xref: /openbmc/linux/drivers/scsi/lpfc/lpfc_sli.c (revision 55fd7e02)
1 /*******************************************************************
2  * This file is part of the Emulex Linux Device Driver for         *
3  * Fibre Channel Host Bus Adapters.                                *
4  * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term *
5  * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.  *
6  * Copyright (C) 2004-2016 Emulex.  All rights reserved.           *
7  * EMULEX and SLI are trademarks of Emulex.                        *
8  * www.broadcom.com                                                *
9  * Portions Copyright (C) 2004-2005 Christoph Hellwig              *
10  *                                                                 *
11  * This program is free software; you can redistribute it and/or   *
12  * modify it under the terms of version 2 of the GNU General       *
13  * Public License as published by the Free Software Foundation.    *
14  * This program is distributed in the hope that it will be useful. *
15  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND          *
16  * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,  *
17  * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE      *
18  * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19  * TO BE LEGALLY INVALID.  See the GNU General Public License for  *
20  * more details, a copy of which can be found in the file COPYING  *
21  * included with this package.                                     *
22  *******************************************************************/
23 
24 #include <linux/blkdev.h>
25 #include <linux/pci.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/lockdep.h>
30 
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_cmnd.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport_fc.h>
36 #include <scsi/fc/fc_fs.h>
37 #include <linux/aer.h>
38 #ifdef CONFIG_X86
39 #include <asm/set_memory.h>
40 #endif
41 
42 #include "lpfc_hw4.h"
43 #include "lpfc_hw.h"
44 #include "lpfc_sli.h"
45 #include "lpfc_sli4.h"
46 #include "lpfc_nl.h"
47 #include "lpfc_disc.h"
48 #include "lpfc.h"
49 #include "lpfc_scsi.h"
50 #include "lpfc_nvme.h"
51 #include "lpfc_crtn.h"
52 #include "lpfc_logmsg.h"
53 #include "lpfc_compat.h"
54 #include "lpfc_debugfs.h"
55 #include "lpfc_vport.h"
56 #include "lpfc_version.h"
57 
58 /* There are only four IOCB completion types. */
59 typedef enum _lpfc_iocb_type {
60 	LPFC_UNKNOWN_IOCB,
61 	LPFC_UNSOL_IOCB,
62 	LPFC_SOL_IOCB,
63 	LPFC_ABORT_IOCB
64 } lpfc_iocb_type;
65 
66 
67 /* Provide function prototypes local to this module. */
68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
69 				  uint32_t);
70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
71 			      uint8_t *, uint32_t *);
72 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
73 							 struct lpfc_iocbq *);
74 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
75 				      struct hbq_dmabuf *);
76 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
77 					  struct hbq_dmabuf *dmabuf);
78 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba,
79 				   struct lpfc_queue *cq, struct lpfc_cqe *cqe);
80 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *,
81 				       int);
82 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba,
83 				     struct lpfc_queue *eq,
84 				     struct lpfc_eqe *eqe);
85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba);
86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba);
87 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q);
88 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba,
89 				    struct lpfc_queue *cq,
90 				    struct lpfc_cqe *cqe);
91 
92 static IOCB_t *
93 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
94 {
95 	return &iocbq->iocb;
96 }
97 
98 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN)
99 /**
100  * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function
101  * @srcp: Source memory pointer.
102  * @destp: Destination memory pointer.
103  * @cnt: Number of words required to be copied.
104  *       Must be a multiple of sizeof(uint64_t)
105  *
106  * This function is used for copying data between driver memory
107  * and the SLI WQ. This function also changes the endianness
108  * of each word if native endianness is different from SLI
109  * endianness. This function can be called with or without
110  * lock.
111  **/
112 static void
113 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
114 {
115 	uint64_t *src = srcp;
116 	uint64_t *dest = destp;
117 	int i;
118 
119 	for (i = 0; i < (int)cnt; i += sizeof(uint64_t))
120 		*dest++ = *src++;
121 }
122 #else
123 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c)
124 #endif
125 
126 /**
127  * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
128  * @q: The Work Queue to operate on.
129  * @wqe: The work Queue Entry to put on the Work queue.
130  *
131  * This routine will copy the contents of @wqe to the next available entry on
132  * the @q. This function will then ring the Work Queue Doorbell to signal the
133  * HBA to start processing the Work Queue Entry. This function returns 0 if
134  * successful. If no entries are available on @q then this function will return
135  * -ENOMEM.
136  * The caller is expected to hold the hbalock when calling this routine.
137  **/
138 static int
139 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe)
140 {
141 	union lpfc_wqe *temp_wqe;
142 	struct lpfc_register doorbell;
143 	uint32_t host_index;
144 	uint32_t idx;
145 	uint32_t i = 0;
146 	uint8_t *tmp;
147 	u32 if_type;
148 
149 	/* sanity check on queue memory */
150 	if (unlikely(!q))
151 		return -ENOMEM;
152 	temp_wqe = lpfc_sli4_qe(q, q->host_index);
153 
154 	/* If the host has not yet processed the next entry then we are done */
155 	idx = ((q->host_index + 1) % q->entry_count);
156 	if (idx == q->hba_index) {
157 		q->WQ_overflow++;
158 		return -EBUSY;
159 	}
160 	q->WQ_posted++;
161 	/* set consumption flag every once in a while */
162 	if (!((q->host_index + 1) % q->notify_interval))
163 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
164 	else
165 		bf_set(wqe_wqec, &wqe->generic.wqe_com, 0);
166 	if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
167 		bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
168 	lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
169 	if (q->dpp_enable && q->phba->cfg_enable_dpp) {
170 		/* write to DPP aperture taking advatage of Combined Writes */
171 		tmp = (uint8_t *)temp_wqe;
172 #ifdef __raw_writeq
173 		for (i = 0; i < q->entry_size; i += sizeof(uint64_t))
174 			__raw_writeq(*((uint64_t *)(tmp + i)),
175 					q->dpp_regaddr + i);
176 #else
177 		for (i = 0; i < q->entry_size; i += sizeof(uint32_t))
178 			__raw_writel(*((uint32_t *)(tmp + i)),
179 					q->dpp_regaddr + i);
180 #endif
181 	}
182 	/* ensure WQE bcopy and DPP flushed before doorbell write */
183 	wmb();
184 
185 	/* Update the host index before invoking device */
186 	host_index = q->host_index;
187 
188 	q->host_index = idx;
189 
190 	/* Ring Doorbell */
191 	doorbell.word0 = 0;
192 	if (q->db_format == LPFC_DB_LIST_FORMAT) {
193 		if (q->dpp_enable && q->phba->cfg_enable_dpp) {
194 			bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1);
195 			bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1);
196 			bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell,
197 			    q->dpp_id);
198 			bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell,
199 			    q->queue_id);
200 		} else {
201 			bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1);
202 			bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id);
203 
204 			/* Leave bits <23:16> clear for if_type 6 dpp */
205 			if_type = bf_get(lpfc_sli_intf_if_type,
206 					 &q->phba->sli4_hba.sli_intf);
207 			if (if_type != LPFC_SLI_INTF_IF_TYPE_6)
208 				bf_set(lpfc_wq_db_list_fm_index, &doorbell,
209 				       host_index);
210 		}
211 	} else if (q->db_format == LPFC_DB_RING_FORMAT) {
212 		bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1);
213 		bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id);
214 	} else {
215 		return -EINVAL;
216 	}
217 	writel(doorbell.word0, q->db_regaddr);
218 
219 	return 0;
220 }
221 
222 /**
223  * lpfc_sli4_wq_release - Updates internal hba index for WQ
224  * @q: The Work Queue to operate on.
225  * @index: The index to advance the hba index to.
226  *
227  * This routine will update the HBA index of a queue to reflect consumption of
228  * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
229  * an entry the host calls this function to update the queue's internal
230  * pointers.
231  **/
232 static void
233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
234 {
235 	/* sanity check on queue memory */
236 	if (unlikely(!q))
237 		return;
238 
239 	q->hba_index = index;
240 }
241 
242 /**
243  * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
244  * @q: The Mailbox Queue to operate on.
245  * @wqe: The Mailbox Queue Entry to put on the Work queue.
246  *
247  * This routine will copy the contents of @mqe to the next available entry on
248  * the @q. This function will then ring the Work Queue Doorbell to signal the
249  * HBA to start processing the Work Queue Entry. This function returns 0 if
250  * successful. If no entries are available on @q then this function will return
251  * -ENOMEM.
252  * The caller is expected to hold the hbalock when calling this routine.
253  **/
254 static uint32_t
255 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
256 {
257 	struct lpfc_mqe *temp_mqe;
258 	struct lpfc_register doorbell;
259 
260 	/* sanity check on queue memory */
261 	if (unlikely(!q))
262 		return -ENOMEM;
263 	temp_mqe = lpfc_sli4_qe(q, q->host_index);
264 
265 	/* If the host has not yet processed the next entry then we are done */
266 	if (((q->host_index + 1) % q->entry_count) == q->hba_index)
267 		return -ENOMEM;
268 	lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
269 	/* Save off the mailbox pointer for completion */
270 	q->phba->mbox = (MAILBOX_t *)temp_mqe;
271 
272 	/* Update the host index before invoking device */
273 	q->host_index = ((q->host_index + 1) % q->entry_count);
274 
275 	/* Ring Doorbell */
276 	doorbell.word0 = 0;
277 	bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
278 	bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
279 	writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
280 	return 0;
281 }
282 
283 /**
284  * lpfc_sli4_mq_release - Updates internal hba index for MQ
285  * @q: The Mailbox Queue to operate on.
286  *
287  * This routine will update the HBA index of a queue to reflect consumption of
288  * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
289  * an entry the host calls this function to update the queue's internal
290  * pointers. This routine returns the number of entries that were consumed by
291  * the HBA.
292  **/
293 static uint32_t
294 lpfc_sli4_mq_release(struct lpfc_queue *q)
295 {
296 	/* sanity check on queue memory */
297 	if (unlikely(!q))
298 		return 0;
299 
300 	/* Clear the mailbox pointer for completion */
301 	q->phba->mbox = NULL;
302 	q->hba_index = ((q->hba_index + 1) % q->entry_count);
303 	return 1;
304 }
305 
306 /**
307  * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
308  * @q: The Event Queue to get the first valid EQE from
309  *
310  * This routine will get the first valid Event Queue Entry from @q, update
311  * the queue's internal hba index, and return the EQE. If no valid EQEs are in
312  * the Queue (no more work to do), or the Queue is full of EQEs that have been
313  * processed, but not popped back to the HBA then this routine will return NULL.
314  **/
315 static struct lpfc_eqe *
316 lpfc_sli4_eq_get(struct lpfc_queue *q)
317 {
318 	struct lpfc_eqe *eqe;
319 
320 	/* sanity check on queue memory */
321 	if (unlikely(!q))
322 		return NULL;
323 	eqe = lpfc_sli4_qe(q, q->host_index);
324 
325 	/* If the next EQE is not valid then we are done */
326 	if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid)
327 		return NULL;
328 
329 	/*
330 	 * insert barrier for instruction interlock : data from the hardware
331 	 * must have the valid bit checked before it can be copied and acted
332 	 * upon. Speculative instructions were allowing a bcopy at the start
333 	 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately
334 	 * after our return, to copy data before the valid bit check above
335 	 * was done. As such, some of the copied data was stale. The barrier
336 	 * ensures the check is before any data is copied.
337 	 */
338 	mb();
339 	return eqe;
340 }
341 
342 /**
343  * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ
344  * @q: The Event Queue to disable interrupts
345  *
346  **/
347 void
348 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q)
349 {
350 	struct lpfc_register doorbell;
351 
352 	doorbell.word0 = 0;
353 	bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
354 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
355 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
356 		(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
357 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
358 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
359 }
360 
361 /**
362  * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ
363  * @q: The Event Queue to disable interrupts
364  *
365  **/
366 void
367 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q)
368 {
369 	struct lpfc_register doorbell;
370 
371 	doorbell.word0 = 0;
372 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
373 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
374 }
375 
376 /**
377  * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state
378  * @phba: adapter with EQ
379  * @q: The Event Queue that the host has completed processing for.
380  * @count: Number of elements that have been consumed
381  * @arm: Indicates whether the host wants to arms this CQ.
382  *
383  * This routine will notify the HBA, by ringing the doorbell, that count
384  * number of EQEs have been processed. The @arm parameter indicates whether
385  * the queue should be rearmed when ringing the doorbell.
386  **/
387 void
388 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
389 		     uint32_t count, bool arm)
390 {
391 	struct lpfc_register doorbell;
392 
393 	/* sanity check on queue memory */
394 	if (unlikely(!q || (count == 0 && !arm)))
395 		return;
396 
397 	/* ring doorbell for number popped */
398 	doorbell.word0 = 0;
399 	if (arm) {
400 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
401 		bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
402 	}
403 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
404 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
405 	bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
406 			(q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
407 	bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
408 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
409 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
410 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
411 		readl(q->phba->sli4_hba.EQDBregaddr);
412 }
413 
414 /**
415  * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state
416  * @phba: adapter with EQ
417  * @q: The Event Queue that the host has completed processing for.
418  * @count: Number of elements that have been consumed
419  * @arm: Indicates whether the host wants to arms this CQ.
420  *
421  * This routine will notify the HBA, by ringing the doorbell, that count
422  * number of EQEs have been processed. The @arm parameter indicates whether
423  * the queue should be rearmed when ringing the doorbell.
424  **/
425 void
426 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
427 			  uint32_t count, bool arm)
428 {
429 	struct lpfc_register doorbell;
430 
431 	/* sanity check on queue memory */
432 	if (unlikely(!q || (count == 0 && !arm)))
433 		return;
434 
435 	/* ring doorbell for number popped */
436 	doorbell.word0 = 0;
437 	if (arm)
438 		bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1);
439 	bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count);
440 	bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id);
441 	writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr);
442 	/* PCI read to flush PCI pipeline on re-arming for INTx mode */
443 	if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
444 		readl(q->phba->sli4_hba.EQDBregaddr);
445 }
446 
447 static void
448 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
449 			struct lpfc_eqe *eqe)
450 {
451 	if (!phba->sli4_hba.pc_sli4_params.eqav)
452 		bf_set_le32(lpfc_eqe_valid, eqe, 0);
453 
454 	eq->host_index = ((eq->host_index + 1) % eq->entry_count);
455 
456 	/* if the index wrapped around, toggle the valid bit */
457 	if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index)
458 		eq->qe_valid = (eq->qe_valid) ? 0 : 1;
459 }
460 
461 static void
462 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
463 {
464 	struct lpfc_eqe *eqe = NULL;
465 	u32 eq_count = 0, cq_count = 0;
466 	struct lpfc_cqe *cqe = NULL;
467 	struct lpfc_queue *cq = NULL, *childq = NULL;
468 	int cqid = 0;
469 
470 	/* walk all the EQ entries and drop on the floor */
471 	eqe = lpfc_sli4_eq_get(eq);
472 	while (eqe) {
473 		/* Get the reference to the corresponding CQ */
474 		cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
475 		cq = NULL;
476 
477 		list_for_each_entry(childq, &eq->child_list, list) {
478 			if (childq->queue_id == cqid) {
479 				cq = childq;
480 				break;
481 			}
482 		}
483 		/* If CQ is valid, iterate through it and drop all the CQEs */
484 		if (cq) {
485 			cqe = lpfc_sli4_cq_get(cq);
486 			while (cqe) {
487 				__lpfc_sli4_consume_cqe(phba, cq, cqe);
488 				cq_count++;
489 				cqe = lpfc_sli4_cq_get(cq);
490 			}
491 			/* Clear and re-arm the CQ */
492 			phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count,
493 			    LPFC_QUEUE_REARM);
494 			cq_count = 0;
495 		}
496 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
497 		eq_count++;
498 		eqe = lpfc_sli4_eq_get(eq);
499 	}
500 
501 	/* Clear and re-arm the EQ */
502 	phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM);
503 }
504 
505 static int
506 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq,
507 		     uint8_t rearm)
508 {
509 	struct lpfc_eqe *eqe;
510 	int count = 0, consumed = 0;
511 
512 	if (cmpxchg(&eq->queue_claimed, 0, 1) != 0)
513 		goto rearm_and_exit;
514 
515 	eqe = lpfc_sli4_eq_get(eq);
516 	while (eqe) {
517 		lpfc_sli4_hba_handle_eqe(phba, eq, eqe);
518 		__lpfc_sli4_consume_eqe(phba, eq, eqe);
519 
520 		consumed++;
521 		if (!(++count % eq->max_proc_limit))
522 			break;
523 
524 		if (!(count % eq->notify_interval)) {
525 			phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed,
526 							LPFC_QUEUE_NOARM);
527 			consumed = 0;
528 		}
529 
530 		eqe = lpfc_sli4_eq_get(eq);
531 	}
532 	eq->EQ_processed += count;
533 
534 	/* Track the max number of EQEs processed in 1 intr */
535 	if (count > eq->EQ_max_eqe)
536 		eq->EQ_max_eqe = count;
537 
538 	xchg(&eq->queue_claimed, 0);
539 
540 rearm_and_exit:
541 	/* Always clear the EQ. */
542 	phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm);
543 
544 	return count;
545 }
546 
547 /**
548  * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
549  * @q: The Completion Queue to get the first valid CQE from
550  *
551  * This routine will get the first valid Completion Queue Entry from @q, update
552  * the queue's internal hba index, and return the CQE. If no valid CQEs are in
553  * the Queue (no more work to do), or the Queue is full of CQEs that have been
554  * processed, but not popped back to the HBA then this routine will return NULL.
555  **/
556 static struct lpfc_cqe *
557 lpfc_sli4_cq_get(struct lpfc_queue *q)
558 {
559 	struct lpfc_cqe *cqe;
560 
561 	/* sanity check on queue memory */
562 	if (unlikely(!q))
563 		return NULL;
564 	cqe = lpfc_sli4_qe(q, q->host_index);
565 
566 	/* If the next CQE is not valid then we are done */
567 	if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid)
568 		return NULL;
569 
570 	/*
571 	 * insert barrier for instruction interlock : data from the hardware
572 	 * must have the valid bit checked before it can be copied and acted
573 	 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative
574 	 * instructions allowing action on content before valid bit checked,
575 	 * add barrier here as well. May not be needed as "content" is a
576 	 * single 32-bit entity here (vs multi word structure for cq's).
577 	 */
578 	mb();
579 	return cqe;
580 }
581 
582 static void
583 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
584 			struct lpfc_cqe *cqe)
585 {
586 	if (!phba->sli4_hba.pc_sli4_params.cqav)
587 		bf_set_le32(lpfc_cqe_valid, cqe, 0);
588 
589 	cq->host_index = ((cq->host_index + 1) % cq->entry_count);
590 
591 	/* if the index wrapped around, toggle the valid bit */
592 	if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index)
593 		cq->qe_valid = (cq->qe_valid) ? 0 : 1;
594 }
595 
596 /**
597  * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state.
598  * @phba: the adapter with the CQ
599  * @q: The Completion Queue that the host has completed processing for.
600  * @count: the number of elements that were consumed
601  * @arm: Indicates whether the host wants to arms this CQ.
602  *
603  * This routine will notify the HBA, by ringing the doorbell, that the
604  * CQEs have been processed. The @arm parameter specifies whether the
605  * queue should be rearmed when ringing the doorbell.
606  **/
607 void
608 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
609 		     uint32_t count, bool arm)
610 {
611 	struct lpfc_register doorbell;
612 
613 	/* sanity check on queue memory */
614 	if (unlikely(!q || (count == 0 && !arm)))
615 		return;
616 
617 	/* ring doorbell for number popped */
618 	doorbell.word0 = 0;
619 	if (arm)
620 		bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
621 	bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count);
622 	bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
623 	bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
624 			(q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
625 	bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
626 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
627 }
628 
629 /**
630  * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state.
631  * @phba: the adapter with the CQ
632  * @q: The Completion Queue that the host has completed processing for.
633  * @count: the number of elements that were consumed
634  * @arm: Indicates whether the host wants to arms this CQ.
635  *
636  * This routine will notify the HBA, by ringing the doorbell, that the
637  * CQEs have been processed. The @arm parameter specifies whether the
638  * queue should be rearmed when ringing the doorbell.
639  **/
640 void
641 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q,
642 			 uint32_t count, bool arm)
643 {
644 	struct lpfc_register doorbell;
645 
646 	/* sanity check on queue memory */
647 	if (unlikely(!q || (count == 0 && !arm)))
648 		return;
649 
650 	/* ring doorbell for number popped */
651 	doorbell.word0 = 0;
652 	if (arm)
653 		bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1);
654 	bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count);
655 	bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id);
656 	writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr);
657 }
658 
659 /**
660  * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
661  * @q: The Header Receive Queue to operate on.
662  * @wqe: The Receive Queue Entry to put on the Receive queue.
663  *
664  * This routine will copy the contents of @wqe to the next available entry on
665  * the @q. This function will then ring the Receive Queue Doorbell to signal the
666  * HBA to start processing the Receive Queue Entry. This function returns the
667  * index that the rqe was copied to if successful. If no entries are available
668  * on @q then this function will return -ENOMEM.
669  * The caller is expected to hold the hbalock when calling this routine.
670  **/
671 int
672 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
673 		 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
674 {
675 	struct lpfc_rqe *temp_hrqe;
676 	struct lpfc_rqe *temp_drqe;
677 	struct lpfc_register doorbell;
678 	int hq_put_index;
679 	int dq_put_index;
680 
681 	/* sanity check on queue memory */
682 	if (unlikely(!hq) || unlikely(!dq))
683 		return -ENOMEM;
684 	hq_put_index = hq->host_index;
685 	dq_put_index = dq->host_index;
686 	temp_hrqe = lpfc_sli4_qe(hq, hq_put_index);
687 	temp_drqe = lpfc_sli4_qe(dq, dq_put_index);
688 
689 	if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
690 		return -EINVAL;
691 	if (hq_put_index != dq_put_index)
692 		return -EINVAL;
693 	/* If the host has not yet processed the next entry then we are done */
694 	if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index)
695 		return -EBUSY;
696 	lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
697 	lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
698 
699 	/* Update the host index to point to the next slot */
700 	hq->host_index = ((hq_put_index + 1) % hq->entry_count);
701 	dq->host_index = ((dq_put_index + 1) % dq->entry_count);
702 	hq->RQ_buf_posted++;
703 
704 	/* Ring The Header Receive Queue Doorbell */
705 	if (!(hq->host_index % hq->notify_interval)) {
706 		doorbell.word0 = 0;
707 		if (hq->db_format == LPFC_DB_RING_FORMAT) {
708 			bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell,
709 			       hq->notify_interval);
710 			bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id);
711 		} else if (hq->db_format == LPFC_DB_LIST_FORMAT) {
712 			bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell,
713 			       hq->notify_interval);
714 			bf_set(lpfc_rq_db_list_fm_index, &doorbell,
715 			       hq->host_index);
716 			bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id);
717 		} else {
718 			return -EINVAL;
719 		}
720 		writel(doorbell.word0, hq->db_regaddr);
721 	}
722 	return hq_put_index;
723 }
724 
725 /**
726  * lpfc_sli4_rq_release - Updates internal hba index for RQ
727  * @q: The Header Receive Queue to operate on.
728  *
729  * This routine will update the HBA index of a queue to reflect consumption of
730  * one Receive Queue Entry by the HBA. When the HBA indicates that it has
731  * consumed an entry the host calls this function to update the queue's
732  * internal pointers. This routine returns the number of entries that were
733  * consumed by the HBA.
734  **/
735 static uint32_t
736 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
737 {
738 	/* sanity check on queue memory */
739 	if (unlikely(!hq) || unlikely(!dq))
740 		return 0;
741 
742 	if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
743 		return 0;
744 	hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
745 	dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
746 	return 1;
747 }
748 
749 /**
750  * lpfc_cmd_iocb - Get next command iocb entry in the ring
751  * @phba: Pointer to HBA context object.
752  * @pring: Pointer to driver SLI ring object.
753  *
754  * This function returns pointer to next command iocb entry
755  * in the command ring. The caller must hold hbalock to prevent
756  * other threads consume the next command iocb.
757  * SLI-2/SLI-3 provide different sized iocbs.
758  **/
759 static inline IOCB_t *
760 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
761 {
762 	return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) +
763 			   pring->sli.sli3.cmdidx * phba->iocb_cmd_size);
764 }
765 
766 /**
767  * lpfc_resp_iocb - Get next response iocb entry in the ring
768  * @phba: Pointer to HBA context object.
769  * @pring: Pointer to driver SLI ring object.
770  *
771  * This function returns pointer to next response iocb entry
772  * in the response ring. The caller must hold hbalock to make sure
773  * that no other thread consume the next response iocb.
774  * SLI-2/SLI-3 provide different sized iocbs.
775  **/
776 static inline IOCB_t *
777 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
778 {
779 	return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) +
780 			   pring->sli.sli3.rspidx * phba->iocb_rsp_size);
781 }
782 
783 /**
784  * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
785  * @phba: Pointer to HBA context object.
786  *
787  * This function is called with hbalock held. This function
788  * allocates a new driver iocb object from the iocb pool. If the
789  * allocation is successful, it returns pointer to the newly
790  * allocated iocb object else it returns NULL.
791  **/
792 struct lpfc_iocbq *
793 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
794 {
795 	struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
796 	struct lpfc_iocbq * iocbq = NULL;
797 
798 	lockdep_assert_held(&phba->hbalock);
799 
800 	list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
801 	if (iocbq)
802 		phba->iocb_cnt++;
803 	if (phba->iocb_cnt > phba->iocb_max)
804 		phba->iocb_max = phba->iocb_cnt;
805 	return iocbq;
806 }
807 
808 /**
809  * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
810  * @phba: Pointer to HBA context object.
811  * @xritag: XRI value.
812  *
813  * This function clears the sglq pointer from the array of acive
814  * sglq's. The xritag that is passed in is used to index into the
815  * array. Before the xritag can be used it needs to be adjusted
816  * by subtracting the xribase.
817  *
818  * Returns sglq ponter = success, NULL = Failure.
819  **/
820 struct lpfc_sglq *
821 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
822 {
823 	struct lpfc_sglq *sglq;
824 
825 	sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
826 	phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
827 	return sglq;
828 }
829 
830 /**
831  * __lpfc_get_active_sglq - Get the active sglq for this XRI.
832  * @phba: Pointer to HBA context object.
833  * @xritag: XRI value.
834  *
835  * This function returns the sglq pointer from the array of acive
836  * sglq's. The xritag that is passed in is used to index into the
837  * array. Before the xritag can be used it needs to be adjusted
838  * by subtracting the xribase.
839  *
840  * Returns sglq ponter = success, NULL = Failure.
841  **/
842 struct lpfc_sglq *
843 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
844 {
845 	struct lpfc_sglq *sglq;
846 
847 	sglq =  phba->sli4_hba.lpfc_sglq_active_list[xritag];
848 	return sglq;
849 }
850 
851 /**
852  * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
853  * @phba: Pointer to HBA context object.
854  * @xritag: xri used in this exchange.
855  * @rrq: The RRQ to be cleared.
856  *
857  **/
858 void
859 lpfc_clr_rrq_active(struct lpfc_hba *phba,
860 		    uint16_t xritag,
861 		    struct lpfc_node_rrq *rrq)
862 {
863 	struct lpfc_nodelist *ndlp = NULL;
864 
865 	if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
866 		ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
867 
868 	/* The target DID could have been swapped (cable swap)
869 	 * we should use the ndlp from the findnode if it is
870 	 * available.
871 	 */
872 	if ((!ndlp) && rrq->ndlp)
873 		ndlp = rrq->ndlp;
874 
875 	if (!ndlp)
876 		goto out;
877 
878 	if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) {
879 		rrq->send_rrq = 0;
880 		rrq->xritag = 0;
881 		rrq->rrq_stop_time = 0;
882 	}
883 out:
884 	mempool_free(rrq, phba->rrq_pool);
885 }
886 
887 /**
888  * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
889  * @phba: Pointer to HBA context object.
890  *
891  * This function is called with hbalock held. This function
892  * Checks if stop_time (ratov from setting rrq active) has
893  * been reached, if it has and the send_rrq flag is set then
894  * it will call lpfc_send_rrq. If the send_rrq flag is not set
895  * then it will just call the routine to clear the rrq and
896  * free the rrq resource.
897  * The timer is set to the next rrq that is going to expire before
898  * leaving the routine.
899  *
900  **/
901 void
902 lpfc_handle_rrq_active(struct lpfc_hba *phba)
903 {
904 	struct lpfc_node_rrq *rrq;
905 	struct lpfc_node_rrq *nextrrq;
906 	unsigned long next_time;
907 	unsigned long iflags;
908 	LIST_HEAD(send_rrq);
909 
910 	spin_lock_irqsave(&phba->hbalock, iflags);
911 	phba->hba_flag &= ~HBA_RRQ_ACTIVE;
912 	next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
913 	list_for_each_entry_safe(rrq, nextrrq,
914 				 &phba->active_rrq_list, list) {
915 		if (time_after(jiffies, rrq->rrq_stop_time))
916 			list_move(&rrq->list, &send_rrq);
917 		else if (time_before(rrq->rrq_stop_time, next_time))
918 			next_time = rrq->rrq_stop_time;
919 	}
920 	spin_unlock_irqrestore(&phba->hbalock, iflags);
921 	if ((!list_empty(&phba->active_rrq_list)) &&
922 	    (!(phba->pport->load_flag & FC_UNLOADING)))
923 		mod_timer(&phba->rrq_tmr, next_time);
924 	list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
925 		list_del(&rrq->list);
926 		if (!rrq->send_rrq) {
927 			/* this call will free the rrq */
928 			lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
929 		} else if (lpfc_send_rrq(phba, rrq)) {
930 			/* if we send the rrq then the completion handler
931 			*  will clear the bit in the xribitmap.
932 			*/
933 			lpfc_clr_rrq_active(phba, rrq->xritag,
934 					    rrq);
935 		}
936 	}
937 }
938 
939 /**
940  * lpfc_get_active_rrq - Get the active RRQ for this exchange.
941  * @vport: Pointer to vport context object.
942  * @xri: The xri used in the exchange.
943  * @did: The targets DID for this exchange.
944  *
945  * returns NULL = rrq not found in the phba->active_rrq_list.
946  *         rrq = rrq for this xri and target.
947  **/
948 struct lpfc_node_rrq *
949 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
950 {
951 	struct lpfc_hba *phba = vport->phba;
952 	struct lpfc_node_rrq *rrq;
953 	struct lpfc_node_rrq *nextrrq;
954 	unsigned long iflags;
955 
956 	if (phba->sli_rev != LPFC_SLI_REV4)
957 		return NULL;
958 	spin_lock_irqsave(&phba->hbalock, iflags);
959 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
960 		if (rrq->vport == vport && rrq->xritag == xri &&
961 				rrq->nlp_DID == did){
962 			list_del(&rrq->list);
963 			spin_unlock_irqrestore(&phba->hbalock, iflags);
964 			return rrq;
965 		}
966 	}
967 	spin_unlock_irqrestore(&phba->hbalock, iflags);
968 	return NULL;
969 }
970 
971 /**
972  * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
973  * @vport: Pointer to vport context object.
974  * @ndlp: Pointer to the lpfc_node_list structure.
975  * If ndlp is NULL Remove all active RRQs for this vport from the
976  * phba->active_rrq_list and clear the rrq.
977  * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
978  **/
979 void
980 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
981 
982 {
983 	struct lpfc_hba *phba = vport->phba;
984 	struct lpfc_node_rrq *rrq;
985 	struct lpfc_node_rrq *nextrrq;
986 	unsigned long iflags;
987 	LIST_HEAD(rrq_list);
988 
989 	if (phba->sli_rev != LPFC_SLI_REV4)
990 		return;
991 	if (!ndlp) {
992 		lpfc_sli4_vport_delete_els_xri_aborted(vport);
993 		lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
994 	}
995 	spin_lock_irqsave(&phba->hbalock, iflags);
996 	list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
997 		if ((rrq->vport == vport) && (!ndlp  || rrq->ndlp == ndlp))
998 			list_move(&rrq->list, &rrq_list);
999 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1000 
1001 	list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
1002 		list_del(&rrq->list);
1003 		lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
1004 	}
1005 }
1006 
1007 /**
1008  * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
1009  * @phba: Pointer to HBA context object.
1010  * @ndlp: Targets nodelist pointer for this exchange.
1011  * @xritag the xri in the bitmap to test.
1012  *
1013  * This function returns:
1014  * 0 = rrq not active for this xri
1015  * 1 = rrq is valid for this xri.
1016  **/
1017 int
1018 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1019 			uint16_t  xritag)
1020 {
1021 	if (!ndlp)
1022 		return 0;
1023 	if (!ndlp->active_rrqs_xri_bitmap)
1024 		return 0;
1025 	if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1026 		return 1;
1027 	else
1028 		return 0;
1029 }
1030 
1031 /**
1032  * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
1033  * @phba: Pointer to HBA context object.
1034  * @ndlp: nodelist pointer for this target.
1035  * @xritag: xri used in this exchange.
1036  * @rxid: Remote Exchange ID.
1037  * @send_rrq: Flag used to determine if we should send rrq els cmd.
1038  *
1039  * This function takes the hbalock.
1040  * The active bit is always set in the active rrq xri_bitmap even
1041  * if there is no slot avaiable for the other rrq information.
1042  *
1043  * returns 0 rrq actived for this xri
1044  *         < 0 No memory or invalid ndlp.
1045  **/
1046 int
1047 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
1048 		    uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
1049 {
1050 	unsigned long iflags;
1051 	struct lpfc_node_rrq *rrq;
1052 	int empty;
1053 
1054 	if (!ndlp)
1055 		return -EINVAL;
1056 
1057 	if (!phba->cfg_enable_rrq)
1058 		return -EINVAL;
1059 
1060 	spin_lock_irqsave(&phba->hbalock, iflags);
1061 	if (phba->pport->load_flag & FC_UNLOADING) {
1062 		phba->hba_flag &= ~HBA_RRQ_ACTIVE;
1063 		goto out;
1064 	}
1065 
1066 	/*
1067 	 * set the active bit even if there is no mem available.
1068 	 */
1069 	if (NLP_CHK_FREE_REQ(ndlp))
1070 		goto out;
1071 
1072 	if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
1073 		goto out;
1074 
1075 	if (!ndlp->active_rrqs_xri_bitmap)
1076 		goto out;
1077 
1078 	if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap))
1079 		goto out;
1080 
1081 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1082 	rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
1083 	if (!rrq) {
1084 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1085 				"3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
1086 				" DID:0x%x Send:%d\n",
1087 				xritag, rxid, ndlp->nlp_DID, send_rrq);
1088 		return -EINVAL;
1089 	}
1090 	if (phba->cfg_enable_rrq == 1)
1091 		rrq->send_rrq = send_rrq;
1092 	else
1093 		rrq->send_rrq = 0;
1094 	rrq->xritag = xritag;
1095 	rrq->rrq_stop_time = jiffies +
1096 				msecs_to_jiffies(1000 * (phba->fc_ratov + 1));
1097 	rrq->ndlp = ndlp;
1098 	rrq->nlp_DID = ndlp->nlp_DID;
1099 	rrq->vport = ndlp->vport;
1100 	rrq->rxid = rxid;
1101 	spin_lock_irqsave(&phba->hbalock, iflags);
1102 	empty = list_empty(&phba->active_rrq_list);
1103 	list_add_tail(&rrq->list, &phba->active_rrq_list);
1104 	phba->hba_flag |= HBA_RRQ_ACTIVE;
1105 	if (empty)
1106 		lpfc_worker_wake_up(phba);
1107 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1108 	return 0;
1109 out:
1110 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1111 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
1112 			"2921 Can't set rrq active xri:0x%x rxid:0x%x"
1113 			" DID:0x%x Send:%d\n",
1114 			xritag, rxid, ndlp->nlp_DID, send_rrq);
1115 	return -EINVAL;
1116 }
1117 
1118 /**
1119  * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool
1120  * @phba: Pointer to HBA context object.
1121  * @piocb: Pointer to the iocbq.
1122  *
1123  * The driver calls this function with either the nvme ls ring lock
1124  * or the fc els ring lock held depending on the iocb usage.  This function
1125  * gets a new driver sglq object from the sglq list. If the list is not empty
1126  * then it is successful, it returns pointer to the newly allocated sglq
1127  * object else it returns NULL.
1128  **/
1129 static struct lpfc_sglq *
1130 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1131 {
1132 	struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list;
1133 	struct lpfc_sglq *sglq = NULL;
1134 	struct lpfc_sglq *start_sglq = NULL;
1135 	struct lpfc_io_buf *lpfc_cmd;
1136 	struct lpfc_nodelist *ndlp;
1137 	struct lpfc_sli_ring *pring = NULL;
1138 	int found = 0;
1139 
1140 	if (piocbq->iocb_flag & LPFC_IO_NVME_LS)
1141 		pring =  phba->sli4_hba.nvmels_wq->pring;
1142 	else
1143 		pring = lpfc_phba_elsring(phba);
1144 
1145 	lockdep_assert_held(&pring->ring_lock);
1146 
1147 	if (piocbq->iocb_flag &  LPFC_IO_FCP) {
1148 		lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1;
1149 		ndlp = lpfc_cmd->rdata->pnode;
1150 	} else  if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
1151 			!(piocbq->iocb_flag & LPFC_IO_LIBDFC)) {
1152 		ndlp = piocbq->context_un.ndlp;
1153 	} else  if (piocbq->iocb_flag & LPFC_IO_LIBDFC) {
1154 		if (piocbq->iocb_flag & LPFC_IO_LOOPBACK)
1155 			ndlp = NULL;
1156 		else
1157 			ndlp = piocbq->context_un.ndlp;
1158 	} else {
1159 		ndlp = piocbq->context1;
1160 	}
1161 
1162 	spin_lock(&phba->sli4_hba.sgl_list_lock);
1163 	list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list);
1164 	start_sglq = sglq;
1165 	while (!found) {
1166 		if (!sglq)
1167 			break;
1168 		if (ndlp && ndlp->active_rrqs_xri_bitmap &&
1169 		    test_bit(sglq->sli4_lxritag,
1170 		    ndlp->active_rrqs_xri_bitmap)) {
1171 			/* This xri has an rrq outstanding for this DID.
1172 			 * put it back in the list and get another xri.
1173 			 */
1174 			list_add_tail(&sglq->list, lpfc_els_sgl_list);
1175 			sglq = NULL;
1176 			list_remove_head(lpfc_els_sgl_list, sglq,
1177 						struct lpfc_sglq, list);
1178 			if (sglq == start_sglq) {
1179 				list_add_tail(&sglq->list, lpfc_els_sgl_list);
1180 				sglq = NULL;
1181 				break;
1182 			} else
1183 				continue;
1184 		}
1185 		sglq->ndlp = ndlp;
1186 		found = 1;
1187 		phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1188 		sglq->state = SGL_ALLOCATED;
1189 	}
1190 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
1191 	return sglq;
1192 }
1193 
1194 /**
1195  * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool
1196  * @phba: Pointer to HBA context object.
1197  * @piocb: Pointer to the iocbq.
1198  *
1199  * This function is called with the sgl_list lock held. This function
1200  * gets a new driver sglq object from the sglq list. If the
1201  * list is not empty then it is successful, it returns pointer to the newly
1202  * allocated sglq object else it returns NULL.
1203  **/
1204 struct lpfc_sglq *
1205 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
1206 {
1207 	struct list_head *lpfc_nvmet_sgl_list;
1208 	struct lpfc_sglq *sglq = NULL;
1209 
1210 	lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list;
1211 
1212 	lockdep_assert_held(&phba->sli4_hba.sgl_list_lock);
1213 
1214 	list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list);
1215 	if (!sglq)
1216 		return NULL;
1217 	phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
1218 	sglq->state = SGL_ALLOCATED;
1219 	return sglq;
1220 }
1221 
1222 /**
1223  * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
1224  * @phba: Pointer to HBA context object.
1225  *
1226  * This function is called with no lock held. This function
1227  * allocates a new driver iocb object from the iocb pool. If the
1228  * allocation is successful, it returns pointer to the newly
1229  * allocated iocb object else it returns NULL.
1230  **/
1231 struct lpfc_iocbq *
1232 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
1233 {
1234 	struct lpfc_iocbq * iocbq = NULL;
1235 	unsigned long iflags;
1236 
1237 	spin_lock_irqsave(&phba->hbalock, iflags);
1238 	iocbq = __lpfc_sli_get_iocbq(phba);
1239 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1240 	return iocbq;
1241 }
1242 
1243 /**
1244  * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
1245  * @phba: Pointer to HBA context object.
1246  * @iocbq: Pointer to driver iocb object.
1247  *
1248  * This function is called to release the driver iocb object
1249  * to the iocb pool. The iotag in the iocb object
1250  * does not change for each use of the iocb object. This function
1251  * clears all other fields of the iocb object when it is freed.
1252  * The sqlq structure that holds the xritag and phys and virtual
1253  * mappings for the scatter gather list is retrieved from the
1254  * active array of sglq. The get of the sglq pointer also clears
1255  * the entry in the array. If the status of the IO indiactes that
1256  * this IO was aborted then the sglq entry it put on the
1257  * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
1258  * IO has good status or fails for any other reason then the sglq
1259  * entry is added to the free list (lpfc_els_sgl_list). The hbalock is
1260  *  asserted held in the code path calling this routine.
1261  **/
1262 static void
1263 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1264 {
1265 	struct lpfc_sglq *sglq;
1266 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1267 	unsigned long iflag = 0;
1268 	struct lpfc_sli_ring *pring;
1269 
1270 	if (iocbq->sli4_xritag == NO_XRI)
1271 		sglq = NULL;
1272 	else
1273 		sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
1274 
1275 
1276 	if (sglq)  {
1277 		if (iocbq->iocb_flag & LPFC_IO_NVMET) {
1278 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1279 					  iflag);
1280 			sglq->state = SGL_FREED;
1281 			sglq->ndlp = NULL;
1282 			list_add_tail(&sglq->list,
1283 				      &phba->sli4_hba.lpfc_nvmet_sgl_list);
1284 			spin_unlock_irqrestore(
1285 				&phba->sli4_hba.sgl_list_lock, iflag);
1286 			goto out;
1287 		}
1288 
1289 		pring = phba->sli4_hba.els_wq->pring;
1290 		if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
1291 			(sglq->state != SGL_XRI_ABORTED)) {
1292 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1293 					  iflag);
1294 			list_add(&sglq->list,
1295 				 &phba->sli4_hba.lpfc_abts_els_sgl_list);
1296 			spin_unlock_irqrestore(
1297 				&phba->sli4_hba.sgl_list_lock, iflag);
1298 		} else {
1299 			spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock,
1300 					  iflag);
1301 			sglq->state = SGL_FREED;
1302 			sglq->ndlp = NULL;
1303 			list_add_tail(&sglq->list,
1304 				      &phba->sli4_hba.lpfc_els_sgl_list);
1305 			spin_unlock_irqrestore(
1306 				&phba->sli4_hba.sgl_list_lock, iflag);
1307 
1308 			/* Check if TXQ queue needs to be serviced */
1309 			if (!list_empty(&pring->txq))
1310 				lpfc_worker_wake_up(phba);
1311 		}
1312 	}
1313 
1314 out:
1315 	/*
1316 	 * Clean all volatile data fields, preserve iotag and node struct.
1317 	 */
1318 	memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1319 	iocbq->sli4_lxritag = NO_XRI;
1320 	iocbq->sli4_xritag = NO_XRI;
1321 	iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET |
1322 			      LPFC_IO_NVME_LS);
1323 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1324 }
1325 
1326 
1327 /**
1328  * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
1329  * @phba: Pointer to HBA context object.
1330  * @iocbq: Pointer to driver iocb object.
1331  *
1332  * This function is called to release the driver iocb object to the
1333  * iocb pool. The iotag in the iocb object does not change for each
1334  * use of the iocb object. This function clears all other fields of
1335  * the iocb object when it is freed. The hbalock is asserted held in
1336  * the code path calling this routine.
1337  **/
1338 static void
1339 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1340 {
1341 	size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1342 
1343 	/*
1344 	 * Clean all volatile data fields, preserve iotag and node struct.
1345 	 */
1346 	memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1347 	iocbq->sli4_xritag = NO_XRI;
1348 	list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1349 }
1350 
1351 /**
1352  * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1353  * @phba: Pointer to HBA context object.
1354  * @iocbq: Pointer to driver iocb object.
1355  *
1356  * This function is called with hbalock held to release driver
1357  * iocb object to the iocb pool. The iotag in the iocb object
1358  * does not change for each use of the iocb object. This function
1359  * clears all other fields of the iocb object when it is freed.
1360  **/
1361 static void
1362 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1363 {
1364 	lockdep_assert_held(&phba->hbalock);
1365 
1366 	phba->__lpfc_sli_release_iocbq(phba, iocbq);
1367 	phba->iocb_cnt--;
1368 }
1369 
1370 /**
1371  * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1372  * @phba: Pointer to HBA context object.
1373  * @iocbq: Pointer to driver iocb object.
1374  *
1375  * This function is called with no lock held to release the iocb to
1376  * iocb pool.
1377  **/
1378 void
1379 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1380 {
1381 	unsigned long iflags;
1382 
1383 	/*
1384 	 * Clean all volatile data fields, preserve iotag and node struct.
1385 	 */
1386 	spin_lock_irqsave(&phba->hbalock, iflags);
1387 	__lpfc_sli_release_iocbq(phba, iocbq);
1388 	spin_unlock_irqrestore(&phba->hbalock, iflags);
1389 }
1390 
1391 /**
1392  * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1393  * @phba: Pointer to HBA context object.
1394  * @iocblist: List of IOCBs.
1395  * @ulpstatus: ULP status in IOCB command field.
1396  * @ulpWord4: ULP word-4 in IOCB command field.
1397  *
1398  * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1399  * on the list by invoking the complete callback function associated with the
1400  * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1401  * fields.
1402  **/
1403 void
1404 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1405 		      uint32_t ulpstatus, uint32_t ulpWord4)
1406 {
1407 	struct lpfc_iocbq *piocb;
1408 
1409 	while (!list_empty(iocblist)) {
1410 		list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1411 		if (!piocb->iocb_cmpl) {
1412 			if (piocb->iocb_flag & LPFC_IO_NVME)
1413 				lpfc_nvme_cancel_iocb(phba, piocb);
1414 			else
1415 				lpfc_sli_release_iocbq(phba, piocb);
1416 		} else {
1417 			piocb->iocb.ulpStatus = ulpstatus;
1418 			piocb->iocb.un.ulpWord[4] = ulpWord4;
1419 			(piocb->iocb_cmpl) (phba, piocb, piocb);
1420 		}
1421 	}
1422 	return;
1423 }
1424 
1425 /**
1426  * lpfc_sli_iocb_cmd_type - Get the iocb type
1427  * @iocb_cmnd: iocb command code.
1428  *
1429  * This function is called by ring event handler function to get the iocb type.
1430  * This function translates the iocb command to an iocb command type used to
1431  * decide the final disposition of each completed IOCB.
1432  * The function returns
1433  * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1434  * LPFC_SOL_IOCB     if it is a solicited iocb completion
1435  * LPFC_ABORT_IOCB   if it is an abort iocb
1436  * LPFC_UNSOL_IOCB   if it is an unsolicited iocb
1437  *
1438  * The caller is not required to hold any lock.
1439  **/
1440 static lpfc_iocb_type
1441 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1442 {
1443 	lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1444 
1445 	if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1446 		return 0;
1447 
1448 	switch (iocb_cmnd) {
1449 	case CMD_XMIT_SEQUENCE_CR:
1450 	case CMD_XMIT_SEQUENCE_CX:
1451 	case CMD_XMIT_BCAST_CN:
1452 	case CMD_XMIT_BCAST_CX:
1453 	case CMD_ELS_REQUEST_CR:
1454 	case CMD_ELS_REQUEST_CX:
1455 	case CMD_CREATE_XRI_CR:
1456 	case CMD_CREATE_XRI_CX:
1457 	case CMD_GET_RPI_CN:
1458 	case CMD_XMIT_ELS_RSP_CX:
1459 	case CMD_GET_RPI_CR:
1460 	case CMD_FCP_IWRITE_CR:
1461 	case CMD_FCP_IWRITE_CX:
1462 	case CMD_FCP_IREAD_CR:
1463 	case CMD_FCP_IREAD_CX:
1464 	case CMD_FCP_ICMND_CR:
1465 	case CMD_FCP_ICMND_CX:
1466 	case CMD_FCP_TSEND_CX:
1467 	case CMD_FCP_TRSP_CX:
1468 	case CMD_FCP_TRECEIVE_CX:
1469 	case CMD_FCP_AUTO_TRSP_CX:
1470 	case CMD_ADAPTER_MSG:
1471 	case CMD_ADAPTER_DUMP:
1472 	case CMD_XMIT_SEQUENCE64_CR:
1473 	case CMD_XMIT_SEQUENCE64_CX:
1474 	case CMD_XMIT_BCAST64_CN:
1475 	case CMD_XMIT_BCAST64_CX:
1476 	case CMD_ELS_REQUEST64_CR:
1477 	case CMD_ELS_REQUEST64_CX:
1478 	case CMD_FCP_IWRITE64_CR:
1479 	case CMD_FCP_IWRITE64_CX:
1480 	case CMD_FCP_IREAD64_CR:
1481 	case CMD_FCP_IREAD64_CX:
1482 	case CMD_FCP_ICMND64_CR:
1483 	case CMD_FCP_ICMND64_CX:
1484 	case CMD_FCP_TSEND64_CX:
1485 	case CMD_FCP_TRSP64_CX:
1486 	case CMD_FCP_TRECEIVE64_CX:
1487 	case CMD_GEN_REQUEST64_CR:
1488 	case CMD_GEN_REQUEST64_CX:
1489 	case CMD_XMIT_ELS_RSP64_CX:
1490 	case DSSCMD_IWRITE64_CR:
1491 	case DSSCMD_IWRITE64_CX:
1492 	case DSSCMD_IREAD64_CR:
1493 	case DSSCMD_IREAD64_CX:
1494 		type = LPFC_SOL_IOCB;
1495 		break;
1496 	case CMD_ABORT_XRI_CN:
1497 	case CMD_ABORT_XRI_CX:
1498 	case CMD_CLOSE_XRI_CN:
1499 	case CMD_CLOSE_XRI_CX:
1500 	case CMD_XRI_ABORTED_CX:
1501 	case CMD_ABORT_MXRI64_CN:
1502 	case CMD_XMIT_BLS_RSP64_CX:
1503 		type = LPFC_ABORT_IOCB;
1504 		break;
1505 	case CMD_RCV_SEQUENCE_CX:
1506 	case CMD_RCV_ELS_REQ_CX:
1507 	case CMD_RCV_SEQUENCE64_CX:
1508 	case CMD_RCV_ELS_REQ64_CX:
1509 	case CMD_ASYNC_STATUS:
1510 	case CMD_IOCB_RCV_SEQ64_CX:
1511 	case CMD_IOCB_RCV_ELS64_CX:
1512 	case CMD_IOCB_RCV_CONT64_CX:
1513 	case CMD_IOCB_RET_XRI64_CX:
1514 		type = LPFC_UNSOL_IOCB;
1515 		break;
1516 	case CMD_IOCB_XMIT_MSEQ64_CR:
1517 	case CMD_IOCB_XMIT_MSEQ64_CX:
1518 	case CMD_IOCB_RCV_SEQ_LIST64_CX:
1519 	case CMD_IOCB_RCV_ELS_LIST64_CX:
1520 	case CMD_IOCB_CLOSE_EXTENDED_CN:
1521 	case CMD_IOCB_ABORT_EXTENDED_CN:
1522 	case CMD_IOCB_RET_HBQE64_CN:
1523 	case CMD_IOCB_FCP_IBIDIR64_CR:
1524 	case CMD_IOCB_FCP_IBIDIR64_CX:
1525 	case CMD_IOCB_FCP_ITASKMGT64_CX:
1526 	case CMD_IOCB_LOGENTRY_CN:
1527 	case CMD_IOCB_LOGENTRY_ASYNC_CN:
1528 		printk("%s - Unhandled SLI-3 Command x%x\n",
1529 				__func__, iocb_cmnd);
1530 		type = LPFC_UNKNOWN_IOCB;
1531 		break;
1532 	default:
1533 		type = LPFC_UNKNOWN_IOCB;
1534 		break;
1535 	}
1536 
1537 	return type;
1538 }
1539 
1540 /**
1541  * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1542  * @phba: Pointer to HBA context object.
1543  *
1544  * This function is called from SLI initialization code
1545  * to configure every ring of the HBA's SLI interface. The
1546  * caller is not required to hold any lock. This function issues
1547  * a config_ring mailbox command for each ring.
1548  * This function returns zero if successful else returns a negative
1549  * error code.
1550  **/
1551 static int
1552 lpfc_sli_ring_map(struct lpfc_hba *phba)
1553 {
1554 	struct lpfc_sli *psli = &phba->sli;
1555 	LPFC_MBOXQ_t *pmb;
1556 	MAILBOX_t *pmbox;
1557 	int i, rc, ret = 0;
1558 
1559 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1560 	if (!pmb)
1561 		return -ENOMEM;
1562 	pmbox = &pmb->u.mb;
1563 	phba->link_state = LPFC_INIT_MBX_CMDS;
1564 	for (i = 0; i < psli->num_rings; i++) {
1565 		lpfc_config_ring(phba, i, pmb);
1566 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1567 		if (rc != MBX_SUCCESS) {
1568 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1569 					"0446 Adapter failed to init (%d), "
1570 					"mbxCmd x%x CFG_RING, mbxStatus x%x, "
1571 					"ring %d\n",
1572 					rc, pmbox->mbxCommand,
1573 					pmbox->mbxStatus, i);
1574 			phba->link_state = LPFC_HBA_ERROR;
1575 			ret = -ENXIO;
1576 			break;
1577 		}
1578 	}
1579 	mempool_free(pmb, phba->mbox_mem_pool);
1580 	return ret;
1581 }
1582 
1583 /**
1584  * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1585  * @phba: Pointer to HBA context object.
1586  * @pring: Pointer to driver SLI ring object.
1587  * @piocb: Pointer to the driver iocb object.
1588  *
1589  * The driver calls this function with the hbalock held for SLI3 ports or
1590  * the ring lock held for SLI4 ports. The function adds the
1591  * new iocb to txcmplq of the given ring. This function always returns
1592  * 0. If this function is called for ELS ring, this function checks if
1593  * there is a vport associated with the ELS command. This function also
1594  * starts els_tmofunc timer if this is an ELS command.
1595  **/
1596 static int
1597 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1598 			struct lpfc_iocbq *piocb)
1599 {
1600 	if (phba->sli_rev == LPFC_SLI_REV4)
1601 		lockdep_assert_held(&pring->ring_lock);
1602 	else
1603 		lockdep_assert_held(&phba->hbalock);
1604 
1605 	BUG_ON(!piocb);
1606 
1607 	list_add_tail(&piocb->list, &pring->txcmplq);
1608 	piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ;
1609 	pring->txcmplq_cnt++;
1610 
1611 	if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1612 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1613 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1614 		BUG_ON(!piocb->vport);
1615 		if (!(piocb->vport->load_flag & FC_UNLOADING))
1616 			mod_timer(&piocb->vport->els_tmofunc,
1617 				  jiffies +
1618 				  msecs_to_jiffies(1000 * (phba->fc_ratov << 1)));
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /**
1625  * lpfc_sli_ringtx_get - Get first element of the txq
1626  * @phba: Pointer to HBA context object.
1627  * @pring: Pointer to driver SLI ring object.
1628  *
1629  * This function is called with hbalock held to get next
1630  * iocb in txq of the given ring. If there is any iocb in
1631  * the txq, the function returns first iocb in the list after
1632  * removing the iocb from the list, else it returns NULL.
1633  **/
1634 struct lpfc_iocbq *
1635 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1636 {
1637 	struct lpfc_iocbq *cmd_iocb;
1638 
1639 	lockdep_assert_held(&phba->hbalock);
1640 
1641 	list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1642 	return cmd_iocb;
1643 }
1644 
1645 /**
1646  * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1647  * @phba: Pointer to HBA context object.
1648  * @pring: Pointer to driver SLI ring object.
1649  *
1650  * This function is called with hbalock held and the caller must post the
1651  * iocb without releasing the lock. If the caller releases the lock,
1652  * iocb slot returned by the function is not guaranteed to be available.
1653  * The function returns pointer to the next available iocb slot if there
1654  * is available slot in the ring, else it returns NULL.
1655  * If the get index of the ring is ahead of the put index, the function
1656  * will post an error attention event to the worker thread to take the
1657  * HBA to offline state.
1658  **/
1659 static IOCB_t *
1660 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1661 {
1662 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1663 	uint32_t  max_cmd_idx = pring->sli.sli3.numCiocb;
1664 
1665 	lockdep_assert_held(&phba->hbalock);
1666 
1667 	if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) &&
1668 	   (++pring->sli.sli3.next_cmdidx >= max_cmd_idx))
1669 		pring->sli.sli3.next_cmdidx = 0;
1670 
1671 	if (unlikely(pring->sli.sli3.local_getidx ==
1672 		pring->sli.sli3.next_cmdidx)) {
1673 
1674 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
1675 
1676 		if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) {
1677 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1678 					"0315 Ring %d issue: portCmdGet %d "
1679 					"is bigger than cmd ring %d\n",
1680 					pring->ringno,
1681 					pring->sli.sli3.local_getidx,
1682 					max_cmd_idx);
1683 
1684 			phba->link_state = LPFC_HBA_ERROR;
1685 			/*
1686 			 * All error attention handlers are posted to
1687 			 * worker thread
1688 			 */
1689 			phba->work_ha |= HA_ERATT;
1690 			phba->work_hs = HS_FFER3;
1691 
1692 			lpfc_worker_wake_up(phba);
1693 
1694 			return NULL;
1695 		}
1696 
1697 		if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)
1698 			return NULL;
1699 	}
1700 
1701 	return lpfc_cmd_iocb(phba, pring);
1702 }
1703 
1704 /**
1705  * lpfc_sli_next_iotag - Get an iotag for the iocb
1706  * @phba: Pointer to HBA context object.
1707  * @iocbq: Pointer to driver iocb object.
1708  *
1709  * This function gets an iotag for the iocb. If there is no unused iotag and
1710  * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1711  * array and assigns a new iotag.
1712  * The function returns the allocated iotag if successful, else returns zero.
1713  * Zero is not a valid iotag.
1714  * The caller is not required to hold any lock.
1715  **/
1716 uint16_t
1717 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1718 {
1719 	struct lpfc_iocbq **new_arr;
1720 	struct lpfc_iocbq **old_arr;
1721 	size_t new_len;
1722 	struct lpfc_sli *psli = &phba->sli;
1723 	uint16_t iotag;
1724 
1725 	spin_lock_irq(&phba->hbalock);
1726 	iotag = psli->last_iotag;
1727 	if(++iotag < psli->iocbq_lookup_len) {
1728 		psli->last_iotag = iotag;
1729 		psli->iocbq_lookup[iotag] = iocbq;
1730 		spin_unlock_irq(&phba->hbalock);
1731 		iocbq->iotag = iotag;
1732 		return iotag;
1733 	} else if (psli->iocbq_lookup_len < (0xffff
1734 					   - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1735 		new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1736 		spin_unlock_irq(&phba->hbalock);
1737 		new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *),
1738 				  GFP_KERNEL);
1739 		if (new_arr) {
1740 			spin_lock_irq(&phba->hbalock);
1741 			old_arr = psli->iocbq_lookup;
1742 			if (new_len <= psli->iocbq_lookup_len) {
1743 				/* highly unprobable case */
1744 				kfree(new_arr);
1745 				iotag = psli->last_iotag;
1746 				if(++iotag < psli->iocbq_lookup_len) {
1747 					psli->last_iotag = iotag;
1748 					psli->iocbq_lookup[iotag] = iocbq;
1749 					spin_unlock_irq(&phba->hbalock);
1750 					iocbq->iotag = iotag;
1751 					return iotag;
1752 				}
1753 				spin_unlock_irq(&phba->hbalock);
1754 				return 0;
1755 			}
1756 			if (psli->iocbq_lookup)
1757 				memcpy(new_arr, old_arr,
1758 				       ((psli->last_iotag  + 1) *
1759 					sizeof (struct lpfc_iocbq *)));
1760 			psli->iocbq_lookup = new_arr;
1761 			psli->iocbq_lookup_len = new_len;
1762 			psli->last_iotag = iotag;
1763 			psli->iocbq_lookup[iotag] = iocbq;
1764 			spin_unlock_irq(&phba->hbalock);
1765 			iocbq->iotag = iotag;
1766 			kfree(old_arr);
1767 			return iotag;
1768 		}
1769 	} else
1770 		spin_unlock_irq(&phba->hbalock);
1771 
1772 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1773 			"0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1774 			psli->last_iotag);
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1781  * @phba: Pointer to HBA context object.
1782  * @pring: Pointer to driver SLI ring object.
1783  * @iocb: Pointer to iocb slot in the ring.
1784  * @nextiocb: Pointer to driver iocb object which need to be
1785  *            posted to firmware.
1786  *
1787  * This function is called to post a new iocb to the firmware. This
1788  * function copies the new iocb to ring iocb slot and updates the
1789  * ring pointers. It adds the new iocb to txcmplq if there is
1790  * a completion call back for this iocb else the function will free the
1791  * iocb object.  The hbalock is asserted held in the code path calling
1792  * this routine.
1793  **/
1794 static void
1795 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1796 		IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1797 {
1798 	/*
1799 	 * Set up an iotag
1800 	 */
1801 	nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1802 
1803 
1804 	if (pring->ringno == LPFC_ELS_RING) {
1805 		lpfc_debugfs_slow_ring_trc(phba,
1806 			"IOCB cmd ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
1807 			*(((uint32_t *) &nextiocb->iocb) + 4),
1808 			*(((uint32_t *) &nextiocb->iocb) + 6),
1809 			*(((uint32_t *) &nextiocb->iocb) + 7));
1810 	}
1811 
1812 	/*
1813 	 * Issue iocb command to adapter
1814 	 */
1815 	lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1816 	wmb();
1817 	pring->stats.iocb_cmd++;
1818 
1819 	/*
1820 	 * If there is no completion routine to call, we can release the
1821 	 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1822 	 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1823 	 */
1824 	if (nextiocb->iocb_cmpl)
1825 		lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1826 	else
1827 		__lpfc_sli_release_iocbq(phba, nextiocb);
1828 
1829 	/*
1830 	 * Let the HBA know what IOCB slot will be the next one the
1831 	 * driver will put a command into.
1832 	 */
1833 	pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx;
1834 	writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1835 }
1836 
1837 /**
1838  * lpfc_sli_update_full_ring - Update the chip attention register
1839  * @phba: Pointer to HBA context object.
1840  * @pring: Pointer to driver SLI ring object.
1841  *
1842  * The caller is not required to hold any lock for calling this function.
1843  * This function updates the chip attention bits for the ring to inform firmware
1844  * that there are pending work to be done for this ring and requests an
1845  * interrupt when there is space available in the ring. This function is
1846  * called when the driver is unable to post more iocbs to the ring due
1847  * to unavailability of space in the ring.
1848  **/
1849 static void
1850 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1851 {
1852 	int ringno = pring->ringno;
1853 
1854 	pring->flag |= LPFC_CALL_RING_AVAILABLE;
1855 
1856 	wmb();
1857 
1858 	/*
1859 	 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1860 	 * The HBA will tell us when an IOCB entry is available.
1861 	 */
1862 	writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1863 	readl(phba->CAregaddr); /* flush */
1864 
1865 	pring->stats.iocb_cmd_full++;
1866 }
1867 
1868 /**
1869  * lpfc_sli_update_ring - Update chip attention register
1870  * @phba: Pointer to HBA context object.
1871  * @pring: Pointer to driver SLI ring object.
1872  *
1873  * This function updates the chip attention register bit for the
1874  * given ring to inform HBA that there is more work to be done
1875  * in this ring. The caller is not required to hold any lock.
1876  **/
1877 static void
1878 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1879 {
1880 	int ringno = pring->ringno;
1881 
1882 	/*
1883 	 * Tell the HBA that there is work to do in this ring.
1884 	 */
1885 	if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1886 		wmb();
1887 		writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1888 		readl(phba->CAregaddr); /* flush */
1889 	}
1890 }
1891 
1892 /**
1893  * lpfc_sli_resume_iocb - Process iocbs in the txq
1894  * @phba: Pointer to HBA context object.
1895  * @pring: Pointer to driver SLI ring object.
1896  *
1897  * This function is called with hbalock held to post pending iocbs
1898  * in the txq to the firmware. This function is called when driver
1899  * detects space available in the ring.
1900  **/
1901 static void
1902 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1903 {
1904 	IOCB_t *iocb;
1905 	struct lpfc_iocbq *nextiocb;
1906 
1907 	lockdep_assert_held(&phba->hbalock);
1908 
1909 	/*
1910 	 * Check to see if:
1911 	 *  (a) there is anything on the txq to send
1912 	 *  (b) link is up
1913 	 *  (c) link attention events can be processed (fcp ring only)
1914 	 *  (d) IOCB processing is not blocked by the outstanding mbox command.
1915 	 */
1916 
1917 	if (lpfc_is_link_up(phba) &&
1918 	    (!list_empty(&pring->txq)) &&
1919 	    (pring->ringno != LPFC_FCP_RING ||
1920 	     phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1921 
1922 		while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1923 		       (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1924 			lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1925 
1926 		if (iocb)
1927 			lpfc_sli_update_ring(phba, pring);
1928 		else
1929 			lpfc_sli_update_full_ring(phba, pring);
1930 	}
1931 
1932 	return;
1933 }
1934 
1935 /**
1936  * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1937  * @phba: Pointer to HBA context object.
1938  * @hbqno: HBQ number.
1939  *
1940  * This function is called with hbalock held to get the next
1941  * available slot for the given HBQ. If there is free slot
1942  * available for the HBQ it will return pointer to the next available
1943  * HBQ entry else it will return NULL.
1944  **/
1945 static struct lpfc_hbq_entry *
1946 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1947 {
1948 	struct hbq_s *hbqp = &phba->hbqs[hbqno];
1949 
1950 	lockdep_assert_held(&phba->hbalock);
1951 
1952 	if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1953 	    ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1954 		hbqp->next_hbqPutIdx = 0;
1955 
1956 	if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1957 		uint32_t raw_index = phba->hbq_get[hbqno];
1958 		uint32_t getidx = le32_to_cpu(raw_index);
1959 
1960 		hbqp->local_hbqGetIdx = getidx;
1961 
1962 		if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1963 			lpfc_printf_log(phba, KERN_ERR,
1964 					LOG_SLI | LOG_VPORT,
1965 					"1802 HBQ %d: local_hbqGetIdx "
1966 					"%u is > than hbqp->entry_count %u\n",
1967 					hbqno, hbqp->local_hbqGetIdx,
1968 					hbqp->entry_count);
1969 
1970 			phba->link_state = LPFC_HBA_ERROR;
1971 			return NULL;
1972 		}
1973 
1974 		if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1975 			return NULL;
1976 	}
1977 
1978 	return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1979 			hbqp->hbqPutIdx;
1980 }
1981 
1982 /**
1983  * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1984  * @phba: Pointer to HBA context object.
1985  *
1986  * This function is called with no lock held to free all the
1987  * hbq buffers while uninitializing the SLI interface. It also
1988  * frees the HBQ buffers returned by the firmware but not yet
1989  * processed by the upper layers.
1990  **/
1991 void
1992 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1993 {
1994 	struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1995 	struct hbq_dmabuf *hbq_buf;
1996 	unsigned long flags;
1997 	int i, hbq_count;
1998 
1999 	hbq_count = lpfc_sli_hbq_count();
2000 	/* Return all memory used by all HBQs */
2001 	spin_lock_irqsave(&phba->hbalock, flags);
2002 	for (i = 0; i < hbq_count; ++i) {
2003 		list_for_each_entry_safe(dmabuf, next_dmabuf,
2004 				&phba->hbqs[i].hbq_buffer_list, list) {
2005 			hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
2006 			list_del(&hbq_buf->dbuf.list);
2007 			(phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
2008 		}
2009 		phba->hbqs[i].buffer_count = 0;
2010 	}
2011 
2012 	/* Mark the HBQs not in use */
2013 	phba->hbq_in_use = 0;
2014 	spin_unlock_irqrestore(&phba->hbalock, flags);
2015 }
2016 
2017 /**
2018  * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
2019  * @phba: Pointer to HBA context object.
2020  * @hbqno: HBQ number.
2021  * @hbq_buf: Pointer to HBQ buffer.
2022  *
2023  * This function is called with the hbalock held to post a
2024  * hbq buffer to the firmware. If the function finds an empty
2025  * slot in the HBQ, it will post the buffer. The function will return
2026  * pointer to the hbq entry if it successfully post the buffer
2027  * else it will return NULL.
2028  **/
2029 static int
2030 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
2031 			 struct hbq_dmabuf *hbq_buf)
2032 {
2033 	lockdep_assert_held(&phba->hbalock);
2034 	return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
2035 }
2036 
2037 /**
2038  * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
2039  * @phba: Pointer to HBA context object.
2040  * @hbqno: HBQ number.
2041  * @hbq_buf: Pointer to HBQ buffer.
2042  *
2043  * This function is called with the hbalock held to post a hbq buffer to the
2044  * firmware. If the function finds an empty slot in the HBQ, it will post the
2045  * buffer and place it on the hbq_buffer_list. The function will return zero if
2046  * it successfully post the buffer else it will return an error.
2047  **/
2048 static int
2049 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
2050 			    struct hbq_dmabuf *hbq_buf)
2051 {
2052 	struct lpfc_hbq_entry *hbqe;
2053 	dma_addr_t physaddr = hbq_buf->dbuf.phys;
2054 
2055 	lockdep_assert_held(&phba->hbalock);
2056 	/* Get next HBQ entry slot to use */
2057 	hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
2058 	if (hbqe) {
2059 		struct hbq_s *hbqp = &phba->hbqs[hbqno];
2060 
2061 		hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
2062 		hbqe->bde.addrLow  = le32_to_cpu(putPaddrLow(physaddr));
2063 		hbqe->bde.tus.f.bdeSize = hbq_buf->total_size;
2064 		hbqe->bde.tus.f.bdeFlags = 0;
2065 		hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
2066 		hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
2067 				/* Sync SLIM */
2068 		hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
2069 		writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
2070 				/* flush */
2071 		readl(phba->hbq_put + hbqno);
2072 		list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
2073 		return 0;
2074 	} else
2075 		return -ENOMEM;
2076 }
2077 
2078 /**
2079  * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
2080  * @phba: Pointer to HBA context object.
2081  * @hbqno: HBQ number.
2082  * @hbq_buf: Pointer to HBQ buffer.
2083  *
2084  * This function is called with the hbalock held to post an RQE to the SLI4
2085  * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
2086  * the hbq_buffer_list and return zero, otherwise it will return an error.
2087  **/
2088 static int
2089 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
2090 			    struct hbq_dmabuf *hbq_buf)
2091 {
2092 	int rc;
2093 	struct lpfc_rqe hrqe;
2094 	struct lpfc_rqe drqe;
2095 	struct lpfc_queue *hrq;
2096 	struct lpfc_queue *drq;
2097 
2098 	if (hbqno != LPFC_ELS_HBQ)
2099 		return 1;
2100 	hrq = phba->sli4_hba.hdr_rq;
2101 	drq = phba->sli4_hba.dat_rq;
2102 
2103 	lockdep_assert_held(&phba->hbalock);
2104 	hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
2105 	hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
2106 	drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
2107 	drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
2108 	rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
2109 	if (rc < 0)
2110 		return rc;
2111 	hbq_buf->tag = (rc | (hbqno << 16));
2112 	list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
2113 	return 0;
2114 }
2115 
2116 /* HBQ for ELS and CT traffic. */
2117 static struct lpfc_hbq_init lpfc_els_hbq = {
2118 	.rn = 1,
2119 	.entry_count = 256,
2120 	.mask_count = 0,
2121 	.profile = 0,
2122 	.ring_mask = (1 << LPFC_ELS_RING),
2123 	.buffer_count = 0,
2124 	.init_count = 40,
2125 	.add_count = 40,
2126 };
2127 
2128 /* Array of HBQs */
2129 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
2130 	&lpfc_els_hbq,
2131 };
2132 
2133 /**
2134  * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
2135  * @phba: Pointer to HBA context object.
2136  * @hbqno: HBQ number.
2137  * @count: Number of HBQ buffers to be posted.
2138  *
2139  * This function is called with no lock held to post more hbq buffers to the
2140  * given HBQ. The function returns the number of HBQ buffers successfully
2141  * posted.
2142  **/
2143 static int
2144 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
2145 {
2146 	uint32_t i, posted = 0;
2147 	unsigned long flags;
2148 	struct hbq_dmabuf *hbq_buffer;
2149 	LIST_HEAD(hbq_buf_list);
2150 	if (!phba->hbqs[hbqno].hbq_alloc_buffer)
2151 		return 0;
2152 
2153 	if ((phba->hbqs[hbqno].buffer_count + count) >
2154 	    lpfc_hbq_defs[hbqno]->entry_count)
2155 		count = lpfc_hbq_defs[hbqno]->entry_count -
2156 					phba->hbqs[hbqno].buffer_count;
2157 	if (!count)
2158 		return 0;
2159 	/* Allocate HBQ entries */
2160 	for (i = 0; i < count; i++) {
2161 		hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
2162 		if (!hbq_buffer)
2163 			break;
2164 		list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
2165 	}
2166 	/* Check whether HBQ is still in use */
2167 	spin_lock_irqsave(&phba->hbalock, flags);
2168 	if (!phba->hbq_in_use)
2169 		goto err;
2170 	while (!list_empty(&hbq_buf_list)) {
2171 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2172 				 dbuf.list);
2173 		hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
2174 				      (hbqno << 16));
2175 		if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
2176 			phba->hbqs[hbqno].buffer_count++;
2177 			posted++;
2178 		} else
2179 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2180 	}
2181 	spin_unlock_irqrestore(&phba->hbalock, flags);
2182 	return posted;
2183 err:
2184 	spin_unlock_irqrestore(&phba->hbalock, flags);
2185 	while (!list_empty(&hbq_buf_list)) {
2186 		list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
2187 				 dbuf.list);
2188 		(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2189 	}
2190 	return 0;
2191 }
2192 
2193 /**
2194  * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
2195  * @phba: Pointer to HBA context object.
2196  * @qno: HBQ number.
2197  *
2198  * This function posts more buffers to the HBQ. This function
2199  * is called with no lock held. The function returns the number of HBQ entries
2200  * successfully allocated.
2201  **/
2202 int
2203 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
2204 {
2205 	if (phba->sli_rev == LPFC_SLI_REV4)
2206 		return 0;
2207 	else
2208 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2209 					 lpfc_hbq_defs[qno]->add_count);
2210 }
2211 
2212 /**
2213  * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
2214  * @phba: Pointer to HBA context object.
2215  * @qno:  HBQ queue number.
2216  *
2217  * This function is called from SLI initialization code path with
2218  * no lock held to post initial HBQ buffers to firmware. The
2219  * function returns the number of HBQ entries successfully allocated.
2220  **/
2221 static int
2222 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
2223 {
2224 	if (phba->sli_rev == LPFC_SLI_REV4)
2225 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2226 					lpfc_hbq_defs[qno]->entry_count);
2227 	else
2228 		return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
2229 					 lpfc_hbq_defs[qno]->init_count);
2230 }
2231 
2232 /**
2233  * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
2234  * @phba: Pointer to HBA context object.
2235  * @hbqno: HBQ number.
2236  *
2237  * This function removes the first hbq buffer on an hbq list and returns a
2238  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2239  **/
2240 static struct hbq_dmabuf *
2241 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
2242 {
2243 	struct lpfc_dmabuf *d_buf;
2244 
2245 	list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
2246 	if (!d_buf)
2247 		return NULL;
2248 	return container_of(d_buf, struct hbq_dmabuf, dbuf);
2249 }
2250 
2251 /**
2252  * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list
2253  * @phba: Pointer to HBA context object.
2254  * @hbqno: HBQ number.
2255  *
2256  * This function removes the first RQ buffer on an RQ buffer list and returns a
2257  * pointer to that buffer. If it finds no buffers on the list it returns NULL.
2258  **/
2259 static struct rqb_dmabuf *
2260 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq)
2261 {
2262 	struct lpfc_dmabuf *h_buf;
2263 	struct lpfc_rqb *rqbp;
2264 
2265 	rqbp = hrq->rqbp;
2266 	list_remove_head(&rqbp->rqb_buffer_list, h_buf,
2267 			 struct lpfc_dmabuf, list);
2268 	if (!h_buf)
2269 		return NULL;
2270 	rqbp->buffer_count--;
2271 	return container_of(h_buf, struct rqb_dmabuf, hbuf);
2272 }
2273 
2274 /**
2275  * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
2276  * @phba: Pointer to HBA context object.
2277  * @tag: Tag of the hbq buffer.
2278  *
2279  * This function searches for the hbq buffer associated with the given tag in
2280  * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer
2281  * otherwise it returns NULL.
2282  **/
2283 static struct hbq_dmabuf *
2284 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
2285 {
2286 	struct lpfc_dmabuf *d_buf;
2287 	struct hbq_dmabuf *hbq_buf;
2288 	uint32_t hbqno;
2289 
2290 	hbqno = tag >> 16;
2291 	if (hbqno >= LPFC_MAX_HBQS)
2292 		return NULL;
2293 
2294 	spin_lock_irq(&phba->hbalock);
2295 	list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
2296 		hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2297 		if (hbq_buf->tag == tag) {
2298 			spin_unlock_irq(&phba->hbalock);
2299 			return hbq_buf;
2300 		}
2301 	}
2302 	spin_unlock_irq(&phba->hbalock);
2303 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
2304 			"1803 Bad hbq tag. Data: x%x x%x\n",
2305 			tag, phba->hbqs[tag >> 16].buffer_count);
2306 	return NULL;
2307 }
2308 
2309 /**
2310  * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
2311  * @phba: Pointer to HBA context object.
2312  * @hbq_buffer: Pointer to HBQ buffer.
2313  *
2314  * This function is called with hbalock. This function gives back
2315  * the hbq buffer to firmware. If the HBQ does not have space to
2316  * post the buffer, it will free the buffer.
2317  **/
2318 void
2319 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
2320 {
2321 	uint32_t hbqno;
2322 
2323 	if (hbq_buffer) {
2324 		hbqno = hbq_buffer->tag >> 16;
2325 		if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
2326 			(phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
2327 	}
2328 }
2329 
2330 /**
2331  * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
2332  * @mbxCommand: mailbox command code.
2333  *
2334  * This function is called by the mailbox event handler function to verify
2335  * that the completed mailbox command is a legitimate mailbox command. If the
2336  * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
2337  * and the mailbox event handler will take the HBA offline.
2338  **/
2339 static int
2340 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
2341 {
2342 	uint8_t ret;
2343 
2344 	switch (mbxCommand) {
2345 	case MBX_LOAD_SM:
2346 	case MBX_READ_NV:
2347 	case MBX_WRITE_NV:
2348 	case MBX_WRITE_VPARMS:
2349 	case MBX_RUN_BIU_DIAG:
2350 	case MBX_INIT_LINK:
2351 	case MBX_DOWN_LINK:
2352 	case MBX_CONFIG_LINK:
2353 	case MBX_CONFIG_RING:
2354 	case MBX_RESET_RING:
2355 	case MBX_READ_CONFIG:
2356 	case MBX_READ_RCONFIG:
2357 	case MBX_READ_SPARM:
2358 	case MBX_READ_STATUS:
2359 	case MBX_READ_RPI:
2360 	case MBX_READ_XRI:
2361 	case MBX_READ_REV:
2362 	case MBX_READ_LNK_STAT:
2363 	case MBX_REG_LOGIN:
2364 	case MBX_UNREG_LOGIN:
2365 	case MBX_CLEAR_LA:
2366 	case MBX_DUMP_MEMORY:
2367 	case MBX_DUMP_CONTEXT:
2368 	case MBX_RUN_DIAGS:
2369 	case MBX_RESTART:
2370 	case MBX_UPDATE_CFG:
2371 	case MBX_DOWN_LOAD:
2372 	case MBX_DEL_LD_ENTRY:
2373 	case MBX_RUN_PROGRAM:
2374 	case MBX_SET_MASK:
2375 	case MBX_SET_VARIABLE:
2376 	case MBX_UNREG_D_ID:
2377 	case MBX_KILL_BOARD:
2378 	case MBX_CONFIG_FARP:
2379 	case MBX_BEACON:
2380 	case MBX_LOAD_AREA:
2381 	case MBX_RUN_BIU_DIAG64:
2382 	case MBX_CONFIG_PORT:
2383 	case MBX_READ_SPARM64:
2384 	case MBX_READ_RPI64:
2385 	case MBX_REG_LOGIN64:
2386 	case MBX_READ_TOPOLOGY:
2387 	case MBX_WRITE_WWN:
2388 	case MBX_SET_DEBUG:
2389 	case MBX_LOAD_EXP_ROM:
2390 	case MBX_ASYNCEVT_ENABLE:
2391 	case MBX_REG_VPI:
2392 	case MBX_UNREG_VPI:
2393 	case MBX_HEARTBEAT:
2394 	case MBX_PORT_CAPABILITIES:
2395 	case MBX_PORT_IOV_CONTROL:
2396 	case MBX_SLI4_CONFIG:
2397 	case MBX_SLI4_REQ_FTRS:
2398 	case MBX_REG_FCFI:
2399 	case MBX_UNREG_FCFI:
2400 	case MBX_REG_VFI:
2401 	case MBX_UNREG_VFI:
2402 	case MBX_INIT_VPI:
2403 	case MBX_INIT_VFI:
2404 	case MBX_RESUME_RPI:
2405 	case MBX_READ_EVENT_LOG_STATUS:
2406 	case MBX_READ_EVENT_LOG:
2407 	case MBX_SECURITY_MGMT:
2408 	case MBX_AUTH_PORT:
2409 	case MBX_ACCESS_VDATA:
2410 		ret = mbxCommand;
2411 		break;
2412 	default:
2413 		ret = MBX_SHUTDOWN;
2414 		break;
2415 	}
2416 	return ret;
2417 }
2418 
2419 /**
2420  * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2421  * @phba: Pointer to HBA context object.
2422  * @pmboxq: Pointer to mailbox command.
2423  *
2424  * This is completion handler function for mailbox commands issued from
2425  * lpfc_sli_issue_mbox_wait function. This function is called by the
2426  * mailbox event handler function with no lock held. This function
2427  * will wake up thread waiting on the wait queue pointed by context1
2428  * of the mailbox.
2429  **/
2430 void
2431 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2432 {
2433 	unsigned long drvr_flag;
2434 	struct completion *pmbox_done;
2435 
2436 	/*
2437 	 * If pmbox_done is empty, the driver thread gave up waiting and
2438 	 * continued running.
2439 	 */
2440 	pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2441 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
2442 	pmbox_done = (struct completion *)pmboxq->context3;
2443 	if (pmbox_done)
2444 		complete(pmbox_done);
2445 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2446 	return;
2447 }
2448 
2449 static void
2450 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
2451 {
2452 	unsigned long iflags;
2453 
2454 	if (ndlp->nlp_flag & NLP_RELEASE_RPI) {
2455 		lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi);
2456 		spin_lock_irqsave(&vport->phba->ndlp_lock, iflags);
2457 		ndlp->nlp_flag &= ~NLP_RELEASE_RPI;
2458 		ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR;
2459 		spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags);
2460 	}
2461 	ndlp->nlp_flag &= ~NLP_UNREG_INP;
2462 }
2463 
2464 /**
2465  * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2466  * @phba: Pointer to HBA context object.
2467  * @pmb: Pointer to mailbox object.
2468  *
2469  * This function is the default mailbox completion handler. It
2470  * frees the memory resources associated with the completed mailbox
2471  * command. If the completed command is a REG_LOGIN mailbox command,
2472  * this function will issue a UREG_LOGIN to re-claim the RPI.
2473  **/
2474 void
2475 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2476 {
2477 	struct lpfc_vport  *vport = pmb->vport;
2478 	struct lpfc_dmabuf *mp;
2479 	struct lpfc_nodelist *ndlp;
2480 	struct Scsi_Host *shost;
2481 	uint16_t rpi, vpi;
2482 	int rc;
2483 
2484 	mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
2485 
2486 	if (mp) {
2487 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
2488 		kfree(mp);
2489 	}
2490 
2491 	/*
2492 	 * If a REG_LOGIN succeeded  after node is destroyed or node
2493 	 * is in re-discovery driver need to cleanup the RPI.
2494 	 */
2495 	if (!(phba->pport->load_flag & FC_UNLOADING) &&
2496 	    pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2497 	    !pmb->u.mb.mbxStatus) {
2498 		rpi = pmb->u.mb.un.varWords[0];
2499 		vpi = pmb->u.mb.un.varRegLogin.vpi;
2500 		if (phba->sli_rev == LPFC_SLI_REV4)
2501 			vpi -= phba->sli4_hba.max_cfg_param.vpi_base;
2502 		lpfc_unreg_login(phba, vpi, rpi, pmb);
2503 		pmb->vport = vport;
2504 		pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2505 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2506 		if (rc != MBX_NOT_FINISHED)
2507 			return;
2508 	}
2509 
2510 	if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2511 		!(phba->pport->load_flag & FC_UNLOADING) &&
2512 		!pmb->u.mb.mbxStatus) {
2513 		shost = lpfc_shost_from_vport(vport);
2514 		spin_lock_irq(shost->host_lock);
2515 		vport->vpi_state |= LPFC_VPI_REGISTERED;
2516 		vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2517 		spin_unlock_irq(shost->host_lock);
2518 	}
2519 
2520 	if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2521 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2522 		lpfc_nlp_put(ndlp);
2523 		pmb->ctx_buf = NULL;
2524 		pmb->ctx_ndlp = NULL;
2525 	}
2526 
2527 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2528 		ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
2529 
2530 		/* Check to see if there are any deferred events to process */
2531 		if (ndlp) {
2532 			lpfc_printf_vlog(
2533 				vport,
2534 				KERN_INFO, LOG_MBOX | LOG_DISCOVERY,
2535 				"1438 UNREG cmpl deferred mbox x%x "
2536 				"on NPort x%x Data: x%x x%x %px\n",
2537 				ndlp->nlp_rpi, ndlp->nlp_DID,
2538 				ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp);
2539 
2540 			if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2541 			    (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) {
2542 				ndlp->nlp_flag &= ~NLP_UNREG_INP;
2543 				ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING;
2544 				lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0);
2545 			} else {
2546 				__lpfc_sli_rpi_release(vport, ndlp);
2547 			}
2548 			if (vport->load_flag & FC_UNLOADING)
2549 				lpfc_nlp_put(ndlp);
2550 			pmb->ctx_ndlp = NULL;
2551 		}
2552 	}
2553 
2554 	/* Check security permission status on INIT_LINK mailbox command */
2555 	if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2556 	    (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2557 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2558 				"2860 SLI authentication is required "
2559 				"for INIT_LINK but has not done yet\n");
2560 
2561 	if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2562 		lpfc_sli4_mbox_cmd_free(phba, pmb);
2563 	else
2564 		mempool_free(pmb, phba->mbox_mem_pool);
2565 }
2566  /**
2567  * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler
2568  * @phba: Pointer to HBA context object.
2569  * @pmb: Pointer to mailbox object.
2570  *
2571  * This function is the unreg rpi mailbox completion handler. It
2572  * frees the memory resources associated with the completed mailbox
2573  * command. An additional refrenece is put on the ndlp to prevent
2574  * lpfc_nlp_release from freeing the rpi bit in the bitmask before
2575  * the unreg mailbox command completes, this routine puts the
2576  * reference back.
2577  *
2578  **/
2579 void
2580 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2581 {
2582 	struct lpfc_vport  *vport = pmb->vport;
2583 	struct lpfc_nodelist *ndlp;
2584 
2585 	ndlp = pmb->ctx_ndlp;
2586 	if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) {
2587 		if (phba->sli_rev == LPFC_SLI_REV4 &&
2588 		    (bf_get(lpfc_sli_intf_if_type,
2589 		     &phba->sli4_hba.sli_intf) >=
2590 		     LPFC_SLI_INTF_IF_TYPE_2)) {
2591 			if (ndlp) {
2592 				lpfc_printf_vlog(
2593 					vport, KERN_INFO, LOG_MBOX | LOG_SLI,
2594 					 "0010 UNREG_LOGIN vpi:%x "
2595 					 "rpi:%x DID:%x defer x%x flg x%x "
2596 					 "map:%x %px\n",
2597 					 vport->vpi, ndlp->nlp_rpi,
2598 					 ndlp->nlp_DID, ndlp->nlp_defer_did,
2599 					 ndlp->nlp_flag,
2600 					 ndlp->nlp_usg_map, ndlp);
2601 				ndlp->nlp_flag &= ~NLP_LOGO_ACC;
2602 				lpfc_nlp_put(ndlp);
2603 
2604 				/* Check to see if there are any deferred
2605 				 * events to process
2606 				 */
2607 				if ((ndlp->nlp_flag & NLP_UNREG_INP) &&
2608 				    (ndlp->nlp_defer_did !=
2609 				    NLP_EVT_NOTHING_PENDING)) {
2610 					lpfc_printf_vlog(
2611 						vport, KERN_INFO, LOG_DISCOVERY,
2612 						"4111 UNREG cmpl deferred "
2613 						"clr x%x on "
2614 						"NPort x%x Data: x%x x%px\n",
2615 						ndlp->nlp_rpi, ndlp->nlp_DID,
2616 						ndlp->nlp_defer_did, ndlp);
2617 					ndlp->nlp_flag &= ~NLP_UNREG_INP;
2618 					ndlp->nlp_defer_did =
2619 						NLP_EVT_NOTHING_PENDING;
2620 					lpfc_issue_els_plogi(
2621 						vport, ndlp->nlp_DID, 0);
2622 				} else {
2623 					__lpfc_sli_rpi_release(vport, ndlp);
2624 				}
2625 			}
2626 		}
2627 	}
2628 
2629 	mempool_free(pmb, phba->mbox_mem_pool);
2630 }
2631 
2632 /**
2633  * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2634  * @phba: Pointer to HBA context object.
2635  *
2636  * This function is called with no lock held. This function processes all
2637  * the completed mailbox commands and gives it to upper layers. The interrupt
2638  * service routine processes mailbox completion interrupt and adds completed
2639  * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2640  * Worker thread call lpfc_sli_handle_mb_event, which will return the
2641  * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2642  * function returns the mailbox commands to the upper layer by calling the
2643  * completion handler function of each mailbox.
2644  **/
2645 int
2646 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2647 {
2648 	MAILBOX_t *pmbox;
2649 	LPFC_MBOXQ_t *pmb;
2650 	int rc;
2651 	LIST_HEAD(cmplq);
2652 
2653 	phba->sli.slistat.mbox_event++;
2654 
2655 	/* Get all completed mailboxe buffers into the cmplq */
2656 	spin_lock_irq(&phba->hbalock);
2657 	list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2658 	spin_unlock_irq(&phba->hbalock);
2659 
2660 	/* Get a Mailbox buffer to setup mailbox commands for callback */
2661 	do {
2662 		list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2663 		if (pmb == NULL)
2664 			break;
2665 
2666 		pmbox = &pmb->u.mb;
2667 
2668 		if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2669 			if (pmb->vport) {
2670 				lpfc_debugfs_disc_trc(pmb->vport,
2671 					LPFC_DISC_TRC_MBOX_VPORT,
2672 					"MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2673 					(uint32_t)pmbox->mbxCommand,
2674 					pmbox->un.varWords[0],
2675 					pmbox->un.varWords[1]);
2676 			}
2677 			else {
2678 				lpfc_debugfs_disc_trc(phba->pport,
2679 					LPFC_DISC_TRC_MBOX,
2680 					"MBOX cmpl:       cmd:x%x mb:x%x x%x",
2681 					(uint32_t)pmbox->mbxCommand,
2682 					pmbox->un.varWords[0],
2683 					pmbox->un.varWords[1]);
2684 			}
2685 		}
2686 
2687 		/*
2688 		 * It is a fatal error if unknown mbox command completion.
2689 		 */
2690 		if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2691 		    MBX_SHUTDOWN) {
2692 			/* Unknown mailbox command compl */
2693 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2694 					"(%d):0323 Unknown Mailbox command "
2695 					"x%x (x%x/x%x) Cmpl\n",
2696 					pmb->vport ? pmb->vport->vpi :
2697 					LPFC_VPORT_UNKNOWN,
2698 					pmbox->mbxCommand,
2699 					lpfc_sli_config_mbox_subsys_get(phba,
2700 									pmb),
2701 					lpfc_sli_config_mbox_opcode_get(phba,
2702 									pmb));
2703 			phba->link_state = LPFC_HBA_ERROR;
2704 			phba->work_hs = HS_FFER3;
2705 			lpfc_handle_eratt(phba);
2706 			continue;
2707 		}
2708 
2709 		if (pmbox->mbxStatus) {
2710 			phba->sli.slistat.mbox_stat_err++;
2711 			if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2712 				/* Mbox cmd cmpl error - RETRYing */
2713 				lpfc_printf_log(phba, KERN_INFO,
2714 					LOG_MBOX | LOG_SLI,
2715 					"(%d):0305 Mbox cmd cmpl "
2716 					"error - RETRYing Data: x%x "
2717 					"(x%x/x%x) x%x x%x x%x\n",
2718 					pmb->vport ? pmb->vport->vpi :
2719 					LPFC_VPORT_UNKNOWN,
2720 					pmbox->mbxCommand,
2721 					lpfc_sli_config_mbox_subsys_get(phba,
2722 									pmb),
2723 					lpfc_sli_config_mbox_opcode_get(phba,
2724 									pmb),
2725 					pmbox->mbxStatus,
2726 					pmbox->un.varWords[0],
2727 					pmb->vport ? pmb->vport->port_state :
2728 					LPFC_VPORT_UNKNOWN);
2729 				pmbox->mbxStatus = 0;
2730 				pmbox->mbxOwner = OWN_HOST;
2731 				rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2732 				if (rc != MBX_NOT_FINISHED)
2733 					continue;
2734 			}
2735 		}
2736 
2737 		/* Mailbox cmd <cmd> Cmpl <cmpl> */
2738 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2739 				"(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps "
2740 				"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
2741 				"x%x x%x x%x\n",
2742 				pmb->vport ? pmb->vport->vpi : 0,
2743 				pmbox->mbxCommand,
2744 				lpfc_sli_config_mbox_subsys_get(phba, pmb),
2745 				lpfc_sli_config_mbox_opcode_get(phba, pmb),
2746 				pmb->mbox_cmpl,
2747 				*((uint32_t *) pmbox),
2748 				pmbox->un.varWords[0],
2749 				pmbox->un.varWords[1],
2750 				pmbox->un.varWords[2],
2751 				pmbox->un.varWords[3],
2752 				pmbox->un.varWords[4],
2753 				pmbox->un.varWords[5],
2754 				pmbox->un.varWords[6],
2755 				pmbox->un.varWords[7],
2756 				pmbox->un.varWords[8],
2757 				pmbox->un.varWords[9],
2758 				pmbox->un.varWords[10]);
2759 
2760 		if (pmb->mbox_cmpl)
2761 			pmb->mbox_cmpl(phba,pmb);
2762 	} while (1);
2763 	return 0;
2764 }
2765 
2766 /**
2767  * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2768  * @phba: Pointer to HBA context object.
2769  * @pring: Pointer to driver SLI ring object.
2770  * @tag: buffer tag.
2771  *
2772  * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2773  * is set in the tag the buffer is posted for a particular exchange,
2774  * the function will return the buffer without replacing the buffer.
2775  * If the buffer is for unsolicited ELS or CT traffic, this function
2776  * returns the buffer and also posts another buffer to the firmware.
2777  **/
2778 static struct lpfc_dmabuf *
2779 lpfc_sli_get_buff(struct lpfc_hba *phba,
2780 		  struct lpfc_sli_ring *pring,
2781 		  uint32_t tag)
2782 {
2783 	struct hbq_dmabuf *hbq_entry;
2784 
2785 	if (tag & QUE_BUFTAG_BIT)
2786 		return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2787 	hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2788 	if (!hbq_entry)
2789 		return NULL;
2790 	return &hbq_entry->dbuf;
2791 }
2792 
2793 /**
2794  * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer
2795  *                              containing a NVME LS request.
2796  * @phba: pointer to lpfc hba data structure.
2797  * @piocb: pointer to the iocbq struct representing the sequence starting
2798  *        frame.
2799  *
2800  * This routine initially validates the NVME LS, validates there is a login
2801  * with the port that sent the LS, and then calls the appropriate nvme host
2802  * or target LS request handler.
2803  **/
2804 static void
2805 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
2806 {
2807 	struct lpfc_nodelist *ndlp;
2808 	struct lpfc_dmabuf *d_buf;
2809 	struct hbq_dmabuf *nvmebuf;
2810 	struct fc_frame_header *fc_hdr;
2811 	struct lpfc_async_xchg_ctx *axchg = NULL;
2812 	char *failwhy = NULL;
2813 	uint32_t oxid, sid, did, fctl, size;
2814 	int ret = 1;
2815 
2816 	d_buf = piocb->context2;
2817 
2818 	nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
2819 	fc_hdr = nvmebuf->hbuf.virt;
2820 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2821 	sid = sli4_sid_from_fc_hdr(fc_hdr);
2822 	did = sli4_did_from_fc_hdr(fc_hdr);
2823 	fctl = (fc_hdr->fh_f_ctl[0] << 16 |
2824 		fc_hdr->fh_f_ctl[1] << 8 |
2825 		fc_hdr->fh_f_ctl[2]);
2826 	size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl);
2827 
2828 	lpfc_nvmeio_data(phba, "NVME LS    RCV: xri x%x sz %d from %06x\n",
2829 			 oxid, size, sid);
2830 
2831 	if (phba->pport->load_flag & FC_UNLOADING) {
2832 		failwhy = "Driver Unloading";
2833 	} else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) {
2834 		failwhy = "NVME FC4 Disabled";
2835 	} else if (!phba->nvmet_support && !phba->pport->localport) {
2836 		failwhy = "No Localport";
2837 	} else if (phba->nvmet_support && !phba->targetport) {
2838 		failwhy = "No Targetport";
2839 	} else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) {
2840 		failwhy = "Bad NVME LS R_CTL";
2841 	} else if (unlikely((fctl & 0x00FF0000) !=
2842 			(FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) {
2843 		failwhy = "Bad NVME LS F_CTL";
2844 	} else {
2845 		axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC);
2846 		if (!axchg)
2847 			failwhy = "No CTX memory";
2848 	}
2849 
2850 	if (unlikely(failwhy)) {
2851 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR,
2852 				"6154 Drop NVME LS: SID %06X OXID x%X: %s\n",
2853 				sid, oxid, failwhy);
2854 		goto out_fail;
2855 	}
2856 
2857 	/* validate the source of the LS is logged in */
2858 	ndlp = lpfc_findnode_did(phba->pport, sid);
2859 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2860 	    ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2861 	     (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2862 		lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC,
2863 				"6216 NVME Unsol rcv: No ndlp: "
2864 				"NPort_ID x%x oxid x%x\n",
2865 				sid, oxid);
2866 		goto out_fail;
2867 	}
2868 
2869 	axchg->phba = phba;
2870 	axchg->ndlp = ndlp;
2871 	axchg->size = size;
2872 	axchg->oxid = oxid;
2873 	axchg->sid = sid;
2874 	axchg->wqeq = NULL;
2875 	axchg->state = LPFC_NVME_STE_LS_RCV;
2876 	axchg->entry_cnt = 1;
2877 	axchg->rqb_buffer = (void *)nvmebuf;
2878 	axchg->hdwq = &phba->sli4_hba.hdwq[0];
2879 	axchg->payload = nvmebuf->dbuf.virt;
2880 	INIT_LIST_HEAD(&axchg->list);
2881 
2882 	if (phba->nvmet_support)
2883 		ret = lpfc_nvmet_handle_lsreq(phba, axchg);
2884 	else
2885 		ret = lpfc_nvme_handle_lsreq(phba, axchg);
2886 
2887 	/* if zero, LS was successfully handled. If non-zero, LS not handled */
2888 	if (!ret)
2889 		return;
2890 
2891 	lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR,
2892 			"6155 Drop NVME LS from DID %06X: SID %06X OXID x%X "
2893 			"NVMe%s handler failed %d\n",
2894 			did, sid, oxid,
2895 			(phba->nvmet_support) ? "T" : "I", ret);
2896 
2897 out_fail:
2898 
2899 	/* recycle receive buffer */
2900 	lpfc_in_buf_free(phba, &nvmebuf->dbuf);
2901 
2902 	/* If start of new exchange, abort it */
2903 	if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX)))
2904 		ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid);
2905 
2906 	if (ret)
2907 		kfree(axchg);
2908 }
2909 
2910 /**
2911  * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2912  * @phba: Pointer to HBA context object.
2913  * @pring: Pointer to driver SLI ring object.
2914  * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2915  * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2916  * @fch_type: the type for the first frame of the sequence.
2917  *
2918  * This function is called with no lock held. This function uses the r_ctl and
2919  * type of the received sequence to find the correct callback function to call
2920  * to process the sequence.
2921  **/
2922 static int
2923 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2924 			 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2925 			 uint32_t fch_type)
2926 {
2927 	int i;
2928 
2929 	switch (fch_type) {
2930 	case FC_TYPE_NVME:
2931 		lpfc_nvme_unsol_ls_handler(phba, saveq);
2932 		return 1;
2933 	default:
2934 		break;
2935 	}
2936 
2937 	/* unSolicited Responses */
2938 	if (pring->prt[0].profile) {
2939 		if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2940 			(pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2941 									saveq);
2942 		return 1;
2943 	}
2944 	/* We must search, based on rctl / type
2945 	   for the right routine */
2946 	for (i = 0; i < pring->num_mask; i++) {
2947 		if ((pring->prt[i].rctl == fch_r_ctl) &&
2948 		    (pring->prt[i].type == fch_type)) {
2949 			if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2950 				(pring->prt[i].lpfc_sli_rcv_unsol_event)
2951 						(phba, pring, saveq);
2952 			return 1;
2953 		}
2954 	}
2955 	return 0;
2956 }
2957 
2958 /**
2959  * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2960  * @phba: Pointer to HBA context object.
2961  * @pring: Pointer to driver SLI ring object.
2962  * @saveq: Pointer to the unsolicited iocb.
2963  *
2964  * This function is called with no lock held by the ring event handler
2965  * when there is an unsolicited iocb posted to the response ring by the
2966  * firmware. This function gets the buffer associated with the iocbs
2967  * and calls the event handler for the ring. This function handles both
2968  * qring buffers and hbq buffers.
2969  * When the function returns 1 the caller can free the iocb object otherwise
2970  * upper layer functions will free the iocb objects.
2971  **/
2972 static int
2973 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2974 			    struct lpfc_iocbq *saveq)
2975 {
2976 	IOCB_t           * irsp;
2977 	WORD5            * w5p;
2978 	uint32_t           Rctl, Type;
2979 	struct lpfc_iocbq *iocbq;
2980 	struct lpfc_dmabuf *dmzbuf;
2981 
2982 	irsp = &(saveq->iocb);
2983 
2984 	if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2985 		if (pring->lpfc_sli_rcv_async_status)
2986 			pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2987 		else
2988 			lpfc_printf_log(phba,
2989 					KERN_WARNING,
2990 					LOG_SLI,
2991 					"0316 Ring %d handler: unexpected "
2992 					"ASYNC_STATUS iocb received evt_code "
2993 					"0x%x\n",
2994 					pring->ringno,
2995 					irsp->un.asyncstat.evt_code);
2996 		return 1;
2997 	}
2998 
2999 	if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
3000 		(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
3001 		if (irsp->ulpBdeCount > 0) {
3002 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3003 					irsp->un.ulpWord[3]);
3004 			lpfc_in_buf_free(phba, dmzbuf);
3005 		}
3006 
3007 		if (irsp->ulpBdeCount > 1) {
3008 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3009 					irsp->unsli3.sli3Words[3]);
3010 			lpfc_in_buf_free(phba, dmzbuf);
3011 		}
3012 
3013 		if (irsp->ulpBdeCount > 2) {
3014 			dmzbuf = lpfc_sli_get_buff(phba, pring,
3015 				irsp->unsli3.sli3Words[7]);
3016 			lpfc_in_buf_free(phba, dmzbuf);
3017 		}
3018 
3019 		return 1;
3020 	}
3021 
3022 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
3023 		if (irsp->ulpBdeCount != 0) {
3024 			saveq->context2 = lpfc_sli_get_buff(phba, pring,
3025 						irsp->un.ulpWord[3]);
3026 			if (!saveq->context2)
3027 				lpfc_printf_log(phba,
3028 					KERN_ERR,
3029 					LOG_SLI,
3030 					"0341 Ring %d Cannot find buffer for "
3031 					"an unsolicited iocb. tag 0x%x\n",
3032 					pring->ringno,
3033 					irsp->un.ulpWord[3]);
3034 		}
3035 		if (irsp->ulpBdeCount == 2) {
3036 			saveq->context3 = lpfc_sli_get_buff(phba, pring,
3037 						irsp->unsli3.sli3Words[7]);
3038 			if (!saveq->context3)
3039 				lpfc_printf_log(phba,
3040 					KERN_ERR,
3041 					LOG_SLI,
3042 					"0342 Ring %d Cannot find buffer for an"
3043 					" unsolicited iocb. tag 0x%x\n",
3044 					pring->ringno,
3045 					irsp->unsli3.sli3Words[7]);
3046 		}
3047 		list_for_each_entry(iocbq, &saveq->list, list) {
3048 			irsp = &(iocbq->iocb);
3049 			if (irsp->ulpBdeCount != 0) {
3050 				iocbq->context2 = lpfc_sli_get_buff(phba, pring,
3051 							irsp->un.ulpWord[3]);
3052 				if (!iocbq->context2)
3053 					lpfc_printf_log(phba,
3054 						KERN_ERR,
3055 						LOG_SLI,
3056 						"0343 Ring %d Cannot find "
3057 						"buffer for an unsolicited iocb"
3058 						". tag 0x%x\n", pring->ringno,
3059 						irsp->un.ulpWord[3]);
3060 			}
3061 			if (irsp->ulpBdeCount == 2) {
3062 				iocbq->context3 = lpfc_sli_get_buff(phba, pring,
3063 						irsp->unsli3.sli3Words[7]);
3064 				if (!iocbq->context3)
3065 					lpfc_printf_log(phba,
3066 						KERN_ERR,
3067 						LOG_SLI,
3068 						"0344 Ring %d Cannot find "
3069 						"buffer for an unsolicited "
3070 						"iocb. tag 0x%x\n",
3071 						pring->ringno,
3072 						irsp->unsli3.sli3Words[7]);
3073 			}
3074 		}
3075 	}
3076 	if (irsp->ulpBdeCount != 0 &&
3077 	    (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
3078 	     irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
3079 		int found = 0;
3080 
3081 		/* search continue save q for same XRI */
3082 		list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
3083 			if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
3084 				saveq->iocb.unsli3.rcvsli3.ox_id) {
3085 				list_add_tail(&saveq->list, &iocbq->list);
3086 				found = 1;
3087 				break;
3088 			}
3089 		}
3090 		if (!found)
3091 			list_add_tail(&saveq->clist,
3092 				      &pring->iocb_continue_saveq);
3093 		if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
3094 			list_del_init(&iocbq->clist);
3095 			saveq = iocbq;
3096 			irsp = &(saveq->iocb);
3097 		} else
3098 			return 0;
3099 	}
3100 	if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
3101 	    (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
3102 	    (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
3103 		Rctl = FC_RCTL_ELS_REQ;
3104 		Type = FC_TYPE_ELS;
3105 	} else {
3106 		w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
3107 		Rctl = w5p->hcsw.Rctl;
3108 		Type = w5p->hcsw.Type;
3109 
3110 		/* Firmware Workaround */
3111 		if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
3112 			(irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
3113 			 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
3114 			Rctl = FC_RCTL_ELS_REQ;
3115 			Type = FC_TYPE_ELS;
3116 			w5p->hcsw.Rctl = Rctl;
3117 			w5p->hcsw.Type = Type;
3118 		}
3119 	}
3120 
3121 	if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
3122 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3123 				"0313 Ring %d handler: unexpected Rctl x%x "
3124 				"Type x%x received\n",
3125 				pring->ringno, Rctl, Type);
3126 
3127 	return 1;
3128 }
3129 
3130 /**
3131  * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
3132  * @phba: Pointer to HBA context object.
3133  * @pring: Pointer to driver SLI ring object.
3134  * @prspiocb: Pointer to response iocb object.
3135  *
3136  * This function looks up the iocb_lookup table to get the command iocb
3137  * corresponding to the given response iocb using the iotag of the
3138  * response iocb. The driver calls this function with the hbalock held
3139  * for SLI3 ports or the ring lock held for SLI4 ports.
3140  * This function returns the command iocb object if it finds the command
3141  * iocb else returns NULL.
3142  **/
3143 static struct lpfc_iocbq *
3144 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
3145 		      struct lpfc_sli_ring *pring,
3146 		      struct lpfc_iocbq *prspiocb)
3147 {
3148 	struct lpfc_iocbq *cmd_iocb = NULL;
3149 	uint16_t iotag;
3150 	spinlock_t *temp_lock = NULL;
3151 	unsigned long iflag = 0;
3152 
3153 	if (phba->sli_rev == LPFC_SLI_REV4)
3154 		temp_lock = &pring->ring_lock;
3155 	else
3156 		temp_lock = &phba->hbalock;
3157 
3158 	spin_lock_irqsave(temp_lock, iflag);
3159 	iotag = prspiocb->iocb.ulpIoTag;
3160 
3161 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3162 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3163 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3164 			/* remove from txcmpl queue list */
3165 			list_del_init(&cmd_iocb->list);
3166 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3167 			pring->txcmplq_cnt--;
3168 			spin_unlock_irqrestore(temp_lock, iflag);
3169 			return cmd_iocb;
3170 		}
3171 	}
3172 
3173 	spin_unlock_irqrestore(temp_lock, iflag);
3174 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3175 			"0317 iotag x%x is out of "
3176 			"range: max iotag x%x wd0 x%x\n",
3177 			iotag, phba->sli.last_iotag,
3178 			*(((uint32_t *) &prspiocb->iocb) + 7));
3179 	return NULL;
3180 }
3181 
3182 /**
3183  * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
3184  * @phba: Pointer to HBA context object.
3185  * @pring: Pointer to driver SLI ring object.
3186  * @iotag: IOCB tag.
3187  *
3188  * This function looks up the iocb_lookup table to get the command iocb
3189  * corresponding to the given iotag. The driver calls this function with
3190  * the ring lock held because this function is an SLI4 port only helper.
3191  * This function returns the command iocb object if it finds the command
3192  * iocb else returns NULL.
3193  **/
3194 static struct lpfc_iocbq *
3195 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
3196 			     struct lpfc_sli_ring *pring, uint16_t iotag)
3197 {
3198 	struct lpfc_iocbq *cmd_iocb = NULL;
3199 	spinlock_t *temp_lock = NULL;
3200 	unsigned long iflag = 0;
3201 
3202 	if (phba->sli_rev == LPFC_SLI_REV4)
3203 		temp_lock = &pring->ring_lock;
3204 	else
3205 		temp_lock = &phba->hbalock;
3206 
3207 	spin_lock_irqsave(temp_lock, iflag);
3208 	if (iotag != 0 && iotag <= phba->sli.last_iotag) {
3209 		cmd_iocb = phba->sli.iocbq_lookup[iotag];
3210 		if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) {
3211 			/* remove from txcmpl queue list */
3212 			list_del_init(&cmd_iocb->list);
3213 			cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
3214 			pring->txcmplq_cnt--;
3215 			spin_unlock_irqrestore(temp_lock, iflag);
3216 			return cmd_iocb;
3217 		}
3218 	}
3219 
3220 	spin_unlock_irqrestore(temp_lock, iflag);
3221 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3222 			"0372 iotag x%x lookup error: max iotag (x%x) "
3223 			"iocb_flag x%x\n",
3224 			iotag, phba->sli.last_iotag,
3225 			cmd_iocb ? cmd_iocb->iocb_flag : 0xffff);
3226 	return NULL;
3227 }
3228 
3229 /**
3230  * lpfc_sli_process_sol_iocb - process solicited iocb completion
3231  * @phba: Pointer to HBA context object.
3232  * @pring: Pointer to driver SLI ring object.
3233  * @saveq: Pointer to the response iocb to be processed.
3234  *
3235  * This function is called by the ring event handler for non-fcp
3236  * rings when there is a new response iocb in the response ring.
3237  * The caller is not required to hold any locks. This function
3238  * gets the command iocb associated with the response iocb and
3239  * calls the completion handler for the command iocb. If there
3240  * is no completion handler, the function will free the resources
3241  * associated with command iocb. If the response iocb is for
3242  * an already aborted command iocb, the status of the completion
3243  * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
3244  * This function always returns 1.
3245  **/
3246 static int
3247 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3248 			  struct lpfc_iocbq *saveq)
3249 {
3250 	struct lpfc_iocbq *cmdiocbp;
3251 	int rc = 1;
3252 	unsigned long iflag;
3253 
3254 	cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
3255 	if (cmdiocbp) {
3256 		if (cmdiocbp->iocb_cmpl) {
3257 			/*
3258 			 * If an ELS command failed send an event to mgmt
3259 			 * application.
3260 			 */
3261 			if (saveq->iocb.ulpStatus &&
3262 			     (pring->ringno == LPFC_ELS_RING) &&
3263 			     (cmdiocbp->iocb.ulpCommand ==
3264 				CMD_ELS_REQUEST64_CR))
3265 				lpfc_send_els_failure_event(phba,
3266 					cmdiocbp, saveq);
3267 
3268 			/*
3269 			 * Post all ELS completions to the worker thread.
3270 			 * All other are passed to the completion callback.
3271 			 */
3272 			if (pring->ringno == LPFC_ELS_RING) {
3273 				if ((phba->sli_rev < LPFC_SLI_REV4) &&
3274 				    (cmdiocbp->iocb_flag &
3275 							LPFC_DRIVER_ABORTED)) {
3276 					spin_lock_irqsave(&phba->hbalock,
3277 							  iflag);
3278 					cmdiocbp->iocb_flag &=
3279 						~LPFC_DRIVER_ABORTED;
3280 					spin_unlock_irqrestore(&phba->hbalock,
3281 							       iflag);
3282 					saveq->iocb.ulpStatus =
3283 						IOSTAT_LOCAL_REJECT;
3284 					saveq->iocb.un.ulpWord[4] =
3285 						IOERR_SLI_ABORTED;
3286 
3287 					/* Firmware could still be in progress
3288 					 * of DMAing payload, so don't free data
3289 					 * buffer till after a hbeat.
3290 					 */
3291 					spin_lock_irqsave(&phba->hbalock,
3292 							  iflag);
3293 					saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
3294 					spin_unlock_irqrestore(&phba->hbalock,
3295 							       iflag);
3296 				}
3297 				if (phba->sli_rev == LPFC_SLI_REV4) {
3298 					if (saveq->iocb_flag &
3299 					    LPFC_EXCHANGE_BUSY) {
3300 						/* Set cmdiocb flag for the
3301 						 * exchange busy so sgl (xri)
3302 						 * will not be released until
3303 						 * the abort xri is received
3304 						 * from hba.
3305 						 */
3306 						spin_lock_irqsave(
3307 							&phba->hbalock, iflag);
3308 						cmdiocbp->iocb_flag |=
3309 							LPFC_EXCHANGE_BUSY;
3310 						spin_unlock_irqrestore(
3311 							&phba->hbalock, iflag);
3312 					}
3313 					if (cmdiocbp->iocb_flag &
3314 					    LPFC_DRIVER_ABORTED) {
3315 						/*
3316 						 * Clear LPFC_DRIVER_ABORTED
3317 						 * bit in case it was driver
3318 						 * initiated abort.
3319 						 */
3320 						spin_lock_irqsave(
3321 							&phba->hbalock, iflag);
3322 						cmdiocbp->iocb_flag &=
3323 							~LPFC_DRIVER_ABORTED;
3324 						spin_unlock_irqrestore(
3325 							&phba->hbalock, iflag);
3326 						cmdiocbp->iocb.ulpStatus =
3327 							IOSTAT_LOCAL_REJECT;
3328 						cmdiocbp->iocb.un.ulpWord[4] =
3329 							IOERR_ABORT_REQUESTED;
3330 						/*
3331 						 * For SLI4, irsiocb contains
3332 						 * NO_XRI in sli_xritag, it
3333 						 * shall not affect releasing
3334 						 * sgl (xri) process.
3335 						 */
3336 						saveq->iocb.ulpStatus =
3337 							IOSTAT_LOCAL_REJECT;
3338 						saveq->iocb.un.ulpWord[4] =
3339 							IOERR_SLI_ABORTED;
3340 						spin_lock_irqsave(
3341 							&phba->hbalock, iflag);
3342 						saveq->iocb_flag |=
3343 							LPFC_DELAY_MEM_FREE;
3344 						spin_unlock_irqrestore(
3345 							&phba->hbalock, iflag);
3346 					}
3347 				}
3348 			}
3349 			(cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
3350 		} else
3351 			lpfc_sli_release_iocbq(phba, cmdiocbp);
3352 	} else {
3353 		/*
3354 		 * Unknown initiating command based on the response iotag.
3355 		 * This could be the case on the ELS ring because of
3356 		 * lpfc_els_abort().
3357 		 */
3358 		if (pring->ringno != LPFC_ELS_RING) {
3359 			/*
3360 			 * Ring <ringno> handler: unexpected completion IoTag
3361 			 * <IoTag>
3362 			 */
3363 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3364 					 "0322 Ring %d handler: "
3365 					 "unexpected completion IoTag x%x "
3366 					 "Data: x%x x%x x%x x%x\n",
3367 					 pring->ringno,
3368 					 saveq->iocb.ulpIoTag,
3369 					 saveq->iocb.ulpStatus,
3370 					 saveq->iocb.un.ulpWord[4],
3371 					 saveq->iocb.ulpCommand,
3372 					 saveq->iocb.ulpContext);
3373 		}
3374 	}
3375 
3376 	return rc;
3377 }
3378 
3379 /**
3380  * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
3381  * @phba: Pointer to HBA context object.
3382  * @pring: Pointer to driver SLI ring object.
3383  *
3384  * This function is called from the iocb ring event handlers when
3385  * put pointer is ahead of the get pointer for a ring. This function signal
3386  * an error attention condition to the worker thread and the worker
3387  * thread will transition the HBA to offline state.
3388  **/
3389 static void
3390 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3391 {
3392 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3393 	/*
3394 	 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3395 	 * rsp ring <portRspMax>
3396 	 */
3397 	lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3398 			"0312 Ring %d handler: portRspPut %d "
3399 			"is bigger than rsp ring %d\n",
3400 			pring->ringno, le32_to_cpu(pgp->rspPutInx),
3401 			pring->sli.sli3.numRiocb);
3402 
3403 	phba->link_state = LPFC_HBA_ERROR;
3404 
3405 	/*
3406 	 * All error attention handlers are posted to
3407 	 * worker thread
3408 	 */
3409 	phba->work_ha |= HA_ERATT;
3410 	phba->work_hs = HS_FFER3;
3411 
3412 	lpfc_worker_wake_up(phba);
3413 
3414 	return;
3415 }
3416 
3417 /**
3418  * lpfc_poll_eratt - Error attention polling timer timeout handler
3419  * @ptr: Pointer to address of HBA context object.
3420  *
3421  * This function is invoked by the Error Attention polling timer when the
3422  * timer times out. It will check the SLI Error Attention register for
3423  * possible attention events. If so, it will post an Error Attention event
3424  * and wake up worker thread to process it. Otherwise, it will set up the
3425  * Error Attention polling timer for the next poll.
3426  **/
3427 void lpfc_poll_eratt(struct timer_list *t)
3428 {
3429 	struct lpfc_hba *phba;
3430 	uint32_t eratt = 0;
3431 	uint64_t sli_intr, cnt;
3432 
3433 	phba = from_timer(phba, t, eratt_poll);
3434 
3435 	/* Here we will also keep track of interrupts per sec of the hba */
3436 	sli_intr = phba->sli.slistat.sli_intr;
3437 
3438 	if (phba->sli.slistat.sli_prev_intr > sli_intr)
3439 		cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) +
3440 			sli_intr);
3441 	else
3442 		cnt = (sli_intr - phba->sli.slistat.sli_prev_intr);
3443 
3444 	/* 64-bit integer division not supported on 32-bit x86 - use do_div */
3445 	do_div(cnt, phba->eratt_poll_interval);
3446 	phba->sli.slistat.sli_ips = cnt;
3447 
3448 	phba->sli.slistat.sli_prev_intr = sli_intr;
3449 
3450 	/* Check chip HA register for error event */
3451 	eratt = lpfc_sli_check_eratt(phba);
3452 
3453 	if (eratt)
3454 		/* Tell the worker thread there is work to do */
3455 		lpfc_worker_wake_up(phba);
3456 	else
3457 		/* Restart the timer for next eratt poll */
3458 		mod_timer(&phba->eratt_poll,
3459 			  jiffies +
3460 			  msecs_to_jiffies(1000 * phba->eratt_poll_interval));
3461 	return;
3462 }
3463 
3464 
3465 /**
3466  * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
3467  * @phba: Pointer to HBA context object.
3468  * @pring: Pointer to driver SLI ring object.
3469  * @mask: Host attention register mask for this ring.
3470  *
3471  * This function is called from the interrupt context when there is a ring
3472  * event for the fcp ring. The caller does not hold any lock.
3473  * The function processes each response iocb in the response ring until it
3474  * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
3475  * LE bit set. The function will call the completion handler of the command iocb
3476  * if the response iocb indicates a completion for a command iocb or it is
3477  * an abort completion. The function will call lpfc_sli_process_unsol_iocb
3478  * function if this is an unsolicited iocb.
3479  * This routine presumes LPFC_FCP_RING handling and doesn't bother
3480  * to check it explicitly.
3481  */
3482 int
3483 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
3484 				struct lpfc_sli_ring *pring, uint32_t mask)
3485 {
3486 	struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
3487 	IOCB_t *irsp = NULL;
3488 	IOCB_t *entry = NULL;
3489 	struct lpfc_iocbq *cmdiocbq = NULL;
3490 	struct lpfc_iocbq rspiocbq;
3491 	uint32_t status;
3492 	uint32_t portRspPut, portRspMax;
3493 	int rc = 1;
3494 	lpfc_iocb_type type;
3495 	unsigned long iflag;
3496 	uint32_t rsp_cmpl = 0;
3497 
3498 	spin_lock_irqsave(&phba->hbalock, iflag);
3499 	pring->stats.iocb_event++;
3500 
3501 	/*
3502 	 * The next available response entry should never exceed the maximum
3503 	 * entries.  If it does, treat it as an adapter hardware error.
3504 	 */
3505 	portRspMax = pring->sli.sli3.numRiocb;
3506 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3507 	if (unlikely(portRspPut >= portRspMax)) {
3508 		lpfc_sli_rsp_pointers_error(phba, pring);
3509 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3510 		return 1;
3511 	}
3512 	if (phba->fcp_ring_in_use) {
3513 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3514 		return 1;
3515 	} else
3516 		phba->fcp_ring_in_use = 1;
3517 
3518 	rmb();
3519 	while (pring->sli.sli3.rspidx != portRspPut) {
3520 		/*
3521 		 * Fetch an entry off the ring and copy it into a local data
3522 		 * structure.  The copy involves a byte-swap since the
3523 		 * network byte order and pci byte orders are different.
3524 		 */
3525 		entry = lpfc_resp_iocb(phba, pring);
3526 		phba->last_completion_time = jiffies;
3527 
3528 		if (++pring->sli.sli3.rspidx >= portRspMax)
3529 			pring->sli.sli3.rspidx = 0;
3530 
3531 		lpfc_sli_pcimem_bcopy((uint32_t *) entry,
3532 				      (uint32_t *) &rspiocbq.iocb,
3533 				      phba->iocb_rsp_size);
3534 		INIT_LIST_HEAD(&(rspiocbq.list));
3535 		irsp = &rspiocbq.iocb;
3536 
3537 		type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
3538 		pring->stats.iocb_rsp++;
3539 		rsp_cmpl++;
3540 
3541 		if (unlikely(irsp->ulpStatus)) {
3542 			/*
3543 			 * If resource errors reported from HBA, reduce
3544 			 * queuedepths of the SCSI device.
3545 			 */
3546 			if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3547 			    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3548 			     IOERR_NO_RESOURCES)) {
3549 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3550 				phba->lpfc_rampdown_queue_depth(phba);
3551 				spin_lock_irqsave(&phba->hbalock, iflag);
3552 			}
3553 
3554 			/* Rsp ring <ringno> error: IOCB */
3555 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3556 					"0336 Rsp Ring %d error: IOCB Data: "
3557 					"x%x x%x x%x x%x x%x x%x x%x x%x\n",
3558 					pring->ringno,
3559 					irsp->un.ulpWord[0],
3560 					irsp->un.ulpWord[1],
3561 					irsp->un.ulpWord[2],
3562 					irsp->un.ulpWord[3],
3563 					irsp->un.ulpWord[4],
3564 					irsp->un.ulpWord[5],
3565 					*(uint32_t *)&irsp->un1,
3566 					*((uint32_t *)&irsp->un1 + 1));
3567 		}
3568 
3569 		switch (type) {
3570 		case LPFC_ABORT_IOCB:
3571 		case LPFC_SOL_IOCB:
3572 			/*
3573 			 * Idle exchange closed via ABTS from port.  No iocb
3574 			 * resources need to be recovered.
3575 			 */
3576 			if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
3577 				lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3578 						"0333 IOCB cmd 0x%x"
3579 						" processed. Skipping"
3580 						" completion\n",
3581 						irsp->ulpCommand);
3582 				break;
3583 			}
3584 
3585 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3586 			cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
3587 							 &rspiocbq);
3588 			spin_lock_irqsave(&phba->hbalock, iflag);
3589 			if (unlikely(!cmdiocbq))
3590 				break;
3591 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
3592 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
3593 			if (cmdiocbq->iocb_cmpl) {
3594 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3595 				(cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
3596 						      &rspiocbq);
3597 				spin_lock_irqsave(&phba->hbalock, iflag);
3598 			}
3599 			break;
3600 		case LPFC_UNSOL_IOCB:
3601 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3602 			lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
3603 			spin_lock_irqsave(&phba->hbalock, iflag);
3604 			break;
3605 		default:
3606 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3607 				char adaptermsg[LPFC_MAX_ADPTMSG];
3608 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3609 				memcpy(&adaptermsg[0], (uint8_t *) irsp,
3610 				       MAX_MSG_DATA);
3611 				dev_warn(&((phba->pcidev)->dev),
3612 					 "lpfc%d: %s\n",
3613 					 phba->brd_no, adaptermsg);
3614 			} else {
3615 				/* Unknown IOCB command */
3616 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3617 						"0334 Unknown IOCB command "
3618 						"Data: x%x, x%x x%x x%x x%x\n",
3619 						type, irsp->ulpCommand,
3620 						irsp->ulpStatus,
3621 						irsp->ulpIoTag,
3622 						irsp->ulpContext);
3623 			}
3624 			break;
3625 		}
3626 
3627 		/*
3628 		 * The response IOCB has been processed.  Update the ring
3629 		 * pointer in SLIM.  If the port response put pointer has not
3630 		 * been updated, sync the pgp->rspPutInx and fetch the new port
3631 		 * response put pointer.
3632 		 */
3633 		writel(pring->sli.sli3.rspidx,
3634 			&phba->host_gp[pring->ringno].rspGetInx);
3635 
3636 		if (pring->sli.sli3.rspidx == portRspPut)
3637 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3638 	}
3639 
3640 	if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3641 		pring->stats.iocb_rsp_full++;
3642 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3643 		writel(status, phba->CAregaddr);
3644 		readl(phba->CAregaddr);
3645 	}
3646 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3647 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3648 		pring->stats.iocb_cmd_empty++;
3649 
3650 		/* Force update of the local copy of cmdGetInx */
3651 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3652 		lpfc_sli_resume_iocb(phba, pring);
3653 
3654 		if ((pring->lpfc_sli_cmd_available))
3655 			(pring->lpfc_sli_cmd_available) (phba, pring);
3656 
3657 	}
3658 
3659 	phba->fcp_ring_in_use = 0;
3660 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3661 	return rc;
3662 }
3663 
3664 /**
3665  * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3666  * @phba: Pointer to HBA context object.
3667  * @pring: Pointer to driver SLI ring object.
3668  * @rspiocbp: Pointer to driver response IOCB object.
3669  *
3670  * This function is called from the worker thread when there is a slow-path
3671  * response IOCB to process. This function chains all the response iocbs until
3672  * seeing the iocb with the LE bit set. The function will call
3673  * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3674  * completion of a command iocb. The function will call the
3675  * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3676  * The function frees the resources or calls the completion handler if this
3677  * iocb is an abort completion. The function returns NULL when the response
3678  * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3679  * this function shall chain the iocb on to the iocb_continueq and return the
3680  * response iocb passed in.
3681  **/
3682 static struct lpfc_iocbq *
3683 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3684 			struct lpfc_iocbq *rspiocbp)
3685 {
3686 	struct lpfc_iocbq *saveq;
3687 	struct lpfc_iocbq *cmdiocbp;
3688 	struct lpfc_iocbq *next_iocb;
3689 	IOCB_t *irsp = NULL;
3690 	uint32_t free_saveq;
3691 	uint8_t iocb_cmd_type;
3692 	lpfc_iocb_type type;
3693 	unsigned long iflag;
3694 	int rc;
3695 
3696 	spin_lock_irqsave(&phba->hbalock, iflag);
3697 	/* First add the response iocb to the countinueq list */
3698 	list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3699 	pring->iocb_continueq_cnt++;
3700 
3701 	/* Now, determine whether the list is completed for processing */
3702 	irsp = &rspiocbp->iocb;
3703 	if (irsp->ulpLe) {
3704 		/*
3705 		 * By default, the driver expects to free all resources
3706 		 * associated with this iocb completion.
3707 		 */
3708 		free_saveq = 1;
3709 		saveq = list_get_first(&pring->iocb_continueq,
3710 				       struct lpfc_iocbq, list);
3711 		irsp = &(saveq->iocb);
3712 		list_del_init(&pring->iocb_continueq);
3713 		pring->iocb_continueq_cnt = 0;
3714 
3715 		pring->stats.iocb_rsp++;
3716 
3717 		/*
3718 		 * If resource errors reported from HBA, reduce
3719 		 * queuedepths of the SCSI device.
3720 		 */
3721 		if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3722 		    ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) ==
3723 		     IOERR_NO_RESOURCES)) {
3724 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3725 			phba->lpfc_rampdown_queue_depth(phba);
3726 			spin_lock_irqsave(&phba->hbalock, iflag);
3727 		}
3728 
3729 		if (irsp->ulpStatus) {
3730 			/* Rsp ring <ringno> error: IOCB */
3731 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3732 					"0328 Rsp Ring %d error: "
3733 					"IOCB Data: "
3734 					"x%x x%x x%x x%x "
3735 					"x%x x%x x%x x%x "
3736 					"x%x x%x x%x x%x "
3737 					"x%x x%x x%x x%x\n",
3738 					pring->ringno,
3739 					irsp->un.ulpWord[0],
3740 					irsp->un.ulpWord[1],
3741 					irsp->un.ulpWord[2],
3742 					irsp->un.ulpWord[3],
3743 					irsp->un.ulpWord[4],
3744 					irsp->un.ulpWord[5],
3745 					*(((uint32_t *) irsp) + 6),
3746 					*(((uint32_t *) irsp) + 7),
3747 					*(((uint32_t *) irsp) + 8),
3748 					*(((uint32_t *) irsp) + 9),
3749 					*(((uint32_t *) irsp) + 10),
3750 					*(((uint32_t *) irsp) + 11),
3751 					*(((uint32_t *) irsp) + 12),
3752 					*(((uint32_t *) irsp) + 13),
3753 					*(((uint32_t *) irsp) + 14),
3754 					*(((uint32_t *) irsp) + 15));
3755 		}
3756 
3757 		/*
3758 		 * Fetch the IOCB command type and call the correct completion
3759 		 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3760 		 * get freed back to the lpfc_iocb_list by the discovery
3761 		 * kernel thread.
3762 		 */
3763 		iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3764 		type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3765 		switch (type) {
3766 		case LPFC_SOL_IOCB:
3767 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3768 			rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3769 			spin_lock_irqsave(&phba->hbalock, iflag);
3770 			break;
3771 
3772 		case LPFC_UNSOL_IOCB:
3773 			spin_unlock_irqrestore(&phba->hbalock, iflag);
3774 			rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3775 			spin_lock_irqsave(&phba->hbalock, iflag);
3776 			if (!rc)
3777 				free_saveq = 0;
3778 			break;
3779 
3780 		case LPFC_ABORT_IOCB:
3781 			cmdiocbp = NULL;
3782 			if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) {
3783 				spin_unlock_irqrestore(&phba->hbalock, iflag);
3784 				cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3785 								 saveq);
3786 				spin_lock_irqsave(&phba->hbalock, iflag);
3787 			}
3788 			if (cmdiocbp) {
3789 				/* Call the specified completion routine */
3790 				if (cmdiocbp->iocb_cmpl) {
3791 					spin_unlock_irqrestore(&phba->hbalock,
3792 							       iflag);
3793 					(cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3794 							      saveq);
3795 					spin_lock_irqsave(&phba->hbalock,
3796 							  iflag);
3797 				} else
3798 					__lpfc_sli_release_iocbq(phba,
3799 								 cmdiocbp);
3800 			}
3801 			break;
3802 
3803 		case LPFC_UNKNOWN_IOCB:
3804 			if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3805 				char adaptermsg[LPFC_MAX_ADPTMSG];
3806 				memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3807 				memcpy(&adaptermsg[0], (uint8_t *)irsp,
3808 				       MAX_MSG_DATA);
3809 				dev_warn(&((phba->pcidev)->dev),
3810 					 "lpfc%d: %s\n",
3811 					 phba->brd_no, adaptermsg);
3812 			} else {
3813 				/* Unknown IOCB command */
3814 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3815 						"0335 Unknown IOCB "
3816 						"command Data: x%x "
3817 						"x%x x%x x%x\n",
3818 						irsp->ulpCommand,
3819 						irsp->ulpStatus,
3820 						irsp->ulpIoTag,
3821 						irsp->ulpContext);
3822 			}
3823 			break;
3824 		}
3825 
3826 		if (free_saveq) {
3827 			list_for_each_entry_safe(rspiocbp, next_iocb,
3828 						 &saveq->list, list) {
3829 				list_del_init(&rspiocbp->list);
3830 				__lpfc_sli_release_iocbq(phba, rspiocbp);
3831 			}
3832 			__lpfc_sli_release_iocbq(phba, saveq);
3833 		}
3834 		rspiocbp = NULL;
3835 	}
3836 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3837 	return rspiocbp;
3838 }
3839 
3840 /**
3841  * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3842  * @phba: Pointer to HBA context object.
3843  * @pring: Pointer to driver SLI ring object.
3844  * @mask: Host attention register mask for this ring.
3845  *
3846  * This routine wraps the actual slow_ring event process routine from the
3847  * API jump table function pointer from the lpfc_hba struct.
3848  **/
3849 void
3850 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3851 				struct lpfc_sli_ring *pring, uint32_t mask)
3852 {
3853 	phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3854 }
3855 
3856 /**
3857  * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3858  * @phba: Pointer to HBA context object.
3859  * @pring: Pointer to driver SLI ring object.
3860  * @mask: Host attention register mask for this ring.
3861  *
3862  * This function is called from the worker thread when there is a ring event
3863  * for non-fcp rings. The caller does not hold any lock. The function will
3864  * remove each response iocb in the response ring and calls the handle
3865  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3866  **/
3867 static void
3868 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3869 				   struct lpfc_sli_ring *pring, uint32_t mask)
3870 {
3871 	struct lpfc_pgp *pgp;
3872 	IOCB_t *entry;
3873 	IOCB_t *irsp = NULL;
3874 	struct lpfc_iocbq *rspiocbp = NULL;
3875 	uint32_t portRspPut, portRspMax;
3876 	unsigned long iflag;
3877 	uint32_t status;
3878 
3879 	pgp = &phba->port_gp[pring->ringno];
3880 	spin_lock_irqsave(&phba->hbalock, iflag);
3881 	pring->stats.iocb_event++;
3882 
3883 	/*
3884 	 * The next available response entry should never exceed the maximum
3885 	 * entries.  If it does, treat it as an adapter hardware error.
3886 	 */
3887 	portRspMax = pring->sli.sli3.numRiocb;
3888 	portRspPut = le32_to_cpu(pgp->rspPutInx);
3889 	if (portRspPut >= portRspMax) {
3890 		/*
3891 		 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3892 		 * rsp ring <portRspMax>
3893 		 */
3894 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3895 				"0303 Ring %d handler: portRspPut %d "
3896 				"is bigger than rsp ring %d\n",
3897 				pring->ringno, portRspPut, portRspMax);
3898 
3899 		phba->link_state = LPFC_HBA_ERROR;
3900 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3901 
3902 		phba->work_hs = HS_FFER3;
3903 		lpfc_handle_eratt(phba);
3904 
3905 		return;
3906 	}
3907 
3908 	rmb();
3909 	while (pring->sli.sli3.rspidx != portRspPut) {
3910 		/*
3911 		 * Build a completion list and call the appropriate handler.
3912 		 * The process is to get the next available response iocb, get
3913 		 * a free iocb from the list, copy the response data into the
3914 		 * free iocb, insert to the continuation list, and update the
3915 		 * next response index to slim.  This process makes response
3916 		 * iocb's in the ring available to DMA as fast as possible but
3917 		 * pays a penalty for a copy operation.  Since the iocb is
3918 		 * only 32 bytes, this penalty is considered small relative to
3919 		 * the PCI reads for register values and a slim write.  When
3920 		 * the ulpLe field is set, the entire Command has been
3921 		 * received.
3922 		 */
3923 		entry = lpfc_resp_iocb(phba, pring);
3924 
3925 		phba->last_completion_time = jiffies;
3926 		rspiocbp = __lpfc_sli_get_iocbq(phba);
3927 		if (rspiocbp == NULL) {
3928 			printk(KERN_ERR "%s: out of buffers! Failing "
3929 			       "completion.\n", __func__);
3930 			break;
3931 		}
3932 
3933 		lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3934 				      phba->iocb_rsp_size);
3935 		irsp = &rspiocbp->iocb;
3936 
3937 		if (++pring->sli.sli3.rspidx >= portRspMax)
3938 			pring->sli.sli3.rspidx = 0;
3939 
3940 		if (pring->ringno == LPFC_ELS_RING) {
3941 			lpfc_debugfs_slow_ring_trc(phba,
3942 			"IOCB rsp ring:   wd4:x%08x wd6:x%08x wd7:x%08x",
3943 				*(((uint32_t *) irsp) + 4),
3944 				*(((uint32_t *) irsp) + 6),
3945 				*(((uint32_t *) irsp) + 7));
3946 		}
3947 
3948 		writel(pring->sli.sli3.rspidx,
3949 			&phba->host_gp[pring->ringno].rspGetInx);
3950 
3951 		spin_unlock_irqrestore(&phba->hbalock, iflag);
3952 		/* Handle the response IOCB */
3953 		rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3954 		spin_lock_irqsave(&phba->hbalock, iflag);
3955 
3956 		/*
3957 		 * If the port response put pointer has not been updated, sync
3958 		 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3959 		 * response put pointer.
3960 		 */
3961 		if (pring->sli.sli3.rspidx == portRspPut) {
3962 			portRspPut = le32_to_cpu(pgp->rspPutInx);
3963 		}
3964 	} /* while (pring->sli.sli3.rspidx != portRspPut) */
3965 
3966 	if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3967 		/* At least one response entry has been freed */
3968 		pring->stats.iocb_rsp_full++;
3969 		/* SET RxRE_RSP in Chip Att register */
3970 		status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3971 		writel(status, phba->CAregaddr);
3972 		readl(phba->CAregaddr); /* flush */
3973 	}
3974 	if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3975 		pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3976 		pring->stats.iocb_cmd_empty++;
3977 
3978 		/* Force update of the local copy of cmdGetInx */
3979 		pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx);
3980 		lpfc_sli_resume_iocb(phba, pring);
3981 
3982 		if ((pring->lpfc_sli_cmd_available))
3983 			(pring->lpfc_sli_cmd_available) (phba, pring);
3984 
3985 	}
3986 
3987 	spin_unlock_irqrestore(&phba->hbalock, iflag);
3988 	return;
3989 }
3990 
3991 /**
3992  * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3993  * @phba: Pointer to HBA context object.
3994  * @pring: Pointer to driver SLI ring object.
3995  * @mask: Host attention register mask for this ring.
3996  *
3997  * This function is called from the worker thread when there is a pending
3998  * ELS response iocb on the driver internal slow-path response iocb worker
3999  * queue. The caller does not hold any lock. The function will remove each
4000  * response iocb from the response worker queue and calls the handle
4001  * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
4002  **/
4003 static void
4004 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
4005 				   struct lpfc_sli_ring *pring, uint32_t mask)
4006 {
4007 	struct lpfc_iocbq *irspiocbq;
4008 	struct hbq_dmabuf *dmabuf;
4009 	struct lpfc_cq_event *cq_event;
4010 	unsigned long iflag;
4011 	int count = 0;
4012 
4013 	spin_lock_irqsave(&phba->hbalock, iflag);
4014 	phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
4015 	spin_unlock_irqrestore(&phba->hbalock, iflag);
4016 	while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
4017 		/* Get the response iocb from the head of work queue */
4018 		spin_lock_irqsave(&phba->hbalock, iflag);
4019 		list_remove_head(&phba->sli4_hba.sp_queue_event,
4020 				 cq_event, struct lpfc_cq_event, list);
4021 		spin_unlock_irqrestore(&phba->hbalock, iflag);
4022 
4023 		switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
4024 		case CQE_CODE_COMPL_WQE:
4025 			irspiocbq = container_of(cq_event, struct lpfc_iocbq,
4026 						 cq_event);
4027 			/* Translate ELS WCQE to response IOCBQ */
4028 			irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
4029 								   irspiocbq);
4030 			if (irspiocbq)
4031 				lpfc_sli_sp_handle_rspiocb(phba, pring,
4032 							   irspiocbq);
4033 			count++;
4034 			break;
4035 		case CQE_CODE_RECEIVE:
4036 		case CQE_CODE_RECEIVE_V1:
4037 			dmabuf = container_of(cq_event, struct hbq_dmabuf,
4038 					      cq_event);
4039 			lpfc_sli4_handle_received_buffer(phba, dmabuf);
4040 			count++;
4041 			break;
4042 		default:
4043 			break;
4044 		}
4045 
4046 		/* Limit the number of events to 64 to avoid soft lockups */
4047 		if (count == 64)
4048 			break;
4049 	}
4050 }
4051 
4052 /**
4053  * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
4054  * @phba: Pointer to HBA context object.
4055  * @pring: Pointer to driver SLI ring object.
4056  *
4057  * This function aborts all iocbs in the given ring and frees all the iocb
4058  * objects in txq. This function issues an abort iocb for all the iocb commands
4059  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4060  * the return of this function. The caller is not required to hold any locks.
4061  **/
4062 void
4063 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
4064 {
4065 	LIST_HEAD(completions);
4066 	struct lpfc_iocbq *iocb, *next_iocb;
4067 
4068 	if (pring->ringno == LPFC_ELS_RING) {
4069 		lpfc_fabric_abort_hba(phba);
4070 	}
4071 
4072 	/* Error everything on txq and txcmplq
4073 	 * First do the txq.
4074 	 */
4075 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4076 		spin_lock_irq(&pring->ring_lock);
4077 		list_splice_init(&pring->txq, &completions);
4078 		pring->txq_cnt = 0;
4079 		spin_unlock_irq(&pring->ring_lock);
4080 
4081 		spin_lock_irq(&phba->hbalock);
4082 		/* Next issue ABTS for everything on the txcmplq */
4083 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4084 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4085 		spin_unlock_irq(&phba->hbalock);
4086 	} else {
4087 		spin_lock_irq(&phba->hbalock);
4088 		list_splice_init(&pring->txq, &completions);
4089 		pring->txq_cnt = 0;
4090 
4091 		/* Next issue ABTS for everything on the txcmplq */
4092 		list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
4093 			lpfc_sli_issue_abort_iotag(phba, pring, iocb);
4094 		spin_unlock_irq(&phba->hbalock);
4095 	}
4096 
4097 	/* Cancel all the IOCBs from the completions list */
4098 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
4099 			      IOERR_SLI_ABORTED);
4100 }
4101 
4102 /**
4103  * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings
4104  * @phba: Pointer to HBA context object.
4105  * @pring: Pointer to driver SLI ring object.
4106  *
4107  * This function aborts all iocbs in FCP rings and frees all the iocb
4108  * objects in txq. This function issues an abort iocb for all the iocb commands
4109  * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
4110  * the return of this function. The caller is not required to hold any locks.
4111  **/
4112 void
4113 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba)
4114 {
4115 	struct lpfc_sli *psli = &phba->sli;
4116 	struct lpfc_sli_ring  *pring;
4117 	uint32_t i;
4118 
4119 	/* Look on all the FCP Rings for the iotag */
4120 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4121 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4122 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4123 			lpfc_sli_abort_iocb_ring(phba, pring);
4124 		}
4125 	} else {
4126 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4127 		lpfc_sli_abort_iocb_ring(phba, pring);
4128 	}
4129 }
4130 
4131 /**
4132  * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring
4133  * @phba: Pointer to HBA context object.
4134  *
4135  * This function flushes all iocbs in the IO ring and frees all the iocb
4136  * objects in txq and txcmplq. This function will not issue abort iocbs
4137  * for all the iocb commands in txcmplq, they will just be returned with
4138  * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
4139  * slot has been permanently disabled.
4140  **/
4141 void
4142 lpfc_sli_flush_io_rings(struct lpfc_hba *phba)
4143 {
4144 	LIST_HEAD(txq);
4145 	LIST_HEAD(txcmplq);
4146 	struct lpfc_sli *psli = &phba->sli;
4147 	struct lpfc_sli_ring  *pring;
4148 	uint32_t i;
4149 	struct lpfc_iocbq *piocb, *next_iocb;
4150 
4151 	spin_lock_irq(&phba->hbalock);
4152 	if (phba->hba_flag & HBA_IOQ_FLUSH ||
4153 	    !phba->sli4_hba.hdwq) {
4154 		spin_unlock_irq(&phba->hbalock);
4155 		return;
4156 	}
4157 	/* Indicate the I/O queues are flushed */
4158 	phba->hba_flag |= HBA_IOQ_FLUSH;
4159 	spin_unlock_irq(&phba->hbalock);
4160 
4161 	/* Look on all the FCP Rings for the iotag */
4162 	if (phba->sli_rev >= LPFC_SLI_REV4) {
4163 		for (i = 0; i < phba->cfg_hdw_queue; i++) {
4164 			pring = phba->sli4_hba.hdwq[i].io_wq->pring;
4165 
4166 			spin_lock_irq(&pring->ring_lock);
4167 			/* Retrieve everything on txq */
4168 			list_splice_init(&pring->txq, &txq);
4169 			list_for_each_entry_safe(piocb, next_iocb,
4170 						 &pring->txcmplq, list)
4171 				piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4172 			/* Retrieve everything on the txcmplq */
4173 			list_splice_init(&pring->txcmplq, &txcmplq);
4174 			pring->txq_cnt = 0;
4175 			pring->txcmplq_cnt = 0;
4176 			spin_unlock_irq(&pring->ring_lock);
4177 
4178 			/* Flush the txq */
4179 			lpfc_sli_cancel_iocbs(phba, &txq,
4180 					      IOSTAT_LOCAL_REJECT,
4181 					      IOERR_SLI_DOWN);
4182 			/* Flush the txcmpq */
4183 			lpfc_sli_cancel_iocbs(phba, &txcmplq,
4184 					      IOSTAT_LOCAL_REJECT,
4185 					      IOERR_SLI_DOWN);
4186 		}
4187 	} else {
4188 		pring = &psli->sli3_ring[LPFC_FCP_RING];
4189 
4190 		spin_lock_irq(&phba->hbalock);
4191 		/* Retrieve everything on txq */
4192 		list_splice_init(&pring->txq, &txq);
4193 		list_for_each_entry_safe(piocb, next_iocb,
4194 					 &pring->txcmplq, list)
4195 			piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ;
4196 		/* Retrieve everything on the txcmplq */
4197 		list_splice_init(&pring->txcmplq, &txcmplq);
4198 		pring->txq_cnt = 0;
4199 		pring->txcmplq_cnt = 0;
4200 		spin_unlock_irq(&phba->hbalock);
4201 
4202 		/* Flush the txq */
4203 		lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
4204 				      IOERR_SLI_DOWN);
4205 		/* Flush the txcmpq */
4206 		lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
4207 				      IOERR_SLI_DOWN);
4208 	}
4209 }
4210 
4211 /**
4212  * lpfc_sli_brdready_s3 - Check for sli3 host ready status
4213  * @phba: Pointer to HBA context object.
4214  * @mask: Bit mask to be checked.
4215  *
4216  * This function reads the host status register and compares
4217  * with the provided bit mask to check if HBA completed
4218  * the restart. This function will wait in a loop for the
4219  * HBA to complete restart. If the HBA does not restart within
4220  * 15 iterations, the function will reset the HBA again. The
4221  * function returns 1 when HBA fail to restart otherwise returns
4222  * zero.
4223  **/
4224 static int
4225 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
4226 {
4227 	uint32_t status;
4228 	int i = 0;
4229 	int retval = 0;
4230 
4231 	/* Read the HBA Host Status Register */
4232 	if (lpfc_readl(phba->HSregaddr, &status))
4233 		return 1;
4234 
4235 	/*
4236 	 * Check status register every 100ms for 5 retries, then every
4237 	 * 500ms for 5, then every 2.5 sec for 5, then reset board and
4238 	 * every 2.5 sec for 4.
4239 	 * Break our of the loop if errors occurred during init.
4240 	 */
4241 	while (((status & mask) != mask) &&
4242 	       !(status & HS_FFERM) &&
4243 	       i++ < 20) {
4244 
4245 		if (i <= 5)
4246 			msleep(10);
4247 		else if (i <= 10)
4248 			msleep(500);
4249 		else
4250 			msleep(2500);
4251 
4252 		if (i == 15) {
4253 				/* Do post */
4254 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4255 			lpfc_sli_brdrestart(phba);
4256 		}
4257 		/* Read the HBA Host Status Register */
4258 		if (lpfc_readl(phba->HSregaddr, &status)) {
4259 			retval = 1;
4260 			break;
4261 		}
4262 	}
4263 
4264 	/* Check to see if any errors occurred during init */
4265 	if ((status & HS_FFERM) || (i >= 20)) {
4266 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4267 				"2751 Adapter failed to restart, "
4268 				"status reg x%x, FW Data: A8 x%x AC x%x\n",
4269 				status,
4270 				readl(phba->MBslimaddr + 0xa8),
4271 				readl(phba->MBslimaddr + 0xac));
4272 		phba->link_state = LPFC_HBA_ERROR;
4273 		retval = 1;
4274 	}
4275 
4276 	return retval;
4277 }
4278 
4279 /**
4280  * lpfc_sli_brdready_s4 - Check for sli4 host ready status
4281  * @phba: Pointer to HBA context object.
4282  * @mask: Bit mask to be checked.
4283  *
4284  * This function checks the host status register to check if HBA is
4285  * ready. This function will wait in a loop for the HBA to be ready
4286  * If the HBA is not ready , the function will will reset the HBA PCI
4287  * function again. The function returns 1 when HBA fail to be ready
4288  * otherwise returns zero.
4289  **/
4290 static int
4291 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
4292 {
4293 	uint32_t status;
4294 	int retval = 0;
4295 
4296 	/* Read the HBA Host Status Register */
4297 	status = lpfc_sli4_post_status_check(phba);
4298 
4299 	if (status) {
4300 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4301 		lpfc_sli_brdrestart(phba);
4302 		status = lpfc_sli4_post_status_check(phba);
4303 	}
4304 
4305 	/* Check to see if any errors occurred during init */
4306 	if (status) {
4307 		phba->link_state = LPFC_HBA_ERROR;
4308 		retval = 1;
4309 	} else
4310 		phba->sli4_hba.intr_enable = 0;
4311 
4312 	return retval;
4313 }
4314 
4315 /**
4316  * lpfc_sli_brdready - Wrapper func for checking the hba readyness
4317  * @phba: Pointer to HBA context object.
4318  * @mask: Bit mask to be checked.
4319  *
4320  * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
4321  * from the API jump table function pointer from the lpfc_hba struct.
4322  **/
4323 int
4324 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
4325 {
4326 	return phba->lpfc_sli_brdready(phba, mask);
4327 }
4328 
4329 #define BARRIER_TEST_PATTERN (0xdeadbeef)
4330 
4331 /**
4332  * lpfc_reset_barrier - Make HBA ready for HBA reset
4333  * @phba: Pointer to HBA context object.
4334  *
4335  * This function is called before resetting an HBA. This function is called
4336  * with hbalock held and requests HBA to quiesce DMAs before a reset.
4337  **/
4338 void lpfc_reset_barrier(struct lpfc_hba *phba)
4339 {
4340 	uint32_t __iomem *resp_buf;
4341 	uint32_t __iomem *mbox_buf;
4342 	volatile uint32_t mbox;
4343 	uint32_t hc_copy, ha_copy, resp_data;
4344 	int  i;
4345 	uint8_t hdrtype;
4346 
4347 	lockdep_assert_held(&phba->hbalock);
4348 
4349 	pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
4350 	if (hdrtype != 0x80 ||
4351 	    (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
4352 	     FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
4353 		return;
4354 
4355 	/*
4356 	 * Tell the other part of the chip to suspend temporarily all
4357 	 * its DMA activity.
4358 	 */
4359 	resp_buf = phba->MBslimaddr;
4360 
4361 	/* Disable the error attention */
4362 	if (lpfc_readl(phba->HCregaddr, &hc_copy))
4363 		return;
4364 	writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
4365 	readl(phba->HCregaddr); /* flush */
4366 	phba->link_flag |= LS_IGNORE_ERATT;
4367 
4368 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4369 		return;
4370 	if (ha_copy & HA_ERATT) {
4371 		/* Clear Chip error bit */
4372 		writel(HA_ERATT, phba->HAregaddr);
4373 		phba->pport->stopped = 1;
4374 	}
4375 
4376 	mbox = 0;
4377 	((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
4378 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
4379 
4380 	writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
4381 	mbox_buf = phba->MBslimaddr;
4382 	writel(mbox, mbox_buf);
4383 
4384 	for (i = 0; i < 50; i++) {
4385 		if (lpfc_readl((resp_buf + 1), &resp_data))
4386 			return;
4387 		if (resp_data != ~(BARRIER_TEST_PATTERN))
4388 			mdelay(1);
4389 		else
4390 			break;
4391 	}
4392 	resp_data = 0;
4393 	if (lpfc_readl((resp_buf + 1), &resp_data))
4394 		return;
4395 	if (resp_data  != ~(BARRIER_TEST_PATTERN)) {
4396 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
4397 		    phba->pport->stopped)
4398 			goto restore_hc;
4399 		else
4400 			goto clear_errat;
4401 	}
4402 
4403 	((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
4404 	resp_data = 0;
4405 	for (i = 0; i < 500; i++) {
4406 		if (lpfc_readl(resp_buf, &resp_data))
4407 			return;
4408 		if (resp_data != mbox)
4409 			mdelay(1);
4410 		else
4411 			break;
4412 	}
4413 
4414 clear_errat:
4415 
4416 	while (++i < 500) {
4417 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4418 			return;
4419 		if (!(ha_copy & HA_ERATT))
4420 			mdelay(1);
4421 		else
4422 			break;
4423 	}
4424 
4425 	if (readl(phba->HAregaddr) & HA_ERATT) {
4426 		writel(HA_ERATT, phba->HAregaddr);
4427 		phba->pport->stopped = 1;
4428 	}
4429 
4430 restore_hc:
4431 	phba->link_flag &= ~LS_IGNORE_ERATT;
4432 	writel(hc_copy, phba->HCregaddr);
4433 	readl(phba->HCregaddr); /* flush */
4434 }
4435 
4436 /**
4437  * lpfc_sli_brdkill - Issue a kill_board mailbox command
4438  * @phba: Pointer to HBA context object.
4439  *
4440  * This function issues a kill_board mailbox command and waits for
4441  * the error attention interrupt. This function is called for stopping
4442  * the firmware processing. The caller is not required to hold any
4443  * locks. This function calls lpfc_hba_down_post function to free
4444  * any pending commands after the kill. The function will return 1 when it
4445  * fails to kill the board else will return 0.
4446  **/
4447 int
4448 lpfc_sli_brdkill(struct lpfc_hba *phba)
4449 {
4450 	struct lpfc_sli *psli;
4451 	LPFC_MBOXQ_t *pmb;
4452 	uint32_t status;
4453 	uint32_t ha_copy;
4454 	int retval;
4455 	int i = 0;
4456 
4457 	psli = &phba->sli;
4458 
4459 	/* Kill HBA */
4460 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4461 			"0329 Kill HBA Data: x%x x%x\n",
4462 			phba->pport->port_state, psli->sli_flag);
4463 
4464 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4465 	if (!pmb)
4466 		return 1;
4467 
4468 	/* Disable the error attention */
4469 	spin_lock_irq(&phba->hbalock);
4470 	if (lpfc_readl(phba->HCregaddr, &status)) {
4471 		spin_unlock_irq(&phba->hbalock);
4472 		mempool_free(pmb, phba->mbox_mem_pool);
4473 		return 1;
4474 	}
4475 	status &= ~HC_ERINT_ENA;
4476 	writel(status, phba->HCregaddr);
4477 	readl(phba->HCregaddr); /* flush */
4478 	phba->link_flag |= LS_IGNORE_ERATT;
4479 	spin_unlock_irq(&phba->hbalock);
4480 
4481 	lpfc_kill_board(phba, pmb);
4482 	pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
4483 	retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
4484 
4485 	if (retval != MBX_SUCCESS) {
4486 		if (retval != MBX_BUSY)
4487 			mempool_free(pmb, phba->mbox_mem_pool);
4488 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4489 				"2752 KILL_BOARD command failed retval %d\n",
4490 				retval);
4491 		spin_lock_irq(&phba->hbalock);
4492 		phba->link_flag &= ~LS_IGNORE_ERATT;
4493 		spin_unlock_irq(&phba->hbalock);
4494 		return 1;
4495 	}
4496 
4497 	spin_lock_irq(&phba->hbalock);
4498 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
4499 	spin_unlock_irq(&phba->hbalock);
4500 
4501 	mempool_free(pmb, phba->mbox_mem_pool);
4502 
4503 	/* There is no completion for a KILL_BOARD mbox cmd. Check for an error
4504 	 * attention every 100ms for 3 seconds. If we don't get ERATT after
4505 	 * 3 seconds we still set HBA_ERROR state because the status of the
4506 	 * board is now undefined.
4507 	 */
4508 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
4509 		return 1;
4510 	while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
4511 		mdelay(100);
4512 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
4513 			return 1;
4514 	}
4515 
4516 	del_timer_sync(&psli->mbox_tmo);
4517 	if (ha_copy & HA_ERATT) {
4518 		writel(HA_ERATT, phba->HAregaddr);
4519 		phba->pport->stopped = 1;
4520 	}
4521 	spin_lock_irq(&phba->hbalock);
4522 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4523 	psli->mbox_active = NULL;
4524 	phba->link_flag &= ~LS_IGNORE_ERATT;
4525 	spin_unlock_irq(&phba->hbalock);
4526 
4527 	lpfc_hba_down_post(phba);
4528 	phba->link_state = LPFC_HBA_ERROR;
4529 
4530 	return ha_copy & HA_ERATT ? 0 : 1;
4531 }
4532 
4533 /**
4534  * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
4535  * @phba: Pointer to HBA context object.
4536  *
4537  * This function resets the HBA by writing HC_INITFF to the control
4538  * register. After the HBA resets, this function resets all the iocb ring
4539  * indices. This function disables PCI layer parity checking during
4540  * the reset.
4541  * This function returns 0 always.
4542  * The caller is not required to hold any locks.
4543  **/
4544 int
4545 lpfc_sli_brdreset(struct lpfc_hba *phba)
4546 {
4547 	struct lpfc_sli *psli;
4548 	struct lpfc_sli_ring *pring;
4549 	uint16_t cfg_value;
4550 	int i;
4551 
4552 	psli = &phba->sli;
4553 
4554 	/* Reset HBA */
4555 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4556 			"0325 Reset HBA Data: x%x x%x\n",
4557 			(phba->pport) ? phba->pport->port_state : 0,
4558 			psli->sli_flag);
4559 
4560 	/* perform board reset */
4561 	phba->fc_eventTag = 0;
4562 	phba->link_events = 0;
4563 	if (phba->pport) {
4564 		phba->pport->fc_myDID = 0;
4565 		phba->pport->fc_prevDID = 0;
4566 	}
4567 
4568 	/* Turn off parity checking and serr during the physical reset */
4569 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value))
4570 		return -EIO;
4571 
4572 	pci_write_config_word(phba->pcidev, PCI_COMMAND,
4573 			      (cfg_value &
4574 			       ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4575 
4576 	psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
4577 
4578 	/* Now toggle INITFF bit in the Host Control Register */
4579 	writel(HC_INITFF, phba->HCregaddr);
4580 	mdelay(1);
4581 	readl(phba->HCregaddr); /* flush */
4582 	writel(0, phba->HCregaddr);
4583 	readl(phba->HCregaddr); /* flush */
4584 
4585 	/* Restore PCI cmd register */
4586 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4587 
4588 	/* Initialize relevant SLI info */
4589 	for (i = 0; i < psli->num_rings; i++) {
4590 		pring = &psli->sli3_ring[i];
4591 		pring->flag = 0;
4592 		pring->sli.sli3.rspidx = 0;
4593 		pring->sli.sli3.next_cmdidx  = 0;
4594 		pring->sli.sli3.local_getidx = 0;
4595 		pring->sli.sli3.cmdidx = 0;
4596 		pring->missbufcnt = 0;
4597 	}
4598 
4599 	phba->link_state = LPFC_WARM_START;
4600 	return 0;
4601 }
4602 
4603 /**
4604  * lpfc_sli4_brdreset - Reset a sli-4 HBA
4605  * @phba: Pointer to HBA context object.
4606  *
4607  * This function resets a SLI4 HBA. This function disables PCI layer parity
4608  * checking during resets the device. The caller is not required to hold
4609  * any locks.
4610  *
4611  * This function returns 0 on success else returns negative error code.
4612  **/
4613 int
4614 lpfc_sli4_brdreset(struct lpfc_hba *phba)
4615 {
4616 	struct lpfc_sli *psli = &phba->sli;
4617 	uint16_t cfg_value;
4618 	int rc = 0;
4619 
4620 	/* Reset HBA */
4621 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4622 			"0295 Reset HBA Data: x%x x%x x%x\n",
4623 			phba->pport->port_state, psli->sli_flag,
4624 			phba->hba_flag);
4625 
4626 	/* perform board reset */
4627 	phba->fc_eventTag = 0;
4628 	phba->link_events = 0;
4629 	phba->pport->fc_myDID = 0;
4630 	phba->pport->fc_prevDID = 0;
4631 
4632 	spin_lock_irq(&phba->hbalock);
4633 	psli->sli_flag &= ~(LPFC_PROCESS_LA);
4634 	phba->fcf.fcf_flag = 0;
4635 	spin_unlock_irq(&phba->hbalock);
4636 
4637 	/* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */
4638 	if (phba->hba_flag & HBA_FW_DUMP_OP) {
4639 		phba->hba_flag &= ~HBA_FW_DUMP_OP;
4640 		return rc;
4641 	}
4642 
4643 	/* Now physically reset the device */
4644 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4645 			"0389 Performing PCI function reset!\n");
4646 
4647 	/* Turn off parity checking and serr during the physical reset */
4648 	if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) {
4649 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4650 				"3205 PCI read Config failed\n");
4651 		return -EIO;
4652 	}
4653 
4654 	pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
4655 			      ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
4656 
4657 	/* Perform FCoE PCI function reset before freeing queue memory */
4658 	rc = lpfc_pci_function_reset(phba);
4659 
4660 	/* Restore PCI cmd register */
4661 	pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
4662 
4663 	return rc;
4664 }
4665 
4666 /**
4667  * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
4668  * @phba: Pointer to HBA context object.
4669  *
4670  * This function is called in the SLI initialization code path to
4671  * restart the HBA. The caller is not required to hold any lock.
4672  * This function writes MBX_RESTART mailbox command to the SLIM and
4673  * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
4674  * function to free any pending commands. The function enables
4675  * POST only during the first initialization. The function returns zero.
4676  * The function does not guarantee completion of MBX_RESTART mailbox
4677  * command before the return of this function.
4678  **/
4679 static int
4680 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
4681 {
4682 	MAILBOX_t *mb;
4683 	struct lpfc_sli *psli;
4684 	volatile uint32_t word0;
4685 	void __iomem *to_slim;
4686 	uint32_t hba_aer_enabled;
4687 
4688 	spin_lock_irq(&phba->hbalock);
4689 
4690 	/* Take PCIe device Advanced Error Reporting (AER) state */
4691 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4692 
4693 	psli = &phba->sli;
4694 
4695 	/* Restart HBA */
4696 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4697 			"0337 Restart HBA Data: x%x x%x\n",
4698 			(phba->pport) ? phba->pport->port_state : 0,
4699 			psli->sli_flag);
4700 
4701 	word0 = 0;
4702 	mb = (MAILBOX_t *) &word0;
4703 	mb->mbxCommand = MBX_RESTART;
4704 	mb->mbxHc = 1;
4705 
4706 	lpfc_reset_barrier(phba);
4707 
4708 	to_slim = phba->MBslimaddr;
4709 	writel(*(uint32_t *) mb, to_slim);
4710 	readl(to_slim); /* flush */
4711 
4712 	/* Only skip post after fc_ffinit is completed */
4713 	if (phba->pport && phba->pport->port_state)
4714 		word0 = 1;	/* This is really setting up word1 */
4715 	else
4716 		word0 = 0;	/* This is really setting up word1 */
4717 	to_slim = phba->MBslimaddr + sizeof (uint32_t);
4718 	writel(*(uint32_t *) mb, to_slim);
4719 	readl(to_slim); /* flush */
4720 
4721 	lpfc_sli_brdreset(phba);
4722 	if (phba->pport)
4723 		phba->pport->stopped = 0;
4724 	phba->link_state = LPFC_INIT_START;
4725 	phba->hba_flag = 0;
4726 	spin_unlock_irq(&phba->hbalock);
4727 
4728 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4729 	psli->stats_start = ktime_get_seconds();
4730 
4731 	/* Give the INITFF and Post time to settle. */
4732 	mdelay(100);
4733 
4734 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4735 	if (hba_aer_enabled)
4736 		pci_disable_pcie_error_reporting(phba->pcidev);
4737 
4738 	lpfc_hba_down_post(phba);
4739 
4740 	return 0;
4741 }
4742 
4743 /**
4744  * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
4745  * @phba: Pointer to HBA context object.
4746  *
4747  * This function is called in the SLI initialization code path to restart
4748  * a SLI4 HBA. The caller is not required to hold any lock.
4749  * At the end of the function, it calls lpfc_hba_down_post function to
4750  * free any pending commands.
4751  **/
4752 static int
4753 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4754 {
4755 	struct lpfc_sli *psli = &phba->sli;
4756 	uint32_t hba_aer_enabled;
4757 	int rc;
4758 
4759 	/* Restart HBA */
4760 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4761 			"0296 Restart HBA Data: x%x x%x\n",
4762 			phba->pport->port_state, psli->sli_flag);
4763 
4764 	/* Take PCIe device Advanced Error Reporting (AER) state */
4765 	hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4766 
4767 	rc = lpfc_sli4_brdreset(phba);
4768 	if (rc) {
4769 		phba->link_state = LPFC_HBA_ERROR;
4770 		goto hba_down_queue;
4771 	}
4772 
4773 	spin_lock_irq(&phba->hbalock);
4774 	phba->pport->stopped = 0;
4775 	phba->link_state = LPFC_INIT_START;
4776 	phba->hba_flag = 0;
4777 	spin_unlock_irq(&phba->hbalock);
4778 
4779 	memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4780 	psli->stats_start = ktime_get_seconds();
4781 
4782 	/* Reset HBA AER if it was enabled, note hba_flag was reset above */
4783 	if (hba_aer_enabled)
4784 		pci_disable_pcie_error_reporting(phba->pcidev);
4785 
4786 hba_down_queue:
4787 	lpfc_hba_down_post(phba);
4788 	lpfc_sli4_queue_destroy(phba);
4789 
4790 	return rc;
4791 }
4792 
4793 /**
4794  * lpfc_sli_brdrestart - Wrapper func for restarting hba
4795  * @phba: Pointer to HBA context object.
4796  *
4797  * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4798  * API jump table function pointer from the lpfc_hba struct.
4799 **/
4800 int
4801 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4802 {
4803 	return phba->lpfc_sli_brdrestart(phba);
4804 }
4805 
4806 /**
4807  * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4808  * @phba: Pointer to HBA context object.
4809  *
4810  * This function is called after a HBA restart to wait for successful
4811  * restart of the HBA. Successful restart of the HBA is indicated by
4812  * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4813  * iteration, the function will restart the HBA again. The function returns
4814  * zero if HBA successfully restarted else returns negative error code.
4815  **/
4816 int
4817 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4818 {
4819 	uint32_t status, i = 0;
4820 
4821 	/* Read the HBA Host Status Register */
4822 	if (lpfc_readl(phba->HSregaddr, &status))
4823 		return -EIO;
4824 
4825 	/* Check status register to see what current state is */
4826 	i = 0;
4827 	while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4828 
4829 		/* Check every 10ms for 10 retries, then every 100ms for 90
4830 		 * retries, then every 1 sec for 50 retires for a total of
4831 		 * ~60 seconds before reset the board again and check every
4832 		 * 1 sec for 50 retries. The up to 60 seconds before the
4833 		 * board ready is required by the Falcon FIPS zeroization
4834 		 * complete, and any reset the board in between shall cause
4835 		 * restart of zeroization, further delay the board ready.
4836 		 */
4837 		if (i++ >= 200) {
4838 			/* Adapter failed to init, timeout, status reg
4839 			   <status> */
4840 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4841 					"0436 Adapter failed to init, "
4842 					"timeout, status reg x%x, "
4843 					"FW Data: A8 x%x AC x%x\n", status,
4844 					readl(phba->MBslimaddr + 0xa8),
4845 					readl(phba->MBslimaddr + 0xac));
4846 			phba->link_state = LPFC_HBA_ERROR;
4847 			return -ETIMEDOUT;
4848 		}
4849 
4850 		/* Check to see if any errors occurred during init */
4851 		if (status & HS_FFERM) {
4852 			/* ERROR: During chipset initialization */
4853 			/* Adapter failed to init, chipset, status reg
4854 			   <status> */
4855 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4856 					"0437 Adapter failed to init, "
4857 					"chipset, status reg x%x, "
4858 					"FW Data: A8 x%x AC x%x\n", status,
4859 					readl(phba->MBslimaddr + 0xa8),
4860 					readl(phba->MBslimaddr + 0xac));
4861 			phba->link_state = LPFC_HBA_ERROR;
4862 			return -EIO;
4863 		}
4864 
4865 		if (i <= 10)
4866 			msleep(10);
4867 		else if (i <= 100)
4868 			msleep(100);
4869 		else
4870 			msleep(1000);
4871 
4872 		if (i == 150) {
4873 			/* Do post */
4874 			phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4875 			lpfc_sli_brdrestart(phba);
4876 		}
4877 		/* Read the HBA Host Status Register */
4878 		if (lpfc_readl(phba->HSregaddr, &status))
4879 			return -EIO;
4880 	}
4881 
4882 	/* Check to see if any errors occurred during init */
4883 	if (status & HS_FFERM) {
4884 		/* ERROR: During chipset initialization */
4885 		/* Adapter failed to init, chipset, status reg <status> */
4886 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4887 				"0438 Adapter failed to init, chipset, "
4888 				"status reg x%x, "
4889 				"FW Data: A8 x%x AC x%x\n", status,
4890 				readl(phba->MBslimaddr + 0xa8),
4891 				readl(phba->MBslimaddr + 0xac));
4892 		phba->link_state = LPFC_HBA_ERROR;
4893 		return -EIO;
4894 	}
4895 
4896 	/* Clear all interrupt enable conditions */
4897 	writel(0, phba->HCregaddr);
4898 	readl(phba->HCregaddr); /* flush */
4899 
4900 	/* setup host attn register */
4901 	writel(0xffffffff, phba->HAregaddr);
4902 	readl(phba->HAregaddr); /* flush */
4903 	return 0;
4904 }
4905 
4906 /**
4907  * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4908  *
4909  * This function calculates and returns the number of HBQs required to be
4910  * configured.
4911  **/
4912 int
4913 lpfc_sli_hbq_count(void)
4914 {
4915 	return ARRAY_SIZE(lpfc_hbq_defs);
4916 }
4917 
4918 /**
4919  * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4920  *
4921  * This function adds the number of hbq entries in every HBQ to get
4922  * the total number of hbq entries required for the HBA and returns
4923  * the total count.
4924  **/
4925 static int
4926 lpfc_sli_hbq_entry_count(void)
4927 {
4928 	int  hbq_count = lpfc_sli_hbq_count();
4929 	int  count = 0;
4930 	int  i;
4931 
4932 	for (i = 0; i < hbq_count; ++i)
4933 		count += lpfc_hbq_defs[i]->entry_count;
4934 	return count;
4935 }
4936 
4937 /**
4938  * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4939  *
4940  * This function calculates amount of memory required for all hbq entries
4941  * to be configured and returns the total memory required.
4942  **/
4943 int
4944 lpfc_sli_hbq_size(void)
4945 {
4946 	return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4947 }
4948 
4949 /**
4950  * lpfc_sli_hbq_setup - configure and initialize HBQs
4951  * @phba: Pointer to HBA context object.
4952  *
4953  * This function is called during the SLI initialization to configure
4954  * all the HBQs and post buffers to the HBQ. The caller is not
4955  * required to hold any locks. This function will return zero if successful
4956  * else it will return negative error code.
4957  **/
4958 static int
4959 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4960 {
4961 	int  hbq_count = lpfc_sli_hbq_count();
4962 	LPFC_MBOXQ_t *pmb;
4963 	MAILBOX_t *pmbox;
4964 	uint32_t hbqno;
4965 	uint32_t hbq_entry_index;
4966 
4967 				/* Get a Mailbox buffer to setup mailbox
4968 				 * commands for HBA initialization
4969 				 */
4970 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4971 
4972 	if (!pmb)
4973 		return -ENOMEM;
4974 
4975 	pmbox = &pmb->u.mb;
4976 
4977 	/* Initialize the struct lpfc_sli_hbq structure for each hbq */
4978 	phba->link_state = LPFC_INIT_MBX_CMDS;
4979 	phba->hbq_in_use = 1;
4980 
4981 	hbq_entry_index = 0;
4982 	for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4983 		phba->hbqs[hbqno].next_hbqPutIdx = 0;
4984 		phba->hbqs[hbqno].hbqPutIdx      = 0;
4985 		phba->hbqs[hbqno].local_hbqGetIdx   = 0;
4986 		phba->hbqs[hbqno].entry_count =
4987 			lpfc_hbq_defs[hbqno]->entry_count;
4988 		lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4989 			hbq_entry_index, pmb);
4990 		hbq_entry_index += phba->hbqs[hbqno].entry_count;
4991 
4992 		if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4993 			/* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4994 			   mbxStatus <status>, ring <num> */
4995 
4996 			lpfc_printf_log(phba, KERN_ERR,
4997 					LOG_SLI | LOG_VPORT,
4998 					"1805 Adapter failed to init. "
4999 					"Data: x%x x%x x%x\n",
5000 					pmbox->mbxCommand,
5001 					pmbox->mbxStatus, hbqno);
5002 
5003 			phba->link_state = LPFC_HBA_ERROR;
5004 			mempool_free(pmb, phba->mbox_mem_pool);
5005 			return -ENXIO;
5006 		}
5007 	}
5008 	phba->hbq_count = hbq_count;
5009 
5010 	mempool_free(pmb, phba->mbox_mem_pool);
5011 
5012 	/* Initially populate or replenish the HBQs */
5013 	for (hbqno = 0; hbqno < hbq_count; ++hbqno)
5014 		lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
5015 	return 0;
5016 }
5017 
5018 /**
5019  * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
5020  * @phba: Pointer to HBA context object.
5021  *
5022  * This function is called during the SLI initialization to configure
5023  * all the HBQs and post buffers to the HBQ. The caller is not
5024  * required to hold any locks. This function will return zero if successful
5025  * else it will return negative error code.
5026  **/
5027 static int
5028 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
5029 {
5030 	phba->hbq_in_use = 1;
5031 	/**
5032 	 * Specific case when the MDS diagnostics is enabled and supported.
5033 	 * The receive buffer count is truncated to manage the incoming
5034 	 * traffic.
5035 	 **/
5036 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support)
5037 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5038 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1;
5039 	else
5040 		phba->hbqs[LPFC_ELS_HBQ].entry_count =
5041 			lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count;
5042 	phba->hbq_count = 1;
5043 	lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ);
5044 	/* Initially populate or replenish the HBQs */
5045 	return 0;
5046 }
5047 
5048 /**
5049  * lpfc_sli_config_port - Issue config port mailbox command
5050  * @phba: Pointer to HBA context object.
5051  * @sli_mode: sli mode - 2/3
5052  *
5053  * This function is called by the sli initialization code path
5054  * to issue config_port mailbox command. This function restarts the
5055  * HBA firmware and issues a config_port mailbox command to configure
5056  * the SLI interface in the sli mode specified by sli_mode
5057  * variable. The caller is not required to hold any locks.
5058  * The function returns 0 if successful, else returns negative error
5059  * code.
5060  **/
5061 int
5062 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
5063 {
5064 	LPFC_MBOXQ_t *pmb;
5065 	uint32_t resetcount = 0, rc = 0, done = 0;
5066 
5067 	pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5068 	if (!pmb) {
5069 		phba->link_state = LPFC_HBA_ERROR;
5070 		return -ENOMEM;
5071 	}
5072 
5073 	phba->sli_rev = sli_mode;
5074 	while (resetcount < 2 && !done) {
5075 		spin_lock_irq(&phba->hbalock);
5076 		phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
5077 		spin_unlock_irq(&phba->hbalock);
5078 		phba->pport->port_state = LPFC_VPORT_UNKNOWN;
5079 		lpfc_sli_brdrestart(phba);
5080 		rc = lpfc_sli_chipset_init(phba);
5081 		if (rc)
5082 			break;
5083 
5084 		spin_lock_irq(&phba->hbalock);
5085 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
5086 		spin_unlock_irq(&phba->hbalock);
5087 		resetcount++;
5088 
5089 		/* Call pre CONFIG_PORT mailbox command initialization.  A
5090 		 * value of 0 means the call was successful.  Any other
5091 		 * nonzero value is a failure, but if ERESTART is returned,
5092 		 * the driver may reset the HBA and try again.
5093 		 */
5094 		rc = lpfc_config_port_prep(phba);
5095 		if (rc == -ERESTART) {
5096 			phba->link_state = LPFC_LINK_UNKNOWN;
5097 			continue;
5098 		} else if (rc)
5099 			break;
5100 
5101 		phba->link_state = LPFC_INIT_MBX_CMDS;
5102 		lpfc_config_port(phba, pmb);
5103 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
5104 		phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
5105 					LPFC_SLI3_HBQ_ENABLED |
5106 					LPFC_SLI3_CRP_ENABLED |
5107 					LPFC_SLI3_DSS_ENABLED);
5108 		if (rc != MBX_SUCCESS) {
5109 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5110 				"0442 Adapter failed to init, mbxCmd x%x "
5111 				"CONFIG_PORT, mbxStatus x%x Data: x%x\n",
5112 				pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
5113 			spin_lock_irq(&phba->hbalock);
5114 			phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
5115 			spin_unlock_irq(&phba->hbalock);
5116 			rc = -ENXIO;
5117 		} else {
5118 			/* Allow asynchronous mailbox command to go through */
5119 			spin_lock_irq(&phba->hbalock);
5120 			phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
5121 			spin_unlock_irq(&phba->hbalock);
5122 			done = 1;
5123 
5124 			if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
5125 			    (pmb->u.mb.un.varCfgPort.gasabt == 0))
5126 				lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
5127 					"3110 Port did not grant ASABT\n");
5128 		}
5129 	}
5130 	if (!done) {
5131 		rc = -EINVAL;
5132 		goto do_prep_failed;
5133 	}
5134 	if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
5135 		if (!pmb->u.mb.un.varCfgPort.cMA) {
5136 			rc = -ENXIO;
5137 			goto do_prep_failed;
5138 		}
5139 		if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
5140 			phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
5141 			phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
5142 			phba->max_vports = (phba->max_vpi > phba->max_vports) ?
5143 				phba->max_vpi : phba->max_vports;
5144 
5145 		} else
5146 			phba->max_vpi = 0;
5147 		if (pmb->u.mb.un.varCfgPort.gerbm)
5148 			phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
5149 		if (pmb->u.mb.un.varCfgPort.gcrp)
5150 			phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
5151 
5152 		phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
5153 		phba->port_gp = phba->mbox->us.s3_pgp.port;
5154 
5155 		if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
5156 			if (pmb->u.mb.un.varCfgPort.gbg == 0) {
5157 				phba->cfg_enable_bg = 0;
5158 				phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
5159 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5160 						"0443 Adapter did not grant "
5161 						"BlockGuard\n");
5162 			}
5163 		}
5164 	} else {
5165 		phba->hbq_get = NULL;
5166 		phba->port_gp = phba->mbox->us.s2.port;
5167 		phba->max_vpi = 0;
5168 	}
5169 do_prep_failed:
5170 	mempool_free(pmb, phba->mbox_mem_pool);
5171 	return rc;
5172 }
5173 
5174 
5175 /**
5176  * lpfc_sli_hba_setup - SLI initialization function
5177  * @phba: Pointer to HBA context object.
5178  *
5179  * This function is the main SLI initialization function. This function
5180  * is called by the HBA initialization code, HBA reset code and HBA
5181  * error attention handler code. Caller is not required to hold any
5182  * locks. This function issues config_port mailbox command to configure
5183  * the SLI, setup iocb rings and HBQ rings. In the end the function
5184  * calls the config_port_post function to issue init_link mailbox
5185  * command and to start the discovery. The function will return zero
5186  * if successful, else it will return negative error code.
5187  **/
5188 int
5189 lpfc_sli_hba_setup(struct lpfc_hba *phba)
5190 {
5191 	uint32_t rc;
5192 	int  mode = 3, i;
5193 	int longs;
5194 
5195 	switch (phba->cfg_sli_mode) {
5196 	case 2:
5197 		if (phba->cfg_enable_npiv) {
5198 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5199 				"1824 NPIV enabled: Override sli_mode "
5200 				"parameter (%d) to auto (0).\n",
5201 				phba->cfg_sli_mode);
5202 			break;
5203 		}
5204 		mode = 2;
5205 		break;
5206 	case 0:
5207 	case 3:
5208 		break;
5209 	default:
5210 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5211 				"1819 Unrecognized sli_mode parameter: %d.\n",
5212 				phba->cfg_sli_mode);
5213 
5214 		break;
5215 	}
5216 	phba->fcp_embed_io = 0;	/* SLI4 FC support only */
5217 
5218 	rc = lpfc_sli_config_port(phba, mode);
5219 
5220 	if (rc && phba->cfg_sli_mode == 3)
5221 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
5222 				"1820 Unable to select SLI-3.  "
5223 				"Not supported by adapter.\n");
5224 	if (rc && mode != 2)
5225 		rc = lpfc_sli_config_port(phba, 2);
5226 	else if (rc && mode == 2)
5227 		rc = lpfc_sli_config_port(phba, 3);
5228 	if (rc)
5229 		goto lpfc_sli_hba_setup_error;
5230 
5231 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
5232 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
5233 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
5234 		if (!rc) {
5235 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5236 					"2709 This device supports "
5237 					"Advanced Error Reporting (AER)\n");
5238 			spin_lock_irq(&phba->hbalock);
5239 			phba->hba_flag |= HBA_AER_ENABLED;
5240 			spin_unlock_irq(&phba->hbalock);
5241 		} else {
5242 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5243 					"2708 This device does not support "
5244 					"Advanced Error Reporting (AER): %d\n",
5245 					rc);
5246 			phba->cfg_aer_support = 0;
5247 		}
5248 	}
5249 
5250 	if (phba->sli_rev == 3) {
5251 		phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
5252 		phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
5253 	} else {
5254 		phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
5255 		phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
5256 		phba->sli3_options = 0;
5257 	}
5258 
5259 	lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
5260 			"0444 Firmware in SLI %x mode. Max_vpi %d\n",
5261 			phba->sli_rev, phba->max_vpi);
5262 	rc = lpfc_sli_ring_map(phba);
5263 
5264 	if (rc)
5265 		goto lpfc_sli_hba_setup_error;
5266 
5267 	/* Initialize VPIs. */
5268 	if (phba->sli_rev == LPFC_SLI_REV3) {
5269 		/*
5270 		 * The VPI bitmask and physical ID array are allocated
5271 		 * and initialized once only - at driver load.  A port
5272 		 * reset doesn't need to reinitialize this memory.
5273 		 */
5274 		if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
5275 			longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
5276 			phba->vpi_bmask = kcalloc(longs,
5277 						  sizeof(unsigned long),
5278 						  GFP_KERNEL);
5279 			if (!phba->vpi_bmask) {
5280 				rc = -ENOMEM;
5281 				goto lpfc_sli_hba_setup_error;
5282 			}
5283 
5284 			phba->vpi_ids = kcalloc(phba->max_vpi + 1,
5285 						sizeof(uint16_t),
5286 						GFP_KERNEL);
5287 			if (!phba->vpi_ids) {
5288 				kfree(phba->vpi_bmask);
5289 				rc = -ENOMEM;
5290 				goto lpfc_sli_hba_setup_error;
5291 			}
5292 			for (i = 0; i < phba->max_vpi; i++)
5293 				phba->vpi_ids[i] = i;
5294 		}
5295 	}
5296 
5297 	/* Init HBQs */
5298 	if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
5299 		rc = lpfc_sli_hbq_setup(phba);
5300 		if (rc)
5301 			goto lpfc_sli_hba_setup_error;
5302 	}
5303 	spin_lock_irq(&phba->hbalock);
5304 	phba->sli.sli_flag |= LPFC_PROCESS_LA;
5305 	spin_unlock_irq(&phba->hbalock);
5306 
5307 	rc = lpfc_config_port_post(phba);
5308 	if (rc)
5309 		goto lpfc_sli_hba_setup_error;
5310 
5311 	return rc;
5312 
5313 lpfc_sli_hba_setup_error:
5314 	phba->link_state = LPFC_HBA_ERROR;
5315 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5316 			"0445 Firmware initialization failed\n");
5317 	return rc;
5318 }
5319 
5320 /**
5321  * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
5322  * @phba: Pointer to HBA context object.
5323  * @mboxq: mailbox pointer.
5324  * This function issue a dump mailbox command to read config region
5325  * 23 and parse the records in the region and populate driver
5326  * data structure.
5327  **/
5328 static int
5329 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
5330 {
5331 	LPFC_MBOXQ_t *mboxq;
5332 	struct lpfc_dmabuf *mp;
5333 	struct lpfc_mqe *mqe;
5334 	uint32_t data_length;
5335 	int rc;
5336 
5337 	/* Program the default value of vlan_id and fc_map */
5338 	phba->valid_vlan = 0;
5339 	phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
5340 	phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
5341 	phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
5342 
5343 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5344 	if (!mboxq)
5345 		return -ENOMEM;
5346 
5347 	mqe = &mboxq->u.mqe;
5348 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
5349 		rc = -ENOMEM;
5350 		goto out_free_mboxq;
5351 	}
5352 
5353 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
5354 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5355 
5356 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5357 			"(%d):2571 Mailbox cmd x%x Status x%x "
5358 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5359 			"x%x x%x x%x x%x x%x x%x x%x x%x x%x "
5360 			"CQ: x%x x%x x%x x%x\n",
5361 			mboxq->vport ? mboxq->vport->vpi : 0,
5362 			bf_get(lpfc_mqe_command, mqe),
5363 			bf_get(lpfc_mqe_status, mqe),
5364 			mqe->un.mb_words[0], mqe->un.mb_words[1],
5365 			mqe->un.mb_words[2], mqe->un.mb_words[3],
5366 			mqe->un.mb_words[4], mqe->un.mb_words[5],
5367 			mqe->un.mb_words[6], mqe->un.mb_words[7],
5368 			mqe->un.mb_words[8], mqe->un.mb_words[9],
5369 			mqe->un.mb_words[10], mqe->un.mb_words[11],
5370 			mqe->un.mb_words[12], mqe->un.mb_words[13],
5371 			mqe->un.mb_words[14], mqe->un.mb_words[15],
5372 			mqe->un.mb_words[16], mqe->un.mb_words[50],
5373 			mboxq->mcqe.word0,
5374 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
5375 			mboxq->mcqe.trailer);
5376 
5377 	if (rc) {
5378 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5379 		kfree(mp);
5380 		rc = -EIO;
5381 		goto out_free_mboxq;
5382 	}
5383 	data_length = mqe->un.mb_words[5];
5384 	if (data_length > DMP_RGN23_SIZE) {
5385 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
5386 		kfree(mp);
5387 		rc = -EIO;
5388 		goto out_free_mboxq;
5389 	}
5390 
5391 	lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
5392 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
5393 	kfree(mp);
5394 	rc = 0;
5395 
5396 out_free_mboxq:
5397 	mempool_free(mboxq, phba->mbox_mem_pool);
5398 	return rc;
5399 }
5400 
5401 /**
5402  * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
5403  * @phba: pointer to lpfc hba data structure.
5404  * @mboxq: pointer to the LPFC_MBOXQ_t structure.
5405  * @vpd: pointer to the memory to hold resulting port vpd data.
5406  * @vpd_size: On input, the number of bytes allocated to @vpd.
5407  *	      On output, the number of data bytes in @vpd.
5408  *
5409  * This routine executes a READ_REV SLI4 mailbox command.  In
5410  * addition, this routine gets the port vpd data.
5411  *
5412  * Return codes
5413  * 	0 - successful
5414  * 	-ENOMEM - could not allocated memory.
5415  **/
5416 static int
5417 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
5418 		    uint8_t *vpd, uint32_t *vpd_size)
5419 {
5420 	int rc = 0;
5421 	uint32_t dma_size;
5422 	struct lpfc_dmabuf *dmabuf;
5423 	struct lpfc_mqe *mqe;
5424 
5425 	dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
5426 	if (!dmabuf)
5427 		return -ENOMEM;
5428 
5429 	/*
5430 	 * Get a DMA buffer for the vpd data resulting from the READ_REV
5431 	 * mailbox command.
5432 	 */
5433 	dma_size = *vpd_size;
5434 	dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size,
5435 					  &dmabuf->phys, GFP_KERNEL);
5436 	if (!dmabuf->virt) {
5437 		kfree(dmabuf);
5438 		return -ENOMEM;
5439 	}
5440 
5441 	/*
5442 	 * The SLI4 implementation of READ_REV conflicts at word1,
5443 	 * bits 31:16 and SLI4 adds vpd functionality not present
5444 	 * in SLI3.  This code corrects the conflicts.
5445 	 */
5446 	lpfc_read_rev(phba, mboxq);
5447 	mqe = &mboxq->u.mqe;
5448 	mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
5449 	mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
5450 	mqe->un.read_rev.word1 &= 0x0000FFFF;
5451 	bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
5452 	bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
5453 
5454 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5455 	if (rc) {
5456 		dma_free_coherent(&phba->pcidev->dev, dma_size,
5457 				  dmabuf->virt, dmabuf->phys);
5458 		kfree(dmabuf);
5459 		return -EIO;
5460 	}
5461 
5462 	/*
5463 	 * The available vpd length cannot be bigger than the
5464 	 * DMA buffer passed to the port.  Catch the less than
5465 	 * case and update the caller's size.
5466 	 */
5467 	if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
5468 		*vpd_size = mqe->un.read_rev.avail_vpd_len;
5469 
5470 	memcpy(vpd, dmabuf->virt, *vpd_size);
5471 
5472 	dma_free_coherent(&phba->pcidev->dev, dma_size,
5473 			  dmabuf->virt, dmabuf->phys);
5474 	kfree(dmabuf);
5475 	return 0;
5476 }
5477 
5478 /**
5479  * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes
5480  * @phba: pointer to lpfc hba data structure.
5481  *
5482  * This routine retrieves SLI4 device physical port name this PCI function
5483  * is attached to.
5484  *
5485  * Return codes
5486  *      0 - successful
5487  *      otherwise - failed to retrieve controller attributes
5488  **/
5489 static int
5490 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba)
5491 {
5492 	LPFC_MBOXQ_t *mboxq;
5493 	struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
5494 	struct lpfc_controller_attribute *cntl_attr;
5495 	void *virtaddr = NULL;
5496 	uint32_t alloclen, reqlen;
5497 	uint32_t shdr_status, shdr_add_status;
5498 	union lpfc_sli4_cfg_shdr *shdr;
5499 	int rc;
5500 
5501 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5502 	if (!mboxq)
5503 		return -ENOMEM;
5504 
5505 	/* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */
5506 	reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
5507 	alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5508 			LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
5509 			LPFC_SLI4_MBX_NEMBED);
5510 
5511 	if (alloclen < reqlen) {
5512 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
5513 				"3084 Allocated DMA memory size (%d) is "
5514 				"less than the requested DMA memory size "
5515 				"(%d)\n", alloclen, reqlen);
5516 		rc = -ENOMEM;
5517 		goto out_free_mboxq;
5518 	}
5519 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5520 	virtaddr = mboxq->sge_array->addr[0];
5521 	mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
5522 	shdr = &mbx_cntl_attr->cfg_shdr;
5523 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5524 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5525 	if (shdr_status || shdr_add_status || rc) {
5526 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5527 				"3085 Mailbox x%x (x%x/x%x) failed, "
5528 				"rc:x%x, status:x%x, add_status:x%x\n",
5529 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5530 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5531 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5532 				rc, shdr_status, shdr_add_status);
5533 		rc = -ENXIO;
5534 		goto out_free_mboxq;
5535 	}
5536 
5537 	cntl_attr = &mbx_cntl_attr->cntl_attr;
5538 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
5539 	phba->sli4_hba.lnk_info.lnk_tp =
5540 		bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
5541 	phba->sli4_hba.lnk_info.lnk_no =
5542 		bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
5543 
5544 	memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion));
5545 	strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str,
5546 		sizeof(phba->BIOSVersion));
5547 
5548 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5549 			"3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n",
5550 			phba->sli4_hba.lnk_info.lnk_tp,
5551 			phba->sli4_hba.lnk_info.lnk_no,
5552 			phba->BIOSVersion);
5553 out_free_mboxq:
5554 	if (rc != MBX_TIMEOUT) {
5555 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5556 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5557 		else
5558 			mempool_free(mboxq, phba->mbox_mem_pool);
5559 	}
5560 	return rc;
5561 }
5562 
5563 /**
5564  * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
5565  * @phba: pointer to lpfc hba data structure.
5566  *
5567  * This routine retrieves SLI4 device physical port name this PCI function
5568  * is attached to.
5569  *
5570  * Return codes
5571  *      0 - successful
5572  *      otherwise - failed to retrieve physical port name
5573  **/
5574 static int
5575 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
5576 {
5577 	LPFC_MBOXQ_t *mboxq;
5578 	struct lpfc_mbx_get_port_name *get_port_name;
5579 	uint32_t shdr_status, shdr_add_status;
5580 	union lpfc_sli4_cfg_shdr *shdr;
5581 	char cport_name = 0;
5582 	int rc;
5583 
5584 	/* We assume nothing at this point */
5585 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5586 	phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
5587 
5588 	mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5589 	if (!mboxq)
5590 		return -ENOMEM;
5591 	/* obtain link type and link number via READ_CONFIG */
5592 	phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
5593 	lpfc_sli4_read_config(phba);
5594 	if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
5595 		goto retrieve_ppname;
5596 
5597 	/* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
5598 	rc = lpfc_sli4_get_ctl_attr(phba);
5599 	if (rc)
5600 		goto out_free_mboxq;
5601 
5602 retrieve_ppname:
5603 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
5604 		LPFC_MBOX_OPCODE_GET_PORT_NAME,
5605 		sizeof(struct lpfc_mbx_get_port_name) -
5606 		sizeof(struct lpfc_sli4_cfg_mhdr),
5607 		LPFC_SLI4_MBX_EMBED);
5608 	get_port_name = &mboxq->u.mqe.un.get_port_name;
5609 	shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
5610 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
5611 	bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
5612 		phba->sli4_hba.lnk_info.lnk_tp);
5613 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
5614 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
5615 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
5616 	if (shdr_status || shdr_add_status || rc) {
5617 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
5618 				"3087 Mailbox x%x (x%x/x%x) failed: "
5619 				"rc:x%x, status:x%x, add_status:x%x\n",
5620 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
5621 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
5622 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
5623 				rc, shdr_status, shdr_add_status);
5624 		rc = -ENXIO;
5625 		goto out_free_mboxq;
5626 	}
5627 	switch (phba->sli4_hba.lnk_info.lnk_no) {
5628 	case LPFC_LINK_NUMBER_0:
5629 		cport_name = bf_get(lpfc_mbx_get_port_name_name0,
5630 				&get_port_name->u.response);
5631 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5632 		break;
5633 	case LPFC_LINK_NUMBER_1:
5634 		cport_name = bf_get(lpfc_mbx_get_port_name_name1,
5635 				&get_port_name->u.response);
5636 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5637 		break;
5638 	case LPFC_LINK_NUMBER_2:
5639 		cport_name = bf_get(lpfc_mbx_get_port_name_name2,
5640 				&get_port_name->u.response);
5641 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5642 		break;
5643 	case LPFC_LINK_NUMBER_3:
5644 		cport_name = bf_get(lpfc_mbx_get_port_name_name3,
5645 				&get_port_name->u.response);
5646 		phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
5647 		break;
5648 	default:
5649 		break;
5650 	}
5651 
5652 	if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
5653 		phba->Port[0] = cport_name;
5654 		phba->Port[1] = '\0';
5655 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5656 				"3091 SLI get port name: %s\n", phba->Port);
5657 	}
5658 
5659 out_free_mboxq:
5660 	if (rc != MBX_TIMEOUT) {
5661 		if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
5662 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
5663 		else
5664 			mempool_free(mboxq, phba->mbox_mem_pool);
5665 	}
5666 	return rc;
5667 }
5668 
5669 /**
5670  * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
5671  * @phba: pointer to lpfc hba data structure.
5672  *
5673  * This routine is called to explicitly arm the SLI4 device's completion and
5674  * event queues
5675  **/
5676 static void
5677 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
5678 {
5679 	int qidx;
5680 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
5681 	struct lpfc_sli4_hdw_queue *qp;
5682 	struct lpfc_queue *eq;
5683 
5684 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM);
5685 	sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM);
5686 	if (sli4_hba->nvmels_cq)
5687 		sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0,
5688 					   LPFC_QUEUE_REARM);
5689 
5690 	if (sli4_hba->hdwq) {
5691 		/* Loop thru all Hardware Queues */
5692 		for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
5693 			qp = &sli4_hba->hdwq[qidx];
5694 			/* ARM the corresponding CQ */
5695 			sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0,
5696 						LPFC_QUEUE_REARM);
5697 		}
5698 
5699 		/* Loop thru all IRQ vectors */
5700 		for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
5701 			eq = sli4_hba->hba_eq_hdl[qidx].eq;
5702 			/* ARM the corresponding EQ */
5703 			sli4_hba->sli4_write_eq_db(phba, eq,
5704 						   0, LPFC_QUEUE_REARM);
5705 		}
5706 	}
5707 
5708 	if (phba->nvmet_support) {
5709 		for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) {
5710 			sli4_hba->sli4_write_cq_db(phba,
5711 				sli4_hba->nvmet_cqset[qidx], 0,
5712 				LPFC_QUEUE_REARM);
5713 		}
5714 	}
5715 }
5716 
5717 /**
5718  * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
5719  * @phba: Pointer to HBA context object.
5720  * @type: The resource extent type.
5721  * @extnt_count: buffer to hold port available extent count.
5722  * @extnt_size: buffer to hold element count per extent.
5723  *
5724  * This function calls the port and retrievs the number of available
5725  * extents and their size for a particular extent type.
5726  *
5727  * Returns: 0 if successful.  Nonzero otherwise.
5728  **/
5729 int
5730 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
5731 			       uint16_t *extnt_count, uint16_t *extnt_size)
5732 {
5733 	int rc = 0;
5734 	uint32_t length;
5735 	uint32_t mbox_tmo;
5736 	struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
5737 	LPFC_MBOXQ_t *mbox;
5738 
5739 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5740 	if (!mbox)
5741 		return -ENOMEM;
5742 
5743 	/* Find out how many extents are available for this resource type */
5744 	length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
5745 		  sizeof(struct lpfc_sli4_cfg_mhdr));
5746 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5747 			 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
5748 			 length, LPFC_SLI4_MBX_EMBED);
5749 
5750 	/* Send an extents count of 0 - the GET doesn't use it. */
5751 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5752 					LPFC_SLI4_MBX_EMBED);
5753 	if (unlikely(rc)) {
5754 		rc = -EIO;
5755 		goto err_exit;
5756 	}
5757 
5758 	if (!phba->sli4_hba.intr_enable)
5759 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5760 	else {
5761 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5762 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5763 	}
5764 	if (unlikely(rc)) {
5765 		rc = -EIO;
5766 		goto err_exit;
5767 	}
5768 
5769 	rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
5770 	if (bf_get(lpfc_mbox_hdr_status,
5771 		   &rsrc_info->header.cfg_shdr.response)) {
5772 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5773 				"2930 Failed to get resource extents "
5774 				"Status 0x%x Add'l Status 0x%x\n",
5775 				bf_get(lpfc_mbox_hdr_status,
5776 				       &rsrc_info->header.cfg_shdr.response),
5777 				bf_get(lpfc_mbox_hdr_add_status,
5778 				       &rsrc_info->header.cfg_shdr.response));
5779 		rc = -EIO;
5780 		goto err_exit;
5781 	}
5782 
5783 	*extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
5784 			      &rsrc_info->u.rsp);
5785 	*extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
5786 			     &rsrc_info->u.rsp);
5787 
5788 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
5789 			"3162 Retrieved extents type-%d from port: count:%d, "
5790 			"size:%d\n", type, *extnt_count, *extnt_size);
5791 
5792 err_exit:
5793 	mempool_free(mbox, phba->mbox_mem_pool);
5794 	return rc;
5795 }
5796 
5797 /**
5798  * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
5799  * @phba: Pointer to HBA context object.
5800  * @type: The extent type to check.
5801  *
5802  * This function reads the current available extents from the port and checks
5803  * if the extent count or extent size has changed since the last access.
5804  * Callers use this routine post port reset to understand if there is a
5805  * extent reprovisioning requirement.
5806  *
5807  * Returns:
5808  *   -Error: error indicates problem.
5809  *   1: Extent count or size has changed.
5810  *   0: No changes.
5811  **/
5812 static int
5813 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
5814 {
5815 	uint16_t curr_ext_cnt, rsrc_ext_cnt;
5816 	uint16_t size_diff, rsrc_ext_size;
5817 	int rc = 0;
5818 	struct lpfc_rsrc_blks *rsrc_entry;
5819 	struct list_head *rsrc_blk_list = NULL;
5820 
5821 	size_diff = 0;
5822 	curr_ext_cnt = 0;
5823 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5824 					    &rsrc_ext_cnt,
5825 					    &rsrc_ext_size);
5826 	if (unlikely(rc))
5827 		return -EIO;
5828 
5829 	switch (type) {
5830 	case LPFC_RSC_TYPE_FCOE_RPI:
5831 		rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5832 		break;
5833 	case LPFC_RSC_TYPE_FCOE_VPI:
5834 		rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5835 		break;
5836 	case LPFC_RSC_TYPE_FCOE_XRI:
5837 		rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5838 		break;
5839 	case LPFC_RSC_TYPE_FCOE_VFI:
5840 		rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5841 		break;
5842 	default:
5843 		break;
5844 	}
5845 
5846 	list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5847 		curr_ext_cnt++;
5848 		if (rsrc_entry->rsrc_size != rsrc_ext_size)
5849 			size_diff++;
5850 	}
5851 
5852 	if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5853 		rc = 1;
5854 
5855 	return rc;
5856 }
5857 
5858 /**
5859  * lpfc_sli4_cfg_post_extnts -
5860  * @phba: Pointer to HBA context object.
5861  * @extnt_cnt - number of available extents.
5862  * @type - the extent type (rpi, xri, vfi, vpi).
5863  * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5864  * @mbox - pointer to the caller's allocated mailbox structure.
5865  *
5866  * This function executes the extents allocation request.  It also
5867  * takes care of the amount of memory needed to allocate or get the
5868  * allocated extents. It is the caller's responsibility to evaluate
5869  * the response.
5870  *
5871  * Returns:
5872  *   -Error:  Error value describes the condition found.
5873  *   0: if successful
5874  **/
5875 static int
5876 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt,
5877 			  uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5878 {
5879 	int rc = 0;
5880 	uint32_t req_len;
5881 	uint32_t emb_len;
5882 	uint32_t alloc_len, mbox_tmo;
5883 
5884 	/* Calculate the total requested length of the dma memory */
5885 	req_len = extnt_cnt * sizeof(uint16_t);
5886 
5887 	/*
5888 	 * Calculate the size of an embedded mailbox.  The uint32_t
5889 	 * accounts for extents-specific word.
5890 	 */
5891 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5892 		sizeof(uint32_t);
5893 
5894 	/*
5895 	 * Presume the allocation and response will fit into an embedded
5896 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
5897 	 */
5898 	*emb = LPFC_SLI4_MBX_EMBED;
5899 	if (req_len > emb_len) {
5900 		req_len = extnt_cnt * sizeof(uint16_t) +
5901 			sizeof(union lpfc_sli4_cfg_shdr) +
5902 			sizeof(uint32_t);
5903 		*emb = LPFC_SLI4_MBX_NEMBED;
5904 	}
5905 
5906 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5907 				     LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5908 				     req_len, *emb);
5909 	if (alloc_len < req_len) {
5910 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5911 			"2982 Allocated DMA memory size (x%x) is "
5912 			"less than the requested DMA memory "
5913 			"size (x%x)\n", alloc_len, req_len);
5914 		return -ENOMEM;
5915 	}
5916 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb);
5917 	if (unlikely(rc))
5918 		return -EIO;
5919 
5920 	if (!phba->sli4_hba.intr_enable)
5921 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5922 	else {
5923 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5924 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5925 	}
5926 
5927 	if (unlikely(rc))
5928 		rc = -EIO;
5929 	return rc;
5930 }
5931 
5932 /**
5933  * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5934  * @phba: Pointer to HBA context object.
5935  * @type:  The resource extent type to allocate.
5936  *
5937  * This function allocates the number of elements for the specified
5938  * resource type.
5939  **/
5940 static int
5941 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5942 {
5943 	bool emb = false;
5944 	uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5945 	uint16_t rsrc_id, rsrc_start, j, k;
5946 	uint16_t *ids;
5947 	int i, rc;
5948 	unsigned long longs;
5949 	unsigned long *bmask;
5950 	struct lpfc_rsrc_blks *rsrc_blks;
5951 	LPFC_MBOXQ_t *mbox;
5952 	uint32_t length;
5953 	struct lpfc_id_range *id_array = NULL;
5954 	void *virtaddr = NULL;
5955 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5956 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5957 	struct list_head *ext_blk_list;
5958 
5959 	rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5960 					    &rsrc_cnt,
5961 					    &rsrc_size);
5962 	if (unlikely(rc))
5963 		return -EIO;
5964 
5965 	if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5966 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5967 			"3009 No available Resource Extents "
5968 			"for resource type 0x%x: Count: 0x%x, "
5969 			"Size 0x%x\n", type, rsrc_cnt,
5970 			rsrc_size);
5971 		return -ENOMEM;
5972 	}
5973 
5974 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI,
5975 			"2903 Post resource extents type-0x%x: "
5976 			"count:%d, size %d\n", type, rsrc_cnt, rsrc_size);
5977 
5978 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5979 	if (!mbox)
5980 		return -ENOMEM;
5981 
5982 	rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox);
5983 	if (unlikely(rc)) {
5984 		rc = -EIO;
5985 		goto err_exit;
5986 	}
5987 
5988 	/*
5989 	 * Figure out where the response is located.  Then get local pointers
5990 	 * to the response data.  The port does not guarantee to respond to
5991 	 * all extents counts request so update the local variable with the
5992 	 * allocated count from the port.
5993 	 */
5994 	if (emb == LPFC_SLI4_MBX_EMBED) {
5995 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5996 		id_array = &rsrc_ext->u.rsp.id[0];
5997 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5998 	} else {
5999 		virtaddr = mbox->sge_array->addr[0];
6000 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
6001 		rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
6002 		id_array = &n_rsrc->id;
6003 	}
6004 
6005 	longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
6006 	rsrc_id_cnt = rsrc_cnt * rsrc_size;
6007 
6008 	/*
6009 	 * Based on the resource size and count, correct the base and max
6010 	 * resource values.
6011 	 */
6012 	length = sizeof(struct lpfc_rsrc_blks);
6013 	switch (type) {
6014 	case LPFC_RSC_TYPE_FCOE_RPI:
6015 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6016 						   sizeof(unsigned long),
6017 						   GFP_KERNEL);
6018 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6019 			rc = -ENOMEM;
6020 			goto err_exit;
6021 		}
6022 		phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt,
6023 						 sizeof(uint16_t),
6024 						 GFP_KERNEL);
6025 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6026 			kfree(phba->sli4_hba.rpi_bmask);
6027 			rc = -ENOMEM;
6028 			goto err_exit;
6029 		}
6030 
6031 		/*
6032 		 * The next_rpi was initialized with the maximum available
6033 		 * count but the port may allocate a smaller number.  Catch
6034 		 * that case and update the next_rpi.
6035 		 */
6036 		phba->sli4_hba.next_rpi = rsrc_id_cnt;
6037 
6038 		/* Initialize local ptrs for common extent processing later. */
6039 		bmask = phba->sli4_hba.rpi_bmask;
6040 		ids = phba->sli4_hba.rpi_ids;
6041 		ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
6042 		break;
6043 	case LPFC_RSC_TYPE_FCOE_VPI:
6044 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6045 					  GFP_KERNEL);
6046 		if (unlikely(!phba->vpi_bmask)) {
6047 			rc = -ENOMEM;
6048 			goto err_exit;
6049 		}
6050 		phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t),
6051 					 GFP_KERNEL);
6052 		if (unlikely(!phba->vpi_ids)) {
6053 			kfree(phba->vpi_bmask);
6054 			rc = -ENOMEM;
6055 			goto err_exit;
6056 		}
6057 
6058 		/* Initialize local ptrs for common extent processing later. */
6059 		bmask = phba->vpi_bmask;
6060 		ids = phba->vpi_ids;
6061 		ext_blk_list = &phba->lpfc_vpi_blk_list;
6062 		break;
6063 	case LPFC_RSC_TYPE_FCOE_XRI:
6064 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6065 						   sizeof(unsigned long),
6066 						   GFP_KERNEL);
6067 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6068 			rc = -ENOMEM;
6069 			goto err_exit;
6070 		}
6071 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6072 		phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt,
6073 						 sizeof(uint16_t),
6074 						 GFP_KERNEL);
6075 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6076 			kfree(phba->sli4_hba.xri_bmask);
6077 			rc = -ENOMEM;
6078 			goto err_exit;
6079 		}
6080 
6081 		/* Initialize local ptrs for common extent processing later. */
6082 		bmask = phba->sli4_hba.xri_bmask;
6083 		ids = phba->sli4_hba.xri_ids;
6084 		ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
6085 		break;
6086 	case LPFC_RSC_TYPE_FCOE_VFI:
6087 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6088 						   sizeof(unsigned long),
6089 						   GFP_KERNEL);
6090 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6091 			rc = -ENOMEM;
6092 			goto err_exit;
6093 		}
6094 		phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt,
6095 						 sizeof(uint16_t),
6096 						 GFP_KERNEL);
6097 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6098 			kfree(phba->sli4_hba.vfi_bmask);
6099 			rc = -ENOMEM;
6100 			goto err_exit;
6101 		}
6102 
6103 		/* Initialize local ptrs for common extent processing later. */
6104 		bmask = phba->sli4_hba.vfi_bmask;
6105 		ids = phba->sli4_hba.vfi_ids;
6106 		ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
6107 		break;
6108 	default:
6109 		/* Unsupported Opcode.  Fail call. */
6110 		id_array = NULL;
6111 		bmask = NULL;
6112 		ids = NULL;
6113 		ext_blk_list = NULL;
6114 		goto err_exit;
6115 	}
6116 
6117 	/*
6118 	 * Complete initializing the extent configuration with the
6119 	 * allocated ids assigned to this function.  The bitmask serves
6120 	 * as an index into the array and manages the available ids.  The
6121 	 * array just stores the ids communicated to the port via the wqes.
6122 	 */
6123 	for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
6124 		if ((i % 2) == 0)
6125 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
6126 					 &id_array[k]);
6127 		else
6128 			rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
6129 					 &id_array[k]);
6130 
6131 		rsrc_blks = kzalloc(length, GFP_KERNEL);
6132 		if (unlikely(!rsrc_blks)) {
6133 			rc = -ENOMEM;
6134 			kfree(bmask);
6135 			kfree(ids);
6136 			goto err_exit;
6137 		}
6138 		rsrc_blks->rsrc_start = rsrc_id;
6139 		rsrc_blks->rsrc_size = rsrc_size;
6140 		list_add_tail(&rsrc_blks->list, ext_blk_list);
6141 		rsrc_start = rsrc_id;
6142 		if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) {
6143 			phba->sli4_hba.io_xri_start = rsrc_start +
6144 				lpfc_sli4_get_iocb_cnt(phba);
6145 		}
6146 
6147 		while (rsrc_id < (rsrc_start + rsrc_size)) {
6148 			ids[j] = rsrc_id;
6149 			rsrc_id++;
6150 			j++;
6151 		}
6152 		/* Entire word processed.  Get next word.*/
6153 		if ((i % 2) == 1)
6154 			k++;
6155 	}
6156  err_exit:
6157 	lpfc_sli4_mbox_cmd_free(phba, mbox);
6158 	return rc;
6159 }
6160 
6161 
6162 
6163 /**
6164  * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
6165  * @phba: Pointer to HBA context object.
6166  * @type: the extent's type.
6167  *
6168  * This function deallocates all extents of a particular resource type.
6169  * SLI4 does not allow for deallocating a particular extent range.  It
6170  * is the caller's responsibility to release all kernel memory resources.
6171  **/
6172 static int
6173 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
6174 {
6175 	int rc;
6176 	uint32_t length, mbox_tmo = 0;
6177 	LPFC_MBOXQ_t *mbox;
6178 	struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
6179 	struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
6180 
6181 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6182 	if (!mbox)
6183 		return -ENOMEM;
6184 
6185 	/*
6186 	 * This function sends an embedded mailbox because it only sends the
6187 	 * the resource type.  All extents of this type are released by the
6188 	 * port.
6189 	 */
6190 	length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
6191 		  sizeof(struct lpfc_sli4_cfg_mhdr));
6192 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6193 			 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
6194 			 length, LPFC_SLI4_MBX_EMBED);
6195 
6196 	/* Send an extents count of 0 - the dealloc doesn't use it. */
6197 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
6198 					LPFC_SLI4_MBX_EMBED);
6199 	if (unlikely(rc)) {
6200 		rc = -EIO;
6201 		goto out_free_mbox;
6202 	}
6203 	if (!phba->sli4_hba.intr_enable)
6204 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
6205 	else {
6206 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
6207 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
6208 	}
6209 	if (unlikely(rc)) {
6210 		rc = -EIO;
6211 		goto out_free_mbox;
6212 	}
6213 
6214 	dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
6215 	if (bf_get(lpfc_mbox_hdr_status,
6216 		   &dealloc_rsrc->header.cfg_shdr.response)) {
6217 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
6218 				"2919 Failed to release resource extents "
6219 				"for type %d - Status 0x%x Add'l Status 0x%x. "
6220 				"Resource memory not released.\n",
6221 				type,
6222 				bf_get(lpfc_mbox_hdr_status,
6223 				    &dealloc_rsrc->header.cfg_shdr.response),
6224 				bf_get(lpfc_mbox_hdr_add_status,
6225 				    &dealloc_rsrc->header.cfg_shdr.response));
6226 		rc = -EIO;
6227 		goto out_free_mbox;
6228 	}
6229 
6230 	/* Release kernel memory resources for the specific type. */
6231 	switch (type) {
6232 	case LPFC_RSC_TYPE_FCOE_VPI:
6233 		kfree(phba->vpi_bmask);
6234 		kfree(phba->vpi_ids);
6235 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6236 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6237 				    &phba->lpfc_vpi_blk_list, list) {
6238 			list_del_init(&rsrc_blk->list);
6239 			kfree(rsrc_blk);
6240 		}
6241 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6242 		break;
6243 	case LPFC_RSC_TYPE_FCOE_XRI:
6244 		kfree(phba->sli4_hba.xri_bmask);
6245 		kfree(phba->sli4_hba.xri_ids);
6246 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6247 				    &phba->sli4_hba.lpfc_xri_blk_list, list) {
6248 			list_del_init(&rsrc_blk->list);
6249 			kfree(rsrc_blk);
6250 		}
6251 		break;
6252 	case LPFC_RSC_TYPE_FCOE_VFI:
6253 		kfree(phba->sli4_hba.vfi_bmask);
6254 		kfree(phba->sli4_hba.vfi_ids);
6255 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6256 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6257 				    &phba->sli4_hba.lpfc_vfi_blk_list, list) {
6258 			list_del_init(&rsrc_blk->list);
6259 			kfree(rsrc_blk);
6260 		}
6261 		break;
6262 	case LPFC_RSC_TYPE_FCOE_RPI:
6263 		/* RPI bitmask and physical id array are cleaned up earlier. */
6264 		list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
6265 				    &phba->sli4_hba.lpfc_rpi_blk_list, list) {
6266 			list_del_init(&rsrc_blk->list);
6267 			kfree(rsrc_blk);
6268 		}
6269 		break;
6270 	default:
6271 		break;
6272 	}
6273 
6274 	bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6275 
6276  out_free_mbox:
6277 	mempool_free(mbox, phba->mbox_mem_pool);
6278 	return rc;
6279 }
6280 
6281 static void
6282 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox,
6283 		  uint32_t feature)
6284 {
6285 	uint32_t len;
6286 
6287 	len = sizeof(struct lpfc_mbx_set_feature) -
6288 		sizeof(struct lpfc_sli4_cfg_mhdr);
6289 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6290 			 LPFC_MBOX_OPCODE_SET_FEATURES, len,
6291 			 LPFC_SLI4_MBX_EMBED);
6292 
6293 	switch (feature) {
6294 	case LPFC_SET_UE_RECOVERY:
6295 		bf_set(lpfc_mbx_set_feature_UER,
6296 		       &mbox->u.mqe.un.set_feature, 1);
6297 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY;
6298 		mbox->u.mqe.un.set_feature.param_len = 8;
6299 		break;
6300 	case LPFC_SET_MDS_DIAGS:
6301 		bf_set(lpfc_mbx_set_feature_mds,
6302 		       &mbox->u.mqe.un.set_feature, 1);
6303 		bf_set(lpfc_mbx_set_feature_mds_deep_loopbk,
6304 		       &mbox->u.mqe.un.set_feature, 1);
6305 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS;
6306 		mbox->u.mqe.un.set_feature.param_len = 8;
6307 		break;
6308 	case LPFC_SET_DUAL_DUMP:
6309 		bf_set(lpfc_mbx_set_feature_dd,
6310 		       &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP);
6311 		bf_set(lpfc_mbx_set_feature_ddquery,
6312 		       &mbox->u.mqe.un.set_feature, 0);
6313 		mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP;
6314 		mbox->u.mqe.un.set_feature.param_len = 4;
6315 		break;
6316 	}
6317 
6318 	return;
6319 }
6320 
6321 /**
6322  * lpfc_ras_stop_fwlog: Disable FW logging by the adapter
6323  * @phba: Pointer to HBA context object.
6324  *
6325  * Disable FW logging into host memory on the adapter. To
6326  * be done before reading logs from the host memory.
6327  **/
6328 void
6329 lpfc_ras_stop_fwlog(struct lpfc_hba *phba)
6330 {
6331 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6332 
6333 	spin_lock_irq(&phba->hbalock);
6334 	ras_fwlog->state = INACTIVE;
6335 	spin_unlock_irq(&phba->hbalock);
6336 
6337 	/* Disable FW logging to host memory */
6338 	writel(LPFC_CTL_PDEV_CTL_DDL_RAS,
6339 	       phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET);
6340 
6341 	/* Wait 10ms for firmware to stop using DMA buffer */
6342 	usleep_range(10 * 1000, 20 * 1000);
6343 }
6344 
6345 /**
6346  * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging.
6347  * @phba: Pointer to HBA context object.
6348  *
6349  * This function is called to free memory allocated for RAS FW logging
6350  * support in the driver.
6351  **/
6352 void
6353 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba)
6354 {
6355 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6356 	struct lpfc_dmabuf *dmabuf, *next;
6357 
6358 	if (!list_empty(&ras_fwlog->fwlog_buff_list)) {
6359 		list_for_each_entry_safe(dmabuf, next,
6360 				    &ras_fwlog->fwlog_buff_list,
6361 				    list) {
6362 			list_del(&dmabuf->list);
6363 			dma_free_coherent(&phba->pcidev->dev,
6364 					  LPFC_RAS_MAX_ENTRY_SIZE,
6365 					  dmabuf->virt, dmabuf->phys);
6366 			kfree(dmabuf);
6367 		}
6368 	}
6369 
6370 	if (ras_fwlog->lwpd.virt) {
6371 		dma_free_coherent(&phba->pcidev->dev,
6372 				  sizeof(uint32_t) * 2,
6373 				  ras_fwlog->lwpd.virt,
6374 				  ras_fwlog->lwpd.phys);
6375 		ras_fwlog->lwpd.virt = NULL;
6376 	}
6377 
6378 	spin_lock_irq(&phba->hbalock);
6379 	ras_fwlog->state = INACTIVE;
6380 	spin_unlock_irq(&phba->hbalock);
6381 }
6382 
6383 /**
6384  * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support
6385  * @phba: Pointer to HBA context object.
6386  * @fwlog_buff_count: Count of buffers to be created.
6387  *
6388  * This routine DMA memory for Log Write Position Data[LPWD] and buffer
6389  * to update FW log is posted to the adapter.
6390  * Buffer count is calculated based on module param ras_fwlog_buffsize
6391  * Size of each buffer posted to FW is 64K.
6392  **/
6393 
6394 static int
6395 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba,
6396 			uint32_t fwlog_buff_count)
6397 {
6398 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6399 	struct lpfc_dmabuf *dmabuf;
6400 	int rc = 0, i = 0;
6401 
6402 	/* Initialize List */
6403 	INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list);
6404 
6405 	/* Allocate memory for the LWPD */
6406 	ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev,
6407 					    sizeof(uint32_t) * 2,
6408 					    &ras_fwlog->lwpd.phys,
6409 					    GFP_KERNEL);
6410 	if (!ras_fwlog->lwpd.virt) {
6411 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6412 				"6185 LWPD Memory Alloc Failed\n");
6413 
6414 		return -ENOMEM;
6415 	}
6416 
6417 	ras_fwlog->fw_buffcount = fwlog_buff_count;
6418 	for (i = 0; i < ras_fwlog->fw_buffcount; i++) {
6419 		dmabuf = kzalloc(sizeof(struct lpfc_dmabuf),
6420 				 GFP_KERNEL);
6421 		if (!dmabuf) {
6422 			rc = -ENOMEM;
6423 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6424 					"6186 Memory Alloc failed FW logging");
6425 			goto free_mem;
6426 		}
6427 
6428 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
6429 						  LPFC_RAS_MAX_ENTRY_SIZE,
6430 						  &dmabuf->phys, GFP_KERNEL);
6431 		if (!dmabuf->virt) {
6432 			kfree(dmabuf);
6433 			rc = -ENOMEM;
6434 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6435 					"6187 DMA Alloc Failed FW logging");
6436 			goto free_mem;
6437 		}
6438 		dmabuf->buffer_tag = i;
6439 		list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list);
6440 	}
6441 
6442 free_mem:
6443 	if (rc)
6444 		lpfc_sli4_ras_dma_free(phba);
6445 
6446 	return rc;
6447 }
6448 
6449 /**
6450  * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command
6451  * @phba: pointer to lpfc hba data structure.
6452  * @pmboxq: pointer to the driver internal queue element for mailbox command.
6453  *
6454  * Completion handler for driver's RAS MBX command to the device.
6455  **/
6456 static void
6457 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
6458 {
6459 	MAILBOX_t *mb;
6460 	union lpfc_sli4_cfg_shdr *shdr;
6461 	uint32_t shdr_status, shdr_add_status;
6462 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6463 
6464 	mb = &pmb->u.mb;
6465 
6466 	shdr = (union lpfc_sli4_cfg_shdr *)
6467 		&pmb->u.mqe.un.ras_fwlog.header.cfg_shdr;
6468 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
6469 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
6470 
6471 	if (mb->mbxStatus != MBX_SUCCESS || shdr_status) {
6472 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
6473 				"6188 FW LOG mailbox "
6474 				"completed with status x%x add_status x%x,"
6475 				" mbx status x%x\n",
6476 				shdr_status, shdr_add_status, mb->mbxStatus);
6477 
6478 		ras_fwlog->ras_hwsupport = false;
6479 		goto disable_ras;
6480 	}
6481 
6482 	spin_lock_irq(&phba->hbalock);
6483 	ras_fwlog->state = ACTIVE;
6484 	spin_unlock_irq(&phba->hbalock);
6485 	mempool_free(pmb, phba->mbox_mem_pool);
6486 
6487 	return;
6488 
6489 disable_ras:
6490 	/* Free RAS DMA memory */
6491 	lpfc_sli4_ras_dma_free(phba);
6492 	mempool_free(pmb, phba->mbox_mem_pool);
6493 }
6494 
6495 /**
6496  * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command
6497  * @phba: pointer to lpfc hba data structure.
6498  * @fwlog_level: Logging verbosity level.
6499  * @fwlog_enable: Enable/Disable logging.
6500  *
6501  * Initialize memory and post mailbox command to enable FW logging in host
6502  * memory.
6503  **/
6504 int
6505 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba,
6506 			 uint32_t fwlog_level,
6507 			 uint32_t fwlog_enable)
6508 {
6509 	struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog;
6510 	struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL;
6511 	struct lpfc_dmabuf *dmabuf;
6512 	LPFC_MBOXQ_t *mbox;
6513 	uint32_t len = 0, fwlog_buffsize, fwlog_entry_count;
6514 	int rc = 0;
6515 
6516 	spin_lock_irq(&phba->hbalock);
6517 	ras_fwlog->state = INACTIVE;
6518 	spin_unlock_irq(&phba->hbalock);
6519 
6520 	fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE *
6521 			  phba->cfg_ras_fwlog_buffsize);
6522 	fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE);
6523 
6524 	/*
6525 	 * If re-enabling FW logging support use earlier allocated
6526 	 * DMA buffers while posting MBX command.
6527 	 **/
6528 	if (!ras_fwlog->lwpd.virt) {
6529 		rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count);
6530 		if (rc) {
6531 			lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
6532 					"6189 FW Log Memory Allocation Failed");
6533 			return rc;
6534 		}
6535 	}
6536 
6537 	/* Setup Mailbox command */
6538 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6539 	if (!mbox) {
6540 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6541 				"6190 RAS MBX Alloc Failed");
6542 		rc = -ENOMEM;
6543 		goto mem_free;
6544 	}
6545 
6546 	ras_fwlog->fw_loglevel = fwlog_level;
6547 	len = (sizeof(struct lpfc_mbx_set_ras_fwlog) -
6548 		sizeof(struct lpfc_sli4_cfg_mhdr));
6549 
6550 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL,
6551 			 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION,
6552 			 len, LPFC_SLI4_MBX_EMBED);
6553 
6554 	mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog;
6555 	bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request,
6556 	       fwlog_enable);
6557 	bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request,
6558 	       ras_fwlog->fw_loglevel);
6559 	bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request,
6560 	       ras_fwlog->fw_buffcount);
6561 	bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request,
6562 	       LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE);
6563 
6564 	/* Update DMA buffer address */
6565 	list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) {
6566 		memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE);
6567 
6568 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo =
6569 			putPaddrLow(dmabuf->phys);
6570 
6571 		mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi =
6572 			putPaddrHigh(dmabuf->phys);
6573 	}
6574 
6575 	/* Update LPWD address */
6576 	mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys);
6577 	mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys);
6578 
6579 	spin_lock_irq(&phba->hbalock);
6580 	ras_fwlog->state = REG_INPROGRESS;
6581 	spin_unlock_irq(&phba->hbalock);
6582 	mbox->vport = phba->pport;
6583 	mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl;
6584 
6585 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
6586 
6587 	if (rc == MBX_NOT_FINISHED) {
6588 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6589 				"6191 FW-Log Mailbox failed. "
6590 				"status %d mbxStatus : x%x", rc,
6591 				bf_get(lpfc_mqe_status, &mbox->u.mqe));
6592 		mempool_free(mbox, phba->mbox_mem_pool);
6593 		rc = -EIO;
6594 		goto mem_free;
6595 	} else
6596 		rc = 0;
6597 mem_free:
6598 	if (rc)
6599 		lpfc_sli4_ras_dma_free(phba);
6600 
6601 	return rc;
6602 }
6603 
6604 /**
6605  * lpfc_sli4_ras_setup - Check if RAS supported on the adapter
6606  * @phba: Pointer to HBA context object.
6607  *
6608  * Check if RAS is supported on the adapter and initialize it.
6609  **/
6610 void
6611 lpfc_sli4_ras_setup(struct lpfc_hba *phba)
6612 {
6613 	/* Check RAS FW Log needs to be enabled or not */
6614 	if (lpfc_check_fwlog_support(phba))
6615 		return;
6616 
6617 	lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level,
6618 				 LPFC_RAS_ENABLE_LOGGING);
6619 }
6620 
6621 /**
6622  * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
6623  * @phba: Pointer to HBA context object.
6624  *
6625  * This function allocates all SLI4 resource identifiers.
6626  **/
6627 int
6628 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
6629 {
6630 	int i, rc, error = 0;
6631 	uint16_t count, base;
6632 	unsigned long longs;
6633 
6634 	if (!phba->sli4_hba.rpi_hdrs_in_use)
6635 		phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
6636 	if (phba->sli4_hba.extents_in_use) {
6637 		/*
6638 		 * The port supports resource extents. The XRI, VPI, VFI, RPI
6639 		 * resource extent count must be read and allocated before
6640 		 * provisioning the resource id arrays.
6641 		 */
6642 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6643 		    LPFC_IDX_RSRC_RDY) {
6644 			/*
6645 			 * Extent-based resources are set - the driver could
6646 			 * be in a port reset. Figure out if any corrective
6647 			 * actions need to be taken.
6648 			 */
6649 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6650 						 LPFC_RSC_TYPE_FCOE_VFI);
6651 			if (rc != 0)
6652 				error++;
6653 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6654 						 LPFC_RSC_TYPE_FCOE_VPI);
6655 			if (rc != 0)
6656 				error++;
6657 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6658 						 LPFC_RSC_TYPE_FCOE_XRI);
6659 			if (rc != 0)
6660 				error++;
6661 			rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
6662 						 LPFC_RSC_TYPE_FCOE_RPI);
6663 			if (rc != 0)
6664 				error++;
6665 
6666 			/*
6667 			 * It's possible that the number of resources
6668 			 * provided to this port instance changed between
6669 			 * resets.  Detect this condition and reallocate
6670 			 * resources.  Otherwise, there is no action.
6671 			 */
6672 			if (error) {
6673 				lpfc_printf_log(phba, KERN_INFO,
6674 						LOG_MBOX | LOG_INIT,
6675 						"2931 Detected extent resource "
6676 						"change.  Reallocating all "
6677 						"extents.\n");
6678 				rc = lpfc_sli4_dealloc_extent(phba,
6679 						 LPFC_RSC_TYPE_FCOE_VFI);
6680 				rc = lpfc_sli4_dealloc_extent(phba,
6681 						 LPFC_RSC_TYPE_FCOE_VPI);
6682 				rc = lpfc_sli4_dealloc_extent(phba,
6683 						 LPFC_RSC_TYPE_FCOE_XRI);
6684 				rc = lpfc_sli4_dealloc_extent(phba,
6685 						 LPFC_RSC_TYPE_FCOE_RPI);
6686 			} else
6687 				return 0;
6688 		}
6689 
6690 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6691 		if (unlikely(rc))
6692 			goto err_exit;
6693 
6694 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6695 		if (unlikely(rc))
6696 			goto err_exit;
6697 
6698 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6699 		if (unlikely(rc))
6700 			goto err_exit;
6701 
6702 		rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6703 		if (unlikely(rc))
6704 			goto err_exit;
6705 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6706 		       LPFC_IDX_RSRC_RDY);
6707 		return rc;
6708 	} else {
6709 		/*
6710 		 * The port does not support resource extents.  The XRI, VPI,
6711 		 * VFI, RPI resource ids were determined from READ_CONFIG.
6712 		 * Just allocate the bitmasks and provision the resource id
6713 		 * arrays.  If a port reset is active, the resources don't
6714 		 * need any action - just exit.
6715 		 */
6716 		if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
6717 		    LPFC_IDX_RSRC_RDY) {
6718 			lpfc_sli4_dealloc_resource_identifiers(phba);
6719 			lpfc_sli4_remove_rpis(phba);
6720 		}
6721 		/* RPIs. */
6722 		count = phba->sli4_hba.max_cfg_param.max_rpi;
6723 		if (count <= 0) {
6724 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6725 					"3279 Invalid provisioning of "
6726 					"rpi:%d\n", count);
6727 			rc = -EINVAL;
6728 			goto err_exit;
6729 		}
6730 		base = phba->sli4_hba.max_cfg_param.rpi_base;
6731 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6732 		phba->sli4_hba.rpi_bmask = kcalloc(longs,
6733 						   sizeof(unsigned long),
6734 						   GFP_KERNEL);
6735 		if (unlikely(!phba->sli4_hba.rpi_bmask)) {
6736 			rc = -ENOMEM;
6737 			goto err_exit;
6738 		}
6739 		phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t),
6740 						 GFP_KERNEL);
6741 		if (unlikely(!phba->sli4_hba.rpi_ids)) {
6742 			rc = -ENOMEM;
6743 			goto free_rpi_bmask;
6744 		}
6745 
6746 		for (i = 0; i < count; i++)
6747 			phba->sli4_hba.rpi_ids[i] = base + i;
6748 
6749 		/* VPIs. */
6750 		count = phba->sli4_hba.max_cfg_param.max_vpi;
6751 		if (count <= 0) {
6752 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6753 					"3280 Invalid provisioning of "
6754 					"vpi:%d\n", count);
6755 			rc = -EINVAL;
6756 			goto free_rpi_ids;
6757 		}
6758 		base = phba->sli4_hba.max_cfg_param.vpi_base;
6759 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6760 		phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long),
6761 					  GFP_KERNEL);
6762 		if (unlikely(!phba->vpi_bmask)) {
6763 			rc = -ENOMEM;
6764 			goto free_rpi_ids;
6765 		}
6766 		phba->vpi_ids = kcalloc(count, sizeof(uint16_t),
6767 					GFP_KERNEL);
6768 		if (unlikely(!phba->vpi_ids)) {
6769 			rc = -ENOMEM;
6770 			goto free_vpi_bmask;
6771 		}
6772 
6773 		for (i = 0; i < count; i++)
6774 			phba->vpi_ids[i] = base + i;
6775 
6776 		/* XRIs. */
6777 		count = phba->sli4_hba.max_cfg_param.max_xri;
6778 		if (count <= 0) {
6779 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6780 					"3281 Invalid provisioning of "
6781 					"xri:%d\n", count);
6782 			rc = -EINVAL;
6783 			goto free_vpi_ids;
6784 		}
6785 		base = phba->sli4_hba.max_cfg_param.xri_base;
6786 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6787 		phba->sli4_hba.xri_bmask = kcalloc(longs,
6788 						   sizeof(unsigned long),
6789 						   GFP_KERNEL);
6790 		if (unlikely(!phba->sli4_hba.xri_bmask)) {
6791 			rc = -ENOMEM;
6792 			goto free_vpi_ids;
6793 		}
6794 		phba->sli4_hba.max_cfg_param.xri_used = 0;
6795 		phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t),
6796 						 GFP_KERNEL);
6797 		if (unlikely(!phba->sli4_hba.xri_ids)) {
6798 			rc = -ENOMEM;
6799 			goto free_xri_bmask;
6800 		}
6801 
6802 		for (i = 0; i < count; i++)
6803 			phba->sli4_hba.xri_ids[i] = base + i;
6804 
6805 		/* VFIs. */
6806 		count = phba->sli4_hba.max_cfg_param.max_vfi;
6807 		if (count <= 0) {
6808 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
6809 					"3282 Invalid provisioning of "
6810 					"vfi:%d\n", count);
6811 			rc = -EINVAL;
6812 			goto free_xri_ids;
6813 		}
6814 		base = phba->sli4_hba.max_cfg_param.vfi_base;
6815 		longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
6816 		phba->sli4_hba.vfi_bmask = kcalloc(longs,
6817 						   sizeof(unsigned long),
6818 						   GFP_KERNEL);
6819 		if (unlikely(!phba->sli4_hba.vfi_bmask)) {
6820 			rc = -ENOMEM;
6821 			goto free_xri_ids;
6822 		}
6823 		phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t),
6824 						 GFP_KERNEL);
6825 		if (unlikely(!phba->sli4_hba.vfi_ids)) {
6826 			rc = -ENOMEM;
6827 			goto free_vfi_bmask;
6828 		}
6829 
6830 		for (i = 0; i < count; i++)
6831 			phba->sli4_hba.vfi_ids[i] = base + i;
6832 
6833 		/*
6834 		 * Mark all resources ready.  An HBA reset doesn't need
6835 		 * to reset the initialization.
6836 		 */
6837 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
6838 		       LPFC_IDX_RSRC_RDY);
6839 		return 0;
6840 	}
6841 
6842  free_vfi_bmask:
6843 	kfree(phba->sli4_hba.vfi_bmask);
6844 	phba->sli4_hba.vfi_bmask = NULL;
6845  free_xri_ids:
6846 	kfree(phba->sli4_hba.xri_ids);
6847 	phba->sli4_hba.xri_ids = NULL;
6848  free_xri_bmask:
6849 	kfree(phba->sli4_hba.xri_bmask);
6850 	phba->sli4_hba.xri_bmask = NULL;
6851  free_vpi_ids:
6852 	kfree(phba->vpi_ids);
6853 	phba->vpi_ids = NULL;
6854  free_vpi_bmask:
6855 	kfree(phba->vpi_bmask);
6856 	phba->vpi_bmask = NULL;
6857  free_rpi_ids:
6858 	kfree(phba->sli4_hba.rpi_ids);
6859 	phba->sli4_hba.rpi_ids = NULL;
6860  free_rpi_bmask:
6861 	kfree(phba->sli4_hba.rpi_bmask);
6862 	phba->sli4_hba.rpi_bmask = NULL;
6863  err_exit:
6864 	return rc;
6865 }
6866 
6867 /**
6868  * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
6869  * @phba: Pointer to HBA context object.
6870  *
6871  * This function allocates the number of elements for the specified
6872  * resource type.
6873  **/
6874 int
6875 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
6876 {
6877 	if (phba->sli4_hba.extents_in_use) {
6878 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
6879 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
6880 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
6881 		lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
6882 	} else {
6883 		kfree(phba->vpi_bmask);
6884 		phba->sli4_hba.max_cfg_param.vpi_used = 0;
6885 		kfree(phba->vpi_ids);
6886 		bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6887 		kfree(phba->sli4_hba.xri_bmask);
6888 		kfree(phba->sli4_hba.xri_ids);
6889 		kfree(phba->sli4_hba.vfi_bmask);
6890 		kfree(phba->sli4_hba.vfi_ids);
6891 		bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6892 		bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
6893 	}
6894 
6895 	return 0;
6896 }
6897 
6898 /**
6899  * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
6900  * @phba: Pointer to HBA context object.
6901  * @type: The resource extent type.
6902  * @extnt_count: buffer to hold port extent count response
6903  * @extnt_size: buffer to hold port extent size response.
6904  *
6905  * This function calls the port to read the host allocated extents
6906  * for a particular type.
6907  **/
6908 int
6909 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
6910 			       uint16_t *extnt_cnt, uint16_t *extnt_size)
6911 {
6912 	bool emb;
6913 	int rc = 0;
6914 	uint16_t curr_blks = 0;
6915 	uint32_t req_len, emb_len;
6916 	uint32_t alloc_len, mbox_tmo;
6917 	struct list_head *blk_list_head;
6918 	struct lpfc_rsrc_blks *rsrc_blk;
6919 	LPFC_MBOXQ_t *mbox;
6920 	void *virtaddr = NULL;
6921 	struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
6922 	struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
6923 	union  lpfc_sli4_cfg_shdr *shdr;
6924 
6925 	switch (type) {
6926 	case LPFC_RSC_TYPE_FCOE_VPI:
6927 		blk_list_head = &phba->lpfc_vpi_blk_list;
6928 		break;
6929 	case LPFC_RSC_TYPE_FCOE_XRI:
6930 		blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
6931 		break;
6932 	case LPFC_RSC_TYPE_FCOE_VFI:
6933 		blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
6934 		break;
6935 	case LPFC_RSC_TYPE_FCOE_RPI:
6936 		blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
6937 		break;
6938 	default:
6939 		return -EIO;
6940 	}
6941 
6942 	/* Count the number of extents currently allocatd for this type. */
6943 	list_for_each_entry(rsrc_blk, blk_list_head, list) {
6944 		if (curr_blks == 0) {
6945 			/*
6946 			 * The GET_ALLOCATED mailbox does not return the size,
6947 			 * just the count.  The size should be just the size
6948 			 * stored in the current allocated block and all sizes
6949 			 * for an extent type are the same so set the return
6950 			 * value now.
6951 			 */
6952 			*extnt_size = rsrc_blk->rsrc_size;
6953 		}
6954 		curr_blks++;
6955 	}
6956 
6957 	/*
6958 	 * Calculate the size of an embedded mailbox.  The uint32_t
6959 	 * accounts for extents-specific word.
6960 	 */
6961 	emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
6962 		sizeof(uint32_t);
6963 
6964 	/*
6965 	 * Presume the allocation and response will fit into an embedded
6966 	 * mailbox.  If not true, reconfigure to a non-embedded mailbox.
6967 	 */
6968 	emb = LPFC_SLI4_MBX_EMBED;
6969 	req_len = emb_len;
6970 	if (req_len > emb_len) {
6971 		req_len = curr_blks * sizeof(uint16_t) +
6972 			sizeof(union lpfc_sli4_cfg_shdr) +
6973 			sizeof(uint32_t);
6974 		emb = LPFC_SLI4_MBX_NEMBED;
6975 	}
6976 
6977 	mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
6978 	if (!mbox)
6979 		return -ENOMEM;
6980 	memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
6981 
6982 	alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
6983 				     LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
6984 				     req_len, emb);
6985 	if (alloc_len < req_len) {
6986 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6987 			"2983 Allocated DMA memory size (x%x) is "
6988 			"less than the requested DMA memory "
6989 			"size (x%x)\n", alloc_len, req_len);
6990 		rc = -ENOMEM;
6991 		goto err_exit;
6992 	}
6993 	rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
6994 	if (unlikely(rc)) {
6995 		rc = -EIO;
6996 		goto err_exit;
6997 	}
6998 
6999 	if (!phba->sli4_hba.intr_enable)
7000 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
7001 	else {
7002 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
7003 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
7004 	}
7005 
7006 	if (unlikely(rc)) {
7007 		rc = -EIO;
7008 		goto err_exit;
7009 	}
7010 
7011 	/*
7012 	 * Figure out where the response is located.  Then get local pointers
7013 	 * to the response data.  The port does not guarantee to respond to
7014 	 * all extents counts request so update the local variable with the
7015 	 * allocated count from the port.
7016 	 */
7017 	if (emb == LPFC_SLI4_MBX_EMBED) {
7018 		rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
7019 		shdr = &rsrc_ext->header.cfg_shdr;
7020 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
7021 	} else {
7022 		virtaddr = mbox->sge_array->addr[0];
7023 		n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
7024 		shdr = &n_rsrc->cfg_shdr;
7025 		*extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
7026 	}
7027 
7028 	if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
7029 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
7030 			"2984 Failed to read allocated resources "
7031 			"for type %d - Status 0x%x Add'l Status 0x%x.\n",
7032 			type,
7033 			bf_get(lpfc_mbox_hdr_status, &shdr->response),
7034 			bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
7035 		rc = -EIO;
7036 		goto err_exit;
7037 	}
7038  err_exit:
7039 	lpfc_sli4_mbox_cmd_free(phba, mbox);
7040 	return rc;
7041 }
7042 
7043 /**
7044  * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block
7045  * @phba: pointer to lpfc hba data structure.
7046  * @pring: Pointer to driver SLI ring object.
7047  * @sgl_list: linked link of sgl buffers to post
7048  * @cnt: number of linked list buffers
7049  *
7050  * This routine walks the list of buffers that have been allocated and
7051  * repost them to the port by using SGL block post. This is needed after a
7052  * pci_function_reset/warm_start or start. It attempts to construct blocks
7053  * of buffer sgls which contains contiguous xris and uses the non-embedded
7054  * SGL block post mailbox commands to post them to the port. For single
7055  * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post
7056  * mailbox command for posting.
7057  *
7058  * Returns: 0 = success, non-zero failure.
7059  **/
7060 static int
7061 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba,
7062 			  struct list_head *sgl_list, int cnt)
7063 {
7064 	struct lpfc_sglq *sglq_entry = NULL;
7065 	struct lpfc_sglq *sglq_entry_next = NULL;
7066 	struct lpfc_sglq *sglq_entry_first = NULL;
7067 	int status, total_cnt;
7068 	int post_cnt = 0, num_posted = 0, block_cnt = 0;
7069 	int last_xritag = NO_XRI;
7070 	LIST_HEAD(prep_sgl_list);
7071 	LIST_HEAD(blck_sgl_list);
7072 	LIST_HEAD(allc_sgl_list);
7073 	LIST_HEAD(post_sgl_list);
7074 	LIST_HEAD(free_sgl_list);
7075 
7076 	spin_lock_irq(&phba->hbalock);
7077 	spin_lock(&phba->sli4_hba.sgl_list_lock);
7078 	list_splice_init(sgl_list, &allc_sgl_list);
7079 	spin_unlock(&phba->sli4_hba.sgl_list_lock);
7080 	spin_unlock_irq(&phba->hbalock);
7081 
7082 	total_cnt = cnt;
7083 	list_for_each_entry_safe(sglq_entry, sglq_entry_next,
7084 				 &allc_sgl_list, list) {
7085 		list_del_init(&sglq_entry->list);
7086 		block_cnt++;
7087 		if ((last_xritag != NO_XRI) &&
7088 		    (sglq_entry->sli4_xritag != last_xritag + 1)) {
7089 			/* a hole in xri block, form a sgl posting block */
7090 			list_splice_init(&prep_sgl_list, &blck_sgl_list);
7091 			post_cnt = block_cnt - 1;
7092 			/* prepare list for next posting block */
7093 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7094 			block_cnt = 1;
7095 		} else {
7096 			/* prepare list for next posting block */
7097 			list_add_tail(&sglq_entry->list, &prep_sgl_list);
7098 			/* enough sgls for non-embed sgl mbox command */
7099 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
7100 				list_splice_init(&prep_sgl_list,
7101 						 &blck_sgl_list);
7102 				post_cnt = block_cnt;
7103 				block_cnt = 0;
7104 			}
7105 		}
7106 		num_posted++;
7107 
7108 		/* keep track of last sgl's xritag */
7109 		last_xritag = sglq_entry->sli4_xritag;
7110 
7111 		/* end of repost sgl list condition for buffers */
7112 		if (num_posted == total_cnt) {
7113 			if (post_cnt == 0) {
7114 				list_splice_init(&prep_sgl_list,
7115 						 &blck_sgl_list);
7116 				post_cnt = block_cnt;
7117 			} else if (block_cnt == 1) {
7118 				status = lpfc_sli4_post_sgl(phba,
7119 						sglq_entry->phys, 0,
7120 						sglq_entry->sli4_xritag);
7121 				if (!status) {
7122 					/* successful, put sgl to posted list */
7123 					list_add_tail(&sglq_entry->list,
7124 						      &post_sgl_list);
7125 				} else {
7126 					/* Failure, put sgl to free list */
7127 					lpfc_printf_log(phba, KERN_WARNING,
7128 						LOG_SLI,
7129 						"3159 Failed to post "
7130 						"sgl, xritag:x%x\n",
7131 						sglq_entry->sli4_xritag);
7132 					list_add_tail(&sglq_entry->list,
7133 						      &free_sgl_list);
7134 					total_cnt--;
7135 				}
7136 			}
7137 		}
7138 
7139 		/* continue until a nembed page worth of sgls */
7140 		if (post_cnt == 0)
7141 			continue;
7142 
7143 		/* post the buffer list sgls as a block */
7144 		status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list,
7145 						 post_cnt);
7146 
7147 		if (!status) {
7148 			/* success, put sgl list to posted sgl list */
7149 			list_splice_init(&blck_sgl_list, &post_sgl_list);
7150 		} else {
7151 			/* Failure, put sgl list to free sgl list */
7152 			sglq_entry_first = list_first_entry(&blck_sgl_list,
7153 							    struct lpfc_sglq,
7154 							    list);
7155 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
7156 					"3160 Failed to post sgl-list, "
7157 					"xritag:x%x-x%x\n",
7158 					sglq_entry_first->sli4_xritag,
7159 					(sglq_entry_first->sli4_xritag +
7160 					 post_cnt - 1));
7161 			list_splice_init(&blck_sgl_list, &free_sgl_list);
7162 			total_cnt -= post_cnt;
7163 		}
7164 
7165 		/* don't reset xirtag due to hole in xri block */
7166 		if (block_cnt == 0)
7167 			last_xritag = NO_XRI;
7168 
7169 		/* reset sgl post count for next round of posting */
7170 		post_cnt = 0;
7171 	}
7172 
7173 	/* free the sgls failed to post */
7174 	lpfc_free_sgl_list(phba, &free_sgl_list);
7175 
7176 	/* push sgls posted to the available list */
7177 	if (!list_empty(&post_sgl_list)) {
7178 		spin_lock_irq(&phba->hbalock);
7179 		spin_lock(&phba->sli4_hba.sgl_list_lock);
7180 		list_splice_init(&post_sgl_list, sgl_list);
7181 		spin_unlock(&phba->sli4_hba.sgl_list_lock);
7182 		spin_unlock_irq(&phba->hbalock);
7183 	} else {
7184 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7185 				"3161 Failure to post sgl to port.\n");
7186 		return -EIO;
7187 	}
7188 
7189 	/* return the number of XRIs actually posted */
7190 	return total_cnt;
7191 }
7192 
7193 /**
7194  * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls
7195  * @phba: pointer to lpfc hba data structure.
7196  *
7197  * This routine walks the list of nvme buffers that have been allocated and
7198  * repost them to the port by using SGL block post. This is needed after a
7199  * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
7200  * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list
7201  * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers.
7202  *
7203  * Returns: 0 = success, non-zero failure.
7204  **/
7205 static int
7206 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba)
7207 {
7208 	LIST_HEAD(post_nblist);
7209 	int num_posted, rc = 0;
7210 
7211 	/* get all NVME buffers need to repost to a local list */
7212 	lpfc_io_buf_flush(phba, &post_nblist);
7213 
7214 	/* post the list of nvme buffer sgls to port if available */
7215 	if (!list_empty(&post_nblist)) {
7216 		num_posted = lpfc_sli4_post_io_sgl_list(
7217 			phba, &post_nblist, phba->sli4_hba.io_xri_cnt);
7218 		/* failed to post any nvme buffer, return error */
7219 		if (num_posted == 0)
7220 			rc = -EIO;
7221 	}
7222 	return rc;
7223 }
7224 
7225 static void
7226 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
7227 {
7228 	uint32_t len;
7229 
7230 	len = sizeof(struct lpfc_mbx_set_host_data) -
7231 		sizeof(struct lpfc_sli4_cfg_mhdr);
7232 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
7233 			 LPFC_MBOX_OPCODE_SET_HOST_DATA, len,
7234 			 LPFC_SLI4_MBX_EMBED);
7235 
7236 	mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION;
7237 	mbox->u.mqe.un.set_host_data.param_len =
7238 					LPFC_HOST_OS_DRIVER_VERSION_SIZE;
7239 	snprintf(mbox->u.mqe.un.set_host_data.data,
7240 		 LPFC_HOST_OS_DRIVER_VERSION_SIZE,
7241 		 "Linux %s v"LPFC_DRIVER_VERSION,
7242 		 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC");
7243 }
7244 
7245 int
7246 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq,
7247 		    struct lpfc_queue *drq, int count, int idx)
7248 {
7249 	int rc, i;
7250 	struct lpfc_rqe hrqe;
7251 	struct lpfc_rqe drqe;
7252 	struct lpfc_rqb *rqbp;
7253 	unsigned long flags;
7254 	struct rqb_dmabuf *rqb_buffer;
7255 	LIST_HEAD(rqb_buf_list);
7256 
7257 	spin_lock_irqsave(&phba->hbalock, flags);
7258 	rqbp = hrq->rqbp;
7259 	for (i = 0; i < count; i++) {
7260 		/* IF RQ is already full, don't bother */
7261 		if (rqbp->buffer_count + i >= rqbp->entry_count - 1)
7262 			break;
7263 		rqb_buffer = rqbp->rqb_alloc_buffer(phba);
7264 		if (!rqb_buffer)
7265 			break;
7266 		rqb_buffer->hrq = hrq;
7267 		rqb_buffer->drq = drq;
7268 		rqb_buffer->idx = idx;
7269 		list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list);
7270 	}
7271 	while (!list_empty(&rqb_buf_list)) {
7272 		list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf,
7273 				 hbuf.list);
7274 
7275 		hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys);
7276 		hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys);
7277 		drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys);
7278 		drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys);
7279 		rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe);
7280 		if (rc < 0) {
7281 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7282 					"6421 Cannot post to HRQ %d: %x %x %x "
7283 					"DRQ %x %x\n",
7284 					hrq->queue_id,
7285 					hrq->host_index,
7286 					hrq->hba_index,
7287 					hrq->entry_count,
7288 					drq->host_index,
7289 					drq->hba_index);
7290 			rqbp->rqb_free_buffer(phba, rqb_buffer);
7291 		} else {
7292 			list_add_tail(&rqb_buffer->hbuf.list,
7293 				      &rqbp->rqb_buffer_list);
7294 			rqbp->buffer_count++;
7295 		}
7296 	}
7297 	spin_unlock_irqrestore(&phba->hbalock, flags);
7298 	return 1;
7299 }
7300 
7301 /**
7302  * lpfc_sli4_hba_setup - SLI4 device initialization PCI function
7303  * @phba: Pointer to HBA context object.
7304  *
7305  * This function is the main SLI4 device initialization PCI function. This
7306  * function is called by the HBA initialization code, HBA reset code and
7307  * HBA error attention handler code. Caller is not required to hold any
7308  * locks.
7309  **/
7310 int
7311 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
7312 {
7313 	int rc, i, cnt, len, dd;
7314 	LPFC_MBOXQ_t *mboxq;
7315 	struct lpfc_mqe *mqe;
7316 	uint8_t *vpd;
7317 	uint32_t vpd_size;
7318 	uint32_t ftr_rsp = 0;
7319 	struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
7320 	struct lpfc_vport *vport = phba->pport;
7321 	struct lpfc_dmabuf *mp;
7322 	struct lpfc_rqb *rqbp;
7323 
7324 	/* Perform a PCI function reset to start from clean */
7325 	rc = lpfc_pci_function_reset(phba);
7326 	if (unlikely(rc))
7327 		return -ENODEV;
7328 
7329 	/* Check the HBA Host Status Register for readyness */
7330 	rc = lpfc_sli4_post_status_check(phba);
7331 	if (unlikely(rc))
7332 		return -ENODEV;
7333 	else {
7334 		spin_lock_irq(&phba->hbalock);
7335 		phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
7336 		spin_unlock_irq(&phba->hbalock);
7337 	}
7338 
7339 	/*
7340 	 * Allocate a single mailbox container for initializing the
7341 	 * port.
7342 	 */
7343 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
7344 	if (!mboxq)
7345 		return -ENOMEM;
7346 
7347 	/* Issue READ_REV to collect vpd and FW information. */
7348 	vpd_size = SLI4_PAGE_SIZE;
7349 	vpd = kzalloc(vpd_size, GFP_KERNEL);
7350 	if (!vpd) {
7351 		rc = -ENOMEM;
7352 		goto out_free_mbox;
7353 	}
7354 
7355 	rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
7356 	if (unlikely(rc)) {
7357 		kfree(vpd);
7358 		goto out_free_mbox;
7359 	}
7360 
7361 	mqe = &mboxq->u.mqe;
7362 	phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
7363 	if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) {
7364 		phba->hba_flag |= HBA_FCOE_MODE;
7365 		phba->fcp_embed_io = 0;	/* SLI4 FC support only */
7366 	} else {
7367 		phba->hba_flag &= ~HBA_FCOE_MODE;
7368 	}
7369 
7370 	if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
7371 		LPFC_DCBX_CEE_MODE)
7372 		phba->hba_flag |= HBA_FIP_SUPPORT;
7373 	else
7374 		phba->hba_flag &= ~HBA_FIP_SUPPORT;
7375 
7376 	phba->hba_flag &= ~HBA_IOQ_FLUSH;
7377 
7378 	if (phba->sli_rev != LPFC_SLI_REV4) {
7379 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7380 			"0376 READ_REV Error. SLI Level %d "
7381 			"FCoE enabled %d\n",
7382 			phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
7383 		rc = -EIO;
7384 		kfree(vpd);
7385 		goto out_free_mbox;
7386 	}
7387 
7388 	/*
7389 	 * Continue initialization with default values even if driver failed
7390 	 * to read FCoE param config regions, only read parameters if the
7391 	 * board is FCoE
7392 	 */
7393 	if (phba->hba_flag & HBA_FCOE_MODE &&
7394 	    lpfc_sli4_read_fcoe_params(phba))
7395 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
7396 			"2570 Failed to read FCoE parameters\n");
7397 
7398 	/*
7399 	 * Retrieve sli4 device physical port name, failure of doing it
7400 	 * is considered as non-fatal.
7401 	 */
7402 	rc = lpfc_sli4_retrieve_pport_name(phba);
7403 	if (!rc)
7404 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7405 				"3080 Successful retrieving SLI4 device "
7406 				"physical port name: %s.\n", phba->Port);
7407 
7408 	rc = lpfc_sli4_get_ctl_attr(phba);
7409 	if (!rc)
7410 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7411 				"8351 Successful retrieving SLI4 device "
7412 				"CTL ATTR\n");
7413 
7414 	/*
7415 	 * Evaluate the read rev and vpd data. Populate the driver
7416 	 * state with the results. If this routine fails, the failure
7417 	 * is not fatal as the driver will use generic values.
7418 	 */
7419 	rc = lpfc_parse_vpd(phba, vpd, vpd_size);
7420 	if (unlikely(!rc)) {
7421 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7422 				"0377 Error %d parsing vpd. "
7423 				"Using defaults.\n", rc);
7424 		rc = 0;
7425 	}
7426 	kfree(vpd);
7427 
7428 	/* Save information as VPD data */
7429 	phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
7430 	phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
7431 
7432 	/*
7433 	 * This is because first G7 ASIC doesn't support the standard
7434 	 * 0x5a NVME cmd descriptor type/subtype
7435 	 */
7436 	if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7437 			LPFC_SLI_INTF_IF_TYPE_6) &&
7438 	    (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) &&
7439 	    (phba->vpd.rev.smRev == 0) &&
7440 	    (phba->cfg_nvme_embed_cmd == 1))
7441 		phba->cfg_nvme_embed_cmd = 0;
7442 
7443 	phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
7444 	phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
7445 					 &mqe->un.read_rev);
7446 	phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
7447 				       &mqe->un.read_rev);
7448 	phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
7449 					    &mqe->un.read_rev);
7450 	phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
7451 					   &mqe->un.read_rev);
7452 	phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
7453 	memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
7454 	phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
7455 	memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
7456 	phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
7457 	memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
7458 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7459 			"(%d):0380 READ_REV Status x%x "
7460 			"fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
7461 			mboxq->vport ? mboxq->vport->vpi : 0,
7462 			bf_get(lpfc_mqe_status, mqe),
7463 			phba->vpd.rev.opFwName,
7464 			phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
7465 			phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
7466 
7467 	if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) ==
7468 	    LPFC_SLI_INTF_IF_TYPE_0) {
7469 		lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY);
7470 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7471 		if (rc == MBX_SUCCESS) {
7472 			phba->hba_flag |= HBA_RECOVERABLE_UE;
7473 			/* Set 1Sec interval to detect UE */
7474 			phba->eratt_poll_interval = 1;
7475 			phba->sli4_hba.ue_to_sr = bf_get(
7476 					lpfc_mbx_set_feature_UESR,
7477 					&mboxq->u.mqe.un.set_feature);
7478 			phba->sli4_hba.ue_to_rp = bf_get(
7479 					lpfc_mbx_set_feature_UERP,
7480 					&mboxq->u.mqe.un.set_feature);
7481 		}
7482 	}
7483 
7484 	if (phba->cfg_enable_mds_diags && phba->mds_diags_support) {
7485 		/* Enable MDS Diagnostics only if the SLI Port supports it */
7486 		lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS);
7487 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7488 		if (rc != MBX_SUCCESS)
7489 			phba->mds_diags_support = 0;
7490 	}
7491 
7492 	/*
7493 	 * Discover the port's supported feature set and match it against the
7494 	 * hosts requests.
7495 	 */
7496 	lpfc_request_features(phba, mboxq);
7497 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7498 	if (unlikely(rc)) {
7499 		rc = -EIO;
7500 		goto out_free_mbox;
7501 	}
7502 
7503 	/*
7504 	 * The port must support FCP initiator mode as this is the
7505 	 * only mode running in the host.
7506 	 */
7507 	if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
7508 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7509 				"0378 No support for fcpi mode.\n");
7510 		ftr_rsp++;
7511 	}
7512 
7513 	/* Performance Hints are ONLY for FCoE */
7514 	if (phba->hba_flag & HBA_FCOE_MODE) {
7515 		if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
7516 			phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
7517 		else
7518 			phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
7519 	}
7520 
7521 	/*
7522 	 * If the port cannot support the host's requested features
7523 	 * then turn off the global config parameters to disable the
7524 	 * feature in the driver.  This is not a fatal error.
7525 	 */
7526 	if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) {
7527 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) {
7528 			phba->cfg_enable_bg = 0;
7529 			phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
7530 			ftr_rsp++;
7531 		}
7532 	}
7533 
7534 	if (phba->max_vpi && phba->cfg_enable_npiv &&
7535 	    !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7536 		ftr_rsp++;
7537 
7538 	if (ftr_rsp) {
7539 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7540 				"0379 Feature Mismatch Data: x%08x %08x "
7541 				"x%x x%x x%x\n", mqe->un.req_ftrs.word2,
7542 				mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
7543 				phba->cfg_enable_npiv, phba->max_vpi);
7544 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
7545 			phba->cfg_enable_bg = 0;
7546 		if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
7547 			phba->cfg_enable_npiv = 0;
7548 	}
7549 
7550 	/* These SLI3 features are assumed in SLI4 */
7551 	spin_lock_irq(&phba->hbalock);
7552 	phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
7553 	spin_unlock_irq(&phba->hbalock);
7554 
7555 	/* Always try to enable dual dump feature if we can */
7556 	lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP);
7557 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7558 	dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature);
7559 	if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP))
7560 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT,
7561 				"6448 Dual Dump is enabled\n");
7562 	else
7563 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT,
7564 				"6447 Dual Dump Mailbox x%x (x%x/x%x) failed, "
7565 				"rc:x%x dd:x%x\n",
7566 				bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7567 				lpfc_sli_config_mbox_subsys_get(
7568 					phba, mboxq),
7569 				lpfc_sli_config_mbox_opcode_get(
7570 					phba, mboxq),
7571 				rc, dd);
7572 	/*
7573 	 * Allocate all resources (xri,rpi,vpi,vfi) now.  Subsequent
7574 	 * calls depends on these resources to complete port setup.
7575 	 */
7576 	rc = lpfc_sli4_alloc_resource_identifiers(phba);
7577 	if (rc) {
7578 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7579 				"2920 Failed to alloc Resource IDs "
7580 				"rc = x%x\n", rc);
7581 		goto out_free_mbox;
7582 	}
7583 
7584 	lpfc_set_host_data(phba, mboxq);
7585 
7586 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7587 	if (rc) {
7588 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7589 				"2134 Failed to set host os driver version %x",
7590 				rc);
7591 	}
7592 
7593 	/* Read the port's service parameters. */
7594 	rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
7595 	if (rc) {
7596 		phba->link_state = LPFC_HBA_ERROR;
7597 		rc = -ENOMEM;
7598 		goto out_free_mbox;
7599 	}
7600 
7601 	mboxq->vport = vport;
7602 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7603 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
7604 	if (rc == MBX_SUCCESS) {
7605 		memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
7606 		rc = 0;
7607 	}
7608 
7609 	/*
7610 	 * This memory was allocated by the lpfc_read_sparam routine. Release
7611 	 * it to the mbuf pool.
7612 	 */
7613 	lpfc_mbuf_free(phba, mp->virt, mp->phys);
7614 	kfree(mp);
7615 	mboxq->ctx_buf = NULL;
7616 	if (unlikely(rc)) {
7617 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7618 				"0382 READ_SPARAM command failed "
7619 				"status %d, mbxStatus x%x\n",
7620 				rc, bf_get(lpfc_mqe_status, mqe));
7621 		phba->link_state = LPFC_HBA_ERROR;
7622 		rc = -EIO;
7623 		goto out_free_mbox;
7624 	}
7625 
7626 	lpfc_update_vport_wwn(vport);
7627 
7628 	/* Update the fc_host data structures with new wwn. */
7629 	fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
7630 	fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
7631 
7632 	/* Create all the SLI4 queues */
7633 	rc = lpfc_sli4_queue_create(phba);
7634 	if (rc) {
7635 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7636 				"3089 Failed to allocate queues\n");
7637 		rc = -ENODEV;
7638 		goto out_free_mbox;
7639 	}
7640 	/* Set up all the queues to the device */
7641 	rc = lpfc_sli4_queue_setup(phba);
7642 	if (unlikely(rc)) {
7643 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7644 				"0381 Error %d during queue setup.\n ", rc);
7645 		goto out_stop_timers;
7646 	}
7647 	/* Initialize the driver internal SLI layer lists. */
7648 	lpfc_sli4_setup(phba);
7649 	lpfc_sli4_queue_init(phba);
7650 
7651 	/* update host els xri-sgl sizes and mappings */
7652 	rc = lpfc_sli4_els_sgl_update(phba);
7653 	if (unlikely(rc)) {
7654 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7655 				"1400 Failed to update xri-sgl size and "
7656 				"mapping: %d\n", rc);
7657 		goto out_destroy_queue;
7658 	}
7659 
7660 	/* register the els sgl pool to the port */
7661 	rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list,
7662 				       phba->sli4_hba.els_xri_cnt);
7663 	if (unlikely(rc < 0)) {
7664 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7665 				"0582 Error %d during els sgl post "
7666 				"operation\n", rc);
7667 		rc = -ENODEV;
7668 		goto out_destroy_queue;
7669 	}
7670 	phba->sli4_hba.els_xri_cnt = rc;
7671 
7672 	if (phba->nvmet_support) {
7673 		/* update host nvmet xri-sgl sizes and mappings */
7674 		rc = lpfc_sli4_nvmet_sgl_update(phba);
7675 		if (unlikely(rc)) {
7676 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7677 					"6308 Failed to update nvmet-sgl size "
7678 					"and mapping: %d\n", rc);
7679 			goto out_destroy_queue;
7680 		}
7681 
7682 		/* register the nvmet sgl pool to the port */
7683 		rc = lpfc_sli4_repost_sgl_list(
7684 			phba,
7685 			&phba->sli4_hba.lpfc_nvmet_sgl_list,
7686 			phba->sli4_hba.nvmet_xri_cnt);
7687 		if (unlikely(rc < 0)) {
7688 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7689 					"3117 Error %d during nvmet "
7690 					"sgl post\n", rc);
7691 			rc = -ENODEV;
7692 			goto out_destroy_queue;
7693 		}
7694 		phba->sli4_hba.nvmet_xri_cnt = rc;
7695 
7696 		/* We allocate an iocbq for every receive context SGL.
7697 		 * The additional allocation is for abort and ls handling.
7698 		 */
7699 		cnt = phba->sli4_hba.nvmet_xri_cnt +
7700 			phba->sli4_hba.max_cfg_param.max_xri;
7701 	} else {
7702 		/* update host common xri-sgl sizes and mappings */
7703 		rc = lpfc_sli4_io_sgl_update(phba);
7704 		if (unlikely(rc)) {
7705 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7706 					"6082 Failed to update nvme-sgl size "
7707 					"and mapping: %d\n", rc);
7708 			goto out_destroy_queue;
7709 		}
7710 
7711 		/* register the allocated common sgl pool to the port */
7712 		rc = lpfc_sli4_repost_io_sgl_list(phba);
7713 		if (unlikely(rc)) {
7714 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7715 					"6116 Error %d during nvme sgl post "
7716 					"operation\n", rc);
7717 			/* Some NVME buffers were moved to abort nvme list */
7718 			/* A pci function reset will repost them */
7719 			rc = -ENODEV;
7720 			goto out_destroy_queue;
7721 		}
7722 		/* Each lpfc_io_buf job structure has an iocbq element.
7723 		 * This cnt provides for abort, els, ct and ls requests.
7724 		 */
7725 		cnt = phba->sli4_hba.max_cfg_param.max_xri;
7726 	}
7727 
7728 	if (!phba->sli.iocbq_lookup) {
7729 		/* Initialize and populate the iocb list per host */
7730 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7731 				"2821 initialize iocb list with %d entries\n",
7732 				cnt);
7733 		rc = lpfc_init_iocb_list(phba, cnt);
7734 		if (rc) {
7735 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7736 					"1413 Failed to init iocb list.\n");
7737 			goto out_destroy_queue;
7738 		}
7739 	}
7740 
7741 	if (phba->nvmet_support)
7742 		lpfc_nvmet_create_targetport(phba);
7743 
7744 	if (phba->nvmet_support && phba->cfg_nvmet_mrq) {
7745 		/* Post initial buffers to all RQs created */
7746 		for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
7747 			rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp;
7748 			INIT_LIST_HEAD(&rqbp->rqb_buffer_list);
7749 			rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc;
7750 			rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free;
7751 			rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT;
7752 			rqbp->buffer_count = 0;
7753 
7754 			lpfc_post_rq_buffer(
7755 				phba, phba->sli4_hba.nvmet_mrq_hdr[i],
7756 				phba->sli4_hba.nvmet_mrq_data[i],
7757 				phba->cfg_nvmet_mrq_post, i);
7758 		}
7759 	}
7760 
7761 	/* Post the rpi header region to the device. */
7762 	rc = lpfc_sli4_post_all_rpi_hdrs(phba);
7763 	if (unlikely(rc)) {
7764 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7765 				"0393 Error %d during rpi post operation\n",
7766 				rc);
7767 		rc = -ENODEV;
7768 		goto out_destroy_queue;
7769 	}
7770 	lpfc_sli4_node_prep(phba);
7771 
7772 	if (!(phba->hba_flag & HBA_FCOE_MODE)) {
7773 		if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) {
7774 			/*
7775 			 * The FC Port needs to register FCFI (index 0)
7776 			 */
7777 			lpfc_reg_fcfi(phba, mboxq);
7778 			mboxq->vport = phba->pport;
7779 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7780 			if (rc != MBX_SUCCESS)
7781 				goto out_unset_queue;
7782 			rc = 0;
7783 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
7784 						&mboxq->u.mqe.un.reg_fcfi);
7785 		} else {
7786 			/* We are a NVME Target mode with MRQ > 1 */
7787 
7788 			/* First register the FCFI */
7789 			lpfc_reg_fcfi_mrq(phba, mboxq, 0);
7790 			mboxq->vport = phba->pport;
7791 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7792 			if (rc != MBX_SUCCESS)
7793 				goto out_unset_queue;
7794 			rc = 0;
7795 			phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi,
7796 						&mboxq->u.mqe.un.reg_fcfi_mrq);
7797 
7798 			/* Next register the MRQs */
7799 			lpfc_reg_fcfi_mrq(phba, mboxq, 1);
7800 			mboxq->vport = phba->pport;
7801 			rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7802 			if (rc != MBX_SUCCESS)
7803 				goto out_unset_queue;
7804 			rc = 0;
7805 		}
7806 		/* Check if the port is configured to be disabled */
7807 		lpfc_sli_read_link_ste(phba);
7808 	}
7809 
7810 	/* Don't post more new bufs if repost already recovered
7811 	 * the nvme sgls.
7812 	 */
7813 	if (phba->nvmet_support == 0) {
7814 		if (phba->sli4_hba.io_xri_cnt == 0) {
7815 			len = lpfc_new_io_buf(
7816 					      phba, phba->sli4_hba.io_xri_max);
7817 			if (len == 0) {
7818 				rc = -ENOMEM;
7819 				goto out_unset_queue;
7820 			}
7821 
7822 			if (phba->cfg_xri_rebalancing)
7823 				lpfc_create_multixri_pools(phba);
7824 		}
7825 	} else {
7826 		phba->cfg_xri_rebalancing = 0;
7827 	}
7828 
7829 	/* Allow asynchronous mailbox command to go through */
7830 	spin_lock_irq(&phba->hbalock);
7831 	phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
7832 	spin_unlock_irq(&phba->hbalock);
7833 
7834 	/* Post receive buffers to the device */
7835 	lpfc_sli4_rb_setup(phba);
7836 
7837 	/* Reset HBA FCF states after HBA reset */
7838 	phba->fcf.fcf_flag = 0;
7839 	phba->fcf.current_rec.flag = 0;
7840 
7841 	/* Start the ELS watchdog timer */
7842 	mod_timer(&vport->els_tmofunc,
7843 		  jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2)));
7844 
7845 	/* Start heart beat timer */
7846 	mod_timer(&phba->hb_tmofunc,
7847 		  jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL));
7848 	phba->hb_outstanding = 0;
7849 	phba->last_completion_time = jiffies;
7850 
7851 	/* start eq_delay heartbeat */
7852 	if (phba->cfg_auto_imax)
7853 		queue_delayed_work(phba->wq, &phba->eq_delay_work,
7854 				   msecs_to_jiffies(LPFC_EQ_DELAY_MSECS));
7855 
7856 	/* Start error attention (ERATT) polling timer */
7857 	mod_timer(&phba->eratt_poll,
7858 		  jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval));
7859 
7860 	/* Enable PCIe device Advanced Error Reporting (AER) if configured */
7861 	if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
7862 		rc = pci_enable_pcie_error_reporting(phba->pcidev);
7863 		if (!rc) {
7864 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7865 					"2829 This device supports "
7866 					"Advanced Error Reporting (AER)\n");
7867 			spin_lock_irq(&phba->hbalock);
7868 			phba->hba_flag |= HBA_AER_ENABLED;
7869 			spin_unlock_irq(&phba->hbalock);
7870 		} else {
7871 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
7872 					"2830 This device does not support "
7873 					"Advanced Error Reporting (AER)\n");
7874 			phba->cfg_aer_support = 0;
7875 		}
7876 		rc = 0;
7877 	}
7878 
7879 	/*
7880 	 * The port is ready, set the host's link state to LINK_DOWN
7881 	 * in preparation for link interrupts.
7882 	 */
7883 	spin_lock_irq(&phba->hbalock);
7884 	phba->link_state = LPFC_LINK_DOWN;
7885 
7886 	/* Check if physical ports are trunked */
7887 	if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba))
7888 		phba->trunk_link.link0.state = LPFC_LINK_DOWN;
7889 	if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba))
7890 		phba->trunk_link.link1.state = LPFC_LINK_DOWN;
7891 	if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba))
7892 		phba->trunk_link.link2.state = LPFC_LINK_DOWN;
7893 	if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba))
7894 		phba->trunk_link.link3.state = LPFC_LINK_DOWN;
7895 	spin_unlock_irq(&phba->hbalock);
7896 
7897 	/* Arm the CQs and then EQs on device */
7898 	lpfc_sli4_arm_cqeq_intr(phba);
7899 
7900 	/* Indicate device interrupt mode */
7901 	phba->sli4_hba.intr_enable = 1;
7902 
7903 	if (!(phba->hba_flag & HBA_FCOE_MODE) &&
7904 	    (phba->hba_flag & LINK_DISABLED)) {
7905 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7906 				"3103 Adapter Link is disabled.\n");
7907 		lpfc_down_link(phba, mboxq);
7908 		rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
7909 		if (rc != MBX_SUCCESS) {
7910 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
7911 					"3104 Adapter failed to issue "
7912 					"DOWN_LINK mbox cmd, rc:x%x\n", rc);
7913 			goto out_io_buff_free;
7914 		}
7915 	} else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
7916 		/* don't perform init_link on SLI4 FC port loopback test */
7917 		if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
7918 			rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
7919 			if (rc)
7920 				goto out_io_buff_free;
7921 		}
7922 	}
7923 	mempool_free(mboxq, phba->mbox_mem_pool);
7924 	return rc;
7925 out_io_buff_free:
7926 	/* Free allocated IO Buffers */
7927 	lpfc_io_free(phba);
7928 out_unset_queue:
7929 	/* Unset all the queues set up in this routine when error out */
7930 	lpfc_sli4_queue_unset(phba);
7931 out_destroy_queue:
7932 	lpfc_free_iocb_list(phba);
7933 	lpfc_sli4_queue_destroy(phba);
7934 out_stop_timers:
7935 	lpfc_stop_hba_timers(phba);
7936 out_free_mbox:
7937 	mempool_free(mboxq, phba->mbox_mem_pool);
7938 	return rc;
7939 }
7940 
7941 /**
7942  * lpfc_mbox_timeout - Timeout call back function for mbox timer
7943  * @ptr: context object - pointer to hba structure.
7944  *
7945  * This is the callback function for mailbox timer. The mailbox
7946  * timer is armed when a new mailbox command is issued and the timer
7947  * is deleted when the mailbox complete. The function is called by
7948  * the kernel timer code when a mailbox does not complete within
7949  * expected time. This function wakes up the worker thread to
7950  * process the mailbox timeout and returns. All the processing is
7951  * done by the worker thread function lpfc_mbox_timeout_handler.
7952  **/
7953 void
7954 lpfc_mbox_timeout(struct timer_list *t)
7955 {
7956 	struct lpfc_hba  *phba = from_timer(phba, t, sli.mbox_tmo);
7957 	unsigned long iflag;
7958 	uint32_t tmo_posted;
7959 
7960 	spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
7961 	tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
7962 	if (!tmo_posted)
7963 		phba->pport->work_port_events |= WORKER_MBOX_TMO;
7964 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
7965 
7966 	if (!tmo_posted)
7967 		lpfc_worker_wake_up(phba);
7968 	return;
7969 }
7970 
7971 /**
7972  * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions
7973  *                                    are pending
7974  * @phba: Pointer to HBA context object.
7975  *
7976  * This function checks if any mailbox completions are present on the mailbox
7977  * completion queue.
7978  **/
7979 static bool
7980 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba)
7981 {
7982 
7983 	uint32_t idx;
7984 	struct lpfc_queue *mcq;
7985 	struct lpfc_mcqe *mcqe;
7986 	bool pending_completions = false;
7987 	uint8_t	qe_valid;
7988 
7989 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
7990 		return false;
7991 
7992 	/* Check for completions on mailbox completion queue */
7993 
7994 	mcq = phba->sli4_hba.mbx_cq;
7995 	idx = mcq->hba_index;
7996 	qe_valid = mcq->qe_valid;
7997 	while (bf_get_le32(lpfc_cqe_valid,
7998 	       (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) {
7999 		mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx));
8000 		if (bf_get_le32(lpfc_trailer_completed, mcqe) &&
8001 		    (!bf_get_le32(lpfc_trailer_async, mcqe))) {
8002 			pending_completions = true;
8003 			break;
8004 		}
8005 		idx = (idx + 1) % mcq->entry_count;
8006 		if (mcq->hba_index == idx)
8007 			break;
8008 
8009 		/* if the index wrapped around, toggle the valid bit */
8010 		if (phba->sli4_hba.pc_sli4_params.cqav && !idx)
8011 			qe_valid = (qe_valid) ? 0 : 1;
8012 	}
8013 	return pending_completions;
8014 
8015 }
8016 
8017 /**
8018  * lpfc_sli4_process_missed_mbox_completions - process mbox completions
8019  *					      that were missed.
8020  * @phba: Pointer to HBA context object.
8021  *
8022  * For sli4, it is possible to miss an interrupt. As such mbox completions
8023  * maybe missed causing erroneous mailbox timeouts to occur. This function
8024  * checks to see if mbox completions are on the mailbox completion queue
8025  * and will process all the completions associated with the eq for the
8026  * mailbox completion queue.
8027  **/
8028 static bool
8029 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba)
8030 {
8031 	struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba;
8032 	uint32_t eqidx;
8033 	struct lpfc_queue *fpeq = NULL;
8034 	struct lpfc_queue *eq;
8035 	bool mbox_pending;
8036 
8037 	if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4))
8038 		return false;
8039 
8040 	/* Find the EQ associated with the mbox CQ */
8041 	if (sli4_hba->hdwq) {
8042 		for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) {
8043 			eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq;
8044 			if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) {
8045 				fpeq = eq;
8046 				break;
8047 			}
8048 		}
8049 	}
8050 	if (!fpeq)
8051 		return false;
8052 
8053 	/* Turn off interrupts from this EQ */
8054 
8055 	sli4_hba->sli4_eq_clr_intr(fpeq);
8056 
8057 	/* Check to see if a mbox completion is pending */
8058 
8059 	mbox_pending = lpfc_sli4_mbox_completions_pending(phba);
8060 
8061 	/*
8062 	 * If a mbox completion is pending, process all the events on EQ
8063 	 * associated with the mbox completion queue (this could include
8064 	 * mailbox commands, async events, els commands, receive queue data
8065 	 * and fcp commands)
8066 	 */
8067 
8068 	if (mbox_pending)
8069 		/* process and rearm the EQ */
8070 		lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
8071 	else
8072 		/* Always clear and re-arm the EQ */
8073 		sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM);
8074 
8075 	return mbox_pending;
8076 
8077 }
8078 
8079 /**
8080  * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
8081  * @phba: Pointer to HBA context object.
8082  *
8083  * This function is called from worker thread when a mailbox command times out.
8084  * The caller is not required to hold any locks. This function will reset the
8085  * HBA and recover all the pending commands.
8086  **/
8087 void
8088 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
8089 {
8090 	LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
8091 	MAILBOX_t *mb = NULL;
8092 
8093 	struct lpfc_sli *psli = &phba->sli;
8094 
8095 	/* If the mailbox completed, process the completion and return */
8096 	if (lpfc_sli4_process_missed_mbox_completions(phba))
8097 		return;
8098 
8099 	if (pmbox != NULL)
8100 		mb = &pmbox->u.mb;
8101 	/* Check the pmbox pointer first.  There is a race condition
8102 	 * between the mbox timeout handler getting executed in the
8103 	 * worklist and the mailbox actually completing. When this
8104 	 * race condition occurs, the mbox_active will be NULL.
8105 	 */
8106 	spin_lock_irq(&phba->hbalock);
8107 	if (pmbox == NULL) {
8108 		lpfc_printf_log(phba, KERN_WARNING,
8109 				LOG_MBOX | LOG_SLI,
8110 				"0353 Active Mailbox cleared - mailbox timeout "
8111 				"exiting\n");
8112 		spin_unlock_irq(&phba->hbalock);
8113 		return;
8114 	}
8115 
8116 	/* Mbox cmd <mbxCommand> timeout */
8117 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8118 			"0310 Mailbox command x%x timeout Data: x%x x%x x%px\n",
8119 			mb->mbxCommand,
8120 			phba->pport->port_state,
8121 			phba->sli.sli_flag,
8122 			phba->sli.mbox_active);
8123 	spin_unlock_irq(&phba->hbalock);
8124 
8125 	/* Setting state unknown so lpfc_sli_abort_iocb_ring
8126 	 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
8127 	 * it to fail all outstanding SCSI IO.
8128 	 */
8129 	spin_lock_irq(&phba->pport->work_port_lock);
8130 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8131 	spin_unlock_irq(&phba->pport->work_port_lock);
8132 	spin_lock_irq(&phba->hbalock);
8133 	phba->link_state = LPFC_LINK_UNKNOWN;
8134 	psli->sli_flag &= ~LPFC_SLI_ACTIVE;
8135 	spin_unlock_irq(&phba->hbalock);
8136 
8137 	lpfc_sli_abort_fcp_rings(phba);
8138 
8139 	lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8140 			"0345 Resetting board due to mailbox timeout\n");
8141 
8142 	/* Reset the HBA device */
8143 	lpfc_reset_hba(phba);
8144 }
8145 
8146 /**
8147  * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
8148  * @phba: Pointer to HBA context object.
8149  * @pmbox: Pointer to mailbox object.
8150  * @flag: Flag indicating how the mailbox need to be processed.
8151  *
8152  * This function is called by discovery code and HBA management code
8153  * to submit a mailbox command to firmware with SLI-3 interface spec. This
8154  * function gets the hbalock to protect the data structures.
8155  * The mailbox command can be submitted in polling mode, in which case
8156  * this function will wait in a polling loop for the completion of the
8157  * mailbox.
8158  * If the mailbox is submitted in no_wait mode (not polling) the
8159  * function will submit the command and returns immediately without waiting
8160  * for the mailbox completion. The no_wait is supported only when HBA
8161  * is in SLI2/SLI3 mode - interrupts are enabled.
8162  * The SLI interface allows only one mailbox pending at a time. If the
8163  * mailbox is issued in polling mode and there is already a mailbox
8164  * pending, then the function will return an error. If the mailbox is issued
8165  * in NO_WAIT mode and there is a mailbox pending already, the function
8166  * will return MBX_BUSY after queuing the mailbox into mailbox queue.
8167  * The sli layer owns the mailbox object until the completion of mailbox
8168  * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
8169  * return codes the caller owns the mailbox command after the return of
8170  * the function.
8171  **/
8172 static int
8173 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
8174 		       uint32_t flag)
8175 {
8176 	MAILBOX_t *mbx;
8177 	struct lpfc_sli *psli = &phba->sli;
8178 	uint32_t status, evtctr;
8179 	uint32_t ha_copy, hc_copy;
8180 	int i;
8181 	unsigned long timeout;
8182 	unsigned long drvr_flag = 0;
8183 	uint32_t word0, ldata;
8184 	void __iomem *to_slim;
8185 	int processing_queue = 0;
8186 
8187 	spin_lock_irqsave(&phba->hbalock, drvr_flag);
8188 	if (!pmbox) {
8189 		phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8190 		/* processing mbox queue from intr_handler */
8191 		if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8192 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8193 			return MBX_SUCCESS;
8194 		}
8195 		processing_queue = 1;
8196 		pmbox = lpfc_mbox_get(phba);
8197 		if (!pmbox) {
8198 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8199 			return MBX_SUCCESS;
8200 		}
8201 	}
8202 
8203 	if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
8204 		pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
8205 		if(!pmbox->vport) {
8206 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8207 			lpfc_printf_log(phba, KERN_ERR,
8208 					LOG_MBOX | LOG_VPORT,
8209 					"1806 Mbox x%x failed. No vport\n",
8210 					pmbox->u.mb.mbxCommand);
8211 			dump_stack();
8212 			goto out_not_finished;
8213 		}
8214 	}
8215 
8216 	/* If the PCI channel is in offline state, do not post mbox. */
8217 	if (unlikely(pci_channel_offline(phba->pcidev))) {
8218 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8219 		goto out_not_finished;
8220 	}
8221 
8222 	/* If HBA has a deferred error attention, fail the iocb. */
8223 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
8224 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8225 		goto out_not_finished;
8226 	}
8227 
8228 	psli = &phba->sli;
8229 
8230 	mbx = &pmbox->u.mb;
8231 	status = MBX_SUCCESS;
8232 
8233 	if (phba->link_state == LPFC_HBA_ERROR) {
8234 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8235 
8236 		/* Mbox command <mbxCommand> cannot issue */
8237 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8238 				"(%d):0311 Mailbox command x%x cannot "
8239 				"issue Data: x%x x%x\n",
8240 				pmbox->vport ? pmbox->vport->vpi : 0,
8241 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8242 		goto out_not_finished;
8243 	}
8244 
8245 	if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
8246 		if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
8247 			!(hc_copy & HC_MBINT_ENA)) {
8248 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8249 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8250 				"(%d):2528 Mailbox command x%x cannot "
8251 				"issue Data: x%x x%x\n",
8252 				pmbox->vport ? pmbox->vport->vpi : 0,
8253 				pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
8254 			goto out_not_finished;
8255 		}
8256 	}
8257 
8258 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8259 		/* Polling for a mbox command when another one is already active
8260 		 * is not allowed in SLI. Also, the driver must have established
8261 		 * SLI2 mode to queue and process multiple mbox commands.
8262 		 */
8263 
8264 		if (flag & MBX_POLL) {
8265 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8266 
8267 			/* Mbox command <mbxCommand> cannot issue */
8268 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8269 					"(%d):2529 Mailbox command x%x "
8270 					"cannot issue Data: x%x x%x\n",
8271 					pmbox->vport ? pmbox->vport->vpi : 0,
8272 					pmbox->u.mb.mbxCommand,
8273 					psli->sli_flag, flag);
8274 			goto out_not_finished;
8275 		}
8276 
8277 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
8278 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8279 			/* Mbox command <mbxCommand> cannot issue */
8280 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8281 					"(%d):2530 Mailbox command x%x "
8282 					"cannot issue Data: x%x x%x\n",
8283 					pmbox->vport ? pmbox->vport->vpi : 0,
8284 					pmbox->u.mb.mbxCommand,
8285 					psli->sli_flag, flag);
8286 			goto out_not_finished;
8287 		}
8288 
8289 		/* Another mailbox command is still being processed, queue this
8290 		 * command to be processed later.
8291 		 */
8292 		lpfc_mbox_put(phba, pmbox);
8293 
8294 		/* Mbox cmd issue - BUSY */
8295 		lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8296 				"(%d):0308 Mbox cmd issue - BUSY Data: "
8297 				"x%x x%x x%x x%x\n",
8298 				pmbox->vport ? pmbox->vport->vpi : 0xffffff,
8299 				mbx->mbxCommand,
8300 				phba->pport ? phba->pport->port_state : 0xff,
8301 				psli->sli_flag, flag);
8302 
8303 		psli->slistat.mbox_busy++;
8304 		spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8305 
8306 		if (pmbox->vport) {
8307 			lpfc_debugfs_disc_trc(pmbox->vport,
8308 				LPFC_DISC_TRC_MBOX_VPORT,
8309 				"MBOX Bsy vport:  cmd:x%x mb:x%x x%x",
8310 				(uint32_t)mbx->mbxCommand,
8311 				mbx->un.varWords[0], mbx->un.varWords[1]);
8312 		}
8313 		else {
8314 			lpfc_debugfs_disc_trc(phba->pport,
8315 				LPFC_DISC_TRC_MBOX,
8316 				"MBOX Bsy:        cmd:x%x mb:x%x x%x",
8317 				(uint32_t)mbx->mbxCommand,
8318 				mbx->un.varWords[0], mbx->un.varWords[1]);
8319 		}
8320 
8321 		return MBX_BUSY;
8322 	}
8323 
8324 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8325 
8326 	/* If we are not polling, we MUST be in SLI2 mode */
8327 	if (flag != MBX_POLL) {
8328 		if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
8329 		    (mbx->mbxCommand != MBX_KILL_BOARD)) {
8330 			psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8331 			spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8332 			/* Mbox command <mbxCommand> cannot issue */
8333 			lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8334 					"(%d):2531 Mailbox command x%x "
8335 					"cannot issue Data: x%x x%x\n",
8336 					pmbox->vport ? pmbox->vport->vpi : 0,
8337 					pmbox->u.mb.mbxCommand,
8338 					psli->sli_flag, flag);
8339 			goto out_not_finished;
8340 		}
8341 		/* timeout active mbox command */
8342 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8343 					   1000);
8344 		mod_timer(&psli->mbox_tmo, jiffies + timeout);
8345 	}
8346 
8347 	/* Mailbox cmd <cmd> issue */
8348 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8349 			"(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
8350 			"x%x\n",
8351 			pmbox->vport ? pmbox->vport->vpi : 0,
8352 			mbx->mbxCommand,
8353 			phba->pport ? phba->pport->port_state : 0xff,
8354 			psli->sli_flag, flag);
8355 
8356 	if (mbx->mbxCommand != MBX_HEARTBEAT) {
8357 		if (pmbox->vport) {
8358 			lpfc_debugfs_disc_trc(pmbox->vport,
8359 				LPFC_DISC_TRC_MBOX_VPORT,
8360 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
8361 				(uint32_t)mbx->mbxCommand,
8362 				mbx->un.varWords[0], mbx->un.varWords[1]);
8363 		}
8364 		else {
8365 			lpfc_debugfs_disc_trc(phba->pport,
8366 				LPFC_DISC_TRC_MBOX,
8367 				"MBOX Send:       cmd:x%x mb:x%x x%x",
8368 				(uint32_t)mbx->mbxCommand,
8369 				mbx->un.varWords[0], mbx->un.varWords[1]);
8370 		}
8371 	}
8372 
8373 	psli->slistat.mbox_cmd++;
8374 	evtctr = psli->slistat.mbox_event;
8375 
8376 	/* next set own bit for the adapter and copy over command word */
8377 	mbx->mbxOwner = OWN_CHIP;
8378 
8379 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8380 		/* Populate mbox extension offset word. */
8381 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
8382 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8383 				= (uint8_t *)phba->mbox_ext
8384 				  - (uint8_t *)phba->mbox;
8385 		}
8386 
8387 		/* Copy the mailbox extension data */
8388 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf) {
8389 			lpfc_sli_pcimem_bcopy(pmbox->ctx_buf,
8390 					      (uint8_t *)phba->mbox_ext,
8391 					      pmbox->in_ext_byte_len);
8392 		}
8393 		/* Copy command data to host SLIM area */
8394 		lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE);
8395 	} else {
8396 		/* Populate mbox extension offset word. */
8397 		if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
8398 			*(((uint32_t *)mbx) + pmbox->mbox_offset_word)
8399 				= MAILBOX_HBA_EXT_OFFSET;
8400 
8401 		/* Copy the mailbox extension data */
8402 		if (pmbox->in_ext_byte_len && pmbox->ctx_buf)
8403 			lpfc_memcpy_to_slim(phba->MBslimaddr +
8404 				MAILBOX_HBA_EXT_OFFSET,
8405 				pmbox->ctx_buf, pmbox->in_ext_byte_len);
8406 
8407 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8408 			/* copy command data into host mbox for cmpl */
8409 			lpfc_sli_pcimem_bcopy(mbx, phba->mbox,
8410 					      MAILBOX_CMD_SIZE);
8411 
8412 		/* First copy mbox command data to HBA SLIM, skip past first
8413 		   word */
8414 		to_slim = phba->MBslimaddr + sizeof (uint32_t);
8415 		lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0],
8416 			    MAILBOX_CMD_SIZE - sizeof (uint32_t));
8417 
8418 		/* Next copy over first word, with mbxOwner set */
8419 		ldata = *((uint32_t *)mbx);
8420 		to_slim = phba->MBslimaddr;
8421 		writel(ldata, to_slim);
8422 		readl(to_slim); /* flush */
8423 
8424 		if (mbx->mbxCommand == MBX_CONFIG_PORT)
8425 			/* switch over to host mailbox */
8426 			psli->sli_flag |= LPFC_SLI_ACTIVE;
8427 	}
8428 
8429 	wmb();
8430 
8431 	switch (flag) {
8432 	case MBX_NOWAIT:
8433 		/* Set up reference to mailbox command */
8434 		psli->mbox_active = pmbox;
8435 		/* Interrupt board to do it */
8436 		writel(CA_MBATT, phba->CAregaddr);
8437 		readl(phba->CAregaddr); /* flush */
8438 		/* Don't wait for it to finish, just return */
8439 		break;
8440 
8441 	case MBX_POLL:
8442 		/* Set up null reference to mailbox command */
8443 		psli->mbox_active = NULL;
8444 		/* Interrupt board to do it */
8445 		writel(CA_MBATT, phba->CAregaddr);
8446 		readl(phba->CAregaddr); /* flush */
8447 
8448 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8449 			/* First read mbox status word */
8450 			word0 = *((uint32_t *)phba->mbox);
8451 			word0 = le32_to_cpu(word0);
8452 		} else {
8453 			/* First read mbox status word */
8454 			if (lpfc_readl(phba->MBslimaddr, &word0)) {
8455 				spin_unlock_irqrestore(&phba->hbalock,
8456 						       drvr_flag);
8457 				goto out_not_finished;
8458 			}
8459 		}
8460 
8461 		/* Read the HBA Host Attention Register */
8462 		if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8463 			spin_unlock_irqrestore(&phba->hbalock,
8464 						       drvr_flag);
8465 			goto out_not_finished;
8466 		}
8467 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
8468 							1000) + jiffies;
8469 		i = 0;
8470 		/* Wait for command to complete */
8471 		while (((word0 & OWN_CHIP) == OWN_CHIP) ||
8472 		       (!(ha_copy & HA_MBATT) &&
8473 			(phba->link_state > LPFC_WARM_START))) {
8474 			if (time_after(jiffies, timeout)) {
8475 				psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8476 				spin_unlock_irqrestore(&phba->hbalock,
8477 						       drvr_flag);
8478 				goto out_not_finished;
8479 			}
8480 
8481 			/* Check if we took a mbox interrupt while we were
8482 			   polling */
8483 			if (((word0 & OWN_CHIP) != OWN_CHIP)
8484 			    && (evtctr != psli->slistat.mbox_event))
8485 				break;
8486 
8487 			if (i++ > 10) {
8488 				spin_unlock_irqrestore(&phba->hbalock,
8489 						       drvr_flag);
8490 				msleep(1);
8491 				spin_lock_irqsave(&phba->hbalock, drvr_flag);
8492 			}
8493 
8494 			if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8495 				/* First copy command data */
8496 				word0 = *((uint32_t *)phba->mbox);
8497 				word0 = le32_to_cpu(word0);
8498 				if (mbx->mbxCommand == MBX_CONFIG_PORT) {
8499 					MAILBOX_t *slimmb;
8500 					uint32_t slimword0;
8501 					/* Check real SLIM for any errors */
8502 					slimword0 = readl(phba->MBslimaddr);
8503 					slimmb = (MAILBOX_t *) & slimword0;
8504 					if (((slimword0 & OWN_CHIP) != OWN_CHIP)
8505 					    && slimmb->mbxStatus) {
8506 						psli->sli_flag &=
8507 						    ~LPFC_SLI_ACTIVE;
8508 						word0 = slimword0;
8509 					}
8510 				}
8511 			} else {
8512 				/* First copy command data */
8513 				word0 = readl(phba->MBslimaddr);
8514 			}
8515 			/* Read the HBA Host Attention Register */
8516 			if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
8517 				spin_unlock_irqrestore(&phba->hbalock,
8518 						       drvr_flag);
8519 				goto out_not_finished;
8520 			}
8521 		}
8522 
8523 		if (psli->sli_flag & LPFC_SLI_ACTIVE) {
8524 			/* copy results back to user */
8525 			lpfc_sli_pcimem_bcopy(phba->mbox, mbx,
8526 						MAILBOX_CMD_SIZE);
8527 			/* Copy the mailbox extension data */
8528 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8529 				lpfc_sli_pcimem_bcopy(phba->mbox_ext,
8530 						      pmbox->ctx_buf,
8531 						      pmbox->out_ext_byte_len);
8532 			}
8533 		} else {
8534 			/* First copy command data */
8535 			lpfc_memcpy_from_slim(mbx, phba->MBslimaddr,
8536 						MAILBOX_CMD_SIZE);
8537 			/* Copy the mailbox extension data */
8538 			if (pmbox->out_ext_byte_len && pmbox->ctx_buf) {
8539 				lpfc_memcpy_from_slim(
8540 					pmbox->ctx_buf,
8541 					phba->MBslimaddr +
8542 					MAILBOX_HBA_EXT_OFFSET,
8543 					pmbox->out_ext_byte_len);
8544 			}
8545 		}
8546 
8547 		writel(HA_MBATT, phba->HAregaddr);
8548 		readl(phba->HAregaddr); /* flush */
8549 
8550 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8551 		status = mbx->mbxStatus;
8552 	}
8553 
8554 	spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
8555 	return status;
8556 
8557 out_not_finished:
8558 	if (processing_queue) {
8559 		pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
8560 		lpfc_mbox_cmpl_put(phba, pmbox);
8561 	}
8562 	return MBX_NOT_FINISHED;
8563 }
8564 
8565 /**
8566  * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
8567  * @phba: Pointer to HBA context object.
8568  *
8569  * The function blocks the posting of SLI4 asynchronous mailbox commands from
8570  * the driver internal pending mailbox queue. It will then try to wait out the
8571  * possible outstanding mailbox command before return.
8572  *
8573  * Returns:
8574  * 	0 - the outstanding mailbox command completed; otherwise, the wait for
8575  * 	the outstanding mailbox command timed out.
8576  **/
8577 static int
8578 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
8579 {
8580 	struct lpfc_sli *psli = &phba->sli;
8581 	int rc = 0;
8582 	unsigned long timeout = 0;
8583 
8584 	/* Mark the asynchronous mailbox command posting as blocked */
8585 	spin_lock_irq(&phba->hbalock);
8586 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
8587 	/* Determine how long we might wait for the active mailbox
8588 	 * command to be gracefully completed by firmware.
8589 	 */
8590 	if (phba->sli.mbox_active)
8591 		timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
8592 						phba->sli.mbox_active) *
8593 						1000) + jiffies;
8594 	spin_unlock_irq(&phba->hbalock);
8595 
8596 	/* Make sure the mailbox is really active */
8597 	if (timeout)
8598 		lpfc_sli4_process_missed_mbox_completions(phba);
8599 
8600 	/* Wait for the outstnading mailbox command to complete */
8601 	while (phba->sli.mbox_active) {
8602 		/* Check active mailbox complete status every 2ms */
8603 		msleep(2);
8604 		if (time_after(jiffies, timeout)) {
8605 			/* Timeout, marked the outstanding cmd not complete */
8606 			rc = 1;
8607 			break;
8608 		}
8609 	}
8610 
8611 	/* Can not cleanly block async mailbox command, fails it */
8612 	if (rc) {
8613 		spin_lock_irq(&phba->hbalock);
8614 		psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8615 		spin_unlock_irq(&phba->hbalock);
8616 	}
8617 	return rc;
8618 }
8619 
8620 /**
8621  * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
8622  * @phba: Pointer to HBA context object.
8623  *
8624  * The function unblocks and resume posting of SLI4 asynchronous mailbox
8625  * commands from the driver internal pending mailbox queue. It makes sure
8626  * that there is no outstanding mailbox command before resuming posting
8627  * asynchronous mailbox commands. If, for any reason, there is outstanding
8628  * mailbox command, it will try to wait it out before resuming asynchronous
8629  * mailbox command posting.
8630  **/
8631 static void
8632 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
8633 {
8634 	struct lpfc_sli *psli = &phba->sli;
8635 
8636 	spin_lock_irq(&phba->hbalock);
8637 	if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8638 		/* Asynchronous mailbox posting is not blocked, do nothing */
8639 		spin_unlock_irq(&phba->hbalock);
8640 		return;
8641 	}
8642 
8643 	/* Outstanding synchronous mailbox command is guaranteed to be done,
8644 	 * successful or timeout, after timing-out the outstanding mailbox
8645 	 * command shall always be removed, so just unblock posting async
8646 	 * mailbox command and resume
8647 	 */
8648 	psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
8649 	spin_unlock_irq(&phba->hbalock);
8650 
8651 	/* wake up worker thread to post asynchronous mailbox command */
8652 	lpfc_worker_wake_up(phba);
8653 }
8654 
8655 /**
8656  * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready
8657  * @phba: Pointer to HBA context object.
8658  * @mboxq: Pointer to mailbox object.
8659  *
8660  * The function waits for the bootstrap mailbox register ready bit from
8661  * port for twice the regular mailbox command timeout value.
8662  *
8663  *      0 - no timeout on waiting for bootstrap mailbox register ready.
8664  *      MBXERR_ERROR - wait for bootstrap mailbox register timed out.
8665  **/
8666 static int
8667 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8668 {
8669 	uint32_t db_ready;
8670 	unsigned long timeout;
8671 	struct lpfc_register bmbx_reg;
8672 
8673 	timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
8674 				   * 1000) + jiffies;
8675 
8676 	do {
8677 		bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
8678 		db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
8679 		if (!db_ready)
8680 			mdelay(2);
8681 
8682 		if (time_after(jiffies, timeout))
8683 			return MBXERR_ERROR;
8684 	} while (!db_ready);
8685 
8686 	return 0;
8687 }
8688 
8689 /**
8690  * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
8691  * @phba: Pointer to HBA context object.
8692  * @mboxq: Pointer to mailbox object.
8693  *
8694  * The function posts a mailbox to the port.  The mailbox is expected
8695  * to be comletely filled in and ready for the port to operate on it.
8696  * This routine executes a synchronous completion operation on the
8697  * mailbox by polling for its completion.
8698  *
8699  * The caller must not be holding any locks when calling this routine.
8700  *
8701  * Returns:
8702  *	MBX_SUCCESS - mailbox posted successfully
8703  *	Any of the MBX error values.
8704  **/
8705 static int
8706 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
8707 {
8708 	int rc = MBX_SUCCESS;
8709 	unsigned long iflag;
8710 	uint32_t mcqe_status;
8711 	uint32_t mbx_cmnd;
8712 	struct lpfc_sli *psli = &phba->sli;
8713 	struct lpfc_mqe *mb = &mboxq->u.mqe;
8714 	struct lpfc_bmbx_create *mbox_rgn;
8715 	struct dma_address *dma_address;
8716 
8717 	/*
8718 	 * Only one mailbox can be active to the bootstrap mailbox region
8719 	 * at a time and there is no queueing provided.
8720 	 */
8721 	spin_lock_irqsave(&phba->hbalock, iflag);
8722 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8723 		spin_unlock_irqrestore(&phba->hbalock, iflag);
8724 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8725 				"(%d):2532 Mailbox command x%x (x%x/x%x) "
8726 				"cannot issue Data: x%x x%x\n",
8727 				mboxq->vport ? mboxq->vport->vpi : 0,
8728 				mboxq->u.mb.mbxCommand,
8729 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8730 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8731 				psli->sli_flag, MBX_POLL);
8732 		return MBXERR_ERROR;
8733 	}
8734 	/* The server grabs the token and owns it until release */
8735 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8736 	phba->sli.mbox_active = mboxq;
8737 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8738 
8739 	/* wait for bootstrap mbox register for readyness */
8740 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8741 	if (rc)
8742 		goto exit;
8743 	/*
8744 	 * Initialize the bootstrap memory region to avoid stale data areas
8745 	 * in the mailbox post.  Then copy the caller's mailbox contents to
8746 	 * the bmbx mailbox region.
8747 	 */
8748 	mbx_cmnd = bf_get(lpfc_mqe_command, mb);
8749 	memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
8750 	lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
8751 			       sizeof(struct lpfc_mqe));
8752 
8753 	/* Post the high mailbox dma address to the port and wait for ready. */
8754 	dma_address = &phba->sli4_hba.bmbx.dma_address;
8755 	writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
8756 
8757 	/* wait for bootstrap mbox register for hi-address write done */
8758 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8759 	if (rc)
8760 		goto exit;
8761 
8762 	/* Post the low mailbox dma address to the port. */
8763 	writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
8764 
8765 	/* wait for bootstrap mbox register for low address write done */
8766 	rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq);
8767 	if (rc)
8768 		goto exit;
8769 
8770 	/*
8771 	 * Read the CQ to ensure the mailbox has completed.
8772 	 * If so, update the mailbox status so that the upper layers
8773 	 * can complete the request normally.
8774 	 */
8775 	lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
8776 			       sizeof(struct lpfc_mqe));
8777 	mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
8778 	lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
8779 			       sizeof(struct lpfc_mcqe));
8780 	mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
8781 	/*
8782 	 * When the CQE status indicates a failure and the mailbox status
8783 	 * indicates success then copy the CQE status into the mailbox status
8784 	 * (and prefix it with x4000).
8785 	 */
8786 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
8787 		if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
8788 			bf_set(lpfc_mqe_status, mb,
8789 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
8790 		rc = MBXERR_ERROR;
8791 	} else
8792 		lpfc_sli4_swap_str(phba, mboxq);
8793 
8794 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8795 			"(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
8796 			"Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
8797 			" x%x x%x CQ: x%x x%x x%x x%x\n",
8798 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
8799 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8800 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8801 			bf_get(lpfc_mqe_status, mb),
8802 			mb->un.mb_words[0], mb->un.mb_words[1],
8803 			mb->un.mb_words[2], mb->un.mb_words[3],
8804 			mb->un.mb_words[4], mb->un.mb_words[5],
8805 			mb->un.mb_words[6], mb->un.mb_words[7],
8806 			mb->un.mb_words[8], mb->un.mb_words[9],
8807 			mb->un.mb_words[10], mb->un.mb_words[11],
8808 			mb->un.mb_words[12], mboxq->mcqe.word0,
8809 			mboxq->mcqe.mcqe_tag0, 	mboxq->mcqe.mcqe_tag1,
8810 			mboxq->mcqe.trailer);
8811 exit:
8812 	/* We are holding the token, no needed for lock when release */
8813 	spin_lock_irqsave(&phba->hbalock, iflag);
8814 	psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8815 	phba->sli.mbox_active = NULL;
8816 	spin_unlock_irqrestore(&phba->hbalock, iflag);
8817 	return rc;
8818 }
8819 
8820 /**
8821  * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
8822  * @phba: Pointer to HBA context object.
8823  * @pmbox: Pointer to mailbox object.
8824  * @flag: Flag indicating how the mailbox need to be processed.
8825  *
8826  * This function is called by discovery code and HBA management code to submit
8827  * a mailbox command to firmware with SLI-4 interface spec.
8828  *
8829  * Return codes the caller owns the mailbox command after the return of the
8830  * function.
8831  **/
8832 static int
8833 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
8834 		       uint32_t flag)
8835 {
8836 	struct lpfc_sli *psli = &phba->sli;
8837 	unsigned long iflags;
8838 	int rc;
8839 
8840 	/* dump from issue mailbox command if setup */
8841 	lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
8842 
8843 	rc = lpfc_mbox_dev_check(phba);
8844 	if (unlikely(rc)) {
8845 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8846 				"(%d):2544 Mailbox command x%x (x%x/x%x) "
8847 				"cannot issue Data: x%x x%x\n",
8848 				mboxq->vport ? mboxq->vport->vpi : 0,
8849 				mboxq->u.mb.mbxCommand,
8850 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8851 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8852 				psli->sli_flag, flag);
8853 		goto out_not_finished;
8854 	}
8855 
8856 	/* Detect polling mode and jump to a handler */
8857 	if (!phba->sli4_hba.intr_enable) {
8858 		if (flag == MBX_POLL)
8859 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8860 		else
8861 			rc = -EIO;
8862 		if (rc != MBX_SUCCESS)
8863 			lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8864 					"(%d):2541 Mailbox command x%x "
8865 					"(x%x/x%x) failure: "
8866 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8867 					"Data: x%x x%x\n,",
8868 					mboxq->vport ? mboxq->vport->vpi : 0,
8869 					mboxq->u.mb.mbxCommand,
8870 					lpfc_sli_config_mbox_subsys_get(phba,
8871 									mboxq),
8872 					lpfc_sli_config_mbox_opcode_get(phba,
8873 									mboxq),
8874 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8875 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8876 					bf_get(lpfc_mcqe_ext_status,
8877 					       &mboxq->mcqe),
8878 					psli->sli_flag, flag);
8879 		return rc;
8880 	} else if (flag == MBX_POLL) {
8881 		lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
8882 				"(%d):2542 Try to issue mailbox command "
8883 				"x%x (x%x/x%x) synchronously ahead of async "
8884 				"mailbox command queue: x%x x%x\n",
8885 				mboxq->vport ? mboxq->vport->vpi : 0,
8886 				mboxq->u.mb.mbxCommand,
8887 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8888 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8889 				psli->sli_flag, flag);
8890 		/* Try to block the asynchronous mailbox posting */
8891 		rc = lpfc_sli4_async_mbox_block(phba);
8892 		if (!rc) {
8893 			/* Successfully blocked, now issue sync mbox cmd */
8894 			rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
8895 			if (rc != MBX_SUCCESS)
8896 				lpfc_printf_log(phba, KERN_WARNING,
8897 					LOG_MBOX | LOG_SLI,
8898 					"(%d):2597 Sync Mailbox command "
8899 					"x%x (x%x/x%x) failure: "
8900 					"mqe_sta: x%x mcqe_sta: x%x/x%x "
8901 					"Data: x%x x%x\n,",
8902 					mboxq->vport ? mboxq->vport->vpi : 0,
8903 					mboxq->u.mb.mbxCommand,
8904 					lpfc_sli_config_mbox_subsys_get(phba,
8905 									mboxq),
8906 					lpfc_sli_config_mbox_opcode_get(phba,
8907 									mboxq),
8908 					bf_get(lpfc_mqe_status, &mboxq->u.mqe),
8909 					bf_get(lpfc_mcqe_status, &mboxq->mcqe),
8910 					bf_get(lpfc_mcqe_ext_status,
8911 					       &mboxq->mcqe),
8912 					psli->sli_flag, flag);
8913 			/* Unblock the async mailbox posting afterward */
8914 			lpfc_sli4_async_mbox_unblock(phba);
8915 		}
8916 		return rc;
8917 	}
8918 
8919 	/* Now, interrupt mode asynchronous mailbox command */
8920 	rc = lpfc_mbox_cmd_check(phba, mboxq);
8921 	if (rc) {
8922 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8923 				"(%d):2543 Mailbox command x%x (x%x/x%x) "
8924 				"cannot issue Data: x%x x%x\n",
8925 				mboxq->vport ? mboxq->vport->vpi : 0,
8926 				mboxq->u.mb.mbxCommand,
8927 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8928 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8929 				psli->sli_flag, flag);
8930 		goto out_not_finished;
8931 	}
8932 
8933 	/* Put the mailbox command to the driver internal FIFO */
8934 	psli->slistat.mbox_busy++;
8935 	spin_lock_irqsave(&phba->hbalock, iflags);
8936 	lpfc_mbox_put(phba, mboxq);
8937 	spin_unlock_irqrestore(&phba->hbalock, iflags);
8938 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
8939 			"(%d):0354 Mbox cmd issue - Enqueue Data: "
8940 			"x%x (x%x/x%x) x%x x%x x%x\n",
8941 			mboxq->vport ? mboxq->vport->vpi : 0xffffff,
8942 			bf_get(lpfc_mqe_command, &mboxq->u.mqe),
8943 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
8944 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
8945 			phba->pport->port_state,
8946 			psli->sli_flag, MBX_NOWAIT);
8947 	/* Wake up worker thread to transport mailbox command from head */
8948 	lpfc_worker_wake_up(phba);
8949 
8950 	return MBX_BUSY;
8951 
8952 out_not_finished:
8953 	return MBX_NOT_FINISHED;
8954 }
8955 
8956 /**
8957  * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
8958  * @phba: Pointer to HBA context object.
8959  *
8960  * This function is called by worker thread to send a mailbox command to
8961  * SLI4 HBA firmware.
8962  *
8963  **/
8964 int
8965 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
8966 {
8967 	struct lpfc_sli *psli = &phba->sli;
8968 	LPFC_MBOXQ_t *mboxq;
8969 	int rc = MBX_SUCCESS;
8970 	unsigned long iflags;
8971 	struct lpfc_mqe *mqe;
8972 	uint32_t mbx_cmnd;
8973 
8974 	/* Check interrupt mode before post async mailbox command */
8975 	if (unlikely(!phba->sli4_hba.intr_enable))
8976 		return MBX_NOT_FINISHED;
8977 
8978 	/* Check for mailbox command service token */
8979 	spin_lock_irqsave(&phba->hbalock, iflags);
8980 	if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
8981 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8982 		return MBX_NOT_FINISHED;
8983 	}
8984 	if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
8985 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8986 		return MBX_NOT_FINISHED;
8987 	}
8988 	if (unlikely(phba->sli.mbox_active)) {
8989 		spin_unlock_irqrestore(&phba->hbalock, iflags);
8990 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
8991 				"0384 There is pending active mailbox cmd\n");
8992 		return MBX_NOT_FINISHED;
8993 	}
8994 	/* Take the mailbox command service token */
8995 	psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
8996 
8997 	/* Get the next mailbox command from head of queue */
8998 	mboxq = lpfc_mbox_get(phba);
8999 
9000 	/* If no more mailbox command waiting for post, we're done */
9001 	if (!mboxq) {
9002 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9003 		spin_unlock_irqrestore(&phba->hbalock, iflags);
9004 		return MBX_SUCCESS;
9005 	}
9006 	phba->sli.mbox_active = mboxq;
9007 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9008 
9009 	/* Check device readiness for posting mailbox command */
9010 	rc = lpfc_mbox_dev_check(phba);
9011 	if (unlikely(rc))
9012 		/* Driver clean routine will clean up pending mailbox */
9013 		goto out_not_finished;
9014 
9015 	/* Prepare the mbox command to be posted */
9016 	mqe = &mboxq->u.mqe;
9017 	mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
9018 
9019 	/* Start timer for the mbox_tmo and log some mailbox post messages */
9020 	mod_timer(&psli->mbox_tmo, (jiffies +
9021 		  msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq))));
9022 
9023 	lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
9024 			"(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
9025 			"x%x x%x\n",
9026 			mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
9027 			lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9028 			lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9029 			phba->pport->port_state, psli->sli_flag);
9030 
9031 	if (mbx_cmnd != MBX_HEARTBEAT) {
9032 		if (mboxq->vport) {
9033 			lpfc_debugfs_disc_trc(mboxq->vport,
9034 				LPFC_DISC_TRC_MBOX_VPORT,
9035 				"MBOX Send vport: cmd:x%x mb:x%x x%x",
9036 				mbx_cmnd, mqe->un.mb_words[0],
9037 				mqe->un.mb_words[1]);
9038 		} else {
9039 			lpfc_debugfs_disc_trc(phba->pport,
9040 				LPFC_DISC_TRC_MBOX,
9041 				"MBOX Send: cmd:x%x mb:x%x x%x",
9042 				mbx_cmnd, mqe->un.mb_words[0],
9043 				mqe->un.mb_words[1]);
9044 		}
9045 	}
9046 	psli->slistat.mbox_cmd++;
9047 
9048 	/* Post the mailbox command to the port */
9049 	rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
9050 	if (rc != MBX_SUCCESS) {
9051 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
9052 				"(%d):2533 Mailbox command x%x (x%x/x%x) "
9053 				"cannot issue Data: x%x x%x\n",
9054 				mboxq->vport ? mboxq->vport->vpi : 0,
9055 				mboxq->u.mb.mbxCommand,
9056 				lpfc_sli_config_mbox_subsys_get(phba, mboxq),
9057 				lpfc_sli_config_mbox_opcode_get(phba, mboxq),
9058 				psli->sli_flag, MBX_NOWAIT);
9059 		goto out_not_finished;
9060 	}
9061 
9062 	return rc;
9063 
9064 out_not_finished:
9065 	spin_lock_irqsave(&phba->hbalock, iflags);
9066 	if (phba->sli.mbox_active) {
9067 		mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
9068 		__lpfc_mbox_cmpl_put(phba, mboxq);
9069 		/* Release the token */
9070 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
9071 		phba->sli.mbox_active = NULL;
9072 	}
9073 	spin_unlock_irqrestore(&phba->hbalock, iflags);
9074 
9075 	return MBX_NOT_FINISHED;
9076 }
9077 
9078 /**
9079  * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
9080  * @phba: Pointer to HBA context object.
9081  * @pmbox: Pointer to mailbox object.
9082  * @flag: Flag indicating how the mailbox need to be processed.
9083  *
9084  * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
9085  * the API jump table function pointer from the lpfc_hba struct.
9086  *
9087  * Return codes the caller owns the mailbox command after the return of the
9088  * function.
9089  **/
9090 int
9091 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
9092 {
9093 	return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
9094 }
9095 
9096 /**
9097  * lpfc_mbox_api_table_setup - Set up mbox api function jump table
9098  * @phba: The hba struct for which this call is being executed.
9099  * @dev_grp: The HBA PCI-Device group number.
9100  *
9101  * This routine sets up the mbox interface API function jump table in @phba
9102  * struct.
9103  * Returns: 0 - success, -ENODEV - failure.
9104  **/
9105 int
9106 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
9107 {
9108 
9109 	switch (dev_grp) {
9110 	case LPFC_PCI_DEV_LP:
9111 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
9112 		phba->lpfc_sli_handle_slow_ring_event =
9113 				lpfc_sli_handle_slow_ring_event_s3;
9114 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
9115 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
9116 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
9117 		break;
9118 	case LPFC_PCI_DEV_OC:
9119 		phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
9120 		phba->lpfc_sli_handle_slow_ring_event =
9121 				lpfc_sli_handle_slow_ring_event_s4;
9122 		phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
9123 		phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
9124 		phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
9125 		break;
9126 	default:
9127 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9128 				"1420 Invalid HBA PCI-device group: 0x%x\n",
9129 				dev_grp);
9130 		return -ENODEV;
9131 		break;
9132 	}
9133 	return 0;
9134 }
9135 
9136 /**
9137  * __lpfc_sli_ringtx_put - Add an iocb to the txq
9138  * @phba: Pointer to HBA context object.
9139  * @pring: Pointer to driver SLI ring object.
9140  * @piocb: Pointer to address of newly added command iocb.
9141  *
9142  * This function is called with hbalock held for SLI3 ports or
9143  * the ring lock held for SLI4 ports to add a command
9144  * iocb to the txq when SLI layer cannot submit the command iocb
9145  * to the ring.
9146  **/
9147 void
9148 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9149 		    struct lpfc_iocbq *piocb)
9150 {
9151 	if (phba->sli_rev == LPFC_SLI_REV4)
9152 		lockdep_assert_held(&pring->ring_lock);
9153 	else
9154 		lockdep_assert_held(&phba->hbalock);
9155 	/* Insert the caller's iocb in the txq tail for later processing. */
9156 	list_add_tail(&piocb->list, &pring->txq);
9157 }
9158 
9159 /**
9160  * lpfc_sli_next_iocb - Get the next iocb in the txq
9161  * @phba: Pointer to HBA context object.
9162  * @pring: Pointer to driver SLI ring object.
9163  * @piocb: Pointer to address of newly added command iocb.
9164  *
9165  * This function is called with hbalock held before a new
9166  * iocb is submitted to the firmware. This function checks
9167  * txq to flush the iocbs in txq to Firmware before
9168  * submitting new iocbs to the Firmware.
9169  * If there are iocbs in the txq which need to be submitted
9170  * to firmware, lpfc_sli_next_iocb returns the first element
9171  * of the txq after dequeuing it from txq.
9172  * If there is no iocb in the txq then the function will return
9173  * *piocb and *piocb is set to NULL. Caller needs to check
9174  * *piocb to find if there are more commands in the txq.
9175  **/
9176 static struct lpfc_iocbq *
9177 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9178 		   struct lpfc_iocbq **piocb)
9179 {
9180 	struct lpfc_iocbq * nextiocb;
9181 
9182 	lockdep_assert_held(&phba->hbalock);
9183 
9184 	nextiocb = lpfc_sli_ringtx_get(phba, pring);
9185 	if (!nextiocb) {
9186 		nextiocb = *piocb;
9187 		*piocb = NULL;
9188 	}
9189 
9190 	return nextiocb;
9191 }
9192 
9193 /**
9194  * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
9195  * @phba: Pointer to HBA context object.
9196  * @ring_number: SLI ring number to issue iocb on.
9197  * @piocb: Pointer to command iocb.
9198  * @flag: Flag indicating if this command can be put into txq.
9199  *
9200  * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
9201  * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
9202  * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
9203  * flag is turned on, the function returns IOCB_ERROR. When the link is down,
9204  * this function allows only iocbs for posting buffers. This function finds
9205  * next available slot in the command ring and posts the command to the
9206  * available slot and writes the port attention register to request HBA start
9207  * processing new iocb. If there is no slot available in the ring and
9208  * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
9209  * the function returns IOCB_BUSY.
9210  *
9211  * This function is called with hbalock held. The function will return success
9212  * after it successfully submit the iocb to firmware or after adding to the
9213  * txq.
9214  **/
9215 static int
9216 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
9217 		    struct lpfc_iocbq *piocb, uint32_t flag)
9218 {
9219 	struct lpfc_iocbq *nextiocb;
9220 	IOCB_t *iocb;
9221 	struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number];
9222 
9223 	lockdep_assert_held(&phba->hbalock);
9224 
9225 	if (piocb->iocb_cmpl && (!piocb->vport) &&
9226 	   (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
9227 	   (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
9228 		lpfc_printf_log(phba, KERN_ERR,
9229 				LOG_SLI | LOG_VPORT,
9230 				"1807 IOCB x%x failed. No vport\n",
9231 				piocb->iocb.ulpCommand);
9232 		dump_stack();
9233 		return IOCB_ERROR;
9234 	}
9235 
9236 
9237 	/* If the PCI channel is in offline state, do not post iocbs. */
9238 	if (unlikely(pci_channel_offline(phba->pcidev)))
9239 		return IOCB_ERROR;
9240 
9241 	/* If HBA has a deferred error attention, fail the iocb. */
9242 	if (unlikely(phba->hba_flag & DEFER_ERATT))
9243 		return IOCB_ERROR;
9244 
9245 	/*
9246 	 * We should never get an IOCB if we are in a < LINK_DOWN state
9247 	 */
9248 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
9249 		return IOCB_ERROR;
9250 
9251 	/*
9252 	 * Check to see if we are blocking IOCB processing because of a
9253 	 * outstanding event.
9254 	 */
9255 	if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
9256 		goto iocb_busy;
9257 
9258 	if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
9259 		/*
9260 		 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
9261 		 * can be issued if the link is not up.
9262 		 */
9263 		switch (piocb->iocb.ulpCommand) {
9264 		case CMD_GEN_REQUEST64_CR:
9265 		case CMD_GEN_REQUEST64_CX:
9266 			if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
9267 				(piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
9268 					FC_RCTL_DD_UNSOL_CMD) ||
9269 				(piocb->iocb.un.genreq64.w5.hcsw.Type !=
9270 					MENLO_TRANSPORT_TYPE))
9271 
9272 				goto iocb_busy;
9273 			break;
9274 		case CMD_QUE_RING_BUF_CN:
9275 		case CMD_QUE_RING_BUF64_CN:
9276 			/*
9277 			 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
9278 			 * completion, iocb_cmpl MUST be 0.
9279 			 */
9280 			if (piocb->iocb_cmpl)
9281 				piocb->iocb_cmpl = NULL;
9282 			/*FALLTHROUGH*/
9283 		case CMD_CREATE_XRI_CR:
9284 		case CMD_CLOSE_XRI_CN:
9285 		case CMD_CLOSE_XRI_CX:
9286 			break;
9287 		default:
9288 			goto iocb_busy;
9289 		}
9290 
9291 	/*
9292 	 * For FCP commands, we must be in a state where we can process link
9293 	 * attention events.
9294 	 */
9295 	} else if (unlikely(pring->ringno == LPFC_FCP_RING &&
9296 			    !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
9297 		goto iocb_busy;
9298 	}
9299 
9300 	while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
9301 	       (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
9302 		lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
9303 
9304 	if (iocb)
9305 		lpfc_sli_update_ring(phba, pring);
9306 	else
9307 		lpfc_sli_update_full_ring(phba, pring);
9308 
9309 	if (!piocb)
9310 		return IOCB_SUCCESS;
9311 
9312 	goto out_busy;
9313 
9314  iocb_busy:
9315 	pring->stats.iocb_cmd_delay++;
9316 
9317  out_busy:
9318 
9319 	if (!(flag & SLI_IOCB_RET_IOCB)) {
9320 		__lpfc_sli_ringtx_put(phba, pring, piocb);
9321 		return IOCB_SUCCESS;
9322 	}
9323 
9324 	return IOCB_BUSY;
9325 }
9326 
9327 /**
9328  * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
9329  * @phba: Pointer to HBA context object.
9330  * @piocb: Pointer to command iocb.
9331  * @sglq: Pointer to the scatter gather queue object.
9332  *
9333  * This routine converts the bpl or bde that is in the IOCB
9334  * to a sgl list for the sli4 hardware. The physical address
9335  * of the bpl/bde is converted back to a virtual address.
9336  * If the IOCB contains a BPL then the list of BDE's is
9337  * converted to sli4_sge's. If the IOCB contains a single
9338  * BDE then it is converted to a single sli_sge.
9339  * The IOCB is still in cpu endianess so the contents of
9340  * the bpl can be used without byte swapping.
9341  *
9342  * Returns valid XRI = Success, NO_XRI = Failure.
9343 **/
9344 static uint16_t
9345 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
9346 		struct lpfc_sglq *sglq)
9347 {
9348 	uint16_t xritag = NO_XRI;
9349 	struct ulp_bde64 *bpl = NULL;
9350 	struct ulp_bde64 bde;
9351 	struct sli4_sge *sgl  = NULL;
9352 	struct lpfc_dmabuf *dmabuf;
9353 	IOCB_t *icmd;
9354 	int numBdes = 0;
9355 	int i = 0;
9356 	uint32_t offset = 0; /* accumulated offset in the sg request list */
9357 	int inbound = 0; /* number of sg reply entries inbound from firmware */
9358 
9359 	if (!piocbq || !sglq)
9360 		return xritag;
9361 
9362 	sgl  = (struct sli4_sge *)sglq->sgl;
9363 	icmd = &piocbq->iocb;
9364 	if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
9365 		return sglq->sli4_xritag;
9366 	if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9367 		numBdes = icmd->un.genreq64.bdl.bdeSize /
9368 				sizeof(struct ulp_bde64);
9369 		/* The addrHigh and addrLow fields within the IOCB
9370 		 * have not been byteswapped yet so there is no
9371 		 * need to swap them back.
9372 		 */
9373 		if (piocbq->context3)
9374 			dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
9375 		else
9376 			return xritag;
9377 
9378 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
9379 		if (!bpl)
9380 			return xritag;
9381 
9382 		for (i = 0; i < numBdes; i++) {
9383 			/* Should already be byte swapped. */
9384 			sgl->addr_hi = bpl->addrHigh;
9385 			sgl->addr_lo = bpl->addrLow;
9386 
9387 			sgl->word2 = le32_to_cpu(sgl->word2);
9388 			if ((i+1) == numBdes)
9389 				bf_set(lpfc_sli4_sge_last, sgl, 1);
9390 			else
9391 				bf_set(lpfc_sli4_sge_last, sgl, 0);
9392 			/* swap the size field back to the cpu so we
9393 			 * can assign it to the sgl.
9394 			 */
9395 			bde.tus.w = le32_to_cpu(bpl->tus.w);
9396 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
9397 			/* The offsets in the sgl need to be accumulated
9398 			 * separately for the request and reply lists.
9399 			 * The request is always first, the reply follows.
9400 			 */
9401 			if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
9402 				/* add up the reply sg entries */
9403 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
9404 					inbound++;
9405 				/* first inbound? reset the offset */
9406 				if (inbound == 1)
9407 					offset = 0;
9408 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
9409 				bf_set(lpfc_sli4_sge_type, sgl,
9410 					LPFC_SGE_TYPE_DATA);
9411 				offset += bde.tus.f.bdeSize;
9412 			}
9413 			sgl->word2 = cpu_to_le32(sgl->word2);
9414 			bpl++;
9415 			sgl++;
9416 		}
9417 	} else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
9418 			/* The addrHigh and addrLow fields of the BDE have not
9419 			 * been byteswapped yet so they need to be swapped
9420 			 * before putting them in the sgl.
9421 			 */
9422 			sgl->addr_hi =
9423 				cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
9424 			sgl->addr_lo =
9425 				cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
9426 			sgl->word2 = le32_to_cpu(sgl->word2);
9427 			bf_set(lpfc_sli4_sge_last, sgl, 1);
9428 			sgl->word2 = cpu_to_le32(sgl->word2);
9429 			sgl->sge_len =
9430 				cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
9431 	}
9432 	return sglq->sli4_xritag;
9433 }
9434 
9435 /**
9436  * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
9437  * @phba: Pointer to HBA context object.
9438  * @piocb: Pointer to command iocb.
9439  * @wqe: Pointer to the work queue entry.
9440  *
9441  * This routine converts the iocb command to its Work Queue Entry
9442  * equivalent. The wqe pointer should not have any fields set when
9443  * this routine is called because it will memcpy over them.
9444  * This routine does not set the CQ_ID or the WQEC bits in the
9445  * wqe.
9446  *
9447  * Returns: 0 = Success, IOCB_ERROR = Failure.
9448  **/
9449 static int
9450 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
9451 		union lpfc_wqe128 *wqe)
9452 {
9453 	uint32_t xmit_len = 0, total_len = 0;
9454 	uint8_t ct = 0;
9455 	uint32_t fip;
9456 	uint32_t abort_tag;
9457 	uint8_t command_type = ELS_COMMAND_NON_FIP;
9458 	uint8_t cmnd;
9459 	uint16_t xritag;
9460 	uint16_t abrt_iotag;
9461 	struct lpfc_iocbq *abrtiocbq;
9462 	struct ulp_bde64 *bpl = NULL;
9463 	uint32_t els_id = LPFC_ELS_ID_DEFAULT;
9464 	int numBdes, i;
9465 	struct ulp_bde64 bde;
9466 	struct lpfc_nodelist *ndlp;
9467 	uint32_t *pcmd;
9468 	uint32_t if_type;
9469 
9470 	fip = phba->hba_flag & HBA_FIP_SUPPORT;
9471 	/* The fcp commands will set command type */
9472 	if (iocbq->iocb_flag &  LPFC_IO_FCP)
9473 		command_type = FCP_COMMAND;
9474 	else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
9475 		command_type = ELS_COMMAND_FIP;
9476 	else
9477 		command_type = ELS_COMMAND_NON_FIP;
9478 
9479 	if (phba->fcp_embed_io)
9480 		memset(wqe, 0, sizeof(union lpfc_wqe128));
9481 	/* Some of the fields are in the right position already */
9482 	memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
9483 	/* The ct field has moved so reset */
9484 	wqe->generic.wqe_com.word7 = 0;
9485 	wqe->generic.wqe_com.word10 = 0;
9486 
9487 	abort_tag = (uint32_t) iocbq->iotag;
9488 	xritag = iocbq->sli4_xritag;
9489 	/* words0-2 bpl convert bde */
9490 	if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
9491 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9492 				sizeof(struct ulp_bde64);
9493 		bpl  = (struct ulp_bde64 *)
9494 			((struct lpfc_dmabuf *)iocbq->context3)->virt;
9495 		if (!bpl)
9496 			return IOCB_ERROR;
9497 
9498 		/* Should already be byte swapped. */
9499 		wqe->generic.bde.addrHigh =  le32_to_cpu(bpl->addrHigh);
9500 		wqe->generic.bde.addrLow =  le32_to_cpu(bpl->addrLow);
9501 		/* swap the size field back to the cpu so we
9502 		 * can assign it to the sgl.
9503 		 */
9504 		wqe->generic.bde.tus.w  = le32_to_cpu(bpl->tus.w);
9505 		xmit_len = wqe->generic.bde.tus.f.bdeSize;
9506 		total_len = 0;
9507 		for (i = 0; i < numBdes; i++) {
9508 			bde.tus.w  = le32_to_cpu(bpl[i].tus.w);
9509 			total_len += bde.tus.f.bdeSize;
9510 		}
9511 	} else
9512 		xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
9513 
9514 	iocbq->iocb.ulpIoTag = iocbq->iotag;
9515 	cmnd = iocbq->iocb.ulpCommand;
9516 
9517 	switch (iocbq->iocb.ulpCommand) {
9518 	case CMD_ELS_REQUEST64_CR:
9519 		if (iocbq->iocb_flag & LPFC_IO_LIBDFC)
9520 			ndlp = iocbq->context_un.ndlp;
9521 		else
9522 			ndlp = (struct lpfc_nodelist *)iocbq->context1;
9523 		if (!iocbq->iocb.ulpLe) {
9524 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9525 				"2007 Only Limited Edition cmd Format"
9526 				" supported 0x%x\n",
9527 				iocbq->iocb.ulpCommand);
9528 			return IOCB_ERROR;
9529 		}
9530 
9531 		wqe->els_req.payload_len = xmit_len;
9532 		/* Els_reguest64 has a TMO */
9533 		bf_set(wqe_tmo, &wqe->els_req.wqe_com,
9534 			iocbq->iocb.ulpTimeout);
9535 		/* Need a VF for word 4 set the vf bit*/
9536 		bf_set(els_req64_vf, &wqe->els_req, 0);
9537 		/* And a VFID for word 12 */
9538 		bf_set(els_req64_vfid, &wqe->els_req, 0);
9539 		ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9540 		bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9541 		       iocbq->iocb.ulpContext);
9542 		bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
9543 		bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
9544 		/* CCP CCPE PV PRI in word10 were set in the memcpy */
9545 		if (command_type == ELS_COMMAND_FIP)
9546 			els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
9547 					>> LPFC_FIP_ELS_ID_SHIFT);
9548 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9549 					iocbq->context2)->virt);
9550 		if_type = bf_get(lpfc_sli_intf_if_type,
9551 					&phba->sli4_hba.sli_intf);
9552 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9553 			if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
9554 				*pcmd == ELS_CMD_SCR ||
9555 				*pcmd == ELS_CMD_RDF ||
9556 				*pcmd == ELS_CMD_RSCN_XMT ||
9557 				*pcmd == ELS_CMD_FDISC ||
9558 				*pcmd == ELS_CMD_LOGO ||
9559 				*pcmd == ELS_CMD_PLOGI)) {
9560 				bf_set(els_req64_sp, &wqe->els_req, 1);
9561 				bf_set(els_req64_sid, &wqe->els_req,
9562 					iocbq->vport->fc_myDID);
9563 				if ((*pcmd == ELS_CMD_FLOGI) &&
9564 					!(phba->fc_topology ==
9565 						LPFC_TOPOLOGY_LOOP))
9566 					bf_set(els_req64_sid, &wqe->els_req, 0);
9567 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
9568 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9569 					phba->vpi_ids[iocbq->vport->vpi]);
9570 			} else if (pcmd && iocbq->context1) {
9571 				bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
9572 				bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
9573 					phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9574 			}
9575 		}
9576 		bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
9577 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9578 		bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
9579 		bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
9580 		bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
9581 		bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
9582 		bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9583 		bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
9584 		wqe->els_req.max_response_payload_len = total_len - xmit_len;
9585 		break;
9586 	case CMD_XMIT_SEQUENCE64_CX:
9587 		bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
9588 		       iocbq->iocb.un.ulpWord[3]);
9589 		bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
9590 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9591 		/* The entire sequence is transmitted for this IOCB */
9592 		xmit_len = total_len;
9593 		cmnd = CMD_XMIT_SEQUENCE64_CR;
9594 		if (phba->link_flag & LS_LOOPBACK_MODE)
9595 			bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
9596 		/* fall through */
9597 	case CMD_XMIT_SEQUENCE64_CR:
9598 		/* word3 iocb=io_tag32 wqe=reserved */
9599 		wqe->xmit_sequence.rsvd3 = 0;
9600 		/* word4 relative_offset memcpy */
9601 		/* word5 r_ctl/df_ctl memcpy */
9602 		bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
9603 		bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
9604 		bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
9605 		       LPFC_WQE_IOD_WRITE);
9606 		bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
9607 		       LPFC_WQE_LENLOC_WORD12);
9608 		bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
9609 		wqe->xmit_sequence.xmit_len = xmit_len;
9610 		command_type = OTHER_COMMAND;
9611 		break;
9612 	case CMD_XMIT_BCAST64_CN:
9613 		/* word3 iocb=iotag32 wqe=seq_payload_len */
9614 		wqe->xmit_bcast64.seq_payload_len = xmit_len;
9615 		/* word4 iocb=rsvd wqe=rsvd */
9616 		/* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
9617 		/* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
9618 		bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
9619 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9620 		bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
9621 		bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
9622 		bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
9623 		       LPFC_WQE_LENLOC_WORD3);
9624 		bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
9625 		break;
9626 	case CMD_FCP_IWRITE64_CR:
9627 		command_type = FCP_COMMAND_DATA_OUT;
9628 		/* word3 iocb=iotag wqe=payload_offset_len */
9629 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9630 		bf_set(payload_offset_len, &wqe->fcp_iwrite,
9631 		       xmit_len + sizeof(struct fcp_rsp));
9632 		bf_set(cmd_buff_len, &wqe->fcp_iwrite,
9633 		       0);
9634 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9635 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9636 		bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
9637 		       iocbq->iocb.ulpFCP2Rcvy);
9638 		bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
9639 		/* Always open the exchange */
9640 		bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
9641 		bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
9642 		       LPFC_WQE_LENLOC_WORD4);
9643 		bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
9644 		bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
9645 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9646 			bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1);
9647 			bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1);
9648 			if (iocbq->priority) {
9649 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9650 				       (iocbq->priority << 1));
9651 			} else {
9652 				bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com,
9653 				       (phba->cfg_XLanePriority << 1));
9654 			}
9655 		}
9656 		/* Note, word 10 is already initialized to 0 */
9657 
9658 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9659 		if (phba->cfg_enable_pbde)
9660 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1);
9661 		else
9662 			bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0);
9663 
9664 		if (phba->fcp_embed_io) {
9665 			struct lpfc_io_buf *lpfc_cmd;
9666 			struct sli4_sge *sgl;
9667 			struct fcp_cmnd *fcp_cmnd;
9668 			uint32_t *ptr;
9669 
9670 			/* 128 byte wqe support here */
9671 
9672 			lpfc_cmd = iocbq->context1;
9673 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9674 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9675 
9676 			/* Word 0-2 - FCP_CMND */
9677 			wqe->generic.bde.tus.f.bdeFlags =
9678 				BUFF_TYPE_BDE_IMMED;
9679 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9680 			wqe->generic.bde.addrHigh = 0;
9681 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9682 
9683 			bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1);
9684 			bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0);
9685 
9686 			/* Word 22-29  FCP CMND Payload */
9687 			ptr = &wqe->words[22];
9688 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9689 		}
9690 		break;
9691 	case CMD_FCP_IREAD64_CR:
9692 		/* word3 iocb=iotag wqe=payload_offset_len */
9693 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9694 		bf_set(payload_offset_len, &wqe->fcp_iread,
9695 		       xmit_len + sizeof(struct fcp_rsp));
9696 		bf_set(cmd_buff_len, &wqe->fcp_iread,
9697 		       0);
9698 		/* word4 iocb=parameter wqe=total_xfer_length memcpy */
9699 		/* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
9700 		bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
9701 		       iocbq->iocb.ulpFCP2Rcvy);
9702 		bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
9703 		/* Always open the exchange */
9704 		bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
9705 		bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
9706 		       LPFC_WQE_LENLOC_WORD4);
9707 		bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
9708 		bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
9709 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9710 			bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1);
9711 			bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1);
9712 			if (iocbq->priority) {
9713 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9714 				       (iocbq->priority << 1));
9715 			} else {
9716 				bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com,
9717 				       (phba->cfg_XLanePriority << 1));
9718 			}
9719 		}
9720 		/* Note, word 10 is already initialized to 0 */
9721 
9722 		/* Don't set PBDE for Perf hints, just lpfc_enable_pbde */
9723 		if (phba->cfg_enable_pbde)
9724 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1);
9725 		else
9726 			bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0);
9727 
9728 		if (phba->fcp_embed_io) {
9729 			struct lpfc_io_buf *lpfc_cmd;
9730 			struct sli4_sge *sgl;
9731 			struct fcp_cmnd *fcp_cmnd;
9732 			uint32_t *ptr;
9733 
9734 			/* 128 byte wqe support here */
9735 
9736 			lpfc_cmd = iocbq->context1;
9737 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9738 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9739 
9740 			/* Word 0-2 - FCP_CMND */
9741 			wqe->generic.bde.tus.f.bdeFlags =
9742 				BUFF_TYPE_BDE_IMMED;
9743 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9744 			wqe->generic.bde.addrHigh = 0;
9745 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9746 
9747 			bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1);
9748 			bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0);
9749 
9750 			/* Word 22-29  FCP CMND Payload */
9751 			ptr = &wqe->words[22];
9752 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9753 		}
9754 		break;
9755 	case CMD_FCP_ICMND64_CR:
9756 		/* word3 iocb=iotag wqe=payload_offset_len */
9757 		/* Add the FCP_CMD and FCP_RSP sizes to get the offset */
9758 		bf_set(payload_offset_len, &wqe->fcp_icmd,
9759 		       xmit_len + sizeof(struct fcp_rsp));
9760 		bf_set(cmd_buff_len, &wqe->fcp_icmd,
9761 		       0);
9762 		/* word3 iocb=IO_TAG wqe=reserved */
9763 		bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
9764 		/* Always open the exchange */
9765 		bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
9766 		bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
9767 		bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
9768 		bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
9769 		       LPFC_WQE_LENLOC_NONE);
9770 		bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com,
9771 		       iocbq->iocb.ulpFCP2Rcvy);
9772 		if (iocbq->iocb_flag & LPFC_IO_OAS) {
9773 			bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1);
9774 			bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1);
9775 			if (iocbq->priority) {
9776 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9777 				       (iocbq->priority << 1));
9778 			} else {
9779 				bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com,
9780 				       (phba->cfg_XLanePriority << 1));
9781 			}
9782 		}
9783 		/* Note, word 10 is already initialized to 0 */
9784 
9785 		if (phba->fcp_embed_io) {
9786 			struct lpfc_io_buf *lpfc_cmd;
9787 			struct sli4_sge *sgl;
9788 			struct fcp_cmnd *fcp_cmnd;
9789 			uint32_t *ptr;
9790 
9791 			/* 128 byte wqe support here */
9792 
9793 			lpfc_cmd = iocbq->context1;
9794 			sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl;
9795 			fcp_cmnd = lpfc_cmd->fcp_cmnd;
9796 
9797 			/* Word 0-2 - FCP_CMND */
9798 			wqe->generic.bde.tus.f.bdeFlags =
9799 				BUFF_TYPE_BDE_IMMED;
9800 			wqe->generic.bde.tus.f.bdeSize = sgl->sge_len;
9801 			wqe->generic.bde.addrHigh = 0;
9802 			wqe->generic.bde.addrLow =  88;  /* Word 22 */
9803 
9804 			bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1);
9805 			bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0);
9806 
9807 			/* Word 22-29  FCP CMND Payload */
9808 			ptr = &wqe->words[22];
9809 			memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd));
9810 		}
9811 		break;
9812 	case CMD_GEN_REQUEST64_CR:
9813 		/* For this command calculate the xmit length of the
9814 		 * request bde.
9815 		 */
9816 		xmit_len = 0;
9817 		numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
9818 			sizeof(struct ulp_bde64);
9819 		for (i = 0; i < numBdes; i++) {
9820 			bde.tus.w = le32_to_cpu(bpl[i].tus.w);
9821 			if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
9822 				break;
9823 			xmit_len += bde.tus.f.bdeSize;
9824 		}
9825 		/* word3 iocb=IO_TAG wqe=request_payload_len */
9826 		wqe->gen_req.request_payload_len = xmit_len;
9827 		/* word4 iocb=parameter wqe=relative_offset memcpy */
9828 		/* word5 [rctl, type, df_ctl, la] copied in memcpy */
9829 		/* word6 context tag copied in memcpy */
9830 		if (iocbq->iocb.ulpCt_h  || iocbq->iocb.ulpCt_l) {
9831 			ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
9832 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9833 				"2015 Invalid CT %x command 0x%x\n",
9834 				ct, iocbq->iocb.ulpCommand);
9835 			return IOCB_ERROR;
9836 		}
9837 		bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
9838 		bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
9839 		bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
9840 		bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
9841 		bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
9842 		bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
9843 		bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
9844 		bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
9845 		wqe->gen_req.max_response_payload_len = total_len - xmit_len;
9846 		command_type = OTHER_COMMAND;
9847 		break;
9848 	case CMD_XMIT_ELS_RSP64_CX:
9849 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9850 		/* words0-2 BDE memcpy */
9851 		/* word3 iocb=iotag32 wqe=response_payload_len */
9852 		wqe->xmit_els_rsp.response_payload_len = xmit_len;
9853 		/* word4 */
9854 		wqe->xmit_els_rsp.word4 = 0;
9855 		/* word5 iocb=rsvd wge=did */
9856 		bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
9857 			 iocbq->iocb.un.xseq64.xmit_els_remoteID);
9858 
9859 		if_type = bf_get(lpfc_sli_intf_if_type,
9860 					&phba->sli4_hba.sli_intf);
9861 		if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) {
9862 			if (iocbq->vport->fc_flag & FC_PT2PT) {
9863 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9864 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9865 					iocbq->vport->fc_myDID);
9866 				if (iocbq->vport->fc_myDID == Fabric_DID) {
9867 					bf_set(wqe_els_did,
9868 						&wqe->xmit_els_rsp.wqe_dest, 0);
9869 				}
9870 			}
9871 		}
9872 		bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
9873 		       ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9874 		bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
9875 		bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
9876 		       iocbq->iocb.unsli3.rcvsli3.ox_id);
9877 		if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
9878 			bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9879 			       phba->vpi_ids[iocbq->vport->vpi]);
9880 		bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
9881 		bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
9882 		bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
9883 		bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
9884 		       LPFC_WQE_LENLOC_WORD3);
9885 		bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
9886 		bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
9887 		       phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
9888 		pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
9889 					iocbq->context2)->virt);
9890 		if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
9891 				bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1);
9892 				bf_set(els_rsp64_sid, &wqe->xmit_els_rsp,
9893 					iocbq->vport->fc_myDID);
9894 				bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1);
9895 				bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
9896 					phba->vpi_ids[phba->pport->vpi]);
9897 		}
9898 		command_type = OTHER_COMMAND;
9899 		break;
9900 	case CMD_CLOSE_XRI_CN:
9901 	case CMD_ABORT_XRI_CN:
9902 	case CMD_ABORT_XRI_CX:
9903 		/* words 0-2 memcpy should be 0 rserved */
9904 		/* port will send abts */
9905 		abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
9906 		if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
9907 			abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
9908 			fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
9909 		} else
9910 			fip = 0;
9911 
9912 		if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
9913 			/*
9914 			 * The link is down, or the command was ELS_FIP
9915 			 * so the fw does not need to send abts
9916 			 * on the wire.
9917 			 */
9918 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
9919 		else
9920 			bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
9921 		bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
9922 		/* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
9923 		wqe->abort_cmd.rsrvd5 = 0;
9924 		bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
9925 			((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
9926 		abort_tag = iocbq->iocb.un.acxri.abortIoTag;
9927 		/*
9928 		 * The abort handler will send us CMD_ABORT_XRI_CN or
9929 		 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
9930 		 */
9931 		bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
9932 		bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
9933 		bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
9934 		       LPFC_WQE_LENLOC_NONE);
9935 		cmnd = CMD_ABORT_XRI_CX;
9936 		command_type = OTHER_COMMAND;
9937 		xritag = 0;
9938 		break;
9939 	case CMD_XMIT_BLS_RSP64_CX:
9940 		ndlp = (struct lpfc_nodelist *)iocbq->context1;
9941 		/* As BLS ABTS RSP WQE is very different from other WQEs,
9942 		 * we re-construct this WQE here based on information in
9943 		 * iocbq from scratch.
9944 		 */
9945 		memset(wqe, 0, sizeof(*wqe));
9946 		/* OX_ID is invariable to who sent ABTS to CT exchange */
9947 		bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
9948 		       bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
9949 		if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
9950 		    LPFC_ABTS_UNSOL_INT) {
9951 			/* ABTS sent by initiator to CT exchange, the
9952 			 * RX_ID field will be filled with the newly
9953 			 * allocated responder XRI.
9954 			 */
9955 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9956 			       iocbq->sli4_xritag);
9957 		} else {
9958 			/* ABTS sent by responder to CT exchange, the
9959 			 * RX_ID field will be filled with the responder
9960 			 * RX_ID from ABTS.
9961 			 */
9962 			bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
9963 			       bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
9964 		}
9965 		bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
9966 		bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
9967 
9968 		/* Use CT=VPI */
9969 		bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
9970 			ndlp->nlp_DID);
9971 		bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
9972 			iocbq->iocb.ulpContext);
9973 		bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
9974 		bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
9975 			phba->vpi_ids[phba->pport->vpi]);
9976 		bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
9977 		bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
9978 		       LPFC_WQE_LENLOC_NONE);
9979 		/* Overwrite the pre-set comnd type with OTHER_COMMAND */
9980 		command_type = OTHER_COMMAND;
9981 		if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
9982 			bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
9983 			       bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
9984 			bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
9985 			       bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
9986 			bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
9987 			       bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
9988 		}
9989 
9990 		break;
9991 	case CMD_SEND_FRAME:
9992 		bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME);
9993 		bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */
9994 		bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */
9995 		bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1);
9996 		bf_set(wqe_xbl, &wqe->generic.wqe_com, 1);
9997 		bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
9998 		bf_set(wqe_xc, &wqe->generic.wqe_com, 1);
9999 		bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA);
10000 		bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10001 		bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10002 		bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10003 		return 0;
10004 	case CMD_XRI_ABORTED_CX:
10005 	case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
10006 	case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
10007 	case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
10008 	case CMD_FCP_TRSP64_CX: /* Target mode rcv */
10009 	case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
10010 	default:
10011 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10012 				"2014 Invalid command 0x%x\n",
10013 				iocbq->iocb.ulpCommand);
10014 		return IOCB_ERROR;
10015 		break;
10016 	}
10017 
10018 	if (iocbq->iocb_flag & LPFC_IO_DIF_PASS)
10019 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU);
10020 	else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP)
10021 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP);
10022 	else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT)
10023 		bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT);
10024 	iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP |
10025 			      LPFC_IO_DIF_INSERT);
10026 	bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
10027 	bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
10028 	wqe->generic.wqe_com.abort_tag = abort_tag;
10029 	bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
10030 	bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
10031 	bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
10032 	bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
10033 	return 0;
10034 }
10035 
10036 /**
10037  * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
10038  * @phba: Pointer to HBA context object.
10039  * @ring_number: SLI ring number to issue iocb on.
10040  * @piocb: Pointer to command iocb.
10041  * @flag: Flag indicating if this command can be put into txq.
10042  *
10043  * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
10044  * an iocb command to an HBA with SLI-4 interface spec.
10045  *
10046  * This function is called with ringlock held. The function will return success
10047  * after it successfully submit the iocb to firmware or after adding to the
10048  * txq.
10049  **/
10050 static int
10051 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
10052 			 struct lpfc_iocbq *piocb, uint32_t flag)
10053 {
10054 	struct lpfc_sglq *sglq;
10055 	union lpfc_wqe128 wqe;
10056 	struct lpfc_queue *wq;
10057 	struct lpfc_sli_ring *pring;
10058 
10059 	/* Get the WQ */
10060 	if ((piocb->iocb_flag & LPFC_IO_FCP) ||
10061 	    (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10062 		wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq;
10063 	} else {
10064 		wq = phba->sli4_hba.els_wq;
10065 	}
10066 
10067 	/* Get corresponding ring */
10068 	pring = wq->pring;
10069 
10070 	/*
10071 	 * The WQE can be either 64 or 128 bytes,
10072 	 */
10073 
10074 	lockdep_assert_held(&pring->ring_lock);
10075 
10076 	if (piocb->sli4_xritag == NO_XRI) {
10077 		if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
10078 		    piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
10079 			sglq = NULL;
10080 		else {
10081 			if (!list_empty(&pring->txq)) {
10082 				if (!(flag & SLI_IOCB_RET_IOCB)) {
10083 					__lpfc_sli_ringtx_put(phba,
10084 						pring, piocb);
10085 					return IOCB_SUCCESS;
10086 				} else {
10087 					return IOCB_BUSY;
10088 				}
10089 			} else {
10090 				sglq = __lpfc_sli_get_els_sglq(phba, piocb);
10091 				if (!sglq) {
10092 					if (!(flag & SLI_IOCB_RET_IOCB)) {
10093 						__lpfc_sli_ringtx_put(phba,
10094 								pring,
10095 								piocb);
10096 						return IOCB_SUCCESS;
10097 					} else
10098 						return IOCB_BUSY;
10099 				}
10100 			}
10101 		}
10102 	} else if (piocb->iocb_flag &  LPFC_IO_FCP)
10103 		/* These IO's already have an XRI and a mapped sgl. */
10104 		sglq = NULL;
10105 	else {
10106 		/*
10107 		 * This is a continuation of a commandi,(CX) so this
10108 		 * sglq is on the active list
10109 		 */
10110 		sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag);
10111 		if (!sglq)
10112 			return IOCB_ERROR;
10113 	}
10114 
10115 	if (sglq) {
10116 		piocb->sli4_lxritag = sglq->sli4_lxritag;
10117 		piocb->sli4_xritag = sglq->sli4_xritag;
10118 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
10119 			return IOCB_ERROR;
10120 	}
10121 
10122 	if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
10123 		return IOCB_ERROR;
10124 
10125 	if (lpfc_sli4_wq_put(wq, &wqe))
10126 		return IOCB_ERROR;
10127 	lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
10128 
10129 	return 0;
10130 }
10131 
10132 /**
10133  * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
10134  *
10135  * This routine wraps the actual lockless version for issusing IOCB function
10136  * pointer from the lpfc_hba struct.
10137  *
10138  * Return codes:
10139  * IOCB_ERROR - Error
10140  * IOCB_SUCCESS - Success
10141  * IOCB_BUSY - Busy
10142  **/
10143 int
10144 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10145 		struct lpfc_iocbq *piocb, uint32_t flag)
10146 {
10147 	return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10148 }
10149 
10150 /**
10151  * lpfc_sli_api_table_setup - Set up sli api function jump table
10152  * @phba: The hba struct for which this call is being executed.
10153  * @dev_grp: The HBA PCI-Device group number.
10154  *
10155  * This routine sets up the SLI interface API function jump table in @phba
10156  * struct.
10157  * Returns: 0 - success, -ENODEV - failure.
10158  **/
10159 int
10160 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
10161 {
10162 
10163 	switch (dev_grp) {
10164 	case LPFC_PCI_DEV_LP:
10165 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
10166 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
10167 		break;
10168 	case LPFC_PCI_DEV_OC:
10169 		phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
10170 		phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
10171 		break;
10172 	default:
10173 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10174 				"1419 Invalid HBA PCI-device group: 0x%x\n",
10175 				dev_grp);
10176 		return -ENODEV;
10177 		break;
10178 	}
10179 	phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
10180 	return 0;
10181 }
10182 
10183 /**
10184  * lpfc_sli4_calc_ring - Calculates which ring to use
10185  * @phba: Pointer to HBA context object.
10186  * @piocb: Pointer to command iocb.
10187  *
10188  * For SLI4 only, FCP IO can deferred to one fo many WQs, based on
10189  * hba_wqidx, thus we need to calculate the corresponding ring.
10190  * Since ABORTS must go on the same WQ of the command they are
10191  * aborting, we use command's hba_wqidx.
10192  */
10193 struct lpfc_sli_ring *
10194 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb)
10195 {
10196 	struct lpfc_io_buf *lpfc_cmd;
10197 
10198 	if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) {
10199 		if (unlikely(!phba->sli4_hba.hdwq))
10200 			return NULL;
10201 		/*
10202 		 * for abort iocb hba_wqidx should already
10203 		 * be setup based on what work queue we used.
10204 		 */
10205 		if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
10206 			lpfc_cmd = (struct lpfc_io_buf *)piocb->context1;
10207 			piocb->hba_wqidx = lpfc_cmd->hdwq_no;
10208 		}
10209 		return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring;
10210 	} else {
10211 		if (unlikely(!phba->sli4_hba.els_wq))
10212 			return NULL;
10213 		piocb->hba_wqidx = 0;
10214 		return phba->sli4_hba.els_wq->pring;
10215 	}
10216 }
10217 
10218 /**
10219  * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
10220  * @phba: Pointer to HBA context object.
10221  * @pring: Pointer to driver SLI ring object.
10222  * @piocb: Pointer to command iocb.
10223  * @flag: Flag indicating if this command can be put into txq.
10224  *
10225  * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
10226  * function. This function gets the hbalock and calls
10227  * __lpfc_sli_issue_iocb function and will return the error returned
10228  * by __lpfc_sli_issue_iocb function. This wrapper is used by
10229  * functions which do not hold hbalock.
10230  **/
10231 int
10232 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
10233 		    struct lpfc_iocbq *piocb, uint32_t flag)
10234 {
10235 	struct lpfc_sli_ring *pring;
10236 	struct lpfc_queue *eq;
10237 	unsigned long iflags;
10238 	int rc;
10239 
10240 	if (phba->sli_rev == LPFC_SLI_REV4) {
10241 		eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq;
10242 
10243 		pring = lpfc_sli4_calc_ring(phba, piocb);
10244 		if (unlikely(pring == NULL))
10245 			return IOCB_ERROR;
10246 
10247 		spin_lock_irqsave(&pring->ring_lock, iflags);
10248 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10249 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
10250 
10251 		lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH);
10252 	} else {
10253 		/* For now, SLI2/3 will still use hbalock */
10254 		spin_lock_irqsave(&phba->hbalock, iflags);
10255 		rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
10256 		spin_unlock_irqrestore(&phba->hbalock, iflags);
10257 	}
10258 	return rc;
10259 }
10260 
10261 /**
10262  * lpfc_extra_ring_setup - Extra ring setup function
10263  * @phba: Pointer to HBA context object.
10264  *
10265  * This function is called while driver attaches with the
10266  * HBA to setup the extra ring. The extra ring is used
10267  * only when driver needs to support target mode functionality
10268  * or IP over FC functionalities.
10269  *
10270  * This function is called with no lock held. SLI3 only.
10271  **/
10272 static int
10273 lpfc_extra_ring_setup( struct lpfc_hba *phba)
10274 {
10275 	struct lpfc_sli *psli;
10276 	struct lpfc_sli_ring *pring;
10277 
10278 	psli = &phba->sli;
10279 
10280 	/* Adjust cmd/rsp ring iocb entries more evenly */
10281 
10282 	/* Take some away from the FCP ring */
10283 	pring = &psli->sli3_ring[LPFC_FCP_RING];
10284 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10285 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10286 	pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10287 	pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10288 
10289 	/* and give them to the extra ring */
10290 	pring = &psli->sli3_ring[LPFC_EXTRA_RING];
10291 
10292 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10293 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10294 	pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10295 	pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10296 
10297 	/* Setup default profile for this ring */
10298 	pring->iotag_max = 4096;
10299 	pring->num_mask = 1;
10300 	pring->prt[0].profile = 0;      /* Mask 0 */
10301 	pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
10302 	pring->prt[0].type = phba->cfg_multi_ring_type;
10303 	pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
10304 	return 0;
10305 }
10306 
10307 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
10308  * @phba: Pointer to HBA context object.
10309  * @iocbq: Pointer to iocb object.
10310  *
10311  * The async_event handler calls this routine when it receives
10312  * an ASYNC_STATUS_CN event from the port.  The port generates
10313  * this event when an Abort Sequence request to an rport fails
10314  * twice in succession.  The abort could be originated by the
10315  * driver or by the port.  The ABTS could have been for an ELS
10316  * or FCP IO.  The port only generates this event when an ABTS
10317  * fails to complete after one retry.
10318  */
10319 static void
10320 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
10321 			  struct lpfc_iocbq *iocbq)
10322 {
10323 	struct lpfc_nodelist *ndlp = NULL;
10324 	uint16_t rpi = 0, vpi = 0;
10325 	struct lpfc_vport *vport = NULL;
10326 
10327 	/* The rpi in the ulpContext is vport-sensitive. */
10328 	vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
10329 	rpi = iocbq->iocb.ulpContext;
10330 
10331 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10332 			"3092 Port generated ABTS async event "
10333 			"on vpi %d rpi %d status 0x%x\n",
10334 			vpi, rpi, iocbq->iocb.ulpStatus);
10335 
10336 	vport = lpfc_find_vport_by_vpid(phba, vpi);
10337 	if (!vport)
10338 		goto err_exit;
10339 	ndlp = lpfc_findnode_rpi(vport, rpi);
10340 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
10341 		goto err_exit;
10342 
10343 	if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
10344 		lpfc_sli_abts_recover_port(vport, ndlp);
10345 	return;
10346 
10347  err_exit:
10348 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10349 			"3095 Event Context not found, no "
10350 			"action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
10351 			iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
10352 			vpi, rpi);
10353 }
10354 
10355 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
10356  * @phba: pointer to HBA context object.
10357  * @ndlp: nodelist pointer for the impacted rport.
10358  * @axri: pointer to the wcqe containing the failed exchange.
10359  *
10360  * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
10361  * port.  The port generates this event when an abort exchange request to an
10362  * rport fails twice in succession with no reply.  The abort could be originated
10363  * by the driver or by the port.  The ABTS could have been for an ELS or FCP IO.
10364  */
10365 void
10366 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
10367 			   struct lpfc_nodelist *ndlp,
10368 			   struct sli4_wcqe_xri_aborted *axri)
10369 {
10370 	struct lpfc_vport *vport;
10371 	uint32_t ext_status = 0;
10372 
10373 	if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
10374 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10375 				"3115 Node Context not found, driver "
10376 				"ignoring abts err event\n");
10377 		return;
10378 	}
10379 
10380 	vport = ndlp->vport;
10381 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10382 			"3116 Port generated FCP XRI ABORT event on "
10383 			"vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
10384 			ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi],
10385 			bf_get(lpfc_wcqe_xa_xri, axri),
10386 			bf_get(lpfc_wcqe_xa_status, axri),
10387 			axri->parameter);
10388 
10389 	/*
10390 	 * Catch the ABTS protocol failure case.  Older OCe FW releases returned
10391 	 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
10392 	 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
10393 	 */
10394 	ext_status = axri->parameter & IOERR_PARAM_MASK;
10395 	if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
10396 	    ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
10397 		lpfc_sli_abts_recover_port(vport, ndlp);
10398 }
10399 
10400 /**
10401  * lpfc_sli_async_event_handler - ASYNC iocb handler function
10402  * @phba: Pointer to HBA context object.
10403  * @pring: Pointer to driver SLI ring object.
10404  * @iocbq: Pointer to iocb object.
10405  *
10406  * This function is called by the slow ring event handler
10407  * function when there is an ASYNC event iocb in the ring.
10408  * This function is called with no lock held.
10409  * Currently this function handles only temperature related
10410  * ASYNC events. The function decodes the temperature sensor
10411  * event message and posts events for the management applications.
10412  **/
10413 static void
10414 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
10415 	struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
10416 {
10417 	IOCB_t *icmd;
10418 	uint16_t evt_code;
10419 	struct temp_event temp_event_data;
10420 	struct Scsi_Host *shost;
10421 	uint32_t *iocb_w;
10422 
10423 	icmd = &iocbq->iocb;
10424 	evt_code = icmd->un.asyncstat.evt_code;
10425 
10426 	switch (evt_code) {
10427 	case ASYNC_TEMP_WARN:
10428 	case ASYNC_TEMP_SAFE:
10429 		temp_event_data.data = (uint32_t) icmd->ulpContext;
10430 		temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
10431 		if (evt_code == ASYNC_TEMP_WARN) {
10432 			temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
10433 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10434 				"0347 Adapter is very hot, please take "
10435 				"corrective action. temperature : %d Celsius\n",
10436 				(uint32_t) icmd->ulpContext);
10437 		} else {
10438 			temp_event_data.event_code = LPFC_NORMAL_TEMP;
10439 			lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
10440 				"0340 Adapter temperature is OK now. "
10441 				"temperature : %d Celsius\n",
10442 				(uint32_t) icmd->ulpContext);
10443 		}
10444 
10445 		/* Send temperature change event to applications */
10446 		shost = lpfc_shost_from_vport(phba->pport);
10447 		fc_host_post_vendor_event(shost, fc_get_event_number(),
10448 			sizeof(temp_event_data), (char *) &temp_event_data,
10449 			LPFC_NL_VENDOR_ID);
10450 		break;
10451 	case ASYNC_STATUS_CN:
10452 		lpfc_sli_abts_err_handler(phba, iocbq);
10453 		break;
10454 	default:
10455 		iocb_w = (uint32_t *) icmd;
10456 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10457 			"0346 Ring %d handler: unexpected ASYNC_STATUS"
10458 			" evt_code 0x%x\n"
10459 			"W0  0x%08x W1  0x%08x W2  0x%08x W3  0x%08x\n"
10460 			"W4  0x%08x W5  0x%08x W6  0x%08x W7  0x%08x\n"
10461 			"W8  0x%08x W9  0x%08x W10 0x%08x W11 0x%08x\n"
10462 			"W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
10463 			pring->ringno, icmd->un.asyncstat.evt_code,
10464 			iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
10465 			iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
10466 			iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
10467 			iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
10468 
10469 		break;
10470 	}
10471 }
10472 
10473 
10474 /**
10475  * lpfc_sli4_setup - SLI ring setup function
10476  * @phba: Pointer to HBA context object.
10477  *
10478  * lpfc_sli_setup sets up rings of the SLI interface with
10479  * number of iocbs per ring and iotags. This function is
10480  * called while driver attach to the HBA and before the
10481  * interrupts are enabled. So there is no need for locking.
10482  *
10483  * This function always returns 0.
10484  **/
10485 int
10486 lpfc_sli4_setup(struct lpfc_hba *phba)
10487 {
10488 	struct lpfc_sli_ring *pring;
10489 
10490 	pring = phba->sli4_hba.els_wq->pring;
10491 	pring->num_mask = LPFC_MAX_RING_MASK;
10492 	pring->prt[0].profile = 0;	/* Mask 0 */
10493 	pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10494 	pring->prt[0].type = FC_TYPE_ELS;
10495 	pring->prt[0].lpfc_sli_rcv_unsol_event =
10496 	    lpfc_els_unsol_event;
10497 	pring->prt[1].profile = 0;	/* Mask 1 */
10498 	pring->prt[1].rctl = FC_RCTL_ELS_REP;
10499 	pring->prt[1].type = FC_TYPE_ELS;
10500 	pring->prt[1].lpfc_sli_rcv_unsol_event =
10501 	    lpfc_els_unsol_event;
10502 	pring->prt[2].profile = 0;	/* Mask 2 */
10503 	/* NameServer Inquiry */
10504 	pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10505 	/* NameServer */
10506 	pring->prt[2].type = FC_TYPE_CT;
10507 	pring->prt[2].lpfc_sli_rcv_unsol_event =
10508 	    lpfc_ct_unsol_event;
10509 	pring->prt[3].profile = 0;	/* Mask 3 */
10510 	/* NameServer response */
10511 	pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10512 	/* NameServer */
10513 	pring->prt[3].type = FC_TYPE_CT;
10514 	pring->prt[3].lpfc_sli_rcv_unsol_event =
10515 	    lpfc_ct_unsol_event;
10516 	return 0;
10517 }
10518 
10519 /**
10520  * lpfc_sli_setup - SLI ring setup function
10521  * @phba: Pointer to HBA context object.
10522  *
10523  * lpfc_sli_setup sets up rings of the SLI interface with
10524  * number of iocbs per ring and iotags. This function is
10525  * called while driver attach to the HBA and before the
10526  * interrupts are enabled. So there is no need for locking.
10527  *
10528  * This function always returns 0. SLI3 only.
10529  **/
10530 int
10531 lpfc_sli_setup(struct lpfc_hba *phba)
10532 {
10533 	int i, totiocbsize = 0;
10534 	struct lpfc_sli *psli = &phba->sli;
10535 	struct lpfc_sli_ring *pring;
10536 
10537 	psli->num_rings = MAX_SLI3_CONFIGURED_RINGS;
10538 	psli->sli_flag = 0;
10539 
10540 	psli->iocbq_lookup = NULL;
10541 	psli->iocbq_lookup_len = 0;
10542 	psli->last_iotag = 0;
10543 
10544 	for (i = 0; i < psli->num_rings; i++) {
10545 		pring = &psli->sli3_ring[i];
10546 		switch (i) {
10547 		case LPFC_FCP_RING:	/* ring 0 - FCP */
10548 			/* numCiocb and numRiocb are used in config_port */
10549 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
10550 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
10551 			pring->sli.sli3.numCiocb +=
10552 				SLI2_IOCB_CMD_R1XTRA_ENTRIES;
10553 			pring->sli.sli3.numRiocb +=
10554 				SLI2_IOCB_RSP_R1XTRA_ENTRIES;
10555 			pring->sli.sli3.numCiocb +=
10556 				SLI2_IOCB_CMD_R3XTRA_ENTRIES;
10557 			pring->sli.sli3.numRiocb +=
10558 				SLI2_IOCB_RSP_R3XTRA_ENTRIES;
10559 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10560 							SLI3_IOCB_CMD_SIZE :
10561 							SLI2_IOCB_CMD_SIZE;
10562 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10563 							SLI3_IOCB_RSP_SIZE :
10564 							SLI2_IOCB_RSP_SIZE;
10565 			pring->iotag_ctr = 0;
10566 			pring->iotag_max =
10567 			    (phba->cfg_hba_queue_depth * 2);
10568 			pring->fast_iotag = pring->iotag_max;
10569 			pring->num_mask = 0;
10570 			break;
10571 		case LPFC_EXTRA_RING:	/* ring 1 - EXTRA */
10572 			/* numCiocb and numRiocb are used in config_port */
10573 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
10574 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
10575 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10576 							SLI3_IOCB_CMD_SIZE :
10577 							SLI2_IOCB_CMD_SIZE;
10578 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10579 							SLI3_IOCB_RSP_SIZE :
10580 							SLI2_IOCB_RSP_SIZE;
10581 			pring->iotag_max = phba->cfg_hba_queue_depth;
10582 			pring->num_mask = 0;
10583 			break;
10584 		case LPFC_ELS_RING:	/* ring 2 - ELS / CT */
10585 			/* numCiocb and numRiocb are used in config_port */
10586 			pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
10587 			pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
10588 			pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ?
10589 							SLI3_IOCB_CMD_SIZE :
10590 							SLI2_IOCB_CMD_SIZE;
10591 			pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ?
10592 							SLI3_IOCB_RSP_SIZE :
10593 							SLI2_IOCB_RSP_SIZE;
10594 			pring->fast_iotag = 0;
10595 			pring->iotag_ctr = 0;
10596 			pring->iotag_max = 4096;
10597 			pring->lpfc_sli_rcv_async_status =
10598 				lpfc_sli_async_event_handler;
10599 			pring->num_mask = LPFC_MAX_RING_MASK;
10600 			pring->prt[0].profile = 0;	/* Mask 0 */
10601 			pring->prt[0].rctl = FC_RCTL_ELS_REQ;
10602 			pring->prt[0].type = FC_TYPE_ELS;
10603 			pring->prt[0].lpfc_sli_rcv_unsol_event =
10604 			    lpfc_els_unsol_event;
10605 			pring->prt[1].profile = 0;	/* Mask 1 */
10606 			pring->prt[1].rctl = FC_RCTL_ELS_REP;
10607 			pring->prt[1].type = FC_TYPE_ELS;
10608 			pring->prt[1].lpfc_sli_rcv_unsol_event =
10609 			    lpfc_els_unsol_event;
10610 			pring->prt[2].profile = 0;	/* Mask 2 */
10611 			/* NameServer Inquiry */
10612 			pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
10613 			/* NameServer */
10614 			pring->prt[2].type = FC_TYPE_CT;
10615 			pring->prt[2].lpfc_sli_rcv_unsol_event =
10616 			    lpfc_ct_unsol_event;
10617 			pring->prt[3].profile = 0;	/* Mask 3 */
10618 			/* NameServer response */
10619 			pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
10620 			/* NameServer */
10621 			pring->prt[3].type = FC_TYPE_CT;
10622 			pring->prt[3].lpfc_sli_rcv_unsol_event =
10623 			    lpfc_ct_unsol_event;
10624 			break;
10625 		}
10626 		totiocbsize += (pring->sli.sli3.numCiocb *
10627 			pring->sli.sli3.sizeCiocb) +
10628 			(pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb);
10629 	}
10630 	if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
10631 		/* Too many cmd / rsp ring entries in SLI2 SLIM */
10632 		printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
10633 		       "SLI2 SLIM Data: x%x x%lx\n",
10634 		       phba->brd_no, totiocbsize,
10635 		       (unsigned long) MAX_SLIM_IOCB_SIZE);
10636 	}
10637 	if (phba->cfg_multi_ring_support == 2)
10638 		lpfc_extra_ring_setup(phba);
10639 
10640 	return 0;
10641 }
10642 
10643 /**
10644  * lpfc_sli4_queue_init - Queue initialization function
10645  * @phba: Pointer to HBA context object.
10646  *
10647  * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each
10648  * ring. This function also initializes ring indices of each ring.
10649  * This function is called during the initialization of the SLI
10650  * interface of an HBA.
10651  * This function is called with no lock held and always returns
10652  * 1.
10653  **/
10654 void
10655 lpfc_sli4_queue_init(struct lpfc_hba *phba)
10656 {
10657 	struct lpfc_sli *psli;
10658 	struct lpfc_sli_ring *pring;
10659 	int i;
10660 
10661 	psli = &phba->sli;
10662 	spin_lock_irq(&phba->hbalock);
10663 	INIT_LIST_HEAD(&psli->mboxq);
10664 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10665 	/* Initialize list headers for txq and txcmplq as double linked lists */
10666 	for (i = 0; i < phba->cfg_hdw_queue; i++) {
10667 		pring = phba->sli4_hba.hdwq[i].io_wq->pring;
10668 		pring->flag = 0;
10669 		pring->ringno = LPFC_FCP_RING;
10670 		pring->txcmplq_cnt = 0;
10671 		INIT_LIST_HEAD(&pring->txq);
10672 		INIT_LIST_HEAD(&pring->txcmplq);
10673 		INIT_LIST_HEAD(&pring->iocb_continueq);
10674 		spin_lock_init(&pring->ring_lock);
10675 	}
10676 	pring = phba->sli4_hba.els_wq->pring;
10677 	pring->flag = 0;
10678 	pring->ringno = LPFC_ELS_RING;
10679 	pring->txcmplq_cnt = 0;
10680 	INIT_LIST_HEAD(&pring->txq);
10681 	INIT_LIST_HEAD(&pring->txcmplq);
10682 	INIT_LIST_HEAD(&pring->iocb_continueq);
10683 	spin_lock_init(&pring->ring_lock);
10684 
10685 	if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
10686 		pring = phba->sli4_hba.nvmels_wq->pring;
10687 		pring->flag = 0;
10688 		pring->ringno = LPFC_ELS_RING;
10689 		pring->txcmplq_cnt = 0;
10690 		INIT_LIST_HEAD(&pring->txq);
10691 		INIT_LIST_HEAD(&pring->txcmplq);
10692 		INIT_LIST_HEAD(&pring->iocb_continueq);
10693 		spin_lock_init(&pring->ring_lock);
10694 	}
10695 
10696 	spin_unlock_irq(&phba->hbalock);
10697 }
10698 
10699 /**
10700  * lpfc_sli_queue_init - Queue initialization function
10701  * @phba: Pointer to HBA context object.
10702  *
10703  * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each
10704  * ring. This function also initializes ring indices of each ring.
10705  * This function is called during the initialization of the SLI
10706  * interface of an HBA.
10707  * This function is called with no lock held and always returns
10708  * 1.
10709  **/
10710 void
10711 lpfc_sli_queue_init(struct lpfc_hba *phba)
10712 {
10713 	struct lpfc_sli *psli;
10714 	struct lpfc_sli_ring *pring;
10715 	int i;
10716 
10717 	psli = &phba->sli;
10718 	spin_lock_irq(&phba->hbalock);
10719 	INIT_LIST_HEAD(&psli->mboxq);
10720 	INIT_LIST_HEAD(&psli->mboxq_cmpl);
10721 	/* Initialize list headers for txq and txcmplq as double linked lists */
10722 	for (i = 0; i < psli->num_rings; i++) {
10723 		pring = &psli->sli3_ring[i];
10724 		pring->ringno = i;
10725 		pring->sli.sli3.next_cmdidx  = 0;
10726 		pring->sli.sli3.local_getidx = 0;
10727 		pring->sli.sli3.cmdidx = 0;
10728 		INIT_LIST_HEAD(&pring->iocb_continueq);
10729 		INIT_LIST_HEAD(&pring->iocb_continue_saveq);
10730 		INIT_LIST_HEAD(&pring->postbufq);
10731 		pring->flag = 0;
10732 		INIT_LIST_HEAD(&pring->txq);
10733 		INIT_LIST_HEAD(&pring->txcmplq);
10734 		spin_lock_init(&pring->ring_lock);
10735 	}
10736 	spin_unlock_irq(&phba->hbalock);
10737 }
10738 
10739 /**
10740  * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
10741  * @phba: Pointer to HBA context object.
10742  *
10743  * This routine flushes the mailbox command subsystem. It will unconditionally
10744  * flush all the mailbox commands in the three possible stages in the mailbox
10745  * command sub-system: pending mailbox command queue; the outstanding mailbox
10746  * command; and completed mailbox command queue. It is caller's responsibility
10747  * to make sure that the driver is in the proper state to flush the mailbox
10748  * command sub-system. Namely, the posting of mailbox commands into the
10749  * pending mailbox command queue from the various clients must be stopped;
10750  * either the HBA is in a state that it will never works on the outstanding
10751  * mailbox command (such as in EEH or ERATT conditions) or the outstanding
10752  * mailbox command has been completed.
10753  **/
10754 static void
10755 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
10756 {
10757 	LIST_HEAD(completions);
10758 	struct lpfc_sli *psli = &phba->sli;
10759 	LPFC_MBOXQ_t *pmb;
10760 	unsigned long iflag;
10761 
10762 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10763 	local_bh_disable();
10764 
10765 	/* Flush all the mailbox commands in the mbox system */
10766 	spin_lock_irqsave(&phba->hbalock, iflag);
10767 
10768 	/* The pending mailbox command queue */
10769 	list_splice_init(&phba->sli.mboxq, &completions);
10770 	/* The outstanding active mailbox command */
10771 	if (psli->mbox_active) {
10772 		list_add_tail(&psli->mbox_active->list, &completions);
10773 		psli->mbox_active = NULL;
10774 		psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10775 	}
10776 	/* The completed mailbox command queue */
10777 	list_splice_init(&phba->sli.mboxq_cmpl, &completions);
10778 	spin_unlock_irqrestore(&phba->hbalock, iflag);
10779 
10780 	/* Enable softirqs again, done with phba->hbalock */
10781 	local_bh_enable();
10782 
10783 	/* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
10784 	while (!list_empty(&completions)) {
10785 		list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
10786 		pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
10787 		if (pmb->mbox_cmpl)
10788 			pmb->mbox_cmpl(phba, pmb);
10789 	}
10790 }
10791 
10792 /**
10793  * lpfc_sli_host_down - Vport cleanup function
10794  * @vport: Pointer to virtual port object.
10795  *
10796  * lpfc_sli_host_down is called to clean up the resources
10797  * associated with a vport before destroying virtual
10798  * port data structures.
10799  * This function does following operations:
10800  * - Free discovery resources associated with this virtual
10801  *   port.
10802  * - Free iocbs associated with this virtual port in
10803  *   the txq.
10804  * - Send abort for all iocb commands associated with this
10805  *   vport in txcmplq.
10806  *
10807  * This function is called with no lock held and always returns 1.
10808  **/
10809 int
10810 lpfc_sli_host_down(struct lpfc_vport *vport)
10811 {
10812 	LIST_HEAD(completions);
10813 	struct lpfc_hba *phba = vport->phba;
10814 	struct lpfc_sli *psli = &phba->sli;
10815 	struct lpfc_queue *qp = NULL;
10816 	struct lpfc_sli_ring *pring;
10817 	struct lpfc_iocbq *iocb, *next_iocb;
10818 	int i;
10819 	unsigned long flags = 0;
10820 	uint16_t prev_pring_flag;
10821 
10822 	lpfc_cleanup_discovery_resources(vport);
10823 
10824 	spin_lock_irqsave(&phba->hbalock, flags);
10825 
10826 	/*
10827 	 * Error everything on the txq since these iocbs
10828 	 * have not been given to the FW yet.
10829 	 * Also issue ABTS for everything on the txcmplq
10830 	 */
10831 	if (phba->sli_rev != LPFC_SLI_REV4) {
10832 		for (i = 0; i < psli->num_rings; i++) {
10833 			pring = &psli->sli3_ring[i];
10834 			prev_pring_flag = pring->flag;
10835 			/* Only slow rings */
10836 			if (pring->ringno == LPFC_ELS_RING) {
10837 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10838 				/* Set the lpfc data pending flag */
10839 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10840 			}
10841 			list_for_each_entry_safe(iocb, next_iocb,
10842 						 &pring->txq, list) {
10843 				if (iocb->vport != vport)
10844 					continue;
10845 				list_move_tail(&iocb->list, &completions);
10846 			}
10847 			list_for_each_entry_safe(iocb, next_iocb,
10848 						 &pring->txcmplq, list) {
10849 				if (iocb->vport != vport)
10850 					continue;
10851 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10852 			}
10853 			pring->flag = prev_pring_flag;
10854 		}
10855 	} else {
10856 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10857 			pring = qp->pring;
10858 			if (!pring)
10859 				continue;
10860 			if (pring == phba->sli4_hba.els_wq->pring) {
10861 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10862 				/* Set the lpfc data pending flag */
10863 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10864 			}
10865 			prev_pring_flag = pring->flag;
10866 			spin_lock(&pring->ring_lock);
10867 			list_for_each_entry_safe(iocb, next_iocb,
10868 						 &pring->txq, list) {
10869 				if (iocb->vport != vport)
10870 					continue;
10871 				list_move_tail(&iocb->list, &completions);
10872 			}
10873 			spin_unlock(&pring->ring_lock);
10874 			list_for_each_entry_safe(iocb, next_iocb,
10875 						 &pring->txcmplq, list) {
10876 				if (iocb->vport != vport)
10877 					continue;
10878 				lpfc_sli_issue_abort_iotag(phba, pring, iocb);
10879 			}
10880 			pring->flag = prev_pring_flag;
10881 		}
10882 	}
10883 	spin_unlock_irqrestore(&phba->hbalock, flags);
10884 
10885 	/* Cancel all the IOCBs from the completions list */
10886 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10887 			      IOERR_SLI_DOWN);
10888 	return 1;
10889 }
10890 
10891 /**
10892  * lpfc_sli_hba_down - Resource cleanup function for the HBA
10893  * @phba: Pointer to HBA context object.
10894  *
10895  * This function cleans up all iocb, buffers, mailbox commands
10896  * while shutting down the HBA. This function is called with no
10897  * lock held and always returns 1.
10898  * This function does the following to cleanup driver resources:
10899  * - Free discovery resources for each virtual port
10900  * - Cleanup any pending fabric iocbs
10901  * - Iterate through the iocb txq and free each entry
10902  *   in the list.
10903  * - Free up any buffer posted to the HBA
10904  * - Free mailbox commands in the mailbox queue.
10905  **/
10906 int
10907 lpfc_sli_hba_down(struct lpfc_hba *phba)
10908 {
10909 	LIST_HEAD(completions);
10910 	struct lpfc_sli *psli = &phba->sli;
10911 	struct lpfc_queue *qp = NULL;
10912 	struct lpfc_sli_ring *pring;
10913 	struct lpfc_dmabuf *buf_ptr;
10914 	unsigned long flags = 0;
10915 	int i;
10916 
10917 	/* Shutdown the mailbox command sub-system */
10918 	lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT);
10919 
10920 	lpfc_hba_down_prep(phba);
10921 
10922 	/* Disable softirqs, including timers from obtaining phba->hbalock */
10923 	local_bh_disable();
10924 
10925 	lpfc_fabric_abort_hba(phba);
10926 
10927 	spin_lock_irqsave(&phba->hbalock, flags);
10928 
10929 	/*
10930 	 * Error everything on the txq since these iocbs
10931 	 * have not been given to the FW yet.
10932 	 */
10933 	if (phba->sli_rev != LPFC_SLI_REV4) {
10934 		for (i = 0; i < psli->num_rings; i++) {
10935 			pring = &psli->sli3_ring[i];
10936 			/* Only slow rings */
10937 			if (pring->ringno == LPFC_ELS_RING) {
10938 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10939 				/* Set the lpfc data pending flag */
10940 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10941 			}
10942 			list_splice_init(&pring->txq, &completions);
10943 		}
10944 	} else {
10945 		list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
10946 			pring = qp->pring;
10947 			if (!pring)
10948 				continue;
10949 			spin_lock(&pring->ring_lock);
10950 			list_splice_init(&pring->txq, &completions);
10951 			spin_unlock(&pring->ring_lock);
10952 			if (pring == phba->sli4_hba.els_wq->pring) {
10953 				pring->flag |= LPFC_DEFERRED_RING_EVENT;
10954 				/* Set the lpfc data pending flag */
10955 				set_bit(LPFC_DATA_READY, &phba->data_flags);
10956 			}
10957 		}
10958 	}
10959 	spin_unlock_irqrestore(&phba->hbalock, flags);
10960 
10961 	/* Cancel all the IOCBs from the completions list */
10962 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
10963 			      IOERR_SLI_DOWN);
10964 
10965 	spin_lock_irqsave(&phba->hbalock, flags);
10966 	list_splice_init(&phba->elsbuf, &completions);
10967 	phba->elsbuf_cnt = 0;
10968 	phba->elsbuf_prev_cnt = 0;
10969 	spin_unlock_irqrestore(&phba->hbalock, flags);
10970 
10971 	while (!list_empty(&completions)) {
10972 		list_remove_head(&completions, buf_ptr,
10973 			struct lpfc_dmabuf, list);
10974 		lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
10975 		kfree(buf_ptr);
10976 	}
10977 
10978 	/* Enable softirqs again, done with phba->hbalock */
10979 	local_bh_enable();
10980 
10981 	/* Return any active mbox cmds */
10982 	del_timer_sync(&psli->mbox_tmo);
10983 
10984 	spin_lock_irqsave(&phba->pport->work_port_lock, flags);
10985 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10986 	spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
10987 
10988 	return 1;
10989 }
10990 
10991 /**
10992  * lpfc_sli_pcimem_bcopy - SLI memory copy function
10993  * @srcp: Source memory pointer.
10994  * @destp: Destination memory pointer.
10995  * @cnt: Number of words required to be copied.
10996  *
10997  * This function is used for copying data between driver memory
10998  * and the SLI memory. This function also changes the endianness
10999  * of each word if native endianness is different from SLI
11000  * endianness. This function can be called with or without
11001  * lock.
11002  **/
11003 void
11004 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
11005 {
11006 	uint32_t *src = srcp;
11007 	uint32_t *dest = destp;
11008 	uint32_t ldata;
11009 	int i;
11010 
11011 	for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
11012 		ldata = *src;
11013 		ldata = le32_to_cpu(ldata);
11014 		*dest = ldata;
11015 		src++;
11016 		dest++;
11017 	}
11018 }
11019 
11020 
11021 /**
11022  * lpfc_sli_bemem_bcopy - SLI memory copy function
11023  * @srcp: Source memory pointer.
11024  * @destp: Destination memory pointer.
11025  * @cnt: Number of words required to be copied.
11026  *
11027  * This function is used for copying data between a data structure
11028  * with big endian representation to local endianness.
11029  * This function can be called with or without lock.
11030  **/
11031 void
11032 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
11033 {
11034 	uint32_t *src = srcp;
11035 	uint32_t *dest = destp;
11036 	uint32_t ldata;
11037 	int i;
11038 
11039 	for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
11040 		ldata = *src;
11041 		ldata = be32_to_cpu(ldata);
11042 		*dest = ldata;
11043 		src++;
11044 		dest++;
11045 	}
11046 }
11047 
11048 /**
11049  * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
11050  * @phba: Pointer to HBA context object.
11051  * @pring: Pointer to driver SLI ring object.
11052  * @mp: Pointer to driver buffer object.
11053  *
11054  * This function is called with no lock held.
11055  * It always return zero after adding the buffer to the postbufq
11056  * buffer list.
11057  **/
11058 int
11059 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11060 			 struct lpfc_dmabuf *mp)
11061 {
11062 	/* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
11063 	   later */
11064 	spin_lock_irq(&phba->hbalock);
11065 	list_add_tail(&mp->list, &pring->postbufq);
11066 	pring->postbufq_cnt++;
11067 	spin_unlock_irq(&phba->hbalock);
11068 	return 0;
11069 }
11070 
11071 /**
11072  * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
11073  * @phba: Pointer to HBA context object.
11074  *
11075  * When HBQ is enabled, buffers are searched based on tags. This function
11076  * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
11077  * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
11078  * does not conflict with tags of buffer posted for unsolicited events.
11079  * The function returns the allocated tag. The function is called with
11080  * no locks held.
11081  **/
11082 uint32_t
11083 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
11084 {
11085 	spin_lock_irq(&phba->hbalock);
11086 	phba->buffer_tag_count++;
11087 	/*
11088 	 * Always set the QUE_BUFTAG_BIT to distiguish between
11089 	 * a tag assigned by HBQ.
11090 	 */
11091 	phba->buffer_tag_count |= QUE_BUFTAG_BIT;
11092 	spin_unlock_irq(&phba->hbalock);
11093 	return phba->buffer_tag_count;
11094 }
11095 
11096 /**
11097  * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
11098  * @phba: Pointer to HBA context object.
11099  * @pring: Pointer to driver SLI ring object.
11100  * @tag: Buffer tag.
11101  *
11102  * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
11103  * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
11104  * iocb is posted to the response ring with the tag of the buffer.
11105  * This function searches the pring->postbufq list using the tag
11106  * to find buffer associated with CMD_IOCB_RET_XRI64_CX
11107  * iocb. If the buffer is found then lpfc_dmabuf object of the
11108  * buffer is returned to the caller else NULL is returned.
11109  * This function is called with no lock held.
11110  **/
11111 struct lpfc_dmabuf *
11112 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11113 			uint32_t tag)
11114 {
11115 	struct lpfc_dmabuf *mp, *next_mp;
11116 	struct list_head *slp = &pring->postbufq;
11117 
11118 	/* Search postbufq, from the beginning, looking for a match on tag */
11119 	spin_lock_irq(&phba->hbalock);
11120 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11121 		if (mp->buffer_tag == tag) {
11122 			list_del_init(&mp->list);
11123 			pring->postbufq_cnt--;
11124 			spin_unlock_irq(&phba->hbalock);
11125 			return mp;
11126 		}
11127 	}
11128 
11129 	spin_unlock_irq(&phba->hbalock);
11130 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11131 			"0402 Cannot find virtual addr for buffer tag on "
11132 			"ring %d Data x%lx x%px x%px x%x\n",
11133 			pring->ringno, (unsigned long) tag,
11134 			slp->next, slp->prev, pring->postbufq_cnt);
11135 
11136 	return NULL;
11137 }
11138 
11139 /**
11140  * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
11141  * @phba: Pointer to HBA context object.
11142  * @pring: Pointer to driver SLI ring object.
11143  * @phys: DMA address of the buffer.
11144  *
11145  * This function searches the buffer list using the dma_address
11146  * of unsolicited event to find the driver's lpfc_dmabuf object
11147  * corresponding to the dma_address. The function returns the
11148  * lpfc_dmabuf object if a buffer is found else it returns NULL.
11149  * This function is called by the ct and els unsolicited event
11150  * handlers to get the buffer associated with the unsolicited
11151  * event.
11152  *
11153  * This function is called with no lock held.
11154  **/
11155 struct lpfc_dmabuf *
11156 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11157 			 dma_addr_t phys)
11158 {
11159 	struct lpfc_dmabuf *mp, *next_mp;
11160 	struct list_head *slp = &pring->postbufq;
11161 
11162 	/* Search postbufq, from the beginning, looking for a match on phys */
11163 	spin_lock_irq(&phba->hbalock);
11164 	list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
11165 		if (mp->phys == phys) {
11166 			list_del_init(&mp->list);
11167 			pring->postbufq_cnt--;
11168 			spin_unlock_irq(&phba->hbalock);
11169 			return mp;
11170 		}
11171 	}
11172 
11173 	spin_unlock_irq(&phba->hbalock);
11174 	lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11175 			"0410 Cannot find virtual addr for mapped buf on "
11176 			"ring %d Data x%llx x%px x%px x%x\n",
11177 			pring->ringno, (unsigned long long)phys,
11178 			slp->next, slp->prev, pring->postbufq_cnt);
11179 	return NULL;
11180 }
11181 
11182 /**
11183  * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
11184  * @phba: Pointer to HBA context object.
11185  * @cmdiocb: Pointer to driver command iocb object.
11186  * @rspiocb: Pointer to driver response iocb object.
11187  *
11188  * This function is the completion handler for the abort iocbs for
11189  * ELS commands. This function is called from the ELS ring event
11190  * handler with no lock held. This function frees memory resources
11191  * associated with the abort iocb.
11192  **/
11193 static void
11194 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11195 			struct lpfc_iocbq *rspiocb)
11196 {
11197 	IOCB_t *irsp = &rspiocb->iocb;
11198 	uint16_t abort_iotag, abort_context;
11199 	struct lpfc_iocbq *abort_iocb = NULL;
11200 
11201 	if (irsp->ulpStatus) {
11202 
11203 		/*
11204 		 * Assume that the port already completed and returned, or
11205 		 * will return the iocb. Just Log the message.
11206 		 */
11207 		abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
11208 		abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
11209 
11210 		spin_lock_irq(&phba->hbalock);
11211 		if (phba->sli_rev < LPFC_SLI_REV4) {
11212 			if (irsp->ulpCommand == CMD_ABORT_XRI_CX &&
11213 			    irsp->ulpStatus == IOSTAT_LOCAL_REJECT &&
11214 			    irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) {
11215 				spin_unlock_irq(&phba->hbalock);
11216 				goto release_iocb;
11217 			}
11218 			if (abort_iotag != 0 &&
11219 				abort_iotag <= phba->sli.last_iotag)
11220 				abort_iocb =
11221 					phba->sli.iocbq_lookup[abort_iotag];
11222 		} else
11223 			/* For sli4 the abort_tag is the XRI,
11224 			 * so the abort routine puts the iotag  of the iocb
11225 			 * being aborted in the context field of the abort
11226 			 * IOCB.
11227 			 */
11228 			abort_iocb = phba->sli.iocbq_lookup[abort_context];
11229 
11230 		lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
11231 				"0327 Cannot abort els iocb x%px "
11232 				"with tag %x context %x, abort status %x, "
11233 				"abort code %x\n",
11234 				abort_iocb, abort_iotag, abort_context,
11235 				irsp->ulpStatus, irsp->un.ulpWord[4]);
11236 
11237 		spin_unlock_irq(&phba->hbalock);
11238 	}
11239 release_iocb:
11240 	lpfc_sli_release_iocbq(phba, cmdiocb);
11241 	return;
11242 }
11243 
11244 /**
11245  * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
11246  * @phba: Pointer to HBA context object.
11247  * @cmdiocb: Pointer to driver command iocb object.
11248  * @rspiocb: Pointer to driver response iocb object.
11249  *
11250  * The function is called from SLI ring event handler with no
11251  * lock held. This function is the completion handler for ELS commands
11252  * which are aborted. The function frees memory resources used for
11253  * the aborted ELS commands.
11254  **/
11255 static void
11256 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11257 		     struct lpfc_iocbq *rspiocb)
11258 {
11259 	IOCB_t *irsp = &rspiocb->iocb;
11260 
11261 	/* ELS cmd tag <ulpIoTag> completes */
11262 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
11263 			"0139 Ignoring ELS cmd tag x%x completion Data: "
11264 			"x%x x%x x%x\n",
11265 			irsp->ulpIoTag, irsp->ulpStatus,
11266 			irsp->un.ulpWord[4], irsp->ulpTimeout);
11267 	if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
11268 		lpfc_ct_free_iocb(phba, cmdiocb);
11269 	else
11270 		lpfc_els_free_iocb(phba, cmdiocb);
11271 	return;
11272 }
11273 
11274 /**
11275  * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
11276  * @phba: Pointer to HBA context object.
11277  * @pring: Pointer to driver SLI ring object.
11278  * @cmdiocb: Pointer to driver command iocb object.
11279  *
11280  * This function issues an abort iocb for the provided command iocb down to
11281  * the port. Other than the case the outstanding command iocb is an abort
11282  * request, this function issues abort out unconditionally. This function is
11283  * called with hbalock held. The function returns 0 when it fails due to
11284  * memory allocation failure or when the command iocb is an abort request.
11285  * The hbalock is asserted held in the code path calling this routine.
11286  **/
11287 static int
11288 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11289 			   struct lpfc_iocbq *cmdiocb)
11290 {
11291 	struct lpfc_vport *vport = cmdiocb->vport;
11292 	struct lpfc_iocbq *abtsiocbp;
11293 	IOCB_t *icmd = NULL;
11294 	IOCB_t *iabt = NULL;
11295 	int retval;
11296 	unsigned long iflags;
11297 	struct lpfc_nodelist *ndlp;
11298 
11299 	/*
11300 	 * There are certain command types we don't want to abort.  And we
11301 	 * don't want to abort commands that are already in the process of
11302 	 * being aborted.
11303 	 */
11304 	icmd = &cmdiocb->iocb;
11305 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11306 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11307 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11308 		return 0;
11309 
11310 	/* issue ABTS for this IOCB based on iotag */
11311 	abtsiocbp = __lpfc_sli_get_iocbq(phba);
11312 	if (abtsiocbp == NULL)
11313 		return 0;
11314 
11315 	/* This signals the response to set the correct status
11316 	 * before calling the completion handler
11317 	 */
11318 	cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
11319 
11320 	iabt = &abtsiocbp->iocb;
11321 	iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
11322 	iabt->un.acxri.abortContextTag = icmd->ulpContext;
11323 	if (phba->sli_rev == LPFC_SLI_REV4) {
11324 		iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
11325 		iabt->un.acxri.abortContextTag = cmdiocb->iotag;
11326 	} else {
11327 		iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
11328 		if (pring->ringno == LPFC_ELS_RING) {
11329 			ndlp = (struct lpfc_nodelist *)(cmdiocb->context1);
11330 			iabt->un.acxri.abortContextTag = ndlp->nlp_rpi;
11331 		}
11332 	}
11333 	iabt->ulpLe = 1;
11334 	iabt->ulpClass = icmd->ulpClass;
11335 
11336 	/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11337 	abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx;
11338 	if (cmdiocb->iocb_flag & LPFC_IO_FCP)
11339 		abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
11340 	if (cmdiocb->iocb_flag & LPFC_IO_FOF)
11341 		abtsiocbp->iocb_flag |= LPFC_IO_FOF;
11342 
11343 	if (phba->link_state >= LPFC_LINK_UP)
11344 		iabt->ulpCommand = CMD_ABORT_XRI_CN;
11345 	else
11346 		iabt->ulpCommand = CMD_CLOSE_XRI_CN;
11347 
11348 	abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
11349 	abtsiocbp->vport = vport;
11350 
11351 	lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
11352 			 "0339 Abort xri x%x, original iotag x%x, "
11353 			 "abort cmd iotag x%x\n",
11354 			 iabt->un.acxri.abortIoTag,
11355 			 iabt->un.acxri.abortContextTag,
11356 			 abtsiocbp->iotag);
11357 
11358 	if (phba->sli_rev == LPFC_SLI_REV4) {
11359 		pring = lpfc_sli4_calc_ring(phba, abtsiocbp);
11360 		if (unlikely(pring == NULL))
11361 			return 0;
11362 		/* Note: both hbalock and ring_lock need to be set here */
11363 		spin_lock_irqsave(&pring->ring_lock, iflags);
11364 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11365 			abtsiocbp, 0);
11366 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
11367 	} else {
11368 		retval = __lpfc_sli_issue_iocb(phba, pring->ringno,
11369 			abtsiocbp, 0);
11370 	}
11371 
11372 	if (retval)
11373 		__lpfc_sli_release_iocbq(phba, abtsiocbp);
11374 
11375 	/*
11376 	 * Caller to this routine should check for IOCB_ERROR
11377 	 * and handle it properly.  This routine no longer removes
11378 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11379 	 */
11380 	return retval;
11381 }
11382 
11383 /**
11384  * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
11385  * @phba: Pointer to HBA context object.
11386  * @pring: Pointer to driver SLI ring object.
11387  * @cmdiocb: Pointer to driver command iocb object.
11388  *
11389  * This function issues an abort iocb for the provided command iocb. In case
11390  * of unloading, the abort iocb will not be issued to commands on the ELS
11391  * ring. Instead, the callback function shall be changed to those commands
11392  * so that nothing happens when them finishes. This function is called with
11393  * hbalock held. The function returns 0 when the command iocb is an abort
11394  * request.
11395  **/
11396 int
11397 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
11398 			   struct lpfc_iocbq *cmdiocb)
11399 {
11400 	struct lpfc_vport *vport = cmdiocb->vport;
11401 	int retval = IOCB_ERROR;
11402 	IOCB_t *icmd = NULL;
11403 
11404 	lockdep_assert_held(&phba->hbalock);
11405 
11406 	/*
11407 	 * There are certain command types we don't want to abort.  And we
11408 	 * don't want to abort commands that are already in the process of
11409 	 * being aborted.
11410 	 */
11411 	icmd = &cmdiocb->iocb;
11412 	if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
11413 	    icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
11414 	    (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
11415 		return 0;
11416 
11417 	if (!pring) {
11418 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11419 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11420 		else
11421 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11422 		goto abort_iotag_exit;
11423 	}
11424 
11425 	/*
11426 	 * If we're unloading, don't abort iocb on the ELS ring, but change
11427 	 * the callback so that nothing happens when it finishes.
11428 	 */
11429 	if ((vport->load_flag & FC_UNLOADING) &&
11430 	    (pring->ringno == LPFC_ELS_RING)) {
11431 		if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
11432 			cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
11433 		else
11434 			cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
11435 		goto abort_iotag_exit;
11436 	}
11437 
11438 	/* Now, we try to issue the abort to the cmdiocb out */
11439 	retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
11440 
11441 abort_iotag_exit:
11442 	/*
11443 	 * Caller to this routine should check for IOCB_ERROR
11444 	 * and handle it properly.  This routine no longer removes
11445 	 * iocb off txcmplq and call compl in case of IOCB_ERROR.
11446 	 */
11447 	return retval;
11448 }
11449 
11450 /**
11451  * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
11452  * @phba: pointer to lpfc HBA data structure.
11453  *
11454  * This routine will abort all pending and outstanding iocbs to an HBA.
11455  **/
11456 void
11457 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
11458 {
11459 	struct lpfc_sli *psli = &phba->sli;
11460 	struct lpfc_sli_ring *pring;
11461 	struct lpfc_queue *qp = NULL;
11462 	int i;
11463 
11464 	if (phba->sli_rev != LPFC_SLI_REV4) {
11465 		for (i = 0; i < psli->num_rings; i++) {
11466 			pring = &psli->sli3_ring[i];
11467 			lpfc_sli_abort_iocb_ring(phba, pring);
11468 		}
11469 		return;
11470 	}
11471 	list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) {
11472 		pring = qp->pring;
11473 		if (!pring)
11474 			continue;
11475 		lpfc_sli_abort_iocb_ring(phba, pring);
11476 	}
11477 }
11478 
11479 /**
11480  * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
11481  * @iocbq: Pointer to driver iocb object.
11482  * @vport: Pointer to driver virtual port object.
11483  * @tgt_id: SCSI ID of the target.
11484  * @lun_id: LUN ID of the scsi device.
11485  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
11486  *
11487  * This function acts as an iocb filter for functions which abort or count
11488  * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
11489  * 0 if the filtering criteria is met for the given iocb and will return
11490  * 1 if the filtering criteria is not met.
11491  * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
11492  * given iocb is for the SCSI device specified by vport, tgt_id and
11493  * lun_id parameter.
11494  * If ctx_cmd == LPFC_CTX_TGT,  the function returns 0 only if the
11495  * given iocb is for the SCSI target specified by vport and tgt_id
11496  * parameters.
11497  * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
11498  * given iocb is for the SCSI host associated with the given vport.
11499  * This function is called with no locks held.
11500  **/
11501 static int
11502 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
11503 			   uint16_t tgt_id, uint64_t lun_id,
11504 			   lpfc_ctx_cmd ctx_cmd)
11505 {
11506 	struct lpfc_io_buf *lpfc_cmd;
11507 	int rc = 1;
11508 
11509 	if (iocbq->vport != vport)
11510 		return rc;
11511 
11512 	if (!(iocbq->iocb_flag &  LPFC_IO_FCP) ||
11513 	    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ))
11514 		return rc;
11515 
11516 	lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11517 
11518 	if (lpfc_cmd->pCmd == NULL)
11519 		return rc;
11520 
11521 	switch (ctx_cmd) {
11522 	case LPFC_CTX_LUN:
11523 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11524 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
11525 		    (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
11526 			rc = 0;
11527 		break;
11528 	case LPFC_CTX_TGT:
11529 		if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) &&
11530 		    (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
11531 			rc = 0;
11532 		break;
11533 	case LPFC_CTX_HOST:
11534 		rc = 0;
11535 		break;
11536 	default:
11537 		printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
11538 			__func__, ctx_cmd);
11539 		break;
11540 	}
11541 
11542 	return rc;
11543 }
11544 
11545 /**
11546  * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
11547  * @vport: Pointer to virtual port.
11548  * @tgt_id: SCSI ID of the target.
11549  * @lun_id: LUN ID of the scsi device.
11550  * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11551  *
11552  * This function returns number of FCP commands pending for the vport.
11553  * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
11554  * commands pending on the vport associated with SCSI device specified
11555  * by tgt_id and lun_id parameters.
11556  * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
11557  * commands pending on the vport associated with SCSI target specified
11558  * by tgt_id parameter.
11559  * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
11560  * commands pending on the vport.
11561  * This function returns the number of iocbs which satisfy the filter.
11562  * This function is called without any lock held.
11563  **/
11564 int
11565 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
11566 		  lpfc_ctx_cmd ctx_cmd)
11567 {
11568 	struct lpfc_hba *phba = vport->phba;
11569 	struct lpfc_iocbq *iocbq;
11570 	int sum, i;
11571 
11572 	spin_lock_irq(&phba->hbalock);
11573 	for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
11574 		iocbq = phba->sli.iocbq_lookup[i];
11575 
11576 		if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
11577 						ctx_cmd) == 0)
11578 			sum++;
11579 	}
11580 	spin_unlock_irq(&phba->hbalock);
11581 
11582 	return sum;
11583 }
11584 
11585 /**
11586  * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
11587  * @phba: Pointer to HBA context object
11588  * @cmdiocb: Pointer to command iocb object.
11589  * @rspiocb: Pointer to response iocb object.
11590  *
11591  * This function is called when an aborted FCP iocb completes. This
11592  * function is called by the ring event handler with no lock held.
11593  * This function frees the iocb.
11594  **/
11595 void
11596 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
11597 			struct lpfc_iocbq *rspiocb)
11598 {
11599 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
11600 			"3096 ABORT_XRI_CN completing on rpi x%x "
11601 			"original iotag x%x, abort cmd iotag x%x "
11602 			"status 0x%x, reason 0x%x\n",
11603 			cmdiocb->iocb.un.acxri.abortContextTag,
11604 			cmdiocb->iocb.un.acxri.abortIoTag,
11605 			cmdiocb->iotag, rspiocb->iocb.ulpStatus,
11606 			rspiocb->iocb.un.ulpWord[4]);
11607 	lpfc_sli_release_iocbq(phba, cmdiocb);
11608 	return;
11609 }
11610 
11611 /**
11612  * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
11613  * @vport: Pointer to virtual port.
11614  * @pring: Pointer to driver SLI ring object.
11615  * @tgt_id: SCSI ID of the target.
11616  * @lun_id: LUN ID of the scsi device.
11617  * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11618  *
11619  * This function sends an abort command for every SCSI command
11620  * associated with the given virtual port pending on the ring
11621  * filtered by lpfc_sli_validate_fcp_iocb function.
11622  * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
11623  * FCP iocbs associated with lun specified by tgt_id and lun_id
11624  * parameters
11625  * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
11626  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11627  * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
11628  * FCP iocbs associated with virtual port.
11629  * This function returns number of iocbs it failed to abort.
11630  * This function is called with no locks held.
11631  **/
11632 int
11633 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11634 		    uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
11635 {
11636 	struct lpfc_hba *phba = vport->phba;
11637 	struct lpfc_iocbq *iocbq;
11638 	struct lpfc_iocbq *abtsiocb;
11639 	struct lpfc_sli_ring *pring_s4;
11640 	IOCB_t *cmd = NULL;
11641 	int errcnt = 0, ret_val = 0;
11642 	int i;
11643 
11644 	/* all I/Os are in process of being flushed */
11645 	if (phba->hba_flag & HBA_IOQ_FLUSH)
11646 		return errcnt;
11647 
11648 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11649 		iocbq = phba->sli.iocbq_lookup[i];
11650 
11651 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11652 					       abort_cmd) != 0)
11653 			continue;
11654 
11655 		/*
11656 		 * If the iocbq is already being aborted, don't take a second
11657 		 * action, but do count it.
11658 		 */
11659 		if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED)
11660 			continue;
11661 
11662 		/* issue ABTS for this IOCB based on iotag */
11663 		abtsiocb = lpfc_sli_get_iocbq(phba);
11664 		if (abtsiocb == NULL) {
11665 			errcnt++;
11666 			continue;
11667 		}
11668 
11669 		/* indicate the IO is being aborted by the driver. */
11670 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11671 
11672 		cmd = &iocbq->iocb;
11673 		abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11674 		abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
11675 		if (phba->sli_rev == LPFC_SLI_REV4)
11676 			abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
11677 		else
11678 			abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
11679 		abtsiocb->iocb.ulpLe = 1;
11680 		abtsiocb->iocb.ulpClass = cmd->ulpClass;
11681 		abtsiocb->vport = vport;
11682 
11683 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11684 		abtsiocb->hba_wqidx = iocbq->hba_wqidx;
11685 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11686 			abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
11687 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11688 			abtsiocb->iocb_flag |= LPFC_IO_FOF;
11689 
11690 		if (lpfc_is_link_up(phba))
11691 			abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11692 		else
11693 			abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11694 
11695 		/* Setup callback routine and issue the command. */
11696 		abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11697 		if (phba->sli_rev == LPFC_SLI_REV4) {
11698 			pring_s4 = lpfc_sli4_calc_ring(phba, iocbq);
11699 			if (!pring_s4)
11700 				continue;
11701 			ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11702 						      abtsiocb, 0);
11703 		} else
11704 			ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
11705 						      abtsiocb, 0);
11706 		if (ret_val == IOCB_ERROR) {
11707 			lpfc_sli_release_iocbq(phba, abtsiocb);
11708 			errcnt++;
11709 			continue;
11710 		}
11711 	}
11712 
11713 	return errcnt;
11714 }
11715 
11716 /**
11717  * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN
11718  * @vport: Pointer to virtual port.
11719  * @pring: Pointer to driver SLI ring object.
11720  * @tgt_id: SCSI ID of the target.
11721  * @lun_id: LUN ID of the scsi device.
11722  * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
11723  *
11724  * This function sends an abort command for every SCSI command
11725  * associated with the given virtual port pending on the ring
11726  * filtered by lpfc_sli_validate_fcp_iocb function.
11727  * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the
11728  * FCP iocbs associated with lun specified by tgt_id and lun_id
11729  * parameters
11730  * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the
11731  * FCP iocbs associated with SCSI target specified by tgt_id parameter.
11732  * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all
11733  * FCP iocbs associated with virtual port.
11734  * This function returns number of iocbs it aborted .
11735  * This function is called with no locks held right after a taskmgmt
11736  * command is sent.
11737  **/
11738 int
11739 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
11740 			uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd)
11741 {
11742 	struct lpfc_hba *phba = vport->phba;
11743 	struct lpfc_io_buf *lpfc_cmd;
11744 	struct lpfc_iocbq *abtsiocbq;
11745 	struct lpfc_nodelist *ndlp;
11746 	struct lpfc_iocbq *iocbq;
11747 	IOCB_t *icmd;
11748 	int sum, i, ret_val;
11749 	unsigned long iflags;
11750 	struct lpfc_sli_ring *pring_s4 = NULL;
11751 
11752 	spin_lock_irqsave(&phba->hbalock, iflags);
11753 
11754 	/* all I/Os are in process of being flushed */
11755 	if (phba->hba_flag & HBA_IOQ_FLUSH) {
11756 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11757 		return 0;
11758 	}
11759 	sum = 0;
11760 
11761 	for (i = 1; i <= phba->sli.last_iotag; i++) {
11762 		iocbq = phba->sli.iocbq_lookup[i];
11763 
11764 		if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
11765 					       cmd) != 0)
11766 			continue;
11767 
11768 		/* Guard against IO completion being called at same time */
11769 		lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq);
11770 		spin_lock(&lpfc_cmd->buf_lock);
11771 
11772 		if (!lpfc_cmd->pCmd) {
11773 			spin_unlock(&lpfc_cmd->buf_lock);
11774 			continue;
11775 		}
11776 
11777 		if (phba->sli_rev == LPFC_SLI_REV4) {
11778 			pring_s4 =
11779 			    phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring;
11780 			if (!pring_s4) {
11781 				spin_unlock(&lpfc_cmd->buf_lock);
11782 				continue;
11783 			}
11784 			/* Note: both hbalock and ring_lock must be set here */
11785 			spin_lock(&pring_s4->ring_lock);
11786 		}
11787 
11788 		/*
11789 		 * If the iocbq is already being aborted, don't take a second
11790 		 * action, but do count it.
11791 		 */
11792 		if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) ||
11793 		    !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
11794 			if (phba->sli_rev == LPFC_SLI_REV4)
11795 				spin_unlock(&pring_s4->ring_lock);
11796 			spin_unlock(&lpfc_cmd->buf_lock);
11797 			continue;
11798 		}
11799 
11800 		/* issue ABTS for this IOCB based on iotag */
11801 		abtsiocbq = __lpfc_sli_get_iocbq(phba);
11802 		if (!abtsiocbq) {
11803 			if (phba->sli_rev == LPFC_SLI_REV4)
11804 				spin_unlock(&pring_s4->ring_lock);
11805 			spin_unlock(&lpfc_cmd->buf_lock);
11806 			continue;
11807 		}
11808 
11809 		icmd = &iocbq->iocb;
11810 		abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
11811 		abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext;
11812 		if (phba->sli_rev == LPFC_SLI_REV4)
11813 			abtsiocbq->iocb.un.acxri.abortIoTag =
11814 							 iocbq->sli4_xritag;
11815 		else
11816 			abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag;
11817 		abtsiocbq->iocb.ulpLe = 1;
11818 		abtsiocbq->iocb.ulpClass = icmd->ulpClass;
11819 		abtsiocbq->vport = vport;
11820 
11821 		/* ABTS WQE must go to the same WQ as the WQE to be aborted */
11822 		abtsiocbq->hba_wqidx = iocbq->hba_wqidx;
11823 		if (iocbq->iocb_flag & LPFC_IO_FCP)
11824 			abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
11825 		if (iocbq->iocb_flag & LPFC_IO_FOF)
11826 			abtsiocbq->iocb_flag |= LPFC_IO_FOF;
11827 
11828 		ndlp = lpfc_cmd->rdata->pnode;
11829 
11830 		if (lpfc_is_link_up(phba) &&
11831 		    (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE))
11832 			abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN;
11833 		else
11834 			abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
11835 
11836 		/* Setup callback routine and issue the command. */
11837 		abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
11838 
11839 		/*
11840 		 * Indicate the IO is being aborted by the driver and set
11841 		 * the caller's flag into the aborted IO.
11842 		 */
11843 		iocbq->iocb_flag |= LPFC_DRIVER_ABORTED;
11844 
11845 		if (phba->sli_rev == LPFC_SLI_REV4) {
11846 			ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno,
11847 							abtsiocbq, 0);
11848 			spin_unlock(&pring_s4->ring_lock);
11849 		} else {
11850 			ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno,
11851 							abtsiocbq, 0);
11852 		}
11853 
11854 		spin_unlock(&lpfc_cmd->buf_lock);
11855 
11856 		if (ret_val == IOCB_ERROR)
11857 			__lpfc_sli_release_iocbq(phba, abtsiocbq);
11858 		else
11859 			sum++;
11860 	}
11861 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11862 	return sum;
11863 }
11864 
11865 /**
11866  * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
11867  * @phba: Pointer to HBA context object.
11868  * @cmdiocbq: Pointer to command iocb.
11869  * @rspiocbq: Pointer to response iocb.
11870  *
11871  * This function is the completion handler for iocbs issued using
11872  * lpfc_sli_issue_iocb_wait function. This function is called by the
11873  * ring event handler function without any lock held. This function
11874  * can be called from both worker thread context and interrupt
11875  * context. This function also can be called from other thread which
11876  * cleans up the SLI layer objects.
11877  * This function copy the contents of the response iocb to the
11878  * response iocb memory object provided by the caller of
11879  * lpfc_sli_issue_iocb_wait and then wakes up the thread which
11880  * sleeps for the iocb completion.
11881  **/
11882 static void
11883 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
11884 			struct lpfc_iocbq *cmdiocbq,
11885 			struct lpfc_iocbq *rspiocbq)
11886 {
11887 	wait_queue_head_t *pdone_q;
11888 	unsigned long iflags;
11889 	struct lpfc_io_buf *lpfc_cmd;
11890 
11891 	spin_lock_irqsave(&phba->hbalock, iflags);
11892 	if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) {
11893 
11894 		/*
11895 		 * A time out has occurred for the iocb.  If a time out
11896 		 * completion handler has been supplied, call it.  Otherwise,
11897 		 * just free the iocbq.
11898 		 */
11899 
11900 		spin_unlock_irqrestore(&phba->hbalock, iflags);
11901 		cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl;
11902 		cmdiocbq->wait_iocb_cmpl = NULL;
11903 		if (cmdiocbq->iocb_cmpl)
11904 			(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL);
11905 		else
11906 			lpfc_sli_release_iocbq(phba, cmdiocbq);
11907 		return;
11908 	}
11909 
11910 	cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
11911 	if (cmdiocbq->context2 && rspiocbq)
11912 		memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
11913 		       &rspiocbq->iocb, sizeof(IOCB_t));
11914 
11915 	/* Set the exchange busy flag for task management commands */
11916 	if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
11917 		!(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
11918 		lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf,
11919 			cur_iocbq);
11920 		if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY))
11921 			lpfc_cmd->flags |= LPFC_SBUF_XBUSY;
11922 		else
11923 			lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY;
11924 	}
11925 
11926 	pdone_q = cmdiocbq->context_un.wait_queue;
11927 	if (pdone_q)
11928 		wake_up(pdone_q);
11929 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11930 	return;
11931 }
11932 
11933 /**
11934  * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
11935  * @phba: Pointer to HBA context object..
11936  * @piocbq: Pointer to command iocb.
11937  * @flag: Flag to test.
11938  *
11939  * This routine grabs the hbalock and then test the iocb_flag to
11940  * see if the passed in flag is set.
11941  * Returns:
11942  * 1 if flag is set.
11943  * 0 if flag is not set.
11944  **/
11945 static int
11946 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
11947 		 struct lpfc_iocbq *piocbq, uint32_t flag)
11948 {
11949 	unsigned long iflags;
11950 	int ret;
11951 
11952 	spin_lock_irqsave(&phba->hbalock, iflags);
11953 	ret = piocbq->iocb_flag & flag;
11954 	spin_unlock_irqrestore(&phba->hbalock, iflags);
11955 	return ret;
11956 
11957 }
11958 
11959 /**
11960  * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
11961  * @phba: Pointer to HBA context object..
11962  * @pring: Pointer to sli ring.
11963  * @piocb: Pointer to command iocb.
11964  * @prspiocbq: Pointer to response iocb.
11965  * @timeout: Timeout in number of seconds.
11966  *
11967  * This function issues the iocb to firmware and waits for the
11968  * iocb to complete. The iocb_cmpl field of the shall be used
11969  * to handle iocbs which time out. If the field is NULL, the
11970  * function shall free the iocbq structure.  If more clean up is
11971  * needed, the caller is expected to provide a completion function
11972  * that will provide the needed clean up.  If the iocb command is
11973  * not completed within timeout seconds, the function will either
11974  * free the iocbq structure (if iocb_cmpl == NULL) or execute the
11975  * completion function set in the iocb_cmpl field and then return
11976  * a status of IOCB_TIMEDOUT.  The caller should not free the iocb
11977  * resources if this function returns IOCB_TIMEDOUT.
11978  * The function waits for the iocb completion using an
11979  * non-interruptible wait.
11980  * This function will sleep while waiting for iocb completion.
11981  * So, this function should not be called from any context which
11982  * does not allow sleeping. Due to the same reason, this function
11983  * cannot be called with interrupt disabled.
11984  * This function assumes that the iocb completions occur while
11985  * this function sleep. So, this function cannot be called from
11986  * the thread which process iocb completion for this ring.
11987  * This function clears the iocb_flag of the iocb object before
11988  * issuing the iocb and the iocb completion handler sets this
11989  * flag and wakes this thread when the iocb completes.
11990  * The contents of the response iocb will be copied to prspiocbq
11991  * by the completion handler when the command completes.
11992  * This function returns IOCB_SUCCESS when success.
11993  * This function is called with no lock held.
11994  **/
11995 int
11996 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
11997 			 uint32_t ring_number,
11998 			 struct lpfc_iocbq *piocb,
11999 			 struct lpfc_iocbq *prspiocbq,
12000 			 uint32_t timeout)
12001 {
12002 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
12003 	long timeleft, timeout_req = 0;
12004 	int retval = IOCB_SUCCESS;
12005 	uint32_t creg_val;
12006 	struct lpfc_iocbq *iocb;
12007 	int txq_cnt = 0;
12008 	int txcmplq_cnt = 0;
12009 	struct lpfc_sli_ring *pring;
12010 	unsigned long iflags;
12011 	bool iocb_completed = true;
12012 
12013 	if (phba->sli_rev >= LPFC_SLI_REV4)
12014 		pring = lpfc_sli4_calc_ring(phba, piocb);
12015 	else
12016 		pring = &phba->sli.sli3_ring[ring_number];
12017 	/*
12018 	 * If the caller has provided a response iocbq buffer, then context2
12019 	 * is NULL or its an error.
12020 	 */
12021 	if (prspiocbq) {
12022 		if (piocb->context2)
12023 			return IOCB_ERROR;
12024 		piocb->context2 = prspiocbq;
12025 	}
12026 
12027 	piocb->wait_iocb_cmpl = piocb->iocb_cmpl;
12028 	piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
12029 	piocb->context_un.wait_queue = &done_q;
12030 	piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO);
12031 
12032 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12033 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12034 			return IOCB_ERROR;
12035 		creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
12036 		writel(creg_val, phba->HCregaddr);
12037 		readl(phba->HCregaddr); /* flush */
12038 	}
12039 
12040 	retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
12041 				     SLI_IOCB_RET_IOCB);
12042 	if (retval == IOCB_SUCCESS) {
12043 		timeout_req = msecs_to_jiffies(timeout * 1000);
12044 		timeleft = wait_event_timeout(done_q,
12045 				lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
12046 				timeout_req);
12047 		spin_lock_irqsave(&phba->hbalock, iflags);
12048 		if (!(piocb->iocb_flag & LPFC_IO_WAKE)) {
12049 
12050 			/*
12051 			 * IOCB timed out.  Inform the wake iocb wait
12052 			 * completion function and set local status
12053 			 */
12054 
12055 			iocb_completed = false;
12056 			piocb->iocb_flag |= LPFC_IO_WAKE_TMO;
12057 		}
12058 		spin_unlock_irqrestore(&phba->hbalock, iflags);
12059 		if (iocb_completed) {
12060 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12061 					"0331 IOCB wake signaled\n");
12062 			/* Note: we are not indicating if the IOCB has a success
12063 			 * status or not - that's for the caller to check.
12064 			 * IOCB_SUCCESS means just that the command was sent and
12065 			 * completed. Not that it completed successfully.
12066 			 * */
12067 		} else if (timeleft == 0) {
12068 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12069 					"0338 IOCB wait timeout error - no "
12070 					"wake response Data x%x\n", timeout);
12071 			retval = IOCB_TIMEDOUT;
12072 		} else {
12073 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12074 					"0330 IOCB wake NOT set, "
12075 					"Data x%x x%lx\n",
12076 					timeout, (timeleft / jiffies));
12077 			retval = IOCB_TIMEDOUT;
12078 		}
12079 	} else if (retval == IOCB_BUSY) {
12080 		if (phba->cfg_log_verbose & LOG_SLI) {
12081 			list_for_each_entry(iocb, &pring->txq, list) {
12082 				txq_cnt++;
12083 			}
12084 			list_for_each_entry(iocb, &pring->txcmplq, list) {
12085 				txcmplq_cnt++;
12086 			}
12087 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12088 				"2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
12089 				phba->iocb_cnt, txq_cnt, txcmplq_cnt);
12090 		}
12091 		return retval;
12092 	} else {
12093 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
12094 				"0332 IOCB wait issue failed, Data x%x\n",
12095 				retval);
12096 		retval = IOCB_ERROR;
12097 	}
12098 
12099 	if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
12100 		if (lpfc_readl(phba->HCregaddr, &creg_val))
12101 			return IOCB_ERROR;
12102 		creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
12103 		writel(creg_val, phba->HCregaddr);
12104 		readl(phba->HCregaddr); /* flush */
12105 	}
12106 
12107 	if (prspiocbq)
12108 		piocb->context2 = NULL;
12109 
12110 	piocb->context_un.wait_queue = NULL;
12111 	piocb->iocb_cmpl = NULL;
12112 	return retval;
12113 }
12114 
12115 /**
12116  * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
12117  * @phba: Pointer to HBA context object.
12118  * @pmboxq: Pointer to driver mailbox object.
12119  * @timeout: Timeout in number of seconds.
12120  *
12121  * This function issues the mailbox to firmware and waits for the
12122  * mailbox command to complete. If the mailbox command is not
12123  * completed within timeout seconds, it returns MBX_TIMEOUT.
12124  * The function waits for the mailbox completion using an
12125  * interruptible wait. If the thread is woken up due to a
12126  * signal, MBX_TIMEOUT error is returned to the caller. Caller
12127  * should not free the mailbox resources, if this function returns
12128  * MBX_TIMEOUT.
12129  * This function will sleep while waiting for mailbox completion.
12130  * So, this function should not be called from any context which
12131  * does not allow sleeping. Due to the same reason, this function
12132  * cannot be called with interrupt disabled.
12133  * This function assumes that the mailbox completion occurs while
12134  * this function sleep. So, this function cannot be called from
12135  * the worker thread which processes mailbox completion.
12136  * This function is called in the context of HBA management
12137  * applications.
12138  * This function returns MBX_SUCCESS when successful.
12139  * This function is called with no lock held.
12140  **/
12141 int
12142 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
12143 			 uint32_t timeout)
12144 {
12145 	struct completion mbox_done;
12146 	int retval;
12147 	unsigned long flag;
12148 
12149 	pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
12150 	/* setup wake call as IOCB callback */
12151 	pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
12152 
12153 	/* setup context3 field to pass wait_queue pointer to wake function  */
12154 	init_completion(&mbox_done);
12155 	pmboxq->context3 = &mbox_done;
12156 	/* now issue the command */
12157 	retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
12158 	if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
12159 		wait_for_completion_timeout(&mbox_done,
12160 					    msecs_to_jiffies(timeout * 1000));
12161 
12162 		spin_lock_irqsave(&phba->hbalock, flag);
12163 		pmboxq->context3 = NULL;
12164 		/*
12165 		 * if LPFC_MBX_WAKE flag is set the mailbox is completed
12166 		 * else do not free the resources.
12167 		 */
12168 		if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
12169 			retval = MBX_SUCCESS;
12170 		} else {
12171 			retval = MBX_TIMEOUT;
12172 			pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12173 		}
12174 		spin_unlock_irqrestore(&phba->hbalock, flag);
12175 	}
12176 	return retval;
12177 }
12178 
12179 /**
12180  * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
12181  * @phba: Pointer to HBA context.
12182  *
12183  * This function is called to shutdown the driver's mailbox sub-system.
12184  * It first marks the mailbox sub-system is in a block state to prevent
12185  * the asynchronous mailbox command from issued off the pending mailbox
12186  * command queue. If the mailbox command sub-system shutdown is due to
12187  * HBA error conditions such as EEH or ERATT, this routine shall invoke
12188  * the mailbox sub-system flush routine to forcefully bring down the
12189  * mailbox sub-system. Otherwise, if it is due to normal condition (such
12190  * as with offline or HBA function reset), this routine will wait for the
12191  * outstanding mailbox command to complete before invoking the mailbox
12192  * sub-system flush routine to gracefully bring down mailbox sub-system.
12193  **/
12194 void
12195 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action)
12196 {
12197 	struct lpfc_sli *psli = &phba->sli;
12198 	unsigned long timeout;
12199 
12200 	if (mbx_action == LPFC_MBX_NO_WAIT) {
12201 		/* delay 100ms for port state */
12202 		msleep(100);
12203 		lpfc_sli_mbox_sys_flush(phba);
12204 		return;
12205 	}
12206 	timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
12207 
12208 	/* Disable softirqs, including timers from obtaining phba->hbalock */
12209 	local_bh_disable();
12210 
12211 	spin_lock_irq(&phba->hbalock);
12212 	psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
12213 
12214 	if (psli->sli_flag & LPFC_SLI_ACTIVE) {
12215 		/* Determine how long we might wait for the active mailbox
12216 		 * command to be gracefully completed by firmware.
12217 		 */
12218 		if (phba->sli.mbox_active)
12219 			timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
12220 						phba->sli.mbox_active) *
12221 						1000) + jiffies;
12222 		spin_unlock_irq(&phba->hbalock);
12223 
12224 		/* Enable softirqs again, done with phba->hbalock */
12225 		local_bh_enable();
12226 
12227 		while (phba->sli.mbox_active) {
12228 			/* Check active mailbox complete status every 2ms */
12229 			msleep(2);
12230 			if (time_after(jiffies, timeout))
12231 				/* Timeout, let the mailbox flush routine to
12232 				 * forcefully release active mailbox command
12233 				 */
12234 				break;
12235 		}
12236 	} else {
12237 		spin_unlock_irq(&phba->hbalock);
12238 
12239 		/* Enable softirqs again, done with phba->hbalock */
12240 		local_bh_enable();
12241 	}
12242 
12243 	lpfc_sli_mbox_sys_flush(phba);
12244 }
12245 
12246 /**
12247  * lpfc_sli_eratt_read - read sli-3 error attention events
12248  * @phba: Pointer to HBA context.
12249  *
12250  * This function is called to read the SLI3 device error attention registers
12251  * for possible error attention events. The caller must hold the hostlock
12252  * with spin_lock_irq().
12253  *
12254  * This function returns 1 when there is Error Attention in the Host Attention
12255  * Register and returns 0 otherwise.
12256  **/
12257 static int
12258 lpfc_sli_eratt_read(struct lpfc_hba *phba)
12259 {
12260 	uint32_t ha_copy;
12261 
12262 	/* Read chip Host Attention (HA) register */
12263 	if (lpfc_readl(phba->HAregaddr, &ha_copy))
12264 		goto unplug_err;
12265 
12266 	if (ha_copy & HA_ERATT) {
12267 		/* Read host status register to retrieve error event */
12268 		if (lpfc_sli_read_hs(phba))
12269 			goto unplug_err;
12270 
12271 		/* Check if there is a deferred error condition is active */
12272 		if ((HS_FFER1 & phba->work_hs) &&
12273 		    ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12274 		      HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
12275 			phba->hba_flag |= DEFER_ERATT;
12276 			/* Clear all interrupt enable conditions */
12277 			writel(0, phba->HCregaddr);
12278 			readl(phba->HCregaddr);
12279 		}
12280 
12281 		/* Set the driver HA work bitmap */
12282 		phba->work_ha |= HA_ERATT;
12283 		/* Indicate polling handles this ERATT */
12284 		phba->hba_flag |= HBA_ERATT_HANDLED;
12285 		return 1;
12286 	}
12287 	return 0;
12288 
12289 unplug_err:
12290 	/* Set the driver HS work bitmap */
12291 	phba->work_hs |= UNPLUG_ERR;
12292 	/* Set the driver HA work bitmap */
12293 	phba->work_ha |= HA_ERATT;
12294 	/* Indicate polling handles this ERATT */
12295 	phba->hba_flag |= HBA_ERATT_HANDLED;
12296 	return 1;
12297 }
12298 
12299 /**
12300  * lpfc_sli4_eratt_read - read sli-4 error attention events
12301  * @phba: Pointer to HBA context.
12302  *
12303  * This function is called to read the SLI4 device error attention registers
12304  * for possible error attention events. The caller must hold the hostlock
12305  * with spin_lock_irq().
12306  *
12307  * This function returns 1 when there is Error Attention in the Host Attention
12308  * Register and returns 0 otherwise.
12309  **/
12310 static int
12311 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
12312 {
12313 	uint32_t uerr_sta_hi, uerr_sta_lo;
12314 	uint32_t if_type, portsmphr;
12315 	struct lpfc_register portstat_reg;
12316 
12317 	/*
12318 	 * For now, use the SLI4 device internal unrecoverable error
12319 	 * registers for error attention. This can be changed later.
12320 	 */
12321 	if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
12322 	switch (if_type) {
12323 	case LPFC_SLI_INTF_IF_TYPE_0:
12324 		if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
12325 			&uerr_sta_lo) ||
12326 			lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
12327 			&uerr_sta_hi)) {
12328 			phba->work_hs |= UNPLUG_ERR;
12329 			phba->work_ha |= HA_ERATT;
12330 			phba->hba_flag |= HBA_ERATT_HANDLED;
12331 			return 1;
12332 		}
12333 		if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
12334 		    (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
12335 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12336 					"1423 HBA Unrecoverable error: "
12337 					"uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
12338 					"ue_mask_lo_reg=0x%x, "
12339 					"ue_mask_hi_reg=0x%x\n",
12340 					uerr_sta_lo, uerr_sta_hi,
12341 					phba->sli4_hba.ue_mask_lo,
12342 					phba->sli4_hba.ue_mask_hi);
12343 			phba->work_status[0] = uerr_sta_lo;
12344 			phba->work_status[1] = uerr_sta_hi;
12345 			phba->work_ha |= HA_ERATT;
12346 			phba->hba_flag |= HBA_ERATT_HANDLED;
12347 			return 1;
12348 		}
12349 		break;
12350 	case LPFC_SLI_INTF_IF_TYPE_2:
12351 	case LPFC_SLI_INTF_IF_TYPE_6:
12352 		if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
12353 			&portstat_reg.word0) ||
12354 			lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
12355 			&portsmphr)){
12356 			phba->work_hs |= UNPLUG_ERR;
12357 			phba->work_ha |= HA_ERATT;
12358 			phba->hba_flag |= HBA_ERATT_HANDLED;
12359 			return 1;
12360 		}
12361 		if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
12362 			phba->work_status[0] =
12363 				readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
12364 			phba->work_status[1] =
12365 				readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
12366 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12367 					"2885 Port Status Event: "
12368 					"port status reg 0x%x, "
12369 					"port smphr reg 0x%x, "
12370 					"error 1=0x%x, error 2=0x%x\n",
12371 					portstat_reg.word0,
12372 					portsmphr,
12373 					phba->work_status[0],
12374 					phba->work_status[1]);
12375 			phba->work_ha |= HA_ERATT;
12376 			phba->hba_flag |= HBA_ERATT_HANDLED;
12377 			return 1;
12378 		}
12379 		break;
12380 	case LPFC_SLI_INTF_IF_TYPE_1:
12381 	default:
12382 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12383 				"2886 HBA Error Attention on unsupported "
12384 				"if type %d.", if_type);
12385 		return 1;
12386 	}
12387 
12388 	return 0;
12389 }
12390 
12391 /**
12392  * lpfc_sli_check_eratt - check error attention events
12393  * @phba: Pointer to HBA context.
12394  *
12395  * This function is called from timer soft interrupt context to check HBA's
12396  * error attention register bit for error attention events.
12397  *
12398  * This function returns 1 when there is Error Attention in the Host Attention
12399  * Register and returns 0 otherwise.
12400  **/
12401 int
12402 lpfc_sli_check_eratt(struct lpfc_hba *phba)
12403 {
12404 	uint32_t ha_copy;
12405 
12406 	/* If somebody is waiting to handle an eratt, don't process it
12407 	 * here. The brdkill function will do this.
12408 	 */
12409 	if (phba->link_flag & LS_IGNORE_ERATT)
12410 		return 0;
12411 
12412 	/* Check if interrupt handler handles this ERATT */
12413 	spin_lock_irq(&phba->hbalock);
12414 	if (phba->hba_flag & HBA_ERATT_HANDLED) {
12415 		/* Interrupt handler has handled ERATT */
12416 		spin_unlock_irq(&phba->hbalock);
12417 		return 0;
12418 	}
12419 
12420 	/*
12421 	 * If there is deferred error attention, do not check for error
12422 	 * attention
12423 	 */
12424 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12425 		spin_unlock_irq(&phba->hbalock);
12426 		return 0;
12427 	}
12428 
12429 	/* If PCI channel is offline, don't process it */
12430 	if (unlikely(pci_channel_offline(phba->pcidev))) {
12431 		spin_unlock_irq(&phba->hbalock);
12432 		return 0;
12433 	}
12434 
12435 	switch (phba->sli_rev) {
12436 	case LPFC_SLI_REV2:
12437 	case LPFC_SLI_REV3:
12438 		/* Read chip Host Attention (HA) register */
12439 		ha_copy = lpfc_sli_eratt_read(phba);
12440 		break;
12441 	case LPFC_SLI_REV4:
12442 		/* Read device Uncoverable Error (UERR) registers */
12443 		ha_copy = lpfc_sli4_eratt_read(phba);
12444 		break;
12445 	default:
12446 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12447 				"0299 Invalid SLI revision (%d)\n",
12448 				phba->sli_rev);
12449 		ha_copy = 0;
12450 		break;
12451 	}
12452 	spin_unlock_irq(&phba->hbalock);
12453 
12454 	return ha_copy;
12455 }
12456 
12457 /**
12458  * lpfc_intr_state_check - Check device state for interrupt handling
12459  * @phba: Pointer to HBA context.
12460  *
12461  * This inline routine checks whether a device or its PCI slot is in a state
12462  * that the interrupt should be handled.
12463  *
12464  * This function returns 0 if the device or the PCI slot is in a state that
12465  * interrupt should be handled, otherwise -EIO.
12466  */
12467 static inline int
12468 lpfc_intr_state_check(struct lpfc_hba *phba)
12469 {
12470 	/* If the pci channel is offline, ignore all the interrupts */
12471 	if (unlikely(pci_channel_offline(phba->pcidev)))
12472 		return -EIO;
12473 
12474 	/* Update device level interrupt statistics */
12475 	phba->sli.slistat.sli_intr++;
12476 
12477 	/* Ignore all interrupts during initialization. */
12478 	if (unlikely(phba->link_state < LPFC_LINK_DOWN))
12479 		return -EIO;
12480 
12481 	return 0;
12482 }
12483 
12484 /**
12485  * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
12486  * @irq: Interrupt number.
12487  * @dev_id: The device context pointer.
12488  *
12489  * This function is directly called from the PCI layer as an interrupt
12490  * service routine when device with SLI-3 interface spec is enabled with
12491  * MSI-X multi-message interrupt mode and there are slow-path events in
12492  * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
12493  * interrupt mode, this function is called as part of the device-level
12494  * interrupt handler. When the PCI slot is in error recovery or the HBA
12495  * is undergoing initialization, the interrupt handler will not process
12496  * the interrupt. The link attention and ELS ring attention events are
12497  * handled by the worker thread. The interrupt handler signals the worker
12498  * thread and returns for these events. This function is called without
12499  * any lock held. It gets the hbalock to access and update SLI data
12500  * structures.
12501  *
12502  * This function returns IRQ_HANDLED when interrupt is handled else it
12503  * returns IRQ_NONE.
12504  **/
12505 irqreturn_t
12506 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
12507 {
12508 	struct lpfc_hba  *phba;
12509 	uint32_t ha_copy, hc_copy;
12510 	uint32_t work_ha_copy;
12511 	unsigned long status;
12512 	unsigned long iflag;
12513 	uint32_t control;
12514 
12515 	MAILBOX_t *mbox, *pmbox;
12516 	struct lpfc_vport *vport;
12517 	struct lpfc_nodelist *ndlp;
12518 	struct lpfc_dmabuf *mp;
12519 	LPFC_MBOXQ_t *pmb;
12520 	int rc;
12521 
12522 	/*
12523 	 * Get the driver's phba structure from the dev_id and
12524 	 * assume the HBA is not interrupting.
12525 	 */
12526 	phba = (struct lpfc_hba *)dev_id;
12527 
12528 	if (unlikely(!phba))
12529 		return IRQ_NONE;
12530 
12531 	/*
12532 	 * Stuff needs to be attented to when this function is invoked as an
12533 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12534 	 */
12535 	if (phba->intr_type == MSIX) {
12536 		/* Check device state for handling interrupt */
12537 		if (lpfc_intr_state_check(phba))
12538 			return IRQ_NONE;
12539 		/* Need to read HA REG for slow-path events */
12540 		spin_lock_irqsave(&phba->hbalock, iflag);
12541 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12542 			goto unplug_error;
12543 		/* If somebody is waiting to handle an eratt don't process it
12544 		 * here. The brdkill function will do this.
12545 		 */
12546 		if (phba->link_flag & LS_IGNORE_ERATT)
12547 			ha_copy &= ~HA_ERATT;
12548 		/* Check the need for handling ERATT in interrupt handler */
12549 		if (ha_copy & HA_ERATT) {
12550 			if (phba->hba_flag & HBA_ERATT_HANDLED)
12551 				/* ERATT polling has handled ERATT */
12552 				ha_copy &= ~HA_ERATT;
12553 			else
12554 				/* Indicate interrupt handler handles ERATT */
12555 				phba->hba_flag |= HBA_ERATT_HANDLED;
12556 		}
12557 
12558 		/*
12559 		 * If there is deferred error attention, do not check for any
12560 		 * interrupt.
12561 		 */
12562 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12563 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12564 			return IRQ_NONE;
12565 		}
12566 
12567 		/* Clear up only attention source related to slow-path */
12568 		if (lpfc_readl(phba->HCregaddr, &hc_copy))
12569 			goto unplug_error;
12570 
12571 		writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
12572 			HC_LAINT_ENA | HC_ERINT_ENA),
12573 			phba->HCregaddr);
12574 		writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
12575 			phba->HAregaddr);
12576 		writel(hc_copy, phba->HCregaddr);
12577 		readl(phba->HAregaddr); /* flush */
12578 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12579 	} else
12580 		ha_copy = phba->ha_copy;
12581 
12582 	work_ha_copy = ha_copy & phba->work_ha_mask;
12583 
12584 	if (work_ha_copy) {
12585 		if (work_ha_copy & HA_LATT) {
12586 			if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
12587 				/*
12588 				 * Turn off Link Attention interrupts
12589 				 * until CLEAR_LA done
12590 				 */
12591 				spin_lock_irqsave(&phba->hbalock, iflag);
12592 				phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
12593 				if (lpfc_readl(phba->HCregaddr, &control))
12594 					goto unplug_error;
12595 				control &= ~HC_LAINT_ENA;
12596 				writel(control, phba->HCregaddr);
12597 				readl(phba->HCregaddr); /* flush */
12598 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12599 			}
12600 			else
12601 				work_ha_copy &= ~HA_LATT;
12602 		}
12603 
12604 		if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
12605 			/*
12606 			 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
12607 			 * the only slow ring.
12608 			 */
12609 			status = (work_ha_copy &
12610 				(HA_RXMASK  << (4*LPFC_ELS_RING)));
12611 			status >>= (4*LPFC_ELS_RING);
12612 			if (status & HA_RXMASK) {
12613 				spin_lock_irqsave(&phba->hbalock, iflag);
12614 				if (lpfc_readl(phba->HCregaddr, &control))
12615 					goto unplug_error;
12616 
12617 				lpfc_debugfs_slow_ring_trc(phba,
12618 				"ISR slow ring:   ctl:x%x stat:x%x isrcnt:x%x",
12619 				control, status,
12620 				(uint32_t)phba->sli.slistat.sli_intr);
12621 
12622 				if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
12623 					lpfc_debugfs_slow_ring_trc(phba,
12624 						"ISR Disable ring:"
12625 						"pwork:x%x hawork:x%x wait:x%x",
12626 						phba->work_ha, work_ha_copy,
12627 						(uint32_t)((unsigned long)
12628 						&phba->work_waitq));
12629 
12630 					control &=
12631 					    ~(HC_R0INT_ENA << LPFC_ELS_RING);
12632 					writel(control, phba->HCregaddr);
12633 					readl(phba->HCregaddr); /* flush */
12634 				}
12635 				else {
12636 					lpfc_debugfs_slow_ring_trc(phba,
12637 						"ISR slow ring:   pwork:"
12638 						"x%x hawork:x%x wait:x%x",
12639 						phba->work_ha, work_ha_copy,
12640 						(uint32_t)((unsigned long)
12641 						&phba->work_waitq));
12642 				}
12643 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12644 			}
12645 		}
12646 		spin_lock_irqsave(&phba->hbalock, iflag);
12647 		if (work_ha_copy & HA_ERATT) {
12648 			if (lpfc_sli_read_hs(phba))
12649 				goto unplug_error;
12650 			/*
12651 			 * Check if there is a deferred error condition
12652 			 * is active
12653 			 */
12654 			if ((HS_FFER1 & phba->work_hs) &&
12655 				((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
12656 				  HS_FFER6 | HS_FFER7 | HS_FFER8) &
12657 				  phba->work_hs)) {
12658 				phba->hba_flag |= DEFER_ERATT;
12659 				/* Clear all interrupt enable conditions */
12660 				writel(0, phba->HCregaddr);
12661 				readl(phba->HCregaddr);
12662 			}
12663 		}
12664 
12665 		if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
12666 			pmb = phba->sli.mbox_active;
12667 			pmbox = &pmb->u.mb;
12668 			mbox = phba->mbox;
12669 			vport = pmb->vport;
12670 
12671 			/* First check out the status word */
12672 			lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
12673 			if (pmbox->mbxOwner != OWN_HOST) {
12674 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12675 				/*
12676 				 * Stray Mailbox Interrupt, mbxCommand <cmd>
12677 				 * mbxStatus <status>
12678 				 */
12679 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12680 						LOG_SLI,
12681 						"(%d):0304 Stray Mailbox "
12682 						"Interrupt mbxCommand x%x "
12683 						"mbxStatus x%x\n",
12684 						(vport ? vport->vpi : 0),
12685 						pmbox->mbxCommand,
12686 						pmbox->mbxStatus);
12687 				/* clear mailbox attention bit */
12688 				work_ha_copy &= ~HA_MBATT;
12689 			} else {
12690 				phba->sli.mbox_active = NULL;
12691 				spin_unlock_irqrestore(&phba->hbalock, iflag);
12692 				phba->last_completion_time = jiffies;
12693 				del_timer(&phba->sli.mbox_tmo);
12694 				if (pmb->mbox_cmpl) {
12695 					lpfc_sli_pcimem_bcopy(mbox, pmbox,
12696 							MAILBOX_CMD_SIZE);
12697 					if (pmb->out_ext_byte_len &&
12698 						pmb->ctx_buf)
12699 						lpfc_sli_pcimem_bcopy(
12700 						phba->mbox_ext,
12701 						pmb->ctx_buf,
12702 						pmb->out_ext_byte_len);
12703 				}
12704 				if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
12705 					pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
12706 
12707 					lpfc_debugfs_disc_trc(vport,
12708 						LPFC_DISC_TRC_MBOX_VPORT,
12709 						"MBOX dflt rpi: : "
12710 						"status:x%x rpi:x%x",
12711 						(uint32_t)pmbox->mbxStatus,
12712 						pmbox->un.varWords[0], 0);
12713 
12714 					if (!pmbox->mbxStatus) {
12715 						mp = (struct lpfc_dmabuf *)
12716 							(pmb->ctx_buf);
12717 						ndlp = (struct lpfc_nodelist *)
12718 							pmb->ctx_ndlp;
12719 
12720 						/* Reg_LOGIN of dflt RPI was
12721 						 * successful. new lets get
12722 						 * rid of the RPI using the
12723 						 * same mbox buffer.
12724 						 */
12725 						lpfc_unreg_login(phba,
12726 							vport->vpi,
12727 							pmbox->un.varWords[0],
12728 							pmb);
12729 						pmb->mbox_cmpl =
12730 							lpfc_mbx_cmpl_dflt_rpi;
12731 						pmb->ctx_buf = mp;
12732 						pmb->ctx_ndlp = ndlp;
12733 						pmb->vport = vport;
12734 						rc = lpfc_sli_issue_mbox(phba,
12735 								pmb,
12736 								MBX_NOWAIT);
12737 						if (rc != MBX_BUSY)
12738 							lpfc_printf_log(phba,
12739 							KERN_ERR,
12740 							LOG_MBOX | LOG_SLI,
12741 							"0350 rc should have"
12742 							"been MBX_BUSY\n");
12743 						if (rc != MBX_NOT_FINISHED)
12744 							goto send_current_mbox;
12745 					}
12746 				}
12747 				spin_lock_irqsave(
12748 						&phba->pport->work_port_lock,
12749 						iflag);
12750 				phba->pport->work_port_events &=
12751 					~WORKER_MBOX_TMO;
12752 				spin_unlock_irqrestore(
12753 						&phba->pport->work_port_lock,
12754 						iflag);
12755 				lpfc_mbox_cmpl_put(phba, pmb);
12756 			}
12757 		} else
12758 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12759 
12760 		if ((work_ha_copy & HA_MBATT) &&
12761 		    (phba->sli.mbox_active == NULL)) {
12762 send_current_mbox:
12763 			/* Process next mailbox command if there is one */
12764 			do {
12765 				rc = lpfc_sli_issue_mbox(phba, NULL,
12766 							 MBX_NOWAIT);
12767 			} while (rc == MBX_NOT_FINISHED);
12768 			if (rc != MBX_SUCCESS)
12769 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
12770 						LOG_SLI, "0349 rc should be "
12771 						"MBX_SUCCESS\n");
12772 		}
12773 
12774 		spin_lock_irqsave(&phba->hbalock, iflag);
12775 		phba->work_ha |= work_ha_copy;
12776 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12777 		lpfc_worker_wake_up(phba);
12778 	}
12779 	return IRQ_HANDLED;
12780 unplug_error:
12781 	spin_unlock_irqrestore(&phba->hbalock, iflag);
12782 	return IRQ_HANDLED;
12783 
12784 } /* lpfc_sli_sp_intr_handler */
12785 
12786 /**
12787  * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
12788  * @irq: Interrupt number.
12789  * @dev_id: The device context pointer.
12790  *
12791  * This function is directly called from the PCI layer as an interrupt
12792  * service routine when device with SLI-3 interface spec is enabled with
12793  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
12794  * ring event in the HBA. However, when the device is enabled with either
12795  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
12796  * device-level interrupt handler. When the PCI slot is in error recovery
12797  * or the HBA is undergoing initialization, the interrupt handler will not
12798  * process the interrupt. The SCSI FCP fast-path ring event are handled in
12799  * the intrrupt context. This function is called without any lock held.
12800  * It gets the hbalock to access and update SLI data structures.
12801  *
12802  * This function returns IRQ_HANDLED when interrupt is handled else it
12803  * returns IRQ_NONE.
12804  **/
12805 irqreturn_t
12806 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
12807 {
12808 	struct lpfc_hba  *phba;
12809 	uint32_t ha_copy;
12810 	unsigned long status;
12811 	unsigned long iflag;
12812 	struct lpfc_sli_ring *pring;
12813 
12814 	/* Get the driver's phba structure from the dev_id and
12815 	 * assume the HBA is not interrupting.
12816 	 */
12817 	phba = (struct lpfc_hba *) dev_id;
12818 
12819 	if (unlikely(!phba))
12820 		return IRQ_NONE;
12821 
12822 	/*
12823 	 * Stuff needs to be attented to when this function is invoked as an
12824 	 * individual interrupt handler in MSI-X multi-message interrupt mode
12825 	 */
12826 	if (phba->intr_type == MSIX) {
12827 		/* Check device state for handling interrupt */
12828 		if (lpfc_intr_state_check(phba))
12829 			return IRQ_NONE;
12830 		/* Need to read HA REG for FCP ring and other ring events */
12831 		if (lpfc_readl(phba->HAregaddr, &ha_copy))
12832 			return IRQ_HANDLED;
12833 		/* Clear up only attention source related to fast-path */
12834 		spin_lock_irqsave(&phba->hbalock, iflag);
12835 		/*
12836 		 * If there is deferred error attention, do not check for
12837 		 * any interrupt.
12838 		 */
12839 		if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12840 			spin_unlock_irqrestore(&phba->hbalock, iflag);
12841 			return IRQ_NONE;
12842 		}
12843 		writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
12844 			phba->HAregaddr);
12845 		readl(phba->HAregaddr); /* flush */
12846 		spin_unlock_irqrestore(&phba->hbalock, iflag);
12847 	} else
12848 		ha_copy = phba->ha_copy;
12849 
12850 	/*
12851 	 * Process all events on FCP ring. Take the optimized path for FCP IO.
12852 	 */
12853 	ha_copy &= ~(phba->work_ha_mask);
12854 
12855 	status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12856 	status >>= (4*LPFC_FCP_RING);
12857 	pring = &phba->sli.sli3_ring[LPFC_FCP_RING];
12858 	if (status & HA_RXMASK)
12859 		lpfc_sli_handle_fast_ring_event(phba, pring, status);
12860 
12861 	if (phba->cfg_multi_ring_support == 2) {
12862 		/*
12863 		 * Process all events on extra ring. Take the optimized path
12864 		 * for extra ring IO.
12865 		 */
12866 		status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12867 		status >>= (4*LPFC_EXTRA_RING);
12868 		if (status & HA_RXMASK) {
12869 			lpfc_sli_handle_fast_ring_event(phba,
12870 					&phba->sli.sli3_ring[LPFC_EXTRA_RING],
12871 					status);
12872 		}
12873 	}
12874 	return IRQ_HANDLED;
12875 }  /* lpfc_sli_fp_intr_handler */
12876 
12877 /**
12878  * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
12879  * @irq: Interrupt number.
12880  * @dev_id: The device context pointer.
12881  *
12882  * This function is the HBA device-level interrupt handler to device with
12883  * SLI-3 interface spec, called from the PCI layer when either MSI or
12884  * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
12885  * requires driver attention. This function invokes the slow-path interrupt
12886  * attention handling function and fast-path interrupt attention handling
12887  * function in turn to process the relevant HBA attention events. This
12888  * function is called without any lock held. It gets the hbalock to access
12889  * and update SLI data structures.
12890  *
12891  * This function returns IRQ_HANDLED when interrupt is handled, else it
12892  * returns IRQ_NONE.
12893  **/
12894 irqreturn_t
12895 lpfc_sli_intr_handler(int irq, void *dev_id)
12896 {
12897 	struct lpfc_hba  *phba;
12898 	irqreturn_t sp_irq_rc, fp_irq_rc;
12899 	unsigned long status1, status2;
12900 	uint32_t hc_copy;
12901 
12902 	/*
12903 	 * Get the driver's phba structure from the dev_id and
12904 	 * assume the HBA is not interrupting.
12905 	 */
12906 	phba = (struct lpfc_hba *) dev_id;
12907 
12908 	if (unlikely(!phba))
12909 		return IRQ_NONE;
12910 
12911 	/* Check device state for handling interrupt */
12912 	if (lpfc_intr_state_check(phba))
12913 		return IRQ_NONE;
12914 
12915 	spin_lock(&phba->hbalock);
12916 	if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
12917 		spin_unlock(&phba->hbalock);
12918 		return IRQ_HANDLED;
12919 	}
12920 
12921 	if (unlikely(!phba->ha_copy)) {
12922 		spin_unlock(&phba->hbalock);
12923 		return IRQ_NONE;
12924 	} else if (phba->ha_copy & HA_ERATT) {
12925 		if (phba->hba_flag & HBA_ERATT_HANDLED)
12926 			/* ERATT polling has handled ERATT */
12927 			phba->ha_copy &= ~HA_ERATT;
12928 		else
12929 			/* Indicate interrupt handler handles ERATT */
12930 			phba->hba_flag |= HBA_ERATT_HANDLED;
12931 	}
12932 
12933 	/*
12934 	 * If there is deferred error attention, do not check for any interrupt.
12935 	 */
12936 	if (unlikely(phba->hba_flag & DEFER_ERATT)) {
12937 		spin_unlock(&phba->hbalock);
12938 		return IRQ_NONE;
12939 	}
12940 
12941 	/* Clear attention sources except link and error attentions */
12942 	if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
12943 		spin_unlock(&phba->hbalock);
12944 		return IRQ_HANDLED;
12945 	}
12946 	writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
12947 		| HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
12948 		phba->HCregaddr);
12949 	writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
12950 	writel(hc_copy, phba->HCregaddr);
12951 	readl(phba->HAregaddr); /* flush */
12952 	spin_unlock(&phba->hbalock);
12953 
12954 	/*
12955 	 * Invokes slow-path host attention interrupt handling as appropriate.
12956 	 */
12957 
12958 	/* status of events with mailbox and link attention */
12959 	status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
12960 
12961 	/* status of events with ELS ring */
12962 	status2 = (phba->ha_copy & (HA_RXMASK  << (4*LPFC_ELS_RING)));
12963 	status2 >>= (4*LPFC_ELS_RING);
12964 
12965 	if (status1 || (status2 & HA_RXMASK))
12966 		sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
12967 	else
12968 		sp_irq_rc = IRQ_NONE;
12969 
12970 	/*
12971 	 * Invoke fast-path host attention interrupt handling as appropriate.
12972 	 */
12973 
12974 	/* status of events with FCP ring */
12975 	status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
12976 	status1 >>= (4*LPFC_FCP_RING);
12977 
12978 	/* status of events with extra ring */
12979 	if (phba->cfg_multi_ring_support == 2) {
12980 		status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
12981 		status2 >>= (4*LPFC_EXTRA_RING);
12982 	} else
12983 		status2 = 0;
12984 
12985 	if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
12986 		fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
12987 	else
12988 		fp_irq_rc = IRQ_NONE;
12989 
12990 	/* Return device-level interrupt handling status */
12991 	return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
12992 }  /* lpfc_sli_intr_handler */
12993 
12994 /**
12995  * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
12996  * @phba: pointer to lpfc hba data structure.
12997  *
12998  * This routine is invoked by the worker thread to process all the pending
12999  * SLI4 els abort xri events.
13000  **/
13001 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
13002 {
13003 	struct lpfc_cq_event *cq_event;
13004 
13005 	/* First, declare the els xri abort event has been handled */
13006 	spin_lock_irq(&phba->hbalock);
13007 	phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
13008 	spin_unlock_irq(&phba->hbalock);
13009 	/* Now, handle all the els xri abort events */
13010 	while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
13011 		/* Get the first event from the head of the event queue */
13012 		spin_lock_irq(&phba->hbalock);
13013 		list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
13014 				 cq_event, struct lpfc_cq_event, list);
13015 		spin_unlock_irq(&phba->hbalock);
13016 		/* Notify aborted XRI for ELS work queue */
13017 		lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
13018 		/* Free the event processed back to the free pool */
13019 		lpfc_sli4_cq_event_release(phba, cq_event);
13020 	}
13021 }
13022 
13023 /**
13024  * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
13025  * @phba: pointer to lpfc hba data structure
13026  * @pIocbIn: pointer to the rspiocbq
13027  * @pIocbOut: pointer to the cmdiocbq
13028  * @wcqe: pointer to the complete wcqe
13029  *
13030  * This routine transfers the fields of a command iocbq to a response iocbq
13031  * by copying all the IOCB fields from command iocbq and transferring the
13032  * completion status information from the complete wcqe.
13033  **/
13034 static void
13035 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
13036 			      struct lpfc_iocbq *pIocbIn,
13037 			      struct lpfc_iocbq *pIocbOut,
13038 			      struct lpfc_wcqe_complete *wcqe)
13039 {
13040 	int numBdes, i;
13041 	unsigned long iflags;
13042 	uint32_t status, max_response;
13043 	struct lpfc_dmabuf *dmabuf;
13044 	struct ulp_bde64 *bpl, bde;
13045 	size_t offset = offsetof(struct lpfc_iocbq, iocb);
13046 
13047 	memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
13048 	       sizeof(struct lpfc_iocbq) - offset);
13049 	/* Map WCQE parameters into irspiocb parameters */
13050 	status = bf_get(lpfc_wcqe_c_status, wcqe);
13051 	pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
13052 	if (pIocbOut->iocb_flag & LPFC_IO_FCP)
13053 		if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
13054 			pIocbIn->iocb.un.fcpi.fcpi_parm =
13055 					pIocbOut->iocb.un.fcpi.fcpi_parm -
13056 					wcqe->total_data_placed;
13057 		else
13058 			pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13059 	else {
13060 		pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
13061 		switch (pIocbOut->iocb.ulpCommand) {
13062 		case CMD_ELS_REQUEST64_CR:
13063 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13064 			bpl  = (struct ulp_bde64 *)dmabuf->virt;
13065 			bde.tus.w = le32_to_cpu(bpl[1].tus.w);
13066 			max_response = bde.tus.f.bdeSize;
13067 			break;
13068 		case CMD_GEN_REQUEST64_CR:
13069 			max_response = 0;
13070 			if (!pIocbOut->context3)
13071 				break;
13072 			numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/
13073 					sizeof(struct ulp_bde64);
13074 			dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3;
13075 			bpl = (struct ulp_bde64 *)dmabuf->virt;
13076 			for (i = 0; i < numBdes; i++) {
13077 				bde.tus.w = le32_to_cpu(bpl[i].tus.w);
13078 				if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
13079 					max_response += bde.tus.f.bdeSize;
13080 			}
13081 			break;
13082 		default:
13083 			max_response = wcqe->total_data_placed;
13084 			break;
13085 		}
13086 		if (max_response < wcqe->total_data_placed)
13087 			pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response;
13088 		else
13089 			pIocbIn->iocb.un.genreq64.bdl.bdeSize =
13090 				wcqe->total_data_placed;
13091 	}
13092 
13093 	/* Convert BG errors for completion status */
13094 	if (status == CQE_STATUS_DI_ERROR) {
13095 		pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
13096 
13097 		if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
13098 			pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
13099 		else
13100 			pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
13101 
13102 		pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
13103 		if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
13104 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13105 				BGS_GUARD_ERR_MASK;
13106 		if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
13107 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13108 				BGS_APPTAG_ERR_MASK;
13109 		if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
13110 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13111 				BGS_REFTAG_ERR_MASK;
13112 
13113 		/* Check to see if there was any good data before the error */
13114 		if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
13115 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13116 				BGS_HI_WATER_MARK_PRESENT_MASK;
13117 			pIocbIn->iocb.unsli3.sli3_bg.bghm =
13118 				wcqe->total_data_placed;
13119 		}
13120 
13121 		/*
13122 		* Set ALL the error bits to indicate we don't know what
13123 		* type of error it is.
13124 		*/
13125 		if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
13126 			pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
13127 				(BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
13128 				BGS_GUARD_ERR_MASK);
13129 	}
13130 
13131 	/* Pick up HBA exchange busy condition */
13132 	if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
13133 		spin_lock_irqsave(&phba->hbalock, iflags);
13134 		pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
13135 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13136 	}
13137 }
13138 
13139 /**
13140  * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
13141  * @phba: Pointer to HBA context object.
13142  * @wcqe: Pointer to work-queue completion queue entry.
13143  *
13144  * This routine handles an ELS work-queue completion event and construct
13145  * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
13146  * discovery engine to handle.
13147  *
13148  * Return: Pointer to the receive IOCBQ, NULL otherwise.
13149  **/
13150 static struct lpfc_iocbq *
13151 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
13152 			       struct lpfc_iocbq *irspiocbq)
13153 {
13154 	struct lpfc_sli_ring *pring;
13155 	struct lpfc_iocbq *cmdiocbq;
13156 	struct lpfc_wcqe_complete *wcqe;
13157 	unsigned long iflags;
13158 
13159 	pring = lpfc_phba_elsring(phba);
13160 	if (unlikely(!pring))
13161 		return NULL;
13162 
13163 	wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
13164 	pring->stats.iocb_event++;
13165 	/* Look up the ELS command IOCB and create pseudo response IOCB */
13166 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13167 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13168 	if (unlikely(!cmdiocbq)) {
13169 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13170 				"0386 ELS complete with no corresponding "
13171 				"cmdiocb: 0x%x 0x%x 0x%x 0x%x\n",
13172 				wcqe->word0, wcqe->total_data_placed,
13173 				wcqe->parameter, wcqe->word3);
13174 		lpfc_sli_release_iocbq(phba, irspiocbq);
13175 		return NULL;
13176 	}
13177 
13178 	spin_lock_irqsave(&pring->ring_lock, iflags);
13179 	/* Put the iocb back on the txcmplq */
13180 	lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq);
13181 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13182 
13183 	/* Fake the irspiocbq and copy necessary response information */
13184 	lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
13185 
13186 	return irspiocbq;
13187 }
13188 
13189 inline struct lpfc_cq_event *
13190 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size)
13191 {
13192 	struct lpfc_cq_event *cq_event;
13193 
13194 	/* Allocate a new internal CQ_EVENT entry */
13195 	cq_event = lpfc_sli4_cq_event_alloc(phba);
13196 	if (!cq_event) {
13197 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13198 				"0602 Failed to alloc CQ_EVENT entry\n");
13199 		return NULL;
13200 	}
13201 
13202 	/* Move the CQE into the event */
13203 	memcpy(&cq_event->cqe, entry, size);
13204 	return cq_event;
13205 }
13206 
13207 /**
13208  * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event
13209  * @phba: Pointer to HBA context object.
13210  * @cqe: Pointer to mailbox completion queue entry.
13211  *
13212  * This routine process a mailbox completion queue entry with asynchronous
13213  * event.
13214  *
13215  * Return: true if work posted to worker thread, otherwise false.
13216  **/
13217 static bool
13218 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13219 {
13220 	struct lpfc_cq_event *cq_event;
13221 	unsigned long iflags;
13222 
13223 	lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13224 			"0392 Async Event: word0:x%x, word1:x%x, "
13225 			"word2:x%x, word3:x%x\n", mcqe->word0,
13226 			mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
13227 
13228 	cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe));
13229 	if (!cq_event)
13230 		return false;
13231 	spin_lock_irqsave(&phba->hbalock, iflags);
13232 	list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
13233 	/* Set the async event flag */
13234 	phba->hba_flag |= ASYNC_EVENT;
13235 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13236 
13237 	return true;
13238 }
13239 
13240 /**
13241  * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
13242  * @phba: Pointer to HBA context object.
13243  * @cqe: Pointer to mailbox completion queue entry.
13244  *
13245  * This routine process a mailbox completion queue entry with mailbox
13246  * completion event.
13247  *
13248  * Return: true if work posted to worker thread, otherwise false.
13249  **/
13250 static bool
13251 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
13252 {
13253 	uint32_t mcqe_status;
13254 	MAILBOX_t *mbox, *pmbox;
13255 	struct lpfc_mqe *mqe;
13256 	struct lpfc_vport *vport;
13257 	struct lpfc_nodelist *ndlp;
13258 	struct lpfc_dmabuf *mp;
13259 	unsigned long iflags;
13260 	LPFC_MBOXQ_t *pmb;
13261 	bool workposted = false;
13262 	int rc;
13263 
13264 	/* If not a mailbox complete MCQE, out by checking mailbox consume */
13265 	if (!bf_get(lpfc_trailer_completed, mcqe))
13266 		goto out_no_mqe_complete;
13267 
13268 	/* Get the reference to the active mbox command */
13269 	spin_lock_irqsave(&phba->hbalock, iflags);
13270 	pmb = phba->sli.mbox_active;
13271 	if (unlikely(!pmb)) {
13272 		lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
13273 				"1832 No pending MBOX command to handle\n");
13274 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13275 		goto out_no_mqe_complete;
13276 	}
13277 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13278 	mqe = &pmb->u.mqe;
13279 	pmbox = (MAILBOX_t *)&pmb->u.mqe;
13280 	mbox = phba->mbox;
13281 	vport = pmb->vport;
13282 
13283 	/* Reset heartbeat timer */
13284 	phba->last_completion_time = jiffies;
13285 	del_timer(&phba->sli.mbox_tmo);
13286 
13287 	/* Move mbox data to caller's mailbox region, do endian swapping */
13288 	if (pmb->mbox_cmpl && mbox)
13289 		lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
13290 
13291 	/*
13292 	 * For mcqe errors, conditionally move a modified error code to
13293 	 * the mbox so that the error will not be missed.
13294 	 */
13295 	mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
13296 	if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
13297 		if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
13298 			bf_set(lpfc_mqe_status, mqe,
13299 			       (LPFC_MBX_ERROR_RANGE | mcqe_status));
13300 	}
13301 	if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
13302 		pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
13303 		lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
13304 				      "MBOX dflt rpi: status:x%x rpi:x%x",
13305 				      mcqe_status,
13306 				      pmbox->un.varWords[0], 0);
13307 		if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
13308 			mp = (struct lpfc_dmabuf *)(pmb->ctx_buf);
13309 			ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp;
13310 			/* Reg_LOGIN of dflt RPI was successful. Now lets get
13311 			 * RID of the PPI using the same mbox buffer.
13312 			 */
13313 			lpfc_unreg_login(phba, vport->vpi,
13314 					 pmbox->un.varWords[0], pmb);
13315 			pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
13316 			pmb->ctx_buf = mp;
13317 			pmb->ctx_ndlp = ndlp;
13318 			pmb->vport = vport;
13319 			rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
13320 			if (rc != MBX_BUSY)
13321 				lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
13322 						LOG_SLI, "0385 rc should "
13323 						"have been MBX_BUSY\n");
13324 			if (rc != MBX_NOT_FINISHED)
13325 				goto send_current_mbox;
13326 		}
13327 	}
13328 	spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
13329 	phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
13330 	spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
13331 
13332 	/* There is mailbox completion work to do */
13333 	spin_lock_irqsave(&phba->hbalock, iflags);
13334 	__lpfc_mbox_cmpl_put(phba, pmb);
13335 	phba->work_ha |= HA_MBATT;
13336 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13337 	workposted = true;
13338 
13339 send_current_mbox:
13340 	spin_lock_irqsave(&phba->hbalock, iflags);
13341 	/* Release the mailbox command posting token */
13342 	phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
13343 	/* Setting active mailbox pointer need to be in sync to flag clear */
13344 	phba->sli.mbox_active = NULL;
13345 	if (bf_get(lpfc_trailer_consumed, mcqe))
13346 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13347 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13348 	/* Wake up worker thread to post the next pending mailbox command */
13349 	lpfc_worker_wake_up(phba);
13350 	return workposted;
13351 
13352 out_no_mqe_complete:
13353 	spin_lock_irqsave(&phba->hbalock, iflags);
13354 	if (bf_get(lpfc_trailer_consumed, mcqe))
13355 		lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
13356 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13357 	return false;
13358 }
13359 
13360 /**
13361  * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
13362  * @phba: Pointer to HBA context object.
13363  * @cqe: Pointer to mailbox completion queue entry.
13364  *
13365  * This routine process a mailbox completion queue entry, it invokes the
13366  * proper mailbox complete handling or asynchronous event handling routine
13367  * according to the MCQE's async bit.
13368  *
13369  * Return: true if work posted to worker thread, otherwise false.
13370  **/
13371 static bool
13372 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13373 			 struct lpfc_cqe *cqe)
13374 {
13375 	struct lpfc_mcqe mcqe;
13376 	bool workposted;
13377 
13378 	cq->CQ_mbox++;
13379 
13380 	/* Copy the mailbox MCQE and convert endian order as needed */
13381 	lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
13382 
13383 	/* Invoke the proper event handling routine */
13384 	if (!bf_get(lpfc_trailer_async, &mcqe))
13385 		workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
13386 	else
13387 		workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
13388 	return workposted;
13389 }
13390 
13391 /**
13392  * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
13393  * @phba: Pointer to HBA context object.
13394  * @cq: Pointer to associated CQ
13395  * @wcqe: Pointer to work-queue completion queue entry.
13396  *
13397  * This routine handles an ELS work-queue completion event.
13398  *
13399  * Return: true if work posted to worker thread, otherwise false.
13400  **/
13401 static bool
13402 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13403 			     struct lpfc_wcqe_complete *wcqe)
13404 {
13405 	struct lpfc_iocbq *irspiocbq;
13406 	unsigned long iflags;
13407 	struct lpfc_sli_ring *pring = cq->pring;
13408 	int txq_cnt = 0;
13409 	int txcmplq_cnt = 0;
13410 
13411 	/* Check for response status */
13412 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13413 		/* Log the error status */
13414 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13415 				"0357 ELS CQE error: status=x%x: "
13416 				"CQE: %08x %08x %08x %08x\n",
13417 				bf_get(lpfc_wcqe_c_status, wcqe),
13418 				wcqe->word0, wcqe->total_data_placed,
13419 				wcqe->parameter, wcqe->word3);
13420 	}
13421 
13422 	/* Get an irspiocbq for later ELS response processing use */
13423 	irspiocbq = lpfc_sli_get_iocbq(phba);
13424 	if (!irspiocbq) {
13425 		if (!list_empty(&pring->txq))
13426 			txq_cnt++;
13427 		if (!list_empty(&pring->txcmplq))
13428 			txcmplq_cnt++;
13429 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13430 			"0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
13431 			"els_txcmplq_cnt=%d\n",
13432 			txq_cnt, phba->iocb_cnt,
13433 			txcmplq_cnt);
13434 		return false;
13435 	}
13436 
13437 	/* Save off the slow-path queue event for work thread to process */
13438 	memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
13439 	spin_lock_irqsave(&phba->hbalock, iflags);
13440 	list_add_tail(&irspiocbq->cq_event.list,
13441 		      &phba->sli4_hba.sp_queue_event);
13442 	phba->hba_flag |= HBA_SP_QUEUE_EVT;
13443 	spin_unlock_irqrestore(&phba->hbalock, iflags);
13444 
13445 	return true;
13446 }
13447 
13448 /**
13449  * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
13450  * @phba: Pointer to HBA context object.
13451  * @wcqe: Pointer to work-queue completion queue entry.
13452  *
13453  * This routine handles slow-path WQ entry consumed event by invoking the
13454  * proper WQ release routine to the slow-path WQ.
13455  **/
13456 static void
13457 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
13458 			     struct lpfc_wcqe_release *wcqe)
13459 {
13460 	/* sanity check on queue memory */
13461 	if (unlikely(!phba->sli4_hba.els_wq))
13462 		return;
13463 	/* Check for the slow-path ELS work queue */
13464 	if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
13465 		lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
13466 				     bf_get(lpfc_wcqe_r_wqe_index, wcqe));
13467 	else
13468 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13469 				"2579 Slow-path wqe consume event carries "
13470 				"miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
13471 				bf_get(lpfc_wcqe_r_wqe_index, wcqe),
13472 				phba->sli4_hba.els_wq->queue_id);
13473 }
13474 
13475 /**
13476  * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
13477  * @phba: Pointer to HBA context object.
13478  * @cq: Pointer to a WQ completion queue.
13479  * @wcqe: Pointer to work-queue completion queue entry.
13480  *
13481  * This routine handles an XRI abort event.
13482  *
13483  * Return: true if work posted to worker thread, otherwise false.
13484  **/
13485 static bool
13486 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
13487 				   struct lpfc_queue *cq,
13488 				   struct sli4_wcqe_xri_aborted *wcqe)
13489 {
13490 	bool workposted = false;
13491 	struct lpfc_cq_event *cq_event;
13492 	unsigned long iflags;
13493 
13494 	switch (cq->subtype) {
13495 	case LPFC_IO:
13496 		lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq);
13497 		if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) {
13498 			/* Notify aborted XRI for NVME work queue */
13499 			if (phba->nvmet_support)
13500 				lpfc_sli4_nvmet_xri_aborted(phba, wcqe);
13501 		}
13502 		workposted = false;
13503 		break;
13504 	case LPFC_NVME_LS: /* NVME LS uses ELS resources */
13505 	case LPFC_ELS:
13506 		cq_event = lpfc_cq_event_setup(
13507 			phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
13508 		if (!cq_event)
13509 			return false;
13510 		cq_event->hdwq = cq->hdwq;
13511 		spin_lock_irqsave(&phba->hbalock, iflags);
13512 		list_add_tail(&cq_event->list,
13513 			      &phba->sli4_hba.sp_els_xri_aborted_work_queue);
13514 		/* Set the els xri abort event flag */
13515 		phba->hba_flag |= ELS_XRI_ABORT_EVENT;
13516 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13517 		workposted = true;
13518 		break;
13519 	default:
13520 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13521 				"0603 Invalid CQ subtype %d: "
13522 				"%08x %08x %08x %08x\n",
13523 				cq->subtype, wcqe->word0, wcqe->parameter,
13524 				wcqe->word2, wcqe->word3);
13525 		workposted = false;
13526 		break;
13527 	}
13528 	return workposted;
13529 }
13530 
13531 #define FC_RCTL_MDS_DIAGS	0xF4
13532 
13533 /**
13534  * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
13535  * @phba: Pointer to HBA context object.
13536  * @rcqe: Pointer to receive-queue completion queue entry.
13537  *
13538  * This routine process a receive-queue completion queue entry.
13539  *
13540  * Return: true if work posted to worker thread, otherwise false.
13541  **/
13542 static bool
13543 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
13544 {
13545 	bool workposted = false;
13546 	struct fc_frame_header *fc_hdr;
13547 	struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
13548 	struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
13549 	struct lpfc_nvmet_tgtport *tgtp;
13550 	struct hbq_dmabuf *dma_buf;
13551 	uint32_t status, rq_id;
13552 	unsigned long iflags;
13553 
13554 	/* sanity check on queue memory */
13555 	if (unlikely(!hrq) || unlikely(!drq))
13556 		return workposted;
13557 
13558 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
13559 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
13560 	else
13561 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
13562 	if (rq_id != hrq->queue_id)
13563 		goto out;
13564 
13565 	status = bf_get(lpfc_rcqe_status, rcqe);
13566 	switch (status) {
13567 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
13568 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13569 				"2537 Receive Frame Truncated!!\n");
13570 		/* fall through */
13571 	case FC_STATUS_RQ_SUCCESS:
13572 		spin_lock_irqsave(&phba->hbalock, iflags);
13573 		lpfc_sli4_rq_release(hrq, drq);
13574 		dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
13575 		if (!dma_buf) {
13576 			hrq->RQ_no_buf_found++;
13577 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13578 			goto out;
13579 		}
13580 		hrq->RQ_rcv_buf++;
13581 		hrq->RQ_buf_posted--;
13582 		memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
13583 
13584 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
13585 
13586 		if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
13587 		    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
13588 			spin_unlock_irqrestore(&phba->hbalock, iflags);
13589 			/* Handle MDS Loopback frames */
13590 			lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf);
13591 			break;
13592 		}
13593 
13594 		/* save off the frame for the work thread to process */
13595 		list_add_tail(&dma_buf->cq_event.list,
13596 			      &phba->sli4_hba.sp_queue_event);
13597 		/* Frame received */
13598 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
13599 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13600 		workposted = true;
13601 		break;
13602 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
13603 		if (phba->nvmet_support) {
13604 			tgtp = phba->targetport->private;
13605 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
13606 					"6402 RQE Error x%x, posted %d err_cnt "
13607 					"%d: %x %x %x\n",
13608 					status, hrq->RQ_buf_posted,
13609 					hrq->RQ_no_posted_buf,
13610 					atomic_read(&tgtp->rcv_fcp_cmd_in),
13611 					atomic_read(&tgtp->rcv_fcp_cmd_out),
13612 					atomic_read(&tgtp->xmt_fcp_release));
13613 		}
13614 		/* fallthrough */
13615 
13616 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
13617 		hrq->RQ_no_posted_buf++;
13618 		/* Post more buffers if possible */
13619 		spin_lock_irqsave(&phba->hbalock, iflags);
13620 		phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
13621 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13622 		workposted = true;
13623 		break;
13624 	}
13625 out:
13626 	return workposted;
13627 }
13628 
13629 /**
13630  * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
13631  * @phba: Pointer to HBA context object.
13632  * @cq: Pointer to the completion queue.
13633  * @cqe: Pointer to a completion queue entry.
13634  *
13635  * This routine process a slow-path work-queue or receive queue completion queue
13636  * entry.
13637  *
13638  * Return: true if work posted to worker thread, otherwise false.
13639  **/
13640 static bool
13641 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13642 			 struct lpfc_cqe *cqe)
13643 {
13644 	struct lpfc_cqe cqevt;
13645 	bool workposted = false;
13646 
13647 	/* Copy the work queue CQE and convert endian order if needed */
13648 	lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
13649 
13650 	/* Check and process for different type of WCQE and dispatch */
13651 	switch (bf_get(lpfc_cqe_code, &cqevt)) {
13652 	case CQE_CODE_COMPL_WQE:
13653 		/* Process the WQ/RQ complete event */
13654 		phba->last_completion_time = jiffies;
13655 		workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq,
13656 				(struct lpfc_wcqe_complete *)&cqevt);
13657 		break;
13658 	case CQE_CODE_RELEASE_WQE:
13659 		/* Process the WQ release event */
13660 		lpfc_sli4_sp_handle_rel_wcqe(phba,
13661 				(struct lpfc_wcqe_release *)&cqevt);
13662 		break;
13663 	case CQE_CODE_XRI_ABORTED:
13664 		/* Process the WQ XRI abort event */
13665 		phba->last_completion_time = jiffies;
13666 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
13667 				(struct sli4_wcqe_xri_aborted *)&cqevt);
13668 		break;
13669 	case CQE_CODE_RECEIVE:
13670 	case CQE_CODE_RECEIVE_V1:
13671 		/* Process the RQ event */
13672 		phba->last_completion_time = jiffies;
13673 		workposted = lpfc_sli4_sp_handle_rcqe(phba,
13674 				(struct lpfc_rcqe *)&cqevt);
13675 		break;
13676 	default:
13677 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13678 				"0388 Not a valid WCQE code: x%x\n",
13679 				bf_get(lpfc_cqe_code, &cqevt));
13680 		break;
13681 	}
13682 	return workposted;
13683 }
13684 
13685 /**
13686  * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
13687  * @phba: Pointer to HBA context object.
13688  * @eqe: Pointer to fast-path event queue entry.
13689  *
13690  * This routine process a event queue entry from the slow-path event queue.
13691  * It will check the MajorCode and MinorCode to determine this is for a
13692  * completion event on a completion queue, if not, an error shall be logged
13693  * and just return. Otherwise, it will get to the corresponding completion
13694  * queue and process all the entries on that completion queue, rearm the
13695  * completion queue, and then return.
13696  *
13697  **/
13698 static void
13699 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
13700 	struct lpfc_queue *speq)
13701 {
13702 	struct lpfc_queue *cq = NULL, *childq;
13703 	uint16_t cqid;
13704 
13705 	/* Get the reference to the corresponding CQ */
13706 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
13707 
13708 	list_for_each_entry(childq, &speq->child_list, list) {
13709 		if (childq->queue_id == cqid) {
13710 			cq = childq;
13711 			break;
13712 		}
13713 	}
13714 	if (unlikely(!cq)) {
13715 		if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
13716 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13717 					"0365 Slow-path CQ identifier "
13718 					"(%d) does not exist\n", cqid);
13719 		return;
13720 	}
13721 
13722 	/* Save EQ associated with this CQ */
13723 	cq->assoc_qp = speq;
13724 
13725 	if (!queue_work_on(cq->chann, phba->wq, &cq->spwork))
13726 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13727 				"0390 Cannot schedule soft IRQ "
13728 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
13729 				cqid, cq->queue_id, raw_smp_processor_id());
13730 }
13731 
13732 /**
13733  * __lpfc_sli4_process_cq - Process elements of a CQ
13734  * @phba: Pointer to HBA context object.
13735  * @cq: Pointer to CQ to be processed
13736  * @handler: Routine to process each cqe
13737  * @delay: Pointer to usdelay to set in case of rescheduling of the handler
13738  *
13739  * This routine processes completion queue entries in a CQ. While a valid
13740  * queue element is found, the handler is called. During processing checks
13741  * are made for periodic doorbell writes to let the hardware know of
13742  * element consumption.
13743  *
13744  * If the max limit on cqes to process is hit, or there are no more valid
13745  * entries, the loop stops. If we processed a sufficient number of elements,
13746  * meaning there is sufficient load, rather than rearming and generating
13747  * another interrupt, a cq rescheduling delay will be set. A delay of 0
13748  * indicates no rescheduling.
13749  *
13750  * Returns True if work scheduled, False otherwise.
13751  **/
13752 static bool
13753 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq,
13754 	bool (*handler)(struct lpfc_hba *, struct lpfc_queue *,
13755 			struct lpfc_cqe *), unsigned long *delay)
13756 {
13757 	struct lpfc_cqe *cqe;
13758 	bool workposted = false;
13759 	int count = 0, consumed = 0;
13760 	bool arm = true;
13761 
13762 	/* default - no reschedule */
13763 	*delay = 0;
13764 
13765 	if (cmpxchg(&cq->queue_claimed, 0, 1) != 0)
13766 		goto rearm_and_exit;
13767 
13768 	/* Process all the entries to the CQ */
13769 	cq->q_flag = 0;
13770 	cqe = lpfc_sli4_cq_get(cq);
13771 	while (cqe) {
13772 		workposted |= handler(phba, cq, cqe);
13773 		__lpfc_sli4_consume_cqe(phba, cq, cqe);
13774 
13775 		consumed++;
13776 		if (!(++count % cq->max_proc_limit))
13777 			break;
13778 
13779 		if (!(count % cq->notify_interval)) {
13780 			phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13781 						LPFC_QUEUE_NOARM);
13782 			consumed = 0;
13783 			cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK;
13784 		}
13785 
13786 		if (count == LPFC_NVMET_CQ_NOTIFY)
13787 			cq->q_flag |= HBA_NVMET_CQ_NOTIFY;
13788 
13789 		cqe = lpfc_sli4_cq_get(cq);
13790 	}
13791 	if (count >= phba->cfg_cq_poll_threshold) {
13792 		*delay = 1;
13793 		arm = false;
13794 	}
13795 
13796 	/* Track the max number of CQEs processed in 1 EQ */
13797 	if (count > cq->CQ_max_cqe)
13798 		cq->CQ_max_cqe = count;
13799 
13800 	cq->assoc_qp->EQ_cqe_cnt += count;
13801 
13802 	/* Catch the no cq entry condition */
13803 	if (unlikely(count == 0))
13804 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13805 				"0369 No entry from completion queue "
13806 				"qid=%d\n", cq->queue_id);
13807 
13808 	xchg(&cq->queue_claimed, 0);
13809 
13810 rearm_and_exit:
13811 	phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed,
13812 			arm ?  LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM);
13813 
13814 	return workposted;
13815 }
13816 
13817 /**
13818  * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry
13819  * @cq: pointer to CQ to process
13820  *
13821  * This routine calls the cq processing routine with a handler specific
13822  * to the type of queue bound to it.
13823  *
13824  * The CQ routine returns two values: the first is the calling status,
13825  * which indicates whether work was queued to the  background discovery
13826  * thread. If true, the routine should wakeup the discovery thread;
13827  * the second is the delay parameter. If non-zero, rather than rearming
13828  * the CQ and yet another interrupt, the CQ handler should be queued so
13829  * that it is processed in a subsequent polling action. The value of
13830  * the delay indicates when to reschedule it.
13831  **/
13832 static void
13833 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq)
13834 {
13835 	struct lpfc_hba *phba = cq->phba;
13836 	unsigned long delay;
13837 	bool workposted = false;
13838 
13839 	/* Process and rearm the CQ */
13840 	switch (cq->type) {
13841 	case LPFC_MCQ:
13842 		workposted |= __lpfc_sli4_process_cq(phba, cq,
13843 						lpfc_sli4_sp_handle_mcqe,
13844 						&delay);
13845 		break;
13846 	case LPFC_WCQ:
13847 		if (cq->subtype == LPFC_IO)
13848 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13849 						lpfc_sli4_fp_handle_cqe,
13850 						&delay);
13851 		else
13852 			workposted |= __lpfc_sli4_process_cq(phba, cq,
13853 						lpfc_sli4_sp_handle_cqe,
13854 						&delay);
13855 		break;
13856 	default:
13857 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13858 				"0370 Invalid completion queue type (%d)\n",
13859 				cq->type);
13860 		return;
13861 	}
13862 
13863 	if (delay) {
13864 		if (!queue_delayed_work_on(cq->chann, phba->wq,
13865 					   &cq->sched_spwork, delay))
13866 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13867 				"0394 Cannot schedule soft IRQ "
13868 				"for cqid=%d on CPU %d\n",
13869 				cq->queue_id, cq->chann);
13870 	}
13871 
13872 	/* wake up worker thread if there are works to be done */
13873 	if (workposted)
13874 		lpfc_worker_wake_up(phba);
13875 }
13876 
13877 /**
13878  * lpfc_sli4_sp_process_cq - slow-path work handler when started by
13879  *   interrupt
13880  * @work: pointer to work element
13881  *
13882  * translates from the work handler and calls the slow-path handler.
13883  **/
13884 static void
13885 lpfc_sli4_sp_process_cq(struct work_struct *work)
13886 {
13887 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork);
13888 
13889 	__lpfc_sli4_sp_process_cq(cq);
13890 }
13891 
13892 /**
13893  * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer
13894  * @work: pointer to work element
13895  *
13896  * translates from the work handler and calls the slow-path handler.
13897  **/
13898 static void
13899 lpfc_sli4_dly_sp_process_cq(struct work_struct *work)
13900 {
13901 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
13902 					struct lpfc_queue, sched_spwork);
13903 
13904 	__lpfc_sli4_sp_process_cq(cq);
13905 }
13906 
13907 /**
13908  * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
13909  * @phba: Pointer to HBA context object.
13910  * @cq: Pointer to associated CQ
13911  * @wcqe: Pointer to work-queue completion queue entry.
13912  *
13913  * This routine process a fast-path work queue completion entry from fast-path
13914  * event queue for FCP command response completion.
13915  **/
13916 static void
13917 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
13918 			     struct lpfc_wcqe_complete *wcqe)
13919 {
13920 	struct lpfc_sli_ring *pring = cq->pring;
13921 	struct lpfc_iocbq *cmdiocbq;
13922 	struct lpfc_iocbq irspiocbq;
13923 	unsigned long iflags;
13924 
13925 	/* Check for response status */
13926 	if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
13927 		/* If resource errors reported from HBA, reduce queue
13928 		 * depth of the SCSI device.
13929 		 */
13930 		if (((bf_get(lpfc_wcqe_c_status, wcqe) ==
13931 		     IOSTAT_LOCAL_REJECT)) &&
13932 		    ((wcqe->parameter & IOERR_PARAM_MASK) ==
13933 		     IOERR_NO_RESOURCES))
13934 			phba->lpfc_rampdown_queue_depth(phba);
13935 
13936 		/* Log the error status */
13937 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
13938 				"0373 FCP CQE error: status=x%x: "
13939 				"CQE: %08x %08x %08x %08x\n",
13940 				bf_get(lpfc_wcqe_c_status, wcqe),
13941 				wcqe->word0, wcqe->total_data_placed,
13942 				wcqe->parameter, wcqe->word3);
13943 	}
13944 
13945 	/* Look up the FCP command IOCB and create pseudo response IOCB */
13946 	spin_lock_irqsave(&pring->ring_lock, iflags);
13947 	pring->stats.iocb_event++;
13948 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
13949 	cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
13950 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13951 	if (unlikely(!cmdiocbq)) {
13952 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13953 				"0374 FCP complete with no corresponding "
13954 				"cmdiocb: iotag (%d)\n",
13955 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13956 		return;
13957 	}
13958 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
13959 	cmdiocbq->isr_timestamp = cq->isr_timestamp;
13960 #endif
13961 	if (cmdiocbq->iocb_cmpl == NULL) {
13962 		if (cmdiocbq->wqe_cmpl) {
13963 			if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13964 				spin_lock_irqsave(&phba->hbalock, iflags);
13965 				cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13966 				spin_unlock_irqrestore(&phba->hbalock, iflags);
13967 			}
13968 
13969 			/* Pass the cmd_iocb and the wcqe to the upper layer */
13970 			(cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe);
13971 			return;
13972 		}
13973 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
13974 				"0375 FCP cmdiocb not callback function "
13975 				"iotag: (%d)\n",
13976 				bf_get(lpfc_wcqe_c_request_tag, wcqe));
13977 		return;
13978 	}
13979 
13980 	/* Fake the irspiocb and copy necessary response information */
13981 	lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
13982 
13983 	if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
13984 		spin_lock_irqsave(&phba->hbalock, iflags);
13985 		cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
13986 		spin_unlock_irqrestore(&phba->hbalock, iflags);
13987 	}
13988 
13989 	/* Pass the cmd_iocb and the rsp state to the upper layer */
13990 	(cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
13991 }
13992 
13993 /**
13994  * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
13995  * @phba: Pointer to HBA context object.
13996  * @cq: Pointer to completion queue.
13997  * @wcqe: Pointer to work-queue completion queue entry.
13998  *
13999  * This routine handles an fast-path WQ entry consumed event by invoking the
14000  * proper WQ release routine to the slow-path WQ.
14001  **/
14002 static void
14003 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14004 			     struct lpfc_wcqe_release *wcqe)
14005 {
14006 	struct lpfc_queue *childwq;
14007 	bool wqid_matched = false;
14008 	uint16_t hba_wqid;
14009 
14010 	/* Check for fast-path FCP work queue release */
14011 	hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
14012 	list_for_each_entry(childwq, &cq->child_list, list) {
14013 		if (childwq->queue_id == hba_wqid) {
14014 			lpfc_sli4_wq_release(childwq,
14015 					bf_get(lpfc_wcqe_r_wqe_index, wcqe));
14016 			if (childwq->q_flag & HBA_NVMET_WQFULL)
14017 				lpfc_nvmet_wqfull_process(phba, childwq);
14018 			wqid_matched = true;
14019 			break;
14020 		}
14021 	}
14022 	/* Report warning log message if no match found */
14023 	if (wqid_matched != true)
14024 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14025 				"2580 Fast-path wqe consume event carries "
14026 				"miss-matched qid: wcqe-qid=x%x\n", hba_wqid);
14027 }
14028 
14029 /**
14030  * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry
14031  * @phba: Pointer to HBA context object.
14032  * @rcqe: Pointer to receive-queue completion queue entry.
14033  *
14034  * This routine process a receive-queue completion queue entry.
14035  *
14036  * Return: true if work posted to worker thread, otherwise false.
14037  **/
14038 static bool
14039 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14040 			    struct lpfc_rcqe *rcqe)
14041 {
14042 	bool workposted = false;
14043 	struct lpfc_queue *hrq;
14044 	struct lpfc_queue *drq;
14045 	struct rqb_dmabuf *dma_buf;
14046 	struct fc_frame_header *fc_hdr;
14047 	struct lpfc_nvmet_tgtport *tgtp;
14048 	uint32_t status, rq_id;
14049 	unsigned long iflags;
14050 	uint32_t fctl, idx;
14051 
14052 	if ((phba->nvmet_support == 0) ||
14053 	    (phba->sli4_hba.nvmet_cqset == NULL))
14054 		return workposted;
14055 
14056 	idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id;
14057 	hrq = phba->sli4_hba.nvmet_mrq_hdr[idx];
14058 	drq = phba->sli4_hba.nvmet_mrq_data[idx];
14059 
14060 	/* sanity check on queue memory */
14061 	if (unlikely(!hrq) || unlikely(!drq))
14062 		return workposted;
14063 
14064 	if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
14065 		rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
14066 	else
14067 		rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
14068 
14069 	if ((phba->nvmet_support == 0) ||
14070 	    (rq_id != hrq->queue_id))
14071 		return workposted;
14072 
14073 	status = bf_get(lpfc_rcqe_status, rcqe);
14074 	switch (status) {
14075 	case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
14076 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14077 				"6126 Receive Frame Truncated!!\n");
14078 		/* fall through */
14079 	case FC_STATUS_RQ_SUCCESS:
14080 		spin_lock_irqsave(&phba->hbalock, iflags);
14081 		lpfc_sli4_rq_release(hrq, drq);
14082 		dma_buf = lpfc_sli_rqbuf_get(phba, hrq);
14083 		if (!dma_buf) {
14084 			hrq->RQ_no_buf_found++;
14085 			spin_unlock_irqrestore(&phba->hbalock, iflags);
14086 			goto out;
14087 		}
14088 		spin_unlock_irqrestore(&phba->hbalock, iflags);
14089 		hrq->RQ_rcv_buf++;
14090 		hrq->RQ_buf_posted--;
14091 		fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt;
14092 
14093 		/* Just some basic sanity checks on FCP Command frame */
14094 		fctl = (fc_hdr->fh_f_ctl[0] << 16 |
14095 			fc_hdr->fh_f_ctl[1] << 8 |
14096 			fc_hdr->fh_f_ctl[2]);
14097 		if (((fctl &
14098 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) !=
14099 		    (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) ||
14100 		    (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */
14101 			goto drop;
14102 
14103 		if (fc_hdr->fh_type == FC_TYPE_FCP) {
14104 			dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe);
14105 			lpfc_nvmet_unsol_fcp_event(
14106 				phba, idx, dma_buf, cq->isr_timestamp,
14107 				cq->q_flag & HBA_NVMET_CQ_NOTIFY);
14108 			return false;
14109 		}
14110 drop:
14111 		lpfc_rq_buf_free(phba, &dma_buf->hbuf);
14112 		break;
14113 	case FC_STATUS_INSUFF_BUF_FRM_DISC:
14114 		if (phba->nvmet_support) {
14115 			tgtp = phba->targetport->private;
14116 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME,
14117 					"6401 RQE Error x%x, posted %d err_cnt "
14118 					"%d: %x %x %x\n",
14119 					status, hrq->RQ_buf_posted,
14120 					hrq->RQ_no_posted_buf,
14121 					atomic_read(&tgtp->rcv_fcp_cmd_in),
14122 					atomic_read(&tgtp->rcv_fcp_cmd_out),
14123 					atomic_read(&tgtp->xmt_fcp_release));
14124 		}
14125 		/* fallthrough */
14126 
14127 	case FC_STATUS_INSUFF_BUF_NEED_BUF:
14128 		hrq->RQ_no_posted_buf++;
14129 		/* Post more buffers if possible */
14130 		break;
14131 	}
14132 out:
14133 	return workposted;
14134 }
14135 
14136 /**
14137  * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry
14138  * @phba: adapter with cq
14139  * @cq: Pointer to the completion queue.
14140  * @eqe: Pointer to fast-path completion queue entry.
14141  *
14142  * This routine process a fast-path work queue completion entry from fast-path
14143  * event queue for FCP command response completion.
14144  *
14145  * Return: true if work posted to worker thread, otherwise false.
14146  **/
14147 static bool
14148 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
14149 			 struct lpfc_cqe *cqe)
14150 {
14151 	struct lpfc_wcqe_release wcqe;
14152 	bool workposted = false;
14153 
14154 	/* Copy the work queue CQE and convert endian order if needed */
14155 	lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
14156 
14157 	/* Check and process for different type of WCQE and dispatch */
14158 	switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
14159 	case CQE_CODE_COMPL_WQE:
14160 	case CQE_CODE_NVME_ERSP:
14161 		cq->CQ_wq++;
14162 		/* Process the WQ complete event */
14163 		phba->last_completion_time = jiffies;
14164 		if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS)
14165 			lpfc_sli4_fp_handle_fcp_wcqe(phba, cq,
14166 				(struct lpfc_wcqe_complete *)&wcqe);
14167 		break;
14168 	case CQE_CODE_RELEASE_WQE:
14169 		cq->CQ_release_wqe++;
14170 		/* Process the WQ release event */
14171 		lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
14172 				(struct lpfc_wcqe_release *)&wcqe);
14173 		break;
14174 	case CQE_CODE_XRI_ABORTED:
14175 		cq->CQ_xri_aborted++;
14176 		/* Process the WQ XRI abort event */
14177 		phba->last_completion_time = jiffies;
14178 		workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
14179 				(struct sli4_wcqe_xri_aborted *)&wcqe);
14180 		break;
14181 	case CQE_CODE_RECEIVE_V1:
14182 	case CQE_CODE_RECEIVE:
14183 		phba->last_completion_time = jiffies;
14184 		if (cq->subtype == LPFC_NVMET) {
14185 			workposted = lpfc_sli4_nvmet_handle_rcqe(
14186 				phba, cq, (struct lpfc_rcqe *)&wcqe);
14187 		}
14188 		break;
14189 	default:
14190 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14191 				"0144 Not a valid CQE code: x%x\n",
14192 				bf_get(lpfc_wcqe_c_code, &wcqe));
14193 		break;
14194 	}
14195 	return workposted;
14196 }
14197 
14198 /**
14199  * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry
14200  * @phba: Pointer to HBA context object.
14201  * @eqe: Pointer to fast-path event queue entry.
14202  *
14203  * This routine process a event queue entry from the fast-path event queue.
14204  * It will check the MajorCode and MinorCode to determine this is for a
14205  * completion event on a completion queue, if not, an error shall be logged
14206  * and just return. Otherwise, it will get to the corresponding completion
14207  * queue and process all the entries on the completion queue, rearm the
14208  * completion queue, and then return.
14209  **/
14210 static void
14211 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq,
14212 			 struct lpfc_eqe *eqe)
14213 {
14214 	struct lpfc_queue *cq = NULL;
14215 	uint32_t qidx = eq->hdwq;
14216 	uint16_t cqid, id;
14217 
14218 	if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
14219 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14220 				"0366 Not a valid completion "
14221 				"event: majorcode=x%x, minorcode=x%x\n",
14222 				bf_get_le32(lpfc_eqe_major_code, eqe),
14223 				bf_get_le32(lpfc_eqe_minor_code, eqe));
14224 		return;
14225 	}
14226 
14227 	/* Get the reference to the corresponding CQ */
14228 	cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
14229 
14230 	/* Use the fast lookup method first */
14231 	if (cqid <= phba->sli4_hba.cq_max) {
14232 		cq = phba->sli4_hba.cq_lookup[cqid];
14233 		if (cq)
14234 			goto  work_cq;
14235 	}
14236 
14237 	/* Next check for NVMET completion */
14238 	if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) {
14239 		id = phba->sli4_hba.nvmet_cqset[0]->queue_id;
14240 		if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) {
14241 			/* Process NVMET unsol rcv */
14242 			cq = phba->sli4_hba.nvmet_cqset[cqid - id];
14243 			goto  process_cq;
14244 		}
14245 	}
14246 
14247 	if (phba->sli4_hba.nvmels_cq &&
14248 	    (cqid == phba->sli4_hba.nvmels_cq->queue_id)) {
14249 		/* Process NVME unsol rcv */
14250 		cq = phba->sli4_hba.nvmels_cq;
14251 	}
14252 
14253 	/* Otherwise this is a Slow path event */
14254 	if (cq == NULL) {
14255 		lpfc_sli4_sp_handle_eqe(phba, eqe,
14256 					phba->sli4_hba.hdwq[qidx].hba_eq);
14257 		return;
14258 	}
14259 
14260 process_cq:
14261 	if (unlikely(cqid != cq->queue_id)) {
14262 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14263 				"0368 Miss-matched fast-path completion "
14264 				"queue identifier: eqcqid=%d, fcpcqid=%d\n",
14265 				cqid, cq->queue_id);
14266 		return;
14267 	}
14268 
14269 work_cq:
14270 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS)
14271 	if (phba->ktime_on)
14272 		cq->isr_timestamp = ktime_get_ns();
14273 	else
14274 		cq->isr_timestamp = 0;
14275 #endif
14276 	if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork))
14277 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14278 				"0363 Cannot schedule soft IRQ "
14279 				"for CQ eqcqid=%d, cqid=%d on CPU %d\n",
14280 				cqid, cq->queue_id, raw_smp_processor_id());
14281 }
14282 
14283 /**
14284  * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry
14285  * @cq: Pointer to CQ to be processed
14286  *
14287  * This routine calls the cq processing routine with the handler for
14288  * fast path CQEs.
14289  *
14290  * The CQ routine returns two values: the first is the calling status,
14291  * which indicates whether work was queued to the  background discovery
14292  * thread. If true, the routine should wakeup the discovery thread;
14293  * the second is the delay parameter. If non-zero, rather than rearming
14294  * the CQ and yet another interrupt, the CQ handler should be queued so
14295  * that it is processed in a subsequent polling action. The value of
14296  * the delay indicates when to reschedule it.
14297  **/
14298 static void
14299 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq)
14300 {
14301 	struct lpfc_hba *phba = cq->phba;
14302 	unsigned long delay;
14303 	bool workposted = false;
14304 
14305 	/* process and rearm the CQ */
14306 	workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe,
14307 					     &delay);
14308 
14309 	if (delay) {
14310 		if (!queue_delayed_work_on(cq->chann, phba->wq,
14311 					   &cq->sched_irqwork, delay))
14312 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14313 				"0367 Cannot schedule soft IRQ "
14314 				"for cqid=%d on CPU %d\n",
14315 				cq->queue_id, cq->chann);
14316 	}
14317 
14318 	/* wake up worker thread if there are works to be done */
14319 	if (workposted)
14320 		lpfc_worker_wake_up(phba);
14321 }
14322 
14323 /**
14324  * lpfc_sli4_hba_process_cq - fast-path work handler when started by
14325  *   interrupt
14326  * @work: pointer to work element
14327  *
14328  * translates from the work handler and calls the fast-path handler.
14329  **/
14330 static void
14331 lpfc_sli4_hba_process_cq(struct work_struct *work)
14332 {
14333 	struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork);
14334 
14335 	__lpfc_sli4_hba_process_cq(cq);
14336 }
14337 
14338 /**
14339  * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer
14340  * @work: pointer to work element
14341  *
14342  * translates from the work handler and calls the fast-path handler.
14343  **/
14344 static void
14345 lpfc_sli4_dly_hba_process_cq(struct work_struct *work)
14346 {
14347 	struct lpfc_queue *cq = container_of(to_delayed_work(work),
14348 					struct lpfc_queue, sched_irqwork);
14349 
14350 	__lpfc_sli4_hba_process_cq(cq);
14351 }
14352 
14353 /**
14354  * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device
14355  * @irq: Interrupt number.
14356  * @dev_id: The device context pointer.
14357  *
14358  * This function is directly called from the PCI layer as an interrupt
14359  * service routine when device with SLI-4 interface spec is enabled with
14360  * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
14361  * ring event in the HBA. However, when the device is enabled with either
14362  * MSI or Pin-IRQ interrupt mode, this function is called as part of the
14363  * device-level interrupt handler. When the PCI slot is in error recovery
14364  * or the HBA is undergoing initialization, the interrupt handler will not
14365  * process the interrupt. The SCSI FCP fast-path ring event are handled in
14366  * the intrrupt context. This function is called without any lock held.
14367  * It gets the hbalock to access and update SLI data structures. Note that,
14368  * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
14369  * equal to that of FCP CQ index.
14370  *
14371  * The link attention and ELS ring attention events are handled
14372  * by the worker thread. The interrupt handler signals the worker thread
14373  * and returns for these events. This function is called without any lock
14374  * held. It gets the hbalock to access and update SLI data structures.
14375  *
14376  * This function returns IRQ_HANDLED when interrupt is handled else it
14377  * returns IRQ_NONE.
14378  **/
14379 irqreturn_t
14380 lpfc_sli4_hba_intr_handler(int irq, void *dev_id)
14381 {
14382 	struct lpfc_hba *phba;
14383 	struct lpfc_hba_eq_hdl *hba_eq_hdl;
14384 	struct lpfc_queue *fpeq;
14385 	unsigned long iflag;
14386 	int ecount = 0;
14387 	int hba_eqidx;
14388 	struct lpfc_eq_intr_info *eqi;
14389 
14390 	/* Get the driver's phba structure from the dev_id */
14391 	hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id;
14392 	phba = hba_eq_hdl->phba;
14393 	hba_eqidx = hba_eq_hdl->idx;
14394 
14395 	if (unlikely(!phba))
14396 		return IRQ_NONE;
14397 	if (unlikely(!phba->sli4_hba.hdwq))
14398 		return IRQ_NONE;
14399 
14400 	/* Get to the EQ struct associated with this vector */
14401 	fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq;
14402 	if (unlikely(!fpeq))
14403 		return IRQ_NONE;
14404 
14405 	/* Check device state for handling interrupt */
14406 	if (unlikely(lpfc_intr_state_check(phba))) {
14407 		/* Check again for link_state with lock held */
14408 		spin_lock_irqsave(&phba->hbalock, iflag);
14409 		if (phba->link_state < LPFC_LINK_DOWN)
14410 			/* Flush, clear interrupt, and rearm the EQ */
14411 			lpfc_sli4_eqcq_flush(phba, fpeq);
14412 		spin_unlock_irqrestore(&phba->hbalock, iflag);
14413 		return IRQ_NONE;
14414 	}
14415 
14416 	eqi = this_cpu_ptr(phba->sli4_hba.eq_info);
14417 	eqi->icnt++;
14418 
14419 	fpeq->last_cpu = raw_smp_processor_id();
14420 
14421 	if (eqi->icnt > LPFC_EQD_ISR_TRIGGER &&
14422 	    fpeq->q_flag & HBA_EQ_DELAY_CHK &&
14423 	    phba->cfg_auto_imax &&
14424 	    fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY &&
14425 	    phba->sli.sli_flag & LPFC_SLI_USE_EQDR)
14426 		lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY);
14427 
14428 	/* process and rearm the EQ */
14429 	ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM);
14430 
14431 	if (unlikely(ecount == 0)) {
14432 		fpeq->EQ_no_entry++;
14433 		if (phba->intr_type == MSIX)
14434 			/* MSI-X treated interrupt served as no EQ share INT */
14435 			lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
14436 					"0358 MSI-X interrupt with no EQE\n");
14437 		else
14438 			/* Non MSI-X treated on interrupt as EQ share INT */
14439 			return IRQ_NONE;
14440 	}
14441 
14442 	return IRQ_HANDLED;
14443 } /* lpfc_sli4_fp_intr_handler */
14444 
14445 /**
14446  * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
14447  * @irq: Interrupt number.
14448  * @dev_id: The device context pointer.
14449  *
14450  * This function is the device-level interrupt handler to device with SLI-4
14451  * interface spec, called from the PCI layer when either MSI or Pin-IRQ
14452  * interrupt mode is enabled and there is an event in the HBA which requires
14453  * driver attention. This function invokes the slow-path interrupt attention
14454  * handling function and fast-path interrupt attention handling function in
14455  * turn to process the relevant HBA attention events. This function is called
14456  * without any lock held. It gets the hbalock to access and update SLI data
14457  * structures.
14458  *
14459  * This function returns IRQ_HANDLED when interrupt is handled, else it
14460  * returns IRQ_NONE.
14461  **/
14462 irqreturn_t
14463 lpfc_sli4_intr_handler(int irq, void *dev_id)
14464 {
14465 	struct lpfc_hba  *phba;
14466 	irqreturn_t hba_irq_rc;
14467 	bool hba_handled = false;
14468 	int qidx;
14469 
14470 	/* Get the driver's phba structure from the dev_id */
14471 	phba = (struct lpfc_hba *)dev_id;
14472 
14473 	if (unlikely(!phba))
14474 		return IRQ_NONE;
14475 
14476 	/*
14477 	 * Invoke fast-path host attention interrupt handling as appropriate.
14478 	 */
14479 	for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) {
14480 		hba_irq_rc = lpfc_sli4_hba_intr_handler(irq,
14481 					&phba->sli4_hba.hba_eq_hdl[qidx]);
14482 		if (hba_irq_rc == IRQ_HANDLED)
14483 			hba_handled |= true;
14484 	}
14485 
14486 	return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE;
14487 } /* lpfc_sli4_intr_handler */
14488 
14489 void lpfc_sli4_poll_hbtimer(struct timer_list *t)
14490 {
14491 	struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer);
14492 	struct lpfc_queue *eq;
14493 	int i = 0;
14494 
14495 	rcu_read_lock();
14496 
14497 	list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list)
14498 		i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH);
14499 	if (!list_empty(&phba->poll_list))
14500 		mod_timer(&phba->cpuhp_poll_timer,
14501 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14502 
14503 	rcu_read_unlock();
14504 }
14505 
14506 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path)
14507 {
14508 	struct lpfc_hba *phba = eq->phba;
14509 	int i = 0;
14510 
14511 	/*
14512 	 * Unlocking an irq is one of the entry point to check
14513 	 * for re-schedule, but we are good for io submission
14514 	 * path as midlayer does a get_cpu to glue us in. Flush
14515 	 * out the invalidate queue so we can see the updated
14516 	 * value for flag.
14517 	 */
14518 	smp_rmb();
14519 
14520 	if (READ_ONCE(eq->mode) == LPFC_EQ_POLL)
14521 		/* We will not likely get the completion for the caller
14522 		 * during this iteration but i guess that's fine.
14523 		 * Future io's coming on this eq should be able to
14524 		 * pick it up.  As for the case of single io's, they
14525 		 * will be handled through a sched from polling timer
14526 		 * function which is currently triggered every 1msec.
14527 		 */
14528 		i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM);
14529 
14530 	return i;
14531 }
14532 
14533 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq)
14534 {
14535 	struct lpfc_hba *phba = eq->phba;
14536 
14537 	/* kickstart slowpath processing if needed */
14538 	if (list_empty(&phba->poll_list))
14539 		mod_timer(&phba->cpuhp_poll_timer,
14540 			  jiffies + msecs_to_jiffies(LPFC_POLL_HB));
14541 
14542 	list_add_rcu(&eq->_poll_list, &phba->poll_list);
14543 	synchronize_rcu();
14544 }
14545 
14546 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq)
14547 {
14548 	struct lpfc_hba *phba = eq->phba;
14549 
14550 	/* Disable slowpath processing for this eq.  Kick start the eq
14551 	 * by RE-ARMING the eq's ASAP
14552 	 */
14553 	list_del_rcu(&eq->_poll_list);
14554 	synchronize_rcu();
14555 
14556 	if (list_empty(&phba->poll_list))
14557 		del_timer_sync(&phba->cpuhp_poll_timer);
14558 }
14559 
14560 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba)
14561 {
14562 	struct lpfc_queue *eq, *next;
14563 
14564 	list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list)
14565 		list_del(&eq->_poll_list);
14566 
14567 	INIT_LIST_HEAD(&phba->poll_list);
14568 	synchronize_rcu();
14569 }
14570 
14571 static inline void
14572 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode)
14573 {
14574 	if (mode == eq->mode)
14575 		return;
14576 	/*
14577 	 * currently this function is only called during a hotplug
14578 	 * event and the cpu on which this function is executing
14579 	 * is going offline.  By now the hotplug has instructed
14580 	 * the scheduler to remove this cpu from cpu active mask.
14581 	 * So we don't need to work about being put aside by the
14582 	 * scheduler for a high priority process.  Yes, the inte-
14583 	 * rrupts could come but they are known to retire ASAP.
14584 	 */
14585 
14586 	/* Disable polling in the fastpath */
14587 	WRITE_ONCE(eq->mode, mode);
14588 	/* flush out the store buffer */
14589 	smp_wmb();
14590 
14591 	/*
14592 	 * Add this eq to the polling list and start polling. For
14593 	 * a grace period both interrupt handler and poller will
14594 	 * try to process the eq _but_ that's fine.  We have a
14595 	 * synchronization mechanism in place (queue_claimed) to
14596 	 * deal with it.  This is just a draining phase for int-
14597 	 * errupt handler (not eq's) as we have guranteed through
14598 	 * barrier that all the CPUs have seen the new CQ_POLLED
14599 	 * state. which will effectively disable the REARMING of
14600 	 * the EQ.  The whole idea is eq's die off eventually as
14601 	 * we are not rearming EQ's anymore.
14602 	 */
14603 	mode ? lpfc_sli4_add_to_poll_list(eq) :
14604 	       lpfc_sli4_remove_from_poll_list(eq);
14605 }
14606 
14607 void lpfc_sli4_start_polling(struct lpfc_queue *eq)
14608 {
14609 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL);
14610 }
14611 
14612 void lpfc_sli4_stop_polling(struct lpfc_queue *eq)
14613 {
14614 	struct lpfc_hba *phba = eq->phba;
14615 
14616 	__lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT);
14617 
14618 	/* Kick start for the pending io's in h/w.
14619 	 * Once we switch back to interrupt processing on a eq
14620 	 * the io path completion will only arm eq's when it
14621 	 * receives a completion.  But since eq's are in disa-
14622 	 * rmed state it doesn't receive a completion.  This
14623 	 * creates a deadlock scenaro.
14624 	 */
14625 	phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM);
14626 }
14627 
14628 /**
14629  * lpfc_sli4_queue_free - free a queue structure and associated memory
14630  * @queue: The queue structure to free.
14631  *
14632  * This function frees a queue structure and the DMAable memory used for
14633  * the host resident queue. This function must be called after destroying the
14634  * queue on the HBA.
14635  **/
14636 void
14637 lpfc_sli4_queue_free(struct lpfc_queue *queue)
14638 {
14639 	struct lpfc_dmabuf *dmabuf;
14640 
14641 	if (!queue)
14642 		return;
14643 
14644 	if (!list_empty(&queue->wq_list))
14645 		list_del(&queue->wq_list);
14646 
14647 	while (!list_empty(&queue->page_list)) {
14648 		list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
14649 				 list);
14650 		dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size,
14651 				  dmabuf->virt, dmabuf->phys);
14652 		kfree(dmabuf);
14653 	}
14654 	if (queue->rqbp) {
14655 		lpfc_free_rq_buffer(queue->phba, queue);
14656 		kfree(queue->rqbp);
14657 	}
14658 
14659 	if (!list_empty(&queue->cpu_list))
14660 		list_del(&queue->cpu_list);
14661 
14662 	kfree(queue);
14663 	return;
14664 }
14665 
14666 /**
14667  * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
14668  * @phba: The HBA that this queue is being created on.
14669  * @page_size: The size of a queue page
14670  * @entry_size: The size of each queue entry for this queue.
14671  * @entry count: The number of entries that this queue will handle.
14672  * @cpu: The cpu that will primarily utilize this queue.
14673  *
14674  * This function allocates a queue structure and the DMAable memory used for
14675  * the host resident queue. This function must be called before creating the
14676  * queue on the HBA.
14677  **/
14678 struct lpfc_queue *
14679 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size,
14680 		      uint32_t entry_size, uint32_t entry_count, int cpu)
14681 {
14682 	struct lpfc_queue *queue;
14683 	struct lpfc_dmabuf *dmabuf;
14684 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14685 	uint16_t x, pgcnt;
14686 
14687 	if (!phba->sli4_hba.pc_sli4_params.supported)
14688 		hw_page_size = page_size;
14689 
14690 	pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size;
14691 
14692 	/* If needed, Adjust page count to match the max the adapter supports */
14693 	if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt)
14694 		pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt;
14695 
14696 	queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt),
14697 			     GFP_KERNEL, cpu_to_node(cpu));
14698 	if (!queue)
14699 		return NULL;
14700 
14701 	INIT_LIST_HEAD(&queue->list);
14702 	INIT_LIST_HEAD(&queue->_poll_list);
14703 	INIT_LIST_HEAD(&queue->wq_list);
14704 	INIT_LIST_HEAD(&queue->wqfull_list);
14705 	INIT_LIST_HEAD(&queue->page_list);
14706 	INIT_LIST_HEAD(&queue->child_list);
14707 	INIT_LIST_HEAD(&queue->cpu_list);
14708 
14709 	/* Set queue parameters now.  If the system cannot provide memory
14710 	 * resources, the free routine needs to know what was allocated.
14711 	 */
14712 	queue->page_count = pgcnt;
14713 	queue->q_pgs = (void **)&queue[1];
14714 	queue->entry_cnt_per_pg = hw_page_size / entry_size;
14715 	queue->entry_size = entry_size;
14716 	queue->entry_count = entry_count;
14717 	queue->page_size = hw_page_size;
14718 	queue->phba = phba;
14719 
14720 	for (x = 0; x < queue->page_count; x++) {
14721 		dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL,
14722 				      dev_to_node(&phba->pcidev->dev));
14723 		if (!dmabuf)
14724 			goto out_fail;
14725 		dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
14726 						  hw_page_size, &dmabuf->phys,
14727 						  GFP_KERNEL);
14728 		if (!dmabuf->virt) {
14729 			kfree(dmabuf);
14730 			goto out_fail;
14731 		}
14732 		dmabuf->buffer_tag = x;
14733 		list_add_tail(&dmabuf->list, &queue->page_list);
14734 		/* use lpfc_sli4_qe to index a paritcular entry in this page */
14735 		queue->q_pgs[x] = dmabuf->virt;
14736 	}
14737 	INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq);
14738 	INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq);
14739 	INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq);
14740 	INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq);
14741 
14742 	/* notify_interval will be set during q creation */
14743 
14744 	return queue;
14745 out_fail:
14746 	lpfc_sli4_queue_free(queue);
14747 	return NULL;
14748 }
14749 
14750 /**
14751  * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory
14752  * @phba: HBA structure that indicates port to create a queue on.
14753  * @pci_barset: PCI BAR set flag.
14754  *
14755  * This function shall perform iomap of the specified PCI BAR address to host
14756  * memory address if not already done so and return it. The returned host
14757  * memory address can be NULL.
14758  */
14759 static void __iomem *
14760 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset)
14761 {
14762 	if (!phba->pcidev)
14763 		return NULL;
14764 
14765 	switch (pci_barset) {
14766 	case WQ_PCI_BAR_0_AND_1:
14767 		return phba->pci_bar0_memmap_p;
14768 	case WQ_PCI_BAR_2_AND_3:
14769 		return phba->pci_bar2_memmap_p;
14770 	case WQ_PCI_BAR_4_AND_5:
14771 		return phba->pci_bar4_memmap_p;
14772 	default:
14773 		break;
14774 	}
14775 	return NULL;
14776 }
14777 
14778 /**
14779  * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs
14780  * @phba: HBA structure that EQs are on.
14781  * @startq: The starting EQ index to modify
14782  * @numq: The number of EQs (consecutive indexes) to modify
14783  * @usdelay: amount of delay
14784  *
14785  * This function revises the EQ delay on 1 or more EQs. The EQ delay
14786  * is set either by writing to a register (if supported by the SLI Port)
14787  * or by mailbox command. The mailbox command allows several EQs to be
14788  * updated at once.
14789  *
14790  * The @phba struct is used to send a mailbox command to HBA. The @startq
14791  * is used to get the starting EQ index to change. The @numq value is
14792  * used to specify how many consecutive EQ indexes, starting at EQ index,
14793  * are to be changed. This function is asynchronous and will wait for any
14794  * mailbox commands to finish before returning.
14795  *
14796  * On success this function will return a zero. If unable to allocate
14797  * enough memory this function will return -ENOMEM. If a mailbox command
14798  * fails this function will return -ENXIO. Note: on ENXIO, some EQs may
14799  * have had their delay multipler changed.
14800  **/
14801 void
14802 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq,
14803 			 uint32_t numq, uint32_t usdelay)
14804 {
14805 	struct lpfc_mbx_modify_eq_delay *eq_delay;
14806 	LPFC_MBOXQ_t *mbox;
14807 	struct lpfc_queue *eq;
14808 	int cnt = 0, rc, length;
14809 	uint32_t shdr_status, shdr_add_status;
14810 	uint32_t dmult;
14811 	int qidx;
14812 	union lpfc_sli4_cfg_shdr *shdr;
14813 
14814 	if (startq >= phba->cfg_irq_chann)
14815 		return;
14816 
14817 	if (usdelay > 0xFFFF) {
14818 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME,
14819 				"6429 usdelay %d too large. Scaled down to "
14820 				"0xFFFF.\n", usdelay);
14821 		usdelay = 0xFFFF;
14822 	}
14823 
14824 	/* set values by EQ_DELAY register if supported */
14825 	if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) {
14826 		for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14827 			eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14828 			if (!eq)
14829 				continue;
14830 
14831 			lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay);
14832 
14833 			if (++cnt >= numq)
14834 				break;
14835 		}
14836 		return;
14837 	}
14838 
14839 	/* Otherwise, set values by mailbox cmd */
14840 
14841 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14842 	if (!mbox) {
14843 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME,
14844 				"6428 Failed allocating mailbox cmd buffer."
14845 				" EQ delay was not set.\n");
14846 		return;
14847 	}
14848 	length = (sizeof(struct lpfc_mbx_modify_eq_delay) -
14849 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14850 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14851 			 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY,
14852 			 length, LPFC_SLI4_MBX_EMBED);
14853 	eq_delay = &mbox->u.mqe.un.eq_delay;
14854 
14855 	/* Calculate delay multiper from maximum interrupt per second */
14856 	dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC;
14857 	if (dmult)
14858 		dmult--;
14859 	if (dmult > LPFC_DMULT_MAX)
14860 		dmult = LPFC_DMULT_MAX;
14861 
14862 	for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) {
14863 		eq = phba->sli4_hba.hba_eq_hdl[qidx].eq;
14864 		if (!eq)
14865 			continue;
14866 		eq->q_mode = usdelay;
14867 		eq_delay->u.request.eq[cnt].eq_id = eq->queue_id;
14868 		eq_delay->u.request.eq[cnt].phase = 0;
14869 		eq_delay->u.request.eq[cnt].delay_multi = dmult;
14870 
14871 		if (++cnt >= numq)
14872 			break;
14873 	}
14874 	eq_delay->u.request.num_eq = cnt;
14875 
14876 	mbox->vport = phba->pport;
14877 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14878 	mbox->ctx_buf = NULL;
14879 	mbox->ctx_ndlp = NULL;
14880 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
14881 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr;
14882 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14883 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14884 	if (shdr_status || shdr_add_status || rc) {
14885 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14886 				"2512 MODIFY_EQ_DELAY mailbox failed with "
14887 				"status x%x add_status x%x, mbx status x%x\n",
14888 				shdr_status, shdr_add_status, rc);
14889 	}
14890 	mempool_free(mbox, phba->mbox_mem_pool);
14891 	return;
14892 }
14893 
14894 /**
14895  * lpfc_eq_create - Create an Event Queue on the HBA
14896  * @phba: HBA structure that indicates port to create a queue on.
14897  * @eq: The queue structure to use to create the event queue.
14898  * @imax: The maximum interrupt per second limit.
14899  *
14900  * This function creates an event queue, as detailed in @eq, on a port,
14901  * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
14902  *
14903  * The @phba struct is used to send mailbox command to HBA. The @eq struct
14904  * is used to get the entry count and entry size that are necessary to
14905  * determine the number of pages to allocate and use for this queue. This
14906  * function will send the EQ_CREATE mailbox command to the HBA to setup the
14907  * event queue. This function is asynchronous and will wait for the mailbox
14908  * command to finish before continuing.
14909  *
14910  * On success this function will return a zero. If unable to allocate enough
14911  * memory this function will return -ENOMEM. If the queue create mailbox command
14912  * fails this function will return -ENXIO.
14913  **/
14914 int
14915 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax)
14916 {
14917 	struct lpfc_mbx_eq_create *eq_create;
14918 	LPFC_MBOXQ_t *mbox;
14919 	int rc, length, status = 0;
14920 	struct lpfc_dmabuf *dmabuf;
14921 	uint32_t shdr_status, shdr_add_status;
14922 	union lpfc_sli4_cfg_shdr *shdr;
14923 	uint16_t dmult;
14924 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
14925 
14926 	/* sanity check on queue memory */
14927 	if (!eq)
14928 		return -ENODEV;
14929 	if (!phba->sli4_hba.pc_sli4_params.supported)
14930 		hw_page_size = SLI4_PAGE_SIZE;
14931 
14932 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14933 	if (!mbox)
14934 		return -ENOMEM;
14935 	length = (sizeof(struct lpfc_mbx_eq_create) -
14936 		  sizeof(struct lpfc_sli4_cfg_mhdr));
14937 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
14938 			 LPFC_MBOX_OPCODE_EQ_CREATE,
14939 			 length, LPFC_SLI4_MBX_EMBED);
14940 	eq_create = &mbox->u.mqe.un.eq_create;
14941 	shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
14942 	bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
14943 	       eq->page_count);
14944 	bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
14945 	       LPFC_EQE_SIZE);
14946 	bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
14947 
14948 	/* Use version 2 of CREATE_EQ if eqav is set */
14949 	if (phba->sli4_hba.pc_sli4_params.eqav) {
14950 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
14951 		       LPFC_Q_CREATE_VERSION_2);
14952 		bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context,
14953 		       phba->sli4_hba.pc_sli4_params.eqav);
14954 	}
14955 
14956 	/* don't setup delay multiplier using EQ_CREATE */
14957 	dmult = 0;
14958 	bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
14959 	       dmult);
14960 	switch (eq->entry_count) {
14961 	default:
14962 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14963 				"0360 Unsupported EQ count. (%d)\n",
14964 				eq->entry_count);
14965 		if (eq->entry_count < 256) {
14966 			status = -EINVAL;
14967 			goto out;
14968 		}
14969 		/* fall through - otherwise default to smallest count */
14970 	case 256:
14971 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14972 		       LPFC_EQ_CNT_256);
14973 		break;
14974 	case 512:
14975 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14976 		       LPFC_EQ_CNT_512);
14977 		break;
14978 	case 1024:
14979 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14980 		       LPFC_EQ_CNT_1024);
14981 		break;
14982 	case 2048:
14983 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14984 		       LPFC_EQ_CNT_2048);
14985 		break;
14986 	case 4096:
14987 		bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
14988 		       LPFC_EQ_CNT_4096);
14989 		break;
14990 	}
14991 	list_for_each_entry(dmabuf, &eq->page_list, list) {
14992 		memset(dmabuf->virt, 0, hw_page_size);
14993 		eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
14994 					putPaddrLow(dmabuf->phys);
14995 		eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
14996 					putPaddrHigh(dmabuf->phys);
14997 	}
14998 	mbox->vport = phba->pport;
14999 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15000 	mbox->ctx_buf = NULL;
15001 	mbox->ctx_ndlp = NULL;
15002 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15003 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15004 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15005 	if (shdr_status || shdr_add_status || rc) {
15006 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15007 				"2500 EQ_CREATE mailbox failed with "
15008 				"status x%x add_status x%x, mbx status x%x\n",
15009 				shdr_status, shdr_add_status, rc);
15010 		status = -ENXIO;
15011 	}
15012 	eq->type = LPFC_EQ;
15013 	eq->subtype = LPFC_NONE;
15014 	eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
15015 	if (eq->queue_id == 0xFFFF)
15016 		status = -ENXIO;
15017 	eq->host_index = 0;
15018 	eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL;
15019 	eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT;
15020 out:
15021 	mempool_free(mbox, phba->mbox_mem_pool);
15022 	return status;
15023 }
15024 
15025 /**
15026  * lpfc_cq_create - Create a Completion Queue on the HBA
15027  * @phba: HBA structure that indicates port to create a queue on.
15028  * @cq: The queue structure to use to create the completion queue.
15029  * @eq: The event queue to bind this completion queue to.
15030  *
15031  * This function creates a completion queue, as detailed in @wq, on a port,
15032  * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
15033  *
15034  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15035  * is used to get the entry count and entry size that are necessary to
15036  * determine the number of pages to allocate and use for this queue. The @eq
15037  * is used to indicate which event queue to bind this completion queue to. This
15038  * function will send the CQ_CREATE mailbox command to the HBA to setup the
15039  * completion queue. This function is asynchronous and will wait for the mailbox
15040  * command to finish before continuing.
15041  *
15042  * On success this function will return a zero. If unable to allocate enough
15043  * memory this function will return -ENOMEM. If the queue create mailbox command
15044  * fails this function will return -ENXIO.
15045  **/
15046 int
15047 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
15048 	       struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
15049 {
15050 	struct lpfc_mbx_cq_create *cq_create;
15051 	struct lpfc_dmabuf *dmabuf;
15052 	LPFC_MBOXQ_t *mbox;
15053 	int rc, length, status = 0;
15054 	uint32_t shdr_status, shdr_add_status;
15055 	union lpfc_sli4_cfg_shdr *shdr;
15056 
15057 	/* sanity check on queue memory */
15058 	if (!cq || !eq)
15059 		return -ENODEV;
15060 
15061 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15062 	if (!mbox)
15063 		return -ENOMEM;
15064 	length = (sizeof(struct lpfc_mbx_cq_create) -
15065 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15066 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15067 			 LPFC_MBOX_OPCODE_CQ_CREATE,
15068 			 length, LPFC_SLI4_MBX_EMBED);
15069 	cq_create = &mbox->u.mqe.un.cq_create;
15070 	shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
15071 	bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
15072 		    cq->page_count);
15073 	bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
15074 	bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
15075 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15076 	       phba->sli4_hba.pc_sli4_params.cqv);
15077 	if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
15078 		bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request,
15079 		       (cq->page_size / SLI4_PAGE_SIZE));
15080 		bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
15081 		       eq->queue_id);
15082 		bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context,
15083 		       phba->sli4_hba.pc_sli4_params.cqav);
15084 	} else {
15085 		bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
15086 		       eq->queue_id);
15087 	}
15088 	switch (cq->entry_count) {
15089 	case 2048:
15090 	case 4096:
15091 		if (phba->sli4_hba.pc_sli4_params.cqv ==
15092 		    LPFC_Q_CREATE_VERSION_2) {
15093 			cq_create->u.request.context.lpfc_cq_context_count =
15094 				cq->entry_count;
15095 			bf_set(lpfc_cq_context_count,
15096 			       &cq_create->u.request.context,
15097 			       LPFC_CQ_CNT_WORD7);
15098 			break;
15099 		}
15100 		/* fall through */
15101 	default:
15102 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15103 				"0361 Unsupported CQ count: "
15104 				"entry cnt %d sz %d pg cnt %d\n",
15105 				cq->entry_count, cq->entry_size,
15106 				cq->page_count);
15107 		if (cq->entry_count < 256) {
15108 			status = -EINVAL;
15109 			goto out;
15110 		}
15111 		/* fall through - otherwise default to smallest count */
15112 	case 256:
15113 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15114 		       LPFC_CQ_CNT_256);
15115 		break;
15116 	case 512:
15117 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15118 		       LPFC_CQ_CNT_512);
15119 		break;
15120 	case 1024:
15121 		bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
15122 		       LPFC_CQ_CNT_1024);
15123 		break;
15124 	}
15125 	list_for_each_entry(dmabuf, &cq->page_list, list) {
15126 		memset(dmabuf->virt, 0, cq->page_size);
15127 		cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15128 					putPaddrLow(dmabuf->phys);
15129 		cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15130 					putPaddrHigh(dmabuf->phys);
15131 	}
15132 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15133 
15134 	/* The IOCTL status is embedded in the mailbox subheader. */
15135 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15136 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15137 	if (shdr_status || shdr_add_status || rc) {
15138 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15139 				"2501 CQ_CREATE mailbox failed with "
15140 				"status x%x add_status x%x, mbx status x%x\n",
15141 				shdr_status, shdr_add_status, rc);
15142 		status = -ENXIO;
15143 		goto out;
15144 	}
15145 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15146 	if (cq->queue_id == 0xFFFF) {
15147 		status = -ENXIO;
15148 		goto out;
15149 	}
15150 	/* link the cq onto the parent eq child list */
15151 	list_add_tail(&cq->list, &eq->child_list);
15152 	/* Set up completion queue's type and subtype */
15153 	cq->type = type;
15154 	cq->subtype = subtype;
15155 	cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
15156 	cq->assoc_qid = eq->queue_id;
15157 	cq->assoc_qp = eq;
15158 	cq->host_index = 0;
15159 	cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15160 	cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count);
15161 
15162 	if (cq->queue_id > phba->sli4_hba.cq_max)
15163 		phba->sli4_hba.cq_max = cq->queue_id;
15164 out:
15165 	mempool_free(mbox, phba->mbox_mem_pool);
15166 	return status;
15167 }
15168 
15169 /**
15170  * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ
15171  * @phba: HBA structure that indicates port to create a queue on.
15172  * @cqp: The queue structure array to use to create the completion queues.
15173  * @hdwq: The hardware queue array  with the EQ to bind completion queues to.
15174  *
15175  * This function creates a set of  completion queue, s to support MRQ
15176  * as detailed in @cqp, on a port,
15177  * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA.
15178  *
15179  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15180  * is used to get the entry count and entry size that are necessary to
15181  * determine the number of pages to allocate and use for this queue. The @eq
15182  * is used to indicate which event queue to bind this completion queue to. This
15183  * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the
15184  * completion queue. This function is asynchronous and will wait for the mailbox
15185  * command to finish before continuing.
15186  *
15187  * On success this function will return a zero. If unable to allocate enough
15188  * memory this function will return -ENOMEM. If the queue create mailbox command
15189  * fails this function will return -ENXIO.
15190  **/
15191 int
15192 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp,
15193 		   struct lpfc_sli4_hdw_queue *hdwq, uint32_t type,
15194 		   uint32_t subtype)
15195 {
15196 	struct lpfc_queue *cq;
15197 	struct lpfc_queue *eq;
15198 	struct lpfc_mbx_cq_create_set *cq_set;
15199 	struct lpfc_dmabuf *dmabuf;
15200 	LPFC_MBOXQ_t *mbox;
15201 	int rc, length, alloclen, status = 0;
15202 	int cnt, idx, numcq, page_idx = 0;
15203 	uint32_t shdr_status, shdr_add_status;
15204 	union lpfc_sli4_cfg_shdr *shdr;
15205 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15206 
15207 	/* sanity check on queue memory */
15208 	numcq = phba->cfg_nvmet_mrq;
15209 	if (!cqp || !hdwq || !numcq)
15210 		return -ENODEV;
15211 
15212 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15213 	if (!mbox)
15214 		return -ENOMEM;
15215 
15216 	length = sizeof(struct lpfc_mbx_cq_create_set);
15217 	length += ((numcq * cqp[0]->page_count) *
15218 		   sizeof(struct dma_address));
15219 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15220 			LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length,
15221 			LPFC_SLI4_MBX_NEMBED);
15222 	if (alloclen < length) {
15223 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15224 				"3098 Allocated DMA memory size (%d) is "
15225 				"less than the requested DMA memory size "
15226 				"(%d)\n", alloclen, length);
15227 		status = -ENOMEM;
15228 		goto out;
15229 	}
15230 	cq_set = mbox->sge_array->addr[0];
15231 	shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr;
15232 	bf_set(lpfc_mbox_hdr_version, &shdr->request, 0);
15233 
15234 	for (idx = 0; idx < numcq; idx++) {
15235 		cq = cqp[idx];
15236 		eq = hdwq[idx].hba_eq;
15237 		if (!cq || !eq) {
15238 			status = -ENOMEM;
15239 			goto out;
15240 		}
15241 		if (!phba->sli4_hba.pc_sli4_params.supported)
15242 			hw_page_size = cq->page_size;
15243 
15244 		switch (idx) {
15245 		case 0:
15246 			bf_set(lpfc_mbx_cq_create_set_page_size,
15247 			       &cq_set->u.request,
15248 			       (hw_page_size / SLI4_PAGE_SIZE));
15249 			bf_set(lpfc_mbx_cq_create_set_num_pages,
15250 			       &cq_set->u.request, cq->page_count);
15251 			bf_set(lpfc_mbx_cq_create_set_evt,
15252 			       &cq_set->u.request, 1);
15253 			bf_set(lpfc_mbx_cq_create_set_valid,
15254 			       &cq_set->u.request, 1);
15255 			bf_set(lpfc_mbx_cq_create_set_cqe_size,
15256 			       &cq_set->u.request, 0);
15257 			bf_set(lpfc_mbx_cq_create_set_num_cq,
15258 			       &cq_set->u.request, numcq);
15259 			bf_set(lpfc_mbx_cq_create_set_autovalid,
15260 			       &cq_set->u.request,
15261 			       phba->sli4_hba.pc_sli4_params.cqav);
15262 			switch (cq->entry_count) {
15263 			case 2048:
15264 			case 4096:
15265 				if (phba->sli4_hba.pc_sli4_params.cqv ==
15266 				    LPFC_Q_CREATE_VERSION_2) {
15267 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15268 					       &cq_set->u.request,
15269 						cq->entry_count);
15270 					bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15271 					       &cq_set->u.request,
15272 					       LPFC_CQ_CNT_WORD7);
15273 					break;
15274 				}
15275 				/* fall through */
15276 			default:
15277 				lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15278 						"3118 Bad CQ count. (%d)\n",
15279 						cq->entry_count);
15280 				if (cq->entry_count < 256) {
15281 					status = -EINVAL;
15282 					goto out;
15283 				}
15284 				/* fall through - otherwise default to smallest */
15285 			case 256:
15286 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15287 				       &cq_set->u.request, LPFC_CQ_CNT_256);
15288 				break;
15289 			case 512:
15290 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15291 				       &cq_set->u.request, LPFC_CQ_CNT_512);
15292 				break;
15293 			case 1024:
15294 				bf_set(lpfc_mbx_cq_create_set_cqe_cnt,
15295 				       &cq_set->u.request, LPFC_CQ_CNT_1024);
15296 				break;
15297 			}
15298 			bf_set(lpfc_mbx_cq_create_set_eq_id0,
15299 			       &cq_set->u.request, eq->queue_id);
15300 			break;
15301 		case 1:
15302 			bf_set(lpfc_mbx_cq_create_set_eq_id1,
15303 			       &cq_set->u.request, eq->queue_id);
15304 			break;
15305 		case 2:
15306 			bf_set(lpfc_mbx_cq_create_set_eq_id2,
15307 			       &cq_set->u.request, eq->queue_id);
15308 			break;
15309 		case 3:
15310 			bf_set(lpfc_mbx_cq_create_set_eq_id3,
15311 			       &cq_set->u.request, eq->queue_id);
15312 			break;
15313 		case 4:
15314 			bf_set(lpfc_mbx_cq_create_set_eq_id4,
15315 			       &cq_set->u.request, eq->queue_id);
15316 			break;
15317 		case 5:
15318 			bf_set(lpfc_mbx_cq_create_set_eq_id5,
15319 			       &cq_set->u.request, eq->queue_id);
15320 			break;
15321 		case 6:
15322 			bf_set(lpfc_mbx_cq_create_set_eq_id6,
15323 			       &cq_set->u.request, eq->queue_id);
15324 			break;
15325 		case 7:
15326 			bf_set(lpfc_mbx_cq_create_set_eq_id7,
15327 			       &cq_set->u.request, eq->queue_id);
15328 			break;
15329 		case 8:
15330 			bf_set(lpfc_mbx_cq_create_set_eq_id8,
15331 			       &cq_set->u.request, eq->queue_id);
15332 			break;
15333 		case 9:
15334 			bf_set(lpfc_mbx_cq_create_set_eq_id9,
15335 			       &cq_set->u.request, eq->queue_id);
15336 			break;
15337 		case 10:
15338 			bf_set(lpfc_mbx_cq_create_set_eq_id10,
15339 			       &cq_set->u.request, eq->queue_id);
15340 			break;
15341 		case 11:
15342 			bf_set(lpfc_mbx_cq_create_set_eq_id11,
15343 			       &cq_set->u.request, eq->queue_id);
15344 			break;
15345 		case 12:
15346 			bf_set(lpfc_mbx_cq_create_set_eq_id12,
15347 			       &cq_set->u.request, eq->queue_id);
15348 			break;
15349 		case 13:
15350 			bf_set(lpfc_mbx_cq_create_set_eq_id13,
15351 			       &cq_set->u.request, eq->queue_id);
15352 			break;
15353 		case 14:
15354 			bf_set(lpfc_mbx_cq_create_set_eq_id14,
15355 			       &cq_set->u.request, eq->queue_id);
15356 			break;
15357 		case 15:
15358 			bf_set(lpfc_mbx_cq_create_set_eq_id15,
15359 			       &cq_set->u.request, eq->queue_id);
15360 			break;
15361 		}
15362 
15363 		/* link the cq onto the parent eq child list */
15364 		list_add_tail(&cq->list, &eq->child_list);
15365 		/* Set up completion queue's type and subtype */
15366 		cq->type = type;
15367 		cq->subtype = subtype;
15368 		cq->assoc_qid = eq->queue_id;
15369 		cq->assoc_qp = eq;
15370 		cq->host_index = 0;
15371 		cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL;
15372 		cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit,
15373 					 cq->entry_count);
15374 		cq->chann = idx;
15375 
15376 		rc = 0;
15377 		list_for_each_entry(dmabuf, &cq->page_list, list) {
15378 			memset(dmabuf->virt, 0, hw_page_size);
15379 			cnt = page_idx + dmabuf->buffer_tag;
15380 			cq_set->u.request.page[cnt].addr_lo =
15381 					putPaddrLow(dmabuf->phys);
15382 			cq_set->u.request.page[cnt].addr_hi =
15383 					putPaddrHigh(dmabuf->phys);
15384 			rc++;
15385 		}
15386 		page_idx += rc;
15387 	}
15388 
15389 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15390 
15391 	/* The IOCTL status is embedded in the mailbox subheader. */
15392 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15393 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15394 	if (shdr_status || shdr_add_status || rc) {
15395 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15396 				"3119 CQ_CREATE_SET mailbox failed with "
15397 				"status x%x add_status x%x, mbx status x%x\n",
15398 				shdr_status, shdr_add_status, rc);
15399 		status = -ENXIO;
15400 		goto out;
15401 	}
15402 	rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response);
15403 	if (rc == 0xFFFF) {
15404 		status = -ENXIO;
15405 		goto out;
15406 	}
15407 
15408 	for (idx = 0; idx < numcq; idx++) {
15409 		cq = cqp[idx];
15410 		cq->queue_id = rc + idx;
15411 		if (cq->queue_id > phba->sli4_hba.cq_max)
15412 			phba->sli4_hba.cq_max = cq->queue_id;
15413 	}
15414 
15415 out:
15416 	lpfc_sli4_mbox_cmd_free(phba, mbox);
15417 	return status;
15418 }
15419 
15420 /**
15421  * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
15422  * @phba: HBA structure that indicates port to create a queue on.
15423  * @mq: The queue structure to use to create the mailbox queue.
15424  * @mbox: An allocated pointer to type LPFC_MBOXQ_t
15425  * @cq: The completion queue to associate with this cq.
15426  *
15427  * This function provides failback (fb) functionality when the
15428  * mq_create_ext fails on older FW generations.  It's purpose is identical
15429  * to mq_create_ext otherwise.
15430  *
15431  * This routine cannot fail as all attributes were previously accessed and
15432  * initialized in mq_create_ext.
15433  **/
15434 static void
15435 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
15436 		       LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
15437 {
15438 	struct lpfc_mbx_mq_create *mq_create;
15439 	struct lpfc_dmabuf *dmabuf;
15440 	int length;
15441 
15442 	length = (sizeof(struct lpfc_mbx_mq_create) -
15443 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15444 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15445 			 LPFC_MBOX_OPCODE_MQ_CREATE,
15446 			 length, LPFC_SLI4_MBX_EMBED);
15447 	mq_create = &mbox->u.mqe.un.mq_create;
15448 	bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
15449 	       mq->page_count);
15450 	bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
15451 	       cq->queue_id);
15452 	bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
15453 	switch (mq->entry_count) {
15454 	case 16:
15455 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15456 		       LPFC_MQ_RING_SIZE_16);
15457 		break;
15458 	case 32:
15459 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15460 		       LPFC_MQ_RING_SIZE_32);
15461 		break;
15462 	case 64:
15463 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15464 		       LPFC_MQ_RING_SIZE_64);
15465 		break;
15466 	case 128:
15467 		bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
15468 		       LPFC_MQ_RING_SIZE_128);
15469 		break;
15470 	}
15471 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15472 		mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
15473 			putPaddrLow(dmabuf->phys);
15474 		mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
15475 			putPaddrHigh(dmabuf->phys);
15476 	}
15477 }
15478 
15479 /**
15480  * lpfc_mq_create - Create a mailbox Queue on the HBA
15481  * @phba: HBA structure that indicates port to create a queue on.
15482  * @mq: The queue structure to use to create the mailbox queue.
15483  * @cq: The completion queue to associate with this cq.
15484  * @subtype: The queue's subtype.
15485  *
15486  * This function creates a mailbox queue, as detailed in @mq, on a port,
15487  * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
15488  *
15489  * The @phba struct is used to send mailbox command to HBA. The @cq struct
15490  * is used to get the entry count and entry size that are necessary to
15491  * determine the number of pages to allocate and use for this queue. This
15492  * function will send the MQ_CREATE mailbox command to the HBA to setup the
15493  * mailbox queue. This function is asynchronous and will wait for the mailbox
15494  * command to finish before continuing.
15495  *
15496  * On success this function will return a zero. If unable to allocate enough
15497  * memory this function will return -ENOMEM. If the queue create mailbox command
15498  * fails this function will return -ENXIO.
15499  **/
15500 int32_t
15501 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
15502 	       struct lpfc_queue *cq, uint32_t subtype)
15503 {
15504 	struct lpfc_mbx_mq_create *mq_create;
15505 	struct lpfc_mbx_mq_create_ext *mq_create_ext;
15506 	struct lpfc_dmabuf *dmabuf;
15507 	LPFC_MBOXQ_t *mbox;
15508 	int rc, length, status = 0;
15509 	uint32_t shdr_status, shdr_add_status;
15510 	union lpfc_sli4_cfg_shdr *shdr;
15511 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15512 
15513 	/* sanity check on queue memory */
15514 	if (!mq || !cq)
15515 		return -ENODEV;
15516 	if (!phba->sli4_hba.pc_sli4_params.supported)
15517 		hw_page_size = SLI4_PAGE_SIZE;
15518 
15519 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15520 	if (!mbox)
15521 		return -ENOMEM;
15522 	length = (sizeof(struct lpfc_mbx_mq_create_ext) -
15523 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15524 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15525 			 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
15526 			 length, LPFC_SLI4_MBX_EMBED);
15527 
15528 	mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
15529 	shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
15530 	bf_set(lpfc_mbx_mq_create_ext_num_pages,
15531 	       &mq_create_ext->u.request, mq->page_count);
15532 	bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
15533 	       &mq_create_ext->u.request, 1);
15534 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
15535 	       &mq_create_ext->u.request, 1);
15536 	bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
15537 	       &mq_create_ext->u.request, 1);
15538 	bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
15539 	       &mq_create_ext->u.request, 1);
15540 	bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
15541 	       &mq_create_ext->u.request, 1);
15542 	bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
15543 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15544 	       phba->sli4_hba.pc_sli4_params.mqv);
15545 	if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
15546 		bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
15547 		       cq->queue_id);
15548 	else
15549 		bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
15550 		       cq->queue_id);
15551 	switch (mq->entry_count) {
15552 	default:
15553 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15554 				"0362 Unsupported MQ count. (%d)\n",
15555 				mq->entry_count);
15556 		if (mq->entry_count < 16) {
15557 			status = -EINVAL;
15558 			goto out;
15559 		}
15560 		/* fall through - otherwise default to smallest count */
15561 	case 16:
15562 		bf_set(lpfc_mq_context_ring_size,
15563 		       &mq_create_ext->u.request.context,
15564 		       LPFC_MQ_RING_SIZE_16);
15565 		break;
15566 	case 32:
15567 		bf_set(lpfc_mq_context_ring_size,
15568 		       &mq_create_ext->u.request.context,
15569 		       LPFC_MQ_RING_SIZE_32);
15570 		break;
15571 	case 64:
15572 		bf_set(lpfc_mq_context_ring_size,
15573 		       &mq_create_ext->u.request.context,
15574 		       LPFC_MQ_RING_SIZE_64);
15575 		break;
15576 	case 128:
15577 		bf_set(lpfc_mq_context_ring_size,
15578 		       &mq_create_ext->u.request.context,
15579 		       LPFC_MQ_RING_SIZE_128);
15580 		break;
15581 	}
15582 	list_for_each_entry(dmabuf, &mq->page_list, list) {
15583 		memset(dmabuf->virt, 0, hw_page_size);
15584 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
15585 					putPaddrLow(dmabuf->phys);
15586 		mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
15587 					putPaddrHigh(dmabuf->phys);
15588 	}
15589 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15590 	mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15591 			      &mq_create_ext->u.response);
15592 	if (rc != MBX_SUCCESS) {
15593 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15594 				"2795 MQ_CREATE_EXT failed with "
15595 				"status x%x. Failback to MQ_CREATE.\n",
15596 				rc);
15597 		lpfc_mq_create_fb_init(phba, mq, mbox, cq);
15598 		mq_create = &mbox->u.mqe.un.mq_create;
15599 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15600 		shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
15601 		mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
15602 				      &mq_create->u.response);
15603 	}
15604 
15605 	/* The IOCTL status is embedded in the mailbox subheader. */
15606 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15607 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15608 	if (shdr_status || shdr_add_status || rc) {
15609 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15610 				"2502 MQ_CREATE mailbox failed with "
15611 				"status x%x add_status x%x, mbx status x%x\n",
15612 				shdr_status, shdr_add_status, rc);
15613 		status = -ENXIO;
15614 		goto out;
15615 	}
15616 	if (mq->queue_id == 0xFFFF) {
15617 		status = -ENXIO;
15618 		goto out;
15619 	}
15620 	mq->type = LPFC_MQ;
15621 	mq->assoc_qid = cq->queue_id;
15622 	mq->subtype = subtype;
15623 	mq->host_index = 0;
15624 	mq->hba_index = 0;
15625 
15626 	/* link the mq onto the parent cq child list */
15627 	list_add_tail(&mq->list, &cq->child_list);
15628 out:
15629 	mempool_free(mbox, phba->mbox_mem_pool);
15630 	return status;
15631 }
15632 
15633 /**
15634  * lpfc_wq_create - Create a Work Queue on the HBA
15635  * @phba: HBA structure that indicates port to create a queue on.
15636  * @wq: The queue structure to use to create the work queue.
15637  * @cq: The completion queue to bind this work queue to.
15638  * @subtype: The subtype of the work queue indicating its functionality.
15639  *
15640  * This function creates a work queue, as detailed in @wq, on a port, described
15641  * by @phba by sending a WQ_CREATE mailbox command to the HBA.
15642  *
15643  * The @phba struct is used to send mailbox command to HBA. The @wq struct
15644  * is used to get the entry count and entry size that are necessary to
15645  * determine the number of pages to allocate and use for this queue. The @cq
15646  * is used to indicate which completion queue to bind this work queue to. This
15647  * function will send the WQ_CREATE mailbox command to the HBA to setup the
15648  * work queue. This function is asynchronous and will wait for the mailbox
15649  * command to finish before continuing.
15650  *
15651  * On success this function will return a zero. If unable to allocate enough
15652  * memory this function will return -ENOMEM. If the queue create mailbox command
15653  * fails this function will return -ENXIO.
15654  **/
15655 int
15656 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
15657 	       struct lpfc_queue *cq, uint32_t subtype)
15658 {
15659 	struct lpfc_mbx_wq_create *wq_create;
15660 	struct lpfc_dmabuf *dmabuf;
15661 	LPFC_MBOXQ_t *mbox;
15662 	int rc, length, status = 0;
15663 	uint32_t shdr_status, shdr_add_status;
15664 	union lpfc_sli4_cfg_shdr *shdr;
15665 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15666 	struct dma_address *page;
15667 	void __iomem *bar_memmap_p;
15668 	uint32_t db_offset;
15669 	uint16_t pci_barset;
15670 	uint8_t dpp_barset;
15671 	uint32_t dpp_offset;
15672 	unsigned long pg_addr;
15673 	uint8_t wq_create_version;
15674 
15675 	/* sanity check on queue memory */
15676 	if (!wq || !cq)
15677 		return -ENODEV;
15678 	if (!phba->sli4_hba.pc_sli4_params.supported)
15679 		hw_page_size = wq->page_size;
15680 
15681 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15682 	if (!mbox)
15683 		return -ENOMEM;
15684 	length = (sizeof(struct lpfc_mbx_wq_create) -
15685 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15686 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15687 			 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
15688 			 length, LPFC_SLI4_MBX_EMBED);
15689 	wq_create = &mbox->u.mqe.un.wq_create;
15690 	shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
15691 	bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
15692 		    wq->page_count);
15693 	bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
15694 		    cq->queue_id);
15695 
15696 	/* wqv is the earliest version supported, NOT the latest */
15697 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15698 	       phba->sli4_hba.pc_sli4_params.wqv);
15699 
15700 	if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) ||
15701 	    (wq->page_size > SLI4_PAGE_SIZE))
15702 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15703 	else
15704 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15705 
15706 
15707 	if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT)
15708 		wq_create_version = LPFC_Q_CREATE_VERSION_1;
15709 	else
15710 		wq_create_version = LPFC_Q_CREATE_VERSION_0;
15711 
15712 	switch (wq_create_version) {
15713 	case LPFC_Q_CREATE_VERSION_1:
15714 		bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
15715 		       wq->entry_count);
15716 		bf_set(lpfc_mbox_hdr_version, &shdr->request,
15717 		       LPFC_Q_CREATE_VERSION_1);
15718 
15719 		switch (wq->entry_size) {
15720 		default:
15721 		case 64:
15722 			bf_set(lpfc_mbx_wq_create_wqe_size,
15723 			       &wq_create->u.request_1,
15724 			       LPFC_WQ_WQE_SIZE_64);
15725 			break;
15726 		case 128:
15727 			bf_set(lpfc_mbx_wq_create_wqe_size,
15728 			       &wq_create->u.request_1,
15729 			       LPFC_WQ_WQE_SIZE_128);
15730 			break;
15731 		}
15732 		/* Request DPP by default */
15733 		bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1);
15734 		bf_set(lpfc_mbx_wq_create_page_size,
15735 		       &wq_create->u.request_1,
15736 		       (wq->page_size / SLI4_PAGE_SIZE));
15737 		page = wq_create->u.request_1.page;
15738 		break;
15739 	default:
15740 		page = wq_create->u.request.page;
15741 		break;
15742 	}
15743 
15744 	list_for_each_entry(dmabuf, &wq->page_list, list) {
15745 		memset(dmabuf->virt, 0, hw_page_size);
15746 		page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
15747 		page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
15748 	}
15749 
15750 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
15751 		bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1);
15752 
15753 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15754 	/* The IOCTL status is embedded in the mailbox subheader. */
15755 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15756 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15757 	if (shdr_status || shdr_add_status || rc) {
15758 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15759 				"2503 WQ_CREATE mailbox failed with "
15760 				"status x%x add_status x%x, mbx status x%x\n",
15761 				shdr_status, shdr_add_status, rc);
15762 		status = -ENXIO;
15763 		goto out;
15764 	}
15765 
15766 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0)
15767 		wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id,
15768 					&wq_create->u.response);
15769 	else
15770 		wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id,
15771 					&wq_create->u.response_1);
15772 
15773 	if (wq->queue_id == 0xFFFF) {
15774 		status = -ENXIO;
15775 		goto out;
15776 	}
15777 
15778 	wq->db_format = LPFC_DB_LIST_FORMAT;
15779 	if (wq_create_version == LPFC_Q_CREATE_VERSION_0) {
15780 		if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
15781 			wq->db_format = bf_get(lpfc_mbx_wq_create_db_format,
15782 					       &wq_create->u.response);
15783 			if ((wq->db_format != LPFC_DB_LIST_FORMAT) &&
15784 			    (wq->db_format != LPFC_DB_RING_FORMAT)) {
15785 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15786 						"3265 WQ[%d] doorbell format "
15787 						"not supported: x%x\n",
15788 						wq->queue_id, wq->db_format);
15789 				status = -EINVAL;
15790 				goto out;
15791 			}
15792 			pci_barset = bf_get(lpfc_mbx_wq_create_bar_set,
15793 					    &wq_create->u.response);
15794 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15795 								   pci_barset);
15796 			if (!bar_memmap_p) {
15797 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15798 						"3263 WQ[%d] failed to memmap "
15799 						"pci barset:x%x\n",
15800 						wq->queue_id, pci_barset);
15801 				status = -ENOMEM;
15802 				goto out;
15803 			}
15804 			db_offset = wq_create->u.response.doorbell_offset;
15805 			if ((db_offset != LPFC_ULP0_WQ_DOORBELL) &&
15806 			    (db_offset != LPFC_ULP1_WQ_DOORBELL)) {
15807 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15808 						"3252 WQ[%d] doorbell offset "
15809 						"not supported: x%x\n",
15810 						wq->queue_id, db_offset);
15811 				status = -EINVAL;
15812 				goto out;
15813 			}
15814 			wq->db_regaddr = bar_memmap_p + db_offset;
15815 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15816 					"3264 WQ[%d]: barset:x%x, offset:x%x, "
15817 					"format:x%x\n", wq->queue_id,
15818 					pci_barset, db_offset, wq->db_format);
15819 		} else
15820 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15821 	} else {
15822 		/* Check if DPP was honored by the firmware */
15823 		wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp,
15824 				    &wq_create->u.response_1);
15825 		if (wq->dpp_enable) {
15826 			pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set,
15827 					    &wq_create->u.response_1);
15828 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15829 								   pci_barset);
15830 			if (!bar_memmap_p) {
15831 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15832 						"3267 WQ[%d] failed to memmap "
15833 						"pci barset:x%x\n",
15834 						wq->queue_id, pci_barset);
15835 				status = -ENOMEM;
15836 				goto out;
15837 			}
15838 			db_offset = wq_create->u.response_1.doorbell_offset;
15839 			wq->db_regaddr = bar_memmap_p + db_offset;
15840 			wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id,
15841 					    &wq_create->u.response_1);
15842 			dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar,
15843 					    &wq_create->u.response_1);
15844 			bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba,
15845 								   dpp_barset);
15846 			if (!bar_memmap_p) {
15847 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15848 						"3268 WQ[%d] failed to memmap "
15849 						"pci barset:x%x\n",
15850 						wq->queue_id, dpp_barset);
15851 				status = -ENOMEM;
15852 				goto out;
15853 			}
15854 			dpp_offset = wq_create->u.response_1.dpp_offset;
15855 			wq->dpp_regaddr = bar_memmap_p + dpp_offset;
15856 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15857 					"3271 WQ[%d]: barset:x%x, offset:x%x, "
15858 					"dpp_id:x%x dpp_barset:x%x "
15859 					"dpp_offset:x%x\n",
15860 					wq->queue_id, pci_barset, db_offset,
15861 					wq->dpp_id, dpp_barset, dpp_offset);
15862 
15863 			/* Enable combined writes for DPP aperture */
15864 			pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK;
15865 #ifdef CONFIG_X86
15866 			rc = set_memory_wc(pg_addr, 1);
15867 			if (rc) {
15868 				lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15869 					"3272 Cannot setup Combined "
15870 					"Write on WQ[%d] - disable DPP\n",
15871 					wq->queue_id);
15872 				phba->cfg_enable_dpp = 0;
15873 			}
15874 #else
15875 			phba->cfg_enable_dpp = 0;
15876 #endif
15877 		} else
15878 			wq->db_regaddr = phba->sli4_hba.WQDBregaddr;
15879 	}
15880 	wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL);
15881 	if (wq->pring == NULL) {
15882 		status = -ENOMEM;
15883 		goto out;
15884 	}
15885 	wq->type = LPFC_WQ;
15886 	wq->assoc_qid = cq->queue_id;
15887 	wq->subtype = subtype;
15888 	wq->host_index = 0;
15889 	wq->hba_index = 0;
15890 	wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL;
15891 
15892 	/* link the wq onto the parent cq child list */
15893 	list_add_tail(&wq->list, &cq->child_list);
15894 out:
15895 	mempool_free(mbox, phba->mbox_mem_pool);
15896 	return status;
15897 }
15898 
15899 /**
15900  * lpfc_rq_create - Create a Receive Queue on the HBA
15901  * @phba: HBA structure that indicates port to create a queue on.
15902  * @hrq: The queue structure to use to create the header receive queue.
15903  * @drq: The queue structure to use to create the data receive queue.
15904  * @cq: The completion queue to bind this work queue to.
15905  *
15906  * This function creates a receive buffer queue pair , as detailed in @hrq and
15907  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
15908  * to the HBA.
15909  *
15910  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
15911  * struct is used to get the entry count that is necessary to determine the
15912  * number of pages to use for this queue. The @cq is used to indicate which
15913  * completion queue to bind received buffers that are posted to these queues to.
15914  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
15915  * receive queue pair. This function is asynchronous and will wait for the
15916  * mailbox command to finish before continuing.
15917  *
15918  * On success this function will return a zero. If unable to allocate enough
15919  * memory this function will return -ENOMEM. If the queue create mailbox command
15920  * fails this function will return -ENXIO.
15921  **/
15922 int
15923 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
15924 	       struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
15925 {
15926 	struct lpfc_mbx_rq_create *rq_create;
15927 	struct lpfc_dmabuf *dmabuf;
15928 	LPFC_MBOXQ_t *mbox;
15929 	int rc, length, status = 0;
15930 	uint32_t shdr_status, shdr_add_status;
15931 	union lpfc_sli4_cfg_shdr *shdr;
15932 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
15933 	void __iomem *bar_memmap_p;
15934 	uint32_t db_offset;
15935 	uint16_t pci_barset;
15936 
15937 	/* sanity check on queue memory */
15938 	if (!hrq || !drq || !cq)
15939 		return -ENODEV;
15940 	if (!phba->sli4_hba.pc_sli4_params.supported)
15941 		hw_page_size = SLI4_PAGE_SIZE;
15942 
15943 	if (hrq->entry_count != drq->entry_count)
15944 		return -EINVAL;
15945 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15946 	if (!mbox)
15947 		return -ENOMEM;
15948 	length = (sizeof(struct lpfc_mbx_rq_create) -
15949 		  sizeof(struct lpfc_sli4_cfg_mhdr));
15950 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15951 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
15952 			 length, LPFC_SLI4_MBX_EMBED);
15953 	rq_create = &mbox->u.mqe.un.rq_create;
15954 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
15955 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
15956 	       phba->sli4_hba.pc_sli4_params.rqv);
15957 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
15958 		bf_set(lpfc_rq_context_rqe_count_1,
15959 		       &rq_create->u.request.context,
15960 		       hrq->entry_count);
15961 		rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
15962 		bf_set(lpfc_rq_context_rqe_size,
15963 		       &rq_create->u.request.context,
15964 		       LPFC_RQE_SIZE_8);
15965 		bf_set(lpfc_rq_context_page_size,
15966 		       &rq_create->u.request.context,
15967 		       LPFC_RQ_PAGE_SIZE_4096);
15968 	} else {
15969 		switch (hrq->entry_count) {
15970 		default:
15971 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15972 					"2535 Unsupported RQ count. (%d)\n",
15973 					hrq->entry_count);
15974 			if (hrq->entry_count < 512) {
15975 				status = -EINVAL;
15976 				goto out;
15977 			}
15978 			/* fall through - otherwise default to smallest count */
15979 		case 512:
15980 			bf_set(lpfc_rq_context_rqe_count,
15981 			       &rq_create->u.request.context,
15982 			       LPFC_RQ_RING_SIZE_512);
15983 			break;
15984 		case 1024:
15985 			bf_set(lpfc_rq_context_rqe_count,
15986 			       &rq_create->u.request.context,
15987 			       LPFC_RQ_RING_SIZE_1024);
15988 			break;
15989 		case 2048:
15990 			bf_set(lpfc_rq_context_rqe_count,
15991 			       &rq_create->u.request.context,
15992 			       LPFC_RQ_RING_SIZE_2048);
15993 			break;
15994 		case 4096:
15995 			bf_set(lpfc_rq_context_rqe_count,
15996 			       &rq_create->u.request.context,
15997 			       LPFC_RQ_RING_SIZE_4096);
15998 			break;
15999 		}
16000 		bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
16001 		       LPFC_HDR_BUF_SIZE);
16002 	}
16003 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16004 	       cq->queue_id);
16005 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16006 	       hrq->page_count);
16007 	list_for_each_entry(dmabuf, &hrq->page_list, list) {
16008 		memset(dmabuf->virt, 0, hw_page_size);
16009 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16010 					putPaddrLow(dmabuf->phys);
16011 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16012 					putPaddrHigh(dmabuf->phys);
16013 	}
16014 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16015 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16016 
16017 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16018 	/* The IOCTL status is embedded in the mailbox subheader. */
16019 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16020 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16021 	if (shdr_status || shdr_add_status || rc) {
16022 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16023 				"2504 RQ_CREATE mailbox failed with "
16024 				"status x%x add_status x%x, mbx status x%x\n",
16025 				shdr_status, shdr_add_status, rc);
16026 		status = -ENXIO;
16027 		goto out;
16028 	}
16029 	hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16030 	if (hrq->queue_id == 0xFFFF) {
16031 		status = -ENXIO;
16032 		goto out;
16033 	}
16034 
16035 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) {
16036 		hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format,
16037 					&rq_create->u.response);
16038 		if ((hrq->db_format != LPFC_DB_LIST_FORMAT) &&
16039 		    (hrq->db_format != LPFC_DB_RING_FORMAT)) {
16040 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16041 					"3262 RQ [%d] doorbell format not "
16042 					"supported: x%x\n", hrq->queue_id,
16043 					hrq->db_format);
16044 			status = -EINVAL;
16045 			goto out;
16046 		}
16047 
16048 		pci_barset = bf_get(lpfc_mbx_rq_create_bar_set,
16049 				    &rq_create->u.response);
16050 		bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset);
16051 		if (!bar_memmap_p) {
16052 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16053 					"3269 RQ[%d] failed to memmap pci "
16054 					"barset:x%x\n", hrq->queue_id,
16055 					pci_barset);
16056 			status = -ENOMEM;
16057 			goto out;
16058 		}
16059 
16060 		db_offset = rq_create->u.response.doorbell_offset;
16061 		if ((db_offset != LPFC_ULP0_RQ_DOORBELL) &&
16062 		    (db_offset != LPFC_ULP1_RQ_DOORBELL)) {
16063 			lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16064 					"3270 RQ[%d] doorbell offset not "
16065 					"supported: x%x\n", hrq->queue_id,
16066 					db_offset);
16067 			status = -EINVAL;
16068 			goto out;
16069 		}
16070 		hrq->db_regaddr = bar_memmap_p + db_offset;
16071 		lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
16072 				"3266 RQ[qid:%d]: barset:x%x, offset:x%x, "
16073 				"format:x%x\n", hrq->queue_id, pci_barset,
16074 				db_offset, hrq->db_format);
16075 	} else {
16076 		hrq->db_format = LPFC_DB_RING_FORMAT;
16077 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16078 	}
16079 	hrq->type = LPFC_HRQ;
16080 	hrq->assoc_qid = cq->queue_id;
16081 	hrq->subtype = subtype;
16082 	hrq->host_index = 0;
16083 	hrq->hba_index = 0;
16084 	hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16085 
16086 	/* now create the data queue */
16087 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16088 			 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
16089 			 length, LPFC_SLI4_MBX_EMBED);
16090 	bf_set(lpfc_mbox_hdr_version, &shdr->request,
16091 	       phba->sli4_hba.pc_sli4_params.rqv);
16092 	if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
16093 		bf_set(lpfc_rq_context_rqe_count_1,
16094 		       &rq_create->u.request.context, hrq->entry_count);
16095 		if (subtype == LPFC_NVMET)
16096 			rq_create->u.request.context.buffer_size =
16097 				LPFC_NVMET_DATA_BUF_SIZE;
16098 		else
16099 			rq_create->u.request.context.buffer_size =
16100 				LPFC_DATA_BUF_SIZE;
16101 		bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
16102 		       LPFC_RQE_SIZE_8);
16103 		bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
16104 		       (PAGE_SIZE/SLI4_PAGE_SIZE));
16105 	} else {
16106 		switch (drq->entry_count) {
16107 		default:
16108 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16109 					"2536 Unsupported RQ count. (%d)\n",
16110 					drq->entry_count);
16111 			if (drq->entry_count < 512) {
16112 				status = -EINVAL;
16113 				goto out;
16114 			}
16115 			/* fall through - otherwise default to smallest count */
16116 		case 512:
16117 			bf_set(lpfc_rq_context_rqe_count,
16118 			       &rq_create->u.request.context,
16119 			       LPFC_RQ_RING_SIZE_512);
16120 			break;
16121 		case 1024:
16122 			bf_set(lpfc_rq_context_rqe_count,
16123 			       &rq_create->u.request.context,
16124 			       LPFC_RQ_RING_SIZE_1024);
16125 			break;
16126 		case 2048:
16127 			bf_set(lpfc_rq_context_rqe_count,
16128 			       &rq_create->u.request.context,
16129 			       LPFC_RQ_RING_SIZE_2048);
16130 			break;
16131 		case 4096:
16132 			bf_set(lpfc_rq_context_rqe_count,
16133 			       &rq_create->u.request.context,
16134 			       LPFC_RQ_RING_SIZE_4096);
16135 			break;
16136 		}
16137 		if (subtype == LPFC_NVMET)
16138 			bf_set(lpfc_rq_context_buf_size,
16139 			       &rq_create->u.request.context,
16140 			       LPFC_NVMET_DATA_BUF_SIZE);
16141 		else
16142 			bf_set(lpfc_rq_context_buf_size,
16143 			       &rq_create->u.request.context,
16144 			       LPFC_DATA_BUF_SIZE);
16145 	}
16146 	bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
16147 	       cq->queue_id);
16148 	bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
16149 	       drq->page_count);
16150 	list_for_each_entry(dmabuf, &drq->page_list, list) {
16151 		rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
16152 					putPaddrLow(dmabuf->phys);
16153 		rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
16154 					putPaddrHigh(dmabuf->phys);
16155 	}
16156 	if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE)
16157 		bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1);
16158 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16159 	/* The IOCTL status is embedded in the mailbox subheader. */
16160 	shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
16161 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16162 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16163 	if (shdr_status || shdr_add_status || rc) {
16164 		status = -ENXIO;
16165 		goto out;
16166 	}
16167 	drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16168 	if (drq->queue_id == 0xFFFF) {
16169 		status = -ENXIO;
16170 		goto out;
16171 	}
16172 	drq->type = LPFC_DRQ;
16173 	drq->assoc_qid = cq->queue_id;
16174 	drq->subtype = subtype;
16175 	drq->host_index = 0;
16176 	drq->hba_index = 0;
16177 	drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16178 
16179 	/* link the header and data RQs onto the parent cq child list */
16180 	list_add_tail(&hrq->list, &cq->child_list);
16181 	list_add_tail(&drq->list, &cq->child_list);
16182 
16183 out:
16184 	mempool_free(mbox, phba->mbox_mem_pool);
16185 	return status;
16186 }
16187 
16188 /**
16189  * lpfc_mrq_create - Create MRQ Receive Queues on the HBA
16190  * @phba: HBA structure that indicates port to create a queue on.
16191  * @hrqp: The queue structure array to use to create the header receive queues.
16192  * @drqp: The queue structure array to use to create the data receive queues.
16193  * @cqp: The completion queue array to bind these receive queues to.
16194  *
16195  * This function creates a receive buffer queue pair , as detailed in @hrq and
16196  * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
16197  * to the HBA.
16198  *
16199  * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
16200  * struct is used to get the entry count that is necessary to determine the
16201  * number of pages to use for this queue. The @cq is used to indicate which
16202  * completion queue to bind received buffers that are posted to these queues to.
16203  * This function will send the RQ_CREATE mailbox command to the HBA to setup the
16204  * receive queue pair. This function is asynchronous and will wait for the
16205  * mailbox command to finish before continuing.
16206  *
16207  * On success this function will return a zero. If unable to allocate enough
16208  * memory this function will return -ENOMEM. If the queue create mailbox command
16209  * fails this function will return -ENXIO.
16210  **/
16211 int
16212 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp,
16213 		struct lpfc_queue **drqp, struct lpfc_queue **cqp,
16214 		uint32_t subtype)
16215 {
16216 	struct lpfc_queue *hrq, *drq, *cq;
16217 	struct lpfc_mbx_rq_create_v2 *rq_create;
16218 	struct lpfc_dmabuf *dmabuf;
16219 	LPFC_MBOXQ_t *mbox;
16220 	int rc, length, alloclen, status = 0;
16221 	int cnt, idx, numrq, page_idx = 0;
16222 	uint32_t shdr_status, shdr_add_status;
16223 	union lpfc_sli4_cfg_shdr *shdr;
16224 	uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
16225 
16226 	numrq = phba->cfg_nvmet_mrq;
16227 	/* sanity check on array memory */
16228 	if (!hrqp || !drqp || !cqp || !numrq)
16229 		return -ENODEV;
16230 	if (!phba->sli4_hba.pc_sli4_params.supported)
16231 		hw_page_size = SLI4_PAGE_SIZE;
16232 
16233 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16234 	if (!mbox)
16235 		return -ENOMEM;
16236 
16237 	length = sizeof(struct lpfc_mbx_rq_create_v2);
16238 	length += ((2 * numrq * hrqp[0]->page_count) *
16239 		   sizeof(struct dma_address));
16240 
16241 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16242 				    LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length,
16243 				    LPFC_SLI4_MBX_NEMBED);
16244 	if (alloclen < length) {
16245 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16246 				"3099 Allocated DMA memory size (%d) is "
16247 				"less than the requested DMA memory size "
16248 				"(%d)\n", alloclen, length);
16249 		status = -ENOMEM;
16250 		goto out;
16251 	}
16252 
16253 
16254 
16255 	rq_create = mbox->sge_array->addr[0];
16256 	shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr;
16257 
16258 	bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2);
16259 	cnt = 0;
16260 
16261 	for (idx = 0; idx < numrq; idx++) {
16262 		hrq = hrqp[idx];
16263 		drq = drqp[idx];
16264 		cq  = cqp[idx];
16265 
16266 		/* sanity check on queue memory */
16267 		if (!hrq || !drq || !cq) {
16268 			status = -ENODEV;
16269 			goto out;
16270 		}
16271 
16272 		if (hrq->entry_count != drq->entry_count) {
16273 			status = -EINVAL;
16274 			goto out;
16275 		}
16276 
16277 		if (idx == 0) {
16278 			bf_set(lpfc_mbx_rq_create_num_pages,
16279 			       &rq_create->u.request,
16280 			       hrq->page_count);
16281 			bf_set(lpfc_mbx_rq_create_rq_cnt,
16282 			       &rq_create->u.request, (numrq * 2));
16283 			bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request,
16284 			       1);
16285 			bf_set(lpfc_rq_context_base_cq,
16286 			       &rq_create->u.request.context,
16287 			       cq->queue_id);
16288 			bf_set(lpfc_rq_context_data_size,
16289 			       &rq_create->u.request.context,
16290 			       LPFC_NVMET_DATA_BUF_SIZE);
16291 			bf_set(lpfc_rq_context_hdr_size,
16292 			       &rq_create->u.request.context,
16293 			       LPFC_HDR_BUF_SIZE);
16294 			bf_set(lpfc_rq_context_rqe_count_1,
16295 			       &rq_create->u.request.context,
16296 			       hrq->entry_count);
16297 			bf_set(lpfc_rq_context_rqe_size,
16298 			       &rq_create->u.request.context,
16299 			       LPFC_RQE_SIZE_8);
16300 			bf_set(lpfc_rq_context_page_size,
16301 			       &rq_create->u.request.context,
16302 			       (PAGE_SIZE/SLI4_PAGE_SIZE));
16303 		}
16304 		rc = 0;
16305 		list_for_each_entry(dmabuf, &hrq->page_list, list) {
16306 			memset(dmabuf->virt, 0, hw_page_size);
16307 			cnt = page_idx + dmabuf->buffer_tag;
16308 			rq_create->u.request.page[cnt].addr_lo =
16309 					putPaddrLow(dmabuf->phys);
16310 			rq_create->u.request.page[cnt].addr_hi =
16311 					putPaddrHigh(dmabuf->phys);
16312 			rc++;
16313 		}
16314 		page_idx += rc;
16315 
16316 		rc = 0;
16317 		list_for_each_entry(dmabuf, &drq->page_list, list) {
16318 			memset(dmabuf->virt, 0, hw_page_size);
16319 			cnt = page_idx + dmabuf->buffer_tag;
16320 			rq_create->u.request.page[cnt].addr_lo =
16321 					putPaddrLow(dmabuf->phys);
16322 			rq_create->u.request.page[cnt].addr_hi =
16323 					putPaddrHigh(dmabuf->phys);
16324 			rc++;
16325 		}
16326 		page_idx += rc;
16327 
16328 		hrq->db_format = LPFC_DB_RING_FORMAT;
16329 		hrq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16330 		hrq->type = LPFC_HRQ;
16331 		hrq->assoc_qid = cq->queue_id;
16332 		hrq->subtype = subtype;
16333 		hrq->host_index = 0;
16334 		hrq->hba_index = 0;
16335 		hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16336 
16337 		drq->db_format = LPFC_DB_RING_FORMAT;
16338 		drq->db_regaddr = phba->sli4_hba.RQDBregaddr;
16339 		drq->type = LPFC_DRQ;
16340 		drq->assoc_qid = cq->queue_id;
16341 		drq->subtype = subtype;
16342 		drq->host_index = 0;
16343 		drq->hba_index = 0;
16344 		drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL;
16345 
16346 		list_add_tail(&hrq->list, &cq->child_list);
16347 		list_add_tail(&drq->list, &cq->child_list);
16348 	}
16349 
16350 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16351 	/* The IOCTL status is embedded in the mailbox subheader. */
16352 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16353 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16354 	if (shdr_status || shdr_add_status || rc) {
16355 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16356 				"3120 RQ_CREATE mailbox failed with "
16357 				"status x%x add_status x%x, mbx status x%x\n",
16358 				shdr_status, shdr_add_status, rc);
16359 		status = -ENXIO;
16360 		goto out;
16361 	}
16362 	rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
16363 	if (rc == 0xFFFF) {
16364 		status = -ENXIO;
16365 		goto out;
16366 	}
16367 
16368 	/* Initialize all RQs with associated queue id */
16369 	for (idx = 0; idx < numrq; idx++) {
16370 		hrq = hrqp[idx];
16371 		hrq->queue_id = rc + (2 * idx);
16372 		drq = drqp[idx];
16373 		drq->queue_id = rc + (2 * idx) + 1;
16374 	}
16375 
16376 out:
16377 	lpfc_sli4_mbox_cmd_free(phba, mbox);
16378 	return status;
16379 }
16380 
16381 /**
16382  * lpfc_eq_destroy - Destroy an event Queue on the HBA
16383  * @eq: The queue structure associated with the queue to destroy.
16384  *
16385  * This function destroys a queue, as detailed in @eq by sending an mailbox
16386  * command, specific to the type of queue, to the HBA.
16387  *
16388  * The @eq struct is used to get the queue ID of the queue to destroy.
16389  *
16390  * On success this function will return a zero. If the queue destroy mailbox
16391  * command fails this function will return -ENXIO.
16392  **/
16393 int
16394 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
16395 {
16396 	LPFC_MBOXQ_t *mbox;
16397 	int rc, length, status = 0;
16398 	uint32_t shdr_status, shdr_add_status;
16399 	union lpfc_sli4_cfg_shdr *shdr;
16400 
16401 	/* sanity check on queue memory */
16402 	if (!eq)
16403 		return -ENODEV;
16404 
16405 	mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
16406 	if (!mbox)
16407 		return -ENOMEM;
16408 	length = (sizeof(struct lpfc_mbx_eq_destroy) -
16409 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16410 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16411 			 LPFC_MBOX_OPCODE_EQ_DESTROY,
16412 			 length, LPFC_SLI4_MBX_EMBED);
16413 	bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
16414 	       eq->queue_id);
16415 	mbox->vport = eq->phba->pport;
16416 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16417 
16418 	rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
16419 	/* The IOCTL status is embedded in the mailbox subheader. */
16420 	shdr = (union lpfc_sli4_cfg_shdr *)
16421 		&mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
16422 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16423 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16424 	if (shdr_status || shdr_add_status || rc) {
16425 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16426 				"2505 EQ_DESTROY mailbox failed with "
16427 				"status x%x add_status x%x, mbx status x%x\n",
16428 				shdr_status, shdr_add_status, rc);
16429 		status = -ENXIO;
16430 	}
16431 
16432 	/* Remove eq from any list */
16433 	list_del_init(&eq->list);
16434 	mempool_free(mbox, eq->phba->mbox_mem_pool);
16435 	return status;
16436 }
16437 
16438 /**
16439  * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
16440  * @cq: The queue structure associated with the queue to destroy.
16441  *
16442  * This function destroys a queue, as detailed in @cq by sending an mailbox
16443  * command, specific to the type of queue, to the HBA.
16444  *
16445  * The @cq struct is used to get the queue ID of the queue to destroy.
16446  *
16447  * On success this function will return a zero. If the queue destroy mailbox
16448  * command fails this function will return -ENXIO.
16449  **/
16450 int
16451 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
16452 {
16453 	LPFC_MBOXQ_t *mbox;
16454 	int rc, length, status = 0;
16455 	uint32_t shdr_status, shdr_add_status;
16456 	union lpfc_sli4_cfg_shdr *shdr;
16457 
16458 	/* sanity check on queue memory */
16459 	if (!cq)
16460 		return -ENODEV;
16461 	mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
16462 	if (!mbox)
16463 		return -ENOMEM;
16464 	length = (sizeof(struct lpfc_mbx_cq_destroy) -
16465 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16466 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16467 			 LPFC_MBOX_OPCODE_CQ_DESTROY,
16468 			 length, LPFC_SLI4_MBX_EMBED);
16469 	bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
16470 	       cq->queue_id);
16471 	mbox->vport = cq->phba->pport;
16472 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16473 	rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
16474 	/* The IOCTL status is embedded in the mailbox subheader. */
16475 	shdr = (union lpfc_sli4_cfg_shdr *)
16476 		&mbox->u.mqe.un.wq_create.header.cfg_shdr;
16477 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16478 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16479 	if (shdr_status || shdr_add_status || rc) {
16480 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16481 				"2506 CQ_DESTROY mailbox failed with "
16482 				"status x%x add_status x%x, mbx status x%x\n",
16483 				shdr_status, shdr_add_status, rc);
16484 		status = -ENXIO;
16485 	}
16486 	/* Remove cq from any list */
16487 	list_del_init(&cq->list);
16488 	mempool_free(mbox, cq->phba->mbox_mem_pool);
16489 	return status;
16490 }
16491 
16492 /**
16493  * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
16494  * @qm: The queue structure associated with the queue to destroy.
16495  *
16496  * This function destroys a queue, as detailed in @mq by sending an mailbox
16497  * command, specific to the type of queue, to the HBA.
16498  *
16499  * The @mq struct is used to get the queue ID of the queue to destroy.
16500  *
16501  * On success this function will return a zero. If the queue destroy mailbox
16502  * command fails this function will return -ENXIO.
16503  **/
16504 int
16505 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
16506 {
16507 	LPFC_MBOXQ_t *mbox;
16508 	int rc, length, status = 0;
16509 	uint32_t shdr_status, shdr_add_status;
16510 	union lpfc_sli4_cfg_shdr *shdr;
16511 
16512 	/* sanity check on queue memory */
16513 	if (!mq)
16514 		return -ENODEV;
16515 	mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
16516 	if (!mbox)
16517 		return -ENOMEM;
16518 	length = (sizeof(struct lpfc_mbx_mq_destroy) -
16519 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16520 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
16521 			 LPFC_MBOX_OPCODE_MQ_DESTROY,
16522 			 length, LPFC_SLI4_MBX_EMBED);
16523 	bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
16524 	       mq->queue_id);
16525 	mbox->vport = mq->phba->pport;
16526 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16527 	rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
16528 	/* The IOCTL status is embedded in the mailbox subheader. */
16529 	shdr = (union lpfc_sli4_cfg_shdr *)
16530 		&mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
16531 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16532 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16533 	if (shdr_status || shdr_add_status || rc) {
16534 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16535 				"2507 MQ_DESTROY mailbox failed with "
16536 				"status x%x add_status x%x, mbx status x%x\n",
16537 				shdr_status, shdr_add_status, rc);
16538 		status = -ENXIO;
16539 	}
16540 	/* Remove mq from any list */
16541 	list_del_init(&mq->list);
16542 	mempool_free(mbox, mq->phba->mbox_mem_pool);
16543 	return status;
16544 }
16545 
16546 /**
16547  * lpfc_wq_destroy - Destroy a Work Queue on the HBA
16548  * @wq: The queue structure associated with the queue to destroy.
16549  *
16550  * This function destroys a queue, as detailed in @wq by sending an mailbox
16551  * command, specific to the type of queue, to the HBA.
16552  *
16553  * The @wq struct is used to get the queue ID of the queue to destroy.
16554  *
16555  * On success this function will return a zero. If the queue destroy mailbox
16556  * command fails this function will return -ENXIO.
16557  **/
16558 int
16559 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
16560 {
16561 	LPFC_MBOXQ_t *mbox;
16562 	int rc, length, status = 0;
16563 	uint32_t shdr_status, shdr_add_status;
16564 	union lpfc_sli4_cfg_shdr *shdr;
16565 
16566 	/* sanity check on queue memory */
16567 	if (!wq)
16568 		return -ENODEV;
16569 	mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
16570 	if (!mbox)
16571 		return -ENOMEM;
16572 	length = (sizeof(struct lpfc_mbx_wq_destroy) -
16573 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16574 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16575 			 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
16576 			 length, LPFC_SLI4_MBX_EMBED);
16577 	bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
16578 	       wq->queue_id);
16579 	mbox->vport = wq->phba->pport;
16580 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16581 	rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
16582 	shdr = (union lpfc_sli4_cfg_shdr *)
16583 		&mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
16584 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16585 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16586 	if (shdr_status || shdr_add_status || rc) {
16587 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16588 				"2508 WQ_DESTROY mailbox failed with "
16589 				"status x%x add_status x%x, mbx status x%x\n",
16590 				shdr_status, shdr_add_status, rc);
16591 		status = -ENXIO;
16592 	}
16593 	/* Remove wq from any list */
16594 	list_del_init(&wq->list);
16595 	kfree(wq->pring);
16596 	wq->pring = NULL;
16597 	mempool_free(mbox, wq->phba->mbox_mem_pool);
16598 	return status;
16599 }
16600 
16601 /**
16602  * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
16603  * @rq: The queue structure associated with the queue to destroy.
16604  *
16605  * This function destroys a queue, as detailed in @rq by sending an mailbox
16606  * command, specific to the type of queue, to the HBA.
16607  *
16608  * The @rq struct is used to get the queue ID of the queue to destroy.
16609  *
16610  * On success this function will return a zero. If the queue destroy mailbox
16611  * command fails this function will return -ENXIO.
16612  **/
16613 int
16614 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
16615 		struct lpfc_queue *drq)
16616 {
16617 	LPFC_MBOXQ_t *mbox;
16618 	int rc, length, status = 0;
16619 	uint32_t shdr_status, shdr_add_status;
16620 	union lpfc_sli4_cfg_shdr *shdr;
16621 
16622 	/* sanity check on queue memory */
16623 	if (!hrq || !drq)
16624 		return -ENODEV;
16625 	mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
16626 	if (!mbox)
16627 		return -ENOMEM;
16628 	length = (sizeof(struct lpfc_mbx_rq_destroy) -
16629 		  sizeof(struct lpfc_sli4_cfg_mhdr));
16630 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16631 			 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
16632 			 length, LPFC_SLI4_MBX_EMBED);
16633 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16634 	       hrq->queue_id);
16635 	mbox->vport = hrq->phba->pport;
16636 	mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
16637 	rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
16638 	/* The IOCTL status is embedded in the mailbox subheader. */
16639 	shdr = (union lpfc_sli4_cfg_shdr *)
16640 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16641 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16642 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16643 	if (shdr_status || shdr_add_status || rc) {
16644 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16645 				"2509 RQ_DESTROY mailbox failed with "
16646 				"status x%x add_status x%x, mbx status x%x\n",
16647 				shdr_status, shdr_add_status, rc);
16648 		if (rc != MBX_TIMEOUT)
16649 			mempool_free(mbox, hrq->phba->mbox_mem_pool);
16650 		return -ENXIO;
16651 	}
16652 	bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
16653 	       drq->queue_id);
16654 	rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
16655 	shdr = (union lpfc_sli4_cfg_shdr *)
16656 		&mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
16657 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16658 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16659 	if (shdr_status || shdr_add_status || rc) {
16660 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16661 				"2510 RQ_DESTROY mailbox failed with "
16662 				"status x%x add_status x%x, mbx status x%x\n",
16663 				shdr_status, shdr_add_status, rc);
16664 		status = -ENXIO;
16665 	}
16666 	list_del_init(&hrq->list);
16667 	list_del_init(&drq->list);
16668 	mempool_free(mbox, hrq->phba->mbox_mem_pool);
16669 	return status;
16670 }
16671 
16672 /**
16673  * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
16674  * @phba: The virtual port for which this call being executed.
16675  * @pdma_phys_addr0: Physical address of the 1st SGL page.
16676  * @pdma_phys_addr1: Physical address of the 2nd SGL page.
16677  * @xritag: the xritag that ties this io to the SGL pages.
16678  *
16679  * This routine will post the sgl pages for the IO that has the xritag
16680  * that is in the iocbq structure. The xritag is assigned during iocbq
16681  * creation and persists for as long as the driver is loaded.
16682  * if the caller has fewer than 256 scatter gather segments to map then
16683  * pdma_phys_addr1 should be 0.
16684  * If the caller needs to map more than 256 scatter gather segment then
16685  * pdma_phys_addr1 should be a valid physical address.
16686  * physical address for SGLs must be 64 byte aligned.
16687  * If you are going to map 2 SGL's then the first one must have 256 entries
16688  * the second sgl can have between 1 and 256 entries.
16689  *
16690  * Return codes:
16691  * 	0 - Success
16692  * 	-ENXIO, -ENOMEM - Failure
16693  **/
16694 int
16695 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
16696 		dma_addr_t pdma_phys_addr0,
16697 		dma_addr_t pdma_phys_addr1,
16698 		uint16_t xritag)
16699 {
16700 	struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
16701 	LPFC_MBOXQ_t *mbox;
16702 	int rc;
16703 	uint32_t shdr_status, shdr_add_status;
16704 	uint32_t mbox_tmo;
16705 	union lpfc_sli4_cfg_shdr *shdr;
16706 
16707 	if (xritag == NO_XRI) {
16708 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16709 				"0364 Invalid param:\n");
16710 		return -EINVAL;
16711 	}
16712 
16713 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16714 	if (!mbox)
16715 		return -ENOMEM;
16716 
16717 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16718 			LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
16719 			sizeof(struct lpfc_mbx_post_sgl_pages) -
16720 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
16721 
16722 	post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
16723 				&mbox->u.mqe.un.post_sgl_pages;
16724 	bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
16725 	bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
16726 
16727 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo	=
16728 				cpu_to_le32(putPaddrLow(pdma_phys_addr0));
16729 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
16730 				cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
16731 
16732 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo	=
16733 				cpu_to_le32(putPaddrLow(pdma_phys_addr1));
16734 	post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
16735 				cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
16736 	if (!phba->sli4_hba.intr_enable)
16737 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16738 	else {
16739 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16740 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16741 	}
16742 	/* The IOCTL status is embedded in the mailbox subheader. */
16743 	shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
16744 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16745 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16746 	if (rc != MBX_TIMEOUT)
16747 		mempool_free(mbox, phba->mbox_mem_pool);
16748 	if (shdr_status || shdr_add_status || rc) {
16749 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16750 				"2511 POST_SGL mailbox failed with "
16751 				"status x%x add_status x%x, mbx status x%x\n",
16752 				shdr_status, shdr_add_status, rc);
16753 	}
16754 	return 0;
16755 }
16756 
16757 /**
16758  * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
16759  * @phba: pointer to lpfc hba data structure.
16760  *
16761  * This routine is invoked to post rpi header templates to the
16762  * HBA consistent with the SLI-4 interface spec.  This routine
16763  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
16764  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
16765  *
16766  * Returns
16767  *	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
16768  *	LPFC_RPI_ALLOC_ERROR if no rpis are available.
16769  **/
16770 static uint16_t
16771 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
16772 {
16773 	unsigned long xri;
16774 
16775 	/*
16776 	 * Fetch the next logical xri.  Because this index is logical,
16777 	 * the driver starts at 0 each time.
16778 	 */
16779 	spin_lock_irq(&phba->hbalock);
16780 	xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
16781 				 phba->sli4_hba.max_cfg_param.max_xri, 0);
16782 	if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
16783 		spin_unlock_irq(&phba->hbalock);
16784 		return NO_XRI;
16785 	} else {
16786 		set_bit(xri, phba->sli4_hba.xri_bmask);
16787 		phba->sli4_hba.max_cfg_param.xri_used++;
16788 	}
16789 	spin_unlock_irq(&phba->hbalock);
16790 	return xri;
16791 }
16792 
16793 /**
16794  * lpfc_sli4_free_xri - Release an xri for reuse.
16795  * @phba: pointer to lpfc hba data structure.
16796  *
16797  * This routine is invoked to release an xri to the pool of
16798  * available rpis maintained by the driver.
16799  **/
16800 static void
16801 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16802 {
16803 	if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
16804 		phba->sli4_hba.max_cfg_param.xri_used--;
16805 	}
16806 }
16807 
16808 /**
16809  * lpfc_sli4_free_xri - Release an xri for reuse.
16810  * @phba: pointer to lpfc hba data structure.
16811  *
16812  * This routine is invoked to release an xri to the pool of
16813  * available rpis maintained by the driver.
16814  **/
16815 void
16816 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
16817 {
16818 	spin_lock_irq(&phba->hbalock);
16819 	__lpfc_sli4_free_xri(phba, xri);
16820 	spin_unlock_irq(&phba->hbalock);
16821 }
16822 
16823 /**
16824  * lpfc_sli4_next_xritag - Get an xritag for the io
16825  * @phba: Pointer to HBA context object.
16826  *
16827  * This function gets an xritag for the iocb. If there is no unused xritag
16828  * it will return 0xffff.
16829  * The function returns the allocated xritag if successful, else returns zero.
16830  * Zero is not a valid xritag.
16831  * The caller is not required to hold any lock.
16832  **/
16833 uint16_t
16834 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
16835 {
16836 	uint16_t xri_index;
16837 
16838 	xri_index = lpfc_sli4_alloc_xri(phba);
16839 	if (xri_index == NO_XRI)
16840 		lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
16841 				"2004 Failed to allocate XRI.last XRITAG is %d"
16842 				" Max XRI is %d, Used XRI is %d\n",
16843 				xri_index,
16844 				phba->sli4_hba.max_cfg_param.max_xri,
16845 				phba->sli4_hba.max_cfg_param.xri_used);
16846 	return xri_index;
16847 }
16848 
16849 /**
16850  * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port.
16851  * @phba: pointer to lpfc hba data structure.
16852  * @post_sgl_list: pointer to els sgl entry list.
16853  * @count: number of els sgl entries on the list.
16854  *
16855  * This routine is invoked to post a block of driver's sgl pages to the
16856  * HBA using non-embedded mailbox command. No Lock is held. This routine
16857  * is only called when the driver is loading and after all IO has been
16858  * stopped.
16859  **/
16860 static int
16861 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba,
16862 			    struct list_head *post_sgl_list,
16863 			    int post_cnt)
16864 {
16865 	struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL;
16866 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16867 	struct sgl_page_pairs *sgl_pg_pairs;
16868 	void *viraddr;
16869 	LPFC_MBOXQ_t *mbox;
16870 	uint32_t reqlen, alloclen, pg_pairs;
16871 	uint32_t mbox_tmo;
16872 	uint16_t xritag_start = 0;
16873 	int rc = 0;
16874 	uint32_t shdr_status, shdr_add_status;
16875 	union lpfc_sli4_cfg_shdr *shdr;
16876 
16877 	reqlen = post_cnt * sizeof(struct sgl_page_pairs) +
16878 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16879 	if (reqlen > SLI4_PAGE_SIZE) {
16880 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16881 				"2559 Block sgl registration required DMA "
16882 				"size (%d) great than a page\n", reqlen);
16883 		return -ENOMEM;
16884 	}
16885 
16886 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16887 	if (!mbox)
16888 		return -ENOMEM;
16889 
16890 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16891 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16892 			 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
16893 			 LPFC_SLI4_MBX_NEMBED);
16894 
16895 	if (alloclen < reqlen) {
16896 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16897 				"0285 Allocated DMA memory size (%d) is "
16898 				"less than the requested DMA memory "
16899 				"size (%d)\n", alloclen, reqlen);
16900 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16901 		return -ENOMEM;
16902 	}
16903 	/* Set up the SGL pages in the non-embedded DMA pages */
16904 	viraddr = mbox->sge_array->addr[0];
16905 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
16906 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
16907 
16908 	pg_pairs = 0;
16909 	list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) {
16910 		/* Set up the sge entry */
16911 		sgl_pg_pairs->sgl_pg0_addr_lo =
16912 				cpu_to_le32(putPaddrLow(sglq_entry->phys));
16913 		sgl_pg_pairs->sgl_pg0_addr_hi =
16914 				cpu_to_le32(putPaddrHigh(sglq_entry->phys));
16915 		sgl_pg_pairs->sgl_pg1_addr_lo =
16916 				cpu_to_le32(putPaddrLow(0));
16917 		sgl_pg_pairs->sgl_pg1_addr_hi =
16918 				cpu_to_le32(putPaddrHigh(0));
16919 
16920 		/* Keep the first xritag on the list */
16921 		if (pg_pairs == 0)
16922 			xritag_start = sglq_entry->sli4_xritag;
16923 		sgl_pg_pairs++;
16924 		pg_pairs++;
16925 	}
16926 
16927 	/* Complete initialization and perform endian conversion. */
16928 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
16929 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt);
16930 	sgl->word0 = cpu_to_le32(sgl->word0);
16931 
16932 	if (!phba->sli4_hba.intr_enable)
16933 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
16934 	else {
16935 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
16936 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
16937 	}
16938 	shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
16939 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
16940 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
16941 	if (rc != MBX_TIMEOUT)
16942 		lpfc_sli4_mbox_cmd_free(phba, mbox);
16943 	if (shdr_status || shdr_add_status || rc) {
16944 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16945 				"2513 POST_SGL_BLOCK mailbox command failed "
16946 				"status x%x add_status x%x mbx status x%x\n",
16947 				shdr_status, shdr_add_status, rc);
16948 		rc = -ENXIO;
16949 	}
16950 	return rc;
16951 }
16952 
16953 /**
16954  * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware
16955  * @phba: pointer to lpfc hba data structure.
16956  * @nblist: pointer to nvme buffer list.
16957  * @count: number of scsi buffers on the list.
16958  *
16959  * This routine is invoked to post a block of @count scsi sgl pages from a
16960  * SCSI buffer list @nblist to the HBA using non-embedded mailbox command.
16961  * No Lock is held.
16962  *
16963  **/
16964 static int
16965 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist,
16966 			    int count)
16967 {
16968 	struct lpfc_io_buf *lpfc_ncmd;
16969 	struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
16970 	struct sgl_page_pairs *sgl_pg_pairs;
16971 	void *viraddr;
16972 	LPFC_MBOXQ_t *mbox;
16973 	uint32_t reqlen, alloclen, pg_pairs;
16974 	uint32_t mbox_tmo;
16975 	uint16_t xritag_start = 0;
16976 	int rc = 0;
16977 	uint32_t shdr_status, shdr_add_status;
16978 	dma_addr_t pdma_phys_bpl1;
16979 	union lpfc_sli4_cfg_shdr *shdr;
16980 
16981 	/* Calculate the requested length of the dma memory */
16982 	reqlen = count * sizeof(struct sgl_page_pairs) +
16983 		 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
16984 	if (reqlen > SLI4_PAGE_SIZE) {
16985 		lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
16986 				"6118 Block sgl registration required DMA "
16987 				"size (%d) great than a page\n", reqlen);
16988 		return -ENOMEM;
16989 	}
16990 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
16991 	if (!mbox) {
16992 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
16993 				"6119 Failed to allocate mbox cmd memory\n");
16994 		return -ENOMEM;
16995 	}
16996 
16997 	/* Allocate DMA memory and set up the non-embedded mailbox command */
16998 	alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
16999 				    LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
17000 				    reqlen, LPFC_SLI4_MBX_NEMBED);
17001 
17002 	if (alloclen < reqlen) {
17003 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
17004 				"6120 Allocated DMA memory size (%d) is "
17005 				"less than the requested DMA memory "
17006 				"size (%d)\n", alloclen, reqlen);
17007 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17008 		return -ENOMEM;
17009 	}
17010 
17011 	/* Get the first SGE entry from the non-embedded DMA memory */
17012 	viraddr = mbox->sge_array->addr[0];
17013 
17014 	/* Set up the SGL pages in the non-embedded DMA pages */
17015 	sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
17016 	sgl_pg_pairs = &sgl->sgl_pg_pairs;
17017 
17018 	pg_pairs = 0;
17019 	list_for_each_entry(lpfc_ncmd, nblist, list) {
17020 		/* Set up the sge entry */
17021 		sgl_pg_pairs->sgl_pg0_addr_lo =
17022 			cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl));
17023 		sgl_pg_pairs->sgl_pg0_addr_hi =
17024 			cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl));
17025 		if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
17026 			pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl +
17027 						SGL_PAGE_SIZE;
17028 		else
17029 			pdma_phys_bpl1 = 0;
17030 		sgl_pg_pairs->sgl_pg1_addr_lo =
17031 			cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
17032 		sgl_pg_pairs->sgl_pg1_addr_hi =
17033 			cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
17034 		/* Keep the first xritag on the list */
17035 		if (pg_pairs == 0)
17036 			xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag;
17037 		sgl_pg_pairs++;
17038 		pg_pairs++;
17039 	}
17040 	bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
17041 	bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
17042 	/* Perform endian conversion if necessary */
17043 	sgl->word0 = cpu_to_le32(sgl->word0);
17044 
17045 	if (!phba->sli4_hba.intr_enable) {
17046 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
17047 	} else {
17048 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
17049 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
17050 	}
17051 	shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr;
17052 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
17053 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
17054 	if (rc != MBX_TIMEOUT)
17055 		lpfc_sli4_mbox_cmd_free(phba, mbox);
17056 	if (shdr_status || shdr_add_status || rc) {
17057 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17058 				"6125 POST_SGL_BLOCK mailbox command failed "
17059 				"status x%x add_status x%x mbx status x%x\n",
17060 				shdr_status, shdr_add_status, rc);
17061 		rc = -ENXIO;
17062 	}
17063 	return rc;
17064 }
17065 
17066 /**
17067  * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list
17068  * @phba: pointer to lpfc hba data structure.
17069  * @post_nblist: pointer to the nvme buffer list.
17070  *
17071  * This routine walks a list of nvme buffers that was passed in. It attempts
17072  * to construct blocks of nvme buffer sgls which contains contiguous xris and
17073  * uses the non-embedded SGL block post mailbox commands to post to the port.
17074  * For single NVME buffer sgl with non-contiguous xri, if any, it shall use
17075  * embedded SGL post mailbox command for posting. The @post_nblist passed in
17076  * must be local list, thus no lock is needed when manipulate the list.
17077  *
17078  * Returns: 0 = failure, non-zero number of successfully posted buffers.
17079  **/
17080 int
17081 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba,
17082 			   struct list_head *post_nblist, int sb_count)
17083 {
17084 	struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next;
17085 	int status, sgl_size;
17086 	int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0;
17087 	dma_addr_t pdma_phys_sgl1;
17088 	int last_xritag = NO_XRI;
17089 	int cur_xritag;
17090 	LIST_HEAD(prep_nblist);
17091 	LIST_HEAD(blck_nblist);
17092 	LIST_HEAD(nvme_nblist);
17093 
17094 	/* sanity check */
17095 	if (sb_count <= 0)
17096 		return -EINVAL;
17097 
17098 	sgl_size = phba->cfg_sg_dma_buf_size;
17099 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) {
17100 		list_del_init(&lpfc_ncmd->list);
17101 		block_cnt++;
17102 		if ((last_xritag != NO_XRI) &&
17103 		    (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) {
17104 			/* a hole in xri block, form a sgl posting block */
17105 			list_splice_init(&prep_nblist, &blck_nblist);
17106 			post_cnt = block_cnt - 1;
17107 			/* prepare list for next posting block */
17108 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17109 			block_cnt = 1;
17110 		} else {
17111 			/* prepare list for next posting block */
17112 			list_add_tail(&lpfc_ncmd->list, &prep_nblist);
17113 			/* enough sgls for non-embed sgl mbox command */
17114 			if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) {
17115 				list_splice_init(&prep_nblist, &blck_nblist);
17116 				post_cnt = block_cnt;
17117 				block_cnt = 0;
17118 			}
17119 		}
17120 		num_posting++;
17121 		last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17122 
17123 		/* end of repost sgl list condition for NVME buffers */
17124 		if (num_posting == sb_count) {
17125 			if (post_cnt == 0) {
17126 				/* last sgl posting block */
17127 				list_splice_init(&prep_nblist, &blck_nblist);
17128 				post_cnt = block_cnt;
17129 			} else if (block_cnt == 1) {
17130 				/* last single sgl with non-contiguous xri */
17131 				if (sgl_size > SGL_PAGE_SIZE)
17132 					pdma_phys_sgl1 =
17133 						lpfc_ncmd->dma_phys_sgl +
17134 						SGL_PAGE_SIZE;
17135 				else
17136 					pdma_phys_sgl1 = 0;
17137 				cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag;
17138 				status = lpfc_sli4_post_sgl(
17139 						phba, lpfc_ncmd->dma_phys_sgl,
17140 						pdma_phys_sgl1, cur_xritag);
17141 				if (status) {
17142 					/* Post error.  Buffer unavailable. */
17143 					lpfc_ncmd->flags |=
17144 						LPFC_SBUF_NOT_POSTED;
17145 				} else {
17146 					/* Post success. Bffer available. */
17147 					lpfc_ncmd->flags &=
17148 						~LPFC_SBUF_NOT_POSTED;
17149 					lpfc_ncmd->status = IOSTAT_SUCCESS;
17150 					num_posted++;
17151 				}
17152 				/* success, put on NVME buffer sgl list */
17153 				list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17154 			}
17155 		}
17156 
17157 		/* continue until a nembed page worth of sgls */
17158 		if (post_cnt == 0)
17159 			continue;
17160 
17161 		/* post block of NVME buffer list sgls */
17162 		status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist,
17163 						     post_cnt);
17164 
17165 		/* don't reset xirtag due to hole in xri block */
17166 		if (block_cnt == 0)
17167 			last_xritag = NO_XRI;
17168 
17169 		/* reset NVME buffer post count for next round of posting */
17170 		post_cnt = 0;
17171 
17172 		/* put posted NVME buffer-sgl posted on NVME buffer sgl list */
17173 		while (!list_empty(&blck_nblist)) {
17174 			list_remove_head(&blck_nblist, lpfc_ncmd,
17175 					 struct lpfc_io_buf, list);
17176 			if (status) {
17177 				/* Post error.  Mark buffer unavailable. */
17178 				lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED;
17179 			} else {
17180 				/* Post success, Mark buffer available. */
17181 				lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED;
17182 				lpfc_ncmd->status = IOSTAT_SUCCESS;
17183 				num_posted++;
17184 			}
17185 			list_add_tail(&lpfc_ncmd->list, &nvme_nblist);
17186 		}
17187 	}
17188 	/* Push NVME buffers with sgl posted to the available list */
17189 	lpfc_io_buf_replenish(phba, &nvme_nblist);
17190 
17191 	return num_posted;
17192 }
17193 
17194 /**
17195  * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
17196  * @phba: pointer to lpfc_hba struct that the frame was received on
17197  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17198  *
17199  * This function checks the fields in the @fc_hdr to see if the FC frame is a
17200  * valid type of frame that the LPFC driver will handle. This function will
17201  * return a zero if the frame is a valid frame or a non zero value when the
17202  * frame does not pass the check.
17203  **/
17204 static int
17205 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
17206 {
17207 	/*  make rctl_names static to save stack space */
17208 	struct fc_vft_header *fc_vft_hdr;
17209 	uint32_t *header = (uint32_t *) fc_hdr;
17210 
17211 #define FC_RCTL_MDS_DIAGS	0xF4
17212 
17213 	switch (fc_hdr->fh_r_ctl) {
17214 	case FC_RCTL_DD_UNCAT:		/* uncategorized information */
17215 	case FC_RCTL_DD_SOL_DATA:	/* solicited data */
17216 	case FC_RCTL_DD_UNSOL_CTL:	/* unsolicited control */
17217 	case FC_RCTL_DD_SOL_CTL:	/* solicited control or reply */
17218 	case FC_RCTL_DD_UNSOL_DATA:	/* unsolicited data */
17219 	case FC_RCTL_DD_DATA_DESC:	/* data descriptor */
17220 	case FC_RCTL_DD_UNSOL_CMD:	/* unsolicited command */
17221 	case FC_RCTL_DD_CMD_STATUS:	/* command status */
17222 	case FC_RCTL_ELS_REQ:	/* extended link services request */
17223 	case FC_RCTL_ELS_REP:	/* extended link services reply */
17224 	case FC_RCTL_ELS4_REQ:	/* FC-4 ELS request */
17225 	case FC_RCTL_ELS4_REP:	/* FC-4 ELS reply */
17226 	case FC_RCTL_BA_NOP:  	/* basic link service NOP */
17227 	case FC_RCTL_BA_ABTS: 	/* basic link service abort */
17228 	case FC_RCTL_BA_RMC: 	/* remove connection */
17229 	case FC_RCTL_BA_ACC:	/* basic accept */
17230 	case FC_RCTL_BA_RJT:	/* basic reject */
17231 	case FC_RCTL_BA_PRMT:
17232 	case FC_RCTL_ACK_1:	/* acknowledge_1 */
17233 	case FC_RCTL_ACK_0:	/* acknowledge_0 */
17234 	case FC_RCTL_P_RJT:	/* port reject */
17235 	case FC_RCTL_F_RJT:	/* fabric reject */
17236 	case FC_RCTL_P_BSY:	/* port busy */
17237 	case FC_RCTL_F_BSY:	/* fabric busy to data frame */
17238 	case FC_RCTL_F_BSYL:	/* fabric busy to link control frame */
17239 	case FC_RCTL_LCR:	/* link credit reset */
17240 	case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */
17241 	case FC_RCTL_END:	/* end */
17242 		break;
17243 	case FC_RCTL_VFTH:	/* Virtual Fabric tagging Header */
17244 		fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17245 		fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
17246 		return lpfc_fc_frame_check(phba, fc_hdr);
17247 	default:
17248 		goto drop;
17249 	}
17250 
17251 	switch (fc_hdr->fh_type) {
17252 	case FC_TYPE_BLS:
17253 	case FC_TYPE_ELS:
17254 	case FC_TYPE_FCP:
17255 	case FC_TYPE_CT:
17256 	case FC_TYPE_NVME:
17257 		break;
17258 	case FC_TYPE_IP:
17259 	case FC_TYPE_ILS:
17260 	default:
17261 		goto drop;
17262 	}
17263 
17264 	lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
17265 			"2538 Received frame rctl:x%x, type:x%x, "
17266 			"frame Data:%08x %08x %08x %08x %08x %08x %08x\n",
17267 			fc_hdr->fh_r_ctl, fc_hdr->fh_type,
17268 			be32_to_cpu(header[0]), be32_to_cpu(header[1]),
17269 			be32_to_cpu(header[2]), be32_to_cpu(header[3]),
17270 			be32_to_cpu(header[4]), be32_to_cpu(header[5]),
17271 			be32_to_cpu(header[6]));
17272 	return 0;
17273 drop:
17274 	lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
17275 			"2539 Dropped frame rctl:x%x type:x%x\n",
17276 			fc_hdr->fh_r_ctl, fc_hdr->fh_type);
17277 	return 1;
17278 }
17279 
17280 /**
17281  * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
17282  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17283  *
17284  * This function processes the FC header to retrieve the VFI from the VF
17285  * header, if one exists. This function will return the VFI if one exists
17286  * or 0 if no VSAN Header exists.
17287  **/
17288 static uint32_t
17289 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
17290 {
17291 	struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
17292 
17293 	if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
17294 		return 0;
17295 	return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
17296 }
17297 
17298 /**
17299  * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
17300  * @phba: Pointer to the HBA structure to search for the vport on
17301  * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
17302  * @fcfi: The FC Fabric ID that the frame came from
17303  *
17304  * This function searches the @phba for a vport that matches the content of the
17305  * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
17306  * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
17307  * returns the matching vport pointer or NULL if unable to match frame to a
17308  * vport.
17309  **/
17310 static struct lpfc_vport *
17311 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
17312 		       uint16_t fcfi, uint32_t did)
17313 {
17314 	struct lpfc_vport **vports;
17315 	struct lpfc_vport *vport = NULL;
17316 	int i;
17317 
17318 	if (did == Fabric_DID)
17319 		return phba->pport;
17320 	if ((phba->pport->fc_flag & FC_PT2PT) &&
17321 		!(phba->link_state == LPFC_HBA_READY))
17322 		return phba->pport;
17323 
17324 	vports = lpfc_create_vport_work_array(phba);
17325 	if (vports != NULL) {
17326 		for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
17327 			if (phba->fcf.fcfi == fcfi &&
17328 			    vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
17329 			    vports[i]->fc_myDID == did) {
17330 				vport = vports[i];
17331 				break;
17332 			}
17333 		}
17334 	}
17335 	lpfc_destroy_vport_work_array(phba, vports);
17336 	return vport;
17337 }
17338 
17339 /**
17340  * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
17341  * @vport: The vport to work on.
17342  *
17343  * This function updates the receive sequence time stamp for this vport. The
17344  * receive sequence time stamp indicates the time that the last frame of the
17345  * the sequence that has been idle for the longest amount of time was received.
17346  * the driver uses this time stamp to indicate if any received sequences have
17347  * timed out.
17348  **/
17349 static void
17350 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
17351 {
17352 	struct lpfc_dmabuf *h_buf;
17353 	struct hbq_dmabuf *dmabuf = NULL;
17354 
17355 	/* get the oldest sequence on the rcv list */
17356 	h_buf = list_get_first(&vport->rcv_buffer_list,
17357 			       struct lpfc_dmabuf, list);
17358 	if (!h_buf)
17359 		return;
17360 	dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17361 	vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
17362 }
17363 
17364 /**
17365  * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
17366  * @vport: The vport that the received sequences were sent to.
17367  *
17368  * This function cleans up all outstanding received sequences. This is called
17369  * by the driver when a link event or user action invalidates all the received
17370  * sequences.
17371  **/
17372 void
17373 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
17374 {
17375 	struct lpfc_dmabuf *h_buf, *hnext;
17376 	struct lpfc_dmabuf *d_buf, *dnext;
17377 	struct hbq_dmabuf *dmabuf = NULL;
17378 
17379 	/* start with the oldest sequence on the rcv list */
17380 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17381 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17382 		list_del_init(&dmabuf->hbuf.list);
17383 		list_for_each_entry_safe(d_buf, dnext,
17384 					 &dmabuf->dbuf.list, list) {
17385 			list_del_init(&d_buf->list);
17386 			lpfc_in_buf_free(vport->phba, d_buf);
17387 		}
17388 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17389 	}
17390 }
17391 
17392 /**
17393  * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
17394  * @vport: The vport that the received sequences were sent to.
17395  *
17396  * This function determines whether any received sequences have timed out by
17397  * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
17398  * indicates that there is at least one timed out sequence this routine will
17399  * go through the received sequences one at a time from most inactive to most
17400  * active to determine which ones need to be cleaned up. Once it has determined
17401  * that a sequence needs to be cleaned up it will simply free up the resources
17402  * without sending an abort.
17403  **/
17404 void
17405 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
17406 {
17407 	struct lpfc_dmabuf *h_buf, *hnext;
17408 	struct lpfc_dmabuf *d_buf, *dnext;
17409 	struct hbq_dmabuf *dmabuf = NULL;
17410 	unsigned long timeout;
17411 	int abort_count = 0;
17412 
17413 	timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17414 		   vport->rcv_buffer_time_stamp);
17415 	if (list_empty(&vport->rcv_buffer_list) ||
17416 	    time_before(jiffies, timeout))
17417 		return;
17418 	/* start with the oldest sequence on the rcv list */
17419 	list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
17420 		dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17421 		timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
17422 			   dmabuf->time_stamp);
17423 		if (time_before(jiffies, timeout))
17424 			break;
17425 		abort_count++;
17426 		list_del_init(&dmabuf->hbuf.list);
17427 		list_for_each_entry_safe(d_buf, dnext,
17428 					 &dmabuf->dbuf.list, list) {
17429 			list_del_init(&d_buf->list);
17430 			lpfc_in_buf_free(vport->phba, d_buf);
17431 		}
17432 		lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
17433 	}
17434 	if (abort_count)
17435 		lpfc_update_rcv_time_stamp(vport);
17436 }
17437 
17438 /**
17439  * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
17440  * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
17441  *
17442  * This function searches through the existing incomplete sequences that have
17443  * been sent to this @vport. If the frame matches one of the incomplete
17444  * sequences then the dbuf in the @dmabuf is added to the list of frames that
17445  * make up that sequence. If no sequence is found that matches this frame then
17446  * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
17447  * This function returns a pointer to the first dmabuf in the sequence list that
17448  * the frame was linked to.
17449  **/
17450 static struct hbq_dmabuf *
17451 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17452 {
17453 	struct fc_frame_header *new_hdr;
17454 	struct fc_frame_header *temp_hdr;
17455 	struct lpfc_dmabuf *d_buf;
17456 	struct lpfc_dmabuf *h_buf;
17457 	struct hbq_dmabuf *seq_dmabuf = NULL;
17458 	struct hbq_dmabuf *temp_dmabuf = NULL;
17459 	uint8_t	found = 0;
17460 
17461 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17462 	dmabuf->time_stamp = jiffies;
17463 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17464 
17465 	/* Use the hdr_buf to find the sequence that this frame belongs to */
17466 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17467 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17468 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17469 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17470 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17471 			continue;
17472 		/* found a pending sequence that matches this frame */
17473 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17474 		break;
17475 	}
17476 	if (!seq_dmabuf) {
17477 		/*
17478 		 * This indicates first frame received for this sequence.
17479 		 * Queue the buffer on the vport's rcv_buffer_list.
17480 		 */
17481 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17482 		lpfc_update_rcv_time_stamp(vport);
17483 		return dmabuf;
17484 	}
17485 	temp_hdr = seq_dmabuf->hbuf.virt;
17486 	if (be16_to_cpu(new_hdr->fh_seq_cnt) <
17487 		be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17488 		list_del_init(&seq_dmabuf->hbuf.list);
17489 		list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
17490 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17491 		lpfc_update_rcv_time_stamp(vport);
17492 		return dmabuf;
17493 	}
17494 	/* move this sequence to the tail to indicate a young sequence */
17495 	list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
17496 	seq_dmabuf->time_stamp = jiffies;
17497 	lpfc_update_rcv_time_stamp(vport);
17498 	if (list_empty(&seq_dmabuf->dbuf.list)) {
17499 		temp_hdr = dmabuf->hbuf.virt;
17500 		list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
17501 		return seq_dmabuf;
17502 	}
17503 	/* find the correct place in the sequence to insert this frame */
17504 	d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list);
17505 	while (!found) {
17506 		temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17507 		temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
17508 		/*
17509 		 * If the frame's sequence count is greater than the frame on
17510 		 * the list then insert the frame right after this frame
17511 		 */
17512 		if (be16_to_cpu(new_hdr->fh_seq_cnt) >
17513 			be16_to_cpu(temp_hdr->fh_seq_cnt)) {
17514 			list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
17515 			found = 1;
17516 			break;
17517 		}
17518 
17519 		if (&d_buf->list == &seq_dmabuf->dbuf.list)
17520 			break;
17521 		d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list);
17522 	}
17523 
17524 	if (found)
17525 		return seq_dmabuf;
17526 	return NULL;
17527 }
17528 
17529 /**
17530  * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
17531  * @vport: pointer to a vitural port
17532  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17533  *
17534  * This function tries to abort from the partially assembed sequence, described
17535  * by the information from basic abbort @dmabuf. It checks to see whether such
17536  * partially assembled sequence held by the driver. If so, it shall free up all
17537  * the frames from the partially assembled sequence.
17538  *
17539  * Return
17540  * true  -- if there is matching partially assembled sequence present and all
17541  *          the frames freed with the sequence;
17542  * false -- if there is no matching partially assembled sequence present so
17543  *          nothing got aborted in the lower layer driver
17544  **/
17545 static bool
17546 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
17547 			    struct hbq_dmabuf *dmabuf)
17548 {
17549 	struct fc_frame_header *new_hdr;
17550 	struct fc_frame_header *temp_hdr;
17551 	struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
17552 	struct hbq_dmabuf *seq_dmabuf = NULL;
17553 
17554 	/* Use the hdr_buf to find the sequence that matches this frame */
17555 	INIT_LIST_HEAD(&dmabuf->dbuf.list);
17556 	INIT_LIST_HEAD(&dmabuf->hbuf.list);
17557 	new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17558 	list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
17559 		temp_hdr = (struct fc_frame_header *)h_buf->virt;
17560 		if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
17561 		    (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
17562 		    (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
17563 			continue;
17564 		/* found a pending sequence that matches this frame */
17565 		seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
17566 		break;
17567 	}
17568 
17569 	/* Free up all the frames from the partially assembled sequence */
17570 	if (seq_dmabuf) {
17571 		list_for_each_entry_safe(d_buf, n_buf,
17572 					 &seq_dmabuf->dbuf.list, list) {
17573 			list_del_init(&d_buf->list);
17574 			lpfc_in_buf_free(vport->phba, d_buf);
17575 		}
17576 		return true;
17577 	}
17578 	return false;
17579 }
17580 
17581 /**
17582  * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp
17583  * @vport: pointer to a vitural port
17584  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17585  *
17586  * This function tries to abort from the assembed sequence from upper level
17587  * protocol, described by the information from basic abbort @dmabuf. It
17588  * checks to see whether such pending context exists at upper level protocol.
17589  * If so, it shall clean up the pending context.
17590  *
17591  * Return
17592  * true  -- if there is matching pending context of the sequence cleaned
17593  *          at ulp;
17594  * false -- if there is no matching pending context of the sequence present
17595  *          at ulp.
17596  **/
17597 static bool
17598 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
17599 {
17600 	struct lpfc_hba *phba = vport->phba;
17601 	int handled;
17602 
17603 	/* Accepting abort at ulp with SLI4 only */
17604 	if (phba->sli_rev < LPFC_SLI_REV4)
17605 		return false;
17606 
17607 	/* Register all caring upper level protocols to attend abort */
17608 	handled = lpfc_ct_handle_unsol_abort(phba, dmabuf);
17609 	if (handled)
17610 		return true;
17611 
17612 	return false;
17613 }
17614 
17615 /**
17616  * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
17617  * @phba: Pointer to HBA context object.
17618  * @cmd_iocbq: pointer to the command iocbq structure.
17619  * @rsp_iocbq: pointer to the response iocbq structure.
17620  *
17621  * This function handles the sequence abort response iocb command complete
17622  * event. It properly releases the memory allocated to the sequence abort
17623  * accept iocb.
17624  **/
17625 static void
17626 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
17627 			     struct lpfc_iocbq *cmd_iocbq,
17628 			     struct lpfc_iocbq *rsp_iocbq)
17629 {
17630 	struct lpfc_nodelist *ndlp;
17631 
17632 	if (cmd_iocbq) {
17633 		ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1;
17634 		lpfc_nlp_put(ndlp);
17635 		lpfc_nlp_not_used(ndlp);
17636 		lpfc_sli_release_iocbq(phba, cmd_iocbq);
17637 	}
17638 
17639 	/* Failure means BLS ABORT RSP did not get delivered to remote node*/
17640 	if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
17641 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
17642 			"3154 BLS ABORT RSP failed, data:  x%x/x%x\n",
17643 			rsp_iocbq->iocb.ulpStatus,
17644 			rsp_iocbq->iocb.un.ulpWord[4]);
17645 }
17646 
17647 /**
17648  * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
17649  * @phba: Pointer to HBA context object.
17650  * @xri: xri id in transaction.
17651  *
17652  * This function validates the xri maps to the known range of XRIs allocated an
17653  * used by the driver.
17654  **/
17655 uint16_t
17656 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
17657 		      uint16_t xri)
17658 {
17659 	uint16_t i;
17660 
17661 	for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
17662 		if (xri == phba->sli4_hba.xri_ids[i])
17663 			return i;
17664 	}
17665 	return NO_XRI;
17666 }
17667 
17668 /**
17669  * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
17670  * @phba: Pointer to HBA context object.
17671  * @fc_hdr: pointer to a FC frame header.
17672  *
17673  * This function sends a basic response to a previous unsol sequence abort
17674  * event after aborting the sequence handling.
17675  **/
17676 void
17677 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport,
17678 			struct fc_frame_header *fc_hdr, bool aborted)
17679 {
17680 	struct lpfc_hba *phba = vport->phba;
17681 	struct lpfc_iocbq *ctiocb = NULL;
17682 	struct lpfc_nodelist *ndlp;
17683 	uint16_t oxid, rxid, xri, lxri;
17684 	uint32_t sid, fctl;
17685 	IOCB_t *icmd;
17686 	int rc;
17687 
17688 	if (!lpfc_is_link_up(phba))
17689 		return;
17690 
17691 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17692 	oxid = be16_to_cpu(fc_hdr->fh_ox_id);
17693 	rxid = be16_to_cpu(fc_hdr->fh_rx_id);
17694 
17695 	ndlp = lpfc_findnode_did(vport, sid);
17696 	if (!ndlp) {
17697 		ndlp = lpfc_nlp_init(vport, sid);
17698 		if (!ndlp) {
17699 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17700 					 "1268 Failed to allocate ndlp for "
17701 					 "oxid:x%x SID:x%x\n", oxid, sid);
17702 			return;
17703 		}
17704 		/* Put ndlp onto pport node list */
17705 		lpfc_enqueue_node(vport, ndlp);
17706 	} else if (!NLP_CHK_NODE_ACT(ndlp)) {
17707 		/* re-setup ndlp without removing from node list */
17708 		ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE);
17709 		if (!ndlp) {
17710 			lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS,
17711 					 "3275 Failed to active ndlp found "
17712 					 "for oxid:x%x SID:x%x\n", oxid, sid);
17713 			return;
17714 		}
17715 	}
17716 
17717 	/* Allocate buffer for rsp iocb */
17718 	ctiocb = lpfc_sli_get_iocbq(phba);
17719 	if (!ctiocb)
17720 		return;
17721 
17722 	/* Extract the F_CTL field from FC_HDR */
17723 	fctl = sli4_fctl_from_fc_hdr(fc_hdr);
17724 
17725 	icmd = &ctiocb->iocb;
17726 	icmd->un.xseq64.bdl.bdeSize = 0;
17727 	icmd->un.xseq64.bdl.ulpIoTag32 = 0;
17728 	icmd->un.xseq64.w5.hcsw.Dfctl = 0;
17729 	icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
17730 	icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
17731 
17732 	/* Fill in the rest of iocb fields */
17733 	icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
17734 	icmd->ulpBdeCount = 0;
17735 	icmd->ulpLe = 1;
17736 	icmd->ulpClass = CLASS3;
17737 	icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
17738 	ctiocb->context1 = lpfc_nlp_get(ndlp);
17739 
17740 	ctiocb->vport = phba->pport;
17741 	ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
17742 	ctiocb->sli4_lxritag = NO_XRI;
17743 	ctiocb->sli4_xritag = NO_XRI;
17744 
17745 	if (fctl & FC_FC_EX_CTX)
17746 		/* Exchange responder sent the abort so we
17747 		 * own the oxid.
17748 		 */
17749 		xri = oxid;
17750 	else
17751 		xri = rxid;
17752 	lxri = lpfc_sli4_xri_inrange(phba, xri);
17753 	if (lxri != NO_XRI)
17754 		lpfc_set_rrq_active(phba, ndlp, lxri,
17755 			(xri == oxid) ? rxid : oxid, 0);
17756 	/* For BA_ABTS from exchange responder, if the logical xri with
17757 	 * the oxid maps to the FCP XRI range, the port no longer has
17758 	 * that exchange context, send a BLS_RJT. Override the IOCB for
17759 	 * a BA_RJT.
17760 	 */
17761 	if ((fctl & FC_FC_EX_CTX) &&
17762 	    (lxri > lpfc_sli4_get_iocb_cnt(phba))) {
17763 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17764 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17765 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17766 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17767 	}
17768 
17769 	/* If BA_ABTS failed to abort a partially assembled receive sequence,
17770 	 * the driver no longer has that exchange, send a BLS_RJT. Override
17771 	 * the IOCB for a BA_RJT.
17772 	 */
17773 	if (aborted == false) {
17774 		icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
17775 		bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
17776 		bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
17777 		bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
17778 	}
17779 
17780 	if (fctl & FC_FC_EX_CTX) {
17781 		/* ABTS sent by responder to CT exchange, construction
17782 		 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
17783 		 * field and RX_ID from ABTS for RX_ID field.
17784 		 */
17785 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
17786 	} else {
17787 		/* ABTS sent by initiator to CT exchange, construction
17788 		 * of BA_ACC will need to allocate a new XRI as for the
17789 		 * XRI_TAG field.
17790 		 */
17791 		bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
17792 	}
17793 	bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
17794 	bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
17795 
17796 	/* Xmit CT abts response on exchange <xid> */
17797 	lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS,
17798 			 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
17799 			 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
17800 
17801 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
17802 	if (rc == IOCB_ERROR) {
17803 		lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS,
17804 				 "2925 Failed to issue CT ABTS RSP x%x on "
17805 				 "xri x%x, Data x%x\n",
17806 				 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
17807 				 phba->link_state);
17808 		lpfc_nlp_put(ndlp);
17809 		ctiocb->context1 = NULL;
17810 		lpfc_sli_release_iocbq(phba, ctiocb);
17811 	}
17812 }
17813 
17814 /**
17815  * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
17816  * @vport: Pointer to the vport on which this sequence was received
17817  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17818  *
17819  * This function handles an SLI-4 unsolicited abort event. If the unsolicited
17820  * receive sequence is only partially assembed by the driver, it shall abort
17821  * the partially assembled frames for the sequence. Otherwise, if the
17822  * unsolicited receive sequence has been completely assembled and passed to
17823  * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
17824  * unsolicited sequence has been aborted. After that, it will issue a basic
17825  * accept to accept the abort.
17826  **/
17827 static void
17828 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
17829 			     struct hbq_dmabuf *dmabuf)
17830 {
17831 	struct lpfc_hba *phba = vport->phba;
17832 	struct fc_frame_header fc_hdr;
17833 	uint32_t fctl;
17834 	bool aborted;
17835 
17836 	/* Make a copy of fc_hdr before the dmabuf being released */
17837 	memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
17838 	fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
17839 
17840 	if (fctl & FC_FC_EX_CTX) {
17841 		/* ABTS by responder to exchange, no cleanup needed */
17842 		aborted = true;
17843 	} else {
17844 		/* ABTS by initiator to exchange, need to do cleanup */
17845 		aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf);
17846 		if (aborted == false)
17847 			aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf);
17848 	}
17849 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
17850 
17851 	if (phba->nvmet_support) {
17852 		lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr);
17853 		return;
17854 	}
17855 
17856 	/* Respond with BA_ACC or BA_RJT accordingly */
17857 	lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted);
17858 }
17859 
17860 /**
17861  * lpfc_seq_complete - Indicates if a sequence is complete
17862  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17863  *
17864  * This function checks the sequence, starting with the frame described by
17865  * @dmabuf, to see if all the frames associated with this sequence are present.
17866  * the frames associated with this sequence are linked to the @dmabuf using the
17867  * dbuf list. This function looks for two major things. 1) That the first frame
17868  * has a sequence count of zero. 2) There is a frame with last frame of sequence
17869  * set. 3) That there are no holes in the sequence count. The function will
17870  * return 1 when the sequence is complete, otherwise it will return 0.
17871  **/
17872 static int
17873 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
17874 {
17875 	struct fc_frame_header *hdr;
17876 	struct lpfc_dmabuf *d_buf;
17877 	struct hbq_dmabuf *seq_dmabuf;
17878 	uint32_t fctl;
17879 	int seq_count = 0;
17880 
17881 	hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
17882 	/* make sure first fame of sequence has a sequence count of zero */
17883 	if (hdr->fh_seq_cnt != seq_count)
17884 		return 0;
17885 	fctl = (hdr->fh_f_ctl[0] << 16 |
17886 		hdr->fh_f_ctl[1] << 8 |
17887 		hdr->fh_f_ctl[2]);
17888 	/* If last frame of sequence we can return success. */
17889 	if (fctl & FC_FC_END_SEQ)
17890 		return 1;
17891 	list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
17892 		seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17893 		hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17894 		/* If there is a hole in the sequence count then fail. */
17895 		if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
17896 			return 0;
17897 		fctl = (hdr->fh_f_ctl[0] << 16 |
17898 			hdr->fh_f_ctl[1] << 8 |
17899 			hdr->fh_f_ctl[2]);
17900 		/* If last frame of sequence we can return success. */
17901 		if (fctl & FC_FC_END_SEQ)
17902 			return 1;
17903 	}
17904 	return 0;
17905 }
17906 
17907 /**
17908  * lpfc_prep_seq - Prep sequence for ULP processing
17909  * @vport: Pointer to the vport on which this sequence was received
17910  * @dmabuf: pointer to a dmabuf that describes the FC sequence
17911  *
17912  * This function takes a sequence, described by a list of frames, and creates
17913  * a list of iocbq structures to describe the sequence. This iocbq list will be
17914  * used to issue to the generic unsolicited sequence handler. This routine
17915  * returns a pointer to the first iocbq in the list. If the function is unable
17916  * to allocate an iocbq then it throw out the received frames that were not
17917  * able to be described and return a pointer to the first iocbq. If unable to
17918  * allocate any iocbqs (including the first) this function will return NULL.
17919  **/
17920 static struct lpfc_iocbq *
17921 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
17922 {
17923 	struct hbq_dmabuf *hbq_buf;
17924 	struct lpfc_dmabuf *d_buf, *n_buf;
17925 	struct lpfc_iocbq *first_iocbq, *iocbq;
17926 	struct fc_frame_header *fc_hdr;
17927 	uint32_t sid;
17928 	uint32_t len, tot_len;
17929 	struct ulp_bde64 *pbde;
17930 
17931 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
17932 	/* remove from receive buffer list */
17933 	list_del_init(&seq_dmabuf->hbuf.list);
17934 	lpfc_update_rcv_time_stamp(vport);
17935 	/* get the Remote Port's SID */
17936 	sid = sli4_sid_from_fc_hdr(fc_hdr);
17937 	tot_len = 0;
17938 	/* Get an iocbq struct to fill in. */
17939 	first_iocbq = lpfc_sli_get_iocbq(vport->phba);
17940 	if (first_iocbq) {
17941 		/* Initialize the first IOCB. */
17942 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
17943 		first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
17944 		first_iocbq->vport = vport;
17945 
17946 		/* Check FC Header to see what TYPE of frame we are rcv'ing */
17947 		if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) {
17948 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX;
17949 			first_iocbq->iocb.un.rcvels.parmRo =
17950 				sli4_did_from_fc_hdr(fc_hdr);
17951 			first_iocbq->iocb.ulpPU = PARM_NPIV_DID;
17952 		} else
17953 			first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
17954 		first_iocbq->iocb.ulpContext = NO_XRI;
17955 		first_iocbq->iocb.unsli3.rcvsli3.ox_id =
17956 			be16_to_cpu(fc_hdr->fh_ox_id);
17957 		/* iocbq is prepped for internal consumption.  Physical vpi. */
17958 		first_iocbq->iocb.unsli3.rcvsli3.vpi =
17959 			vport->phba->vpi_ids[vport->vpi];
17960 		/* put the first buffer into the first IOCBq */
17961 		tot_len = bf_get(lpfc_rcqe_length,
17962 				       &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
17963 
17964 		first_iocbq->context2 = &seq_dmabuf->dbuf;
17965 		first_iocbq->context3 = NULL;
17966 		first_iocbq->iocb.ulpBdeCount = 1;
17967 		if (tot_len > LPFC_DATA_BUF_SIZE)
17968 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
17969 							LPFC_DATA_BUF_SIZE;
17970 		else
17971 			first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len;
17972 
17973 		first_iocbq->iocb.un.rcvels.remoteID = sid;
17974 
17975 		first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
17976 	}
17977 	iocbq = first_iocbq;
17978 	/*
17979 	 * Each IOCBq can have two Buffers assigned, so go through the list
17980 	 * of buffers for this sequence and save two buffers in each IOCBq
17981 	 */
17982 	list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
17983 		if (!iocbq) {
17984 			lpfc_in_buf_free(vport->phba, d_buf);
17985 			continue;
17986 		}
17987 		if (!iocbq->context3) {
17988 			iocbq->context3 = d_buf;
17989 			iocbq->iocb.ulpBdeCount++;
17990 			/* We need to get the size out of the right CQE */
17991 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
17992 			len = bf_get(lpfc_rcqe_length,
17993 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
17994 			pbde = (struct ulp_bde64 *)
17995 					&iocbq->iocb.unsli3.sli3Words[4];
17996 			if (len > LPFC_DATA_BUF_SIZE)
17997 				pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
17998 			else
17999 				pbde->tus.f.bdeSize = len;
18000 
18001 			iocbq->iocb.unsli3.rcvsli3.acc_len += len;
18002 			tot_len += len;
18003 		} else {
18004 			iocbq = lpfc_sli_get_iocbq(vport->phba);
18005 			if (!iocbq) {
18006 				if (first_iocbq) {
18007 					first_iocbq->iocb.ulpStatus =
18008 							IOSTAT_FCP_RSP_ERROR;
18009 					first_iocbq->iocb.un.ulpWord[4] =
18010 							IOERR_NO_RESOURCES;
18011 				}
18012 				lpfc_in_buf_free(vport->phba, d_buf);
18013 				continue;
18014 			}
18015 			/* We need to get the size out of the right CQE */
18016 			hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
18017 			len = bf_get(lpfc_rcqe_length,
18018 				       &hbq_buf->cq_event.cqe.rcqe_cmpl);
18019 			iocbq->context2 = d_buf;
18020 			iocbq->context3 = NULL;
18021 			iocbq->iocb.ulpBdeCount = 1;
18022 			if (len > LPFC_DATA_BUF_SIZE)
18023 				iocbq->iocb.un.cont64[0].tus.f.bdeSize =
18024 							LPFC_DATA_BUF_SIZE;
18025 			else
18026 				iocbq->iocb.un.cont64[0].tus.f.bdeSize = len;
18027 
18028 			tot_len += len;
18029 			iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
18030 
18031 			iocbq->iocb.un.rcvels.remoteID = sid;
18032 			list_add_tail(&iocbq->list, &first_iocbq->list);
18033 		}
18034 	}
18035 	/* Free the sequence's header buffer */
18036 	if (!first_iocbq)
18037 		lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf);
18038 
18039 	return first_iocbq;
18040 }
18041 
18042 static void
18043 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
18044 			  struct hbq_dmabuf *seq_dmabuf)
18045 {
18046 	struct fc_frame_header *fc_hdr;
18047 	struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
18048 	struct lpfc_hba *phba = vport->phba;
18049 
18050 	fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
18051 	iocbq = lpfc_prep_seq(vport, seq_dmabuf);
18052 	if (!iocbq) {
18053 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18054 				"2707 Ring %d handler: Failed to allocate "
18055 				"iocb Rctl x%x Type x%x received\n",
18056 				LPFC_ELS_RING,
18057 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18058 		return;
18059 	}
18060 	if (!lpfc_complete_unsol_iocb(phba,
18061 				      phba->sli4_hba.els_wq->pring,
18062 				      iocbq, fc_hdr->fh_r_ctl,
18063 				      fc_hdr->fh_type))
18064 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18065 				"2540 Ring %d handler: unexpected Rctl "
18066 				"x%x Type x%x received\n",
18067 				LPFC_ELS_RING,
18068 				fc_hdr->fh_r_ctl, fc_hdr->fh_type);
18069 
18070 	/* Free iocb created in lpfc_prep_seq */
18071 	list_for_each_entry_safe(curr_iocb, next_iocb,
18072 		&iocbq->list, list) {
18073 		list_del_init(&curr_iocb->list);
18074 		lpfc_sli_release_iocbq(phba, curr_iocb);
18075 	}
18076 	lpfc_sli_release_iocbq(phba, iocbq);
18077 }
18078 
18079 static void
18080 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
18081 			    struct lpfc_iocbq *rspiocb)
18082 {
18083 	struct lpfc_dmabuf *pcmd = cmdiocb->context2;
18084 
18085 	if (pcmd && pcmd->virt)
18086 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18087 	kfree(pcmd);
18088 	lpfc_sli_release_iocbq(phba, cmdiocb);
18089 	lpfc_drain_txq(phba);
18090 }
18091 
18092 static void
18093 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport,
18094 			      struct hbq_dmabuf *dmabuf)
18095 {
18096 	struct fc_frame_header *fc_hdr;
18097 	struct lpfc_hba *phba = vport->phba;
18098 	struct lpfc_iocbq *iocbq = NULL;
18099 	union  lpfc_wqe *wqe;
18100 	struct lpfc_dmabuf *pcmd = NULL;
18101 	uint32_t frame_len;
18102 	int rc;
18103 	unsigned long iflags;
18104 
18105 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18106 	frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl);
18107 
18108 	/* Send the received frame back */
18109 	iocbq = lpfc_sli_get_iocbq(phba);
18110 	if (!iocbq) {
18111 		/* Queue cq event and wakeup worker thread to process it */
18112 		spin_lock_irqsave(&phba->hbalock, iflags);
18113 		list_add_tail(&dmabuf->cq_event.list,
18114 			      &phba->sli4_hba.sp_queue_event);
18115 		phba->hba_flag |= HBA_SP_QUEUE_EVT;
18116 		spin_unlock_irqrestore(&phba->hbalock, iflags);
18117 		lpfc_worker_wake_up(phba);
18118 		return;
18119 	}
18120 
18121 	/* Allocate buffer for command payload */
18122 	pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
18123 	if (pcmd)
18124 		pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL,
18125 					    &pcmd->phys);
18126 	if (!pcmd || !pcmd->virt)
18127 		goto exit;
18128 
18129 	INIT_LIST_HEAD(&pcmd->list);
18130 
18131 	/* copyin the payload */
18132 	memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len);
18133 
18134 	/* fill in BDE's for command */
18135 	iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys);
18136 	iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys);
18137 	iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
18138 	iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len;
18139 
18140 	iocbq->context2 = pcmd;
18141 	iocbq->vport = vport;
18142 	iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK;
18143 	iocbq->iocb_flag |= LPFC_USE_FCPWQIDX;
18144 
18145 	/*
18146 	 * Setup rest of the iocb as though it were a WQE
18147 	 * Build the SEND_FRAME WQE
18148 	 */
18149 	wqe = (union lpfc_wqe *)&iocbq->iocb;
18150 
18151 	wqe->send_frame.frame_len = frame_len;
18152 	wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr));
18153 	wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1));
18154 	wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2));
18155 	wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3));
18156 	wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4));
18157 	wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5));
18158 
18159 	iocbq->iocb.ulpCommand = CMD_SEND_FRAME;
18160 	iocbq->iocb.ulpLe = 1;
18161 	iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl;
18162 	rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0);
18163 	if (rc == IOCB_ERROR)
18164 		goto exit;
18165 
18166 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18167 	return;
18168 
18169 exit:
18170 	lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
18171 			"2023 Unable to process MDS loopback frame\n");
18172 	if (pcmd && pcmd->virt)
18173 		dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys);
18174 	kfree(pcmd);
18175 	if (iocbq)
18176 		lpfc_sli_release_iocbq(phba, iocbq);
18177 	lpfc_in_buf_free(phba, &dmabuf->dbuf);
18178 }
18179 
18180 /**
18181  * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
18182  * @phba: Pointer to HBA context object.
18183  *
18184  * This function is called with no lock held. This function processes all
18185  * the received buffers and gives it to upper layers when a received buffer
18186  * indicates that it is the final frame in the sequence. The interrupt
18187  * service routine processes received buffers at interrupt contexts.
18188  * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
18189  * appropriate receive function when the final frame in a sequence is received.
18190  **/
18191 void
18192 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
18193 				 struct hbq_dmabuf *dmabuf)
18194 {
18195 	struct hbq_dmabuf *seq_dmabuf;
18196 	struct fc_frame_header *fc_hdr;
18197 	struct lpfc_vport *vport;
18198 	uint32_t fcfi;
18199 	uint32_t did;
18200 
18201 	/* Process each received buffer */
18202 	fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
18203 
18204 	if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS ||
18205 	    fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) {
18206 		vport = phba->pport;
18207 		/* Handle MDS Loopback frames */
18208 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18209 		return;
18210 	}
18211 
18212 	/* check to see if this a valid type of frame */
18213 	if (lpfc_fc_frame_check(phba, fc_hdr)) {
18214 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18215 		return;
18216 	}
18217 
18218 	if ((bf_get(lpfc_cqe_code,
18219 		    &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
18220 		fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
18221 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18222 	else
18223 		fcfi = bf_get(lpfc_rcqe_fcf_id,
18224 			      &dmabuf->cq_event.cqe.rcqe_cmpl);
18225 
18226 	if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) {
18227 		vport = phba->pport;
18228 		lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
18229 				"2023 MDS Loopback %d bytes\n",
18230 				bf_get(lpfc_rcqe_length,
18231 				       &dmabuf->cq_event.cqe.rcqe_cmpl));
18232 		/* Handle MDS Loopback frames */
18233 		lpfc_sli4_handle_mds_loopback(vport, dmabuf);
18234 		return;
18235 	}
18236 
18237 	/* d_id this frame is directed to */
18238 	did = sli4_did_from_fc_hdr(fc_hdr);
18239 
18240 	vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did);
18241 	if (!vport) {
18242 		/* throw out the frame */
18243 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18244 		return;
18245 	}
18246 
18247 	/* vport is registered unless we rcv a FLOGI directed to Fabric_DID */
18248 	if (!(vport->vpi_state & LPFC_VPI_REGISTERED) &&
18249 		(did != Fabric_DID)) {
18250 		/*
18251 		 * Throw out the frame if we are not pt2pt.
18252 		 * The pt2pt protocol allows for discovery frames
18253 		 * to be received without a registered VPI.
18254 		 */
18255 		if (!(vport->fc_flag & FC_PT2PT) ||
18256 			(phba->link_state == LPFC_HBA_READY)) {
18257 			lpfc_in_buf_free(phba, &dmabuf->dbuf);
18258 			return;
18259 		}
18260 	}
18261 
18262 	/* Handle the basic abort sequence (BA_ABTS) event */
18263 	if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
18264 		lpfc_sli4_handle_unsol_abort(vport, dmabuf);
18265 		return;
18266 	}
18267 
18268 	/* Link this frame */
18269 	seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
18270 	if (!seq_dmabuf) {
18271 		/* unable to add frame to vport - throw it out */
18272 		lpfc_in_buf_free(phba, &dmabuf->dbuf);
18273 		return;
18274 	}
18275 	/* If not last frame in sequence continue processing frames. */
18276 	if (!lpfc_seq_complete(seq_dmabuf))
18277 		return;
18278 
18279 	/* Send the complete sequence to the upper layer protocol */
18280 	lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
18281 }
18282 
18283 /**
18284  * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
18285  * @phba: pointer to lpfc hba data structure.
18286  *
18287  * This routine is invoked to post rpi header templates to the
18288  * HBA consistent with the SLI-4 interface spec.  This routine
18289  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18290  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18291  *
18292  * This routine does not require any locks.  It's usage is expected
18293  * to be driver load or reset recovery when the driver is
18294  * sequential.
18295  *
18296  * Return codes
18297  * 	0 - successful
18298  *      -EIO - The mailbox failed to complete successfully.
18299  * 	When this error occurs, the driver is not guaranteed
18300  *	to have any rpi regions posted to the device and
18301  *	must either attempt to repost the regions or take a
18302  *	fatal error.
18303  **/
18304 int
18305 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
18306 {
18307 	struct lpfc_rpi_hdr *rpi_page;
18308 	uint32_t rc = 0;
18309 	uint16_t lrpi = 0;
18310 
18311 	/* SLI4 ports that support extents do not require RPI headers. */
18312 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18313 		goto exit;
18314 	if (phba->sli4_hba.extents_in_use)
18315 		return -EIO;
18316 
18317 	list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
18318 		/*
18319 		 * Assign the rpi headers a physical rpi only if the driver
18320 		 * has not initialized those resources.  A port reset only
18321 		 * needs the headers posted.
18322 		 */
18323 		if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
18324 		    LPFC_RPI_RSRC_RDY)
18325 			rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18326 
18327 		rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
18328 		if (rc != MBX_SUCCESS) {
18329 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18330 					"2008 Error %d posting all rpi "
18331 					"headers\n", rc);
18332 			rc = -EIO;
18333 			break;
18334 		}
18335 	}
18336 
18337  exit:
18338 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
18339 	       LPFC_RPI_RSRC_RDY);
18340 	return rc;
18341 }
18342 
18343 /**
18344  * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
18345  * @phba: pointer to lpfc hba data structure.
18346  * @rpi_page:  pointer to the rpi memory region.
18347  *
18348  * This routine is invoked to post a single rpi header to the
18349  * HBA consistent with the SLI-4 interface spec.  This memory region
18350  * maps up to 64 rpi context regions.
18351  *
18352  * Return codes
18353  * 	0 - successful
18354  * 	-ENOMEM - No available memory
18355  *      -EIO - The mailbox failed to complete successfully.
18356  **/
18357 int
18358 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
18359 {
18360 	LPFC_MBOXQ_t *mboxq;
18361 	struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
18362 	uint32_t rc = 0;
18363 	uint32_t shdr_status, shdr_add_status;
18364 	union lpfc_sli4_cfg_shdr *shdr;
18365 
18366 	/* SLI4 ports that support extents do not require RPI headers. */
18367 	if (!phba->sli4_hba.rpi_hdrs_in_use)
18368 		return rc;
18369 	if (phba->sli4_hba.extents_in_use)
18370 		return -EIO;
18371 
18372 	/* The port is notified of the header region via a mailbox command. */
18373 	mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18374 	if (!mboxq) {
18375 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18376 				"2001 Unable to allocate memory for issuing "
18377 				"SLI_CONFIG_SPECIAL mailbox command\n");
18378 		return -ENOMEM;
18379 	}
18380 
18381 	/* Post all rpi memory regions to the port. */
18382 	hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
18383 	lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18384 			 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
18385 			 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
18386 			 sizeof(struct lpfc_sli4_cfg_mhdr),
18387 			 LPFC_SLI4_MBX_EMBED);
18388 
18389 
18390 	/* Post the physical rpi to the port for this rpi header. */
18391 	bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
18392 	       rpi_page->start_rpi);
18393 	bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
18394 	       hdr_tmpl, rpi_page->page_count);
18395 
18396 	hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
18397 	hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
18398 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
18399 	shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
18400 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18401 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18402 	if (rc != MBX_TIMEOUT)
18403 		mempool_free(mboxq, phba->mbox_mem_pool);
18404 	if (shdr_status || shdr_add_status || rc) {
18405 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18406 				"2514 POST_RPI_HDR mailbox failed with "
18407 				"status x%x add_status x%x, mbx status x%x\n",
18408 				shdr_status, shdr_add_status, rc);
18409 		rc = -ENXIO;
18410 	} else {
18411 		/*
18412 		 * The next_rpi stores the next logical module-64 rpi value used
18413 		 * to post physical rpis in subsequent rpi postings.
18414 		 */
18415 		spin_lock_irq(&phba->hbalock);
18416 		phba->sli4_hba.next_rpi = rpi_page->next_rpi;
18417 		spin_unlock_irq(&phba->hbalock);
18418 	}
18419 	return rc;
18420 }
18421 
18422 /**
18423  * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
18424  * @phba: pointer to lpfc hba data structure.
18425  *
18426  * This routine is invoked to post rpi header templates to the
18427  * HBA consistent with the SLI-4 interface spec.  This routine
18428  * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
18429  * SLI4_PAGE_SIZE modulo 64 rpi context headers.
18430  *
18431  * Returns
18432  * 	A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
18433  * 	LPFC_RPI_ALLOC_ERROR if no rpis are available.
18434  **/
18435 int
18436 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
18437 {
18438 	unsigned long rpi;
18439 	uint16_t max_rpi, rpi_limit;
18440 	uint16_t rpi_remaining, lrpi = 0;
18441 	struct lpfc_rpi_hdr *rpi_hdr;
18442 	unsigned long iflag;
18443 
18444 	/*
18445 	 * Fetch the next logical rpi.  Because this index is logical,
18446 	 * the  driver starts at 0 each time.
18447 	 */
18448 	spin_lock_irqsave(&phba->hbalock, iflag);
18449 	max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
18450 	rpi_limit = phba->sli4_hba.next_rpi;
18451 
18452 	rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
18453 	if (rpi >= rpi_limit)
18454 		rpi = LPFC_RPI_ALLOC_ERROR;
18455 	else {
18456 		set_bit(rpi, phba->sli4_hba.rpi_bmask);
18457 		phba->sli4_hba.max_cfg_param.rpi_used++;
18458 		phba->sli4_hba.rpi_count++;
18459 	}
18460 	lpfc_printf_log(phba, KERN_INFO,
18461 			LOG_NODE | LOG_DISCOVERY,
18462 			"0001 Allocated rpi:x%x max:x%x lim:x%x\n",
18463 			(int) rpi, max_rpi, rpi_limit);
18464 
18465 	/*
18466 	 * Don't try to allocate more rpi header regions if the device limit
18467 	 * has been exhausted.
18468 	 */
18469 	if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
18470 	    (phba->sli4_hba.rpi_count >= max_rpi)) {
18471 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18472 		return rpi;
18473 	}
18474 
18475 	/*
18476 	 * RPI header postings are not required for SLI4 ports capable of
18477 	 * extents.
18478 	 */
18479 	if (!phba->sli4_hba.rpi_hdrs_in_use) {
18480 		spin_unlock_irqrestore(&phba->hbalock, iflag);
18481 		return rpi;
18482 	}
18483 
18484 	/*
18485 	 * If the driver is running low on rpi resources, allocate another
18486 	 * page now.  Note that the next_rpi value is used because
18487 	 * it represents how many are actually in use whereas max_rpi notes
18488 	 * how many are supported max by the device.
18489 	 */
18490 	rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
18491 	spin_unlock_irqrestore(&phba->hbalock, iflag);
18492 	if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
18493 		rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
18494 		if (!rpi_hdr) {
18495 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18496 					"2002 Error Could not grow rpi "
18497 					"count\n");
18498 		} else {
18499 			lrpi = rpi_hdr->start_rpi;
18500 			rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
18501 			lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
18502 		}
18503 	}
18504 
18505 	return rpi;
18506 }
18507 
18508 /**
18509  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18510  * @phba: pointer to lpfc hba data structure.
18511  *
18512  * This routine is invoked to release an rpi to the pool of
18513  * available rpis maintained by the driver.
18514  **/
18515 static void
18516 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18517 {
18518 	/*
18519 	 * if the rpi value indicates a prior unreg has already
18520 	 * been done, skip the unreg.
18521 	 */
18522 	if (rpi == LPFC_RPI_ALLOC_ERROR)
18523 		return;
18524 
18525 	if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
18526 		phba->sli4_hba.rpi_count--;
18527 		phba->sli4_hba.max_cfg_param.rpi_used--;
18528 	} else {
18529 		lpfc_printf_log(phba, KERN_INFO,
18530 				LOG_NODE | LOG_DISCOVERY,
18531 				"2016 rpi %x not inuse\n",
18532 				rpi);
18533 	}
18534 }
18535 
18536 /**
18537  * lpfc_sli4_free_rpi - Release an rpi for reuse.
18538  * @phba: pointer to lpfc hba data structure.
18539  *
18540  * This routine is invoked to release an rpi to the pool of
18541  * available rpis maintained by the driver.
18542  **/
18543 void
18544 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
18545 {
18546 	spin_lock_irq(&phba->hbalock);
18547 	__lpfc_sli4_free_rpi(phba, rpi);
18548 	spin_unlock_irq(&phba->hbalock);
18549 }
18550 
18551 /**
18552  * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
18553  * @phba: pointer to lpfc hba data structure.
18554  *
18555  * This routine is invoked to remove the memory region that
18556  * provided rpi via a bitmask.
18557  **/
18558 void
18559 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
18560 {
18561 	kfree(phba->sli4_hba.rpi_bmask);
18562 	kfree(phba->sli4_hba.rpi_ids);
18563 	bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
18564 }
18565 
18566 /**
18567  * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
18568  * @phba: pointer to lpfc hba data structure.
18569  *
18570  * This routine is invoked to remove the memory region that
18571  * provided rpi via a bitmask.
18572  **/
18573 int
18574 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
18575 	void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
18576 {
18577 	LPFC_MBOXQ_t *mboxq;
18578 	struct lpfc_hba *phba = ndlp->phba;
18579 	int rc;
18580 
18581 	/* The port is notified of the header region via a mailbox command. */
18582 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18583 	if (!mboxq)
18584 		return -ENOMEM;
18585 
18586 	/* Post all rpi memory regions to the port. */
18587 	lpfc_resume_rpi(mboxq, ndlp);
18588 	if (cmpl) {
18589 		mboxq->mbox_cmpl = cmpl;
18590 		mboxq->ctx_buf = arg;
18591 		mboxq->ctx_ndlp = ndlp;
18592 	} else
18593 		mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
18594 	mboxq->vport = ndlp->vport;
18595 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18596 	if (rc == MBX_NOT_FINISHED) {
18597 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
18598 				"2010 Resume RPI Mailbox failed "
18599 				"status %d, mbxStatus x%x\n", rc,
18600 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18601 		mempool_free(mboxq, phba->mbox_mem_pool);
18602 		return -EIO;
18603 	}
18604 	return 0;
18605 }
18606 
18607 /**
18608  * lpfc_sli4_init_vpi - Initialize a vpi with the port
18609  * @vport: Pointer to the vport for which the vpi is being initialized
18610  *
18611  * This routine is invoked to activate a vpi with the port.
18612  *
18613  * Returns:
18614  *    0 success
18615  *    -Evalue otherwise
18616  **/
18617 int
18618 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
18619 {
18620 	LPFC_MBOXQ_t *mboxq;
18621 	int rc = 0;
18622 	int retval = MBX_SUCCESS;
18623 	uint32_t mbox_tmo;
18624 	struct lpfc_hba *phba = vport->phba;
18625 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18626 	if (!mboxq)
18627 		return -ENOMEM;
18628 	lpfc_init_vpi(phba, mboxq, vport->vpi);
18629 	mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
18630 	rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
18631 	if (rc != MBX_SUCCESS) {
18632 		lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
18633 				"2022 INIT VPI Mailbox failed "
18634 				"status %d, mbxStatus x%x\n", rc,
18635 				bf_get(lpfc_mqe_status, &mboxq->u.mqe));
18636 		retval = -EIO;
18637 	}
18638 	if (rc != MBX_TIMEOUT)
18639 		mempool_free(mboxq, vport->phba->mbox_mem_pool);
18640 
18641 	return retval;
18642 }
18643 
18644 /**
18645  * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
18646  * @phba: pointer to lpfc hba data structure.
18647  * @mboxq: Pointer to mailbox object.
18648  *
18649  * This routine is invoked to manually add a single FCF record. The caller
18650  * must pass a completely initialized FCF_Record.  This routine takes
18651  * care of the nonembedded mailbox operations.
18652  **/
18653 static void
18654 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
18655 {
18656 	void *virt_addr;
18657 	union lpfc_sli4_cfg_shdr *shdr;
18658 	uint32_t shdr_status, shdr_add_status;
18659 
18660 	virt_addr = mboxq->sge_array->addr[0];
18661 	/* The IOCTL status is embedded in the mailbox subheader. */
18662 	shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
18663 	shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
18664 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
18665 
18666 	if ((shdr_status || shdr_add_status) &&
18667 		(shdr_status != STATUS_FCF_IN_USE))
18668 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18669 			"2558 ADD_FCF_RECORD mailbox failed with "
18670 			"status x%x add_status x%x\n",
18671 			shdr_status, shdr_add_status);
18672 
18673 	lpfc_sli4_mbox_cmd_free(phba, mboxq);
18674 }
18675 
18676 /**
18677  * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
18678  * @phba: pointer to lpfc hba data structure.
18679  * @fcf_record:  pointer to the initialized fcf record to add.
18680  *
18681  * This routine is invoked to manually add a single FCF record. The caller
18682  * must pass a completely initialized FCF_Record.  This routine takes
18683  * care of the nonembedded mailbox operations.
18684  **/
18685 int
18686 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
18687 {
18688 	int rc = 0;
18689 	LPFC_MBOXQ_t *mboxq;
18690 	uint8_t *bytep;
18691 	void *virt_addr;
18692 	struct lpfc_mbx_sge sge;
18693 	uint32_t alloc_len, req_len;
18694 	uint32_t fcfindex;
18695 
18696 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18697 	if (!mboxq) {
18698 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18699 			"2009 Failed to allocate mbox for ADD_FCF cmd\n");
18700 		return -ENOMEM;
18701 	}
18702 
18703 	req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
18704 		  sizeof(uint32_t);
18705 
18706 	/* Allocate DMA memory and set up the non-embedded mailbox command */
18707 	alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
18708 				     LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
18709 				     req_len, LPFC_SLI4_MBX_NEMBED);
18710 	if (alloc_len < req_len) {
18711 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18712 			"2523 Allocated DMA memory size (x%x) is "
18713 			"less than the requested DMA memory "
18714 			"size (x%x)\n", alloc_len, req_len);
18715 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18716 		return -ENOMEM;
18717 	}
18718 
18719 	/*
18720 	 * Get the first SGE entry from the non-embedded DMA memory.  This
18721 	 * routine only uses a single SGE.
18722 	 */
18723 	lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
18724 	virt_addr = mboxq->sge_array->addr[0];
18725 	/*
18726 	 * Configure the FCF record for FCFI 0.  This is the driver's
18727 	 * hardcoded default and gets used in nonFIP mode.
18728 	 */
18729 	fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
18730 	bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
18731 	lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
18732 
18733 	/*
18734 	 * Copy the fcf_index and the FCF Record Data. The data starts after
18735 	 * the FCoE header plus word10. The data copy needs to be endian
18736 	 * correct.
18737 	 */
18738 	bytep += sizeof(uint32_t);
18739 	lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
18740 	mboxq->vport = phba->pport;
18741 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
18742 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18743 	if (rc == MBX_NOT_FINISHED) {
18744 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18745 			"2515 ADD_FCF_RECORD mailbox failed with "
18746 			"status 0x%x\n", rc);
18747 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18748 		rc = -EIO;
18749 	} else
18750 		rc = 0;
18751 
18752 	return rc;
18753 }
18754 
18755 /**
18756  * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
18757  * @phba: pointer to lpfc hba data structure.
18758  * @fcf_record:  pointer to the fcf record to write the default data.
18759  * @fcf_index: FCF table entry index.
18760  *
18761  * This routine is invoked to build the driver's default FCF record.  The
18762  * values used are hardcoded.  This routine handles memory initialization.
18763  *
18764  **/
18765 void
18766 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
18767 				struct fcf_record *fcf_record,
18768 				uint16_t fcf_index)
18769 {
18770 	memset(fcf_record, 0, sizeof(struct fcf_record));
18771 	fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
18772 	fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
18773 	fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
18774 	bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
18775 	bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
18776 	bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
18777 	bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
18778 	bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
18779 	bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
18780 	bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
18781 	bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
18782 	bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
18783 	bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
18784 	bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
18785 	bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
18786 	bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
18787 		LPFC_FCF_FPMA | LPFC_FCF_SPMA);
18788 	/* Set the VLAN bit map */
18789 	if (phba->valid_vlan) {
18790 		fcf_record->vlan_bitmap[phba->vlan_id / 8]
18791 			= 1 << (phba->vlan_id % 8);
18792 	}
18793 }
18794 
18795 /**
18796  * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
18797  * @phba: pointer to lpfc hba data structure.
18798  * @fcf_index: FCF table entry offset.
18799  *
18800  * This routine is invoked to scan the entire FCF table by reading FCF
18801  * record and processing it one at a time starting from the @fcf_index
18802  * for initial FCF discovery or fast FCF failover rediscovery.
18803  *
18804  * Return 0 if the mailbox command is submitted successfully, none 0
18805  * otherwise.
18806  **/
18807 int
18808 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18809 {
18810 	int rc = 0, error;
18811 	LPFC_MBOXQ_t *mboxq;
18812 
18813 	phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
18814 	phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
18815 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18816 	if (!mboxq) {
18817 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
18818 				"2000 Failed to allocate mbox for "
18819 				"READ_FCF cmd\n");
18820 		error = -ENOMEM;
18821 		goto fail_fcf_scan;
18822 	}
18823 	/* Construct the read FCF record mailbox command */
18824 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18825 	if (rc) {
18826 		error = -EINVAL;
18827 		goto fail_fcf_scan;
18828 	}
18829 	/* Issue the mailbox command asynchronously */
18830 	mboxq->vport = phba->pport;
18831 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
18832 
18833 	spin_lock_irq(&phba->hbalock);
18834 	phba->hba_flag |= FCF_TS_INPROG;
18835 	spin_unlock_irq(&phba->hbalock);
18836 
18837 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18838 	if (rc == MBX_NOT_FINISHED)
18839 		error = -EIO;
18840 	else {
18841 		/* Reset eligible FCF count for new scan */
18842 		if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
18843 			phba->fcf.eligible_fcf_cnt = 0;
18844 		error = 0;
18845 	}
18846 fail_fcf_scan:
18847 	if (error) {
18848 		if (mboxq)
18849 			lpfc_sli4_mbox_cmd_free(phba, mboxq);
18850 		/* FCF scan failed, clear FCF_TS_INPROG flag */
18851 		spin_lock_irq(&phba->hbalock);
18852 		phba->hba_flag &= ~FCF_TS_INPROG;
18853 		spin_unlock_irq(&phba->hbalock);
18854 	}
18855 	return error;
18856 }
18857 
18858 /**
18859  * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
18860  * @phba: pointer to lpfc hba data structure.
18861  * @fcf_index: FCF table entry offset.
18862  *
18863  * This routine is invoked to read an FCF record indicated by @fcf_index
18864  * and to use it for FLOGI roundrobin FCF failover.
18865  *
18866  * Return 0 if the mailbox command is submitted successfully, none 0
18867  * otherwise.
18868  **/
18869 int
18870 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18871 {
18872 	int rc = 0, error;
18873 	LPFC_MBOXQ_t *mboxq;
18874 
18875 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18876 	if (!mboxq) {
18877 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18878 				"2763 Failed to allocate mbox for "
18879 				"READ_FCF cmd\n");
18880 		error = -ENOMEM;
18881 		goto fail_fcf_read;
18882 	}
18883 	/* Construct the read FCF record mailbox command */
18884 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18885 	if (rc) {
18886 		error = -EINVAL;
18887 		goto fail_fcf_read;
18888 	}
18889 	/* Issue the mailbox command asynchronously */
18890 	mboxq->vport = phba->pport;
18891 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
18892 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18893 	if (rc == MBX_NOT_FINISHED)
18894 		error = -EIO;
18895 	else
18896 		error = 0;
18897 
18898 fail_fcf_read:
18899 	if (error && mboxq)
18900 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18901 	return error;
18902 }
18903 
18904 /**
18905  * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
18906  * @phba: pointer to lpfc hba data structure.
18907  * @fcf_index: FCF table entry offset.
18908  *
18909  * This routine is invoked to read an FCF record indicated by @fcf_index to
18910  * determine whether it's eligible for FLOGI roundrobin failover list.
18911  *
18912  * Return 0 if the mailbox command is submitted successfully, none 0
18913  * otherwise.
18914  **/
18915 int
18916 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
18917 {
18918 	int rc = 0, error;
18919 	LPFC_MBOXQ_t *mboxq;
18920 
18921 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
18922 	if (!mboxq) {
18923 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
18924 				"2758 Failed to allocate mbox for "
18925 				"READ_FCF cmd\n");
18926 				error = -ENOMEM;
18927 				goto fail_fcf_read;
18928 	}
18929 	/* Construct the read FCF record mailbox command */
18930 	rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
18931 	if (rc) {
18932 		error = -EINVAL;
18933 		goto fail_fcf_read;
18934 	}
18935 	/* Issue the mailbox command asynchronously */
18936 	mboxq->vport = phba->pport;
18937 	mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
18938 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
18939 	if (rc == MBX_NOT_FINISHED)
18940 		error = -EIO;
18941 	else
18942 		error = 0;
18943 
18944 fail_fcf_read:
18945 	if (error && mboxq)
18946 		lpfc_sli4_mbox_cmd_free(phba, mboxq);
18947 	return error;
18948 }
18949 
18950 /**
18951  * lpfc_check_next_fcf_pri_level
18952  * phba pointer to the lpfc_hba struct for this port.
18953  * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
18954  * routine when the rr_bmask is empty. The FCF indecies are put into the
18955  * rr_bmask based on their priority level. Starting from the highest priority
18956  * to the lowest. The most likely FCF candidate will be in the highest
18957  * priority group. When this routine is called it searches the fcf_pri list for
18958  * next lowest priority group and repopulates the rr_bmask with only those
18959  * fcf_indexes.
18960  * returns:
18961  * 1=success 0=failure
18962  **/
18963 static int
18964 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
18965 {
18966 	uint16_t next_fcf_pri;
18967 	uint16_t last_index;
18968 	struct lpfc_fcf_pri *fcf_pri;
18969 	int rc;
18970 	int ret = 0;
18971 
18972 	last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
18973 			LPFC_SLI4_FCF_TBL_INDX_MAX);
18974 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
18975 			"3060 Last IDX %d\n", last_index);
18976 
18977 	/* Verify the priority list has 2 or more entries */
18978 	spin_lock_irq(&phba->hbalock);
18979 	if (list_empty(&phba->fcf.fcf_pri_list) ||
18980 	    list_is_singular(&phba->fcf.fcf_pri_list)) {
18981 		spin_unlock_irq(&phba->hbalock);
18982 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
18983 			"3061 Last IDX %d\n", last_index);
18984 		return 0; /* Empty rr list */
18985 	}
18986 	spin_unlock_irq(&phba->hbalock);
18987 
18988 	next_fcf_pri = 0;
18989 	/*
18990 	 * Clear the rr_bmask and set all of the bits that are at this
18991 	 * priority.
18992 	 */
18993 	memset(phba->fcf.fcf_rr_bmask, 0,
18994 			sizeof(*phba->fcf.fcf_rr_bmask));
18995 	spin_lock_irq(&phba->hbalock);
18996 	list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
18997 		if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
18998 			continue;
18999 		/*
19000 		 * the 1st priority that has not FLOGI failed
19001 		 * will be the highest.
19002 		 */
19003 		if (!next_fcf_pri)
19004 			next_fcf_pri = fcf_pri->fcf_rec.priority;
19005 		spin_unlock_irq(&phba->hbalock);
19006 		if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19007 			rc = lpfc_sli4_fcf_rr_index_set(phba,
19008 						fcf_pri->fcf_rec.fcf_index);
19009 			if (rc)
19010 				return 0;
19011 		}
19012 		spin_lock_irq(&phba->hbalock);
19013 	}
19014 	/*
19015 	 * if next_fcf_pri was not set above and the list is not empty then
19016 	 * we have failed flogis on all of them. So reset flogi failed
19017 	 * and start at the beginning.
19018 	 */
19019 	if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
19020 		list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
19021 			fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
19022 			/*
19023 			 * the 1st priority that has not FLOGI failed
19024 			 * will be the highest.
19025 			 */
19026 			if (!next_fcf_pri)
19027 				next_fcf_pri = fcf_pri->fcf_rec.priority;
19028 			spin_unlock_irq(&phba->hbalock);
19029 			if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
19030 				rc = lpfc_sli4_fcf_rr_index_set(phba,
19031 						fcf_pri->fcf_rec.fcf_index);
19032 				if (rc)
19033 					return 0;
19034 			}
19035 			spin_lock_irq(&phba->hbalock);
19036 		}
19037 	} else
19038 		ret = 1;
19039 	spin_unlock_irq(&phba->hbalock);
19040 
19041 	return ret;
19042 }
19043 /**
19044  * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
19045  * @phba: pointer to lpfc hba data structure.
19046  *
19047  * This routine is to get the next eligible FCF record index in a round
19048  * robin fashion. If the next eligible FCF record index equals to the
19049  * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
19050  * shall be returned, otherwise, the next eligible FCF record's index
19051  * shall be returned.
19052  **/
19053 uint16_t
19054 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
19055 {
19056 	uint16_t next_fcf_index;
19057 
19058 initial_priority:
19059 	/* Search start from next bit of currently registered FCF index */
19060 	next_fcf_index = phba->fcf.current_rec.fcf_indx;
19061 
19062 next_priority:
19063 	/* Determine the next fcf index to check */
19064 	next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX;
19065 	next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19066 				       LPFC_SLI4_FCF_TBL_INDX_MAX,
19067 				       next_fcf_index);
19068 
19069 	/* Wrap around condition on phba->fcf.fcf_rr_bmask */
19070 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19071 		/*
19072 		 * If we have wrapped then we need to clear the bits that
19073 		 * have been tested so that we can detect when we should
19074 		 * change the priority level.
19075 		 */
19076 		next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
19077 					       LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
19078 	}
19079 
19080 
19081 	/* Check roundrobin failover list empty condition */
19082 	if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
19083 		next_fcf_index == phba->fcf.current_rec.fcf_indx) {
19084 		/*
19085 		 * If next fcf index is not found check if there are lower
19086 		 * Priority level fcf's in the fcf_priority list.
19087 		 * Set up the rr_bmask with all of the avaiable fcf bits
19088 		 * at that level and continue the selection process.
19089 		 */
19090 		if (lpfc_check_next_fcf_pri_level(phba))
19091 			goto initial_priority;
19092 		lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
19093 				"2844 No roundrobin failover FCF available\n");
19094 
19095 		return LPFC_FCOE_FCF_NEXT_NONE;
19096 	}
19097 
19098 	if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
19099 		phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
19100 		LPFC_FCF_FLOGI_FAILED) {
19101 		if (list_is_singular(&phba->fcf.fcf_pri_list))
19102 			return LPFC_FCOE_FCF_NEXT_NONE;
19103 
19104 		goto next_priority;
19105 	}
19106 
19107 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19108 			"2845 Get next roundrobin failover FCF (x%x)\n",
19109 			next_fcf_index);
19110 
19111 	return next_fcf_index;
19112 }
19113 
19114 /**
19115  * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
19116  * @phba: pointer to lpfc hba data structure.
19117  *
19118  * This routine sets the FCF record index in to the eligible bmask for
19119  * roundrobin failover search. It checks to make sure that the index
19120  * does not go beyond the range of the driver allocated bmask dimension
19121  * before setting the bit.
19122  *
19123  * Returns 0 if the index bit successfully set, otherwise, it returns
19124  * -EINVAL.
19125  **/
19126 int
19127 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
19128 {
19129 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19130 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19131 				"2610 FCF (x%x) reached driver's book "
19132 				"keeping dimension:x%x\n",
19133 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19134 		return -EINVAL;
19135 	}
19136 	/* Set the eligible FCF record index bmask */
19137 	set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19138 
19139 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19140 			"2790 Set FCF (x%x) to roundrobin FCF failover "
19141 			"bmask\n", fcf_index);
19142 
19143 	return 0;
19144 }
19145 
19146 /**
19147  * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
19148  * @phba: pointer to lpfc hba data structure.
19149  *
19150  * This routine clears the FCF record index from the eligible bmask for
19151  * roundrobin failover search. It checks to make sure that the index
19152  * does not go beyond the range of the driver allocated bmask dimension
19153  * before clearing the bit.
19154  **/
19155 void
19156 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
19157 {
19158 	struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next;
19159 	if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
19160 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19161 				"2762 FCF (x%x) reached driver's book "
19162 				"keeping dimension:x%x\n",
19163 				fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
19164 		return;
19165 	}
19166 	/* Clear the eligible FCF record index bmask */
19167 	spin_lock_irq(&phba->hbalock);
19168 	list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list,
19169 				 list) {
19170 		if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
19171 			list_del_init(&fcf_pri->list);
19172 			break;
19173 		}
19174 	}
19175 	spin_unlock_irq(&phba->hbalock);
19176 	clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
19177 
19178 	lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19179 			"2791 Clear FCF (x%x) from roundrobin failover "
19180 			"bmask\n", fcf_index);
19181 }
19182 
19183 /**
19184  * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
19185  * @phba: pointer to lpfc hba data structure.
19186  *
19187  * This routine is the completion routine for the rediscover FCF table mailbox
19188  * command. If the mailbox command returned failure, it will try to stop the
19189  * FCF rediscover wait timer.
19190  **/
19191 static void
19192 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
19193 {
19194 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19195 	uint32_t shdr_status, shdr_add_status;
19196 
19197 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19198 
19199 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19200 			     &redisc_fcf->header.cfg_shdr.response);
19201 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19202 			     &redisc_fcf->header.cfg_shdr.response);
19203 	if (shdr_status || shdr_add_status) {
19204 		lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
19205 				"2746 Requesting for FCF rediscovery failed "
19206 				"status x%x add_status x%x\n",
19207 				shdr_status, shdr_add_status);
19208 		if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
19209 			spin_lock_irq(&phba->hbalock);
19210 			phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
19211 			spin_unlock_irq(&phba->hbalock);
19212 			/*
19213 			 * CVL event triggered FCF rediscover request failed,
19214 			 * last resort to re-try current registered FCF entry.
19215 			 */
19216 			lpfc_retry_pport_discovery(phba);
19217 		} else {
19218 			spin_lock_irq(&phba->hbalock);
19219 			phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
19220 			spin_unlock_irq(&phba->hbalock);
19221 			/*
19222 			 * DEAD FCF event triggered FCF rediscover request
19223 			 * failed, last resort to fail over as a link down
19224 			 * to FCF registration.
19225 			 */
19226 			lpfc_sli4_fcf_dead_failthrough(phba);
19227 		}
19228 	} else {
19229 		lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
19230 				"2775 Start FCF rediscover quiescent timer\n");
19231 		/*
19232 		 * Start FCF rediscovery wait timer for pending FCF
19233 		 * before rescan FCF record table.
19234 		 */
19235 		lpfc_fcf_redisc_wait_start_timer(phba);
19236 	}
19237 
19238 	mempool_free(mbox, phba->mbox_mem_pool);
19239 }
19240 
19241 /**
19242  * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
19243  * @phba: pointer to lpfc hba data structure.
19244  *
19245  * This routine is invoked to request for rediscovery of the entire FCF table
19246  * by the port.
19247  **/
19248 int
19249 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
19250 {
19251 	LPFC_MBOXQ_t *mbox;
19252 	struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
19253 	int rc, length;
19254 
19255 	/* Cancel retry delay timers to all vports before FCF rediscover */
19256 	lpfc_cancel_all_vport_retry_delay_timer(phba);
19257 
19258 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19259 	if (!mbox) {
19260 		lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19261 				"2745 Failed to allocate mbox for "
19262 				"requesting FCF rediscover.\n");
19263 		return -ENOMEM;
19264 	}
19265 
19266 	length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
19267 		  sizeof(struct lpfc_sli4_cfg_mhdr));
19268 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
19269 			 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
19270 			 length, LPFC_SLI4_MBX_EMBED);
19271 
19272 	redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
19273 	/* Set count to 0 for invalidating the entire FCF database */
19274 	bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
19275 
19276 	/* Issue the mailbox command asynchronously */
19277 	mbox->vport = phba->pport;
19278 	mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
19279 	rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
19280 
19281 	if (rc == MBX_NOT_FINISHED) {
19282 		mempool_free(mbox, phba->mbox_mem_pool);
19283 		return -EIO;
19284 	}
19285 	return 0;
19286 }
19287 
19288 /**
19289  * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
19290  * @phba: pointer to lpfc hba data structure.
19291  *
19292  * This function is the failover routine as a last resort to the FCF DEAD
19293  * event when driver failed to perform fast FCF failover.
19294  **/
19295 void
19296 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
19297 {
19298 	uint32_t link_state;
19299 
19300 	/*
19301 	 * Last resort as FCF DEAD event failover will treat this as
19302 	 * a link down, but save the link state because we don't want
19303 	 * it to be changed to Link Down unless it is already down.
19304 	 */
19305 	link_state = phba->link_state;
19306 	lpfc_linkdown(phba);
19307 	phba->link_state = link_state;
19308 
19309 	/* Unregister FCF if no devices connected to it */
19310 	lpfc_unregister_unused_fcf(phba);
19311 }
19312 
19313 /**
19314  * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
19315  * @phba: pointer to lpfc hba data structure.
19316  * @rgn23_data: pointer to configure region 23 data.
19317  *
19318  * This function gets SLI3 port configure region 23 data through memory dump
19319  * mailbox command. When it successfully retrieves data, the size of the data
19320  * will be returned, otherwise, 0 will be returned.
19321  **/
19322 static uint32_t
19323 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19324 {
19325 	LPFC_MBOXQ_t *pmb = NULL;
19326 	MAILBOX_t *mb;
19327 	uint32_t offset = 0;
19328 	int rc;
19329 
19330 	if (!rgn23_data)
19331 		return 0;
19332 
19333 	pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19334 	if (!pmb) {
19335 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19336 				"2600 failed to allocate mailbox memory\n");
19337 		return 0;
19338 	}
19339 	mb = &pmb->u.mb;
19340 
19341 	do {
19342 		lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
19343 		rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
19344 
19345 		if (rc != MBX_SUCCESS) {
19346 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19347 					"2601 failed to read config "
19348 					"region 23, rc 0x%x Status 0x%x\n",
19349 					rc, mb->mbxStatus);
19350 			mb->un.varDmp.word_cnt = 0;
19351 		}
19352 		/*
19353 		 * dump mem may return a zero when finished or we got a
19354 		 * mailbox error, either way we are done.
19355 		 */
19356 		if (mb->un.varDmp.word_cnt == 0)
19357 			break;
19358 		if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
19359 			mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
19360 
19361 		lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
19362 				       rgn23_data + offset,
19363 				       mb->un.varDmp.word_cnt);
19364 		offset += mb->un.varDmp.word_cnt;
19365 	} while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
19366 
19367 	mempool_free(pmb, phba->mbox_mem_pool);
19368 	return offset;
19369 }
19370 
19371 /**
19372  * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
19373  * @phba: pointer to lpfc hba data structure.
19374  * @rgn23_data: pointer to configure region 23 data.
19375  *
19376  * This function gets SLI4 port configure region 23 data through memory dump
19377  * mailbox command. When it successfully retrieves data, the size of the data
19378  * will be returned, otherwise, 0 will be returned.
19379  **/
19380 static uint32_t
19381 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
19382 {
19383 	LPFC_MBOXQ_t *mboxq = NULL;
19384 	struct lpfc_dmabuf *mp = NULL;
19385 	struct lpfc_mqe *mqe;
19386 	uint32_t data_length = 0;
19387 	int rc;
19388 
19389 	if (!rgn23_data)
19390 		return 0;
19391 
19392 	mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19393 	if (!mboxq) {
19394 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19395 				"3105 failed to allocate mailbox memory\n");
19396 		return 0;
19397 	}
19398 
19399 	if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
19400 		goto out;
19401 	mqe = &mboxq->u.mqe;
19402 	mp = (struct lpfc_dmabuf *)mboxq->ctx_buf;
19403 	rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
19404 	if (rc)
19405 		goto out;
19406 	data_length = mqe->un.mb_words[5];
19407 	if (data_length == 0)
19408 		goto out;
19409 	if (data_length > DMP_RGN23_SIZE) {
19410 		data_length = 0;
19411 		goto out;
19412 	}
19413 	lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
19414 out:
19415 	mempool_free(mboxq, phba->mbox_mem_pool);
19416 	if (mp) {
19417 		lpfc_mbuf_free(phba, mp->virt, mp->phys);
19418 		kfree(mp);
19419 	}
19420 	return data_length;
19421 }
19422 
19423 /**
19424  * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
19425  * @phba: pointer to lpfc hba data structure.
19426  *
19427  * This function read region 23 and parse TLV for port status to
19428  * decide if the user disaled the port. If the TLV indicates the
19429  * port is disabled, the hba_flag is set accordingly.
19430  **/
19431 void
19432 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
19433 {
19434 	uint8_t *rgn23_data = NULL;
19435 	uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
19436 	uint32_t offset = 0;
19437 
19438 	/* Get adapter Region 23 data */
19439 	rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
19440 	if (!rgn23_data)
19441 		goto out;
19442 
19443 	if (phba->sli_rev < LPFC_SLI_REV4)
19444 		data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
19445 	else {
19446 		if_type = bf_get(lpfc_sli_intf_if_type,
19447 				 &phba->sli4_hba.sli_intf);
19448 		if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
19449 			goto out;
19450 		data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
19451 	}
19452 
19453 	if (!data_size)
19454 		goto out;
19455 
19456 	/* Check the region signature first */
19457 	if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
19458 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19459 			"2619 Config region 23 has bad signature\n");
19460 			goto out;
19461 	}
19462 	offset += 4;
19463 
19464 	/* Check the data structure version */
19465 	if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
19466 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19467 			"2620 Config region 23 has bad version\n");
19468 		goto out;
19469 	}
19470 	offset += 4;
19471 
19472 	/* Parse TLV entries in the region */
19473 	while (offset < data_size) {
19474 		if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
19475 			break;
19476 		/*
19477 		 * If the TLV is not driver specific TLV or driver id is
19478 		 * not linux driver id, skip the record.
19479 		 */
19480 		if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
19481 		    (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
19482 		    (rgn23_data[offset + 3] != 0)) {
19483 			offset += rgn23_data[offset + 1] * 4 + 4;
19484 			continue;
19485 		}
19486 
19487 		/* Driver found a driver specific TLV in the config region */
19488 		sub_tlv_len = rgn23_data[offset + 1] * 4;
19489 		offset += 4;
19490 		tlv_offset = 0;
19491 
19492 		/*
19493 		 * Search for configured port state sub-TLV.
19494 		 */
19495 		while ((offset < data_size) &&
19496 			(tlv_offset < sub_tlv_len)) {
19497 			if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
19498 				offset += 4;
19499 				tlv_offset += 4;
19500 				break;
19501 			}
19502 			if (rgn23_data[offset] != PORT_STE_TYPE) {
19503 				offset += rgn23_data[offset + 1] * 4 + 4;
19504 				tlv_offset += rgn23_data[offset + 1] * 4 + 4;
19505 				continue;
19506 			}
19507 
19508 			/* This HBA contains PORT_STE configured */
19509 			if (!rgn23_data[offset + 2])
19510 				phba->hba_flag |= LINK_DISABLED;
19511 
19512 			goto out;
19513 		}
19514 	}
19515 
19516 out:
19517 	kfree(rgn23_data);
19518 	return;
19519 }
19520 
19521 /**
19522  * lpfc_wr_object - write an object to the firmware
19523  * @phba: HBA structure that indicates port to create a queue on.
19524  * @dmabuf_list: list of dmabufs to write to the port.
19525  * @size: the total byte value of the objects to write to the port.
19526  * @offset: the current offset to be used to start the transfer.
19527  *
19528  * This routine will create a wr_object mailbox command to send to the port.
19529  * the mailbox command will be constructed using the dma buffers described in
19530  * @dmabuf_list to create a list of BDEs. This routine will fill in as many
19531  * BDEs that the imbedded mailbox can support. The @offset variable will be
19532  * used to indicate the starting offset of the transfer and will also return
19533  * the offset after the write object mailbox has completed. @size is used to
19534  * determine the end of the object and whether the eof bit should be set.
19535  *
19536  * Return 0 is successful and offset will contain the the new offset to use
19537  * for the next write.
19538  * Return negative value for error cases.
19539  **/
19540 int
19541 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
19542 	       uint32_t size, uint32_t *offset)
19543 {
19544 	struct lpfc_mbx_wr_object *wr_object;
19545 	LPFC_MBOXQ_t *mbox;
19546 	int rc = 0, i = 0;
19547 	uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf;
19548 	uint32_t mbox_tmo;
19549 	struct lpfc_dmabuf *dmabuf;
19550 	uint32_t written = 0;
19551 	bool check_change_status = false;
19552 
19553 	mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
19554 	if (!mbox)
19555 		return -ENOMEM;
19556 
19557 	lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
19558 			LPFC_MBOX_OPCODE_WRITE_OBJECT,
19559 			sizeof(struct lpfc_mbx_wr_object) -
19560 			sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
19561 
19562 	wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
19563 	wr_object->u.request.write_offset = *offset;
19564 	sprintf((uint8_t *)wr_object->u.request.object_name, "/");
19565 	wr_object->u.request.object_name[0] =
19566 		cpu_to_le32(wr_object->u.request.object_name[0]);
19567 	bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
19568 	list_for_each_entry(dmabuf, dmabuf_list, list) {
19569 		if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
19570 			break;
19571 		wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
19572 		wr_object->u.request.bde[i].addrHigh =
19573 			putPaddrHigh(dmabuf->phys);
19574 		if (written + SLI4_PAGE_SIZE >= size) {
19575 			wr_object->u.request.bde[i].tus.f.bdeSize =
19576 				(size - written);
19577 			written += (size - written);
19578 			bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
19579 			bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1);
19580 			check_change_status = true;
19581 		} else {
19582 			wr_object->u.request.bde[i].tus.f.bdeSize =
19583 				SLI4_PAGE_SIZE;
19584 			written += SLI4_PAGE_SIZE;
19585 		}
19586 		i++;
19587 	}
19588 	wr_object->u.request.bde_count = i;
19589 	bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
19590 	if (!phba->sli4_hba.intr_enable)
19591 		rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
19592 	else {
19593 		mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
19594 		rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
19595 	}
19596 	/* The IOCTL status is embedded in the mailbox subheader. */
19597 	shdr_status = bf_get(lpfc_mbox_hdr_status,
19598 			     &wr_object->header.cfg_shdr.response);
19599 	shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
19600 				 &wr_object->header.cfg_shdr.response);
19601 	if (check_change_status) {
19602 		shdr_change_status = bf_get(lpfc_wr_object_change_status,
19603 					    &wr_object->u.response);
19604 
19605 		if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET ||
19606 		    shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) {
19607 			shdr_csf = bf_get(lpfc_wr_object_csf,
19608 					  &wr_object->u.response);
19609 			if (shdr_csf)
19610 				shdr_change_status =
19611 						   LPFC_CHANGE_STATUS_PCI_RESET;
19612 		}
19613 
19614 		switch (shdr_change_status) {
19615 		case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET):
19616 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19617 					"3198 Firmware write complete: System "
19618 					"reboot required to instantiate\n");
19619 			break;
19620 		case (LPFC_CHANGE_STATUS_FW_RESET):
19621 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19622 					"3199 Firmware write complete: Firmware"
19623 					" reset required to instantiate\n");
19624 			break;
19625 		case (LPFC_CHANGE_STATUS_PORT_MIGRATION):
19626 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19627 					"3200 Firmware write complete: Port "
19628 					"Migration or PCI Reset required to "
19629 					"instantiate\n");
19630 			break;
19631 		case (LPFC_CHANGE_STATUS_PCI_RESET):
19632 			lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
19633 					"3201 Firmware write complete: PCI "
19634 					"Reset required to instantiate\n");
19635 			break;
19636 		default:
19637 			break;
19638 		}
19639 	}
19640 	if (rc != MBX_TIMEOUT)
19641 		mempool_free(mbox, phba->mbox_mem_pool);
19642 	if (shdr_status || shdr_add_status || rc) {
19643 		lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
19644 				"3025 Write Object mailbox failed with "
19645 				"status x%x add_status x%x, mbx status x%x\n",
19646 				shdr_status, shdr_add_status, rc);
19647 		rc = -ENXIO;
19648 		*offset = shdr_add_status;
19649 	} else
19650 		*offset += wr_object->u.response.actual_write_length;
19651 	return rc;
19652 }
19653 
19654 /**
19655  * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
19656  * @vport: pointer to vport data structure.
19657  *
19658  * This function iterate through the mailboxq and clean up all REG_LOGIN
19659  * and REG_VPI mailbox commands associated with the vport. This function
19660  * is called when driver want to restart discovery of the vport due to
19661  * a Clear Virtual Link event.
19662  **/
19663 void
19664 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
19665 {
19666 	struct lpfc_hba *phba = vport->phba;
19667 	LPFC_MBOXQ_t *mb, *nextmb;
19668 	struct lpfc_dmabuf *mp;
19669 	struct lpfc_nodelist *ndlp;
19670 	struct lpfc_nodelist *act_mbx_ndlp = NULL;
19671 	struct Scsi_Host  *shost = lpfc_shost_from_vport(vport);
19672 	LIST_HEAD(mbox_cmd_list);
19673 	uint8_t restart_loop;
19674 
19675 	/* Clean up internally queued mailbox commands with the vport */
19676 	spin_lock_irq(&phba->hbalock);
19677 	list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
19678 		if (mb->vport != vport)
19679 			continue;
19680 
19681 		if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19682 			(mb->u.mb.mbxCommand != MBX_REG_VPI))
19683 			continue;
19684 
19685 		list_del(&mb->list);
19686 		list_add_tail(&mb->list, &mbox_cmd_list);
19687 	}
19688 	/* Clean up active mailbox command with the vport */
19689 	mb = phba->sli.mbox_active;
19690 	if (mb && (mb->vport == vport)) {
19691 		if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
19692 			(mb->u.mb.mbxCommand == MBX_REG_VPI))
19693 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19694 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19695 			act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19696 			/* Put reference count for delayed processing */
19697 			act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
19698 			/* Unregister the RPI when mailbox complete */
19699 			mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19700 		}
19701 	}
19702 	/* Cleanup any mailbox completions which are not yet processed */
19703 	do {
19704 		restart_loop = 0;
19705 		list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
19706 			/*
19707 			 * If this mailox is already processed or it is
19708 			 * for another vport ignore it.
19709 			 */
19710 			if ((mb->vport != vport) ||
19711 				(mb->mbox_flag & LPFC_MBX_IMED_UNREG))
19712 				continue;
19713 
19714 			if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
19715 				(mb->u.mb.mbxCommand != MBX_REG_VPI))
19716 				continue;
19717 
19718 			mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
19719 			if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19720 				ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19721 				/* Unregister the RPI when mailbox complete */
19722 				mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
19723 				restart_loop = 1;
19724 				spin_unlock_irq(&phba->hbalock);
19725 				spin_lock(shost->host_lock);
19726 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19727 				spin_unlock(shost->host_lock);
19728 				spin_lock_irq(&phba->hbalock);
19729 				break;
19730 			}
19731 		}
19732 	} while (restart_loop);
19733 
19734 	spin_unlock_irq(&phba->hbalock);
19735 
19736 	/* Release the cleaned-up mailbox commands */
19737 	while (!list_empty(&mbox_cmd_list)) {
19738 		list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
19739 		if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
19740 			mp = (struct lpfc_dmabuf *)(mb->ctx_buf);
19741 			if (mp) {
19742 				__lpfc_mbuf_free(phba, mp->virt, mp->phys);
19743 				kfree(mp);
19744 			}
19745 			mb->ctx_buf = NULL;
19746 			ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp;
19747 			mb->ctx_ndlp = NULL;
19748 			if (ndlp) {
19749 				spin_lock(shost->host_lock);
19750 				ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19751 				spin_unlock(shost->host_lock);
19752 				lpfc_nlp_put(ndlp);
19753 			}
19754 		}
19755 		mempool_free(mb, phba->mbox_mem_pool);
19756 	}
19757 
19758 	/* Release the ndlp with the cleaned-up active mailbox command */
19759 	if (act_mbx_ndlp) {
19760 		spin_lock(shost->host_lock);
19761 		act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
19762 		spin_unlock(shost->host_lock);
19763 		lpfc_nlp_put(act_mbx_ndlp);
19764 	}
19765 }
19766 
19767 /**
19768  * lpfc_drain_txq - Drain the txq
19769  * @phba: Pointer to HBA context object.
19770  *
19771  * This function attempt to submit IOCBs on the txq
19772  * to the adapter.  For SLI4 adapters, the txq contains
19773  * ELS IOCBs that have been deferred because the there
19774  * are no SGLs.  This congestion can occur with large
19775  * vport counts during node discovery.
19776  **/
19777 
19778 uint32_t
19779 lpfc_drain_txq(struct lpfc_hba *phba)
19780 {
19781 	LIST_HEAD(completions);
19782 	struct lpfc_sli_ring *pring;
19783 	struct lpfc_iocbq *piocbq = NULL;
19784 	unsigned long iflags = 0;
19785 	char *fail_msg = NULL;
19786 	struct lpfc_sglq *sglq;
19787 	union lpfc_wqe128 wqe;
19788 	uint32_t txq_cnt = 0;
19789 	struct lpfc_queue *wq;
19790 
19791 	if (phba->link_flag & LS_MDS_LOOPBACK) {
19792 		/* MDS WQE are posted only to first WQ*/
19793 		wq = phba->sli4_hba.hdwq[0].io_wq;
19794 		if (unlikely(!wq))
19795 			return 0;
19796 		pring = wq->pring;
19797 	} else {
19798 		wq = phba->sli4_hba.els_wq;
19799 		if (unlikely(!wq))
19800 			return 0;
19801 		pring = lpfc_phba_elsring(phba);
19802 	}
19803 
19804 	if (unlikely(!pring) || list_empty(&pring->txq))
19805 		return 0;
19806 
19807 	spin_lock_irqsave(&pring->ring_lock, iflags);
19808 	list_for_each_entry(piocbq, &pring->txq, list) {
19809 		txq_cnt++;
19810 	}
19811 
19812 	if (txq_cnt > pring->txq_max)
19813 		pring->txq_max = txq_cnt;
19814 
19815 	spin_unlock_irqrestore(&pring->ring_lock, iflags);
19816 
19817 	while (!list_empty(&pring->txq)) {
19818 		spin_lock_irqsave(&pring->ring_lock, iflags);
19819 
19820 		piocbq = lpfc_sli_ringtx_get(phba, pring);
19821 		if (!piocbq) {
19822 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19823 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19824 				"2823 txq empty and txq_cnt is %d\n ",
19825 				txq_cnt);
19826 			break;
19827 		}
19828 		sglq = __lpfc_sli_get_els_sglq(phba, piocbq);
19829 		if (!sglq) {
19830 			__lpfc_sli_ringtx_put(phba, pring, piocbq);
19831 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
19832 			break;
19833 		}
19834 		txq_cnt--;
19835 
19836 		/* The xri and iocb resources secured,
19837 		 * attempt to issue request
19838 		 */
19839 		piocbq->sli4_lxritag = sglq->sli4_lxritag;
19840 		piocbq->sli4_xritag = sglq->sli4_xritag;
19841 		if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
19842 			fail_msg = "to convert bpl to sgl";
19843 		else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
19844 			fail_msg = "to convert iocb to wqe";
19845 		else if (lpfc_sli4_wq_put(wq, &wqe))
19846 			fail_msg = " - Wq is full";
19847 		else
19848 			lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
19849 
19850 		if (fail_msg) {
19851 			/* Failed means we can't issue and need to cancel */
19852 			lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
19853 					"2822 IOCB failed %s iotag 0x%x "
19854 					"xri 0x%x\n",
19855 					fail_msg,
19856 					piocbq->iotag, piocbq->sli4_xritag);
19857 			list_add_tail(&piocbq->list, &completions);
19858 		}
19859 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
19860 	}
19861 
19862 	/* Cancel all the IOCBs that cannot be issued */
19863 	lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
19864 				IOERR_SLI_ABORTED);
19865 
19866 	return txq_cnt;
19867 }
19868 
19869 /**
19870  * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl.
19871  * @phba: Pointer to HBA context object.
19872  * @pwqe: Pointer to command WQE.
19873  * @sglq: Pointer to the scatter gather queue object.
19874  *
19875  * This routine converts the bpl or bde that is in the WQE
19876  * to a sgl list for the sli4 hardware. The physical address
19877  * of the bpl/bde is converted back to a virtual address.
19878  * If the WQE contains a BPL then the list of BDE's is
19879  * converted to sli4_sge's. If the WQE contains a single
19880  * BDE then it is converted to a single sli_sge.
19881  * The WQE is still in cpu endianness so the contents of
19882  * the bpl can be used without byte swapping.
19883  *
19884  * Returns valid XRI = Success, NO_XRI = Failure.
19885  */
19886 static uint16_t
19887 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq,
19888 		 struct lpfc_sglq *sglq)
19889 {
19890 	uint16_t xritag = NO_XRI;
19891 	struct ulp_bde64 *bpl = NULL;
19892 	struct ulp_bde64 bde;
19893 	struct sli4_sge *sgl  = NULL;
19894 	struct lpfc_dmabuf *dmabuf;
19895 	union lpfc_wqe128 *wqe;
19896 	int numBdes = 0;
19897 	int i = 0;
19898 	uint32_t offset = 0; /* accumulated offset in the sg request list */
19899 	int inbound = 0; /* number of sg reply entries inbound from firmware */
19900 	uint32_t cmd;
19901 
19902 	if (!pwqeq || !sglq)
19903 		return xritag;
19904 
19905 	sgl  = (struct sli4_sge *)sglq->sgl;
19906 	wqe = &pwqeq->wqe;
19907 	pwqeq->iocb.ulpIoTag = pwqeq->iotag;
19908 
19909 	cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com);
19910 	if (cmd == CMD_XMIT_BLS_RSP64_WQE)
19911 		return sglq->sli4_xritag;
19912 	numBdes = pwqeq->rsvd2;
19913 	if (numBdes) {
19914 		/* The addrHigh and addrLow fields within the WQE
19915 		 * have not been byteswapped yet so there is no
19916 		 * need to swap them back.
19917 		 */
19918 		if (pwqeq->context3)
19919 			dmabuf = (struct lpfc_dmabuf *)pwqeq->context3;
19920 		else
19921 			return xritag;
19922 
19923 		bpl  = (struct ulp_bde64 *)dmabuf->virt;
19924 		if (!bpl)
19925 			return xritag;
19926 
19927 		for (i = 0; i < numBdes; i++) {
19928 			/* Should already be byte swapped. */
19929 			sgl->addr_hi = bpl->addrHigh;
19930 			sgl->addr_lo = bpl->addrLow;
19931 
19932 			sgl->word2 = le32_to_cpu(sgl->word2);
19933 			if ((i+1) == numBdes)
19934 				bf_set(lpfc_sli4_sge_last, sgl, 1);
19935 			else
19936 				bf_set(lpfc_sli4_sge_last, sgl, 0);
19937 			/* swap the size field back to the cpu so we
19938 			 * can assign it to the sgl.
19939 			 */
19940 			bde.tus.w = le32_to_cpu(bpl->tus.w);
19941 			sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
19942 			/* The offsets in the sgl need to be accumulated
19943 			 * separately for the request and reply lists.
19944 			 * The request is always first, the reply follows.
19945 			 */
19946 			switch (cmd) {
19947 			case CMD_GEN_REQUEST64_WQE:
19948 				/* add up the reply sg entries */
19949 				if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
19950 					inbound++;
19951 				/* first inbound? reset the offset */
19952 				if (inbound == 1)
19953 					offset = 0;
19954 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19955 				bf_set(lpfc_sli4_sge_type, sgl,
19956 					LPFC_SGE_TYPE_DATA);
19957 				offset += bde.tus.f.bdeSize;
19958 				break;
19959 			case CMD_FCP_TRSP64_WQE:
19960 				bf_set(lpfc_sli4_sge_offset, sgl, 0);
19961 				bf_set(lpfc_sli4_sge_type, sgl,
19962 					LPFC_SGE_TYPE_DATA);
19963 				break;
19964 			case CMD_FCP_TSEND64_WQE:
19965 			case CMD_FCP_TRECEIVE64_WQE:
19966 				bf_set(lpfc_sli4_sge_type, sgl,
19967 					bpl->tus.f.bdeFlags);
19968 				if (i < 3)
19969 					offset = 0;
19970 				else
19971 					offset += bde.tus.f.bdeSize;
19972 				bf_set(lpfc_sli4_sge_offset, sgl, offset);
19973 				break;
19974 			}
19975 			sgl->word2 = cpu_to_le32(sgl->word2);
19976 			bpl++;
19977 			sgl++;
19978 		}
19979 	} else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) {
19980 		/* The addrHigh and addrLow fields of the BDE have not
19981 		 * been byteswapped yet so they need to be swapped
19982 		 * before putting them in the sgl.
19983 		 */
19984 		sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh);
19985 		sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow);
19986 		sgl->word2 = le32_to_cpu(sgl->word2);
19987 		bf_set(lpfc_sli4_sge_last, sgl, 1);
19988 		sgl->word2 = cpu_to_le32(sgl->word2);
19989 		sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize);
19990 	}
19991 	return sglq->sli4_xritag;
19992 }
19993 
19994 /**
19995  * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE)
19996  * @phba: Pointer to HBA context object.
19997  * @ring_number: Base sli ring number
19998  * @pwqe: Pointer to command WQE.
19999  **/
20000 int
20001 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20002 		    struct lpfc_iocbq *pwqe)
20003 {
20004 	union lpfc_wqe128 *wqe = &pwqe->wqe;
20005 	struct lpfc_async_xchg_ctx *ctxp;
20006 	struct lpfc_queue *wq;
20007 	struct lpfc_sglq *sglq;
20008 	struct lpfc_sli_ring *pring;
20009 	unsigned long iflags;
20010 	uint32_t ret = 0;
20011 
20012 	/* NVME_LS and NVME_LS ABTS requests. */
20013 	if (pwqe->iocb_flag & LPFC_IO_NVME_LS) {
20014 		pring =  phba->sli4_hba.nvmels_wq->pring;
20015 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20016 					  qp, wq_access);
20017 		sglq = __lpfc_sli_get_els_sglq(phba, pwqe);
20018 		if (!sglq) {
20019 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20020 			return WQE_BUSY;
20021 		}
20022 		pwqe->sli4_lxritag = sglq->sli4_lxritag;
20023 		pwqe->sli4_xritag = sglq->sli4_xritag;
20024 		if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) {
20025 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20026 			return WQE_ERROR;
20027 		}
20028 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20029 		       pwqe->sli4_xritag);
20030 		ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe);
20031 		if (ret) {
20032 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20033 			return ret;
20034 		}
20035 
20036 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20037 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20038 
20039 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20040 		return 0;
20041 	}
20042 
20043 	/* NVME_FCREQ and NVME_ABTS requests */
20044 	if (pwqe->iocb_flag & LPFC_IO_NVME) {
20045 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20046 		wq = qp->io_wq;
20047 		pring = wq->pring;
20048 
20049 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20050 
20051 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20052 					  qp, wq_access);
20053 		ret = lpfc_sli4_wq_put(wq, wqe);
20054 		if (ret) {
20055 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20056 			return ret;
20057 		}
20058 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20059 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20060 
20061 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20062 		return 0;
20063 	}
20064 
20065 	/* NVMET requests */
20066 	if (pwqe->iocb_flag & LPFC_IO_NVMET) {
20067 		/* Get the IO distribution (hba_wqidx) for WQ assignment. */
20068 		wq = qp->io_wq;
20069 		pring = wq->pring;
20070 
20071 		ctxp = pwqe->context2;
20072 		sglq = ctxp->ctxbuf->sglq;
20073 		if (pwqe->sli4_xritag ==  NO_XRI) {
20074 			pwqe->sli4_lxritag = sglq->sli4_lxritag;
20075 			pwqe->sli4_xritag = sglq->sli4_xritag;
20076 		}
20077 		bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com,
20078 		       pwqe->sli4_xritag);
20079 		bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map);
20080 
20081 		lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags,
20082 					  qp, wq_access);
20083 		ret = lpfc_sli4_wq_put(wq, wqe);
20084 		if (ret) {
20085 			spin_unlock_irqrestore(&pring->ring_lock, iflags);
20086 			return ret;
20087 		}
20088 		lpfc_sli_ringtxcmpl_put(phba, pring, pwqe);
20089 		spin_unlock_irqrestore(&pring->ring_lock, iflags);
20090 
20091 		lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH);
20092 		return 0;
20093 	}
20094 	return WQE_ERROR;
20095 }
20096 
20097 #ifdef LPFC_MXP_STAT
20098 /**
20099  * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count
20100  * @phba: pointer to lpfc hba data structure.
20101  * @hwqid: belong to which HWQ.
20102  *
20103  * The purpose of this routine is to take a snapshot of pbl, pvt and busy count
20104  * 15 seconds after a test case is running.
20105  *
20106  * The user should call lpfc_debugfs_multixripools_write before running a test
20107  * case to clear stat_snapshot_taken. Then the user starts a test case. During
20108  * test case is running, stat_snapshot_taken is incremented by 1 every time when
20109  * this routine is called from heartbeat timer. When stat_snapshot_taken is
20110  * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken.
20111  **/
20112 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid)
20113 {
20114 	struct lpfc_sli4_hdw_queue *qp;
20115 	struct lpfc_multixri_pool *multixri_pool;
20116 	struct lpfc_pvt_pool *pvt_pool;
20117 	struct lpfc_pbl_pool *pbl_pool;
20118 	u32 txcmplq_cnt;
20119 
20120 	qp = &phba->sli4_hba.hdwq[hwqid];
20121 	multixri_pool = qp->p_multixri_pool;
20122 	if (!multixri_pool)
20123 		return;
20124 
20125 	if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) {
20126 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20127 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20128 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20129 
20130 		multixri_pool->stat_pbl_count = pbl_pool->count;
20131 		multixri_pool->stat_pvt_count = pvt_pool->count;
20132 		multixri_pool->stat_busy_count = txcmplq_cnt;
20133 	}
20134 
20135 	multixri_pool->stat_snapshot_taken++;
20136 }
20137 #endif
20138 
20139 /**
20140  * lpfc_adjust_pvt_pool_count - Adjust private pool count
20141  * @phba: pointer to lpfc hba data structure.
20142  * @hwqid: belong to which HWQ.
20143  *
20144  * This routine moves some XRIs from private to public pool when private pool
20145  * is not busy.
20146  **/
20147 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid)
20148 {
20149 	struct lpfc_multixri_pool *multixri_pool;
20150 	u32 io_req_count;
20151 	u32 prev_io_req_count;
20152 
20153 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20154 	if (!multixri_pool)
20155 		return;
20156 	io_req_count = multixri_pool->io_req_count;
20157 	prev_io_req_count = multixri_pool->prev_io_req_count;
20158 
20159 	if (prev_io_req_count != io_req_count) {
20160 		/* Private pool is busy */
20161 		multixri_pool->prev_io_req_count = io_req_count;
20162 	} else {
20163 		/* Private pool is not busy.
20164 		 * Move XRIs from private to public pool.
20165 		 */
20166 		lpfc_move_xri_pvt_to_pbl(phba, hwqid);
20167 	}
20168 }
20169 
20170 /**
20171  * lpfc_adjust_high_watermark - Adjust high watermark
20172  * @phba: pointer to lpfc hba data structure.
20173  * @hwqid: belong to which HWQ.
20174  *
20175  * This routine sets high watermark as number of outstanding XRIs,
20176  * but make sure the new value is between xri_limit/2 and xri_limit.
20177  **/
20178 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid)
20179 {
20180 	u32 new_watermark;
20181 	u32 watermark_max;
20182 	u32 watermark_min;
20183 	u32 xri_limit;
20184 	u32 txcmplq_cnt;
20185 	u32 abts_io_bufs;
20186 	struct lpfc_multixri_pool *multixri_pool;
20187 	struct lpfc_sli4_hdw_queue *qp;
20188 
20189 	qp = &phba->sli4_hba.hdwq[hwqid];
20190 	multixri_pool = qp->p_multixri_pool;
20191 	if (!multixri_pool)
20192 		return;
20193 	xri_limit = multixri_pool->xri_limit;
20194 
20195 	watermark_max = xri_limit;
20196 	watermark_min = xri_limit / 2;
20197 
20198 	txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20199 	abts_io_bufs = qp->abts_scsi_io_bufs;
20200 	abts_io_bufs += qp->abts_nvme_io_bufs;
20201 
20202 	new_watermark = txcmplq_cnt + abts_io_bufs;
20203 	new_watermark = min(watermark_max, new_watermark);
20204 	new_watermark = max(watermark_min, new_watermark);
20205 	multixri_pool->pvt_pool.high_watermark = new_watermark;
20206 
20207 #ifdef LPFC_MXP_STAT
20208 	multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm,
20209 					  new_watermark);
20210 #endif
20211 }
20212 
20213 /**
20214  * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool
20215  * @phba: pointer to lpfc hba data structure.
20216  * @hwqid: belong to which HWQ.
20217  *
20218  * This routine is called from hearbeat timer when pvt_pool is idle.
20219  * All free XRIs are moved from private to public pool on hwqid with 2 steps.
20220  * The first step moves (all - low_watermark) amount of XRIs.
20221  * The second step moves the rest of XRIs.
20222  **/
20223 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid)
20224 {
20225 	struct lpfc_pbl_pool *pbl_pool;
20226 	struct lpfc_pvt_pool *pvt_pool;
20227 	struct lpfc_sli4_hdw_queue *qp;
20228 	struct lpfc_io_buf *lpfc_ncmd;
20229 	struct lpfc_io_buf *lpfc_ncmd_next;
20230 	unsigned long iflag;
20231 	struct list_head tmp_list;
20232 	u32 tmp_count;
20233 
20234 	qp = &phba->sli4_hba.hdwq[hwqid];
20235 	pbl_pool = &qp->p_multixri_pool->pbl_pool;
20236 	pvt_pool = &qp->p_multixri_pool->pvt_pool;
20237 	tmp_count = 0;
20238 
20239 	lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool);
20240 	lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool);
20241 
20242 	if (pvt_pool->count > pvt_pool->low_watermark) {
20243 		/* Step 1: move (all - low_watermark) from pvt_pool
20244 		 * to pbl_pool
20245 		 */
20246 
20247 		/* Move low watermark of bufs from pvt_pool to tmp_list */
20248 		INIT_LIST_HEAD(&tmp_list);
20249 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20250 					 &pvt_pool->list, list) {
20251 			list_move_tail(&lpfc_ncmd->list, &tmp_list);
20252 			tmp_count++;
20253 			if (tmp_count >= pvt_pool->low_watermark)
20254 				break;
20255 		}
20256 
20257 		/* Move all bufs from pvt_pool to pbl_pool */
20258 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20259 
20260 		/* Move all bufs from tmp_list to pvt_pool */
20261 		list_splice(&tmp_list, &pvt_pool->list);
20262 
20263 		pbl_pool->count += (pvt_pool->count - tmp_count);
20264 		pvt_pool->count = tmp_count;
20265 	} else {
20266 		/* Step 2: move the rest from pvt_pool to pbl_pool */
20267 		list_splice_init(&pvt_pool->list, &pbl_pool->list);
20268 		pbl_pool->count += pvt_pool->count;
20269 		pvt_pool->count = 0;
20270 	}
20271 
20272 	spin_unlock(&pvt_pool->lock);
20273 	spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20274 }
20275 
20276 /**
20277  * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20278  * @phba: pointer to lpfc hba data structure
20279  * @pbl_pool: specified public free XRI pool
20280  * @pvt_pool: specified private free XRI pool
20281  * @count: number of XRIs to move
20282  *
20283  * This routine tries to move some free common bufs from the specified pbl_pool
20284  * to the specified pvt_pool. It might move less than count XRIs if there's not
20285  * enough in public pool.
20286  *
20287  * Return:
20288  *   true - if XRIs are successfully moved from the specified pbl_pool to the
20289  *          specified pvt_pool
20290  *   false - if the specified pbl_pool is empty or locked by someone else
20291  **/
20292 static bool
20293 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp,
20294 			  struct lpfc_pbl_pool *pbl_pool,
20295 			  struct lpfc_pvt_pool *pvt_pool, u32 count)
20296 {
20297 	struct lpfc_io_buf *lpfc_ncmd;
20298 	struct lpfc_io_buf *lpfc_ncmd_next;
20299 	unsigned long iflag;
20300 	int ret;
20301 
20302 	ret = spin_trylock_irqsave(&pbl_pool->lock, iflag);
20303 	if (ret) {
20304 		if (pbl_pool->count) {
20305 			/* Move a batch of XRIs from public to private pool */
20306 			lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool);
20307 			list_for_each_entry_safe(lpfc_ncmd,
20308 						 lpfc_ncmd_next,
20309 						 &pbl_pool->list,
20310 						 list) {
20311 				list_move_tail(&lpfc_ncmd->list,
20312 					       &pvt_pool->list);
20313 				pvt_pool->count++;
20314 				pbl_pool->count--;
20315 				count--;
20316 				if (count == 0)
20317 					break;
20318 			}
20319 
20320 			spin_unlock(&pvt_pool->lock);
20321 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20322 			return true;
20323 		}
20324 		spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20325 	}
20326 
20327 	return false;
20328 }
20329 
20330 /**
20331  * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool
20332  * @phba: pointer to lpfc hba data structure.
20333  * @hwqid: belong to which HWQ.
20334  * @count: number of XRIs to move
20335  *
20336  * This routine tries to find some free common bufs in one of public pools with
20337  * Round Robin method. The search always starts from local hwqid, then the next
20338  * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found,
20339  * a batch of free common bufs are moved to private pool on hwqid.
20340  * It might move less than count XRIs if there's not enough in public pool.
20341  **/
20342 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count)
20343 {
20344 	struct lpfc_multixri_pool *multixri_pool;
20345 	struct lpfc_multixri_pool *next_multixri_pool;
20346 	struct lpfc_pvt_pool *pvt_pool;
20347 	struct lpfc_pbl_pool *pbl_pool;
20348 	struct lpfc_sli4_hdw_queue *qp;
20349 	u32 next_hwqid;
20350 	u32 hwq_count;
20351 	int ret;
20352 
20353 	qp = &phba->sli4_hba.hdwq[hwqid];
20354 	multixri_pool = qp->p_multixri_pool;
20355 	pvt_pool = &multixri_pool->pvt_pool;
20356 	pbl_pool = &multixri_pool->pbl_pool;
20357 
20358 	/* Check if local pbl_pool is available */
20359 	ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count);
20360 	if (ret) {
20361 #ifdef LPFC_MXP_STAT
20362 		multixri_pool->local_pbl_hit_count++;
20363 #endif
20364 		return;
20365 	}
20366 
20367 	hwq_count = phba->cfg_hdw_queue;
20368 
20369 	/* Get the next hwqid which was found last time */
20370 	next_hwqid = multixri_pool->rrb_next_hwqid;
20371 
20372 	do {
20373 		/* Go to next hwq */
20374 		next_hwqid = (next_hwqid + 1) % hwq_count;
20375 
20376 		next_multixri_pool =
20377 			phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool;
20378 		pbl_pool = &next_multixri_pool->pbl_pool;
20379 
20380 		/* Check if the public free xri pool is available */
20381 		ret = _lpfc_move_xri_pbl_to_pvt(
20382 			phba, qp, pbl_pool, pvt_pool, count);
20383 
20384 		/* Exit while-loop if success or all hwqid are checked */
20385 	} while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid);
20386 
20387 	/* Starting point for the next time */
20388 	multixri_pool->rrb_next_hwqid = next_hwqid;
20389 
20390 	if (!ret) {
20391 		/* stats: all public pools are empty*/
20392 		multixri_pool->pbl_empty_count++;
20393 	}
20394 
20395 #ifdef LPFC_MXP_STAT
20396 	if (ret) {
20397 		if (next_hwqid == hwqid)
20398 			multixri_pool->local_pbl_hit_count++;
20399 		else
20400 			multixri_pool->other_pbl_hit_count++;
20401 	}
20402 #endif
20403 }
20404 
20405 /**
20406  * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark
20407  * @phba: pointer to lpfc hba data structure.
20408  * @qp: belong to which HWQ.
20409  *
20410  * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than
20411  * low watermark.
20412  **/
20413 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid)
20414 {
20415 	struct lpfc_multixri_pool *multixri_pool;
20416 	struct lpfc_pvt_pool *pvt_pool;
20417 
20418 	multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool;
20419 	pvt_pool = &multixri_pool->pvt_pool;
20420 
20421 	if (pvt_pool->count < pvt_pool->low_watermark)
20422 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20423 }
20424 
20425 /**
20426  * lpfc_release_io_buf - Return one IO buf back to free pool
20427  * @phba: pointer to lpfc hba data structure.
20428  * @lpfc_ncmd: IO buf to be returned.
20429  * @qp: belong to which HWQ.
20430  *
20431  * This routine returns one IO buf back to free pool. If this is an urgent IO,
20432  * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1,
20433  * the IO buf is returned to pbl_pool or pvt_pool based on watermark and
20434  * xri_limit.  If cfg_xri_rebalancing==0, the IO buf is returned to
20435  * lpfc_io_buf_list_put.
20436  **/
20437 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd,
20438 			 struct lpfc_sli4_hdw_queue *qp)
20439 {
20440 	unsigned long iflag;
20441 	struct lpfc_pbl_pool *pbl_pool;
20442 	struct lpfc_pvt_pool *pvt_pool;
20443 	struct lpfc_epd_pool *epd_pool;
20444 	u32 txcmplq_cnt;
20445 	u32 xri_owned;
20446 	u32 xri_limit;
20447 	u32 abts_io_bufs;
20448 
20449 	/* MUST zero fields if buffer is reused by another protocol */
20450 	lpfc_ncmd->nvmeCmd = NULL;
20451 	lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL;
20452 	lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL;
20453 
20454 	if (phba->cfg_xpsgl && !phba->nvmet_support &&
20455 	    !list_empty(&lpfc_ncmd->dma_sgl_xtra_list))
20456 		lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd);
20457 
20458 	if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list))
20459 		lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd);
20460 
20461 	if (phba->cfg_xri_rebalancing) {
20462 		if (lpfc_ncmd->expedite) {
20463 			/* Return to expedite pool */
20464 			epd_pool = &phba->epd_pool;
20465 			spin_lock_irqsave(&epd_pool->lock, iflag);
20466 			list_add_tail(&lpfc_ncmd->list, &epd_pool->list);
20467 			epd_pool->count++;
20468 			spin_unlock_irqrestore(&epd_pool->lock, iflag);
20469 			return;
20470 		}
20471 
20472 		/* Avoid invalid access if an IO sneaks in and is being rejected
20473 		 * just _after_ xri pools are destroyed in lpfc_offline.
20474 		 * Nothing much can be done at this point.
20475 		 */
20476 		if (!qp->p_multixri_pool)
20477 			return;
20478 
20479 		pbl_pool = &qp->p_multixri_pool->pbl_pool;
20480 		pvt_pool = &qp->p_multixri_pool->pvt_pool;
20481 
20482 		txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt;
20483 		abts_io_bufs = qp->abts_scsi_io_bufs;
20484 		abts_io_bufs += qp->abts_nvme_io_bufs;
20485 
20486 		xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs;
20487 		xri_limit = qp->p_multixri_pool->xri_limit;
20488 
20489 #ifdef LPFC_MXP_STAT
20490 		if (xri_owned <= xri_limit)
20491 			qp->p_multixri_pool->below_limit_count++;
20492 		else
20493 			qp->p_multixri_pool->above_limit_count++;
20494 #endif
20495 
20496 		/* XRI goes to either public or private free xri pool
20497 		 *     based on watermark and xri_limit
20498 		 */
20499 		if ((pvt_pool->count < pvt_pool->low_watermark) ||
20500 		    (xri_owned < xri_limit &&
20501 		     pvt_pool->count < pvt_pool->high_watermark)) {
20502 			lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag,
20503 						  qp, free_pvt_pool);
20504 			list_add_tail(&lpfc_ncmd->list,
20505 				      &pvt_pool->list);
20506 			pvt_pool->count++;
20507 			spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20508 		} else {
20509 			lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag,
20510 						  qp, free_pub_pool);
20511 			list_add_tail(&lpfc_ncmd->list,
20512 				      &pbl_pool->list);
20513 			pbl_pool->count++;
20514 			spin_unlock_irqrestore(&pbl_pool->lock, iflag);
20515 		}
20516 	} else {
20517 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag,
20518 					  qp, free_xri);
20519 		list_add_tail(&lpfc_ncmd->list,
20520 			      &qp->lpfc_io_buf_list_put);
20521 		qp->put_io_bufs++;
20522 		spin_unlock_irqrestore(&qp->io_buf_list_put_lock,
20523 				       iflag);
20524 	}
20525 }
20526 
20527 /**
20528  * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool
20529  * @phba: pointer to lpfc hba data structure.
20530  * @pvt_pool: pointer to private pool data structure.
20531  * @ndlp: pointer to lpfc nodelist data structure.
20532  *
20533  * This routine tries to get one free IO buf from private pool.
20534  *
20535  * Return:
20536  *   pointer to one free IO buf - if private pool is not empty
20537  *   NULL - if private pool is empty
20538  **/
20539 static struct lpfc_io_buf *
20540 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba,
20541 				  struct lpfc_sli4_hdw_queue *qp,
20542 				  struct lpfc_pvt_pool *pvt_pool,
20543 				  struct lpfc_nodelist *ndlp)
20544 {
20545 	struct lpfc_io_buf *lpfc_ncmd;
20546 	struct lpfc_io_buf *lpfc_ncmd_next;
20547 	unsigned long iflag;
20548 
20549 	lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool);
20550 	list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20551 				 &pvt_pool->list, list) {
20552 		if (lpfc_test_rrq_active(
20553 			phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag))
20554 			continue;
20555 		list_del(&lpfc_ncmd->list);
20556 		pvt_pool->count--;
20557 		spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20558 		return lpfc_ncmd;
20559 	}
20560 	spin_unlock_irqrestore(&pvt_pool->lock, iflag);
20561 
20562 	return NULL;
20563 }
20564 
20565 /**
20566  * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool
20567  * @phba: pointer to lpfc hba data structure.
20568  *
20569  * This routine tries to get one free IO buf from expedite pool.
20570  *
20571  * Return:
20572  *   pointer to one free IO buf - if expedite pool is not empty
20573  *   NULL - if expedite pool is empty
20574  **/
20575 static struct lpfc_io_buf *
20576 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba)
20577 {
20578 	struct lpfc_io_buf *lpfc_ncmd;
20579 	struct lpfc_io_buf *lpfc_ncmd_next;
20580 	unsigned long iflag;
20581 	struct lpfc_epd_pool *epd_pool;
20582 
20583 	epd_pool = &phba->epd_pool;
20584 	lpfc_ncmd = NULL;
20585 
20586 	spin_lock_irqsave(&epd_pool->lock, iflag);
20587 	if (epd_pool->count > 0) {
20588 		list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next,
20589 					 &epd_pool->list, list) {
20590 			list_del(&lpfc_ncmd->list);
20591 			epd_pool->count--;
20592 			break;
20593 		}
20594 	}
20595 	spin_unlock_irqrestore(&epd_pool->lock, iflag);
20596 
20597 	return lpfc_ncmd;
20598 }
20599 
20600 /**
20601  * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs
20602  * @phba: pointer to lpfc hba data structure.
20603  * @ndlp: pointer to lpfc nodelist data structure.
20604  * @hwqid: belong to which HWQ
20605  * @expedite: 1 means this request is urgent.
20606  *
20607  * This routine will do the following actions and then return a pointer to
20608  * one free IO buf.
20609  *
20610  * 1. If private free xri count is empty, move some XRIs from public to
20611  *    private pool.
20612  * 2. Get one XRI from private free xri pool.
20613  * 3. If we fail to get one from pvt_pool and this is an expedite request,
20614  *    get one free xri from expedite pool.
20615  *
20616  * Note: ndlp is only used on SCSI side for RRQ testing.
20617  *       The caller should pass NULL for ndlp on NVME side.
20618  *
20619  * Return:
20620  *   pointer to one free IO buf - if private pool is not empty
20621  *   NULL - if private pool is empty
20622  **/
20623 static struct lpfc_io_buf *
20624 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba,
20625 				    struct lpfc_nodelist *ndlp,
20626 				    int hwqid, int expedite)
20627 {
20628 	struct lpfc_sli4_hdw_queue *qp;
20629 	struct lpfc_multixri_pool *multixri_pool;
20630 	struct lpfc_pvt_pool *pvt_pool;
20631 	struct lpfc_io_buf *lpfc_ncmd;
20632 
20633 	qp = &phba->sli4_hba.hdwq[hwqid];
20634 	lpfc_ncmd = NULL;
20635 	multixri_pool = qp->p_multixri_pool;
20636 	pvt_pool = &multixri_pool->pvt_pool;
20637 	multixri_pool->io_req_count++;
20638 
20639 	/* If pvt_pool is empty, move some XRIs from public to private pool */
20640 	if (pvt_pool->count == 0)
20641 		lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH);
20642 
20643 	/* Get one XRI from private free xri pool */
20644 	lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp);
20645 
20646 	if (lpfc_ncmd) {
20647 		lpfc_ncmd->hdwq = qp;
20648 		lpfc_ncmd->hdwq_no = hwqid;
20649 	} else if (expedite) {
20650 		/* If we fail to get one from pvt_pool and this is an expedite
20651 		 * request, get one free xri from expedite pool.
20652 		 */
20653 		lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba);
20654 	}
20655 
20656 	return lpfc_ncmd;
20657 }
20658 
20659 static inline struct lpfc_io_buf *
20660 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx)
20661 {
20662 	struct lpfc_sli4_hdw_queue *qp;
20663 	struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next;
20664 
20665 	qp = &phba->sli4_hba.hdwq[idx];
20666 	list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next,
20667 				 &qp->lpfc_io_buf_list_get, list) {
20668 		if (lpfc_test_rrq_active(phba, ndlp,
20669 					 lpfc_cmd->cur_iocbq.sli4_lxritag))
20670 			continue;
20671 
20672 		if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED)
20673 			continue;
20674 
20675 		list_del_init(&lpfc_cmd->list);
20676 		qp->get_io_bufs--;
20677 		lpfc_cmd->hdwq = qp;
20678 		lpfc_cmd->hdwq_no = idx;
20679 		return lpfc_cmd;
20680 	}
20681 	return NULL;
20682 }
20683 
20684 /**
20685  * lpfc_get_io_buf - Get one IO buffer from free pool
20686  * @phba: The HBA for which this call is being executed.
20687  * @ndlp: pointer to lpfc nodelist data structure.
20688  * @hwqid: belong to which HWQ
20689  * @expedite: 1 means this request is urgent.
20690  *
20691  * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1,
20692  * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes
20693  * a IO buffer from head of @hdwq io_buf_list and returns to caller.
20694  *
20695  * Note: ndlp is only used on SCSI side for RRQ testing.
20696  *       The caller should pass NULL for ndlp on NVME side.
20697  *
20698  * Return codes:
20699  *   NULL - Error
20700  *   Pointer to lpfc_io_buf - Success
20701  **/
20702 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba,
20703 				    struct lpfc_nodelist *ndlp,
20704 				    u32 hwqid, int expedite)
20705 {
20706 	struct lpfc_sli4_hdw_queue *qp;
20707 	unsigned long iflag;
20708 	struct lpfc_io_buf *lpfc_cmd;
20709 
20710 	qp = &phba->sli4_hba.hdwq[hwqid];
20711 	lpfc_cmd = NULL;
20712 
20713 	if (phba->cfg_xri_rebalancing)
20714 		lpfc_cmd = lpfc_get_io_buf_from_multixri_pools(
20715 			phba, ndlp, hwqid, expedite);
20716 	else {
20717 		lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag,
20718 					  qp, alloc_xri_get);
20719 		if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite)
20720 			lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20721 		if (!lpfc_cmd) {
20722 			lpfc_qp_spin_lock(&qp->io_buf_list_put_lock,
20723 					  qp, alloc_xri_put);
20724 			list_splice(&qp->lpfc_io_buf_list_put,
20725 				    &qp->lpfc_io_buf_list_get);
20726 			qp->get_io_bufs += qp->put_io_bufs;
20727 			INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put);
20728 			qp->put_io_bufs = 0;
20729 			spin_unlock(&qp->io_buf_list_put_lock);
20730 			if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT ||
20731 			    expedite)
20732 				lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid);
20733 		}
20734 		spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag);
20735 	}
20736 
20737 	return lpfc_cmd;
20738 }
20739 
20740 /**
20741  * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool
20742  * @phba: The HBA for which this call is being executed.
20743  * @lpfc_buf: IO buf structure to append the SGL chunk
20744  *
20745  * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool,
20746  * and will allocate an SGL chunk if the pool is empty.
20747  *
20748  * Return codes:
20749  *   NULL - Error
20750  *   Pointer to sli4_hybrid_sgl - Success
20751  **/
20752 struct sli4_hybrid_sgl *
20753 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20754 {
20755 	struct sli4_hybrid_sgl *list_entry = NULL;
20756 	struct sli4_hybrid_sgl *tmp = NULL;
20757 	struct sli4_hybrid_sgl *allocated_sgl = NULL;
20758 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20759 	struct list_head *buf_list = &hdwq->sgl_list;
20760 	unsigned long iflags;
20761 
20762 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20763 
20764 	if (likely(!list_empty(buf_list))) {
20765 		/* break off 1 chunk from the sgl_list */
20766 		list_for_each_entry_safe(list_entry, tmp,
20767 					 buf_list, list_node) {
20768 			list_move_tail(&list_entry->list_node,
20769 				       &lpfc_buf->dma_sgl_xtra_list);
20770 			break;
20771 		}
20772 	} else {
20773 		/* allocate more */
20774 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20775 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20776 				   cpu_to_node(hdwq->io_wq->chann));
20777 		if (!tmp) {
20778 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20779 					"8353 error kmalloc memory for HDWQ "
20780 					"%d %s\n",
20781 					lpfc_buf->hdwq_no, __func__);
20782 			return NULL;
20783 		}
20784 
20785 		tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool,
20786 					      GFP_ATOMIC, &tmp->dma_phys_sgl);
20787 		if (!tmp->dma_sgl) {
20788 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20789 					"8354 error pool_alloc memory for HDWQ "
20790 					"%d %s\n",
20791 					lpfc_buf->hdwq_no, __func__);
20792 			kfree(tmp);
20793 			return NULL;
20794 		}
20795 
20796 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20797 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list);
20798 	}
20799 
20800 	allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list,
20801 					struct sli4_hybrid_sgl,
20802 					list_node);
20803 
20804 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20805 
20806 	return allocated_sgl;
20807 }
20808 
20809 /**
20810  * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool
20811  * @phba: The HBA for which this call is being executed.
20812  * @lpfc_buf: IO buf structure with the SGL chunk
20813  *
20814  * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool.
20815  *
20816  * Return codes:
20817  *   0 - Success
20818  *   -EINVAL - Error
20819  **/
20820 int
20821 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf)
20822 {
20823 	int rc = 0;
20824 	struct sli4_hybrid_sgl *list_entry = NULL;
20825 	struct sli4_hybrid_sgl *tmp = NULL;
20826 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20827 	struct list_head *buf_list = &hdwq->sgl_list;
20828 	unsigned long iflags;
20829 
20830 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20831 
20832 	if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) {
20833 		list_for_each_entry_safe(list_entry, tmp,
20834 					 &lpfc_buf->dma_sgl_xtra_list,
20835 					 list_node) {
20836 			list_move_tail(&list_entry->list_node,
20837 				       buf_list);
20838 		}
20839 	} else {
20840 		rc = -EINVAL;
20841 	}
20842 
20843 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20844 	return rc;
20845 }
20846 
20847 /**
20848  * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool
20849  * @phba: phba object
20850  * @hdwq: hdwq to cleanup sgl buff resources on
20851  *
20852  * This routine frees all SGL chunks of hdwq SGL chunk pool.
20853  *
20854  * Return codes:
20855  *   None
20856  **/
20857 void
20858 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba,
20859 		       struct lpfc_sli4_hdw_queue *hdwq)
20860 {
20861 	struct list_head *buf_list = &hdwq->sgl_list;
20862 	struct sli4_hybrid_sgl *list_entry = NULL;
20863 	struct sli4_hybrid_sgl *tmp = NULL;
20864 	unsigned long iflags;
20865 
20866 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20867 
20868 	/* Free sgl pool */
20869 	list_for_each_entry_safe(list_entry, tmp,
20870 				 buf_list, list_node) {
20871 		dma_pool_free(phba->lpfc_sg_dma_buf_pool,
20872 			      list_entry->dma_sgl,
20873 			      list_entry->dma_phys_sgl);
20874 		list_del(&list_entry->list_node);
20875 		kfree(list_entry);
20876 	}
20877 
20878 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20879 }
20880 
20881 /**
20882  * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq
20883  * @phba: The HBA for which this call is being executed.
20884  * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer
20885  *
20886  * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool,
20887  * and will allocate an CMD/RSP buffer if the pool is empty.
20888  *
20889  * Return codes:
20890  *   NULL - Error
20891  *   Pointer to fcp_cmd_rsp_buf - Success
20892  **/
20893 struct fcp_cmd_rsp_buf *
20894 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20895 			      struct lpfc_io_buf *lpfc_buf)
20896 {
20897 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20898 	struct fcp_cmd_rsp_buf *tmp = NULL;
20899 	struct fcp_cmd_rsp_buf *allocated_buf = NULL;
20900 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20901 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20902 	unsigned long iflags;
20903 
20904 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20905 
20906 	if (likely(!list_empty(buf_list))) {
20907 		/* break off 1 chunk from the list */
20908 		list_for_each_entry_safe(list_entry, tmp,
20909 					 buf_list,
20910 					 list_node) {
20911 			list_move_tail(&list_entry->list_node,
20912 				       &lpfc_buf->dma_cmd_rsp_list);
20913 			break;
20914 		}
20915 	} else {
20916 		/* allocate more */
20917 		spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20918 		tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC,
20919 				   cpu_to_node(hdwq->io_wq->chann));
20920 		if (!tmp) {
20921 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20922 					"8355 error kmalloc memory for HDWQ "
20923 					"%d %s\n",
20924 					lpfc_buf->hdwq_no, __func__);
20925 			return NULL;
20926 		}
20927 
20928 		tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool,
20929 						GFP_ATOMIC,
20930 						&tmp->fcp_cmd_rsp_dma_handle);
20931 
20932 		if (!tmp->fcp_cmnd) {
20933 			lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
20934 					"8356 error pool_alloc memory for HDWQ "
20935 					"%d %s\n",
20936 					lpfc_buf->hdwq_no, __func__);
20937 			kfree(tmp);
20938 			return NULL;
20939 		}
20940 
20941 		tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd +
20942 				sizeof(struct fcp_cmnd));
20943 
20944 		spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20945 		list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list);
20946 	}
20947 
20948 	allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list,
20949 					struct fcp_cmd_rsp_buf,
20950 					list_node);
20951 
20952 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20953 
20954 	return allocated_buf;
20955 }
20956 
20957 /**
20958  * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool
20959  * @phba: The HBA for which this call is being executed.
20960  * @lpfc_buf: IO buf structure with the CMD/RSP buf
20961  *
20962  * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool.
20963  *
20964  * Return codes:
20965  *   0 - Success
20966  *   -EINVAL - Error
20967  **/
20968 int
20969 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
20970 			      struct lpfc_io_buf *lpfc_buf)
20971 {
20972 	int rc = 0;
20973 	struct fcp_cmd_rsp_buf *list_entry = NULL;
20974 	struct fcp_cmd_rsp_buf *tmp = NULL;
20975 	struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq;
20976 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
20977 	unsigned long iflags;
20978 
20979 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
20980 
20981 	if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) {
20982 		list_for_each_entry_safe(list_entry, tmp,
20983 					 &lpfc_buf->dma_cmd_rsp_list,
20984 					 list_node) {
20985 			list_move_tail(&list_entry->list_node,
20986 				       buf_list);
20987 		}
20988 	} else {
20989 		rc = -EINVAL;
20990 	}
20991 
20992 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
20993 	return rc;
20994 }
20995 
20996 /**
20997  * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool
20998  * @phba: phba object
20999  * @hdwq: hdwq to cleanup cmd rsp buff resources on
21000  *
21001  * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool.
21002  *
21003  * Return codes:
21004  *   None
21005  **/
21006 void
21007 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba,
21008 			       struct lpfc_sli4_hdw_queue *hdwq)
21009 {
21010 	struct list_head *buf_list = &hdwq->cmd_rsp_buf_list;
21011 	struct fcp_cmd_rsp_buf *list_entry = NULL;
21012 	struct fcp_cmd_rsp_buf *tmp = NULL;
21013 	unsigned long iflags;
21014 
21015 	spin_lock_irqsave(&hdwq->hdwq_lock, iflags);
21016 
21017 	/* Free cmd_rsp buf pool */
21018 	list_for_each_entry_safe(list_entry, tmp,
21019 				 buf_list,
21020 				 list_node) {
21021 		dma_pool_free(phba->lpfc_cmd_rsp_buf_pool,
21022 			      list_entry->fcp_cmnd,
21023 			      list_entry->fcp_cmd_rsp_dma_handle);
21024 		list_del(&list_entry->list_node);
21025 		kfree(list_entry);
21026 	}
21027 
21028 	spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags);
21029 }
21030