or user action invalidates all the received 17887 * sequences. 17888 **/ 17889 void 17890 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17891 { 17892 struct lpfc_dmabuf *h_buf, *hnext; 17893 struct lpfc_dmabuf *d_buf, *dnext; 17894 struct hbq_dmabuf *dmabuf = NULL; 17895 17896 /* start with the oldest sequence on the rcv list */ 17897 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17898 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17899 list_del_init(&dmabuf->hbuf.list); 17900 list_for_each_entry_safe(d_buf, dnext, 17901 &dmabuf->dbuf.list, list) { 17902 list_del_init(&d_buf->list); 17903 lpfc_in_buf_free(vport->phba, d_buf); 17904 } 17905 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17906 } 17907 } 17908 17909 /** 17910 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17911 * @vport: The vport that the received sequences were sent to. 17912 * 17913 * This function determines whether any received sequences have timed out by 17914 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17915 * indicates that there is at least one timed out sequence this routine will 17916 * go through the received sequences one at a time from most inactive to most 17917 * active to determine which ones need to be cleaned up. Once it has determined 17918 * that a sequence needs to be cleaned up it will simply free up the resources 17919 * without sending an abort. 17920 **/ 17921 void 17922 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17923 { 17924 struct lpfc_dmabuf *h_buf, *hnext; 17925 struct lpfc_dmabuf *d_buf, *dnext; 17926 struct hbq_dmabuf *dmabuf = NULL; 17927 unsigned long timeout; 17928 int abort_count = 0; 17929 17930 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17931 vport->rcv_buffer_time_stamp); 17932 if (list_empty(&vport->rcv_buffer_list) || 17933 time_before(jiffies, timeout)) 17934 return; 17935 /* start with the oldest sequence on the rcv list */ 17936 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17937 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17938 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17939 dmabuf->time_stamp); 17940 if (time_before(jiffies, timeout)) 17941 break; 17942 abort_count++; 17943 list_del_init(&dmabuf->hbuf.list); 17944 list_for_each_entry_safe(d_buf, dnext, 17945 &dmabuf->dbuf.list, list) { 17946 list_del_init(&d_buf->list); 17947 lpfc_in_buf_free(vport->phba, d_buf); 17948 } 17949 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17950 } 17951 if (abort_count) 17952 lpfc_update_rcv_time_stamp(vport); 17953 } 17954 17955 /** 17956 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17957 * @vport: pointer to a vitural port 17958 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17959 * 17960 * This function searches through the existing incomplete sequences that have 17961 * been sent to this @vport. If the frame matches one of the incomplete 17962 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17963 * make up that sequence. If no sequence is found that matches this frame then 17964 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17965 * This function returns a pointer to the first dmabuf in the sequence list that 17966 * the frame was linked to. 17967 **/ 17968 static struct hbq_dmabuf * 17969 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17970 { 17971 struct fc_frame_header *new_hdr; 17972 struct fc_frame_header *temp_hdr; 17973 struct lpfc_dmabuf *d_buf; 17974 struct lpfc_dmabuf *h_buf; 17975 struct hbq_dmabuf *seq_dmabuf = NULL; 17976 struct hbq_dmabuf *temp_dmabuf = NULL; 17977 uint8_t found = 0; 17978 17979 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17980 dmabuf->time_stamp = jiffies; 17981 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17982 17983 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17984 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17985 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17986 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17987 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17988 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17989 continue; 17990 /* found a pending sequence that matches this frame */ 17991 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17992 break; 17993 } 17994 if (!seq_dmabuf) { 17995 /* 17996 * This indicates first frame received for this sequence. 17997 * Queue the buffer on the vport's rcv_buffer_list. 17998 */ 17999 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18000 lpfc_update_rcv_time_stamp(vport); 18001 return dmabuf; 18002 } 18003 temp_hdr = seq_dmabuf->hbuf.virt; 18004 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 18005 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18006 list_del_init(&seq_dmabuf->hbuf.list); 18007 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 18008 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18009 lpfc_update_rcv_time_stamp(vport); 18010 return dmabuf; 18011 } 18012 /* move this sequence to the tail to indicate a young sequence */ 18013 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 18014 seq_dmabuf->time_stamp = jiffies; 18015 lpfc_update_rcv_time_stamp(vport); 18016 if (list_empty(&seq_dmabuf->dbuf.list)) { 18017 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 18018 return seq_dmabuf; 18019 } 18020 /* find the correct place in the sequence to insert this frame */ 18021 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 18022 while (!found) { 18023 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18024 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 18025 /* 18026 * If the frame's sequence count is greater than the frame on 18027 * the list then insert the frame right after this frame 18028 */ 18029 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 18030 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 18031 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 18032 found = 1; 18033 break; 18034 } 18035 18036 if (&d_buf->list == &seq_dmabuf->dbuf.list) 18037 break; 18038 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 18039 } 18040 18041 if (found) 18042 return seq_dmabuf; 18043 return NULL; 18044 } 18045 18046 /** 18047 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 18048 * @vport: pointer to a vitural port 18049 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18050 * 18051 * This function tries to abort from the partially assembed sequence, described 18052 * by the information from basic abbort @dmabuf. It checks to see whether such 18053 * partially assembled sequence held by the driver. If so, it shall free up all 18054 * the frames from the partially assembled sequence. 18055 * 18056 * Return 18057 * true -- if there is matching partially assembled sequence present and all 18058 * the frames freed with the sequence; 18059 * false -- if there is no matching partially assembled sequence present so 18060 * nothing got aborted in the lower layer driver 18061 **/ 18062 static bool 18063 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 18064 struct hbq_dmabuf *dmabuf) 18065 { 18066 struct fc_frame_header *new_hdr; 18067 struct fc_frame_header *temp_hdr; 18068 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 18069 struct hbq_dmabuf *seq_dmabuf = NULL; 18070 18071 /* Use the hdr_buf to find the sequence that matches this frame */ 18072 INIT_LIST_HEAD(&dmabuf->dbuf.list); 18073 INIT_LIST_HEAD(&dmabuf->hbuf.list); 18074 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18075 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 18076 temp_hdr = (struct fc_frame_header *)h_buf->virt; 18077 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 18078 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 18079 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 18080 continue; 18081 /* found a pending sequence that matches this frame */ 18082 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 18083 break; 18084 } 18085 18086 /* Free up all the frames from the partially assembled sequence */ 18087 if (seq_dmabuf) { 18088 list_for_each_entry_safe(d_buf, n_buf, 18089 &seq_dmabuf->dbuf.list, list) { 18090 list_del_init(&d_buf->list); 18091 lpfc_in_buf_free(vport->phba, d_buf); 18092 } 18093 return true; 18094 } 18095 return false; 18096 } 18097 18098 /** 18099 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 18100 * @vport: pointer to a vitural port 18101 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18102 * 18103 * This function tries to abort from the assembed sequence from upper level 18104 * protocol, described by the information from basic abbort @dmabuf. It 18105 * checks to see whether such pending context exists at upper level protocol. 18106 * If so, it shall clean up the pending context. 18107 * 18108 * Return 18109 * true -- if there is matching pending context of the sequence cleaned 18110 * at ulp; 18111 * false -- if there is no matching pending context of the sequence present 18112 * at ulp. 18113 **/ 18114 static bool 18115 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 18116 { 18117 struct lpfc_hba *phba = vport->phba; 18118 int handled; 18119 18120 /* Accepting abort at ulp with SLI4 only */ 18121 if (phba->sli_rev < LPFC_SLI_REV4) 18122 return false; 18123 18124 /* Register all caring upper level protocols to attend abort */ 18125 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 18126 if (handled) 18127 return true; 18128 18129 return false; 18130 } 18131 18132 /** 18133 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 18134 * @phba: Pointer to HBA context object. 18135 * @cmd_iocbq: pointer to the command iocbq structure. 18136 * @rsp_iocbq: pointer to the response iocbq structure. 18137 * 18138 * This function handles the sequence abort response iocb command complete 18139 * event. It properly releases the memory allocated to the sequence abort 18140 * accept iocb. 18141 **/ 18142 static void 18143 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 18144 struct lpfc_iocbq *cmd_iocbq, 18145 struct lpfc_iocbq *rsp_iocbq) 18146 { 18147 struct lpfc_nodelist *ndlp; 18148 18149 if (cmd_iocbq) { 18150 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 18151 lpfc_nlp_put(ndlp); 18152 lpfc_sli_release_iocbq(phba, cmd_iocbq); 18153 } 18154 18155 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 18156 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 18157 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18158 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 18159 rsp_iocbq->iocb.ulpStatus, 18160 rsp_iocbq->iocb.un.ulpWord[4]); 18161 } 18162 18163 /** 18164 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 18165 * @phba: Pointer to HBA context object. 18166 * @xri: xri id in transaction. 18167 * 18168 * This function validates the xri maps to the known range of XRIs allocated an 18169 * used by the driver. 18170 **/ 18171 uint16_t 18172 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 18173 uint16_t xri) 18174 { 18175 uint16_t i; 18176 18177 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 18178 if (xri == phba->sli4_hba.xri_ids[i]) 18179 return i; 18180 } 18181 return NO_XRI; 18182 } 18183 18184 /** 18185 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 18186 * @vport: pointer to a virtual port. 18187 * @fc_hdr: pointer to a FC frame header. 18188 * @aborted: was the partially assembled receive sequence successfully aborted 18189 * 18190 * This function sends a basic response to a previous unsol sequence abort 18191 * event after aborting the sequence handling. 18192 **/ 18193 void 18194 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 18195 struct fc_frame_header *fc_hdr, bool aborted) 18196 { 18197 struct lpfc_hba *phba = vport->phba; 18198 struct lpfc_iocbq *ctiocb = NULL; 18199 struct lpfc_nodelist *ndlp; 18200 uint16_t oxid, rxid, xri, lxri; 18201 uint32_t sid, fctl; 18202 IOCB_t *icmd; 18203 int rc; 18204 18205 if (!lpfc_is_link_up(phba)) 18206 return; 18207 18208 sid = sli4_sid_from_fc_hdr(fc_hdr); 18209 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 18210 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 18211 18212 ndlp = lpfc_findnode_did(vport, sid); 18213 if (!ndlp) { 18214 ndlp = lpfc_nlp_init(vport, sid); 18215 if (!ndlp) { 18216 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 18217 "1268 Failed to allocate ndlp for " 18218 "oxid:x%x SID:x%x\n", oxid, sid); 18219 return; 18220 } 18221 /* Put ndlp onto pport node list */ 18222 lpfc_enqueue_node(vport, ndlp); 18223 } 18224 18225 /* Allocate buffer for rsp iocb */ 18226 ctiocb = lpfc_sli_get_iocbq(phba); 18227 if (!ctiocb) 18228 return; 18229 18230 /* Extract the F_CTL field from FC_HDR */ 18231 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 18232 18233 icmd = &ctiocb->iocb; 18234 icmd->un.xseq64.bdl.bdeSize = 0; 18235 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 18236 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 18237 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 18238 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 18239 18240 /* Fill in the rest of iocb fields */ 18241 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 18242 icmd->ulpBdeCount = 0; 18243 icmd->ulpLe = 1; 18244 icmd->ulpClass = CLASS3; 18245 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 18246 ctiocb->context1 = lpfc_nlp_get(ndlp); 18247 if (!ctiocb->context1) { 18248 lpfc_sli_release_iocbq(phba, ctiocb); 18249 return; 18250 } 18251 18252 ctiocb->vport = phba->pport; 18253 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 18254 ctiocb->sli4_lxritag = NO_XRI; 18255 ctiocb->sli4_xritag = NO_XRI; 18256 18257 if (fctl & FC_FC_EX_CTX) 18258 /* Exchange responder sent the abort so we 18259 * own the oxid. 18260 */ 18261 xri = oxid; 18262 else 18263 xri = rxid; 18264 lxri = lpfc_sli4_xri_inrange(phba, xri); 18265 if (lxri != NO_XRI) 18266 lpfc_set_rrq_active(phba, ndlp, lxri, 18267 (xri == oxid) ? rxid : oxid, 0); 18268 /* For BA_ABTS from exchange responder, if the logical xri with 18269 * the oxid maps to the FCP XRI range, the port no longer has 18270 * that exchange context, send a BLS_RJT. Override the IOCB for 18271 * a BA_RJT. 18272 */ 18273 if ((fctl & FC_FC_EX_CTX) && 18274 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 18275 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18276 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18277 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18278 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18279 } 18280 18281 /* If BA_ABTS failed to abort a partially assembled receive sequence, 18282 * the driver no longer has that exchange, send a BLS_RJT. Override 18283 * the IOCB for a BA_RJT. 18284 */ 18285 if (aborted == false) { 18286 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 18287 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 18288 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 18289 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 18290 } 18291 18292 if (fctl & FC_FC_EX_CTX) { 18293 /* ABTS sent by responder to CT exchange, construction 18294 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 18295 * field and RX_ID from ABTS for RX_ID field. 18296 */ 18297 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 18298 } else { 18299 /* ABTS sent by initiator to CT exchange, construction 18300 * of BA_ACC will need to allocate a new XRI as for the 18301 * XRI_TAG field. 18302 */ 18303 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 18304 } 18305 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 18306 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 18307 18308 /* Xmit CT abts response on exchange <xid> */ 18309 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 18310 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 18311 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 18312 18313 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 18314 if (rc == IOCB_ERROR) { 18315 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 18316 "2925 Failed to issue CT ABTS RSP x%x on " 18317 "xri x%x, Data x%x\n", 18318 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 18319 phba->link_state); 18320 lpfc_nlp_put(ndlp); 18321 ctiocb->context1 = NULL; 18322 lpfc_sli_release_iocbq(phba, ctiocb); 18323 } 18324 } 18325 18326 /** 18327 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 18328 * @vport: Pointer to the vport on which this sequence was received 18329 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18330 * 18331 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 18332 * receive sequence is only partially assembed by the driver, it shall abort 18333 * the partially assembled frames for the sequence. Otherwise, if the 18334 * unsolicited receive sequence has been completely assembled and passed to 18335 * the Upper Layer Protocol (ULP), it then mark the per oxid status for the 18336 * unsolicited sequence has been aborted. After that, it will issue a basic 18337 * accept to accept the abort. 18338 **/ 18339 static void 18340 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 18341 struct hbq_dmabuf *dmabuf) 18342 { 18343 struct lpfc_hba *phba = vport->phba; 18344 struct fc_frame_header fc_hdr; 18345 uint32_t fctl; 18346 bool aborted; 18347 18348 /* Make a copy of fc_hdr before the dmabuf being released */ 18349 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 18350 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 18351 18352 if (fctl & FC_FC_EX_CTX) { 18353 /* ABTS by responder to exchange, no cleanup needed */ 18354 aborted = true; 18355 } else { 18356 /* ABTS by initiator to exchange, need to do cleanup */ 18357 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 18358 if (aborted == false) 18359 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 18360 } 18361 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18362 18363 if (phba->nvmet_support) { 18364 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 18365 return; 18366 } 18367 18368 /* Respond with BA_ACC or BA_RJT accordingly */ 18369 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 18370 } 18371 18372 /** 18373 * lpfc_seq_complete - Indicates if a sequence is complete 18374 * @dmabuf: pointer to a dmabuf that describes the FC sequence 18375 * 18376 * This function checks the sequence, starting with the frame described by 18377 * @dmabuf, to see if all the frames associated with this sequence are present. 18378 * the frames associated with this sequence are linked to the @dmabuf using the 18379 * dbuf list. This function looks for two major things. 1) That the first frame 18380 * has a sequence count of zero. 2) There is a frame with last frame of sequence 18381 * set. 3) That there are no holes in the sequence count. The function will 18382 * return 1 when the sequence is complete, otherwise it will return 0. 18383 **/ 18384 static int 18385 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 18386 { 18387 struct fc_frame_header *hdr; 18388 struct lpfc_dmabuf *d_buf; 18389 struct hbq_dmabuf *seq_dmabuf; 18390 uint32_t fctl; 18391 int seq_count = 0; 18392 18393 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18394 /* make sure first fame of sequence has a sequence count of zero */ 18395 if (hdr->fh_seq_cnt != seq_count) 18396 return 0; 18397 fctl = (hdr->fh_f_ctl[0] << 16 | 18398 hdr->fh_f_ctl[1] << 8 | 18399 hdr->fh_f_ctl[2]); 18400 /* If last frame of sequence we can return success. */ 18401 if (fctl & FC_FC_END_SEQ) 18402 return 1; 18403 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 18404 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18405 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18406 /* If there is a hole in the sequence count then fail. */ 18407 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 18408 return 0; 18409 fctl = (hdr->fh_f_ctl[0] << 16 | 18410 hdr->fh_f_ctl[1] << 8 | 18411 hdr->fh_f_ctl[2]); 18412 /* If last frame of sequence we can return success. */ 18413 if (fctl & FC_FC_END_SEQ) 18414 return 1; 18415 } 18416 return 0; 18417 } 18418 18419 /** 18420 * lpfc_prep_seq - Prep sequence for ULP processing 18421 * @vport: Pointer to the vport on which this sequence was received 18422 * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence 18423 * 18424 * This function takes a sequence, described by a list of frames, and creates 18425 * a list of iocbq structures to describe the sequence. This iocbq list will be 18426 * used to issue to the generic unsolicited sequence handler. This routine 18427 * returns a pointer to the first iocbq in the list. If the function is unable 18428 * to allocate an iocbq then it throw out the received frames that were not 18429 * able to be described and return a pointer to the first iocbq. If unable to 18430 * allocate any iocbqs (including the first) this function will return NULL. 18431 **/ 18432 static struct lpfc_iocbq * 18433 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 18434 { 18435 struct hbq_dmabuf *hbq_buf; 18436 struct lpfc_dmabuf *d_buf, *n_buf; 18437 struct lpfc_iocbq *first_iocbq, *iocbq; 18438 struct fc_frame_header *fc_hdr; 18439 uint32_t sid; 18440 uint32_t len, tot_len; 18441 struct ulp_bde64 *pbde; 18442 18443 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18444 /* remove from receive buffer list */ 18445 list_del_init(&seq_dmabuf->hbuf.list); 18446 lpfc_update_rcv_time_stamp(vport); 18447 /* get the Remote Port's SID */ 18448 sid = sli4_sid_from_fc_hdr(fc_hdr); 18449 tot_len = 0; 18450 /* Get an iocbq struct to fill in. */ 18451 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 18452 if (first_iocbq) { 18453 /* Initialize the first IOCB. */ 18454 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 18455 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 18456 first_iocbq->vport = vport; 18457 18458 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 18459 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 18460 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 18461 first_iocbq->iocb.un.rcvels.parmRo = 18462 sli4_did_from_fc_hdr(fc_hdr); 18463 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 18464 } else 18465 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 18466 first_iocbq->iocb.ulpContext = NO_XRI; 18467 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 18468 be16_to_cpu(fc_hdr->fh_ox_id); 18469 /* iocbq is prepped for internal consumption. Physical vpi. */ 18470 first_iocbq->iocb.unsli3.rcvsli3.vpi = 18471 vport->phba->vpi_ids[vport->vpi]; 18472 /* put the first buffer into the first IOCBq */ 18473 tot_len = bf_get(lpfc_rcqe_length, 18474 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 18475 18476 first_iocbq->context2 = &seq_dmabuf->dbuf; 18477 first_iocbq->context3 = NULL; 18478 first_iocbq->iocb.ulpBdeCount = 1; 18479 if (tot_len > LPFC_DATA_BUF_SIZE) 18480 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18481 LPFC_DATA_BUF_SIZE; 18482 else 18483 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 18484 18485 first_iocbq->iocb.un.rcvels.remoteID = sid; 18486 18487 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18488 } 18489 iocbq = first_iocbq; 18490 /* 18491 * Each IOCBq can have two Buffers assigned, so go through the list 18492 * of buffers for this sequence and save two buffers in each IOCBq 18493 */ 18494 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 18495 if (!iocbq) { 18496 lpfc_in_buf_free(vport->phba, d_buf); 18497 continue; 18498 } 18499 if (!iocbq->context3) { 18500 iocbq->context3 = d_buf; 18501 iocbq->iocb.ulpBdeCount++; 18502 /* We need to get the size out of the right CQE */ 18503 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18504 len = bf_get(lpfc_rcqe_length, 18505 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18506 pbde = (struct ulp_bde64 *) 18507 &iocbq->iocb.unsli3.sli3Words[4]; 18508 if (len > LPFC_DATA_BUF_SIZE) 18509 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18510 else 18511 pbde->tus.f.bdeSize = len; 18512 18513 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18514 tot_len += len; 18515 } else { 18516 iocbq = lpfc_sli_get_iocbq(vport->phba); 18517 if (!iocbq) { 18518 if (first_iocbq) { 18519 first_iocbq->iocb.ulpStatus = 18520 IOSTAT_FCP_RSP_ERROR; 18521 first_iocbq->iocb.un.ulpWord[4] = 18522 IOERR_NO_RESOURCES; 18523 } 18524 lpfc_in_buf_free(vport->phba, d_buf); 18525 continue; 18526 } 18527 /* We need to get the size out of the right CQE */ 18528 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18529 len = bf_get(lpfc_rcqe_length, 18530 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18531 iocbq->context2 = d_buf; 18532 iocbq->context3 = NULL; 18533 iocbq->iocb.ulpBdeCount = 1; 18534 if (len > LPFC_DATA_BUF_SIZE) 18535 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18536 LPFC_DATA_BUF_SIZE; 18537 else 18538 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18539 18540 tot_len += len; 18541 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18542 18543 iocbq->iocb.un.rcvels.remoteID = sid; 18544 list_add_tail(&iocbq->list, &first_iocbq->list); 18545 } 18546 } 18547 /* Free the sequence's header buffer */ 18548 if (!first_iocbq) 18549 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18550 18551 return first_iocbq; 18552 } 18553 18554 static void 18555 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18556 struct hbq_dmabuf *seq_dmabuf) 18557 { 18558 struct fc_frame_header *fc_hdr; 18559 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18560 struct lpfc_hba *phba = vport->phba; 18561 18562 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18563 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18564 if (!iocbq) { 18565 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18566 "2707 Ring %d handler: Failed to allocate " 18567 "iocb Rctl x%x Type x%x received\n", 18568 LPFC_ELS_RING, 18569 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18570 return; 18571 } 18572 if (!lpfc_complete_unsol_iocb(phba, 18573 phba->sli4_hba.els_wq->pring, 18574 iocbq, fc_hdr->fh_r_ctl, 18575 fc_hdr->fh_type)) 18576 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18577 "2540 Ring %d handler: unexpected Rctl " 18578 "x%x Type x%x received\n", 18579 LPFC_ELS_RING, 18580 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18581 18582 /* Free iocb created in lpfc_prep_seq */ 18583 list_for_each_entry_safe(curr_iocb, next_iocb, 18584 &iocbq->list, list) { 18585 list_del_init(&curr_iocb->list); 18586 lpfc_sli_release_iocbq(phba, curr_iocb); 18587 } 18588 lpfc_sli_release_iocbq(phba, iocbq); 18589 } 18590 18591 static void 18592 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18593 struct lpfc_iocbq *rspiocb) 18594 { 18595 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18596 18597 if (pcmd && pcmd->virt) 18598 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18599 kfree(pcmd); 18600 lpfc_sli_release_iocbq(phba, cmdiocb); 18601 lpfc_drain_txq(phba); 18602 } 18603 18604 static void 18605 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18606 struct hbq_dmabuf *dmabuf) 18607 { 18608 struct fc_frame_header *fc_hdr; 18609 struct lpfc_hba *phba = vport->phba; 18610 struct lpfc_iocbq *iocbq = NULL; 18611 union lpfc_wqe *wqe; 18612 struct lpfc_dmabuf *pcmd = NULL; 18613 uint32_t frame_len; 18614 int rc; 18615 unsigned long iflags; 18616 18617 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18618 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18619 18620 /* Send the received frame back */ 18621 iocbq = lpfc_sli_get_iocbq(phba); 18622 if (!iocbq) { 18623 /* Queue cq event and wakeup worker thread to process it */ 18624 spin_lock_irqsave(&phba->hbalock, iflags); 18625 list_add_tail(&dmabuf->cq_event.list, 18626 &phba->sli4_hba.sp_queue_event); 18627 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18628 spin_unlock_irqrestore(&phba->hbalock, iflags); 18629 lpfc_worker_wake_up(phba); 18630 return; 18631 } 18632 18633 /* Allocate buffer for command payload */ 18634 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18635 if (pcmd) 18636 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18637 &pcmd->phys); 18638 if (!pcmd || !pcmd->virt) 18639 goto exit; 18640 18641 INIT_LIST_HEAD(&pcmd->list); 18642 18643 /* copyin the payload */ 18644 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18645 18646 /* fill in BDE's for command */ 18647 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18648 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18649 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18650 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18651 18652 iocbq->context2 = pcmd; 18653 iocbq->vport = vport; 18654 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18655 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18656 18657 /* 18658 * Setup rest of the iocb as though it were a WQE 18659 * Build the SEND_FRAME WQE 18660 */ 18661 wqe = (union lpfc_wqe *)&iocbq->iocb; 18662 18663 wqe->send_frame.frame_len = frame_len; 18664 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18665 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18666 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18667 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18668 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18669 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18670 18671 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18672 iocbq->iocb.ulpLe = 1; 18673 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18674 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18675 if (rc == IOCB_ERROR) 18676 goto exit; 18677 18678 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18679 return; 18680 18681 exit: 18682 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18683 "2023 Unable to process MDS loopback frame\n"); 18684 if (pcmd && pcmd->virt) 18685 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18686 kfree(pcmd); 18687 if (iocbq) 18688 lpfc_sli_release_iocbq(phba, iocbq); 18689 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18690 } 18691 18692 /** 18693 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18694 * @phba: Pointer to HBA context object. 18695 * @dmabuf: Pointer to a dmabuf that describes the FC sequence. 18696 * 18697 * This function is called with no lock held. This function processes all 18698 * the received buffers and gives it to upper layers when a received buffer 18699 * indicates that it is the final frame in the sequence. The interrupt 18700 * service routine processes received buffers at interrupt contexts. 18701 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18702 * appropriate receive function when the final frame in a sequence is received. 18703 **/ 18704 void 18705 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18706 struct hbq_dmabuf *dmabuf) 18707 { 18708 struct hbq_dmabuf *seq_dmabuf; 18709 struct fc_frame_header *fc_hdr; 18710 struct lpfc_vport *vport; 18711 uint32_t fcfi; 18712 uint32_t did; 18713 18714 /* Process each received buffer */ 18715 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18716 18717 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18718 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18719 vport = phba->pport; 18720 /* Handle MDS Loopback frames */ 18721 if (!(phba->pport->load_flag & FC_UNLOADING)) 18722 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18723 else 18724 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18725 return; 18726 } 18727 18728 /* check to see if this a valid type of frame */ 18729 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18730 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18731 return; 18732 } 18733 18734 if ((bf_get(lpfc_cqe_code, 18735 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18736 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18737 &dmabuf->cq_event.cqe.rcqe_cmpl); 18738 else 18739 fcfi = bf_get(lpfc_rcqe_fcf_id, 18740 &dmabuf->cq_event.cqe.rcqe_cmpl); 18741 18742 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18743 vport = phba->pport; 18744 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18745 "2023 MDS Loopback %d bytes\n", 18746 bf_get(lpfc_rcqe_length, 18747 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18748 /* Handle MDS Loopback frames */ 18749 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18750 return; 18751 } 18752 18753 /* d_id this frame is directed to */ 18754 did = sli4_did_from_fc_hdr(fc_hdr); 18755 18756 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18757 if (!vport) { 18758 /* throw out the frame */ 18759 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18760 return; 18761 } 18762 18763 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18764 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18765 (did != Fabric_DID)) { 18766 /* 18767 * Throw out the frame if we are not pt2pt. 18768 * The pt2pt protocol allows for discovery frames 18769 * to be received without a registered VPI. 18770 */ 18771 if (!(vport->fc_flag & FC_PT2PT) || 18772 (phba->link_state == LPFC_HBA_READY)) { 18773 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18774 return; 18775 } 18776 } 18777 18778 /* Handle the basic abort sequence (BA_ABTS) event */ 18779 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18780 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18781 return; 18782 } 18783 18784 /* Link this frame */ 18785 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18786 if (!seq_dmabuf) { 18787 /* unable to add frame to vport - throw it out */ 18788 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18789 return; 18790 } 18791 /* If not last frame in sequence continue processing frames. */ 18792 if (!lpfc_seq_complete(seq_dmabuf)) 18793 return; 18794 18795 /* Send the complete sequence to the upper layer protocol */ 18796 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18797 } 18798 18799 /** 18800 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18801 * @phba: pointer to lpfc hba data structure. 18802 * 18803 * This routine is invoked to post rpi header templates to the 18804 * HBA consistent with the SLI-4 interface spec. This routine 18805 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18806 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18807 * 18808 * This routine does not require any locks. It's usage is expected 18809 * to be driver load or reset recovery when the driver is 18810 * sequential. 18811 * 18812 * Return codes 18813 * 0 - successful 18814 * -EIO - The mailbox failed to complete successfully. 18815 * When this error occurs, the driver is not guaranteed 18816 * to have any rpi regions posted to the device and 18817 * must either attempt to repost the regions or take a 18818 * fatal error. 18819 **/ 18820 int 18821 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18822 { 18823 struct lpfc_rpi_hdr *rpi_page; 18824 uint32_t rc = 0; 18825 uint16_t lrpi = 0; 18826 18827 /* SLI4 ports that support extents do not require RPI headers. */ 18828 if (!phba->sli4_hba.rpi_hdrs_in_use) 18829 goto exit; 18830 if (phba->sli4_hba.extents_in_use) 18831 return -EIO; 18832 18833 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18834 /* 18835 * Assign the rpi headers a physical rpi only if the driver 18836 * has not initialized those resources. A port reset only 18837 * needs the headers posted. 18838 */ 18839 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18840 LPFC_RPI_RSRC_RDY) 18841 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18842 18843 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18844 if (rc != MBX_SUCCESS) { 18845 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18846 "2008 Error %d posting all rpi " 18847 "headers\n", rc); 18848 rc = -EIO; 18849 break; 18850 } 18851 } 18852 18853 exit: 18854 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18855 LPFC_RPI_RSRC_RDY); 18856 return rc; 18857 } 18858 18859 /** 18860 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18861 * @phba: pointer to lpfc hba data structure. 18862 * @rpi_page: pointer to the rpi memory region. 18863 * 18864 * This routine is invoked to post a single rpi header to the 18865 * HBA consistent with the SLI-4 interface spec. This memory region 18866 * maps up to 64 rpi context regions. 18867 * 18868 * Return codes 18869 * 0 - successful 18870 * -ENOMEM - No available memory 18871 * -EIO - The mailbox failed to complete successfully. 18872 **/ 18873 int 18874 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18875 { 18876 LPFC_MBOXQ_t *mboxq; 18877 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18878 uint32_t rc = 0; 18879 uint32_t shdr_status, shdr_add_status; 18880 union lpfc_sli4_cfg_shdr *shdr; 18881 18882 /* SLI4 ports that support extents do not require RPI headers. */ 18883 if (!phba->sli4_hba.rpi_hdrs_in_use) 18884 return rc; 18885 if (phba->sli4_hba.extents_in_use) 18886 return -EIO; 18887 18888 /* The port is notified of the header region via a mailbox command. */ 18889 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18890 if (!mboxq) { 18891 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18892 "2001 Unable to allocate memory for issuing " 18893 "SLI_CONFIG_SPECIAL mailbox command\n"); 18894 return -ENOMEM; 18895 } 18896 18897 /* Post all rpi memory regions to the port. */ 18898 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18899 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18900 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18901 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18902 sizeof(struct lpfc_sli4_cfg_mhdr), 18903 LPFC_SLI4_MBX_EMBED); 18904 18905 18906 /* Post the physical rpi to the port for this rpi header. */ 18907 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18908 rpi_page->start_rpi); 18909 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18910 hdr_tmpl, rpi_page->page_count); 18911 18912 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18913 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18914 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18915 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18916 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18917 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18918 mempool_free(mboxq, phba->mbox_mem_pool); 18919 if (shdr_status || shdr_add_status || rc) { 18920 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 18921 "2514 POST_RPI_HDR mailbox failed with " 18922 "status x%x add_status x%x, mbx status x%x\n", 18923 shdr_status, shdr_add_status, rc); 18924 rc = -ENXIO; 18925 } else { 18926 /* 18927 * The next_rpi stores the next logical module-64 rpi value used 18928 * to post physical rpis in subsequent rpi postings. 18929 */ 18930 spin_lock_irq(&phba->hbalock); 18931 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18932 spin_unlock_irq(&phba->hbalock); 18933 } 18934 return rc; 18935 } 18936 18937 /** 18938 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18939 * @phba: pointer to lpfc hba data structure. 18940 * 18941 * This routine is invoked to post rpi header templates to the 18942 * HBA consistent with the SLI-4 interface spec. This routine 18943 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18944 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18945 * 18946 * Returns 18947 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18948 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18949 **/ 18950 int 18951 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18952 { 18953 unsigned long rpi; 18954 uint16_t max_rpi, rpi_limit; 18955 uint16_t rpi_remaining, lrpi = 0; 18956 struct lpfc_rpi_hdr *rpi_hdr; 18957 unsigned long iflag; 18958 18959 /* 18960 * Fetch the next logical rpi. Because this index is logical, 18961 * the driver starts at 0 each time. 18962 */ 18963 spin_lock_irqsave(&phba->hbalock, iflag); 18964 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18965 rpi_limit = phba->sli4_hba.next_rpi; 18966 18967 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18968 if (rpi >= rpi_limit) 18969 rpi = LPFC_RPI_ALLOC_ERROR; 18970 else { 18971 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18972 phba->sli4_hba.max_cfg_param.rpi_used++; 18973 phba->sli4_hba.rpi_count++; 18974 } 18975 lpfc_printf_log(phba, KERN_INFO, 18976 LOG_NODE | LOG_DISCOVERY, 18977 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18978 (int) rpi, max_rpi, rpi_limit); 18979 18980 /* 18981 * Don't try to allocate more rpi header regions if the device limit 18982 * has been exhausted. 18983 */ 18984 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18985 (phba->sli4_hba.rpi_count >= max_rpi)) { 18986 spin_unlock_irqrestore(&phba->hbalock, iflag); 18987 return rpi; 18988 } 18989 18990 /* 18991 * RPI header postings are not required for SLI4 ports capable of 18992 * extents. 18993 */ 18994 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18995 spin_unlock_irqrestore(&phba->hbalock, iflag); 18996 return rpi; 18997 } 18998 18999 /* 19000 * If the driver is running low on rpi resources, allocate another 19001 * page now. Note that the next_rpi value is used because 19002 * it represents how many are actually in use whereas max_rpi notes 19003 * how many are supported max by the device. 19004 */ 19005 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 19006 spin_unlock_irqrestore(&phba->hbalock, iflag); 19007 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 19008 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 19009 if (!rpi_hdr) { 19010 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19011 "2002 Error Could not grow rpi " 19012 "count\n"); 19013 } else { 19014 lrpi = rpi_hdr->start_rpi; 19015 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 19016 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 19017 } 19018 } 19019 19020 return rpi; 19021 } 19022 19023 /** 19024 * __lpfc_sli4_free_rpi - Release an rpi for reuse. 19025 * @phba: pointer to lpfc hba data structure. 19026 * @rpi: rpi to free 19027 * 19028 * This routine is invoked to release an rpi to the pool of 19029 * available rpis maintained by the driver. 19030 **/ 19031 static void 19032 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19033 { 19034 /* 19035 * if the rpi value indicates a prior unreg has already 19036 * been done, skip the unreg. 19037 */ 19038 if (rpi == LPFC_RPI_ALLOC_ERROR) 19039 return; 19040 19041 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 19042 phba->sli4_hba.rpi_count--; 19043 phba->sli4_hba.max_cfg_param.rpi_used--; 19044 } else { 19045 lpfc_printf_log(phba, KERN_INFO, 19046 LOG_NODE | LOG_DISCOVERY, 19047 "2016 rpi %x not inuse\n", 19048 rpi); 19049 } 19050 } 19051 19052 /** 19053 * lpfc_sli4_free_rpi - Release an rpi for reuse. 19054 * @phba: pointer to lpfc hba data structure. 19055 * @rpi: rpi to free 19056 * 19057 * This routine is invoked to release an rpi to the pool of 19058 * available rpis maintained by the driver. 19059 **/ 19060 void 19061 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 19062 { 19063 spin_lock_irq(&phba->hbalock); 19064 __lpfc_sli4_free_rpi(phba, rpi); 19065 spin_unlock_irq(&phba->hbalock); 19066 } 19067 19068 /** 19069 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 19070 * @phba: pointer to lpfc hba data structure. 19071 * 19072 * This routine is invoked to remove the memory region that 19073 * provided rpi via a bitmask. 19074 **/ 19075 void 19076 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 19077 { 19078 kfree(phba->sli4_hba.rpi_bmask); 19079 kfree(phba->sli4_hba.rpi_ids); 19080 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 19081 } 19082 19083 /** 19084 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 19085 * @ndlp: pointer to lpfc nodelist data structure. 19086 * @cmpl: completion call-back. 19087 * @arg: data to load as MBox 'caller buffer information' 19088 * 19089 * This routine is invoked to remove the memory region that 19090 * provided rpi via a bitmask. 19091 **/ 19092 int 19093 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 19094 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 19095 { 19096 LPFC_MBOXQ_t *mboxq; 19097 struct lpfc_hba *phba = ndlp->phba; 19098 int rc; 19099 19100 /* The port is notified of the header region via a mailbox command. */ 19101 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19102 if (!mboxq) 19103 return -ENOMEM; 19104 19105 /* If cmpl assigned, then this nlp_get pairs with 19106 * lpfc_mbx_cmpl_resume_rpi. 19107 * 19108 * Else cmpl is NULL, then this nlp_get pairs with 19109 * lpfc_sli_def_mbox_cmpl. 19110 */ 19111 if (!lpfc_nlp_get(ndlp)) { 19112 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19113 "2122 %s: Failed to get nlp ref\n", 19114 __func__); 19115 mempool_free(mboxq, phba->mbox_mem_pool); 19116 return -EIO; 19117 } 19118 19119 /* Post all rpi memory regions to the port. */ 19120 lpfc_resume_rpi(mboxq, ndlp); 19121 if (cmpl) { 19122 mboxq->mbox_cmpl = cmpl; 19123 mboxq->ctx_buf = arg; 19124 } else 19125 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19126 mboxq->ctx_ndlp = ndlp; 19127 mboxq->vport = ndlp->vport; 19128 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19129 if (rc == MBX_NOT_FINISHED) { 19130 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19131 "2010 Resume RPI Mailbox failed " 19132 "status %d, mbxStatus x%x\n", rc, 19133 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19134 lpfc_nlp_put(ndlp); 19135 mempool_free(mboxq, phba->mbox_mem_pool); 19136 return -EIO; 19137 } 19138 return 0; 19139 } 19140 19141 /** 19142 * lpfc_sli4_init_vpi - Initialize a vpi with the port 19143 * @vport: Pointer to the vport for which the vpi is being initialized 19144 * 19145 * This routine is invoked to activate a vpi with the port. 19146 * 19147 * Returns: 19148 * 0 success 19149 * -Evalue otherwise 19150 **/ 19151 int 19152 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 19153 { 19154 LPFC_MBOXQ_t *mboxq; 19155 int rc = 0; 19156 int retval = MBX_SUCCESS; 19157 uint32_t mbox_tmo; 19158 struct lpfc_hba *phba = vport->phba; 19159 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19160 if (!mboxq) 19161 return -ENOMEM; 19162 lpfc_init_vpi(phba, mboxq, vport->vpi); 19163 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 19164 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 19165 if (rc != MBX_SUCCESS) { 19166 lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, 19167 "2022 INIT VPI Mailbox failed " 19168 "status %d, mbxStatus x%x\n", rc, 19169 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 19170 retval = -EIO; 19171 } 19172 if (rc != MBX_TIMEOUT) 19173 mempool_free(mboxq, vport->phba->mbox_mem_pool); 19174 19175 return retval; 19176 } 19177 19178 /** 19179 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 19180 * @phba: pointer to lpfc hba data structure. 19181 * @mboxq: Pointer to mailbox object. 19182 * 19183 * This routine is invoked to manually add a single FCF record. The caller 19184 * must pass a completely initialized FCF_Record. This routine takes 19185 * care of the nonembedded mailbox operations. 19186 **/ 19187 static void 19188 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 19189 { 19190 void *virt_addr; 19191 union lpfc_sli4_cfg_shdr *shdr; 19192 uint32_t shdr_status, shdr_add_status; 19193 19194 virt_addr = mboxq->sge_array->addr[0]; 19195 /* The IOCTL status is embedded in the mailbox subheader. */ 19196 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 19197 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 19198 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 19199 19200 if ((shdr_status || shdr_add_status) && 19201 (shdr_status != STATUS_FCF_IN_USE)) 19202 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19203 "2558 ADD_FCF_RECORD mailbox failed with " 19204 "status x%x add_status x%x\n", 19205 shdr_status, shdr_add_status); 19206 19207 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19208 } 19209 19210 /** 19211 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 19212 * @phba: pointer to lpfc hba data structure. 19213 * @fcf_record: pointer to the initialized fcf record to add. 19214 * 19215 * This routine is invoked to manually add a single FCF record. The caller 19216 * must pass a completely initialized FCF_Record. This routine takes 19217 * care of the nonembedded mailbox operations. 19218 **/ 19219 int 19220 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 19221 { 19222 int rc = 0; 19223 LPFC_MBOXQ_t *mboxq; 19224 uint8_t *bytep; 19225 void *virt_addr; 19226 struct lpfc_mbx_sge sge; 19227 uint32_t alloc_len, req_len; 19228 uint32_t fcfindex; 19229 19230 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19231 if (!mboxq) { 19232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19233 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 19234 return -ENOMEM; 19235 } 19236 19237 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 19238 sizeof(uint32_t); 19239 19240 /* Allocate DMA memory and set up the non-embedded mailbox command */ 19241 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 19242 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 19243 req_len, LPFC_SLI4_MBX_NEMBED); 19244 if (alloc_len < req_len) { 19245 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19246 "2523 Allocated DMA memory size (x%x) is " 19247 "less than the requested DMA memory " 19248 "size (x%x)\n", alloc_len, req_len); 19249 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19250 return -ENOMEM; 19251 } 19252 19253 /* 19254 * Get the first SGE entry from the non-embedded DMA memory. This 19255 * routine only uses a single SGE. 19256 */ 19257 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 19258 virt_addr = mboxq->sge_array->addr[0]; 19259 /* 19260 * Configure the FCF record for FCFI 0. This is the driver's 19261 * hardcoded default and gets used in nonFIP mode. 19262 */ 19263 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 19264 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 19265 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 19266 19267 /* 19268 * Copy the fcf_index and the FCF Record Data. The data starts after 19269 * the FCoE header plus word10. The data copy needs to be endian 19270 * correct. 19271 */ 19272 bytep += sizeof(uint32_t); 19273 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 19274 mboxq->vport = phba->pport; 19275 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 19276 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19277 if (rc == MBX_NOT_FINISHED) { 19278 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19279 "2515 ADD_FCF_RECORD mailbox failed with " 19280 "status 0x%x\n", rc); 19281 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19282 rc = -EIO; 19283 } else 19284 rc = 0; 19285 19286 return rc; 19287 } 19288 19289 /** 19290 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 19291 * @phba: pointer to lpfc hba data structure. 19292 * @fcf_record: pointer to the fcf record to write the default data. 19293 * @fcf_index: FCF table entry index. 19294 * 19295 * This routine is invoked to build the driver's default FCF record. The 19296 * values used are hardcoded. This routine handles memory initialization. 19297 * 19298 **/ 19299 void 19300 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 19301 struct fcf_record *fcf_record, 19302 uint16_t fcf_index) 19303 { 19304 memset(fcf_record, 0, sizeof(struct fcf_record)); 19305 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 19306 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 19307 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 19308 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 19309 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 19310 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 19311 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 19312 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 19313 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 19314 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 19315 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 19316 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 19317 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 19318 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 19319 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 19320 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 19321 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 19322 /* Set the VLAN bit map */ 19323 if (phba->valid_vlan) { 19324 fcf_record->vlan_bitmap[phba->vlan_id / 8] 19325 = 1 << (phba->vlan_id % 8); 19326 } 19327 } 19328 19329 /** 19330 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 19331 * @phba: pointer to lpfc hba data structure. 19332 * @fcf_index: FCF table entry offset. 19333 * 19334 * This routine is invoked to scan the entire FCF table by reading FCF 19335 * record and processing it one at a time starting from the @fcf_index 19336 * for initial FCF discovery or fast FCF failover rediscovery. 19337 * 19338 * Return 0 if the mailbox command is submitted successfully, none 0 19339 * otherwise. 19340 **/ 19341 int 19342 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19343 { 19344 int rc = 0, error; 19345 LPFC_MBOXQ_t *mboxq; 19346 19347 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 19348 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 19349 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19350 if (!mboxq) { 19351 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19352 "2000 Failed to allocate mbox for " 19353 "READ_FCF cmd\n"); 19354 error = -ENOMEM; 19355 goto fail_fcf_scan; 19356 } 19357 /* Construct the read FCF record mailbox command */ 19358 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19359 if (rc) { 19360 error = -EINVAL; 19361 goto fail_fcf_scan; 19362 } 19363 /* Issue the mailbox command asynchronously */ 19364 mboxq->vport = phba->pport; 19365 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 19366 19367 spin_lock_irq(&phba->hbalock); 19368 phba->hba_flag |= FCF_TS_INPROG; 19369 spin_unlock_irq(&phba->hbalock); 19370 19371 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19372 if (rc == MBX_NOT_FINISHED) 19373 error = -EIO; 19374 else { 19375 /* Reset eligible FCF count for new scan */ 19376 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 19377 phba->fcf.eligible_fcf_cnt = 0; 19378 error = 0; 19379 } 19380 fail_fcf_scan: 19381 if (error) { 19382 if (mboxq) 19383 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19384 /* FCF scan failed, clear FCF_TS_INPROG flag */ 19385 spin_lock_irq(&phba->hbalock); 19386 phba->hba_flag &= ~FCF_TS_INPROG; 19387 spin_unlock_irq(&phba->hbalock); 19388 } 19389 return error; 19390 } 19391 19392 /** 19393 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 19394 * @phba: pointer to lpfc hba data structure. 19395 * @fcf_index: FCF table entry offset. 19396 * 19397 * This routine is invoked to read an FCF record indicated by @fcf_index 19398 * and to use it for FLOGI roundrobin FCF failover. 19399 * 19400 * Return 0 if the mailbox command is submitted successfully, none 0 19401 * otherwise. 19402 **/ 19403 int 19404 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19405 { 19406 int rc = 0, error; 19407 LPFC_MBOXQ_t *mboxq; 19408 19409 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19410 if (!mboxq) { 19411 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19412 "2763 Failed to allocate mbox for " 19413 "READ_FCF cmd\n"); 19414 error = -ENOMEM; 19415 goto fail_fcf_read; 19416 } 19417 /* Construct the read FCF record mailbox command */ 19418 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19419 if (rc) { 19420 error = -EINVAL; 19421 goto fail_fcf_read; 19422 } 19423 /* Issue the mailbox command asynchronously */ 19424 mboxq->vport = phba->pport; 19425 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 19426 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19427 if (rc == MBX_NOT_FINISHED) 19428 error = -EIO; 19429 else 19430 error = 0; 19431 19432 fail_fcf_read: 19433 if (error && mboxq) 19434 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19435 return error; 19436 } 19437 19438 /** 19439 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 19440 * @phba: pointer to lpfc hba data structure. 19441 * @fcf_index: FCF table entry offset. 19442 * 19443 * This routine is invoked to read an FCF record indicated by @fcf_index to 19444 * determine whether it's eligible for FLOGI roundrobin failover list. 19445 * 19446 * Return 0 if the mailbox command is submitted successfully, none 0 19447 * otherwise. 19448 **/ 19449 int 19450 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 19451 { 19452 int rc = 0, error; 19453 LPFC_MBOXQ_t *mboxq; 19454 19455 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19456 if (!mboxq) { 19457 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 19458 "2758 Failed to allocate mbox for " 19459 "READ_FCF cmd\n"); 19460 error = -ENOMEM; 19461 goto fail_fcf_read; 19462 } 19463 /* Construct the read FCF record mailbox command */ 19464 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 19465 if (rc) { 19466 error = -EINVAL; 19467 goto fail_fcf_read; 19468 } 19469 /* Issue the mailbox command asynchronously */ 19470 mboxq->vport = phba->pport; 19471 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 19472 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 19473 if (rc == MBX_NOT_FINISHED) 19474 error = -EIO; 19475 else 19476 error = 0; 19477 19478 fail_fcf_read: 19479 if (error && mboxq) 19480 lpfc_sli4_mbox_cmd_free(phba, mboxq); 19481 return error; 19482 } 19483 19484 /** 19485 * lpfc_check_next_fcf_pri_level 19486 * @phba: pointer to the lpfc_hba struct for this port. 19487 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 19488 * routine when the rr_bmask is empty. The FCF indecies are put into the 19489 * rr_bmask based on their priority level. Starting from the highest priority 19490 * to the lowest. The most likely FCF candidate will be in the highest 19491 * priority group. When this routine is called it searches the fcf_pri list for 19492 * next lowest priority group and repopulates the rr_bmask with only those 19493 * fcf_indexes. 19494 * returns: 19495 * 1=success 0=failure 19496 **/ 19497 static int 19498 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 19499 { 19500 uint16_t next_fcf_pri; 19501 uint16_t last_index; 19502 struct lpfc_fcf_pri *fcf_pri; 19503 int rc; 19504 int ret = 0; 19505 19506 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 19507 LPFC_SLI4_FCF_TBL_INDX_MAX); 19508 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19509 "3060 Last IDX %d\n", last_index); 19510 19511 /* Verify the priority list has 2 or more entries */ 19512 spin_lock_irq(&phba->hbalock); 19513 if (list_empty(&phba->fcf.fcf_pri_list) || 19514 list_is_singular(&phba->fcf.fcf_pri_list)) { 19515 spin_unlock_irq(&phba->hbalock); 19516 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19517 "3061 Last IDX %d\n", last_index); 19518 return 0; /* Empty rr list */ 19519 } 19520 spin_unlock_irq(&phba->hbalock); 19521 19522 next_fcf_pri = 0; 19523 /* 19524 * Clear the rr_bmask and set all of the bits that are at this 19525 * priority. 19526 */ 19527 memset(phba->fcf.fcf_rr_bmask, 0, 19528 sizeof(*phba->fcf.fcf_rr_bmask)); 19529 spin_lock_irq(&phba->hbalock); 19530 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19531 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19532 continue; 19533 /* 19534 * the 1st priority that has not FLOGI failed 19535 * will be the highest. 19536 */ 19537 if (!next_fcf_pri) 19538 next_fcf_pri = fcf_pri->fcf_rec.priority; 19539 spin_unlock_irq(&phba->hbalock); 19540 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19541 rc = lpfc_sli4_fcf_rr_index_set(phba, 19542 fcf_pri->fcf_rec.fcf_index); 19543 if (rc) 19544 return 0; 19545 } 19546 spin_lock_irq(&phba->hbalock); 19547 } 19548 /* 19549 * if next_fcf_pri was not set above and the list is not empty then 19550 * we have failed flogis on all of them. So reset flogi failed 19551 * and start at the beginning. 19552 */ 19553 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19554 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19555 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19556 /* 19557 * the 1st priority that has not FLOGI failed 19558 * will be the highest. 19559 */ 19560 if (!next_fcf_pri) 19561 next_fcf_pri = fcf_pri->fcf_rec.priority; 19562 spin_unlock_irq(&phba->hbalock); 19563 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19564 rc = lpfc_sli4_fcf_rr_index_set(phba, 19565 fcf_pri->fcf_rec.fcf_index); 19566 if (rc) 19567 return 0; 19568 } 19569 spin_lock_irq(&phba->hbalock); 19570 } 19571 } else 19572 ret = 1; 19573 spin_unlock_irq(&phba->hbalock); 19574 19575 return ret; 19576 } 19577 /** 19578 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19579 * @phba: pointer to lpfc hba data structure. 19580 * 19581 * This routine is to get the next eligible FCF record index in a round 19582 * robin fashion. If the next eligible FCF record index equals to the 19583 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19584 * shall be returned, otherwise, the next eligible FCF record's index 19585 * shall be returned. 19586 **/ 19587 uint16_t 19588 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19589 { 19590 uint16_t next_fcf_index; 19591 19592 initial_priority: 19593 /* Search start from next bit of currently registered FCF index */ 19594 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19595 19596 next_priority: 19597 /* Determine the next fcf index to check */ 19598 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19599 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19600 LPFC_SLI4_FCF_TBL_INDX_MAX, 19601 next_fcf_index); 19602 19603 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19604 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19605 /* 19606 * If we have wrapped then we need to clear the bits that 19607 * have been tested so that we can detect when we should 19608 * change the priority level. 19609 */ 19610 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19611 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19612 } 19613 19614 19615 /* Check roundrobin failover list empty condition */ 19616 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19617 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19618 /* 19619 * If next fcf index is not found check if there are lower 19620 * Priority level fcf's in the fcf_priority list. 19621 * Set up the rr_bmask with all of the avaiable fcf bits 19622 * at that level and continue the selection process. 19623 */ 19624 if (lpfc_check_next_fcf_pri_level(phba)) 19625 goto initial_priority; 19626 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19627 "2844 No roundrobin failover FCF available\n"); 19628 19629 return LPFC_FCOE_FCF_NEXT_NONE; 19630 } 19631 19632 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19633 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19634 LPFC_FCF_FLOGI_FAILED) { 19635 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19636 return LPFC_FCOE_FCF_NEXT_NONE; 19637 19638 goto next_priority; 19639 } 19640 19641 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19642 "2845 Get next roundrobin failover FCF (x%x)\n", 19643 next_fcf_index); 19644 19645 return next_fcf_index; 19646 } 19647 19648 /** 19649 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19650 * @phba: pointer to lpfc hba data structure. 19651 * @fcf_index: index into the FCF table to 'set' 19652 * 19653 * This routine sets the FCF record index in to the eligible bmask for 19654 * roundrobin failover search. It checks to make sure that the index 19655 * does not go beyond the range of the driver allocated bmask dimension 19656 * before setting the bit. 19657 * 19658 * Returns 0 if the index bit successfully set, otherwise, it returns 19659 * -EINVAL. 19660 **/ 19661 int 19662 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19663 { 19664 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19665 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19666 "2610 FCF (x%x) reached driver's book " 19667 "keeping dimension:x%x\n", 19668 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19669 return -EINVAL; 19670 } 19671 /* Set the eligible FCF record index bmask */ 19672 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19673 19674 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19675 "2790 Set FCF (x%x) to roundrobin FCF failover " 19676 "bmask\n", fcf_index); 19677 19678 return 0; 19679 } 19680 19681 /** 19682 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19683 * @phba: pointer to lpfc hba data structure. 19684 * @fcf_index: index into the FCF table to 'clear' 19685 * 19686 * This routine clears the FCF record index from the eligible bmask for 19687 * roundrobin failover search. It checks to make sure that the index 19688 * does not go beyond the range of the driver allocated bmask dimension 19689 * before clearing the bit. 19690 **/ 19691 void 19692 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19693 { 19694 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19695 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19696 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19697 "2762 FCF (x%x) reached driver's book " 19698 "keeping dimension:x%x\n", 19699 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19700 return; 19701 } 19702 /* Clear the eligible FCF record index bmask */ 19703 spin_lock_irq(&phba->hbalock); 19704 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19705 list) { 19706 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19707 list_del_init(&fcf_pri->list); 19708 break; 19709 } 19710 } 19711 spin_unlock_irq(&phba->hbalock); 19712 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19713 19714 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19715 "2791 Clear FCF (x%x) from roundrobin failover " 19716 "bmask\n", fcf_index); 19717 } 19718 19719 /** 19720 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19721 * @phba: pointer to lpfc hba data structure. 19722 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 19723 * 19724 * This routine is the completion routine for the rediscover FCF table mailbox 19725 * command. If the mailbox command returned failure, it will try to stop the 19726 * FCF rediscover wait timer. 19727 **/ 19728 static void 19729 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19730 { 19731 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19732 uint32_t shdr_status, shdr_add_status; 19733 19734 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19735 19736 shdr_status = bf_get(lpfc_mbox_hdr_status, 19737 &redisc_fcf->header.cfg_shdr.response); 19738 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19739 &redisc_fcf->header.cfg_shdr.response); 19740 if (shdr_status || shdr_add_status) { 19741 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19742 "2746 Requesting for FCF rediscovery failed " 19743 "status x%x add_status x%x\n", 19744 shdr_status, shdr_add_status); 19745 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19746 spin_lock_irq(&phba->hbalock); 19747 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19748 spin_unlock_irq(&phba->hbalock); 19749 /* 19750 * CVL event triggered FCF rediscover request failed, 19751 * last resort to re-try current registered FCF entry. 19752 */ 19753 lpfc_retry_pport_discovery(phba); 19754 } else { 19755 spin_lock_irq(&phba->hbalock); 19756 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19757 spin_unlock_irq(&phba->hbalock); 19758 /* 19759 * DEAD FCF event triggered FCF rediscover request 19760 * failed, last resort to fail over as a link down 19761 * to FCF registration. 19762 */ 19763 lpfc_sli4_fcf_dead_failthrough(phba); 19764 } 19765 } else { 19766 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19767 "2775 Start FCF rediscover quiescent timer\n"); 19768 /* 19769 * Start FCF rediscovery wait timer for pending FCF 19770 * before rescan FCF record table. 19771 */ 19772 lpfc_fcf_redisc_wait_start_timer(phba); 19773 } 19774 19775 mempool_free(mbox, phba->mbox_mem_pool); 19776 } 19777 19778 /** 19779 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19780 * @phba: pointer to lpfc hba data structure. 19781 * 19782 * This routine is invoked to request for rediscovery of the entire FCF table 19783 * by the port. 19784 **/ 19785 int 19786 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19787 { 19788 LPFC_MBOXQ_t *mbox; 19789 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19790 int rc, length; 19791 19792 /* Cancel retry delay timers to all vports before FCF rediscover */ 19793 lpfc_cancel_all_vport_retry_delay_timer(phba); 19794 19795 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19796 if (!mbox) { 19797 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19798 "2745 Failed to allocate mbox for " 19799 "requesting FCF rediscover.\n"); 19800 return -ENOMEM; 19801 } 19802 19803 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19804 sizeof(struct lpfc_sli4_cfg_mhdr)); 19805 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19806 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19807 length, LPFC_SLI4_MBX_EMBED); 19808 19809 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19810 /* Set count to 0 for invalidating the entire FCF database */ 19811 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19812 19813 /* Issue the mailbox command asynchronously */ 19814 mbox->vport = phba->pport; 19815 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19816 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19817 19818 if (rc == MBX_NOT_FINISHED) { 19819 mempool_free(mbox, phba->mbox_mem_pool); 19820 return -EIO; 19821 } 19822 return 0; 19823 } 19824 19825 /** 19826 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19827 * @phba: pointer to lpfc hba data structure. 19828 * 19829 * This function is the failover routine as a last resort to the FCF DEAD 19830 * event when driver failed to perform fast FCF failover. 19831 **/ 19832 void 19833 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19834 { 19835 uint32_t link_state; 19836 19837 /* 19838 * Last resort as FCF DEAD event failover will treat this as 19839 * a link down, but save the link state because we don't want 19840 * it to be changed to Link Down unless it is already down. 19841 */ 19842 link_state = phba->link_state; 19843 lpfc_linkdown(phba); 19844 phba->link_state = link_state; 19845 19846 /* Unregister FCF if no devices connected to it */ 19847 lpfc_unregister_unused_fcf(phba); 19848 } 19849 19850 /** 19851 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19852 * @phba: pointer to lpfc hba data structure. 19853 * @rgn23_data: pointer to configure region 23 data. 19854 * 19855 * This function gets SLI3 port configure region 23 data through memory dump 19856 * mailbox command. When it successfully retrieves data, the size of the data 19857 * will be returned, otherwise, 0 will be returned. 19858 **/ 19859 static uint32_t 19860 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19861 { 19862 LPFC_MBOXQ_t *pmb = NULL; 19863 MAILBOX_t *mb; 19864 uint32_t offset = 0; 19865 int rc; 19866 19867 if (!rgn23_data) 19868 return 0; 19869 19870 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19871 if (!pmb) { 19872 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19873 "2600 failed to allocate mailbox memory\n"); 19874 return 0; 19875 } 19876 mb = &pmb->u.mb; 19877 19878 do { 19879 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19880 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19881 19882 if (rc != MBX_SUCCESS) { 19883 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19884 "2601 failed to read config " 19885 "region 23, rc 0x%x Status 0x%x\n", 19886 rc, mb->mbxStatus); 19887 mb->un.varDmp.word_cnt = 0; 19888 } 19889 /* 19890 * dump mem may return a zero when finished or we got a 19891 * mailbox error, either way we are done. 19892 */ 19893 if (mb->un.varDmp.word_cnt == 0) 19894 break; 19895 19896 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19897 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19898 19899 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19900 rgn23_data + offset, 19901 mb->un.varDmp.word_cnt); 19902 offset += mb->un.varDmp.word_cnt; 19903 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19904 19905 mempool_free(pmb, phba->mbox_mem_pool); 19906 return offset; 19907 } 19908 19909 /** 19910 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19911 * @phba: pointer to lpfc hba data structure. 19912 * @rgn23_data: pointer to configure region 23 data. 19913 * 19914 * This function gets SLI4 port configure region 23 data through memory dump 19915 * mailbox command. When it successfully retrieves data, the size of the data 19916 * will be returned, otherwise, 0 will be returned. 19917 **/ 19918 static uint32_t 19919 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19920 { 19921 LPFC_MBOXQ_t *mboxq = NULL; 19922 struct lpfc_dmabuf *mp = NULL; 19923 struct lpfc_mqe *mqe; 19924 uint32_t data_length = 0; 19925 int rc; 19926 19927 if (!rgn23_data) 19928 return 0; 19929 19930 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19931 if (!mboxq) { 19932 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19933 "3105 failed to allocate mailbox memory\n"); 19934 return 0; 19935 } 19936 19937 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19938 goto out; 19939 mqe = &mboxq->u.mqe; 19940 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19941 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19942 if (rc) 19943 goto out; 19944 data_length = mqe->un.mb_words[5]; 19945 if (data_length == 0) 19946 goto out; 19947 if (data_length > DMP_RGN23_SIZE) { 19948 data_length = 0; 19949 goto out; 19950 } 19951 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19952 out: 19953 mempool_free(mboxq, phba->mbox_mem_pool); 19954 if (mp) { 19955 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19956 kfree(mp); 19957 } 19958 return data_length; 19959 } 19960 19961 /** 19962 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19963 * @phba: pointer to lpfc hba data structure. 19964 * 19965 * This function read region 23 and parse TLV for port status to 19966 * decide if the user disaled the port. If the TLV indicates the 19967 * port is disabled, the hba_flag is set accordingly. 19968 **/ 19969 void 19970 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19971 { 19972 uint8_t *rgn23_data = NULL; 19973 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19974 uint32_t offset = 0; 19975 19976 /* Get adapter Region 23 data */ 19977 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19978 if (!rgn23_data) 19979 goto out; 19980 19981 if (phba->sli_rev < LPFC_SLI_REV4) 19982 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19983 else { 19984 if_type = bf_get(lpfc_sli_intf_if_type, 19985 &phba->sli4_hba.sli_intf); 19986 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19987 goto out; 19988 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19989 } 19990 19991 if (!data_size) 19992 goto out; 19993 19994 /* Check the region signature first */ 19995 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19996 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 19997 "2619 Config region 23 has bad signature\n"); 19998 goto out; 19999 } 20000 offset += 4; 20001 20002 /* Check the data structure version */ 20003 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 20004 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20005 "2620 Config region 23 has bad version\n"); 20006 goto out; 20007 } 20008 offset += 4; 20009 20010 /* Parse TLV entries in the region */ 20011 while (offset < data_size) { 20012 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 20013 break; 20014 /* 20015 * If the TLV is not driver specific TLV or driver id is 20016 * not linux driver id, skip the record. 20017 */ 20018 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 20019 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 20020 (rgn23_data[offset + 3] != 0)) { 20021 offset += rgn23_data[offset + 1] * 4 + 4; 20022 continue; 20023 } 20024 20025 /* Driver found a driver specific TLV in the config region */ 20026 sub_tlv_len = rgn23_data[offset + 1] * 4; 20027 offset += 4; 20028 tlv_offset = 0; 20029 20030 /* 20031 * Search for configured port state sub-TLV. 20032 */ 20033 while ((offset < data_size) && 20034 (tlv_offset < sub_tlv_len)) { 20035 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 20036 offset += 4; 20037 tlv_offset += 4; 20038 break; 20039 } 20040 if (rgn23_data[offset] != PORT_STE_TYPE) { 20041 offset += rgn23_data[offset + 1] * 4 + 4; 20042 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 20043 continue; 20044 } 20045 20046 /* This HBA contains PORT_STE configured */ 20047 if (!rgn23_data[offset + 2]) 20048 phba->hba_flag |= LINK_DISABLED; 20049 20050 goto out; 20051 } 20052 } 20053 20054 out: 20055 kfree(rgn23_data); 20056 return; 20057 } 20058 20059 /** 20060 * lpfc_log_fw_write_cmpl - logs firmware write completion status 20061 * @phba: pointer to lpfc hba data structure 20062 * @shdr_status: wr_object rsp's status field 20063 * @shdr_add_status: wr_object rsp's add_status field 20064 * @shdr_add_status_2: wr_object rsp's add_status_2 field 20065 * @shdr_change_status: wr_object rsp's change_status field 20066 * @shdr_csf: wr_object rsp's csf bit 20067 * 20068 * This routine is intended to be called after a firmware write completes. 20069 * It will log next action items to be performed by the user to instantiate 20070 * the newly downloaded firmware or reason for incompatibility. 20071 **/ 20072 static void 20073 lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, 20074 u32 shdr_add_status, u32 shdr_add_status_2, 20075 u32 shdr_change_status, u32 shdr_csf) 20076 { 20077 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20078 "4198 %s: flash_id x%02x, asic_rev x%02x, " 20079 "status x%02x, add_status x%02x, add_status_2 x%02x, " 20080 "change_status x%02x, csf %01x\n", __func__, 20081 phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, 20082 shdr_status, shdr_add_status, shdr_add_status_2, 20083 shdr_change_status, shdr_csf); 20084 20085 if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { 20086 switch (shdr_add_status_2) { 20087 case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: 20088 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20089 "4199 Firmware write failed: " 20090 "image incompatible with flash x%02x\n", 20091 phba->sli4_hba.flash_id); 20092 break; 20093 case LPFC_ADD_STATUS_2_INCORRECT_ASIC: 20094 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20095 "4200 Firmware write failed: " 20096 "image incompatible with ASIC " 20097 "architecture x%02x\n", 20098 phba->sli4_hba.asic_rev); 20099 break; 20100 default: 20101 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 20102 "4210 Firmware write failed: " 20103 "add_status_2 x%02x\n", 20104 shdr_add_status_2); 20105 break; 20106 } 20107 } else if (!shdr_status && !shdr_add_status) { 20108 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 20109 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 20110 if (shdr_csf) 20111 shdr_change_status = 20112 LPFC_CHANGE_STATUS_PCI_RESET; 20113 } 20114 20115 switch (shdr_change_status) { 20116 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 20117 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20118 "3198 Firmware write complete: System " 20119 "reboot required to instantiate\n"); 20120 break; 20121 case (LPFC_CHANGE_STATUS_FW_RESET): 20122 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20123 "3199 Firmware write complete: " 20124 "Firmware reset required to " 20125 "instantiate\n"); 20126 break; 20127 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 20128 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20129 "3200 Firmware write complete: Port " 20130 "Migration or PCI Reset required to " 20131 "instantiate\n"); 20132 break; 20133 case (LPFC_CHANGE_STATUS_PCI_RESET): 20134 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 20135 "3201 Firmware write complete: PCI " 20136 "Reset required to instantiate\n"); 20137 break; 20138 default: 20139 break; 20140 } 20141 } 20142 } 20143 20144 /** 20145 * lpfc_wr_object - write an object to the firmware 20146 * @phba: HBA structure that indicates port to create a queue on. 20147 * @dmabuf_list: list of dmabufs to write to the port. 20148 * @size: the total byte value of the objects to write to the port. 20149 * @offset: the current offset to be used to start the transfer. 20150 * 20151 * This routine will create a wr_object mailbox command to send to the port. 20152 * the mailbox command will be constructed using the dma buffers described in 20153 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 20154 * BDEs that the imbedded mailbox can support. The @offset variable will be 20155 * used to indicate the starting offset of the transfer and will also return 20156 * the offset after the write object mailbox has completed. @size is used to 20157 * determine the end of the object and whether the eof bit should be set. 20158 * 20159 * Return 0 is successful and offset will contain the the new offset to use 20160 * for the next write. 20161 * Return negative value for error cases. 20162 **/ 20163 int 20164 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 20165 uint32_t size, uint32_t *offset) 20166 { 20167 struct lpfc_mbx_wr_object *wr_object; 20168 LPFC_MBOXQ_t *mbox; 20169 int rc = 0, i = 0; 20170 uint32_t shdr_status, shdr_add_status, shdr_add_status_2; 20171 uint32_t shdr_change_status = 0, shdr_csf = 0; 20172 uint32_t mbox_tmo; 20173 struct lpfc_dmabuf *dmabuf; 20174 uint32_t written = 0; 20175 bool check_change_status = false; 20176 20177 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 20178 if (!mbox) 20179 return -ENOMEM; 20180 20181 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 20182 LPFC_MBOX_OPCODE_WRITE_OBJECT, 20183 sizeof(struct lpfc_mbx_wr_object) - 20184 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 20185 20186 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 20187 wr_object->u.request.write_offset = *offset; 20188 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 20189 wr_object->u.request.object_name[0] = 20190 cpu_to_le32(wr_object->u.request.object_name[0]); 20191 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 20192 list_for_each_entry(dmabuf, dmabuf_list, list) { 20193 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 20194 break; 20195 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 20196 wr_object->u.request.bde[i].addrHigh = 20197 putPaddrHigh(dmabuf->phys); 20198 if (written + SLI4_PAGE_SIZE >= size) { 20199 wr_object->u.request.bde[i].tus.f.bdeSize = 20200 (size - written); 20201 written += (size - written); 20202 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 20203 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 20204 check_change_status = true; 20205 } else { 20206 wr_object->u.request.bde[i].tus.f.bdeSize = 20207 SLI4_PAGE_SIZE; 20208 written += SLI4_PAGE_SIZE; 20209 } 20210 i++; 20211 } 20212 wr_object->u.request.bde_count = i; 20213 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 20214 if (!phba->sli4_hba.intr_enable) 20215 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 20216 else { 20217 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 20218 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 20219 } 20220 /* The IOCTL status is embedded in the mailbox subheader. */ 20221 shdr_status = bf_get(lpfc_mbox_hdr_status, 20222 &wr_object->header.cfg_shdr.response); 20223 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 20224 &wr_object->header.cfg_shdr.response); 20225 shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, 20226 &wr_object->header.cfg_shdr.response); 20227 if (check_change_status) { 20228 shdr_change_status = bf_get(lpfc_wr_object_change_status, 20229 &wr_object->u.response); 20230 shdr_csf = bf_get(lpfc_wr_object_csf, 20231 &wr_object->u.response); 20232 } 20233 20234 if (!phba->sli4_hba.intr_enable) 20235 mempool_free(mbox, phba->mbox_mem_pool); 20236 else if (rc != MBX_TIMEOUT) 20237 mempool_free(mbox, phba->mbox_mem_pool); 20238 if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { 20239 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20240 "3025 Write Object mailbox failed with " 20241 "status x%x add_status x%x, add_status_2 x%x, " 20242 "mbx status x%x\n", 20243 shdr_status, shdr_add_status, shdr_add_status_2, 20244 rc); 20245 rc = -ENXIO; 20246 *offset = shdr_add_status; 20247 } else { 20248 *offset += wr_object->u.response.actual_write_length; 20249 } 20250 20251 if (rc || check_change_status) 20252 lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, 20253 shdr_add_status_2, shdr_change_status, 20254 shdr_csf); 20255 return rc; 20256 } 20257 20258 /** 20259 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 20260 * @vport: pointer to vport data structure. 20261 * 20262 * This function iterate through the mailboxq and clean up all REG_LOGIN 20263 * and REG_VPI mailbox commands associated with the vport. This function 20264 * is called when driver want to restart discovery of the vport due to 20265 * a Clear Virtual Link event. 20266 **/ 20267 void 20268 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 20269 { 20270 struct lpfc_hba *phba = vport->phba; 20271 LPFC_MBOXQ_t *mb, *nextmb; 20272 struct lpfc_dmabuf *mp; 20273 struct lpfc_nodelist *ndlp; 20274 struct lpfc_nodelist *act_mbx_ndlp = NULL; 20275 LIST_HEAD(mbox_cmd_list); 20276 uint8_t restart_loop; 20277 20278 /* Clean up internally queued mailbox commands with the vport */ 20279 spin_lock_irq(&phba->hbalock); 20280 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 20281 if (mb->vport != vport) 20282 continue; 20283 20284 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20285 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20286 continue; 20287 20288 list_move_tail(&mb->list, &mbox_cmd_list); 20289 } 20290 /* Clean up active mailbox command with the vport */ 20291 mb = phba->sli.mbox_active; 20292 if (mb && (mb->vport == vport)) { 20293 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 20294 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 20295 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20296 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20297 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20298 /* Put reference count for delayed processing */ 20299 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 20300 /* Unregister the RPI when mailbox complete */ 20301 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20302 } 20303 } 20304 /* Cleanup any mailbox completions which are not yet processed */ 20305 do { 20306 restart_loop = 0; 20307 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 20308 /* 20309 * If this mailox is already processed or it is 20310 * for another vport ignore it. 20311 */ 20312 if ((mb->vport != vport) || 20313 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 20314 continue; 20315 20316 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 20317 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 20318 continue; 20319 20320 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 20321 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20322 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20323 /* Unregister the RPI when mailbox complete */ 20324 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 20325 restart_loop = 1; 20326 spin_unlock_irq(&phba->hbalock); 20327 spin_lock(&ndlp->lock); 20328 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20329 spin_unlock(&ndlp->lock); 20330 spin_lock_irq(&phba->hbalock); 20331 break; 20332 } 20333 } 20334 } while (restart_loop); 20335 20336 spin_unlock_irq(&phba->hbalock); 20337 20338 /* Release the cleaned-up mailbox commands */ 20339 while (!list_empty(&mbox_cmd_list)) { 20340 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 20341 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 20342 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 20343 if (mp) { 20344 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 20345 kfree(mp); 20346 } 20347 mb->ctx_buf = NULL; 20348 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 20349 mb->ctx_ndlp = NULL; 20350 if (ndlp) { 20351 spin_lock(&ndlp->lock); 20352 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20353 spin_unlock(&ndlp->lock); 20354 lpfc_nlp_put(ndlp); 20355 } 20356 } 20357 mempool_free(mb, phba->mbox_mem_pool); 20358 } 20359 20360 /* Release the ndlp with the cleaned-up active mailbox command */ 20361 if (act_mbx_ndlp) { 20362 spin_lock(&act_mbx_ndlp->lock); 20363 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 20364 spin_unlock(&act_mbx_ndlp->lock); 20365 lpfc_nlp_put(act_mbx_ndlp); 20366 } 20367 } 20368 20369 /** 20370 * lpfc_drain_txq - Drain the txq 20371 * @phba: Pointer to HBA context object. 20372 * 20373 * This function attempt to submit IOCBs on the txq 20374 * to the adapter. For SLI4 adapters, the txq contains 20375 * ELS IOCBs that have been deferred because the there 20376 * are no SGLs. This congestion can occur with large 20377 * vport counts during node discovery. 20378 **/ 20379 20380 uint32_t 20381 lpfc_drain_txq(struct lpfc_hba *phba) 20382 { 20383 LIST_HEAD(completions); 20384 struct lpfc_sli_ring *pring; 20385 struct lpfc_iocbq *piocbq = NULL; 20386 unsigned long iflags = 0; 20387 char *fail_msg = NULL; 20388 struct lpfc_sglq *sglq; 20389 union lpfc_wqe128 wqe; 20390 uint32_t txq_cnt = 0; 20391 struct lpfc_queue *wq; 20392 20393 if (phba->link_flag & LS_MDS_LOOPBACK) { 20394 /* MDS WQE are posted only to first WQ*/ 20395 wq = phba->sli4_hba.hdwq[0].io_wq; 20396 if (unlikely(!wq)) 20397 return 0; 20398 pring = wq->pring; 20399 } else { 20400 wq = phba->sli4_hba.els_wq; 20401 if (unlikely(!wq)) 20402 return 0; 20403 pring = lpfc_phba_elsring(phba); 20404 } 20405 20406 if (unlikely(!pring) || list_empty(&pring->txq)) 20407 return 0; 20408 20409 spin_lock_irqsave(&pring->ring_lock, iflags); 20410 list_for_each_entry(piocbq, &pring->txq, list) { 20411 txq_cnt++; 20412 } 20413 20414 if (txq_cnt > pring->txq_max) 20415 pring->txq_max = txq_cnt; 20416 20417 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20418 20419 while (!list_empty(&pring->txq)) { 20420 spin_lock_irqsave(&pring->ring_lock, iflags); 20421 20422 piocbq = lpfc_sli_ringtx_get(phba, pring); 20423 if (!piocbq) { 20424 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20425 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20426 "2823 txq empty and txq_cnt is %d\n ", 20427 txq_cnt); 20428 break; 20429 } 20430 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 20431 if (!sglq) { 20432 __lpfc_sli_ringtx_put(phba, pring, piocbq); 20433 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20434 break; 20435 } 20436 txq_cnt--; 20437 20438 /* The xri and iocb resources secured, 20439 * attempt to issue request 20440 */ 20441 piocbq->sli4_lxritag = sglq->sli4_lxritag; 20442 piocbq->sli4_xritag = sglq->sli4_xritag; 20443 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 20444 fail_msg = "to convert bpl to sgl"; 20445 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 20446 fail_msg = "to convert iocb to wqe"; 20447 else if (lpfc_sli4_wq_put(wq, &wqe)) 20448 fail_msg = " - Wq is full"; 20449 else 20450 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 20451 20452 if (fail_msg) { 20453 /* Failed means we can't issue and need to cancel */ 20454 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 20455 "2822 IOCB failed %s iotag 0x%x " 20456 "xri 0x%x\n", 20457 fail_msg, 20458 piocbq->iotag, piocbq->sli4_xritag); 20459 list_add_tail(&piocbq->list, &completions); 20460 } 20461 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20462 } 20463 20464 /* Cancel all the IOCBs that cannot be issued */ 20465 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 20466 IOERR_SLI_ABORTED); 20467 20468 return txq_cnt; 20469 } 20470 20471 /** 20472 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 20473 * @phba: Pointer to HBA context object. 20474 * @pwqeq: Pointer to command WQE. 20475 * @sglq: Pointer to the scatter gather queue object. 20476 * 20477 * This routine converts the bpl or bde that is in the WQE 20478 * to a sgl list for the sli4 hardware. The physical address 20479 * of the bpl/bde is converted back to a virtual address. 20480 * If the WQE contains a BPL then the list of BDE's is 20481 * converted to sli4_sge's. If the WQE contains a single 20482 * BDE then it is converted to a single sli_sge. 20483 * The WQE is still in cpu endianness so the contents of 20484 * the bpl can be used without byte swapping. 20485 * 20486 * Returns valid XRI = Success, NO_XRI = Failure. 20487 */ 20488 static uint16_t 20489 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 20490 struct lpfc_sglq *sglq) 20491 { 20492 uint16_t xritag = NO_XRI; 20493 struct ulp_bde64 *bpl = NULL; 20494 struct ulp_bde64 bde; 20495 struct sli4_sge *sgl = NULL; 20496 struct lpfc_dmabuf *dmabuf; 20497 union lpfc_wqe128 *wqe; 20498 int numBdes = 0; 20499 int i = 0; 20500 uint32_t offset = 0; /* accumulated offset in the sg request list */ 20501 int inbound = 0; /* number of sg reply entries inbound from firmware */ 20502 uint32_t cmd; 20503 20504 if (!pwqeq || !sglq) 20505 return xritag; 20506 20507 sgl = (struct sli4_sge *)sglq->sgl; 20508 wqe = &pwqeq->wqe; 20509 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 20510 20511 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 20512 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 20513 return sglq->sli4_xritag; 20514 numBdes = pwqeq->rsvd2; 20515 if (numBdes) { 20516 /* The addrHigh and addrLow fields within the WQE 20517 * have not been byteswapped yet so there is no 20518 * need to swap them back. 20519 */ 20520 if (pwqeq->context3) 20521 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 20522 else 20523 return xritag; 20524 20525 bpl = (struct ulp_bde64 *)dmabuf->virt; 20526 if (!bpl) 20527 return xritag; 20528 20529 for (i = 0; i < numBdes; i++) { 20530 /* Should already be byte swapped. */ 20531 sgl->addr_hi = bpl->addrHigh; 20532 sgl->addr_lo = bpl->addrLow; 20533 20534 sgl->word2 = le32_to_cpu(sgl->word2); 20535 if ((i+1) == numBdes) 20536 bf_set(lpfc_sli4_sge_last, sgl, 1); 20537 else 20538 bf_set(lpfc_sli4_sge_last, sgl, 0); 20539 /* swap the size field back to the cpu so we 20540 * can assign it to the sgl. 20541 */ 20542 bde.tus.w = le32_to_cpu(bpl->tus.w); 20543 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 20544 /* The offsets in the sgl need to be accumulated 20545 * separately for the request and reply lists. 20546 * The request is always first, the reply follows. 20547 */ 20548 switch (cmd) { 20549 case CMD_GEN_REQUEST64_WQE: 20550 /* add up the reply sg entries */ 20551 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 20552 inbound++; 20553 /* first inbound? reset the offset */ 20554 if (inbound == 1) 20555 offset = 0; 20556 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20557 bf_set(lpfc_sli4_sge_type, sgl, 20558 LPFC_SGE_TYPE_DATA); 20559 offset += bde.tus.f.bdeSize; 20560 break; 20561 case CMD_FCP_TRSP64_WQE: 20562 bf_set(lpfc_sli4_sge_offset, sgl, 0); 20563 bf_set(lpfc_sli4_sge_type, sgl, 20564 LPFC_SGE_TYPE_DATA); 20565 break; 20566 case CMD_FCP_TSEND64_WQE: 20567 case CMD_FCP_TRECEIVE64_WQE: 20568 bf_set(lpfc_sli4_sge_type, sgl, 20569 bpl->tus.f.bdeFlags); 20570 if (i < 3) 20571 offset = 0; 20572 else 20573 offset += bde.tus.f.bdeSize; 20574 bf_set(lpfc_sli4_sge_offset, sgl, offset); 20575 break; 20576 } 20577 sgl->word2 = cpu_to_le32(sgl->word2); 20578 bpl++; 20579 sgl++; 20580 } 20581 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 20582 /* The addrHigh and addrLow fields of the BDE have not 20583 * been byteswapped yet so they need to be swapped 20584 * before putting them in the sgl. 20585 */ 20586 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 20587 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 20588 sgl->word2 = le32_to_cpu(sgl->word2); 20589 bf_set(lpfc_sli4_sge_last, sgl, 1); 20590 sgl->word2 = cpu_to_le32(sgl->word2); 20591 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 20592 } 20593 return sglq->sli4_xritag; 20594 } 20595 20596 /** 20597 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 20598 * @phba: Pointer to HBA context object. 20599 * @qp: Pointer to HDW queue. 20600 * @pwqe: Pointer to command WQE. 20601 **/ 20602 int 20603 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20604 struct lpfc_iocbq *pwqe) 20605 { 20606 union lpfc_wqe128 *wqe = &pwqe->wqe; 20607 struct lpfc_async_xchg_ctx *ctxp; 20608 struct lpfc_queue *wq; 20609 struct lpfc_sglq *sglq; 20610 struct lpfc_sli_ring *pring; 20611 unsigned long iflags; 20612 uint32_t ret = 0; 20613 20614 /* NVME_LS and NVME_LS ABTS requests. */ 20615 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20616 pring = phba->sli4_hba.nvmels_wq->pring; 20617 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20618 qp, wq_access); 20619 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20620 if (!sglq) { 20621 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20622 return WQE_BUSY; 20623 } 20624 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20625 pwqe->sli4_xritag = sglq->sli4_xritag; 20626 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20627 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20628 return WQE_ERROR; 20629 } 20630 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20631 pwqe->sli4_xritag); 20632 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20633 if (ret) { 20634 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20635 return ret; 20636 } 20637 20638 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20639 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20640 20641 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20642 return 0; 20643 } 20644 20645 /* NVME_FCREQ and NVME_ABTS requests */ 20646 if (pwqe->iocb_flag & LPFC_IO_NVME || 20647 pwqe->iocb_flag & LPFC_IO_FCP) { 20648 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20649 wq = qp->io_wq; 20650 pring = wq->pring; 20651 20652 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20653 20654 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20655 qp, wq_access); 20656 ret = lpfc_sli4_wq_put(wq, wqe); 20657 if (ret) { 20658 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20659 return ret; 20660 } 20661 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20662 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20663 20664 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20665 return 0; 20666 } 20667 20668 /* NVMET requests */ 20669 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20670 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20671 wq = qp->io_wq; 20672 pring = wq->pring; 20673 20674 ctxp = pwqe->context2; 20675 sglq = ctxp->ctxbuf->sglq; 20676 if (pwqe->sli4_xritag == NO_XRI) { 20677 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20678 pwqe->sli4_xritag = sglq->sli4_xritag; 20679 } 20680 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20681 pwqe->sli4_xritag); 20682 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20683 20684 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20685 qp, wq_access); 20686 ret = lpfc_sli4_wq_put(wq, wqe); 20687 if (ret) { 20688 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20689 return ret; 20690 } 20691 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20692 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20693 20694 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20695 return 0; 20696 } 20697 return WQE_ERROR; 20698 } 20699 20700 /** 20701 * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort 20702 * @phba: Pointer to HBA context object. 20703 * @cmdiocb: Pointer to driver command iocb object. 20704 * @cmpl: completion function. 20705 * 20706 * Fill the appropriate fields for the abort WQE and call 20707 * internal routine lpfc_sli4_issue_wqe to send the WQE 20708 * This function is called with hbalock held and no ring_lock held. 20709 * 20710 * RETURNS 0 - SUCCESS 20711 **/ 20712 20713 int 20714 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 20715 void *cmpl) 20716 { 20717 struct lpfc_vport *vport = cmdiocb->vport; 20718 struct lpfc_iocbq *abtsiocb = NULL; 20719 union lpfc_wqe128 *abtswqe; 20720 struct lpfc_io_buf *lpfc_cmd; 20721 int retval = IOCB_ERROR; 20722 u16 xritag = cmdiocb->sli4_xritag; 20723 20724 /* 20725 * The scsi command can not be in txq and it is in flight because the 20726 * pCmd is still pointing at the SCSI command we have to abort. There 20727 * is no need to search the txcmplq. Just send an abort to the FW. 20728 */ 20729 20730 abtsiocb = __lpfc_sli_get_iocbq(phba); 20731 if (!abtsiocb) 20732 return WQE_NORESOURCE; 20733 20734 /* Indicate the IO is being aborted by the driver. */ 20735 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 20736 20737 abtswqe = &abtsiocb->wqe; 20738 memset(abtswqe, 0, sizeof(*abtswqe)); 20739 20740 if (!lpfc_is_link_up(phba)) 20741 bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); 20742 bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); 20743 abtswqe->abort_cmd.rsrvd5 = 0; 20744 abtswqe->abort_cmd.wqe_com.abort_tag = xritag; 20745 bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); 20746 bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 20747 bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); 20748 bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); 20749 bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 20750 bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); 20751 20752 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 20753 abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; 20754 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 20755 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 20756 abtsiocb->iocb_flag |= LPFC_IO_FCP; 20757 if (cmdiocb->iocb_flag & LPFC_IO_NVME) 20758 abtsiocb->iocb_flag |= LPFC_IO_NVME; 20759 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 20760 abtsiocb->iocb_flag |= LPFC_IO_FOF; 20761 abtsiocb->vport = vport; 20762 abtsiocb->wqe_cmpl = cmpl; 20763 20764 lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); 20765 retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); 20766 20767 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, 20768 "0359 Abort xri x%x, original iotag x%x, " 20769 "abort cmd iotag x%x retval x%x\n", 20770 xritag, cmdiocb->iotag, abtsiocb->iotag, retval); 20771 20772 if (retval) { 20773 cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; 20774 __lpfc_sli_release_iocbq(phba, abtsiocb); 20775 } 20776 20777 return retval; 20778 } 20779 20780 #ifdef LPFC_MXP_STAT 20781 /** 20782 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20783 * @phba: pointer to lpfc hba data structure. 20784 * @hwqid: belong to which HWQ. 20785 * 20786 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20787 * 15 seconds after a test case is running. 20788 * 20789 * The user should call lpfc_debugfs_multixripools_write before running a test 20790 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20791 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20792 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20793 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20794 **/ 20795 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20796 { 20797 struct lpfc_sli4_hdw_queue *qp; 20798 struct lpfc_multixri_pool *multixri_pool; 20799 struct lpfc_pvt_pool *pvt_pool; 20800 struct lpfc_pbl_pool *pbl_pool; 20801 u32 txcmplq_cnt; 20802 20803 qp = &phba->sli4_hba.hdwq[hwqid]; 20804 multixri_pool = qp->p_multixri_pool; 20805 if (!multixri_pool) 20806 return; 20807 20808 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20809 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20810 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20811 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20812 20813 multixri_pool->stat_pbl_count = pbl_pool->count; 20814 multixri_pool->stat_pvt_count = pvt_pool->count; 20815 multixri_pool->stat_busy_count = txcmplq_cnt; 20816 } 20817 20818 multixri_pool->stat_snapshot_taken++; 20819 } 20820 #endif 20821 20822 /** 20823 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20824 * @phba: pointer to lpfc hba data structure. 20825 * @hwqid: belong to which HWQ. 20826 * 20827 * This routine moves some XRIs from private to public pool when private pool 20828 * is not busy. 20829 **/ 20830 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20831 { 20832 struct lpfc_multixri_pool *multixri_pool; 20833 u32 io_req_count; 20834 u32 prev_io_req_count; 20835 20836 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20837 if (!multixri_pool) 20838 return; 20839 io_req_count = multixri_pool->io_req_count; 20840 prev_io_req_count = multixri_pool->prev_io_req_count; 20841 20842 if (prev_io_req_count != io_req_count) { 20843 /* Private pool is busy */ 20844 multixri_pool->prev_io_req_count = io_req_count; 20845 } else { 20846 /* Private pool is not busy. 20847 * Move XRIs from private to public pool. 20848 */ 20849 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20850 } 20851 } 20852 20853 /** 20854 * lpfc_adjust_high_watermark - Adjust high watermark 20855 * @phba: pointer to lpfc hba data structure. 20856 * @hwqid: belong to which HWQ. 20857 * 20858 * This routine sets high watermark as number of outstanding XRIs, 20859 * but make sure the new value is between xri_limit/2 and xri_limit. 20860 **/ 20861 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20862 { 20863 u32 new_watermark; 20864 u32 watermark_max; 20865 u32 watermark_min; 20866 u32 xri_limit; 20867 u32 txcmplq_cnt; 20868 u32 abts_io_bufs; 20869 struct lpfc_multixri_pool *multixri_pool; 20870 struct lpfc_sli4_hdw_queue *qp; 20871 20872 qp = &phba->sli4_hba.hdwq[hwqid]; 20873 multixri_pool = qp->p_multixri_pool; 20874 if (!multixri_pool) 20875 return; 20876 xri_limit = multixri_pool->xri_limit; 20877 20878 watermark_max = xri_limit; 20879 watermark_min = xri_limit / 2; 20880 20881 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20882 abts_io_bufs = qp->abts_scsi_io_bufs; 20883 abts_io_bufs += qp->abts_nvme_io_bufs; 20884 20885 new_watermark = txcmplq_cnt + abts_io_bufs; 20886 new_watermark = min(watermark_max, new_watermark); 20887 new_watermark = max(watermark_min, new_watermark); 20888 multixri_pool->pvt_pool.high_watermark = new_watermark; 20889 20890 #ifdef LPFC_MXP_STAT 20891 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20892 new_watermark); 20893 #endif 20894 } 20895 20896 /** 20897 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20898 * @phba: pointer to lpfc hba data structure. 20899 * @hwqid: belong to which HWQ. 20900 * 20901 * This routine is called from hearbeat timer when pvt_pool is idle. 20902 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20903 * The first step moves (all - low_watermark) amount of XRIs. 20904 * The second step moves the rest of XRIs. 20905 **/ 20906 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20907 { 20908 struct lpfc_pbl_pool *pbl_pool; 20909 struct lpfc_pvt_pool *pvt_pool; 20910 struct lpfc_sli4_hdw_queue *qp; 20911 struct lpfc_io_buf *lpfc_ncmd; 20912 struct lpfc_io_buf *lpfc_ncmd_next; 20913 unsigned long iflag; 20914 struct list_head tmp_list; 20915 u32 tmp_count; 20916 20917 qp = &phba->sli4_hba.hdwq[hwqid]; 20918 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20919 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20920 tmp_count = 0; 20921 20922 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20923 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20924 20925 if (pvt_pool->count > pvt_pool->low_watermark) { 20926 /* Step 1: move (all - low_watermark) from pvt_pool 20927 * to pbl_pool 20928 */ 20929 20930 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20931 INIT_LIST_HEAD(&tmp_list); 20932 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20933 &pvt_pool->list, list) { 20934 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20935 tmp_count++; 20936 if (tmp_count >= pvt_pool->low_watermark) 20937 break; 20938 } 20939 20940 /* Move all bufs from pvt_pool to pbl_pool */ 20941 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20942 20943 /* Move all bufs from tmp_list to pvt_pool */ 20944 list_splice(&tmp_list, &pvt_pool->list); 20945 20946 pbl_pool->count += (pvt_pool->count - tmp_count); 20947 pvt_pool->count = tmp_count; 20948 } else { 20949 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20950 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20951 pbl_pool->count += pvt_pool->count; 20952 pvt_pool->count = 0; 20953 } 20954 20955 spin_unlock(&pvt_pool->lock); 20956 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20957 } 20958 20959 /** 20960 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20961 * @phba: pointer to lpfc hba data structure 20962 * @qp: pointer to HDW queue 20963 * @pbl_pool: specified public free XRI pool 20964 * @pvt_pool: specified private free XRI pool 20965 * @count: number of XRIs to move 20966 * 20967 * This routine tries to move some free common bufs from the specified pbl_pool 20968 * to the specified pvt_pool. It might move less than count XRIs if there's not 20969 * enough in public pool. 20970 * 20971 * Return: 20972 * true - if XRIs are successfully moved from the specified pbl_pool to the 20973 * specified pvt_pool 20974 * false - if the specified pbl_pool is empty or locked by someone else 20975 **/ 20976 static bool 20977 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20978 struct lpfc_pbl_pool *pbl_pool, 20979 struct lpfc_pvt_pool *pvt_pool, u32 count) 20980 { 20981 struct lpfc_io_buf *lpfc_ncmd; 20982 struct lpfc_io_buf *lpfc_ncmd_next; 20983 unsigned long iflag; 20984 int ret; 20985 20986 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20987 if (ret) { 20988 if (pbl_pool->count) { 20989 /* Move a batch of XRIs from public to private pool */ 20990 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20991 list_for_each_entry_safe(lpfc_ncmd, 20992 lpfc_ncmd_next, 20993 &pbl_pool->list, 20994 list) { 20995 list_move_tail(&lpfc_ncmd->list, 20996 &pvt_pool->list); 20997 pvt_pool->count++; 20998 pbl_pool->count--; 20999 count--; 21000 if (count == 0) 21001 break; 21002 } 21003 21004 spin_unlock(&pvt_pool->lock); 21005 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21006 return true; 21007 } 21008 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21009 } 21010 21011 return false; 21012 } 21013 21014 /** 21015 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 21016 * @phba: pointer to lpfc hba data structure. 21017 * @hwqid: belong to which HWQ. 21018 * @count: number of XRIs to move 21019 * 21020 * This routine tries to find some free common bufs in one of public pools with 21021 * Round Robin method. The search always starts from local hwqid, then the next 21022 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 21023 * a batch of free common bufs are moved to private pool on hwqid. 21024 * It might move less than count XRIs if there's not enough in public pool. 21025 **/ 21026 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 21027 { 21028 struct lpfc_multixri_pool *multixri_pool; 21029 struct lpfc_multixri_pool *next_multixri_pool; 21030 struct lpfc_pvt_pool *pvt_pool; 21031 struct lpfc_pbl_pool *pbl_pool; 21032 struct lpfc_sli4_hdw_queue *qp; 21033 u32 next_hwqid; 21034 u32 hwq_count; 21035 int ret; 21036 21037 qp = &phba->sli4_hba.hdwq[hwqid]; 21038 multixri_pool = qp->p_multixri_pool; 21039 pvt_pool = &multixri_pool->pvt_pool; 21040 pbl_pool = &multixri_pool->pbl_pool; 21041 21042 /* Check if local pbl_pool is available */ 21043 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 21044 if (ret) { 21045 #ifdef LPFC_MXP_STAT 21046 multixri_pool->local_pbl_hit_count++; 21047 #endif 21048 return; 21049 } 21050 21051 hwq_count = phba->cfg_hdw_queue; 21052 21053 /* Get the next hwqid which was found last time */ 21054 next_hwqid = multixri_pool->rrb_next_hwqid; 21055 21056 do { 21057 /* Go to next hwq */ 21058 next_hwqid = (next_hwqid + 1) % hwq_count; 21059 21060 next_multixri_pool = 21061 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 21062 pbl_pool = &next_multixri_pool->pbl_pool; 21063 21064 /* Check if the public free xri pool is available */ 21065 ret = _lpfc_move_xri_pbl_to_pvt( 21066 phba, qp, pbl_pool, pvt_pool, count); 21067 21068 /* Exit while-loop if success or all hwqid are checked */ 21069 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 21070 21071 /* Starting point for the next time */ 21072 multixri_pool->rrb_next_hwqid = next_hwqid; 21073 21074 if (!ret) { 21075 /* stats: all public pools are empty*/ 21076 multixri_pool->pbl_empty_count++; 21077 } 21078 21079 #ifdef LPFC_MXP_STAT 21080 if (ret) { 21081 if (next_hwqid == hwqid) 21082 multixri_pool->local_pbl_hit_count++; 21083 else 21084 multixri_pool->other_pbl_hit_count++; 21085 } 21086 #endif 21087 } 21088 21089 /** 21090 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 21091 * @phba: pointer to lpfc hba data structure. 21092 * @hwqid: belong to which HWQ. 21093 * 21094 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 21095 * low watermark. 21096 **/ 21097 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 21098 { 21099 struct lpfc_multixri_pool *multixri_pool; 21100 struct lpfc_pvt_pool *pvt_pool; 21101 21102 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 21103 pvt_pool = &multixri_pool->pvt_pool; 21104 21105 if (pvt_pool->count < pvt_pool->low_watermark) 21106 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21107 } 21108 21109 /** 21110 * lpfc_release_io_buf - Return one IO buf back to free pool 21111 * @phba: pointer to lpfc hba data structure. 21112 * @lpfc_ncmd: IO buf to be returned. 21113 * @qp: belong to which HWQ. 21114 * 21115 * This routine returns one IO buf back to free pool. If this is an urgent IO, 21116 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 21117 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 21118 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 21119 * lpfc_io_buf_list_put. 21120 **/ 21121 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 21122 struct lpfc_sli4_hdw_queue *qp) 21123 { 21124 unsigned long iflag; 21125 struct lpfc_pbl_pool *pbl_pool; 21126 struct lpfc_pvt_pool *pvt_pool; 21127 struct lpfc_epd_pool *epd_pool; 21128 u32 txcmplq_cnt; 21129 u32 xri_owned; 21130 u32 xri_limit; 21131 u32 abts_io_bufs; 21132 21133 /* MUST zero fields if buffer is reused by another protocol */ 21134 lpfc_ncmd->nvmeCmd = NULL; 21135 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 21136 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 21137 21138 if (phba->cfg_xpsgl && !phba->nvmet_support && 21139 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 21140 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 21141 21142 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 21143 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 21144 21145 if (phba->cfg_xri_rebalancing) { 21146 if (lpfc_ncmd->expedite) { 21147 /* Return to expedite pool */ 21148 epd_pool = &phba->epd_pool; 21149 spin_lock_irqsave(&epd_pool->lock, iflag); 21150 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 21151 epd_pool->count++; 21152 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21153 return; 21154 } 21155 21156 /* Avoid invalid access if an IO sneaks in and is being rejected 21157 * just _after_ xri pools are destroyed in lpfc_offline. 21158 * Nothing much can be done at this point. 21159 */ 21160 if (!qp->p_multixri_pool) 21161 return; 21162 21163 pbl_pool = &qp->p_multixri_pool->pbl_pool; 21164 pvt_pool = &qp->p_multixri_pool->pvt_pool; 21165 21166 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 21167 abts_io_bufs = qp->abts_scsi_io_bufs; 21168 abts_io_bufs += qp->abts_nvme_io_bufs; 21169 21170 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 21171 xri_limit = qp->p_multixri_pool->xri_limit; 21172 21173 #ifdef LPFC_MXP_STAT 21174 if (xri_owned <= xri_limit) 21175 qp->p_multixri_pool->below_limit_count++; 21176 else 21177 qp->p_multixri_pool->above_limit_count++; 21178 #endif 21179 21180 /* XRI goes to either public or private free xri pool 21181 * based on watermark and xri_limit 21182 */ 21183 if ((pvt_pool->count < pvt_pool->low_watermark) || 21184 (xri_owned < xri_limit && 21185 pvt_pool->count < pvt_pool->high_watermark)) { 21186 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 21187 qp, free_pvt_pool); 21188 list_add_tail(&lpfc_ncmd->list, 21189 &pvt_pool->list); 21190 pvt_pool->count++; 21191 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21192 } else { 21193 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 21194 qp, free_pub_pool); 21195 list_add_tail(&lpfc_ncmd->list, 21196 &pbl_pool->list); 21197 pbl_pool->count++; 21198 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 21199 } 21200 } else { 21201 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 21202 qp, free_xri); 21203 list_add_tail(&lpfc_ncmd->list, 21204 &qp->lpfc_io_buf_list_put); 21205 qp->put_io_bufs++; 21206 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 21207 iflag); 21208 } 21209 } 21210 21211 /** 21212 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 21213 * @phba: pointer to lpfc hba data structure. 21214 * @qp: pointer to HDW queue 21215 * @pvt_pool: pointer to private pool data structure. 21216 * @ndlp: pointer to lpfc nodelist data structure. 21217 * 21218 * This routine tries to get one free IO buf from private pool. 21219 * 21220 * Return: 21221 * pointer to one free IO buf - if private pool is not empty 21222 * NULL - if private pool is empty 21223 **/ 21224 static struct lpfc_io_buf * 21225 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 21226 struct lpfc_sli4_hdw_queue *qp, 21227 struct lpfc_pvt_pool *pvt_pool, 21228 struct lpfc_nodelist *ndlp) 21229 { 21230 struct lpfc_io_buf *lpfc_ncmd; 21231 struct lpfc_io_buf *lpfc_ncmd_next; 21232 unsigned long iflag; 21233 21234 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 21235 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21236 &pvt_pool->list, list) { 21237 if (lpfc_test_rrq_active( 21238 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 21239 continue; 21240 list_del(&lpfc_ncmd->list); 21241 pvt_pool->count--; 21242 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21243 return lpfc_ncmd; 21244 } 21245 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 21246 21247 return NULL; 21248 } 21249 21250 /** 21251 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 21252 * @phba: pointer to lpfc hba data structure. 21253 * 21254 * This routine tries to get one free IO buf from expedite pool. 21255 * 21256 * Return: 21257 * pointer to one free IO buf - if expedite pool is not empty 21258 * NULL - if expedite pool is empty 21259 **/ 21260 static struct lpfc_io_buf * 21261 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 21262 { 21263 struct lpfc_io_buf *lpfc_ncmd; 21264 struct lpfc_io_buf *lpfc_ncmd_next; 21265 unsigned long iflag; 21266 struct lpfc_epd_pool *epd_pool; 21267 21268 epd_pool = &phba->epd_pool; 21269 lpfc_ncmd = NULL; 21270 21271 spin_lock_irqsave(&epd_pool->lock, iflag); 21272 if (epd_pool->count > 0) { 21273 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 21274 &epd_pool->list, list) { 21275 list_del(&lpfc_ncmd->list); 21276 epd_pool->count--; 21277 break; 21278 } 21279 } 21280 spin_unlock_irqrestore(&epd_pool->lock, iflag); 21281 21282 return lpfc_ncmd; 21283 } 21284 21285 /** 21286 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 21287 * @phba: pointer to lpfc hba data structure. 21288 * @ndlp: pointer to lpfc nodelist data structure. 21289 * @hwqid: belong to which HWQ 21290 * @expedite: 1 means this request is urgent. 21291 * 21292 * This routine will do the following actions and then return a pointer to 21293 * one free IO buf. 21294 * 21295 * 1. If private free xri count is empty, move some XRIs from public to 21296 * private pool. 21297 * 2. Get one XRI from private free xri pool. 21298 * 3. If we fail to get one from pvt_pool and this is an expedite request, 21299 * get one free xri from expedite pool. 21300 * 21301 * Note: ndlp is only used on SCSI side for RRQ testing. 21302 * The caller should pass NULL for ndlp on NVME side. 21303 * 21304 * Return: 21305 * pointer to one free IO buf - if private pool is not empty 21306 * NULL - if private pool is empty 21307 **/ 21308 static struct lpfc_io_buf * 21309 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 21310 struct lpfc_nodelist *ndlp, 21311 int hwqid, int expedite) 21312 { 21313 struct lpfc_sli4_hdw_queue *qp; 21314 struct lpfc_multixri_pool *multixri_pool; 21315 struct lpfc_pvt_pool *pvt_pool; 21316 struct lpfc_io_buf *lpfc_ncmd; 21317 21318 qp = &phba->sli4_hba.hdwq[hwqid]; 21319 lpfc_ncmd = NULL; 21320 multixri_pool = qp->p_multixri_pool; 21321 pvt_pool = &multixri_pool->pvt_pool; 21322 multixri_pool->io_req_count++; 21323 21324 /* If pvt_pool is empty, move some XRIs from public to private pool */ 21325 if (pvt_pool->count == 0) 21326 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 21327 21328 /* Get one XRI from private free xri pool */ 21329 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 21330 21331 if (lpfc_ncmd) { 21332 lpfc_ncmd->hdwq = qp; 21333 lpfc_ncmd->hdwq_no = hwqid; 21334 } else if (expedite) { 21335 /* If we fail to get one from pvt_pool and this is an expedite 21336 * request, get one free xri from expedite pool. 21337 */ 21338 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 21339 } 21340 21341 return lpfc_ncmd; 21342 } 21343 21344 static inline struct lpfc_io_buf * 21345 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 21346 { 21347 struct lpfc_sli4_hdw_queue *qp; 21348 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 21349 21350 qp = &phba->sli4_hba.hdwq[idx]; 21351 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 21352 &qp->lpfc_io_buf_list_get, list) { 21353 if (lpfc_test_rrq_active(phba, ndlp, 21354 lpfc_cmd->cur_iocbq.sli4_lxritag)) 21355 continue; 21356 21357 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 21358 continue; 21359 21360 list_del_init(&lpfc_cmd->list); 21361 qp->get_io_bufs--; 21362 lpfc_cmd->hdwq = qp; 21363 lpfc_cmd->hdwq_no = idx; 21364 return lpfc_cmd; 21365 } 21366 return NULL; 21367 } 21368 21369 /** 21370 * lpfc_get_io_buf - Get one IO buffer from free pool 21371 * @phba: The HBA for which this call is being executed. 21372 * @ndlp: pointer to lpfc nodelist data structure. 21373 * @hwqid: belong to which HWQ 21374 * @expedite: 1 means this request is urgent. 21375 * 21376 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 21377 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 21378 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 21379 * 21380 * Note: ndlp is only used on SCSI side for RRQ testing. 21381 * The caller should pass NULL for ndlp on NVME side. 21382 * 21383 * Return codes: 21384 * NULL - Error 21385 * Pointer to lpfc_io_buf - Success 21386 **/ 21387 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 21388 struct lpfc_nodelist *ndlp, 21389 u32 hwqid, int expedite) 21390 { 21391 struct lpfc_sli4_hdw_queue *qp; 21392 unsigned long iflag; 21393 struct lpfc_io_buf *lpfc_cmd; 21394 21395 qp = &phba->sli4_hba.hdwq[hwqid]; 21396 lpfc_cmd = NULL; 21397 21398 if (phba->cfg_xri_rebalancing) 21399 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 21400 phba, ndlp, hwqid, expedite); 21401 else { 21402 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 21403 qp, alloc_xri_get); 21404 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 21405 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21406 if (!lpfc_cmd) { 21407 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 21408 qp, alloc_xri_put); 21409 list_splice(&qp->lpfc_io_buf_list_put, 21410 &qp->lpfc_io_buf_list_get); 21411 qp->get_io_bufs += qp->put_io_bufs; 21412 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 21413 qp->put_io_bufs = 0; 21414 spin_unlock(&qp->io_buf_list_put_lock); 21415 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 21416 expedite) 21417 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 21418 } 21419 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 21420 } 21421 21422 return lpfc_cmd; 21423 } 21424 21425 /** 21426 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 21427 * @phba: The HBA for which this call is being executed. 21428 * @lpfc_buf: IO buf structure to append the SGL chunk 21429 * 21430 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 21431 * and will allocate an SGL chunk if the pool is empty. 21432 * 21433 * Return codes: 21434 * NULL - Error 21435 * Pointer to sli4_hybrid_sgl - Success 21436 **/ 21437 struct sli4_hybrid_sgl * 21438 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21439 { 21440 struct sli4_hybrid_sgl *list_entry = NULL; 21441 struct sli4_hybrid_sgl *tmp = NULL; 21442 struct sli4_hybrid_sgl *allocated_sgl = NULL; 21443 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21444 struct list_head *buf_list = &hdwq->sgl_list; 21445 unsigned long iflags; 21446 21447 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21448 21449 if (likely(!list_empty(buf_list))) { 21450 /* break off 1 chunk from the sgl_list */ 21451 list_for_each_entry_safe(list_entry, tmp, 21452 buf_list, list_node) { 21453 list_move_tail(&list_entry->list_node, 21454 &lpfc_buf->dma_sgl_xtra_list); 21455 break; 21456 } 21457 } else { 21458 /* allocate more */ 21459 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21460 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21461 cpu_to_node(hdwq->io_wq->chann)); 21462 if (!tmp) { 21463 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21464 "8353 error kmalloc memory for HDWQ " 21465 "%d %s\n", 21466 lpfc_buf->hdwq_no, __func__); 21467 return NULL; 21468 } 21469 21470 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 21471 GFP_ATOMIC, &tmp->dma_phys_sgl); 21472 if (!tmp->dma_sgl) { 21473 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21474 "8354 error pool_alloc memory for HDWQ " 21475 "%d %s\n", 21476 lpfc_buf->hdwq_no, __func__); 21477 kfree(tmp); 21478 return NULL; 21479 } 21480 21481 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21482 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 21483 } 21484 21485 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 21486 struct sli4_hybrid_sgl, 21487 list_node); 21488 21489 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21490 21491 return allocated_sgl; 21492 } 21493 21494 /** 21495 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 21496 * @phba: The HBA for which this call is being executed. 21497 * @lpfc_buf: IO buf structure with the SGL chunk 21498 * 21499 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 21500 * 21501 * Return codes: 21502 * 0 - Success 21503 * -EINVAL - Error 21504 **/ 21505 int 21506 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 21507 { 21508 int rc = 0; 21509 struct sli4_hybrid_sgl *list_entry = NULL; 21510 struct sli4_hybrid_sgl *tmp = NULL; 21511 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21512 struct list_head *buf_list = &hdwq->sgl_list; 21513 unsigned long iflags; 21514 21515 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21516 21517 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 21518 list_for_each_entry_safe(list_entry, tmp, 21519 &lpfc_buf->dma_sgl_xtra_list, 21520 list_node) { 21521 list_move_tail(&list_entry->list_node, 21522 buf_list); 21523 } 21524 } else { 21525 rc = -EINVAL; 21526 } 21527 21528 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21529 return rc; 21530 } 21531 21532 /** 21533 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 21534 * @phba: phba object 21535 * @hdwq: hdwq to cleanup sgl buff resources on 21536 * 21537 * This routine frees all SGL chunks of hdwq SGL chunk pool. 21538 * 21539 * Return codes: 21540 * None 21541 **/ 21542 void 21543 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 21544 struct lpfc_sli4_hdw_queue *hdwq) 21545 { 21546 struct list_head *buf_list = &hdwq->sgl_list; 21547 struct sli4_hybrid_sgl *list_entry = NULL; 21548 struct sli4_hybrid_sgl *tmp = NULL; 21549 unsigned long iflags; 21550 21551 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21552 21553 /* Free sgl pool */ 21554 list_for_each_entry_safe(list_entry, tmp, 21555 buf_list, list_node) { 21556 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 21557 list_entry->dma_sgl, 21558 list_entry->dma_phys_sgl); 21559 list_del(&list_entry->list_node); 21560 kfree(list_entry); 21561 } 21562 21563 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21564 } 21565 21566 /** 21567 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 21568 * @phba: The HBA for which this call is being executed. 21569 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 21570 * 21571 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 21572 * and will allocate an CMD/RSP buffer if the pool is empty. 21573 * 21574 * Return codes: 21575 * NULL - Error 21576 * Pointer to fcp_cmd_rsp_buf - Success 21577 **/ 21578 struct fcp_cmd_rsp_buf * 21579 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21580 struct lpfc_io_buf *lpfc_buf) 21581 { 21582 struct fcp_cmd_rsp_buf *list_entry = NULL; 21583 struct fcp_cmd_rsp_buf *tmp = NULL; 21584 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 21585 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21586 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21587 unsigned long iflags; 21588 21589 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21590 21591 if (likely(!list_empty(buf_list))) { 21592 /* break off 1 chunk from the list */ 21593 list_for_each_entry_safe(list_entry, tmp, 21594 buf_list, 21595 list_node) { 21596 list_move_tail(&list_entry->list_node, 21597 &lpfc_buf->dma_cmd_rsp_list); 21598 break; 21599 } 21600 } else { 21601 /* allocate more */ 21602 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21603 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 21604 cpu_to_node(hdwq->io_wq->chann)); 21605 if (!tmp) { 21606 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21607 "8355 error kmalloc memory for HDWQ " 21608 "%d %s\n", 21609 lpfc_buf->hdwq_no, __func__); 21610 return NULL; 21611 } 21612 21613 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 21614 GFP_ATOMIC, 21615 &tmp->fcp_cmd_rsp_dma_handle); 21616 21617 if (!tmp->fcp_cmnd) { 21618 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 21619 "8356 error pool_alloc memory for HDWQ " 21620 "%d %s\n", 21621 lpfc_buf->hdwq_no, __func__); 21622 kfree(tmp); 21623 return NULL; 21624 } 21625 21626 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 21627 sizeof(struct fcp_cmnd)); 21628 21629 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21630 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 21631 } 21632 21633 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 21634 struct fcp_cmd_rsp_buf, 21635 list_node); 21636 21637 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21638 21639 return allocated_buf; 21640 } 21641 21642 /** 21643 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 21644 * @phba: The HBA for which this call is being executed. 21645 * @lpfc_buf: IO buf structure with the CMD/RSP buf 21646 * 21647 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 21648 * 21649 * Return codes: 21650 * 0 - Success 21651 * -EINVAL - Error 21652 **/ 21653 int 21654 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21655 struct lpfc_io_buf *lpfc_buf) 21656 { 21657 int rc = 0; 21658 struct fcp_cmd_rsp_buf *list_entry = NULL; 21659 struct fcp_cmd_rsp_buf *tmp = NULL; 21660 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 21661 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21662 unsigned long iflags; 21663 21664 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21665 21666 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 21667 list_for_each_entry_safe(list_entry, tmp, 21668 &lpfc_buf->dma_cmd_rsp_list, 21669 list_node) { 21670 list_move_tail(&list_entry->list_node, 21671 buf_list); 21672 } 21673 } else { 21674 rc = -EINVAL; 21675 } 21676 21677 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21678 return rc; 21679 } 21680 21681 /** 21682 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21683 * @phba: phba object 21684 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21685 * 21686 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21687 * 21688 * Return codes: 21689 * None 21690 **/ 21691 void 21692 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21693 struct lpfc_sli4_hdw_queue *hdwq) 21694 { 21695 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21696 struct fcp_cmd_rsp_buf *list_entry = NULL; 21697 struct fcp_cmd_rsp_buf *tmp = NULL; 21698 unsigned long iflags; 21699 21700 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21701 21702 /* Free cmd_rsp buf pool */ 21703 list_for_each_entry_safe(list_entry, tmp, 21704 buf_list, 21705 list_node) { 21706 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21707 list_entry->fcp_cmnd, 21708 list_entry->fcp_cmd_rsp_dma_handle); 21709 list_del(&list_entry->list_node); 21710 kfree(list_entry); 21711 } 21712 21713 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21714 } 21715