xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 64ba3d59)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #include <linux/crash_dump.h>
39 #ifdef CONFIG_X86
40 #include <asm/set_memory.h>
41 #endif
42 
43 #include "lpfc_hw4.h"
44 #include "lpfc_hw.h"
45 #include "lpfc_sli.h"
46 #include "lpfc_sli4.h"
47 #include "lpfc_nl.h"
48 #include "lpfc_disc.h"
49 #include "lpfc.h"
50 #include "lpfc_scsi.h"
51 #include "lpfc_nvme.h"
52 #include "lpfc_crtn.h"
53 #include "lpfc_logmsg.h"
54 #include "lpfc_compat.h"
55 #include "lpfc_debugfs.h"
56 #include "lpfc_vport.h"
57 #include "lpfc_version.h"
58 
59 /* There are only four IOCB completion types. */
60 typedef enum _lpfc_iocb_type {
61 	LPFC_UNKNOWN_IOCB,
62 	LPFC_UNSOL_IOCB,
63 	LPFC_SOL_IOCB,
64 	LPFC_ABORT_IOCB
65 } lpfc_iocb_type;
66 
67 
68 /* Provide function prototypes local to this module. */
69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
70 				  uint32_t);
71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
72 			      uint8_t *, uint32_t *);
73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
74 							 struct lpfc_iocbq *);
75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
76 				      struct hbq_dmabuf *);
77 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
78 					  struct hbq_dmabuf *dmabuf);
79 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
80 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
81 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
82 				       int);
83 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
84 				     struct lpfc_queue *eq,
85 				     struct lpfc_eqe *eqe);
86 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
87 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
88 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
89 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
90 				    struct lpfc_queue *cq,
91 				    struct lpfc_cqe *cqe);
92 
93 union lpfc_wqe128 lpfc_iread_cmd_template;
94 union lpfc_wqe128 lpfc_iwrite_cmd_template;
95 union lpfc_wqe128 lpfc_icmnd_cmd_template;
96 
97 static IOCB_t *
98 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
99 {
100 	return &iocbq->iocb;
101 }
102 
103 /* Setup WQE templates for IOs */
104 void lpfc_wqe_cmd_template(void)
105 {
106 	union lpfc_wqe128 *wqe;
107 
108 	/* IREAD template */
109 	wqe = &lpfc_iread_cmd_template;
110 	memset(wqe, 0, sizeof(union lpfc_wqe128));
111 
112 	/* Word 0, 1, 2 - BDE is variable */
113 
114 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
115 
116 	/* Word 4 - total_xfer_len is variable */
117 
118 	/* Word 5 - is zero */
119 
120 	/* Word 6 - ctxt_tag, xri_tag is variable */
121 
122 	/* Word 7 */
123 	bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE);
124 	bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK);
125 	bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3);
126 	bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI);
127 
128 	/* Word 8 - abort_tag is variable */
129 
130 	/* Word 9  - reqtag is variable */
131 
132 	/* Word 10 - dbde, wqes is variable */
133 	bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0);
134 	bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
135 	bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4);
136 	bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
137 	bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
138 
139 	/* Word 11 - pbde is variable */
140 	bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN);
141 	bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
142 	bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
143 
144 	/* Word 12 - is zero */
145 
146 	/* Word 13, 14, 15 - PBDE is variable */
147 
148 	/* IWRITE template */
149 	wqe = &lpfc_iwrite_cmd_template;
150 	memset(wqe, 0, sizeof(union lpfc_wqe128));
151 
152 	/* Word 0, 1, 2 - BDE is variable */
153 
154 	/* Word 3 - cmd_buff_len, payload_offset_len is zero */
155 
156 	/* Word 4 - total_xfer_len is variable */
157 
158 	/* Word 5 - initial_xfer_len is variable */
159 
160 	/* Word 6 - ctxt_tag, xri_tag is variable */
161 
162 	/* Word 7 */
163 	bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE);
164 	bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK);
165 	bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3);
166 	bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI);
167 
168 	/* Word 8 - abort_tag is variable */
169 
170 	/* Word 9  - reqtag is variable */
171 
172 	/* Word 10 - dbde, wqes is variable */
173 	bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0);
174 	bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
175 	bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4);
176 	bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
177 	bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
178 
179 	/* Word 11 - pbde is variable */
180 	bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT);
181 	bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
182 	bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
183 
184 	/* Word 12 - is zero */
185 
186 	/* Word 13, 14, 15 - PBDE is variable */
187 
188 	/* ICMND template */
189 	wqe = &lpfc_icmnd_cmd_template;
190 	memset(wqe, 0, sizeof(union lpfc_wqe128));
191 
192 	/* Word 0, 1, 2 - BDE is variable */
193 
194 	/* Word 3 - payload_offset_len is variable */
195 
196 	/* Word 4, 5 - is zero */
197 
198 	/* Word 6 - ctxt_tag, xri_tag is variable */
199 
200 	/* Word 7 */
201 	bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE);
202 	bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
203 	bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3);
204 	bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI);
205 
206 	/* Word 8 - abort_tag is variable */
207 
208 	/* Word 9  - reqtag is variable */
209 
210 	/* Word 10 - dbde, wqes is variable */
211 	bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
212 	bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE);
213 	bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE);
214 	bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
215 	bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
216 
217 	/* Word 11 */
218 	bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN);
219 	bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
220 	bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0);
221 
222 	/* Word 12, 13, 14, 15 - is zero */
223 }
224 
225 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
226 /**
227  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
228  * @srcp: Source memory pointer.
229  * @destp: Destination memory pointer.
230  * @cnt: Number of words required to be copied.
231  *       Must be a multiple of sizeof(uint64_t)
232  *
233  * This function is used for copying data between driver memory
234  * and the SLI WQ. This function also changes the endianness
235  * of each word if native endianness is different from SLI
236  * endianness. This function can be called with or without
237  * lock.
238  **/
239 static void
240 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
241 {
242 	uint64_t *src = srcp;
243 	uint64_t *dest = destp;
244 	int i;
245 
246 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
247 		*dest++ = *src++;
248 }
249 #else
250 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
251 #endif
252 
253 /**
254  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
255  * @q: The Work Queue to operate on.
256  * @wqe: The work Queue Entry to put on the Work queue.
257  *
258  * This routine will copy the contents of @wqe to the next available entry on
259  * the @q. This function will then ring the Work Queue Doorbell to signal the
260  * HBA to start processing the Work Queue Entry. This function returns 0 if
261  * successful. If no entries are available on @q then this function will return
262  * -ENOMEM.
263  * The caller is expected to hold the hbalock when calling this routine.
264  **/
265 static int
266 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
267 {
268 	union lpfc_wqe *temp_wqe;
269 	struct lpfc_register doorbell;
270 	uint32_t host_index;
271 	uint32_t idx;
272 	uint32_t i = 0;
273 	uint8_t *tmp;
274 	u32 if_type;
275 
276 	/* sanity check on queue memory */
277 	if (unlikely(!q))
278 		return -ENOMEM;
279 
280 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
281 
282 	/* If the host has not yet processed the next entry then we are done */
283 	idx = ((q->host_index + 1) % q->entry_count);
284 	if (idx == q->hba_index) {
285 		q->WQ_overflow++;
286 		return -EBUSY;
287 	}
288 	q->WQ_posted++;
289 	/* set consumption flag every once in a while */
290 	if (!((q->host_index + 1) % q->notify_interval))
291 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
292 	else
293 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
294 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
295 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
296 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
297 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
298 		/* write to DPP aperture taking advatage of Combined Writes */
299 		tmp = (uint8_t *)temp_wqe;
300 #ifdef __raw_writeq
301 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
302 			__raw_writeq(*((uint64_t *)(tmp + i)),
303 					q->dpp_regaddr + i);
304 #else
305 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
306 			__raw_writel(*((uint32_t *)(tmp + i)),
307 					q->dpp_regaddr + i);
308 #endif
309 	}
310 	/* ensure WQE bcopy and DPP flushed before doorbell write */
311 	wmb();
312 
313 	/* Update the host index before invoking device */
314 	host_index = q->host_index;
315 
316 	q->host_index = idx;
317 
318 	/* Ring Doorbell */
319 	doorbell.word0 = 0;
320 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
321 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
322 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
323 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
324 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
325 			    q->dpp_id);
326 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
327 			    q->queue_id);
328 		} else {
329 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
330 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
331 
332 			/* Leave bits <23:16> clear for if_type 6 dpp */
333 			if_type = bf_get(lpfc_sli_intf_if_type,
334 					 &q->phba->sli4_hba.sli_intf);
335 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
336 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
337 				       host_index);
338 		}
339 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
340 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
341 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
342 	} else {
343 		return -EINVAL;
344 	}
345 	writel(doorbell.word0, q->db_regaddr);
346 
347 	return 0;
348 }
349 
350 /**
351  * lpfc_sli4_wq_release - Updates internal hba index for WQ
352  * @q: The Work Queue to operate on.
353  * @index: The index to advance the hba index to.
354  *
355  * This routine will update the HBA index of a queue to reflect consumption of
356  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
357  * an entry the host calls this function to update the queue's internal
358  * pointers.
359  **/
360 static void
361 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
362 {
363 	/* sanity check on queue memory */
364 	if (unlikely(!q))
365 		return;
366 
367 	q->hba_index = index;
368 }
369 
370 /**
371  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
372  * @q: The Mailbox Queue to operate on.
373  * @mqe: The Mailbox Queue Entry to put on the Work queue.
374  *
375  * This routine will copy the contents of @mqe to the next available entry on
376  * the @q. This function will then ring the Work Queue Doorbell to signal the
377  * HBA to start processing the Work Queue Entry. This function returns 0 if
378  * successful. If no entries are available on @q then this function will return
379  * -ENOMEM.
380  * The caller is expected to hold the hbalock when calling this routine.
381  **/
382 static uint32_t
383 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
384 {
385 	struct lpfc_mqe *temp_mqe;
386 	struct lpfc_register doorbell;
387 
388 	/* sanity check on queue memory */
389 	if (unlikely(!q))
390 		return -ENOMEM;
391 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
392 
393 	/* If the host has not yet processed the next entry then we are done */
394 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
395 		return -ENOMEM;
396 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
397 	/* Save off the mailbox pointer for completion */
398 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
399 
400 	/* Update the host index before invoking device */
401 	q->host_index = ((q->host_index + 1) % q->entry_count);
402 
403 	/* Ring Doorbell */
404 	doorbell.word0 = 0;
405 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
406 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
407 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
408 	return 0;
409 }
410 
411 /**
412  * lpfc_sli4_mq_release - Updates internal hba index for MQ
413  * @q: The Mailbox Queue to operate on.
414  *
415  * This routine will update the HBA index of a queue to reflect consumption of
416  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
417  * an entry the host calls this function to update the queue's internal
418  * pointers. This routine returns the number of entries that were consumed by
419  * the HBA.
420  **/
421 static uint32_t
422 lpfc_sli4_mq_release(struct lpfc_queue *q)
423 {
424 	/* sanity check on queue memory */
425 	if (unlikely(!q))
426 		return 0;
427 
428 	/* Clear the mailbox pointer for completion */
429 	q->phba->mbox = NULL;
430 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
431 	return 1;
432 }
433 
434 /**
435  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
436  * @q: The Event Queue to get the first valid EQE from
437  *
438  * This routine will get the first valid Event Queue Entry from @q, update
439  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
440  * the Queue (no more work to do), or the Queue is full of EQEs that have been
441  * processed, but not popped back to the HBA then this routine will return NULL.
442  **/
443 static struct lpfc_eqe *
444 lpfc_sli4_eq_get(struct lpfc_queue *q)
445 {
446 	struct lpfc_eqe *eqe;
447 
448 	/* sanity check on queue memory */
449 	if (unlikely(!q))
450 		return NULL;
451 	eqe = lpfc_sli4_qe(q, q->host_index);
452 
453 	/* If the next EQE is not valid then we are done */
454 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
455 		return NULL;
456 
457 	/*
458 	 * insert barrier for instruction interlock : data from the hardware
459 	 * must have the valid bit checked before it can be copied and acted
460 	 * upon. Speculative instructions were allowing a bcopy at the start
461 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
462 	 * after our return, to copy data before the valid bit check above
463 	 * was done. As such, some of the copied data was stale. The barrier
464 	 * ensures the check is before any data is copied.
465 	 */
466 	mb();
467 	return eqe;
468 }
469 
470 /**
471  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
472  * @q: The Event Queue to disable interrupts
473  *
474  **/
475 void
476 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
477 {
478 	struct lpfc_register doorbell;
479 
480 	doorbell.word0 = 0;
481 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
482 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
483 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
484 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
485 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
486 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
487 }
488 
489 /**
490  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
491  * @q: The Event Queue to disable interrupts
492  *
493  **/
494 void
495 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
496 {
497 	struct lpfc_register doorbell;
498 
499 	doorbell.word0 = 0;
500 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
501 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
502 }
503 
504 /**
505  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
506  * @phba: adapter with EQ
507  * @q: The Event Queue that the host has completed processing for.
508  * @count: Number of elements that have been consumed
509  * @arm: Indicates whether the host wants to arms this CQ.
510  *
511  * This routine will notify the HBA, by ringing the doorbell, that count
512  * number of EQEs have been processed. The @arm parameter indicates whether
513  * the queue should be rearmed when ringing the doorbell.
514  **/
515 void
516 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
517 		     uint32_t count, bool arm)
518 {
519 	struct lpfc_register doorbell;
520 
521 	/* sanity check on queue memory */
522 	if (unlikely(!q || (count == 0 && !arm)))
523 		return;
524 
525 	/* ring doorbell for number popped */
526 	doorbell.word0 = 0;
527 	if (arm) {
528 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
529 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
530 	}
531 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
532 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
533 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
534 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
535 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
536 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
537 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
538 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
539 		readl(q->phba->sli4_hba.EQDBregaddr);
540 }
541 
542 /**
543  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
544  * @phba: adapter with EQ
545  * @q: The Event Queue that the host has completed processing for.
546  * @count: Number of elements that have been consumed
547  * @arm: Indicates whether the host wants to arms this CQ.
548  *
549  * This routine will notify the HBA, by ringing the doorbell, that count
550  * number of EQEs have been processed. The @arm parameter indicates whether
551  * the queue should be rearmed when ringing the doorbell.
552  **/
553 void
554 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
555 			  uint32_t count, bool arm)
556 {
557 	struct lpfc_register doorbell;
558 
559 	/* sanity check on queue memory */
560 	if (unlikely(!q || (count == 0 && !arm)))
561 		return;
562 
563 	/* ring doorbell for number popped */
564 	doorbell.word0 = 0;
565 	if (arm)
566 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
567 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
568 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
569 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
570 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
571 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
572 		readl(q->phba->sli4_hba.EQDBregaddr);
573 }
574 
575 static void
576 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
577 			struct lpfc_eqe *eqe)
578 {
579 	if (!phba->sli4_hba.pc_sli4_params.eqav)
580 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
581 
582 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
583 
584 	/* if the index wrapped around, toggle the valid bit */
585 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
586 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
587 }
588 
589 static void
590 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
591 {
592 	struct lpfc_eqe *eqe = NULL;
593 	u32 eq_count = 0, cq_count = 0;
594 	struct lpfc_cqe *cqe = NULL;
595 	struct lpfc_queue *cq = NULL, *childq = NULL;
596 	int cqid = 0;
597 
598 	/* walk all the EQ entries and drop on the floor */
599 	eqe = lpfc_sli4_eq_get(eq);
600 	while (eqe) {
601 		/* Get the reference to the corresponding CQ */
602 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
603 		cq = NULL;
604 
605 		list_for_each_entry(childq, &eq->child_list, list) {
606 			if (childq->queue_id == cqid) {
607 				cq = childq;
608 				break;
609 			}
610 		}
611 		/* If CQ is valid, iterate through it and drop all the CQEs */
612 		if (cq) {
613 			cqe = lpfc_sli4_cq_get(cq);
614 			while (cqe) {
615 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
616 				cq_count++;
617 				cqe = lpfc_sli4_cq_get(cq);
618 			}
619 			/* Clear and re-arm the CQ */
620 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
621 			    LPFC_QUEUE_REARM);
622 			cq_count = 0;
623 		}
624 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
625 		eq_count++;
626 		eqe = lpfc_sli4_eq_get(eq);
627 	}
628 
629 	/* Clear and re-arm the EQ */
630 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
631 }
632 
633 static int
634 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
635 		     uint8_t rearm)
636 {
637 	struct lpfc_eqe *eqe;
638 	int count = 0, consumed = 0;
639 
640 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
641 		goto rearm_and_exit;
642 
643 	eqe = lpfc_sli4_eq_get(eq);
644 	while (eqe) {
645 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
646 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
647 
648 		consumed++;
649 		if (!(++count % eq->max_proc_limit))
650 			break;
651 
652 		if (!(count % eq->notify_interval)) {
653 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
654 							LPFC_QUEUE_NOARM);
655 			consumed = 0;
656 		}
657 
658 		eqe = lpfc_sli4_eq_get(eq);
659 	}
660 	eq->EQ_processed += count;
661 
662 	/* Track the max number of EQEs processed in 1 intr */
663 	if (count > eq->EQ_max_eqe)
664 		eq->EQ_max_eqe = count;
665 
666 	xchg(&eq->queue_claimed, 0);
667 
668 rearm_and_exit:
669 	/* Always clear the EQ. */
670 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
671 
672 	return count;
673 }
674 
675 /**
676  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
677  * @q: The Completion Queue to get the first valid CQE from
678  *
679  * This routine will get the first valid Completion Queue Entry from @q, update
680  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
681  * the Queue (no more work to do), or the Queue is full of CQEs that have been
682  * processed, but not popped back to the HBA then this routine will return NULL.
683  **/
684 static struct lpfc_cqe *
685 lpfc_sli4_cq_get(struct lpfc_queue *q)
686 {
687 	struct lpfc_cqe *cqe;
688 
689 	/* sanity check on queue memory */
690 	if (unlikely(!q))
691 		return NULL;
692 	cqe = lpfc_sli4_qe(q, q->host_index);
693 
694 	/* If the next CQE is not valid then we are done */
695 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
696 		return NULL;
697 
698 	/*
699 	 * insert barrier for instruction interlock : data from the hardware
700 	 * must have the valid bit checked before it can be copied and acted
701 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
702 	 * instructions allowing action on content before valid bit checked,
703 	 * add barrier here as well. May not be needed as "content" is a
704 	 * single 32-bit entity here (vs multi word structure for cq's).
705 	 */
706 	mb();
707 	return cqe;
708 }
709 
710 static void
711 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
712 			struct lpfc_cqe *cqe)
713 {
714 	if (!phba->sli4_hba.pc_sli4_params.cqav)
715 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
716 
717 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
718 
719 	/* if the index wrapped around, toggle the valid bit */
720 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
721 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
722 }
723 
724 /**
725  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
726  * @phba: the adapter with the CQ
727  * @q: The Completion Queue that the host has completed processing for.
728  * @count: the number of elements that were consumed
729  * @arm: Indicates whether the host wants to arms this CQ.
730  *
731  * This routine will notify the HBA, by ringing the doorbell, that the
732  * CQEs have been processed. The @arm parameter specifies whether the
733  * queue should be rearmed when ringing the doorbell.
734  **/
735 void
736 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
737 		     uint32_t count, bool arm)
738 {
739 	struct lpfc_register doorbell;
740 
741 	/* sanity check on queue memory */
742 	if (unlikely(!q || (count == 0 && !arm)))
743 		return;
744 
745 	/* ring doorbell for number popped */
746 	doorbell.word0 = 0;
747 	if (arm)
748 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
749 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
750 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
751 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
752 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
753 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
754 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
755 }
756 
757 /**
758  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
759  * @phba: the adapter with the CQ
760  * @q: The Completion Queue that the host has completed processing for.
761  * @count: the number of elements that were consumed
762  * @arm: Indicates whether the host wants to arms this CQ.
763  *
764  * This routine will notify the HBA, by ringing the doorbell, that the
765  * CQEs have been processed. The @arm parameter specifies whether the
766  * queue should be rearmed when ringing the doorbell.
767  **/
768 void
769 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
770 			 uint32_t count, bool arm)
771 {
772 	struct lpfc_register doorbell;
773 
774 	/* sanity check on queue memory */
775 	if (unlikely(!q || (count == 0 && !arm)))
776 		return;
777 
778 	/* ring doorbell for number popped */
779 	doorbell.word0 = 0;
780 	if (arm)
781 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
782 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
783 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
784 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
785 }
786 
787 /*
788  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
789  *
790  * This routine will copy the contents of @wqe to the next available entry on
791  * the @q. This function will then ring the Receive Queue Doorbell to signal the
792  * HBA to start processing the Receive Queue Entry. This function returns the
793  * index that the rqe was copied to if successful. If no entries are available
794  * on @q then this function will return -ENOMEM.
795  * The caller is expected to hold the hbalock when calling this routine.
796  **/
797 int
798 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
799 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
800 {
801 	struct lpfc_rqe *temp_hrqe;
802 	struct lpfc_rqe *temp_drqe;
803 	struct lpfc_register doorbell;
804 	int hq_put_index;
805 	int dq_put_index;
806 
807 	/* sanity check on queue memory */
808 	if (unlikely(!hq) || unlikely(!dq))
809 		return -ENOMEM;
810 	hq_put_index = hq->host_index;
811 	dq_put_index = dq->host_index;
812 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
813 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
814 
815 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
816 		return -EINVAL;
817 	if (hq_put_index != dq_put_index)
818 		return -EINVAL;
819 	/* If the host has not yet processed the next entry then we are done */
820 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
821 		return -EBUSY;
822 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
823 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
824 
825 	/* Update the host index to point to the next slot */
826 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
827 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
828 	hq->RQ_buf_posted++;
829 
830 	/* Ring The Header Receive Queue Doorbell */
831 	if (!(hq->host_index % hq->notify_interval)) {
832 		doorbell.word0 = 0;
833 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
834 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
835 			       hq->notify_interval);
836 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
837 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
838 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
839 			       hq->notify_interval);
840 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
841 			       hq->host_index);
842 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
843 		} else {
844 			return -EINVAL;
845 		}
846 		writel(doorbell.word0, hq->db_regaddr);
847 	}
848 	return hq_put_index;
849 }
850 
851 /*
852  * lpfc_sli4_rq_release - Updates internal hba index for RQ
853  *
854  * This routine will update the HBA index of a queue to reflect consumption of
855  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
856  * consumed an entry the host calls this function to update the queue's
857  * internal pointers. This routine returns the number of entries that were
858  * consumed by the HBA.
859  **/
860 static uint32_t
861 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
862 {
863 	/* sanity check on queue memory */
864 	if (unlikely(!hq) || unlikely(!dq))
865 		return 0;
866 
867 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
868 		return 0;
869 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
870 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
871 	return 1;
872 }
873 
874 /**
875  * lpfc_cmd_iocb - Get next command iocb entry in the ring
876  * @phba: Pointer to HBA context object.
877  * @pring: Pointer to driver SLI ring object.
878  *
879  * This function returns pointer to next command iocb entry
880  * in the command ring. The caller must hold hbalock to prevent
881  * other threads consume the next command iocb.
882  * SLI-2/SLI-3 provide different sized iocbs.
883  **/
884 static inline IOCB_t *
885 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
886 {
887 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
888 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
889 }
890 
891 /**
892  * lpfc_resp_iocb - Get next response iocb entry in the ring
893  * @phba: Pointer to HBA context object.
894  * @pring: Pointer to driver SLI ring object.
895  *
896  * This function returns pointer to next response iocb entry
897  * in the response ring. The caller must hold hbalock to make sure
898  * that no other thread consume the next response iocb.
899  * SLI-2/SLI-3 provide different sized iocbs.
900  **/
901 static inline IOCB_t *
902 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
903 {
904 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
905 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
906 }
907 
908 /**
909  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910  * @phba: Pointer to HBA context object.
911  *
912  * This function is called with hbalock held. This function
913  * allocates a new driver iocb object from the iocb pool. If the
914  * allocation is successful, it returns pointer to the newly
915  * allocated iocb object else it returns NULL.
916  **/
917 struct lpfc_iocbq *
918 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
919 {
920 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
921 	struct lpfc_iocbq * iocbq = NULL;
922 
923 	lockdep_assert_held(&phba->hbalock);
924 
925 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
926 	if (iocbq)
927 		phba->iocb_cnt++;
928 	if (phba->iocb_cnt > phba->iocb_max)
929 		phba->iocb_max = phba->iocb_cnt;
930 	return iocbq;
931 }
932 
933 /**
934  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
935  * @phba: Pointer to HBA context object.
936  * @xritag: XRI value.
937  *
938  * This function clears the sglq pointer from the array of acive
939  * sglq's. The xritag that is passed in is used to index into the
940  * array. Before the xritag can be used it needs to be adjusted
941  * by subtracting the xribase.
942  *
943  * Returns sglq ponter = success, NULL = Failure.
944  **/
945 struct lpfc_sglq *
946 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
947 {
948 	struct lpfc_sglq *sglq;
949 
950 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
951 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
952 	return sglq;
953 }
954 
955 /**
956  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
957  * @phba: Pointer to HBA context object.
958  * @xritag: XRI value.
959  *
960  * This function returns the sglq pointer from the array of acive
961  * sglq's. The xritag that is passed in is used to index into the
962  * array. Before the xritag can be used it needs to be adjusted
963  * by subtracting the xribase.
964  *
965  * Returns sglq ponter = success, NULL = Failure.
966  **/
967 struct lpfc_sglq *
968 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
969 {
970 	struct lpfc_sglq *sglq;
971 
972 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
973 	return sglq;
974 }
975 
976 /**
977  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
978  * @phba: Pointer to HBA context object.
979  * @xritag: xri used in this exchange.
980  * @rrq: The RRQ to be cleared.
981  *
982  **/
983 void
984 lpfc_clr_rrq_active(struct lpfc_hba *phba,
985 		    uint16_t xritag,
986 		    struct lpfc_node_rrq *rrq)
987 {
988 	struct lpfc_nodelist *ndlp = NULL;
989 
990 	if (rrq->vport)
991 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
992 
993 	/* The target DID could have been swapped (cable swap)
994 	 * we should use the ndlp from the findnode if it is
995 	 * available.
996 	 */
997 	if ((!ndlp) && rrq->ndlp)
998 		ndlp = rrq->ndlp;
999 
1000 	if (!ndlp)
1001 		goto out;
1002 
1003 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
1004 		rrq->send_rrq = 0;
1005 		rrq->xritag = 0;
1006 		rrq->rrq_stop_time = 0;
1007 	}
1008 out:
1009 	mempool_free(rrq, phba->rrq_pool);
1010 }
1011 
1012 /**
1013  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
1014  * @phba: Pointer to HBA context object.
1015  *
1016  * This function is called with hbalock held. This function
1017  * Checks if stop_time (ratov from setting rrq active) has
1018  * been reached, if it has and the send_rrq flag is set then
1019  * it will call lpfc_send_rrq. If the send_rrq flag is not set
1020  * then it will just call the routine to clear the rrq and
1021  * free the rrq resource.
1022  * The timer is set to the next rrq that is going to expire before
1023  * leaving the routine.
1024  *
1025  **/
1026 void
1027 lpfc_handle_rrq_active(struct lpfc_hba *phba)
1028 {
1029 	struct lpfc_node_rrq *rrq;
1030 	struct lpfc_node_rrq *nextrrq;
1031 	unsigned long next_time;
1032 	unsigned long iflags;
1033 	LIST_HEAD(send_rrq);
1034 
1035 	spin_lock_irqsave(&phba->hbalock, iflags);
1036 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1037 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1038 	list_for_each_entry_safe(rrq, nextrrq,
1039 				 &phba->active_rrq_list, list) {
1040 		if (time_after(jiffies, rrq->rrq_stop_time))
1041 			list_move(&rrq->list, &send_rrq);
1042 		else if (time_before(rrq->rrq_stop_time, next_time))
1043 			next_time = rrq->rrq_stop_time;
1044 	}
1045 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1046 	if ((!list_empty(&phba->active_rrq_list)) &&
1047 	    (!(phba->pport->load_flag & FC_UNLOADING)))
1048 		mod_timer(&phba->rrq_tmr, next_time);
1049 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
1050 		list_del(&rrq->list);
1051 		if (!rrq->send_rrq) {
1052 			/* this call will free the rrq */
1053 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1054 		} else if (lpfc_send_rrq(phba, rrq)) {
1055 			/* if we send the rrq then the completion handler
1056 			*  will clear the bit in the xribitmap.
1057 			*/
1058 			lpfc_clr_rrq_active(phba, rrq->xritag,
1059 					    rrq);
1060 		}
1061 	}
1062 }
1063 
1064 /**
1065  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
1066  * @vport: Pointer to vport context object.
1067  * @xri: The xri used in the exchange.
1068  * @did: The targets DID for this exchange.
1069  *
1070  * returns NULL = rrq not found in the phba->active_rrq_list.
1071  *         rrq = rrq for this xri and target.
1072  **/
1073 struct lpfc_node_rrq *
1074 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
1075 {
1076 	struct lpfc_hba *phba = vport->phba;
1077 	struct lpfc_node_rrq *rrq;
1078 	struct lpfc_node_rrq *nextrrq;
1079 	unsigned long iflags;
1080 
1081 	if (phba->sli_rev != LPFC_SLI_REV4)
1082 		return NULL;
1083 	spin_lock_irqsave(&phba->hbalock, iflags);
1084 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
1085 		if (rrq->vport == vport && rrq->xritag == xri &&
1086 				rrq->nlp_DID == did){
1087 			list_del(&rrq->list);
1088 			spin_unlock_irqrestore(&phba->hbalock, iflags);
1089 			return rrq;
1090 		}
1091 	}
1092 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1093 	return NULL;
1094 }
1095 
1096 /**
1097  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
1098  * @vport: Pointer to vport context object.
1099  * @ndlp: Pointer to the lpfc_node_list structure.
1100  * If ndlp is NULL Remove all active RRQs for this vport from the
1101  * phba->active_rrq_list and clear the rrq.
1102  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
1103  **/
1104 void
1105 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
1106 
1107 {
1108 	struct lpfc_hba *phba = vport->phba;
1109 	struct lpfc_node_rrq *rrq;
1110 	struct lpfc_node_rrq *nextrrq;
1111 	unsigned long iflags;
1112 	LIST_HEAD(rrq_list);
1113 
1114 	if (phba->sli_rev != LPFC_SLI_REV4)
1115 		return;
1116 	if (!ndlp) {
1117 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
1118 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
1119 	}
1120 	spin_lock_irqsave(&phba->hbalock, iflags);
1121 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
1122 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
1123 			list_move(&rrq->list, &rrq_list);
1124 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1125 
1126 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1127 		list_del(&rrq->list);
1128 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1129 	}
1130 }
1131 
1132 /**
1133  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1134  * @phba: Pointer to HBA context object.
1135  * @ndlp: Targets nodelist pointer for this exchange.
1136  * @xritag: the xri in the bitmap to test.
1137  *
1138  * This function returns:
1139  * 0 = rrq not active for this xri
1140  * 1 = rrq is valid for this xri.
1141  **/
1142 int
1143 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1144 			uint16_t  xritag)
1145 {
1146 	if (!ndlp)
1147 		return 0;
1148 	if (!ndlp->active_rrqs_xri_bitmap)
1149 		return 0;
1150 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1151 		return 1;
1152 	else
1153 		return 0;
1154 }
1155 
1156 /**
1157  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1158  * @phba: Pointer to HBA context object.
1159  * @ndlp: nodelist pointer for this target.
1160  * @xritag: xri used in this exchange.
1161  * @rxid: Remote Exchange ID.
1162  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1163  *
1164  * This function takes the hbalock.
1165  * The active bit is always set in the active rrq xri_bitmap even
1166  * if there is no slot avaiable for the other rrq information.
1167  *
1168  * returns 0 rrq actived for this xri
1169  *         < 0 No memory or invalid ndlp.
1170  **/
1171 int
1172 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1173 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1174 {
1175 	unsigned long iflags;
1176 	struct lpfc_node_rrq *rrq;
1177 	int empty;
1178 
1179 	if (!ndlp)
1180 		return -EINVAL;
1181 
1182 	if (!phba->cfg_enable_rrq)
1183 		return -EINVAL;
1184 
1185 	spin_lock_irqsave(&phba->hbalock, iflags);
1186 	if (phba->pport->load_flag & FC_UNLOADING) {
1187 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1188 		goto out;
1189 	}
1190 
1191 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1192 		goto out;
1193 
1194 	if (!ndlp->active_rrqs_xri_bitmap)
1195 		goto out;
1196 
1197 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1198 		goto out;
1199 
1200 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1201 	rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC);
1202 	if (!rrq) {
1203 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1204 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1205 				" DID:0x%x Send:%d\n",
1206 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1207 		return -EINVAL;
1208 	}
1209 	if (phba->cfg_enable_rrq == 1)
1210 		rrq->send_rrq = send_rrq;
1211 	else
1212 		rrq->send_rrq = 0;
1213 	rrq->xritag = xritag;
1214 	rrq->rrq_stop_time = jiffies +
1215 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1216 	rrq->ndlp = ndlp;
1217 	rrq->nlp_DID = ndlp->nlp_DID;
1218 	rrq->vport = ndlp->vport;
1219 	rrq->rxid = rxid;
1220 	spin_lock_irqsave(&phba->hbalock, iflags);
1221 	empty = list_empty(&phba->active_rrq_list);
1222 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1223 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1224 	if (empty)
1225 		lpfc_worker_wake_up(phba);
1226 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1227 	return 0;
1228 out:
1229 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1230 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1231 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1232 			" DID:0x%x Send:%d\n",
1233 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1234 	return -EINVAL;
1235 }
1236 
1237 /**
1238  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1239  * @phba: Pointer to HBA context object.
1240  * @piocbq: Pointer to the iocbq.
1241  *
1242  * The driver calls this function with either the nvme ls ring lock
1243  * or the fc els ring lock held depending on the iocb usage.  This function
1244  * gets a new driver sglq object from the sglq list. If the list is not empty
1245  * then it is successful, it returns pointer to the newly allocated sglq
1246  * object else it returns NULL.
1247  **/
1248 static struct lpfc_sglq *
1249 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1250 {
1251 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1252 	struct lpfc_sglq *sglq = NULL;
1253 	struct lpfc_sglq *start_sglq = NULL;
1254 	struct lpfc_io_buf *lpfc_cmd;
1255 	struct lpfc_nodelist *ndlp;
1256 	struct lpfc_sli_ring *pring = NULL;
1257 	int found = 0;
1258 
1259 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1260 		pring =  phba->sli4_hba.nvmels_wq->pring;
1261 	else
1262 		pring = lpfc_phba_elsring(phba);
1263 
1264 	lockdep_assert_held(&pring->ring_lock);
1265 
1266 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1267 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1268 		ndlp = lpfc_cmd->rdata->pnode;
1269 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1270 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1271 		ndlp = piocbq->context_un.ndlp;
1272 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1273 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1274 			ndlp = NULL;
1275 		else
1276 			ndlp = piocbq->context_un.ndlp;
1277 	} else {
1278 		ndlp = piocbq->context1;
1279 	}
1280 
1281 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1282 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1283 	start_sglq = sglq;
1284 	while (!found) {
1285 		if (!sglq)
1286 			break;
1287 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1288 		    test_bit(sglq->sli4_lxritag,
1289 		    ndlp->active_rrqs_xri_bitmap)) {
1290 			/* This xri has an rrq outstanding for this DID.
1291 			 * put it back in the list and get another xri.
1292 			 */
1293 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1294 			sglq = NULL;
1295 			list_remove_head(lpfc_els_sgl_list, sglq,
1296 						struct lpfc_sglq, list);
1297 			if (sglq == start_sglq) {
1298 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1299 				sglq = NULL;
1300 				break;
1301 			} else
1302 				continue;
1303 		}
1304 		sglq->ndlp = ndlp;
1305 		found = 1;
1306 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1307 		sglq->state = SGL_ALLOCATED;
1308 	}
1309 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1310 	return sglq;
1311 }
1312 
1313 /**
1314  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1315  * @phba: Pointer to HBA context object.
1316  * @piocbq: Pointer to the iocbq.
1317  *
1318  * This function is called with the sgl_list lock held. This function
1319  * gets a new driver sglq object from the sglq list. If the
1320  * list is not empty then it is successful, it returns pointer to the newly
1321  * allocated sglq object else it returns NULL.
1322  **/
1323 struct lpfc_sglq *
1324 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1325 {
1326 	struct list_head *lpfc_nvmet_sgl_list;
1327 	struct lpfc_sglq *sglq = NULL;
1328 
1329 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1330 
1331 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1332 
1333 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1334 	if (!sglq)
1335 		return NULL;
1336 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1337 	sglq->state = SGL_ALLOCATED;
1338 	return sglq;
1339 }
1340 
1341 /**
1342  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1343  * @phba: Pointer to HBA context object.
1344  *
1345  * This function is called with no lock held. This function
1346  * allocates a new driver iocb object from the iocb pool. If the
1347  * allocation is successful, it returns pointer to the newly
1348  * allocated iocb object else it returns NULL.
1349  **/
1350 struct lpfc_iocbq *
1351 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1352 {
1353 	struct lpfc_iocbq * iocbq = NULL;
1354 	unsigned long iflags;
1355 
1356 	spin_lock_irqsave(&phba->hbalock, iflags);
1357 	iocbq = __lpfc_sli_get_iocbq(phba);
1358 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1359 	return iocbq;
1360 }
1361 
1362 /**
1363  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1364  * @phba: Pointer to HBA context object.
1365  * @iocbq: Pointer to driver iocb object.
1366  *
1367  * This function is called to release the driver iocb object
1368  * to the iocb pool. The iotag in the iocb object
1369  * does not change for each use of the iocb object. This function
1370  * clears all other fields of the iocb object when it is freed.
1371  * The sqlq structure that holds the xritag and phys and virtual
1372  * mappings for the scatter gather list is retrieved from the
1373  * active array of sglq. The get of the sglq pointer also clears
1374  * the entry in the array. If the status of the IO indiactes that
1375  * this IO was aborted then the sglq entry it put on the
1376  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1377  * IO has good status or fails for any other reason then the sglq
1378  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1379  *  asserted held in the code path calling this routine.
1380  **/
1381 static void
1382 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1383 {
1384 	struct lpfc_sglq *sglq;
1385 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1386 	unsigned long iflag = 0;
1387 	struct lpfc_sli_ring *pring;
1388 
1389 	if (iocbq->sli4_xritag == NO_XRI)
1390 		sglq = NULL;
1391 	else
1392 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1393 
1394 
1395 	if (sglq)  {
1396 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1397 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1398 					  iflag);
1399 			sglq->state = SGL_FREED;
1400 			sglq->ndlp = NULL;
1401 			list_add_tail(&sglq->list,
1402 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1403 			spin_unlock_irqrestore(
1404 				&phba->sli4_hba.sgl_list_lock, iflag);
1405 			goto out;
1406 		}
1407 
1408 		pring = phba->sli4_hba.els_wq->pring;
1409 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1410 			(sglq->state != SGL_XRI_ABORTED)) {
1411 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1412 					  iflag);
1413 
1414 			/* Check if we can get a reference on ndlp */
1415 			if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp))
1416 				sglq->ndlp = NULL;
1417 
1418 			list_add(&sglq->list,
1419 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1420 			spin_unlock_irqrestore(
1421 				&phba->sli4_hba.sgl_list_lock, iflag);
1422 		} else {
1423 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1424 					  iflag);
1425 			sglq->state = SGL_FREED;
1426 			sglq->ndlp = NULL;
1427 			list_add_tail(&sglq->list,
1428 				      &phba->sli4_hba.lpfc_els_sgl_list);
1429 			spin_unlock_irqrestore(
1430 				&phba->sli4_hba.sgl_list_lock, iflag);
1431 
1432 			/* Check if TXQ queue needs to be serviced */
1433 			if (!list_empty(&pring->txq))
1434 				lpfc_worker_wake_up(phba);
1435 		}
1436 	}
1437 
1438 out:
1439 	/*
1440 	 * Clean all volatile data fields, preserve iotag and node struct.
1441 	 */
1442 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1443 	iocbq->sli4_lxritag = NO_XRI;
1444 	iocbq->sli4_xritag = NO_XRI;
1445 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1446 			      LPFC_IO_NVME_LS);
1447 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1448 }
1449 
1450 
1451 /**
1452  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1453  * @phba: Pointer to HBA context object.
1454  * @iocbq: Pointer to driver iocb object.
1455  *
1456  * This function is called to release the driver iocb object to the
1457  * iocb pool. The iotag in the iocb object does not change for each
1458  * use of the iocb object. This function clears all other fields of
1459  * the iocb object when it is freed. The hbalock is asserted held in
1460  * the code path calling this routine.
1461  **/
1462 static void
1463 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1464 {
1465 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1466 
1467 	/*
1468 	 * Clean all volatile data fields, preserve iotag and node struct.
1469 	 */
1470 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1471 	iocbq->sli4_xritag = NO_XRI;
1472 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1473 }
1474 
1475 /**
1476  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1477  * @phba: Pointer to HBA context object.
1478  * @iocbq: Pointer to driver iocb object.
1479  *
1480  * This function is called with hbalock held to release driver
1481  * iocb object to the iocb pool. The iotag in the iocb object
1482  * does not change for each use of the iocb object. This function
1483  * clears all other fields of the iocb object when it is freed.
1484  **/
1485 static void
1486 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1487 {
1488 	lockdep_assert_held(&phba->hbalock);
1489 
1490 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1491 	phba->iocb_cnt--;
1492 }
1493 
1494 /**
1495  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1496  * @phba: Pointer to HBA context object.
1497  * @iocbq: Pointer to driver iocb object.
1498  *
1499  * This function is called with no lock held to release the iocb to
1500  * iocb pool.
1501  **/
1502 void
1503 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1504 {
1505 	unsigned long iflags;
1506 
1507 	/*
1508 	 * Clean all volatile data fields, preserve iotag and node struct.
1509 	 */
1510 	spin_lock_irqsave(&phba->hbalock, iflags);
1511 	__lpfc_sli_release_iocbq(phba, iocbq);
1512 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1513 }
1514 
1515 /**
1516  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1517  * @phba: Pointer to HBA context object.
1518  * @iocblist: List of IOCBs.
1519  * @ulpstatus: ULP status in IOCB command field.
1520  * @ulpWord4: ULP word-4 in IOCB command field.
1521  *
1522  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1523  * on the list by invoking the complete callback function associated with the
1524  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1525  * fields.
1526  **/
1527 void
1528 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1529 		      uint32_t ulpstatus, uint32_t ulpWord4)
1530 {
1531 	struct lpfc_iocbq *piocb;
1532 
1533 	while (!list_empty(iocblist)) {
1534 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1535 		if (!piocb->iocb_cmpl) {
1536 			if (piocb->iocb_flag & LPFC_IO_NVME)
1537 				lpfc_nvme_cancel_iocb(phba, piocb);
1538 			else
1539 				lpfc_sli_release_iocbq(phba, piocb);
1540 		} else {
1541 			piocb->iocb.ulpStatus = ulpstatus;
1542 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1543 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1544 		}
1545 	}
1546 	return;
1547 }
1548 
1549 /**
1550  * lpfc_sli_iocb_cmd_type - Get the iocb type
1551  * @iocb_cmnd: iocb command code.
1552  *
1553  * This function is called by ring event handler function to get the iocb type.
1554  * This function translates the iocb command to an iocb command type used to
1555  * decide the final disposition of each completed IOCB.
1556  * The function returns
1557  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1558  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1559  * LPFC_ABORT_IOCB   if it is an abort iocb
1560  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1561  *
1562  * The caller is not required to hold any lock.
1563  **/
1564 static lpfc_iocb_type
1565 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1566 {
1567 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1568 
1569 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1570 		return 0;
1571 
1572 	switch (iocb_cmnd) {
1573 	case CMD_XMIT_SEQUENCE_CR:
1574 	case CMD_XMIT_SEQUENCE_CX:
1575 	case CMD_XMIT_BCAST_CN:
1576 	case CMD_XMIT_BCAST_CX:
1577 	case CMD_ELS_REQUEST_CR:
1578 	case CMD_ELS_REQUEST_CX:
1579 	case CMD_CREATE_XRI_CR:
1580 	case CMD_CREATE_XRI_CX:
1581 	case CMD_GET_RPI_CN:
1582 	case CMD_XMIT_ELS_RSP_CX:
1583 	case CMD_GET_RPI_CR:
1584 	case CMD_FCP_IWRITE_CR:
1585 	case CMD_FCP_IWRITE_CX:
1586 	case CMD_FCP_IREAD_CR:
1587 	case CMD_FCP_IREAD_CX:
1588 	case CMD_FCP_ICMND_CR:
1589 	case CMD_FCP_ICMND_CX:
1590 	case CMD_FCP_TSEND_CX:
1591 	case CMD_FCP_TRSP_CX:
1592 	case CMD_FCP_TRECEIVE_CX:
1593 	case CMD_FCP_AUTO_TRSP_CX:
1594 	case CMD_ADAPTER_MSG:
1595 	case CMD_ADAPTER_DUMP:
1596 	case CMD_XMIT_SEQUENCE64_CR:
1597 	case CMD_XMIT_SEQUENCE64_CX:
1598 	case CMD_XMIT_BCAST64_CN:
1599 	case CMD_XMIT_BCAST64_CX:
1600 	case CMD_ELS_REQUEST64_CR:
1601 	case CMD_ELS_REQUEST64_CX:
1602 	case CMD_FCP_IWRITE64_CR:
1603 	case CMD_FCP_IWRITE64_CX:
1604 	case CMD_FCP_IREAD64_CR:
1605 	case CMD_FCP_IREAD64_CX:
1606 	case CMD_FCP_ICMND64_CR:
1607 	case CMD_FCP_ICMND64_CX:
1608 	case CMD_FCP_TSEND64_CX:
1609 	case CMD_FCP_TRSP64_CX:
1610 	case CMD_FCP_TRECEIVE64_CX:
1611 	case CMD_GEN_REQUEST64_CR:
1612 	case CMD_GEN_REQUEST64_CX:
1613 	case CMD_XMIT_ELS_RSP64_CX:
1614 	case DSSCMD_IWRITE64_CR:
1615 	case DSSCMD_IWRITE64_CX:
1616 	case DSSCMD_IREAD64_CR:
1617 	case DSSCMD_IREAD64_CX:
1618 	case CMD_SEND_FRAME:
1619 		type = LPFC_SOL_IOCB;
1620 		break;
1621 	case CMD_ABORT_XRI_CN:
1622 	case CMD_ABORT_XRI_CX:
1623 	case CMD_CLOSE_XRI_CN:
1624 	case CMD_CLOSE_XRI_CX:
1625 	case CMD_XRI_ABORTED_CX:
1626 	case CMD_ABORT_MXRI64_CN:
1627 	case CMD_XMIT_BLS_RSP64_CX:
1628 		type = LPFC_ABORT_IOCB;
1629 		break;
1630 	case CMD_RCV_SEQUENCE_CX:
1631 	case CMD_RCV_ELS_REQ_CX:
1632 	case CMD_RCV_SEQUENCE64_CX:
1633 	case CMD_RCV_ELS_REQ64_CX:
1634 	case CMD_ASYNC_STATUS:
1635 	case CMD_IOCB_RCV_SEQ64_CX:
1636 	case CMD_IOCB_RCV_ELS64_CX:
1637 	case CMD_IOCB_RCV_CONT64_CX:
1638 	case CMD_IOCB_RET_XRI64_CX:
1639 		type = LPFC_UNSOL_IOCB;
1640 		break;
1641 	case CMD_IOCB_XMIT_MSEQ64_CR:
1642 	case CMD_IOCB_XMIT_MSEQ64_CX:
1643 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1644 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1645 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1646 	case CMD_IOCB_ABORT_EXTENDED_CN:
1647 	case CMD_IOCB_RET_HBQE64_CN:
1648 	case CMD_IOCB_FCP_IBIDIR64_CR:
1649 	case CMD_IOCB_FCP_IBIDIR64_CX:
1650 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1651 	case CMD_IOCB_LOGENTRY_CN:
1652 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1653 		printk("%s - Unhandled SLI-3 Command x%x\n",
1654 				__func__, iocb_cmnd);
1655 		type = LPFC_UNKNOWN_IOCB;
1656 		break;
1657 	default:
1658 		type = LPFC_UNKNOWN_IOCB;
1659 		break;
1660 	}
1661 
1662 	return type;
1663 }
1664 
1665 /**
1666  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1667  * @phba: Pointer to HBA context object.
1668  *
1669  * This function is called from SLI initialization code
1670  * to configure every ring of the HBA's SLI interface. The
1671  * caller is not required to hold any lock. This function issues
1672  * a config_ring mailbox command for each ring.
1673  * This function returns zero if successful else returns a negative
1674  * error code.
1675  **/
1676 static int
1677 lpfc_sli_ring_map(struct lpfc_hba *phba)
1678 {
1679 	struct lpfc_sli *psli = &phba->sli;
1680 	LPFC_MBOXQ_t *pmb;
1681 	MAILBOX_t *pmbox;
1682 	int i, rc, ret = 0;
1683 
1684 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1685 	if (!pmb)
1686 		return -ENOMEM;
1687 	pmbox = &pmb->u.mb;
1688 	phba->link_state = LPFC_INIT_MBX_CMDS;
1689 	for (i = 0; i < psli->num_rings; i++) {
1690 		lpfc_config_ring(phba, i, pmb);
1691 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1692 		if (rc != MBX_SUCCESS) {
1693 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1694 					"0446 Adapter failed to init (%d), "
1695 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1696 					"ring %d\n",
1697 					rc, pmbox->mbxCommand,
1698 					pmbox->mbxStatus, i);
1699 			phba->link_state = LPFC_HBA_ERROR;
1700 			ret = -ENXIO;
1701 			break;
1702 		}
1703 	}
1704 	mempool_free(pmb, phba->mbox_mem_pool);
1705 	return ret;
1706 }
1707 
1708 /**
1709  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1710  * @phba: Pointer to HBA context object.
1711  * @pring: Pointer to driver SLI ring object.
1712  * @piocb: Pointer to the driver iocb object.
1713  *
1714  * The driver calls this function with the hbalock held for SLI3 ports or
1715  * the ring lock held for SLI4 ports. The function adds the
1716  * new iocb to txcmplq of the given ring. This function always returns
1717  * 0. If this function is called for ELS ring, this function checks if
1718  * there is a vport associated with the ELS command. This function also
1719  * starts els_tmofunc timer if this is an ELS command.
1720  **/
1721 static int
1722 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1723 			struct lpfc_iocbq *piocb)
1724 {
1725 	if (phba->sli_rev == LPFC_SLI_REV4)
1726 		lockdep_assert_held(&pring->ring_lock);
1727 	else
1728 		lockdep_assert_held(&phba->hbalock);
1729 
1730 	BUG_ON(!piocb);
1731 
1732 	list_add_tail(&piocb->list, &pring->txcmplq);
1733 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1734 	pring->txcmplq_cnt++;
1735 
1736 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1737 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1738 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1739 		BUG_ON(!piocb->vport);
1740 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1741 			mod_timer(&piocb->vport->els_tmofunc,
1742 				  jiffies +
1743 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 /**
1750  * lpfc_sli_ringtx_get - Get first element of the txq
1751  * @phba: Pointer to HBA context object.
1752  * @pring: Pointer to driver SLI ring object.
1753  *
1754  * This function is called with hbalock held to get next
1755  * iocb in txq of the given ring. If there is any iocb in
1756  * the txq, the function returns first iocb in the list after
1757  * removing the iocb from the list, else it returns NULL.
1758  **/
1759 struct lpfc_iocbq *
1760 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1761 {
1762 	struct lpfc_iocbq *cmd_iocb;
1763 
1764 	lockdep_assert_held(&phba->hbalock);
1765 
1766 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1767 	return cmd_iocb;
1768 }
1769 
1770 /**
1771  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1772  * @phba: Pointer to HBA context object.
1773  * @pring: Pointer to driver SLI ring object.
1774  *
1775  * This function is called with hbalock held and the caller must post the
1776  * iocb without releasing the lock. If the caller releases the lock,
1777  * iocb slot returned by the function is not guaranteed to be available.
1778  * The function returns pointer to the next available iocb slot if there
1779  * is available slot in the ring, else it returns NULL.
1780  * If the get index of the ring is ahead of the put index, the function
1781  * will post an error attention event to the worker thread to take the
1782  * HBA to offline state.
1783  **/
1784 static IOCB_t *
1785 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1786 {
1787 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1788 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1789 
1790 	lockdep_assert_held(&phba->hbalock);
1791 
1792 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1793 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1794 		pring->sli.sli3.next_cmdidx = 0;
1795 
1796 	if (unlikely(pring->sli.sli3.local_getidx ==
1797 		pring->sli.sli3.next_cmdidx)) {
1798 
1799 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1800 
1801 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1802 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1803 					"0315 Ring %d issue: portCmdGet %d "
1804 					"is bigger than cmd ring %d\n",
1805 					pring->ringno,
1806 					pring->sli.sli3.local_getidx,
1807 					max_cmd_idx);
1808 
1809 			phba->link_state = LPFC_HBA_ERROR;
1810 			/*
1811 			 * All error attention handlers are posted to
1812 			 * worker thread
1813 			 */
1814 			phba->work_ha |= HA_ERATT;
1815 			phba->work_hs = HS_FFER3;
1816 
1817 			lpfc_worker_wake_up(phba);
1818 
1819 			return NULL;
1820 		}
1821 
1822 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1823 			return NULL;
1824 	}
1825 
1826 	return lpfc_cmd_iocb(phba, pring);
1827 }
1828 
1829 /**
1830  * lpfc_sli_next_iotag - Get an iotag for the iocb
1831  * @phba: Pointer to HBA context object.
1832  * @iocbq: Pointer to driver iocb object.
1833  *
1834  * This function gets an iotag for the iocb. If there is no unused iotag and
1835  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1836  * array and assigns a new iotag.
1837  * The function returns the allocated iotag if successful, else returns zero.
1838  * Zero is not a valid iotag.
1839  * The caller is not required to hold any lock.
1840  **/
1841 uint16_t
1842 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1843 {
1844 	struct lpfc_iocbq **new_arr;
1845 	struct lpfc_iocbq **old_arr;
1846 	size_t new_len;
1847 	struct lpfc_sli *psli = &phba->sli;
1848 	uint16_t iotag;
1849 
1850 	spin_lock_irq(&phba->hbalock);
1851 	iotag = psli->last_iotag;
1852 	if(++iotag < psli->iocbq_lookup_len) {
1853 		psli->last_iotag = iotag;
1854 		psli->iocbq_lookup[iotag] = iocbq;
1855 		spin_unlock_irq(&phba->hbalock);
1856 		iocbq->iotag = iotag;
1857 		return iotag;
1858 	} else if (psli->iocbq_lookup_len < (0xffff
1859 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1860 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1861 		spin_unlock_irq(&phba->hbalock);
1862 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1863 				  GFP_KERNEL);
1864 		if (new_arr) {
1865 			spin_lock_irq(&phba->hbalock);
1866 			old_arr = psli->iocbq_lookup;
1867 			if (new_len <= psli->iocbq_lookup_len) {
1868 				/* highly unprobable case */
1869 				kfree(new_arr);
1870 				iotag = psli->last_iotag;
1871 				if(++iotag < psli->iocbq_lookup_len) {
1872 					psli->last_iotag = iotag;
1873 					psli->iocbq_lookup[iotag] = iocbq;
1874 					spin_unlock_irq(&phba->hbalock);
1875 					iocbq->iotag = iotag;
1876 					return iotag;
1877 				}
1878 				spin_unlock_irq(&phba->hbalock);
1879 				return 0;
1880 			}
1881 			if (psli->iocbq_lookup)
1882 				memcpy(new_arr, old_arr,
1883 				       ((psli->last_iotag  + 1) *
1884 					sizeof (struct lpfc_iocbq *)));
1885 			psli->iocbq_lookup = new_arr;
1886 			psli->iocbq_lookup_len = new_len;
1887 			psli->last_iotag = iotag;
1888 			psli->iocbq_lookup[iotag] = iocbq;
1889 			spin_unlock_irq(&phba->hbalock);
1890 			iocbq->iotag = iotag;
1891 			kfree(old_arr);
1892 			return iotag;
1893 		}
1894 	} else
1895 		spin_unlock_irq(&phba->hbalock);
1896 
1897 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1898 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1899 			psli->last_iotag);
1900 
1901 	return 0;
1902 }
1903 
1904 /**
1905  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1906  * @phba: Pointer to HBA context object.
1907  * @pring: Pointer to driver SLI ring object.
1908  * @iocb: Pointer to iocb slot in the ring.
1909  * @nextiocb: Pointer to driver iocb object which need to be
1910  *            posted to firmware.
1911  *
1912  * This function is called to post a new iocb to the firmware. This
1913  * function copies the new iocb to ring iocb slot and updates the
1914  * ring pointers. It adds the new iocb to txcmplq if there is
1915  * a completion call back for this iocb else the function will free the
1916  * iocb object.  The hbalock is asserted held in the code path calling
1917  * this routine.
1918  **/
1919 static void
1920 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1921 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1922 {
1923 	/*
1924 	 * Set up an iotag
1925 	 */
1926 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1927 
1928 
1929 	if (pring->ringno == LPFC_ELS_RING) {
1930 		lpfc_debugfs_slow_ring_trc(phba,
1931 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1932 			*(((uint32_t *) &nextiocb->iocb) + 4),
1933 			*(((uint32_t *) &nextiocb->iocb) + 6),
1934 			*(((uint32_t *) &nextiocb->iocb) + 7));
1935 	}
1936 
1937 	/*
1938 	 * Issue iocb command to adapter
1939 	 */
1940 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1941 	wmb();
1942 	pring->stats.iocb_cmd++;
1943 
1944 	/*
1945 	 * If there is no completion routine to call, we can release the
1946 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1947 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1948 	 */
1949 	if (nextiocb->iocb_cmpl)
1950 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1951 	else
1952 		__lpfc_sli_release_iocbq(phba, nextiocb);
1953 
1954 	/*
1955 	 * Let the HBA know what IOCB slot will be the next one the
1956 	 * driver will put a command into.
1957 	 */
1958 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1959 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1960 }
1961 
1962 /**
1963  * lpfc_sli_update_full_ring - Update the chip attention register
1964  * @phba: Pointer to HBA context object.
1965  * @pring: Pointer to driver SLI ring object.
1966  *
1967  * The caller is not required to hold any lock for calling this function.
1968  * This function updates the chip attention bits for the ring to inform firmware
1969  * that there are pending work to be done for this ring and requests an
1970  * interrupt when there is space available in the ring. This function is
1971  * called when the driver is unable to post more iocbs to the ring due
1972  * to unavailability of space in the ring.
1973  **/
1974 static void
1975 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1976 {
1977 	int ringno = pring->ringno;
1978 
1979 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1980 
1981 	wmb();
1982 
1983 	/*
1984 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1985 	 * The HBA will tell us when an IOCB entry is available.
1986 	 */
1987 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1988 	readl(phba->CAregaddr); /* flush */
1989 
1990 	pring->stats.iocb_cmd_full++;
1991 }
1992 
1993 /**
1994  * lpfc_sli_update_ring - Update chip attention register
1995  * @phba: Pointer to HBA context object.
1996  * @pring: Pointer to driver SLI ring object.
1997  *
1998  * This function updates the chip attention register bit for the
1999  * given ring to inform HBA that there is more work to be done
2000  * in this ring. The caller is not required to hold any lock.
2001  **/
2002 static void
2003 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2004 {
2005 	int ringno = pring->ringno;
2006 
2007 	/*
2008 	 * Tell the HBA that there is work to do in this ring.
2009 	 */
2010 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
2011 		wmb();
2012 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
2013 		readl(phba->CAregaddr); /* flush */
2014 	}
2015 }
2016 
2017 /**
2018  * lpfc_sli_resume_iocb - Process iocbs in the txq
2019  * @phba: Pointer to HBA context object.
2020  * @pring: Pointer to driver SLI ring object.
2021  *
2022  * This function is called with hbalock held to post pending iocbs
2023  * in the txq to the firmware. This function is called when driver
2024  * detects space available in the ring.
2025  **/
2026 static void
2027 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2028 {
2029 	IOCB_t *iocb;
2030 	struct lpfc_iocbq *nextiocb;
2031 
2032 	lockdep_assert_held(&phba->hbalock);
2033 
2034 	/*
2035 	 * Check to see if:
2036 	 *  (a) there is anything on the txq to send
2037 	 *  (b) link is up
2038 	 *  (c) link attention events can be processed (fcp ring only)
2039 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
2040 	 */
2041 
2042 	if (lpfc_is_link_up(phba) &&
2043 	    (!list_empty(&pring->txq)) &&
2044 	    (pring->ringno != LPFC_FCP_RING ||
2045 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
2046 
2047 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
2048 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
2049 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
2050 
2051 		if (iocb)
2052 			lpfc_sli_update_ring(phba, pring);
2053 		else
2054 			lpfc_sli_update_full_ring(phba, pring);
2055 	}
2056 
2057 	return;
2058 }
2059 
2060 /**
2061  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
2062  * @phba: Pointer to HBA context object.
2063  * @hbqno: HBQ number.
2064  *
2065  * This function is called with hbalock held to get the next
2066  * available slot for the given HBQ. If there is free slot
2067  * available for the HBQ it will return pointer to the next available
2068  * HBQ entry else it will return NULL.
2069  **/
2070 static struct lpfc_hbq_entry *
2071 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
2072 {
2073 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
2074 
2075 	lockdep_assert_held(&phba->hbalock);
2076 
2077 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
2078 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
2079 		hbqp->next_hbqPutIdx = 0;
2080 
2081 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
2082 		uint32_t raw_index = phba->hbq_get[hbqno];
2083 		uint32_t getidx = le32_to_cpu(raw_index);
2084 
2085 		hbqp->local_hbqGetIdx = getidx;
2086 
2087 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
2088 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2089 					"1802 HBQ %d: local_hbqGetIdx "
2090 					"%u is > than hbqp->entry_count %u\n",
2091 					hbqno, hbqp->local_hbqGetIdx,
2092 					hbqp->entry_count);
2093 
2094 			phba->link_state = LPFC_HBA_ERROR;
2095 			return NULL;
2096 		}
2097 
2098 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
2099 			return NULL;
2100 	}
2101 
2102 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
2103 			hbqp->hbqPutIdx;
2104 }
2105 
2106 /**
2107  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
2108  * @phba: Pointer to HBA context object.
2109  *
2110  * This function is called with no lock held to free all the
2111  * hbq buffers while uninitializing the SLI interface. It also
2112  * frees the HBQ buffers returned by the firmware but not yet
2113  * processed by the upper layers.
2114  **/
2115 void
2116 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
2117 {
2118 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
2119 	struct hbq_dmabuf *hbq_buf;
2120 	unsigned long flags;
2121 	int i, hbq_count;
2122 
2123 	hbq_count = lpfc_sli_hbq_count();
2124 	/* Return all memory used by all HBQs */
2125 	spin_lock_irqsave(&phba->hbalock, flags);
2126 	for (i = 0; i < hbq_count; ++i) {
2127 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2128 				&phba->hbqs[i].hbq_buffer_list, list) {
2129 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2130 			list_del(&hbq_buf->dbuf.list);
2131 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2132 		}
2133 		phba->hbqs[i].buffer_count = 0;
2134 	}
2135 
2136 	/* Mark the HBQs not in use */
2137 	phba->hbq_in_use = 0;
2138 	spin_unlock_irqrestore(&phba->hbalock, flags);
2139 }
2140 
2141 /**
2142  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2143  * @phba: Pointer to HBA context object.
2144  * @hbqno: HBQ number.
2145  * @hbq_buf: Pointer to HBQ buffer.
2146  *
2147  * This function is called with the hbalock held to post a
2148  * hbq buffer to the firmware. If the function finds an empty
2149  * slot in the HBQ, it will post the buffer. The function will return
2150  * pointer to the hbq entry if it successfully post the buffer
2151  * else it will return NULL.
2152  **/
2153 static int
2154 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2155 			 struct hbq_dmabuf *hbq_buf)
2156 {
2157 	lockdep_assert_held(&phba->hbalock);
2158 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2159 }
2160 
2161 /**
2162  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2163  * @phba: Pointer to HBA context object.
2164  * @hbqno: HBQ number.
2165  * @hbq_buf: Pointer to HBQ buffer.
2166  *
2167  * This function is called with the hbalock held to post a hbq buffer to the
2168  * firmware. If the function finds an empty slot in the HBQ, it will post the
2169  * buffer and place it on the hbq_buffer_list. The function will return zero if
2170  * it successfully post the buffer else it will return an error.
2171  **/
2172 static int
2173 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2174 			    struct hbq_dmabuf *hbq_buf)
2175 {
2176 	struct lpfc_hbq_entry *hbqe;
2177 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2178 
2179 	lockdep_assert_held(&phba->hbalock);
2180 	/* Get next HBQ entry slot to use */
2181 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2182 	if (hbqe) {
2183 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2184 
2185 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2186 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2187 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2188 		hbqe->bde.tus.f.bdeFlags = 0;
2189 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2190 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2191 				/* Sync SLIM */
2192 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2193 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2194 				/* flush */
2195 		readl(phba->hbq_put + hbqno);
2196 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2197 		return 0;
2198 	} else
2199 		return -ENOMEM;
2200 }
2201 
2202 /**
2203  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2204  * @phba: Pointer to HBA context object.
2205  * @hbqno: HBQ number.
2206  * @hbq_buf: Pointer to HBQ buffer.
2207  *
2208  * This function is called with the hbalock held to post an RQE to the SLI4
2209  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2210  * the hbq_buffer_list and return zero, otherwise it will return an error.
2211  **/
2212 static int
2213 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2214 			    struct hbq_dmabuf *hbq_buf)
2215 {
2216 	int rc;
2217 	struct lpfc_rqe hrqe;
2218 	struct lpfc_rqe drqe;
2219 	struct lpfc_queue *hrq;
2220 	struct lpfc_queue *drq;
2221 
2222 	if (hbqno != LPFC_ELS_HBQ)
2223 		return 1;
2224 	hrq = phba->sli4_hba.hdr_rq;
2225 	drq = phba->sli4_hba.dat_rq;
2226 
2227 	lockdep_assert_held(&phba->hbalock);
2228 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2229 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2230 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2231 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2232 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2233 	if (rc < 0)
2234 		return rc;
2235 	hbq_buf->tag = (rc | (hbqno << 16));
2236 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2237 	return 0;
2238 }
2239 
2240 /* HBQ for ELS and CT traffic. */
2241 static struct lpfc_hbq_init lpfc_els_hbq = {
2242 	.rn = 1,
2243 	.entry_count = 256,
2244 	.mask_count = 0,
2245 	.profile = 0,
2246 	.ring_mask = (1 << LPFC_ELS_RING),
2247 	.buffer_count = 0,
2248 	.init_count = 40,
2249 	.add_count = 40,
2250 };
2251 
2252 /* Array of HBQs */
2253 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2254 	&lpfc_els_hbq,
2255 };
2256 
2257 /**
2258  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2259  * @phba: Pointer to HBA context object.
2260  * @hbqno: HBQ number.
2261  * @count: Number of HBQ buffers to be posted.
2262  *
2263  * This function is called with no lock held to post more hbq buffers to the
2264  * given HBQ. The function returns the number of HBQ buffers successfully
2265  * posted.
2266  **/
2267 static int
2268 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2269 {
2270 	uint32_t i, posted = 0;
2271 	unsigned long flags;
2272 	struct hbq_dmabuf *hbq_buffer;
2273 	LIST_HEAD(hbq_buf_list);
2274 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2275 		return 0;
2276 
2277 	if ((phba->hbqs[hbqno].buffer_count + count) >
2278 	    lpfc_hbq_defs[hbqno]->entry_count)
2279 		count = lpfc_hbq_defs[hbqno]->entry_count -
2280 					phba->hbqs[hbqno].buffer_count;
2281 	if (!count)
2282 		return 0;
2283 	/* Allocate HBQ entries */
2284 	for (i = 0; i < count; i++) {
2285 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2286 		if (!hbq_buffer)
2287 			break;
2288 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2289 	}
2290 	/* Check whether HBQ is still in use */
2291 	spin_lock_irqsave(&phba->hbalock, flags);
2292 	if (!phba->hbq_in_use)
2293 		goto err;
2294 	while (!list_empty(&hbq_buf_list)) {
2295 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2296 				 dbuf.list);
2297 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2298 				      (hbqno << 16));
2299 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2300 			phba->hbqs[hbqno].buffer_count++;
2301 			posted++;
2302 		} else
2303 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2304 	}
2305 	spin_unlock_irqrestore(&phba->hbalock, flags);
2306 	return posted;
2307 err:
2308 	spin_unlock_irqrestore(&phba->hbalock, flags);
2309 	while (!list_empty(&hbq_buf_list)) {
2310 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2311 				 dbuf.list);
2312 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2313 	}
2314 	return 0;
2315 }
2316 
2317 /**
2318  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2319  * @phba: Pointer to HBA context object.
2320  * @qno: HBQ number.
2321  *
2322  * This function posts more buffers to the HBQ. This function
2323  * is called with no lock held. The function returns the number of HBQ entries
2324  * successfully allocated.
2325  **/
2326 int
2327 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2328 {
2329 	if (phba->sli_rev == LPFC_SLI_REV4)
2330 		return 0;
2331 	else
2332 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2333 					 lpfc_hbq_defs[qno]->add_count);
2334 }
2335 
2336 /**
2337  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2338  * @phba: Pointer to HBA context object.
2339  * @qno:  HBQ queue number.
2340  *
2341  * This function is called from SLI initialization code path with
2342  * no lock held to post initial HBQ buffers to firmware. The
2343  * function returns the number of HBQ entries successfully allocated.
2344  **/
2345 static int
2346 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2347 {
2348 	if (phba->sli_rev == LPFC_SLI_REV4)
2349 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2350 					lpfc_hbq_defs[qno]->entry_count);
2351 	else
2352 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2353 					 lpfc_hbq_defs[qno]->init_count);
2354 }
2355 
2356 /*
2357  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2358  *
2359  * This function removes the first hbq buffer on an hbq list and returns a
2360  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2361  **/
2362 static struct hbq_dmabuf *
2363 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2364 {
2365 	struct lpfc_dmabuf *d_buf;
2366 
2367 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2368 	if (!d_buf)
2369 		return NULL;
2370 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2371 }
2372 
2373 /**
2374  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2375  * @phba: Pointer to HBA context object.
2376  * @hrq: HBQ number.
2377  *
2378  * This function removes the first RQ buffer on an RQ buffer list and returns a
2379  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2380  **/
2381 static struct rqb_dmabuf *
2382 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2383 {
2384 	struct lpfc_dmabuf *h_buf;
2385 	struct lpfc_rqb *rqbp;
2386 
2387 	rqbp = hrq->rqbp;
2388 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2389 			 struct lpfc_dmabuf, list);
2390 	if (!h_buf)
2391 		return NULL;
2392 	rqbp->buffer_count--;
2393 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2394 }
2395 
2396 /**
2397  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2398  * @phba: Pointer to HBA context object.
2399  * @tag: Tag of the hbq buffer.
2400  *
2401  * This function searches for the hbq buffer associated with the given tag in
2402  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2403  * otherwise it returns NULL.
2404  **/
2405 static struct hbq_dmabuf *
2406 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2407 {
2408 	struct lpfc_dmabuf *d_buf;
2409 	struct hbq_dmabuf *hbq_buf;
2410 	uint32_t hbqno;
2411 
2412 	hbqno = tag >> 16;
2413 	if (hbqno >= LPFC_MAX_HBQS)
2414 		return NULL;
2415 
2416 	spin_lock_irq(&phba->hbalock);
2417 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2418 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2419 		if (hbq_buf->tag == tag) {
2420 			spin_unlock_irq(&phba->hbalock);
2421 			return hbq_buf;
2422 		}
2423 	}
2424 	spin_unlock_irq(&phba->hbalock);
2425 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2426 			"1803 Bad hbq tag. Data: x%x x%x\n",
2427 			tag, phba->hbqs[tag >> 16].buffer_count);
2428 	return NULL;
2429 }
2430 
2431 /**
2432  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2433  * @phba: Pointer to HBA context object.
2434  * @hbq_buffer: Pointer to HBQ buffer.
2435  *
2436  * This function is called with hbalock. This function gives back
2437  * the hbq buffer to firmware. If the HBQ does not have space to
2438  * post the buffer, it will free the buffer.
2439  **/
2440 void
2441 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2442 {
2443 	uint32_t hbqno;
2444 
2445 	if (hbq_buffer) {
2446 		hbqno = hbq_buffer->tag >> 16;
2447 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2448 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2449 	}
2450 }
2451 
2452 /**
2453  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2454  * @mbxCommand: mailbox command code.
2455  *
2456  * This function is called by the mailbox event handler function to verify
2457  * that the completed mailbox command is a legitimate mailbox command. If the
2458  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2459  * and the mailbox event handler will take the HBA offline.
2460  **/
2461 static int
2462 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2463 {
2464 	uint8_t ret;
2465 
2466 	switch (mbxCommand) {
2467 	case MBX_LOAD_SM:
2468 	case MBX_READ_NV:
2469 	case MBX_WRITE_NV:
2470 	case MBX_WRITE_VPARMS:
2471 	case MBX_RUN_BIU_DIAG:
2472 	case MBX_INIT_LINK:
2473 	case MBX_DOWN_LINK:
2474 	case MBX_CONFIG_LINK:
2475 	case MBX_CONFIG_RING:
2476 	case MBX_RESET_RING:
2477 	case MBX_READ_CONFIG:
2478 	case MBX_READ_RCONFIG:
2479 	case MBX_READ_SPARM:
2480 	case MBX_READ_STATUS:
2481 	case MBX_READ_RPI:
2482 	case MBX_READ_XRI:
2483 	case MBX_READ_REV:
2484 	case MBX_READ_LNK_STAT:
2485 	case MBX_REG_LOGIN:
2486 	case MBX_UNREG_LOGIN:
2487 	case MBX_CLEAR_LA:
2488 	case MBX_DUMP_MEMORY:
2489 	case MBX_DUMP_CONTEXT:
2490 	case MBX_RUN_DIAGS:
2491 	case MBX_RESTART:
2492 	case MBX_UPDATE_CFG:
2493 	case MBX_DOWN_LOAD:
2494 	case MBX_DEL_LD_ENTRY:
2495 	case MBX_RUN_PROGRAM:
2496 	case MBX_SET_MASK:
2497 	case MBX_SET_VARIABLE:
2498 	case MBX_UNREG_D_ID:
2499 	case MBX_KILL_BOARD:
2500 	case MBX_CONFIG_FARP:
2501 	case MBX_BEACON:
2502 	case MBX_LOAD_AREA:
2503 	case MBX_RUN_BIU_DIAG64:
2504 	case MBX_CONFIG_PORT:
2505 	case MBX_READ_SPARM64:
2506 	case MBX_READ_RPI64:
2507 	case MBX_REG_LOGIN64:
2508 	case MBX_READ_TOPOLOGY:
2509 	case MBX_WRITE_WWN:
2510 	case MBX_SET_DEBUG:
2511 	case MBX_LOAD_EXP_ROM:
2512 	case MBX_ASYNCEVT_ENABLE:
2513 	case MBX_REG_VPI:
2514 	case MBX_UNREG_VPI:
2515 	case MBX_HEARTBEAT:
2516 	case MBX_PORT_CAPABILITIES:
2517 	case MBX_PORT_IOV_CONTROL:
2518 	case MBX_SLI4_CONFIG:
2519 	case MBX_SLI4_REQ_FTRS:
2520 	case MBX_REG_FCFI:
2521 	case MBX_UNREG_FCFI:
2522 	case MBX_REG_VFI:
2523 	case MBX_UNREG_VFI:
2524 	case MBX_INIT_VPI:
2525 	case MBX_INIT_VFI:
2526 	case MBX_RESUME_RPI:
2527 	case MBX_READ_EVENT_LOG_STATUS:
2528 	case MBX_READ_EVENT_LOG:
2529 	case MBX_SECURITY_MGMT:
2530 	case MBX_AUTH_PORT:
2531 	case MBX_ACCESS_VDATA:
2532 		ret = mbxCommand;
2533 		break;
2534 	default:
2535 		ret = MBX_SHUTDOWN;
2536 		break;
2537 	}
2538 	return ret;
2539 }
2540 
2541 /**
2542  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2543  * @phba: Pointer to HBA context object.
2544  * @pmboxq: Pointer to mailbox command.
2545  *
2546  * This is completion handler function for mailbox commands issued from
2547  * lpfc_sli_issue_mbox_wait function. This function is called by the
2548  * mailbox event handler function with no lock held. This function
2549  * will wake up thread waiting on the wait queue pointed by context1
2550  * of the mailbox.
2551  **/
2552 void
2553 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2554 {
2555 	unsigned long drvr_flag;
2556 	struct completion *pmbox_done;
2557 
2558 	/*
2559 	 * If pmbox_done is empty, the driver thread gave up waiting and
2560 	 * continued running.
2561 	 */
2562 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2563 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2564 	pmbox_done = (struct completion *)pmboxq->context3;
2565 	if (pmbox_done)
2566 		complete(pmbox_done);
2567 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2568 	return;
2569 }
2570 
2571 static void
2572 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2573 {
2574 	unsigned long iflags;
2575 
2576 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2577 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2578 		spin_lock_irqsave(&ndlp->lock, iflags);
2579 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2580 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2581 		spin_unlock_irqrestore(&ndlp->lock, iflags);
2582 	}
2583 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2584 }
2585 
2586 /**
2587  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2588  * @phba: Pointer to HBA context object.
2589  * @pmb: Pointer to mailbox object.
2590  *
2591  * This function is the default mailbox completion handler. It
2592  * frees the memory resources associated with the completed mailbox
2593  * command. If the completed command is a REG_LOGIN mailbox command,
2594  * this function will issue a UREG_LOGIN to re-claim the RPI.
2595  **/
2596 void
2597 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2598 {
2599 	struct lpfc_vport  *vport = pmb->vport;
2600 	struct lpfc_dmabuf *mp;
2601 	struct lpfc_nodelist *ndlp;
2602 	struct Scsi_Host *shost;
2603 	uint16_t rpi, vpi;
2604 	int rc;
2605 
2606 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2607 
2608 	if (mp) {
2609 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2610 		kfree(mp);
2611 	}
2612 
2613 	/*
2614 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2615 	 * is in re-discovery driver need to cleanup the RPI.
2616 	 */
2617 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2618 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2619 	    !pmb->u.mb.mbxStatus) {
2620 		rpi = pmb->u.mb.un.varWords[0];
2621 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2622 		if (phba->sli_rev == LPFC_SLI_REV4)
2623 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2624 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2625 		pmb->vport = vport;
2626 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2627 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2628 		if (rc != MBX_NOT_FINISHED)
2629 			return;
2630 	}
2631 
2632 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2633 		!(phba->pport->load_flag & FC_UNLOADING) &&
2634 		!pmb->u.mb.mbxStatus) {
2635 		shost = lpfc_shost_from_vport(vport);
2636 		spin_lock_irq(shost->host_lock);
2637 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2638 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2639 		spin_unlock_irq(shost->host_lock);
2640 	}
2641 
2642 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2643 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2644 		lpfc_nlp_put(ndlp);
2645 		pmb->ctx_buf = NULL;
2646 		pmb->ctx_ndlp = NULL;
2647 	}
2648 
2649 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2650 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2651 
2652 		/* Check to see if there are any deferred events to process */
2653 		if (ndlp) {
2654 			lpfc_printf_vlog(
2655 				vport,
2656 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2657 				"1438 UNREG cmpl deferred mbox x%x "
2658 				"on NPort x%x Data: x%x x%x %px x%x x%x\n",
2659 				ndlp->nlp_rpi, ndlp->nlp_DID,
2660 				ndlp->nlp_flag, ndlp->nlp_defer_did,
2661 				ndlp, vport->load_flag, kref_read(&ndlp->kref));
2662 
2663 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2664 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2665 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2666 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2667 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2668 			} else {
2669 				__lpfc_sli_rpi_release(vport, ndlp);
2670 			}
2671 
2672 			/* The unreg_login mailbox is complete and had a
2673 			 * reference that has to be released.  The PLOGI
2674 			 * got its own ref.
2675 			 */
2676 			lpfc_nlp_put(ndlp);
2677 			pmb->ctx_ndlp = NULL;
2678 		}
2679 	}
2680 
2681 	/* Check security permission status on INIT_LINK mailbox command */
2682 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2683 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2684 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2685 				"2860 SLI authentication is required "
2686 				"for INIT_LINK but has not done yet\n");
2687 
2688 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2689 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2690 	else
2691 		mempool_free(pmb, phba->mbox_mem_pool);
2692 }
2693  /**
2694  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2695  * @phba: Pointer to HBA context object.
2696  * @pmb: Pointer to mailbox object.
2697  *
2698  * This function is the unreg rpi mailbox completion handler. It
2699  * frees the memory resources associated with the completed mailbox
2700  * command. An additional reference is put on the ndlp to prevent
2701  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2702  * the unreg mailbox command completes, this routine puts the
2703  * reference back.
2704  *
2705  **/
2706 void
2707 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2708 {
2709 	struct lpfc_vport  *vport = pmb->vport;
2710 	struct lpfc_nodelist *ndlp;
2711 
2712 	ndlp = pmb->ctx_ndlp;
2713 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2714 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2715 		    (bf_get(lpfc_sli_intf_if_type,
2716 		     &phba->sli4_hba.sli_intf) >=
2717 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2718 			if (ndlp) {
2719 				lpfc_printf_vlog(
2720 					 vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2721 					 "0010 UNREG_LOGIN vpi:%x "
2722 					 "rpi:%x DID:%x defer x%x flg x%x "
2723 					 "%px\n",
2724 					 vport->vpi, ndlp->nlp_rpi,
2725 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2726 					 ndlp->nlp_flag,
2727 					 ndlp);
2728 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2729 
2730 				/* Check to see if there are any deferred
2731 				 * events to process
2732 				 */
2733 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2734 				    (ndlp->nlp_defer_did !=
2735 				    NLP_EVT_NOTHING_PENDING)) {
2736 					lpfc_printf_vlog(
2737 						vport, KERN_INFO, LOG_DISCOVERY,
2738 						"4111 UNREG cmpl deferred "
2739 						"clr x%x on "
2740 						"NPort x%x Data: x%x x%px\n",
2741 						ndlp->nlp_rpi, ndlp->nlp_DID,
2742 						ndlp->nlp_defer_did, ndlp);
2743 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2744 					ndlp->nlp_defer_did =
2745 						NLP_EVT_NOTHING_PENDING;
2746 					lpfc_issue_els_plogi(
2747 						vport, ndlp->nlp_DID, 0);
2748 				} else {
2749 					__lpfc_sli_rpi_release(vport, ndlp);
2750 				}
2751 
2752 				lpfc_nlp_put(ndlp);
2753 			}
2754 		}
2755 	}
2756 
2757 	mempool_free(pmb, phba->mbox_mem_pool);
2758 }
2759 
2760 /**
2761  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2762  * @phba: Pointer to HBA context object.
2763  *
2764  * This function is called with no lock held. This function processes all
2765  * the completed mailbox commands and gives it to upper layers. The interrupt
2766  * service routine processes mailbox completion interrupt and adds completed
2767  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2768  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2769  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2770  * function returns the mailbox commands to the upper layer by calling the
2771  * completion handler function of each mailbox.
2772  **/
2773 int
2774 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2775 {
2776 	MAILBOX_t *pmbox;
2777 	LPFC_MBOXQ_t *pmb;
2778 	int rc;
2779 	LIST_HEAD(cmplq);
2780 
2781 	phba->sli.slistat.mbox_event++;
2782 
2783 	/* Get all completed mailboxe buffers into the cmplq */
2784 	spin_lock_irq(&phba->hbalock);
2785 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2786 	spin_unlock_irq(&phba->hbalock);
2787 
2788 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2789 	do {
2790 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2791 		if (pmb == NULL)
2792 			break;
2793 
2794 		pmbox = &pmb->u.mb;
2795 
2796 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2797 			if (pmb->vport) {
2798 				lpfc_debugfs_disc_trc(pmb->vport,
2799 					LPFC_DISC_TRC_MBOX_VPORT,
2800 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2801 					(uint32_t)pmbox->mbxCommand,
2802 					pmbox->un.varWords[0],
2803 					pmbox->un.varWords[1]);
2804 			}
2805 			else {
2806 				lpfc_debugfs_disc_trc(phba->pport,
2807 					LPFC_DISC_TRC_MBOX,
2808 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2809 					(uint32_t)pmbox->mbxCommand,
2810 					pmbox->un.varWords[0],
2811 					pmbox->un.varWords[1]);
2812 			}
2813 		}
2814 
2815 		/*
2816 		 * It is a fatal error if unknown mbox command completion.
2817 		 */
2818 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2819 		    MBX_SHUTDOWN) {
2820 			/* Unknown mailbox command compl */
2821 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2822 					"(%d):0323 Unknown Mailbox command "
2823 					"x%x (x%x/x%x) Cmpl\n",
2824 					pmb->vport ? pmb->vport->vpi :
2825 					LPFC_VPORT_UNKNOWN,
2826 					pmbox->mbxCommand,
2827 					lpfc_sli_config_mbox_subsys_get(phba,
2828 									pmb),
2829 					lpfc_sli_config_mbox_opcode_get(phba,
2830 									pmb));
2831 			phba->link_state = LPFC_HBA_ERROR;
2832 			phba->work_hs = HS_FFER3;
2833 			lpfc_handle_eratt(phba);
2834 			continue;
2835 		}
2836 
2837 		if (pmbox->mbxStatus) {
2838 			phba->sli.slistat.mbox_stat_err++;
2839 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2840 				/* Mbox cmd cmpl error - RETRYing */
2841 				lpfc_printf_log(phba, KERN_INFO,
2842 					LOG_MBOX | LOG_SLI,
2843 					"(%d):0305 Mbox cmd cmpl "
2844 					"error - RETRYing Data: x%x "
2845 					"(x%x/x%x) x%x x%x x%x\n",
2846 					pmb->vport ? pmb->vport->vpi :
2847 					LPFC_VPORT_UNKNOWN,
2848 					pmbox->mbxCommand,
2849 					lpfc_sli_config_mbox_subsys_get(phba,
2850 									pmb),
2851 					lpfc_sli_config_mbox_opcode_get(phba,
2852 									pmb),
2853 					pmbox->mbxStatus,
2854 					pmbox->un.varWords[0],
2855 					pmb->vport ? pmb->vport->port_state :
2856 					LPFC_VPORT_UNKNOWN);
2857 				pmbox->mbxStatus = 0;
2858 				pmbox->mbxOwner = OWN_HOST;
2859 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2860 				if (rc != MBX_NOT_FINISHED)
2861 					continue;
2862 			}
2863 		}
2864 
2865 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2866 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2867 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2868 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2869 				"x%x x%x x%x\n",
2870 				pmb->vport ? pmb->vport->vpi : 0,
2871 				pmbox->mbxCommand,
2872 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2873 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2874 				pmb->mbox_cmpl,
2875 				*((uint32_t *) pmbox),
2876 				pmbox->un.varWords[0],
2877 				pmbox->un.varWords[1],
2878 				pmbox->un.varWords[2],
2879 				pmbox->un.varWords[3],
2880 				pmbox->un.varWords[4],
2881 				pmbox->un.varWords[5],
2882 				pmbox->un.varWords[6],
2883 				pmbox->un.varWords[7],
2884 				pmbox->un.varWords[8],
2885 				pmbox->un.varWords[9],
2886 				pmbox->un.varWords[10]);
2887 
2888 		if (pmb->mbox_cmpl)
2889 			pmb->mbox_cmpl(phba,pmb);
2890 	} while (1);
2891 	return 0;
2892 }
2893 
2894 /**
2895  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2896  * @phba: Pointer to HBA context object.
2897  * @pring: Pointer to driver SLI ring object.
2898  * @tag: buffer tag.
2899  *
2900  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2901  * is set in the tag the buffer is posted for a particular exchange,
2902  * the function will return the buffer without replacing the buffer.
2903  * If the buffer is for unsolicited ELS or CT traffic, this function
2904  * returns the buffer and also posts another buffer to the firmware.
2905  **/
2906 static struct lpfc_dmabuf *
2907 lpfc_sli_get_buff(struct lpfc_hba *phba,
2908 		  struct lpfc_sli_ring *pring,
2909 		  uint32_t tag)
2910 {
2911 	struct hbq_dmabuf *hbq_entry;
2912 
2913 	if (tag & QUE_BUFTAG_BIT)
2914 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2915 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2916 	if (!hbq_entry)
2917 		return NULL;
2918 	return &hbq_entry->dbuf;
2919 }
2920 
2921 /**
2922  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2923  *                              containing a NVME LS request.
2924  * @phba: pointer to lpfc hba data structure.
2925  * @piocb: pointer to the iocbq struct representing the sequence starting
2926  *        frame.
2927  *
2928  * This routine initially validates the NVME LS, validates there is a login
2929  * with the port that sent the LS, and then calls the appropriate nvme host
2930  * or target LS request handler.
2931  **/
2932 static void
2933 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2934 {
2935 	struct lpfc_nodelist *ndlp;
2936 	struct lpfc_dmabuf *d_buf;
2937 	struct hbq_dmabuf *nvmebuf;
2938 	struct fc_frame_header *fc_hdr;
2939 	struct lpfc_async_xchg_ctx *axchg = NULL;
2940 	char *failwhy = NULL;
2941 	uint32_t oxid, sid, did, fctl, size;
2942 	int ret = 1;
2943 
2944 	d_buf = piocb->context2;
2945 
2946 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2947 	fc_hdr = nvmebuf->hbuf.virt;
2948 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2949 	sid = sli4_sid_from_fc_hdr(fc_hdr);
2950 	did = sli4_did_from_fc_hdr(fc_hdr);
2951 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2952 		fc_hdr->fh_f_ctl[1] << 8 |
2953 		fc_hdr->fh_f_ctl[2]);
2954 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2955 
2956 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
2957 			 oxid, size, sid);
2958 
2959 	if (phba->pport->load_flag & FC_UNLOADING) {
2960 		failwhy = "Driver Unloading";
2961 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2962 		failwhy = "NVME FC4 Disabled";
2963 	} else if (!phba->nvmet_support && !phba->pport->localport) {
2964 		failwhy = "No Localport";
2965 	} else if (phba->nvmet_support && !phba->targetport) {
2966 		failwhy = "No Targetport";
2967 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2968 		failwhy = "Bad NVME LS R_CTL";
2969 	} else if (unlikely((fctl & 0x00FF0000) !=
2970 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2971 		failwhy = "Bad NVME LS F_CTL";
2972 	} else {
2973 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2974 		if (!axchg)
2975 			failwhy = "No CTX memory";
2976 	}
2977 
2978 	if (unlikely(failwhy)) {
2979 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2980 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2981 				sid, oxid, failwhy);
2982 		goto out_fail;
2983 	}
2984 
2985 	/* validate the source of the LS is logged in */
2986 	ndlp = lpfc_findnode_did(phba->pport, sid);
2987 	if (!ndlp ||
2988 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2989 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2990 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2991 				"6216 NVME Unsol rcv: No ndlp: "
2992 				"NPort_ID x%x oxid x%x\n",
2993 				sid, oxid);
2994 		goto out_fail;
2995 	}
2996 
2997 	axchg->phba = phba;
2998 	axchg->ndlp = ndlp;
2999 	axchg->size = size;
3000 	axchg->oxid = oxid;
3001 	axchg->sid = sid;
3002 	axchg->wqeq = NULL;
3003 	axchg->state = LPFC_NVME_STE_LS_RCV;
3004 	axchg->entry_cnt = 1;
3005 	axchg->rqb_buffer = (void *)nvmebuf;
3006 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
3007 	axchg->payload = nvmebuf->dbuf.virt;
3008 	INIT_LIST_HEAD(&axchg->list);
3009 
3010 	if (phba->nvmet_support)
3011 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
3012 	else
3013 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
3014 
3015 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
3016 	if (!ret)
3017 		return;
3018 
3019 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3020 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
3021 			"NVMe%s handler failed %d\n",
3022 			did, sid, oxid,
3023 			(phba->nvmet_support) ? "T" : "I", ret);
3024 
3025 out_fail:
3026 
3027 	/* recycle receive buffer */
3028 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
3029 
3030 	/* If start of new exchange, abort it */
3031 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
3032 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
3033 
3034 	if (ret)
3035 		kfree(axchg);
3036 }
3037 
3038 /**
3039  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
3040  * @phba: Pointer to HBA context object.
3041  * @pring: Pointer to driver SLI ring object.
3042  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
3043  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
3044  * @fch_type: the type for the first frame of the sequence.
3045  *
3046  * This function is called with no lock held. This function uses the r_ctl and
3047  * type of the received sequence to find the correct callback function to call
3048  * to process the sequence.
3049  **/
3050 static int
3051 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3052 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
3053 			 uint32_t fch_type)
3054 {
3055 	int i;
3056 
3057 	switch (fch_type) {
3058 	case FC_TYPE_NVME:
3059 		lpfc_nvme_unsol_ls_handler(phba, saveq);
3060 		return 1;
3061 	default:
3062 		break;
3063 	}
3064 
3065 	/* unSolicited Responses */
3066 	if (pring->prt[0].profile) {
3067 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
3068 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
3069 									saveq);
3070 		return 1;
3071 	}
3072 	/* We must search, based on rctl / type
3073 	   for the right routine */
3074 	for (i = 0; i < pring->num_mask; i++) {
3075 		if ((pring->prt[i].rctl == fch_r_ctl) &&
3076 		    (pring->prt[i].type == fch_type)) {
3077 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
3078 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
3079 						(phba, pring, saveq);
3080 			return 1;
3081 		}
3082 	}
3083 	return 0;
3084 }
3085 
3086 /**
3087  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
3088  * @phba: Pointer to HBA context object.
3089  * @pring: Pointer to driver SLI ring object.
3090  * @saveq: Pointer to the unsolicited iocb.
3091  *
3092  * This function is called with no lock held by the ring event handler
3093  * when there is an unsolicited iocb posted to the response ring by the
3094  * firmware. This function gets the buffer associated with the iocbs
3095  * and calls the event handler for the ring. This function handles both
3096  * qring buffers and hbq buffers.
3097  * When the function returns 1 the caller can free the iocb object otherwise
3098  * upper layer functions will free the iocb objects.
3099  **/
3100 static int
3101 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3102 			    struct lpfc_iocbq *saveq)
3103 {
3104 	IOCB_t           * irsp;
3105 	WORD5            * w5p;
3106 	uint32_t           Rctl, Type;
3107 	struct lpfc_iocbq *iocbq;
3108 	struct lpfc_dmabuf *dmzbuf;
3109 
3110 	irsp = &(saveq->iocb);
3111 
3112 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
3113 		if (pring->lpfc_sli_rcv_async_status)
3114 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
3115 		else
3116 			lpfc_printf_log(phba,
3117 					KERN_WARNING,
3118 					LOG_SLI,
3119 					"0316 Ring %d handler: unexpected "
3120 					"ASYNC_STATUS iocb received evt_code "
3121 					"0x%x\n",
3122 					pring->ringno,
3123 					irsp->un.asyncstat.evt_code);
3124 		return 1;
3125 	}
3126 
3127 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3128 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3129 		if (irsp->ulpBdeCount > 0) {
3130 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3131 					irsp->un.ulpWord[3]);
3132 			lpfc_in_buf_free(phba, dmzbuf);
3133 		}
3134 
3135 		if (irsp->ulpBdeCount > 1) {
3136 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3137 					irsp->unsli3.sli3Words[3]);
3138 			lpfc_in_buf_free(phba, dmzbuf);
3139 		}
3140 
3141 		if (irsp->ulpBdeCount > 2) {
3142 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3143 				irsp->unsli3.sli3Words[7]);
3144 			lpfc_in_buf_free(phba, dmzbuf);
3145 		}
3146 
3147 		return 1;
3148 	}
3149 
3150 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3151 		if (irsp->ulpBdeCount != 0) {
3152 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3153 						irsp->un.ulpWord[3]);
3154 			if (!saveq->context2)
3155 				lpfc_printf_log(phba,
3156 					KERN_ERR,
3157 					LOG_SLI,
3158 					"0341 Ring %d Cannot find buffer for "
3159 					"an unsolicited iocb. tag 0x%x\n",
3160 					pring->ringno,
3161 					irsp->un.ulpWord[3]);
3162 		}
3163 		if (irsp->ulpBdeCount == 2) {
3164 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3165 						irsp->unsli3.sli3Words[7]);
3166 			if (!saveq->context3)
3167 				lpfc_printf_log(phba,
3168 					KERN_ERR,
3169 					LOG_SLI,
3170 					"0342 Ring %d Cannot find buffer for an"
3171 					" unsolicited iocb. tag 0x%x\n",
3172 					pring->ringno,
3173 					irsp->unsli3.sli3Words[7]);
3174 		}
3175 		list_for_each_entry(iocbq, &saveq->list, list) {
3176 			irsp = &(iocbq->iocb);
3177 			if (irsp->ulpBdeCount != 0) {
3178 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3179 							irsp->un.ulpWord[3]);
3180 				if (!iocbq->context2)
3181 					lpfc_printf_log(phba,
3182 						KERN_ERR,
3183 						LOG_SLI,
3184 						"0343 Ring %d Cannot find "
3185 						"buffer for an unsolicited iocb"
3186 						". tag 0x%x\n", pring->ringno,
3187 						irsp->un.ulpWord[3]);
3188 			}
3189 			if (irsp->ulpBdeCount == 2) {
3190 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3191 						irsp->unsli3.sli3Words[7]);
3192 				if (!iocbq->context3)
3193 					lpfc_printf_log(phba,
3194 						KERN_ERR,
3195 						LOG_SLI,
3196 						"0344 Ring %d Cannot find "
3197 						"buffer for an unsolicited "
3198 						"iocb. tag 0x%x\n",
3199 						pring->ringno,
3200 						irsp->unsli3.sli3Words[7]);
3201 			}
3202 		}
3203 	}
3204 	if (irsp->ulpBdeCount != 0 &&
3205 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3206 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3207 		int found = 0;
3208 
3209 		/* search continue save q for same XRI */
3210 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3211 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3212 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3213 				list_add_tail(&saveq->list, &iocbq->list);
3214 				found = 1;
3215 				break;
3216 			}
3217 		}
3218 		if (!found)
3219 			list_add_tail(&saveq->clist,
3220 				      &pring->iocb_continue_saveq);
3221 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3222 			list_del_init(&iocbq->clist);
3223 			saveq = iocbq;
3224 			irsp = &(saveq->iocb);
3225 		} else
3226 			return 0;
3227 	}
3228 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3229 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3230 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3231 		Rctl = FC_RCTL_ELS_REQ;
3232 		Type = FC_TYPE_ELS;
3233 	} else {
3234 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3235 		Rctl = w5p->hcsw.Rctl;
3236 		Type = w5p->hcsw.Type;
3237 
3238 		/* Firmware Workaround */
3239 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3240 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3241 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3242 			Rctl = FC_RCTL_ELS_REQ;
3243 			Type = FC_TYPE_ELS;
3244 			w5p->hcsw.Rctl = Rctl;
3245 			w5p->hcsw.Type = Type;
3246 		}
3247 	}
3248 
3249 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3250 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3251 				"0313 Ring %d handler: unexpected Rctl x%x "
3252 				"Type x%x received\n",
3253 				pring->ringno, Rctl, Type);
3254 
3255 	return 1;
3256 }
3257 
3258 /**
3259  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3260  * @phba: Pointer to HBA context object.
3261  * @pring: Pointer to driver SLI ring object.
3262  * @prspiocb: Pointer to response iocb object.
3263  *
3264  * This function looks up the iocb_lookup table to get the command iocb
3265  * corresponding to the given response iocb using the iotag of the
3266  * response iocb. The driver calls this function with the hbalock held
3267  * for SLI3 ports or the ring lock held for SLI4 ports.
3268  * This function returns the command iocb object if it finds the command
3269  * iocb else returns NULL.
3270  **/
3271 static struct lpfc_iocbq *
3272 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3273 		      struct lpfc_sli_ring *pring,
3274 		      struct lpfc_iocbq *prspiocb)
3275 {
3276 	struct lpfc_iocbq *cmd_iocb = NULL;
3277 	uint16_t iotag;
3278 	spinlock_t *temp_lock = NULL;
3279 	unsigned long iflag = 0;
3280 
3281 	if (phba->sli_rev == LPFC_SLI_REV4)
3282 		temp_lock = &pring->ring_lock;
3283 	else
3284 		temp_lock = &phba->hbalock;
3285 
3286 	spin_lock_irqsave(temp_lock, iflag);
3287 	iotag = prspiocb->iocb.ulpIoTag;
3288 
3289 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3290 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3291 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3292 			/* remove from txcmpl queue list */
3293 			list_del_init(&cmd_iocb->list);
3294 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3295 			pring->txcmplq_cnt--;
3296 			spin_unlock_irqrestore(temp_lock, iflag);
3297 			return cmd_iocb;
3298 		}
3299 	}
3300 
3301 	spin_unlock_irqrestore(temp_lock, iflag);
3302 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3303 			"0317 iotag x%x is out of "
3304 			"range: max iotag x%x wd0 x%x\n",
3305 			iotag, phba->sli.last_iotag,
3306 			*(((uint32_t *) &prspiocb->iocb) + 7));
3307 	return NULL;
3308 }
3309 
3310 /**
3311  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3312  * @phba: Pointer to HBA context object.
3313  * @pring: Pointer to driver SLI ring object.
3314  * @iotag: IOCB tag.
3315  *
3316  * This function looks up the iocb_lookup table to get the command iocb
3317  * corresponding to the given iotag. The driver calls this function with
3318  * the ring lock held because this function is an SLI4 port only helper.
3319  * This function returns the command iocb object if it finds the command
3320  * iocb else returns NULL.
3321  **/
3322 static struct lpfc_iocbq *
3323 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3324 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3325 {
3326 	struct lpfc_iocbq *cmd_iocb = NULL;
3327 	spinlock_t *temp_lock = NULL;
3328 	unsigned long iflag = 0;
3329 
3330 	if (phba->sli_rev == LPFC_SLI_REV4)
3331 		temp_lock = &pring->ring_lock;
3332 	else
3333 		temp_lock = &phba->hbalock;
3334 
3335 	spin_lock_irqsave(temp_lock, iflag);
3336 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3337 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3338 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3339 			/* remove from txcmpl queue list */
3340 			list_del_init(&cmd_iocb->list);
3341 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3342 			pring->txcmplq_cnt--;
3343 			spin_unlock_irqrestore(temp_lock, iflag);
3344 			return cmd_iocb;
3345 		}
3346 	}
3347 
3348 	spin_unlock_irqrestore(temp_lock, iflag);
3349 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3350 			"0372 iotag x%x lookup error: max iotag (x%x) "
3351 			"iocb_flag x%x\n",
3352 			iotag, phba->sli.last_iotag,
3353 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3354 	return NULL;
3355 }
3356 
3357 /**
3358  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3359  * @phba: Pointer to HBA context object.
3360  * @pring: Pointer to driver SLI ring object.
3361  * @saveq: Pointer to the response iocb to be processed.
3362  *
3363  * This function is called by the ring event handler for non-fcp
3364  * rings when there is a new response iocb in the response ring.
3365  * The caller is not required to hold any locks. This function
3366  * gets the command iocb associated with the response iocb and
3367  * calls the completion handler for the command iocb. If there
3368  * is no completion handler, the function will free the resources
3369  * associated with command iocb. If the response iocb is for
3370  * an already aborted command iocb, the status of the completion
3371  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3372  * This function always returns 1.
3373  **/
3374 static int
3375 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3376 			  struct lpfc_iocbq *saveq)
3377 {
3378 	struct lpfc_iocbq *cmdiocbp;
3379 	int rc = 1;
3380 	unsigned long iflag;
3381 
3382 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3383 	if (cmdiocbp) {
3384 		if (cmdiocbp->iocb_cmpl) {
3385 			/*
3386 			 * If an ELS command failed send an event to mgmt
3387 			 * application.
3388 			 */
3389 			if (saveq->iocb.ulpStatus &&
3390 			     (pring->ringno == LPFC_ELS_RING) &&
3391 			     (cmdiocbp->iocb.ulpCommand ==
3392 				CMD_ELS_REQUEST64_CR))
3393 				lpfc_send_els_failure_event(phba,
3394 					cmdiocbp, saveq);
3395 
3396 			/*
3397 			 * Post all ELS completions to the worker thread.
3398 			 * All other are passed to the completion callback.
3399 			 */
3400 			if (pring->ringno == LPFC_ELS_RING) {
3401 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3402 				    (cmdiocbp->iocb_flag &
3403 							LPFC_DRIVER_ABORTED)) {
3404 					spin_lock_irqsave(&phba->hbalock,
3405 							  iflag);
3406 					cmdiocbp->iocb_flag &=
3407 						~LPFC_DRIVER_ABORTED;
3408 					spin_unlock_irqrestore(&phba->hbalock,
3409 							       iflag);
3410 					saveq->iocb.ulpStatus =
3411 						IOSTAT_LOCAL_REJECT;
3412 					saveq->iocb.un.ulpWord[4] =
3413 						IOERR_SLI_ABORTED;
3414 
3415 					/* Firmware could still be in progress
3416 					 * of DMAing payload, so don't free data
3417 					 * buffer till after a hbeat.
3418 					 */
3419 					spin_lock_irqsave(&phba->hbalock,
3420 							  iflag);
3421 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3422 					spin_unlock_irqrestore(&phba->hbalock,
3423 							       iflag);
3424 				}
3425 				if (phba->sli_rev == LPFC_SLI_REV4) {
3426 					if (saveq->iocb_flag &
3427 					    LPFC_EXCHANGE_BUSY) {
3428 						/* Set cmdiocb flag for the
3429 						 * exchange busy so sgl (xri)
3430 						 * will not be released until
3431 						 * the abort xri is received
3432 						 * from hba.
3433 						 */
3434 						spin_lock_irqsave(
3435 							&phba->hbalock, iflag);
3436 						cmdiocbp->iocb_flag |=
3437 							LPFC_EXCHANGE_BUSY;
3438 						spin_unlock_irqrestore(
3439 							&phba->hbalock, iflag);
3440 					}
3441 					if (cmdiocbp->iocb_flag &
3442 					    LPFC_DRIVER_ABORTED) {
3443 						/*
3444 						 * Clear LPFC_DRIVER_ABORTED
3445 						 * bit in case it was driver
3446 						 * initiated abort.
3447 						 */
3448 						spin_lock_irqsave(
3449 							&phba->hbalock, iflag);
3450 						cmdiocbp->iocb_flag &=
3451 							~LPFC_DRIVER_ABORTED;
3452 						spin_unlock_irqrestore(
3453 							&phba->hbalock, iflag);
3454 						cmdiocbp->iocb.ulpStatus =
3455 							IOSTAT_LOCAL_REJECT;
3456 						cmdiocbp->iocb.un.ulpWord[4] =
3457 							IOERR_ABORT_REQUESTED;
3458 						/*
3459 						 * For SLI4, irsiocb contains
3460 						 * NO_XRI in sli_xritag, it
3461 						 * shall not affect releasing
3462 						 * sgl (xri) process.
3463 						 */
3464 						saveq->iocb.ulpStatus =
3465 							IOSTAT_LOCAL_REJECT;
3466 						saveq->iocb.un.ulpWord[4] =
3467 							IOERR_SLI_ABORTED;
3468 						spin_lock_irqsave(
3469 							&phba->hbalock, iflag);
3470 						saveq->iocb_flag |=
3471 							LPFC_DELAY_MEM_FREE;
3472 						spin_unlock_irqrestore(
3473 							&phba->hbalock, iflag);
3474 					}
3475 				}
3476 			}
3477 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3478 		} else
3479 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3480 	} else {
3481 		/*
3482 		 * Unknown initiating command based on the response iotag.
3483 		 * This could be the case on the ELS ring because of
3484 		 * lpfc_els_abort().
3485 		 */
3486 		if (pring->ringno != LPFC_ELS_RING) {
3487 			/*
3488 			 * Ring <ringno> handler: unexpected completion IoTag
3489 			 * <IoTag>
3490 			 */
3491 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3492 					 "0322 Ring %d handler: "
3493 					 "unexpected completion IoTag x%x "
3494 					 "Data: x%x x%x x%x x%x\n",
3495 					 pring->ringno,
3496 					 saveq->iocb.ulpIoTag,
3497 					 saveq->iocb.ulpStatus,
3498 					 saveq->iocb.un.ulpWord[4],
3499 					 saveq->iocb.ulpCommand,
3500 					 saveq->iocb.ulpContext);
3501 		}
3502 	}
3503 
3504 	return rc;
3505 }
3506 
3507 /**
3508  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3509  * @phba: Pointer to HBA context object.
3510  * @pring: Pointer to driver SLI ring object.
3511  *
3512  * This function is called from the iocb ring event handlers when
3513  * put pointer is ahead of the get pointer for a ring. This function signal
3514  * an error attention condition to the worker thread and the worker
3515  * thread will transition the HBA to offline state.
3516  **/
3517 static void
3518 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3519 {
3520 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3521 	/*
3522 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3523 	 * rsp ring <portRspMax>
3524 	 */
3525 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3526 			"0312 Ring %d handler: portRspPut %d "
3527 			"is bigger than rsp ring %d\n",
3528 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3529 			pring->sli.sli3.numRiocb);
3530 
3531 	phba->link_state = LPFC_HBA_ERROR;
3532 
3533 	/*
3534 	 * All error attention handlers are posted to
3535 	 * worker thread
3536 	 */
3537 	phba->work_ha |= HA_ERATT;
3538 	phba->work_hs = HS_FFER3;
3539 
3540 	lpfc_worker_wake_up(phba);
3541 
3542 	return;
3543 }
3544 
3545 /**
3546  * lpfc_poll_eratt - Error attention polling timer timeout handler
3547  * @t: Context to fetch pointer to address of HBA context object from.
3548  *
3549  * This function is invoked by the Error Attention polling timer when the
3550  * timer times out. It will check the SLI Error Attention register for
3551  * possible attention events. If so, it will post an Error Attention event
3552  * and wake up worker thread to process it. Otherwise, it will set up the
3553  * Error Attention polling timer for the next poll.
3554  **/
3555 void lpfc_poll_eratt(struct timer_list *t)
3556 {
3557 	struct lpfc_hba *phba;
3558 	uint32_t eratt = 0;
3559 	uint64_t sli_intr, cnt;
3560 
3561 	phba = from_timer(phba, t, eratt_poll);
3562 
3563 	/* Here we will also keep track of interrupts per sec of the hba */
3564 	sli_intr = phba->sli.slistat.sli_intr;
3565 
3566 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3567 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3568 			sli_intr);
3569 	else
3570 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3571 
3572 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3573 	do_div(cnt, phba->eratt_poll_interval);
3574 	phba->sli.slistat.sli_ips = cnt;
3575 
3576 	phba->sli.slistat.sli_prev_intr = sli_intr;
3577 
3578 	/* Check chip HA register for error event */
3579 	eratt = lpfc_sli_check_eratt(phba);
3580 
3581 	if (eratt)
3582 		/* Tell the worker thread there is work to do */
3583 		lpfc_worker_wake_up(phba);
3584 	else
3585 		/* Restart the timer for next eratt poll */
3586 		mod_timer(&phba->eratt_poll,
3587 			  jiffies +
3588 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3589 	return;
3590 }
3591 
3592 
3593 /**
3594  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3595  * @phba: Pointer to HBA context object.
3596  * @pring: Pointer to driver SLI ring object.
3597  * @mask: Host attention register mask for this ring.
3598  *
3599  * This function is called from the interrupt context when there is a ring
3600  * event for the fcp ring. The caller does not hold any lock.
3601  * The function processes each response iocb in the response ring until it
3602  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3603  * LE bit set. The function will call the completion handler of the command iocb
3604  * if the response iocb indicates a completion for a command iocb or it is
3605  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3606  * function if this is an unsolicited iocb.
3607  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3608  * to check it explicitly.
3609  */
3610 int
3611 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3612 				struct lpfc_sli_ring *pring, uint32_t mask)
3613 {
3614 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3615 	IOCB_t *irsp = NULL;
3616 	IOCB_t *entry = NULL;
3617 	struct lpfc_iocbq *cmdiocbq = NULL;
3618 	struct lpfc_iocbq rspiocbq;
3619 	uint32_t status;
3620 	uint32_t portRspPut, portRspMax;
3621 	int rc = 1;
3622 	lpfc_iocb_type type;
3623 	unsigned long iflag;
3624 	uint32_t rsp_cmpl = 0;
3625 
3626 	spin_lock_irqsave(&phba->hbalock, iflag);
3627 	pring->stats.iocb_event++;
3628 
3629 	/*
3630 	 * The next available response entry should never exceed the maximum
3631 	 * entries.  If it does, treat it as an adapter hardware error.
3632 	 */
3633 	portRspMax = pring->sli.sli3.numRiocb;
3634 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3635 	if (unlikely(portRspPut >= portRspMax)) {
3636 		lpfc_sli_rsp_pointers_error(phba, pring);
3637 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3638 		return 1;
3639 	}
3640 	if (phba->fcp_ring_in_use) {
3641 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3642 		return 1;
3643 	} else
3644 		phba->fcp_ring_in_use = 1;
3645 
3646 	rmb();
3647 	while (pring->sli.sli3.rspidx != portRspPut) {
3648 		/*
3649 		 * Fetch an entry off the ring and copy it into a local data
3650 		 * structure.  The copy involves a byte-swap since the
3651 		 * network byte order and pci byte orders are different.
3652 		 */
3653 		entry = lpfc_resp_iocb(phba, pring);
3654 		phba->last_completion_time = jiffies;
3655 
3656 		if (++pring->sli.sli3.rspidx >= portRspMax)
3657 			pring->sli.sli3.rspidx = 0;
3658 
3659 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3660 				      (uint32_t *) &rspiocbq.iocb,
3661 				      phba->iocb_rsp_size);
3662 		INIT_LIST_HEAD(&(rspiocbq.list));
3663 		irsp = &rspiocbq.iocb;
3664 
3665 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3666 		pring->stats.iocb_rsp++;
3667 		rsp_cmpl++;
3668 
3669 		if (unlikely(irsp->ulpStatus)) {
3670 			/*
3671 			 * If resource errors reported from HBA, reduce
3672 			 * queuedepths of the SCSI device.
3673 			 */
3674 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3675 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3676 			     IOERR_NO_RESOURCES)) {
3677 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3678 				phba->lpfc_rampdown_queue_depth(phba);
3679 				spin_lock_irqsave(&phba->hbalock, iflag);
3680 			}
3681 
3682 			/* Rsp ring <ringno> error: IOCB */
3683 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3684 					"0336 Rsp Ring %d error: IOCB Data: "
3685 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3686 					pring->ringno,
3687 					irsp->un.ulpWord[0],
3688 					irsp->un.ulpWord[1],
3689 					irsp->un.ulpWord[2],
3690 					irsp->un.ulpWord[3],
3691 					irsp->un.ulpWord[4],
3692 					irsp->un.ulpWord[5],
3693 					*(uint32_t *)&irsp->un1,
3694 					*((uint32_t *)&irsp->un1 + 1));
3695 		}
3696 
3697 		switch (type) {
3698 		case LPFC_ABORT_IOCB:
3699 		case LPFC_SOL_IOCB:
3700 			/*
3701 			 * Idle exchange closed via ABTS from port.  No iocb
3702 			 * resources need to be recovered.
3703 			 */
3704 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3705 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3706 						"0333 IOCB cmd 0x%x"
3707 						" processed. Skipping"
3708 						" completion\n",
3709 						irsp->ulpCommand);
3710 				break;
3711 			}
3712 
3713 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3714 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3715 							 &rspiocbq);
3716 			spin_lock_irqsave(&phba->hbalock, iflag);
3717 			if (unlikely(!cmdiocbq))
3718 				break;
3719 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3720 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3721 			if (cmdiocbq->iocb_cmpl) {
3722 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3723 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3724 						      &rspiocbq);
3725 				spin_lock_irqsave(&phba->hbalock, iflag);
3726 			}
3727 			break;
3728 		case LPFC_UNSOL_IOCB:
3729 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3730 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3731 			spin_lock_irqsave(&phba->hbalock, iflag);
3732 			break;
3733 		default:
3734 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3735 				char adaptermsg[LPFC_MAX_ADPTMSG];
3736 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3737 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3738 				       MAX_MSG_DATA);
3739 				dev_warn(&((phba->pcidev)->dev),
3740 					 "lpfc%d: %s\n",
3741 					 phba->brd_no, adaptermsg);
3742 			} else {
3743 				/* Unknown IOCB command */
3744 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3745 						"0334 Unknown IOCB command "
3746 						"Data: x%x, x%x x%x x%x x%x\n",
3747 						type, irsp->ulpCommand,
3748 						irsp->ulpStatus,
3749 						irsp->ulpIoTag,
3750 						irsp->ulpContext);
3751 			}
3752 			break;
3753 		}
3754 
3755 		/*
3756 		 * The response IOCB has been processed.  Update the ring
3757 		 * pointer in SLIM.  If the port response put pointer has not
3758 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3759 		 * response put pointer.
3760 		 */
3761 		writel(pring->sli.sli3.rspidx,
3762 			&phba->host_gp[pring->ringno].rspGetInx);
3763 
3764 		if (pring->sli.sli3.rspidx == portRspPut)
3765 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3766 	}
3767 
3768 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3769 		pring->stats.iocb_rsp_full++;
3770 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3771 		writel(status, phba->CAregaddr);
3772 		readl(phba->CAregaddr);
3773 	}
3774 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3775 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3776 		pring->stats.iocb_cmd_empty++;
3777 
3778 		/* Force update of the local copy of cmdGetInx */
3779 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3780 		lpfc_sli_resume_iocb(phba, pring);
3781 
3782 		if ((pring->lpfc_sli_cmd_available))
3783 			(pring->lpfc_sli_cmd_available) (phba, pring);
3784 
3785 	}
3786 
3787 	phba->fcp_ring_in_use = 0;
3788 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3789 	return rc;
3790 }
3791 
3792 /**
3793  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3794  * @phba: Pointer to HBA context object.
3795  * @pring: Pointer to driver SLI ring object.
3796  * @rspiocbp: Pointer to driver response IOCB object.
3797  *
3798  * This function is called from the worker thread when there is a slow-path
3799  * response IOCB to process. This function chains all the response iocbs until
3800  * seeing the iocb with the LE bit set. The function will call
3801  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3802  * completion of a command iocb. The function will call the
3803  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3804  * The function frees the resources or calls the completion handler if this
3805  * iocb is an abort completion. The function returns NULL when the response
3806  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3807  * this function shall chain the iocb on to the iocb_continueq and return the
3808  * response iocb passed in.
3809  **/
3810 static struct lpfc_iocbq *
3811 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3812 			struct lpfc_iocbq *rspiocbp)
3813 {
3814 	struct lpfc_iocbq *saveq;
3815 	struct lpfc_iocbq *cmdiocbp;
3816 	struct lpfc_iocbq *next_iocb;
3817 	IOCB_t *irsp = NULL;
3818 	uint32_t free_saveq;
3819 	uint8_t iocb_cmd_type;
3820 	lpfc_iocb_type type;
3821 	unsigned long iflag;
3822 	int rc;
3823 
3824 	spin_lock_irqsave(&phba->hbalock, iflag);
3825 	/* First add the response iocb to the countinueq list */
3826 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3827 	pring->iocb_continueq_cnt++;
3828 
3829 	/* Now, determine whether the list is completed for processing */
3830 	irsp = &rspiocbp->iocb;
3831 	if (irsp->ulpLe) {
3832 		/*
3833 		 * By default, the driver expects to free all resources
3834 		 * associated with this iocb completion.
3835 		 */
3836 		free_saveq = 1;
3837 		saveq = list_get_first(&pring->iocb_continueq,
3838 				       struct lpfc_iocbq, list);
3839 		irsp = &(saveq->iocb);
3840 		list_del_init(&pring->iocb_continueq);
3841 		pring->iocb_continueq_cnt = 0;
3842 
3843 		pring->stats.iocb_rsp++;
3844 
3845 		/*
3846 		 * If resource errors reported from HBA, reduce
3847 		 * queuedepths of the SCSI device.
3848 		 */
3849 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3850 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3851 		     IOERR_NO_RESOURCES)) {
3852 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3853 			phba->lpfc_rampdown_queue_depth(phba);
3854 			spin_lock_irqsave(&phba->hbalock, iflag);
3855 		}
3856 
3857 		if (irsp->ulpStatus) {
3858 			/* Rsp ring <ringno> error: IOCB */
3859 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3860 					"0328 Rsp Ring %d error: "
3861 					"IOCB Data: "
3862 					"x%x x%x x%x x%x "
3863 					"x%x x%x x%x x%x "
3864 					"x%x x%x x%x x%x "
3865 					"x%x x%x x%x x%x\n",
3866 					pring->ringno,
3867 					irsp->un.ulpWord[0],
3868 					irsp->un.ulpWord[1],
3869 					irsp->un.ulpWord[2],
3870 					irsp->un.ulpWord[3],
3871 					irsp->un.ulpWord[4],
3872 					irsp->un.ulpWord[5],
3873 					*(((uint32_t *) irsp) + 6),
3874 					*(((uint32_t *) irsp) + 7),
3875 					*(((uint32_t *) irsp) + 8),
3876 					*(((uint32_t *) irsp) + 9),
3877 					*(((uint32_t *) irsp) + 10),
3878 					*(((uint32_t *) irsp) + 11),
3879 					*(((uint32_t *) irsp) + 12),
3880 					*(((uint32_t *) irsp) + 13),
3881 					*(((uint32_t *) irsp) + 14),
3882 					*(((uint32_t *) irsp) + 15));
3883 		}
3884 
3885 		/*
3886 		 * Fetch the IOCB command type and call the correct completion
3887 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3888 		 * get freed back to the lpfc_iocb_list by the discovery
3889 		 * kernel thread.
3890 		 */
3891 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3892 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3893 		switch (type) {
3894 		case LPFC_SOL_IOCB:
3895 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3896 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3897 			spin_lock_irqsave(&phba->hbalock, iflag);
3898 			break;
3899 
3900 		case LPFC_UNSOL_IOCB:
3901 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3902 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3903 			spin_lock_irqsave(&phba->hbalock, iflag);
3904 			if (!rc)
3905 				free_saveq = 0;
3906 			break;
3907 
3908 		case LPFC_ABORT_IOCB:
3909 			cmdiocbp = NULL;
3910 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3911 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3912 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3913 								 saveq);
3914 				spin_lock_irqsave(&phba->hbalock, iflag);
3915 			}
3916 			if (cmdiocbp) {
3917 				/* Call the specified completion routine */
3918 				if (cmdiocbp->iocb_cmpl) {
3919 					spin_unlock_irqrestore(&phba->hbalock,
3920 							       iflag);
3921 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3922 							      saveq);
3923 					spin_lock_irqsave(&phba->hbalock,
3924 							  iflag);
3925 				} else
3926 					__lpfc_sli_release_iocbq(phba,
3927 								 cmdiocbp);
3928 			}
3929 			break;
3930 
3931 		case LPFC_UNKNOWN_IOCB:
3932 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3933 				char adaptermsg[LPFC_MAX_ADPTMSG];
3934 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3935 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3936 				       MAX_MSG_DATA);
3937 				dev_warn(&((phba->pcidev)->dev),
3938 					 "lpfc%d: %s\n",
3939 					 phba->brd_no, adaptermsg);
3940 			} else {
3941 				/* Unknown IOCB command */
3942 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3943 						"0335 Unknown IOCB "
3944 						"command Data: x%x "
3945 						"x%x x%x x%x\n",
3946 						irsp->ulpCommand,
3947 						irsp->ulpStatus,
3948 						irsp->ulpIoTag,
3949 						irsp->ulpContext);
3950 			}
3951 			break;
3952 		}
3953 
3954 		if (free_saveq) {
3955 			list_for_each_entry_safe(rspiocbp, next_iocb,
3956 						 &saveq->list, list) {
3957 				list_del_init(&rspiocbp->list);
3958 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3959 			}
3960 			__lpfc_sli_release_iocbq(phba, saveq);
3961 		}
3962 		rspiocbp = NULL;
3963 	}
3964 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3965 	return rspiocbp;
3966 }
3967 
3968 /**
3969  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3970  * @phba: Pointer to HBA context object.
3971  * @pring: Pointer to driver SLI ring object.
3972  * @mask: Host attention register mask for this ring.
3973  *
3974  * This routine wraps the actual slow_ring event process routine from the
3975  * API jump table function pointer from the lpfc_hba struct.
3976  **/
3977 void
3978 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3979 				struct lpfc_sli_ring *pring, uint32_t mask)
3980 {
3981 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3982 }
3983 
3984 /**
3985  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3986  * @phba: Pointer to HBA context object.
3987  * @pring: Pointer to driver SLI ring object.
3988  * @mask: Host attention register mask for this ring.
3989  *
3990  * This function is called from the worker thread when there is a ring event
3991  * for non-fcp rings. The caller does not hold any lock. The function will
3992  * remove each response iocb in the response ring and calls the handle
3993  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3994  **/
3995 static void
3996 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3997 				   struct lpfc_sli_ring *pring, uint32_t mask)
3998 {
3999 	struct lpfc_pgp *pgp;
4000 	IOCB_t *entry;
4001 	IOCB_t *irsp = NULL;
4002 	struct lpfc_iocbq *rspiocbp = NULL;
4003 	uint32_t portRspPut, portRspMax;
4004 	unsigned long iflag;
4005 	uint32_t status;
4006 
4007 	pgp = &phba->port_gp[pring->ringno];
4008 	spin_lock_irqsave(&phba->hbalock, iflag);
4009 	pring->stats.iocb_event++;
4010 
4011 	/*
4012 	 * The next available response entry should never exceed the maximum
4013 	 * entries.  If it does, treat it as an adapter hardware error.
4014 	 */
4015 	portRspMax = pring->sli.sli3.numRiocb;
4016 	portRspPut = le32_to_cpu(pgp->rspPutInx);
4017 	if (portRspPut >= portRspMax) {
4018 		/*
4019 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
4020 		 * rsp ring <portRspMax>
4021 		 */
4022 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4023 				"0303 Ring %d handler: portRspPut %d "
4024 				"is bigger than rsp ring %d\n",
4025 				pring->ringno, portRspPut, portRspMax);
4026 
4027 		phba->link_state = LPFC_HBA_ERROR;
4028 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4029 
4030 		phba->work_hs = HS_FFER3;
4031 		lpfc_handle_eratt(phba);
4032 
4033 		return;
4034 	}
4035 
4036 	rmb();
4037 	while (pring->sli.sli3.rspidx != portRspPut) {
4038 		/*
4039 		 * Build a completion list and call the appropriate handler.
4040 		 * The process is to get the next available response iocb, get
4041 		 * a free iocb from the list, copy the response data into the
4042 		 * free iocb, insert to the continuation list, and update the
4043 		 * next response index to slim.  This process makes response
4044 		 * iocb's in the ring available to DMA as fast as possible but
4045 		 * pays a penalty for a copy operation.  Since the iocb is
4046 		 * only 32 bytes, this penalty is considered small relative to
4047 		 * the PCI reads for register values and a slim write.  When
4048 		 * the ulpLe field is set, the entire Command has been
4049 		 * received.
4050 		 */
4051 		entry = lpfc_resp_iocb(phba, pring);
4052 
4053 		phba->last_completion_time = jiffies;
4054 		rspiocbp = __lpfc_sli_get_iocbq(phba);
4055 		if (rspiocbp == NULL) {
4056 			printk(KERN_ERR "%s: out of buffers! Failing "
4057 			       "completion.\n", __func__);
4058 			break;
4059 		}
4060 
4061 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
4062 				      phba->iocb_rsp_size);
4063 		irsp = &rspiocbp->iocb;
4064 
4065 		if (++pring->sli.sli3.rspidx >= portRspMax)
4066 			pring->sli.sli3.rspidx = 0;
4067 
4068 		if (pring->ringno == LPFC_ELS_RING) {
4069 			lpfc_debugfs_slow_ring_trc(phba,
4070 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
4071 				*(((uint32_t *) irsp) + 4),
4072 				*(((uint32_t *) irsp) + 6),
4073 				*(((uint32_t *) irsp) + 7));
4074 		}
4075 
4076 		writel(pring->sli.sli3.rspidx,
4077 			&phba->host_gp[pring->ringno].rspGetInx);
4078 
4079 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4080 		/* Handle the response IOCB */
4081 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
4082 		spin_lock_irqsave(&phba->hbalock, iflag);
4083 
4084 		/*
4085 		 * If the port response put pointer has not been updated, sync
4086 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
4087 		 * response put pointer.
4088 		 */
4089 		if (pring->sli.sli3.rspidx == portRspPut) {
4090 			portRspPut = le32_to_cpu(pgp->rspPutInx);
4091 		}
4092 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
4093 
4094 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
4095 		/* At least one response entry has been freed */
4096 		pring->stats.iocb_rsp_full++;
4097 		/* SET RxRE_RSP in Chip Att register */
4098 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
4099 		writel(status, phba->CAregaddr);
4100 		readl(phba->CAregaddr); /* flush */
4101 	}
4102 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
4103 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
4104 		pring->stats.iocb_cmd_empty++;
4105 
4106 		/* Force update of the local copy of cmdGetInx */
4107 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
4108 		lpfc_sli_resume_iocb(phba, pring);
4109 
4110 		if ((pring->lpfc_sli_cmd_available))
4111 			(pring->lpfc_sli_cmd_available) (phba, pring);
4112 
4113 	}
4114 
4115 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4116 	return;
4117 }
4118 
4119 /**
4120  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
4121  * @phba: Pointer to HBA context object.
4122  * @pring: Pointer to driver SLI ring object.
4123  * @mask: Host attention register mask for this ring.
4124  *
4125  * This function is called from the worker thread when there is a pending
4126  * ELS response iocb on the driver internal slow-path response iocb worker
4127  * queue. The caller does not hold any lock. The function will remove each
4128  * response iocb from the response worker queue and calls the handle
4129  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4130  **/
4131 static void
4132 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4133 				   struct lpfc_sli_ring *pring, uint32_t mask)
4134 {
4135 	struct lpfc_iocbq *irspiocbq;
4136 	struct hbq_dmabuf *dmabuf;
4137 	struct lpfc_cq_event *cq_event;
4138 	unsigned long iflag;
4139 	int count = 0;
4140 
4141 	spin_lock_irqsave(&phba->hbalock, iflag);
4142 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4143 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4144 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4145 		/* Get the response iocb from the head of work queue */
4146 		spin_lock_irqsave(&phba->hbalock, iflag);
4147 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4148 				 cq_event, struct lpfc_cq_event, list);
4149 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4150 
4151 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4152 		case CQE_CODE_COMPL_WQE:
4153 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4154 						 cq_event);
4155 			/* Translate ELS WCQE to response IOCBQ */
4156 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4157 								   irspiocbq);
4158 			if (irspiocbq)
4159 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4160 							   irspiocbq);
4161 			count++;
4162 			break;
4163 		case CQE_CODE_RECEIVE:
4164 		case CQE_CODE_RECEIVE_V1:
4165 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4166 					      cq_event);
4167 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4168 			count++;
4169 			break;
4170 		default:
4171 			break;
4172 		}
4173 
4174 		/* Limit the number of events to 64 to avoid soft lockups */
4175 		if (count == 64)
4176 			break;
4177 	}
4178 }
4179 
4180 /**
4181  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4182  * @phba: Pointer to HBA context object.
4183  * @pring: Pointer to driver SLI ring object.
4184  *
4185  * This function aborts all iocbs in the given ring and frees all the iocb
4186  * objects in txq. This function issues an abort iocb for all the iocb commands
4187  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4188  * the return of this function. The caller is not required to hold any locks.
4189  **/
4190 void
4191 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4192 {
4193 	LIST_HEAD(completions);
4194 	struct lpfc_iocbq *iocb, *next_iocb;
4195 
4196 	if (pring->ringno == LPFC_ELS_RING) {
4197 		lpfc_fabric_abort_hba(phba);
4198 	}
4199 
4200 	/* Error everything on txq and txcmplq
4201 	 * First do the txq.
4202 	 */
4203 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4204 		spin_lock_irq(&pring->ring_lock);
4205 		list_splice_init(&pring->txq, &completions);
4206 		pring->txq_cnt = 0;
4207 		spin_unlock_irq(&pring->ring_lock);
4208 
4209 		spin_lock_irq(&phba->hbalock);
4210 		/* Next issue ABTS for everything on the txcmplq */
4211 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4212 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4213 		spin_unlock_irq(&phba->hbalock);
4214 	} else {
4215 		spin_lock_irq(&phba->hbalock);
4216 		list_splice_init(&pring->txq, &completions);
4217 		pring->txq_cnt = 0;
4218 
4219 		/* Next issue ABTS for everything on the txcmplq */
4220 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4221 			lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL);
4222 		spin_unlock_irq(&phba->hbalock);
4223 	}
4224 
4225 	/* Cancel all the IOCBs from the completions list */
4226 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4227 			      IOERR_SLI_ABORTED);
4228 }
4229 
4230 /**
4231  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4232  * @phba: Pointer to HBA context object.
4233  *
4234  * This function aborts all iocbs in FCP rings and frees all the iocb
4235  * objects in txq. This function issues an abort iocb for all the iocb commands
4236  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4237  * the return of this function. The caller is not required to hold any locks.
4238  **/
4239 void
4240 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4241 {
4242 	struct lpfc_sli *psli = &phba->sli;
4243 	struct lpfc_sli_ring  *pring;
4244 	uint32_t i;
4245 
4246 	/* Look on all the FCP Rings for the iotag */
4247 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4248 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4249 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4250 			lpfc_sli_abort_iocb_ring(phba, pring);
4251 		}
4252 	} else {
4253 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4254 		lpfc_sli_abort_iocb_ring(phba, pring);
4255 	}
4256 }
4257 
4258 /**
4259  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4260  * @phba: Pointer to HBA context object.
4261  *
4262  * This function flushes all iocbs in the IO ring and frees all the iocb
4263  * objects in txq and txcmplq. This function will not issue abort iocbs
4264  * for all the iocb commands in txcmplq, they will just be returned with
4265  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4266  * slot has been permanently disabled.
4267  **/
4268 void
4269 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4270 {
4271 	LIST_HEAD(txq);
4272 	LIST_HEAD(txcmplq);
4273 	struct lpfc_sli *psli = &phba->sli;
4274 	struct lpfc_sli_ring  *pring;
4275 	uint32_t i;
4276 	struct lpfc_iocbq *piocb, *next_iocb;
4277 
4278 	spin_lock_irq(&phba->hbalock);
4279 	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4280 	    !phba->sli4_hba.hdwq) {
4281 		spin_unlock_irq(&phba->hbalock);
4282 		return;
4283 	}
4284 	/* Indicate the I/O queues are flushed */
4285 	phba->hba_flag |= HBA_IOQ_FLUSH;
4286 	spin_unlock_irq(&phba->hbalock);
4287 
4288 	/* Look on all the FCP Rings for the iotag */
4289 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4290 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4291 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4292 
4293 			spin_lock_irq(&pring->ring_lock);
4294 			/* Retrieve everything on txq */
4295 			list_splice_init(&pring->txq, &txq);
4296 			list_for_each_entry_safe(piocb, next_iocb,
4297 						 &pring->txcmplq, list)
4298 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4299 			/* Retrieve everything on the txcmplq */
4300 			list_splice_init(&pring->txcmplq, &txcmplq);
4301 			pring->txq_cnt = 0;
4302 			pring->txcmplq_cnt = 0;
4303 			spin_unlock_irq(&pring->ring_lock);
4304 
4305 			/* Flush the txq */
4306 			lpfc_sli_cancel_iocbs(phba, &txq,
4307 					      IOSTAT_LOCAL_REJECT,
4308 					      IOERR_SLI_DOWN);
4309 			/* Flush the txcmpq */
4310 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4311 					      IOSTAT_LOCAL_REJECT,
4312 					      IOERR_SLI_DOWN);
4313 		}
4314 	} else {
4315 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4316 
4317 		spin_lock_irq(&phba->hbalock);
4318 		/* Retrieve everything on txq */
4319 		list_splice_init(&pring->txq, &txq);
4320 		list_for_each_entry_safe(piocb, next_iocb,
4321 					 &pring->txcmplq, list)
4322 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4323 		/* Retrieve everything on the txcmplq */
4324 		list_splice_init(&pring->txcmplq, &txcmplq);
4325 		pring->txq_cnt = 0;
4326 		pring->txcmplq_cnt = 0;
4327 		spin_unlock_irq(&phba->hbalock);
4328 
4329 		/* Flush the txq */
4330 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4331 				      IOERR_SLI_DOWN);
4332 		/* Flush the txcmpq */
4333 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4334 				      IOERR_SLI_DOWN);
4335 	}
4336 }
4337 
4338 /**
4339  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4340  * @phba: Pointer to HBA context object.
4341  * @mask: Bit mask to be checked.
4342  *
4343  * This function reads the host status register and compares
4344  * with the provided bit mask to check if HBA completed
4345  * the restart. This function will wait in a loop for the
4346  * HBA to complete restart. If the HBA does not restart within
4347  * 15 iterations, the function will reset the HBA again. The
4348  * function returns 1 when HBA fail to restart otherwise returns
4349  * zero.
4350  **/
4351 static int
4352 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4353 {
4354 	uint32_t status;
4355 	int i = 0;
4356 	int retval = 0;
4357 
4358 	/* Read the HBA Host Status Register */
4359 	if (lpfc_readl(phba->HSregaddr, &status))
4360 		return 1;
4361 
4362 	/*
4363 	 * Check status register every 100ms for 5 retries, then every
4364 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4365 	 * every 2.5 sec for 4.
4366 	 * Break our of the loop if errors occurred during init.
4367 	 */
4368 	while (((status & mask) != mask) &&
4369 	       !(status & HS_FFERM) &&
4370 	       i++ < 20) {
4371 
4372 		if (i <= 5)
4373 			msleep(10);
4374 		else if (i <= 10)
4375 			msleep(500);
4376 		else
4377 			msleep(2500);
4378 
4379 		if (i == 15) {
4380 				/* Do post */
4381 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4382 			lpfc_sli_brdrestart(phba);
4383 		}
4384 		/* Read the HBA Host Status Register */
4385 		if (lpfc_readl(phba->HSregaddr, &status)) {
4386 			retval = 1;
4387 			break;
4388 		}
4389 	}
4390 
4391 	/* Check to see if any errors occurred during init */
4392 	if ((status & HS_FFERM) || (i >= 20)) {
4393 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4394 				"2751 Adapter failed to restart, "
4395 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4396 				status,
4397 				readl(phba->MBslimaddr + 0xa8),
4398 				readl(phba->MBslimaddr + 0xac));
4399 		phba->link_state = LPFC_HBA_ERROR;
4400 		retval = 1;
4401 	}
4402 
4403 	return retval;
4404 }
4405 
4406 /**
4407  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4408  * @phba: Pointer to HBA context object.
4409  * @mask: Bit mask to be checked.
4410  *
4411  * This function checks the host status register to check if HBA is
4412  * ready. This function will wait in a loop for the HBA to be ready
4413  * If the HBA is not ready , the function will will reset the HBA PCI
4414  * function again. The function returns 1 when HBA fail to be ready
4415  * otherwise returns zero.
4416  **/
4417 static int
4418 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4419 {
4420 	uint32_t status;
4421 	int retval = 0;
4422 
4423 	/* Read the HBA Host Status Register */
4424 	status = lpfc_sli4_post_status_check(phba);
4425 
4426 	if (status) {
4427 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4428 		lpfc_sli_brdrestart(phba);
4429 		status = lpfc_sli4_post_status_check(phba);
4430 	}
4431 
4432 	/* Check to see if any errors occurred during init */
4433 	if (status) {
4434 		phba->link_state = LPFC_HBA_ERROR;
4435 		retval = 1;
4436 	} else
4437 		phba->sli4_hba.intr_enable = 0;
4438 
4439 	return retval;
4440 }
4441 
4442 /**
4443  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4444  * @phba: Pointer to HBA context object.
4445  * @mask: Bit mask to be checked.
4446  *
4447  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4448  * from the API jump table function pointer from the lpfc_hba struct.
4449  **/
4450 int
4451 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4452 {
4453 	return phba->lpfc_sli_brdready(phba, mask);
4454 }
4455 
4456 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4457 
4458 /**
4459  * lpfc_reset_barrier - Make HBA ready for HBA reset
4460  * @phba: Pointer to HBA context object.
4461  *
4462  * This function is called before resetting an HBA. This function is called
4463  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4464  **/
4465 void lpfc_reset_barrier(struct lpfc_hba *phba)
4466 {
4467 	uint32_t __iomem *resp_buf;
4468 	uint32_t __iomem *mbox_buf;
4469 	volatile uint32_t mbox;
4470 	uint32_t hc_copy, ha_copy, resp_data;
4471 	int  i;
4472 	uint8_t hdrtype;
4473 
4474 	lockdep_assert_held(&phba->hbalock);
4475 
4476 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4477 	if (hdrtype != 0x80 ||
4478 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4479 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4480 		return;
4481 
4482 	/*
4483 	 * Tell the other part of the chip to suspend temporarily all
4484 	 * its DMA activity.
4485 	 */
4486 	resp_buf = phba->MBslimaddr;
4487 
4488 	/* Disable the error attention */
4489 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4490 		return;
4491 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4492 	readl(phba->HCregaddr); /* flush */
4493 	phba->link_flag |= LS_IGNORE_ERATT;
4494 
4495 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4496 		return;
4497 	if (ha_copy & HA_ERATT) {
4498 		/* Clear Chip error bit */
4499 		writel(HA_ERATT, phba->HAregaddr);
4500 		phba->pport->stopped = 1;
4501 	}
4502 
4503 	mbox = 0;
4504 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4505 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4506 
4507 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4508 	mbox_buf = phba->MBslimaddr;
4509 	writel(mbox, mbox_buf);
4510 
4511 	for (i = 0; i < 50; i++) {
4512 		if (lpfc_readl((resp_buf + 1), &resp_data))
4513 			return;
4514 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4515 			mdelay(1);
4516 		else
4517 			break;
4518 	}
4519 	resp_data = 0;
4520 	if (lpfc_readl((resp_buf + 1), &resp_data))
4521 		return;
4522 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4523 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4524 		    phba->pport->stopped)
4525 			goto restore_hc;
4526 		else
4527 			goto clear_errat;
4528 	}
4529 
4530 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4531 	resp_data = 0;
4532 	for (i = 0; i < 500; i++) {
4533 		if (lpfc_readl(resp_buf, &resp_data))
4534 			return;
4535 		if (resp_data != mbox)
4536 			mdelay(1);
4537 		else
4538 			break;
4539 	}
4540 
4541 clear_errat:
4542 
4543 	while (++i < 500) {
4544 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4545 			return;
4546 		if (!(ha_copy & HA_ERATT))
4547 			mdelay(1);
4548 		else
4549 			break;
4550 	}
4551 
4552 	if (readl(phba->HAregaddr) & HA_ERATT) {
4553 		writel(HA_ERATT, phba->HAregaddr);
4554 		phba->pport->stopped = 1;
4555 	}
4556 
4557 restore_hc:
4558 	phba->link_flag &= ~LS_IGNORE_ERATT;
4559 	writel(hc_copy, phba->HCregaddr);
4560 	readl(phba->HCregaddr); /* flush */
4561 }
4562 
4563 /**
4564  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4565  * @phba: Pointer to HBA context object.
4566  *
4567  * This function issues a kill_board mailbox command and waits for
4568  * the error attention interrupt. This function is called for stopping
4569  * the firmware processing. The caller is not required to hold any
4570  * locks. This function calls lpfc_hba_down_post function to free
4571  * any pending commands after the kill. The function will return 1 when it
4572  * fails to kill the board else will return 0.
4573  **/
4574 int
4575 lpfc_sli_brdkill(struct lpfc_hba *phba)
4576 {
4577 	struct lpfc_sli *psli;
4578 	LPFC_MBOXQ_t *pmb;
4579 	uint32_t status;
4580 	uint32_t ha_copy;
4581 	int retval;
4582 	int i = 0;
4583 
4584 	psli = &phba->sli;
4585 
4586 	/* Kill HBA */
4587 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4588 			"0329 Kill HBA Data: x%x x%x\n",
4589 			phba->pport->port_state, psli->sli_flag);
4590 
4591 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4592 	if (!pmb)
4593 		return 1;
4594 
4595 	/* Disable the error attention */
4596 	spin_lock_irq(&phba->hbalock);
4597 	if (lpfc_readl(phba->HCregaddr, &status)) {
4598 		spin_unlock_irq(&phba->hbalock);
4599 		mempool_free(pmb, phba->mbox_mem_pool);
4600 		return 1;
4601 	}
4602 	status &= ~HC_ERINT_ENA;
4603 	writel(status, phba->HCregaddr);
4604 	readl(phba->HCregaddr); /* flush */
4605 	phba->link_flag |= LS_IGNORE_ERATT;
4606 	spin_unlock_irq(&phba->hbalock);
4607 
4608 	lpfc_kill_board(phba, pmb);
4609 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4610 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4611 
4612 	if (retval != MBX_SUCCESS) {
4613 		if (retval != MBX_BUSY)
4614 			mempool_free(pmb, phba->mbox_mem_pool);
4615 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4616 				"2752 KILL_BOARD command failed retval %d\n",
4617 				retval);
4618 		spin_lock_irq(&phba->hbalock);
4619 		phba->link_flag &= ~LS_IGNORE_ERATT;
4620 		spin_unlock_irq(&phba->hbalock);
4621 		return 1;
4622 	}
4623 
4624 	spin_lock_irq(&phba->hbalock);
4625 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4626 	spin_unlock_irq(&phba->hbalock);
4627 
4628 	mempool_free(pmb, phba->mbox_mem_pool);
4629 
4630 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4631 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4632 	 * 3 seconds we still set HBA_ERROR state because the status of the
4633 	 * board is now undefined.
4634 	 */
4635 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4636 		return 1;
4637 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4638 		mdelay(100);
4639 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4640 			return 1;
4641 	}
4642 
4643 	del_timer_sync(&psli->mbox_tmo);
4644 	if (ha_copy & HA_ERATT) {
4645 		writel(HA_ERATT, phba->HAregaddr);
4646 		phba->pport->stopped = 1;
4647 	}
4648 	spin_lock_irq(&phba->hbalock);
4649 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4650 	psli->mbox_active = NULL;
4651 	phba->link_flag &= ~LS_IGNORE_ERATT;
4652 	spin_unlock_irq(&phba->hbalock);
4653 
4654 	lpfc_hba_down_post(phba);
4655 	phba->link_state = LPFC_HBA_ERROR;
4656 
4657 	return ha_copy & HA_ERATT ? 0 : 1;
4658 }
4659 
4660 /**
4661  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4662  * @phba: Pointer to HBA context object.
4663  *
4664  * This function resets the HBA by writing HC_INITFF to the control
4665  * register. After the HBA resets, this function resets all the iocb ring
4666  * indices. This function disables PCI layer parity checking during
4667  * the reset.
4668  * This function returns 0 always.
4669  * The caller is not required to hold any locks.
4670  **/
4671 int
4672 lpfc_sli_brdreset(struct lpfc_hba *phba)
4673 {
4674 	struct lpfc_sli *psli;
4675 	struct lpfc_sli_ring *pring;
4676 	uint16_t cfg_value;
4677 	int i;
4678 
4679 	psli = &phba->sli;
4680 
4681 	/* Reset HBA */
4682 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4683 			"0325 Reset HBA Data: x%x x%x\n",
4684 			(phba->pport) ? phba->pport->port_state : 0,
4685 			psli->sli_flag);
4686 
4687 	/* perform board reset */
4688 	phba->fc_eventTag = 0;
4689 	phba->link_events = 0;
4690 	if (phba->pport) {
4691 		phba->pport->fc_myDID = 0;
4692 		phba->pport->fc_prevDID = 0;
4693 	}
4694 
4695 	/* Turn off parity checking and serr during the physical reset */
4696 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4697 		return -EIO;
4698 
4699 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4700 			      (cfg_value &
4701 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4702 
4703 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4704 
4705 	/* Now toggle INITFF bit in the Host Control Register */
4706 	writel(HC_INITFF, phba->HCregaddr);
4707 	mdelay(1);
4708 	readl(phba->HCregaddr); /* flush */
4709 	writel(0, phba->HCregaddr);
4710 	readl(phba->HCregaddr); /* flush */
4711 
4712 	/* Restore PCI cmd register */
4713 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4714 
4715 	/* Initialize relevant SLI info */
4716 	for (i = 0; i < psli->num_rings; i++) {
4717 		pring = &psli->sli3_ring[i];
4718 		pring->flag = 0;
4719 		pring->sli.sli3.rspidx = 0;
4720 		pring->sli.sli3.next_cmdidx  = 0;
4721 		pring->sli.sli3.local_getidx = 0;
4722 		pring->sli.sli3.cmdidx = 0;
4723 		pring->missbufcnt = 0;
4724 	}
4725 
4726 	phba->link_state = LPFC_WARM_START;
4727 	return 0;
4728 }
4729 
4730 /**
4731  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4732  * @phba: Pointer to HBA context object.
4733  *
4734  * This function resets a SLI4 HBA. This function disables PCI layer parity
4735  * checking during resets the device. The caller is not required to hold
4736  * any locks.
4737  *
4738  * This function returns 0 on success else returns negative error code.
4739  **/
4740 int
4741 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4742 {
4743 	struct lpfc_sli *psli = &phba->sli;
4744 	uint16_t cfg_value;
4745 	int rc = 0;
4746 
4747 	/* Reset HBA */
4748 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4749 			"0295 Reset HBA Data: x%x x%x x%x\n",
4750 			phba->pport->port_state, psli->sli_flag,
4751 			phba->hba_flag);
4752 
4753 	/* perform board reset */
4754 	phba->fc_eventTag = 0;
4755 	phba->link_events = 0;
4756 	phba->pport->fc_myDID = 0;
4757 	phba->pport->fc_prevDID = 0;
4758 
4759 	spin_lock_irq(&phba->hbalock);
4760 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4761 	phba->fcf.fcf_flag = 0;
4762 	spin_unlock_irq(&phba->hbalock);
4763 
4764 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4765 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4766 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4767 		return rc;
4768 	}
4769 
4770 	/* Now physically reset the device */
4771 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4772 			"0389 Performing PCI function reset!\n");
4773 
4774 	/* Turn off parity checking and serr during the physical reset */
4775 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4776 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4777 				"3205 PCI read Config failed\n");
4778 		return -EIO;
4779 	}
4780 
4781 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4782 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4783 
4784 	/* Perform FCoE PCI function reset before freeing queue memory */
4785 	rc = lpfc_pci_function_reset(phba);
4786 
4787 	/* Restore PCI cmd register */
4788 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4789 
4790 	return rc;
4791 }
4792 
4793 /**
4794  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4795  * @phba: Pointer to HBA context object.
4796  *
4797  * This function is called in the SLI initialization code path to
4798  * restart the HBA. The caller is not required to hold any lock.
4799  * This function writes MBX_RESTART mailbox command to the SLIM and
4800  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4801  * function to free any pending commands. The function enables
4802  * POST only during the first initialization. The function returns zero.
4803  * The function does not guarantee completion of MBX_RESTART mailbox
4804  * command before the return of this function.
4805  **/
4806 static int
4807 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4808 {
4809 	MAILBOX_t *mb;
4810 	struct lpfc_sli *psli;
4811 	volatile uint32_t word0;
4812 	void __iomem *to_slim;
4813 	uint32_t hba_aer_enabled;
4814 
4815 	spin_lock_irq(&phba->hbalock);
4816 
4817 	/* Take PCIe device Advanced Error Reporting (AER) state */
4818 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4819 
4820 	psli = &phba->sli;
4821 
4822 	/* Restart HBA */
4823 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4824 			"0337 Restart HBA Data: x%x x%x\n",
4825 			(phba->pport) ? phba->pport->port_state : 0,
4826 			psli->sli_flag);
4827 
4828 	word0 = 0;
4829 	mb = (MAILBOX_t *) &word0;
4830 	mb->mbxCommand = MBX_RESTART;
4831 	mb->mbxHc = 1;
4832 
4833 	lpfc_reset_barrier(phba);
4834 
4835 	to_slim = phba->MBslimaddr;
4836 	writel(*(uint32_t *) mb, to_slim);
4837 	readl(to_slim); /* flush */
4838 
4839 	/* Only skip post after fc_ffinit is completed */
4840 	if (phba->pport && phba->pport->port_state)
4841 		word0 = 1;	/* This is really setting up word1 */
4842 	else
4843 		word0 = 0;	/* This is really setting up word1 */
4844 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4845 	writel(*(uint32_t *) mb, to_slim);
4846 	readl(to_slim); /* flush */
4847 
4848 	lpfc_sli_brdreset(phba);
4849 	if (phba->pport)
4850 		phba->pport->stopped = 0;
4851 	phba->link_state = LPFC_INIT_START;
4852 	phba->hba_flag = 0;
4853 	spin_unlock_irq(&phba->hbalock);
4854 
4855 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4856 	psli->stats_start = ktime_get_seconds();
4857 
4858 	/* Give the INITFF and Post time to settle. */
4859 	mdelay(100);
4860 
4861 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4862 	if (hba_aer_enabled)
4863 		pci_disable_pcie_error_reporting(phba->pcidev);
4864 
4865 	lpfc_hba_down_post(phba);
4866 
4867 	return 0;
4868 }
4869 
4870 /**
4871  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4872  * @phba: Pointer to HBA context object.
4873  *
4874  * This function is called in the SLI initialization code path to restart
4875  * a SLI4 HBA. The caller is not required to hold any lock.
4876  * At the end of the function, it calls lpfc_hba_down_post function to
4877  * free any pending commands.
4878  **/
4879 static int
4880 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4881 {
4882 	struct lpfc_sli *psli = &phba->sli;
4883 	uint32_t hba_aer_enabled;
4884 	int rc;
4885 
4886 	/* Restart HBA */
4887 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4888 			"0296 Restart HBA Data: x%x x%x\n",
4889 			phba->pport->port_state, psli->sli_flag);
4890 
4891 	/* Take PCIe device Advanced Error Reporting (AER) state */
4892 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4893 
4894 	rc = lpfc_sli4_brdreset(phba);
4895 	if (rc) {
4896 		phba->link_state = LPFC_HBA_ERROR;
4897 		goto hba_down_queue;
4898 	}
4899 
4900 	spin_lock_irq(&phba->hbalock);
4901 	phba->pport->stopped = 0;
4902 	phba->link_state = LPFC_INIT_START;
4903 	phba->hba_flag = 0;
4904 	spin_unlock_irq(&phba->hbalock);
4905 
4906 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4907 	psli->stats_start = ktime_get_seconds();
4908 
4909 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4910 	if (hba_aer_enabled)
4911 		pci_disable_pcie_error_reporting(phba->pcidev);
4912 
4913 hba_down_queue:
4914 	lpfc_hba_down_post(phba);
4915 	lpfc_sli4_queue_destroy(phba);
4916 
4917 	return rc;
4918 }
4919 
4920 /**
4921  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4922  * @phba: Pointer to HBA context object.
4923  *
4924  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4925  * API jump table function pointer from the lpfc_hba struct.
4926 **/
4927 int
4928 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4929 {
4930 	return phba->lpfc_sli_brdrestart(phba);
4931 }
4932 
4933 /**
4934  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4935  * @phba: Pointer to HBA context object.
4936  *
4937  * This function is called after a HBA restart to wait for successful
4938  * restart of the HBA. Successful restart of the HBA is indicated by
4939  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4940  * iteration, the function will restart the HBA again. The function returns
4941  * zero if HBA successfully restarted else returns negative error code.
4942  **/
4943 int
4944 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4945 {
4946 	uint32_t status, i = 0;
4947 
4948 	/* Read the HBA Host Status Register */
4949 	if (lpfc_readl(phba->HSregaddr, &status))
4950 		return -EIO;
4951 
4952 	/* Check status register to see what current state is */
4953 	i = 0;
4954 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4955 
4956 		/* Check every 10ms for 10 retries, then every 100ms for 90
4957 		 * retries, then every 1 sec for 50 retires for a total of
4958 		 * ~60 seconds before reset the board again and check every
4959 		 * 1 sec for 50 retries. The up to 60 seconds before the
4960 		 * board ready is required by the Falcon FIPS zeroization
4961 		 * complete, and any reset the board in between shall cause
4962 		 * restart of zeroization, further delay the board ready.
4963 		 */
4964 		if (i++ >= 200) {
4965 			/* Adapter failed to init, timeout, status reg
4966 			   <status> */
4967 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4968 					"0436 Adapter failed to init, "
4969 					"timeout, status reg x%x, "
4970 					"FW Data: A8 x%x AC x%x\n", status,
4971 					readl(phba->MBslimaddr + 0xa8),
4972 					readl(phba->MBslimaddr + 0xac));
4973 			phba->link_state = LPFC_HBA_ERROR;
4974 			return -ETIMEDOUT;
4975 		}
4976 
4977 		/* Check to see if any errors occurred during init */
4978 		if (status & HS_FFERM) {
4979 			/* ERROR: During chipset initialization */
4980 			/* Adapter failed to init, chipset, status reg
4981 			   <status> */
4982 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
4983 					"0437 Adapter failed to init, "
4984 					"chipset, status reg x%x, "
4985 					"FW Data: A8 x%x AC x%x\n", status,
4986 					readl(phba->MBslimaddr + 0xa8),
4987 					readl(phba->MBslimaddr + 0xac));
4988 			phba->link_state = LPFC_HBA_ERROR;
4989 			return -EIO;
4990 		}
4991 
4992 		if (i <= 10)
4993 			msleep(10);
4994 		else if (i <= 100)
4995 			msleep(100);
4996 		else
4997 			msleep(1000);
4998 
4999 		if (i == 150) {
5000 			/* Do post */
5001 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5002 			lpfc_sli_brdrestart(phba);
5003 		}
5004 		/* Read the HBA Host Status Register */
5005 		if (lpfc_readl(phba->HSregaddr, &status))
5006 			return -EIO;
5007 	}
5008 
5009 	/* Check to see if any errors occurred during init */
5010 	if (status & HS_FFERM) {
5011 		/* ERROR: During chipset initialization */
5012 		/* Adapter failed to init, chipset, status reg <status> */
5013 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5014 				"0438 Adapter failed to init, chipset, "
5015 				"status reg x%x, "
5016 				"FW Data: A8 x%x AC x%x\n", status,
5017 				readl(phba->MBslimaddr + 0xa8),
5018 				readl(phba->MBslimaddr + 0xac));
5019 		phba->link_state = LPFC_HBA_ERROR;
5020 		return -EIO;
5021 	}
5022 
5023 	/* Clear all interrupt enable conditions */
5024 	writel(0, phba->HCregaddr);
5025 	readl(phba->HCregaddr); /* flush */
5026 
5027 	/* setup host attn register */
5028 	writel(0xffffffff, phba->HAregaddr);
5029 	readl(phba->HAregaddr); /* flush */
5030 	return 0;
5031 }
5032 
5033 /**
5034  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
5035  *
5036  * This function calculates and returns the number of HBQs required to be
5037  * configured.
5038  **/
5039 int
5040 lpfc_sli_hbq_count(void)
5041 {
5042 	return ARRAY_SIZE(lpfc_hbq_defs);
5043 }
5044 
5045 /**
5046  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
5047  *
5048  * This function adds the number of hbq entries in every HBQ to get
5049  * the total number of hbq entries required for the HBA and returns
5050  * the total count.
5051  **/
5052 static int
5053 lpfc_sli_hbq_entry_count(void)
5054 {
5055 	int  hbq_count = lpfc_sli_hbq_count();
5056 	int  count = 0;
5057 	int  i;
5058 
5059 	for (i = 0; i < hbq_count; ++i)
5060 		count += lpfc_hbq_defs[i]->entry_count;
5061 	return count;
5062 }
5063 
5064 /**
5065  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
5066  *
5067  * This function calculates amount of memory required for all hbq entries
5068  * to be configured and returns the total memory required.
5069  **/
5070 int
5071 lpfc_sli_hbq_size(void)
5072 {
5073 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
5074 }
5075 
5076 /**
5077  * lpfc_sli_hbq_setup - configure and initialize HBQs
5078  * @phba: Pointer to HBA context object.
5079  *
5080  * This function is called during the SLI initialization to configure
5081  * all the HBQs and post buffers to the HBQ. The caller is not
5082  * required to hold any locks. This function will return zero if successful
5083  * else it will return negative error code.
5084  **/
5085 static int
5086 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
5087 {
5088 	int  hbq_count = lpfc_sli_hbq_count();
5089 	LPFC_MBOXQ_t *pmb;
5090 	MAILBOX_t *pmbox;
5091 	uint32_t hbqno;
5092 	uint32_t hbq_entry_index;
5093 
5094 				/* Get a Mailbox buffer to setup mailbox
5095 				 * commands for HBA initialization
5096 				 */
5097 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5098 
5099 	if (!pmb)
5100 		return -ENOMEM;
5101 
5102 	pmbox = &pmb->u.mb;
5103 
5104 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
5105 	phba->link_state = LPFC_INIT_MBX_CMDS;
5106 	phba->hbq_in_use = 1;
5107 
5108 	hbq_entry_index = 0;
5109 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
5110 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
5111 		phba->hbqs[hbqno].hbqPutIdx      = 0;
5112 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
5113 		phba->hbqs[hbqno].entry_count =
5114 			lpfc_hbq_defs[hbqno]->entry_count;
5115 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
5116 			hbq_entry_index, pmb);
5117 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
5118 
5119 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
5120 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
5121 			   mbxStatus <status>, ring <num> */
5122 
5123 			lpfc_printf_log(phba, KERN_ERR,
5124 					LOG_SLI | LOG_VPORT,
5125 					"1805 Adapter failed to init. "
5126 					"Data: x%x x%x x%x\n",
5127 					pmbox->mbxCommand,
5128 					pmbox->mbxStatus, hbqno);
5129 
5130 			phba->link_state = LPFC_HBA_ERROR;
5131 			mempool_free(pmb, phba->mbox_mem_pool);
5132 			return -ENXIO;
5133 		}
5134 	}
5135 	phba->hbq_count = hbq_count;
5136 
5137 	mempool_free(pmb, phba->mbox_mem_pool);
5138 
5139 	/* Initially populate or replenish the HBQs */
5140 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5141 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5142 	return 0;
5143 }
5144 
5145 /**
5146  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5147  * @phba: Pointer to HBA context object.
5148  *
5149  * This function is called during the SLI initialization to configure
5150  * all the HBQs and post buffers to the HBQ. The caller is not
5151  * required to hold any locks. This function will return zero if successful
5152  * else it will return negative error code.
5153  **/
5154 static int
5155 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5156 {
5157 	phba->hbq_in_use = 1;
5158 	/**
5159 	 * Specific case when the MDS diagnostics is enabled and supported.
5160 	 * The receive buffer count is truncated to manage the incoming
5161 	 * traffic.
5162 	 **/
5163 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5164 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5165 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5166 	else
5167 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5168 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5169 	phba->hbq_count = 1;
5170 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5171 	/* Initially populate or replenish the HBQs */
5172 	return 0;
5173 }
5174 
5175 /**
5176  * lpfc_sli_config_port - Issue config port mailbox command
5177  * @phba: Pointer to HBA context object.
5178  * @sli_mode: sli mode - 2/3
5179  *
5180  * This function is called by the sli initialization code path
5181  * to issue config_port mailbox command. This function restarts the
5182  * HBA firmware and issues a config_port mailbox command to configure
5183  * the SLI interface in the sli mode specified by sli_mode
5184  * variable. The caller is not required to hold any locks.
5185  * The function returns 0 if successful, else returns negative error
5186  * code.
5187  **/
5188 int
5189 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5190 {
5191 	LPFC_MBOXQ_t *pmb;
5192 	uint32_t resetcount = 0, rc = 0, done = 0;
5193 
5194 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5195 	if (!pmb) {
5196 		phba->link_state = LPFC_HBA_ERROR;
5197 		return -ENOMEM;
5198 	}
5199 
5200 	phba->sli_rev = sli_mode;
5201 	while (resetcount < 2 && !done) {
5202 		spin_lock_irq(&phba->hbalock);
5203 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5204 		spin_unlock_irq(&phba->hbalock);
5205 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5206 		lpfc_sli_brdrestart(phba);
5207 		rc = lpfc_sli_chipset_init(phba);
5208 		if (rc)
5209 			break;
5210 
5211 		spin_lock_irq(&phba->hbalock);
5212 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5213 		spin_unlock_irq(&phba->hbalock);
5214 		resetcount++;
5215 
5216 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5217 		 * value of 0 means the call was successful.  Any other
5218 		 * nonzero value is a failure, but if ERESTART is returned,
5219 		 * the driver may reset the HBA and try again.
5220 		 */
5221 		rc = lpfc_config_port_prep(phba);
5222 		if (rc == -ERESTART) {
5223 			phba->link_state = LPFC_LINK_UNKNOWN;
5224 			continue;
5225 		} else if (rc)
5226 			break;
5227 
5228 		phba->link_state = LPFC_INIT_MBX_CMDS;
5229 		lpfc_config_port(phba, pmb);
5230 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5231 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5232 					LPFC_SLI3_HBQ_ENABLED |
5233 					LPFC_SLI3_CRP_ENABLED |
5234 					LPFC_SLI3_DSS_ENABLED);
5235 		if (rc != MBX_SUCCESS) {
5236 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5237 				"0442 Adapter failed to init, mbxCmd x%x "
5238 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5239 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5240 			spin_lock_irq(&phba->hbalock);
5241 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5242 			spin_unlock_irq(&phba->hbalock);
5243 			rc = -ENXIO;
5244 		} else {
5245 			/* Allow asynchronous mailbox command to go through */
5246 			spin_lock_irq(&phba->hbalock);
5247 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5248 			spin_unlock_irq(&phba->hbalock);
5249 			done = 1;
5250 
5251 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5252 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5253 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5254 					"3110 Port did not grant ASABT\n");
5255 		}
5256 	}
5257 	if (!done) {
5258 		rc = -EINVAL;
5259 		goto do_prep_failed;
5260 	}
5261 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5262 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5263 			rc = -ENXIO;
5264 			goto do_prep_failed;
5265 		}
5266 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5267 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5268 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5269 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5270 				phba->max_vpi : phba->max_vports;
5271 
5272 		} else
5273 			phba->max_vpi = 0;
5274 		if (pmb->u.mb.un.varCfgPort.gerbm)
5275 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5276 		if (pmb->u.mb.un.varCfgPort.gcrp)
5277 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5278 
5279 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5280 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5281 
5282 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5283 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5284 				phba->cfg_enable_bg = 0;
5285 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5286 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5287 						"0443 Adapter did not grant "
5288 						"BlockGuard\n");
5289 			}
5290 		}
5291 	} else {
5292 		phba->hbq_get = NULL;
5293 		phba->port_gp = phba->mbox->us.s2.port;
5294 		phba->max_vpi = 0;
5295 	}
5296 do_prep_failed:
5297 	mempool_free(pmb, phba->mbox_mem_pool);
5298 	return rc;
5299 }
5300 
5301 
5302 /**
5303  * lpfc_sli_hba_setup - SLI initialization function
5304  * @phba: Pointer to HBA context object.
5305  *
5306  * This function is the main SLI initialization function. This function
5307  * is called by the HBA initialization code, HBA reset code and HBA
5308  * error attention handler code. Caller is not required to hold any
5309  * locks. This function issues config_port mailbox command to configure
5310  * the SLI, setup iocb rings and HBQ rings. In the end the function
5311  * calls the config_port_post function to issue init_link mailbox
5312  * command and to start the discovery. The function will return zero
5313  * if successful, else it will return negative error code.
5314  **/
5315 int
5316 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5317 {
5318 	uint32_t rc;
5319 	int  mode = 3, i;
5320 	int longs;
5321 
5322 	switch (phba->cfg_sli_mode) {
5323 	case 2:
5324 		if (phba->cfg_enable_npiv) {
5325 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5326 				"1824 NPIV enabled: Override sli_mode "
5327 				"parameter (%d) to auto (0).\n",
5328 				phba->cfg_sli_mode);
5329 			break;
5330 		}
5331 		mode = 2;
5332 		break;
5333 	case 0:
5334 	case 3:
5335 		break;
5336 	default:
5337 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5338 				"1819 Unrecognized sli_mode parameter: %d.\n",
5339 				phba->cfg_sli_mode);
5340 
5341 		break;
5342 	}
5343 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5344 
5345 	rc = lpfc_sli_config_port(phba, mode);
5346 
5347 	if (rc && phba->cfg_sli_mode == 3)
5348 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5349 				"1820 Unable to select SLI-3.  "
5350 				"Not supported by adapter.\n");
5351 	if (rc && mode != 2)
5352 		rc = lpfc_sli_config_port(phba, 2);
5353 	else if (rc && mode == 2)
5354 		rc = lpfc_sli_config_port(phba, 3);
5355 	if (rc)
5356 		goto lpfc_sli_hba_setup_error;
5357 
5358 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5359 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5360 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5361 		if (!rc) {
5362 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5363 					"2709 This device supports "
5364 					"Advanced Error Reporting (AER)\n");
5365 			spin_lock_irq(&phba->hbalock);
5366 			phba->hba_flag |= HBA_AER_ENABLED;
5367 			spin_unlock_irq(&phba->hbalock);
5368 		} else {
5369 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5370 					"2708 This device does not support "
5371 					"Advanced Error Reporting (AER): %d\n",
5372 					rc);
5373 			phba->cfg_aer_support = 0;
5374 		}
5375 	}
5376 
5377 	if (phba->sli_rev == 3) {
5378 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5379 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5380 	} else {
5381 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5382 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5383 		phba->sli3_options = 0;
5384 	}
5385 
5386 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5387 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5388 			phba->sli_rev, phba->max_vpi);
5389 	rc = lpfc_sli_ring_map(phba);
5390 
5391 	if (rc)
5392 		goto lpfc_sli_hba_setup_error;
5393 
5394 	/* Initialize VPIs. */
5395 	if (phba->sli_rev == LPFC_SLI_REV3) {
5396 		/*
5397 		 * The VPI bitmask and physical ID array are allocated
5398 		 * and initialized once only - at driver load.  A port
5399 		 * reset doesn't need to reinitialize this memory.
5400 		 */
5401 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5402 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5403 			phba->vpi_bmask = kcalloc(longs,
5404 						  sizeof(unsigned long),
5405 						  GFP_KERNEL);
5406 			if (!phba->vpi_bmask) {
5407 				rc = -ENOMEM;
5408 				goto lpfc_sli_hba_setup_error;
5409 			}
5410 
5411 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5412 						sizeof(uint16_t),
5413 						GFP_KERNEL);
5414 			if (!phba->vpi_ids) {
5415 				kfree(phba->vpi_bmask);
5416 				rc = -ENOMEM;
5417 				goto lpfc_sli_hba_setup_error;
5418 			}
5419 			for (i = 0; i < phba->max_vpi; i++)
5420 				phba->vpi_ids[i] = i;
5421 		}
5422 	}
5423 
5424 	/* Init HBQs */
5425 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5426 		rc = lpfc_sli_hbq_setup(phba);
5427 		if (rc)
5428 			goto lpfc_sli_hba_setup_error;
5429 	}
5430 	spin_lock_irq(&phba->hbalock);
5431 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5432 	spin_unlock_irq(&phba->hbalock);
5433 
5434 	rc = lpfc_config_port_post(phba);
5435 	if (rc)
5436 		goto lpfc_sli_hba_setup_error;
5437 
5438 	return rc;
5439 
5440 lpfc_sli_hba_setup_error:
5441 	phba->link_state = LPFC_HBA_ERROR;
5442 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5443 			"0445 Firmware initialization failed\n");
5444 	return rc;
5445 }
5446 
5447 /**
5448  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5449  * @phba: Pointer to HBA context object.
5450  *
5451  * This function issue a dump mailbox command to read config region
5452  * 23 and parse the records in the region and populate driver
5453  * data structure.
5454  **/
5455 static int
5456 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5457 {
5458 	LPFC_MBOXQ_t *mboxq;
5459 	struct lpfc_dmabuf *mp;
5460 	struct lpfc_mqe *mqe;
5461 	uint32_t data_length;
5462 	int rc;
5463 
5464 	/* Program the default value of vlan_id and fc_map */
5465 	phba->valid_vlan = 0;
5466 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5467 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5468 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5469 
5470 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5471 	if (!mboxq)
5472 		return -ENOMEM;
5473 
5474 	mqe = &mboxq->u.mqe;
5475 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5476 		rc = -ENOMEM;
5477 		goto out_free_mboxq;
5478 	}
5479 
5480 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5481 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5482 
5483 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5484 			"(%d):2571 Mailbox cmd x%x Status x%x "
5485 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5486 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5487 			"CQ: x%x x%x x%x x%x\n",
5488 			mboxq->vport ? mboxq->vport->vpi : 0,
5489 			bf_get(lpfc_mqe_command, mqe),
5490 			bf_get(lpfc_mqe_status, mqe),
5491 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5492 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5493 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5494 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5495 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5496 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5497 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5498 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5499 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5500 			mboxq->mcqe.word0,
5501 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5502 			mboxq->mcqe.trailer);
5503 
5504 	if (rc) {
5505 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5506 		kfree(mp);
5507 		rc = -EIO;
5508 		goto out_free_mboxq;
5509 	}
5510 	data_length = mqe->un.mb_words[5];
5511 	if (data_length > DMP_RGN23_SIZE) {
5512 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5513 		kfree(mp);
5514 		rc = -EIO;
5515 		goto out_free_mboxq;
5516 	}
5517 
5518 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5519 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5520 	kfree(mp);
5521 	rc = 0;
5522 
5523 out_free_mboxq:
5524 	mempool_free(mboxq, phba->mbox_mem_pool);
5525 	return rc;
5526 }
5527 
5528 /**
5529  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5530  * @phba: pointer to lpfc hba data structure.
5531  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5532  * @vpd: pointer to the memory to hold resulting port vpd data.
5533  * @vpd_size: On input, the number of bytes allocated to @vpd.
5534  *	      On output, the number of data bytes in @vpd.
5535  *
5536  * This routine executes a READ_REV SLI4 mailbox command.  In
5537  * addition, this routine gets the port vpd data.
5538  *
5539  * Return codes
5540  * 	0 - successful
5541  * 	-ENOMEM - could not allocated memory.
5542  **/
5543 static int
5544 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5545 		    uint8_t *vpd, uint32_t *vpd_size)
5546 {
5547 	int rc = 0;
5548 	uint32_t dma_size;
5549 	struct lpfc_dmabuf *dmabuf;
5550 	struct lpfc_mqe *mqe;
5551 
5552 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5553 	if (!dmabuf)
5554 		return -ENOMEM;
5555 
5556 	/*
5557 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5558 	 * mailbox command.
5559 	 */
5560 	dma_size = *vpd_size;
5561 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5562 					  &dmabuf->phys, GFP_KERNEL);
5563 	if (!dmabuf->virt) {
5564 		kfree(dmabuf);
5565 		return -ENOMEM;
5566 	}
5567 
5568 	/*
5569 	 * The SLI4 implementation of READ_REV conflicts at word1,
5570 	 * bits 31:16 and SLI4 adds vpd functionality not present
5571 	 * in SLI3.  This code corrects the conflicts.
5572 	 */
5573 	lpfc_read_rev(phba, mboxq);
5574 	mqe = &mboxq->u.mqe;
5575 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5576 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5577 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5578 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5579 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5580 
5581 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5582 	if (rc) {
5583 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5584 				  dmabuf->virt, dmabuf->phys);
5585 		kfree(dmabuf);
5586 		return -EIO;
5587 	}
5588 
5589 	/*
5590 	 * The available vpd length cannot be bigger than the
5591 	 * DMA buffer passed to the port.  Catch the less than
5592 	 * case and update the caller's size.
5593 	 */
5594 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5595 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5596 
5597 	memcpy(vpd, dmabuf->virt, *vpd_size);
5598 
5599 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5600 			  dmabuf->virt, dmabuf->phys);
5601 	kfree(dmabuf);
5602 	return 0;
5603 }
5604 
5605 /**
5606  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5607  * @phba: pointer to lpfc hba data structure.
5608  *
5609  * This routine retrieves SLI4 device physical port name this PCI function
5610  * is attached to.
5611  *
5612  * Return codes
5613  *      0 - successful
5614  *      otherwise - failed to retrieve controller attributes
5615  **/
5616 static int
5617 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5618 {
5619 	LPFC_MBOXQ_t *mboxq;
5620 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5621 	struct lpfc_controller_attribute *cntl_attr;
5622 	void *virtaddr = NULL;
5623 	uint32_t alloclen, reqlen;
5624 	uint32_t shdr_status, shdr_add_status;
5625 	union lpfc_sli4_cfg_shdr *shdr;
5626 	int rc;
5627 
5628 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5629 	if (!mboxq)
5630 		return -ENOMEM;
5631 
5632 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5633 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5634 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5635 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5636 			LPFC_SLI4_MBX_NEMBED);
5637 
5638 	if (alloclen < reqlen) {
5639 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5640 				"3084 Allocated DMA memory size (%d) is "
5641 				"less than the requested DMA memory size "
5642 				"(%d)\n", alloclen, reqlen);
5643 		rc = -ENOMEM;
5644 		goto out_free_mboxq;
5645 	}
5646 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5647 	virtaddr = mboxq->sge_array->addr[0];
5648 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5649 	shdr = &mbx_cntl_attr->cfg_shdr;
5650 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5651 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5652 	if (shdr_status || shdr_add_status || rc) {
5653 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5654 				"3085 Mailbox x%x (x%x/x%x) failed, "
5655 				"rc:x%x, status:x%x, add_status:x%x\n",
5656 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5657 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5658 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5659 				rc, shdr_status, shdr_add_status);
5660 		rc = -ENXIO;
5661 		goto out_free_mboxq;
5662 	}
5663 
5664 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5665 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5666 	phba->sli4_hba.lnk_info.lnk_tp =
5667 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5668 	phba->sli4_hba.lnk_info.lnk_no =
5669 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5670 
5671 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5672 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5673 		sizeof(phba->BIOSVersion));
5674 
5675 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5676 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5677 			phba->sli4_hba.lnk_info.lnk_tp,
5678 			phba->sli4_hba.lnk_info.lnk_no,
5679 			phba->BIOSVersion);
5680 out_free_mboxq:
5681 	if (rc != MBX_TIMEOUT) {
5682 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5683 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5684 		else
5685 			mempool_free(mboxq, phba->mbox_mem_pool);
5686 	}
5687 	return rc;
5688 }
5689 
5690 /**
5691  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5692  * @phba: pointer to lpfc hba data structure.
5693  *
5694  * This routine retrieves SLI4 device physical port name this PCI function
5695  * is attached to.
5696  *
5697  * Return codes
5698  *      0 - successful
5699  *      otherwise - failed to retrieve physical port name
5700  **/
5701 static int
5702 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5703 {
5704 	LPFC_MBOXQ_t *mboxq;
5705 	struct lpfc_mbx_get_port_name *get_port_name;
5706 	uint32_t shdr_status, shdr_add_status;
5707 	union lpfc_sli4_cfg_shdr *shdr;
5708 	char cport_name = 0;
5709 	int rc;
5710 
5711 	/* We assume nothing at this point */
5712 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5713 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5714 
5715 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5716 	if (!mboxq)
5717 		return -ENOMEM;
5718 	/* obtain link type and link number via READ_CONFIG */
5719 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5720 	lpfc_sli4_read_config(phba);
5721 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5722 		goto retrieve_ppname;
5723 
5724 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5725 	rc = lpfc_sli4_get_ctl_attr(phba);
5726 	if (rc)
5727 		goto out_free_mboxq;
5728 
5729 retrieve_ppname:
5730 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5731 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5732 		sizeof(struct lpfc_mbx_get_port_name) -
5733 		sizeof(struct lpfc_sli4_cfg_mhdr),
5734 		LPFC_SLI4_MBX_EMBED);
5735 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5736 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5737 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5738 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5739 		phba->sli4_hba.lnk_info.lnk_tp);
5740 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5741 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5742 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5743 	if (shdr_status || shdr_add_status || rc) {
5744 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5745 				"3087 Mailbox x%x (x%x/x%x) failed: "
5746 				"rc:x%x, status:x%x, add_status:x%x\n",
5747 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5748 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5749 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5750 				rc, shdr_status, shdr_add_status);
5751 		rc = -ENXIO;
5752 		goto out_free_mboxq;
5753 	}
5754 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5755 	case LPFC_LINK_NUMBER_0:
5756 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5757 				&get_port_name->u.response);
5758 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5759 		break;
5760 	case LPFC_LINK_NUMBER_1:
5761 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5762 				&get_port_name->u.response);
5763 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5764 		break;
5765 	case LPFC_LINK_NUMBER_2:
5766 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5767 				&get_port_name->u.response);
5768 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5769 		break;
5770 	case LPFC_LINK_NUMBER_3:
5771 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5772 				&get_port_name->u.response);
5773 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5774 		break;
5775 	default:
5776 		break;
5777 	}
5778 
5779 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5780 		phba->Port[0] = cport_name;
5781 		phba->Port[1] = '\0';
5782 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5783 				"3091 SLI get port name: %s\n", phba->Port);
5784 	}
5785 
5786 out_free_mboxq:
5787 	if (rc != MBX_TIMEOUT) {
5788 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5789 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5790 		else
5791 			mempool_free(mboxq, phba->mbox_mem_pool);
5792 	}
5793 	return rc;
5794 }
5795 
5796 /**
5797  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5798  * @phba: pointer to lpfc hba data structure.
5799  *
5800  * This routine is called to explicitly arm the SLI4 device's completion and
5801  * event queues
5802  **/
5803 static void
5804 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5805 {
5806 	int qidx;
5807 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5808 	struct lpfc_sli4_hdw_queue *qp;
5809 	struct lpfc_queue *eq;
5810 
5811 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5812 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5813 	if (sli4_hba->nvmels_cq)
5814 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5815 					   LPFC_QUEUE_REARM);
5816 
5817 	if (sli4_hba->hdwq) {
5818 		/* Loop thru all Hardware Queues */
5819 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5820 			qp = &sli4_hba->hdwq[qidx];
5821 			/* ARM the corresponding CQ */
5822 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5823 						LPFC_QUEUE_REARM);
5824 		}
5825 
5826 		/* Loop thru all IRQ vectors */
5827 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5828 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5829 			/* ARM the corresponding EQ */
5830 			sli4_hba->sli4_write_eq_db(phba, eq,
5831 						   0, LPFC_QUEUE_REARM);
5832 		}
5833 	}
5834 
5835 	if (phba->nvmet_support) {
5836 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5837 			sli4_hba->sli4_write_cq_db(phba,
5838 				sli4_hba->nvmet_cqset[qidx], 0,
5839 				LPFC_QUEUE_REARM);
5840 		}
5841 	}
5842 }
5843 
5844 /**
5845  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5846  * @phba: Pointer to HBA context object.
5847  * @type: The resource extent type.
5848  * @extnt_count: buffer to hold port available extent count.
5849  * @extnt_size: buffer to hold element count per extent.
5850  *
5851  * This function calls the port and retrievs the number of available
5852  * extents and their size for a particular extent type.
5853  *
5854  * Returns: 0 if successful.  Nonzero otherwise.
5855  **/
5856 int
5857 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5858 			       uint16_t *extnt_count, uint16_t *extnt_size)
5859 {
5860 	int rc = 0;
5861 	uint32_t length;
5862 	uint32_t mbox_tmo;
5863 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5864 	LPFC_MBOXQ_t *mbox;
5865 
5866 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5867 	if (!mbox)
5868 		return -ENOMEM;
5869 
5870 	/* Find out how many extents are available for this resource type */
5871 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5872 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5873 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5874 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5875 			 length, LPFC_SLI4_MBX_EMBED);
5876 
5877 	/* Send an extents count of 0 - the GET doesn't use it. */
5878 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5879 					LPFC_SLI4_MBX_EMBED);
5880 	if (unlikely(rc)) {
5881 		rc = -EIO;
5882 		goto err_exit;
5883 	}
5884 
5885 	if (!phba->sli4_hba.intr_enable)
5886 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5887 	else {
5888 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5889 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5890 	}
5891 	if (unlikely(rc)) {
5892 		rc = -EIO;
5893 		goto err_exit;
5894 	}
5895 
5896 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5897 	if (bf_get(lpfc_mbox_hdr_status,
5898 		   &rsrc_info->header.cfg_shdr.response)) {
5899 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
5900 				"2930 Failed to get resource extents "
5901 				"Status 0x%x Add'l Status 0x%x\n",
5902 				bf_get(lpfc_mbox_hdr_status,
5903 				       &rsrc_info->header.cfg_shdr.response),
5904 				bf_get(lpfc_mbox_hdr_add_status,
5905 				       &rsrc_info->header.cfg_shdr.response));
5906 		rc = -EIO;
5907 		goto err_exit;
5908 	}
5909 
5910 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5911 			      &rsrc_info->u.rsp);
5912 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5913 			     &rsrc_info->u.rsp);
5914 
5915 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5916 			"3162 Retrieved extents type-%d from port: count:%d, "
5917 			"size:%d\n", type, *extnt_count, *extnt_size);
5918 
5919 err_exit:
5920 	mempool_free(mbox, phba->mbox_mem_pool);
5921 	return rc;
5922 }
5923 
5924 /**
5925  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5926  * @phba: Pointer to HBA context object.
5927  * @type: The extent type to check.
5928  *
5929  * This function reads the current available extents from the port and checks
5930  * if the extent count or extent size has changed since the last access.
5931  * Callers use this routine post port reset to understand if there is a
5932  * extent reprovisioning requirement.
5933  *
5934  * Returns:
5935  *   -Error: error indicates problem.
5936  *   1: Extent count or size has changed.
5937  *   0: No changes.
5938  **/
5939 static int
5940 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5941 {
5942 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5943 	uint16_t size_diff, rsrc_ext_size;
5944 	int rc = 0;
5945 	struct lpfc_rsrc_blks *rsrc_entry;
5946 	struct list_head *rsrc_blk_list = NULL;
5947 
5948 	size_diff = 0;
5949 	curr_ext_cnt = 0;
5950 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5951 					    &rsrc_ext_cnt,
5952 					    &rsrc_ext_size);
5953 	if (unlikely(rc))
5954 		return -EIO;
5955 
5956 	switch (type) {
5957 	case LPFC_RSC_TYPE_FCOE_RPI:
5958 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5959 		break;
5960 	case LPFC_RSC_TYPE_FCOE_VPI:
5961 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5962 		break;
5963 	case LPFC_RSC_TYPE_FCOE_XRI:
5964 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5965 		break;
5966 	case LPFC_RSC_TYPE_FCOE_VFI:
5967 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5968 		break;
5969 	default:
5970 		break;
5971 	}
5972 
5973 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5974 		curr_ext_cnt++;
5975 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5976 			size_diff++;
5977 	}
5978 
5979 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5980 		rc = 1;
5981 
5982 	return rc;
5983 }
5984 
5985 /**
5986  * lpfc_sli4_cfg_post_extnts -
5987  * @phba: Pointer to HBA context object.
5988  * @extnt_cnt: number of available extents.
5989  * @type: the extent type (rpi, xri, vfi, vpi).
5990  * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5991  * @mbox: pointer to the caller's allocated mailbox structure.
5992  *
5993  * This function executes the extents allocation request.  It also
5994  * takes care of the amount of memory needed to allocate or get the
5995  * allocated extents. It is the caller's responsibility to evaluate
5996  * the response.
5997  *
5998  * Returns:
5999  *   -Error:  Error value describes the condition found.
6000  *   0: if successful
6001  **/
6002 static int
6003 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
6004 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
6005 {
6006 	int rc = 0;
6007 	uint32_t req_len;
6008 	uint32_t emb_len;
6009 	uint32_t alloc_len, mbox_tmo;
6010 
6011 	/* Calculate the total requested length of the dma memory */
6012 	req_len = extnt_cnt * sizeof(uint16_t);
6013 
6014 	/*
6015 	 * Calculate the size of an embedded mailbox.  The uint32_t
6016 	 * accounts for extents-specific word.
6017 	 */
6018 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6019 		sizeof(uint32_t);
6020 
6021 	/*
6022 	 * Presume the allocation and response will fit into an embedded
6023 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6024 	 */
6025 	*emb = LPFC_SLI4_MBX_EMBED;
6026 	if (req_len > emb_len) {
6027 		req_len = extnt_cnt * sizeof(uint16_t) +
6028 			sizeof(union lpfc_sli4_cfg_shdr) +
6029 			sizeof(uint32_t);
6030 		*emb = LPFC_SLI4_MBX_NEMBED;
6031 	}
6032 
6033 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6034 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
6035 				     req_len, *emb);
6036 	if (alloc_len < req_len) {
6037 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6038 			"2982 Allocated DMA memory size (x%x) is "
6039 			"less than the requested DMA memory "
6040 			"size (x%x)\n", alloc_len, req_len);
6041 		return -ENOMEM;
6042 	}
6043 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
6044 	if (unlikely(rc))
6045 		return -EIO;
6046 
6047 	if (!phba->sli4_hba.intr_enable)
6048 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6049 	else {
6050 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6051 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6052 	}
6053 
6054 	if (unlikely(rc))
6055 		rc = -EIO;
6056 	return rc;
6057 }
6058 
6059 /**
6060  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
6061  * @phba: Pointer to HBA context object.
6062  * @type:  The resource extent type to allocate.
6063  *
6064  * This function allocates the number of elements for the specified
6065  * resource type.
6066  **/
6067 static int
6068 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
6069 {
6070 	bool emb = false;
6071 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
6072 	uint16_t rsrc_id, rsrc_start, j, k;
6073 	uint16_t *ids;
6074 	int i, rc;
6075 	unsigned long longs;
6076 	unsigned long *bmask;
6077 	struct lpfc_rsrc_blks *rsrc_blks;
6078 	LPFC_MBOXQ_t *mbox;
6079 	uint32_t length;
6080 	struct lpfc_id_range *id_array = NULL;
6081 	void *virtaddr = NULL;
6082 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6083 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6084 	struct list_head *ext_blk_list;
6085 
6086 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
6087 					    &rsrc_cnt,
6088 					    &rsrc_size);
6089 	if (unlikely(rc))
6090 		return -EIO;
6091 
6092 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
6093 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6094 			"3009 No available Resource Extents "
6095 			"for resource type 0x%x: Count: 0x%x, "
6096 			"Size 0x%x\n", type, rsrc_cnt,
6097 			rsrc_size);
6098 		return -ENOMEM;
6099 	}
6100 
6101 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
6102 			"2903 Post resource extents type-0x%x: "
6103 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
6104 
6105 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6106 	if (!mbox)
6107 		return -ENOMEM;
6108 
6109 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
6110 	if (unlikely(rc)) {
6111 		rc = -EIO;
6112 		goto err_exit;
6113 	}
6114 
6115 	/*
6116 	 * Figure out where the response is located.  Then get local pointers
6117 	 * to the response data.  The port does not guarantee to respond to
6118 	 * all extents counts request so update the local variable with the
6119 	 * allocated count from the port.
6120 	 */
6121 	if (emb == LPFC_SLI4_MBX_EMBED) {
6122 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
6123 		id_array = &rsrc_ext->u.rsp.id[0];
6124 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
6125 	} else {
6126 		virtaddr = mbox->sge_array->addr[0];
6127 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6128 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6129 		id_array = &n_rsrc->id;
6130 	}
6131 
6132 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6133 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6134 
6135 	/*
6136 	 * Based on the resource size and count, correct the base and max
6137 	 * resource values.
6138 	 */
6139 	length = sizeof(struct lpfc_rsrc_blks);
6140 	switch (type) {
6141 	case LPFC_RSC_TYPE_FCOE_RPI:
6142 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6143 						   sizeof(unsigned long),
6144 						   GFP_KERNEL);
6145 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6146 			rc = -ENOMEM;
6147 			goto err_exit;
6148 		}
6149 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6150 						 sizeof(uint16_t),
6151 						 GFP_KERNEL);
6152 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6153 			kfree(phba->sli4_hba.rpi_bmask);
6154 			rc = -ENOMEM;
6155 			goto err_exit;
6156 		}
6157 
6158 		/*
6159 		 * The next_rpi was initialized with the maximum available
6160 		 * count but the port may allocate a smaller number.  Catch
6161 		 * that case and update the next_rpi.
6162 		 */
6163 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6164 
6165 		/* Initialize local ptrs for common extent processing later. */
6166 		bmask = phba->sli4_hba.rpi_bmask;
6167 		ids = phba->sli4_hba.rpi_ids;
6168 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6169 		break;
6170 	case LPFC_RSC_TYPE_FCOE_VPI:
6171 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6172 					  GFP_KERNEL);
6173 		if (unlikely(!phba->vpi_bmask)) {
6174 			rc = -ENOMEM;
6175 			goto err_exit;
6176 		}
6177 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6178 					 GFP_KERNEL);
6179 		if (unlikely(!phba->vpi_ids)) {
6180 			kfree(phba->vpi_bmask);
6181 			rc = -ENOMEM;
6182 			goto err_exit;
6183 		}
6184 
6185 		/* Initialize local ptrs for common extent processing later. */
6186 		bmask = phba->vpi_bmask;
6187 		ids = phba->vpi_ids;
6188 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6189 		break;
6190 	case LPFC_RSC_TYPE_FCOE_XRI:
6191 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6192 						   sizeof(unsigned long),
6193 						   GFP_KERNEL);
6194 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6195 			rc = -ENOMEM;
6196 			goto err_exit;
6197 		}
6198 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6199 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6200 						 sizeof(uint16_t),
6201 						 GFP_KERNEL);
6202 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6203 			kfree(phba->sli4_hba.xri_bmask);
6204 			rc = -ENOMEM;
6205 			goto err_exit;
6206 		}
6207 
6208 		/* Initialize local ptrs for common extent processing later. */
6209 		bmask = phba->sli4_hba.xri_bmask;
6210 		ids = phba->sli4_hba.xri_ids;
6211 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6212 		break;
6213 	case LPFC_RSC_TYPE_FCOE_VFI:
6214 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6215 						   sizeof(unsigned long),
6216 						   GFP_KERNEL);
6217 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6218 			rc = -ENOMEM;
6219 			goto err_exit;
6220 		}
6221 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6222 						 sizeof(uint16_t),
6223 						 GFP_KERNEL);
6224 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6225 			kfree(phba->sli4_hba.vfi_bmask);
6226 			rc = -ENOMEM;
6227 			goto err_exit;
6228 		}
6229 
6230 		/* Initialize local ptrs for common extent processing later. */
6231 		bmask = phba->sli4_hba.vfi_bmask;
6232 		ids = phba->sli4_hba.vfi_ids;
6233 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6234 		break;
6235 	default:
6236 		/* Unsupported Opcode.  Fail call. */
6237 		id_array = NULL;
6238 		bmask = NULL;
6239 		ids = NULL;
6240 		ext_blk_list = NULL;
6241 		goto err_exit;
6242 	}
6243 
6244 	/*
6245 	 * Complete initializing the extent configuration with the
6246 	 * allocated ids assigned to this function.  The bitmask serves
6247 	 * as an index into the array and manages the available ids.  The
6248 	 * array just stores the ids communicated to the port via the wqes.
6249 	 */
6250 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6251 		if ((i % 2) == 0)
6252 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6253 					 &id_array[k]);
6254 		else
6255 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6256 					 &id_array[k]);
6257 
6258 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6259 		if (unlikely(!rsrc_blks)) {
6260 			rc = -ENOMEM;
6261 			kfree(bmask);
6262 			kfree(ids);
6263 			goto err_exit;
6264 		}
6265 		rsrc_blks->rsrc_start = rsrc_id;
6266 		rsrc_blks->rsrc_size = rsrc_size;
6267 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6268 		rsrc_start = rsrc_id;
6269 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6270 			phba->sli4_hba.io_xri_start = rsrc_start +
6271 				lpfc_sli4_get_iocb_cnt(phba);
6272 		}
6273 
6274 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6275 			ids[j] = rsrc_id;
6276 			rsrc_id++;
6277 			j++;
6278 		}
6279 		/* Entire word processed.  Get next word.*/
6280 		if ((i % 2) == 1)
6281 			k++;
6282 	}
6283  err_exit:
6284 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6285 	return rc;
6286 }
6287 
6288 
6289 
6290 /**
6291  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6292  * @phba: Pointer to HBA context object.
6293  * @type: the extent's type.
6294  *
6295  * This function deallocates all extents of a particular resource type.
6296  * SLI4 does not allow for deallocating a particular extent range.  It
6297  * is the caller's responsibility to release all kernel memory resources.
6298  **/
6299 static int
6300 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6301 {
6302 	int rc;
6303 	uint32_t length, mbox_tmo = 0;
6304 	LPFC_MBOXQ_t *mbox;
6305 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6306 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6307 
6308 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6309 	if (!mbox)
6310 		return -ENOMEM;
6311 
6312 	/*
6313 	 * This function sends an embedded mailbox because it only sends the
6314 	 * the resource type.  All extents of this type are released by the
6315 	 * port.
6316 	 */
6317 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6318 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6319 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6320 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6321 			 length, LPFC_SLI4_MBX_EMBED);
6322 
6323 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6324 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6325 					LPFC_SLI4_MBX_EMBED);
6326 	if (unlikely(rc)) {
6327 		rc = -EIO;
6328 		goto out_free_mbox;
6329 	}
6330 	if (!phba->sli4_hba.intr_enable)
6331 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6332 	else {
6333 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6334 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6335 	}
6336 	if (unlikely(rc)) {
6337 		rc = -EIO;
6338 		goto out_free_mbox;
6339 	}
6340 
6341 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6342 	if (bf_get(lpfc_mbox_hdr_status,
6343 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6344 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6345 				"2919 Failed to release resource extents "
6346 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6347 				"Resource memory not released.\n",
6348 				type,
6349 				bf_get(lpfc_mbox_hdr_status,
6350 				    &dealloc_rsrc->header.cfg_shdr.response),
6351 				bf_get(lpfc_mbox_hdr_add_status,
6352 				    &dealloc_rsrc->header.cfg_shdr.response));
6353 		rc = -EIO;
6354 		goto out_free_mbox;
6355 	}
6356 
6357 	/* Release kernel memory resources for the specific type. */
6358 	switch (type) {
6359 	case LPFC_RSC_TYPE_FCOE_VPI:
6360 		kfree(phba->vpi_bmask);
6361 		kfree(phba->vpi_ids);
6362 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6363 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6364 				    &phba->lpfc_vpi_blk_list, list) {
6365 			list_del_init(&rsrc_blk->list);
6366 			kfree(rsrc_blk);
6367 		}
6368 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6369 		break;
6370 	case LPFC_RSC_TYPE_FCOE_XRI:
6371 		kfree(phba->sli4_hba.xri_bmask);
6372 		kfree(phba->sli4_hba.xri_ids);
6373 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6374 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6375 			list_del_init(&rsrc_blk->list);
6376 			kfree(rsrc_blk);
6377 		}
6378 		break;
6379 	case LPFC_RSC_TYPE_FCOE_VFI:
6380 		kfree(phba->sli4_hba.vfi_bmask);
6381 		kfree(phba->sli4_hba.vfi_ids);
6382 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6383 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6384 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6385 			list_del_init(&rsrc_blk->list);
6386 			kfree(rsrc_blk);
6387 		}
6388 		break;
6389 	case LPFC_RSC_TYPE_FCOE_RPI:
6390 		/* RPI bitmask and physical id array are cleaned up earlier. */
6391 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6392 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6393 			list_del_init(&rsrc_blk->list);
6394 			kfree(rsrc_blk);
6395 		}
6396 		break;
6397 	default:
6398 		break;
6399 	}
6400 
6401 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6402 
6403  out_free_mbox:
6404 	mempool_free(mbox, phba->mbox_mem_pool);
6405 	return rc;
6406 }
6407 
6408 static void
6409 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6410 		  uint32_t feature)
6411 {
6412 	uint32_t len;
6413 
6414 	len = sizeof(struct lpfc_mbx_set_feature) -
6415 		sizeof(struct lpfc_sli4_cfg_mhdr);
6416 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6417 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6418 			 LPFC_SLI4_MBX_EMBED);
6419 
6420 	switch (feature) {
6421 	case LPFC_SET_UE_RECOVERY:
6422 		bf_set(lpfc_mbx_set_feature_UER,
6423 		       &mbox->u.mqe.un.set_feature, 1);
6424 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6425 		mbox->u.mqe.un.set_feature.param_len = 8;
6426 		break;
6427 	case LPFC_SET_MDS_DIAGS:
6428 		bf_set(lpfc_mbx_set_feature_mds,
6429 		       &mbox->u.mqe.un.set_feature, 1);
6430 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6431 		       &mbox->u.mqe.un.set_feature, 1);
6432 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6433 		mbox->u.mqe.un.set_feature.param_len = 8;
6434 		break;
6435 	case LPFC_SET_DUAL_DUMP:
6436 		bf_set(lpfc_mbx_set_feature_dd,
6437 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6438 		bf_set(lpfc_mbx_set_feature_ddquery,
6439 		       &mbox->u.mqe.un.set_feature, 0);
6440 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6441 		mbox->u.mqe.un.set_feature.param_len = 4;
6442 		break;
6443 	}
6444 
6445 	return;
6446 }
6447 
6448 /**
6449  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6450  * @phba: Pointer to HBA context object.
6451  *
6452  * Disable FW logging into host memory on the adapter. To
6453  * be done before reading logs from the host memory.
6454  **/
6455 void
6456 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6457 {
6458 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6459 
6460 	spin_lock_irq(&phba->hbalock);
6461 	ras_fwlog->state = INACTIVE;
6462 	spin_unlock_irq(&phba->hbalock);
6463 
6464 	/* Disable FW logging to host memory */
6465 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6466 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6467 
6468 	/* Wait 10ms for firmware to stop using DMA buffer */
6469 	usleep_range(10 * 1000, 20 * 1000);
6470 }
6471 
6472 /**
6473  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6474  * @phba: Pointer to HBA context object.
6475  *
6476  * This function is called to free memory allocated for RAS FW logging
6477  * support in the driver.
6478  **/
6479 void
6480 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6481 {
6482 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6483 	struct lpfc_dmabuf *dmabuf, *next;
6484 
6485 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6486 		list_for_each_entry_safe(dmabuf, next,
6487 				    &ras_fwlog->fwlog_buff_list,
6488 				    list) {
6489 			list_del(&dmabuf->list);
6490 			dma_free_coherent(&phba->pcidev->dev,
6491 					  LPFC_RAS_MAX_ENTRY_SIZE,
6492 					  dmabuf->virt, dmabuf->phys);
6493 			kfree(dmabuf);
6494 		}
6495 	}
6496 
6497 	if (ras_fwlog->lwpd.virt) {
6498 		dma_free_coherent(&phba->pcidev->dev,
6499 				  sizeof(uint32_t) * 2,
6500 				  ras_fwlog->lwpd.virt,
6501 				  ras_fwlog->lwpd.phys);
6502 		ras_fwlog->lwpd.virt = NULL;
6503 	}
6504 
6505 	spin_lock_irq(&phba->hbalock);
6506 	ras_fwlog->state = INACTIVE;
6507 	spin_unlock_irq(&phba->hbalock);
6508 }
6509 
6510 /**
6511  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6512  * @phba: Pointer to HBA context object.
6513  * @fwlog_buff_count: Count of buffers to be created.
6514  *
6515  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6516  * to update FW log is posted to the adapter.
6517  * Buffer count is calculated based on module param ras_fwlog_buffsize
6518  * Size of each buffer posted to FW is 64K.
6519  **/
6520 
6521 static int
6522 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6523 			uint32_t fwlog_buff_count)
6524 {
6525 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6526 	struct lpfc_dmabuf *dmabuf;
6527 	int rc = 0, i = 0;
6528 
6529 	/* Initialize List */
6530 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6531 
6532 	/* Allocate memory for the LWPD */
6533 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6534 					    sizeof(uint32_t) * 2,
6535 					    &ras_fwlog->lwpd.phys,
6536 					    GFP_KERNEL);
6537 	if (!ras_fwlog->lwpd.virt) {
6538 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6539 				"6185 LWPD Memory Alloc Failed\n");
6540 
6541 		return -ENOMEM;
6542 	}
6543 
6544 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6545 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6546 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6547 				 GFP_KERNEL);
6548 		if (!dmabuf) {
6549 			rc = -ENOMEM;
6550 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6551 					"6186 Memory Alloc failed FW logging");
6552 			goto free_mem;
6553 		}
6554 
6555 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6556 						  LPFC_RAS_MAX_ENTRY_SIZE,
6557 						  &dmabuf->phys, GFP_KERNEL);
6558 		if (!dmabuf->virt) {
6559 			kfree(dmabuf);
6560 			rc = -ENOMEM;
6561 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6562 					"6187 DMA Alloc Failed FW logging");
6563 			goto free_mem;
6564 		}
6565 		dmabuf->buffer_tag = i;
6566 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6567 	}
6568 
6569 free_mem:
6570 	if (rc)
6571 		lpfc_sli4_ras_dma_free(phba);
6572 
6573 	return rc;
6574 }
6575 
6576 /**
6577  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6578  * @phba: pointer to lpfc hba data structure.
6579  * @pmb: pointer to the driver internal queue element for mailbox command.
6580  *
6581  * Completion handler for driver's RAS MBX command to the device.
6582  **/
6583 static void
6584 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6585 {
6586 	MAILBOX_t *mb;
6587 	union lpfc_sli4_cfg_shdr *shdr;
6588 	uint32_t shdr_status, shdr_add_status;
6589 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6590 
6591 	mb = &pmb->u.mb;
6592 
6593 	shdr = (union lpfc_sli4_cfg_shdr *)
6594 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6595 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6596 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6597 
6598 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6599 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6600 				"6188 FW LOG mailbox "
6601 				"completed with status x%x add_status x%x,"
6602 				" mbx status x%x\n",
6603 				shdr_status, shdr_add_status, mb->mbxStatus);
6604 
6605 		ras_fwlog->ras_hwsupport = false;
6606 		goto disable_ras;
6607 	}
6608 
6609 	spin_lock_irq(&phba->hbalock);
6610 	ras_fwlog->state = ACTIVE;
6611 	spin_unlock_irq(&phba->hbalock);
6612 	mempool_free(pmb, phba->mbox_mem_pool);
6613 
6614 	return;
6615 
6616 disable_ras:
6617 	/* Free RAS DMA memory */
6618 	lpfc_sli4_ras_dma_free(phba);
6619 	mempool_free(pmb, phba->mbox_mem_pool);
6620 }
6621 
6622 /**
6623  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6624  * @phba: pointer to lpfc hba data structure.
6625  * @fwlog_level: Logging verbosity level.
6626  * @fwlog_enable: Enable/Disable logging.
6627  *
6628  * Initialize memory and post mailbox command to enable FW logging in host
6629  * memory.
6630  **/
6631 int
6632 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6633 			 uint32_t fwlog_level,
6634 			 uint32_t fwlog_enable)
6635 {
6636 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6637 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6638 	struct lpfc_dmabuf *dmabuf;
6639 	LPFC_MBOXQ_t *mbox;
6640 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6641 	int rc = 0;
6642 
6643 	spin_lock_irq(&phba->hbalock);
6644 	ras_fwlog->state = INACTIVE;
6645 	spin_unlock_irq(&phba->hbalock);
6646 
6647 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6648 			  phba->cfg_ras_fwlog_buffsize);
6649 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6650 
6651 	/*
6652 	 * If re-enabling FW logging support use earlier allocated
6653 	 * DMA buffers while posting MBX command.
6654 	 **/
6655 	if (!ras_fwlog->lwpd.virt) {
6656 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6657 		if (rc) {
6658 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6659 					"6189 FW Log Memory Allocation Failed");
6660 			return rc;
6661 		}
6662 	}
6663 
6664 	/* Setup Mailbox command */
6665 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6666 	if (!mbox) {
6667 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6668 				"6190 RAS MBX Alloc Failed");
6669 		rc = -ENOMEM;
6670 		goto mem_free;
6671 	}
6672 
6673 	ras_fwlog->fw_loglevel = fwlog_level;
6674 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6675 		sizeof(struct lpfc_sli4_cfg_mhdr));
6676 
6677 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6678 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6679 			 len, LPFC_SLI4_MBX_EMBED);
6680 
6681 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6682 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6683 	       fwlog_enable);
6684 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6685 	       ras_fwlog->fw_loglevel);
6686 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6687 	       ras_fwlog->fw_buffcount);
6688 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6689 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6690 
6691 	/* Update DMA buffer address */
6692 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6693 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6694 
6695 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6696 			putPaddrLow(dmabuf->phys);
6697 
6698 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6699 			putPaddrHigh(dmabuf->phys);
6700 	}
6701 
6702 	/* Update LPWD address */
6703 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6704 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6705 
6706 	spin_lock_irq(&phba->hbalock);
6707 	ras_fwlog->state = REG_INPROGRESS;
6708 	spin_unlock_irq(&phba->hbalock);
6709 	mbox->vport = phba->pport;
6710 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6711 
6712 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6713 
6714 	if (rc == MBX_NOT_FINISHED) {
6715 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6716 				"6191 FW-Log Mailbox failed. "
6717 				"status %d mbxStatus : x%x", rc,
6718 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6719 		mempool_free(mbox, phba->mbox_mem_pool);
6720 		rc = -EIO;
6721 		goto mem_free;
6722 	} else
6723 		rc = 0;
6724 mem_free:
6725 	if (rc)
6726 		lpfc_sli4_ras_dma_free(phba);
6727 
6728 	return rc;
6729 }
6730 
6731 /**
6732  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6733  * @phba: Pointer to HBA context object.
6734  *
6735  * Check if RAS is supported on the adapter and initialize it.
6736  **/
6737 void
6738 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6739 {
6740 	/* Check RAS FW Log needs to be enabled or not */
6741 	if (lpfc_check_fwlog_support(phba))
6742 		return;
6743 
6744 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6745 				 LPFC_RAS_ENABLE_LOGGING);
6746 }
6747 
6748 /**
6749  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6750  * @phba: Pointer to HBA context object.
6751  *
6752  * This function allocates all SLI4 resource identifiers.
6753  **/
6754 int
6755 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6756 {
6757 	int i, rc, error = 0;
6758 	uint16_t count, base;
6759 	unsigned long longs;
6760 
6761 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6762 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6763 	if (phba->sli4_hba.extents_in_use) {
6764 		/*
6765 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6766 		 * resource extent count must be read and allocated before
6767 		 * provisioning the resource id arrays.
6768 		 */
6769 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6770 		    LPFC_IDX_RSRC_RDY) {
6771 			/*
6772 			 * Extent-based resources are set - the driver could
6773 			 * be in a port reset. Figure out if any corrective
6774 			 * actions need to be taken.
6775 			 */
6776 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6777 						 LPFC_RSC_TYPE_FCOE_VFI);
6778 			if (rc != 0)
6779 				error++;
6780 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6781 						 LPFC_RSC_TYPE_FCOE_VPI);
6782 			if (rc != 0)
6783 				error++;
6784 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6785 						 LPFC_RSC_TYPE_FCOE_XRI);
6786 			if (rc != 0)
6787 				error++;
6788 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6789 						 LPFC_RSC_TYPE_FCOE_RPI);
6790 			if (rc != 0)
6791 				error++;
6792 
6793 			/*
6794 			 * It's possible that the number of resources
6795 			 * provided to this port instance changed between
6796 			 * resets.  Detect this condition and reallocate
6797 			 * resources.  Otherwise, there is no action.
6798 			 */
6799 			if (error) {
6800 				lpfc_printf_log(phba, KERN_INFO,
6801 						LOG_MBOX | LOG_INIT,
6802 						"2931 Detected extent resource "
6803 						"change.  Reallocating all "
6804 						"extents.\n");
6805 				rc = lpfc_sli4_dealloc_extent(phba,
6806 						 LPFC_RSC_TYPE_FCOE_VFI);
6807 				rc = lpfc_sli4_dealloc_extent(phba,
6808 						 LPFC_RSC_TYPE_FCOE_VPI);
6809 				rc = lpfc_sli4_dealloc_extent(phba,
6810 						 LPFC_RSC_TYPE_FCOE_XRI);
6811 				rc = lpfc_sli4_dealloc_extent(phba,
6812 						 LPFC_RSC_TYPE_FCOE_RPI);
6813 			} else
6814 				return 0;
6815 		}
6816 
6817 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6818 		if (unlikely(rc))
6819 			goto err_exit;
6820 
6821 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6822 		if (unlikely(rc))
6823 			goto err_exit;
6824 
6825 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6826 		if (unlikely(rc))
6827 			goto err_exit;
6828 
6829 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6830 		if (unlikely(rc))
6831 			goto err_exit;
6832 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6833 		       LPFC_IDX_RSRC_RDY);
6834 		return rc;
6835 	} else {
6836 		/*
6837 		 * The port does not support resource extents.  The XRI, VPI,
6838 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6839 		 * Just allocate the bitmasks and provision the resource id
6840 		 * arrays.  If a port reset is active, the resources don't
6841 		 * need any action - just exit.
6842 		 */
6843 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6844 		    LPFC_IDX_RSRC_RDY) {
6845 			lpfc_sli4_dealloc_resource_identifiers(phba);
6846 			lpfc_sli4_remove_rpis(phba);
6847 		}
6848 		/* RPIs. */
6849 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6850 		if (count <= 0) {
6851 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6852 					"3279 Invalid provisioning of "
6853 					"rpi:%d\n", count);
6854 			rc = -EINVAL;
6855 			goto err_exit;
6856 		}
6857 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6858 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6859 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6860 						   sizeof(unsigned long),
6861 						   GFP_KERNEL);
6862 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6863 			rc = -ENOMEM;
6864 			goto err_exit;
6865 		}
6866 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6867 						 GFP_KERNEL);
6868 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6869 			rc = -ENOMEM;
6870 			goto free_rpi_bmask;
6871 		}
6872 
6873 		for (i = 0; i < count; i++)
6874 			phba->sli4_hba.rpi_ids[i] = base + i;
6875 
6876 		/* VPIs. */
6877 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6878 		if (count <= 0) {
6879 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6880 					"3280 Invalid provisioning of "
6881 					"vpi:%d\n", count);
6882 			rc = -EINVAL;
6883 			goto free_rpi_ids;
6884 		}
6885 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6886 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6887 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6888 					  GFP_KERNEL);
6889 		if (unlikely(!phba->vpi_bmask)) {
6890 			rc = -ENOMEM;
6891 			goto free_rpi_ids;
6892 		}
6893 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6894 					GFP_KERNEL);
6895 		if (unlikely(!phba->vpi_ids)) {
6896 			rc = -ENOMEM;
6897 			goto free_vpi_bmask;
6898 		}
6899 
6900 		for (i = 0; i < count; i++)
6901 			phba->vpi_ids[i] = base + i;
6902 
6903 		/* XRIs. */
6904 		count = phba->sli4_hba.max_cfg_param.max_xri;
6905 		if (count <= 0) {
6906 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6907 					"3281 Invalid provisioning of "
6908 					"xri:%d\n", count);
6909 			rc = -EINVAL;
6910 			goto free_vpi_ids;
6911 		}
6912 		base = phba->sli4_hba.max_cfg_param.xri_base;
6913 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6914 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6915 						   sizeof(unsigned long),
6916 						   GFP_KERNEL);
6917 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6918 			rc = -ENOMEM;
6919 			goto free_vpi_ids;
6920 		}
6921 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6922 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6923 						 GFP_KERNEL);
6924 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6925 			rc = -ENOMEM;
6926 			goto free_xri_bmask;
6927 		}
6928 
6929 		for (i = 0; i < count; i++)
6930 			phba->sli4_hba.xri_ids[i] = base + i;
6931 
6932 		/* VFIs. */
6933 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6934 		if (count <= 0) {
6935 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
6936 					"3282 Invalid provisioning of "
6937 					"vfi:%d\n", count);
6938 			rc = -EINVAL;
6939 			goto free_xri_ids;
6940 		}
6941 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6942 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6943 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6944 						   sizeof(unsigned long),
6945 						   GFP_KERNEL);
6946 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6947 			rc = -ENOMEM;
6948 			goto free_xri_ids;
6949 		}
6950 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6951 						 GFP_KERNEL);
6952 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6953 			rc = -ENOMEM;
6954 			goto free_vfi_bmask;
6955 		}
6956 
6957 		for (i = 0; i < count; i++)
6958 			phba->sli4_hba.vfi_ids[i] = base + i;
6959 
6960 		/*
6961 		 * Mark all resources ready.  An HBA reset doesn't need
6962 		 * to reset the initialization.
6963 		 */
6964 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6965 		       LPFC_IDX_RSRC_RDY);
6966 		return 0;
6967 	}
6968 
6969  free_vfi_bmask:
6970 	kfree(phba->sli4_hba.vfi_bmask);
6971 	phba->sli4_hba.vfi_bmask = NULL;
6972  free_xri_ids:
6973 	kfree(phba->sli4_hba.xri_ids);
6974 	phba->sli4_hba.xri_ids = NULL;
6975  free_xri_bmask:
6976 	kfree(phba->sli4_hba.xri_bmask);
6977 	phba->sli4_hba.xri_bmask = NULL;
6978  free_vpi_ids:
6979 	kfree(phba->vpi_ids);
6980 	phba->vpi_ids = NULL;
6981  free_vpi_bmask:
6982 	kfree(phba->vpi_bmask);
6983 	phba->vpi_bmask = NULL;
6984  free_rpi_ids:
6985 	kfree(phba->sli4_hba.rpi_ids);
6986 	phba->sli4_hba.rpi_ids = NULL;
6987  free_rpi_bmask:
6988 	kfree(phba->sli4_hba.rpi_bmask);
6989 	phba->sli4_hba.rpi_bmask = NULL;
6990  err_exit:
6991 	return rc;
6992 }
6993 
6994 /**
6995  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6996  * @phba: Pointer to HBA context object.
6997  *
6998  * This function allocates the number of elements for the specified
6999  * resource type.
7000  **/
7001 int
7002 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
7003 {
7004 	if (phba->sli4_hba.extents_in_use) {
7005 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
7006 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
7007 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
7008 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
7009 	} else {
7010 		kfree(phba->vpi_bmask);
7011 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
7012 		kfree(phba->vpi_ids);
7013 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7014 		kfree(phba->sli4_hba.xri_bmask);
7015 		kfree(phba->sli4_hba.xri_ids);
7016 		kfree(phba->sli4_hba.vfi_bmask);
7017 		kfree(phba->sli4_hba.vfi_ids);
7018 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7019 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
7020 	}
7021 
7022 	return 0;
7023 }
7024 
7025 /**
7026  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
7027  * @phba: Pointer to HBA context object.
7028  * @type: The resource extent type.
7029  * @extnt_cnt: buffer to hold port extent count response
7030  * @extnt_size: buffer to hold port extent size response.
7031  *
7032  * This function calls the port to read the host allocated extents
7033  * for a particular type.
7034  **/
7035 int
7036 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
7037 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
7038 {
7039 	bool emb;
7040 	int rc = 0;
7041 	uint16_t curr_blks = 0;
7042 	uint32_t req_len, emb_len;
7043 	uint32_t alloc_len, mbox_tmo;
7044 	struct list_head *blk_list_head;
7045 	struct lpfc_rsrc_blks *rsrc_blk;
7046 	LPFC_MBOXQ_t *mbox;
7047 	void *virtaddr = NULL;
7048 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
7049 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
7050 	union  lpfc_sli4_cfg_shdr *shdr;
7051 
7052 	switch (type) {
7053 	case LPFC_RSC_TYPE_FCOE_VPI:
7054 		blk_list_head = &phba->lpfc_vpi_blk_list;
7055 		break;
7056 	case LPFC_RSC_TYPE_FCOE_XRI:
7057 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
7058 		break;
7059 	case LPFC_RSC_TYPE_FCOE_VFI:
7060 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
7061 		break;
7062 	case LPFC_RSC_TYPE_FCOE_RPI:
7063 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
7064 		break;
7065 	default:
7066 		return -EIO;
7067 	}
7068 
7069 	/* Count the number of extents currently allocatd for this type. */
7070 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
7071 		if (curr_blks == 0) {
7072 			/*
7073 			 * The GET_ALLOCATED mailbox does not return the size,
7074 			 * just the count.  The size should be just the size
7075 			 * stored in the current allocated block and all sizes
7076 			 * for an extent type are the same so set the return
7077 			 * value now.
7078 			 */
7079 			*extnt_size = rsrc_blk->rsrc_size;
7080 		}
7081 		curr_blks++;
7082 	}
7083 
7084 	/*
7085 	 * Calculate the size of an embedded mailbox.  The uint32_t
7086 	 * accounts for extents-specific word.
7087 	 */
7088 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
7089 		sizeof(uint32_t);
7090 
7091 	/*
7092 	 * Presume the allocation and response will fit into an embedded
7093 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
7094 	 */
7095 	emb = LPFC_SLI4_MBX_EMBED;
7096 	req_len = emb_len;
7097 	if (req_len > emb_len) {
7098 		req_len = curr_blks * sizeof(uint16_t) +
7099 			sizeof(union lpfc_sli4_cfg_shdr) +
7100 			sizeof(uint32_t);
7101 		emb = LPFC_SLI4_MBX_NEMBED;
7102 	}
7103 
7104 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7105 	if (!mbox)
7106 		return -ENOMEM;
7107 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
7108 
7109 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7110 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
7111 				     req_len, emb);
7112 	if (alloc_len < req_len) {
7113 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7114 			"2983 Allocated DMA memory size (x%x) is "
7115 			"less than the requested DMA memory "
7116 			"size (x%x)\n", alloc_len, req_len);
7117 		rc = -ENOMEM;
7118 		goto err_exit;
7119 	}
7120 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
7121 	if (unlikely(rc)) {
7122 		rc = -EIO;
7123 		goto err_exit;
7124 	}
7125 
7126 	if (!phba->sli4_hba.intr_enable)
7127 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7128 	else {
7129 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7130 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7131 	}
7132 
7133 	if (unlikely(rc)) {
7134 		rc = -EIO;
7135 		goto err_exit;
7136 	}
7137 
7138 	/*
7139 	 * Figure out where the response is located.  Then get local pointers
7140 	 * to the response data.  The port does not guarantee to respond to
7141 	 * all extents counts request so update the local variable with the
7142 	 * allocated count from the port.
7143 	 */
7144 	if (emb == LPFC_SLI4_MBX_EMBED) {
7145 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7146 		shdr = &rsrc_ext->header.cfg_shdr;
7147 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7148 	} else {
7149 		virtaddr = mbox->sge_array->addr[0];
7150 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7151 		shdr = &n_rsrc->cfg_shdr;
7152 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7153 	}
7154 
7155 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7156 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7157 			"2984 Failed to read allocated resources "
7158 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7159 			type,
7160 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7161 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7162 		rc = -EIO;
7163 		goto err_exit;
7164 	}
7165  err_exit:
7166 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7167 	return rc;
7168 }
7169 
7170 /**
7171  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7172  * @phba: pointer to lpfc hba data structure.
7173  * @sgl_list: linked link of sgl buffers to post
7174  * @cnt: number of linked list buffers
7175  *
7176  * This routine walks the list of buffers that have been allocated and
7177  * repost them to the port by using SGL block post. This is needed after a
7178  * pci_function_reset/warm_start or start. It attempts to construct blocks
7179  * of buffer sgls which contains contiguous xris and uses the non-embedded
7180  * SGL block post mailbox commands to post them to the port. For single
7181  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7182  * mailbox command for posting.
7183  *
7184  * Returns: 0 = success, non-zero failure.
7185  **/
7186 static int
7187 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7188 			  struct list_head *sgl_list, int cnt)
7189 {
7190 	struct lpfc_sglq *sglq_entry = NULL;
7191 	struct lpfc_sglq *sglq_entry_next = NULL;
7192 	struct lpfc_sglq *sglq_entry_first = NULL;
7193 	int status, total_cnt;
7194 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7195 	int last_xritag = NO_XRI;
7196 	LIST_HEAD(prep_sgl_list);
7197 	LIST_HEAD(blck_sgl_list);
7198 	LIST_HEAD(allc_sgl_list);
7199 	LIST_HEAD(post_sgl_list);
7200 	LIST_HEAD(free_sgl_list);
7201 
7202 	spin_lock_irq(&phba->hbalock);
7203 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7204 	list_splice_init(sgl_list, &allc_sgl_list);
7205 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7206 	spin_unlock_irq(&phba->hbalock);
7207 
7208 	total_cnt = cnt;
7209 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7210 				 &allc_sgl_list, list) {
7211 		list_del_init(&sglq_entry->list);
7212 		block_cnt++;
7213 		if ((last_xritag != NO_XRI) &&
7214 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7215 			/* a hole in xri block, form a sgl posting block */
7216 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7217 			post_cnt = block_cnt - 1;
7218 			/* prepare list for next posting block */
7219 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7220 			block_cnt = 1;
7221 		} else {
7222 			/* prepare list for next posting block */
7223 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7224 			/* enough sgls for non-embed sgl mbox command */
7225 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7226 				list_splice_init(&prep_sgl_list,
7227 						 &blck_sgl_list);
7228 				post_cnt = block_cnt;
7229 				block_cnt = 0;
7230 			}
7231 		}
7232 		num_posted++;
7233 
7234 		/* keep track of last sgl's xritag */
7235 		last_xritag = sglq_entry->sli4_xritag;
7236 
7237 		/* end of repost sgl list condition for buffers */
7238 		if (num_posted == total_cnt) {
7239 			if (post_cnt == 0) {
7240 				list_splice_init(&prep_sgl_list,
7241 						 &blck_sgl_list);
7242 				post_cnt = block_cnt;
7243 			} else if (block_cnt == 1) {
7244 				status = lpfc_sli4_post_sgl(phba,
7245 						sglq_entry->phys, 0,
7246 						sglq_entry->sli4_xritag);
7247 				if (!status) {
7248 					/* successful, put sgl to posted list */
7249 					list_add_tail(&sglq_entry->list,
7250 						      &post_sgl_list);
7251 				} else {
7252 					/* Failure, put sgl to free list */
7253 					lpfc_printf_log(phba, KERN_WARNING,
7254 						LOG_SLI,
7255 						"3159 Failed to post "
7256 						"sgl, xritag:x%x\n",
7257 						sglq_entry->sli4_xritag);
7258 					list_add_tail(&sglq_entry->list,
7259 						      &free_sgl_list);
7260 					total_cnt--;
7261 				}
7262 			}
7263 		}
7264 
7265 		/* continue until a nembed page worth of sgls */
7266 		if (post_cnt == 0)
7267 			continue;
7268 
7269 		/* post the buffer list sgls as a block */
7270 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7271 						 post_cnt);
7272 
7273 		if (!status) {
7274 			/* success, put sgl list to posted sgl list */
7275 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7276 		} else {
7277 			/* Failure, put sgl list to free sgl list */
7278 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7279 							    struct lpfc_sglq,
7280 							    list);
7281 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7282 					"3160 Failed to post sgl-list, "
7283 					"xritag:x%x-x%x\n",
7284 					sglq_entry_first->sli4_xritag,
7285 					(sglq_entry_first->sli4_xritag +
7286 					 post_cnt - 1));
7287 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7288 			total_cnt -= post_cnt;
7289 		}
7290 
7291 		/* don't reset xirtag due to hole in xri block */
7292 		if (block_cnt == 0)
7293 			last_xritag = NO_XRI;
7294 
7295 		/* reset sgl post count for next round of posting */
7296 		post_cnt = 0;
7297 	}
7298 
7299 	/* free the sgls failed to post */
7300 	lpfc_free_sgl_list(phba, &free_sgl_list);
7301 
7302 	/* push sgls posted to the available list */
7303 	if (!list_empty(&post_sgl_list)) {
7304 		spin_lock_irq(&phba->hbalock);
7305 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7306 		list_splice_init(&post_sgl_list, sgl_list);
7307 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7308 		spin_unlock_irq(&phba->hbalock);
7309 	} else {
7310 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7311 				"3161 Failure to post sgl to port.\n");
7312 		return -EIO;
7313 	}
7314 
7315 	/* return the number of XRIs actually posted */
7316 	return total_cnt;
7317 }
7318 
7319 /**
7320  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7321  * @phba: pointer to lpfc hba data structure.
7322  *
7323  * This routine walks the list of nvme buffers that have been allocated and
7324  * repost them to the port by using SGL block post. This is needed after a
7325  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7326  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7327  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7328  *
7329  * Returns: 0 = success, non-zero failure.
7330  **/
7331 static int
7332 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7333 {
7334 	LIST_HEAD(post_nblist);
7335 	int num_posted, rc = 0;
7336 
7337 	/* get all NVME buffers need to repost to a local list */
7338 	lpfc_io_buf_flush(phba, &post_nblist);
7339 
7340 	/* post the list of nvme buffer sgls to port if available */
7341 	if (!list_empty(&post_nblist)) {
7342 		num_posted = lpfc_sli4_post_io_sgl_list(
7343 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7344 		/* failed to post any nvme buffer, return error */
7345 		if (num_posted == 0)
7346 			rc = -EIO;
7347 	}
7348 	return rc;
7349 }
7350 
7351 static void
7352 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7353 {
7354 	uint32_t len;
7355 
7356 	len = sizeof(struct lpfc_mbx_set_host_data) -
7357 		sizeof(struct lpfc_sli4_cfg_mhdr);
7358 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7359 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7360 			 LPFC_SLI4_MBX_EMBED);
7361 
7362 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7363 	mbox->u.mqe.un.set_host_data.param_len =
7364 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7365 	snprintf(mbox->u.mqe.un.set_host_data.data,
7366 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7367 		 "Linux %s v"LPFC_DRIVER_VERSION,
7368 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7369 }
7370 
7371 int
7372 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7373 		    struct lpfc_queue *drq, int count, int idx)
7374 {
7375 	int rc, i;
7376 	struct lpfc_rqe hrqe;
7377 	struct lpfc_rqe drqe;
7378 	struct lpfc_rqb *rqbp;
7379 	unsigned long flags;
7380 	struct rqb_dmabuf *rqb_buffer;
7381 	LIST_HEAD(rqb_buf_list);
7382 
7383 	rqbp = hrq->rqbp;
7384 	for (i = 0; i < count; i++) {
7385 		spin_lock_irqsave(&phba->hbalock, flags);
7386 		/* IF RQ is already full, don't bother */
7387 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1) {
7388 			spin_unlock_irqrestore(&phba->hbalock, flags);
7389 			break;
7390 		}
7391 		spin_unlock_irqrestore(&phba->hbalock, flags);
7392 
7393 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7394 		if (!rqb_buffer)
7395 			break;
7396 		rqb_buffer->hrq = hrq;
7397 		rqb_buffer->drq = drq;
7398 		rqb_buffer->idx = idx;
7399 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7400 	}
7401 
7402 	spin_lock_irqsave(&phba->hbalock, flags);
7403 	while (!list_empty(&rqb_buf_list)) {
7404 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7405 				 hbuf.list);
7406 
7407 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7408 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7409 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7410 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7411 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7412 		if (rc < 0) {
7413 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7414 					"6421 Cannot post to HRQ %d: %x %x %x "
7415 					"DRQ %x %x\n",
7416 					hrq->queue_id,
7417 					hrq->host_index,
7418 					hrq->hba_index,
7419 					hrq->entry_count,
7420 					drq->host_index,
7421 					drq->hba_index);
7422 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7423 		} else {
7424 			list_add_tail(&rqb_buffer->hbuf.list,
7425 				      &rqbp->rqb_buffer_list);
7426 			rqbp->buffer_count++;
7427 		}
7428 	}
7429 	spin_unlock_irqrestore(&phba->hbalock, flags);
7430 	return 1;
7431 }
7432 
7433 /**
7434  * lpfc_init_idle_stat_hb - Initialize idle_stat tracking
7435  * @phba: pointer to lpfc hba data structure.
7436  *
7437  * This routine initializes the per-cq idle_stat to dynamically dictate
7438  * polling decisions.
7439  *
7440  * Return codes:
7441  *   None
7442  **/
7443 static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba)
7444 {
7445 	int i;
7446 	struct lpfc_sli4_hdw_queue *hdwq;
7447 	struct lpfc_queue *cq;
7448 	struct lpfc_idle_stat *idle_stat;
7449 	u64 wall;
7450 
7451 	for_each_present_cpu(i) {
7452 		hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq];
7453 		cq = hdwq->io_cq;
7454 
7455 		/* Skip if we've already handled this cq's primary CPU */
7456 		if (cq->chann != i)
7457 			continue;
7458 
7459 		idle_stat = &phba->sli4_hba.idle_stat[i];
7460 
7461 		idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1);
7462 		idle_stat->prev_wall = wall;
7463 
7464 		if (phba->nvmet_support)
7465 			cq->poll_mode = LPFC_QUEUE_WORK;
7466 		else
7467 			cq->poll_mode = LPFC_IRQ_POLL;
7468 	}
7469 
7470 	if (!phba->nvmet_support)
7471 		schedule_delayed_work(&phba->idle_stat_delay_work,
7472 				      msecs_to_jiffies(LPFC_IDLE_STAT_DELAY));
7473 }
7474 
7475 static void lpfc_sli4_dip(struct lpfc_hba *phba)
7476 {
7477 	uint32_t if_type;
7478 
7479 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
7480 	if (if_type == LPFC_SLI_INTF_IF_TYPE_2 ||
7481 	    if_type == LPFC_SLI_INTF_IF_TYPE_6) {
7482 		struct lpfc_register reg_data;
7483 
7484 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
7485 			       &reg_data.word0))
7486 			return;
7487 
7488 		if (bf_get(lpfc_sliport_status_dip, &reg_data))
7489 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7490 					"2904 Firmware Dump Image Present"
7491 					" on Adapter");
7492 	}
7493 }
7494 
7495 /**
7496  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7497  * @phba: Pointer to HBA context object.
7498  *
7499  * This function is the main SLI4 device initialization PCI function. This
7500  * function is called by the HBA initialization code, HBA reset code and
7501  * HBA error attention handler code. Caller is not required to hold any
7502  * locks.
7503  **/
7504 int
7505 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7506 {
7507 	int rc, i, cnt, len, dd;
7508 	LPFC_MBOXQ_t *mboxq;
7509 	struct lpfc_mqe *mqe;
7510 	uint8_t *vpd;
7511 	uint32_t vpd_size;
7512 	uint32_t ftr_rsp = 0;
7513 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7514 	struct lpfc_vport *vport = phba->pport;
7515 	struct lpfc_dmabuf *mp;
7516 	struct lpfc_rqb *rqbp;
7517 
7518 	/* Perform a PCI function reset to start from clean */
7519 	rc = lpfc_pci_function_reset(phba);
7520 	if (unlikely(rc))
7521 		return -ENODEV;
7522 
7523 	/* Check the HBA Host Status Register for readyness */
7524 	rc = lpfc_sli4_post_status_check(phba);
7525 	if (unlikely(rc))
7526 		return -ENODEV;
7527 	else {
7528 		spin_lock_irq(&phba->hbalock);
7529 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7530 		spin_unlock_irq(&phba->hbalock);
7531 	}
7532 
7533 	lpfc_sli4_dip(phba);
7534 
7535 	/*
7536 	 * Allocate a single mailbox container for initializing the
7537 	 * port.
7538 	 */
7539 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7540 	if (!mboxq)
7541 		return -ENOMEM;
7542 
7543 	/* Issue READ_REV to collect vpd and FW information. */
7544 	vpd_size = SLI4_PAGE_SIZE;
7545 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7546 	if (!vpd) {
7547 		rc = -ENOMEM;
7548 		goto out_free_mbox;
7549 	}
7550 
7551 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7552 	if (unlikely(rc)) {
7553 		kfree(vpd);
7554 		goto out_free_mbox;
7555 	}
7556 
7557 	mqe = &mboxq->u.mqe;
7558 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7559 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7560 		phba->hba_flag |= HBA_FCOE_MODE;
7561 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7562 	} else {
7563 		phba->hba_flag &= ~HBA_FCOE_MODE;
7564 	}
7565 
7566 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7567 		LPFC_DCBX_CEE_MODE)
7568 		phba->hba_flag |= HBA_FIP_SUPPORT;
7569 	else
7570 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7571 
7572 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7573 
7574 	if (phba->sli_rev != LPFC_SLI_REV4) {
7575 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7576 			"0376 READ_REV Error. SLI Level %d "
7577 			"FCoE enabled %d\n",
7578 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7579 		rc = -EIO;
7580 		kfree(vpd);
7581 		goto out_free_mbox;
7582 	}
7583 
7584 	/*
7585 	 * Continue initialization with default values even if driver failed
7586 	 * to read FCoE param config regions, only read parameters if the
7587 	 * board is FCoE
7588 	 */
7589 	if (phba->hba_flag & HBA_FCOE_MODE &&
7590 	    lpfc_sli4_read_fcoe_params(phba))
7591 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7592 			"2570 Failed to read FCoE parameters\n");
7593 
7594 	/*
7595 	 * Retrieve sli4 device physical port name, failure of doing it
7596 	 * is considered as non-fatal.
7597 	 */
7598 	rc = lpfc_sli4_retrieve_pport_name(phba);
7599 	if (!rc)
7600 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7601 				"3080 Successful retrieving SLI4 device "
7602 				"physical port name: %s.\n", phba->Port);
7603 
7604 	rc = lpfc_sli4_get_ctl_attr(phba);
7605 	if (!rc)
7606 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7607 				"8351 Successful retrieving SLI4 device "
7608 				"CTL ATTR\n");
7609 
7610 	/*
7611 	 * Evaluate the read rev and vpd data. Populate the driver
7612 	 * state with the results. If this routine fails, the failure
7613 	 * is not fatal as the driver will use generic values.
7614 	 */
7615 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7616 	if (unlikely(!rc)) {
7617 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7618 				"0377 Error %d parsing vpd. "
7619 				"Using defaults.\n", rc);
7620 		rc = 0;
7621 	}
7622 	kfree(vpd);
7623 
7624 	/* Save information as VPD data */
7625 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7626 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7627 
7628 	/*
7629 	 * This is because first G7 ASIC doesn't support the standard
7630 	 * 0x5a NVME cmd descriptor type/subtype
7631 	 */
7632 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7633 			LPFC_SLI_INTF_IF_TYPE_6) &&
7634 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7635 	    (phba->vpd.rev.smRev == 0) &&
7636 	    (phba->cfg_nvme_embed_cmd == 1))
7637 		phba->cfg_nvme_embed_cmd = 0;
7638 
7639 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7640 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7641 					 &mqe->un.read_rev);
7642 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7643 				       &mqe->un.read_rev);
7644 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7645 					    &mqe->un.read_rev);
7646 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7647 					   &mqe->un.read_rev);
7648 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7649 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7650 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7651 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7652 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7653 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7654 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7655 			"(%d):0380 READ_REV Status x%x "
7656 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7657 			mboxq->vport ? mboxq->vport->vpi : 0,
7658 			bf_get(lpfc_mqe_status, mqe),
7659 			phba->vpd.rev.opFwName,
7660 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7661 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7662 
7663 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7664 	    LPFC_SLI_INTF_IF_TYPE_0) {
7665 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7666 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7667 		if (rc == MBX_SUCCESS) {
7668 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7669 			/* Set 1Sec interval to detect UE */
7670 			phba->eratt_poll_interval = 1;
7671 			phba->sli4_hba.ue_to_sr = bf_get(
7672 					lpfc_mbx_set_feature_UESR,
7673 					&mboxq->u.mqe.un.set_feature);
7674 			phba->sli4_hba.ue_to_rp = bf_get(
7675 					lpfc_mbx_set_feature_UERP,
7676 					&mboxq->u.mqe.un.set_feature);
7677 		}
7678 	}
7679 
7680 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7681 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7682 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7683 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7684 		if (rc != MBX_SUCCESS)
7685 			phba->mds_diags_support = 0;
7686 	}
7687 
7688 	/*
7689 	 * Discover the port's supported feature set and match it against the
7690 	 * hosts requests.
7691 	 */
7692 	lpfc_request_features(phba, mboxq);
7693 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7694 	if (unlikely(rc)) {
7695 		rc = -EIO;
7696 		goto out_free_mbox;
7697 	}
7698 
7699 	/*
7700 	 * The port must support FCP initiator mode as this is the
7701 	 * only mode running in the host.
7702 	 */
7703 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7704 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7705 				"0378 No support for fcpi mode.\n");
7706 		ftr_rsp++;
7707 	}
7708 
7709 	/* Performance Hints are ONLY for FCoE */
7710 	if (phba->hba_flag & HBA_FCOE_MODE) {
7711 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7712 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7713 		else
7714 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7715 	}
7716 
7717 	/*
7718 	 * If the port cannot support the host's requested features
7719 	 * then turn off the global config parameters to disable the
7720 	 * feature in the driver.  This is not a fatal error.
7721 	 */
7722 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7723 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7724 			phba->cfg_enable_bg = 0;
7725 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7726 			ftr_rsp++;
7727 		}
7728 	}
7729 
7730 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7731 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7732 		ftr_rsp++;
7733 
7734 	if (ftr_rsp) {
7735 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7736 				"0379 Feature Mismatch Data: x%08x %08x "
7737 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7738 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7739 				phba->cfg_enable_npiv, phba->max_vpi);
7740 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7741 			phba->cfg_enable_bg = 0;
7742 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7743 			phba->cfg_enable_npiv = 0;
7744 	}
7745 
7746 	/* These SLI3 features are assumed in SLI4 */
7747 	spin_lock_irq(&phba->hbalock);
7748 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7749 	spin_unlock_irq(&phba->hbalock);
7750 
7751 	/* Always try to enable dual dump feature if we can */
7752 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7753 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7754 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7755 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7756 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7757 				"6448 Dual Dump is enabled\n");
7758 	else
7759 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7760 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7761 				"rc:x%x dd:x%x\n",
7762 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7763 				lpfc_sli_config_mbox_subsys_get(
7764 					phba, mboxq),
7765 				lpfc_sli_config_mbox_opcode_get(
7766 					phba, mboxq),
7767 				rc, dd);
7768 	/*
7769 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7770 	 * calls depends on these resources to complete port setup.
7771 	 */
7772 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7773 	if (rc) {
7774 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7775 				"2920 Failed to alloc Resource IDs "
7776 				"rc = x%x\n", rc);
7777 		goto out_free_mbox;
7778 	}
7779 
7780 	lpfc_set_host_data(phba, mboxq);
7781 
7782 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7783 	if (rc) {
7784 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7785 				"2134 Failed to set host os driver version %x",
7786 				rc);
7787 	}
7788 
7789 	/* Read the port's service parameters. */
7790 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7791 	if (rc) {
7792 		phba->link_state = LPFC_HBA_ERROR;
7793 		rc = -ENOMEM;
7794 		goto out_free_mbox;
7795 	}
7796 
7797 	mboxq->vport = vport;
7798 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7799 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7800 	if (rc == MBX_SUCCESS) {
7801 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7802 		rc = 0;
7803 	}
7804 
7805 	/*
7806 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7807 	 * it to the mbuf pool.
7808 	 */
7809 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7810 	kfree(mp);
7811 	mboxq->ctx_buf = NULL;
7812 	if (unlikely(rc)) {
7813 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7814 				"0382 READ_SPARAM command failed "
7815 				"status %d, mbxStatus x%x\n",
7816 				rc, bf_get(lpfc_mqe_status, mqe));
7817 		phba->link_state = LPFC_HBA_ERROR;
7818 		rc = -EIO;
7819 		goto out_free_mbox;
7820 	}
7821 
7822 	lpfc_update_vport_wwn(vport);
7823 
7824 	/* Update the fc_host data structures with new wwn. */
7825 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7826 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7827 
7828 	/* Create all the SLI4 queues */
7829 	rc = lpfc_sli4_queue_create(phba);
7830 	if (rc) {
7831 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7832 				"3089 Failed to allocate queues\n");
7833 		rc = -ENODEV;
7834 		goto out_free_mbox;
7835 	}
7836 	/* Set up all the queues to the device */
7837 	rc = lpfc_sli4_queue_setup(phba);
7838 	if (unlikely(rc)) {
7839 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7840 				"0381 Error %d during queue setup.\n ", rc);
7841 		goto out_stop_timers;
7842 	}
7843 	/* Initialize the driver internal SLI layer lists. */
7844 	lpfc_sli4_setup(phba);
7845 	lpfc_sli4_queue_init(phba);
7846 
7847 	/* update host els xri-sgl sizes and mappings */
7848 	rc = lpfc_sli4_els_sgl_update(phba);
7849 	if (unlikely(rc)) {
7850 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7851 				"1400 Failed to update xri-sgl size and "
7852 				"mapping: %d\n", rc);
7853 		goto out_destroy_queue;
7854 	}
7855 
7856 	/* register the els sgl pool to the port */
7857 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7858 				       phba->sli4_hba.els_xri_cnt);
7859 	if (unlikely(rc < 0)) {
7860 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7861 				"0582 Error %d during els sgl post "
7862 				"operation\n", rc);
7863 		rc = -ENODEV;
7864 		goto out_destroy_queue;
7865 	}
7866 	phba->sli4_hba.els_xri_cnt = rc;
7867 
7868 	if (phba->nvmet_support) {
7869 		/* update host nvmet xri-sgl sizes and mappings */
7870 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7871 		if (unlikely(rc)) {
7872 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7873 					"6308 Failed to update nvmet-sgl size "
7874 					"and mapping: %d\n", rc);
7875 			goto out_destroy_queue;
7876 		}
7877 
7878 		/* register the nvmet sgl pool to the port */
7879 		rc = lpfc_sli4_repost_sgl_list(
7880 			phba,
7881 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7882 			phba->sli4_hba.nvmet_xri_cnt);
7883 		if (unlikely(rc < 0)) {
7884 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7885 					"3117 Error %d during nvmet "
7886 					"sgl post\n", rc);
7887 			rc = -ENODEV;
7888 			goto out_destroy_queue;
7889 		}
7890 		phba->sli4_hba.nvmet_xri_cnt = rc;
7891 
7892 		/* We allocate an iocbq for every receive context SGL.
7893 		 * The additional allocation is for abort and ls handling.
7894 		 */
7895 		cnt = phba->sli4_hba.nvmet_xri_cnt +
7896 			phba->sli4_hba.max_cfg_param.max_xri;
7897 	} else {
7898 		/* update host common xri-sgl sizes and mappings */
7899 		rc = lpfc_sli4_io_sgl_update(phba);
7900 		if (unlikely(rc)) {
7901 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7902 					"6082 Failed to update nvme-sgl size "
7903 					"and mapping: %d\n", rc);
7904 			goto out_destroy_queue;
7905 		}
7906 
7907 		/* register the allocated common sgl pool to the port */
7908 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7909 		if (unlikely(rc)) {
7910 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7911 					"6116 Error %d during nvme sgl post "
7912 					"operation\n", rc);
7913 			/* Some NVME buffers were moved to abort nvme list */
7914 			/* A pci function reset will repost them */
7915 			rc = -ENODEV;
7916 			goto out_destroy_queue;
7917 		}
7918 		/* Each lpfc_io_buf job structure has an iocbq element.
7919 		 * This cnt provides for abort, els, ct and ls requests.
7920 		 */
7921 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7922 	}
7923 
7924 	if (!phba->sli.iocbq_lookup) {
7925 		/* Initialize and populate the iocb list per host */
7926 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7927 				"2821 initialize iocb list with %d entries\n",
7928 				cnt);
7929 		rc = lpfc_init_iocb_list(phba, cnt);
7930 		if (rc) {
7931 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7932 					"1413 Failed to init iocb list.\n");
7933 			goto out_destroy_queue;
7934 		}
7935 	}
7936 
7937 	if (phba->nvmet_support)
7938 		lpfc_nvmet_create_targetport(phba);
7939 
7940 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7941 		/* Post initial buffers to all RQs created */
7942 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7943 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7944 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7945 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7946 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7947 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7948 			rqbp->buffer_count = 0;
7949 
7950 			lpfc_post_rq_buffer(
7951 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7952 				phba->sli4_hba.nvmet_mrq_data[i],
7953 				phba->cfg_nvmet_mrq_post, i);
7954 		}
7955 	}
7956 
7957 	/* Post the rpi header region to the device. */
7958 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7959 	if (unlikely(rc)) {
7960 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
7961 				"0393 Error %d during rpi post operation\n",
7962 				rc);
7963 		rc = -ENODEV;
7964 		goto out_destroy_queue;
7965 	}
7966 	lpfc_sli4_node_prep(phba);
7967 
7968 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7969 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7970 			/*
7971 			 * The FC Port needs to register FCFI (index 0)
7972 			 */
7973 			lpfc_reg_fcfi(phba, mboxq);
7974 			mboxq->vport = phba->pport;
7975 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7976 			if (rc != MBX_SUCCESS)
7977 				goto out_unset_queue;
7978 			rc = 0;
7979 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7980 						&mboxq->u.mqe.un.reg_fcfi);
7981 		} else {
7982 			/* We are a NVME Target mode with MRQ > 1 */
7983 
7984 			/* First register the FCFI */
7985 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7986 			mboxq->vport = phba->pport;
7987 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7988 			if (rc != MBX_SUCCESS)
7989 				goto out_unset_queue;
7990 			rc = 0;
7991 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7992 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7993 
7994 			/* Next register the MRQs */
7995 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7996 			mboxq->vport = phba->pport;
7997 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7998 			if (rc != MBX_SUCCESS)
7999 				goto out_unset_queue;
8000 			rc = 0;
8001 		}
8002 		/* Check if the port is configured to be disabled */
8003 		lpfc_sli_read_link_ste(phba);
8004 	}
8005 
8006 	/* Don't post more new bufs if repost already recovered
8007 	 * the nvme sgls.
8008 	 */
8009 	if (phba->nvmet_support == 0) {
8010 		if (phba->sli4_hba.io_xri_cnt == 0) {
8011 			len = lpfc_new_io_buf(
8012 					      phba, phba->sli4_hba.io_xri_max);
8013 			if (len == 0) {
8014 				rc = -ENOMEM;
8015 				goto out_unset_queue;
8016 			}
8017 
8018 			if (phba->cfg_xri_rebalancing)
8019 				lpfc_create_multixri_pools(phba);
8020 		}
8021 	} else {
8022 		phba->cfg_xri_rebalancing = 0;
8023 	}
8024 
8025 	/* Allow asynchronous mailbox command to go through */
8026 	spin_lock_irq(&phba->hbalock);
8027 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8028 	spin_unlock_irq(&phba->hbalock);
8029 
8030 	/* Post receive buffers to the device */
8031 	lpfc_sli4_rb_setup(phba);
8032 
8033 	/* Reset HBA FCF states after HBA reset */
8034 	phba->fcf.fcf_flag = 0;
8035 	phba->fcf.current_rec.flag = 0;
8036 
8037 	/* Start the ELS watchdog timer */
8038 	mod_timer(&vport->els_tmofunc,
8039 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
8040 
8041 	/* Start heart beat timer */
8042 	mod_timer(&phba->hb_tmofunc,
8043 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
8044 	phba->hb_outstanding = 0;
8045 	phba->last_completion_time = jiffies;
8046 
8047 	/* start eq_delay heartbeat */
8048 	if (phba->cfg_auto_imax)
8049 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
8050 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
8051 
8052 	/* start per phba idle_stat_delay heartbeat */
8053 	lpfc_init_idle_stat_hb(phba);
8054 
8055 	/* Start error attention (ERATT) polling timer */
8056 	mod_timer(&phba->eratt_poll,
8057 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
8058 
8059 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
8060 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
8061 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
8062 		if (!rc) {
8063 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8064 					"2829 This device supports "
8065 					"Advanced Error Reporting (AER)\n");
8066 			spin_lock_irq(&phba->hbalock);
8067 			phba->hba_flag |= HBA_AER_ENABLED;
8068 			spin_unlock_irq(&phba->hbalock);
8069 		} else {
8070 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
8071 					"2830 This device does not support "
8072 					"Advanced Error Reporting (AER)\n");
8073 			phba->cfg_aer_support = 0;
8074 		}
8075 		rc = 0;
8076 	}
8077 
8078 	/*
8079 	 * The port is ready, set the host's link state to LINK_DOWN
8080 	 * in preparation for link interrupts.
8081 	 */
8082 	spin_lock_irq(&phba->hbalock);
8083 	phba->link_state = LPFC_LINK_DOWN;
8084 
8085 	/* Check if physical ports are trunked */
8086 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
8087 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
8088 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
8089 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
8090 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
8091 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
8092 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
8093 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
8094 	spin_unlock_irq(&phba->hbalock);
8095 
8096 	/* Arm the CQs and then EQs on device */
8097 	lpfc_sli4_arm_cqeq_intr(phba);
8098 
8099 	/* Indicate device interrupt mode */
8100 	phba->sli4_hba.intr_enable = 1;
8101 
8102 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
8103 	    (phba->hba_flag & LINK_DISABLED)) {
8104 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8105 				"3103 Adapter Link is disabled.\n");
8106 		lpfc_down_link(phba, mboxq);
8107 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
8108 		if (rc != MBX_SUCCESS) {
8109 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8110 					"3104 Adapter failed to issue "
8111 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
8112 			goto out_io_buff_free;
8113 		}
8114 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
8115 		/* don't perform init_link on SLI4 FC port loopback test */
8116 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
8117 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
8118 			if (rc)
8119 				goto out_io_buff_free;
8120 		}
8121 	}
8122 	mempool_free(mboxq, phba->mbox_mem_pool);
8123 	return rc;
8124 out_io_buff_free:
8125 	/* Free allocated IO Buffers */
8126 	lpfc_io_free(phba);
8127 out_unset_queue:
8128 	/* Unset all the queues set up in this routine when error out */
8129 	lpfc_sli4_queue_unset(phba);
8130 out_destroy_queue:
8131 	lpfc_free_iocb_list(phba);
8132 	lpfc_sli4_queue_destroy(phba);
8133 out_stop_timers:
8134 	lpfc_stop_hba_timers(phba);
8135 out_free_mbox:
8136 	mempool_free(mboxq, phba->mbox_mem_pool);
8137 	return rc;
8138 }
8139 
8140 /**
8141  * lpfc_mbox_timeout - Timeout call back function for mbox timer
8142  * @t: Context to fetch pointer to hba structure from.
8143  *
8144  * This is the callback function for mailbox timer. The mailbox
8145  * timer is armed when a new mailbox command is issued and the timer
8146  * is deleted when the mailbox complete. The function is called by
8147  * the kernel timer code when a mailbox does not complete within
8148  * expected time. This function wakes up the worker thread to
8149  * process the mailbox timeout and returns. All the processing is
8150  * done by the worker thread function lpfc_mbox_timeout_handler.
8151  **/
8152 void
8153 lpfc_mbox_timeout(struct timer_list *t)
8154 {
8155 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
8156 	unsigned long iflag;
8157 	uint32_t tmo_posted;
8158 
8159 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
8160 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
8161 	if (!tmo_posted)
8162 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
8163 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
8164 
8165 	if (!tmo_posted)
8166 		lpfc_worker_wake_up(phba);
8167 	return;
8168 }
8169 
8170 /**
8171  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
8172  *                                    are pending
8173  * @phba: Pointer to HBA context object.
8174  *
8175  * This function checks if any mailbox completions are present on the mailbox
8176  * completion queue.
8177  **/
8178 static bool
8179 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
8180 {
8181 
8182 	uint32_t idx;
8183 	struct lpfc_queue *mcq;
8184 	struct lpfc_mcqe *mcqe;
8185 	bool pending_completions = false;
8186 	uint8_t	qe_valid;
8187 
8188 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8189 		return false;
8190 
8191 	/* Check for completions on mailbox completion queue */
8192 
8193 	mcq = phba->sli4_hba.mbx_cq;
8194 	idx = mcq->hba_index;
8195 	qe_valid = mcq->qe_valid;
8196 	while (bf_get_le32(lpfc_cqe_valid,
8197 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
8198 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8199 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8200 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8201 			pending_completions = true;
8202 			break;
8203 		}
8204 		idx = (idx + 1) % mcq->entry_count;
8205 		if (mcq->hba_index == idx)
8206 			break;
8207 
8208 		/* if the index wrapped around, toggle the valid bit */
8209 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8210 			qe_valid = (qe_valid) ? 0 : 1;
8211 	}
8212 	return pending_completions;
8213 
8214 }
8215 
8216 /**
8217  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8218  *					      that were missed.
8219  * @phba: Pointer to HBA context object.
8220  *
8221  * For sli4, it is possible to miss an interrupt. As such mbox completions
8222  * maybe missed causing erroneous mailbox timeouts to occur. This function
8223  * checks to see if mbox completions are on the mailbox completion queue
8224  * and will process all the completions associated with the eq for the
8225  * mailbox completion queue.
8226  **/
8227 static bool
8228 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8229 {
8230 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8231 	uint32_t eqidx;
8232 	struct lpfc_queue *fpeq = NULL;
8233 	struct lpfc_queue *eq;
8234 	bool mbox_pending;
8235 
8236 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8237 		return false;
8238 
8239 	/* Find the EQ associated with the mbox CQ */
8240 	if (sli4_hba->hdwq) {
8241 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8242 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8243 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8244 				fpeq = eq;
8245 				break;
8246 			}
8247 		}
8248 	}
8249 	if (!fpeq)
8250 		return false;
8251 
8252 	/* Turn off interrupts from this EQ */
8253 
8254 	sli4_hba->sli4_eq_clr_intr(fpeq);
8255 
8256 	/* Check to see if a mbox completion is pending */
8257 
8258 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8259 
8260 	/*
8261 	 * If a mbox completion is pending, process all the events on EQ
8262 	 * associated with the mbox completion queue (this could include
8263 	 * mailbox commands, async events, els commands, receive queue data
8264 	 * and fcp commands)
8265 	 */
8266 
8267 	if (mbox_pending)
8268 		/* process and rearm the EQ */
8269 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8270 	else
8271 		/* Always clear and re-arm the EQ */
8272 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8273 
8274 	return mbox_pending;
8275 
8276 }
8277 
8278 /**
8279  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8280  * @phba: Pointer to HBA context object.
8281  *
8282  * This function is called from worker thread when a mailbox command times out.
8283  * The caller is not required to hold any locks. This function will reset the
8284  * HBA and recover all the pending commands.
8285  **/
8286 void
8287 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8288 {
8289 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8290 	MAILBOX_t *mb = NULL;
8291 
8292 	struct lpfc_sli *psli = &phba->sli;
8293 
8294 	/* If the mailbox completed, process the completion and return */
8295 	if (lpfc_sli4_process_missed_mbox_completions(phba))
8296 		return;
8297 
8298 	if (pmbox != NULL)
8299 		mb = &pmbox->u.mb;
8300 	/* Check the pmbox pointer first.  There is a race condition
8301 	 * between the mbox timeout handler getting executed in the
8302 	 * worklist and the mailbox actually completing. When this
8303 	 * race condition occurs, the mbox_active will be NULL.
8304 	 */
8305 	spin_lock_irq(&phba->hbalock);
8306 	if (pmbox == NULL) {
8307 		lpfc_printf_log(phba, KERN_WARNING,
8308 				LOG_MBOX | LOG_SLI,
8309 				"0353 Active Mailbox cleared - mailbox timeout "
8310 				"exiting\n");
8311 		spin_unlock_irq(&phba->hbalock);
8312 		return;
8313 	}
8314 
8315 	/* Mbox cmd <mbxCommand> timeout */
8316 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8317 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8318 			mb->mbxCommand,
8319 			phba->pport->port_state,
8320 			phba->sli.sli_flag,
8321 			phba->sli.mbox_active);
8322 	spin_unlock_irq(&phba->hbalock);
8323 
8324 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8325 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8326 	 * it to fail all outstanding SCSI IO.
8327 	 */
8328 	spin_lock_irq(&phba->pport->work_port_lock);
8329 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8330 	spin_unlock_irq(&phba->pport->work_port_lock);
8331 	spin_lock_irq(&phba->hbalock);
8332 	phba->link_state = LPFC_LINK_UNKNOWN;
8333 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8334 	spin_unlock_irq(&phba->hbalock);
8335 
8336 	lpfc_sli_abort_fcp_rings(phba);
8337 
8338 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8339 			"0345 Resetting board due to mailbox timeout\n");
8340 
8341 	/* Reset the HBA device */
8342 	lpfc_reset_hba(phba);
8343 }
8344 
8345 /**
8346  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8347  * @phba: Pointer to HBA context object.
8348  * @pmbox: Pointer to mailbox object.
8349  * @flag: Flag indicating how the mailbox need to be processed.
8350  *
8351  * This function is called by discovery code and HBA management code
8352  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8353  * function gets the hbalock to protect the data structures.
8354  * The mailbox command can be submitted in polling mode, in which case
8355  * this function will wait in a polling loop for the completion of the
8356  * mailbox.
8357  * If the mailbox is submitted in no_wait mode (not polling) the
8358  * function will submit the command and returns immediately without waiting
8359  * for the mailbox completion. The no_wait is supported only when HBA
8360  * is in SLI2/SLI3 mode - interrupts are enabled.
8361  * The SLI interface allows only one mailbox pending at a time. If the
8362  * mailbox is issued in polling mode and there is already a mailbox
8363  * pending, then the function will return an error. If the mailbox is issued
8364  * in NO_WAIT mode and there is a mailbox pending already, the function
8365  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8366  * The sli layer owns the mailbox object until the completion of mailbox
8367  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8368  * return codes the caller owns the mailbox command after the return of
8369  * the function.
8370  **/
8371 static int
8372 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8373 		       uint32_t flag)
8374 {
8375 	MAILBOX_t *mbx;
8376 	struct lpfc_sli *psli = &phba->sli;
8377 	uint32_t status, evtctr;
8378 	uint32_t ha_copy, hc_copy;
8379 	int i;
8380 	unsigned long timeout;
8381 	unsigned long drvr_flag = 0;
8382 	uint32_t word0, ldata;
8383 	void __iomem *to_slim;
8384 	int processing_queue = 0;
8385 
8386 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8387 	if (!pmbox) {
8388 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8389 		/* processing mbox queue from intr_handler */
8390 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8391 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8392 			return MBX_SUCCESS;
8393 		}
8394 		processing_queue = 1;
8395 		pmbox = lpfc_mbox_get(phba);
8396 		if (!pmbox) {
8397 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8398 			return MBX_SUCCESS;
8399 		}
8400 	}
8401 
8402 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8403 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8404 		if(!pmbox->vport) {
8405 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8406 			lpfc_printf_log(phba, KERN_ERR,
8407 					LOG_MBOX | LOG_VPORT,
8408 					"1806 Mbox x%x failed. No vport\n",
8409 					pmbox->u.mb.mbxCommand);
8410 			dump_stack();
8411 			goto out_not_finished;
8412 		}
8413 	}
8414 
8415 	/* If the PCI channel is in offline state, do not post mbox. */
8416 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8417 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8418 		goto out_not_finished;
8419 	}
8420 
8421 	/* If HBA has a deferred error attention, fail the iocb. */
8422 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8423 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8424 		goto out_not_finished;
8425 	}
8426 
8427 	psli = &phba->sli;
8428 
8429 	mbx = &pmbox->u.mb;
8430 	status = MBX_SUCCESS;
8431 
8432 	if (phba->link_state == LPFC_HBA_ERROR) {
8433 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8434 
8435 		/* Mbox command <mbxCommand> cannot issue */
8436 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8437 				"(%d):0311 Mailbox command x%x cannot "
8438 				"issue Data: x%x x%x\n",
8439 				pmbox->vport ? pmbox->vport->vpi : 0,
8440 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8441 		goto out_not_finished;
8442 	}
8443 
8444 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8445 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8446 			!(hc_copy & HC_MBINT_ENA)) {
8447 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8448 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8449 				"(%d):2528 Mailbox command x%x cannot "
8450 				"issue Data: x%x x%x\n",
8451 				pmbox->vport ? pmbox->vport->vpi : 0,
8452 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8453 			goto out_not_finished;
8454 		}
8455 	}
8456 
8457 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8458 		/* Polling for a mbox command when another one is already active
8459 		 * is not allowed in SLI. Also, the driver must have established
8460 		 * SLI2 mode to queue and process multiple mbox commands.
8461 		 */
8462 
8463 		if (flag & MBX_POLL) {
8464 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8465 
8466 			/* Mbox command <mbxCommand> cannot issue */
8467 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8468 					"(%d):2529 Mailbox command x%x "
8469 					"cannot issue Data: x%x x%x\n",
8470 					pmbox->vport ? pmbox->vport->vpi : 0,
8471 					pmbox->u.mb.mbxCommand,
8472 					psli->sli_flag, flag);
8473 			goto out_not_finished;
8474 		}
8475 
8476 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8477 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8478 			/* Mbox command <mbxCommand> cannot issue */
8479 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8480 					"(%d):2530 Mailbox command x%x "
8481 					"cannot issue Data: x%x x%x\n",
8482 					pmbox->vport ? pmbox->vport->vpi : 0,
8483 					pmbox->u.mb.mbxCommand,
8484 					psli->sli_flag, flag);
8485 			goto out_not_finished;
8486 		}
8487 
8488 		/* Another mailbox command is still being processed, queue this
8489 		 * command to be processed later.
8490 		 */
8491 		lpfc_mbox_put(phba, pmbox);
8492 
8493 		/* Mbox cmd issue - BUSY */
8494 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8495 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8496 				"x%x x%x x%x x%x\n",
8497 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8498 				mbx->mbxCommand,
8499 				phba->pport ? phba->pport->port_state : 0xff,
8500 				psli->sli_flag, flag);
8501 
8502 		psli->slistat.mbox_busy++;
8503 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8504 
8505 		if (pmbox->vport) {
8506 			lpfc_debugfs_disc_trc(pmbox->vport,
8507 				LPFC_DISC_TRC_MBOX_VPORT,
8508 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8509 				(uint32_t)mbx->mbxCommand,
8510 				mbx->un.varWords[0], mbx->un.varWords[1]);
8511 		}
8512 		else {
8513 			lpfc_debugfs_disc_trc(phba->pport,
8514 				LPFC_DISC_TRC_MBOX,
8515 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8516 				(uint32_t)mbx->mbxCommand,
8517 				mbx->un.varWords[0], mbx->un.varWords[1]);
8518 		}
8519 
8520 		return MBX_BUSY;
8521 	}
8522 
8523 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8524 
8525 	/* If we are not polling, we MUST be in SLI2 mode */
8526 	if (flag != MBX_POLL) {
8527 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8528 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8529 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8530 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8531 			/* Mbox command <mbxCommand> cannot issue */
8532 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8533 					"(%d):2531 Mailbox command x%x "
8534 					"cannot issue Data: x%x x%x\n",
8535 					pmbox->vport ? pmbox->vport->vpi : 0,
8536 					pmbox->u.mb.mbxCommand,
8537 					psli->sli_flag, flag);
8538 			goto out_not_finished;
8539 		}
8540 		/* timeout active mbox command */
8541 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8542 					   1000);
8543 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8544 	}
8545 
8546 	/* Mailbox cmd <cmd> issue */
8547 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8548 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8549 			"x%x\n",
8550 			pmbox->vport ? pmbox->vport->vpi : 0,
8551 			mbx->mbxCommand,
8552 			phba->pport ? phba->pport->port_state : 0xff,
8553 			psli->sli_flag, flag);
8554 
8555 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8556 		if (pmbox->vport) {
8557 			lpfc_debugfs_disc_trc(pmbox->vport,
8558 				LPFC_DISC_TRC_MBOX_VPORT,
8559 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8560 				(uint32_t)mbx->mbxCommand,
8561 				mbx->un.varWords[0], mbx->un.varWords[1]);
8562 		}
8563 		else {
8564 			lpfc_debugfs_disc_trc(phba->pport,
8565 				LPFC_DISC_TRC_MBOX,
8566 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8567 				(uint32_t)mbx->mbxCommand,
8568 				mbx->un.varWords[0], mbx->un.varWords[1]);
8569 		}
8570 	}
8571 
8572 	psli->slistat.mbox_cmd++;
8573 	evtctr = psli->slistat.mbox_event;
8574 
8575 	/* next set own bit for the adapter and copy over command word */
8576 	mbx->mbxOwner = OWN_CHIP;
8577 
8578 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8579 		/* Populate mbox extension offset word. */
8580 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8581 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8582 				= (uint8_t *)phba->mbox_ext
8583 				  - (uint8_t *)phba->mbox;
8584 		}
8585 
8586 		/* Copy the mailbox extension data */
8587 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8588 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8589 					      (uint8_t *)phba->mbox_ext,
8590 					      pmbox->in_ext_byte_len);
8591 		}
8592 		/* Copy command data to host SLIM area */
8593 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8594 	} else {
8595 		/* Populate mbox extension offset word. */
8596 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8597 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8598 				= MAILBOX_HBA_EXT_OFFSET;
8599 
8600 		/* Copy the mailbox extension data */
8601 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8602 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8603 				MAILBOX_HBA_EXT_OFFSET,
8604 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8605 
8606 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8607 			/* copy command data into host mbox for cmpl */
8608 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8609 					      MAILBOX_CMD_SIZE);
8610 
8611 		/* First copy mbox command data to HBA SLIM, skip past first
8612 		   word */
8613 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8614 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8615 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8616 
8617 		/* Next copy over first word, with mbxOwner set */
8618 		ldata = *((uint32_t *)mbx);
8619 		to_slim = phba->MBslimaddr;
8620 		writel(ldata, to_slim);
8621 		readl(to_slim); /* flush */
8622 
8623 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8624 			/* switch over to host mailbox */
8625 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8626 	}
8627 
8628 	wmb();
8629 
8630 	switch (flag) {
8631 	case MBX_NOWAIT:
8632 		/* Set up reference to mailbox command */
8633 		psli->mbox_active = pmbox;
8634 		/* Interrupt board to do it */
8635 		writel(CA_MBATT, phba->CAregaddr);
8636 		readl(phba->CAregaddr); /* flush */
8637 		/* Don't wait for it to finish, just return */
8638 		break;
8639 
8640 	case MBX_POLL:
8641 		/* Set up null reference to mailbox command */
8642 		psli->mbox_active = NULL;
8643 		/* Interrupt board to do it */
8644 		writel(CA_MBATT, phba->CAregaddr);
8645 		readl(phba->CAregaddr); /* flush */
8646 
8647 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8648 			/* First read mbox status word */
8649 			word0 = *((uint32_t *)phba->mbox);
8650 			word0 = le32_to_cpu(word0);
8651 		} else {
8652 			/* First read mbox status word */
8653 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8654 				spin_unlock_irqrestore(&phba->hbalock,
8655 						       drvr_flag);
8656 				goto out_not_finished;
8657 			}
8658 		}
8659 
8660 		/* Read the HBA Host Attention Register */
8661 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8662 			spin_unlock_irqrestore(&phba->hbalock,
8663 						       drvr_flag);
8664 			goto out_not_finished;
8665 		}
8666 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8667 							1000) + jiffies;
8668 		i = 0;
8669 		/* Wait for command to complete */
8670 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8671 		       (!(ha_copy & HA_MBATT) &&
8672 			(phba->link_state > LPFC_WARM_START))) {
8673 			if (time_after(jiffies, timeout)) {
8674 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8675 				spin_unlock_irqrestore(&phba->hbalock,
8676 						       drvr_flag);
8677 				goto out_not_finished;
8678 			}
8679 
8680 			/* Check if we took a mbox interrupt while we were
8681 			   polling */
8682 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8683 			    && (evtctr != psli->slistat.mbox_event))
8684 				break;
8685 
8686 			if (i++ > 10) {
8687 				spin_unlock_irqrestore(&phba->hbalock,
8688 						       drvr_flag);
8689 				msleep(1);
8690 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8691 			}
8692 
8693 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8694 				/* First copy command data */
8695 				word0 = *((uint32_t *)phba->mbox);
8696 				word0 = le32_to_cpu(word0);
8697 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8698 					MAILBOX_t *slimmb;
8699 					uint32_t slimword0;
8700 					/* Check real SLIM for any errors */
8701 					slimword0 = readl(phba->MBslimaddr);
8702 					slimmb = (MAILBOX_t *) & slimword0;
8703 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8704 					    && slimmb->mbxStatus) {
8705 						psli->sli_flag &=
8706 						    ~LPFC_SLI_ACTIVE;
8707 						word0 = slimword0;
8708 					}
8709 				}
8710 			} else {
8711 				/* First copy command data */
8712 				word0 = readl(phba->MBslimaddr);
8713 			}
8714 			/* Read the HBA Host Attention Register */
8715 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8716 				spin_unlock_irqrestore(&phba->hbalock,
8717 						       drvr_flag);
8718 				goto out_not_finished;
8719 			}
8720 		}
8721 
8722 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8723 			/* copy results back to user */
8724 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8725 						MAILBOX_CMD_SIZE);
8726 			/* Copy the mailbox extension data */
8727 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8728 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8729 						      pmbox->ctx_buf,
8730 						      pmbox->out_ext_byte_len);
8731 			}
8732 		} else {
8733 			/* First copy command data */
8734 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8735 						MAILBOX_CMD_SIZE);
8736 			/* Copy the mailbox extension data */
8737 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8738 				lpfc_memcpy_from_slim(
8739 					pmbox->ctx_buf,
8740 					phba->MBslimaddr +
8741 					MAILBOX_HBA_EXT_OFFSET,
8742 					pmbox->out_ext_byte_len);
8743 			}
8744 		}
8745 
8746 		writel(HA_MBATT, phba->HAregaddr);
8747 		readl(phba->HAregaddr); /* flush */
8748 
8749 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8750 		status = mbx->mbxStatus;
8751 	}
8752 
8753 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8754 	return status;
8755 
8756 out_not_finished:
8757 	if (processing_queue) {
8758 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8759 		lpfc_mbox_cmpl_put(phba, pmbox);
8760 	}
8761 	return MBX_NOT_FINISHED;
8762 }
8763 
8764 /**
8765  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8766  * @phba: Pointer to HBA context object.
8767  *
8768  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8769  * the driver internal pending mailbox queue. It will then try to wait out the
8770  * possible outstanding mailbox command before return.
8771  *
8772  * Returns:
8773  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8774  * 	the outstanding mailbox command timed out.
8775  **/
8776 static int
8777 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8778 {
8779 	struct lpfc_sli *psli = &phba->sli;
8780 	int rc = 0;
8781 	unsigned long timeout = 0;
8782 
8783 	/* Mark the asynchronous mailbox command posting as blocked */
8784 	spin_lock_irq(&phba->hbalock);
8785 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8786 	/* Determine how long we might wait for the active mailbox
8787 	 * command to be gracefully completed by firmware.
8788 	 */
8789 	if (phba->sli.mbox_active)
8790 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8791 						phba->sli.mbox_active) *
8792 						1000) + jiffies;
8793 	spin_unlock_irq(&phba->hbalock);
8794 
8795 	/* Make sure the mailbox is really active */
8796 	if (timeout)
8797 		lpfc_sli4_process_missed_mbox_completions(phba);
8798 
8799 	/* Wait for the outstnading mailbox command to complete */
8800 	while (phba->sli.mbox_active) {
8801 		/* Check active mailbox complete status every 2ms */
8802 		msleep(2);
8803 		if (time_after(jiffies, timeout)) {
8804 			/* Timeout, marked the outstanding cmd not complete */
8805 			rc = 1;
8806 			break;
8807 		}
8808 	}
8809 
8810 	/* Can not cleanly block async mailbox command, fails it */
8811 	if (rc) {
8812 		spin_lock_irq(&phba->hbalock);
8813 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8814 		spin_unlock_irq(&phba->hbalock);
8815 	}
8816 	return rc;
8817 }
8818 
8819 /**
8820  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8821  * @phba: Pointer to HBA context object.
8822  *
8823  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8824  * commands from the driver internal pending mailbox queue. It makes sure
8825  * that there is no outstanding mailbox command before resuming posting
8826  * asynchronous mailbox commands. If, for any reason, there is outstanding
8827  * mailbox command, it will try to wait it out before resuming asynchronous
8828  * mailbox command posting.
8829  **/
8830 static void
8831 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8832 {
8833 	struct lpfc_sli *psli = &phba->sli;
8834 
8835 	spin_lock_irq(&phba->hbalock);
8836 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8837 		/* Asynchronous mailbox posting is not blocked, do nothing */
8838 		spin_unlock_irq(&phba->hbalock);
8839 		return;
8840 	}
8841 
8842 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8843 	 * successful or timeout, after timing-out the outstanding mailbox
8844 	 * command shall always be removed, so just unblock posting async
8845 	 * mailbox command and resume
8846 	 */
8847 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8848 	spin_unlock_irq(&phba->hbalock);
8849 
8850 	/* wake up worker thread to post asynchronous mailbox command */
8851 	lpfc_worker_wake_up(phba);
8852 }
8853 
8854 /**
8855  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8856  * @phba: Pointer to HBA context object.
8857  * @mboxq: Pointer to mailbox object.
8858  *
8859  * The function waits for the bootstrap mailbox register ready bit from
8860  * port for twice the regular mailbox command timeout value.
8861  *
8862  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8863  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8864  **/
8865 static int
8866 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8867 {
8868 	uint32_t db_ready;
8869 	unsigned long timeout;
8870 	struct lpfc_register bmbx_reg;
8871 
8872 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8873 				   * 1000) + jiffies;
8874 
8875 	do {
8876 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8877 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8878 		if (!db_ready)
8879 			mdelay(2);
8880 
8881 		if (time_after(jiffies, timeout))
8882 			return MBXERR_ERROR;
8883 	} while (!db_ready);
8884 
8885 	return 0;
8886 }
8887 
8888 /**
8889  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8890  * @phba: Pointer to HBA context object.
8891  * @mboxq: Pointer to mailbox object.
8892  *
8893  * The function posts a mailbox to the port.  The mailbox is expected
8894  * to be comletely filled in and ready for the port to operate on it.
8895  * This routine executes a synchronous completion operation on the
8896  * mailbox by polling for its completion.
8897  *
8898  * The caller must not be holding any locks when calling this routine.
8899  *
8900  * Returns:
8901  *	MBX_SUCCESS - mailbox posted successfully
8902  *	Any of the MBX error values.
8903  **/
8904 static int
8905 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8906 {
8907 	int rc = MBX_SUCCESS;
8908 	unsigned long iflag;
8909 	uint32_t mcqe_status;
8910 	uint32_t mbx_cmnd;
8911 	struct lpfc_sli *psli = &phba->sli;
8912 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8913 	struct lpfc_bmbx_create *mbox_rgn;
8914 	struct dma_address *dma_address;
8915 
8916 	/*
8917 	 * Only one mailbox can be active to the bootstrap mailbox region
8918 	 * at a time and there is no queueing provided.
8919 	 */
8920 	spin_lock_irqsave(&phba->hbalock, iflag);
8921 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8922 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8923 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
8924 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8925 				"cannot issue Data: x%x x%x\n",
8926 				mboxq->vport ? mboxq->vport->vpi : 0,
8927 				mboxq->u.mb.mbxCommand,
8928 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8929 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8930 				psli->sli_flag, MBX_POLL);
8931 		return MBXERR_ERROR;
8932 	}
8933 	/* The server grabs the token and owns it until release */
8934 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8935 	phba->sli.mbox_active = mboxq;
8936 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8937 
8938 	/* wait for bootstrap mbox register for readyness */
8939 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8940 	if (rc)
8941 		goto exit;
8942 	/*
8943 	 * Initialize the bootstrap memory region to avoid stale data areas
8944 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8945 	 * the bmbx mailbox region.
8946 	 */
8947 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8948 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8949 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8950 			       sizeof(struct lpfc_mqe));
8951 
8952 	/* Post the high mailbox dma address to the port and wait for ready. */
8953 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8954 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8955 
8956 	/* wait for bootstrap mbox register for hi-address write done */
8957 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8958 	if (rc)
8959 		goto exit;
8960 
8961 	/* Post the low mailbox dma address to the port. */
8962 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8963 
8964 	/* wait for bootstrap mbox register for low address write done */
8965 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8966 	if (rc)
8967 		goto exit;
8968 
8969 	/*
8970 	 * Read the CQ to ensure the mailbox has completed.
8971 	 * If so, update the mailbox status so that the upper layers
8972 	 * can complete the request normally.
8973 	 */
8974 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8975 			       sizeof(struct lpfc_mqe));
8976 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8977 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8978 			       sizeof(struct lpfc_mcqe));
8979 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8980 	/*
8981 	 * When the CQE status indicates a failure and the mailbox status
8982 	 * indicates success then copy the CQE status into the mailbox status
8983 	 * (and prefix it with x4000).
8984 	 */
8985 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8986 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8987 			bf_set(lpfc_mqe_status, mb,
8988 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8989 		rc = MBXERR_ERROR;
8990 	} else
8991 		lpfc_sli4_swap_str(phba, mboxq);
8992 
8993 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8994 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8995 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8996 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8997 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8998 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8999 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9000 			bf_get(lpfc_mqe_status, mb),
9001 			mb->un.mb_words[0], mb->un.mb_words[1],
9002 			mb->un.mb_words[2], mb->un.mb_words[3],
9003 			mb->un.mb_words[4], mb->un.mb_words[5],
9004 			mb->un.mb_words[6], mb->un.mb_words[7],
9005 			mb->un.mb_words[8], mb->un.mb_words[9],
9006 			mb->un.mb_words[10], mb->un.mb_words[11],
9007 			mb->un.mb_words[12], mboxq->mcqe.word0,
9008 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
9009 			mboxq->mcqe.trailer);
9010 exit:
9011 	/* We are holding the token, no needed for lock when release */
9012 	spin_lock_irqsave(&phba->hbalock, iflag);
9013 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9014 	phba->sli.mbox_active = NULL;
9015 	spin_unlock_irqrestore(&phba->hbalock, iflag);
9016 	return rc;
9017 }
9018 
9019 /**
9020  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
9021  * @phba: Pointer to HBA context object.
9022  * @mboxq: Pointer to mailbox object.
9023  * @flag: Flag indicating how the mailbox need to be processed.
9024  *
9025  * This function is called by discovery code and HBA management code to submit
9026  * a mailbox command to firmware with SLI-4 interface spec.
9027  *
9028  * Return codes the caller owns the mailbox command after the return of the
9029  * function.
9030  **/
9031 static int
9032 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
9033 		       uint32_t flag)
9034 {
9035 	struct lpfc_sli *psli = &phba->sli;
9036 	unsigned long iflags;
9037 	int rc;
9038 
9039 	/* dump from issue mailbox command if setup */
9040 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
9041 
9042 	rc = lpfc_mbox_dev_check(phba);
9043 	if (unlikely(rc)) {
9044 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9045 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
9046 				"cannot issue Data: x%x x%x\n",
9047 				mboxq->vport ? mboxq->vport->vpi : 0,
9048 				mboxq->u.mb.mbxCommand,
9049 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9050 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9051 				psli->sli_flag, flag);
9052 		goto out_not_finished;
9053 	}
9054 
9055 	/* Detect polling mode and jump to a handler */
9056 	if (!phba->sli4_hba.intr_enable) {
9057 		if (flag == MBX_POLL)
9058 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9059 		else
9060 			rc = -EIO;
9061 		if (rc != MBX_SUCCESS)
9062 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9063 					"(%d):2541 Mailbox command x%x "
9064 					"(x%x/x%x) failure: "
9065 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9066 					"Data: x%x x%x\n,",
9067 					mboxq->vport ? mboxq->vport->vpi : 0,
9068 					mboxq->u.mb.mbxCommand,
9069 					lpfc_sli_config_mbox_subsys_get(phba,
9070 									mboxq),
9071 					lpfc_sli_config_mbox_opcode_get(phba,
9072 									mboxq),
9073 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9074 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9075 					bf_get(lpfc_mcqe_ext_status,
9076 					       &mboxq->mcqe),
9077 					psli->sli_flag, flag);
9078 		return rc;
9079 	} else if (flag == MBX_POLL) {
9080 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
9081 				"(%d):2542 Try to issue mailbox command "
9082 				"x%x (x%x/x%x) synchronously ahead of async "
9083 				"mailbox command queue: x%x x%x\n",
9084 				mboxq->vport ? mboxq->vport->vpi : 0,
9085 				mboxq->u.mb.mbxCommand,
9086 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9087 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9088 				psli->sli_flag, flag);
9089 		/* Try to block the asynchronous mailbox posting */
9090 		rc = lpfc_sli4_async_mbox_block(phba);
9091 		if (!rc) {
9092 			/* Successfully blocked, now issue sync mbox cmd */
9093 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
9094 			if (rc != MBX_SUCCESS)
9095 				lpfc_printf_log(phba, KERN_WARNING,
9096 					LOG_MBOX | LOG_SLI,
9097 					"(%d):2597 Sync Mailbox command "
9098 					"x%x (x%x/x%x) failure: "
9099 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
9100 					"Data: x%x x%x\n,",
9101 					mboxq->vport ? mboxq->vport->vpi : 0,
9102 					mboxq->u.mb.mbxCommand,
9103 					lpfc_sli_config_mbox_subsys_get(phba,
9104 									mboxq),
9105 					lpfc_sli_config_mbox_opcode_get(phba,
9106 									mboxq),
9107 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
9108 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
9109 					bf_get(lpfc_mcqe_ext_status,
9110 					       &mboxq->mcqe),
9111 					psli->sli_flag, flag);
9112 			/* Unblock the async mailbox posting afterward */
9113 			lpfc_sli4_async_mbox_unblock(phba);
9114 		}
9115 		return rc;
9116 	}
9117 
9118 	/* Now, interrupt mode asynchronous mailbox command */
9119 	rc = lpfc_mbox_cmd_check(phba, mboxq);
9120 	if (rc) {
9121 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9122 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
9123 				"cannot issue Data: x%x x%x\n",
9124 				mboxq->vport ? mboxq->vport->vpi : 0,
9125 				mboxq->u.mb.mbxCommand,
9126 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9127 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9128 				psli->sli_flag, flag);
9129 		goto out_not_finished;
9130 	}
9131 
9132 	/* Put the mailbox command to the driver internal FIFO */
9133 	psli->slistat.mbox_busy++;
9134 	spin_lock_irqsave(&phba->hbalock, iflags);
9135 	lpfc_mbox_put(phba, mboxq);
9136 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9137 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9138 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
9139 			"x%x (x%x/x%x) x%x x%x x%x\n",
9140 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
9141 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
9142 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9143 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9144 			phba->pport->port_state,
9145 			psli->sli_flag, MBX_NOWAIT);
9146 	/* Wake up worker thread to transport mailbox command from head */
9147 	lpfc_worker_wake_up(phba);
9148 
9149 	return MBX_BUSY;
9150 
9151 out_not_finished:
9152 	return MBX_NOT_FINISHED;
9153 }
9154 
9155 /**
9156  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
9157  * @phba: Pointer to HBA context object.
9158  *
9159  * This function is called by worker thread to send a mailbox command to
9160  * SLI4 HBA firmware.
9161  *
9162  **/
9163 int
9164 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
9165 {
9166 	struct lpfc_sli *psli = &phba->sli;
9167 	LPFC_MBOXQ_t *mboxq;
9168 	int rc = MBX_SUCCESS;
9169 	unsigned long iflags;
9170 	struct lpfc_mqe *mqe;
9171 	uint32_t mbx_cmnd;
9172 
9173 	/* Check interrupt mode before post async mailbox command */
9174 	if (unlikely(!phba->sli4_hba.intr_enable))
9175 		return MBX_NOT_FINISHED;
9176 
9177 	/* Check for mailbox command service token */
9178 	spin_lock_irqsave(&phba->hbalock, iflags);
9179 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
9180 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9181 		return MBX_NOT_FINISHED;
9182 	}
9183 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
9184 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9185 		return MBX_NOT_FINISHED;
9186 	}
9187 	if (unlikely(phba->sli.mbox_active)) {
9188 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9189 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9190 				"0384 There is pending active mailbox cmd\n");
9191 		return MBX_NOT_FINISHED;
9192 	}
9193 	/* Take the mailbox command service token */
9194 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
9195 
9196 	/* Get the next mailbox command from head of queue */
9197 	mboxq = lpfc_mbox_get(phba);
9198 
9199 	/* If no more mailbox command waiting for post, we're done */
9200 	if (!mboxq) {
9201 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9202 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9203 		return MBX_SUCCESS;
9204 	}
9205 	phba->sli.mbox_active = mboxq;
9206 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9207 
9208 	/* Check device readiness for posting mailbox command */
9209 	rc = lpfc_mbox_dev_check(phba);
9210 	if (unlikely(rc))
9211 		/* Driver clean routine will clean up pending mailbox */
9212 		goto out_not_finished;
9213 
9214 	/* Prepare the mbox command to be posted */
9215 	mqe = &mboxq->u.mqe;
9216 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9217 
9218 	/* Start timer for the mbox_tmo and log some mailbox post messages */
9219 	mod_timer(&psli->mbox_tmo, (jiffies +
9220 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9221 
9222 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9223 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9224 			"x%x x%x\n",
9225 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9226 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9227 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9228 			phba->pport->port_state, psli->sli_flag);
9229 
9230 	if (mbx_cmnd != MBX_HEARTBEAT) {
9231 		if (mboxq->vport) {
9232 			lpfc_debugfs_disc_trc(mboxq->vport,
9233 				LPFC_DISC_TRC_MBOX_VPORT,
9234 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9235 				mbx_cmnd, mqe->un.mb_words[0],
9236 				mqe->un.mb_words[1]);
9237 		} else {
9238 			lpfc_debugfs_disc_trc(phba->pport,
9239 				LPFC_DISC_TRC_MBOX,
9240 				"MBOX Send: cmd:x%x mb:x%x x%x",
9241 				mbx_cmnd, mqe->un.mb_words[0],
9242 				mqe->un.mb_words[1]);
9243 		}
9244 	}
9245 	psli->slistat.mbox_cmd++;
9246 
9247 	/* Post the mailbox command to the port */
9248 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9249 	if (rc != MBX_SUCCESS) {
9250 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9251 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
9252 				"cannot issue Data: x%x x%x\n",
9253 				mboxq->vport ? mboxq->vport->vpi : 0,
9254 				mboxq->u.mb.mbxCommand,
9255 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9256 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9257 				psli->sli_flag, MBX_NOWAIT);
9258 		goto out_not_finished;
9259 	}
9260 
9261 	return rc;
9262 
9263 out_not_finished:
9264 	spin_lock_irqsave(&phba->hbalock, iflags);
9265 	if (phba->sli.mbox_active) {
9266 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9267 		__lpfc_mbox_cmpl_put(phba, mboxq);
9268 		/* Release the token */
9269 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9270 		phba->sli.mbox_active = NULL;
9271 	}
9272 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9273 
9274 	return MBX_NOT_FINISHED;
9275 }
9276 
9277 /**
9278  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9279  * @phba: Pointer to HBA context object.
9280  * @pmbox: Pointer to mailbox object.
9281  * @flag: Flag indicating how the mailbox need to be processed.
9282  *
9283  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9284  * the API jump table function pointer from the lpfc_hba struct.
9285  *
9286  * Return codes the caller owns the mailbox command after the return of the
9287  * function.
9288  **/
9289 int
9290 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9291 {
9292 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9293 }
9294 
9295 /**
9296  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9297  * @phba: The hba struct for which this call is being executed.
9298  * @dev_grp: The HBA PCI-Device group number.
9299  *
9300  * This routine sets up the mbox interface API function jump table in @phba
9301  * struct.
9302  * Returns: 0 - success, -ENODEV - failure.
9303  **/
9304 int
9305 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9306 {
9307 
9308 	switch (dev_grp) {
9309 	case LPFC_PCI_DEV_LP:
9310 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9311 		phba->lpfc_sli_handle_slow_ring_event =
9312 				lpfc_sli_handle_slow_ring_event_s3;
9313 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9314 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9315 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9316 		break;
9317 	case LPFC_PCI_DEV_OC:
9318 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9319 		phba->lpfc_sli_handle_slow_ring_event =
9320 				lpfc_sli_handle_slow_ring_event_s4;
9321 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9322 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9323 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9324 		break;
9325 	default:
9326 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9327 				"1420 Invalid HBA PCI-device group: 0x%x\n",
9328 				dev_grp);
9329 		return -ENODEV;
9330 	}
9331 	return 0;
9332 }
9333 
9334 /**
9335  * __lpfc_sli_ringtx_put - Add an iocb to the txq
9336  * @phba: Pointer to HBA context object.
9337  * @pring: Pointer to driver SLI ring object.
9338  * @piocb: Pointer to address of newly added command iocb.
9339  *
9340  * This function is called with hbalock held for SLI3 ports or
9341  * the ring lock held for SLI4 ports to add a command
9342  * iocb to the txq when SLI layer cannot submit the command iocb
9343  * to the ring.
9344  **/
9345 void
9346 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9347 		    struct lpfc_iocbq *piocb)
9348 {
9349 	if (phba->sli_rev == LPFC_SLI_REV4)
9350 		lockdep_assert_held(&pring->ring_lock);
9351 	else
9352 		lockdep_assert_held(&phba->hbalock);
9353 	/* Insert the caller's iocb in the txq tail for later processing. */
9354 	list_add_tail(&piocb->list, &pring->txq);
9355 }
9356 
9357 /**
9358  * lpfc_sli_next_iocb - Get the next iocb in the txq
9359  * @phba: Pointer to HBA context object.
9360  * @pring: Pointer to driver SLI ring object.
9361  * @piocb: Pointer to address of newly added command iocb.
9362  *
9363  * This function is called with hbalock held before a new
9364  * iocb is submitted to the firmware. This function checks
9365  * txq to flush the iocbs in txq to Firmware before
9366  * submitting new iocbs to the Firmware.
9367  * If there are iocbs in the txq which need to be submitted
9368  * to firmware, lpfc_sli_next_iocb returns the first element
9369  * of the txq after dequeuing it from txq.
9370  * If there is no iocb in the txq then the function will return
9371  * *piocb and *piocb is set to NULL. Caller needs to check
9372  * *piocb to find if there are more commands in the txq.
9373  **/
9374 static struct lpfc_iocbq *
9375 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9376 		   struct lpfc_iocbq **piocb)
9377 {
9378 	struct lpfc_iocbq * nextiocb;
9379 
9380 	lockdep_assert_held(&phba->hbalock);
9381 
9382 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9383 	if (!nextiocb) {
9384 		nextiocb = *piocb;
9385 		*piocb = NULL;
9386 	}
9387 
9388 	return nextiocb;
9389 }
9390 
9391 /**
9392  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9393  * @phba: Pointer to HBA context object.
9394  * @ring_number: SLI ring number to issue iocb on.
9395  * @piocb: Pointer to command iocb.
9396  * @flag: Flag indicating if this command can be put into txq.
9397  *
9398  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9399  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9400  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9401  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9402  * this function allows only iocbs for posting buffers. This function finds
9403  * next available slot in the command ring and posts the command to the
9404  * available slot and writes the port attention register to request HBA start
9405  * processing new iocb. If there is no slot available in the ring and
9406  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9407  * the function returns IOCB_BUSY.
9408  *
9409  * This function is called with hbalock held. The function will return success
9410  * after it successfully submit the iocb to firmware or after adding to the
9411  * txq.
9412  **/
9413 static int
9414 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9415 		    struct lpfc_iocbq *piocb, uint32_t flag)
9416 {
9417 	struct lpfc_iocbq *nextiocb;
9418 	IOCB_t *iocb;
9419 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9420 
9421 	lockdep_assert_held(&phba->hbalock);
9422 
9423 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9424 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9425 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9426 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9427 				"1807 IOCB x%x failed. No vport\n",
9428 				piocb->iocb.ulpCommand);
9429 		dump_stack();
9430 		return IOCB_ERROR;
9431 	}
9432 
9433 
9434 	/* If the PCI channel is in offline state, do not post iocbs. */
9435 	if (unlikely(pci_channel_offline(phba->pcidev)))
9436 		return IOCB_ERROR;
9437 
9438 	/* If HBA has a deferred error attention, fail the iocb. */
9439 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9440 		return IOCB_ERROR;
9441 
9442 	/*
9443 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9444 	 */
9445 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9446 		return IOCB_ERROR;
9447 
9448 	/*
9449 	 * Check to see if we are blocking IOCB processing because of a
9450 	 * outstanding event.
9451 	 */
9452 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9453 		goto iocb_busy;
9454 
9455 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9456 		/*
9457 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9458 		 * can be issued if the link is not up.
9459 		 */
9460 		switch (piocb->iocb.ulpCommand) {
9461 		case CMD_GEN_REQUEST64_CR:
9462 		case CMD_GEN_REQUEST64_CX:
9463 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9464 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9465 					FC_RCTL_DD_UNSOL_CMD) ||
9466 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9467 					MENLO_TRANSPORT_TYPE))
9468 
9469 				goto iocb_busy;
9470 			break;
9471 		case CMD_QUE_RING_BUF_CN:
9472 		case CMD_QUE_RING_BUF64_CN:
9473 			/*
9474 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9475 			 * completion, iocb_cmpl MUST be 0.
9476 			 */
9477 			if (piocb->iocb_cmpl)
9478 				piocb->iocb_cmpl = NULL;
9479 			fallthrough;
9480 		case CMD_CREATE_XRI_CR:
9481 		case CMD_CLOSE_XRI_CN:
9482 		case CMD_CLOSE_XRI_CX:
9483 			break;
9484 		default:
9485 			goto iocb_busy;
9486 		}
9487 
9488 	/*
9489 	 * For FCP commands, we must be in a state where we can process link
9490 	 * attention events.
9491 	 */
9492 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9493 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9494 		goto iocb_busy;
9495 	}
9496 
9497 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9498 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9499 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9500 
9501 	if (iocb)
9502 		lpfc_sli_update_ring(phba, pring);
9503 	else
9504 		lpfc_sli_update_full_ring(phba, pring);
9505 
9506 	if (!piocb)
9507 		return IOCB_SUCCESS;
9508 
9509 	goto out_busy;
9510 
9511  iocb_busy:
9512 	pring->stats.iocb_cmd_delay++;
9513 
9514  out_busy:
9515 
9516 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9517 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9518 		return IOCB_SUCCESS;
9519 	}
9520 
9521 	return IOCB_BUSY;
9522 }
9523 
9524 /**
9525  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9526  * @phba: Pointer to HBA context object.
9527  * @piocbq: Pointer to command iocb.
9528  * @sglq: Pointer to the scatter gather queue object.
9529  *
9530  * This routine converts the bpl or bde that is in the IOCB
9531  * to a sgl list for the sli4 hardware. The physical address
9532  * of the bpl/bde is converted back to a virtual address.
9533  * If the IOCB contains a BPL then the list of BDE's is
9534  * converted to sli4_sge's. If the IOCB contains a single
9535  * BDE then it is converted to a single sli_sge.
9536  * The IOCB is still in cpu endianess so the contents of
9537  * the bpl can be used without byte swapping.
9538  *
9539  * Returns valid XRI = Success, NO_XRI = Failure.
9540 **/
9541 static uint16_t
9542 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9543 		struct lpfc_sglq *sglq)
9544 {
9545 	uint16_t xritag = NO_XRI;
9546 	struct ulp_bde64 *bpl = NULL;
9547 	struct ulp_bde64 bde;
9548 	struct sli4_sge *sgl  = NULL;
9549 	struct lpfc_dmabuf *dmabuf;
9550 	IOCB_t *icmd;
9551 	int numBdes = 0;
9552 	int i = 0;
9553 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9554 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9555 
9556 	if (!piocbq || !sglq)
9557 		return xritag;
9558 
9559 	sgl  = (struct sli4_sge *)sglq->sgl;
9560 	icmd = &piocbq->iocb;
9561 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9562 		return sglq->sli4_xritag;
9563 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9564 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9565 				sizeof(struct ulp_bde64);
9566 		/* The addrHigh and addrLow fields within the IOCB
9567 		 * have not been byteswapped yet so there is no
9568 		 * need to swap them back.
9569 		 */
9570 		if (piocbq->context3)
9571 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9572 		else
9573 			return xritag;
9574 
9575 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9576 		if (!bpl)
9577 			return xritag;
9578 
9579 		for (i = 0; i < numBdes; i++) {
9580 			/* Should already be byte swapped. */
9581 			sgl->addr_hi = bpl->addrHigh;
9582 			sgl->addr_lo = bpl->addrLow;
9583 
9584 			sgl->word2 = le32_to_cpu(sgl->word2);
9585 			if ((i+1) == numBdes)
9586 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9587 			else
9588 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9589 			/* swap the size field back to the cpu so we
9590 			 * can assign it to the sgl.
9591 			 */
9592 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9593 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9594 			/* The offsets in the sgl need to be accumulated
9595 			 * separately for the request and reply lists.
9596 			 * The request is always first, the reply follows.
9597 			 */
9598 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9599 				/* add up the reply sg entries */
9600 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9601 					inbound++;
9602 				/* first inbound? reset the offset */
9603 				if (inbound == 1)
9604 					offset = 0;
9605 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9606 				bf_set(lpfc_sli4_sge_type, sgl,
9607 					LPFC_SGE_TYPE_DATA);
9608 				offset += bde.tus.f.bdeSize;
9609 			}
9610 			sgl->word2 = cpu_to_le32(sgl->word2);
9611 			bpl++;
9612 			sgl++;
9613 		}
9614 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9615 			/* The addrHigh and addrLow fields of the BDE have not
9616 			 * been byteswapped yet so they need to be swapped
9617 			 * before putting them in the sgl.
9618 			 */
9619 			sgl->addr_hi =
9620 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9621 			sgl->addr_lo =
9622 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9623 			sgl->word2 = le32_to_cpu(sgl->word2);
9624 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9625 			sgl->word2 = cpu_to_le32(sgl->word2);
9626 			sgl->sge_len =
9627 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9628 	}
9629 	return sglq->sli4_xritag;
9630 }
9631 
9632 /**
9633  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9634  * @phba: Pointer to HBA context object.
9635  * @iocbq: Pointer to command iocb.
9636  * @wqe: Pointer to the work queue entry.
9637  *
9638  * This routine converts the iocb command to its Work Queue Entry
9639  * equivalent. The wqe pointer should not have any fields set when
9640  * this routine is called because it will memcpy over them.
9641  * This routine does not set the CQ_ID or the WQEC bits in the
9642  * wqe.
9643  *
9644  * Returns: 0 = Success, IOCB_ERROR = Failure.
9645  **/
9646 static int
9647 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9648 		union lpfc_wqe128 *wqe)
9649 {
9650 	uint32_t xmit_len = 0, total_len = 0;
9651 	uint8_t ct = 0;
9652 	uint32_t fip;
9653 	uint32_t abort_tag;
9654 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9655 	uint8_t cmnd;
9656 	uint16_t xritag;
9657 	uint16_t abrt_iotag;
9658 	struct lpfc_iocbq *abrtiocbq;
9659 	struct ulp_bde64 *bpl = NULL;
9660 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9661 	int numBdes, i;
9662 	struct ulp_bde64 bde;
9663 	struct lpfc_nodelist *ndlp;
9664 	uint32_t *pcmd;
9665 	uint32_t if_type;
9666 
9667 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9668 	/* The fcp commands will set command type */
9669 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9670 		command_type = FCP_COMMAND;
9671 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9672 		command_type = ELS_COMMAND_FIP;
9673 	else
9674 		command_type = ELS_COMMAND_NON_FIP;
9675 
9676 	if (phba->fcp_embed_io)
9677 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9678 	/* Some of the fields are in the right position already */
9679 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9680 	/* The ct field has moved so reset */
9681 	wqe->generic.wqe_com.word7 = 0;
9682 	wqe->generic.wqe_com.word10 = 0;
9683 
9684 	abort_tag = (uint32_t) iocbq->iotag;
9685 	xritag = iocbq->sli4_xritag;
9686 	/* words0-2 bpl convert bde */
9687 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9688 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9689 				sizeof(struct ulp_bde64);
9690 		bpl  = (struct ulp_bde64 *)
9691 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9692 		if (!bpl)
9693 			return IOCB_ERROR;
9694 
9695 		/* Should already be byte swapped. */
9696 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9697 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9698 		/* swap the size field back to the cpu so we
9699 		 * can assign it to the sgl.
9700 		 */
9701 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9702 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9703 		total_len = 0;
9704 		for (i = 0; i < numBdes; i++) {
9705 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9706 			total_len += bde.tus.f.bdeSize;
9707 		}
9708 	} else
9709 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9710 
9711 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9712 	cmnd = iocbq->iocb.ulpCommand;
9713 
9714 	switch (iocbq->iocb.ulpCommand) {
9715 	case CMD_ELS_REQUEST64_CR:
9716 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9717 			ndlp = iocbq->context_un.ndlp;
9718 		else
9719 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9720 		if (!iocbq->iocb.ulpLe) {
9721 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
9722 				"2007 Only Limited Edition cmd Format"
9723 				" supported 0x%x\n",
9724 				iocbq->iocb.ulpCommand);
9725 			return IOCB_ERROR;
9726 		}
9727 
9728 		wqe->els_req.payload_len = xmit_len;
9729 		/* Els_reguest64 has a TMO */
9730 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9731 			iocbq->iocb.ulpTimeout);
9732 		/* Need a VF for word 4 set the vf bit*/
9733 		bf_set(els_req64_vf, &wqe->els_req, 0);
9734 		/* And a VFID for word 12 */
9735 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9736 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9737 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9738 		       iocbq->iocb.ulpContext);
9739 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9740 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9741 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9742 		if (command_type == ELS_COMMAND_FIP)
9743 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9744 					>> LPFC_FIP_ELS_ID_SHIFT);
9745 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9746 					iocbq->context2)->virt);
9747 		if_type = bf_get(lpfc_sli_intf_if_type,
9748 					&phba->sli4_hba.sli_intf);
9749 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9750 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9751 				*pcmd == ELS_CMD_SCR ||
9752 				*pcmd == ELS_CMD_RDF ||
9753 				*pcmd == ELS_CMD_RSCN_XMT ||
9754 				*pcmd == ELS_CMD_FDISC ||
9755 				*pcmd == ELS_CMD_LOGO ||
9756 				*pcmd == ELS_CMD_PLOGI)) {
9757 				bf_set(els_req64_sp, &wqe->els_req, 1);
9758 				bf_set(els_req64_sid, &wqe->els_req,
9759 					iocbq->vport->fc_myDID);
9760 				if ((*pcmd == ELS_CMD_FLOGI) &&
9761 					!(phba->fc_topology ==
9762 						LPFC_TOPOLOGY_LOOP))
9763 					bf_set(els_req64_sid, &wqe->els_req, 0);
9764 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9765 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9766 					phba->vpi_ids[iocbq->vport->vpi]);
9767 			} else if (pcmd && iocbq->context1) {
9768 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9769 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9770 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9771 			}
9772 		}
9773 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9774 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9775 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9776 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9777 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9778 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9779 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9780 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9781 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9782 		break;
9783 	case CMD_XMIT_SEQUENCE64_CX:
9784 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9785 		       iocbq->iocb.un.ulpWord[3]);
9786 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9787 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9788 		/* The entire sequence is transmitted for this IOCB */
9789 		xmit_len = total_len;
9790 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9791 		if (phba->link_flag & LS_LOOPBACK_MODE)
9792 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9793 		fallthrough;
9794 	case CMD_XMIT_SEQUENCE64_CR:
9795 		/* word3 iocb=io_tag32 wqe=reserved */
9796 		wqe->xmit_sequence.rsvd3 = 0;
9797 		/* word4 relative_offset memcpy */
9798 		/* word5 r_ctl/df_ctl memcpy */
9799 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9800 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9801 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9802 		       LPFC_WQE_IOD_WRITE);
9803 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9804 		       LPFC_WQE_LENLOC_WORD12);
9805 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9806 		wqe->xmit_sequence.xmit_len = xmit_len;
9807 		command_type = OTHER_COMMAND;
9808 		break;
9809 	case CMD_XMIT_BCAST64_CN:
9810 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9811 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9812 		/* word4 iocb=rsvd wqe=rsvd */
9813 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9814 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9815 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9816 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9817 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9818 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9819 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9820 		       LPFC_WQE_LENLOC_WORD3);
9821 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9822 		break;
9823 	case CMD_FCP_IWRITE64_CR:
9824 		command_type = FCP_COMMAND_DATA_OUT;
9825 		/* word3 iocb=iotag wqe=payload_offset_len */
9826 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9827 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9828 		       xmit_len + sizeof(struct fcp_rsp));
9829 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9830 		       0);
9831 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9832 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9833 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9834 		       iocbq->iocb.ulpFCP2Rcvy);
9835 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9836 		/* Always open the exchange */
9837 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9838 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9839 		       LPFC_WQE_LENLOC_WORD4);
9840 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9841 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9842 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9843 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9844 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9845 			if (iocbq->priority) {
9846 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9847 				       (iocbq->priority << 1));
9848 			} else {
9849 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9850 				       (phba->cfg_XLanePriority << 1));
9851 			}
9852 		}
9853 		/* Note, word 10 is already initialized to 0 */
9854 
9855 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9856 		if (phba->cfg_enable_pbde)
9857 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9858 		else
9859 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9860 
9861 		if (phba->fcp_embed_io) {
9862 			struct lpfc_io_buf *lpfc_cmd;
9863 			struct sli4_sge *sgl;
9864 			struct fcp_cmnd *fcp_cmnd;
9865 			uint32_t *ptr;
9866 
9867 			/* 128 byte wqe support here */
9868 
9869 			lpfc_cmd = iocbq->context1;
9870 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9871 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9872 
9873 			/* Word 0-2 - FCP_CMND */
9874 			wqe->generic.bde.tus.f.bdeFlags =
9875 				BUFF_TYPE_BDE_IMMED;
9876 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9877 			wqe->generic.bde.addrHigh = 0;
9878 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9879 
9880 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9881 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9882 
9883 			/* Word 22-29  FCP CMND Payload */
9884 			ptr = &wqe->words[22];
9885 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9886 		}
9887 		break;
9888 	case CMD_FCP_IREAD64_CR:
9889 		/* word3 iocb=iotag wqe=payload_offset_len */
9890 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9891 		bf_set(payload_offset_len, &wqe->fcp_iread,
9892 		       xmit_len + sizeof(struct fcp_rsp));
9893 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9894 		       0);
9895 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9896 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9897 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9898 		       iocbq->iocb.ulpFCP2Rcvy);
9899 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9900 		/* Always open the exchange */
9901 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9902 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9903 		       LPFC_WQE_LENLOC_WORD4);
9904 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9905 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9906 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9907 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9908 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9909 			if (iocbq->priority) {
9910 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9911 				       (iocbq->priority << 1));
9912 			} else {
9913 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9914 				       (phba->cfg_XLanePriority << 1));
9915 			}
9916 		}
9917 		/* Note, word 10 is already initialized to 0 */
9918 
9919 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9920 		if (phba->cfg_enable_pbde)
9921 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9922 		else
9923 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9924 
9925 		if (phba->fcp_embed_io) {
9926 			struct lpfc_io_buf *lpfc_cmd;
9927 			struct sli4_sge *sgl;
9928 			struct fcp_cmnd *fcp_cmnd;
9929 			uint32_t *ptr;
9930 
9931 			/* 128 byte wqe support here */
9932 
9933 			lpfc_cmd = iocbq->context1;
9934 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9935 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9936 
9937 			/* Word 0-2 - FCP_CMND */
9938 			wqe->generic.bde.tus.f.bdeFlags =
9939 				BUFF_TYPE_BDE_IMMED;
9940 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9941 			wqe->generic.bde.addrHigh = 0;
9942 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9943 
9944 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9945 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9946 
9947 			/* Word 22-29  FCP CMND Payload */
9948 			ptr = &wqe->words[22];
9949 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9950 		}
9951 		break;
9952 	case CMD_FCP_ICMND64_CR:
9953 		/* word3 iocb=iotag wqe=payload_offset_len */
9954 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9955 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9956 		       xmit_len + sizeof(struct fcp_rsp));
9957 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9958 		       0);
9959 		/* word3 iocb=IO_TAG wqe=reserved */
9960 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9961 		/* Always open the exchange */
9962 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9963 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9964 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9965 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9966 		       LPFC_WQE_LENLOC_NONE);
9967 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9968 		       iocbq->iocb.ulpFCP2Rcvy);
9969 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9970 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9971 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9972 			if (iocbq->priority) {
9973 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9974 				       (iocbq->priority << 1));
9975 			} else {
9976 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9977 				       (phba->cfg_XLanePriority << 1));
9978 			}
9979 		}
9980 		/* Note, word 10 is already initialized to 0 */
9981 
9982 		if (phba->fcp_embed_io) {
9983 			struct lpfc_io_buf *lpfc_cmd;
9984 			struct sli4_sge *sgl;
9985 			struct fcp_cmnd *fcp_cmnd;
9986 			uint32_t *ptr;
9987 
9988 			/* 128 byte wqe support here */
9989 
9990 			lpfc_cmd = iocbq->context1;
9991 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9992 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9993 
9994 			/* Word 0-2 - FCP_CMND */
9995 			wqe->generic.bde.tus.f.bdeFlags =
9996 				BUFF_TYPE_BDE_IMMED;
9997 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9998 			wqe->generic.bde.addrHigh = 0;
9999 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
10000 
10001 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
10002 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
10003 
10004 			/* Word 22-29  FCP CMND Payload */
10005 			ptr = &wqe->words[22];
10006 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10007 		}
10008 		break;
10009 	case CMD_GEN_REQUEST64_CR:
10010 		/* For this command calculate the xmit length of the
10011 		 * request bde.
10012 		 */
10013 		xmit_len = 0;
10014 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
10015 			sizeof(struct ulp_bde64);
10016 		for (i = 0; i < numBdes; i++) {
10017 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
10018 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
10019 				break;
10020 			xmit_len += bde.tus.f.bdeSize;
10021 		}
10022 		/* word3 iocb=IO_TAG wqe=request_payload_len */
10023 		wqe->gen_req.request_payload_len = xmit_len;
10024 		/* word4 iocb=parameter wqe=relative_offset memcpy */
10025 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
10026 		/* word6 context tag copied in memcpy */
10027 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
10028 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
10029 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10030 				"2015 Invalid CT %x command 0x%x\n",
10031 				ct, iocbq->iocb.ulpCommand);
10032 			return IOCB_ERROR;
10033 		}
10034 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
10035 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
10036 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
10037 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
10038 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
10039 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
10040 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
10041 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
10042 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
10043 		command_type = OTHER_COMMAND;
10044 		break;
10045 	case CMD_XMIT_ELS_RSP64_CX:
10046 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10047 		/* words0-2 BDE memcpy */
10048 		/* word3 iocb=iotag32 wqe=response_payload_len */
10049 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
10050 		/* word4 */
10051 		wqe->xmit_els_rsp.word4 = 0;
10052 		/* word5 iocb=rsvd wge=did */
10053 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
10054 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
10055 
10056 		if_type = bf_get(lpfc_sli_intf_if_type,
10057 					&phba->sli4_hba.sli_intf);
10058 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
10059 			if (iocbq->vport->fc_flag & FC_PT2PT) {
10060 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10061 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10062 					iocbq->vport->fc_myDID);
10063 				if (iocbq->vport->fc_myDID == Fabric_DID) {
10064 					bf_set(wqe_els_did,
10065 						&wqe->xmit_els_rsp.wqe_dest, 0);
10066 				}
10067 			}
10068 		}
10069 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
10070 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10071 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
10072 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
10073 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
10074 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
10075 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10076 			       phba->vpi_ids[iocbq->vport->vpi]);
10077 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
10078 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
10079 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
10080 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
10081 		       LPFC_WQE_LENLOC_WORD3);
10082 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
10083 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
10084 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
10085 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
10086 					iocbq->context2)->virt);
10087 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
10088 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
10089 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
10090 					iocbq->vport->fc_myDID);
10091 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
10092 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
10093 					phba->vpi_ids[phba->pport->vpi]);
10094 		}
10095 		command_type = OTHER_COMMAND;
10096 		break;
10097 	case CMD_CLOSE_XRI_CN:
10098 	case CMD_ABORT_XRI_CN:
10099 	case CMD_ABORT_XRI_CX:
10100 		/* words 0-2 memcpy should be 0 rserved */
10101 		/* port will send abts */
10102 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
10103 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
10104 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
10105 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
10106 		} else
10107 			fip = 0;
10108 
10109 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
10110 			/*
10111 			 * The link is down, or the command was ELS_FIP
10112 			 * so the fw does not need to send abts
10113 			 * on the wire.
10114 			 */
10115 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
10116 		else
10117 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
10118 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
10119 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
10120 		wqe->abort_cmd.rsrvd5 = 0;
10121 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
10122 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
10123 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
10124 		/*
10125 		 * The abort handler will send us CMD_ABORT_XRI_CN or
10126 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
10127 		 */
10128 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
10129 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
10130 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
10131 		       LPFC_WQE_LENLOC_NONE);
10132 		cmnd = CMD_ABORT_XRI_CX;
10133 		command_type = OTHER_COMMAND;
10134 		xritag = 0;
10135 		break;
10136 	case CMD_XMIT_BLS_RSP64_CX:
10137 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
10138 		/* As BLS ABTS RSP WQE is very different from other WQEs,
10139 		 * we re-construct this WQE here based on information in
10140 		 * iocbq from scratch.
10141 		 */
10142 		memset(wqe, 0, sizeof(*wqe));
10143 		/* OX_ID is invariable to who sent ABTS to CT exchange */
10144 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
10145 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
10146 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
10147 		    LPFC_ABTS_UNSOL_INT) {
10148 			/* ABTS sent by initiator to CT exchange, the
10149 			 * RX_ID field will be filled with the newly
10150 			 * allocated responder XRI.
10151 			 */
10152 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10153 			       iocbq->sli4_xritag);
10154 		} else {
10155 			/* ABTS sent by responder to CT exchange, the
10156 			 * RX_ID field will be filled with the responder
10157 			 * RX_ID from ABTS.
10158 			 */
10159 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
10160 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
10161 		}
10162 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
10163 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
10164 
10165 		/* Use CT=VPI */
10166 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
10167 			ndlp->nlp_DID);
10168 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
10169 			iocbq->iocb.ulpContext);
10170 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
10171 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
10172 			phba->vpi_ids[phba->pport->vpi]);
10173 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
10174 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
10175 		       LPFC_WQE_LENLOC_NONE);
10176 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
10177 		command_type = OTHER_COMMAND;
10178 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
10179 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
10180 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
10181 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
10182 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
10183 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
10184 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
10185 		}
10186 
10187 		break;
10188 	case CMD_SEND_FRAME:
10189 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
10190 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
10191 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
10192 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
10193 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
10194 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10195 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
10196 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10197 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10198 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10199 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10200 		return 0;
10201 	case CMD_XRI_ABORTED_CX:
10202 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10203 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10204 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10205 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10206 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10207 	default:
10208 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10209 				"2014 Invalid command 0x%x\n",
10210 				iocbq->iocb.ulpCommand);
10211 		return IOCB_ERROR;
10212 	}
10213 
10214 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10215 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10216 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10217 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10218 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10219 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10220 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10221 			      LPFC_IO_DIF_INSERT);
10222 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10223 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10224 	wqe->generic.wqe_com.abort_tag = abort_tag;
10225 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10226 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10227 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10228 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10229 	return 0;
10230 }
10231 
10232 /**
10233  * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb
10234  * @phba: Pointer to HBA context object.
10235  * @ring_number: SLI ring number to issue wqe on.
10236  * @piocb: Pointer to command iocb.
10237  * @flag: Flag indicating if this command can be put into txq.
10238  *
10239  * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to
10240  * send  an iocb command to an HBA with SLI-4 interface spec.
10241  *
10242  * This function takes the hbalock before invoking the lockless version.
10243  * The function will return success after it successfully submit the wqe to
10244  * firmware or after adding to the txq.
10245  **/
10246 static int
10247 __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number,
10248 			   struct lpfc_iocbq *piocb, uint32_t flag)
10249 {
10250 	unsigned long iflags;
10251 	int rc;
10252 
10253 	spin_lock_irqsave(&phba->hbalock, iflags);
10254 	rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag);
10255 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10256 
10257 	return rc;
10258 }
10259 
10260 /**
10261  * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe
10262  * @phba: Pointer to HBA context object.
10263  * @ring_number: SLI ring number to issue wqe on.
10264  * @piocb: Pointer to command iocb.
10265  * @flag: Flag indicating if this command can be put into txq.
10266  *
10267  * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue
10268  * an wqe command to an HBA with SLI-4 interface spec.
10269  *
10270  * This function is a lockless version. The function will return success
10271  * after it successfully submit the wqe to firmware or after adding to the
10272  * txq.
10273  **/
10274 static int
10275 __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number,
10276 			   struct lpfc_iocbq *piocb, uint32_t flag)
10277 {
10278 	int rc;
10279 	struct lpfc_io_buf *lpfc_cmd =
10280 		(struct lpfc_io_buf *)piocb->context1;
10281 	union lpfc_wqe128 *wqe = &piocb->wqe;
10282 	struct sli4_sge *sgl;
10283 
10284 	/* 128 byte wqe support here */
10285 	sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
10286 
10287 	if (phba->fcp_embed_io) {
10288 		struct fcp_cmnd *fcp_cmnd;
10289 		u32 *ptr;
10290 
10291 		fcp_cmnd = lpfc_cmd->fcp_cmnd;
10292 
10293 		/* Word 0-2 - FCP_CMND */
10294 		wqe->generic.bde.tus.f.bdeFlags =
10295 			BUFF_TYPE_BDE_IMMED;
10296 		wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
10297 		wqe->generic.bde.addrHigh = 0;
10298 		wqe->generic.bde.addrLow =  88;  /* Word 22 */
10299 
10300 		bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
10301 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
10302 
10303 		/* Word 22-29  FCP CMND Payload */
10304 		ptr = &wqe->words[22];
10305 		memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
10306 	} else {
10307 		/* Word 0-2 - Inline BDE */
10308 		wqe->generic.bde.tus.f.bdeFlags =  BUFF_TYPE_BDE_64;
10309 		wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd);
10310 		wqe->generic.bde.addrHigh = sgl->addr_hi;
10311 		wqe->generic.bde.addrLow =  sgl->addr_lo;
10312 
10313 		/* Word 10 */
10314 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
10315 		bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
10316 	}
10317 
10318 	rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb);
10319 	return rc;
10320 }
10321 
10322 /**
10323  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10324  * @phba: Pointer to HBA context object.
10325  * @ring_number: SLI ring number to issue iocb on.
10326  * @piocb: Pointer to command iocb.
10327  * @flag: Flag indicating if this command can be put into txq.
10328  *
10329  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10330  * an iocb command to an HBA with SLI-4 interface spec.
10331  *
10332  * This function is called with ringlock held. The function will return success
10333  * after it successfully submit the iocb to firmware or after adding to the
10334  * txq.
10335  **/
10336 static int
10337 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10338 			 struct lpfc_iocbq *piocb, uint32_t flag)
10339 {
10340 	struct lpfc_sglq *sglq;
10341 	union lpfc_wqe128 wqe;
10342 	struct lpfc_queue *wq;
10343 	struct lpfc_sli_ring *pring;
10344 
10345 	/* Get the WQ */
10346 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10347 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10348 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10349 	} else {
10350 		wq = phba->sli4_hba.els_wq;
10351 	}
10352 
10353 	/* Get corresponding ring */
10354 	pring = wq->pring;
10355 
10356 	/*
10357 	 * The WQE can be either 64 or 128 bytes,
10358 	 */
10359 
10360 	lockdep_assert_held(&pring->ring_lock);
10361 
10362 	if (piocb->sli4_xritag == NO_XRI) {
10363 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10364 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10365 			sglq = NULL;
10366 		else {
10367 			if (!list_empty(&pring->txq)) {
10368 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10369 					__lpfc_sli_ringtx_put(phba,
10370 						pring, piocb);
10371 					return IOCB_SUCCESS;
10372 				} else {
10373 					return IOCB_BUSY;
10374 				}
10375 			} else {
10376 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10377 				if (!sglq) {
10378 					if (!(flag & SLI_IOCB_RET_IOCB)) {
10379 						__lpfc_sli_ringtx_put(phba,
10380 								pring,
10381 								piocb);
10382 						return IOCB_SUCCESS;
10383 					} else
10384 						return IOCB_BUSY;
10385 				}
10386 			}
10387 		}
10388 	} else if (piocb->iocb_flag &  LPFC_IO_FCP) {
10389 		/* These IO's already have an XRI and a mapped sgl. */
10390 		sglq = NULL;
10391 	}
10392 	else {
10393 		/*
10394 		 * This is a continuation of a commandi,(CX) so this
10395 		 * sglq is on the active list
10396 		 */
10397 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10398 		if (!sglq)
10399 			return IOCB_ERROR;
10400 	}
10401 
10402 	if (sglq) {
10403 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10404 		piocb->sli4_xritag = sglq->sli4_xritag;
10405 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10406 			return IOCB_ERROR;
10407 	}
10408 
10409 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10410 		return IOCB_ERROR;
10411 
10412 	if (lpfc_sli4_wq_put(wq, &wqe))
10413 		return IOCB_ERROR;
10414 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10415 
10416 	return 0;
10417 }
10418 
10419 /**
10420  * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o
10421  *
10422  * This routine wraps the actual fcp i/o function for issusing WQE for sli-4
10423  * or IOCB for sli-3  function.
10424  * pointer from the lpfc_hba struct.
10425  *
10426  * Return codes:
10427  * IOCB_ERROR - Error
10428  * IOCB_SUCCESS - Success
10429  * IOCB_BUSY - Busy
10430  **/
10431 int
10432 lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number,
10433 		      struct lpfc_iocbq *piocb, uint32_t flag)
10434 {
10435 	return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag);
10436 }
10437 
10438 /*
10439  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10440  *
10441  * This routine wraps the actual lockless version for issusing IOCB function
10442  * pointer from the lpfc_hba struct.
10443  *
10444  * Return codes:
10445  * IOCB_ERROR - Error
10446  * IOCB_SUCCESS - Success
10447  * IOCB_BUSY - Busy
10448  **/
10449 int
10450 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10451 		struct lpfc_iocbq *piocb, uint32_t flag)
10452 {
10453 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10454 }
10455 
10456 /**
10457  * lpfc_sli_api_table_setup - Set up sli api function jump table
10458  * @phba: The hba struct for which this call is being executed.
10459  * @dev_grp: The HBA PCI-Device group number.
10460  *
10461  * This routine sets up the SLI interface API function jump table in @phba
10462  * struct.
10463  * Returns: 0 - success, -ENODEV - failure.
10464  **/
10465 int
10466 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10467 {
10468 
10469 	switch (dev_grp) {
10470 	case LPFC_PCI_DEV_LP:
10471 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10472 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10473 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3;
10474 		break;
10475 	case LPFC_PCI_DEV_OC:
10476 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10477 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10478 		phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4;
10479 		break;
10480 	default:
10481 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10482 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10483 				dev_grp);
10484 		return -ENODEV;
10485 	}
10486 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10487 	return 0;
10488 }
10489 
10490 /**
10491  * lpfc_sli4_calc_ring - Calculates which ring to use
10492  * @phba: Pointer to HBA context object.
10493  * @piocb: Pointer to command iocb.
10494  *
10495  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10496  * hba_wqidx, thus we need to calculate the corresponding ring.
10497  * Since ABORTS must go on the same WQ of the command they are
10498  * aborting, we use command's hba_wqidx.
10499  */
10500 struct lpfc_sli_ring *
10501 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10502 {
10503 	struct lpfc_io_buf *lpfc_cmd;
10504 
10505 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10506 		if (unlikely(!phba->sli4_hba.hdwq))
10507 			return NULL;
10508 		/*
10509 		 * for abort iocb hba_wqidx should already
10510 		 * be setup based on what work queue we used.
10511 		 */
10512 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10513 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10514 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10515 		}
10516 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10517 	} else {
10518 		if (unlikely(!phba->sli4_hba.els_wq))
10519 			return NULL;
10520 		piocb->hba_wqidx = 0;
10521 		return phba->sli4_hba.els_wq->pring;
10522 	}
10523 }
10524 
10525 /**
10526  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10527  * @phba: Pointer to HBA context object.
10528  * @ring_number: Ring number
10529  * @piocb: Pointer to command iocb.
10530  * @flag: Flag indicating if this command can be put into txq.
10531  *
10532  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10533  * function. This function gets the hbalock and calls
10534  * __lpfc_sli_issue_iocb function and will return the error returned
10535  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10536  * functions which do not hold hbalock.
10537  **/
10538 int
10539 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10540 		    struct lpfc_iocbq *piocb, uint32_t flag)
10541 {
10542 	struct lpfc_sli_ring *pring;
10543 	struct lpfc_queue *eq;
10544 	unsigned long iflags;
10545 	int rc;
10546 
10547 	if (phba->sli_rev == LPFC_SLI_REV4) {
10548 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10549 
10550 		pring = lpfc_sli4_calc_ring(phba, piocb);
10551 		if (unlikely(pring == NULL))
10552 			return IOCB_ERROR;
10553 
10554 		spin_lock_irqsave(&pring->ring_lock, iflags);
10555 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10556 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10557 
10558 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10559 	} else {
10560 		/* For now, SLI2/3 will still use hbalock */
10561 		spin_lock_irqsave(&phba->hbalock, iflags);
10562 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10563 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10564 	}
10565 	return rc;
10566 }
10567 
10568 /**
10569  * lpfc_extra_ring_setup - Extra ring setup function
10570  * @phba: Pointer to HBA context object.
10571  *
10572  * This function is called while driver attaches with the
10573  * HBA to setup the extra ring. The extra ring is used
10574  * only when driver needs to support target mode functionality
10575  * or IP over FC functionalities.
10576  *
10577  * This function is called with no lock held. SLI3 only.
10578  **/
10579 static int
10580 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10581 {
10582 	struct lpfc_sli *psli;
10583 	struct lpfc_sli_ring *pring;
10584 
10585 	psli = &phba->sli;
10586 
10587 	/* Adjust cmd/rsp ring iocb entries more evenly */
10588 
10589 	/* Take some away from the FCP ring */
10590 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10591 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10592 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10593 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10594 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10595 
10596 	/* and give them to the extra ring */
10597 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10598 
10599 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10600 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10601 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10602 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10603 
10604 	/* Setup default profile for this ring */
10605 	pring->iotag_max = 4096;
10606 	pring->num_mask = 1;
10607 	pring->prt[0].profile = 0;      /* Mask 0 */
10608 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10609 	pring->prt[0].type = phba->cfg_multi_ring_type;
10610 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10611 	return 0;
10612 }
10613 
10614 static void
10615 lpfc_sli_post_recovery_event(struct lpfc_hba *phba,
10616 			     struct lpfc_nodelist *ndlp)
10617 {
10618 	unsigned long iflags;
10619 	struct lpfc_work_evt  *evtp = &ndlp->recovery_evt;
10620 
10621 	spin_lock_irqsave(&phba->hbalock, iflags);
10622 	if (!list_empty(&evtp->evt_listp)) {
10623 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10624 		return;
10625 	}
10626 
10627 	/* Incrementing the reference count until the queued work is done. */
10628 	evtp->evt_arg1  = lpfc_nlp_get(ndlp);
10629 	if (!evtp->evt_arg1) {
10630 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10631 		return;
10632 	}
10633 	evtp->evt = LPFC_EVT_RECOVER_PORT;
10634 	list_add_tail(&evtp->evt_listp, &phba->work_list);
10635 	spin_unlock_irqrestore(&phba->hbalock, iflags);
10636 
10637 	lpfc_worker_wake_up(phba);
10638 }
10639 
10640 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10641  * @phba: Pointer to HBA context object.
10642  * @iocbq: Pointer to iocb object.
10643  *
10644  * The async_event handler calls this routine when it receives
10645  * an ASYNC_STATUS_CN event from the port.  The port generates
10646  * this event when an Abort Sequence request to an rport fails
10647  * twice in succession.  The abort could be originated by the
10648  * driver or by the port.  The ABTS could have been for an ELS
10649  * or FCP IO.  The port only generates this event when an ABTS
10650  * fails to complete after one retry.
10651  */
10652 static void
10653 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10654 			  struct lpfc_iocbq *iocbq)
10655 {
10656 	struct lpfc_nodelist *ndlp = NULL;
10657 	uint16_t rpi = 0, vpi = 0;
10658 	struct lpfc_vport *vport = NULL;
10659 
10660 	/* The rpi in the ulpContext is vport-sensitive. */
10661 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10662 	rpi = iocbq->iocb.ulpContext;
10663 
10664 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10665 			"3092 Port generated ABTS async event "
10666 			"on vpi %d rpi %d status 0x%x\n",
10667 			vpi, rpi, iocbq->iocb.ulpStatus);
10668 
10669 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10670 	if (!vport)
10671 		goto err_exit;
10672 	ndlp = lpfc_findnode_rpi(vport, rpi);
10673 	if (!ndlp)
10674 		goto err_exit;
10675 
10676 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10677 		lpfc_sli_abts_recover_port(vport, ndlp);
10678 	return;
10679 
10680  err_exit:
10681 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10682 			"3095 Event Context not found, no "
10683 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10684 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10685 			vpi, rpi);
10686 }
10687 
10688 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10689  * @phba: pointer to HBA context object.
10690  * @ndlp: nodelist pointer for the impacted rport.
10691  * @axri: pointer to the wcqe containing the failed exchange.
10692  *
10693  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10694  * port.  The port generates this event when an abort exchange request to an
10695  * rport fails twice in succession with no reply.  The abort could be originated
10696  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10697  */
10698 void
10699 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10700 			   struct lpfc_nodelist *ndlp,
10701 			   struct sli4_wcqe_xri_aborted *axri)
10702 {
10703 	uint32_t ext_status = 0;
10704 
10705 	if (!ndlp) {
10706 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10707 				"3115 Node Context not found, driver "
10708 				"ignoring abts err event\n");
10709 		return;
10710 	}
10711 
10712 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10713 			"3116 Port generated FCP XRI ABORT event on "
10714 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10715 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10716 			bf_get(lpfc_wcqe_xa_xri, axri),
10717 			bf_get(lpfc_wcqe_xa_status, axri),
10718 			axri->parameter);
10719 
10720 	/*
10721 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10722 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10723 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10724 	 */
10725 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10726 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10727 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10728 		lpfc_sli_post_recovery_event(phba, ndlp);
10729 }
10730 
10731 /**
10732  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10733  * @phba: Pointer to HBA context object.
10734  * @pring: Pointer to driver SLI ring object.
10735  * @iocbq: Pointer to iocb object.
10736  *
10737  * This function is called by the slow ring event handler
10738  * function when there is an ASYNC event iocb in the ring.
10739  * This function is called with no lock held.
10740  * Currently this function handles only temperature related
10741  * ASYNC events. The function decodes the temperature sensor
10742  * event message and posts events for the management applications.
10743  **/
10744 static void
10745 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10746 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10747 {
10748 	IOCB_t *icmd;
10749 	uint16_t evt_code;
10750 	struct temp_event temp_event_data;
10751 	struct Scsi_Host *shost;
10752 	uint32_t *iocb_w;
10753 
10754 	icmd = &iocbq->iocb;
10755 	evt_code = icmd->un.asyncstat.evt_code;
10756 
10757 	switch (evt_code) {
10758 	case ASYNC_TEMP_WARN:
10759 	case ASYNC_TEMP_SAFE:
10760 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10761 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10762 		if (evt_code == ASYNC_TEMP_WARN) {
10763 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10764 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10765 				"0347 Adapter is very hot, please take "
10766 				"corrective action. temperature : %d Celsius\n",
10767 				(uint32_t) icmd->ulpContext);
10768 		} else {
10769 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10770 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10771 				"0340 Adapter temperature is OK now. "
10772 				"temperature : %d Celsius\n",
10773 				(uint32_t) icmd->ulpContext);
10774 		}
10775 
10776 		/* Send temperature change event to applications */
10777 		shost = lpfc_shost_from_vport(phba->pport);
10778 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10779 			sizeof(temp_event_data), (char *) &temp_event_data,
10780 			LPFC_NL_VENDOR_ID);
10781 		break;
10782 	case ASYNC_STATUS_CN:
10783 		lpfc_sli_abts_err_handler(phba, iocbq);
10784 		break;
10785 	default:
10786 		iocb_w = (uint32_t *) icmd;
10787 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
10788 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10789 			" evt_code 0x%x\n"
10790 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10791 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10792 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10793 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10794 			pring->ringno, icmd->un.asyncstat.evt_code,
10795 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10796 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10797 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10798 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10799 
10800 		break;
10801 	}
10802 }
10803 
10804 
10805 /**
10806  * lpfc_sli4_setup - SLI ring setup function
10807  * @phba: Pointer to HBA context object.
10808  *
10809  * lpfc_sli_setup sets up rings of the SLI interface with
10810  * number of iocbs per ring and iotags. This function is
10811  * called while driver attach to the HBA and before the
10812  * interrupts are enabled. So there is no need for locking.
10813  *
10814  * This function always returns 0.
10815  **/
10816 int
10817 lpfc_sli4_setup(struct lpfc_hba *phba)
10818 {
10819 	struct lpfc_sli_ring *pring;
10820 
10821 	pring = phba->sli4_hba.els_wq->pring;
10822 	pring->num_mask = LPFC_MAX_RING_MASK;
10823 	pring->prt[0].profile = 0;	/* Mask 0 */
10824 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10825 	pring->prt[0].type = FC_TYPE_ELS;
10826 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10827 	    lpfc_els_unsol_event;
10828 	pring->prt[1].profile = 0;	/* Mask 1 */
10829 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10830 	pring->prt[1].type = FC_TYPE_ELS;
10831 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10832 	    lpfc_els_unsol_event;
10833 	pring->prt[2].profile = 0;	/* Mask 2 */
10834 	/* NameServer Inquiry */
10835 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10836 	/* NameServer */
10837 	pring->prt[2].type = FC_TYPE_CT;
10838 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10839 	    lpfc_ct_unsol_event;
10840 	pring->prt[3].profile = 0;	/* Mask 3 */
10841 	/* NameServer response */
10842 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10843 	/* NameServer */
10844 	pring->prt[3].type = FC_TYPE_CT;
10845 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10846 	    lpfc_ct_unsol_event;
10847 	return 0;
10848 }
10849 
10850 /**
10851  * lpfc_sli_setup - SLI ring setup function
10852  * @phba: Pointer to HBA context object.
10853  *
10854  * lpfc_sli_setup sets up rings of the SLI interface with
10855  * number of iocbs per ring and iotags. This function is
10856  * called while driver attach to the HBA and before the
10857  * interrupts are enabled. So there is no need for locking.
10858  *
10859  * This function always returns 0. SLI3 only.
10860  **/
10861 int
10862 lpfc_sli_setup(struct lpfc_hba *phba)
10863 {
10864 	int i, totiocbsize = 0;
10865 	struct lpfc_sli *psli = &phba->sli;
10866 	struct lpfc_sli_ring *pring;
10867 
10868 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10869 	psli->sli_flag = 0;
10870 
10871 	psli->iocbq_lookup = NULL;
10872 	psli->iocbq_lookup_len = 0;
10873 	psli->last_iotag = 0;
10874 
10875 	for (i = 0; i < psli->num_rings; i++) {
10876 		pring = &psli->sli3_ring[i];
10877 		switch (i) {
10878 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10879 			/* numCiocb and numRiocb are used in config_port */
10880 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10881 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10882 			pring->sli.sli3.numCiocb +=
10883 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10884 			pring->sli.sli3.numRiocb +=
10885 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10886 			pring->sli.sli3.numCiocb +=
10887 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10888 			pring->sli.sli3.numRiocb +=
10889 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10890 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10891 							SLI3_IOCB_CMD_SIZE :
10892 							SLI2_IOCB_CMD_SIZE;
10893 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10894 							SLI3_IOCB_RSP_SIZE :
10895 							SLI2_IOCB_RSP_SIZE;
10896 			pring->iotag_ctr = 0;
10897 			pring->iotag_max =
10898 			    (phba->cfg_hba_queue_depth * 2);
10899 			pring->fast_iotag = pring->iotag_max;
10900 			pring->num_mask = 0;
10901 			break;
10902 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10903 			/* numCiocb and numRiocb are used in config_port */
10904 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10905 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10906 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10907 							SLI3_IOCB_CMD_SIZE :
10908 							SLI2_IOCB_CMD_SIZE;
10909 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10910 							SLI3_IOCB_RSP_SIZE :
10911 							SLI2_IOCB_RSP_SIZE;
10912 			pring->iotag_max = phba->cfg_hba_queue_depth;
10913 			pring->num_mask = 0;
10914 			break;
10915 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10916 			/* numCiocb and numRiocb are used in config_port */
10917 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10918 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10919 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10920 							SLI3_IOCB_CMD_SIZE :
10921 							SLI2_IOCB_CMD_SIZE;
10922 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10923 							SLI3_IOCB_RSP_SIZE :
10924 							SLI2_IOCB_RSP_SIZE;
10925 			pring->fast_iotag = 0;
10926 			pring->iotag_ctr = 0;
10927 			pring->iotag_max = 4096;
10928 			pring->lpfc_sli_rcv_async_status =
10929 				lpfc_sli_async_event_handler;
10930 			pring->num_mask = LPFC_MAX_RING_MASK;
10931 			pring->prt[0].profile = 0;	/* Mask 0 */
10932 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10933 			pring->prt[0].type = FC_TYPE_ELS;
10934 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10935 			    lpfc_els_unsol_event;
10936 			pring->prt[1].profile = 0;	/* Mask 1 */
10937 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10938 			pring->prt[1].type = FC_TYPE_ELS;
10939 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10940 			    lpfc_els_unsol_event;
10941 			pring->prt[2].profile = 0;	/* Mask 2 */
10942 			/* NameServer Inquiry */
10943 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10944 			/* NameServer */
10945 			pring->prt[2].type = FC_TYPE_CT;
10946 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10947 			    lpfc_ct_unsol_event;
10948 			pring->prt[3].profile = 0;	/* Mask 3 */
10949 			/* NameServer response */
10950 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10951 			/* NameServer */
10952 			pring->prt[3].type = FC_TYPE_CT;
10953 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10954 			    lpfc_ct_unsol_event;
10955 			break;
10956 		}
10957 		totiocbsize += (pring->sli.sli3.numCiocb *
10958 			pring->sli.sli3.sizeCiocb) +
10959 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10960 	}
10961 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10962 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10963 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10964 		       "SLI2 SLIM Data: x%x x%lx\n",
10965 		       phba->brd_no, totiocbsize,
10966 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10967 	}
10968 	if (phba->cfg_multi_ring_support == 2)
10969 		lpfc_extra_ring_setup(phba);
10970 
10971 	return 0;
10972 }
10973 
10974 /**
10975  * lpfc_sli4_queue_init - Queue initialization function
10976  * @phba: Pointer to HBA context object.
10977  *
10978  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10979  * ring. This function also initializes ring indices of each ring.
10980  * This function is called during the initialization of the SLI
10981  * interface of an HBA.
10982  * This function is called with no lock held and always returns
10983  * 1.
10984  **/
10985 void
10986 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10987 {
10988 	struct lpfc_sli *psli;
10989 	struct lpfc_sli_ring *pring;
10990 	int i;
10991 
10992 	psli = &phba->sli;
10993 	spin_lock_irq(&phba->hbalock);
10994 	INIT_LIST_HEAD(&psli->mboxq);
10995 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10996 	/* Initialize list headers for txq and txcmplq as double linked lists */
10997 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10998 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10999 		pring->flag = 0;
11000 		pring->ringno = LPFC_FCP_RING;
11001 		pring->txcmplq_cnt = 0;
11002 		INIT_LIST_HEAD(&pring->txq);
11003 		INIT_LIST_HEAD(&pring->txcmplq);
11004 		INIT_LIST_HEAD(&pring->iocb_continueq);
11005 		spin_lock_init(&pring->ring_lock);
11006 	}
11007 	pring = phba->sli4_hba.els_wq->pring;
11008 	pring->flag = 0;
11009 	pring->ringno = LPFC_ELS_RING;
11010 	pring->txcmplq_cnt = 0;
11011 	INIT_LIST_HEAD(&pring->txq);
11012 	INIT_LIST_HEAD(&pring->txcmplq);
11013 	INIT_LIST_HEAD(&pring->iocb_continueq);
11014 	spin_lock_init(&pring->ring_lock);
11015 
11016 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
11017 		pring = phba->sli4_hba.nvmels_wq->pring;
11018 		pring->flag = 0;
11019 		pring->ringno = LPFC_ELS_RING;
11020 		pring->txcmplq_cnt = 0;
11021 		INIT_LIST_HEAD(&pring->txq);
11022 		INIT_LIST_HEAD(&pring->txcmplq);
11023 		INIT_LIST_HEAD(&pring->iocb_continueq);
11024 		spin_lock_init(&pring->ring_lock);
11025 	}
11026 
11027 	spin_unlock_irq(&phba->hbalock);
11028 }
11029 
11030 /**
11031  * lpfc_sli_queue_init - Queue initialization function
11032  * @phba: Pointer to HBA context object.
11033  *
11034  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
11035  * ring. This function also initializes ring indices of each ring.
11036  * This function is called during the initialization of the SLI
11037  * interface of an HBA.
11038  * This function is called with no lock held and always returns
11039  * 1.
11040  **/
11041 void
11042 lpfc_sli_queue_init(struct lpfc_hba *phba)
11043 {
11044 	struct lpfc_sli *psli;
11045 	struct lpfc_sli_ring *pring;
11046 	int i;
11047 
11048 	psli = &phba->sli;
11049 	spin_lock_irq(&phba->hbalock);
11050 	INIT_LIST_HEAD(&psli->mboxq);
11051 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
11052 	/* Initialize list headers for txq and txcmplq as double linked lists */
11053 	for (i = 0; i < psli->num_rings; i++) {
11054 		pring = &psli->sli3_ring[i];
11055 		pring->ringno = i;
11056 		pring->sli.sli3.next_cmdidx  = 0;
11057 		pring->sli.sli3.local_getidx = 0;
11058 		pring->sli.sli3.cmdidx = 0;
11059 		INIT_LIST_HEAD(&pring->iocb_continueq);
11060 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
11061 		INIT_LIST_HEAD(&pring->postbufq);
11062 		pring->flag = 0;
11063 		INIT_LIST_HEAD(&pring->txq);
11064 		INIT_LIST_HEAD(&pring->txcmplq);
11065 		spin_lock_init(&pring->ring_lock);
11066 	}
11067 	spin_unlock_irq(&phba->hbalock);
11068 }
11069 
11070 /**
11071  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
11072  * @phba: Pointer to HBA context object.
11073  *
11074  * This routine flushes the mailbox command subsystem. It will unconditionally
11075  * flush all the mailbox commands in the three possible stages in the mailbox
11076  * command sub-system: pending mailbox command queue; the outstanding mailbox
11077  * command; and completed mailbox command queue. It is caller's responsibility
11078  * to make sure that the driver is in the proper state to flush the mailbox
11079  * command sub-system. Namely, the posting of mailbox commands into the
11080  * pending mailbox command queue from the various clients must be stopped;
11081  * either the HBA is in a state that it will never works on the outstanding
11082  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
11083  * mailbox command has been completed.
11084  **/
11085 static void
11086 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
11087 {
11088 	LIST_HEAD(completions);
11089 	struct lpfc_sli *psli = &phba->sli;
11090 	LPFC_MBOXQ_t *pmb;
11091 	unsigned long iflag;
11092 
11093 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11094 	local_bh_disable();
11095 
11096 	/* Flush all the mailbox commands in the mbox system */
11097 	spin_lock_irqsave(&phba->hbalock, iflag);
11098 
11099 	/* The pending mailbox command queue */
11100 	list_splice_init(&phba->sli.mboxq, &completions);
11101 	/* The outstanding active mailbox command */
11102 	if (psli->mbox_active) {
11103 		list_add_tail(&psli->mbox_active->list, &completions);
11104 		psli->mbox_active = NULL;
11105 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
11106 	}
11107 	/* The completed mailbox command queue */
11108 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
11109 	spin_unlock_irqrestore(&phba->hbalock, iflag);
11110 
11111 	/* Enable softirqs again, done with phba->hbalock */
11112 	local_bh_enable();
11113 
11114 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
11115 	while (!list_empty(&completions)) {
11116 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
11117 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
11118 		if (pmb->mbox_cmpl)
11119 			pmb->mbox_cmpl(phba, pmb);
11120 	}
11121 }
11122 
11123 /**
11124  * lpfc_sli_host_down - Vport cleanup function
11125  * @vport: Pointer to virtual port object.
11126  *
11127  * lpfc_sli_host_down is called to clean up the resources
11128  * associated with a vport before destroying virtual
11129  * port data structures.
11130  * This function does following operations:
11131  * - Free discovery resources associated with this virtual
11132  *   port.
11133  * - Free iocbs associated with this virtual port in
11134  *   the txq.
11135  * - Send abort for all iocb commands associated with this
11136  *   vport in txcmplq.
11137  *
11138  * This function is called with no lock held and always returns 1.
11139  **/
11140 int
11141 lpfc_sli_host_down(struct lpfc_vport *vport)
11142 {
11143 	LIST_HEAD(completions);
11144 	struct lpfc_hba *phba = vport->phba;
11145 	struct lpfc_sli *psli = &phba->sli;
11146 	struct lpfc_queue *qp = NULL;
11147 	struct lpfc_sli_ring *pring;
11148 	struct lpfc_iocbq *iocb, *next_iocb;
11149 	int i;
11150 	unsigned long flags = 0;
11151 	uint16_t prev_pring_flag;
11152 
11153 	lpfc_cleanup_discovery_resources(vport);
11154 
11155 	spin_lock_irqsave(&phba->hbalock, flags);
11156 
11157 	/*
11158 	 * Error everything on the txq since these iocbs
11159 	 * have not been given to the FW yet.
11160 	 * Also issue ABTS for everything on the txcmplq
11161 	 */
11162 	if (phba->sli_rev != LPFC_SLI_REV4) {
11163 		for (i = 0; i < psli->num_rings; i++) {
11164 			pring = &psli->sli3_ring[i];
11165 			prev_pring_flag = pring->flag;
11166 			/* Only slow rings */
11167 			if (pring->ringno == LPFC_ELS_RING) {
11168 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11169 				/* Set the lpfc data pending flag */
11170 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11171 			}
11172 			list_for_each_entry_safe(iocb, next_iocb,
11173 						 &pring->txq, list) {
11174 				if (iocb->vport != vport)
11175 					continue;
11176 				list_move_tail(&iocb->list, &completions);
11177 			}
11178 			list_for_each_entry_safe(iocb, next_iocb,
11179 						 &pring->txcmplq, list) {
11180 				if (iocb->vport != vport)
11181 					continue;
11182 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11183 							   NULL);
11184 			}
11185 			pring->flag = prev_pring_flag;
11186 		}
11187 	} else {
11188 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11189 			pring = qp->pring;
11190 			if (!pring)
11191 				continue;
11192 			if (pring == phba->sli4_hba.els_wq->pring) {
11193 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11194 				/* Set the lpfc data pending flag */
11195 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11196 			}
11197 			prev_pring_flag = pring->flag;
11198 			spin_lock(&pring->ring_lock);
11199 			list_for_each_entry_safe(iocb, next_iocb,
11200 						 &pring->txq, list) {
11201 				if (iocb->vport != vport)
11202 					continue;
11203 				list_move_tail(&iocb->list, &completions);
11204 			}
11205 			spin_unlock(&pring->ring_lock);
11206 			list_for_each_entry_safe(iocb, next_iocb,
11207 						 &pring->txcmplq, list) {
11208 				if (iocb->vport != vport)
11209 					continue;
11210 				lpfc_sli_issue_abort_iotag(phba, pring, iocb,
11211 							   NULL);
11212 			}
11213 			pring->flag = prev_pring_flag;
11214 		}
11215 	}
11216 	spin_unlock_irqrestore(&phba->hbalock, flags);
11217 
11218 	/* Cancel all the IOCBs from the completions list */
11219 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11220 			      IOERR_SLI_DOWN);
11221 	return 1;
11222 }
11223 
11224 /**
11225  * lpfc_sli_hba_down - Resource cleanup function for the HBA
11226  * @phba: Pointer to HBA context object.
11227  *
11228  * This function cleans up all iocb, buffers, mailbox commands
11229  * while shutting down the HBA. This function is called with no
11230  * lock held and always returns 1.
11231  * This function does the following to cleanup driver resources:
11232  * - Free discovery resources for each virtual port
11233  * - Cleanup any pending fabric iocbs
11234  * - Iterate through the iocb txq and free each entry
11235  *   in the list.
11236  * - Free up any buffer posted to the HBA
11237  * - Free mailbox commands in the mailbox queue.
11238  **/
11239 int
11240 lpfc_sli_hba_down(struct lpfc_hba *phba)
11241 {
11242 	LIST_HEAD(completions);
11243 	struct lpfc_sli *psli = &phba->sli;
11244 	struct lpfc_queue *qp = NULL;
11245 	struct lpfc_sli_ring *pring;
11246 	struct lpfc_dmabuf *buf_ptr;
11247 	unsigned long flags = 0;
11248 	int i;
11249 
11250 	/* Shutdown the mailbox command sub-system */
11251 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
11252 
11253 	lpfc_hba_down_prep(phba);
11254 
11255 	/* Disable softirqs, including timers from obtaining phba->hbalock */
11256 	local_bh_disable();
11257 
11258 	lpfc_fabric_abort_hba(phba);
11259 
11260 	spin_lock_irqsave(&phba->hbalock, flags);
11261 
11262 	/*
11263 	 * Error everything on the txq since these iocbs
11264 	 * have not been given to the FW yet.
11265 	 */
11266 	if (phba->sli_rev != LPFC_SLI_REV4) {
11267 		for (i = 0; i < psli->num_rings; i++) {
11268 			pring = &psli->sli3_ring[i];
11269 			/* Only slow rings */
11270 			if (pring->ringno == LPFC_ELS_RING) {
11271 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11272 				/* Set the lpfc data pending flag */
11273 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11274 			}
11275 			list_splice_init(&pring->txq, &completions);
11276 		}
11277 	} else {
11278 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11279 			pring = qp->pring;
11280 			if (!pring)
11281 				continue;
11282 			spin_lock(&pring->ring_lock);
11283 			list_splice_init(&pring->txq, &completions);
11284 			spin_unlock(&pring->ring_lock);
11285 			if (pring == phba->sli4_hba.els_wq->pring) {
11286 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
11287 				/* Set the lpfc data pending flag */
11288 				set_bit(LPFC_DATA_READY, &phba->data_flags);
11289 			}
11290 		}
11291 	}
11292 	spin_unlock_irqrestore(&phba->hbalock, flags);
11293 
11294 	/* Cancel all the IOCBs from the completions list */
11295 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
11296 			      IOERR_SLI_DOWN);
11297 
11298 	spin_lock_irqsave(&phba->hbalock, flags);
11299 	list_splice_init(&phba->elsbuf, &completions);
11300 	phba->elsbuf_cnt = 0;
11301 	phba->elsbuf_prev_cnt = 0;
11302 	spin_unlock_irqrestore(&phba->hbalock, flags);
11303 
11304 	while (!list_empty(&completions)) {
11305 		list_remove_head(&completions, buf_ptr,
11306 			struct lpfc_dmabuf, list);
11307 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
11308 		kfree(buf_ptr);
11309 	}
11310 
11311 	/* Enable softirqs again, done with phba->hbalock */
11312 	local_bh_enable();
11313 
11314 	/* Return any active mbox cmds */
11315 	del_timer_sync(&psli->mbox_tmo);
11316 
11317 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
11318 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
11319 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
11320 
11321 	return 1;
11322 }
11323 
11324 /**
11325  * lpfc_sli_pcimem_bcopy - SLI memory copy function
11326  * @srcp: Source memory pointer.
11327  * @destp: Destination memory pointer.
11328  * @cnt: Number of words required to be copied.
11329  *
11330  * This function is used for copying data between driver memory
11331  * and the SLI memory. This function also changes the endianness
11332  * of each word if native endianness is different from SLI
11333  * endianness. This function can be called with or without
11334  * lock.
11335  **/
11336 void
11337 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11338 {
11339 	uint32_t *src = srcp;
11340 	uint32_t *dest = destp;
11341 	uint32_t ldata;
11342 	int i;
11343 
11344 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11345 		ldata = *src;
11346 		ldata = le32_to_cpu(ldata);
11347 		*dest = ldata;
11348 		src++;
11349 		dest++;
11350 	}
11351 }
11352 
11353 
11354 /**
11355  * lpfc_sli_bemem_bcopy - SLI memory copy function
11356  * @srcp: Source memory pointer.
11357  * @destp: Destination memory pointer.
11358  * @cnt: Number of words required to be copied.
11359  *
11360  * This function is used for copying data between a data structure
11361  * with big endian representation to local endianness.
11362  * This function can be called with or without lock.
11363  **/
11364 void
11365 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11366 {
11367 	uint32_t *src = srcp;
11368 	uint32_t *dest = destp;
11369 	uint32_t ldata;
11370 	int i;
11371 
11372 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11373 		ldata = *src;
11374 		ldata = be32_to_cpu(ldata);
11375 		*dest = ldata;
11376 		src++;
11377 		dest++;
11378 	}
11379 }
11380 
11381 /**
11382  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11383  * @phba: Pointer to HBA context object.
11384  * @pring: Pointer to driver SLI ring object.
11385  * @mp: Pointer to driver buffer object.
11386  *
11387  * This function is called with no lock held.
11388  * It always return zero after adding the buffer to the postbufq
11389  * buffer list.
11390  **/
11391 int
11392 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11393 			 struct lpfc_dmabuf *mp)
11394 {
11395 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11396 	   later */
11397 	spin_lock_irq(&phba->hbalock);
11398 	list_add_tail(&mp->list, &pring->postbufq);
11399 	pring->postbufq_cnt++;
11400 	spin_unlock_irq(&phba->hbalock);
11401 	return 0;
11402 }
11403 
11404 /**
11405  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11406  * @phba: Pointer to HBA context object.
11407  *
11408  * When HBQ is enabled, buffers are searched based on tags. This function
11409  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11410  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11411  * does not conflict with tags of buffer posted for unsolicited events.
11412  * The function returns the allocated tag. The function is called with
11413  * no locks held.
11414  **/
11415 uint32_t
11416 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11417 {
11418 	spin_lock_irq(&phba->hbalock);
11419 	phba->buffer_tag_count++;
11420 	/*
11421 	 * Always set the QUE_BUFTAG_BIT to distiguish between
11422 	 * a tag assigned by HBQ.
11423 	 */
11424 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11425 	spin_unlock_irq(&phba->hbalock);
11426 	return phba->buffer_tag_count;
11427 }
11428 
11429 /**
11430  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11431  * @phba: Pointer to HBA context object.
11432  * @pring: Pointer to driver SLI ring object.
11433  * @tag: Buffer tag.
11434  *
11435  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11436  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11437  * iocb is posted to the response ring with the tag of the buffer.
11438  * This function searches the pring->postbufq list using the tag
11439  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11440  * iocb. If the buffer is found then lpfc_dmabuf object of the
11441  * buffer is returned to the caller else NULL is returned.
11442  * This function is called with no lock held.
11443  **/
11444 struct lpfc_dmabuf *
11445 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11446 			uint32_t tag)
11447 {
11448 	struct lpfc_dmabuf *mp, *next_mp;
11449 	struct list_head *slp = &pring->postbufq;
11450 
11451 	/* Search postbufq, from the beginning, looking for a match on tag */
11452 	spin_lock_irq(&phba->hbalock);
11453 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11454 		if (mp->buffer_tag == tag) {
11455 			list_del_init(&mp->list);
11456 			pring->postbufq_cnt--;
11457 			spin_unlock_irq(&phba->hbalock);
11458 			return mp;
11459 		}
11460 	}
11461 
11462 	spin_unlock_irq(&phba->hbalock);
11463 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11464 			"0402 Cannot find virtual addr for buffer tag on "
11465 			"ring %d Data x%lx x%px x%px x%x\n",
11466 			pring->ringno, (unsigned long) tag,
11467 			slp->next, slp->prev, pring->postbufq_cnt);
11468 
11469 	return NULL;
11470 }
11471 
11472 /**
11473  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11474  * @phba: Pointer to HBA context object.
11475  * @pring: Pointer to driver SLI ring object.
11476  * @phys: DMA address of the buffer.
11477  *
11478  * This function searches the buffer list using the dma_address
11479  * of unsolicited event to find the driver's lpfc_dmabuf object
11480  * corresponding to the dma_address. The function returns the
11481  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11482  * This function is called by the ct and els unsolicited event
11483  * handlers to get the buffer associated with the unsolicited
11484  * event.
11485  *
11486  * This function is called with no lock held.
11487  **/
11488 struct lpfc_dmabuf *
11489 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11490 			 dma_addr_t phys)
11491 {
11492 	struct lpfc_dmabuf *mp, *next_mp;
11493 	struct list_head *slp = &pring->postbufq;
11494 
11495 	/* Search postbufq, from the beginning, looking for a match on phys */
11496 	spin_lock_irq(&phba->hbalock);
11497 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11498 		if (mp->phys == phys) {
11499 			list_del_init(&mp->list);
11500 			pring->postbufq_cnt--;
11501 			spin_unlock_irq(&phba->hbalock);
11502 			return mp;
11503 		}
11504 	}
11505 
11506 	spin_unlock_irq(&phba->hbalock);
11507 	lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
11508 			"0410 Cannot find virtual addr for mapped buf on "
11509 			"ring %d Data x%llx x%px x%px x%x\n",
11510 			pring->ringno, (unsigned long long)phys,
11511 			slp->next, slp->prev, pring->postbufq_cnt);
11512 	return NULL;
11513 }
11514 
11515 /**
11516  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11517  * @phba: Pointer to HBA context object.
11518  * @cmdiocb: Pointer to driver command iocb object.
11519  * @rspiocb: Pointer to driver response iocb object.
11520  *
11521  * This function is the completion handler for the abort iocbs for
11522  * ELS commands. This function is called from the ELS ring event
11523  * handler with no lock held. This function frees memory resources
11524  * associated with the abort iocb.
11525  **/
11526 static void
11527 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11528 			struct lpfc_iocbq *rspiocb)
11529 {
11530 	IOCB_t *irsp = &rspiocb->iocb;
11531 	uint16_t abort_iotag, abort_context;
11532 	struct lpfc_iocbq *abort_iocb = NULL;
11533 
11534 	if (irsp->ulpStatus) {
11535 
11536 		/*
11537 		 * Assume that the port already completed and returned, or
11538 		 * will return the iocb. Just Log the message.
11539 		 */
11540 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11541 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11542 
11543 		spin_lock_irq(&phba->hbalock);
11544 		if (phba->sli_rev < LPFC_SLI_REV4) {
11545 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11546 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11547 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11548 				spin_unlock_irq(&phba->hbalock);
11549 				goto release_iocb;
11550 			}
11551 			if (abort_iotag != 0 &&
11552 				abort_iotag <= phba->sli.last_iotag)
11553 				abort_iocb =
11554 					phba->sli.iocbq_lookup[abort_iotag];
11555 		} else
11556 			/* For sli4 the abort_tag is the XRI,
11557 			 * so the abort routine puts the iotag  of the iocb
11558 			 * being aborted in the context field of the abort
11559 			 * IOCB.
11560 			 */
11561 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11562 
11563 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11564 				"0327 Cannot abort els iocb x%px "
11565 				"with tag %x context %x, abort status %x, "
11566 				"abort code %x\n",
11567 				abort_iocb, abort_iotag, abort_context,
11568 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11569 
11570 		spin_unlock_irq(&phba->hbalock);
11571 	}
11572 release_iocb:
11573 	lpfc_sli_release_iocbq(phba, cmdiocb);
11574 	return;
11575 }
11576 
11577 /**
11578  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11579  * @phba: Pointer to HBA context object.
11580  * @cmdiocb: Pointer to driver command iocb object.
11581  * @rspiocb: Pointer to driver response iocb object.
11582  *
11583  * The function is called from SLI ring event handler with no
11584  * lock held. This function is the completion handler for ELS commands
11585  * which are aborted. The function frees memory resources used for
11586  * the aborted ELS commands.
11587  **/
11588 static void
11589 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11590 		     struct lpfc_iocbq *rspiocb)
11591 {
11592 	IOCB_t *irsp = &rspiocb->iocb;
11593 
11594 	/* ELS cmd tag <ulpIoTag> completes */
11595 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11596 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11597 			"x%x x%x x%x\n",
11598 			irsp->ulpIoTag, irsp->ulpStatus,
11599 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11600 	lpfc_nlp_put((struct lpfc_nodelist *)cmdiocb->context1);
11601 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11602 		lpfc_ct_free_iocb(phba, cmdiocb);
11603 	else
11604 		lpfc_els_free_iocb(phba, cmdiocb);
11605 }
11606 
11607 /**
11608  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11609  * @phba: Pointer to HBA context object.
11610  * @pring: Pointer to driver SLI ring object.
11611  * @cmdiocb: Pointer to driver command iocb object.
11612  * @cmpl: completion function.
11613  *
11614  * This function issues an abort iocb for the provided command iocb. In case
11615  * of unloading, the abort iocb will not be issued to commands on the ELS
11616  * ring. Instead, the callback function shall be changed to those commands
11617  * so that nothing happens when them finishes. This function is called with
11618  * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS
11619  * when the command iocb is an abort request.
11620  *
11621  **/
11622 int
11623 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11624 			   struct lpfc_iocbq *cmdiocb, void *cmpl)
11625 {
11626 	struct lpfc_vport *vport = cmdiocb->vport;
11627 	struct lpfc_iocbq *abtsiocbp;
11628 	IOCB_t *icmd = NULL;
11629 	IOCB_t *iabt = NULL;
11630 	int retval = IOCB_ERROR;
11631 	unsigned long iflags;
11632 	struct lpfc_nodelist *ndlp;
11633 
11634 	/*
11635 	 * There are certain command types we don't want to abort.  And we
11636 	 * don't want to abort commands that are already in the process of
11637 	 * being aborted.
11638 	 */
11639 	icmd = &cmdiocb->iocb;
11640 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11641 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11642 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11643 		return IOCB_ABORTING;
11644 
11645 	if (!pring) {
11646 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11647 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11648 		else
11649 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11650 		return retval;
11651 	}
11652 
11653 	/*
11654 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11655 	 * the callback so that nothing happens when it finishes.
11656 	 */
11657 	if ((vport->load_flag & FC_UNLOADING) &&
11658 	    pring->ringno == LPFC_ELS_RING) {
11659 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11660 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11661 		else
11662 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11663 		return retval;
11664 	}
11665 
11666 	/* issue ABTS for this IOCB based on iotag */
11667 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11668 	if (abtsiocbp == NULL)
11669 		return IOCB_NORESOURCE;
11670 
11671 	/* This signals the response to set the correct status
11672 	 * before calling the completion handler
11673 	 */
11674 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11675 
11676 	iabt = &abtsiocbp->iocb;
11677 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11678 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11679 	if (phba->sli_rev == LPFC_SLI_REV4) {
11680 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11681 		if (pring->ringno == LPFC_ELS_RING)
11682 			iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11683 	} else {
11684 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11685 		if (pring->ringno == LPFC_ELS_RING) {
11686 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11687 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11688 		}
11689 	}
11690 	iabt->ulpLe = 1;
11691 	iabt->ulpClass = icmd->ulpClass;
11692 
11693 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11694 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11695 	if (cmdiocb->iocb_flag & LPFC_IO_FCP) {
11696 		abtsiocbp->iocb_flag |= LPFC_IO_FCP;
11697 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11698 	}
11699 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11700 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11701 
11702 	if (phba->link_state >= LPFC_LINK_UP)
11703 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11704 	else
11705 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11706 
11707 	if (cmpl)
11708 		abtsiocbp->iocb_cmpl = cmpl;
11709 	else
11710 		abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11711 	abtsiocbp->vport = vport;
11712 
11713 	if (phba->sli_rev == LPFC_SLI_REV4) {
11714 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11715 		if (unlikely(pring == NULL))
11716 			goto abort_iotag_exit;
11717 		/* Note: both hbalock and ring_lock need to be set here */
11718 		spin_lock_irqsave(&pring->ring_lock, iflags);
11719 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11720 			abtsiocbp, 0);
11721 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11722 	} else {
11723 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11724 			abtsiocbp, 0);
11725 	}
11726 
11727 abort_iotag_exit:
11728 
11729 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11730 			 "0339 Abort xri x%x, original iotag x%x, "
11731 			 "abort cmd iotag x%x retval x%x\n",
11732 			 iabt->un.acxri.abortIoTag,
11733 			 iabt->un.acxri.abortContextTag,
11734 			 abtsiocbp->iotag, retval);
11735 
11736 	if (retval) {
11737 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
11738 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11739 	}
11740 
11741 	/*
11742 	 * Caller to this routine should check for IOCB_ERROR
11743 	 * and handle it properly.  This routine no longer removes
11744 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11745 	 */
11746 	return retval;
11747 }
11748 
11749 /**
11750  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11751  * @phba: pointer to lpfc HBA data structure.
11752  *
11753  * This routine will abort all pending and outstanding iocbs to an HBA.
11754  **/
11755 void
11756 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11757 {
11758 	struct lpfc_sli *psli = &phba->sli;
11759 	struct lpfc_sli_ring *pring;
11760 	struct lpfc_queue *qp = NULL;
11761 	int i;
11762 
11763 	if (phba->sli_rev != LPFC_SLI_REV4) {
11764 		for (i = 0; i < psli->num_rings; i++) {
11765 			pring = &psli->sli3_ring[i];
11766 			lpfc_sli_abort_iocb_ring(phba, pring);
11767 		}
11768 		return;
11769 	}
11770 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11771 		pring = qp->pring;
11772 		if (!pring)
11773 			continue;
11774 		lpfc_sli_abort_iocb_ring(phba, pring);
11775 	}
11776 }
11777 
11778 /**
11779  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11780  * @iocbq: Pointer to driver iocb object.
11781  * @vport: Pointer to driver virtual port object.
11782  * @tgt_id: SCSI ID of the target.
11783  * @lun_id: LUN ID of the scsi device.
11784  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11785  *
11786  * This function acts as an iocb filter for functions which abort or count
11787  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11788  * 0 if the filtering criteria is met for the given iocb and will return
11789  * 1 if the filtering criteria is not met.
11790  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11791  * given iocb is for the SCSI device specified by vport, tgt_id and
11792  * lun_id parameter.
11793  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11794  * given iocb is for the SCSI target specified by vport and tgt_id
11795  * parameters.
11796  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11797  * given iocb is for the SCSI host associated with the given vport.
11798  * This function is called with no locks held.
11799  **/
11800 static int
11801 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11802 			   uint16_t tgt_id, uint64_t lun_id,
11803 			   lpfc_ctx_cmd ctx_cmd)
11804 {
11805 	struct lpfc_io_buf *lpfc_cmd;
11806 	int rc = 1;
11807 
11808 	if (iocbq->vport != vport)
11809 		return rc;
11810 
11811 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11812 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11813 		return rc;
11814 
11815 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11816 
11817 	if (lpfc_cmd->pCmd == NULL)
11818 		return rc;
11819 
11820 	switch (ctx_cmd) {
11821 	case LPFC_CTX_LUN:
11822 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11823 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11824 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11825 			rc = 0;
11826 		break;
11827 	case LPFC_CTX_TGT:
11828 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11829 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11830 			rc = 0;
11831 		break;
11832 	case LPFC_CTX_HOST:
11833 		rc = 0;
11834 		break;
11835 	default:
11836 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11837 			__func__, ctx_cmd);
11838 		break;
11839 	}
11840 
11841 	return rc;
11842 }
11843 
11844 /**
11845  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11846  * @vport: Pointer to virtual port.
11847  * @tgt_id: SCSI ID of the target.
11848  * @lun_id: LUN ID of the scsi device.
11849  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11850  *
11851  * This function returns number of FCP commands pending for the vport.
11852  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11853  * commands pending on the vport associated with SCSI device specified
11854  * by tgt_id and lun_id parameters.
11855  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11856  * commands pending on the vport associated with SCSI target specified
11857  * by tgt_id parameter.
11858  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11859  * commands pending on the vport.
11860  * This function returns the number of iocbs which satisfy the filter.
11861  * This function is called without any lock held.
11862  **/
11863 int
11864 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11865 		  lpfc_ctx_cmd ctx_cmd)
11866 {
11867 	struct lpfc_hba *phba = vport->phba;
11868 	struct lpfc_iocbq *iocbq;
11869 	int sum, i;
11870 
11871 	spin_lock_irq(&phba->hbalock);
11872 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11873 		iocbq = phba->sli.iocbq_lookup[i];
11874 
11875 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11876 						ctx_cmd) == 0)
11877 			sum++;
11878 	}
11879 	spin_unlock_irq(&phba->hbalock);
11880 
11881 	return sum;
11882 }
11883 
11884 /**
11885  * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11886  * @phba: Pointer to HBA context object
11887  * @cmdiocb: Pointer to command iocb object.
11888  * @wcqe: pointer to the complete wcqe
11889  *
11890  * This function is called when an aborted FCP iocb completes. This
11891  * function is called by the ring event handler with no lock held.
11892  * This function frees the iocb. It is called for sli-4 adapters.
11893  **/
11894 void
11895 lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11896 			 struct lpfc_wcqe_complete *wcqe)
11897 {
11898 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11899 			"3017 ABORT_XRI_CN completing on rpi x%x "
11900 			"original iotag x%x, abort cmd iotag x%x "
11901 			"status 0x%x, reason 0x%x\n",
11902 			cmdiocb->iocb.un.acxri.abortContextTag,
11903 			cmdiocb->iocb.un.acxri.abortIoTag,
11904 			cmdiocb->iotag,
11905 			(bf_get(lpfc_wcqe_c_status, wcqe)
11906 			& LPFC_IOCB_STATUS_MASK),
11907 			wcqe->parameter);
11908 	lpfc_sli_release_iocbq(phba, cmdiocb);
11909 }
11910 
11911 /**
11912  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11913  * @phba: Pointer to HBA context object
11914  * @cmdiocb: Pointer to command iocb object.
11915  * @rspiocb: Pointer to response iocb object.
11916  *
11917  * This function is called when an aborted FCP iocb completes. This
11918  * function is called by the ring event handler with no lock held.
11919  * This function frees the iocb.
11920  **/
11921 void
11922 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11923 			struct lpfc_iocbq *rspiocb)
11924 {
11925 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11926 			"3096 ABORT_XRI_CN completing on rpi x%x "
11927 			"original iotag x%x, abort cmd iotag x%x "
11928 			"status 0x%x, reason 0x%x\n",
11929 			cmdiocb->iocb.un.acxri.abortContextTag,
11930 			cmdiocb->iocb.un.acxri.abortIoTag,
11931 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11932 			rspiocb->iocb.un.ulpWord[4]);
11933 	lpfc_sli_release_iocbq(phba, cmdiocb);
11934 	return;
11935 }
11936 
11937 /**
11938  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11939  * @vport: Pointer to virtual port.
11940  * @pring: Pointer to driver SLI ring object.
11941  * @tgt_id: SCSI ID of the target.
11942  * @lun_id: LUN ID of the scsi device.
11943  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11944  *
11945  * This function sends an abort command for every SCSI command
11946  * associated with the given virtual port pending on the ring
11947  * filtered by lpfc_sli_validate_fcp_iocb function.
11948  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11949  * FCP iocbs associated with lun specified by tgt_id and lun_id
11950  * parameters
11951  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11952  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11953  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11954  * FCP iocbs associated with virtual port.
11955  * This function returns number of iocbs it failed to abort.
11956  * This function is called with no locks held.
11957  **/
11958 int
11959 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11960 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11961 {
11962 	struct lpfc_hba *phba = vport->phba;
11963 	struct lpfc_iocbq *iocbq;
11964 	int errcnt = 0, ret_val = 0;
11965 	unsigned long iflags;
11966 	int i;
11967 
11968 	/* all I/Os are in process of being flushed */
11969 	if (phba->hba_flag & HBA_IOQ_FLUSH)
11970 		return errcnt;
11971 
11972 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11973 		iocbq = phba->sli.iocbq_lookup[i];
11974 
11975 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11976 					       abort_cmd) != 0)
11977 			continue;
11978 
11979 		spin_lock_irqsave(&phba->hbalock, iflags);
11980 		ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq,
11981 						     lpfc_sli_abort_fcp_cmpl);
11982 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11983 		if (ret_val != IOCB_SUCCESS)
11984 			errcnt++;
11985 	}
11986 
11987 	return errcnt;
11988 }
11989 
11990 /**
11991  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11992  * @vport: Pointer to virtual port.
11993  * @pring: Pointer to driver SLI ring object.
11994  * @tgt_id: SCSI ID of the target.
11995  * @lun_id: LUN ID of the scsi device.
11996  * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11997  *
11998  * This function sends an abort command for every SCSI command
11999  * associated with the given virtual port pending on the ring
12000  * filtered by lpfc_sli_validate_fcp_iocb function.
12001  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
12002  * FCP iocbs associated with lun specified by tgt_id and lun_id
12003  * parameters
12004  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
12005  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
12006  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
12007  * FCP iocbs associated with virtual port.
12008  * This function returns number of iocbs it aborted .
12009  * This function is called with no locks held right after a taskmgmt
12010  * command is sent.
12011  **/
12012 int
12013 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
12014 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
12015 {
12016 	struct lpfc_hba *phba = vport->phba;
12017 	struct lpfc_io_buf *lpfc_cmd;
12018 	struct lpfc_iocbq *abtsiocbq;
12019 	struct lpfc_nodelist *ndlp;
12020 	struct lpfc_iocbq *iocbq;
12021 	IOCB_t *icmd;
12022 	int sum, i, ret_val;
12023 	unsigned long iflags;
12024 	struct lpfc_sli_ring *pring_s4 = NULL;
12025 
12026 	spin_lock_irqsave(&phba->hbalock, iflags);
12027 
12028 	/* all I/Os are in process of being flushed */
12029 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
12030 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12031 		return 0;
12032 	}
12033 	sum = 0;
12034 
12035 	for (i = 1; i <= phba->sli.last_iotag; i++) {
12036 		iocbq = phba->sli.iocbq_lookup[i];
12037 
12038 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
12039 					       cmd) != 0)
12040 			continue;
12041 
12042 		/* Guard against IO completion being called at same time */
12043 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
12044 		spin_lock(&lpfc_cmd->buf_lock);
12045 
12046 		if (!lpfc_cmd->pCmd) {
12047 			spin_unlock(&lpfc_cmd->buf_lock);
12048 			continue;
12049 		}
12050 
12051 		if (phba->sli_rev == LPFC_SLI_REV4) {
12052 			pring_s4 =
12053 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
12054 			if (!pring_s4) {
12055 				spin_unlock(&lpfc_cmd->buf_lock);
12056 				continue;
12057 			}
12058 			/* Note: both hbalock and ring_lock must be set here */
12059 			spin_lock(&pring_s4->ring_lock);
12060 		}
12061 
12062 		/*
12063 		 * If the iocbq is already being aborted, don't take a second
12064 		 * action, but do count it.
12065 		 */
12066 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
12067 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
12068 			if (phba->sli_rev == LPFC_SLI_REV4)
12069 				spin_unlock(&pring_s4->ring_lock);
12070 			spin_unlock(&lpfc_cmd->buf_lock);
12071 			continue;
12072 		}
12073 
12074 		/* issue ABTS for this IOCB based on iotag */
12075 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
12076 		if (!abtsiocbq) {
12077 			if (phba->sli_rev == LPFC_SLI_REV4)
12078 				spin_unlock(&pring_s4->ring_lock);
12079 			spin_unlock(&lpfc_cmd->buf_lock);
12080 			continue;
12081 		}
12082 
12083 		icmd = &iocbq->iocb;
12084 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
12085 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
12086 		if (phba->sli_rev == LPFC_SLI_REV4)
12087 			abtsiocbq->iocb.un.acxri.abortIoTag =
12088 							 iocbq->sli4_xritag;
12089 		else
12090 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
12091 		abtsiocbq->iocb.ulpLe = 1;
12092 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
12093 		abtsiocbq->vport = vport;
12094 
12095 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
12096 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
12097 		if (iocbq->iocb_flag & LPFC_IO_FCP)
12098 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
12099 		if (iocbq->iocb_flag & LPFC_IO_FOF)
12100 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
12101 
12102 		ndlp = lpfc_cmd->rdata->pnode;
12103 
12104 		if (lpfc_is_link_up(phba) &&
12105 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
12106 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
12107 		else
12108 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
12109 
12110 		/* Setup callback routine and issue the command. */
12111 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
12112 
12113 		/*
12114 		 * Indicate the IO is being aborted by the driver and set
12115 		 * the caller's flag into the aborted IO.
12116 		 */
12117 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
12118 
12119 		if (phba->sli_rev == LPFC_SLI_REV4) {
12120 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
12121 							abtsiocbq, 0);
12122 			spin_unlock(&pring_s4->ring_lock);
12123 		} else {
12124 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
12125 							abtsiocbq, 0);
12126 		}
12127 
12128 		spin_unlock(&lpfc_cmd->buf_lock);
12129 
12130 		if (ret_val == IOCB_ERROR)
12131 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
12132 		else
12133 			sum++;
12134 	}
12135 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12136 	return sum;
12137 }
12138 
12139 /**
12140  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
12141  * @phba: Pointer to HBA context object.
12142  * @cmdiocbq: Pointer to command iocb.
12143  * @rspiocbq: Pointer to response iocb.
12144  *
12145  * This function is the completion handler for iocbs issued using
12146  * lpfc_sli_issue_iocb_wait function. This function is called by the
12147  * ring event handler function without any lock held. This function
12148  * can be called from both worker thread context and interrupt
12149  * context. This function also can be called from other thread which
12150  * cleans up the SLI layer objects.
12151  * This function copy the contents of the response iocb to the
12152  * response iocb memory object provided by the caller of
12153  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
12154  * sleeps for the iocb completion.
12155  **/
12156 static void
12157 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
12158 			struct lpfc_iocbq *cmdiocbq,
12159 			struct lpfc_iocbq *rspiocbq)
12160 {
12161 	wait_queue_head_t *pdone_q;
12162 	unsigned long iflags;
12163 	struct lpfc_io_buf *lpfc_cmd;
12164 
12165 	spin_lock_irqsave(&phba->hbalock, iflags);
12166 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
12167 
12168 		/*
12169 		 * A time out has occurred for the iocb.  If a time out
12170 		 * completion handler has been supplied, call it.  Otherwise,
12171 		 * just free the iocbq.
12172 		 */
12173 
12174 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12175 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
12176 		cmdiocbq->wait_iocb_cmpl = NULL;
12177 		if (cmdiocbq->iocb_cmpl)
12178 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
12179 		else
12180 			lpfc_sli_release_iocbq(phba, cmdiocbq);
12181 		return;
12182 	}
12183 
12184 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
12185 	if (cmdiocbq->context2 && rspiocbq)
12186 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
12187 		       &rspiocbq->iocb, sizeof(IOCB_t));
12188 
12189 	/* Set the exchange busy flag for task management commands */
12190 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
12191 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
12192 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
12193 			cur_iocbq);
12194 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
12195 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
12196 		else
12197 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
12198 	}
12199 
12200 	pdone_q = cmdiocbq->context_un.wait_queue;
12201 	if (pdone_q)
12202 		wake_up(pdone_q);
12203 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12204 	return;
12205 }
12206 
12207 /**
12208  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
12209  * @phba: Pointer to HBA context object..
12210  * @piocbq: Pointer to command iocb.
12211  * @flag: Flag to test.
12212  *
12213  * This routine grabs the hbalock and then test the iocb_flag to
12214  * see if the passed in flag is set.
12215  * Returns:
12216  * 1 if flag is set.
12217  * 0 if flag is not set.
12218  **/
12219 static int
12220 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
12221 		 struct lpfc_iocbq *piocbq, uint32_t flag)
12222 {
12223 	unsigned long iflags;
12224 	int ret;
12225 
12226 	spin_lock_irqsave(&phba->hbalock, iflags);
12227 	ret = piocbq->iocb_flag & flag;
12228 	spin_unlock_irqrestore(&phba->hbalock, iflags);
12229 	return ret;
12230 
12231 }
12232 
12233 /**
12234  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
12235  * @phba: Pointer to HBA context object..
12236  * @ring_number: Ring number
12237  * @piocb: Pointer to command iocb.
12238  * @prspiocbq: Pointer to response iocb.
12239  * @timeout: Timeout in number of seconds.
12240  *
12241  * This function issues the iocb to firmware and waits for the
12242  * iocb to complete. The iocb_cmpl field of the shall be used
12243  * to handle iocbs which time out. If the field is NULL, the
12244  * function shall free the iocbq structure.  If more clean up is
12245  * needed, the caller is expected to provide a completion function
12246  * that will provide the needed clean up.  If the iocb command is
12247  * not completed within timeout seconds, the function will either
12248  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
12249  * completion function set in the iocb_cmpl field and then return
12250  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
12251  * resources if this function returns IOCB_TIMEDOUT.
12252  * The function waits for the iocb completion using an
12253  * non-interruptible wait.
12254  * This function will sleep while waiting for iocb completion.
12255  * So, this function should not be called from any context which
12256  * does not allow sleeping. Due to the same reason, this function
12257  * cannot be called with interrupt disabled.
12258  * This function assumes that the iocb completions occur while
12259  * this function sleep. So, this function cannot be called from
12260  * the thread which process iocb completion for this ring.
12261  * This function clears the iocb_flag of the iocb object before
12262  * issuing the iocb and the iocb completion handler sets this
12263  * flag and wakes this thread when the iocb completes.
12264  * The contents of the response iocb will be copied to prspiocbq
12265  * by the completion handler when the command completes.
12266  * This function returns IOCB_SUCCESS when success.
12267  * This function is called with no lock held.
12268  **/
12269 int
12270 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
12271 			 uint32_t ring_number,
12272 			 struct lpfc_iocbq *piocb,
12273 			 struct lpfc_iocbq *prspiocbq,
12274 			 uint32_t timeout)
12275 {
12276 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12277 	long timeleft, timeout_req = 0;
12278 	int retval = IOCB_SUCCESS;
12279 	uint32_t creg_val;
12280 	struct lpfc_iocbq *iocb;
12281 	int txq_cnt = 0;
12282 	int txcmplq_cnt = 0;
12283 	struct lpfc_sli_ring *pring;
12284 	unsigned long iflags;
12285 	bool iocb_completed = true;
12286 
12287 	if (phba->sli_rev >= LPFC_SLI_REV4)
12288 		pring = lpfc_sli4_calc_ring(phba, piocb);
12289 	else
12290 		pring = &phba->sli.sli3_ring[ring_number];
12291 	/*
12292 	 * If the caller has provided a response iocbq buffer, then context2
12293 	 * is NULL or its an error.
12294 	 */
12295 	if (prspiocbq) {
12296 		if (piocb->context2)
12297 			return IOCB_ERROR;
12298 		piocb->context2 = prspiocbq;
12299 	}
12300 
12301 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12302 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12303 	piocb->context_un.wait_queue = &done_q;
12304 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12305 
12306 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12307 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12308 			return IOCB_ERROR;
12309 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12310 		writel(creg_val, phba->HCregaddr);
12311 		readl(phba->HCregaddr); /* flush */
12312 	}
12313 
12314 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12315 				     SLI_IOCB_RET_IOCB);
12316 	if (retval == IOCB_SUCCESS) {
12317 		timeout_req = msecs_to_jiffies(timeout * 1000);
12318 		timeleft = wait_event_timeout(done_q,
12319 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12320 				timeout_req);
12321 		spin_lock_irqsave(&phba->hbalock, iflags);
12322 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12323 
12324 			/*
12325 			 * IOCB timed out.  Inform the wake iocb wait
12326 			 * completion function and set local status
12327 			 */
12328 
12329 			iocb_completed = false;
12330 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12331 		}
12332 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12333 		if (iocb_completed) {
12334 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12335 					"0331 IOCB wake signaled\n");
12336 			/* Note: we are not indicating if the IOCB has a success
12337 			 * status or not - that's for the caller to check.
12338 			 * IOCB_SUCCESS means just that the command was sent and
12339 			 * completed. Not that it completed successfully.
12340 			 * */
12341 		} else if (timeleft == 0) {
12342 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12343 					"0338 IOCB wait timeout error - no "
12344 					"wake response Data x%x\n", timeout);
12345 			retval = IOCB_TIMEDOUT;
12346 		} else {
12347 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12348 					"0330 IOCB wake NOT set, "
12349 					"Data x%x x%lx\n",
12350 					timeout, (timeleft / jiffies));
12351 			retval = IOCB_TIMEDOUT;
12352 		}
12353 	} else if (retval == IOCB_BUSY) {
12354 		if (phba->cfg_log_verbose & LOG_SLI) {
12355 			list_for_each_entry(iocb, &pring->txq, list) {
12356 				txq_cnt++;
12357 			}
12358 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12359 				txcmplq_cnt++;
12360 			}
12361 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12362 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12363 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12364 		}
12365 		return retval;
12366 	} else {
12367 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12368 				"0332 IOCB wait issue failed, Data x%x\n",
12369 				retval);
12370 		retval = IOCB_ERROR;
12371 	}
12372 
12373 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12374 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12375 			return IOCB_ERROR;
12376 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12377 		writel(creg_val, phba->HCregaddr);
12378 		readl(phba->HCregaddr); /* flush */
12379 	}
12380 
12381 	if (prspiocbq)
12382 		piocb->context2 = NULL;
12383 
12384 	piocb->context_un.wait_queue = NULL;
12385 	piocb->iocb_cmpl = NULL;
12386 	return retval;
12387 }
12388 
12389 /**
12390  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12391  * @phba: Pointer to HBA context object.
12392  * @pmboxq: Pointer to driver mailbox object.
12393  * @timeout: Timeout in number of seconds.
12394  *
12395  * This function issues the mailbox to firmware and waits for the
12396  * mailbox command to complete. If the mailbox command is not
12397  * completed within timeout seconds, it returns MBX_TIMEOUT.
12398  * The function waits for the mailbox completion using an
12399  * interruptible wait. If the thread is woken up due to a
12400  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12401  * should not free the mailbox resources, if this function returns
12402  * MBX_TIMEOUT.
12403  * This function will sleep while waiting for mailbox completion.
12404  * So, this function should not be called from any context which
12405  * does not allow sleeping. Due to the same reason, this function
12406  * cannot be called with interrupt disabled.
12407  * This function assumes that the mailbox completion occurs while
12408  * this function sleep. So, this function cannot be called from
12409  * the worker thread which processes mailbox completion.
12410  * This function is called in the context of HBA management
12411  * applications.
12412  * This function returns MBX_SUCCESS when successful.
12413  * This function is called with no lock held.
12414  **/
12415 int
12416 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12417 			 uint32_t timeout)
12418 {
12419 	struct completion mbox_done;
12420 	int retval;
12421 	unsigned long flag;
12422 
12423 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12424 	/* setup wake call as IOCB callback */
12425 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12426 
12427 	/* setup context3 field to pass wait_queue pointer to wake function  */
12428 	init_completion(&mbox_done);
12429 	pmboxq->context3 = &mbox_done;
12430 	/* now issue the command */
12431 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12432 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12433 		wait_for_completion_timeout(&mbox_done,
12434 					    msecs_to_jiffies(timeout * 1000));
12435 
12436 		spin_lock_irqsave(&phba->hbalock, flag);
12437 		pmboxq->context3 = NULL;
12438 		/*
12439 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12440 		 * else do not free the resources.
12441 		 */
12442 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12443 			retval = MBX_SUCCESS;
12444 		} else {
12445 			retval = MBX_TIMEOUT;
12446 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12447 		}
12448 		spin_unlock_irqrestore(&phba->hbalock, flag);
12449 	}
12450 	return retval;
12451 }
12452 
12453 /**
12454  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12455  * @phba: Pointer to HBA context.
12456  * @mbx_action: Mailbox shutdown options.
12457  *
12458  * This function is called to shutdown the driver's mailbox sub-system.
12459  * It first marks the mailbox sub-system is in a block state to prevent
12460  * the asynchronous mailbox command from issued off the pending mailbox
12461  * command queue. If the mailbox command sub-system shutdown is due to
12462  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12463  * the mailbox sub-system flush routine to forcefully bring down the
12464  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12465  * as with offline or HBA function reset), this routine will wait for the
12466  * outstanding mailbox command to complete before invoking the mailbox
12467  * sub-system flush routine to gracefully bring down mailbox sub-system.
12468  **/
12469 void
12470 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12471 {
12472 	struct lpfc_sli *psli = &phba->sli;
12473 	unsigned long timeout;
12474 
12475 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12476 		/* delay 100ms for port state */
12477 		msleep(100);
12478 		lpfc_sli_mbox_sys_flush(phba);
12479 		return;
12480 	}
12481 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12482 
12483 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12484 	local_bh_disable();
12485 
12486 	spin_lock_irq(&phba->hbalock);
12487 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12488 
12489 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12490 		/* Determine how long we might wait for the active mailbox
12491 		 * command to be gracefully completed by firmware.
12492 		 */
12493 		if (phba->sli.mbox_active)
12494 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12495 						phba->sli.mbox_active) *
12496 						1000) + jiffies;
12497 		spin_unlock_irq(&phba->hbalock);
12498 
12499 		/* Enable softirqs again, done with phba->hbalock */
12500 		local_bh_enable();
12501 
12502 		while (phba->sli.mbox_active) {
12503 			/* Check active mailbox complete status every 2ms */
12504 			msleep(2);
12505 			if (time_after(jiffies, timeout))
12506 				/* Timeout, let the mailbox flush routine to
12507 				 * forcefully release active mailbox command
12508 				 */
12509 				break;
12510 		}
12511 	} else {
12512 		spin_unlock_irq(&phba->hbalock);
12513 
12514 		/* Enable softirqs again, done with phba->hbalock */
12515 		local_bh_enable();
12516 	}
12517 
12518 	lpfc_sli_mbox_sys_flush(phba);
12519 }
12520 
12521 /**
12522  * lpfc_sli_eratt_read - read sli-3 error attention events
12523  * @phba: Pointer to HBA context.
12524  *
12525  * This function is called to read the SLI3 device error attention registers
12526  * for possible error attention events. The caller must hold the hostlock
12527  * with spin_lock_irq().
12528  *
12529  * This function returns 1 when there is Error Attention in the Host Attention
12530  * Register and returns 0 otherwise.
12531  **/
12532 static int
12533 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12534 {
12535 	uint32_t ha_copy;
12536 
12537 	/* Read chip Host Attention (HA) register */
12538 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12539 		goto unplug_err;
12540 
12541 	if (ha_copy & HA_ERATT) {
12542 		/* Read host status register to retrieve error event */
12543 		if (lpfc_sli_read_hs(phba))
12544 			goto unplug_err;
12545 
12546 		/* Check if there is a deferred error condition is active */
12547 		if ((HS_FFER1 & phba->work_hs) &&
12548 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12549 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12550 			phba->hba_flag |= DEFER_ERATT;
12551 			/* Clear all interrupt enable conditions */
12552 			writel(0, phba->HCregaddr);
12553 			readl(phba->HCregaddr);
12554 		}
12555 
12556 		/* Set the driver HA work bitmap */
12557 		phba->work_ha |= HA_ERATT;
12558 		/* Indicate polling handles this ERATT */
12559 		phba->hba_flag |= HBA_ERATT_HANDLED;
12560 		return 1;
12561 	}
12562 	return 0;
12563 
12564 unplug_err:
12565 	/* Set the driver HS work bitmap */
12566 	phba->work_hs |= UNPLUG_ERR;
12567 	/* Set the driver HA work bitmap */
12568 	phba->work_ha |= HA_ERATT;
12569 	/* Indicate polling handles this ERATT */
12570 	phba->hba_flag |= HBA_ERATT_HANDLED;
12571 	return 1;
12572 }
12573 
12574 /**
12575  * lpfc_sli4_eratt_read - read sli-4 error attention events
12576  * @phba: Pointer to HBA context.
12577  *
12578  * This function is called to read the SLI4 device error attention registers
12579  * for possible error attention events. The caller must hold the hostlock
12580  * with spin_lock_irq().
12581  *
12582  * This function returns 1 when there is Error Attention in the Host Attention
12583  * Register and returns 0 otherwise.
12584  **/
12585 static int
12586 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12587 {
12588 	uint32_t uerr_sta_hi, uerr_sta_lo;
12589 	uint32_t if_type, portsmphr;
12590 	struct lpfc_register portstat_reg;
12591 
12592 	/*
12593 	 * For now, use the SLI4 device internal unrecoverable error
12594 	 * registers for error attention. This can be changed later.
12595 	 */
12596 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12597 	switch (if_type) {
12598 	case LPFC_SLI_INTF_IF_TYPE_0:
12599 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12600 			&uerr_sta_lo) ||
12601 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12602 			&uerr_sta_hi)) {
12603 			phba->work_hs |= UNPLUG_ERR;
12604 			phba->work_ha |= HA_ERATT;
12605 			phba->hba_flag |= HBA_ERATT_HANDLED;
12606 			return 1;
12607 		}
12608 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12609 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12610 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12611 					"1423 HBA Unrecoverable error: "
12612 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12613 					"ue_mask_lo_reg=0x%x, "
12614 					"ue_mask_hi_reg=0x%x\n",
12615 					uerr_sta_lo, uerr_sta_hi,
12616 					phba->sli4_hba.ue_mask_lo,
12617 					phba->sli4_hba.ue_mask_hi);
12618 			phba->work_status[0] = uerr_sta_lo;
12619 			phba->work_status[1] = uerr_sta_hi;
12620 			phba->work_ha |= HA_ERATT;
12621 			phba->hba_flag |= HBA_ERATT_HANDLED;
12622 			return 1;
12623 		}
12624 		break;
12625 	case LPFC_SLI_INTF_IF_TYPE_2:
12626 	case LPFC_SLI_INTF_IF_TYPE_6:
12627 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12628 			&portstat_reg.word0) ||
12629 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12630 			&portsmphr)){
12631 			phba->work_hs |= UNPLUG_ERR;
12632 			phba->work_ha |= HA_ERATT;
12633 			phba->hba_flag |= HBA_ERATT_HANDLED;
12634 			return 1;
12635 		}
12636 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12637 			phba->work_status[0] =
12638 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12639 			phba->work_status[1] =
12640 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12641 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12642 					"2885 Port Status Event: "
12643 					"port status reg 0x%x, "
12644 					"port smphr reg 0x%x, "
12645 					"error 1=0x%x, error 2=0x%x\n",
12646 					portstat_reg.word0,
12647 					portsmphr,
12648 					phba->work_status[0],
12649 					phba->work_status[1]);
12650 			phba->work_ha |= HA_ERATT;
12651 			phba->hba_flag |= HBA_ERATT_HANDLED;
12652 			return 1;
12653 		}
12654 		break;
12655 	case LPFC_SLI_INTF_IF_TYPE_1:
12656 	default:
12657 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12658 				"2886 HBA Error Attention on unsupported "
12659 				"if type %d.", if_type);
12660 		return 1;
12661 	}
12662 
12663 	return 0;
12664 }
12665 
12666 /**
12667  * lpfc_sli_check_eratt - check error attention events
12668  * @phba: Pointer to HBA context.
12669  *
12670  * This function is called from timer soft interrupt context to check HBA's
12671  * error attention register bit for error attention events.
12672  *
12673  * This function returns 1 when there is Error Attention in the Host Attention
12674  * Register and returns 0 otherwise.
12675  **/
12676 int
12677 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12678 {
12679 	uint32_t ha_copy;
12680 
12681 	/* If somebody is waiting to handle an eratt, don't process it
12682 	 * here. The brdkill function will do this.
12683 	 */
12684 	if (phba->link_flag & LS_IGNORE_ERATT)
12685 		return 0;
12686 
12687 	/* Check if interrupt handler handles this ERATT */
12688 	spin_lock_irq(&phba->hbalock);
12689 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12690 		/* Interrupt handler has handled ERATT */
12691 		spin_unlock_irq(&phba->hbalock);
12692 		return 0;
12693 	}
12694 
12695 	/*
12696 	 * If there is deferred error attention, do not check for error
12697 	 * attention
12698 	 */
12699 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12700 		spin_unlock_irq(&phba->hbalock);
12701 		return 0;
12702 	}
12703 
12704 	/* If PCI channel is offline, don't process it */
12705 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12706 		spin_unlock_irq(&phba->hbalock);
12707 		return 0;
12708 	}
12709 
12710 	switch (phba->sli_rev) {
12711 	case LPFC_SLI_REV2:
12712 	case LPFC_SLI_REV3:
12713 		/* Read chip Host Attention (HA) register */
12714 		ha_copy = lpfc_sli_eratt_read(phba);
12715 		break;
12716 	case LPFC_SLI_REV4:
12717 		/* Read device Uncoverable Error (UERR) registers */
12718 		ha_copy = lpfc_sli4_eratt_read(phba);
12719 		break;
12720 	default:
12721 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12722 				"0299 Invalid SLI revision (%d)\n",
12723 				phba->sli_rev);
12724 		ha_copy = 0;
12725 		break;
12726 	}
12727 	spin_unlock_irq(&phba->hbalock);
12728 
12729 	return ha_copy;
12730 }
12731 
12732 /**
12733  * lpfc_intr_state_check - Check device state for interrupt handling
12734  * @phba: Pointer to HBA context.
12735  *
12736  * This inline routine checks whether a device or its PCI slot is in a state
12737  * that the interrupt should be handled.
12738  *
12739  * This function returns 0 if the device or the PCI slot is in a state that
12740  * interrupt should be handled, otherwise -EIO.
12741  */
12742 static inline int
12743 lpfc_intr_state_check(struct lpfc_hba *phba)
12744 {
12745 	/* If the pci channel is offline, ignore all the interrupts */
12746 	if (unlikely(pci_channel_offline(phba->pcidev)))
12747 		return -EIO;
12748 
12749 	/* Update device level interrupt statistics */
12750 	phba->sli.slistat.sli_intr++;
12751 
12752 	/* Ignore all interrupts during initialization. */
12753 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12754 		return -EIO;
12755 
12756 	return 0;
12757 }
12758 
12759 /**
12760  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12761  * @irq: Interrupt number.
12762  * @dev_id: The device context pointer.
12763  *
12764  * This function is directly called from the PCI layer as an interrupt
12765  * service routine when device with SLI-3 interface spec is enabled with
12766  * MSI-X multi-message interrupt mode and there are slow-path events in
12767  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12768  * interrupt mode, this function is called as part of the device-level
12769  * interrupt handler. When the PCI slot is in error recovery or the HBA
12770  * is undergoing initialization, the interrupt handler will not process
12771  * the interrupt. The link attention and ELS ring attention events are
12772  * handled by the worker thread. The interrupt handler signals the worker
12773  * thread and returns for these events. This function is called without
12774  * any lock held. It gets the hbalock to access and update SLI data
12775  * structures.
12776  *
12777  * This function returns IRQ_HANDLED when interrupt is handled else it
12778  * returns IRQ_NONE.
12779  **/
12780 irqreturn_t
12781 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12782 {
12783 	struct lpfc_hba  *phba;
12784 	uint32_t ha_copy, hc_copy;
12785 	uint32_t work_ha_copy;
12786 	unsigned long status;
12787 	unsigned long iflag;
12788 	uint32_t control;
12789 
12790 	MAILBOX_t *mbox, *pmbox;
12791 	struct lpfc_vport *vport;
12792 	struct lpfc_nodelist *ndlp;
12793 	struct lpfc_dmabuf *mp;
12794 	LPFC_MBOXQ_t *pmb;
12795 	int rc;
12796 
12797 	/*
12798 	 * Get the driver's phba structure from the dev_id and
12799 	 * assume the HBA is not interrupting.
12800 	 */
12801 	phba = (struct lpfc_hba *)dev_id;
12802 
12803 	if (unlikely(!phba))
12804 		return IRQ_NONE;
12805 
12806 	/*
12807 	 * Stuff needs to be attented to when this function is invoked as an
12808 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12809 	 */
12810 	if (phba->intr_type == MSIX) {
12811 		/* Check device state for handling interrupt */
12812 		if (lpfc_intr_state_check(phba))
12813 			return IRQ_NONE;
12814 		/* Need to read HA REG for slow-path events */
12815 		spin_lock_irqsave(&phba->hbalock, iflag);
12816 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12817 			goto unplug_error;
12818 		/* If somebody is waiting to handle an eratt don't process it
12819 		 * here. The brdkill function will do this.
12820 		 */
12821 		if (phba->link_flag & LS_IGNORE_ERATT)
12822 			ha_copy &= ~HA_ERATT;
12823 		/* Check the need for handling ERATT in interrupt handler */
12824 		if (ha_copy & HA_ERATT) {
12825 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12826 				/* ERATT polling has handled ERATT */
12827 				ha_copy &= ~HA_ERATT;
12828 			else
12829 				/* Indicate interrupt handler handles ERATT */
12830 				phba->hba_flag |= HBA_ERATT_HANDLED;
12831 		}
12832 
12833 		/*
12834 		 * If there is deferred error attention, do not check for any
12835 		 * interrupt.
12836 		 */
12837 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12838 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12839 			return IRQ_NONE;
12840 		}
12841 
12842 		/* Clear up only attention source related to slow-path */
12843 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12844 			goto unplug_error;
12845 
12846 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12847 			HC_LAINT_ENA | HC_ERINT_ENA),
12848 			phba->HCregaddr);
12849 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12850 			phba->HAregaddr);
12851 		writel(hc_copy, phba->HCregaddr);
12852 		readl(phba->HAregaddr); /* flush */
12853 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12854 	} else
12855 		ha_copy = phba->ha_copy;
12856 
12857 	work_ha_copy = ha_copy & phba->work_ha_mask;
12858 
12859 	if (work_ha_copy) {
12860 		if (work_ha_copy & HA_LATT) {
12861 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12862 				/*
12863 				 * Turn off Link Attention interrupts
12864 				 * until CLEAR_LA done
12865 				 */
12866 				spin_lock_irqsave(&phba->hbalock, iflag);
12867 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12868 				if (lpfc_readl(phba->HCregaddr, &control))
12869 					goto unplug_error;
12870 				control &= ~HC_LAINT_ENA;
12871 				writel(control, phba->HCregaddr);
12872 				readl(phba->HCregaddr); /* flush */
12873 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12874 			}
12875 			else
12876 				work_ha_copy &= ~HA_LATT;
12877 		}
12878 
12879 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12880 			/*
12881 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12882 			 * the only slow ring.
12883 			 */
12884 			status = (work_ha_copy &
12885 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12886 			status >>= (4*LPFC_ELS_RING);
12887 			if (status & HA_RXMASK) {
12888 				spin_lock_irqsave(&phba->hbalock, iflag);
12889 				if (lpfc_readl(phba->HCregaddr, &control))
12890 					goto unplug_error;
12891 
12892 				lpfc_debugfs_slow_ring_trc(phba,
12893 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12894 				control, status,
12895 				(uint32_t)phba->sli.slistat.sli_intr);
12896 
12897 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12898 					lpfc_debugfs_slow_ring_trc(phba,
12899 						"ISR Disable ring:"
12900 						"pwork:x%x hawork:x%x wait:x%x",
12901 						phba->work_ha, work_ha_copy,
12902 						(uint32_t)((unsigned long)
12903 						&phba->work_waitq));
12904 
12905 					control &=
12906 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12907 					writel(control, phba->HCregaddr);
12908 					readl(phba->HCregaddr); /* flush */
12909 				}
12910 				else {
12911 					lpfc_debugfs_slow_ring_trc(phba,
12912 						"ISR slow ring:   pwork:"
12913 						"x%x hawork:x%x wait:x%x",
12914 						phba->work_ha, work_ha_copy,
12915 						(uint32_t)((unsigned long)
12916 						&phba->work_waitq));
12917 				}
12918 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12919 			}
12920 		}
12921 		spin_lock_irqsave(&phba->hbalock, iflag);
12922 		if (work_ha_copy & HA_ERATT) {
12923 			if (lpfc_sli_read_hs(phba))
12924 				goto unplug_error;
12925 			/*
12926 			 * Check if there is a deferred error condition
12927 			 * is active
12928 			 */
12929 			if ((HS_FFER1 & phba->work_hs) &&
12930 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12931 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12932 				  phba->work_hs)) {
12933 				phba->hba_flag |= DEFER_ERATT;
12934 				/* Clear all interrupt enable conditions */
12935 				writel(0, phba->HCregaddr);
12936 				readl(phba->HCregaddr);
12937 			}
12938 		}
12939 
12940 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12941 			pmb = phba->sli.mbox_active;
12942 			pmbox = &pmb->u.mb;
12943 			mbox = phba->mbox;
12944 			vport = pmb->vport;
12945 
12946 			/* First check out the status word */
12947 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12948 			if (pmbox->mbxOwner != OWN_HOST) {
12949 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12950 				/*
12951 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12952 				 * mbxStatus <status>
12953 				 */
12954 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
12955 						"(%d):0304 Stray Mailbox "
12956 						"Interrupt mbxCommand x%x "
12957 						"mbxStatus x%x\n",
12958 						(vport ? vport->vpi : 0),
12959 						pmbox->mbxCommand,
12960 						pmbox->mbxStatus);
12961 				/* clear mailbox attention bit */
12962 				work_ha_copy &= ~HA_MBATT;
12963 			} else {
12964 				phba->sli.mbox_active = NULL;
12965 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12966 				phba->last_completion_time = jiffies;
12967 				del_timer(&phba->sli.mbox_tmo);
12968 				if (pmb->mbox_cmpl) {
12969 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12970 							MAILBOX_CMD_SIZE);
12971 					if (pmb->out_ext_byte_len &&
12972 						pmb->ctx_buf)
12973 						lpfc_sli_pcimem_bcopy(
12974 						phba->mbox_ext,
12975 						pmb->ctx_buf,
12976 						pmb->out_ext_byte_len);
12977 				}
12978 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12979 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12980 
12981 					lpfc_debugfs_disc_trc(vport,
12982 						LPFC_DISC_TRC_MBOX_VPORT,
12983 						"MBOX dflt rpi: : "
12984 						"status:x%x rpi:x%x",
12985 						(uint32_t)pmbox->mbxStatus,
12986 						pmbox->un.varWords[0], 0);
12987 
12988 					if (!pmbox->mbxStatus) {
12989 						mp = (struct lpfc_dmabuf *)
12990 							(pmb->ctx_buf);
12991 						ndlp = (struct lpfc_nodelist *)
12992 							pmb->ctx_ndlp;
12993 
12994 						/* Reg_LOGIN of dflt RPI was
12995 						 * successful. new lets get
12996 						 * rid of the RPI using the
12997 						 * same mbox buffer.
12998 						 */
12999 						lpfc_unreg_login(phba,
13000 							vport->vpi,
13001 							pmbox->un.varWords[0],
13002 							pmb);
13003 						pmb->mbox_cmpl =
13004 							lpfc_mbx_cmpl_dflt_rpi;
13005 						pmb->ctx_buf = mp;
13006 						pmb->ctx_ndlp = ndlp;
13007 						pmb->vport = vport;
13008 						rc = lpfc_sli_issue_mbox(phba,
13009 								pmb,
13010 								MBX_NOWAIT);
13011 						if (rc != MBX_BUSY)
13012 							lpfc_printf_log(phba,
13013 							KERN_ERR,
13014 							LOG_TRACE_EVENT,
13015 							"0350 rc should have"
13016 							"been MBX_BUSY\n");
13017 						if (rc != MBX_NOT_FINISHED)
13018 							goto send_current_mbox;
13019 					}
13020 				}
13021 				spin_lock_irqsave(
13022 						&phba->pport->work_port_lock,
13023 						iflag);
13024 				phba->pport->work_port_events &=
13025 					~WORKER_MBOX_TMO;
13026 				spin_unlock_irqrestore(
13027 						&phba->pport->work_port_lock,
13028 						iflag);
13029 				lpfc_mbox_cmpl_put(phba, pmb);
13030 			}
13031 		} else
13032 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13033 
13034 		if ((work_ha_copy & HA_MBATT) &&
13035 		    (phba->sli.mbox_active == NULL)) {
13036 send_current_mbox:
13037 			/* Process next mailbox command if there is one */
13038 			do {
13039 				rc = lpfc_sli_issue_mbox(phba, NULL,
13040 							 MBX_NOWAIT);
13041 			} while (rc == MBX_NOT_FINISHED);
13042 			if (rc != MBX_SUCCESS)
13043 				lpfc_printf_log(phba, KERN_ERR,
13044 						LOG_TRACE_EVENT,
13045 						"0349 rc should be "
13046 						"MBX_SUCCESS\n");
13047 		}
13048 
13049 		spin_lock_irqsave(&phba->hbalock, iflag);
13050 		phba->work_ha |= work_ha_copy;
13051 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13052 		lpfc_worker_wake_up(phba);
13053 	}
13054 	return IRQ_HANDLED;
13055 unplug_error:
13056 	spin_unlock_irqrestore(&phba->hbalock, iflag);
13057 	return IRQ_HANDLED;
13058 
13059 } /* lpfc_sli_sp_intr_handler */
13060 
13061 /**
13062  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
13063  * @irq: Interrupt number.
13064  * @dev_id: The device context pointer.
13065  *
13066  * This function is directly called from the PCI layer as an interrupt
13067  * service routine when device with SLI-3 interface spec is enabled with
13068  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
13069  * ring event in the HBA. However, when the device is enabled with either
13070  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
13071  * device-level interrupt handler. When the PCI slot is in error recovery
13072  * or the HBA is undergoing initialization, the interrupt handler will not
13073  * process the interrupt. The SCSI FCP fast-path ring event are handled in
13074  * the intrrupt context. This function is called without any lock held.
13075  * It gets the hbalock to access and update SLI data structures.
13076  *
13077  * This function returns IRQ_HANDLED when interrupt is handled else it
13078  * returns IRQ_NONE.
13079  **/
13080 irqreturn_t
13081 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
13082 {
13083 	struct lpfc_hba  *phba;
13084 	uint32_t ha_copy;
13085 	unsigned long status;
13086 	unsigned long iflag;
13087 	struct lpfc_sli_ring *pring;
13088 
13089 	/* Get the driver's phba structure from the dev_id and
13090 	 * assume the HBA is not interrupting.
13091 	 */
13092 	phba = (struct lpfc_hba *) dev_id;
13093 
13094 	if (unlikely(!phba))
13095 		return IRQ_NONE;
13096 
13097 	/*
13098 	 * Stuff needs to be attented to when this function is invoked as an
13099 	 * individual interrupt handler in MSI-X multi-message interrupt mode
13100 	 */
13101 	if (phba->intr_type == MSIX) {
13102 		/* Check device state for handling interrupt */
13103 		if (lpfc_intr_state_check(phba))
13104 			return IRQ_NONE;
13105 		/* Need to read HA REG for FCP ring and other ring events */
13106 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
13107 			return IRQ_HANDLED;
13108 		/* Clear up only attention source related to fast-path */
13109 		spin_lock_irqsave(&phba->hbalock, iflag);
13110 		/*
13111 		 * If there is deferred error attention, do not check for
13112 		 * any interrupt.
13113 		 */
13114 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13115 			spin_unlock_irqrestore(&phba->hbalock, iflag);
13116 			return IRQ_NONE;
13117 		}
13118 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
13119 			phba->HAregaddr);
13120 		readl(phba->HAregaddr); /* flush */
13121 		spin_unlock_irqrestore(&phba->hbalock, iflag);
13122 	} else
13123 		ha_copy = phba->ha_copy;
13124 
13125 	/*
13126 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
13127 	 */
13128 	ha_copy &= ~(phba->work_ha_mask);
13129 
13130 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13131 	status >>= (4*LPFC_FCP_RING);
13132 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
13133 	if (status & HA_RXMASK)
13134 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
13135 
13136 	if (phba->cfg_multi_ring_support == 2) {
13137 		/*
13138 		 * Process all events on extra ring. Take the optimized path
13139 		 * for extra ring IO.
13140 		 */
13141 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13142 		status >>= (4*LPFC_EXTRA_RING);
13143 		if (status & HA_RXMASK) {
13144 			lpfc_sli_handle_fast_ring_event(phba,
13145 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
13146 					status);
13147 		}
13148 	}
13149 	return IRQ_HANDLED;
13150 }  /* lpfc_sli_fp_intr_handler */
13151 
13152 /**
13153  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
13154  * @irq: Interrupt number.
13155  * @dev_id: The device context pointer.
13156  *
13157  * This function is the HBA device-level interrupt handler to device with
13158  * SLI-3 interface spec, called from the PCI layer when either MSI or
13159  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
13160  * requires driver attention. This function invokes the slow-path interrupt
13161  * attention handling function and fast-path interrupt attention handling
13162  * function in turn to process the relevant HBA attention events. This
13163  * function is called without any lock held. It gets the hbalock to access
13164  * and update SLI data structures.
13165  *
13166  * This function returns IRQ_HANDLED when interrupt is handled, else it
13167  * returns IRQ_NONE.
13168  **/
13169 irqreturn_t
13170 lpfc_sli_intr_handler(int irq, void *dev_id)
13171 {
13172 	struct lpfc_hba  *phba;
13173 	irqreturn_t sp_irq_rc, fp_irq_rc;
13174 	unsigned long status1, status2;
13175 	uint32_t hc_copy;
13176 
13177 	/*
13178 	 * Get the driver's phba structure from the dev_id and
13179 	 * assume the HBA is not interrupting.
13180 	 */
13181 	phba = (struct lpfc_hba *) dev_id;
13182 
13183 	if (unlikely(!phba))
13184 		return IRQ_NONE;
13185 
13186 	/* Check device state for handling interrupt */
13187 	if (lpfc_intr_state_check(phba))
13188 		return IRQ_NONE;
13189 
13190 	spin_lock(&phba->hbalock);
13191 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
13192 		spin_unlock(&phba->hbalock);
13193 		return IRQ_HANDLED;
13194 	}
13195 
13196 	if (unlikely(!phba->ha_copy)) {
13197 		spin_unlock(&phba->hbalock);
13198 		return IRQ_NONE;
13199 	} else if (phba->ha_copy & HA_ERATT) {
13200 		if (phba->hba_flag & HBA_ERATT_HANDLED)
13201 			/* ERATT polling has handled ERATT */
13202 			phba->ha_copy &= ~HA_ERATT;
13203 		else
13204 			/* Indicate interrupt handler handles ERATT */
13205 			phba->hba_flag |= HBA_ERATT_HANDLED;
13206 	}
13207 
13208 	/*
13209 	 * If there is deferred error attention, do not check for any interrupt.
13210 	 */
13211 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
13212 		spin_unlock(&phba->hbalock);
13213 		return IRQ_NONE;
13214 	}
13215 
13216 	/* Clear attention sources except link and error attentions */
13217 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
13218 		spin_unlock(&phba->hbalock);
13219 		return IRQ_HANDLED;
13220 	}
13221 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
13222 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
13223 		phba->HCregaddr);
13224 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
13225 	writel(hc_copy, phba->HCregaddr);
13226 	readl(phba->HAregaddr); /* flush */
13227 	spin_unlock(&phba->hbalock);
13228 
13229 	/*
13230 	 * Invokes slow-path host attention interrupt handling as appropriate.
13231 	 */
13232 
13233 	/* status of events with mailbox and link attention */
13234 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
13235 
13236 	/* status of events with ELS ring */
13237 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
13238 	status2 >>= (4*LPFC_ELS_RING);
13239 
13240 	if (status1 || (status2 & HA_RXMASK))
13241 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
13242 	else
13243 		sp_irq_rc = IRQ_NONE;
13244 
13245 	/*
13246 	 * Invoke fast-path host attention interrupt handling as appropriate.
13247 	 */
13248 
13249 	/* status of events with FCP ring */
13250 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
13251 	status1 >>= (4*LPFC_FCP_RING);
13252 
13253 	/* status of events with extra ring */
13254 	if (phba->cfg_multi_ring_support == 2) {
13255 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
13256 		status2 >>= (4*LPFC_EXTRA_RING);
13257 	} else
13258 		status2 = 0;
13259 
13260 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
13261 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
13262 	else
13263 		fp_irq_rc = IRQ_NONE;
13264 
13265 	/* Return device-level interrupt handling status */
13266 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
13267 }  /* lpfc_sli_intr_handler */
13268 
13269 /**
13270  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
13271  * @phba: pointer to lpfc hba data structure.
13272  *
13273  * This routine is invoked by the worker thread to process all the pending
13274  * SLI4 els abort xri events.
13275  **/
13276 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13277 {
13278 	struct lpfc_cq_event *cq_event;
13279 	unsigned long iflags;
13280 
13281 	/* First, declare the els xri abort event has been handled */
13282 	spin_lock_irqsave(&phba->hbalock, iflags);
13283 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13284 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13285 
13286 	/* Now, handle all the els xri abort events */
13287 	spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13288 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13289 		/* Get the first event from the head of the event queue */
13290 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13291 				 cq_event, struct lpfc_cq_event, list);
13292 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13293 				       iflags);
13294 		/* Notify aborted XRI for ELS work queue */
13295 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13296 
13297 		/* Free the event processed back to the free pool */
13298 		lpfc_sli4_cq_event_release(phba, cq_event);
13299 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13300 				  iflags);
13301 	}
13302 	spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags);
13303 }
13304 
13305 /**
13306  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13307  * @phba: pointer to lpfc hba data structure
13308  * @pIocbIn: pointer to the rspiocbq
13309  * @pIocbOut: pointer to the cmdiocbq
13310  * @wcqe: pointer to the complete wcqe
13311  *
13312  * This routine transfers the fields of a command iocbq to a response iocbq
13313  * by copying all the IOCB fields from command iocbq and transferring the
13314  * completion status information from the complete wcqe.
13315  **/
13316 static void
13317 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13318 			      struct lpfc_iocbq *pIocbIn,
13319 			      struct lpfc_iocbq *pIocbOut,
13320 			      struct lpfc_wcqe_complete *wcqe)
13321 {
13322 	int numBdes, i;
13323 	unsigned long iflags;
13324 	uint32_t status, max_response;
13325 	struct lpfc_dmabuf *dmabuf;
13326 	struct ulp_bde64 *bpl, bde;
13327 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
13328 
13329 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13330 	       sizeof(struct lpfc_iocbq) - offset);
13331 	/* Map WCQE parameters into irspiocb parameters */
13332 	status = bf_get(lpfc_wcqe_c_status, wcqe);
13333 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13334 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13335 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13336 			pIocbIn->iocb.un.fcpi.fcpi_parm =
13337 					pIocbOut->iocb.un.fcpi.fcpi_parm -
13338 					wcqe->total_data_placed;
13339 		else
13340 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13341 	else {
13342 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13343 		switch (pIocbOut->iocb.ulpCommand) {
13344 		case CMD_ELS_REQUEST64_CR:
13345 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13346 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
13347 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13348 			max_response = bde.tus.f.bdeSize;
13349 			break;
13350 		case CMD_GEN_REQUEST64_CR:
13351 			max_response = 0;
13352 			if (!pIocbOut->context3)
13353 				break;
13354 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13355 					sizeof(struct ulp_bde64);
13356 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13357 			bpl = (struct ulp_bde64 *)dmabuf->virt;
13358 			for (i = 0; i < numBdes; i++) {
13359 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13360 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13361 					max_response += bde.tus.f.bdeSize;
13362 			}
13363 			break;
13364 		default:
13365 			max_response = wcqe->total_data_placed;
13366 			break;
13367 		}
13368 		if (max_response < wcqe->total_data_placed)
13369 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13370 		else
13371 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13372 				wcqe->total_data_placed;
13373 	}
13374 
13375 	/* Convert BG errors for completion status */
13376 	if (status == CQE_STATUS_DI_ERROR) {
13377 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13378 
13379 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13380 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13381 		else
13382 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13383 
13384 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13385 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13386 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13387 				BGS_GUARD_ERR_MASK;
13388 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13389 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13390 				BGS_APPTAG_ERR_MASK;
13391 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13392 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13393 				BGS_REFTAG_ERR_MASK;
13394 
13395 		/* Check to see if there was any good data before the error */
13396 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13397 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13398 				BGS_HI_WATER_MARK_PRESENT_MASK;
13399 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13400 				wcqe->total_data_placed;
13401 		}
13402 
13403 		/*
13404 		* Set ALL the error bits to indicate we don't know what
13405 		* type of error it is.
13406 		*/
13407 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13408 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13409 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13410 				BGS_GUARD_ERR_MASK);
13411 	}
13412 
13413 	/* Pick up HBA exchange busy condition */
13414 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13415 		spin_lock_irqsave(&phba->hbalock, iflags);
13416 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13417 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13418 	}
13419 }
13420 
13421 /**
13422  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13423  * @phba: Pointer to HBA context object.
13424  * @irspiocbq: Pointer to work-queue completion queue entry.
13425  *
13426  * This routine handles an ELS work-queue completion event and construct
13427  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13428  * discovery engine to handle.
13429  *
13430  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13431  **/
13432 static struct lpfc_iocbq *
13433 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13434 			       struct lpfc_iocbq *irspiocbq)
13435 {
13436 	struct lpfc_sli_ring *pring;
13437 	struct lpfc_iocbq *cmdiocbq;
13438 	struct lpfc_wcqe_complete *wcqe;
13439 	unsigned long iflags;
13440 
13441 	pring = lpfc_phba_elsring(phba);
13442 	if (unlikely(!pring))
13443 		return NULL;
13444 
13445 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13446 	pring->stats.iocb_event++;
13447 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13448 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13449 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13450 	if (unlikely(!cmdiocbq)) {
13451 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13452 				"0386 ELS complete with no corresponding "
13453 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13454 				wcqe->word0, wcqe->total_data_placed,
13455 				wcqe->parameter, wcqe->word3);
13456 		lpfc_sli_release_iocbq(phba, irspiocbq);
13457 		return NULL;
13458 	}
13459 
13460 	spin_lock_irqsave(&pring->ring_lock, iflags);
13461 	/* Put the iocb back on the txcmplq */
13462 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13463 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13464 
13465 	/* Fake the irspiocbq and copy necessary response information */
13466 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13467 
13468 	return irspiocbq;
13469 }
13470 
13471 inline struct lpfc_cq_event *
13472 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13473 {
13474 	struct lpfc_cq_event *cq_event;
13475 
13476 	/* Allocate a new internal CQ_EVENT entry */
13477 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13478 	if (!cq_event) {
13479 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13480 				"0602 Failed to alloc CQ_EVENT entry\n");
13481 		return NULL;
13482 	}
13483 
13484 	/* Move the CQE into the event */
13485 	memcpy(&cq_event->cqe, entry, size);
13486 	return cq_event;
13487 }
13488 
13489 /**
13490  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13491  * @phba: Pointer to HBA context object.
13492  * @mcqe: Pointer to mailbox completion queue entry.
13493  *
13494  * This routine process a mailbox completion queue entry with asynchronous
13495  * event.
13496  *
13497  * Return: true if work posted to worker thread, otherwise false.
13498  **/
13499 static bool
13500 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13501 {
13502 	struct lpfc_cq_event *cq_event;
13503 	unsigned long iflags;
13504 
13505 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13506 			"0392 Async Event: word0:x%x, word1:x%x, "
13507 			"word2:x%x, word3:x%x\n", mcqe->word0,
13508 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13509 
13510 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13511 	if (!cq_event)
13512 		return false;
13513 
13514 	spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags);
13515 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13516 	spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags);
13517 
13518 	/* Set the async event flag */
13519 	spin_lock_irqsave(&phba->hbalock, iflags);
13520 	phba->hba_flag |= ASYNC_EVENT;
13521 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13522 
13523 	return true;
13524 }
13525 
13526 /**
13527  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13528  * @phba: Pointer to HBA context object.
13529  * @mcqe: Pointer to mailbox completion queue entry.
13530  *
13531  * This routine process a mailbox completion queue entry with mailbox
13532  * completion event.
13533  *
13534  * Return: true if work posted to worker thread, otherwise false.
13535  **/
13536 static bool
13537 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13538 {
13539 	uint32_t mcqe_status;
13540 	MAILBOX_t *mbox, *pmbox;
13541 	struct lpfc_mqe *mqe;
13542 	struct lpfc_vport *vport;
13543 	struct lpfc_nodelist *ndlp;
13544 	struct lpfc_dmabuf *mp;
13545 	unsigned long iflags;
13546 	LPFC_MBOXQ_t *pmb;
13547 	bool workposted = false;
13548 	int rc;
13549 
13550 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13551 	if (!bf_get(lpfc_trailer_completed, mcqe))
13552 		goto out_no_mqe_complete;
13553 
13554 	/* Get the reference to the active mbox command */
13555 	spin_lock_irqsave(&phba->hbalock, iflags);
13556 	pmb = phba->sli.mbox_active;
13557 	if (unlikely(!pmb)) {
13558 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13559 				"1832 No pending MBOX command to handle\n");
13560 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13561 		goto out_no_mqe_complete;
13562 	}
13563 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13564 	mqe = &pmb->u.mqe;
13565 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13566 	mbox = phba->mbox;
13567 	vport = pmb->vport;
13568 
13569 	/* Reset heartbeat timer */
13570 	phba->last_completion_time = jiffies;
13571 	del_timer(&phba->sli.mbox_tmo);
13572 
13573 	/* Move mbox data to caller's mailbox region, do endian swapping */
13574 	if (pmb->mbox_cmpl && mbox)
13575 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13576 
13577 	/*
13578 	 * For mcqe errors, conditionally move a modified error code to
13579 	 * the mbox so that the error will not be missed.
13580 	 */
13581 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13582 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13583 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13584 			bf_set(lpfc_mqe_status, mqe,
13585 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13586 	}
13587 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13588 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13589 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13590 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13591 				      mcqe_status,
13592 				      pmbox->un.varWords[0], 0);
13593 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13594 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13595 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13596 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13597 			 * RID of the PPI using the same mbox buffer.
13598 			 */
13599 			lpfc_unreg_login(phba, vport->vpi,
13600 					 pmbox->un.varWords[0], pmb);
13601 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13602 			pmb->ctx_buf = mp;
13603 
13604 			/* No reference taken here.  This is a default
13605 			 * RPI reg/immediate unreg cycle. The reference was
13606 			 * taken in the reg rpi path and is released when
13607 			 * this mailbox completes.
13608 			 */
13609 			pmb->ctx_ndlp = ndlp;
13610 			pmb->vport = vport;
13611 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13612 			if (rc != MBX_BUSY)
13613 				lpfc_printf_log(phba, KERN_ERR,
13614 						LOG_TRACE_EVENT,
13615 						"0385 rc should "
13616 						"have been MBX_BUSY\n");
13617 			if (rc != MBX_NOT_FINISHED)
13618 				goto send_current_mbox;
13619 		}
13620 	}
13621 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13622 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13623 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13624 
13625 	/* There is mailbox completion work to do */
13626 	spin_lock_irqsave(&phba->hbalock, iflags);
13627 	__lpfc_mbox_cmpl_put(phba, pmb);
13628 	phba->work_ha |= HA_MBATT;
13629 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13630 	workposted = true;
13631 
13632 send_current_mbox:
13633 	spin_lock_irqsave(&phba->hbalock, iflags);
13634 	/* Release the mailbox command posting token */
13635 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13636 	/* Setting active mailbox pointer need to be in sync to flag clear */
13637 	phba->sli.mbox_active = NULL;
13638 	if (bf_get(lpfc_trailer_consumed, mcqe))
13639 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13640 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13641 	/* Wake up worker thread to post the next pending mailbox command */
13642 	lpfc_worker_wake_up(phba);
13643 	return workposted;
13644 
13645 out_no_mqe_complete:
13646 	spin_lock_irqsave(&phba->hbalock, iflags);
13647 	if (bf_get(lpfc_trailer_consumed, mcqe))
13648 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13649 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13650 	return false;
13651 }
13652 
13653 /**
13654  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13655  * @phba: Pointer to HBA context object.
13656  * @cq: Pointer to associated CQ
13657  * @cqe: Pointer to mailbox completion queue entry.
13658  *
13659  * This routine process a mailbox completion queue entry, it invokes the
13660  * proper mailbox complete handling or asynchronous event handling routine
13661  * according to the MCQE's async bit.
13662  *
13663  * Return: true if work posted to worker thread, otherwise false.
13664  **/
13665 static bool
13666 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13667 			 struct lpfc_cqe *cqe)
13668 {
13669 	struct lpfc_mcqe mcqe;
13670 	bool workposted;
13671 
13672 	cq->CQ_mbox++;
13673 
13674 	/* Copy the mailbox MCQE and convert endian order as needed */
13675 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13676 
13677 	/* Invoke the proper event handling routine */
13678 	if (!bf_get(lpfc_trailer_async, &mcqe))
13679 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13680 	else
13681 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13682 	return workposted;
13683 }
13684 
13685 /**
13686  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13687  * @phba: Pointer to HBA context object.
13688  * @cq: Pointer to associated CQ
13689  * @wcqe: Pointer to work-queue completion queue entry.
13690  *
13691  * This routine handles an ELS work-queue completion event.
13692  *
13693  * Return: true if work posted to worker thread, otherwise false.
13694  **/
13695 static bool
13696 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13697 			     struct lpfc_wcqe_complete *wcqe)
13698 {
13699 	struct lpfc_iocbq *irspiocbq;
13700 	unsigned long iflags;
13701 	struct lpfc_sli_ring *pring = cq->pring;
13702 	int txq_cnt = 0;
13703 	int txcmplq_cnt = 0;
13704 
13705 	/* Check for response status */
13706 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13707 		/* Log the error status */
13708 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13709 				"0357 ELS CQE error: status=x%x: "
13710 				"CQE: %08x %08x %08x %08x\n",
13711 				bf_get(lpfc_wcqe_c_status, wcqe),
13712 				wcqe->word0, wcqe->total_data_placed,
13713 				wcqe->parameter, wcqe->word3);
13714 	}
13715 
13716 	/* Get an irspiocbq for later ELS response processing use */
13717 	irspiocbq = lpfc_sli_get_iocbq(phba);
13718 	if (!irspiocbq) {
13719 		if (!list_empty(&pring->txq))
13720 			txq_cnt++;
13721 		if (!list_empty(&pring->txcmplq))
13722 			txcmplq_cnt++;
13723 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13724 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13725 			"els_txcmplq_cnt=%d\n",
13726 			txq_cnt, phba->iocb_cnt,
13727 			txcmplq_cnt);
13728 		return false;
13729 	}
13730 
13731 	/* Save off the slow-path queue event for work thread to process */
13732 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13733 	spin_lock_irqsave(&phba->hbalock, iflags);
13734 	list_add_tail(&irspiocbq->cq_event.list,
13735 		      &phba->sli4_hba.sp_queue_event);
13736 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13737 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13738 
13739 	return true;
13740 }
13741 
13742 /**
13743  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13744  * @phba: Pointer to HBA context object.
13745  * @wcqe: Pointer to work-queue completion queue entry.
13746  *
13747  * This routine handles slow-path WQ entry consumed event by invoking the
13748  * proper WQ release routine to the slow-path WQ.
13749  **/
13750 static void
13751 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13752 			     struct lpfc_wcqe_release *wcqe)
13753 {
13754 	/* sanity check on queue memory */
13755 	if (unlikely(!phba->sli4_hba.els_wq))
13756 		return;
13757 	/* Check for the slow-path ELS work queue */
13758 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13759 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13760 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13761 	else
13762 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13763 				"2579 Slow-path wqe consume event carries "
13764 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13765 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13766 				phba->sli4_hba.els_wq->queue_id);
13767 }
13768 
13769 /**
13770  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13771  * @phba: Pointer to HBA context object.
13772  * @cq: Pointer to a WQ completion queue.
13773  * @wcqe: Pointer to work-queue completion queue entry.
13774  *
13775  * This routine handles an XRI abort event.
13776  *
13777  * Return: true if work posted to worker thread, otherwise false.
13778  **/
13779 static bool
13780 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13781 				   struct lpfc_queue *cq,
13782 				   struct sli4_wcqe_xri_aborted *wcqe)
13783 {
13784 	bool workposted = false;
13785 	struct lpfc_cq_event *cq_event;
13786 	unsigned long iflags;
13787 
13788 	switch (cq->subtype) {
13789 	case LPFC_IO:
13790 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13791 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13792 			/* Notify aborted XRI for NVME work queue */
13793 			if (phba->nvmet_support)
13794 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13795 		}
13796 		workposted = false;
13797 		break;
13798 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13799 	case LPFC_ELS:
13800 		cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe));
13801 		if (!cq_event) {
13802 			workposted = false;
13803 			break;
13804 		}
13805 		cq_event->hdwq = cq->hdwq;
13806 		spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock,
13807 				  iflags);
13808 		list_add_tail(&cq_event->list,
13809 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13810 		/* Set the els xri abort event flag */
13811 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13812 		spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock,
13813 				       iflags);
13814 		workposted = true;
13815 		break;
13816 	default:
13817 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13818 				"0603 Invalid CQ subtype %d: "
13819 				"%08x %08x %08x %08x\n",
13820 				cq->subtype, wcqe->word0, wcqe->parameter,
13821 				wcqe->word2, wcqe->word3);
13822 		workposted = false;
13823 		break;
13824 	}
13825 	return workposted;
13826 }
13827 
13828 #define FC_RCTL_MDS_DIAGS	0xF4
13829 
13830 /**
13831  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13832  * @phba: Pointer to HBA context object.
13833  * @rcqe: Pointer to receive-queue completion queue entry.
13834  *
13835  * This routine process a receive-queue completion queue entry.
13836  *
13837  * Return: true if work posted to worker thread, otherwise false.
13838  **/
13839 static bool
13840 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13841 {
13842 	bool workposted = false;
13843 	struct fc_frame_header *fc_hdr;
13844 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13845 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13846 	struct lpfc_nvmet_tgtport *tgtp;
13847 	struct hbq_dmabuf *dma_buf;
13848 	uint32_t status, rq_id;
13849 	unsigned long iflags;
13850 
13851 	/* sanity check on queue memory */
13852 	if (unlikely(!hrq) || unlikely(!drq))
13853 		return workposted;
13854 
13855 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13856 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13857 	else
13858 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13859 	if (rq_id != hrq->queue_id)
13860 		goto out;
13861 
13862 	status = bf_get(lpfc_rcqe_status, rcqe);
13863 	switch (status) {
13864 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13865 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13866 				"2537 Receive Frame Truncated!!\n");
13867 		fallthrough;
13868 	case FC_STATUS_RQ_SUCCESS:
13869 		spin_lock_irqsave(&phba->hbalock, iflags);
13870 		lpfc_sli4_rq_release(hrq, drq);
13871 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13872 		if (!dma_buf) {
13873 			hrq->RQ_no_buf_found++;
13874 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13875 			goto out;
13876 		}
13877 		hrq->RQ_rcv_buf++;
13878 		hrq->RQ_buf_posted--;
13879 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13880 
13881 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13882 
13883 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13884 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13885 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13886 			/* Handle MDS Loopback frames */
13887 			if  (!(phba->pport->load_flag & FC_UNLOADING))
13888 				lpfc_sli4_handle_mds_loopback(phba->pport,
13889 							      dma_buf);
13890 			else
13891 				lpfc_in_buf_free(phba, &dma_buf->dbuf);
13892 			break;
13893 		}
13894 
13895 		/* save off the frame for the work thread to process */
13896 		list_add_tail(&dma_buf->cq_event.list,
13897 			      &phba->sli4_hba.sp_queue_event);
13898 		/* Frame received */
13899 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13900 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13901 		workposted = true;
13902 		break;
13903 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13904 		if (phba->nvmet_support) {
13905 			tgtp = phba->targetport->private;
13906 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13907 					"6402 RQE Error x%x, posted %d err_cnt "
13908 					"%d: %x %x %x\n",
13909 					status, hrq->RQ_buf_posted,
13910 					hrq->RQ_no_posted_buf,
13911 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13912 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13913 					atomic_read(&tgtp->xmt_fcp_release));
13914 		}
13915 		fallthrough;
13916 
13917 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13918 		hrq->RQ_no_posted_buf++;
13919 		/* Post more buffers if possible */
13920 		spin_lock_irqsave(&phba->hbalock, iflags);
13921 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13922 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13923 		workposted = true;
13924 		break;
13925 	}
13926 out:
13927 	return workposted;
13928 }
13929 
13930 /**
13931  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13932  * @phba: Pointer to HBA context object.
13933  * @cq: Pointer to the completion queue.
13934  * @cqe: Pointer to a completion queue entry.
13935  *
13936  * This routine process a slow-path work-queue or receive queue completion queue
13937  * entry.
13938  *
13939  * Return: true if work posted to worker thread, otherwise false.
13940  **/
13941 static bool
13942 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13943 			 struct lpfc_cqe *cqe)
13944 {
13945 	struct lpfc_cqe cqevt;
13946 	bool workposted = false;
13947 
13948 	/* Copy the work queue CQE and convert endian order if needed */
13949 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13950 
13951 	/* Check and process for different type of WCQE and dispatch */
13952 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13953 	case CQE_CODE_COMPL_WQE:
13954 		/* Process the WQ/RQ complete event */
13955 		phba->last_completion_time = jiffies;
13956 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13957 				(struct lpfc_wcqe_complete *)&cqevt);
13958 		break;
13959 	case CQE_CODE_RELEASE_WQE:
13960 		/* Process the WQ release event */
13961 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13962 				(struct lpfc_wcqe_release *)&cqevt);
13963 		break;
13964 	case CQE_CODE_XRI_ABORTED:
13965 		/* Process the WQ XRI abort event */
13966 		phba->last_completion_time = jiffies;
13967 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13968 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13969 		break;
13970 	case CQE_CODE_RECEIVE:
13971 	case CQE_CODE_RECEIVE_V1:
13972 		/* Process the RQ event */
13973 		phba->last_completion_time = jiffies;
13974 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13975 				(struct lpfc_rcqe *)&cqevt);
13976 		break;
13977 	default:
13978 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
13979 				"0388 Not a valid WCQE code: x%x\n",
13980 				bf_get(lpfc_cqe_code, &cqevt));
13981 		break;
13982 	}
13983 	return workposted;
13984 }
13985 
13986 /**
13987  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13988  * @phba: Pointer to HBA context object.
13989  * @eqe: Pointer to fast-path event queue entry.
13990  * @speq: Pointer to slow-path event queue.
13991  *
13992  * This routine process a event queue entry from the slow-path event queue.
13993  * It will check the MajorCode and MinorCode to determine this is for a
13994  * completion event on a completion queue, if not, an error shall be logged
13995  * and just return. Otherwise, it will get to the corresponding completion
13996  * queue and process all the entries on that completion queue, rearm the
13997  * completion queue, and then return.
13998  *
13999  **/
14000 static void
14001 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
14002 	struct lpfc_queue *speq)
14003 {
14004 	struct lpfc_queue *cq = NULL, *childq;
14005 	uint16_t cqid;
14006 	int ret = 0;
14007 
14008 	/* Get the reference to the corresponding CQ */
14009 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14010 
14011 	list_for_each_entry(childq, &speq->child_list, list) {
14012 		if (childq->queue_id == cqid) {
14013 			cq = childq;
14014 			break;
14015 		}
14016 	}
14017 	if (unlikely(!cq)) {
14018 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
14019 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14020 					"0365 Slow-path CQ identifier "
14021 					"(%d) does not exist\n", cqid);
14022 		return;
14023 	}
14024 
14025 	/* Save EQ associated with this CQ */
14026 	cq->assoc_qp = speq;
14027 
14028 	if (is_kdump_kernel())
14029 		ret = queue_work(phba->wq, &cq->spwork);
14030 	else
14031 		ret = queue_work_on(cq->chann, phba->wq, &cq->spwork);
14032 
14033 	if (!ret)
14034 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14035 				"0390 Cannot schedule queue work "
14036 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14037 				cqid, cq->queue_id, raw_smp_processor_id());
14038 }
14039 
14040 /**
14041  * __lpfc_sli4_process_cq - Process elements of a CQ
14042  * @phba: Pointer to HBA context object.
14043  * @cq: Pointer to CQ to be processed
14044  * @handler: Routine to process each cqe
14045  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
14046  * @poll_mode: Polling mode we were called from
14047  *
14048  * This routine processes completion queue entries in a CQ. While a valid
14049  * queue element is found, the handler is called. During processing checks
14050  * are made for periodic doorbell writes to let the hardware know of
14051  * element consumption.
14052  *
14053  * If the max limit on cqes to process is hit, or there are no more valid
14054  * entries, the loop stops. If we processed a sufficient number of elements,
14055  * meaning there is sufficient load, rather than rearming and generating
14056  * another interrupt, a cq rescheduling delay will be set. A delay of 0
14057  * indicates no rescheduling.
14058  *
14059  * Returns True if work scheduled, False otherwise.
14060  **/
14061 static bool
14062 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
14063 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
14064 			struct lpfc_cqe *), unsigned long *delay,
14065 			enum lpfc_poll_mode poll_mode)
14066 {
14067 	struct lpfc_cqe *cqe;
14068 	bool workposted = false;
14069 	int count = 0, consumed = 0;
14070 	bool arm = true;
14071 
14072 	/* default - no reschedule */
14073 	*delay = 0;
14074 
14075 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
14076 		goto rearm_and_exit;
14077 
14078 	/* Process all the entries to the CQ */
14079 	cq->q_flag = 0;
14080 	cqe = lpfc_sli4_cq_get(cq);
14081 	while (cqe) {
14082 		workposted |= handler(phba, cq, cqe);
14083 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
14084 
14085 		consumed++;
14086 		if (!(++count % cq->max_proc_limit))
14087 			break;
14088 
14089 		if (!(count % cq->notify_interval)) {
14090 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14091 						LPFC_QUEUE_NOARM);
14092 			consumed = 0;
14093 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
14094 		}
14095 
14096 		if (count == LPFC_NVMET_CQ_NOTIFY)
14097 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
14098 
14099 		cqe = lpfc_sli4_cq_get(cq);
14100 	}
14101 	if (count >= phba->cfg_cq_poll_threshold) {
14102 		*delay = 1;
14103 		arm = false;
14104 	}
14105 
14106 	/* Note: complete the irq_poll softirq before rearming CQ */
14107 	if (poll_mode == LPFC_IRQ_POLL)
14108 		irq_poll_complete(&cq->iop);
14109 
14110 	/* Track the max number of CQEs processed in 1 EQ */
14111 	if (count > cq->CQ_max_cqe)
14112 		cq->CQ_max_cqe = count;
14113 
14114 	cq->assoc_qp->EQ_cqe_cnt += count;
14115 
14116 	/* Catch the no cq entry condition */
14117 	if (unlikely(count == 0))
14118 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14119 				"0369 No entry from completion queue "
14120 				"qid=%d\n", cq->queue_id);
14121 
14122 	xchg(&cq->queue_claimed, 0);
14123 
14124 rearm_and_exit:
14125 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
14126 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
14127 
14128 	return workposted;
14129 }
14130 
14131 /**
14132  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
14133  * @cq: pointer to CQ to process
14134  *
14135  * This routine calls the cq processing routine with a handler specific
14136  * to the type of queue bound to it.
14137  *
14138  * The CQ routine returns two values: the first is the calling status,
14139  * which indicates whether work was queued to the  background discovery
14140  * thread. If true, the routine should wakeup the discovery thread;
14141  * the second is the delay parameter. If non-zero, rather than rearming
14142  * the CQ and yet another interrupt, the CQ handler should be queued so
14143  * that it is processed in a subsequent polling action. The value of
14144  * the delay indicates when to reschedule it.
14145  **/
14146 static void
14147 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
14148 {
14149 	struct lpfc_hba *phba = cq->phba;
14150 	unsigned long delay;
14151 	bool workposted = false;
14152 	int ret = 0;
14153 
14154 	/* Process and rearm the CQ */
14155 	switch (cq->type) {
14156 	case LPFC_MCQ:
14157 		workposted |= __lpfc_sli4_process_cq(phba, cq,
14158 						lpfc_sli4_sp_handle_mcqe,
14159 						&delay, LPFC_QUEUE_WORK);
14160 		break;
14161 	case LPFC_WCQ:
14162 		if (cq->subtype == LPFC_IO)
14163 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14164 						lpfc_sli4_fp_handle_cqe,
14165 						&delay, LPFC_QUEUE_WORK);
14166 		else
14167 			workposted |= __lpfc_sli4_process_cq(phba, cq,
14168 						lpfc_sli4_sp_handle_cqe,
14169 						&delay, LPFC_QUEUE_WORK);
14170 		break;
14171 	default:
14172 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14173 				"0370 Invalid completion queue type (%d)\n",
14174 				cq->type);
14175 		return;
14176 	}
14177 
14178 	if (delay) {
14179 		if (is_kdump_kernel())
14180 			ret = queue_delayed_work(phba->wq, &cq->sched_spwork,
14181 						delay);
14182 		else
14183 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14184 						&cq->sched_spwork, delay);
14185 		if (!ret)
14186 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14187 				"0394 Cannot schedule queue work "
14188 				"for cqid=%d on CPU %d\n",
14189 				cq->queue_id, cq->chann);
14190 	}
14191 
14192 	/* wake up worker thread if there are works to be done */
14193 	if (workposted)
14194 		lpfc_worker_wake_up(phba);
14195 }
14196 
14197 /**
14198  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
14199  *   interrupt
14200  * @work: pointer to work element
14201  *
14202  * translates from the work handler and calls the slow-path handler.
14203  **/
14204 static void
14205 lpfc_sli4_sp_process_cq(struct work_struct *work)
14206 {
14207 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
14208 
14209 	__lpfc_sli4_sp_process_cq(cq);
14210 }
14211 
14212 /**
14213  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
14214  * @work: pointer to work element
14215  *
14216  * translates from the work handler and calls the slow-path handler.
14217  **/
14218 static void
14219 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
14220 {
14221 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14222 					struct lpfc_queue, sched_spwork);
14223 
14224 	__lpfc_sli4_sp_process_cq(cq);
14225 }
14226 
14227 /**
14228  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
14229  * @phba: Pointer to HBA context object.
14230  * @cq: Pointer to associated CQ
14231  * @wcqe: Pointer to work-queue completion queue entry.
14232  *
14233  * This routine process a fast-path work queue completion entry from fast-path
14234  * event queue for FCP command response completion.
14235  **/
14236 static void
14237 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14238 			     struct lpfc_wcqe_complete *wcqe)
14239 {
14240 	struct lpfc_sli_ring *pring = cq->pring;
14241 	struct lpfc_iocbq *cmdiocbq;
14242 	struct lpfc_iocbq irspiocbq;
14243 	unsigned long iflags;
14244 
14245 	/* Check for response status */
14246 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
14247 		/* If resource errors reported from HBA, reduce queue
14248 		 * depth of the SCSI device.
14249 		 */
14250 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
14251 		     IOSTAT_LOCAL_REJECT)) &&
14252 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
14253 		     IOERR_NO_RESOURCES))
14254 			phba->lpfc_rampdown_queue_depth(phba);
14255 
14256 		/* Log the cmpl status */
14257 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
14258 				"0373 FCP CQE cmpl: status=x%x: "
14259 				"CQE: %08x %08x %08x %08x\n",
14260 				bf_get(lpfc_wcqe_c_status, wcqe),
14261 				wcqe->word0, wcqe->total_data_placed,
14262 				wcqe->parameter, wcqe->word3);
14263 	}
14264 
14265 	/* Look up the FCP command IOCB and create pseudo response IOCB */
14266 	spin_lock_irqsave(&pring->ring_lock, iflags);
14267 	pring->stats.iocb_event++;
14268 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
14269 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
14270 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14271 	if (unlikely(!cmdiocbq)) {
14272 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14273 				"0374 FCP complete with no corresponding "
14274 				"cmdiocb: iotag (%d)\n",
14275 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14276 		return;
14277 	}
14278 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
14279 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
14280 #endif
14281 	if (cmdiocbq->iocb_cmpl == NULL) {
14282 		if (cmdiocbq->wqe_cmpl) {
14283 			/* For FCP the flag is cleared in wqe_cmpl */
14284 			if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
14285 			    cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14286 				spin_lock_irqsave(&phba->hbalock, iflags);
14287 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14288 				spin_unlock_irqrestore(&phba->hbalock, iflags);
14289 			}
14290 
14291 			/* Pass the cmd_iocb and the wcqe to the upper layer */
14292 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
14293 			return;
14294 		}
14295 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14296 				"0375 FCP cmdiocb not callback function "
14297 				"iotag: (%d)\n",
14298 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
14299 		return;
14300 	}
14301 
14302 	/* Only SLI4 non-IO commands stil use IOCB */
14303 	/* Fake the irspiocb and copy necessary response information */
14304 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
14305 
14306 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
14307 		spin_lock_irqsave(&phba->hbalock, iflags);
14308 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
14309 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14310 	}
14311 
14312 	/* Pass the cmd_iocb and the rsp state to the upper layer */
14313 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
14314 }
14315 
14316 /**
14317  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
14318  * @phba: Pointer to HBA context object.
14319  * @cq: Pointer to completion queue.
14320  * @wcqe: Pointer to work-queue completion queue entry.
14321  *
14322  * This routine handles an fast-path WQ entry consumed event by invoking the
14323  * proper WQ release routine to the slow-path WQ.
14324  **/
14325 static void
14326 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14327 			     struct lpfc_wcqe_release *wcqe)
14328 {
14329 	struct lpfc_queue *childwq;
14330 	bool wqid_matched = false;
14331 	uint16_t hba_wqid;
14332 
14333 	/* Check for fast-path FCP work queue release */
14334 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14335 	list_for_each_entry(childwq, &cq->child_list, list) {
14336 		if (childwq->queue_id == hba_wqid) {
14337 			lpfc_sli4_wq_release(childwq,
14338 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14339 			if (childwq->q_flag & HBA_NVMET_WQFULL)
14340 				lpfc_nvmet_wqfull_process(phba, childwq);
14341 			wqid_matched = true;
14342 			break;
14343 		}
14344 	}
14345 	/* Report warning log message if no match found */
14346 	if (wqid_matched != true)
14347 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14348 				"2580 Fast-path wqe consume event carries "
14349 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14350 }
14351 
14352 /**
14353  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14354  * @phba: Pointer to HBA context object.
14355  * @cq: Pointer to completion queue.
14356  * @rcqe: Pointer to receive-queue completion queue entry.
14357  *
14358  * This routine process a receive-queue completion queue entry.
14359  *
14360  * Return: true if work posted to worker thread, otherwise false.
14361  **/
14362 static bool
14363 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14364 			    struct lpfc_rcqe *rcqe)
14365 {
14366 	bool workposted = false;
14367 	struct lpfc_queue *hrq;
14368 	struct lpfc_queue *drq;
14369 	struct rqb_dmabuf *dma_buf;
14370 	struct fc_frame_header *fc_hdr;
14371 	struct lpfc_nvmet_tgtport *tgtp;
14372 	uint32_t status, rq_id;
14373 	unsigned long iflags;
14374 	uint32_t fctl, idx;
14375 
14376 	if ((phba->nvmet_support == 0) ||
14377 	    (phba->sli4_hba.nvmet_cqset == NULL))
14378 		return workposted;
14379 
14380 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14381 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14382 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
14383 
14384 	/* sanity check on queue memory */
14385 	if (unlikely(!hrq) || unlikely(!drq))
14386 		return workposted;
14387 
14388 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14389 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14390 	else
14391 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14392 
14393 	if ((phba->nvmet_support == 0) ||
14394 	    (rq_id != hrq->queue_id))
14395 		return workposted;
14396 
14397 	status = bf_get(lpfc_rcqe_status, rcqe);
14398 	switch (status) {
14399 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14400 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14401 				"6126 Receive Frame Truncated!!\n");
14402 		fallthrough;
14403 	case FC_STATUS_RQ_SUCCESS:
14404 		spin_lock_irqsave(&phba->hbalock, iflags);
14405 		lpfc_sli4_rq_release(hrq, drq);
14406 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14407 		if (!dma_buf) {
14408 			hrq->RQ_no_buf_found++;
14409 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14410 			goto out;
14411 		}
14412 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14413 		hrq->RQ_rcv_buf++;
14414 		hrq->RQ_buf_posted--;
14415 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14416 
14417 		/* Just some basic sanity checks on FCP Command frame */
14418 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14419 			fc_hdr->fh_f_ctl[1] << 8 |
14420 			fc_hdr->fh_f_ctl[2]);
14421 		if (((fctl &
14422 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14423 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14424 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14425 			goto drop;
14426 
14427 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14428 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14429 			lpfc_nvmet_unsol_fcp_event(
14430 				phba, idx, dma_buf, cq->isr_timestamp,
14431 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14432 			return false;
14433 		}
14434 drop:
14435 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14436 		break;
14437 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14438 		if (phba->nvmet_support) {
14439 			tgtp = phba->targetport->private;
14440 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14441 					"6401 RQE Error x%x, posted %d err_cnt "
14442 					"%d: %x %x %x\n",
14443 					status, hrq->RQ_buf_posted,
14444 					hrq->RQ_no_posted_buf,
14445 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14446 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14447 					atomic_read(&tgtp->xmt_fcp_release));
14448 		}
14449 		fallthrough;
14450 
14451 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14452 		hrq->RQ_no_posted_buf++;
14453 		/* Post more buffers if possible */
14454 		break;
14455 	}
14456 out:
14457 	return workposted;
14458 }
14459 
14460 /**
14461  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14462  * @phba: adapter with cq
14463  * @cq: Pointer to the completion queue.
14464  * @cqe: Pointer to fast-path completion queue entry.
14465  *
14466  * This routine process a fast-path work queue completion entry from fast-path
14467  * event queue for FCP command response completion.
14468  *
14469  * Return: true if work posted to worker thread, otherwise false.
14470  **/
14471 static bool
14472 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14473 			 struct lpfc_cqe *cqe)
14474 {
14475 	struct lpfc_wcqe_release wcqe;
14476 	bool workposted = false;
14477 
14478 	/* Copy the work queue CQE and convert endian order if needed */
14479 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14480 
14481 	/* Check and process for different type of WCQE and dispatch */
14482 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14483 	case CQE_CODE_COMPL_WQE:
14484 	case CQE_CODE_NVME_ERSP:
14485 		cq->CQ_wq++;
14486 		/* Process the WQ complete event */
14487 		phba->last_completion_time = jiffies;
14488 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14489 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14490 				(struct lpfc_wcqe_complete *)&wcqe);
14491 		break;
14492 	case CQE_CODE_RELEASE_WQE:
14493 		cq->CQ_release_wqe++;
14494 		/* Process the WQ release event */
14495 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14496 				(struct lpfc_wcqe_release *)&wcqe);
14497 		break;
14498 	case CQE_CODE_XRI_ABORTED:
14499 		cq->CQ_xri_aborted++;
14500 		/* Process the WQ XRI abort event */
14501 		phba->last_completion_time = jiffies;
14502 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14503 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14504 		break;
14505 	case CQE_CODE_RECEIVE_V1:
14506 	case CQE_CODE_RECEIVE:
14507 		phba->last_completion_time = jiffies;
14508 		if (cq->subtype == LPFC_NVMET) {
14509 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14510 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14511 		}
14512 		break;
14513 	default:
14514 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14515 				"0144 Not a valid CQE code: x%x\n",
14516 				bf_get(lpfc_wcqe_c_code, &wcqe));
14517 		break;
14518 	}
14519 	return workposted;
14520 }
14521 
14522 /**
14523  * lpfc_sli4_sched_cq_work - Schedules cq work
14524  * @phba: Pointer to HBA context object.
14525  * @cq: Pointer to CQ
14526  * @cqid: CQ ID
14527  *
14528  * This routine checks the poll mode of the CQ corresponding to
14529  * cq->chann, then either schedules a softirq or queue_work to complete
14530  * cq work.
14531  *
14532  * queue_work path is taken if in NVMET mode, or if poll_mode is in
14533  * LPFC_QUEUE_WORK mode.  Otherwise, softirq path is taken.
14534  *
14535  **/
14536 static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba,
14537 				    struct lpfc_queue *cq, uint16_t cqid)
14538 {
14539 	int ret = 0;
14540 
14541 	switch (cq->poll_mode) {
14542 	case LPFC_IRQ_POLL:
14543 		irq_poll_sched(&cq->iop);
14544 		break;
14545 	case LPFC_QUEUE_WORK:
14546 	default:
14547 		if (is_kdump_kernel())
14548 			ret = queue_work(phba->wq, &cq->irqwork);
14549 		else
14550 			ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork);
14551 		if (!ret)
14552 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14553 					"0383 Cannot schedule queue work "
14554 					"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14555 					cqid, cq->queue_id,
14556 					raw_smp_processor_id());
14557 	}
14558 }
14559 
14560 /**
14561  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14562  * @phba: Pointer to HBA context object.
14563  * @eq: Pointer to the queue structure.
14564  * @eqe: Pointer to fast-path event queue entry.
14565  *
14566  * This routine process a event queue entry from the fast-path event queue.
14567  * It will check the MajorCode and MinorCode to determine this is for a
14568  * completion event on a completion queue, if not, an error shall be logged
14569  * and just return. Otherwise, it will get to the corresponding completion
14570  * queue and process all the entries on the completion queue, rearm the
14571  * completion queue, and then return.
14572  **/
14573 static void
14574 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14575 			 struct lpfc_eqe *eqe)
14576 {
14577 	struct lpfc_queue *cq = NULL;
14578 	uint32_t qidx = eq->hdwq;
14579 	uint16_t cqid, id;
14580 
14581 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14582 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14583 				"0366 Not a valid completion "
14584 				"event: majorcode=x%x, minorcode=x%x\n",
14585 				bf_get_le32(lpfc_eqe_major_code, eqe),
14586 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14587 		return;
14588 	}
14589 
14590 	/* Get the reference to the corresponding CQ */
14591 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14592 
14593 	/* Use the fast lookup method first */
14594 	if (cqid <= phba->sli4_hba.cq_max) {
14595 		cq = phba->sli4_hba.cq_lookup[cqid];
14596 		if (cq)
14597 			goto  work_cq;
14598 	}
14599 
14600 	/* Next check for NVMET completion */
14601 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14602 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14603 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14604 			/* Process NVMET unsol rcv */
14605 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14606 			goto  process_cq;
14607 		}
14608 	}
14609 
14610 	if (phba->sli4_hba.nvmels_cq &&
14611 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14612 		/* Process NVME unsol rcv */
14613 		cq = phba->sli4_hba.nvmels_cq;
14614 	}
14615 
14616 	/* Otherwise this is a Slow path event */
14617 	if (cq == NULL) {
14618 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14619 					phba->sli4_hba.hdwq[qidx].hba_eq);
14620 		return;
14621 	}
14622 
14623 process_cq:
14624 	if (unlikely(cqid != cq->queue_id)) {
14625 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14626 				"0368 Miss-matched fast-path completion "
14627 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14628 				cqid, cq->queue_id);
14629 		return;
14630 	}
14631 
14632 work_cq:
14633 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14634 	if (phba->ktime_on)
14635 		cq->isr_timestamp = ktime_get_ns();
14636 	else
14637 		cq->isr_timestamp = 0;
14638 #endif
14639 	lpfc_sli4_sched_cq_work(phba, cq, cqid);
14640 }
14641 
14642 /**
14643  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14644  * @cq: Pointer to CQ to be processed
14645  * @poll_mode: Enum lpfc_poll_state to determine poll mode
14646  *
14647  * This routine calls the cq processing routine with the handler for
14648  * fast path CQEs.
14649  *
14650  * The CQ routine returns two values: the first is the calling status,
14651  * which indicates whether work was queued to the  background discovery
14652  * thread. If true, the routine should wakeup the discovery thread;
14653  * the second is the delay parameter. If non-zero, rather than rearming
14654  * the CQ and yet another interrupt, the CQ handler should be queued so
14655  * that it is processed in a subsequent polling action. The value of
14656  * the delay indicates when to reschedule it.
14657  **/
14658 static void
14659 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq,
14660 			   enum lpfc_poll_mode poll_mode)
14661 {
14662 	struct lpfc_hba *phba = cq->phba;
14663 	unsigned long delay;
14664 	bool workposted = false;
14665 	int ret = 0;
14666 
14667 	/* process and rearm the CQ */
14668 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14669 					     &delay, poll_mode);
14670 
14671 	if (delay) {
14672 		if (is_kdump_kernel())
14673 			ret = queue_delayed_work(phba->wq, &cq->sched_irqwork,
14674 						delay);
14675 		else
14676 			ret = queue_delayed_work_on(cq->chann, phba->wq,
14677 						&cq->sched_irqwork, delay);
14678 		if (!ret)
14679 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
14680 					"0367 Cannot schedule queue work "
14681 					"for cqid=%d on CPU %d\n",
14682 					cq->queue_id, cq->chann);
14683 	}
14684 
14685 	/* wake up worker thread if there are works to be done */
14686 	if (workposted)
14687 		lpfc_worker_wake_up(phba);
14688 }
14689 
14690 /**
14691  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14692  *   interrupt
14693  * @work: pointer to work element
14694  *
14695  * translates from the work handler and calls the fast-path handler.
14696  **/
14697 static void
14698 lpfc_sli4_hba_process_cq(struct work_struct *work)
14699 {
14700 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14701 
14702 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14703 }
14704 
14705 /**
14706  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14707  * @work: pointer to work element
14708  *
14709  * translates from the work handler and calls the fast-path handler.
14710  **/
14711 static void
14712 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14713 {
14714 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14715 					struct lpfc_queue, sched_irqwork);
14716 
14717 	__lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK);
14718 }
14719 
14720 /**
14721  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14722  * @irq: Interrupt number.
14723  * @dev_id: The device context pointer.
14724  *
14725  * This function is directly called from the PCI layer as an interrupt
14726  * service routine when device with SLI-4 interface spec is enabled with
14727  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14728  * ring event in the HBA. However, when the device is enabled with either
14729  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14730  * device-level interrupt handler. When the PCI slot is in error recovery
14731  * or the HBA is undergoing initialization, the interrupt handler will not
14732  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14733  * the intrrupt context. This function is called without any lock held.
14734  * It gets the hbalock to access and update SLI data structures. Note that,
14735  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14736  * equal to that of FCP CQ index.
14737  *
14738  * The link attention and ELS ring attention events are handled
14739  * by the worker thread. The interrupt handler signals the worker thread
14740  * and returns for these events. This function is called without any lock
14741  * held. It gets the hbalock to access and update SLI data structures.
14742  *
14743  * This function returns IRQ_HANDLED when interrupt is handled else it
14744  * returns IRQ_NONE.
14745  **/
14746 irqreturn_t
14747 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14748 {
14749 	struct lpfc_hba *phba;
14750 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14751 	struct lpfc_queue *fpeq;
14752 	unsigned long iflag;
14753 	int ecount = 0;
14754 	int hba_eqidx;
14755 	struct lpfc_eq_intr_info *eqi;
14756 
14757 	/* Get the driver's phba structure from the dev_id */
14758 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14759 	phba = hba_eq_hdl->phba;
14760 	hba_eqidx = hba_eq_hdl->idx;
14761 
14762 	if (unlikely(!phba))
14763 		return IRQ_NONE;
14764 	if (unlikely(!phba->sli4_hba.hdwq))
14765 		return IRQ_NONE;
14766 
14767 	/* Get to the EQ struct associated with this vector */
14768 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14769 	if (unlikely(!fpeq))
14770 		return IRQ_NONE;
14771 
14772 	/* Check device state for handling interrupt */
14773 	if (unlikely(lpfc_intr_state_check(phba))) {
14774 		/* Check again for link_state with lock held */
14775 		spin_lock_irqsave(&phba->hbalock, iflag);
14776 		if (phba->link_state < LPFC_LINK_DOWN)
14777 			/* Flush, clear interrupt, and rearm the EQ */
14778 			lpfc_sli4_eqcq_flush(phba, fpeq);
14779 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14780 		return IRQ_NONE;
14781 	}
14782 
14783 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14784 	eqi->icnt++;
14785 
14786 	fpeq->last_cpu = raw_smp_processor_id();
14787 
14788 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14789 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14790 	    phba->cfg_auto_imax &&
14791 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14792 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14793 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14794 
14795 	/* process and rearm the EQ */
14796 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14797 
14798 	if (unlikely(ecount == 0)) {
14799 		fpeq->EQ_no_entry++;
14800 		if (phba->intr_type == MSIX)
14801 			/* MSI-X treated interrupt served as no EQ share INT */
14802 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14803 					"0358 MSI-X interrupt with no EQE\n");
14804 		else
14805 			/* Non MSI-X treated on interrupt as EQ share INT */
14806 			return IRQ_NONE;
14807 	}
14808 
14809 	return IRQ_HANDLED;
14810 } /* lpfc_sli4_fp_intr_handler */
14811 
14812 /**
14813  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14814  * @irq: Interrupt number.
14815  * @dev_id: The device context pointer.
14816  *
14817  * This function is the device-level interrupt handler to device with SLI-4
14818  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14819  * interrupt mode is enabled and there is an event in the HBA which requires
14820  * driver attention. This function invokes the slow-path interrupt attention
14821  * handling function and fast-path interrupt attention handling function in
14822  * turn to process the relevant HBA attention events. This function is called
14823  * without any lock held. It gets the hbalock to access and update SLI data
14824  * structures.
14825  *
14826  * This function returns IRQ_HANDLED when interrupt is handled, else it
14827  * returns IRQ_NONE.
14828  **/
14829 irqreturn_t
14830 lpfc_sli4_intr_handler(int irq, void *dev_id)
14831 {
14832 	struct lpfc_hba  *phba;
14833 	irqreturn_t hba_irq_rc;
14834 	bool hba_handled = false;
14835 	int qidx;
14836 
14837 	/* Get the driver's phba structure from the dev_id */
14838 	phba = (struct lpfc_hba *)dev_id;
14839 
14840 	if (unlikely(!phba))
14841 		return IRQ_NONE;
14842 
14843 	/*
14844 	 * Invoke fast-path host attention interrupt handling as appropriate.
14845 	 */
14846 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14847 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14848 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14849 		if (hba_irq_rc == IRQ_HANDLED)
14850 			hba_handled |= true;
14851 	}
14852 
14853 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14854 } /* lpfc_sli4_intr_handler */
14855 
14856 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14857 {
14858 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14859 	struct lpfc_queue *eq;
14860 	int i = 0;
14861 
14862 	rcu_read_lock();
14863 
14864 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14865 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14866 	if (!list_empty(&phba->poll_list))
14867 		mod_timer(&phba->cpuhp_poll_timer,
14868 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14869 
14870 	rcu_read_unlock();
14871 }
14872 
14873 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14874 {
14875 	struct lpfc_hba *phba = eq->phba;
14876 	int i = 0;
14877 
14878 	/*
14879 	 * Unlocking an irq is one of the entry point to check
14880 	 * for re-schedule, but we are good for io submission
14881 	 * path as midlayer does a get_cpu to glue us in. Flush
14882 	 * out the invalidate queue so we can see the updated
14883 	 * value for flag.
14884 	 */
14885 	smp_rmb();
14886 
14887 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14888 		/* We will not likely get the completion for the caller
14889 		 * during this iteration but i guess that's fine.
14890 		 * Future io's coming on this eq should be able to
14891 		 * pick it up.  As for the case of single io's, they
14892 		 * will be handled through a sched from polling timer
14893 		 * function which is currently triggered every 1msec.
14894 		 */
14895 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14896 
14897 	return i;
14898 }
14899 
14900 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14901 {
14902 	struct lpfc_hba *phba = eq->phba;
14903 
14904 	/* kickstart slowpath processing if needed */
14905 	if (list_empty(&phba->poll_list))
14906 		mod_timer(&phba->cpuhp_poll_timer,
14907 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14908 
14909 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14910 	synchronize_rcu();
14911 }
14912 
14913 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14914 {
14915 	struct lpfc_hba *phba = eq->phba;
14916 
14917 	/* Disable slowpath processing for this eq.  Kick start the eq
14918 	 * by RE-ARMING the eq's ASAP
14919 	 */
14920 	list_del_rcu(&eq->_poll_list);
14921 	synchronize_rcu();
14922 
14923 	if (list_empty(&phba->poll_list))
14924 		del_timer_sync(&phba->cpuhp_poll_timer);
14925 }
14926 
14927 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14928 {
14929 	struct lpfc_queue *eq, *next;
14930 
14931 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14932 		list_del(&eq->_poll_list);
14933 
14934 	INIT_LIST_HEAD(&phba->poll_list);
14935 	synchronize_rcu();
14936 }
14937 
14938 static inline void
14939 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14940 {
14941 	if (mode == eq->mode)
14942 		return;
14943 	/*
14944 	 * currently this function is only called during a hotplug
14945 	 * event and the cpu on which this function is executing
14946 	 * is going offline.  By now the hotplug has instructed
14947 	 * the scheduler to remove this cpu from cpu active mask.
14948 	 * So we don't need to work about being put aside by the
14949 	 * scheduler for a high priority process.  Yes, the inte-
14950 	 * rrupts could come but they are known to retire ASAP.
14951 	 */
14952 
14953 	/* Disable polling in the fastpath */
14954 	WRITE_ONCE(eq->mode, mode);
14955 	/* flush out the store buffer */
14956 	smp_wmb();
14957 
14958 	/*
14959 	 * Add this eq to the polling list and start polling. For
14960 	 * a grace period both interrupt handler and poller will
14961 	 * try to process the eq _but_ that's fine.  We have a
14962 	 * synchronization mechanism in place (queue_claimed) to
14963 	 * deal with it.  This is just a draining phase for int-
14964 	 * errupt handler (not eq's) as we have guranteed through
14965 	 * barrier that all the CPUs have seen the new CQ_POLLED
14966 	 * state. which will effectively disable the REARMING of
14967 	 * the EQ.  The whole idea is eq's die off eventually as
14968 	 * we are not rearming EQ's anymore.
14969 	 */
14970 	mode ? lpfc_sli4_add_to_poll_list(eq) :
14971 	       lpfc_sli4_remove_from_poll_list(eq);
14972 }
14973 
14974 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14975 {
14976 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14977 }
14978 
14979 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14980 {
14981 	struct lpfc_hba *phba = eq->phba;
14982 
14983 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14984 
14985 	/* Kick start for the pending io's in h/w.
14986 	 * Once we switch back to interrupt processing on a eq
14987 	 * the io path completion will only arm eq's when it
14988 	 * receives a completion.  But since eq's are in disa-
14989 	 * rmed state it doesn't receive a completion.  This
14990 	 * creates a deadlock scenaro.
14991 	 */
14992 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14993 }
14994 
14995 /**
14996  * lpfc_sli4_queue_free - free a queue structure and associated memory
14997  * @queue: The queue structure to free.
14998  *
14999  * This function frees a queue structure and the DMAable memory used for
15000  * the host resident queue. This function must be called after destroying the
15001  * queue on the HBA.
15002  **/
15003 void
15004 lpfc_sli4_queue_free(struct lpfc_queue *queue)
15005 {
15006 	struct lpfc_dmabuf *dmabuf;
15007 
15008 	if (!queue)
15009 		return;
15010 
15011 	if (!list_empty(&queue->wq_list))
15012 		list_del(&queue->wq_list);
15013 
15014 	while (!list_empty(&queue->page_list)) {
15015 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
15016 				 list);
15017 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
15018 				  dmabuf->virt, dmabuf->phys);
15019 		kfree(dmabuf);
15020 	}
15021 	if (queue->rqbp) {
15022 		lpfc_free_rq_buffer(queue->phba, queue);
15023 		kfree(queue->rqbp);
15024 	}
15025 
15026 	if (!list_empty(&queue->cpu_list))
15027 		list_del(&queue->cpu_list);
15028 
15029 	kfree(queue);
15030 	return;
15031 }
15032 
15033 /**
15034  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
15035  * @phba: The HBA that this queue is being created on.
15036  * @page_size: The size of a queue page
15037  * @entry_size: The size of each queue entry for this queue.
15038  * @entry_count: The number of entries that this queue will handle.
15039  * @cpu: The cpu that will primarily utilize this queue.
15040  *
15041  * This function allocates a queue structure and the DMAable memory used for
15042  * the host resident queue. This function must be called before creating the
15043  * queue on the HBA.
15044  **/
15045 struct lpfc_queue *
15046 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
15047 		      uint32_t entry_size, uint32_t entry_count, int cpu)
15048 {
15049 	struct lpfc_queue *queue;
15050 	struct lpfc_dmabuf *dmabuf;
15051 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15052 	uint16_t x, pgcnt;
15053 
15054 	if (!phba->sli4_hba.pc_sli4_params.supported)
15055 		hw_page_size = page_size;
15056 
15057 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
15058 
15059 	/* If needed, Adjust page count to match the max the adapter supports */
15060 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
15061 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
15062 
15063 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
15064 			     GFP_KERNEL, cpu_to_node(cpu));
15065 	if (!queue)
15066 		return NULL;
15067 
15068 	INIT_LIST_HEAD(&queue->list);
15069 	INIT_LIST_HEAD(&queue->_poll_list);
15070 	INIT_LIST_HEAD(&queue->wq_list);
15071 	INIT_LIST_HEAD(&queue->wqfull_list);
15072 	INIT_LIST_HEAD(&queue->page_list);
15073 	INIT_LIST_HEAD(&queue->child_list);
15074 	INIT_LIST_HEAD(&queue->cpu_list);
15075 
15076 	/* Set queue parameters now.  If the system cannot provide memory
15077 	 * resources, the free routine needs to know what was allocated.
15078 	 */
15079 	queue->page_count = pgcnt;
15080 	queue->q_pgs = (void **)&queue[1];
15081 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
15082 	queue->entry_size = entry_size;
15083 	queue->entry_count = entry_count;
15084 	queue->page_size = hw_page_size;
15085 	queue->phba = phba;
15086 
15087 	for (x = 0; x < queue->page_count; x++) {
15088 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
15089 				      dev_to_node(&phba->pcidev->dev));
15090 		if (!dmabuf)
15091 			goto out_fail;
15092 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
15093 						  hw_page_size, &dmabuf->phys,
15094 						  GFP_KERNEL);
15095 		if (!dmabuf->virt) {
15096 			kfree(dmabuf);
15097 			goto out_fail;
15098 		}
15099 		dmabuf->buffer_tag = x;
15100 		list_add_tail(&dmabuf->list, &queue->page_list);
15101 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
15102 		queue->q_pgs[x] = dmabuf->virt;
15103 	}
15104 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
15105 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
15106 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
15107 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
15108 
15109 	/* notify_interval will be set during q creation */
15110 
15111 	return queue;
15112 out_fail:
15113 	lpfc_sli4_queue_free(queue);
15114 	return NULL;
15115 }
15116 
15117 /**
15118  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
15119  * @phba: HBA structure that indicates port to create a queue on.
15120  * @pci_barset: PCI BAR set flag.
15121  *
15122  * This function shall perform iomap of the specified PCI BAR address to host
15123  * memory address if not already done so and return it. The returned host
15124  * memory address can be NULL.
15125  */
15126 static void __iomem *
15127 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
15128 {
15129 	if (!phba->pcidev)
15130 		return NULL;
15131 
15132 	switch (pci_barset) {
15133 	case WQ_PCI_BAR_0_AND_1:
15134 		return phba->pci_bar0_memmap_p;
15135 	case WQ_PCI_BAR_2_AND_3:
15136 		return phba->pci_bar2_memmap_p;
15137 	case WQ_PCI_BAR_4_AND_5:
15138 		return phba->pci_bar4_memmap_p;
15139 	default:
15140 		break;
15141 	}
15142 	return NULL;
15143 }
15144 
15145 /**
15146  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
15147  * @phba: HBA structure that EQs are on.
15148  * @startq: The starting EQ index to modify
15149  * @numq: The number of EQs (consecutive indexes) to modify
15150  * @usdelay: amount of delay
15151  *
15152  * This function revises the EQ delay on 1 or more EQs. The EQ delay
15153  * is set either by writing to a register (if supported by the SLI Port)
15154  * or by mailbox command. The mailbox command allows several EQs to be
15155  * updated at once.
15156  *
15157  * The @phba struct is used to send a mailbox command to HBA. The @startq
15158  * is used to get the starting EQ index to change. The @numq value is
15159  * used to specify how many consecutive EQ indexes, starting at EQ index,
15160  * are to be changed. This function is asynchronous and will wait for any
15161  * mailbox commands to finish before returning.
15162  *
15163  * On success this function will return a zero. If unable to allocate
15164  * enough memory this function will return -ENOMEM. If a mailbox command
15165  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
15166  * have had their delay multipler changed.
15167  **/
15168 void
15169 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
15170 			 uint32_t numq, uint32_t usdelay)
15171 {
15172 	struct lpfc_mbx_modify_eq_delay *eq_delay;
15173 	LPFC_MBOXQ_t *mbox;
15174 	struct lpfc_queue *eq;
15175 	int cnt = 0, rc, length;
15176 	uint32_t shdr_status, shdr_add_status;
15177 	uint32_t dmult;
15178 	int qidx;
15179 	union lpfc_sli4_cfg_shdr *shdr;
15180 
15181 	if (startq >= phba->cfg_irq_chann)
15182 		return;
15183 
15184 	if (usdelay > 0xFFFF) {
15185 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
15186 				"6429 usdelay %d too large. Scaled down to "
15187 				"0xFFFF.\n", usdelay);
15188 		usdelay = 0xFFFF;
15189 	}
15190 
15191 	/* set values by EQ_DELAY register if supported */
15192 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
15193 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15194 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15195 			if (!eq)
15196 				continue;
15197 
15198 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
15199 
15200 			if (++cnt >= numq)
15201 				break;
15202 		}
15203 		return;
15204 	}
15205 
15206 	/* Otherwise, set values by mailbox cmd */
15207 
15208 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15209 	if (!mbox) {
15210 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15211 				"6428 Failed allocating mailbox cmd buffer."
15212 				" EQ delay was not set.\n");
15213 		return;
15214 	}
15215 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
15216 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15217 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15218 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
15219 			 length, LPFC_SLI4_MBX_EMBED);
15220 	eq_delay = &mbox->u.mqe.un.eq_delay;
15221 
15222 	/* Calculate delay multiper from maximum interrupt per second */
15223 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
15224 	if (dmult)
15225 		dmult--;
15226 	if (dmult > LPFC_DMULT_MAX)
15227 		dmult = LPFC_DMULT_MAX;
15228 
15229 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
15230 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
15231 		if (!eq)
15232 			continue;
15233 		eq->q_mode = usdelay;
15234 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
15235 		eq_delay->u.request.eq[cnt].phase = 0;
15236 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
15237 
15238 		if (++cnt >= numq)
15239 			break;
15240 	}
15241 	eq_delay->u.request.num_eq = cnt;
15242 
15243 	mbox->vport = phba->pport;
15244 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15245 	mbox->ctx_buf = NULL;
15246 	mbox->ctx_ndlp = NULL;
15247 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15248 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
15249 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15250 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15251 	if (shdr_status || shdr_add_status || rc) {
15252 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15253 				"2512 MODIFY_EQ_DELAY mailbox failed with "
15254 				"status x%x add_status x%x, mbx status x%x\n",
15255 				shdr_status, shdr_add_status, rc);
15256 	}
15257 	mempool_free(mbox, phba->mbox_mem_pool);
15258 	return;
15259 }
15260 
15261 /**
15262  * lpfc_eq_create - Create an Event Queue on the HBA
15263  * @phba: HBA structure that indicates port to create a queue on.
15264  * @eq: The queue structure to use to create the event queue.
15265  * @imax: The maximum interrupt per second limit.
15266  *
15267  * This function creates an event queue, as detailed in @eq, on a port,
15268  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
15269  *
15270  * The @phba struct is used to send mailbox command to HBA. The @eq struct
15271  * is used to get the entry count and entry size that are necessary to
15272  * determine the number of pages to allocate and use for this queue. This
15273  * function will send the EQ_CREATE mailbox command to the HBA to setup the
15274  * event queue. This function is asynchronous and will wait for the mailbox
15275  * command to finish before continuing.
15276  *
15277  * On success this function will return a zero. If unable to allocate enough
15278  * memory this function will return -ENOMEM. If the queue create mailbox command
15279  * fails this function will return -ENXIO.
15280  **/
15281 int
15282 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
15283 {
15284 	struct lpfc_mbx_eq_create *eq_create;
15285 	LPFC_MBOXQ_t *mbox;
15286 	int rc, length, status = 0;
15287 	struct lpfc_dmabuf *dmabuf;
15288 	uint32_t shdr_status, shdr_add_status;
15289 	union lpfc_sli4_cfg_shdr *shdr;
15290 	uint16_t dmult;
15291 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15292 
15293 	/* sanity check on queue memory */
15294 	if (!eq)
15295 		return -ENODEV;
15296 	if (!phba->sli4_hba.pc_sli4_params.supported)
15297 		hw_page_size = SLI4_PAGE_SIZE;
15298 
15299 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15300 	if (!mbox)
15301 		return -ENOMEM;
15302 	length = (sizeof(struct lpfc_mbx_eq_create) -
15303 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15304 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15305 			 LPFC_MBOX_OPCODE_EQ_CREATE,
15306 			 length, LPFC_SLI4_MBX_EMBED);
15307 	eq_create = &mbox->u.mqe.un.eq_create;
15308 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
15309 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
15310 	       eq->page_count);
15311 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
15312 	       LPFC_EQE_SIZE);
15313 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
15314 
15315 	/* Use version 2 of CREATE_EQ if eqav is set */
15316 	if (phba->sli4_hba.pc_sli4_params.eqav) {
15317 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15318 		       LPFC_Q_CREATE_VERSION_2);
15319 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
15320 		       phba->sli4_hba.pc_sli4_params.eqav);
15321 	}
15322 
15323 	/* don't setup delay multiplier using EQ_CREATE */
15324 	dmult = 0;
15325 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
15326 	       dmult);
15327 	switch (eq->entry_count) {
15328 	default:
15329 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15330 				"0360 Unsupported EQ count. (%d)\n",
15331 				eq->entry_count);
15332 		if (eq->entry_count < 256) {
15333 			status = -EINVAL;
15334 			goto out;
15335 		}
15336 		fallthrough;	/* otherwise default to smallest count */
15337 	case 256:
15338 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15339 		       LPFC_EQ_CNT_256);
15340 		break;
15341 	case 512:
15342 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15343 		       LPFC_EQ_CNT_512);
15344 		break;
15345 	case 1024:
15346 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15347 		       LPFC_EQ_CNT_1024);
15348 		break;
15349 	case 2048:
15350 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15351 		       LPFC_EQ_CNT_2048);
15352 		break;
15353 	case 4096:
15354 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
15355 		       LPFC_EQ_CNT_4096);
15356 		break;
15357 	}
15358 	list_for_each_entry(dmabuf, &eq->page_list, list) {
15359 		memset(dmabuf->virt, 0, hw_page_size);
15360 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15361 					putPaddrLow(dmabuf->phys);
15362 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15363 					putPaddrHigh(dmabuf->phys);
15364 	}
15365 	mbox->vport = phba->pport;
15366 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15367 	mbox->ctx_buf = NULL;
15368 	mbox->ctx_ndlp = NULL;
15369 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15370 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15371 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15372 	if (shdr_status || shdr_add_status || rc) {
15373 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15374 				"2500 EQ_CREATE mailbox failed with "
15375 				"status x%x add_status x%x, mbx status x%x\n",
15376 				shdr_status, shdr_add_status, rc);
15377 		status = -ENXIO;
15378 	}
15379 	eq->type = LPFC_EQ;
15380 	eq->subtype = LPFC_NONE;
15381 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15382 	if (eq->queue_id == 0xFFFF)
15383 		status = -ENXIO;
15384 	eq->host_index = 0;
15385 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15386 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15387 out:
15388 	mempool_free(mbox, phba->mbox_mem_pool);
15389 	return status;
15390 }
15391 
15392 static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget)
15393 {
15394 	struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop);
15395 
15396 	__lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL);
15397 
15398 	return 1;
15399 }
15400 
15401 /**
15402  * lpfc_cq_create - Create a Completion Queue on the HBA
15403  * @phba: HBA structure that indicates port to create a queue on.
15404  * @cq: The queue structure to use to create the completion queue.
15405  * @eq: The event queue to bind this completion queue to.
15406  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15407  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15408  *
15409  * This function creates a completion queue, as detailed in @wq, on a port,
15410  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15411  *
15412  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15413  * is used to get the entry count and entry size that are necessary to
15414  * determine the number of pages to allocate and use for this queue. The @eq
15415  * is used to indicate which event queue to bind this completion queue to. This
15416  * function will send the CQ_CREATE mailbox command to the HBA to setup the
15417  * completion queue. This function is asynchronous and will wait for the mailbox
15418  * command to finish before continuing.
15419  *
15420  * On success this function will return a zero. If unable to allocate enough
15421  * memory this function will return -ENOMEM. If the queue create mailbox command
15422  * fails this function will return -ENXIO.
15423  **/
15424 int
15425 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15426 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15427 {
15428 	struct lpfc_mbx_cq_create *cq_create;
15429 	struct lpfc_dmabuf *dmabuf;
15430 	LPFC_MBOXQ_t *mbox;
15431 	int rc, length, status = 0;
15432 	uint32_t shdr_status, shdr_add_status;
15433 	union lpfc_sli4_cfg_shdr *shdr;
15434 
15435 	/* sanity check on queue memory */
15436 	if (!cq || !eq)
15437 		return -ENODEV;
15438 
15439 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15440 	if (!mbox)
15441 		return -ENOMEM;
15442 	length = (sizeof(struct lpfc_mbx_cq_create) -
15443 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15444 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15445 			 LPFC_MBOX_OPCODE_CQ_CREATE,
15446 			 length, LPFC_SLI4_MBX_EMBED);
15447 	cq_create = &mbox->u.mqe.un.cq_create;
15448 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15449 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15450 		    cq->page_count);
15451 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15452 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15453 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15454 	       phba->sli4_hba.pc_sli4_params.cqv);
15455 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15456 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15457 		       (cq->page_size / SLI4_PAGE_SIZE));
15458 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15459 		       eq->queue_id);
15460 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15461 		       phba->sli4_hba.pc_sli4_params.cqav);
15462 	} else {
15463 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15464 		       eq->queue_id);
15465 	}
15466 	switch (cq->entry_count) {
15467 	case 2048:
15468 	case 4096:
15469 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15470 		    LPFC_Q_CREATE_VERSION_2) {
15471 			cq_create->u.request.context.lpfc_cq_context_count =
15472 				cq->entry_count;
15473 			bf_set(lpfc_cq_context_count,
15474 			       &cq_create->u.request.context,
15475 			       LPFC_CQ_CNT_WORD7);
15476 			break;
15477 		}
15478 		fallthrough;
15479 	default:
15480 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15481 				"0361 Unsupported CQ count: "
15482 				"entry cnt %d sz %d pg cnt %d\n",
15483 				cq->entry_count, cq->entry_size,
15484 				cq->page_count);
15485 		if (cq->entry_count < 256) {
15486 			status = -EINVAL;
15487 			goto out;
15488 		}
15489 		fallthrough;	/* otherwise default to smallest count */
15490 	case 256:
15491 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15492 		       LPFC_CQ_CNT_256);
15493 		break;
15494 	case 512:
15495 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15496 		       LPFC_CQ_CNT_512);
15497 		break;
15498 	case 1024:
15499 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15500 		       LPFC_CQ_CNT_1024);
15501 		break;
15502 	}
15503 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15504 		memset(dmabuf->virt, 0, cq->page_size);
15505 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15506 					putPaddrLow(dmabuf->phys);
15507 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15508 					putPaddrHigh(dmabuf->phys);
15509 	}
15510 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15511 
15512 	/* The IOCTL status is embedded in the mailbox subheader. */
15513 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15514 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15515 	if (shdr_status || shdr_add_status || rc) {
15516 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15517 				"2501 CQ_CREATE mailbox failed with "
15518 				"status x%x add_status x%x, mbx status x%x\n",
15519 				shdr_status, shdr_add_status, rc);
15520 		status = -ENXIO;
15521 		goto out;
15522 	}
15523 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15524 	if (cq->queue_id == 0xFFFF) {
15525 		status = -ENXIO;
15526 		goto out;
15527 	}
15528 	/* link the cq onto the parent eq child list */
15529 	list_add_tail(&cq->list, &eq->child_list);
15530 	/* Set up completion queue's type and subtype */
15531 	cq->type = type;
15532 	cq->subtype = subtype;
15533 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15534 	cq->assoc_qid = eq->queue_id;
15535 	cq->assoc_qp = eq;
15536 	cq->host_index = 0;
15537 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15538 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15539 
15540 	if (cq->queue_id > phba->sli4_hba.cq_max)
15541 		phba->sli4_hba.cq_max = cq->queue_id;
15542 
15543 	irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler);
15544 out:
15545 	mempool_free(mbox, phba->mbox_mem_pool);
15546 	return status;
15547 }
15548 
15549 /**
15550  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15551  * @phba: HBA structure that indicates port to create a queue on.
15552  * @cqp: The queue structure array to use to create the completion queues.
15553  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15554  * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc).
15555  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
15556  *
15557  * This function creates a set of  completion queue, s to support MRQ
15558  * as detailed in @cqp, on a port,
15559  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15560  *
15561  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15562  * is used to get the entry count and entry size that are necessary to
15563  * determine the number of pages to allocate and use for this queue. The @eq
15564  * is used to indicate which event queue to bind this completion queue to. This
15565  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15566  * completion queue. This function is asynchronous and will wait for the mailbox
15567  * command to finish before continuing.
15568  *
15569  * On success this function will return a zero. If unable to allocate enough
15570  * memory this function will return -ENOMEM. If the queue create mailbox command
15571  * fails this function will return -ENXIO.
15572  **/
15573 int
15574 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15575 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15576 		   uint32_t subtype)
15577 {
15578 	struct lpfc_queue *cq;
15579 	struct lpfc_queue *eq;
15580 	struct lpfc_mbx_cq_create_set *cq_set;
15581 	struct lpfc_dmabuf *dmabuf;
15582 	LPFC_MBOXQ_t *mbox;
15583 	int rc, length, alloclen, status = 0;
15584 	int cnt, idx, numcq, page_idx = 0;
15585 	uint32_t shdr_status, shdr_add_status;
15586 	union lpfc_sli4_cfg_shdr *shdr;
15587 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15588 
15589 	/* sanity check on queue memory */
15590 	numcq = phba->cfg_nvmet_mrq;
15591 	if (!cqp || !hdwq || !numcq)
15592 		return -ENODEV;
15593 
15594 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15595 	if (!mbox)
15596 		return -ENOMEM;
15597 
15598 	length = sizeof(struct lpfc_mbx_cq_create_set);
15599 	length += ((numcq * cqp[0]->page_count) *
15600 		   sizeof(struct dma_address));
15601 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15602 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15603 			LPFC_SLI4_MBX_NEMBED);
15604 	if (alloclen < length) {
15605 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15606 				"3098 Allocated DMA memory size (%d) is "
15607 				"less than the requested DMA memory size "
15608 				"(%d)\n", alloclen, length);
15609 		status = -ENOMEM;
15610 		goto out;
15611 	}
15612 	cq_set = mbox->sge_array->addr[0];
15613 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15614 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15615 
15616 	for (idx = 0; idx < numcq; idx++) {
15617 		cq = cqp[idx];
15618 		eq = hdwq[idx].hba_eq;
15619 		if (!cq || !eq) {
15620 			status = -ENOMEM;
15621 			goto out;
15622 		}
15623 		if (!phba->sli4_hba.pc_sli4_params.supported)
15624 			hw_page_size = cq->page_size;
15625 
15626 		switch (idx) {
15627 		case 0:
15628 			bf_set(lpfc_mbx_cq_create_set_page_size,
15629 			       &cq_set->u.request,
15630 			       (hw_page_size / SLI4_PAGE_SIZE));
15631 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15632 			       &cq_set->u.request, cq->page_count);
15633 			bf_set(lpfc_mbx_cq_create_set_evt,
15634 			       &cq_set->u.request, 1);
15635 			bf_set(lpfc_mbx_cq_create_set_valid,
15636 			       &cq_set->u.request, 1);
15637 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15638 			       &cq_set->u.request, 0);
15639 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15640 			       &cq_set->u.request, numcq);
15641 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15642 			       &cq_set->u.request,
15643 			       phba->sli4_hba.pc_sli4_params.cqav);
15644 			switch (cq->entry_count) {
15645 			case 2048:
15646 			case 4096:
15647 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15648 				    LPFC_Q_CREATE_VERSION_2) {
15649 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15650 					       &cq_set->u.request,
15651 						cq->entry_count);
15652 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15653 					       &cq_set->u.request,
15654 					       LPFC_CQ_CNT_WORD7);
15655 					break;
15656 				}
15657 				fallthrough;
15658 			default:
15659 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15660 						"3118 Bad CQ count. (%d)\n",
15661 						cq->entry_count);
15662 				if (cq->entry_count < 256) {
15663 					status = -EINVAL;
15664 					goto out;
15665 				}
15666 				fallthrough;	/* otherwise default to smallest */
15667 			case 256:
15668 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15669 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15670 				break;
15671 			case 512:
15672 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15673 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15674 				break;
15675 			case 1024:
15676 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15677 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15678 				break;
15679 			}
15680 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15681 			       &cq_set->u.request, eq->queue_id);
15682 			break;
15683 		case 1:
15684 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15685 			       &cq_set->u.request, eq->queue_id);
15686 			break;
15687 		case 2:
15688 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15689 			       &cq_set->u.request, eq->queue_id);
15690 			break;
15691 		case 3:
15692 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15693 			       &cq_set->u.request, eq->queue_id);
15694 			break;
15695 		case 4:
15696 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15697 			       &cq_set->u.request, eq->queue_id);
15698 			break;
15699 		case 5:
15700 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15701 			       &cq_set->u.request, eq->queue_id);
15702 			break;
15703 		case 6:
15704 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15705 			       &cq_set->u.request, eq->queue_id);
15706 			break;
15707 		case 7:
15708 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15709 			       &cq_set->u.request, eq->queue_id);
15710 			break;
15711 		case 8:
15712 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15713 			       &cq_set->u.request, eq->queue_id);
15714 			break;
15715 		case 9:
15716 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15717 			       &cq_set->u.request, eq->queue_id);
15718 			break;
15719 		case 10:
15720 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15721 			       &cq_set->u.request, eq->queue_id);
15722 			break;
15723 		case 11:
15724 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15725 			       &cq_set->u.request, eq->queue_id);
15726 			break;
15727 		case 12:
15728 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15729 			       &cq_set->u.request, eq->queue_id);
15730 			break;
15731 		case 13:
15732 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15733 			       &cq_set->u.request, eq->queue_id);
15734 			break;
15735 		case 14:
15736 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15737 			       &cq_set->u.request, eq->queue_id);
15738 			break;
15739 		case 15:
15740 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15741 			       &cq_set->u.request, eq->queue_id);
15742 			break;
15743 		}
15744 
15745 		/* link the cq onto the parent eq child list */
15746 		list_add_tail(&cq->list, &eq->child_list);
15747 		/* Set up completion queue's type and subtype */
15748 		cq->type = type;
15749 		cq->subtype = subtype;
15750 		cq->assoc_qid = eq->queue_id;
15751 		cq->assoc_qp = eq;
15752 		cq->host_index = 0;
15753 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15754 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15755 					 cq->entry_count);
15756 		cq->chann = idx;
15757 
15758 		rc = 0;
15759 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15760 			memset(dmabuf->virt, 0, hw_page_size);
15761 			cnt = page_idx + dmabuf->buffer_tag;
15762 			cq_set->u.request.page[cnt].addr_lo =
15763 					putPaddrLow(dmabuf->phys);
15764 			cq_set->u.request.page[cnt].addr_hi =
15765 					putPaddrHigh(dmabuf->phys);
15766 			rc++;
15767 		}
15768 		page_idx += rc;
15769 	}
15770 
15771 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15772 
15773 	/* The IOCTL status is embedded in the mailbox subheader. */
15774 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15775 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15776 	if (shdr_status || shdr_add_status || rc) {
15777 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15778 				"3119 CQ_CREATE_SET mailbox failed with "
15779 				"status x%x add_status x%x, mbx status x%x\n",
15780 				shdr_status, shdr_add_status, rc);
15781 		status = -ENXIO;
15782 		goto out;
15783 	}
15784 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15785 	if (rc == 0xFFFF) {
15786 		status = -ENXIO;
15787 		goto out;
15788 	}
15789 
15790 	for (idx = 0; idx < numcq; idx++) {
15791 		cq = cqp[idx];
15792 		cq->queue_id = rc + idx;
15793 		if (cq->queue_id > phba->sli4_hba.cq_max)
15794 			phba->sli4_hba.cq_max = cq->queue_id;
15795 	}
15796 
15797 out:
15798 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15799 	return status;
15800 }
15801 
15802 /**
15803  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15804  * @phba: HBA structure that indicates port to create a queue on.
15805  * @mq: The queue structure to use to create the mailbox queue.
15806  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15807  * @cq: The completion queue to associate with this cq.
15808  *
15809  * This function provides failback (fb) functionality when the
15810  * mq_create_ext fails on older FW generations.  It's purpose is identical
15811  * to mq_create_ext otherwise.
15812  *
15813  * This routine cannot fail as all attributes were previously accessed and
15814  * initialized in mq_create_ext.
15815  **/
15816 static void
15817 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15818 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15819 {
15820 	struct lpfc_mbx_mq_create *mq_create;
15821 	struct lpfc_dmabuf *dmabuf;
15822 	int length;
15823 
15824 	length = (sizeof(struct lpfc_mbx_mq_create) -
15825 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15826 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15827 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15828 			 length, LPFC_SLI4_MBX_EMBED);
15829 	mq_create = &mbox->u.mqe.un.mq_create;
15830 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15831 	       mq->page_count);
15832 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15833 	       cq->queue_id);
15834 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15835 	switch (mq->entry_count) {
15836 	case 16:
15837 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15838 		       LPFC_MQ_RING_SIZE_16);
15839 		break;
15840 	case 32:
15841 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15842 		       LPFC_MQ_RING_SIZE_32);
15843 		break;
15844 	case 64:
15845 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15846 		       LPFC_MQ_RING_SIZE_64);
15847 		break;
15848 	case 128:
15849 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15850 		       LPFC_MQ_RING_SIZE_128);
15851 		break;
15852 	}
15853 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15854 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15855 			putPaddrLow(dmabuf->phys);
15856 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15857 			putPaddrHigh(dmabuf->phys);
15858 	}
15859 }
15860 
15861 /**
15862  * lpfc_mq_create - Create a mailbox Queue on the HBA
15863  * @phba: HBA structure that indicates port to create a queue on.
15864  * @mq: The queue structure to use to create the mailbox queue.
15865  * @cq: The completion queue to associate with this cq.
15866  * @subtype: The queue's subtype.
15867  *
15868  * This function creates a mailbox queue, as detailed in @mq, on a port,
15869  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15870  *
15871  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15872  * is used to get the entry count and entry size that are necessary to
15873  * determine the number of pages to allocate and use for this queue. This
15874  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15875  * mailbox queue. This function is asynchronous and will wait for the mailbox
15876  * command to finish before continuing.
15877  *
15878  * On success this function will return a zero. If unable to allocate enough
15879  * memory this function will return -ENOMEM. If the queue create mailbox command
15880  * fails this function will return -ENXIO.
15881  **/
15882 int32_t
15883 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15884 	       struct lpfc_queue *cq, uint32_t subtype)
15885 {
15886 	struct lpfc_mbx_mq_create *mq_create;
15887 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15888 	struct lpfc_dmabuf *dmabuf;
15889 	LPFC_MBOXQ_t *mbox;
15890 	int rc, length, status = 0;
15891 	uint32_t shdr_status, shdr_add_status;
15892 	union lpfc_sli4_cfg_shdr *shdr;
15893 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15894 
15895 	/* sanity check on queue memory */
15896 	if (!mq || !cq)
15897 		return -ENODEV;
15898 	if (!phba->sli4_hba.pc_sli4_params.supported)
15899 		hw_page_size = SLI4_PAGE_SIZE;
15900 
15901 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15902 	if (!mbox)
15903 		return -ENOMEM;
15904 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15905 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15906 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15907 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15908 			 length, LPFC_SLI4_MBX_EMBED);
15909 
15910 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15911 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15912 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15913 	       &mq_create_ext->u.request, mq->page_count);
15914 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15915 	       &mq_create_ext->u.request, 1);
15916 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15917 	       &mq_create_ext->u.request, 1);
15918 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15919 	       &mq_create_ext->u.request, 1);
15920 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15921 	       &mq_create_ext->u.request, 1);
15922 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15923 	       &mq_create_ext->u.request, 1);
15924 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15925 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15926 	       phba->sli4_hba.pc_sli4_params.mqv);
15927 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15928 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15929 		       cq->queue_id);
15930 	else
15931 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15932 		       cq->queue_id);
15933 	switch (mq->entry_count) {
15934 	default:
15935 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15936 				"0362 Unsupported MQ count. (%d)\n",
15937 				mq->entry_count);
15938 		if (mq->entry_count < 16) {
15939 			status = -EINVAL;
15940 			goto out;
15941 		}
15942 		fallthrough;	/* otherwise default to smallest count */
15943 	case 16:
15944 		bf_set(lpfc_mq_context_ring_size,
15945 		       &mq_create_ext->u.request.context,
15946 		       LPFC_MQ_RING_SIZE_16);
15947 		break;
15948 	case 32:
15949 		bf_set(lpfc_mq_context_ring_size,
15950 		       &mq_create_ext->u.request.context,
15951 		       LPFC_MQ_RING_SIZE_32);
15952 		break;
15953 	case 64:
15954 		bf_set(lpfc_mq_context_ring_size,
15955 		       &mq_create_ext->u.request.context,
15956 		       LPFC_MQ_RING_SIZE_64);
15957 		break;
15958 	case 128:
15959 		bf_set(lpfc_mq_context_ring_size,
15960 		       &mq_create_ext->u.request.context,
15961 		       LPFC_MQ_RING_SIZE_128);
15962 		break;
15963 	}
15964 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15965 		memset(dmabuf->virt, 0, hw_page_size);
15966 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15967 					putPaddrLow(dmabuf->phys);
15968 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15969 					putPaddrHigh(dmabuf->phys);
15970 	}
15971 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15972 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15973 			      &mq_create_ext->u.response);
15974 	if (rc != MBX_SUCCESS) {
15975 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15976 				"2795 MQ_CREATE_EXT failed with "
15977 				"status x%x. Failback to MQ_CREATE.\n",
15978 				rc);
15979 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15980 		mq_create = &mbox->u.mqe.un.mq_create;
15981 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15982 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15983 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15984 				      &mq_create->u.response);
15985 	}
15986 
15987 	/* The IOCTL status is embedded in the mailbox subheader. */
15988 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15989 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15990 	if (shdr_status || shdr_add_status || rc) {
15991 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
15992 				"2502 MQ_CREATE mailbox failed with "
15993 				"status x%x add_status x%x, mbx status x%x\n",
15994 				shdr_status, shdr_add_status, rc);
15995 		status = -ENXIO;
15996 		goto out;
15997 	}
15998 	if (mq->queue_id == 0xFFFF) {
15999 		status = -ENXIO;
16000 		goto out;
16001 	}
16002 	mq->type = LPFC_MQ;
16003 	mq->assoc_qid = cq->queue_id;
16004 	mq->subtype = subtype;
16005 	mq->host_index = 0;
16006 	mq->hba_index = 0;
16007 
16008 	/* link the mq onto the parent cq child list */
16009 	list_add_tail(&mq->list, &cq->child_list);
16010 out:
16011 	mempool_free(mbox, phba->mbox_mem_pool);
16012 	return status;
16013 }
16014 
16015 /**
16016  * lpfc_wq_create - Create a Work Queue on the HBA
16017  * @phba: HBA structure that indicates port to create a queue on.
16018  * @wq: The queue structure to use to create the work queue.
16019  * @cq: The completion queue to bind this work queue to.
16020  * @subtype: The subtype of the work queue indicating its functionality.
16021  *
16022  * This function creates a work queue, as detailed in @wq, on a port, described
16023  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
16024  *
16025  * The @phba struct is used to send mailbox command to HBA. The @wq struct
16026  * is used to get the entry count and entry size that are necessary to
16027  * determine the number of pages to allocate and use for this queue. The @cq
16028  * is used to indicate which completion queue to bind this work queue to. This
16029  * function will send the WQ_CREATE mailbox command to the HBA to setup the
16030  * work queue. This function is asynchronous and will wait for the mailbox
16031  * command to finish before continuing.
16032  *
16033  * On success this function will return a zero. If unable to allocate enough
16034  * memory this function will return -ENOMEM. If the queue create mailbox command
16035  * fails this function will return -ENXIO.
16036  **/
16037 int
16038 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
16039 	       struct lpfc_queue *cq, uint32_t subtype)
16040 {
16041 	struct lpfc_mbx_wq_create *wq_create;
16042 	struct lpfc_dmabuf *dmabuf;
16043 	LPFC_MBOXQ_t *mbox;
16044 	int rc, length, status = 0;
16045 	uint32_t shdr_status, shdr_add_status;
16046 	union lpfc_sli4_cfg_shdr *shdr;
16047 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16048 	struct dma_address *page;
16049 	void __iomem *bar_memmap_p;
16050 	uint32_t db_offset;
16051 	uint16_t pci_barset;
16052 	uint8_t dpp_barset;
16053 	uint32_t dpp_offset;
16054 	uint8_t wq_create_version;
16055 #ifdef CONFIG_X86
16056 	unsigned long pg_addr;
16057 #endif
16058 
16059 	/* sanity check on queue memory */
16060 	if (!wq || !cq)
16061 		return -ENODEV;
16062 	if (!phba->sli4_hba.pc_sli4_params.supported)
16063 		hw_page_size = wq->page_size;
16064 
16065 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16066 	if (!mbox)
16067 		return -ENOMEM;
16068 	length = (sizeof(struct lpfc_mbx_wq_create) -
16069 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16070 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16071 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
16072 			 length, LPFC_SLI4_MBX_EMBED);
16073 	wq_create = &mbox->u.mqe.un.wq_create;
16074 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
16075 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
16076 		    wq->page_count);
16077 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
16078 		    cq->queue_id);
16079 
16080 	/* wqv is the earliest version supported, NOT the latest */
16081 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16082 	       phba->sli4_hba.pc_sli4_params.wqv);
16083 
16084 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
16085 	    (wq->page_size > SLI4_PAGE_SIZE))
16086 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
16087 	else
16088 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
16089 
16090 	switch (wq_create_version) {
16091 	case LPFC_Q_CREATE_VERSION_1:
16092 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
16093 		       wq->entry_count);
16094 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
16095 		       LPFC_Q_CREATE_VERSION_1);
16096 
16097 		switch (wq->entry_size) {
16098 		default:
16099 		case 64:
16100 			bf_set(lpfc_mbx_wq_create_wqe_size,
16101 			       &wq_create->u.request_1,
16102 			       LPFC_WQ_WQE_SIZE_64);
16103 			break;
16104 		case 128:
16105 			bf_set(lpfc_mbx_wq_create_wqe_size,
16106 			       &wq_create->u.request_1,
16107 			       LPFC_WQ_WQE_SIZE_128);
16108 			break;
16109 		}
16110 		/* Request DPP by default */
16111 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
16112 		bf_set(lpfc_mbx_wq_create_page_size,
16113 		       &wq_create->u.request_1,
16114 		       (wq->page_size / SLI4_PAGE_SIZE));
16115 		page = wq_create->u.request_1.page;
16116 		break;
16117 	default:
16118 		page = wq_create->u.request.page;
16119 		break;
16120 	}
16121 
16122 	list_for_each_entry(dmabuf, &wq->page_list, list) {
16123 		memset(dmabuf->virt, 0, hw_page_size);
16124 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
16125 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
16126 	}
16127 
16128 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16129 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
16130 
16131 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16132 	/* The IOCTL status is embedded in the mailbox subheader. */
16133 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16134 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16135 	if (shdr_status || shdr_add_status || rc) {
16136 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16137 				"2503 WQ_CREATE mailbox failed with "
16138 				"status x%x add_status x%x, mbx status x%x\n",
16139 				shdr_status, shdr_add_status, rc);
16140 		status = -ENXIO;
16141 		goto out;
16142 	}
16143 
16144 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
16145 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
16146 					&wq_create->u.response);
16147 	else
16148 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
16149 					&wq_create->u.response_1);
16150 
16151 	if (wq->queue_id == 0xFFFF) {
16152 		status = -ENXIO;
16153 		goto out;
16154 	}
16155 
16156 	wq->db_format = LPFC_DB_LIST_FORMAT;
16157 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
16158 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16159 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
16160 					       &wq_create->u.response);
16161 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
16162 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
16163 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16164 						"3265 WQ[%d] doorbell format "
16165 						"not supported: x%x\n",
16166 						wq->queue_id, wq->db_format);
16167 				status = -EINVAL;
16168 				goto out;
16169 			}
16170 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
16171 					    &wq_create->u.response);
16172 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16173 								   pci_barset);
16174 			if (!bar_memmap_p) {
16175 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16176 						"3263 WQ[%d] failed to memmap "
16177 						"pci barset:x%x\n",
16178 						wq->queue_id, pci_barset);
16179 				status = -ENOMEM;
16180 				goto out;
16181 			}
16182 			db_offset = wq_create->u.response.doorbell_offset;
16183 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
16184 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
16185 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16186 						"3252 WQ[%d] doorbell offset "
16187 						"not supported: x%x\n",
16188 						wq->queue_id, db_offset);
16189 				status = -EINVAL;
16190 				goto out;
16191 			}
16192 			wq->db_regaddr = bar_memmap_p + db_offset;
16193 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16194 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
16195 					"format:x%x\n", wq->queue_id,
16196 					pci_barset, db_offset, wq->db_format);
16197 		} else
16198 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16199 	} else {
16200 		/* Check if DPP was honored by the firmware */
16201 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
16202 				    &wq_create->u.response_1);
16203 		if (wq->dpp_enable) {
16204 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
16205 					    &wq_create->u.response_1);
16206 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16207 								   pci_barset);
16208 			if (!bar_memmap_p) {
16209 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16210 						"3267 WQ[%d] failed to memmap "
16211 						"pci barset:x%x\n",
16212 						wq->queue_id, pci_barset);
16213 				status = -ENOMEM;
16214 				goto out;
16215 			}
16216 			db_offset = wq_create->u.response_1.doorbell_offset;
16217 			wq->db_regaddr = bar_memmap_p + db_offset;
16218 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
16219 					    &wq_create->u.response_1);
16220 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
16221 					    &wq_create->u.response_1);
16222 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
16223 								   dpp_barset);
16224 			if (!bar_memmap_p) {
16225 				lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16226 						"3268 WQ[%d] failed to memmap "
16227 						"pci barset:x%x\n",
16228 						wq->queue_id, dpp_barset);
16229 				status = -ENOMEM;
16230 				goto out;
16231 			}
16232 			dpp_offset = wq_create->u.response_1.dpp_offset;
16233 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
16234 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16235 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
16236 					"dpp_id:x%x dpp_barset:x%x "
16237 					"dpp_offset:x%x\n",
16238 					wq->queue_id, pci_barset, db_offset,
16239 					wq->dpp_id, dpp_barset, dpp_offset);
16240 
16241 #ifdef CONFIG_X86
16242 			/* Enable combined writes for DPP aperture */
16243 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
16244 			rc = set_memory_wc(pg_addr, 1);
16245 			if (rc) {
16246 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16247 					"3272 Cannot setup Combined "
16248 					"Write on WQ[%d] - disable DPP\n",
16249 					wq->queue_id);
16250 				phba->cfg_enable_dpp = 0;
16251 			}
16252 #else
16253 			phba->cfg_enable_dpp = 0;
16254 #endif
16255 		} else
16256 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
16257 	}
16258 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
16259 	if (wq->pring == NULL) {
16260 		status = -ENOMEM;
16261 		goto out;
16262 	}
16263 	wq->type = LPFC_WQ;
16264 	wq->assoc_qid = cq->queue_id;
16265 	wq->subtype = subtype;
16266 	wq->host_index = 0;
16267 	wq->hba_index = 0;
16268 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
16269 
16270 	/* link the wq onto the parent cq child list */
16271 	list_add_tail(&wq->list, &cq->child_list);
16272 out:
16273 	mempool_free(mbox, phba->mbox_mem_pool);
16274 	return status;
16275 }
16276 
16277 /**
16278  * lpfc_rq_create - Create a Receive Queue on the HBA
16279  * @phba: HBA structure that indicates port to create a queue on.
16280  * @hrq: The queue structure to use to create the header receive queue.
16281  * @drq: The queue structure to use to create the data receive queue.
16282  * @cq: The completion queue to bind this work queue to.
16283  * @subtype: The subtype of the work queue indicating its functionality.
16284  *
16285  * This function creates a receive buffer queue pair , as detailed in @hrq and
16286  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16287  * to the HBA.
16288  *
16289  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16290  * struct is used to get the entry count that is necessary to determine the
16291  * number of pages to use for this queue. The @cq is used to indicate which
16292  * completion queue to bind received buffers that are posted to these queues to.
16293  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16294  * receive queue pair. This function is asynchronous and will wait for the
16295  * mailbox command to finish before continuing.
16296  *
16297  * On success this function will return a zero. If unable to allocate enough
16298  * memory this function will return -ENOMEM. If the queue create mailbox command
16299  * fails this function will return -ENXIO.
16300  **/
16301 int
16302 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16303 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
16304 {
16305 	struct lpfc_mbx_rq_create *rq_create;
16306 	struct lpfc_dmabuf *dmabuf;
16307 	LPFC_MBOXQ_t *mbox;
16308 	int rc, length, status = 0;
16309 	uint32_t shdr_status, shdr_add_status;
16310 	union lpfc_sli4_cfg_shdr *shdr;
16311 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16312 	void __iomem *bar_memmap_p;
16313 	uint32_t db_offset;
16314 	uint16_t pci_barset;
16315 
16316 	/* sanity check on queue memory */
16317 	if (!hrq || !drq || !cq)
16318 		return -ENODEV;
16319 	if (!phba->sli4_hba.pc_sli4_params.supported)
16320 		hw_page_size = SLI4_PAGE_SIZE;
16321 
16322 	if (hrq->entry_count != drq->entry_count)
16323 		return -EINVAL;
16324 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16325 	if (!mbox)
16326 		return -ENOMEM;
16327 	length = (sizeof(struct lpfc_mbx_rq_create) -
16328 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16329 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16330 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16331 			 length, LPFC_SLI4_MBX_EMBED);
16332 	rq_create = &mbox->u.mqe.un.rq_create;
16333 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16334 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16335 	       phba->sli4_hba.pc_sli4_params.rqv);
16336 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16337 		bf_set(lpfc_rq_context_rqe_count_1,
16338 		       &rq_create->u.request.context,
16339 		       hrq->entry_count);
16340 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
16341 		bf_set(lpfc_rq_context_rqe_size,
16342 		       &rq_create->u.request.context,
16343 		       LPFC_RQE_SIZE_8);
16344 		bf_set(lpfc_rq_context_page_size,
16345 		       &rq_create->u.request.context,
16346 		       LPFC_RQ_PAGE_SIZE_4096);
16347 	} else {
16348 		switch (hrq->entry_count) {
16349 		default:
16350 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16351 					"2535 Unsupported RQ count. (%d)\n",
16352 					hrq->entry_count);
16353 			if (hrq->entry_count < 512) {
16354 				status = -EINVAL;
16355 				goto out;
16356 			}
16357 			fallthrough;	/* otherwise default to smallest count */
16358 		case 512:
16359 			bf_set(lpfc_rq_context_rqe_count,
16360 			       &rq_create->u.request.context,
16361 			       LPFC_RQ_RING_SIZE_512);
16362 			break;
16363 		case 1024:
16364 			bf_set(lpfc_rq_context_rqe_count,
16365 			       &rq_create->u.request.context,
16366 			       LPFC_RQ_RING_SIZE_1024);
16367 			break;
16368 		case 2048:
16369 			bf_set(lpfc_rq_context_rqe_count,
16370 			       &rq_create->u.request.context,
16371 			       LPFC_RQ_RING_SIZE_2048);
16372 			break;
16373 		case 4096:
16374 			bf_set(lpfc_rq_context_rqe_count,
16375 			       &rq_create->u.request.context,
16376 			       LPFC_RQ_RING_SIZE_4096);
16377 			break;
16378 		}
16379 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16380 		       LPFC_HDR_BUF_SIZE);
16381 	}
16382 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16383 	       cq->queue_id);
16384 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16385 	       hrq->page_count);
16386 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
16387 		memset(dmabuf->virt, 0, hw_page_size);
16388 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16389 					putPaddrLow(dmabuf->phys);
16390 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16391 					putPaddrHigh(dmabuf->phys);
16392 	}
16393 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16394 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16395 
16396 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16397 	/* The IOCTL status is embedded in the mailbox subheader. */
16398 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16399 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16400 	if (shdr_status || shdr_add_status || rc) {
16401 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16402 				"2504 RQ_CREATE mailbox failed with "
16403 				"status x%x add_status x%x, mbx status x%x\n",
16404 				shdr_status, shdr_add_status, rc);
16405 		status = -ENXIO;
16406 		goto out;
16407 	}
16408 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16409 	if (hrq->queue_id == 0xFFFF) {
16410 		status = -ENXIO;
16411 		goto out;
16412 	}
16413 
16414 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16415 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16416 					&rq_create->u.response);
16417 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16418 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16419 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16420 					"3262 RQ [%d] doorbell format not "
16421 					"supported: x%x\n", hrq->queue_id,
16422 					hrq->db_format);
16423 			status = -EINVAL;
16424 			goto out;
16425 		}
16426 
16427 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16428 				    &rq_create->u.response);
16429 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16430 		if (!bar_memmap_p) {
16431 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16432 					"3269 RQ[%d] failed to memmap pci "
16433 					"barset:x%x\n", hrq->queue_id,
16434 					pci_barset);
16435 			status = -ENOMEM;
16436 			goto out;
16437 		}
16438 
16439 		db_offset = rq_create->u.response.doorbell_offset;
16440 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16441 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16442 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16443 					"3270 RQ[%d] doorbell offset not "
16444 					"supported: x%x\n", hrq->queue_id,
16445 					db_offset);
16446 			status = -EINVAL;
16447 			goto out;
16448 		}
16449 		hrq->db_regaddr = bar_memmap_p + db_offset;
16450 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16451 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16452 				"format:x%x\n", hrq->queue_id, pci_barset,
16453 				db_offset, hrq->db_format);
16454 	} else {
16455 		hrq->db_format = LPFC_DB_RING_FORMAT;
16456 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16457 	}
16458 	hrq->type = LPFC_HRQ;
16459 	hrq->assoc_qid = cq->queue_id;
16460 	hrq->subtype = subtype;
16461 	hrq->host_index = 0;
16462 	hrq->hba_index = 0;
16463 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16464 
16465 	/* now create the data queue */
16466 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16467 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16468 			 length, LPFC_SLI4_MBX_EMBED);
16469 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16470 	       phba->sli4_hba.pc_sli4_params.rqv);
16471 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16472 		bf_set(lpfc_rq_context_rqe_count_1,
16473 		       &rq_create->u.request.context, hrq->entry_count);
16474 		if (subtype == LPFC_NVMET)
16475 			rq_create->u.request.context.buffer_size =
16476 				LPFC_NVMET_DATA_BUF_SIZE;
16477 		else
16478 			rq_create->u.request.context.buffer_size =
16479 				LPFC_DATA_BUF_SIZE;
16480 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16481 		       LPFC_RQE_SIZE_8);
16482 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16483 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16484 	} else {
16485 		switch (drq->entry_count) {
16486 		default:
16487 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16488 					"2536 Unsupported RQ count. (%d)\n",
16489 					drq->entry_count);
16490 			if (drq->entry_count < 512) {
16491 				status = -EINVAL;
16492 				goto out;
16493 			}
16494 			fallthrough;	/* otherwise default to smallest count */
16495 		case 512:
16496 			bf_set(lpfc_rq_context_rqe_count,
16497 			       &rq_create->u.request.context,
16498 			       LPFC_RQ_RING_SIZE_512);
16499 			break;
16500 		case 1024:
16501 			bf_set(lpfc_rq_context_rqe_count,
16502 			       &rq_create->u.request.context,
16503 			       LPFC_RQ_RING_SIZE_1024);
16504 			break;
16505 		case 2048:
16506 			bf_set(lpfc_rq_context_rqe_count,
16507 			       &rq_create->u.request.context,
16508 			       LPFC_RQ_RING_SIZE_2048);
16509 			break;
16510 		case 4096:
16511 			bf_set(lpfc_rq_context_rqe_count,
16512 			       &rq_create->u.request.context,
16513 			       LPFC_RQ_RING_SIZE_4096);
16514 			break;
16515 		}
16516 		if (subtype == LPFC_NVMET)
16517 			bf_set(lpfc_rq_context_buf_size,
16518 			       &rq_create->u.request.context,
16519 			       LPFC_NVMET_DATA_BUF_SIZE);
16520 		else
16521 			bf_set(lpfc_rq_context_buf_size,
16522 			       &rq_create->u.request.context,
16523 			       LPFC_DATA_BUF_SIZE);
16524 	}
16525 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16526 	       cq->queue_id);
16527 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16528 	       drq->page_count);
16529 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16530 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16531 					putPaddrLow(dmabuf->phys);
16532 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16533 					putPaddrHigh(dmabuf->phys);
16534 	}
16535 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16536 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16537 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16538 	/* The IOCTL status is embedded in the mailbox subheader. */
16539 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16540 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16541 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16542 	if (shdr_status || shdr_add_status || rc) {
16543 		status = -ENXIO;
16544 		goto out;
16545 	}
16546 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16547 	if (drq->queue_id == 0xFFFF) {
16548 		status = -ENXIO;
16549 		goto out;
16550 	}
16551 	drq->type = LPFC_DRQ;
16552 	drq->assoc_qid = cq->queue_id;
16553 	drq->subtype = subtype;
16554 	drq->host_index = 0;
16555 	drq->hba_index = 0;
16556 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16557 
16558 	/* link the header and data RQs onto the parent cq child list */
16559 	list_add_tail(&hrq->list, &cq->child_list);
16560 	list_add_tail(&drq->list, &cq->child_list);
16561 
16562 out:
16563 	mempool_free(mbox, phba->mbox_mem_pool);
16564 	return status;
16565 }
16566 
16567 /**
16568  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16569  * @phba: HBA structure that indicates port to create a queue on.
16570  * @hrqp: The queue structure array to use to create the header receive queues.
16571  * @drqp: The queue structure array to use to create the data receive queues.
16572  * @cqp: The completion queue array to bind these receive queues to.
16573  * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc).
16574  *
16575  * This function creates a receive buffer queue pair , as detailed in @hrq and
16576  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16577  * to the HBA.
16578  *
16579  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16580  * struct is used to get the entry count that is necessary to determine the
16581  * number of pages to use for this queue. The @cq is used to indicate which
16582  * completion queue to bind received buffers that are posted to these queues to.
16583  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16584  * receive queue pair. This function is asynchronous and will wait for the
16585  * mailbox command to finish before continuing.
16586  *
16587  * On success this function will return a zero. If unable to allocate enough
16588  * memory this function will return -ENOMEM. If the queue create mailbox command
16589  * fails this function will return -ENXIO.
16590  **/
16591 int
16592 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16593 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16594 		uint32_t subtype)
16595 {
16596 	struct lpfc_queue *hrq, *drq, *cq;
16597 	struct lpfc_mbx_rq_create_v2 *rq_create;
16598 	struct lpfc_dmabuf *dmabuf;
16599 	LPFC_MBOXQ_t *mbox;
16600 	int rc, length, alloclen, status = 0;
16601 	int cnt, idx, numrq, page_idx = 0;
16602 	uint32_t shdr_status, shdr_add_status;
16603 	union lpfc_sli4_cfg_shdr *shdr;
16604 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16605 
16606 	numrq = phba->cfg_nvmet_mrq;
16607 	/* sanity check on array memory */
16608 	if (!hrqp || !drqp || !cqp || !numrq)
16609 		return -ENODEV;
16610 	if (!phba->sli4_hba.pc_sli4_params.supported)
16611 		hw_page_size = SLI4_PAGE_SIZE;
16612 
16613 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16614 	if (!mbox)
16615 		return -ENOMEM;
16616 
16617 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16618 	length += ((2 * numrq * hrqp[0]->page_count) *
16619 		   sizeof(struct dma_address));
16620 
16621 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16622 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16623 				    LPFC_SLI4_MBX_NEMBED);
16624 	if (alloclen < length) {
16625 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16626 				"3099 Allocated DMA memory size (%d) is "
16627 				"less than the requested DMA memory size "
16628 				"(%d)\n", alloclen, length);
16629 		status = -ENOMEM;
16630 		goto out;
16631 	}
16632 
16633 
16634 
16635 	rq_create = mbox->sge_array->addr[0];
16636 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16637 
16638 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16639 	cnt = 0;
16640 
16641 	for (idx = 0; idx < numrq; idx++) {
16642 		hrq = hrqp[idx];
16643 		drq = drqp[idx];
16644 		cq  = cqp[idx];
16645 
16646 		/* sanity check on queue memory */
16647 		if (!hrq || !drq || !cq) {
16648 			status = -ENODEV;
16649 			goto out;
16650 		}
16651 
16652 		if (hrq->entry_count != drq->entry_count) {
16653 			status = -EINVAL;
16654 			goto out;
16655 		}
16656 
16657 		if (idx == 0) {
16658 			bf_set(lpfc_mbx_rq_create_num_pages,
16659 			       &rq_create->u.request,
16660 			       hrq->page_count);
16661 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16662 			       &rq_create->u.request, (numrq * 2));
16663 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16664 			       1);
16665 			bf_set(lpfc_rq_context_base_cq,
16666 			       &rq_create->u.request.context,
16667 			       cq->queue_id);
16668 			bf_set(lpfc_rq_context_data_size,
16669 			       &rq_create->u.request.context,
16670 			       LPFC_NVMET_DATA_BUF_SIZE);
16671 			bf_set(lpfc_rq_context_hdr_size,
16672 			       &rq_create->u.request.context,
16673 			       LPFC_HDR_BUF_SIZE);
16674 			bf_set(lpfc_rq_context_rqe_count_1,
16675 			       &rq_create->u.request.context,
16676 			       hrq->entry_count);
16677 			bf_set(lpfc_rq_context_rqe_size,
16678 			       &rq_create->u.request.context,
16679 			       LPFC_RQE_SIZE_8);
16680 			bf_set(lpfc_rq_context_page_size,
16681 			       &rq_create->u.request.context,
16682 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16683 		}
16684 		rc = 0;
16685 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16686 			memset(dmabuf->virt, 0, hw_page_size);
16687 			cnt = page_idx + dmabuf->buffer_tag;
16688 			rq_create->u.request.page[cnt].addr_lo =
16689 					putPaddrLow(dmabuf->phys);
16690 			rq_create->u.request.page[cnt].addr_hi =
16691 					putPaddrHigh(dmabuf->phys);
16692 			rc++;
16693 		}
16694 		page_idx += rc;
16695 
16696 		rc = 0;
16697 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16698 			memset(dmabuf->virt, 0, hw_page_size);
16699 			cnt = page_idx + dmabuf->buffer_tag;
16700 			rq_create->u.request.page[cnt].addr_lo =
16701 					putPaddrLow(dmabuf->phys);
16702 			rq_create->u.request.page[cnt].addr_hi =
16703 					putPaddrHigh(dmabuf->phys);
16704 			rc++;
16705 		}
16706 		page_idx += rc;
16707 
16708 		hrq->db_format = LPFC_DB_RING_FORMAT;
16709 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16710 		hrq->type = LPFC_HRQ;
16711 		hrq->assoc_qid = cq->queue_id;
16712 		hrq->subtype = subtype;
16713 		hrq->host_index = 0;
16714 		hrq->hba_index = 0;
16715 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16716 
16717 		drq->db_format = LPFC_DB_RING_FORMAT;
16718 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16719 		drq->type = LPFC_DRQ;
16720 		drq->assoc_qid = cq->queue_id;
16721 		drq->subtype = subtype;
16722 		drq->host_index = 0;
16723 		drq->hba_index = 0;
16724 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16725 
16726 		list_add_tail(&hrq->list, &cq->child_list);
16727 		list_add_tail(&drq->list, &cq->child_list);
16728 	}
16729 
16730 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16731 	/* The IOCTL status is embedded in the mailbox subheader. */
16732 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16733 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16734 	if (shdr_status || shdr_add_status || rc) {
16735 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16736 				"3120 RQ_CREATE mailbox failed with "
16737 				"status x%x add_status x%x, mbx status x%x\n",
16738 				shdr_status, shdr_add_status, rc);
16739 		status = -ENXIO;
16740 		goto out;
16741 	}
16742 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16743 	if (rc == 0xFFFF) {
16744 		status = -ENXIO;
16745 		goto out;
16746 	}
16747 
16748 	/* Initialize all RQs with associated queue id */
16749 	for (idx = 0; idx < numrq; idx++) {
16750 		hrq = hrqp[idx];
16751 		hrq->queue_id = rc + (2 * idx);
16752 		drq = drqp[idx];
16753 		drq->queue_id = rc + (2 * idx) + 1;
16754 	}
16755 
16756 out:
16757 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16758 	return status;
16759 }
16760 
16761 /**
16762  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16763  * @phba: HBA structure that indicates port to destroy a queue on.
16764  * @eq: The queue structure associated with the queue to destroy.
16765  *
16766  * This function destroys a queue, as detailed in @eq by sending an mailbox
16767  * command, specific to the type of queue, to the HBA.
16768  *
16769  * The @eq struct is used to get the queue ID of the queue to destroy.
16770  *
16771  * On success this function will return a zero. If the queue destroy mailbox
16772  * command fails this function will return -ENXIO.
16773  **/
16774 int
16775 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16776 {
16777 	LPFC_MBOXQ_t *mbox;
16778 	int rc, length, status = 0;
16779 	uint32_t shdr_status, shdr_add_status;
16780 	union lpfc_sli4_cfg_shdr *shdr;
16781 
16782 	/* sanity check on queue memory */
16783 	if (!eq)
16784 		return -ENODEV;
16785 
16786 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16787 	if (!mbox)
16788 		return -ENOMEM;
16789 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16790 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16791 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16792 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16793 			 length, LPFC_SLI4_MBX_EMBED);
16794 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16795 	       eq->queue_id);
16796 	mbox->vport = eq->phba->pport;
16797 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16798 
16799 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16800 	/* The IOCTL status is embedded in the mailbox subheader. */
16801 	shdr = (union lpfc_sli4_cfg_shdr *)
16802 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16803 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16804 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16805 	if (shdr_status || shdr_add_status || rc) {
16806 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16807 				"2505 EQ_DESTROY mailbox failed with "
16808 				"status x%x add_status x%x, mbx status x%x\n",
16809 				shdr_status, shdr_add_status, rc);
16810 		status = -ENXIO;
16811 	}
16812 
16813 	/* Remove eq from any list */
16814 	list_del_init(&eq->list);
16815 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16816 	return status;
16817 }
16818 
16819 /**
16820  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16821  * @phba: HBA structure that indicates port to destroy a queue on.
16822  * @cq: The queue structure associated with the queue to destroy.
16823  *
16824  * This function destroys a queue, as detailed in @cq by sending an mailbox
16825  * command, specific to the type of queue, to the HBA.
16826  *
16827  * The @cq struct is used to get the queue ID of the queue to destroy.
16828  *
16829  * On success this function will return a zero. If the queue destroy mailbox
16830  * command fails this function will return -ENXIO.
16831  **/
16832 int
16833 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16834 {
16835 	LPFC_MBOXQ_t *mbox;
16836 	int rc, length, status = 0;
16837 	uint32_t shdr_status, shdr_add_status;
16838 	union lpfc_sli4_cfg_shdr *shdr;
16839 
16840 	/* sanity check on queue memory */
16841 	if (!cq)
16842 		return -ENODEV;
16843 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16844 	if (!mbox)
16845 		return -ENOMEM;
16846 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16847 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16848 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16849 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16850 			 length, LPFC_SLI4_MBX_EMBED);
16851 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16852 	       cq->queue_id);
16853 	mbox->vport = cq->phba->pport;
16854 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16855 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16856 	/* The IOCTL status is embedded in the mailbox subheader. */
16857 	shdr = (union lpfc_sli4_cfg_shdr *)
16858 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16859 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16860 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16861 	if (shdr_status || shdr_add_status || rc) {
16862 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16863 				"2506 CQ_DESTROY mailbox failed with "
16864 				"status x%x add_status x%x, mbx status x%x\n",
16865 				shdr_status, shdr_add_status, rc);
16866 		status = -ENXIO;
16867 	}
16868 	/* Remove cq from any list */
16869 	list_del_init(&cq->list);
16870 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16871 	return status;
16872 }
16873 
16874 /**
16875  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16876  * @phba: HBA structure that indicates port to destroy a queue on.
16877  * @mq: The queue structure associated with the queue to destroy.
16878  *
16879  * This function destroys a queue, as detailed in @mq by sending an mailbox
16880  * command, specific to the type of queue, to the HBA.
16881  *
16882  * The @mq struct is used to get the queue ID of the queue to destroy.
16883  *
16884  * On success this function will return a zero. If the queue destroy mailbox
16885  * command fails this function will return -ENXIO.
16886  **/
16887 int
16888 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16889 {
16890 	LPFC_MBOXQ_t *mbox;
16891 	int rc, length, status = 0;
16892 	uint32_t shdr_status, shdr_add_status;
16893 	union lpfc_sli4_cfg_shdr *shdr;
16894 
16895 	/* sanity check on queue memory */
16896 	if (!mq)
16897 		return -ENODEV;
16898 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16899 	if (!mbox)
16900 		return -ENOMEM;
16901 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16902 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16903 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16904 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16905 			 length, LPFC_SLI4_MBX_EMBED);
16906 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16907 	       mq->queue_id);
16908 	mbox->vport = mq->phba->pport;
16909 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16910 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16911 	/* The IOCTL status is embedded in the mailbox subheader. */
16912 	shdr = (union lpfc_sli4_cfg_shdr *)
16913 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16914 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16915 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16916 	if (shdr_status || shdr_add_status || rc) {
16917 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16918 				"2507 MQ_DESTROY mailbox failed with "
16919 				"status x%x add_status x%x, mbx status x%x\n",
16920 				shdr_status, shdr_add_status, rc);
16921 		status = -ENXIO;
16922 	}
16923 	/* Remove mq from any list */
16924 	list_del_init(&mq->list);
16925 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16926 	return status;
16927 }
16928 
16929 /**
16930  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16931  * @phba: HBA structure that indicates port to destroy a queue on.
16932  * @wq: The queue structure associated with the queue to destroy.
16933  *
16934  * This function destroys a queue, as detailed in @wq by sending an mailbox
16935  * command, specific to the type of queue, to the HBA.
16936  *
16937  * The @wq struct is used to get the queue ID of the queue to destroy.
16938  *
16939  * On success this function will return a zero. If the queue destroy mailbox
16940  * command fails this function will return -ENXIO.
16941  **/
16942 int
16943 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16944 {
16945 	LPFC_MBOXQ_t *mbox;
16946 	int rc, length, status = 0;
16947 	uint32_t shdr_status, shdr_add_status;
16948 	union lpfc_sli4_cfg_shdr *shdr;
16949 
16950 	/* sanity check on queue memory */
16951 	if (!wq)
16952 		return -ENODEV;
16953 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16954 	if (!mbox)
16955 		return -ENOMEM;
16956 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16957 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16958 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16959 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16960 			 length, LPFC_SLI4_MBX_EMBED);
16961 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16962 	       wq->queue_id);
16963 	mbox->vport = wq->phba->pport;
16964 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16965 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16966 	shdr = (union lpfc_sli4_cfg_shdr *)
16967 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16968 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16969 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16970 	if (shdr_status || shdr_add_status || rc) {
16971 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
16972 				"2508 WQ_DESTROY mailbox failed with "
16973 				"status x%x add_status x%x, mbx status x%x\n",
16974 				shdr_status, shdr_add_status, rc);
16975 		status = -ENXIO;
16976 	}
16977 	/* Remove wq from any list */
16978 	list_del_init(&wq->list);
16979 	kfree(wq->pring);
16980 	wq->pring = NULL;
16981 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16982 	return status;
16983 }
16984 
16985 /**
16986  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16987  * @phba: HBA structure that indicates port to destroy a queue on.
16988  * @hrq: The queue structure associated with the queue to destroy.
16989  * @drq: The queue structure associated with the queue to destroy.
16990  *
16991  * This function destroys a queue, as detailed in @rq by sending an mailbox
16992  * command, specific to the type of queue, to the HBA.
16993  *
16994  * The @rq struct is used to get the queue ID of the queue to destroy.
16995  *
16996  * On success this function will return a zero. If the queue destroy mailbox
16997  * command fails this function will return -ENXIO.
16998  **/
16999 int
17000 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
17001 		struct lpfc_queue *drq)
17002 {
17003 	LPFC_MBOXQ_t *mbox;
17004 	int rc, length, status = 0;
17005 	uint32_t shdr_status, shdr_add_status;
17006 	union lpfc_sli4_cfg_shdr *shdr;
17007 
17008 	/* sanity check on queue memory */
17009 	if (!hrq || !drq)
17010 		return -ENODEV;
17011 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
17012 	if (!mbox)
17013 		return -ENOMEM;
17014 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
17015 		  sizeof(struct lpfc_sli4_cfg_mhdr));
17016 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17017 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
17018 			 length, LPFC_SLI4_MBX_EMBED);
17019 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17020 	       hrq->queue_id);
17021 	mbox->vport = hrq->phba->pport;
17022 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
17023 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
17024 	/* The IOCTL status is embedded in the mailbox subheader. */
17025 	shdr = (union lpfc_sli4_cfg_shdr *)
17026 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17027 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17028 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17029 	if (shdr_status || shdr_add_status || rc) {
17030 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17031 				"2509 RQ_DESTROY mailbox failed with "
17032 				"status x%x add_status x%x, mbx status x%x\n",
17033 				shdr_status, shdr_add_status, rc);
17034 		if (rc != MBX_TIMEOUT)
17035 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
17036 		return -ENXIO;
17037 	}
17038 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
17039 	       drq->queue_id);
17040 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
17041 	shdr = (union lpfc_sli4_cfg_shdr *)
17042 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
17043 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17044 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17045 	if (shdr_status || shdr_add_status || rc) {
17046 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17047 				"2510 RQ_DESTROY mailbox failed with "
17048 				"status x%x add_status x%x, mbx status x%x\n",
17049 				shdr_status, shdr_add_status, rc);
17050 		status = -ENXIO;
17051 	}
17052 	list_del_init(&hrq->list);
17053 	list_del_init(&drq->list);
17054 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
17055 	return status;
17056 }
17057 
17058 /**
17059  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
17060  * @phba: The virtual port for which this call being executed.
17061  * @pdma_phys_addr0: Physical address of the 1st SGL page.
17062  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
17063  * @xritag: the xritag that ties this io to the SGL pages.
17064  *
17065  * This routine will post the sgl pages for the IO that has the xritag
17066  * that is in the iocbq structure. The xritag is assigned during iocbq
17067  * creation and persists for as long as the driver is loaded.
17068  * if the caller has fewer than 256 scatter gather segments to map then
17069  * pdma_phys_addr1 should be 0.
17070  * If the caller needs to map more than 256 scatter gather segment then
17071  * pdma_phys_addr1 should be a valid physical address.
17072  * physical address for SGLs must be 64 byte aligned.
17073  * If you are going to map 2 SGL's then the first one must have 256 entries
17074  * the second sgl can have between 1 and 256 entries.
17075  *
17076  * Return codes:
17077  * 	0 - Success
17078  * 	-ENXIO, -ENOMEM - Failure
17079  **/
17080 int
17081 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
17082 		dma_addr_t pdma_phys_addr0,
17083 		dma_addr_t pdma_phys_addr1,
17084 		uint16_t xritag)
17085 {
17086 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
17087 	LPFC_MBOXQ_t *mbox;
17088 	int rc;
17089 	uint32_t shdr_status, shdr_add_status;
17090 	uint32_t mbox_tmo;
17091 	union lpfc_sli4_cfg_shdr *shdr;
17092 
17093 	if (xritag == NO_XRI) {
17094 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17095 				"0364 Invalid param:\n");
17096 		return -EINVAL;
17097 	}
17098 
17099 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17100 	if (!mbox)
17101 		return -ENOMEM;
17102 
17103 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17104 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17105 			sizeof(struct lpfc_mbx_post_sgl_pages) -
17106 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
17107 
17108 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
17109 				&mbox->u.mqe.un.post_sgl_pages;
17110 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
17111 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
17112 
17113 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
17114 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
17115 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
17116 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
17117 
17118 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
17119 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
17120 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
17121 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
17122 	if (!phba->sli4_hba.intr_enable)
17123 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17124 	else {
17125 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17126 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17127 	}
17128 	/* The IOCTL status is embedded in the mailbox subheader. */
17129 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
17130 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17131 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17132 	if (rc != MBX_TIMEOUT)
17133 		mempool_free(mbox, phba->mbox_mem_pool);
17134 	if (shdr_status || shdr_add_status || rc) {
17135 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17136 				"2511 POST_SGL mailbox failed with "
17137 				"status x%x add_status x%x, mbx status x%x\n",
17138 				shdr_status, shdr_add_status, rc);
17139 	}
17140 	return 0;
17141 }
17142 
17143 /**
17144  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
17145  * @phba: pointer to lpfc hba data structure.
17146  *
17147  * This routine is invoked to post rpi header templates to the
17148  * HBA consistent with the SLI-4 interface spec.  This routine
17149  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
17150  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
17151  *
17152  * Returns
17153  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
17154  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
17155  **/
17156 static uint16_t
17157 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
17158 {
17159 	unsigned long xri;
17160 
17161 	/*
17162 	 * Fetch the next logical xri.  Because this index is logical,
17163 	 * the driver starts at 0 each time.
17164 	 */
17165 	spin_lock_irq(&phba->hbalock);
17166 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
17167 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
17168 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
17169 		spin_unlock_irq(&phba->hbalock);
17170 		return NO_XRI;
17171 	} else {
17172 		set_bit(xri, phba->sli4_hba.xri_bmask);
17173 		phba->sli4_hba.max_cfg_param.xri_used++;
17174 	}
17175 	spin_unlock_irq(&phba->hbalock);
17176 	return xri;
17177 }
17178 
17179 /**
17180  * lpfc_sli4_free_xri - Release an xri for reuse.
17181  * @phba: pointer to lpfc hba data structure.
17182  * @xri: xri to release.
17183  *
17184  * This routine is invoked to release an xri to the pool of
17185  * available rpis maintained by the driver.
17186  **/
17187 static void
17188 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17189 {
17190 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
17191 		phba->sli4_hba.max_cfg_param.xri_used--;
17192 	}
17193 }
17194 
17195 /**
17196  * lpfc_sli4_free_xri - Release an xri for reuse.
17197  * @phba: pointer to lpfc hba data structure.
17198  * @xri: xri to release.
17199  *
17200  * This routine is invoked to release an xri to the pool of
17201  * available rpis maintained by the driver.
17202  **/
17203 void
17204 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
17205 {
17206 	spin_lock_irq(&phba->hbalock);
17207 	__lpfc_sli4_free_xri(phba, xri);
17208 	spin_unlock_irq(&phba->hbalock);
17209 }
17210 
17211 /**
17212  * lpfc_sli4_next_xritag - Get an xritag for the io
17213  * @phba: Pointer to HBA context object.
17214  *
17215  * This function gets an xritag for the iocb. If there is no unused xritag
17216  * it will return 0xffff.
17217  * The function returns the allocated xritag if successful, else returns zero.
17218  * Zero is not a valid xritag.
17219  * The caller is not required to hold any lock.
17220  **/
17221 uint16_t
17222 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
17223 {
17224 	uint16_t xri_index;
17225 
17226 	xri_index = lpfc_sli4_alloc_xri(phba);
17227 	if (xri_index == NO_XRI)
17228 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
17229 				"2004 Failed to allocate XRI.last XRITAG is %d"
17230 				" Max XRI is %d, Used XRI is %d\n",
17231 				xri_index,
17232 				phba->sli4_hba.max_cfg_param.max_xri,
17233 				phba->sli4_hba.max_cfg_param.xri_used);
17234 	return xri_index;
17235 }
17236 
17237 /**
17238  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
17239  * @phba: pointer to lpfc hba data structure.
17240  * @post_sgl_list: pointer to els sgl entry list.
17241  * @post_cnt: number of els sgl entries on the list.
17242  *
17243  * This routine is invoked to post a block of driver's sgl pages to the
17244  * HBA using non-embedded mailbox command. No Lock is held. This routine
17245  * is only called when the driver is loading and after all IO has been
17246  * stopped.
17247  **/
17248 static int
17249 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
17250 			    struct list_head *post_sgl_list,
17251 			    int post_cnt)
17252 {
17253 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
17254 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17255 	struct sgl_page_pairs *sgl_pg_pairs;
17256 	void *viraddr;
17257 	LPFC_MBOXQ_t *mbox;
17258 	uint32_t reqlen, alloclen, pg_pairs;
17259 	uint32_t mbox_tmo;
17260 	uint16_t xritag_start = 0;
17261 	int rc = 0;
17262 	uint32_t shdr_status, shdr_add_status;
17263 	union lpfc_sli4_cfg_shdr *shdr;
17264 
17265 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
17266 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17267 	if (reqlen > SLI4_PAGE_SIZE) {
17268 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17269 				"2559 Block sgl registration required DMA "
17270 				"size (%d) great than a page\n", reqlen);
17271 		return -ENOMEM;
17272 	}
17273 
17274 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17275 	if (!mbox)
17276 		return -ENOMEM;
17277 
17278 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17279 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17280 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
17281 			 LPFC_SLI4_MBX_NEMBED);
17282 
17283 	if (alloclen < reqlen) {
17284 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17285 				"0285 Allocated DMA memory size (%d) is "
17286 				"less than the requested DMA memory "
17287 				"size (%d)\n", alloclen, reqlen);
17288 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17289 		return -ENOMEM;
17290 	}
17291 	/* Set up the SGL pages in the non-embedded DMA pages */
17292 	viraddr = mbox->sge_array->addr[0];
17293 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17294 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17295 
17296 	pg_pairs = 0;
17297 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
17298 		/* Set up the sge entry */
17299 		sgl_pg_pairs->sgl_pg0_addr_lo =
17300 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
17301 		sgl_pg_pairs->sgl_pg0_addr_hi =
17302 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
17303 		sgl_pg_pairs->sgl_pg1_addr_lo =
17304 				cpu_to_le32(putPaddrLow(0));
17305 		sgl_pg_pairs->sgl_pg1_addr_hi =
17306 				cpu_to_le32(putPaddrHigh(0));
17307 
17308 		/* Keep the first xritag on the list */
17309 		if (pg_pairs == 0)
17310 			xritag_start = sglq_entry->sli4_xritag;
17311 		sgl_pg_pairs++;
17312 		pg_pairs++;
17313 	}
17314 
17315 	/* Complete initialization and perform endian conversion. */
17316 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17317 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
17318 	sgl->word0 = cpu_to_le32(sgl->word0);
17319 
17320 	if (!phba->sli4_hba.intr_enable)
17321 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17322 	else {
17323 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17324 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17325 	}
17326 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
17327 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17328 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17329 	if (rc != MBX_TIMEOUT)
17330 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17331 	if (shdr_status || shdr_add_status || rc) {
17332 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17333 				"2513 POST_SGL_BLOCK mailbox command failed "
17334 				"status x%x add_status x%x mbx status x%x\n",
17335 				shdr_status, shdr_add_status, rc);
17336 		rc = -ENXIO;
17337 	}
17338 	return rc;
17339 }
17340 
17341 /**
17342  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
17343  * @phba: pointer to lpfc hba data structure.
17344  * @nblist: pointer to nvme buffer list.
17345  * @count: number of scsi buffers on the list.
17346  *
17347  * This routine is invoked to post a block of @count scsi sgl pages from a
17348  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
17349  * No Lock is held.
17350  *
17351  **/
17352 static int
17353 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
17354 			    int count)
17355 {
17356 	struct lpfc_io_buf *lpfc_ncmd;
17357 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
17358 	struct sgl_page_pairs *sgl_pg_pairs;
17359 	void *viraddr;
17360 	LPFC_MBOXQ_t *mbox;
17361 	uint32_t reqlen, alloclen, pg_pairs;
17362 	uint32_t mbox_tmo;
17363 	uint16_t xritag_start = 0;
17364 	int rc = 0;
17365 	uint32_t shdr_status, shdr_add_status;
17366 	dma_addr_t pdma_phys_bpl1;
17367 	union lpfc_sli4_cfg_shdr *shdr;
17368 
17369 	/* Calculate the requested length of the dma memory */
17370 	reqlen = count * sizeof(struct sgl_page_pairs) +
17371 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
17372 	if (reqlen > SLI4_PAGE_SIZE) {
17373 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
17374 				"6118 Block sgl registration required DMA "
17375 				"size (%d) great than a page\n", reqlen);
17376 		return -ENOMEM;
17377 	}
17378 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
17379 	if (!mbox) {
17380 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17381 				"6119 Failed to allocate mbox cmd memory\n");
17382 		return -ENOMEM;
17383 	}
17384 
17385 	/* Allocate DMA memory and set up the non-embedded mailbox command */
17386 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
17387 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17388 				    reqlen, LPFC_SLI4_MBX_NEMBED);
17389 
17390 	if (alloclen < reqlen) {
17391 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17392 				"6120 Allocated DMA memory size (%d) is "
17393 				"less than the requested DMA memory "
17394 				"size (%d)\n", alloclen, reqlen);
17395 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17396 		return -ENOMEM;
17397 	}
17398 
17399 	/* Get the first SGE entry from the non-embedded DMA memory */
17400 	viraddr = mbox->sge_array->addr[0];
17401 
17402 	/* Set up the SGL pages in the non-embedded DMA pages */
17403 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17404 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17405 
17406 	pg_pairs = 0;
17407 	list_for_each_entry(lpfc_ncmd, nblist, list) {
17408 		/* Set up the sge entry */
17409 		sgl_pg_pairs->sgl_pg0_addr_lo =
17410 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17411 		sgl_pg_pairs->sgl_pg0_addr_hi =
17412 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17413 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17414 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17415 						SGL_PAGE_SIZE;
17416 		else
17417 			pdma_phys_bpl1 = 0;
17418 		sgl_pg_pairs->sgl_pg1_addr_lo =
17419 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17420 		sgl_pg_pairs->sgl_pg1_addr_hi =
17421 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17422 		/* Keep the first xritag on the list */
17423 		if (pg_pairs == 0)
17424 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17425 		sgl_pg_pairs++;
17426 		pg_pairs++;
17427 	}
17428 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17429 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17430 	/* Perform endian conversion if necessary */
17431 	sgl->word0 = cpu_to_le32(sgl->word0);
17432 
17433 	if (!phba->sli4_hba.intr_enable) {
17434 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17435 	} else {
17436 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17437 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17438 	}
17439 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17440 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17441 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17442 	if (rc != MBX_TIMEOUT)
17443 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17444 	if (shdr_status || shdr_add_status || rc) {
17445 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
17446 				"6125 POST_SGL_BLOCK mailbox command failed "
17447 				"status x%x add_status x%x mbx status x%x\n",
17448 				shdr_status, shdr_add_status, rc);
17449 		rc = -ENXIO;
17450 	}
17451 	return rc;
17452 }
17453 
17454 /**
17455  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17456  * @phba: pointer to lpfc hba data structure.
17457  * @post_nblist: pointer to the nvme buffer list.
17458  * @sb_count: number of nvme buffers.
17459  *
17460  * This routine walks a list of nvme buffers that was passed in. It attempts
17461  * to construct blocks of nvme buffer sgls which contains contiguous xris and
17462  * uses the non-embedded SGL block post mailbox commands to post to the port.
17463  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17464  * embedded SGL post mailbox command for posting. The @post_nblist passed in
17465  * must be local list, thus no lock is needed when manipulate the list.
17466  *
17467  * Returns: 0 = failure, non-zero number of successfully posted buffers.
17468  **/
17469 int
17470 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17471 			   struct list_head *post_nblist, int sb_count)
17472 {
17473 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17474 	int status, sgl_size;
17475 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17476 	dma_addr_t pdma_phys_sgl1;
17477 	int last_xritag = NO_XRI;
17478 	int cur_xritag;
17479 	LIST_HEAD(prep_nblist);
17480 	LIST_HEAD(blck_nblist);
17481 	LIST_HEAD(nvme_nblist);
17482 
17483 	/* sanity check */
17484 	if (sb_count <= 0)
17485 		return -EINVAL;
17486 
17487 	sgl_size = phba->cfg_sg_dma_buf_size;
17488 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17489 		list_del_init(&lpfc_ncmd->list);
17490 		block_cnt++;
17491 		if ((last_xritag != NO_XRI) &&
17492 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17493 			/* a hole in xri block, form a sgl posting block */
17494 			list_splice_init(&prep_nblist, &blck_nblist);
17495 			post_cnt = block_cnt - 1;
17496 			/* prepare list for next posting block */
17497 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17498 			block_cnt = 1;
17499 		} else {
17500 			/* prepare list for next posting block */
17501 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17502 			/* enough sgls for non-embed sgl mbox command */
17503 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17504 				list_splice_init(&prep_nblist, &blck_nblist);
17505 				post_cnt = block_cnt;
17506 				block_cnt = 0;
17507 			}
17508 		}
17509 		num_posting++;
17510 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17511 
17512 		/* end of repost sgl list condition for NVME buffers */
17513 		if (num_posting == sb_count) {
17514 			if (post_cnt == 0) {
17515 				/* last sgl posting block */
17516 				list_splice_init(&prep_nblist, &blck_nblist);
17517 				post_cnt = block_cnt;
17518 			} else if (block_cnt == 1) {
17519 				/* last single sgl with non-contiguous xri */
17520 				if (sgl_size > SGL_PAGE_SIZE)
17521 					pdma_phys_sgl1 =
17522 						lpfc_ncmd->dma_phys_sgl +
17523 						SGL_PAGE_SIZE;
17524 				else
17525 					pdma_phys_sgl1 = 0;
17526 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17527 				status = lpfc_sli4_post_sgl(
17528 						phba, lpfc_ncmd->dma_phys_sgl,
17529 						pdma_phys_sgl1, cur_xritag);
17530 				if (status) {
17531 					/* Post error.  Buffer unavailable. */
17532 					lpfc_ncmd->flags |=
17533 						LPFC_SBUF_NOT_POSTED;
17534 				} else {
17535 					/* Post success. Bffer available. */
17536 					lpfc_ncmd->flags &=
17537 						~LPFC_SBUF_NOT_POSTED;
17538 					lpfc_ncmd->status = IOSTAT_SUCCESS;
17539 					num_posted++;
17540 				}
17541 				/* success, put on NVME buffer sgl list */
17542 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17543 			}
17544 		}
17545 
17546 		/* continue until a nembed page worth of sgls */
17547 		if (post_cnt == 0)
17548 			continue;
17549 
17550 		/* post block of NVME buffer list sgls */
17551 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17552 						     post_cnt);
17553 
17554 		/* don't reset xirtag due to hole in xri block */
17555 		if (block_cnt == 0)
17556 			last_xritag = NO_XRI;
17557 
17558 		/* reset NVME buffer post count for next round of posting */
17559 		post_cnt = 0;
17560 
17561 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17562 		while (!list_empty(&blck_nblist)) {
17563 			list_remove_head(&blck_nblist, lpfc_ncmd,
17564 					 struct lpfc_io_buf, list);
17565 			if (status) {
17566 				/* Post error.  Mark buffer unavailable. */
17567 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17568 			} else {
17569 				/* Post success, Mark buffer available. */
17570 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17571 				lpfc_ncmd->status = IOSTAT_SUCCESS;
17572 				num_posted++;
17573 			}
17574 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17575 		}
17576 	}
17577 	/* Push NVME buffers with sgl posted to the available list */
17578 	lpfc_io_buf_replenish(phba, &nvme_nblist);
17579 
17580 	return num_posted;
17581 }
17582 
17583 /**
17584  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17585  * @phba: pointer to lpfc_hba struct that the frame was received on
17586  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17587  *
17588  * This function checks the fields in the @fc_hdr to see if the FC frame is a
17589  * valid type of frame that the LPFC driver will handle. This function will
17590  * return a zero if the frame is a valid frame or a non zero value when the
17591  * frame does not pass the check.
17592  **/
17593 static int
17594 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17595 {
17596 	/*  make rctl_names static to save stack space */
17597 	struct fc_vft_header *fc_vft_hdr;
17598 	uint32_t *header = (uint32_t *) fc_hdr;
17599 
17600 #define FC_RCTL_MDS_DIAGS	0xF4
17601 
17602 	switch (fc_hdr->fh_r_ctl) {
17603 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17604 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17605 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17606 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17607 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17608 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17609 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17610 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17611 	case FC_RCTL_ELS_REQ:	/* extended link services request */
17612 	case FC_RCTL_ELS_REP:	/* extended link services reply */
17613 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17614 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17615 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
17616 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17617 	case FC_RCTL_BA_RMC: 	/* remove connection */
17618 	case FC_RCTL_BA_ACC:	/* basic accept */
17619 	case FC_RCTL_BA_RJT:	/* basic reject */
17620 	case FC_RCTL_BA_PRMT:
17621 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17622 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17623 	case FC_RCTL_P_RJT:	/* port reject */
17624 	case FC_RCTL_F_RJT:	/* fabric reject */
17625 	case FC_RCTL_P_BSY:	/* port busy */
17626 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17627 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17628 	case FC_RCTL_LCR:	/* link credit reset */
17629 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17630 	case FC_RCTL_END:	/* end */
17631 		break;
17632 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17633 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17634 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17635 		return lpfc_fc_frame_check(phba, fc_hdr);
17636 	default:
17637 		goto drop;
17638 	}
17639 
17640 	switch (fc_hdr->fh_type) {
17641 	case FC_TYPE_BLS:
17642 	case FC_TYPE_ELS:
17643 	case FC_TYPE_FCP:
17644 	case FC_TYPE_CT:
17645 	case FC_TYPE_NVME:
17646 		break;
17647 	case FC_TYPE_IP:
17648 	case FC_TYPE_ILS:
17649 	default:
17650 		goto drop;
17651 	}
17652 
17653 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17654 			"2538 Received frame rctl:x%x, type:x%x, "
17655 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17656 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17657 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17658 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17659 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17660 			be32_to_cpu(header[6]));
17661 	return 0;
17662 drop:
17663 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17664 			"2539 Dropped frame rctl:x%x type:x%x\n",
17665 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17666 	return 1;
17667 }
17668 
17669 /**
17670  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17671  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17672  *
17673  * This function processes the FC header to retrieve the VFI from the VF
17674  * header, if one exists. This function will return the VFI if one exists
17675  * or 0 if no VSAN Header exists.
17676  **/
17677 static uint32_t
17678 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17679 {
17680 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17681 
17682 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17683 		return 0;
17684 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17685 }
17686 
17687 /**
17688  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17689  * @phba: Pointer to the HBA structure to search for the vport on
17690  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17691  * @fcfi: The FC Fabric ID that the frame came from
17692  * @did: Destination ID to match against
17693  *
17694  * This function searches the @phba for a vport that matches the content of the
17695  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17696  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17697  * returns the matching vport pointer or NULL if unable to match frame to a
17698  * vport.
17699  **/
17700 static struct lpfc_vport *
17701 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17702 		       uint16_t fcfi, uint32_t did)
17703 {
17704 	struct lpfc_vport **vports;
17705 	struct lpfc_vport *vport = NULL;
17706 	int i;
17707 
17708 	if (did == Fabric_DID)
17709 		return phba->pport;
17710 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17711 		!(phba->link_state == LPFC_HBA_READY))
17712 		return phba->pport;
17713 
17714 	vports = lpfc_create_vport_work_array(phba);
17715 	if (vports != NULL) {
17716 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17717 			if (phba->fcf.fcfi == fcfi &&
17718 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17719 			    vports[i]->fc_myDID == did) {
17720 				vport = vports[i];
17721 				break;
17722 			}
17723 		}
17724 	}
17725 	lpfc_destroy_vport_work_array(phba, vports);
17726 	return vport;
17727 }
17728 
17729 /**
17730  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17731  * @vport: The vport to work on.
17732  *
17733  * This function updates the receive sequence time stamp for this vport. The
17734  * receive sequence time stamp indicates the time that the last frame of the
17735  * the sequence that has been idle for the longest amount of time was received.
17736  * the driver uses this time stamp to indicate if any received sequences have
17737  * timed out.
17738  **/
17739 static void
17740 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17741 {
17742 	struct lpfc_dmabuf *h_buf;
17743 	struct hbq_dmabuf *dmabuf = NULL;
17744 
17745 	/* get the oldest sequence on the rcv list */
17746 	h_buf = list_get_first(&vport->rcv_buffer_list,
17747 			       struct lpfc_dmabuf, list);
17748 	if (!h_buf)
17749 		return;
17750 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17751 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17752 }
17753 
17754 /**
17755  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17756  * @vport: The vport that the received sequences were sent to.
17757  *
17758  * This function cleans up all outstanding received sequences. This is called
17759  * by the driver when a link event or user action invalidates all the received
17760  * sequences.
17761  **/
17762 void
17763 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17764 {
17765 	struct lpfc_dmabuf *h_buf, *hnext;
17766 	struct lpfc_dmabuf *d_buf, *dnext;
17767 	struct hbq_dmabuf *dmabuf = NULL;
17768 
17769 	/* start with the oldest sequence on the rcv list */
17770 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17771 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17772 		list_del_init(&dmabuf->hbuf.list);
17773 		list_for_each_entry_safe(d_buf, dnext,
17774 					 &dmabuf->dbuf.list, list) {
17775 			list_del_init(&d_buf->list);
17776 			lpfc_in_buf_free(vport->phba, d_buf);
17777 		}
17778 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17779 	}
17780 }
17781 
17782 /**
17783  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17784  * @vport: The vport that the received sequences were sent to.
17785  *
17786  * This function determines whether any received sequences have timed out by
17787  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17788  * indicates that there is at least one timed out sequence this routine will
17789  * go through the received sequences one at a time from most inactive to most
17790  * active to determine which ones need to be cleaned up. Once it has determined
17791  * that a sequence needs to be cleaned up it will simply free up the resources
17792  * without sending an abort.
17793  **/
17794 void
17795 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17796 {
17797 	struct lpfc_dmabuf *h_buf, *hnext;
17798 	struct lpfc_dmabuf *d_buf, *dnext;
17799 	struct hbq_dmabuf *dmabuf = NULL;
17800 	unsigned long timeout;
17801 	int abort_count = 0;
17802 
17803 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17804 		   vport->rcv_buffer_time_stamp);
17805 	if (list_empty(&vport->rcv_buffer_list) ||
17806 	    time_before(jiffies, timeout))
17807 		return;
17808 	/* start with the oldest sequence on the rcv list */
17809 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17810 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17811 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17812 			   dmabuf->time_stamp);
17813 		if (time_before(jiffies, timeout))
17814 			break;
17815 		abort_count++;
17816 		list_del_init(&dmabuf->hbuf.list);
17817 		list_for_each_entry_safe(d_buf, dnext,
17818 					 &dmabuf->dbuf.list, list) {
17819 			list_del_init(&d_buf->list);
17820 			lpfc_in_buf_free(vport->phba, d_buf);
17821 		}
17822 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17823 	}
17824 	if (abort_count)
17825 		lpfc_update_rcv_time_stamp(vport);
17826 }
17827 
17828 /**
17829  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17830  * @vport: pointer to a vitural port
17831  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17832  *
17833  * This function searches through the existing incomplete sequences that have
17834  * been sent to this @vport. If the frame matches one of the incomplete
17835  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17836  * make up that sequence. If no sequence is found that matches this frame then
17837  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17838  * This function returns a pointer to the first dmabuf in the sequence list that
17839  * the frame was linked to.
17840  **/
17841 static struct hbq_dmabuf *
17842 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17843 {
17844 	struct fc_frame_header *new_hdr;
17845 	struct fc_frame_header *temp_hdr;
17846 	struct lpfc_dmabuf *d_buf;
17847 	struct lpfc_dmabuf *h_buf;
17848 	struct hbq_dmabuf *seq_dmabuf = NULL;
17849 	struct hbq_dmabuf *temp_dmabuf = NULL;
17850 	uint8_t	found = 0;
17851 
17852 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17853 	dmabuf->time_stamp = jiffies;
17854 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17855 
17856 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17857 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17858 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17859 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17860 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17861 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17862 			continue;
17863 		/* found a pending sequence that matches this frame */
17864 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17865 		break;
17866 	}
17867 	if (!seq_dmabuf) {
17868 		/*
17869 		 * This indicates first frame received for this sequence.
17870 		 * Queue the buffer on the vport's rcv_buffer_list.
17871 		 */
17872 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17873 		lpfc_update_rcv_time_stamp(vport);
17874 		return dmabuf;
17875 	}
17876 	temp_hdr = seq_dmabuf->hbuf.virt;
17877 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17878 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17879 		list_del_init(&seq_dmabuf->hbuf.list);
17880 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17881 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17882 		lpfc_update_rcv_time_stamp(vport);
17883 		return dmabuf;
17884 	}
17885 	/* move this sequence to the tail to indicate a young sequence */
17886 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17887 	seq_dmabuf->time_stamp = jiffies;
17888 	lpfc_update_rcv_time_stamp(vport);
17889 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17890 		temp_hdr = dmabuf->hbuf.virt;
17891 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17892 		return seq_dmabuf;
17893 	}
17894 	/* find the correct place in the sequence to insert this frame */
17895 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17896 	while (!found) {
17897 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17898 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17899 		/*
17900 		 * If the frame's sequence count is greater than the frame on
17901 		 * the list then insert the frame right after this frame
17902 		 */
17903 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17904 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17905 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17906 			found = 1;
17907 			break;
17908 		}
17909 
17910 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17911 			break;
17912 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17913 	}
17914 
17915 	if (found)
17916 		return seq_dmabuf;
17917 	return NULL;
17918 }
17919 
17920 /**
17921  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17922  * @vport: pointer to a vitural port
17923  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17924  *
17925  * This function tries to abort from the partially assembed sequence, described
17926  * by the information from basic abbort @dmabuf. It checks to see whether such
17927  * partially assembled sequence held by the driver. If so, it shall free up all
17928  * the frames from the partially assembled sequence.
17929  *
17930  * Return
17931  * true  -- if there is matching partially assembled sequence present and all
17932  *          the frames freed with the sequence;
17933  * false -- if there is no matching partially assembled sequence present so
17934  *          nothing got aborted in the lower layer driver
17935  **/
17936 static bool
17937 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17938 			    struct hbq_dmabuf *dmabuf)
17939 {
17940 	struct fc_frame_header *new_hdr;
17941 	struct fc_frame_header *temp_hdr;
17942 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17943 	struct hbq_dmabuf *seq_dmabuf = NULL;
17944 
17945 	/* Use the hdr_buf to find the sequence that matches this frame */
17946 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17947 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17948 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17949 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17950 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17951 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17952 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17953 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17954 			continue;
17955 		/* found a pending sequence that matches this frame */
17956 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17957 		break;
17958 	}
17959 
17960 	/* Free up all the frames from the partially assembled sequence */
17961 	if (seq_dmabuf) {
17962 		list_for_each_entry_safe(d_buf, n_buf,
17963 					 &seq_dmabuf->dbuf.list, list) {
17964 			list_del_init(&d_buf->list);
17965 			lpfc_in_buf_free(vport->phba, d_buf);
17966 		}
17967 		return true;
17968 	}
17969 	return false;
17970 }
17971 
17972 /**
17973  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17974  * @vport: pointer to a vitural port
17975  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17976  *
17977  * This function tries to abort from the assembed sequence from upper level
17978  * protocol, described by the information from basic abbort @dmabuf. It
17979  * checks to see whether such pending context exists at upper level protocol.
17980  * If so, it shall clean up the pending context.
17981  *
17982  * Return
17983  * true  -- if there is matching pending context of the sequence cleaned
17984  *          at ulp;
17985  * false -- if there is no matching pending context of the sequence present
17986  *          at ulp.
17987  **/
17988 static bool
17989 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17990 {
17991 	struct lpfc_hba *phba = vport->phba;
17992 	int handled;
17993 
17994 	/* Accepting abort at ulp with SLI4 only */
17995 	if (phba->sli_rev < LPFC_SLI_REV4)
17996 		return false;
17997 
17998 	/* Register all caring upper level protocols to attend abort */
17999 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
18000 	if (handled)
18001 		return true;
18002 
18003 	return false;
18004 }
18005 
18006 /**
18007  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
18008  * @phba: Pointer to HBA context object.
18009  * @cmd_iocbq: pointer to the command iocbq structure.
18010  * @rsp_iocbq: pointer to the response iocbq structure.
18011  *
18012  * This function handles the sequence abort response iocb command complete
18013  * event. It properly releases the memory allocated to the sequence abort
18014  * accept iocb.
18015  **/
18016 static void
18017 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
18018 			     struct lpfc_iocbq *cmd_iocbq,
18019 			     struct lpfc_iocbq *rsp_iocbq)
18020 {
18021 	struct lpfc_nodelist *ndlp;
18022 
18023 	if (cmd_iocbq) {
18024 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
18025 		lpfc_nlp_put(ndlp);
18026 		lpfc_nlp_not_used(ndlp);
18027 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
18028 	}
18029 
18030 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
18031 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
18032 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18033 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
18034 			rsp_iocbq->iocb.ulpStatus,
18035 			rsp_iocbq->iocb.un.ulpWord[4]);
18036 }
18037 
18038 /**
18039  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
18040  * @phba: Pointer to HBA context object.
18041  * @xri: xri id in transaction.
18042  *
18043  * This function validates the xri maps to the known range of XRIs allocated an
18044  * used by the driver.
18045  **/
18046 uint16_t
18047 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
18048 		      uint16_t xri)
18049 {
18050 	uint16_t i;
18051 
18052 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
18053 		if (xri == phba->sli4_hba.xri_ids[i])
18054 			return i;
18055 	}
18056 	return NO_XRI;
18057 }
18058 
18059 /**
18060  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
18061  * @vport: pointer to a vitural port.
18062  * @fc_hdr: pointer to a FC frame header.
18063  * @aborted: was the partially assembled receive sequence successfully aborted
18064  *
18065  * This function sends a basic response to a previous unsol sequence abort
18066  * event after aborting the sequence handling.
18067  **/
18068 void
18069 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
18070 			struct fc_frame_header *fc_hdr, bool aborted)
18071 {
18072 	struct lpfc_hba *phba = vport->phba;
18073 	struct lpfc_iocbq *ctiocb = NULL;
18074 	struct lpfc_nodelist *ndlp;
18075 	uint16_t oxid, rxid, xri, lxri;
18076 	uint32_t sid, fctl;
18077 	IOCB_t *icmd;
18078 	int rc;
18079 
18080 	if (!lpfc_is_link_up(phba))
18081 		return;
18082 
18083 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18084 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
18085 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
18086 
18087 	ndlp = lpfc_findnode_did(vport, sid);
18088 	if (!ndlp) {
18089 		ndlp = lpfc_nlp_init(vport, sid);
18090 		if (!ndlp) {
18091 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
18092 					 "1268 Failed to allocate ndlp for "
18093 					 "oxid:x%x SID:x%x\n", oxid, sid);
18094 			return;
18095 		}
18096 		/* Put ndlp onto pport node list */
18097 		lpfc_enqueue_node(vport, ndlp);
18098 	}
18099 
18100 	/* Allocate buffer for rsp iocb */
18101 	ctiocb = lpfc_sli_get_iocbq(phba);
18102 	if (!ctiocb)
18103 		return;
18104 
18105 	/* Extract the F_CTL field from FC_HDR */
18106 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
18107 
18108 	icmd = &ctiocb->iocb;
18109 	icmd->un.xseq64.bdl.bdeSize = 0;
18110 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
18111 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
18112 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
18113 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
18114 
18115 	/* Fill in the rest of iocb fields */
18116 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
18117 	icmd->ulpBdeCount = 0;
18118 	icmd->ulpLe = 1;
18119 	icmd->ulpClass = CLASS3;
18120 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
18121 	ctiocb->context1 = lpfc_nlp_get(ndlp);
18122 	if (!ctiocb->context1) {
18123 		lpfc_sli_release_iocbq(phba, ctiocb);
18124 		return;
18125 	}
18126 
18127 	ctiocb->vport = phba->pport;
18128 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
18129 	ctiocb->sli4_lxritag = NO_XRI;
18130 	ctiocb->sli4_xritag = NO_XRI;
18131 
18132 	if (fctl & FC_FC_EX_CTX)
18133 		/* Exchange responder sent the abort so we
18134 		 * own the oxid.
18135 		 */
18136 		xri = oxid;
18137 	else
18138 		xri = rxid;
18139 	lxri = lpfc_sli4_xri_inrange(phba, xri);
18140 	if (lxri != NO_XRI)
18141 		lpfc_set_rrq_active(phba, ndlp, lxri,
18142 			(xri == oxid) ? rxid : oxid, 0);
18143 	/* For BA_ABTS from exchange responder, if the logical xri with
18144 	 * the oxid maps to the FCP XRI range, the port no longer has
18145 	 * that exchange context, send a BLS_RJT. Override the IOCB for
18146 	 * a BA_RJT.
18147 	 */
18148 	if ((fctl & FC_FC_EX_CTX) &&
18149 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
18150 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18151 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18152 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18153 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18154 	}
18155 
18156 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
18157 	 * the driver no longer has that exchange, send a BLS_RJT. Override
18158 	 * the IOCB for a BA_RJT.
18159 	 */
18160 	if (aborted == false) {
18161 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
18162 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
18163 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
18164 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
18165 	}
18166 
18167 	if (fctl & FC_FC_EX_CTX) {
18168 		/* ABTS sent by responder to CT exchange, construction
18169 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
18170 		 * field and RX_ID from ABTS for RX_ID field.
18171 		 */
18172 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
18173 	} else {
18174 		/* ABTS sent by initiator to CT exchange, construction
18175 		 * of BA_ACC will need to allocate a new XRI as for the
18176 		 * XRI_TAG field.
18177 		 */
18178 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
18179 	}
18180 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
18181 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
18182 
18183 	/* Xmit CT abts response on exchange <xid> */
18184 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
18185 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
18186 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
18187 
18188 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
18189 	if (rc == IOCB_ERROR) {
18190 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
18191 				 "2925 Failed to issue CT ABTS RSP x%x on "
18192 				 "xri x%x, Data x%x\n",
18193 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
18194 				 phba->link_state);
18195 		lpfc_nlp_put(ndlp);
18196 		ctiocb->context1 = NULL;
18197 		lpfc_sli_release_iocbq(phba, ctiocb);
18198 	}
18199 }
18200 
18201 /**
18202  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
18203  * @vport: Pointer to the vport on which this sequence was received
18204  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18205  *
18206  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
18207  * receive sequence is only partially assembed by the driver, it shall abort
18208  * the partially assembled frames for the sequence. Otherwise, if the
18209  * unsolicited receive sequence has been completely assembled and passed to
18210  * the Upper Layer Protocol (ULP), it then mark the per oxid status for the
18211  * unsolicited sequence has been aborted. After that, it will issue a basic
18212  * accept to accept the abort.
18213  **/
18214 static void
18215 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
18216 			     struct hbq_dmabuf *dmabuf)
18217 {
18218 	struct lpfc_hba *phba = vport->phba;
18219 	struct fc_frame_header fc_hdr;
18220 	uint32_t fctl;
18221 	bool aborted;
18222 
18223 	/* Make a copy of fc_hdr before the dmabuf being released */
18224 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
18225 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
18226 
18227 	if (fctl & FC_FC_EX_CTX) {
18228 		/* ABTS by responder to exchange, no cleanup needed */
18229 		aborted = true;
18230 	} else {
18231 		/* ABTS by initiator to exchange, need to do cleanup */
18232 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
18233 		if (aborted == false)
18234 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
18235 	}
18236 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18237 
18238 	if (phba->nvmet_support) {
18239 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
18240 		return;
18241 	}
18242 
18243 	/* Respond with BA_ACC or BA_RJT accordingly */
18244 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
18245 }
18246 
18247 /**
18248  * lpfc_seq_complete - Indicates if a sequence is complete
18249  * @dmabuf: pointer to a dmabuf that describes the FC sequence
18250  *
18251  * This function checks the sequence, starting with the frame described by
18252  * @dmabuf, to see if all the frames associated with this sequence are present.
18253  * the frames associated with this sequence are linked to the @dmabuf using the
18254  * dbuf list. This function looks for two major things. 1) That the first frame
18255  * has a sequence count of zero. 2) There is a frame with last frame of sequence
18256  * set. 3) That there are no holes in the sequence count. The function will
18257  * return 1 when the sequence is complete, otherwise it will return 0.
18258  **/
18259 static int
18260 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
18261 {
18262 	struct fc_frame_header *hdr;
18263 	struct lpfc_dmabuf *d_buf;
18264 	struct hbq_dmabuf *seq_dmabuf;
18265 	uint32_t fctl;
18266 	int seq_count = 0;
18267 
18268 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18269 	/* make sure first fame of sequence has a sequence count of zero */
18270 	if (hdr->fh_seq_cnt != seq_count)
18271 		return 0;
18272 	fctl = (hdr->fh_f_ctl[0] << 16 |
18273 		hdr->fh_f_ctl[1] << 8 |
18274 		hdr->fh_f_ctl[2]);
18275 	/* If last frame of sequence we can return success. */
18276 	if (fctl & FC_FC_END_SEQ)
18277 		return 1;
18278 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
18279 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18280 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18281 		/* If there is a hole in the sequence count then fail. */
18282 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
18283 			return 0;
18284 		fctl = (hdr->fh_f_ctl[0] << 16 |
18285 			hdr->fh_f_ctl[1] << 8 |
18286 			hdr->fh_f_ctl[2]);
18287 		/* If last frame of sequence we can return success. */
18288 		if (fctl & FC_FC_END_SEQ)
18289 			return 1;
18290 	}
18291 	return 0;
18292 }
18293 
18294 /**
18295  * lpfc_prep_seq - Prep sequence for ULP processing
18296  * @vport: Pointer to the vport on which this sequence was received
18297  * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence
18298  *
18299  * This function takes a sequence, described by a list of frames, and creates
18300  * a list of iocbq structures to describe the sequence. This iocbq list will be
18301  * used to issue to the generic unsolicited sequence handler. This routine
18302  * returns a pointer to the first iocbq in the list. If the function is unable
18303  * to allocate an iocbq then it throw out the received frames that were not
18304  * able to be described and return a pointer to the first iocbq. If unable to
18305  * allocate any iocbqs (including the first) this function will return NULL.
18306  **/
18307 static struct lpfc_iocbq *
18308 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
18309 {
18310 	struct hbq_dmabuf *hbq_buf;
18311 	struct lpfc_dmabuf *d_buf, *n_buf;
18312 	struct lpfc_iocbq *first_iocbq, *iocbq;
18313 	struct fc_frame_header *fc_hdr;
18314 	uint32_t sid;
18315 	uint32_t len, tot_len;
18316 	struct ulp_bde64 *pbde;
18317 
18318 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18319 	/* remove from receive buffer list */
18320 	list_del_init(&seq_dmabuf->hbuf.list);
18321 	lpfc_update_rcv_time_stamp(vport);
18322 	/* get the Remote Port's SID */
18323 	sid = sli4_sid_from_fc_hdr(fc_hdr);
18324 	tot_len = 0;
18325 	/* Get an iocbq struct to fill in. */
18326 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
18327 	if (first_iocbq) {
18328 		/* Initialize the first IOCB. */
18329 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
18330 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
18331 		first_iocbq->vport = vport;
18332 
18333 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
18334 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
18335 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
18336 			first_iocbq->iocb.un.rcvels.parmRo =
18337 				sli4_did_from_fc_hdr(fc_hdr);
18338 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
18339 		} else
18340 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
18341 		first_iocbq->iocb.ulpContext = NO_XRI;
18342 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
18343 			be16_to_cpu(fc_hdr->fh_ox_id);
18344 		/* iocbq is prepped for internal consumption.  Physical vpi. */
18345 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
18346 			vport->phba->vpi_ids[vport->vpi];
18347 		/* put the first buffer into the first IOCBq */
18348 		tot_len = bf_get(lpfc_rcqe_length,
18349 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
18350 
18351 		first_iocbq->context2 = &seq_dmabuf->dbuf;
18352 		first_iocbq->context3 = NULL;
18353 		first_iocbq->iocb.ulpBdeCount = 1;
18354 		if (tot_len > LPFC_DATA_BUF_SIZE)
18355 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18356 							LPFC_DATA_BUF_SIZE;
18357 		else
18358 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
18359 
18360 		first_iocbq->iocb.un.rcvels.remoteID = sid;
18361 
18362 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18363 	}
18364 	iocbq = first_iocbq;
18365 	/*
18366 	 * Each IOCBq can have two Buffers assigned, so go through the list
18367 	 * of buffers for this sequence and save two buffers in each IOCBq
18368 	 */
18369 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
18370 		if (!iocbq) {
18371 			lpfc_in_buf_free(vport->phba, d_buf);
18372 			continue;
18373 		}
18374 		if (!iocbq->context3) {
18375 			iocbq->context3 = d_buf;
18376 			iocbq->iocb.ulpBdeCount++;
18377 			/* We need to get the size out of the right CQE */
18378 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18379 			len = bf_get(lpfc_rcqe_length,
18380 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18381 			pbde = (struct ulp_bde64 *)
18382 					&iocbq->iocb.unsli3.sli3Words[4];
18383 			if (len > LPFC_DATA_BUF_SIZE)
18384 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
18385 			else
18386 				pbde->tus.f.bdeSize = len;
18387 
18388 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18389 			tot_len += len;
18390 		} else {
18391 			iocbq = lpfc_sli_get_iocbq(vport->phba);
18392 			if (!iocbq) {
18393 				if (first_iocbq) {
18394 					first_iocbq->iocb.ulpStatus =
18395 							IOSTAT_FCP_RSP_ERROR;
18396 					first_iocbq->iocb.un.ulpWord[4] =
18397 							IOERR_NO_RESOURCES;
18398 				}
18399 				lpfc_in_buf_free(vport->phba, d_buf);
18400 				continue;
18401 			}
18402 			/* We need to get the size out of the right CQE */
18403 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18404 			len = bf_get(lpfc_rcqe_length,
18405 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18406 			iocbq->context2 = d_buf;
18407 			iocbq->context3 = NULL;
18408 			iocbq->iocb.ulpBdeCount = 1;
18409 			if (len > LPFC_DATA_BUF_SIZE)
18410 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18411 							LPFC_DATA_BUF_SIZE;
18412 			else
18413 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18414 
18415 			tot_len += len;
18416 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18417 
18418 			iocbq->iocb.un.rcvels.remoteID = sid;
18419 			list_add_tail(&iocbq->list, &first_iocbq->list);
18420 		}
18421 	}
18422 	/* Free the sequence's header buffer */
18423 	if (!first_iocbq)
18424 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18425 
18426 	return first_iocbq;
18427 }
18428 
18429 static void
18430 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18431 			  struct hbq_dmabuf *seq_dmabuf)
18432 {
18433 	struct fc_frame_header *fc_hdr;
18434 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18435 	struct lpfc_hba *phba = vport->phba;
18436 
18437 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18438 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18439 	if (!iocbq) {
18440 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18441 				"2707 Ring %d handler: Failed to allocate "
18442 				"iocb Rctl x%x Type x%x received\n",
18443 				LPFC_ELS_RING,
18444 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18445 		return;
18446 	}
18447 	if (!lpfc_complete_unsol_iocb(phba,
18448 				      phba->sli4_hba.els_wq->pring,
18449 				      iocbq, fc_hdr->fh_r_ctl,
18450 				      fc_hdr->fh_type))
18451 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18452 				"2540 Ring %d handler: unexpected Rctl "
18453 				"x%x Type x%x received\n",
18454 				LPFC_ELS_RING,
18455 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18456 
18457 	/* Free iocb created in lpfc_prep_seq */
18458 	list_for_each_entry_safe(curr_iocb, next_iocb,
18459 		&iocbq->list, list) {
18460 		list_del_init(&curr_iocb->list);
18461 		lpfc_sli_release_iocbq(phba, curr_iocb);
18462 	}
18463 	lpfc_sli_release_iocbq(phba, iocbq);
18464 }
18465 
18466 static void
18467 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18468 			    struct lpfc_iocbq *rspiocb)
18469 {
18470 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18471 
18472 	if (pcmd && pcmd->virt)
18473 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18474 	kfree(pcmd);
18475 	lpfc_sli_release_iocbq(phba, cmdiocb);
18476 	lpfc_drain_txq(phba);
18477 }
18478 
18479 static void
18480 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18481 			      struct hbq_dmabuf *dmabuf)
18482 {
18483 	struct fc_frame_header *fc_hdr;
18484 	struct lpfc_hba *phba = vport->phba;
18485 	struct lpfc_iocbq *iocbq = NULL;
18486 	union  lpfc_wqe *wqe;
18487 	struct lpfc_dmabuf *pcmd = NULL;
18488 	uint32_t frame_len;
18489 	int rc;
18490 	unsigned long iflags;
18491 
18492 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18493 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18494 
18495 	/* Send the received frame back */
18496 	iocbq = lpfc_sli_get_iocbq(phba);
18497 	if (!iocbq) {
18498 		/* Queue cq event and wakeup worker thread to process it */
18499 		spin_lock_irqsave(&phba->hbalock, iflags);
18500 		list_add_tail(&dmabuf->cq_event.list,
18501 			      &phba->sli4_hba.sp_queue_event);
18502 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18503 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18504 		lpfc_worker_wake_up(phba);
18505 		return;
18506 	}
18507 
18508 	/* Allocate buffer for command payload */
18509 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18510 	if (pcmd)
18511 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18512 					    &pcmd->phys);
18513 	if (!pcmd || !pcmd->virt)
18514 		goto exit;
18515 
18516 	INIT_LIST_HEAD(&pcmd->list);
18517 
18518 	/* copyin the payload */
18519 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18520 
18521 	/* fill in BDE's for command */
18522 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18523 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18524 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18525 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18526 
18527 	iocbq->context2 = pcmd;
18528 	iocbq->vport = vport;
18529 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18530 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18531 
18532 	/*
18533 	 * Setup rest of the iocb as though it were a WQE
18534 	 * Build the SEND_FRAME WQE
18535 	 */
18536 	wqe = (union lpfc_wqe *)&iocbq->iocb;
18537 
18538 	wqe->send_frame.frame_len = frame_len;
18539 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18540 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18541 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18542 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18543 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18544 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18545 
18546 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18547 	iocbq->iocb.ulpLe = 1;
18548 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18549 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18550 	if (rc == IOCB_ERROR)
18551 		goto exit;
18552 
18553 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18554 	return;
18555 
18556 exit:
18557 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18558 			"2023 Unable to process MDS loopback frame\n");
18559 	if (pcmd && pcmd->virt)
18560 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18561 	kfree(pcmd);
18562 	if (iocbq)
18563 		lpfc_sli_release_iocbq(phba, iocbq);
18564 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18565 }
18566 
18567 /**
18568  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18569  * @phba: Pointer to HBA context object.
18570  * @dmabuf: Pointer to a dmabuf that describes the FC sequence.
18571  *
18572  * This function is called with no lock held. This function processes all
18573  * the received buffers and gives it to upper layers when a received buffer
18574  * indicates that it is the final frame in the sequence. The interrupt
18575  * service routine processes received buffers at interrupt contexts.
18576  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18577  * appropriate receive function when the final frame in a sequence is received.
18578  **/
18579 void
18580 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18581 				 struct hbq_dmabuf *dmabuf)
18582 {
18583 	struct hbq_dmabuf *seq_dmabuf;
18584 	struct fc_frame_header *fc_hdr;
18585 	struct lpfc_vport *vport;
18586 	uint32_t fcfi;
18587 	uint32_t did;
18588 
18589 	/* Process each received buffer */
18590 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18591 
18592 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18593 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18594 		vport = phba->pport;
18595 		/* Handle MDS Loopback frames */
18596 		if  (!(phba->pport->load_flag & FC_UNLOADING))
18597 			lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18598 		else
18599 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18600 		return;
18601 	}
18602 
18603 	/* check to see if this a valid type of frame */
18604 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18605 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18606 		return;
18607 	}
18608 
18609 	if ((bf_get(lpfc_cqe_code,
18610 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18611 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18612 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18613 	else
18614 		fcfi = bf_get(lpfc_rcqe_fcf_id,
18615 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18616 
18617 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18618 		vport = phba->pport;
18619 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18620 				"2023 MDS Loopback %d bytes\n",
18621 				bf_get(lpfc_rcqe_length,
18622 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18623 		/* Handle MDS Loopback frames */
18624 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18625 		return;
18626 	}
18627 
18628 	/* d_id this frame is directed to */
18629 	did = sli4_did_from_fc_hdr(fc_hdr);
18630 
18631 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18632 	if (!vport) {
18633 		/* throw out the frame */
18634 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18635 		return;
18636 	}
18637 
18638 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18639 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18640 		(did != Fabric_DID)) {
18641 		/*
18642 		 * Throw out the frame if we are not pt2pt.
18643 		 * The pt2pt protocol allows for discovery frames
18644 		 * to be received without a registered VPI.
18645 		 */
18646 		if (!(vport->fc_flag & FC_PT2PT) ||
18647 			(phba->link_state == LPFC_HBA_READY)) {
18648 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18649 			return;
18650 		}
18651 	}
18652 
18653 	/* Handle the basic abort sequence (BA_ABTS) event */
18654 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18655 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18656 		return;
18657 	}
18658 
18659 	/* Link this frame */
18660 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18661 	if (!seq_dmabuf) {
18662 		/* unable to add frame to vport - throw it out */
18663 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18664 		return;
18665 	}
18666 	/* If not last frame in sequence continue processing frames. */
18667 	if (!lpfc_seq_complete(seq_dmabuf))
18668 		return;
18669 
18670 	/* Send the complete sequence to the upper layer protocol */
18671 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18672 }
18673 
18674 /**
18675  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18676  * @phba: pointer to lpfc hba data structure.
18677  *
18678  * This routine is invoked to post rpi header templates to the
18679  * HBA consistent with the SLI-4 interface spec.  This routine
18680  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18681  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18682  *
18683  * This routine does not require any locks.  It's usage is expected
18684  * to be driver load or reset recovery when the driver is
18685  * sequential.
18686  *
18687  * Return codes
18688  * 	0 - successful
18689  *      -EIO - The mailbox failed to complete successfully.
18690  * 	When this error occurs, the driver is not guaranteed
18691  *	to have any rpi regions posted to the device and
18692  *	must either attempt to repost the regions or take a
18693  *	fatal error.
18694  **/
18695 int
18696 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18697 {
18698 	struct lpfc_rpi_hdr *rpi_page;
18699 	uint32_t rc = 0;
18700 	uint16_t lrpi = 0;
18701 
18702 	/* SLI4 ports that support extents do not require RPI headers. */
18703 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18704 		goto exit;
18705 	if (phba->sli4_hba.extents_in_use)
18706 		return -EIO;
18707 
18708 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18709 		/*
18710 		 * Assign the rpi headers a physical rpi only if the driver
18711 		 * has not initialized those resources.  A port reset only
18712 		 * needs the headers posted.
18713 		 */
18714 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18715 		    LPFC_RPI_RSRC_RDY)
18716 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18717 
18718 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18719 		if (rc != MBX_SUCCESS) {
18720 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18721 					"2008 Error %d posting all rpi "
18722 					"headers\n", rc);
18723 			rc = -EIO;
18724 			break;
18725 		}
18726 	}
18727 
18728  exit:
18729 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18730 	       LPFC_RPI_RSRC_RDY);
18731 	return rc;
18732 }
18733 
18734 /**
18735  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18736  * @phba: pointer to lpfc hba data structure.
18737  * @rpi_page:  pointer to the rpi memory region.
18738  *
18739  * This routine is invoked to post a single rpi header to the
18740  * HBA consistent with the SLI-4 interface spec.  This memory region
18741  * maps up to 64 rpi context regions.
18742  *
18743  * Return codes
18744  * 	0 - successful
18745  * 	-ENOMEM - No available memory
18746  *      -EIO - The mailbox failed to complete successfully.
18747  **/
18748 int
18749 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18750 {
18751 	LPFC_MBOXQ_t *mboxq;
18752 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18753 	uint32_t rc = 0;
18754 	uint32_t shdr_status, shdr_add_status;
18755 	union lpfc_sli4_cfg_shdr *shdr;
18756 
18757 	/* SLI4 ports that support extents do not require RPI headers. */
18758 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18759 		return rc;
18760 	if (phba->sli4_hba.extents_in_use)
18761 		return -EIO;
18762 
18763 	/* The port is notified of the header region via a mailbox command. */
18764 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18765 	if (!mboxq) {
18766 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18767 				"2001 Unable to allocate memory for issuing "
18768 				"SLI_CONFIG_SPECIAL mailbox command\n");
18769 		return -ENOMEM;
18770 	}
18771 
18772 	/* Post all rpi memory regions to the port. */
18773 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18774 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18775 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18776 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18777 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18778 			 LPFC_SLI4_MBX_EMBED);
18779 
18780 
18781 	/* Post the physical rpi to the port for this rpi header. */
18782 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18783 	       rpi_page->start_rpi);
18784 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18785 	       hdr_tmpl, rpi_page->page_count);
18786 
18787 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18788 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18789 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18790 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18791 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18792 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18793 	if (rc != MBX_TIMEOUT)
18794 		mempool_free(mboxq, phba->mbox_mem_pool);
18795 	if (shdr_status || shdr_add_status || rc) {
18796 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18797 				"2514 POST_RPI_HDR mailbox failed with "
18798 				"status x%x add_status x%x, mbx status x%x\n",
18799 				shdr_status, shdr_add_status, rc);
18800 		rc = -ENXIO;
18801 	} else {
18802 		/*
18803 		 * The next_rpi stores the next logical module-64 rpi value used
18804 		 * to post physical rpis in subsequent rpi postings.
18805 		 */
18806 		spin_lock_irq(&phba->hbalock);
18807 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18808 		spin_unlock_irq(&phba->hbalock);
18809 	}
18810 	return rc;
18811 }
18812 
18813 /**
18814  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18815  * @phba: pointer to lpfc hba data structure.
18816  *
18817  * This routine is invoked to post rpi header templates to the
18818  * HBA consistent with the SLI-4 interface spec.  This routine
18819  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18820  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18821  *
18822  * Returns
18823  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18824  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18825  **/
18826 int
18827 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18828 {
18829 	unsigned long rpi;
18830 	uint16_t max_rpi, rpi_limit;
18831 	uint16_t rpi_remaining, lrpi = 0;
18832 	struct lpfc_rpi_hdr *rpi_hdr;
18833 	unsigned long iflag;
18834 
18835 	/*
18836 	 * Fetch the next logical rpi.  Because this index is logical,
18837 	 * the  driver starts at 0 each time.
18838 	 */
18839 	spin_lock_irqsave(&phba->hbalock, iflag);
18840 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18841 	rpi_limit = phba->sli4_hba.next_rpi;
18842 
18843 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18844 	if (rpi >= rpi_limit)
18845 		rpi = LPFC_RPI_ALLOC_ERROR;
18846 	else {
18847 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18848 		phba->sli4_hba.max_cfg_param.rpi_used++;
18849 		phba->sli4_hba.rpi_count++;
18850 	}
18851 	lpfc_printf_log(phba, KERN_INFO,
18852 			LOG_NODE | LOG_DISCOVERY,
18853 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18854 			(int) rpi, max_rpi, rpi_limit);
18855 
18856 	/*
18857 	 * Don't try to allocate more rpi header regions if the device limit
18858 	 * has been exhausted.
18859 	 */
18860 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18861 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18862 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18863 		return rpi;
18864 	}
18865 
18866 	/*
18867 	 * RPI header postings are not required for SLI4 ports capable of
18868 	 * extents.
18869 	 */
18870 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18871 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18872 		return rpi;
18873 	}
18874 
18875 	/*
18876 	 * If the driver is running low on rpi resources, allocate another
18877 	 * page now.  Note that the next_rpi value is used because
18878 	 * it represents how many are actually in use whereas max_rpi notes
18879 	 * how many are supported max by the device.
18880 	 */
18881 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18882 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18883 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18884 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18885 		if (!rpi_hdr) {
18886 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18887 					"2002 Error Could not grow rpi "
18888 					"count\n");
18889 		} else {
18890 			lrpi = rpi_hdr->start_rpi;
18891 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18892 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18893 		}
18894 	}
18895 
18896 	return rpi;
18897 }
18898 
18899 /**
18900  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18901  * @phba: pointer to lpfc hba data structure.
18902  * @rpi: rpi to free
18903  *
18904  * This routine is invoked to release an rpi to the pool of
18905  * available rpis maintained by the driver.
18906  **/
18907 static void
18908 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18909 {
18910 	/*
18911 	 * if the rpi value indicates a prior unreg has already
18912 	 * been done, skip the unreg.
18913 	 */
18914 	if (rpi == LPFC_RPI_ALLOC_ERROR)
18915 		return;
18916 
18917 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18918 		phba->sli4_hba.rpi_count--;
18919 		phba->sli4_hba.max_cfg_param.rpi_used--;
18920 	} else {
18921 		lpfc_printf_log(phba, KERN_INFO,
18922 				LOG_NODE | LOG_DISCOVERY,
18923 				"2016 rpi %x not inuse\n",
18924 				rpi);
18925 	}
18926 }
18927 
18928 /**
18929  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18930  * @phba: pointer to lpfc hba data structure.
18931  * @rpi: rpi to free
18932  *
18933  * This routine is invoked to release an rpi to the pool of
18934  * available rpis maintained by the driver.
18935  **/
18936 void
18937 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18938 {
18939 	spin_lock_irq(&phba->hbalock);
18940 	__lpfc_sli4_free_rpi(phba, rpi);
18941 	spin_unlock_irq(&phba->hbalock);
18942 }
18943 
18944 /**
18945  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18946  * @phba: pointer to lpfc hba data structure.
18947  *
18948  * This routine is invoked to remove the memory region that
18949  * provided rpi via a bitmask.
18950  **/
18951 void
18952 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18953 {
18954 	kfree(phba->sli4_hba.rpi_bmask);
18955 	kfree(phba->sli4_hba.rpi_ids);
18956 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18957 }
18958 
18959 /**
18960  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18961  * @ndlp: pointer to lpfc nodelist data structure.
18962  * @cmpl: completion call-back.
18963  * @arg: data to load as MBox 'caller buffer information'
18964  *
18965  * This routine is invoked to remove the memory region that
18966  * provided rpi via a bitmask.
18967  **/
18968 int
18969 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18970 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18971 {
18972 	LPFC_MBOXQ_t *mboxq;
18973 	struct lpfc_hba *phba = ndlp->phba;
18974 	int rc;
18975 
18976 	/* The port is notified of the header region via a mailbox command. */
18977 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18978 	if (!mboxq)
18979 		return -ENOMEM;
18980 
18981 	/* Post all rpi memory regions to the port. */
18982 	lpfc_resume_rpi(mboxq, ndlp);
18983 	if (cmpl) {
18984 		mboxq->mbox_cmpl = cmpl;
18985 		mboxq->ctx_buf = arg;
18986 		mboxq->ctx_ndlp = ndlp;
18987 	} else
18988 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18989 	mboxq->vport = ndlp->vport;
18990 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18991 	if (rc == MBX_NOT_FINISHED) {
18992 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
18993 				"2010 Resume RPI Mailbox failed "
18994 				"status %d, mbxStatus x%x\n", rc,
18995 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18996 		mempool_free(mboxq, phba->mbox_mem_pool);
18997 		return -EIO;
18998 	}
18999 	return 0;
19000 }
19001 
19002 /**
19003  * lpfc_sli4_init_vpi - Initialize a vpi with the port
19004  * @vport: Pointer to the vport for which the vpi is being initialized
19005  *
19006  * This routine is invoked to activate a vpi with the port.
19007  *
19008  * Returns:
19009  *    0 success
19010  *    -Evalue otherwise
19011  **/
19012 int
19013 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
19014 {
19015 	LPFC_MBOXQ_t *mboxq;
19016 	int rc = 0;
19017 	int retval = MBX_SUCCESS;
19018 	uint32_t mbox_tmo;
19019 	struct lpfc_hba *phba = vport->phba;
19020 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19021 	if (!mboxq)
19022 		return -ENOMEM;
19023 	lpfc_init_vpi(phba, mboxq, vport->vpi);
19024 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
19025 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
19026 	if (rc != MBX_SUCCESS) {
19027 		lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
19028 				"2022 INIT VPI Mailbox failed "
19029 				"status %d, mbxStatus x%x\n", rc,
19030 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
19031 		retval = -EIO;
19032 	}
19033 	if (rc != MBX_TIMEOUT)
19034 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
19035 
19036 	return retval;
19037 }
19038 
19039 /**
19040  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
19041  * @phba: pointer to lpfc hba data structure.
19042  * @mboxq: Pointer to mailbox object.
19043  *
19044  * This routine is invoked to manually add a single FCF record. The caller
19045  * must pass a completely initialized FCF_Record.  This routine takes
19046  * care of the nonembedded mailbox operations.
19047  **/
19048 static void
19049 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
19050 {
19051 	void *virt_addr;
19052 	union lpfc_sli4_cfg_shdr *shdr;
19053 	uint32_t shdr_status, shdr_add_status;
19054 
19055 	virt_addr = mboxq->sge_array->addr[0];
19056 	/* The IOCTL status is embedded in the mailbox subheader. */
19057 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
19058 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
19059 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
19060 
19061 	if ((shdr_status || shdr_add_status) &&
19062 		(shdr_status != STATUS_FCF_IN_USE))
19063 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19064 			"2558 ADD_FCF_RECORD mailbox failed with "
19065 			"status x%x add_status x%x\n",
19066 			shdr_status, shdr_add_status);
19067 
19068 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
19069 }
19070 
19071 /**
19072  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
19073  * @phba: pointer to lpfc hba data structure.
19074  * @fcf_record:  pointer to the initialized fcf record to add.
19075  *
19076  * This routine is invoked to manually add a single FCF record. The caller
19077  * must pass a completely initialized FCF_Record.  This routine takes
19078  * care of the nonembedded mailbox operations.
19079  **/
19080 int
19081 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
19082 {
19083 	int rc = 0;
19084 	LPFC_MBOXQ_t *mboxq;
19085 	uint8_t *bytep;
19086 	void *virt_addr;
19087 	struct lpfc_mbx_sge sge;
19088 	uint32_t alloc_len, req_len;
19089 	uint32_t fcfindex;
19090 
19091 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19092 	if (!mboxq) {
19093 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19094 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
19095 		return -ENOMEM;
19096 	}
19097 
19098 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
19099 		  sizeof(uint32_t);
19100 
19101 	/* Allocate DMA memory and set up the non-embedded mailbox command */
19102 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
19103 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
19104 				     req_len, LPFC_SLI4_MBX_NEMBED);
19105 	if (alloc_len < req_len) {
19106 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19107 			"2523 Allocated DMA memory size (x%x) is "
19108 			"less than the requested DMA memory "
19109 			"size (x%x)\n", alloc_len, req_len);
19110 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19111 		return -ENOMEM;
19112 	}
19113 
19114 	/*
19115 	 * Get the first SGE entry from the non-embedded DMA memory.  This
19116 	 * routine only uses a single SGE.
19117 	 */
19118 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
19119 	virt_addr = mboxq->sge_array->addr[0];
19120 	/*
19121 	 * Configure the FCF record for FCFI 0.  This is the driver's
19122 	 * hardcoded default and gets used in nonFIP mode.
19123 	 */
19124 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
19125 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
19126 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
19127 
19128 	/*
19129 	 * Copy the fcf_index and the FCF Record Data. The data starts after
19130 	 * the FCoE header plus word10. The data copy needs to be endian
19131 	 * correct.
19132 	 */
19133 	bytep += sizeof(uint32_t);
19134 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
19135 	mboxq->vport = phba->pport;
19136 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
19137 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19138 	if (rc == MBX_NOT_FINISHED) {
19139 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19140 			"2515 ADD_FCF_RECORD mailbox failed with "
19141 			"status 0x%x\n", rc);
19142 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19143 		rc = -EIO;
19144 	} else
19145 		rc = 0;
19146 
19147 	return rc;
19148 }
19149 
19150 /**
19151  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
19152  * @phba: pointer to lpfc hba data structure.
19153  * @fcf_record:  pointer to the fcf record to write the default data.
19154  * @fcf_index: FCF table entry index.
19155  *
19156  * This routine is invoked to build the driver's default FCF record.  The
19157  * values used are hardcoded.  This routine handles memory initialization.
19158  *
19159  **/
19160 void
19161 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
19162 				struct fcf_record *fcf_record,
19163 				uint16_t fcf_index)
19164 {
19165 	memset(fcf_record, 0, sizeof(struct fcf_record));
19166 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
19167 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
19168 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
19169 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
19170 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
19171 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
19172 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
19173 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
19174 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
19175 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
19176 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
19177 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
19178 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
19179 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
19180 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
19181 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
19182 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
19183 	/* Set the VLAN bit map */
19184 	if (phba->valid_vlan) {
19185 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
19186 			= 1 << (phba->vlan_id % 8);
19187 	}
19188 }
19189 
19190 /**
19191  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
19192  * @phba: pointer to lpfc hba data structure.
19193  * @fcf_index: FCF table entry offset.
19194  *
19195  * This routine is invoked to scan the entire FCF table by reading FCF
19196  * record and processing it one at a time starting from the @fcf_index
19197  * for initial FCF discovery or fast FCF failover rediscovery.
19198  *
19199  * Return 0 if the mailbox command is submitted successfully, none 0
19200  * otherwise.
19201  **/
19202 int
19203 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19204 {
19205 	int rc = 0, error;
19206 	LPFC_MBOXQ_t *mboxq;
19207 
19208 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
19209 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
19210 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19211 	if (!mboxq) {
19212 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19213 				"2000 Failed to allocate mbox for "
19214 				"READ_FCF cmd\n");
19215 		error = -ENOMEM;
19216 		goto fail_fcf_scan;
19217 	}
19218 	/* Construct the read FCF record mailbox command */
19219 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19220 	if (rc) {
19221 		error = -EINVAL;
19222 		goto fail_fcf_scan;
19223 	}
19224 	/* Issue the mailbox command asynchronously */
19225 	mboxq->vport = phba->pport;
19226 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
19227 
19228 	spin_lock_irq(&phba->hbalock);
19229 	phba->hba_flag |= FCF_TS_INPROG;
19230 	spin_unlock_irq(&phba->hbalock);
19231 
19232 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19233 	if (rc == MBX_NOT_FINISHED)
19234 		error = -EIO;
19235 	else {
19236 		/* Reset eligible FCF count for new scan */
19237 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
19238 			phba->fcf.eligible_fcf_cnt = 0;
19239 		error = 0;
19240 	}
19241 fail_fcf_scan:
19242 	if (error) {
19243 		if (mboxq)
19244 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
19245 		/* FCF scan failed, clear FCF_TS_INPROG flag */
19246 		spin_lock_irq(&phba->hbalock);
19247 		phba->hba_flag &= ~FCF_TS_INPROG;
19248 		spin_unlock_irq(&phba->hbalock);
19249 	}
19250 	return error;
19251 }
19252 
19253 /**
19254  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
19255  * @phba: pointer to lpfc hba data structure.
19256  * @fcf_index: FCF table entry offset.
19257  *
19258  * This routine is invoked to read an FCF record indicated by @fcf_index
19259  * and to use it for FLOGI roundrobin FCF failover.
19260  *
19261  * Return 0 if the mailbox command is submitted successfully, none 0
19262  * otherwise.
19263  **/
19264 int
19265 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19266 {
19267 	int rc = 0, error;
19268 	LPFC_MBOXQ_t *mboxq;
19269 
19270 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19271 	if (!mboxq) {
19272 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19273 				"2763 Failed to allocate mbox for "
19274 				"READ_FCF cmd\n");
19275 		error = -ENOMEM;
19276 		goto fail_fcf_read;
19277 	}
19278 	/* Construct the read FCF record mailbox command */
19279 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19280 	if (rc) {
19281 		error = -EINVAL;
19282 		goto fail_fcf_read;
19283 	}
19284 	/* Issue the mailbox command asynchronously */
19285 	mboxq->vport = phba->pport;
19286 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
19287 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19288 	if (rc == MBX_NOT_FINISHED)
19289 		error = -EIO;
19290 	else
19291 		error = 0;
19292 
19293 fail_fcf_read:
19294 	if (error && mboxq)
19295 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19296 	return error;
19297 }
19298 
19299 /**
19300  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
19301  * @phba: pointer to lpfc hba data structure.
19302  * @fcf_index: FCF table entry offset.
19303  *
19304  * This routine is invoked to read an FCF record indicated by @fcf_index to
19305  * determine whether it's eligible for FLOGI roundrobin failover list.
19306  *
19307  * Return 0 if the mailbox command is submitted successfully, none 0
19308  * otherwise.
19309  **/
19310 int
19311 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
19312 {
19313 	int rc = 0, error;
19314 	LPFC_MBOXQ_t *mboxq;
19315 
19316 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19317 	if (!mboxq) {
19318 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
19319 				"2758 Failed to allocate mbox for "
19320 				"READ_FCF cmd\n");
19321 				error = -ENOMEM;
19322 				goto fail_fcf_read;
19323 	}
19324 	/* Construct the read FCF record mailbox command */
19325 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
19326 	if (rc) {
19327 		error = -EINVAL;
19328 		goto fail_fcf_read;
19329 	}
19330 	/* Issue the mailbox command asynchronously */
19331 	mboxq->vport = phba->pport;
19332 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
19333 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
19334 	if (rc == MBX_NOT_FINISHED)
19335 		error = -EIO;
19336 	else
19337 		error = 0;
19338 
19339 fail_fcf_read:
19340 	if (error && mboxq)
19341 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
19342 	return error;
19343 }
19344 
19345 /**
19346  * lpfc_check_next_fcf_pri_level
19347  * @phba: pointer to the lpfc_hba struct for this port.
19348  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
19349  * routine when the rr_bmask is empty. The FCF indecies are put into the
19350  * rr_bmask based on their priority level. Starting from the highest priority
19351  * to the lowest. The most likely FCF candidate will be in the highest
19352  * priority group. When this routine is called it searches the fcf_pri list for
19353  * next lowest priority group and repopulates the rr_bmask with only those
19354  * fcf_indexes.
19355  * returns:
19356  * 1=success 0=failure
19357  **/
19358 static int
19359 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
19360 {
19361 	uint16_t next_fcf_pri;
19362 	uint16_t last_index;
19363 	struct lpfc_fcf_pri *fcf_pri;
19364 	int rc;
19365 	int ret = 0;
19366 
19367 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
19368 			LPFC_SLI4_FCF_TBL_INDX_MAX);
19369 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19370 			"3060 Last IDX %d\n", last_index);
19371 
19372 	/* Verify the priority list has 2 or more entries */
19373 	spin_lock_irq(&phba->hbalock);
19374 	if (list_empty(&phba->fcf.fcf_pri_list) ||
19375 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
19376 		spin_unlock_irq(&phba->hbalock);
19377 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19378 			"3061 Last IDX %d\n", last_index);
19379 		return 0; /* Empty rr list */
19380 	}
19381 	spin_unlock_irq(&phba->hbalock);
19382 
19383 	next_fcf_pri = 0;
19384 	/*
19385 	 * Clear the rr_bmask and set all of the bits that are at this
19386 	 * priority.
19387 	 */
19388 	memset(phba->fcf.fcf_rr_bmask, 0,
19389 			sizeof(*phba->fcf.fcf_rr_bmask));
19390 	spin_lock_irq(&phba->hbalock);
19391 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19392 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
19393 			continue;
19394 		/*
19395 		 * the 1st priority that has not FLOGI failed
19396 		 * will be the highest.
19397 		 */
19398 		if (!next_fcf_pri)
19399 			next_fcf_pri = fcf_pri->fcf_rec.priority;
19400 		spin_unlock_irq(&phba->hbalock);
19401 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19402 			rc = lpfc_sli4_fcf_rr_index_set(phba,
19403 						fcf_pri->fcf_rec.fcf_index);
19404 			if (rc)
19405 				return 0;
19406 		}
19407 		spin_lock_irq(&phba->hbalock);
19408 	}
19409 	/*
19410 	 * if next_fcf_pri was not set above and the list is not empty then
19411 	 * we have failed flogis on all of them. So reset flogi failed
19412 	 * and start at the beginning.
19413 	 */
19414 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19415 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19416 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19417 			/*
19418 			 * the 1st priority that has not FLOGI failed
19419 			 * will be the highest.
19420 			 */
19421 			if (!next_fcf_pri)
19422 				next_fcf_pri = fcf_pri->fcf_rec.priority;
19423 			spin_unlock_irq(&phba->hbalock);
19424 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19425 				rc = lpfc_sli4_fcf_rr_index_set(phba,
19426 						fcf_pri->fcf_rec.fcf_index);
19427 				if (rc)
19428 					return 0;
19429 			}
19430 			spin_lock_irq(&phba->hbalock);
19431 		}
19432 	} else
19433 		ret = 1;
19434 	spin_unlock_irq(&phba->hbalock);
19435 
19436 	return ret;
19437 }
19438 /**
19439  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19440  * @phba: pointer to lpfc hba data structure.
19441  *
19442  * This routine is to get the next eligible FCF record index in a round
19443  * robin fashion. If the next eligible FCF record index equals to the
19444  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19445  * shall be returned, otherwise, the next eligible FCF record's index
19446  * shall be returned.
19447  **/
19448 uint16_t
19449 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19450 {
19451 	uint16_t next_fcf_index;
19452 
19453 initial_priority:
19454 	/* Search start from next bit of currently registered FCF index */
19455 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
19456 
19457 next_priority:
19458 	/* Determine the next fcf index to check */
19459 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19460 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19461 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
19462 				       next_fcf_index);
19463 
19464 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
19465 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19466 		/*
19467 		 * If we have wrapped then we need to clear the bits that
19468 		 * have been tested so that we can detect when we should
19469 		 * change the priority level.
19470 		 */
19471 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19472 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19473 	}
19474 
19475 
19476 	/* Check roundrobin failover list empty condition */
19477 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19478 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19479 		/*
19480 		 * If next fcf index is not found check if there are lower
19481 		 * Priority level fcf's in the fcf_priority list.
19482 		 * Set up the rr_bmask with all of the avaiable fcf bits
19483 		 * at that level and continue the selection process.
19484 		 */
19485 		if (lpfc_check_next_fcf_pri_level(phba))
19486 			goto initial_priority;
19487 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19488 				"2844 No roundrobin failover FCF available\n");
19489 
19490 		return LPFC_FCOE_FCF_NEXT_NONE;
19491 	}
19492 
19493 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19494 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19495 		LPFC_FCF_FLOGI_FAILED) {
19496 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19497 			return LPFC_FCOE_FCF_NEXT_NONE;
19498 
19499 		goto next_priority;
19500 	}
19501 
19502 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19503 			"2845 Get next roundrobin failover FCF (x%x)\n",
19504 			next_fcf_index);
19505 
19506 	return next_fcf_index;
19507 }
19508 
19509 /**
19510  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19511  * @phba: pointer to lpfc hba data structure.
19512  * @fcf_index: index into the FCF table to 'set'
19513  *
19514  * This routine sets the FCF record index in to the eligible bmask for
19515  * roundrobin failover search. It checks to make sure that the index
19516  * does not go beyond the range of the driver allocated bmask dimension
19517  * before setting the bit.
19518  *
19519  * Returns 0 if the index bit successfully set, otherwise, it returns
19520  * -EINVAL.
19521  **/
19522 int
19523 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19524 {
19525 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19526 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19527 				"2610 FCF (x%x) reached driver's book "
19528 				"keeping dimension:x%x\n",
19529 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19530 		return -EINVAL;
19531 	}
19532 	/* Set the eligible FCF record index bmask */
19533 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19534 
19535 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19536 			"2790 Set FCF (x%x) to roundrobin FCF failover "
19537 			"bmask\n", fcf_index);
19538 
19539 	return 0;
19540 }
19541 
19542 /**
19543  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19544  * @phba: pointer to lpfc hba data structure.
19545  * @fcf_index: index into the FCF table to 'clear'
19546  *
19547  * This routine clears the FCF record index from the eligible bmask for
19548  * roundrobin failover search. It checks to make sure that the index
19549  * does not go beyond the range of the driver allocated bmask dimension
19550  * before clearing the bit.
19551  **/
19552 void
19553 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19554 {
19555 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19556 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19557 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19558 				"2762 FCF (x%x) reached driver's book "
19559 				"keeping dimension:x%x\n",
19560 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19561 		return;
19562 	}
19563 	/* Clear the eligible FCF record index bmask */
19564 	spin_lock_irq(&phba->hbalock);
19565 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19566 				 list) {
19567 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19568 			list_del_init(&fcf_pri->list);
19569 			break;
19570 		}
19571 	}
19572 	spin_unlock_irq(&phba->hbalock);
19573 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19574 
19575 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19576 			"2791 Clear FCF (x%x) from roundrobin failover "
19577 			"bmask\n", fcf_index);
19578 }
19579 
19580 /**
19581  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19582  * @phba: pointer to lpfc hba data structure.
19583  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
19584  *
19585  * This routine is the completion routine for the rediscover FCF table mailbox
19586  * command. If the mailbox command returned failure, it will try to stop the
19587  * FCF rediscover wait timer.
19588  **/
19589 static void
19590 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19591 {
19592 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19593 	uint32_t shdr_status, shdr_add_status;
19594 
19595 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19596 
19597 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19598 			     &redisc_fcf->header.cfg_shdr.response);
19599 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19600 			     &redisc_fcf->header.cfg_shdr.response);
19601 	if (shdr_status || shdr_add_status) {
19602 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19603 				"2746 Requesting for FCF rediscovery failed "
19604 				"status x%x add_status x%x\n",
19605 				shdr_status, shdr_add_status);
19606 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19607 			spin_lock_irq(&phba->hbalock);
19608 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19609 			spin_unlock_irq(&phba->hbalock);
19610 			/*
19611 			 * CVL event triggered FCF rediscover request failed,
19612 			 * last resort to re-try current registered FCF entry.
19613 			 */
19614 			lpfc_retry_pport_discovery(phba);
19615 		} else {
19616 			spin_lock_irq(&phba->hbalock);
19617 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19618 			spin_unlock_irq(&phba->hbalock);
19619 			/*
19620 			 * DEAD FCF event triggered FCF rediscover request
19621 			 * failed, last resort to fail over as a link down
19622 			 * to FCF registration.
19623 			 */
19624 			lpfc_sli4_fcf_dead_failthrough(phba);
19625 		}
19626 	} else {
19627 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19628 				"2775 Start FCF rediscover quiescent timer\n");
19629 		/*
19630 		 * Start FCF rediscovery wait timer for pending FCF
19631 		 * before rescan FCF record table.
19632 		 */
19633 		lpfc_fcf_redisc_wait_start_timer(phba);
19634 	}
19635 
19636 	mempool_free(mbox, phba->mbox_mem_pool);
19637 }
19638 
19639 /**
19640  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19641  * @phba: pointer to lpfc hba data structure.
19642  *
19643  * This routine is invoked to request for rediscovery of the entire FCF table
19644  * by the port.
19645  **/
19646 int
19647 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19648 {
19649 	LPFC_MBOXQ_t *mbox;
19650 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19651 	int rc, length;
19652 
19653 	/* Cancel retry delay timers to all vports before FCF rediscover */
19654 	lpfc_cancel_all_vport_retry_delay_timer(phba);
19655 
19656 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19657 	if (!mbox) {
19658 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19659 				"2745 Failed to allocate mbox for "
19660 				"requesting FCF rediscover.\n");
19661 		return -ENOMEM;
19662 	}
19663 
19664 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19665 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19666 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19667 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19668 			 length, LPFC_SLI4_MBX_EMBED);
19669 
19670 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19671 	/* Set count to 0 for invalidating the entire FCF database */
19672 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19673 
19674 	/* Issue the mailbox command asynchronously */
19675 	mbox->vport = phba->pport;
19676 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19677 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19678 
19679 	if (rc == MBX_NOT_FINISHED) {
19680 		mempool_free(mbox, phba->mbox_mem_pool);
19681 		return -EIO;
19682 	}
19683 	return 0;
19684 }
19685 
19686 /**
19687  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19688  * @phba: pointer to lpfc hba data structure.
19689  *
19690  * This function is the failover routine as a last resort to the FCF DEAD
19691  * event when driver failed to perform fast FCF failover.
19692  **/
19693 void
19694 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19695 {
19696 	uint32_t link_state;
19697 
19698 	/*
19699 	 * Last resort as FCF DEAD event failover will treat this as
19700 	 * a link down, but save the link state because we don't want
19701 	 * it to be changed to Link Down unless it is already down.
19702 	 */
19703 	link_state = phba->link_state;
19704 	lpfc_linkdown(phba);
19705 	phba->link_state = link_state;
19706 
19707 	/* Unregister FCF if no devices connected to it */
19708 	lpfc_unregister_unused_fcf(phba);
19709 }
19710 
19711 /**
19712  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19713  * @phba: pointer to lpfc hba data structure.
19714  * @rgn23_data: pointer to configure region 23 data.
19715  *
19716  * This function gets SLI3 port configure region 23 data through memory dump
19717  * mailbox command. When it successfully retrieves data, the size of the data
19718  * will be returned, otherwise, 0 will be returned.
19719  **/
19720 static uint32_t
19721 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19722 {
19723 	LPFC_MBOXQ_t *pmb = NULL;
19724 	MAILBOX_t *mb;
19725 	uint32_t offset = 0;
19726 	int i, rc;
19727 
19728 	if (!rgn23_data)
19729 		return 0;
19730 
19731 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19732 	if (!pmb) {
19733 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19734 				"2600 failed to allocate mailbox memory\n");
19735 		return 0;
19736 	}
19737 	mb = &pmb->u.mb;
19738 
19739 	do {
19740 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19741 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19742 
19743 		if (rc != MBX_SUCCESS) {
19744 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19745 					"2601 failed to read config "
19746 					"region 23, rc 0x%x Status 0x%x\n",
19747 					rc, mb->mbxStatus);
19748 			mb->un.varDmp.word_cnt = 0;
19749 		}
19750 		/*
19751 		 * dump mem may return a zero when finished or we got a
19752 		 * mailbox error, either way we are done.
19753 		 */
19754 		if (mb->un.varDmp.word_cnt == 0)
19755 			break;
19756 
19757 		i =  mb->un.varDmp.word_cnt * sizeof(uint32_t);
19758 		if (offset + i >  DMP_RGN23_SIZE)
19759 			i =  DMP_RGN23_SIZE - offset;
19760 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19761 				      rgn23_data  + offset, i);
19762 		offset += i;
19763 	} while (offset < DMP_RGN23_SIZE);
19764 
19765 	mempool_free(pmb, phba->mbox_mem_pool);
19766 	return offset;
19767 }
19768 
19769 /**
19770  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19771  * @phba: pointer to lpfc hba data structure.
19772  * @rgn23_data: pointer to configure region 23 data.
19773  *
19774  * This function gets SLI4 port configure region 23 data through memory dump
19775  * mailbox command. When it successfully retrieves data, the size of the data
19776  * will be returned, otherwise, 0 will be returned.
19777  **/
19778 static uint32_t
19779 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19780 {
19781 	LPFC_MBOXQ_t *mboxq = NULL;
19782 	struct lpfc_dmabuf *mp = NULL;
19783 	struct lpfc_mqe *mqe;
19784 	uint32_t data_length = 0;
19785 	int rc;
19786 
19787 	if (!rgn23_data)
19788 		return 0;
19789 
19790 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19791 	if (!mboxq) {
19792 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19793 				"3105 failed to allocate mailbox memory\n");
19794 		return 0;
19795 	}
19796 
19797 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19798 		goto out;
19799 	mqe = &mboxq->u.mqe;
19800 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19801 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19802 	if (rc)
19803 		goto out;
19804 	data_length = mqe->un.mb_words[5];
19805 	if (data_length == 0)
19806 		goto out;
19807 	if (data_length > DMP_RGN23_SIZE) {
19808 		data_length = 0;
19809 		goto out;
19810 	}
19811 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19812 out:
19813 	mempool_free(mboxq, phba->mbox_mem_pool);
19814 	if (mp) {
19815 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19816 		kfree(mp);
19817 	}
19818 	return data_length;
19819 }
19820 
19821 /**
19822  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19823  * @phba: pointer to lpfc hba data structure.
19824  *
19825  * This function read region 23 and parse TLV for port status to
19826  * decide if the user disaled the port. If the TLV indicates the
19827  * port is disabled, the hba_flag is set accordingly.
19828  **/
19829 void
19830 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19831 {
19832 	uint8_t *rgn23_data = NULL;
19833 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19834 	uint32_t offset = 0;
19835 
19836 	/* Get adapter Region 23 data */
19837 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19838 	if (!rgn23_data)
19839 		goto out;
19840 
19841 	if (phba->sli_rev < LPFC_SLI_REV4)
19842 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19843 	else {
19844 		if_type = bf_get(lpfc_sli_intf_if_type,
19845 				 &phba->sli4_hba.sli_intf);
19846 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19847 			goto out;
19848 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19849 	}
19850 
19851 	if (!data_size)
19852 		goto out;
19853 
19854 	/* Check the region signature first */
19855 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19856 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19857 			"2619 Config region 23 has bad signature\n");
19858 			goto out;
19859 	}
19860 	offset += 4;
19861 
19862 	/* Check the data structure version */
19863 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19864 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
19865 			"2620 Config region 23 has bad version\n");
19866 		goto out;
19867 	}
19868 	offset += 4;
19869 
19870 	/* Parse TLV entries in the region */
19871 	while (offset < data_size) {
19872 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19873 			break;
19874 		/*
19875 		 * If the TLV is not driver specific TLV or driver id is
19876 		 * not linux driver id, skip the record.
19877 		 */
19878 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19879 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19880 		    (rgn23_data[offset + 3] != 0)) {
19881 			offset += rgn23_data[offset + 1] * 4 + 4;
19882 			continue;
19883 		}
19884 
19885 		/* Driver found a driver specific TLV in the config region */
19886 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19887 		offset += 4;
19888 		tlv_offset = 0;
19889 
19890 		/*
19891 		 * Search for configured port state sub-TLV.
19892 		 */
19893 		while ((offset < data_size) &&
19894 			(tlv_offset < sub_tlv_len)) {
19895 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19896 				offset += 4;
19897 				tlv_offset += 4;
19898 				break;
19899 			}
19900 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19901 				offset += rgn23_data[offset + 1] * 4 + 4;
19902 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19903 				continue;
19904 			}
19905 
19906 			/* This HBA contains PORT_STE configured */
19907 			if (!rgn23_data[offset + 2])
19908 				phba->hba_flag |= LINK_DISABLED;
19909 
19910 			goto out;
19911 		}
19912 	}
19913 
19914 out:
19915 	kfree(rgn23_data);
19916 	return;
19917 }
19918 
19919 /**
19920  * lpfc_wr_object - write an object to the firmware
19921  * @phba: HBA structure that indicates port to create a queue on.
19922  * @dmabuf_list: list of dmabufs to write to the port.
19923  * @size: the total byte value of the objects to write to the port.
19924  * @offset: the current offset to be used to start the transfer.
19925  *
19926  * This routine will create a wr_object mailbox command to send to the port.
19927  * the mailbox command will be constructed using the dma buffers described in
19928  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19929  * BDEs that the imbedded mailbox can support. The @offset variable will be
19930  * used to indicate the starting offset of the transfer and will also return
19931  * the offset after the write object mailbox has completed. @size is used to
19932  * determine the end of the object and whether the eof bit should be set.
19933  *
19934  * Return 0 is successful and offset will contain the the new offset to use
19935  * for the next write.
19936  * Return negative value for error cases.
19937  **/
19938 int
19939 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19940 	       uint32_t size, uint32_t *offset)
19941 {
19942 	struct lpfc_mbx_wr_object *wr_object;
19943 	LPFC_MBOXQ_t *mbox;
19944 	int rc = 0, i = 0;
19945 	uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19946 	uint32_t mbox_tmo;
19947 	struct lpfc_dmabuf *dmabuf;
19948 	uint32_t written = 0;
19949 	bool check_change_status = false;
19950 
19951 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19952 	if (!mbox)
19953 		return -ENOMEM;
19954 
19955 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19956 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19957 			sizeof(struct lpfc_mbx_wr_object) -
19958 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19959 
19960 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19961 	wr_object->u.request.write_offset = *offset;
19962 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19963 	wr_object->u.request.object_name[0] =
19964 		cpu_to_le32(wr_object->u.request.object_name[0]);
19965 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19966 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19967 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19968 			break;
19969 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19970 		wr_object->u.request.bde[i].addrHigh =
19971 			putPaddrHigh(dmabuf->phys);
19972 		if (written + SLI4_PAGE_SIZE >= size) {
19973 			wr_object->u.request.bde[i].tus.f.bdeSize =
19974 				(size - written);
19975 			written += (size - written);
19976 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19977 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19978 			check_change_status = true;
19979 		} else {
19980 			wr_object->u.request.bde[i].tus.f.bdeSize =
19981 				SLI4_PAGE_SIZE;
19982 			written += SLI4_PAGE_SIZE;
19983 		}
19984 		i++;
19985 	}
19986 	wr_object->u.request.bde_count = i;
19987 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19988 	if (!phba->sli4_hba.intr_enable)
19989 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19990 	else {
19991 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19992 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19993 	}
19994 	/* The IOCTL status is embedded in the mailbox subheader. */
19995 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19996 			     &wr_object->header.cfg_shdr.response);
19997 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19998 				 &wr_object->header.cfg_shdr.response);
19999 	if (check_change_status) {
20000 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
20001 					    &wr_object->u.response);
20002 
20003 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
20004 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
20005 			shdr_csf = bf_get(lpfc_wr_object_csf,
20006 					  &wr_object->u.response);
20007 			if (shdr_csf)
20008 				shdr_change_status =
20009 						   LPFC_CHANGE_STATUS_PCI_RESET;
20010 		}
20011 
20012 		switch (shdr_change_status) {
20013 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
20014 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20015 					"3198 Firmware write complete: System "
20016 					"reboot required to instantiate\n");
20017 			break;
20018 		case (LPFC_CHANGE_STATUS_FW_RESET):
20019 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20020 					"3199 Firmware write complete: Firmware"
20021 					" reset required to instantiate\n");
20022 			break;
20023 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
20024 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20025 					"3200 Firmware write complete: Port "
20026 					"Migration or PCI Reset required to "
20027 					"instantiate\n");
20028 			break;
20029 		case (LPFC_CHANGE_STATUS_PCI_RESET):
20030 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
20031 					"3201 Firmware write complete: PCI "
20032 					"Reset required to instantiate\n");
20033 			break;
20034 		default:
20035 			break;
20036 		}
20037 	}
20038 	if (rc != MBX_TIMEOUT)
20039 		mempool_free(mbox, phba->mbox_mem_pool);
20040 	if (shdr_status || shdr_add_status || rc) {
20041 		lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20042 				"3025 Write Object mailbox failed with "
20043 				"status x%x add_status x%x, mbx status x%x\n",
20044 				shdr_status, shdr_add_status, rc);
20045 		rc = -ENXIO;
20046 		*offset = shdr_add_status;
20047 	} else
20048 		*offset += wr_object->u.response.actual_write_length;
20049 	return rc;
20050 }
20051 
20052 /**
20053  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
20054  * @vport: pointer to vport data structure.
20055  *
20056  * This function iterate through the mailboxq and clean up all REG_LOGIN
20057  * and REG_VPI mailbox commands associated with the vport. This function
20058  * is called when driver want to restart discovery of the vport due to
20059  * a Clear Virtual Link event.
20060  **/
20061 void
20062 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
20063 {
20064 	struct lpfc_hba *phba = vport->phba;
20065 	LPFC_MBOXQ_t *mb, *nextmb;
20066 	struct lpfc_dmabuf *mp;
20067 	struct lpfc_nodelist *ndlp;
20068 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
20069 	LIST_HEAD(mbox_cmd_list);
20070 	uint8_t restart_loop;
20071 
20072 	/* Clean up internally queued mailbox commands with the vport */
20073 	spin_lock_irq(&phba->hbalock);
20074 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
20075 		if (mb->vport != vport)
20076 			continue;
20077 
20078 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20079 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
20080 			continue;
20081 
20082 		list_del(&mb->list);
20083 		list_add_tail(&mb->list, &mbox_cmd_list);
20084 	}
20085 	/* Clean up active mailbox command with the vport */
20086 	mb = phba->sli.mbox_active;
20087 	if (mb && (mb->vport == vport)) {
20088 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
20089 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
20090 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20091 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20092 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20093 			/* Put reference count for delayed processing */
20094 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
20095 			/* Unregister the RPI when mailbox complete */
20096 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20097 		}
20098 	}
20099 	/* Cleanup any mailbox completions which are not yet processed */
20100 	do {
20101 		restart_loop = 0;
20102 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
20103 			/*
20104 			 * If this mailox is already processed or it is
20105 			 * for another vport ignore it.
20106 			 */
20107 			if ((mb->vport != vport) ||
20108 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
20109 				continue;
20110 
20111 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
20112 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
20113 				continue;
20114 
20115 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
20116 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20117 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20118 				/* Unregister the RPI when mailbox complete */
20119 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
20120 				restart_loop = 1;
20121 				spin_unlock_irq(&phba->hbalock);
20122 				spin_lock(&ndlp->lock);
20123 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20124 				spin_unlock(&ndlp->lock);
20125 				spin_lock_irq(&phba->hbalock);
20126 				break;
20127 			}
20128 		}
20129 	} while (restart_loop);
20130 
20131 	spin_unlock_irq(&phba->hbalock);
20132 
20133 	/* Release the cleaned-up mailbox commands */
20134 	while (!list_empty(&mbox_cmd_list)) {
20135 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
20136 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
20137 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
20138 			if (mp) {
20139 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
20140 				kfree(mp);
20141 			}
20142 			mb->ctx_buf = NULL;
20143 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
20144 			mb->ctx_ndlp = NULL;
20145 			if (ndlp) {
20146 				spin_lock(&ndlp->lock);
20147 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20148 				spin_unlock(&ndlp->lock);
20149 				lpfc_nlp_put(ndlp);
20150 			}
20151 		}
20152 		mempool_free(mb, phba->mbox_mem_pool);
20153 	}
20154 
20155 	/* Release the ndlp with the cleaned-up active mailbox command */
20156 	if (act_mbx_ndlp) {
20157 		spin_lock(&act_mbx_ndlp->lock);
20158 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
20159 		spin_unlock(&act_mbx_ndlp->lock);
20160 		lpfc_nlp_put(act_mbx_ndlp);
20161 	}
20162 }
20163 
20164 /**
20165  * lpfc_drain_txq - Drain the txq
20166  * @phba: Pointer to HBA context object.
20167  *
20168  * This function attempt to submit IOCBs on the txq
20169  * to the adapter.  For SLI4 adapters, the txq contains
20170  * ELS IOCBs that have been deferred because the there
20171  * are no SGLs.  This congestion can occur with large
20172  * vport counts during node discovery.
20173  **/
20174 
20175 uint32_t
20176 lpfc_drain_txq(struct lpfc_hba *phba)
20177 {
20178 	LIST_HEAD(completions);
20179 	struct lpfc_sli_ring *pring;
20180 	struct lpfc_iocbq *piocbq = NULL;
20181 	unsigned long iflags = 0;
20182 	char *fail_msg = NULL;
20183 	struct lpfc_sglq *sglq;
20184 	union lpfc_wqe128 wqe;
20185 	uint32_t txq_cnt = 0;
20186 	struct lpfc_queue *wq;
20187 
20188 	if (phba->link_flag & LS_MDS_LOOPBACK) {
20189 		/* MDS WQE are posted only to first WQ*/
20190 		wq = phba->sli4_hba.hdwq[0].io_wq;
20191 		if (unlikely(!wq))
20192 			return 0;
20193 		pring = wq->pring;
20194 	} else {
20195 		wq = phba->sli4_hba.els_wq;
20196 		if (unlikely(!wq))
20197 			return 0;
20198 		pring = lpfc_phba_elsring(phba);
20199 	}
20200 
20201 	if (unlikely(!pring) || list_empty(&pring->txq))
20202 		return 0;
20203 
20204 	spin_lock_irqsave(&pring->ring_lock, iflags);
20205 	list_for_each_entry(piocbq, &pring->txq, list) {
20206 		txq_cnt++;
20207 	}
20208 
20209 	if (txq_cnt > pring->txq_max)
20210 		pring->txq_max = txq_cnt;
20211 
20212 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
20213 
20214 	while (!list_empty(&pring->txq)) {
20215 		spin_lock_irqsave(&pring->ring_lock, iflags);
20216 
20217 		piocbq = lpfc_sli_ringtx_get(phba, pring);
20218 		if (!piocbq) {
20219 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20220 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20221 				"2823 txq empty and txq_cnt is %d\n ",
20222 				txq_cnt);
20223 			break;
20224 		}
20225 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
20226 		if (!sglq) {
20227 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
20228 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20229 			break;
20230 		}
20231 		txq_cnt--;
20232 
20233 		/* The xri and iocb resources secured,
20234 		 * attempt to issue request
20235 		 */
20236 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
20237 		piocbq->sli4_xritag = sglq->sli4_xritag;
20238 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
20239 			fail_msg = "to convert bpl to sgl";
20240 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
20241 			fail_msg = "to convert iocb to wqe";
20242 		else if (lpfc_sli4_wq_put(wq, &wqe))
20243 			fail_msg = " - Wq is full";
20244 		else
20245 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
20246 
20247 		if (fail_msg) {
20248 			/* Failed means we can't issue and need to cancel */
20249 			lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
20250 					"2822 IOCB failed %s iotag 0x%x "
20251 					"xri 0x%x\n",
20252 					fail_msg,
20253 					piocbq->iotag, piocbq->sli4_xritag);
20254 			list_add_tail(&piocbq->list, &completions);
20255 		}
20256 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20257 	}
20258 
20259 	/* Cancel all the IOCBs that cannot be issued */
20260 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
20261 				IOERR_SLI_ABORTED);
20262 
20263 	return txq_cnt;
20264 }
20265 
20266 /**
20267  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
20268  * @phba: Pointer to HBA context object.
20269  * @pwqeq: Pointer to command WQE.
20270  * @sglq: Pointer to the scatter gather queue object.
20271  *
20272  * This routine converts the bpl or bde that is in the WQE
20273  * to a sgl list for the sli4 hardware. The physical address
20274  * of the bpl/bde is converted back to a virtual address.
20275  * If the WQE contains a BPL then the list of BDE's is
20276  * converted to sli4_sge's. If the WQE contains a single
20277  * BDE then it is converted to a single sli_sge.
20278  * The WQE is still in cpu endianness so the contents of
20279  * the bpl can be used without byte swapping.
20280  *
20281  * Returns valid XRI = Success, NO_XRI = Failure.
20282  */
20283 static uint16_t
20284 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
20285 		 struct lpfc_sglq *sglq)
20286 {
20287 	uint16_t xritag = NO_XRI;
20288 	struct ulp_bde64 *bpl = NULL;
20289 	struct ulp_bde64 bde;
20290 	struct sli4_sge *sgl  = NULL;
20291 	struct lpfc_dmabuf *dmabuf;
20292 	union lpfc_wqe128 *wqe;
20293 	int numBdes = 0;
20294 	int i = 0;
20295 	uint32_t offset = 0; /* accumulated offset in the sg request list */
20296 	int inbound = 0; /* number of sg reply entries inbound from firmware */
20297 	uint32_t cmd;
20298 
20299 	if (!pwqeq || !sglq)
20300 		return xritag;
20301 
20302 	sgl  = (struct sli4_sge *)sglq->sgl;
20303 	wqe = &pwqeq->wqe;
20304 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
20305 
20306 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
20307 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
20308 		return sglq->sli4_xritag;
20309 	numBdes = pwqeq->rsvd2;
20310 	if (numBdes) {
20311 		/* The addrHigh and addrLow fields within the WQE
20312 		 * have not been byteswapped yet so there is no
20313 		 * need to swap them back.
20314 		 */
20315 		if (pwqeq->context3)
20316 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
20317 		else
20318 			return xritag;
20319 
20320 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
20321 		if (!bpl)
20322 			return xritag;
20323 
20324 		for (i = 0; i < numBdes; i++) {
20325 			/* Should already be byte swapped. */
20326 			sgl->addr_hi = bpl->addrHigh;
20327 			sgl->addr_lo = bpl->addrLow;
20328 
20329 			sgl->word2 = le32_to_cpu(sgl->word2);
20330 			if ((i+1) == numBdes)
20331 				bf_set(lpfc_sli4_sge_last, sgl, 1);
20332 			else
20333 				bf_set(lpfc_sli4_sge_last, sgl, 0);
20334 			/* swap the size field back to the cpu so we
20335 			 * can assign it to the sgl.
20336 			 */
20337 			bde.tus.w = le32_to_cpu(bpl->tus.w);
20338 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
20339 			/* The offsets in the sgl need to be accumulated
20340 			 * separately for the request and reply lists.
20341 			 * The request is always first, the reply follows.
20342 			 */
20343 			switch (cmd) {
20344 			case CMD_GEN_REQUEST64_WQE:
20345 				/* add up the reply sg entries */
20346 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
20347 					inbound++;
20348 				/* first inbound? reset the offset */
20349 				if (inbound == 1)
20350 					offset = 0;
20351 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20352 				bf_set(lpfc_sli4_sge_type, sgl,
20353 					LPFC_SGE_TYPE_DATA);
20354 				offset += bde.tus.f.bdeSize;
20355 				break;
20356 			case CMD_FCP_TRSP64_WQE:
20357 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
20358 				bf_set(lpfc_sli4_sge_type, sgl,
20359 					LPFC_SGE_TYPE_DATA);
20360 				break;
20361 			case CMD_FCP_TSEND64_WQE:
20362 			case CMD_FCP_TRECEIVE64_WQE:
20363 				bf_set(lpfc_sli4_sge_type, sgl,
20364 					bpl->tus.f.bdeFlags);
20365 				if (i < 3)
20366 					offset = 0;
20367 				else
20368 					offset += bde.tus.f.bdeSize;
20369 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
20370 				break;
20371 			}
20372 			sgl->word2 = cpu_to_le32(sgl->word2);
20373 			bpl++;
20374 			sgl++;
20375 		}
20376 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
20377 		/* The addrHigh and addrLow fields of the BDE have not
20378 		 * been byteswapped yet so they need to be swapped
20379 		 * before putting them in the sgl.
20380 		 */
20381 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
20382 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
20383 		sgl->word2 = le32_to_cpu(sgl->word2);
20384 		bf_set(lpfc_sli4_sge_last, sgl, 1);
20385 		sgl->word2 = cpu_to_le32(sgl->word2);
20386 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
20387 	}
20388 	return sglq->sli4_xritag;
20389 }
20390 
20391 /**
20392  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
20393  * @phba: Pointer to HBA context object.
20394  * @qp: Pointer to HDW queue.
20395  * @pwqe: Pointer to command WQE.
20396  **/
20397 int
20398 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20399 		    struct lpfc_iocbq *pwqe)
20400 {
20401 	union lpfc_wqe128 *wqe = &pwqe->wqe;
20402 	struct lpfc_async_xchg_ctx *ctxp;
20403 	struct lpfc_queue *wq;
20404 	struct lpfc_sglq *sglq;
20405 	struct lpfc_sli_ring *pring;
20406 	unsigned long iflags;
20407 	uint32_t ret = 0;
20408 
20409 	/* NVME_LS and NVME_LS ABTS requests. */
20410 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20411 		pring =  phba->sli4_hba.nvmels_wq->pring;
20412 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20413 					  qp, wq_access);
20414 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20415 		if (!sglq) {
20416 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20417 			return WQE_BUSY;
20418 		}
20419 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
20420 		pwqe->sli4_xritag = sglq->sli4_xritag;
20421 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20422 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20423 			return WQE_ERROR;
20424 		}
20425 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20426 		       pwqe->sli4_xritag);
20427 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20428 		if (ret) {
20429 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20430 			return ret;
20431 		}
20432 
20433 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20434 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20435 
20436 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20437 		return 0;
20438 	}
20439 
20440 	/* NVME_FCREQ and NVME_ABTS requests */
20441 	if (pwqe->iocb_flag & LPFC_IO_NVME ||
20442 	    pwqe->iocb_flag & LPFC_IO_FCP) {
20443 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20444 		wq = qp->io_wq;
20445 		pring = wq->pring;
20446 
20447 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20448 
20449 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20450 					  qp, wq_access);
20451 		ret = lpfc_sli4_wq_put(wq, wqe);
20452 		if (ret) {
20453 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20454 			return ret;
20455 		}
20456 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20457 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20458 
20459 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20460 		return 0;
20461 	}
20462 
20463 	/* NVMET requests */
20464 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20465 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20466 		wq = qp->io_wq;
20467 		pring = wq->pring;
20468 
20469 		ctxp = pwqe->context2;
20470 		sglq = ctxp->ctxbuf->sglq;
20471 		if (pwqe->sli4_xritag ==  NO_XRI) {
20472 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
20473 			pwqe->sli4_xritag = sglq->sli4_xritag;
20474 		}
20475 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20476 		       pwqe->sli4_xritag);
20477 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20478 
20479 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20480 					  qp, wq_access);
20481 		ret = lpfc_sli4_wq_put(wq, wqe);
20482 		if (ret) {
20483 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20484 			return ret;
20485 		}
20486 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20487 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20488 
20489 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20490 		return 0;
20491 	}
20492 	return WQE_ERROR;
20493 }
20494 
20495 /**
20496  * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort
20497  * @phba: Pointer to HBA context object.
20498  * @cmdiocb: Pointer to driver command iocb object.
20499  * @cmpl: completion function.
20500  *
20501  * Fill the appropriate fields for the abort WQE and call
20502  * internal routine lpfc_sli4_issue_wqe to send the WQE
20503  * This function is called with hbalock held and no ring_lock held.
20504  *
20505  * RETURNS 0 - SUCCESS
20506  **/
20507 
20508 int
20509 lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
20510 			    void *cmpl)
20511 {
20512 	struct lpfc_vport *vport = cmdiocb->vport;
20513 	struct lpfc_iocbq *abtsiocb = NULL;
20514 	union lpfc_wqe128 *abtswqe;
20515 	struct lpfc_io_buf *lpfc_cmd;
20516 	int retval = IOCB_ERROR;
20517 	u16 xritag = cmdiocb->sli4_xritag;
20518 
20519 	/*
20520 	 * The scsi command can not be in txq and it is in flight because the
20521 	 * pCmd is still pointing at the SCSI command we have to abort. There
20522 	 * is no need to search the txcmplq. Just send an abort to the FW.
20523 	 */
20524 
20525 	abtsiocb = __lpfc_sli_get_iocbq(phba);
20526 	if (!abtsiocb)
20527 		return WQE_NORESOURCE;
20528 
20529 	/* Indicate the IO is being aborted by the driver. */
20530 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
20531 
20532 	abtswqe = &abtsiocb->wqe;
20533 	memset(abtswqe, 0, sizeof(*abtswqe));
20534 
20535 	if (lpfc_is_link_up(phba))
20536 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1);
20537 	else
20538 		bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 0);
20539 	bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG);
20540 	abtswqe->abort_cmd.rsrvd5 = 0;
20541 	abtswqe->abort_cmd.wqe_com.abort_tag = xritag;
20542 	bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag);
20543 	bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
20544 	bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0);
20545 	bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1);
20546 	bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
20547 	bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND);
20548 
20549 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
20550 	abtsiocb->hba_wqidx = cmdiocb->hba_wqidx;
20551 	abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
20552 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
20553 		abtsiocb->iocb_flag |= LPFC_IO_FCP;
20554 	if (cmdiocb->iocb_flag & LPFC_IO_NVME)
20555 		abtsiocb->iocb_flag |= LPFC_IO_NVME;
20556 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
20557 		abtsiocb->iocb_flag |= LPFC_IO_FOF;
20558 	abtsiocb->vport = vport;
20559 	abtsiocb->wqe_cmpl = cmpl;
20560 
20561 	lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq);
20562 	retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb);
20563 
20564 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP,
20565 			 "0359 Abort xri x%x, original iotag x%x, "
20566 			 "abort cmd iotag x%x retval x%x\n",
20567 			 xritag, cmdiocb->iotag, abtsiocb->iotag, retval);
20568 
20569 	if (retval) {
20570 		cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED;
20571 		__lpfc_sli_release_iocbq(phba, abtsiocb);
20572 	}
20573 
20574 	return retval;
20575 }
20576 
20577 #ifdef LPFC_MXP_STAT
20578 /**
20579  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20580  * @phba: pointer to lpfc hba data structure.
20581  * @hwqid: belong to which HWQ.
20582  *
20583  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20584  * 15 seconds after a test case is running.
20585  *
20586  * The user should call lpfc_debugfs_multixripools_write before running a test
20587  * case to clear stat_snapshot_taken. Then the user starts a test case. During
20588  * test case is running, stat_snapshot_taken is incremented by 1 every time when
20589  * this routine is called from heartbeat timer. When stat_snapshot_taken is
20590  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20591  **/
20592 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20593 {
20594 	struct lpfc_sli4_hdw_queue *qp;
20595 	struct lpfc_multixri_pool *multixri_pool;
20596 	struct lpfc_pvt_pool *pvt_pool;
20597 	struct lpfc_pbl_pool *pbl_pool;
20598 	u32 txcmplq_cnt;
20599 
20600 	qp = &phba->sli4_hba.hdwq[hwqid];
20601 	multixri_pool = qp->p_multixri_pool;
20602 	if (!multixri_pool)
20603 		return;
20604 
20605 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20606 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20607 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20608 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20609 
20610 		multixri_pool->stat_pbl_count = pbl_pool->count;
20611 		multixri_pool->stat_pvt_count = pvt_pool->count;
20612 		multixri_pool->stat_busy_count = txcmplq_cnt;
20613 	}
20614 
20615 	multixri_pool->stat_snapshot_taken++;
20616 }
20617 #endif
20618 
20619 /**
20620  * lpfc_adjust_pvt_pool_count - Adjust private pool count
20621  * @phba: pointer to lpfc hba data structure.
20622  * @hwqid: belong to which HWQ.
20623  *
20624  * This routine moves some XRIs from private to public pool when private pool
20625  * is not busy.
20626  **/
20627 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20628 {
20629 	struct lpfc_multixri_pool *multixri_pool;
20630 	u32 io_req_count;
20631 	u32 prev_io_req_count;
20632 
20633 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20634 	if (!multixri_pool)
20635 		return;
20636 	io_req_count = multixri_pool->io_req_count;
20637 	prev_io_req_count = multixri_pool->prev_io_req_count;
20638 
20639 	if (prev_io_req_count != io_req_count) {
20640 		/* Private pool is busy */
20641 		multixri_pool->prev_io_req_count = io_req_count;
20642 	} else {
20643 		/* Private pool is not busy.
20644 		 * Move XRIs from private to public pool.
20645 		 */
20646 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20647 	}
20648 }
20649 
20650 /**
20651  * lpfc_adjust_high_watermark - Adjust high watermark
20652  * @phba: pointer to lpfc hba data structure.
20653  * @hwqid: belong to which HWQ.
20654  *
20655  * This routine sets high watermark as number of outstanding XRIs,
20656  * but make sure the new value is between xri_limit/2 and xri_limit.
20657  **/
20658 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20659 {
20660 	u32 new_watermark;
20661 	u32 watermark_max;
20662 	u32 watermark_min;
20663 	u32 xri_limit;
20664 	u32 txcmplq_cnt;
20665 	u32 abts_io_bufs;
20666 	struct lpfc_multixri_pool *multixri_pool;
20667 	struct lpfc_sli4_hdw_queue *qp;
20668 
20669 	qp = &phba->sli4_hba.hdwq[hwqid];
20670 	multixri_pool = qp->p_multixri_pool;
20671 	if (!multixri_pool)
20672 		return;
20673 	xri_limit = multixri_pool->xri_limit;
20674 
20675 	watermark_max = xri_limit;
20676 	watermark_min = xri_limit / 2;
20677 
20678 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20679 	abts_io_bufs = qp->abts_scsi_io_bufs;
20680 	abts_io_bufs += qp->abts_nvme_io_bufs;
20681 
20682 	new_watermark = txcmplq_cnt + abts_io_bufs;
20683 	new_watermark = min(watermark_max, new_watermark);
20684 	new_watermark = max(watermark_min, new_watermark);
20685 	multixri_pool->pvt_pool.high_watermark = new_watermark;
20686 
20687 #ifdef LPFC_MXP_STAT
20688 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20689 					  new_watermark);
20690 #endif
20691 }
20692 
20693 /**
20694  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20695  * @phba: pointer to lpfc hba data structure.
20696  * @hwqid: belong to which HWQ.
20697  *
20698  * This routine is called from hearbeat timer when pvt_pool is idle.
20699  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20700  * The first step moves (all - low_watermark) amount of XRIs.
20701  * The second step moves the rest of XRIs.
20702  **/
20703 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20704 {
20705 	struct lpfc_pbl_pool *pbl_pool;
20706 	struct lpfc_pvt_pool *pvt_pool;
20707 	struct lpfc_sli4_hdw_queue *qp;
20708 	struct lpfc_io_buf *lpfc_ncmd;
20709 	struct lpfc_io_buf *lpfc_ncmd_next;
20710 	unsigned long iflag;
20711 	struct list_head tmp_list;
20712 	u32 tmp_count;
20713 
20714 	qp = &phba->sli4_hba.hdwq[hwqid];
20715 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20716 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20717 	tmp_count = 0;
20718 
20719 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20720 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20721 
20722 	if (pvt_pool->count > pvt_pool->low_watermark) {
20723 		/* Step 1: move (all - low_watermark) from pvt_pool
20724 		 * to pbl_pool
20725 		 */
20726 
20727 		/* Move low watermark of bufs from pvt_pool to tmp_list */
20728 		INIT_LIST_HEAD(&tmp_list);
20729 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20730 					 &pvt_pool->list, list) {
20731 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20732 			tmp_count++;
20733 			if (tmp_count >= pvt_pool->low_watermark)
20734 				break;
20735 		}
20736 
20737 		/* Move all bufs from pvt_pool to pbl_pool */
20738 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20739 
20740 		/* Move all bufs from tmp_list to pvt_pool */
20741 		list_splice(&tmp_list, &pvt_pool->list);
20742 
20743 		pbl_pool->count += (pvt_pool->count - tmp_count);
20744 		pvt_pool->count = tmp_count;
20745 	} else {
20746 		/* Step 2: move the rest from pvt_pool to pbl_pool */
20747 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20748 		pbl_pool->count += pvt_pool->count;
20749 		pvt_pool->count = 0;
20750 	}
20751 
20752 	spin_unlock(&pvt_pool->lock);
20753 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20754 }
20755 
20756 /**
20757  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20758  * @phba: pointer to lpfc hba data structure
20759  * @qp: pointer to HDW queue
20760  * @pbl_pool: specified public free XRI pool
20761  * @pvt_pool: specified private free XRI pool
20762  * @count: number of XRIs to move
20763  *
20764  * This routine tries to move some free common bufs from the specified pbl_pool
20765  * to the specified pvt_pool. It might move less than count XRIs if there's not
20766  * enough in public pool.
20767  *
20768  * Return:
20769  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20770  *          specified pvt_pool
20771  *   false - if the specified pbl_pool is empty or locked by someone else
20772  **/
20773 static bool
20774 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20775 			  struct lpfc_pbl_pool *pbl_pool,
20776 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20777 {
20778 	struct lpfc_io_buf *lpfc_ncmd;
20779 	struct lpfc_io_buf *lpfc_ncmd_next;
20780 	unsigned long iflag;
20781 	int ret;
20782 
20783 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20784 	if (ret) {
20785 		if (pbl_pool->count) {
20786 			/* Move a batch of XRIs from public to private pool */
20787 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20788 			list_for_each_entry_safe(lpfc_ncmd,
20789 						 lpfc_ncmd_next,
20790 						 &pbl_pool->list,
20791 						 list) {
20792 				list_move_tail(&lpfc_ncmd->list,
20793 					       &pvt_pool->list);
20794 				pvt_pool->count++;
20795 				pbl_pool->count--;
20796 				count--;
20797 				if (count == 0)
20798 					break;
20799 			}
20800 
20801 			spin_unlock(&pvt_pool->lock);
20802 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20803 			return true;
20804 		}
20805 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20806 	}
20807 
20808 	return false;
20809 }
20810 
20811 /**
20812  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20813  * @phba: pointer to lpfc hba data structure.
20814  * @hwqid: belong to which HWQ.
20815  * @count: number of XRIs to move
20816  *
20817  * This routine tries to find some free common bufs in one of public pools with
20818  * Round Robin method. The search always starts from local hwqid, then the next
20819  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20820  * a batch of free common bufs are moved to private pool on hwqid.
20821  * It might move less than count XRIs if there's not enough in public pool.
20822  **/
20823 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20824 {
20825 	struct lpfc_multixri_pool *multixri_pool;
20826 	struct lpfc_multixri_pool *next_multixri_pool;
20827 	struct lpfc_pvt_pool *pvt_pool;
20828 	struct lpfc_pbl_pool *pbl_pool;
20829 	struct lpfc_sli4_hdw_queue *qp;
20830 	u32 next_hwqid;
20831 	u32 hwq_count;
20832 	int ret;
20833 
20834 	qp = &phba->sli4_hba.hdwq[hwqid];
20835 	multixri_pool = qp->p_multixri_pool;
20836 	pvt_pool = &multixri_pool->pvt_pool;
20837 	pbl_pool = &multixri_pool->pbl_pool;
20838 
20839 	/* Check if local pbl_pool is available */
20840 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20841 	if (ret) {
20842 #ifdef LPFC_MXP_STAT
20843 		multixri_pool->local_pbl_hit_count++;
20844 #endif
20845 		return;
20846 	}
20847 
20848 	hwq_count = phba->cfg_hdw_queue;
20849 
20850 	/* Get the next hwqid which was found last time */
20851 	next_hwqid = multixri_pool->rrb_next_hwqid;
20852 
20853 	do {
20854 		/* Go to next hwq */
20855 		next_hwqid = (next_hwqid + 1) % hwq_count;
20856 
20857 		next_multixri_pool =
20858 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20859 		pbl_pool = &next_multixri_pool->pbl_pool;
20860 
20861 		/* Check if the public free xri pool is available */
20862 		ret = _lpfc_move_xri_pbl_to_pvt(
20863 			phba, qp, pbl_pool, pvt_pool, count);
20864 
20865 		/* Exit while-loop if success or all hwqid are checked */
20866 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20867 
20868 	/* Starting point for the next time */
20869 	multixri_pool->rrb_next_hwqid = next_hwqid;
20870 
20871 	if (!ret) {
20872 		/* stats: all public pools are empty*/
20873 		multixri_pool->pbl_empty_count++;
20874 	}
20875 
20876 #ifdef LPFC_MXP_STAT
20877 	if (ret) {
20878 		if (next_hwqid == hwqid)
20879 			multixri_pool->local_pbl_hit_count++;
20880 		else
20881 			multixri_pool->other_pbl_hit_count++;
20882 	}
20883 #endif
20884 }
20885 
20886 /**
20887  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20888  * @phba: pointer to lpfc hba data structure.
20889  * @hwqid: belong to which HWQ.
20890  *
20891  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20892  * low watermark.
20893  **/
20894 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20895 {
20896 	struct lpfc_multixri_pool *multixri_pool;
20897 	struct lpfc_pvt_pool *pvt_pool;
20898 
20899 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20900 	pvt_pool = &multixri_pool->pvt_pool;
20901 
20902 	if (pvt_pool->count < pvt_pool->low_watermark)
20903 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20904 }
20905 
20906 /**
20907  * lpfc_release_io_buf - Return one IO buf back to free pool
20908  * @phba: pointer to lpfc hba data structure.
20909  * @lpfc_ncmd: IO buf to be returned.
20910  * @qp: belong to which HWQ.
20911  *
20912  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20913  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20914  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20915  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20916  * lpfc_io_buf_list_put.
20917  **/
20918 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20919 			 struct lpfc_sli4_hdw_queue *qp)
20920 {
20921 	unsigned long iflag;
20922 	struct lpfc_pbl_pool *pbl_pool;
20923 	struct lpfc_pvt_pool *pvt_pool;
20924 	struct lpfc_epd_pool *epd_pool;
20925 	u32 txcmplq_cnt;
20926 	u32 xri_owned;
20927 	u32 xri_limit;
20928 	u32 abts_io_bufs;
20929 
20930 	/* MUST zero fields if buffer is reused by another protocol */
20931 	lpfc_ncmd->nvmeCmd = NULL;
20932 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20933 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20934 
20935 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20936 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20937 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20938 
20939 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20940 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20941 
20942 	if (phba->cfg_xri_rebalancing) {
20943 		if (lpfc_ncmd->expedite) {
20944 			/* Return to expedite pool */
20945 			epd_pool = &phba->epd_pool;
20946 			spin_lock_irqsave(&epd_pool->lock, iflag);
20947 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20948 			epd_pool->count++;
20949 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20950 			return;
20951 		}
20952 
20953 		/* Avoid invalid access if an IO sneaks in and is being rejected
20954 		 * just _after_ xri pools are destroyed in lpfc_offline.
20955 		 * Nothing much can be done at this point.
20956 		 */
20957 		if (!qp->p_multixri_pool)
20958 			return;
20959 
20960 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20961 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20962 
20963 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20964 		abts_io_bufs = qp->abts_scsi_io_bufs;
20965 		abts_io_bufs += qp->abts_nvme_io_bufs;
20966 
20967 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20968 		xri_limit = qp->p_multixri_pool->xri_limit;
20969 
20970 #ifdef LPFC_MXP_STAT
20971 		if (xri_owned <= xri_limit)
20972 			qp->p_multixri_pool->below_limit_count++;
20973 		else
20974 			qp->p_multixri_pool->above_limit_count++;
20975 #endif
20976 
20977 		/* XRI goes to either public or private free xri pool
20978 		 *     based on watermark and xri_limit
20979 		 */
20980 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20981 		    (xri_owned < xri_limit &&
20982 		     pvt_pool->count < pvt_pool->high_watermark)) {
20983 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20984 						  qp, free_pvt_pool);
20985 			list_add_tail(&lpfc_ncmd->list,
20986 				      &pvt_pool->list);
20987 			pvt_pool->count++;
20988 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20989 		} else {
20990 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20991 						  qp, free_pub_pool);
20992 			list_add_tail(&lpfc_ncmd->list,
20993 				      &pbl_pool->list);
20994 			pbl_pool->count++;
20995 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20996 		}
20997 	} else {
20998 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20999 					  qp, free_xri);
21000 		list_add_tail(&lpfc_ncmd->list,
21001 			      &qp->lpfc_io_buf_list_put);
21002 		qp->put_io_bufs++;
21003 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
21004 				       iflag);
21005 	}
21006 }
21007 
21008 /**
21009  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
21010  * @phba: pointer to lpfc hba data structure.
21011  * @qp: pointer to HDW queue
21012  * @pvt_pool: pointer to private pool data structure.
21013  * @ndlp: pointer to lpfc nodelist data structure.
21014  *
21015  * This routine tries to get one free IO buf from private pool.
21016  *
21017  * Return:
21018  *   pointer to one free IO buf - if private pool is not empty
21019  *   NULL - if private pool is empty
21020  **/
21021 static struct lpfc_io_buf *
21022 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
21023 				  struct lpfc_sli4_hdw_queue *qp,
21024 				  struct lpfc_pvt_pool *pvt_pool,
21025 				  struct lpfc_nodelist *ndlp)
21026 {
21027 	struct lpfc_io_buf *lpfc_ncmd;
21028 	struct lpfc_io_buf *lpfc_ncmd_next;
21029 	unsigned long iflag;
21030 
21031 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
21032 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21033 				 &pvt_pool->list, list) {
21034 		if (lpfc_test_rrq_active(
21035 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
21036 			continue;
21037 		list_del(&lpfc_ncmd->list);
21038 		pvt_pool->count--;
21039 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21040 		return lpfc_ncmd;
21041 	}
21042 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
21043 
21044 	return NULL;
21045 }
21046 
21047 /**
21048  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
21049  * @phba: pointer to lpfc hba data structure.
21050  *
21051  * This routine tries to get one free IO buf from expedite pool.
21052  *
21053  * Return:
21054  *   pointer to one free IO buf - if expedite pool is not empty
21055  *   NULL - if expedite pool is empty
21056  **/
21057 static struct lpfc_io_buf *
21058 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
21059 {
21060 	struct lpfc_io_buf *lpfc_ncmd;
21061 	struct lpfc_io_buf *lpfc_ncmd_next;
21062 	unsigned long iflag;
21063 	struct lpfc_epd_pool *epd_pool;
21064 
21065 	epd_pool = &phba->epd_pool;
21066 	lpfc_ncmd = NULL;
21067 
21068 	spin_lock_irqsave(&epd_pool->lock, iflag);
21069 	if (epd_pool->count > 0) {
21070 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
21071 					 &epd_pool->list, list) {
21072 			list_del(&lpfc_ncmd->list);
21073 			epd_pool->count--;
21074 			break;
21075 		}
21076 	}
21077 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
21078 
21079 	return lpfc_ncmd;
21080 }
21081 
21082 /**
21083  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
21084  * @phba: pointer to lpfc hba data structure.
21085  * @ndlp: pointer to lpfc nodelist data structure.
21086  * @hwqid: belong to which HWQ
21087  * @expedite: 1 means this request is urgent.
21088  *
21089  * This routine will do the following actions and then return a pointer to
21090  * one free IO buf.
21091  *
21092  * 1. If private free xri count is empty, move some XRIs from public to
21093  *    private pool.
21094  * 2. Get one XRI from private free xri pool.
21095  * 3. If we fail to get one from pvt_pool and this is an expedite request,
21096  *    get one free xri from expedite pool.
21097  *
21098  * Note: ndlp is only used on SCSI side for RRQ testing.
21099  *       The caller should pass NULL for ndlp on NVME side.
21100  *
21101  * Return:
21102  *   pointer to one free IO buf - if private pool is not empty
21103  *   NULL - if private pool is empty
21104  **/
21105 static struct lpfc_io_buf *
21106 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
21107 				    struct lpfc_nodelist *ndlp,
21108 				    int hwqid, int expedite)
21109 {
21110 	struct lpfc_sli4_hdw_queue *qp;
21111 	struct lpfc_multixri_pool *multixri_pool;
21112 	struct lpfc_pvt_pool *pvt_pool;
21113 	struct lpfc_io_buf *lpfc_ncmd;
21114 
21115 	qp = &phba->sli4_hba.hdwq[hwqid];
21116 	lpfc_ncmd = NULL;
21117 	multixri_pool = qp->p_multixri_pool;
21118 	pvt_pool = &multixri_pool->pvt_pool;
21119 	multixri_pool->io_req_count++;
21120 
21121 	/* If pvt_pool is empty, move some XRIs from public to private pool */
21122 	if (pvt_pool->count == 0)
21123 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
21124 
21125 	/* Get one XRI from private free xri pool */
21126 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
21127 
21128 	if (lpfc_ncmd) {
21129 		lpfc_ncmd->hdwq = qp;
21130 		lpfc_ncmd->hdwq_no = hwqid;
21131 	} else if (expedite) {
21132 		/* If we fail to get one from pvt_pool and this is an expedite
21133 		 * request, get one free xri from expedite pool.
21134 		 */
21135 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
21136 	}
21137 
21138 	return lpfc_ncmd;
21139 }
21140 
21141 static inline struct lpfc_io_buf *
21142 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
21143 {
21144 	struct lpfc_sli4_hdw_queue *qp;
21145 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
21146 
21147 	qp = &phba->sli4_hba.hdwq[idx];
21148 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
21149 				 &qp->lpfc_io_buf_list_get, list) {
21150 		if (lpfc_test_rrq_active(phba, ndlp,
21151 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
21152 			continue;
21153 
21154 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
21155 			continue;
21156 
21157 		list_del_init(&lpfc_cmd->list);
21158 		qp->get_io_bufs--;
21159 		lpfc_cmd->hdwq = qp;
21160 		lpfc_cmd->hdwq_no = idx;
21161 		return lpfc_cmd;
21162 	}
21163 	return NULL;
21164 }
21165 
21166 /**
21167  * lpfc_get_io_buf - Get one IO buffer from free pool
21168  * @phba: The HBA for which this call is being executed.
21169  * @ndlp: pointer to lpfc nodelist data structure.
21170  * @hwqid: belong to which HWQ
21171  * @expedite: 1 means this request is urgent.
21172  *
21173  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
21174  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
21175  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
21176  *
21177  * Note: ndlp is only used on SCSI side for RRQ testing.
21178  *       The caller should pass NULL for ndlp on NVME side.
21179  *
21180  * Return codes:
21181  *   NULL - Error
21182  *   Pointer to lpfc_io_buf - Success
21183  **/
21184 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
21185 				    struct lpfc_nodelist *ndlp,
21186 				    u32 hwqid, int expedite)
21187 {
21188 	struct lpfc_sli4_hdw_queue *qp;
21189 	unsigned long iflag;
21190 	struct lpfc_io_buf *lpfc_cmd;
21191 
21192 	qp = &phba->sli4_hba.hdwq[hwqid];
21193 	lpfc_cmd = NULL;
21194 
21195 	if (phba->cfg_xri_rebalancing)
21196 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
21197 			phba, ndlp, hwqid, expedite);
21198 	else {
21199 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
21200 					  qp, alloc_xri_get);
21201 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
21202 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21203 		if (!lpfc_cmd) {
21204 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
21205 					  qp, alloc_xri_put);
21206 			list_splice(&qp->lpfc_io_buf_list_put,
21207 				    &qp->lpfc_io_buf_list_get);
21208 			qp->get_io_bufs += qp->put_io_bufs;
21209 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
21210 			qp->put_io_bufs = 0;
21211 			spin_unlock(&qp->io_buf_list_put_lock);
21212 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
21213 			    expedite)
21214 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
21215 		}
21216 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
21217 	}
21218 
21219 	return lpfc_cmd;
21220 }
21221 
21222 /**
21223  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
21224  * @phba: The HBA for which this call is being executed.
21225  * @lpfc_buf: IO buf structure to append the SGL chunk
21226  *
21227  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
21228  * and will allocate an SGL chunk if the pool is empty.
21229  *
21230  * Return codes:
21231  *   NULL - Error
21232  *   Pointer to sli4_hybrid_sgl - Success
21233  **/
21234 struct sli4_hybrid_sgl *
21235 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21236 {
21237 	struct sli4_hybrid_sgl *list_entry = NULL;
21238 	struct sli4_hybrid_sgl *tmp = NULL;
21239 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
21240 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21241 	struct list_head *buf_list = &hdwq->sgl_list;
21242 	unsigned long iflags;
21243 
21244 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21245 
21246 	if (likely(!list_empty(buf_list))) {
21247 		/* break off 1 chunk from the sgl_list */
21248 		list_for_each_entry_safe(list_entry, tmp,
21249 					 buf_list, list_node) {
21250 			list_move_tail(&list_entry->list_node,
21251 				       &lpfc_buf->dma_sgl_xtra_list);
21252 			break;
21253 		}
21254 	} else {
21255 		/* allocate more */
21256 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21257 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21258 				   cpu_to_node(hdwq->io_wq->chann));
21259 		if (!tmp) {
21260 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21261 					"8353 error kmalloc memory for HDWQ "
21262 					"%d %s\n",
21263 					lpfc_buf->hdwq_no, __func__);
21264 			return NULL;
21265 		}
21266 
21267 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
21268 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
21269 		if (!tmp->dma_sgl) {
21270 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21271 					"8354 error pool_alloc memory for HDWQ "
21272 					"%d %s\n",
21273 					lpfc_buf->hdwq_no, __func__);
21274 			kfree(tmp);
21275 			return NULL;
21276 		}
21277 
21278 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21279 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
21280 	}
21281 
21282 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
21283 					struct sli4_hybrid_sgl,
21284 					list_node);
21285 
21286 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21287 
21288 	return allocated_sgl;
21289 }
21290 
21291 /**
21292  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
21293  * @phba: The HBA for which this call is being executed.
21294  * @lpfc_buf: IO buf structure with the SGL chunk
21295  *
21296  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
21297  *
21298  * Return codes:
21299  *   0 - Success
21300  *   -EINVAL - Error
21301  **/
21302 int
21303 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
21304 {
21305 	int rc = 0;
21306 	struct sli4_hybrid_sgl *list_entry = NULL;
21307 	struct sli4_hybrid_sgl *tmp = NULL;
21308 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21309 	struct list_head *buf_list = &hdwq->sgl_list;
21310 	unsigned long iflags;
21311 
21312 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21313 
21314 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
21315 		list_for_each_entry_safe(list_entry, tmp,
21316 					 &lpfc_buf->dma_sgl_xtra_list,
21317 					 list_node) {
21318 			list_move_tail(&list_entry->list_node,
21319 				       buf_list);
21320 		}
21321 	} else {
21322 		rc = -EINVAL;
21323 	}
21324 
21325 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21326 	return rc;
21327 }
21328 
21329 /**
21330  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
21331  * @phba: phba object
21332  * @hdwq: hdwq to cleanup sgl buff resources on
21333  *
21334  * This routine frees all SGL chunks of hdwq SGL chunk pool.
21335  *
21336  * Return codes:
21337  *   None
21338  **/
21339 void
21340 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
21341 		       struct lpfc_sli4_hdw_queue *hdwq)
21342 {
21343 	struct list_head *buf_list = &hdwq->sgl_list;
21344 	struct sli4_hybrid_sgl *list_entry = NULL;
21345 	struct sli4_hybrid_sgl *tmp = NULL;
21346 	unsigned long iflags;
21347 
21348 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21349 
21350 	/* Free sgl pool */
21351 	list_for_each_entry_safe(list_entry, tmp,
21352 				 buf_list, list_node) {
21353 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
21354 			      list_entry->dma_sgl,
21355 			      list_entry->dma_phys_sgl);
21356 		list_del(&list_entry->list_node);
21357 		kfree(list_entry);
21358 	}
21359 
21360 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21361 }
21362 
21363 /**
21364  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
21365  * @phba: The HBA for which this call is being executed.
21366  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
21367  *
21368  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
21369  * and will allocate an CMD/RSP buffer if the pool is empty.
21370  *
21371  * Return codes:
21372  *   NULL - Error
21373  *   Pointer to fcp_cmd_rsp_buf - Success
21374  **/
21375 struct fcp_cmd_rsp_buf *
21376 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21377 			      struct lpfc_io_buf *lpfc_buf)
21378 {
21379 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21380 	struct fcp_cmd_rsp_buf *tmp = NULL;
21381 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
21382 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21383 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21384 	unsigned long iflags;
21385 
21386 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21387 
21388 	if (likely(!list_empty(buf_list))) {
21389 		/* break off 1 chunk from the list */
21390 		list_for_each_entry_safe(list_entry, tmp,
21391 					 buf_list,
21392 					 list_node) {
21393 			list_move_tail(&list_entry->list_node,
21394 				       &lpfc_buf->dma_cmd_rsp_list);
21395 			break;
21396 		}
21397 	} else {
21398 		/* allocate more */
21399 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21400 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
21401 				   cpu_to_node(hdwq->io_wq->chann));
21402 		if (!tmp) {
21403 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21404 					"8355 error kmalloc memory for HDWQ "
21405 					"%d %s\n",
21406 					lpfc_buf->hdwq_no, __func__);
21407 			return NULL;
21408 		}
21409 
21410 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
21411 						GFP_ATOMIC,
21412 						&tmp->fcp_cmd_rsp_dma_handle);
21413 
21414 		if (!tmp->fcp_cmnd) {
21415 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
21416 					"8356 error pool_alloc memory for HDWQ "
21417 					"%d %s\n",
21418 					lpfc_buf->hdwq_no, __func__);
21419 			kfree(tmp);
21420 			return NULL;
21421 		}
21422 
21423 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
21424 				sizeof(struct fcp_cmnd));
21425 
21426 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21427 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
21428 	}
21429 
21430 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
21431 					struct fcp_cmd_rsp_buf,
21432 					list_node);
21433 
21434 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21435 
21436 	return allocated_buf;
21437 }
21438 
21439 /**
21440  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
21441  * @phba: The HBA for which this call is being executed.
21442  * @lpfc_buf: IO buf structure with the CMD/RSP buf
21443  *
21444  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
21445  *
21446  * Return codes:
21447  *   0 - Success
21448  *   -EINVAL - Error
21449  **/
21450 int
21451 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21452 			      struct lpfc_io_buf *lpfc_buf)
21453 {
21454 	int rc = 0;
21455 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21456 	struct fcp_cmd_rsp_buf *tmp = NULL;
21457 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
21458 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21459 	unsigned long iflags;
21460 
21461 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21462 
21463 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
21464 		list_for_each_entry_safe(list_entry, tmp,
21465 					 &lpfc_buf->dma_cmd_rsp_list,
21466 					 list_node) {
21467 			list_move_tail(&list_entry->list_node,
21468 				       buf_list);
21469 		}
21470 	} else {
21471 		rc = -EINVAL;
21472 	}
21473 
21474 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21475 	return rc;
21476 }
21477 
21478 /**
21479  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
21480  * @phba: phba object
21481  * @hdwq: hdwq to cleanup cmd rsp buff resources on
21482  *
21483  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21484  *
21485  * Return codes:
21486  *   None
21487  **/
21488 void
21489 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21490 			       struct lpfc_sli4_hdw_queue *hdwq)
21491 {
21492 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21493 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21494 	struct fcp_cmd_rsp_buf *tmp = NULL;
21495 	unsigned long iflags;
21496 
21497 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21498 
21499 	/* Free cmd_rsp buf pool */
21500 	list_for_each_entry_safe(list_entry, tmp,
21501 				 buf_list,
21502 				 list_node) {
21503 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21504 			      list_entry->fcp_cmnd,
21505 			      list_entry->fcp_cmd_rsp_dma_handle);
21506 		list_del(&list_entry->list_node);
21507 		kfree(list_entry);
21508 	}
21509 
21510 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21511 }
21512