1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 73 struct lpfc_iocbq *); 74 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 75 struct hbq_dmabuf *); 76 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 77 struct hbq_dmabuf *dmabuf); 78 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 79 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 80 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 81 int); 82 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 83 struct lpfc_queue *eq, 84 struct lpfc_eqe *eqe); 85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 87 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 88 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 89 struct lpfc_queue *cq, 90 struct lpfc_cqe *cqe); 91 92 static IOCB_t * 93 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 94 { 95 return &iocbq->iocb; 96 } 97 98 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 99 /** 100 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 101 * @srcp: Source memory pointer. 102 * @destp: Destination memory pointer. 103 * @cnt: Number of words required to be copied. 104 * Must be a multiple of sizeof(uint64_t) 105 * 106 * This function is used for copying data between driver memory 107 * and the SLI WQ. This function also changes the endianness 108 * of each word if native endianness is different from SLI 109 * endianness. This function can be called with or without 110 * lock. 111 **/ 112 static void 113 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 114 { 115 uint64_t *src = srcp; 116 uint64_t *dest = destp; 117 int i; 118 119 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 120 *dest++ = *src++; 121 } 122 #else 123 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 124 #endif 125 126 /** 127 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 128 * @q: The Work Queue to operate on. 129 * @wqe: The work Queue Entry to put on the Work queue. 130 * 131 * This routine will copy the contents of @wqe to the next available entry on 132 * the @q. This function will then ring the Work Queue Doorbell to signal the 133 * HBA to start processing the Work Queue Entry. This function returns 0 if 134 * successful. If no entries are available on @q then this function will return 135 * -ENOMEM. 136 * The caller is expected to hold the hbalock when calling this routine. 137 **/ 138 static int 139 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 140 { 141 union lpfc_wqe *temp_wqe; 142 struct lpfc_register doorbell; 143 uint32_t host_index; 144 uint32_t idx; 145 uint32_t i = 0; 146 uint8_t *tmp; 147 u32 if_type; 148 149 /* sanity check on queue memory */ 150 if (unlikely(!q)) 151 return -ENOMEM; 152 temp_wqe = lpfc_sli4_qe(q, q->host_index); 153 154 /* If the host has not yet processed the next entry then we are done */ 155 idx = ((q->host_index + 1) % q->entry_count); 156 if (idx == q->hba_index) { 157 q->WQ_overflow++; 158 return -EBUSY; 159 } 160 q->WQ_posted++; 161 /* set consumption flag every once in a while */ 162 if (!((q->host_index + 1) % q->notify_interval)) 163 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 164 else 165 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 166 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 167 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 168 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 169 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 170 /* write to DPP aperture taking advatage of Combined Writes */ 171 tmp = (uint8_t *)temp_wqe; 172 #ifdef __raw_writeq 173 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 174 __raw_writeq(*((uint64_t *)(tmp + i)), 175 q->dpp_regaddr + i); 176 #else 177 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 178 __raw_writel(*((uint32_t *)(tmp + i)), 179 q->dpp_regaddr + i); 180 #endif 181 } 182 /* ensure WQE bcopy and DPP flushed before doorbell write */ 183 wmb(); 184 185 /* Update the host index before invoking device */ 186 host_index = q->host_index; 187 188 q->host_index = idx; 189 190 /* Ring Doorbell */ 191 doorbell.word0 = 0; 192 if (q->db_format == LPFC_DB_LIST_FORMAT) { 193 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 194 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 195 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 197 q->dpp_id); 198 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 199 q->queue_id); 200 } else { 201 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 202 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 203 204 /* Leave bits <23:16> clear for if_type 6 dpp */ 205 if_type = bf_get(lpfc_sli_intf_if_type, 206 &q->phba->sli4_hba.sli_intf); 207 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 208 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 209 host_index); 210 } 211 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 212 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 213 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 214 } else { 215 return -EINVAL; 216 } 217 writel(doorbell.word0, q->db_regaddr); 218 219 return 0; 220 } 221 222 /** 223 * lpfc_sli4_wq_release - Updates internal hba index for WQ 224 * @q: The Work Queue to operate on. 225 * @index: The index to advance the hba index to. 226 * 227 * This routine will update the HBA index of a queue to reflect consumption of 228 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 229 * an entry the host calls this function to update the queue's internal 230 * pointers. 231 **/ 232 static void 233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 234 { 235 /* sanity check on queue memory */ 236 if (unlikely(!q)) 237 return; 238 239 q->hba_index = index; 240 } 241 242 /** 243 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 244 * @q: The Mailbox Queue to operate on. 245 * @wqe: The Mailbox Queue Entry to put on the Work queue. 246 * 247 * This routine will copy the contents of @mqe to the next available entry on 248 * the @q. This function will then ring the Work Queue Doorbell to signal the 249 * HBA to start processing the Work Queue Entry. This function returns 0 if 250 * successful. If no entries are available on @q then this function will return 251 * -ENOMEM. 252 * The caller is expected to hold the hbalock when calling this routine. 253 **/ 254 static uint32_t 255 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 256 { 257 struct lpfc_mqe *temp_mqe; 258 struct lpfc_register doorbell; 259 260 /* sanity check on queue memory */ 261 if (unlikely(!q)) 262 return -ENOMEM; 263 temp_mqe = lpfc_sli4_qe(q, q->host_index); 264 265 /* If the host has not yet processed the next entry then we are done */ 266 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 267 return -ENOMEM; 268 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 269 /* Save off the mailbox pointer for completion */ 270 q->phba->mbox = (MAILBOX_t *)temp_mqe; 271 272 /* Update the host index before invoking device */ 273 q->host_index = ((q->host_index + 1) % q->entry_count); 274 275 /* Ring Doorbell */ 276 doorbell.word0 = 0; 277 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 278 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 279 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 280 return 0; 281 } 282 283 /** 284 * lpfc_sli4_mq_release - Updates internal hba index for MQ 285 * @q: The Mailbox Queue to operate on. 286 * 287 * This routine will update the HBA index of a queue to reflect consumption of 288 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 289 * an entry the host calls this function to update the queue's internal 290 * pointers. This routine returns the number of entries that were consumed by 291 * the HBA. 292 **/ 293 static uint32_t 294 lpfc_sli4_mq_release(struct lpfc_queue *q) 295 { 296 /* sanity check on queue memory */ 297 if (unlikely(!q)) 298 return 0; 299 300 /* Clear the mailbox pointer for completion */ 301 q->phba->mbox = NULL; 302 q->hba_index = ((q->hba_index + 1) % q->entry_count); 303 return 1; 304 } 305 306 /** 307 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 308 * @q: The Event Queue to get the first valid EQE from 309 * 310 * This routine will get the first valid Event Queue Entry from @q, update 311 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 312 * the Queue (no more work to do), or the Queue is full of EQEs that have been 313 * processed, but not popped back to the HBA then this routine will return NULL. 314 **/ 315 static struct lpfc_eqe * 316 lpfc_sli4_eq_get(struct lpfc_queue *q) 317 { 318 struct lpfc_eqe *eqe; 319 320 /* sanity check on queue memory */ 321 if (unlikely(!q)) 322 return NULL; 323 eqe = lpfc_sli4_qe(q, q->host_index); 324 325 /* If the next EQE is not valid then we are done */ 326 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 327 return NULL; 328 329 /* 330 * insert barrier for instruction interlock : data from the hardware 331 * must have the valid bit checked before it can be copied and acted 332 * upon. Speculative instructions were allowing a bcopy at the start 333 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 334 * after our return, to copy data before the valid bit check above 335 * was done. As such, some of the copied data was stale. The barrier 336 * ensures the check is before any data is copied. 337 */ 338 mb(); 339 return eqe; 340 } 341 342 /** 343 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 344 * @q: The Event Queue to disable interrupts 345 * 346 **/ 347 void 348 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 349 { 350 struct lpfc_register doorbell; 351 352 doorbell.word0 = 0; 353 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 354 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 355 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 356 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 357 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 358 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 359 } 360 361 /** 362 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 363 * @q: The Event Queue to disable interrupts 364 * 365 **/ 366 void 367 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 368 { 369 struct lpfc_register doorbell; 370 371 doorbell.word0 = 0; 372 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 373 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 374 } 375 376 /** 377 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 378 * @phba: adapter with EQ 379 * @q: The Event Queue that the host has completed processing for. 380 * @count: Number of elements that have been consumed 381 * @arm: Indicates whether the host wants to arms this CQ. 382 * 383 * This routine will notify the HBA, by ringing the doorbell, that count 384 * number of EQEs have been processed. The @arm parameter indicates whether 385 * the queue should be rearmed when ringing the doorbell. 386 **/ 387 void 388 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 389 uint32_t count, bool arm) 390 { 391 struct lpfc_register doorbell; 392 393 /* sanity check on queue memory */ 394 if (unlikely(!q || (count == 0 && !arm))) 395 return; 396 397 /* ring doorbell for number popped */ 398 doorbell.word0 = 0; 399 if (arm) { 400 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 401 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 402 } 403 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 404 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 405 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 406 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 407 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 408 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 409 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 410 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 411 readl(q->phba->sli4_hba.EQDBregaddr); 412 } 413 414 /** 415 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 416 * @phba: adapter with EQ 417 * @q: The Event Queue that the host has completed processing for. 418 * @count: Number of elements that have been consumed 419 * @arm: Indicates whether the host wants to arms this CQ. 420 * 421 * This routine will notify the HBA, by ringing the doorbell, that count 422 * number of EQEs have been processed. The @arm parameter indicates whether 423 * the queue should be rearmed when ringing the doorbell. 424 **/ 425 void 426 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 427 uint32_t count, bool arm) 428 { 429 struct lpfc_register doorbell; 430 431 /* sanity check on queue memory */ 432 if (unlikely(!q || (count == 0 && !arm))) 433 return; 434 435 /* ring doorbell for number popped */ 436 doorbell.word0 = 0; 437 if (arm) 438 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 439 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 440 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 441 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 442 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 443 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 444 readl(q->phba->sli4_hba.EQDBregaddr); 445 } 446 447 static void 448 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 449 struct lpfc_eqe *eqe) 450 { 451 if (!phba->sli4_hba.pc_sli4_params.eqav) 452 bf_set_le32(lpfc_eqe_valid, eqe, 0); 453 454 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 455 456 /* if the index wrapped around, toggle the valid bit */ 457 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 458 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 459 } 460 461 static void 462 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 463 { 464 struct lpfc_eqe *eqe = NULL; 465 u32 eq_count = 0, cq_count = 0; 466 struct lpfc_cqe *cqe = NULL; 467 struct lpfc_queue *cq = NULL, *childq = NULL; 468 int cqid = 0; 469 470 /* walk all the EQ entries and drop on the floor */ 471 eqe = lpfc_sli4_eq_get(eq); 472 while (eqe) { 473 /* Get the reference to the corresponding CQ */ 474 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 475 cq = NULL; 476 477 list_for_each_entry(childq, &eq->child_list, list) { 478 if (childq->queue_id == cqid) { 479 cq = childq; 480 break; 481 } 482 } 483 /* If CQ is valid, iterate through it and drop all the CQEs */ 484 if (cq) { 485 cqe = lpfc_sli4_cq_get(cq); 486 while (cqe) { 487 __lpfc_sli4_consume_cqe(phba, cq, cqe); 488 cq_count++; 489 cqe = lpfc_sli4_cq_get(cq); 490 } 491 /* Clear and re-arm the CQ */ 492 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 493 LPFC_QUEUE_REARM); 494 cq_count = 0; 495 } 496 __lpfc_sli4_consume_eqe(phba, eq, eqe); 497 eq_count++; 498 eqe = lpfc_sli4_eq_get(eq); 499 } 500 501 /* Clear and re-arm the EQ */ 502 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 503 } 504 505 static int 506 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 507 uint8_t rearm) 508 { 509 struct lpfc_eqe *eqe; 510 int count = 0, consumed = 0; 511 512 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 513 goto rearm_and_exit; 514 515 eqe = lpfc_sli4_eq_get(eq); 516 while (eqe) { 517 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 518 __lpfc_sli4_consume_eqe(phba, eq, eqe); 519 520 consumed++; 521 if (!(++count % eq->max_proc_limit)) 522 break; 523 524 if (!(count % eq->notify_interval)) { 525 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 526 LPFC_QUEUE_NOARM); 527 consumed = 0; 528 } 529 530 eqe = lpfc_sli4_eq_get(eq); 531 } 532 eq->EQ_processed += count; 533 534 /* Track the max number of EQEs processed in 1 intr */ 535 if (count > eq->EQ_max_eqe) 536 eq->EQ_max_eqe = count; 537 538 xchg(&eq->queue_claimed, 0); 539 540 rearm_and_exit: 541 /* Always clear the EQ. */ 542 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 543 544 return count; 545 } 546 547 /** 548 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 549 * @q: The Completion Queue to get the first valid CQE from 550 * 551 * This routine will get the first valid Completion Queue Entry from @q, update 552 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 553 * the Queue (no more work to do), or the Queue is full of CQEs that have been 554 * processed, but not popped back to the HBA then this routine will return NULL. 555 **/ 556 static struct lpfc_cqe * 557 lpfc_sli4_cq_get(struct lpfc_queue *q) 558 { 559 struct lpfc_cqe *cqe; 560 561 /* sanity check on queue memory */ 562 if (unlikely(!q)) 563 return NULL; 564 cqe = lpfc_sli4_qe(q, q->host_index); 565 566 /* If the next CQE is not valid then we are done */ 567 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 568 return NULL; 569 570 /* 571 * insert barrier for instruction interlock : data from the hardware 572 * must have the valid bit checked before it can be copied and acted 573 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 574 * instructions allowing action on content before valid bit checked, 575 * add barrier here as well. May not be needed as "content" is a 576 * single 32-bit entity here (vs multi word structure for cq's). 577 */ 578 mb(); 579 return cqe; 580 } 581 582 static void 583 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 584 struct lpfc_cqe *cqe) 585 { 586 if (!phba->sli4_hba.pc_sli4_params.cqav) 587 bf_set_le32(lpfc_cqe_valid, cqe, 0); 588 589 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 590 591 /* if the index wrapped around, toggle the valid bit */ 592 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 593 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 594 } 595 596 /** 597 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 598 * @phba: the adapter with the CQ 599 * @q: The Completion Queue that the host has completed processing for. 600 * @count: the number of elements that were consumed 601 * @arm: Indicates whether the host wants to arms this CQ. 602 * 603 * This routine will notify the HBA, by ringing the doorbell, that the 604 * CQEs have been processed. The @arm parameter specifies whether the 605 * queue should be rearmed when ringing the doorbell. 606 **/ 607 void 608 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 609 uint32_t count, bool arm) 610 { 611 struct lpfc_register doorbell; 612 613 /* sanity check on queue memory */ 614 if (unlikely(!q || (count == 0 && !arm))) 615 return; 616 617 /* ring doorbell for number popped */ 618 doorbell.word0 = 0; 619 if (arm) 620 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 621 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 622 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 623 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 624 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 625 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 626 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 627 } 628 629 /** 630 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 631 * @phba: the adapter with the CQ 632 * @q: The Completion Queue that the host has completed processing for. 633 * @count: the number of elements that were consumed 634 * @arm: Indicates whether the host wants to arms this CQ. 635 * 636 * This routine will notify the HBA, by ringing the doorbell, that the 637 * CQEs have been processed. The @arm parameter specifies whether the 638 * queue should be rearmed when ringing the doorbell. 639 **/ 640 void 641 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 642 uint32_t count, bool arm) 643 { 644 struct lpfc_register doorbell; 645 646 /* sanity check on queue memory */ 647 if (unlikely(!q || (count == 0 && !arm))) 648 return; 649 650 /* ring doorbell for number popped */ 651 doorbell.word0 = 0; 652 if (arm) 653 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 654 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 655 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 656 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 657 } 658 659 /** 660 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 661 * @q: The Header Receive Queue to operate on. 662 * @wqe: The Receive Queue Entry to put on the Receive queue. 663 * 664 * This routine will copy the contents of @wqe to the next available entry on 665 * the @q. This function will then ring the Receive Queue Doorbell to signal the 666 * HBA to start processing the Receive Queue Entry. This function returns the 667 * index that the rqe was copied to if successful. If no entries are available 668 * on @q then this function will return -ENOMEM. 669 * The caller is expected to hold the hbalock when calling this routine. 670 **/ 671 int 672 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 673 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 674 { 675 struct lpfc_rqe *temp_hrqe; 676 struct lpfc_rqe *temp_drqe; 677 struct lpfc_register doorbell; 678 int hq_put_index; 679 int dq_put_index; 680 681 /* sanity check on queue memory */ 682 if (unlikely(!hq) || unlikely(!dq)) 683 return -ENOMEM; 684 hq_put_index = hq->host_index; 685 dq_put_index = dq->host_index; 686 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 687 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 688 689 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 690 return -EINVAL; 691 if (hq_put_index != dq_put_index) 692 return -EINVAL; 693 /* If the host has not yet processed the next entry then we are done */ 694 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 695 return -EBUSY; 696 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 697 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 698 699 /* Update the host index to point to the next slot */ 700 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 701 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 702 hq->RQ_buf_posted++; 703 704 /* Ring The Header Receive Queue Doorbell */ 705 if (!(hq->host_index % hq->notify_interval)) { 706 doorbell.word0 = 0; 707 if (hq->db_format == LPFC_DB_RING_FORMAT) { 708 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 709 hq->notify_interval); 710 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 711 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 712 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 713 hq->notify_interval); 714 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 715 hq->host_index); 716 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 717 } else { 718 return -EINVAL; 719 } 720 writel(doorbell.word0, hq->db_regaddr); 721 } 722 return hq_put_index; 723 } 724 725 /** 726 * lpfc_sli4_rq_release - Updates internal hba index for RQ 727 * @q: The Header Receive Queue to operate on. 728 * 729 * This routine will update the HBA index of a queue to reflect consumption of 730 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 731 * consumed an entry the host calls this function to update the queue's 732 * internal pointers. This routine returns the number of entries that were 733 * consumed by the HBA. 734 **/ 735 static uint32_t 736 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 737 { 738 /* sanity check on queue memory */ 739 if (unlikely(!hq) || unlikely(!dq)) 740 return 0; 741 742 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 743 return 0; 744 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 745 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 746 return 1; 747 } 748 749 /** 750 * lpfc_cmd_iocb - Get next command iocb entry in the ring 751 * @phba: Pointer to HBA context object. 752 * @pring: Pointer to driver SLI ring object. 753 * 754 * This function returns pointer to next command iocb entry 755 * in the command ring. The caller must hold hbalock to prevent 756 * other threads consume the next command iocb. 757 * SLI-2/SLI-3 provide different sized iocbs. 758 **/ 759 static inline IOCB_t * 760 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 761 { 762 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 763 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 764 } 765 766 /** 767 * lpfc_resp_iocb - Get next response iocb entry in the ring 768 * @phba: Pointer to HBA context object. 769 * @pring: Pointer to driver SLI ring object. 770 * 771 * This function returns pointer to next response iocb entry 772 * in the response ring. The caller must hold hbalock to make sure 773 * that no other thread consume the next response iocb. 774 * SLI-2/SLI-3 provide different sized iocbs. 775 **/ 776 static inline IOCB_t * 777 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 778 { 779 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 780 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 781 } 782 783 /** 784 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 785 * @phba: Pointer to HBA context object. 786 * 787 * This function is called with hbalock held. This function 788 * allocates a new driver iocb object from the iocb pool. If the 789 * allocation is successful, it returns pointer to the newly 790 * allocated iocb object else it returns NULL. 791 **/ 792 struct lpfc_iocbq * 793 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 794 { 795 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 796 struct lpfc_iocbq * iocbq = NULL; 797 798 lockdep_assert_held(&phba->hbalock); 799 800 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 801 if (iocbq) 802 phba->iocb_cnt++; 803 if (phba->iocb_cnt > phba->iocb_max) 804 phba->iocb_max = phba->iocb_cnt; 805 return iocbq; 806 } 807 808 /** 809 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 810 * @phba: Pointer to HBA context object. 811 * @xritag: XRI value. 812 * 813 * This function clears the sglq pointer from the array of acive 814 * sglq's. The xritag that is passed in is used to index into the 815 * array. Before the xritag can be used it needs to be adjusted 816 * by subtracting the xribase. 817 * 818 * Returns sglq ponter = success, NULL = Failure. 819 **/ 820 struct lpfc_sglq * 821 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 822 { 823 struct lpfc_sglq *sglq; 824 825 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 826 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 827 return sglq; 828 } 829 830 /** 831 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 832 * @phba: Pointer to HBA context object. 833 * @xritag: XRI value. 834 * 835 * This function returns the sglq pointer from the array of acive 836 * sglq's. The xritag that is passed in is used to index into the 837 * array. Before the xritag can be used it needs to be adjusted 838 * by subtracting the xribase. 839 * 840 * Returns sglq ponter = success, NULL = Failure. 841 **/ 842 struct lpfc_sglq * 843 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 844 { 845 struct lpfc_sglq *sglq; 846 847 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 848 return sglq; 849 } 850 851 /** 852 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 853 * @phba: Pointer to HBA context object. 854 * @xritag: xri used in this exchange. 855 * @rrq: The RRQ to be cleared. 856 * 857 **/ 858 void 859 lpfc_clr_rrq_active(struct lpfc_hba *phba, 860 uint16_t xritag, 861 struct lpfc_node_rrq *rrq) 862 { 863 struct lpfc_nodelist *ndlp = NULL; 864 865 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 866 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 867 868 /* The target DID could have been swapped (cable swap) 869 * we should use the ndlp from the findnode if it is 870 * available. 871 */ 872 if ((!ndlp) && rrq->ndlp) 873 ndlp = rrq->ndlp; 874 875 if (!ndlp) 876 goto out; 877 878 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 879 rrq->send_rrq = 0; 880 rrq->xritag = 0; 881 rrq->rrq_stop_time = 0; 882 } 883 out: 884 mempool_free(rrq, phba->rrq_pool); 885 } 886 887 /** 888 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 889 * @phba: Pointer to HBA context object. 890 * 891 * This function is called with hbalock held. This function 892 * Checks if stop_time (ratov from setting rrq active) has 893 * been reached, if it has and the send_rrq flag is set then 894 * it will call lpfc_send_rrq. If the send_rrq flag is not set 895 * then it will just call the routine to clear the rrq and 896 * free the rrq resource. 897 * The timer is set to the next rrq that is going to expire before 898 * leaving the routine. 899 * 900 **/ 901 void 902 lpfc_handle_rrq_active(struct lpfc_hba *phba) 903 { 904 struct lpfc_node_rrq *rrq; 905 struct lpfc_node_rrq *nextrrq; 906 unsigned long next_time; 907 unsigned long iflags; 908 LIST_HEAD(send_rrq); 909 910 spin_lock_irqsave(&phba->hbalock, iflags); 911 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 912 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 913 list_for_each_entry_safe(rrq, nextrrq, 914 &phba->active_rrq_list, list) { 915 if (time_after(jiffies, rrq->rrq_stop_time)) 916 list_move(&rrq->list, &send_rrq); 917 else if (time_before(rrq->rrq_stop_time, next_time)) 918 next_time = rrq->rrq_stop_time; 919 } 920 spin_unlock_irqrestore(&phba->hbalock, iflags); 921 if ((!list_empty(&phba->active_rrq_list)) && 922 (!(phba->pport->load_flag & FC_UNLOADING))) 923 mod_timer(&phba->rrq_tmr, next_time); 924 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 925 list_del(&rrq->list); 926 if (!rrq->send_rrq) { 927 /* this call will free the rrq */ 928 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 929 } else if (lpfc_send_rrq(phba, rrq)) { 930 /* if we send the rrq then the completion handler 931 * will clear the bit in the xribitmap. 932 */ 933 lpfc_clr_rrq_active(phba, rrq->xritag, 934 rrq); 935 } 936 } 937 } 938 939 /** 940 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 941 * @vport: Pointer to vport context object. 942 * @xri: The xri used in the exchange. 943 * @did: The targets DID for this exchange. 944 * 945 * returns NULL = rrq not found in the phba->active_rrq_list. 946 * rrq = rrq for this xri and target. 947 **/ 948 struct lpfc_node_rrq * 949 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 950 { 951 struct lpfc_hba *phba = vport->phba; 952 struct lpfc_node_rrq *rrq; 953 struct lpfc_node_rrq *nextrrq; 954 unsigned long iflags; 955 956 if (phba->sli_rev != LPFC_SLI_REV4) 957 return NULL; 958 spin_lock_irqsave(&phba->hbalock, iflags); 959 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 960 if (rrq->vport == vport && rrq->xritag == xri && 961 rrq->nlp_DID == did){ 962 list_del(&rrq->list); 963 spin_unlock_irqrestore(&phba->hbalock, iflags); 964 return rrq; 965 } 966 } 967 spin_unlock_irqrestore(&phba->hbalock, iflags); 968 return NULL; 969 } 970 971 /** 972 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 973 * @vport: Pointer to vport context object. 974 * @ndlp: Pointer to the lpfc_node_list structure. 975 * If ndlp is NULL Remove all active RRQs for this vport from the 976 * phba->active_rrq_list and clear the rrq. 977 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 978 **/ 979 void 980 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 981 982 { 983 struct lpfc_hba *phba = vport->phba; 984 struct lpfc_node_rrq *rrq; 985 struct lpfc_node_rrq *nextrrq; 986 unsigned long iflags; 987 LIST_HEAD(rrq_list); 988 989 if (phba->sli_rev != LPFC_SLI_REV4) 990 return; 991 if (!ndlp) { 992 lpfc_sli4_vport_delete_els_xri_aborted(vport); 993 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 994 } 995 spin_lock_irqsave(&phba->hbalock, iflags); 996 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 997 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 998 list_move(&rrq->list, &rrq_list); 999 spin_unlock_irqrestore(&phba->hbalock, iflags); 1000 1001 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1002 list_del(&rrq->list); 1003 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1004 } 1005 } 1006 1007 /** 1008 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1009 * @phba: Pointer to HBA context object. 1010 * @ndlp: Targets nodelist pointer for this exchange. 1011 * @xritag the xri in the bitmap to test. 1012 * 1013 * This function returns: 1014 * 0 = rrq not active for this xri 1015 * 1 = rrq is valid for this xri. 1016 **/ 1017 int 1018 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1019 uint16_t xritag) 1020 { 1021 if (!ndlp) 1022 return 0; 1023 if (!ndlp->active_rrqs_xri_bitmap) 1024 return 0; 1025 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1026 return 1; 1027 else 1028 return 0; 1029 } 1030 1031 /** 1032 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1033 * @phba: Pointer to HBA context object. 1034 * @ndlp: nodelist pointer for this target. 1035 * @xritag: xri used in this exchange. 1036 * @rxid: Remote Exchange ID. 1037 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1038 * 1039 * This function takes the hbalock. 1040 * The active bit is always set in the active rrq xri_bitmap even 1041 * if there is no slot avaiable for the other rrq information. 1042 * 1043 * returns 0 rrq actived for this xri 1044 * < 0 No memory or invalid ndlp. 1045 **/ 1046 int 1047 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1048 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1049 { 1050 unsigned long iflags; 1051 struct lpfc_node_rrq *rrq; 1052 int empty; 1053 1054 if (!ndlp) 1055 return -EINVAL; 1056 1057 if (!phba->cfg_enable_rrq) 1058 return -EINVAL; 1059 1060 spin_lock_irqsave(&phba->hbalock, iflags); 1061 if (phba->pport->load_flag & FC_UNLOADING) { 1062 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1063 goto out; 1064 } 1065 1066 /* 1067 * set the active bit even if there is no mem available. 1068 */ 1069 if (NLP_CHK_FREE_REQ(ndlp)) 1070 goto out; 1071 1072 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1073 goto out; 1074 1075 if (!ndlp->active_rrqs_xri_bitmap) 1076 goto out; 1077 1078 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1079 goto out; 1080 1081 spin_unlock_irqrestore(&phba->hbalock, iflags); 1082 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1083 if (!rrq) { 1084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1085 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1086 " DID:0x%x Send:%d\n", 1087 xritag, rxid, ndlp->nlp_DID, send_rrq); 1088 return -EINVAL; 1089 } 1090 if (phba->cfg_enable_rrq == 1) 1091 rrq->send_rrq = send_rrq; 1092 else 1093 rrq->send_rrq = 0; 1094 rrq->xritag = xritag; 1095 rrq->rrq_stop_time = jiffies + 1096 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1097 rrq->ndlp = ndlp; 1098 rrq->nlp_DID = ndlp->nlp_DID; 1099 rrq->vport = ndlp->vport; 1100 rrq->rxid = rxid; 1101 spin_lock_irqsave(&phba->hbalock, iflags); 1102 empty = list_empty(&phba->active_rrq_list); 1103 list_add_tail(&rrq->list, &phba->active_rrq_list); 1104 phba->hba_flag |= HBA_RRQ_ACTIVE; 1105 if (empty) 1106 lpfc_worker_wake_up(phba); 1107 spin_unlock_irqrestore(&phba->hbalock, iflags); 1108 return 0; 1109 out: 1110 spin_unlock_irqrestore(&phba->hbalock, iflags); 1111 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1112 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1113 " DID:0x%x Send:%d\n", 1114 xritag, rxid, ndlp->nlp_DID, send_rrq); 1115 return -EINVAL; 1116 } 1117 1118 /** 1119 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1120 * @phba: Pointer to HBA context object. 1121 * @piocb: Pointer to the iocbq. 1122 * 1123 * The driver calls this function with either the nvme ls ring lock 1124 * or the fc els ring lock held depending on the iocb usage. This function 1125 * gets a new driver sglq object from the sglq list. If the list is not empty 1126 * then it is successful, it returns pointer to the newly allocated sglq 1127 * object else it returns NULL. 1128 **/ 1129 static struct lpfc_sglq * 1130 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1131 { 1132 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1133 struct lpfc_sglq *sglq = NULL; 1134 struct lpfc_sglq *start_sglq = NULL; 1135 struct lpfc_io_buf *lpfc_cmd; 1136 struct lpfc_nodelist *ndlp; 1137 struct lpfc_sli_ring *pring = NULL; 1138 int found = 0; 1139 1140 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1141 pring = phba->sli4_hba.nvmels_wq->pring; 1142 else 1143 pring = lpfc_phba_elsring(phba); 1144 1145 lockdep_assert_held(&pring->ring_lock); 1146 1147 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1148 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1149 ndlp = lpfc_cmd->rdata->pnode; 1150 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1151 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1152 ndlp = piocbq->context_un.ndlp; 1153 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1154 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1155 ndlp = NULL; 1156 else 1157 ndlp = piocbq->context_un.ndlp; 1158 } else { 1159 ndlp = piocbq->context1; 1160 } 1161 1162 spin_lock(&phba->sli4_hba.sgl_list_lock); 1163 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1164 start_sglq = sglq; 1165 while (!found) { 1166 if (!sglq) 1167 break; 1168 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1169 test_bit(sglq->sli4_lxritag, 1170 ndlp->active_rrqs_xri_bitmap)) { 1171 /* This xri has an rrq outstanding for this DID. 1172 * put it back in the list and get another xri. 1173 */ 1174 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1175 sglq = NULL; 1176 list_remove_head(lpfc_els_sgl_list, sglq, 1177 struct lpfc_sglq, list); 1178 if (sglq == start_sglq) { 1179 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1180 sglq = NULL; 1181 break; 1182 } else 1183 continue; 1184 } 1185 sglq->ndlp = ndlp; 1186 found = 1; 1187 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1188 sglq->state = SGL_ALLOCATED; 1189 } 1190 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1191 return sglq; 1192 } 1193 1194 /** 1195 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1196 * @phba: Pointer to HBA context object. 1197 * @piocb: Pointer to the iocbq. 1198 * 1199 * This function is called with the sgl_list lock held. This function 1200 * gets a new driver sglq object from the sglq list. If the 1201 * list is not empty then it is successful, it returns pointer to the newly 1202 * allocated sglq object else it returns NULL. 1203 **/ 1204 struct lpfc_sglq * 1205 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1206 { 1207 struct list_head *lpfc_nvmet_sgl_list; 1208 struct lpfc_sglq *sglq = NULL; 1209 1210 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1211 1212 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1213 1214 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1215 if (!sglq) 1216 return NULL; 1217 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1218 sglq->state = SGL_ALLOCATED; 1219 return sglq; 1220 } 1221 1222 /** 1223 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1224 * @phba: Pointer to HBA context object. 1225 * 1226 * This function is called with no lock held. This function 1227 * allocates a new driver iocb object from the iocb pool. If the 1228 * allocation is successful, it returns pointer to the newly 1229 * allocated iocb object else it returns NULL. 1230 **/ 1231 struct lpfc_iocbq * 1232 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1233 { 1234 struct lpfc_iocbq * iocbq = NULL; 1235 unsigned long iflags; 1236 1237 spin_lock_irqsave(&phba->hbalock, iflags); 1238 iocbq = __lpfc_sli_get_iocbq(phba); 1239 spin_unlock_irqrestore(&phba->hbalock, iflags); 1240 return iocbq; 1241 } 1242 1243 /** 1244 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1245 * @phba: Pointer to HBA context object. 1246 * @iocbq: Pointer to driver iocb object. 1247 * 1248 * This function is called to release the driver iocb object 1249 * to the iocb pool. The iotag in the iocb object 1250 * does not change for each use of the iocb object. This function 1251 * clears all other fields of the iocb object when it is freed. 1252 * The sqlq structure that holds the xritag and phys and virtual 1253 * mappings for the scatter gather list is retrieved from the 1254 * active array of sglq. The get of the sglq pointer also clears 1255 * the entry in the array. If the status of the IO indiactes that 1256 * this IO was aborted then the sglq entry it put on the 1257 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1258 * IO has good status or fails for any other reason then the sglq 1259 * entry is added to the free list (lpfc_els_sgl_list). The hbalock is 1260 * asserted held in the code path calling this routine. 1261 **/ 1262 static void 1263 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1264 { 1265 struct lpfc_sglq *sglq; 1266 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1267 unsigned long iflag = 0; 1268 struct lpfc_sli_ring *pring; 1269 1270 if (iocbq->sli4_xritag == NO_XRI) 1271 sglq = NULL; 1272 else 1273 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1274 1275 1276 if (sglq) { 1277 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1278 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1279 iflag); 1280 sglq->state = SGL_FREED; 1281 sglq->ndlp = NULL; 1282 list_add_tail(&sglq->list, 1283 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1284 spin_unlock_irqrestore( 1285 &phba->sli4_hba.sgl_list_lock, iflag); 1286 goto out; 1287 } 1288 1289 pring = phba->sli4_hba.els_wq->pring; 1290 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1291 (sglq->state != SGL_XRI_ABORTED)) { 1292 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1293 iflag); 1294 list_add(&sglq->list, 1295 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1296 spin_unlock_irqrestore( 1297 &phba->sli4_hba.sgl_list_lock, iflag); 1298 } else { 1299 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1300 iflag); 1301 sglq->state = SGL_FREED; 1302 sglq->ndlp = NULL; 1303 list_add_tail(&sglq->list, 1304 &phba->sli4_hba.lpfc_els_sgl_list); 1305 spin_unlock_irqrestore( 1306 &phba->sli4_hba.sgl_list_lock, iflag); 1307 1308 /* Check if TXQ queue needs to be serviced */ 1309 if (!list_empty(&pring->txq)) 1310 lpfc_worker_wake_up(phba); 1311 } 1312 } 1313 1314 out: 1315 /* 1316 * Clean all volatile data fields, preserve iotag and node struct. 1317 */ 1318 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1319 iocbq->sli4_lxritag = NO_XRI; 1320 iocbq->sli4_xritag = NO_XRI; 1321 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1322 LPFC_IO_NVME_LS); 1323 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1324 } 1325 1326 1327 /** 1328 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1329 * @phba: Pointer to HBA context object. 1330 * @iocbq: Pointer to driver iocb object. 1331 * 1332 * This function is called to release the driver iocb object to the 1333 * iocb pool. The iotag in the iocb object does not change for each 1334 * use of the iocb object. This function clears all other fields of 1335 * the iocb object when it is freed. The hbalock is asserted held in 1336 * the code path calling this routine. 1337 **/ 1338 static void 1339 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1340 { 1341 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1342 1343 /* 1344 * Clean all volatile data fields, preserve iotag and node struct. 1345 */ 1346 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1347 iocbq->sli4_xritag = NO_XRI; 1348 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1349 } 1350 1351 /** 1352 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1353 * @phba: Pointer to HBA context object. 1354 * @iocbq: Pointer to driver iocb object. 1355 * 1356 * This function is called with hbalock held to release driver 1357 * iocb object to the iocb pool. The iotag in the iocb object 1358 * does not change for each use of the iocb object. This function 1359 * clears all other fields of the iocb object when it is freed. 1360 **/ 1361 static void 1362 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1363 { 1364 lockdep_assert_held(&phba->hbalock); 1365 1366 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1367 phba->iocb_cnt--; 1368 } 1369 1370 /** 1371 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1372 * @phba: Pointer to HBA context object. 1373 * @iocbq: Pointer to driver iocb object. 1374 * 1375 * This function is called with no lock held to release the iocb to 1376 * iocb pool. 1377 **/ 1378 void 1379 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1380 { 1381 unsigned long iflags; 1382 1383 /* 1384 * Clean all volatile data fields, preserve iotag and node struct. 1385 */ 1386 spin_lock_irqsave(&phba->hbalock, iflags); 1387 __lpfc_sli_release_iocbq(phba, iocbq); 1388 spin_unlock_irqrestore(&phba->hbalock, iflags); 1389 } 1390 1391 /** 1392 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1393 * @phba: Pointer to HBA context object. 1394 * @iocblist: List of IOCBs. 1395 * @ulpstatus: ULP status in IOCB command field. 1396 * @ulpWord4: ULP word-4 in IOCB command field. 1397 * 1398 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1399 * on the list by invoking the complete callback function associated with the 1400 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1401 * fields. 1402 **/ 1403 void 1404 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1405 uint32_t ulpstatus, uint32_t ulpWord4) 1406 { 1407 struct lpfc_iocbq *piocb; 1408 1409 while (!list_empty(iocblist)) { 1410 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1411 if (!piocb->iocb_cmpl) { 1412 if (piocb->iocb_flag & LPFC_IO_NVME) 1413 lpfc_nvme_cancel_iocb(phba, piocb); 1414 else 1415 lpfc_sli_release_iocbq(phba, piocb); 1416 } else { 1417 piocb->iocb.ulpStatus = ulpstatus; 1418 piocb->iocb.un.ulpWord[4] = ulpWord4; 1419 (piocb->iocb_cmpl) (phba, piocb, piocb); 1420 } 1421 } 1422 return; 1423 } 1424 1425 /** 1426 * lpfc_sli_iocb_cmd_type - Get the iocb type 1427 * @iocb_cmnd: iocb command code. 1428 * 1429 * This function is called by ring event handler function to get the iocb type. 1430 * This function translates the iocb command to an iocb command type used to 1431 * decide the final disposition of each completed IOCB. 1432 * The function returns 1433 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1434 * LPFC_SOL_IOCB if it is a solicited iocb completion 1435 * LPFC_ABORT_IOCB if it is an abort iocb 1436 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1437 * 1438 * The caller is not required to hold any lock. 1439 **/ 1440 static lpfc_iocb_type 1441 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1442 { 1443 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1444 1445 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1446 return 0; 1447 1448 switch (iocb_cmnd) { 1449 case CMD_XMIT_SEQUENCE_CR: 1450 case CMD_XMIT_SEQUENCE_CX: 1451 case CMD_XMIT_BCAST_CN: 1452 case CMD_XMIT_BCAST_CX: 1453 case CMD_ELS_REQUEST_CR: 1454 case CMD_ELS_REQUEST_CX: 1455 case CMD_CREATE_XRI_CR: 1456 case CMD_CREATE_XRI_CX: 1457 case CMD_GET_RPI_CN: 1458 case CMD_XMIT_ELS_RSP_CX: 1459 case CMD_GET_RPI_CR: 1460 case CMD_FCP_IWRITE_CR: 1461 case CMD_FCP_IWRITE_CX: 1462 case CMD_FCP_IREAD_CR: 1463 case CMD_FCP_IREAD_CX: 1464 case CMD_FCP_ICMND_CR: 1465 case CMD_FCP_ICMND_CX: 1466 case CMD_FCP_TSEND_CX: 1467 case CMD_FCP_TRSP_CX: 1468 case CMD_FCP_TRECEIVE_CX: 1469 case CMD_FCP_AUTO_TRSP_CX: 1470 case CMD_ADAPTER_MSG: 1471 case CMD_ADAPTER_DUMP: 1472 case CMD_XMIT_SEQUENCE64_CR: 1473 case CMD_XMIT_SEQUENCE64_CX: 1474 case CMD_XMIT_BCAST64_CN: 1475 case CMD_XMIT_BCAST64_CX: 1476 case CMD_ELS_REQUEST64_CR: 1477 case CMD_ELS_REQUEST64_CX: 1478 case CMD_FCP_IWRITE64_CR: 1479 case CMD_FCP_IWRITE64_CX: 1480 case CMD_FCP_IREAD64_CR: 1481 case CMD_FCP_IREAD64_CX: 1482 case CMD_FCP_ICMND64_CR: 1483 case CMD_FCP_ICMND64_CX: 1484 case CMD_FCP_TSEND64_CX: 1485 case CMD_FCP_TRSP64_CX: 1486 case CMD_FCP_TRECEIVE64_CX: 1487 case CMD_GEN_REQUEST64_CR: 1488 case CMD_GEN_REQUEST64_CX: 1489 case CMD_XMIT_ELS_RSP64_CX: 1490 case DSSCMD_IWRITE64_CR: 1491 case DSSCMD_IWRITE64_CX: 1492 case DSSCMD_IREAD64_CR: 1493 case DSSCMD_IREAD64_CX: 1494 type = LPFC_SOL_IOCB; 1495 break; 1496 case CMD_ABORT_XRI_CN: 1497 case CMD_ABORT_XRI_CX: 1498 case CMD_CLOSE_XRI_CN: 1499 case CMD_CLOSE_XRI_CX: 1500 case CMD_XRI_ABORTED_CX: 1501 case CMD_ABORT_MXRI64_CN: 1502 case CMD_XMIT_BLS_RSP64_CX: 1503 type = LPFC_ABORT_IOCB; 1504 break; 1505 case CMD_RCV_SEQUENCE_CX: 1506 case CMD_RCV_ELS_REQ_CX: 1507 case CMD_RCV_SEQUENCE64_CX: 1508 case CMD_RCV_ELS_REQ64_CX: 1509 case CMD_ASYNC_STATUS: 1510 case CMD_IOCB_RCV_SEQ64_CX: 1511 case CMD_IOCB_RCV_ELS64_CX: 1512 case CMD_IOCB_RCV_CONT64_CX: 1513 case CMD_IOCB_RET_XRI64_CX: 1514 type = LPFC_UNSOL_IOCB; 1515 break; 1516 case CMD_IOCB_XMIT_MSEQ64_CR: 1517 case CMD_IOCB_XMIT_MSEQ64_CX: 1518 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1519 case CMD_IOCB_RCV_ELS_LIST64_CX: 1520 case CMD_IOCB_CLOSE_EXTENDED_CN: 1521 case CMD_IOCB_ABORT_EXTENDED_CN: 1522 case CMD_IOCB_RET_HBQE64_CN: 1523 case CMD_IOCB_FCP_IBIDIR64_CR: 1524 case CMD_IOCB_FCP_IBIDIR64_CX: 1525 case CMD_IOCB_FCP_ITASKMGT64_CX: 1526 case CMD_IOCB_LOGENTRY_CN: 1527 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1528 printk("%s - Unhandled SLI-3 Command x%x\n", 1529 __func__, iocb_cmnd); 1530 type = LPFC_UNKNOWN_IOCB; 1531 break; 1532 default: 1533 type = LPFC_UNKNOWN_IOCB; 1534 break; 1535 } 1536 1537 return type; 1538 } 1539 1540 /** 1541 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1542 * @phba: Pointer to HBA context object. 1543 * 1544 * This function is called from SLI initialization code 1545 * to configure every ring of the HBA's SLI interface. The 1546 * caller is not required to hold any lock. This function issues 1547 * a config_ring mailbox command for each ring. 1548 * This function returns zero if successful else returns a negative 1549 * error code. 1550 **/ 1551 static int 1552 lpfc_sli_ring_map(struct lpfc_hba *phba) 1553 { 1554 struct lpfc_sli *psli = &phba->sli; 1555 LPFC_MBOXQ_t *pmb; 1556 MAILBOX_t *pmbox; 1557 int i, rc, ret = 0; 1558 1559 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1560 if (!pmb) 1561 return -ENOMEM; 1562 pmbox = &pmb->u.mb; 1563 phba->link_state = LPFC_INIT_MBX_CMDS; 1564 for (i = 0; i < psli->num_rings; i++) { 1565 lpfc_config_ring(phba, i, pmb); 1566 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1567 if (rc != MBX_SUCCESS) { 1568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1569 "0446 Adapter failed to init (%d), " 1570 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1571 "ring %d\n", 1572 rc, pmbox->mbxCommand, 1573 pmbox->mbxStatus, i); 1574 phba->link_state = LPFC_HBA_ERROR; 1575 ret = -ENXIO; 1576 break; 1577 } 1578 } 1579 mempool_free(pmb, phba->mbox_mem_pool); 1580 return ret; 1581 } 1582 1583 /** 1584 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1585 * @phba: Pointer to HBA context object. 1586 * @pring: Pointer to driver SLI ring object. 1587 * @piocb: Pointer to the driver iocb object. 1588 * 1589 * The driver calls this function with the hbalock held for SLI3 ports or 1590 * the ring lock held for SLI4 ports. The function adds the 1591 * new iocb to txcmplq of the given ring. This function always returns 1592 * 0. If this function is called for ELS ring, this function checks if 1593 * there is a vport associated with the ELS command. This function also 1594 * starts els_tmofunc timer if this is an ELS command. 1595 **/ 1596 static int 1597 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1598 struct lpfc_iocbq *piocb) 1599 { 1600 if (phba->sli_rev == LPFC_SLI_REV4) 1601 lockdep_assert_held(&pring->ring_lock); 1602 else 1603 lockdep_assert_held(&phba->hbalock); 1604 1605 BUG_ON(!piocb); 1606 1607 list_add_tail(&piocb->list, &pring->txcmplq); 1608 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1609 pring->txcmplq_cnt++; 1610 1611 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1612 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1613 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1614 BUG_ON(!piocb->vport); 1615 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1616 mod_timer(&piocb->vport->els_tmofunc, 1617 jiffies + 1618 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1619 } 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * lpfc_sli_ringtx_get - Get first element of the txq 1626 * @phba: Pointer to HBA context object. 1627 * @pring: Pointer to driver SLI ring object. 1628 * 1629 * This function is called with hbalock held to get next 1630 * iocb in txq of the given ring. If there is any iocb in 1631 * the txq, the function returns first iocb in the list after 1632 * removing the iocb from the list, else it returns NULL. 1633 **/ 1634 struct lpfc_iocbq * 1635 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1636 { 1637 struct lpfc_iocbq *cmd_iocb; 1638 1639 lockdep_assert_held(&phba->hbalock); 1640 1641 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1642 return cmd_iocb; 1643 } 1644 1645 /** 1646 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1647 * @phba: Pointer to HBA context object. 1648 * @pring: Pointer to driver SLI ring object. 1649 * 1650 * This function is called with hbalock held and the caller must post the 1651 * iocb without releasing the lock. If the caller releases the lock, 1652 * iocb slot returned by the function is not guaranteed to be available. 1653 * The function returns pointer to the next available iocb slot if there 1654 * is available slot in the ring, else it returns NULL. 1655 * If the get index of the ring is ahead of the put index, the function 1656 * will post an error attention event to the worker thread to take the 1657 * HBA to offline state. 1658 **/ 1659 static IOCB_t * 1660 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1661 { 1662 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1663 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1664 1665 lockdep_assert_held(&phba->hbalock); 1666 1667 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1668 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1669 pring->sli.sli3.next_cmdidx = 0; 1670 1671 if (unlikely(pring->sli.sli3.local_getidx == 1672 pring->sli.sli3.next_cmdidx)) { 1673 1674 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1675 1676 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1678 "0315 Ring %d issue: portCmdGet %d " 1679 "is bigger than cmd ring %d\n", 1680 pring->ringno, 1681 pring->sli.sli3.local_getidx, 1682 max_cmd_idx); 1683 1684 phba->link_state = LPFC_HBA_ERROR; 1685 /* 1686 * All error attention handlers are posted to 1687 * worker thread 1688 */ 1689 phba->work_ha |= HA_ERATT; 1690 phba->work_hs = HS_FFER3; 1691 1692 lpfc_worker_wake_up(phba); 1693 1694 return NULL; 1695 } 1696 1697 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1698 return NULL; 1699 } 1700 1701 return lpfc_cmd_iocb(phba, pring); 1702 } 1703 1704 /** 1705 * lpfc_sli_next_iotag - Get an iotag for the iocb 1706 * @phba: Pointer to HBA context object. 1707 * @iocbq: Pointer to driver iocb object. 1708 * 1709 * This function gets an iotag for the iocb. If there is no unused iotag and 1710 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1711 * array and assigns a new iotag. 1712 * The function returns the allocated iotag if successful, else returns zero. 1713 * Zero is not a valid iotag. 1714 * The caller is not required to hold any lock. 1715 **/ 1716 uint16_t 1717 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1718 { 1719 struct lpfc_iocbq **new_arr; 1720 struct lpfc_iocbq **old_arr; 1721 size_t new_len; 1722 struct lpfc_sli *psli = &phba->sli; 1723 uint16_t iotag; 1724 1725 spin_lock_irq(&phba->hbalock); 1726 iotag = psli->last_iotag; 1727 if(++iotag < psli->iocbq_lookup_len) { 1728 psli->last_iotag = iotag; 1729 psli->iocbq_lookup[iotag] = iocbq; 1730 spin_unlock_irq(&phba->hbalock); 1731 iocbq->iotag = iotag; 1732 return iotag; 1733 } else if (psli->iocbq_lookup_len < (0xffff 1734 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1735 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1736 spin_unlock_irq(&phba->hbalock); 1737 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1738 GFP_KERNEL); 1739 if (new_arr) { 1740 spin_lock_irq(&phba->hbalock); 1741 old_arr = psli->iocbq_lookup; 1742 if (new_len <= psli->iocbq_lookup_len) { 1743 /* highly unprobable case */ 1744 kfree(new_arr); 1745 iotag = psli->last_iotag; 1746 if(++iotag < psli->iocbq_lookup_len) { 1747 psli->last_iotag = iotag; 1748 psli->iocbq_lookup[iotag] = iocbq; 1749 spin_unlock_irq(&phba->hbalock); 1750 iocbq->iotag = iotag; 1751 return iotag; 1752 } 1753 spin_unlock_irq(&phba->hbalock); 1754 return 0; 1755 } 1756 if (psli->iocbq_lookup) 1757 memcpy(new_arr, old_arr, 1758 ((psli->last_iotag + 1) * 1759 sizeof (struct lpfc_iocbq *))); 1760 psli->iocbq_lookup = new_arr; 1761 psli->iocbq_lookup_len = new_len; 1762 psli->last_iotag = iotag; 1763 psli->iocbq_lookup[iotag] = iocbq; 1764 spin_unlock_irq(&phba->hbalock); 1765 iocbq->iotag = iotag; 1766 kfree(old_arr); 1767 return iotag; 1768 } 1769 } else 1770 spin_unlock_irq(&phba->hbalock); 1771 1772 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1773 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1774 psli->last_iotag); 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1781 * @phba: Pointer to HBA context object. 1782 * @pring: Pointer to driver SLI ring object. 1783 * @iocb: Pointer to iocb slot in the ring. 1784 * @nextiocb: Pointer to driver iocb object which need to be 1785 * posted to firmware. 1786 * 1787 * This function is called to post a new iocb to the firmware. This 1788 * function copies the new iocb to ring iocb slot and updates the 1789 * ring pointers. It adds the new iocb to txcmplq if there is 1790 * a completion call back for this iocb else the function will free the 1791 * iocb object. The hbalock is asserted held in the code path calling 1792 * this routine. 1793 **/ 1794 static void 1795 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1796 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1797 { 1798 /* 1799 * Set up an iotag 1800 */ 1801 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1802 1803 1804 if (pring->ringno == LPFC_ELS_RING) { 1805 lpfc_debugfs_slow_ring_trc(phba, 1806 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1807 *(((uint32_t *) &nextiocb->iocb) + 4), 1808 *(((uint32_t *) &nextiocb->iocb) + 6), 1809 *(((uint32_t *) &nextiocb->iocb) + 7)); 1810 } 1811 1812 /* 1813 * Issue iocb command to adapter 1814 */ 1815 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1816 wmb(); 1817 pring->stats.iocb_cmd++; 1818 1819 /* 1820 * If there is no completion routine to call, we can release the 1821 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1822 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1823 */ 1824 if (nextiocb->iocb_cmpl) 1825 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1826 else 1827 __lpfc_sli_release_iocbq(phba, nextiocb); 1828 1829 /* 1830 * Let the HBA know what IOCB slot will be the next one the 1831 * driver will put a command into. 1832 */ 1833 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1834 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1835 } 1836 1837 /** 1838 * lpfc_sli_update_full_ring - Update the chip attention register 1839 * @phba: Pointer to HBA context object. 1840 * @pring: Pointer to driver SLI ring object. 1841 * 1842 * The caller is not required to hold any lock for calling this function. 1843 * This function updates the chip attention bits for the ring to inform firmware 1844 * that there are pending work to be done for this ring and requests an 1845 * interrupt when there is space available in the ring. This function is 1846 * called when the driver is unable to post more iocbs to the ring due 1847 * to unavailability of space in the ring. 1848 **/ 1849 static void 1850 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1851 { 1852 int ringno = pring->ringno; 1853 1854 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1855 1856 wmb(); 1857 1858 /* 1859 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1860 * The HBA will tell us when an IOCB entry is available. 1861 */ 1862 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1863 readl(phba->CAregaddr); /* flush */ 1864 1865 pring->stats.iocb_cmd_full++; 1866 } 1867 1868 /** 1869 * lpfc_sli_update_ring - Update chip attention register 1870 * @phba: Pointer to HBA context object. 1871 * @pring: Pointer to driver SLI ring object. 1872 * 1873 * This function updates the chip attention register bit for the 1874 * given ring to inform HBA that there is more work to be done 1875 * in this ring. The caller is not required to hold any lock. 1876 **/ 1877 static void 1878 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1879 { 1880 int ringno = pring->ringno; 1881 1882 /* 1883 * Tell the HBA that there is work to do in this ring. 1884 */ 1885 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1886 wmb(); 1887 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1888 readl(phba->CAregaddr); /* flush */ 1889 } 1890 } 1891 1892 /** 1893 * lpfc_sli_resume_iocb - Process iocbs in the txq 1894 * @phba: Pointer to HBA context object. 1895 * @pring: Pointer to driver SLI ring object. 1896 * 1897 * This function is called with hbalock held to post pending iocbs 1898 * in the txq to the firmware. This function is called when driver 1899 * detects space available in the ring. 1900 **/ 1901 static void 1902 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1903 { 1904 IOCB_t *iocb; 1905 struct lpfc_iocbq *nextiocb; 1906 1907 lockdep_assert_held(&phba->hbalock); 1908 1909 /* 1910 * Check to see if: 1911 * (a) there is anything on the txq to send 1912 * (b) link is up 1913 * (c) link attention events can be processed (fcp ring only) 1914 * (d) IOCB processing is not blocked by the outstanding mbox command. 1915 */ 1916 1917 if (lpfc_is_link_up(phba) && 1918 (!list_empty(&pring->txq)) && 1919 (pring->ringno != LPFC_FCP_RING || 1920 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1921 1922 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1923 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1924 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1925 1926 if (iocb) 1927 lpfc_sli_update_ring(phba, pring); 1928 else 1929 lpfc_sli_update_full_ring(phba, pring); 1930 } 1931 1932 return; 1933 } 1934 1935 /** 1936 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1937 * @phba: Pointer to HBA context object. 1938 * @hbqno: HBQ number. 1939 * 1940 * This function is called with hbalock held to get the next 1941 * available slot for the given HBQ. If there is free slot 1942 * available for the HBQ it will return pointer to the next available 1943 * HBQ entry else it will return NULL. 1944 **/ 1945 static struct lpfc_hbq_entry * 1946 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1947 { 1948 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1949 1950 lockdep_assert_held(&phba->hbalock); 1951 1952 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1953 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1954 hbqp->next_hbqPutIdx = 0; 1955 1956 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1957 uint32_t raw_index = phba->hbq_get[hbqno]; 1958 uint32_t getidx = le32_to_cpu(raw_index); 1959 1960 hbqp->local_hbqGetIdx = getidx; 1961 1962 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1963 lpfc_printf_log(phba, KERN_ERR, 1964 LOG_SLI | LOG_VPORT, 1965 "1802 HBQ %d: local_hbqGetIdx " 1966 "%u is > than hbqp->entry_count %u\n", 1967 hbqno, hbqp->local_hbqGetIdx, 1968 hbqp->entry_count); 1969 1970 phba->link_state = LPFC_HBA_ERROR; 1971 return NULL; 1972 } 1973 1974 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1975 return NULL; 1976 } 1977 1978 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1979 hbqp->hbqPutIdx; 1980 } 1981 1982 /** 1983 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1984 * @phba: Pointer to HBA context object. 1985 * 1986 * This function is called with no lock held to free all the 1987 * hbq buffers while uninitializing the SLI interface. It also 1988 * frees the HBQ buffers returned by the firmware but not yet 1989 * processed by the upper layers. 1990 **/ 1991 void 1992 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1993 { 1994 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1995 struct hbq_dmabuf *hbq_buf; 1996 unsigned long flags; 1997 int i, hbq_count; 1998 1999 hbq_count = lpfc_sli_hbq_count(); 2000 /* Return all memory used by all HBQs */ 2001 spin_lock_irqsave(&phba->hbalock, flags); 2002 for (i = 0; i < hbq_count; ++i) { 2003 list_for_each_entry_safe(dmabuf, next_dmabuf, 2004 &phba->hbqs[i].hbq_buffer_list, list) { 2005 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2006 list_del(&hbq_buf->dbuf.list); 2007 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2008 } 2009 phba->hbqs[i].buffer_count = 0; 2010 } 2011 2012 /* Mark the HBQs not in use */ 2013 phba->hbq_in_use = 0; 2014 spin_unlock_irqrestore(&phba->hbalock, flags); 2015 } 2016 2017 /** 2018 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2019 * @phba: Pointer to HBA context object. 2020 * @hbqno: HBQ number. 2021 * @hbq_buf: Pointer to HBQ buffer. 2022 * 2023 * This function is called with the hbalock held to post a 2024 * hbq buffer to the firmware. If the function finds an empty 2025 * slot in the HBQ, it will post the buffer. The function will return 2026 * pointer to the hbq entry if it successfully post the buffer 2027 * else it will return NULL. 2028 **/ 2029 static int 2030 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2031 struct hbq_dmabuf *hbq_buf) 2032 { 2033 lockdep_assert_held(&phba->hbalock); 2034 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2035 } 2036 2037 /** 2038 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2039 * @phba: Pointer to HBA context object. 2040 * @hbqno: HBQ number. 2041 * @hbq_buf: Pointer to HBQ buffer. 2042 * 2043 * This function is called with the hbalock held to post a hbq buffer to the 2044 * firmware. If the function finds an empty slot in the HBQ, it will post the 2045 * buffer and place it on the hbq_buffer_list. The function will return zero if 2046 * it successfully post the buffer else it will return an error. 2047 **/ 2048 static int 2049 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2050 struct hbq_dmabuf *hbq_buf) 2051 { 2052 struct lpfc_hbq_entry *hbqe; 2053 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2054 2055 lockdep_assert_held(&phba->hbalock); 2056 /* Get next HBQ entry slot to use */ 2057 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2058 if (hbqe) { 2059 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2060 2061 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2062 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2063 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2064 hbqe->bde.tus.f.bdeFlags = 0; 2065 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2066 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2067 /* Sync SLIM */ 2068 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2069 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2070 /* flush */ 2071 readl(phba->hbq_put + hbqno); 2072 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2073 return 0; 2074 } else 2075 return -ENOMEM; 2076 } 2077 2078 /** 2079 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2080 * @phba: Pointer to HBA context object. 2081 * @hbqno: HBQ number. 2082 * @hbq_buf: Pointer to HBQ buffer. 2083 * 2084 * This function is called with the hbalock held to post an RQE to the SLI4 2085 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2086 * the hbq_buffer_list and return zero, otherwise it will return an error. 2087 **/ 2088 static int 2089 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2090 struct hbq_dmabuf *hbq_buf) 2091 { 2092 int rc; 2093 struct lpfc_rqe hrqe; 2094 struct lpfc_rqe drqe; 2095 struct lpfc_queue *hrq; 2096 struct lpfc_queue *drq; 2097 2098 if (hbqno != LPFC_ELS_HBQ) 2099 return 1; 2100 hrq = phba->sli4_hba.hdr_rq; 2101 drq = phba->sli4_hba.dat_rq; 2102 2103 lockdep_assert_held(&phba->hbalock); 2104 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2105 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2106 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2107 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2108 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2109 if (rc < 0) 2110 return rc; 2111 hbq_buf->tag = (rc | (hbqno << 16)); 2112 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2113 return 0; 2114 } 2115 2116 /* HBQ for ELS and CT traffic. */ 2117 static struct lpfc_hbq_init lpfc_els_hbq = { 2118 .rn = 1, 2119 .entry_count = 256, 2120 .mask_count = 0, 2121 .profile = 0, 2122 .ring_mask = (1 << LPFC_ELS_RING), 2123 .buffer_count = 0, 2124 .init_count = 40, 2125 .add_count = 40, 2126 }; 2127 2128 /* Array of HBQs */ 2129 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2130 &lpfc_els_hbq, 2131 }; 2132 2133 /** 2134 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2135 * @phba: Pointer to HBA context object. 2136 * @hbqno: HBQ number. 2137 * @count: Number of HBQ buffers to be posted. 2138 * 2139 * This function is called with no lock held to post more hbq buffers to the 2140 * given HBQ. The function returns the number of HBQ buffers successfully 2141 * posted. 2142 **/ 2143 static int 2144 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2145 { 2146 uint32_t i, posted = 0; 2147 unsigned long flags; 2148 struct hbq_dmabuf *hbq_buffer; 2149 LIST_HEAD(hbq_buf_list); 2150 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2151 return 0; 2152 2153 if ((phba->hbqs[hbqno].buffer_count + count) > 2154 lpfc_hbq_defs[hbqno]->entry_count) 2155 count = lpfc_hbq_defs[hbqno]->entry_count - 2156 phba->hbqs[hbqno].buffer_count; 2157 if (!count) 2158 return 0; 2159 /* Allocate HBQ entries */ 2160 for (i = 0; i < count; i++) { 2161 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2162 if (!hbq_buffer) 2163 break; 2164 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2165 } 2166 /* Check whether HBQ is still in use */ 2167 spin_lock_irqsave(&phba->hbalock, flags); 2168 if (!phba->hbq_in_use) 2169 goto err; 2170 while (!list_empty(&hbq_buf_list)) { 2171 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2172 dbuf.list); 2173 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2174 (hbqno << 16)); 2175 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2176 phba->hbqs[hbqno].buffer_count++; 2177 posted++; 2178 } else 2179 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2180 } 2181 spin_unlock_irqrestore(&phba->hbalock, flags); 2182 return posted; 2183 err: 2184 spin_unlock_irqrestore(&phba->hbalock, flags); 2185 while (!list_empty(&hbq_buf_list)) { 2186 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2187 dbuf.list); 2188 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2189 } 2190 return 0; 2191 } 2192 2193 /** 2194 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2195 * @phba: Pointer to HBA context object. 2196 * @qno: HBQ number. 2197 * 2198 * This function posts more buffers to the HBQ. This function 2199 * is called with no lock held. The function returns the number of HBQ entries 2200 * successfully allocated. 2201 **/ 2202 int 2203 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2204 { 2205 if (phba->sli_rev == LPFC_SLI_REV4) 2206 return 0; 2207 else 2208 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2209 lpfc_hbq_defs[qno]->add_count); 2210 } 2211 2212 /** 2213 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2214 * @phba: Pointer to HBA context object. 2215 * @qno: HBQ queue number. 2216 * 2217 * This function is called from SLI initialization code path with 2218 * no lock held to post initial HBQ buffers to firmware. The 2219 * function returns the number of HBQ entries successfully allocated. 2220 **/ 2221 static int 2222 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2223 { 2224 if (phba->sli_rev == LPFC_SLI_REV4) 2225 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2226 lpfc_hbq_defs[qno]->entry_count); 2227 else 2228 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2229 lpfc_hbq_defs[qno]->init_count); 2230 } 2231 2232 /** 2233 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2234 * @phba: Pointer to HBA context object. 2235 * @hbqno: HBQ number. 2236 * 2237 * This function removes the first hbq buffer on an hbq list and returns a 2238 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2239 **/ 2240 static struct hbq_dmabuf * 2241 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2242 { 2243 struct lpfc_dmabuf *d_buf; 2244 2245 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2246 if (!d_buf) 2247 return NULL; 2248 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2249 } 2250 2251 /** 2252 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2253 * @phba: Pointer to HBA context object. 2254 * @hbqno: HBQ number. 2255 * 2256 * This function removes the first RQ buffer on an RQ buffer list and returns a 2257 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2258 **/ 2259 static struct rqb_dmabuf * 2260 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2261 { 2262 struct lpfc_dmabuf *h_buf; 2263 struct lpfc_rqb *rqbp; 2264 2265 rqbp = hrq->rqbp; 2266 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2267 struct lpfc_dmabuf, list); 2268 if (!h_buf) 2269 return NULL; 2270 rqbp->buffer_count--; 2271 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2272 } 2273 2274 /** 2275 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2276 * @phba: Pointer to HBA context object. 2277 * @tag: Tag of the hbq buffer. 2278 * 2279 * This function searches for the hbq buffer associated with the given tag in 2280 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2281 * otherwise it returns NULL. 2282 **/ 2283 static struct hbq_dmabuf * 2284 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2285 { 2286 struct lpfc_dmabuf *d_buf; 2287 struct hbq_dmabuf *hbq_buf; 2288 uint32_t hbqno; 2289 2290 hbqno = tag >> 16; 2291 if (hbqno >= LPFC_MAX_HBQS) 2292 return NULL; 2293 2294 spin_lock_irq(&phba->hbalock); 2295 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2296 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2297 if (hbq_buf->tag == tag) { 2298 spin_unlock_irq(&phba->hbalock); 2299 return hbq_buf; 2300 } 2301 } 2302 spin_unlock_irq(&phba->hbalock); 2303 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2304 "1803 Bad hbq tag. Data: x%x x%x\n", 2305 tag, phba->hbqs[tag >> 16].buffer_count); 2306 return NULL; 2307 } 2308 2309 /** 2310 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2311 * @phba: Pointer to HBA context object. 2312 * @hbq_buffer: Pointer to HBQ buffer. 2313 * 2314 * This function is called with hbalock. This function gives back 2315 * the hbq buffer to firmware. If the HBQ does not have space to 2316 * post the buffer, it will free the buffer. 2317 **/ 2318 void 2319 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2320 { 2321 uint32_t hbqno; 2322 2323 if (hbq_buffer) { 2324 hbqno = hbq_buffer->tag >> 16; 2325 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2326 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2327 } 2328 } 2329 2330 /** 2331 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2332 * @mbxCommand: mailbox command code. 2333 * 2334 * This function is called by the mailbox event handler function to verify 2335 * that the completed mailbox command is a legitimate mailbox command. If the 2336 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2337 * and the mailbox event handler will take the HBA offline. 2338 **/ 2339 static int 2340 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2341 { 2342 uint8_t ret; 2343 2344 switch (mbxCommand) { 2345 case MBX_LOAD_SM: 2346 case MBX_READ_NV: 2347 case MBX_WRITE_NV: 2348 case MBX_WRITE_VPARMS: 2349 case MBX_RUN_BIU_DIAG: 2350 case MBX_INIT_LINK: 2351 case MBX_DOWN_LINK: 2352 case MBX_CONFIG_LINK: 2353 case MBX_CONFIG_RING: 2354 case MBX_RESET_RING: 2355 case MBX_READ_CONFIG: 2356 case MBX_READ_RCONFIG: 2357 case MBX_READ_SPARM: 2358 case MBX_READ_STATUS: 2359 case MBX_READ_RPI: 2360 case MBX_READ_XRI: 2361 case MBX_READ_REV: 2362 case MBX_READ_LNK_STAT: 2363 case MBX_REG_LOGIN: 2364 case MBX_UNREG_LOGIN: 2365 case MBX_CLEAR_LA: 2366 case MBX_DUMP_MEMORY: 2367 case MBX_DUMP_CONTEXT: 2368 case MBX_RUN_DIAGS: 2369 case MBX_RESTART: 2370 case MBX_UPDATE_CFG: 2371 case MBX_DOWN_LOAD: 2372 case MBX_DEL_LD_ENTRY: 2373 case MBX_RUN_PROGRAM: 2374 case MBX_SET_MASK: 2375 case MBX_SET_VARIABLE: 2376 case MBX_UNREG_D_ID: 2377 case MBX_KILL_BOARD: 2378 case MBX_CONFIG_FARP: 2379 case MBX_BEACON: 2380 case MBX_LOAD_AREA: 2381 case MBX_RUN_BIU_DIAG64: 2382 case MBX_CONFIG_PORT: 2383 case MBX_READ_SPARM64: 2384 case MBX_READ_RPI64: 2385 case MBX_REG_LOGIN64: 2386 case MBX_READ_TOPOLOGY: 2387 case MBX_WRITE_WWN: 2388 case MBX_SET_DEBUG: 2389 case MBX_LOAD_EXP_ROM: 2390 case MBX_ASYNCEVT_ENABLE: 2391 case MBX_REG_VPI: 2392 case MBX_UNREG_VPI: 2393 case MBX_HEARTBEAT: 2394 case MBX_PORT_CAPABILITIES: 2395 case MBX_PORT_IOV_CONTROL: 2396 case MBX_SLI4_CONFIG: 2397 case MBX_SLI4_REQ_FTRS: 2398 case MBX_REG_FCFI: 2399 case MBX_UNREG_FCFI: 2400 case MBX_REG_VFI: 2401 case MBX_UNREG_VFI: 2402 case MBX_INIT_VPI: 2403 case MBX_INIT_VFI: 2404 case MBX_RESUME_RPI: 2405 case MBX_READ_EVENT_LOG_STATUS: 2406 case MBX_READ_EVENT_LOG: 2407 case MBX_SECURITY_MGMT: 2408 case MBX_AUTH_PORT: 2409 case MBX_ACCESS_VDATA: 2410 ret = mbxCommand; 2411 break; 2412 default: 2413 ret = MBX_SHUTDOWN; 2414 break; 2415 } 2416 return ret; 2417 } 2418 2419 /** 2420 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2421 * @phba: Pointer to HBA context object. 2422 * @pmboxq: Pointer to mailbox command. 2423 * 2424 * This is completion handler function for mailbox commands issued from 2425 * lpfc_sli_issue_mbox_wait function. This function is called by the 2426 * mailbox event handler function with no lock held. This function 2427 * will wake up thread waiting on the wait queue pointed by context1 2428 * of the mailbox. 2429 **/ 2430 void 2431 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2432 { 2433 unsigned long drvr_flag; 2434 struct completion *pmbox_done; 2435 2436 /* 2437 * If pmbox_done is empty, the driver thread gave up waiting and 2438 * continued running. 2439 */ 2440 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2441 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2442 pmbox_done = (struct completion *)pmboxq->context3; 2443 if (pmbox_done) 2444 complete(pmbox_done); 2445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2446 return; 2447 } 2448 2449 static void 2450 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2451 { 2452 unsigned long iflags; 2453 2454 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2455 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2456 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2457 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2458 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2459 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2460 } 2461 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2462 } 2463 2464 /** 2465 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2466 * @phba: Pointer to HBA context object. 2467 * @pmb: Pointer to mailbox object. 2468 * 2469 * This function is the default mailbox completion handler. It 2470 * frees the memory resources associated with the completed mailbox 2471 * command. If the completed command is a REG_LOGIN mailbox command, 2472 * this function will issue a UREG_LOGIN to re-claim the RPI. 2473 **/ 2474 void 2475 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2476 { 2477 struct lpfc_vport *vport = pmb->vport; 2478 struct lpfc_dmabuf *mp; 2479 struct lpfc_nodelist *ndlp; 2480 struct Scsi_Host *shost; 2481 uint16_t rpi, vpi; 2482 int rc; 2483 2484 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2485 2486 if (mp) { 2487 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2488 kfree(mp); 2489 } 2490 2491 /* 2492 * If a REG_LOGIN succeeded after node is destroyed or node 2493 * is in re-discovery driver need to cleanup the RPI. 2494 */ 2495 if (!(phba->pport->load_flag & FC_UNLOADING) && 2496 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2497 !pmb->u.mb.mbxStatus) { 2498 rpi = pmb->u.mb.un.varWords[0]; 2499 vpi = pmb->u.mb.un.varRegLogin.vpi; 2500 if (phba->sli_rev == LPFC_SLI_REV4) 2501 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2502 lpfc_unreg_login(phba, vpi, rpi, pmb); 2503 pmb->vport = vport; 2504 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2505 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2506 if (rc != MBX_NOT_FINISHED) 2507 return; 2508 } 2509 2510 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2511 !(phba->pport->load_flag & FC_UNLOADING) && 2512 !pmb->u.mb.mbxStatus) { 2513 shost = lpfc_shost_from_vport(vport); 2514 spin_lock_irq(shost->host_lock); 2515 vport->vpi_state |= LPFC_VPI_REGISTERED; 2516 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2517 spin_unlock_irq(shost->host_lock); 2518 } 2519 2520 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2521 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2522 lpfc_nlp_put(ndlp); 2523 pmb->ctx_buf = NULL; 2524 pmb->ctx_ndlp = NULL; 2525 } 2526 2527 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2528 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2529 2530 /* Check to see if there are any deferred events to process */ 2531 if (ndlp) { 2532 lpfc_printf_vlog( 2533 vport, 2534 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2535 "1438 UNREG cmpl deferred mbox x%x " 2536 "on NPort x%x Data: x%x x%x %px\n", 2537 ndlp->nlp_rpi, ndlp->nlp_DID, 2538 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2539 2540 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2541 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2542 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2543 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2544 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2545 } else { 2546 __lpfc_sli_rpi_release(vport, ndlp); 2547 } 2548 if (vport->load_flag & FC_UNLOADING) 2549 lpfc_nlp_put(ndlp); 2550 pmb->ctx_ndlp = NULL; 2551 } 2552 } 2553 2554 /* Check security permission status on INIT_LINK mailbox command */ 2555 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2556 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2557 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2558 "2860 SLI authentication is required " 2559 "for INIT_LINK but has not done yet\n"); 2560 2561 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2562 lpfc_sli4_mbox_cmd_free(phba, pmb); 2563 else 2564 mempool_free(pmb, phba->mbox_mem_pool); 2565 } 2566 /** 2567 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2568 * @phba: Pointer to HBA context object. 2569 * @pmb: Pointer to mailbox object. 2570 * 2571 * This function is the unreg rpi mailbox completion handler. It 2572 * frees the memory resources associated with the completed mailbox 2573 * command. An additional refrenece is put on the ndlp to prevent 2574 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2575 * the unreg mailbox command completes, this routine puts the 2576 * reference back. 2577 * 2578 **/ 2579 void 2580 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2581 { 2582 struct lpfc_vport *vport = pmb->vport; 2583 struct lpfc_nodelist *ndlp; 2584 2585 ndlp = pmb->ctx_ndlp; 2586 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2587 if (phba->sli_rev == LPFC_SLI_REV4 && 2588 (bf_get(lpfc_sli_intf_if_type, 2589 &phba->sli4_hba.sli_intf) >= 2590 LPFC_SLI_INTF_IF_TYPE_2)) { 2591 if (ndlp) { 2592 lpfc_printf_vlog( 2593 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2594 "0010 UNREG_LOGIN vpi:%x " 2595 "rpi:%x DID:%x defer x%x flg x%x " 2596 "map:%x %px\n", 2597 vport->vpi, ndlp->nlp_rpi, 2598 ndlp->nlp_DID, ndlp->nlp_defer_did, 2599 ndlp->nlp_flag, 2600 ndlp->nlp_usg_map, ndlp); 2601 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2602 lpfc_nlp_put(ndlp); 2603 2604 /* Check to see if there are any deferred 2605 * events to process 2606 */ 2607 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2608 (ndlp->nlp_defer_did != 2609 NLP_EVT_NOTHING_PENDING)) { 2610 lpfc_printf_vlog( 2611 vport, KERN_INFO, LOG_DISCOVERY, 2612 "4111 UNREG cmpl deferred " 2613 "clr x%x on " 2614 "NPort x%x Data: x%x x%px\n", 2615 ndlp->nlp_rpi, ndlp->nlp_DID, 2616 ndlp->nlp_defer_did, ndlp); 2617 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2618 ndlp->nlp_defer_did = 2619 NLP_EVT_NOTHING_PENDING; 2620 lpfc_issue_els_plogi( 2621 vport, ndlp->nlp_DID, 0); 2622 } else { 2623 __lpfc_sli_rpi_release(vport, ndlp); 2624 } 2625 } 2626 } 2627 } 2628 2629 mempool_free(pmb, phba->mbox_mem_pool); 2630 } 2631 2632 /** 2633 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2634 * @phba: Pointer to HBA context object. 2635 * 2636 * This function is called with no lock held. This function processes all 2637 * the completed mailbox commands and gives it to upper layers. The interrupt 2638 * service routine processes mailbox completion interrupt and adds completed 2639 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2640 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2641 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2642 * function returns the mailbox commands to the upper layer by calling the 2643 * completion handler function of each mailbox. 2644 **/ 2645 int 2646 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2647 { 2648 MAILBOX_t *pmbox; 2649 LPFC_MBOXQ_t *pmb; 2650 int rc; 2651 LIST_HEAD(cmplq); 2652 2653 phba->sli.slistat.mbox_event++; 2654 2655 /* Get all completed mailboxe buffers into the cmplq */ 2656 spin_lock_irq(&phba->hbalock); 2657 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2658 spin_unlock_irq(&phba->hbalock); 2659 2660 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2661 do { 2662 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2663 if (pmb == NULL) 2664 break; 2665 2666 pmbox = &pmb->u.mb; 2667 2668 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2669 if (pmb->vport) { 2670 lpfc_debugfs_disc_trc(pmb->vport, 2671 LPFC_DISC_TRC_MBOX_VPORT, 2672 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2673 (uint32_t)pmbox->mbxCommand, 2674 pmbox->un.varWords[0], 2675 pmbox->un.varWords[1]); 2676 } 2677 else { 2678 lpfc_debugfs_disc_trc(phba->pport, 2679 LPFC_DISC_TRC_MBOX, 2680 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2681 (uint32_t)pmbox->mbxCommand, 2682 pmbox->un.varWords[0], 2683 pmbox->un.varWords[1]); 2684 } 2685 } 2686 2687 /* 2688 * It is a fatal error if unknown mbox command completion. 2689 */ 2690 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2691 MBX_SHUTDOWN) { 2692 /* Unknown mailbox command compl */ 2693 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2694 "(%d):0323 Unknown Mailbox command " 2695 "x%x (x%x/x%x) Cmpl\n", 2696 pmb->vport ? pmb->vport->vpi : 2697 LPFC_VPORT_UNKNOWN, 2698 pmbox->mbxCommand, 2699 lpfc_sli_config_mbox_subsys_get(phba, 2700 pmb), 2701 lpfc_sli_config_mbox_opcode_get(phba, 2702 pmb)); 2703 phba->link_state = LPFC_HBA_ERROR; 2704 phba->work_hs = HS_FFER3; 2705 lpfc_handle_eratt(phba); 2706 continue; 2707 } 2708 2709 if (pmbox->mbxStatus) { 2710 phba->sli.slistat.mbox_stat_err++; 2711 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2712 /* Mbox cmd cmpl error - RETRYing */ 2713 lpfc_printf_log(phba, KERN_INFO, 2714 LOG_MBOX | LOG_SLI, 2715 "(%d):0305 Mbox cmd cmpl " 2716 "error - RETRYing Data: x%x " 2717 "(x%x/x%x) x%x x%x x%x\n", 2718 pmb->vport ? pmb->vport->vpi : 2719 LPFC_VPORT_UNKNOWN, 2720 pmbox->mbxCommand, 2721 lpfc_sli_config_mbox_subsys_get(phba, 2722 pmb), 2723 lpfc_sli_config_mbox_opcode_get(phba, 2724 pmb), 2725 pmbox->mbxStatus, 2726 pmbox->un.varWords[0], 2727 pmb->vport ? pmb->vport->port_state : 2728 LPFC_VPORT_UNKNOWN); 2729 pmbox->mbxStatus = 0; 2730 pmbox->mbxOwner = OWN_HOST; 2731 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2732 if (rc != MBX_NOT_FINISHED) 2733 continue; 2734 } 2735 } 2736 2737 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2738 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2739 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2740 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2741 "x%x x%x x%x\n", 2742 pmb->vport ? pmb->vport->vpi : 0, 2743 pmbox->mbxCommand, 2744 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2745 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2746 pmb->mbox_cmpl, 2747 *((uint32_t *) pmbox), 2748 pmbox->un.varWords[0], 2749 pmbox->un.varWords[1], 2750 pmbox->un.varWords[2], 2751 pmbox->un.varWords[3], 2752 pmbox->un.varWords[4], 2753 pmbox->un.varWords[5], 2754 pmbox->un.varWords[6], 2755 pmbox->un.varWords[7], 2756 pmbox->un.varWords[8], 2757 pmbox->un.varWords[9], 2758 pmbox->un.varWords[10]); 2759 2760 if (pmb->mbox_cmpl) 2761 pmb->mbox_cmpl(phba,pmb); 2762 } while (1); 2763 return 0; 2764 } 2765 2766 /** 2767 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2768 * @phba: Pointer to HBA context object. 2769 * @pring: Pointer to driver SLI ring object. 2770 * @tag: buffer tag. 2771 * 2772 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2773 * is set in the tag the buffer is posted for a particular exchange, 2774 * the function will return the buffer without replacing the buffer. 2775 * If the buffer is for unsolicited ELS or CT traffic, this function 2776 * returns the buffer and also posts another buffer to the firmware. 2777 **/ 2778 static struct lpfc_dmabuf * 2779 lpfc_sli_get_buff(struct lpfc_hba *phba, 2780 struct lpfc_sli_ring *pring, 2781 uint32_t tag) 2782 { 2783 struct hbq_dmabuf *hbq_entry; 2784 2785 if (tag & QUE_BUFTAG_BIT) 2786 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2787 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2788 if (!hbq_entry) 2789 return NULL; 2790 return &hbq_entry->dbuf; 2791 } 2792 2793 /** 2794 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2795 * containing a NVME LS request. 2796 * @phba: pointer to lpfc hba data structure. 2797 * @piocb: pointer to the iocbq struct representing the sequence starting 2798 * frame. 2799 * 2800 * This routine initially validates the NVME LS, validates there is a login 2801 * with the port that sent the LS, and then calls the appropriate nvme host 2802 * or target LS request handler. 2803 **/ 2804 static void 2805 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2806 { 2807 struct lpfc_nodelist *ndlp; 2808 struct lpfc_dmabuf *d_buf; 2809 struct hbq_dmabuf *nvmebuf; 2810 struct fc_frame_header *fc_hdr; 2811 struct lpfc_async_xchg_ctx *axchg = NULL; 2812 char *failwhy = NULL; 2813 uint32_t oxid, sid, did, fctl, size; 2814 int ret = 1; 2815 2816 d_buf = piocb->context2; 2817 2818 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2819 fc_hdr = nvmebuf->hbuf.virt; 2820 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2821 sid = sli4_sid_from_fc_hdr(fc_hdr); 2822 did = sli4_did_from_fc_hdr(fc_hdr); 2823 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2824 fc_hdr->fh_f_ctl[1] << 8 | 2825 fc_hdr->fh_f_ctl[2]); 2826 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2827 2828 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2829 oxid, size, sid); 2830 2831 if (phba->pport->load_flag & FC_UNLOADING) { 2832 failwhy = "Driver Unloading"; 2833 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2834 failwhy = "NVME FC4 Disabled"; 2835 } else if (!phba->nvmet_support && !phba->pport->localport) { 2836 failwhy = "No Localport"; 2837 } else if (phba->nvmet_support && !phba->targetport) { 2838 failwhy = "No Targetport"; 2839 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2840 failwhy = "Bad NVME LS R_CTL"; 2841 } else if (unlikely((fctl & 0x00FF0000) != 2842 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2843 failwhy = "Bad NVME LS F_CTL"; 2844 } else { 2845 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2846 if (!axchg) 2847 failwhy = "No CTX memory"; 2848 } 2849 2850 if (unlikely(failwhy)) { 2851 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR, 2852 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2853 sid, oxid, failwhy); 2854 goto out_fail; 2855 } 2856 2857 /* validate the source of the LS is logged in */ 2858 ndlp = lpfc_findnode_did(phba->pport, sid); 2859 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2860 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2861 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2862 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2863 "6216 NVME Unsol rcv: No ndlp: " 2864 "NPort_ID x%x oxid x%x\n", 2865 sid, oxid); 2866 goto out_fail; 2867 } 2868 2869 axchg->phba = phba; 2870 axchg->ndlp = ndlp; 2871 axchg->size = size; 2872 axchg->oxid = oxid; 2873 axchg->sid = sid; 2874 axchg->wqeq = NULL; 2875 axchg->state = LPFC_NVME_STE_LS_RCV; 2876 axchg->entry_cnt = 1; 2877 axchg->rqb_buffer = (void *)nvmebuf; 2878 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 2879 axchg->payload = nvmebuf->dbuf.virt; 2880 INIT_LIST_HEAD(&axchg->list); 2881 2882 if (phba->nvmet_support) 2883 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 2884 else 2885 ret = lpfc_nvme_handle_lsreq(phba, axchg); 2886 2887 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 2888 if (!ret) 2889 return; 2890 2891 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR, 2892 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 2893 "NVMe%s handler failed %d\n", 2894 did, sid, oxid, 2895 (phba->nvmet_support) ? "T" : "I", ret); 2896 2897 out_fail: 2898 2899 /* recycle receive buffer */ 2900 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2901 2902 /* If start of new exchange, abort it */ 2903 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 2904 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 2905 2906 if (ret) 2907 kfree(axchg); 2908 } 2909 2910 /** 2911 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2912 * @phba: Pointer to HBA context object. 2913 * @pring: Pointer to driver SLI ring object. 2914 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2915 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2916 * @fch_type: the type for the first frame of the sequence. 2917 * 2918 * This function is called with no lock held. This function uses the r_ctl and 2919 * type of the received sequence to find the correct callback function to call 2920 * to process the sequence. 2921 **/ 2922 static int 2923 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2924 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2925 uint32_t fch_type) 2926 { 2927 int i; 2928 2929 switch (fch_type) { 2930 case FC_TYPE_NVME: 2931 lpfc_nvme_unsol_ls_handler(phba, saveq); 2932 return 1; 2933 default: 2934 break; 2935 } 2936 2937 /* unSolicited Responses */ 2938 if (pring->prt[0].profile) { 2939 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2940 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2941 saveq); 2942 return 1; 2943 } 2944 /* We must search, based on rctl / type 2945 for the right routine */ 2946 for (i = 0; i < pring->num_mask; i++) { 2947 if ((pring->prt[i].rctl == fch_r_ctl) && 2948 (pring->prt[i].type == fch_type)) { 2949 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2950 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2951 (phba, pring, saveq); 2952 return 1; 2953 } 2954 } 2955 return 0; 2956 } 2957 2958 /** 2959 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2960 * @phba: Pointer to HBA context object. 2961 * @pring: Pointer to driver SLI ring object. 2962 * @saveq: Pointer to the unsolicited iocb. 2963 * 2964 * This function is called with no lock held by the ring event handler 2965 * when there is an unsolicited iocb posted to the response ring by the 2966 * firmware. This function gets the buffer associated with the iocbs 2967 * and calls the event handler for the ring. This function handles both 2968 * qring buffers and hbq buffers. 2969 * When the function returns 1 the caller can free the iocb object otherwise 2970 * upper layer functions will free the iocb objects. 2971 **/ 2972 static int 2973 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2974 struct lpfc_iocbq *saveq) 2975 { 2976 IOCB_t * irsp; 2977 WORD5 * w5p; 2978 uint32_t Rctl, Type; 2979 struct lpfc_iocbq *iocbq; 2980 struct lpfc_dmabuf *dmzbuf; 2981 2982 irsp = &(saveq->iocb); 2983 2984 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2985 if (pring->lpfc_sli_rcv_async_status) 2986 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2987 else 2988 lpfc_printf_log(phba, 2989 KERN_WARNING, 2990 LOG_SLI, 2991 "0316 Ring %d handler: unexpected " 2992 "ASYNC_STATUS iocb received evt_code " 2993 "0x%x\n", 2994 pring->ringno, 2995 irsp->un.asyncstat.evt_code); 2996 return 1; 2997 } 2998 2999 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3000 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3001 if (irsp->ulpBdeCount > 0) { 3002 dmzbuf = lpfc_sli_get_buff(phba, pring, 3003 irsp->un.ulpWord[3]); 3004 lpfc_in_buf_free(phba, dmzbuf); 3005 } 3006 3007 if (irsp->ulpBdeCount > 1) { 3008 dmzbuf = lpfc_sli_get_buff(phba, pring, 3009 irsp->unsli3.sli3Words[3]); 3010 lpfc_in_buf_free(phba, dmzbuf); 3011 } 3012 3013 if (irsp->ulpBdeCount > 2) { 3014 dmzbuf = lpfc_sli_get_buff(phba, pring, 3015 irsp->unsli3.sli3Words[7]); 3016 lpfc_in_buf_free(phba, dmzbuf); 3017 } 3018 3019 return 1; 3020 } 3021 3022 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3023 if (irsp->ulpBdeCount != 0) { 3024 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3025 irsp->un.ulpWord[3]); 3026 if (!saveq->context2) 3027 lpfc_printf_log(phba, 3028 KERN_ERR, 3029 LOG_SLI, 3030 "0341 Ring %d Cannot find buffer for " 3031 "an unsolicited iocb. tag 0x%x\n", 3032 pring->ringno, 3033 irsp->un.ulpWord[3]); 3034 } 3035 if (irsp->ulpBdeCount == 2) { 3036 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3037 irsp->unsli3.sli3Words[7]); 3038 if (!saveq->context3) 3039 lpfc_printf_log(phba, 3040 KERN_ERR, 3041 LOG_SLI, 3042 "0342 Ring %d Cannot find buffer for an" 3043 " unsolicited iocb. tag 0x%x\n", 3044 pring->ringno, 3045 irsp->unsli3.sli3Words[7]); 3046 } 3047 list_for_each_entry(iocbq, &saveq->list, list) { 3048 irsp = &(iocbq->iocb); 3049 if (irsp->ulpBdeCount != 0) { 3050 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3051 irsp->un.ulpWord[3]); 3052 if (!iocbq->context2) 3053 lpfc_printf_log(phba, 3054 KERN_ERR, 3055 LOG_SLI, 3056 "0343 Ring %d Cannot find " 3057 "buffer for an unsolicited iocb" 3058 ". tag 0x%x\n", pring->ringno, 3059 irsp->un.ulpWord[3]); 3060 } 3061 if (irsp->ulpBdeCount == 2) { 3062 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3063 irsp->unsli3.sli3Words[7]); 3064 if (!iocbq->context3) 3065 lpfc_printf_log(phba, 3066 KERN_ERR, 3067 LOG_SLI, 3068 "0344 Ring %d Cannot find " 3069 "buffer for an unsolicited " 3070 "iocb. tag 0x%x\n", 3071 pring->ringno, 3072 irsp->unsli3.sli3Words[7]); 3073 } 3074 } 3075 } 3076 if (irsp->ulpBdeCount != 0 && 3077 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3078 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3079 int found = 0; 3080 3081 /* search continue save q for same XRI */ 3082 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3083 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3084 saveq->iocb.unsli3.rcvsli3.ox_id) { 3085 list_add_tail(&saveq->list, &iocbq->list); 3086 found = 1; 3087 break; 3088 } 3089 } 3090 if (!found) 3091 list_add_tail(&saveq->clist, 3092 &pring->iocb_continue_saveq); 3093 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3094 list_del_init(&iocbq->clist); 3095 saveq = iocbq; 3096 irsp = &(saveq->iocb); 3097 } else 3098 return 0; 3099 } 3100 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3101 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3102 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3103 Rctl = FC_RCTL_ELS_REQ; 3104 Type = FC_TYPE_ELS; 3105 } else { 3106 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3107 Rctl = w5p->hcsw.Rctl; 3108 Type = w5p->hcsw.Type; 3109 3110 /* Firmware Workaround */ 3111 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3112 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3113 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3114 Rctl = FC_RCTL_ELS_REQ; 3115 Type = FC_TYPE_ELS; 3116 w5p->hcsw.Rctl = Rctl; 3117 w5p->hcsw.Type = Type; 3118 } 3119 } 3120 3121 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3122 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3123 "0313 Ring %d handler: unexpected Rctl x%x " 3124 "Type x%x received\n", 3125 pring->ringno, Rctl, Type); 3126 3127 return 1; 3128 } 3129 3130 /** 3131 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3132 * @phba: Pointer to HBA context object. 3133 * @pring: Pointer to driver SLI ring object. 3134 * @prspiocb: Pointer to response iocb object. 3135 * 3136 * This function looks up the iocb_lookup table to get the command iocb 3137 * corresponding to the given response iocb using the iotag of the 3138 * response iocb. The driver calls this function with the hbalock held 3139 * for SLI3 ports or the ring lock held for SLI4 ports. 3140 * This function returns the command iocb object if it finds the command 3141 * iocb else returns NULL. 3142 **/ 3143 static struct lpfc_iocbq * 3144 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3145 struct lpfc_sli_ring *pring, 3146 struct lpfc_iocbq *prspiocb) 3147 { 3148 struct lpfc_iocbq *cmd_iocb = NULL; 3149 uint16_t iotag; 3150 spinlock_t *temp_lock = NULL; 3151 unsigned long iflag = 0; 3152 3153 if (phba->sli_rev == LPFC_SLI_REV4) 3154 temp_lock = &pring->ring_lock; 3155 else 3156 temp_lock = &phba->hbalock; 3157 3158 spin_lock_irqsave(temp_lock, iflag); 3159 iotag = prspiocb->iocb.ulpIoTag; 3160 3161 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3162 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3163 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3164 /* remove from txcmpl queue list */ 3165 list_del_init(&cmd_iocb->list); 3166 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3167 pring->txcmplq_cnt--; 3168 spin_unlock_irqrestore(temp_lock, iflag); 3169 return cmd_iocb; 3170 } 3171 } 3172 3173 spin_unlock_irqrestore(temp_lock, iflag); 3174 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3175 "0317 iotag x%x is out of " 3176 "range: max iotag x%x wd0 x%x\n", 3177 iotag, phba->sli.last_iotag, 3178 *(((uint32_t *) &prspiocb->iocb) + 7)); 3179 return NULL; 3180 } 3181 3182 /** 3183 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3184 * @phba: Pointer to HBA context object. 3185 * @pring: Pointer to driver SLI ring object. 3186 * @iotag: IOCB tag. 3187 * 3188 * This function looks up the iocb_lookup table to get the command iocb 3189 * corresponding to the given iotag. The driver calls this function with 3190 * the ring lock held because this function is an SLI4 port only helper. 3191 * This function returns the command iocb object if it finds the command 3192 * iocb else returns NULL. 3193 **/ 3194 static struct lpfc_iocbq * 3195 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3196 struct lpfc_sli_ring *pring, uint16_t iotag) 3197 { 3198 struct lpfc_iocbq *cmd_iocb = NULL; 3199 spinlock_t *temp_lock = NULL; 3200 unsigned long iflag = 0; 3201 3202 if (phba->sli_rev == LPFC_SLI_REV4) 3203 temp_lock = &pring->ring_lock; 3204 else 3205 temp_lock = &phba->hbalock; 3206 3207 spin_lock_irqsave(temp_lock, iflag); 3208 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3209 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3210 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3211 /* remove from txcmpl queue list */ 3212 list_del_init(&cmd_iocb->list); 3213 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3214 pring->txcmplq_cnt--; 3215 spin_unlock_irqrestore(temp_lock, iflag); 3216 return cmd_iocb; 3217 } 3218 } 3219 3220 spin_unlock_irqrestore(temp_lock, iflag); 3221 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3222 "0372 iotag x%x lookup error: max iotag (x%x) " 3223 "iocb_flag x%x\n", 3224 iotag, phba->sli.last_iotag, 3225 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3226 return NULL; 3227 } 3228 3229 /** 3230 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3231 * @phba: Pointer to HBA context object. 3232 * @pring: Pointer to driver SLI ring object. 3233 * @saveq: Pointer to the response iocb to be processed. 3234 * 3235 * This function is called by the ring event handler for non-fcp 3236 * rings when there is a new response iocb in the response ring. 3237 * The caller is not required to hold any locks. This function 3238 * gets the command iocb associated with the response iocb and 3239 * calls the completion handler for the command iocb. If there 3240 * is no completion handler, the function will free the resources 3241 * associated with command iocb. If the response iocb is for 3242 * an already aborted command iocb, the status of the completion 3243 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3244 * This function always returns 1. 3245 **/ 3246 static int 3247 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3248 struct lpfc_iocbq *saveq) 3249 { 3250 struct lpfc_iocbq *cmdiocbp; 3251 int rc = 1; 3252 unsigned long iflag; 3253 3254 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3255 if (cmdiocbp) { 3256 if (cmdiocbp->iocb_cmpl) { 3257 /* 3258 * If an ELS command failed send an event to mgmt 3259 * application. 3260 */ 3261 if (saveq->iocb.ulpStatus && 3262 (pring->ringno == LPFC_ELS_RING) && 3263 (cmdiocbp->iocb.ulpCommand == 3264 CMD_ELS_REQUEST64_CR)) 3265 lpfc_send_els_failure_event(phba, 3266 cmdiocbp, saveq); 3267 3268 /* 3269 * Post all ELS completions to the worker thread. 3270 * All other are passed to the completion callback. 3271 */ 3272 if (pring->ringno == LPFC_ELS_RING) { 3273 if ((phba->sli_rev < LPFC_SLI_REV4) && 3274 (cmdiocbp->iocb_flag & 3275 LPFC_DRIVER_ABORTED)) { 3276 spin_lock_irqsave(&phba->hbalock, 3277 iflag); 3278 cmdiocbp->iocb_flag &= 3279 ~LPFC_DRIVER_ABORTED; 3280 spin_unlock_irqrestore(&phba->hbalock, 3281 iflag); 3282 saveq->iocb.ulpStatus = 3283 IOSTAT_LOCAL_REJECT; 3284 saveq->iocb.un.ulpWord[4] = 3285 IOERR_SLI_ABORTED; 3286 3287 /* Firmware could still be in progress 3288 * of DMAing payload, so don't free data 3289 * buffer till after a hbeat. 3290 */ 3291 spin_lock_irqsave(&phba->hbalock, 3292 iflag); 3293 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3294 spin_unlock_irqrestore(&phba->hbalock, 3295 iflag); 3296 } 3297 if (phba->sli_rev == LPFC_SLI_REV4) { 3298 if (saveq->iocb_flag & 3299 LPFC_EXCHANGE_BUSY) { 3300 /* Set cmdiocb flag for the 3301 * exchange busy so sgl (xri) 3302 * will not be released until 3303 * the abort xri is received 3304 * from hba. 3305 */ 3306 spin_lock_irqsave( 3307 &phba->hbalock, iflag); 3308 cmdiocbp->iocb_flag |= 3309 LPFC_EXCHANGE_BUSY; 3310 spin_unlock_irqrestore( 3311 &phba->hbalock, iflag); 3312 } 3313 if (cmdiocbp->iocb_flag & 3314 LPFC_DRIVER_ABORTED) { 3315 /* 3316 * Clear LPFC_DRIVER_ABORTED 3317 * bit in case it was driver 3318 * initiated abort. 3319 */ 3320 spin_lock_irqsave( 3321 &phba->hbalock, iflag); 3322 cmdiocbp->iocb_flag &= 3323 ~LPFC_DRIVER_ABORTED; 3324 spin_unlock_irqrestore( 3325 &phba->hbalock, iflag); 3326 cmdiocbp->iocb.ulpStatus = 3327 IOSTAT_LOCAL_REJECT; 3328 cmdiocbp->iocb.un.ulpWord[4] = 3329 IOERR_ABORT_REQUESTED; 3330 /* 3331 * For SLI4, irsiocb contains 3332 * NO_XRI in sli_xritag, it 3333 * shall not affect releasing 3334 * sgl (xri) process. 3335 */ 3336 saveq->iocb.ulpStatus = 3337 IOSTAT_LOCAL_REJECT; 3338 saveq->iocb.un.ulpWord[4] = 3339 IOERR_SLI_ABORTED; 3340 spin_lock_irqsave( 3341 &phba->hbalock, iflag); 3342 saveq->iocb_flag |= 3343 LPFC_DELAY_MEM_FREE; 3344 spin_unlock_irqrestore( 3345 &phba->hbalock, iflag); 3346 } 3347 } 3348 } 3349 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3350 } else 3351 lpfc_sli_release_iocbq(phba, cmdiocbp); 3352 } else { 3353 /* 3354 * Unknown initiating command based on the response iotag. 3355 * This could be the case on the ELS ring because of 3356 * lpfc_els_abort(). 3357 */ 3358 if (pring->ringno != LPFC_ELS_RING) { 3359 /* 3360 * Ring <ringno> handler: unexpected completion IoTag 3361 * <IoTag> 3362 */ 3363 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3364 "0322 Ring %d handler: " 3365 "unexpected completion IoTag x%x " 3366 "Data: x%x x%x x%x x%x\n", 3367 pring->ringno, 3368 saveq->iocb.ulpIoTag, 3369 saveq->iocb.ulpStatus, 3370 saveq->iocb.un.ulpWord[4], 3371 saveq->iocb.ulpCommand, 3372 saveq->iocb.ulpContext); 3373 } 3374 } 3375 3376 return rc; 3377 } 3378 3379 /** 3380 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3381 * @phba: Pointer to HBA context object. 3382 * @pring: Pointer to driver SLI ring object. 3383 * 3384 * This function is called from the iocb ring event handlers when 3385 * put pointer is ahead of the get pointer for a ring. This function signal 3386 * an error attention condition to the worker thread and the worker 3387 * thread will transition the HBA to offline state. 3388 **/ 3389 static void 3390 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3391 { 3392 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3393 /* 3394 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3395 * rsp ring <portRspMax> 3396 */ 3397 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3398 "0312 Ring %d handler: portRspPut %d " 3399 "is bigger than rsp ring %d\n", 3400 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3401 pring->sli.sli3.numRiocb); 3402 3403 phba->link_state = LPFC_HBA_ERROR; 3404 3405 /* 3406 * All error attention handlers are posted to 3407 * worker thread 3408 */ 3409 phba->work_ha |= HA_ERATT; 3410 phba->work_hs = HS_FFER3; 3411 3412 lpfc_worker_wake_up(phba); 3413 3414 return; 3415 } 3416 3417 /** 3418 * lpfc_poll_eratt - Error attention polling timer timeout handler 3419 * @ptr: Pointer to address of HBA context object. 3420 * 3421 * This function is invoked by the Error Attention polling timer when the 3422 * timer times out. It will check the SLI Error Attention register for 3423 * possible attention events. If so, it will post an Error Attention event 3424 * and wake up worker thread to process it. Otherwise, it will set up the 3425 * Error Attention polling timer for the next poll. 3426 **/ 3427 void lpfc_poll_eratt(struct timer_list *t) 3428 { 3429 struct lpfc_hba *phba; 3430 uint32_t eratt = 0; 3431 uint64_t sli_intr, cnt; 3432 3433 phba = from_timer(phba, t, eratt_poll); 3434 3435 /* Here we will also keep track of interrupts per sec of the hba */ 3436 sli_intr = phba->sli.slistat.sli_intr; 3437 3438 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3439 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3440 sli_intr); 3441 else 3442 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3443 3444 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3445 do_div(cnt, phba->eratt_poll_interval); 3446 phba->sli.slistat.sli_ips = cnt; 3447 3448 phba->sli.slistat.sli_prev_intr = sli_intr; 3449 3450 /* Check chip HA register for error event */ 3451 eratt = lpfc_sli_check_eratt(phba); 3452 3453 if (eratt) 3454 /* Tell the worker thread there is work to do */ 3455 lpfc_worker_wake_up(phba); 3456 else 3457 /* Restart the timer for next eratt poll */ 3458 mod_timer(&phba->eratt_poll, 3459 jiffies + 3460 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3461 return; 3462 } 3463 3464 3465 /** 3466 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3467 * @phba: Pointer to HBA context object. 3468 * @pring: Pointer to driver SLI ring object. 3469 * @mask: Host attention register mask for this ring. 3470 * 3471 * This function is called from the interrupt context when there is a ring 3472 * event for the fcp ring. The caller does not hold any lock. 3473 * The function processes each response iocb in the response ring until it 3474 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3475 * LE bit set. The function will call the completion handler of the command iocb 3476 * if the response iocb indicates a completion for a command iocb or it is 3477 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3478 * function if this is an unsolicited iocb. 3479 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3480 * to check it explicitly. 3481 */ 3482 int 3483 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3484 struct lpfc_sli_ring *pring, uint32_t mask) 3485 { 3486 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3487 IOCB_t *irsp = NULL; 3488 IOCB_t *entry = NULL; 3489 struct lpfc_iocbq *cmdiocbq = NULL; 3490 struct lpfc_iocbq rspiocbq; 3491 uint32_t status; 3492 uint32_t portRspPut, portRspMax; 3493 int rc = 1; 3494 lpfc_iocb_type type; 3495 unsigned long iflag; 3496 uint32_t rsp_cmpl = 0; 3497 3498 spin_lock_irqsave(&phba->hbalock, iflag); 3499 pring->stats.iocb_event++; 3500 3501 /* 3502 * The next available response entry should never exceed the maximum 3503 * entries. If it does, treat it as an adapter hardware error. 3504 */ 3505 portRspMax = pring->sli.sli3.numRiocb; 3506 portRspPut = le32_to_cpu(pgp->rspPutInx); 3507 if (unlikely(portRspPut >= portRspMax)) { 3508 lpfc_sli_rsp_pointers_error(phba, pring); 3509 spin_unlock_irqrestore(&phba->hbalock, iflag); 3510 return 1; 3511 } 3512 if (phba->fcp_ring_in_use) { 3513 spin_unlock_irqrestore(&phba->hbalock, iflag); 3514 return 1; 3515 } else 3516 phba->fcp_ring_in_use = 1; 3517 3518 rmb(); 3519 while (pring->sli.sli3.rspidx != portRspPut) { 3520 /* 3521 * Fetch an entry off the ring and copy it into a local data 3522 * structure. The copy involves a byte-swap since the 3523 * network byte order and pci byte orders are different. 3524 */ 3525 entry = lpfc_resp_iocb(phba, pring); 3526 phba->last_completion_time = jiffies; 3527 3528 if (++pring->sli.sli3.rspidx >= portRspMax) 3529 pring->sli.sli3.rspidx = 0; 3530 3531 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3532 (uint32_t *) &rspiocbq.iocb, 3533 phba->iocb_rsp_size); 3534 INIT_LIST_HEAD(&(rspiocbq.list)); 3535 irsp = &rspiocbq.iocb; 3536 3537 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3538 pring->stats.iocb_rsp++; 3539 rsp_cmpl++; 3540 3541 if (unlikely(irsp->ulpStatus)) { 3542 /* 3543 * If resource errors reported from HBA, reduce 3544 * queuedepths of the SCSI device. 3545 */ 3546 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3547 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3548 IOERR_NO_RESOURCES)) { 3549 spin_unlock_irqrestore(&phba->hbalock, iflag); 3550 phba->lpfc_rampdown_queue_depth(phba); 3551 spin_lock_irqsave(&phba->hbalock, iflag); 3552 } 3553 3554 /* Rsp ring <ringno> error: IOCB */ 3555 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3556 "0336 Rsp Ring %d error: IOCB Data: " 3557 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3558 pring->ringno, 3559 irsp->un.ulpWord[0], 3560 irsp->un.ulpWord[1], 3561 irsp->un.ulpWord[2], 3562 irsp->un.ulpWord[3], 3563 irsp->un.ulpWord[4], 3564 irsp->un.ulpWord[5], 3565 *(uint32_t *)&irsp->un1, 3566 *((uint32_t *)&irsp->un1 + 1)); 3567 } 3568 3569 switch (type) { 3570 case LPFC_ABORT_IOCB: 3571 case LPFC_SOL_IOCB: 3572 /* 3573 * Idle exchange closed via ABTS from port. No iocb 3574 * resources need to be recovered. 3575 */ 3576 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3577 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3578 "0333 IOCB cmd 0x%x" 3579 " processed. Skipping" 3580 " completion\n", 3581 irsp->ulpCommand); 3582 break; 3583 } 3584 3585 spin_unlock_irqrestore(&phba->hbalock, iflag); 3586 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3587 &rspiocbq); 3588 spin_lock_irqsave(&phba->hbalock, iflag); 3589 if (unlikely(!cmdiocbq)) 3590 break; 3591 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3592 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3593 if (cmdiocbq->iocb_cmpl) { 3594 spin_unlock_irqrestore(&phba->hbalock, iflag); 3595 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3596 &rspiocbq); 3597 spin_lock_irqsave(&phba->hbalock, iflag); 3598 } 3599 break; 3600 case LPFC_UNSOL_IOCB: 3601 spin_unlock_irqrestore(&phba->hbalock, iflag); 3602 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3603 spin_lock_irqsave(&phba->hbalock, iflag); 3604 break; 3605 default: 3606 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3607 char adaptermsg[LPFC_MAX_ADPTMSG]; 3608 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3609 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3610 MAX_MSG_DATA); 3611 dev_warn(&((phba->pcidev)->dev), 3612 "lpfc%d: %s\n", 3613 phba->brd_no, adaptermsg); 3614 } else { 3615 /* Unknown IOCB command */ 3616 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3617 "0334 Unknown IOCB command " 3618 "Data: x%x, x%x x%x x%x x%x\n", 3619 type, irsp->ulpCommand, 3620 irsp->ulpStatus, 3621 irsp->ulpIoTag, 3622 irsp->ulpContext); 3623 } 3624 break; 3625 } 3626 3627 /* 3628 * The response IOCB has been processed. Update the ring 3629 * pointer in SLIM. If the port response put pointer has not 3630 * been updated, sync the pgp->rspPutInx and fetch the new port 3631 * response put pointer. 3632 */ 3633 writel(pring->sli.sli3.rspidx, 3634 &phba->host_gp[pring->ringno].rspGetInx); 3635 3636 if (pring->sli.sli3.rspidx == portRspPut) 3637 portRspPut = le32_to_cpu(pgp->rspPutInx); 3638 } 3639 3640 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3641 pring->stats.iocb_rsp_full++; 3642 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3643 writel(status, phba->CAregaddr); 3644 readl(phba->CAregaddr); 3645 } 3646 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3647 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3648 pring->stats.iocb_cmd_empty++; 3649 3650 /* Force update of the local copy of cmdGetInx */ 3651 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3652 lpfc_sli_resume_iocb(phba, pring); 3653 3654 if ((pring->lpfc_sli_cmd_available)) 3655 (pring->lpfc_sli_cmd_available) (phba, pring); 3656 3657 } 3658 3659 phba->fcp_ring_in_use = 0; 3660 spin_unlock_irqrestore(&phba->hbalock, iflag); 3661 return rc; 3662 } 3663 3664 /** 3665 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3666 * @phba: Pointer to HBA context object. 3667 * @pring: Pointer to driver SLI ring object. 3668 * @rspiocbp: Pointer to driver response IOCB object. 3669 * 3670 * This function is called from the worker thread when there is a slow-path 3671 * response IOCB to process. This function chains all the response iocbs until 3672 * seeing the iocb with the LE bit set. The function will call 3673 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3674 * completion of a command iocb. The function will call the 3675 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3676 * The function frees the resources or calls the completion handler if this 3677 * iocb is an abort completion. The function returns NULL when the response 3678 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3679 * this function shall chain the iocb on to the iocb_continueq and return the 3680 * response iocb passed in. 3681 **/ 3682 static struct lpfc_iocbq * 3683 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3684 struct lpfc_iocbq *rspiocbp) 3685 { 3686 struct lpfc_iocbq *saveq; 3687 struct lpfc_iocbq *cmdiocbp; 3688 struct lpfc_iocbq *next_iocb; 3689 IOCB_t *irsp = NULL; 3690 uint32_t free_saveq; 3691 uint8_t iocb_cmd_type; 3692 lpfc_iocb_type type; 3693 unsigned long iflag; 3694 int rc; 3695 3696 spin_lock_irqsave(&phba->hbalock, iflag); 3697 /* First add the response iocb to the countinueq list */ 3698 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3699 pring->iocb_continueq_cnt++; 3700 3701 /* Now, determine whether the list is completed for processing */ 3702 irsp = &rspiocbp->iocb; 3703 if (irsp->ulpLe) { 3704 /* 3705 * By default, the driver expects to free all resources 3706 * associated with this iocb completion. 3707 */ 3708 free_saveq = 1; 3709 saveq = list_get_first(&pring->iocb_continueq, 3710 struct lpfc_iocbq, list); 3711 irsp = &(saveq->iocb); 3712 list_del_init(&pring->iocb_continueq); 3713 pring->iocb_continueq_cnt = 0; 3714 3715 pring->stats.iocb_rsp++; 3716 3717 /* 3718 * If resource errors reported from HBA, reduce 3719 * queuedepths of the SCSI device. 3720 */ 3721 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3722 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3723 IOERR_NO_RESOURCES)) { 3724 spin_unlock_irqrestore(&phba->hbalock, iflag); 3725 phba->lpfc_rampdown_queue_depth(phba); 3726 spin_lock_irqsave(&phba->hbalock, iflag); 3727 } 3728 3729 if (irsp->ulpStatus) { 3730 /* Rsp ring <ringno> error: IOCB */ 3731 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3732 "0328 Rsp Ring %d error: " 3733 "IOCB Data: " 3734 "x%x x%x x%x x%x " 3735 "x%x x%x x%x x%x " 3736 "x%x x%x x%x x%x " 3737 "x%x x%x x%x x%x\n", 3738 pring->ringno, 3739 irsp->un.ulpWord[0], 3740 irsp->un.ulpWord[1], 3741 irsp->un.ulpWord[2], 3742 irsp->un.ulpWord[3], 3743 irsp->un.ulpWord[4], 3744 irsp->un.ulpWord[5], 3745 *(((uint32_t *) irsp) + 6), 3746 *(((uint32_t *) irsp) + 7), 3747 *(((uint32_t *) irsp) + 8), 3748 *(((uint32_t *) irsp) + 9), 3749 *(((uint32_t *) irsp) + 10), 3750 *(((uint32_t *) irsp) + 11), 3751 *(((uint32_t *) irsp) + 12), 3752 *(((uint32_t *) irsp) + 13), 3753 *(((uint32_t *) irsp) + 14), 3754 *(((uint32_t *) irsp) + 15)); 3755 } 3756 3757 /* 3758 * Fetch the IOCB command type and call the correct completion 3759 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3760 * get freed back to the lpfc_iocb_list by the discovery 3761 * kernel thread. 3762 */ 3763 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3764 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3765 switch (type) { 3766 case LPFC_SOL_IOCB: 3767 spin_unlock_irqrestore(&phba->hbalock, iflag); 3768 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3769 spin_lock_irqsave(&phba->hbalock, iflag); 3770 break; 3771 3772 case LPFC_UNSOL_IOCB: 3773 spin_unlock_irqrestore(&phba->hbalock, iflag); 3774 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3775 spin_lock_irqsave(&phba->hbalock, iflag); 3776 if (!rc) 3777 free_saveq = 0; 3778 break; 3779 3780 case LPFC_ABORT_IOCB: 3781 cmdiocbp = NULL; 3782 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3783 spin_unlock_irqrestore(&phba->hbalock, iflag); 3784 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3785 saveq); 3786 spin_lock_irqsave(&phba->hbalock, iflag); 3787 } 3788 if (cmdiocbp) { 3789 /* Call the specified completion routine */ 3790 if (cmdiocbp->iocb_cmpl) { 3791 spin_unlock_irqrestore(&phba->hbalock, 3792 iflag); 3793 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3794 saveq); 3795 spin_lock_irqsave(&phba->hbalock, 3796 iflag); 3797 } else 3798 __lpfc_sli_release_iocbq(phba, 3799 cmdiocbp); 3800 } 3801 break; 3802 3803 case LPFC_UNKNOWN_IOCB: 3804 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3805 char adaptermsg[LPFC_MAX_ADPTMSG]; 3806 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3807 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3808 MAX_MSG_DATA); 3809 dev_warn(&((phba->pcidev)->dev), 3810 "lpfc%d: %s\n", 3811 phba->brd_no, adaptermsg); 3812 } else { 3813 /* Unknown IOCB command */ 3814 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3815 "0335 Unknown IOCB " 3816 "command Data: x%x " 3817 "x%x x%x x%x\n", 3818 irsp->ulpCommand, 3819 irsp->ulpStatus, 3820 irsp->ulpIoTag, 3821 irsp->ulpContext); 3822 } 3823 break; 3824 } 3825 3826 if (free_saveq) { 3827 list_for_each_entry_safe(rspiocbp, next_iocb, 3828 &saveq->list, list) { 3829 list_del_init(&rspiocbp->list); 3830 __lpfc_sli_release_iocbq(phba, rspiocbp); 3831 } 3832 __lpfc_sli_release_iocbq(phba, saveq); 3833 } 3834 rspiocbp = NULL; 3835 } 3836 spin_unlock_irqrestore(&phba->hbalock, iflag); 3837 return rspiocbp; 3838 } 3839 3840 /** 3841 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3842 * @phba: Pointer to HBA context object. 3843 * @pring: Pointer to driver SLI ring object. 3844 * @mask: Host attention register mask for this ring. 3845 * 3846 * This routine wraps the actual slow_ring event process routine from the 3847 * API jump table function pointer from the lpfc_hba struct. 3848 **/ 3849 void 3850 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3851 struct lpfc_sli_ring *pring, uint32_t mask) 3852 { 3853 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3854 } 3855 3856 /** 3857 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3858 * @phba: Pointer to HBA context object. 3859 * @pring: Pointer to driver SLI ring object. 3860 * @mask: Host attention register mask for this ring. 3861 * 3862 * This function is called from the worker thread when there is a ring event 3863 * for non-fcp rings. The caller does not hold any lock. The function will 3864 * remove each response iocb in the response ring and calls the handle 3865 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3866 **/ 3867 static void 3868 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3869 struct lpfc_sli_ring *pring, uint32_t mask) 3870 { 3871 struct lpfc_pgp *pgp; 3872 IOCB_t *entry; 3873 IOCB_t *irsp = NULL; 3874 struct lpfc_iocbq *rspiocbp = NULL; 3875 uint32_t portRspPut, portRspMax; 3876 unsigned long iflag; 3877 uint32_t status; 3878 3879 pgp = &phba->port_gp[pring->ringno]; 3880 spin_lock_irqsave(&phba->hbalock, iflag); 3881 pring->stats.iocb_event++; 3882 3883 /* 3884 * The next available response entry should never exceed the maximum 3885 * entries. If it does, treat it as an adapter hardware error. 3886 */ 3887 portRspMax = pring->sli.sli3.numRiocb; 3888 portRspPut = le32_to_cpu(pgp->rspPutInx); 3889 if (portRspPut >= portRspMax) { 3890 /* 3891 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3892 * rsp ring <portRspMax> 3893 */ 3894 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3895 "0303 Ring %d handler: portRspPut %d " 3896 "is bigger than rsp ring %d\n", 3897 pring->ringno, portRspPut, portRspMax); 3898 3899 phba->link_state = LPFC_HBA_ERROR; 3900 spin_unlock_irqrestore(&phba->hbalock, iflag); 3901 3902 phba->work_hs = HS_FFER3; 3903 lpfc_handle_eratt(phba); 3904 3905 return; 3906 } 3907 3908 rmb(); 3909 while (pring->sli.sli3.rspidx != portRspPut) { 3910 /* 3911 * Build a completion list and call the appropriate handler. 3912 * The process is to get the next available response iocb, get 3913 * a free iocb from the list, copy the response data into the 3914 * free iocb, insert to the continuation list, and update the 3915 * next response index to slim. This process makes response 3916 * iocb's in the ring available to DMA as fast as possible but 3917 * pays a penalty for a copy operation. Since the iocb is 3918 * only 32 bytes, this penalty is considered small relative to 3919 * the PCI reads for register values and a slim write. When 3920 * the ulpLe field is set, the entire Command has been 3921 * received. 3922 */ 3923 entry = lpfc_resp_iocb(phba, pring); 3924 3925 phba->last_completion_time = jiffies; 3926 rspiocbp = __lpfc_sli_get_iocbq(phba); 3927 if (rspiocbp == NULL) { 3928 printk(KERN_ERR "%s: out of buffers! Failing " 3929 "completion.\n", __func__); 3930 break; 3931 } 3932 3933 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3934 phba->iocb_rsp_size); 3935 irsp = &rspiocbp->iocb; 3936 3937 if (++pring->sli.sli3.rspidx >= portRspMax) 3938 pring->sli.sli3.rspidx = 0; 3939 3940 if (pring->ringno == LPFC_ELS_RING) { 3941 lpfc_debugfs_slow_ring_trc(phba, 3942 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3943 *(((uint32_t *) irsp) + 4), 3944 *(((uint32_t *) irsp) + 6), 3945 *(((uint32_t *) irsp) + 7)); 3946 } 3947 3948 writel(pring->sli.sli3.rspidx, 3949 &phba->host_gp[pring->ringno].rspGetInx); 3950 3951 spin_unlock_irqrestore(&phba->hbalock, iflag); 3952 /* Handle the response IOCB */ 3953 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3954 spin_lock_irqsave(&phba->hbalock, iflag); 3955 3956 /* 3957 * If the port response put pointer has not been updated, sync 3958 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3959 * response put pointer. 3960 */ 3961 if (pring->sli.sli3.rspidx == portRspPut) { 3962 portRspPut = le32_to_cpu(pgp->rspPutInx); 3963 } 3964 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3965 3966 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3967 /* At least one response entry has been freed */ 3968 pring->stats.iocb_rsp_full++; 3969 /* SET RxRE_RSP in Chip Att register */ 3970 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3971 writel(status, phba->CAregaddr); 3972 readl(phba->CAregaddr); /* flush */ 3973 } 3974 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3975 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3976 pring->stats.iocb_cmd_empty++; 3977 3978 /* Force update of the local copy of cmdGetInx */ 3979 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3980 lpfc_sli_resume_iocb(phba, pring); 3981 3982 if ((pring->lpfc_sli_cmd_available)) 3983 (pring->lpfc_sli_cmd_available) (phba, pring); 3984 3985 } 3986 3987 spin_unlock_irqrestore(&phba->hbalock, iflag); 3988 return; 3989 } 3990 3991 /** 3992 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3993 * @phba: Pointer to HBA context object. 3994 * @pring: Pointer to driver SLI ring object. 3995 * @mask: Host attention register mask for this ring. 3996 * 3997 * This function is called from the worker thread when there is a pending 3998 * ELS response iocb on the driver internal slow-path response iocb worker 3999 * queue. The caller does not hold any lock. The function will remove each 4000 * response iocb from the response worker queue and calls the handle 4001 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4002 **/ 4003 static void 4004 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4005 struct lpfc_sli_ring *pring, uint32_t mask) 4006 { 4007 struct lpfc_iocbq *irspiocbq; 4008 struct hbq_dmabuf *dmabuf; 4009 struct lpfc_cq_event *cq_event; 4010 unsigned long iflag; 4011 int count = 0; 4012 4013 spin_lock_irqsave(&phba->hbalock, iflag); 4014 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4015 spin_unlock_irqrestore(&phba->hbalock, iflag); 4016 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4017 /* Get the response iocb from the head of work queue */ 4018 spin_lock_irqsave(&phba->hbalock, iflag); 4019 list_remove_head(&phba->sli4_hba.sp_queue_event, 4020 cq_event, struct lpfc_cq_event, list); 4021 spin_unlock_irqrestore(&phba->hbalock, iflag); 4022 4023 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4024 case CQE_CODE_COMPL_WQE: 4025 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4026 cq_event); 4027 /* Translate ELS WCQE to response IOCBQ */ 4028 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4029 irspiocbq); 4030 if (irspiocbq) 4031 lpfc_sli_sp_handle_rspiocb(phba, pring, 4032 irspiocbq); 4033 count++; 4034 break; 4035 case CQE_CODE_RECEIVE: 4036 case CQE_CODE_RECEIVE_V1: 4037 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4038 cq_event); 4039 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4040 count++; 4041 break; 4042 default: 4043 break; 4044 } 4045 4046 /* Limit the number of events to 64 to avoid soft lockups */ 4047 if (count == 64) 4048 break; 4049 } 4050 } 4051 4052 /** 4053 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4054 * @phba: Pointer to HBA context object. 4055 * @pring: Pointer to driver SLI ring object. 4056 * 4057 * This function aborts all iocbs in the given ring and frees all the iocb 4058 * objects in txq. This function issues an abort iocb for all the iocb commands 4059 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4060 * the return of this function. The caller is not required to hold any locks. 4061 **/ 4062 void 4063 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4064 { 4065 LIST_HEAD(completions); 4066 struct lpfc_iocbq *iocb, *next_iocb; 4067 4068 if (pring->ringno == LPFC_ELS_RING) { 4069 lpfc_fabric_abort_hba(phba); 4070 } 4071 4072 /* Error everything on txq and txcmplq 4073 * First do the txq. 4074 */ 4075 if (phba->sli_rev >= LPFC_SLI_REV4) { 4076 spin_lock_irq(&pring->ring_lock); 4077 list_splice_init(&pring->txq, &completions); 4078 pring->txq_cnt = 0; 4079 spin_unlock_irq(&pring->ring_lock); 4080 4081 spin_lock_irq(&phba->hbalock); 4082 /* Next issue ABTS for everything on the txcmplq */ 4083 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4084 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4085 spin_unlock_irq(&phba->hbalock); 4086 } else { 4087 spin_lock_irq(&phba->hbalock); 4088 list_splice_init(&pring->txq, &completions); 4089 pring->txq_cnt = 0; 4090 4091 /* Next issue ABTS for everything on the txcmplq */ 4092 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4093 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4094 spin_unlock_irq(&phba->hbalock); 4095 } 4096 4097 /* Cancel all the IOCBs from the completions list */ 4098 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4099 IOERR_SLI_ABORTED); 4100 } 4101 4102 /** 4103 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4104 * @phba: Pointer to HBA context object. 4105 * @pring: Pointer to driver SLI ring object. 4106 * 4107 * This function aborts all iocbs in FCP rings and frees all the iocb 4108 * objects in txq. This function issues an abort iocb for all the iocb commands 4109 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4110 * the return of this function. The caller is not required to hold any locks. 4111 **/ 4112 void 4113 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4114 { 4115 struct lpfc_sli *psli = &phba->sli; 4116 struct lpfc_sli_ring *pring; 4117 uint32_t i; 4118 4119 /* Look on all the FCP Rings for the iotag */ 4120 if (phba->sli_rev >= LPFC_SLI_REV4) { 4121 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4122 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4123 lpfc_sli_abort_iocb_ring(phba, pring); 4124 } 4125 } else { 4126 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4127 lpfc_sli_abort_iocb_ring(phba, pring); 4128 } 4129 } 4130 4131 /** 4132 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4133 * @phba: Pointer to HBA context object. 4134 * 4135 * This function flushes all iocbs in the IO ring and frees all the iocb 4136 * objects in txq and txcmplq. This function will not issue abort iocbs 4137 * for all the iocb commands in txcmplq, they will just be returned with 4138 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4139 * slot has been permanently disabled. 4140 **/ 4141 void 4142 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4143 { 4144 LIST_HEAD(txq); 4145 LIST_HEAD(txcmplq); 4146 struct lpfc_sli *psli = &phba->sli; 4147 struct lpfc_sli_ring *pring; 4148 uint32_t i; 4149 struct lpfc_iocbq *piocb, *next_iocb; 4150 4151 spin_lock_irq(&phba->hbalock); 4152 if (phba->hba_flag & HBA_IOQ_FLUSH || 4153 !phba->sli4_hba.hdwq) { 4154 spin_unlock_irq(&phba->hbalock); 4155 return; 4156 } 4157 /* Indicate the I/O queues are flushed */ 4158 phba->hba_flag |= HBA_IOQ_FLUSH; 4159 spin_unlock_irq(&phba->hbalock); 4160 4161 /* Look on all the FCP Rings for the iotag */ 4162 if (phba->sli_rev >= LPFC_SLI_REV4) { 4163 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4164 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4165 4166 spin_lock_irq(&pring->ring_lock); 4167 /* Retrieve everything on txq */ 4168 list_splice_init(&pring->txq, &txq); 4169 list_for_each_entry_safe(piocb, next_iocb, 4170 &pring->txcmplq, list) 4171 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4172 /* Retrieve everything on the txcmplq */ 4173 list_splice_init(&pring->txcmplq, &txcmplq); 4174 pring->txq_cnt = 0; 4175 pring->txcmplq_cnt = 0; 4176 spin_unlock_irq(&pring->ring_lock); 4177 4178 /* Flush the txq */ 4179 lpfc_sli_cancel_iocbs(phba, &txq, 4180 IOSTAT_LOCAL_REJECT, 4181 IOERR_SLI_DOWN); 4182 /* Flush the txcmpq */ 4183 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4184 IOSTAT_LOCAL_REJECT, 4185 IOERR_SLI_DOWN); 4186 } 4187 } else { 4188 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4189 4190 spin_lock_irq(&phba->hbalock); 4191 /* Retrieve everything on txq */ 4192 list_splice_init(&pring->txq, &txq); 4193 list_for_each_entry_safe(piocb, next_iocb, 4194 &pring->txcmplq, list) 4195 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4196 /* Retrieve everything on the txcmplq */ 4197 list_splice_init(&pring->txcmplq, &txcmplq); 4198 pring->txq_cnt = 0; 4199 pring->txcmplq_cnt = 0; 4200 spin_unlock_irq(&phba->hbalock); 4201 4202 /* Flush the txq */ 4203 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4204 IOERR_SLI_DOWN); 4205 /* Flush the txcmpq */ 4206 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4207 IOERR_SLI_DOWN); 4208 } 4209 } 4210 4211 /** 4212 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4213 * @phba: Pointer to HBA context object. 4214 * @mask: Bit mask to be checked. 4215 * 4216 * This function reads the host status register and compares 4217 * with the provided bit mask to check if HBA completed 4218 * the restart. This function will wait in a loop for the 4219 * HBA to complete restart. If the HBA does not restart within 4220 * 15 iterations, the function will reset the HBA again. The 4221 * function returns 1 when HBA fail to restart otherwise returns 4222 * zero. 4223 **/ 4224 static int 4225 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4226 { 4227 uint32_t status; 4228 int i = 0; 4229 int retval = 0; 4230 4231 /* Read the HBA Host Status Register */ 4232 if (lpfc_readl(phba->HSregaddr, &status)) 4233 return 1; 4234 4235 /* 4236 * Check status register every 100ms for 5 retries, then every 4237 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4238 * every 2.5 sec for 4. 4239 * Break our of the loop if errors occurred during init. 4240 */ 4241 while (((status & mask) != mask) && 4242 !(status & HS_FFERM) && 4243 i++ < 20) { 4244 4245 if (i <= 5) 4246 msleep(10); 4247 else if (i <= 10) 4248 msleep(500); 4249 else 4250 msleep(2500); 4251 4252 if (i == 15) { 4253 /* Do post */ 4254 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4255 lpfc_sli_brdrestart(phba); 4256 } 4257 /* Read the HBA Host Status Register */ 4258 if (lpfc_readl(phba->HSregaddr, &status)) { 4259 retval = 1; 4260 break; 4261 } 4262 } 4263 4264 /* Check to see if any errors occurred during init */ 4265 if ((status & HS_FFERM) || (i >= 20)) { 4266 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4267 "2751 Adapter failed to restart, " 4268 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4269 status, 4270 readl(phba->MBslimaddr + 0xa8), 4271 readl(phba->MBslimaddr + 0xac)); 4272 phba->link_state = LPFC_HBA_ERROR; 4273 retval = 1; 4274 } 4275 4276 return retval; 4277 } 4278 4279 /** 4280 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4281 * @phba: Pointer to HBA context object. 4282 * @mask: Bit mask to be checked. 4283 * 4284 * This function checks the host status register to check if HBA is 4285 * ready. This function will wait in a loop for the HBA to be ready 4286 * If the HBA is not ready , the function will will reset the HBA PCI 4287 * function again. The function returns 1 when HBA fail to be ready 4288 * otherwise returns zero. 4289 **/ 4290 static int 4291 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4292 { 4293 uint32_t status; 4294 int retval = 0; 4295 4296 /* Read the HBA Host Status Register */ 4297 status = lpfc_sli4_post_status_check(phba); 4298 4299 if (status) { 4300 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4301 lpfc_sli_brdrestart(phba); 4302 status = lpfc_sli4_post_status_check(phba); 4303 } 4304 4305 /* Check to see if any errors occurred during init */ 4306 if (status) { 4307 phba->link_state = LPFC_HBA_ERROR; 4308 retval = 1; 4309 } else 4310 phba->sli4_hba.intr_enable = 0; 4311 4312 return retval; 4313 } 4314 4315 /** 4316 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4317 * @phba: Pointer to HBA context object. 4318 * @mask: Bit mask to be checked. 4319 * 4320 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4321 * from the API jump table function pointer from the lpfc_hba struct. 4322 **/ 4323 int 4324 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4325 { 4326 return phba->lpfc_sli_brdready(phba, mask); 4327 } 4328 4329 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4330 4331 /** 4332 * lpfc_reset_barrier - Make HBA ready for HBA reset 4333 * @phba: Pointer to HBA context object. 4334 * 4335 * This function is called before resetting an HBA. This function is called 4336 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4337 **/ 4338 void lpfc_reset_barrier(struct lpfc_hba *phba) 4339 { 4340 uint32_t __iomem *resp_buf; 4341 uint32_t __iomem *mbox_buf; 4342 volatile uint32_t mbox; 4343 uint32_t hc_copy, ha_copy, resp_data; 4344 int i; 4345 uint8_t hdrtype; 4346 4347 lockdep_assert_held(&phba->hbalock); 4348 4349 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4350 if (hdrtype != 0x80 || 4351 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4352 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4353 return; 4354 4355 /* 4356 * Tell the other part of the chip to suspend temporarily all 4357 * its DMA activity. 4358 */ 4359 resp_buf = phba->MBslimaddr; 4360 4361 /* Disable the error attention */ 4362 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4363 return; 4364 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4365 readl(phba->HCregaddr); /* flush */ 4366 phba->link_flag |= LS_IGNORE_ERATT; 4367 4368 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4369 return; 4370 if (ha_copy & HA_ERATT) { 4371 /* Clear Chip error bit */ 4372 writel(HA_ERATT, phba->HAregaddr); 4373 phba->pport->stopped = 1; 4374 } 4375 4376 mbox = 0; 4377 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4378 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4379 4380 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4381 mbox_buf = phba->MBslimaddr; 4382 writel(mbox, mbox_buf); 4383 4384 for (i = 0; i < 50; i++) { 4385 if (lpfc_readl((resp_buf + 1), &resp_data)) 4386 return; 4387 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4388 mdelay(1); 4389 else 4390 break; 4391 } 4392 resp_data = 0; 4393 if (lpfc_readl((resp_buf + 1), &resp_data)) 4394 return; 4395 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4396 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4397 phba->pport->stopped) 4398 goto restore_hc; 4399 else 4400 goto clear_errat; 4401 } 4402 4403 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4404 resp_data = 0; 4405 for (i = 0; i < 500; i++) { 4406 if (lpfc_readl(resp_buf, &resp_data)) 4407 return; 4408 if (resp_data != mbox) 4409 mdelay(1); 4410 else 4411 break; 4412 } 4413 4414 clear_errat: 4415 4416 while (++i < 500) { 4417 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4418 return; 4419 if (!(ha_copy & HA_ERATT)) 4420 mdelay(1); 4421 else 4422 break; 4423 } 4424 4425 if (readl(phba->HAregaddr) & HA_ERATT) { 4426 writel(HA_ERATT, phba->HAregaddr); 4427 phba->pport->stopped = 1; 4428 } 4429 4430 restore_hc: 4431 phba->link_flag &= ~LS_IGNORE_ERATT; 4432 writel(hc_copy, phba->HCregaddr); 4433 readl(phba->HCregaddr); /* flush */ 4434 } 4435 4436 /** 4437 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4438 * @phba: Pointer to HBA context object. 4439 * 4440 * This function issues a kill_board mailbox command and waits for 4441 * the error attention interrupt. This function is called for stopping 4442 * the firmware processing. The caller is not required to hold any 4443 * locks. This function calls lpfc_hba_down_post function to free 4444 * any pending commands after the kill. The function will return 1 when it 4445 * fails to kill the board else will return 0. 4446 **/ 4447 int 4448 lpfc_sli_brdkill(struct lpfc_hba *phba) 4449 { 4450 struct lpfc_sli *psli; 4451 LPFC_MBOXQ_t *pmb; 4452 uint32_t status; 4453 uint32_t ha_copy; 4454 int retval; 4455 int i = 0; 4456 4457 psli = &phba->sli; 4458 4459 /* Kill HBA */ 4460 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4461 "0329 Kill HBA Data: x%x x%x\n", 4462 phba->pport->port_state, psli->sli_flag); 4463 4464 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4465 if (!pmb) 4466 return 1; 4467 4468 /* Disable the error attention */ 4469 spin_lock_irq(&phba->hbalock); 4470 if (lpfc_readl(phba->HCregaddr, &status)) { 4471 spin_unlock_irq(&phba->hbalock); 4472 mempool_free(pmb, phba->mbox_mem_pool); 4473 return 1; 4474 } 4475 status &= ~HC_ERINT_ENA; 4476 writel(status, phba->HCregaddr); 4477 readl(phba->HCregaddr); /* flush */ 4478 phba->link_flag |= LS_IGNORE_ERATT; 4479 spin_unlock_irq(&phba->hbalock); 4480 4481 lpfc_kill_board(phba, pmb); 4482 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4483 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4484 4485 if (retval != MBX_SUCCESS) { 4486 if (retval != MBX_BUSY) 4487 mempool_free(pmb, phba->mbox_mem_pool); 4488 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4489 "2752 KILL_BOARD command failed retval %d\n", 4490 retval); 4491 spin_lock_irq(&phba->hbalock); 4492 phba->link_flag &= ~LS_IGNORE_ERATT; 4493 spin_unlock_irq(&phba->hbalock); 4494 return 1; 4495 } 4496 4497 spin_lock_irq(&phba->hbalock); 4498 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4499 spin_unlock_irq(&phba->hbalock); 4500 4501 mempool_free(pmb, phba->mbox_mem_pool); 4502 4503 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4504 * attention every 100ms for 3 seconds. If we don't get ERATT after 4505 * 3 seconds we still set HBA_ERROR state because the status of the 4506 * board is now undefined. 4507 */ 4508 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4509 return 1; 4510 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4511 mdelay(100); 4512 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4513 return 1; 4514 } 4515 4516 del_timer_sync(&psli->mbox_tmo); 4517 if (ha_copy & HA_ERATT) { 4518 writel(HA_ERATT, phba->HAregaddr); 4519 phba->pport->stopped = 1; 4520 } 4521 spin_lock_irq(&phba->hbalock); 4522 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4523 psli->mbox_active = NULL; 4524 phba->link_flag &= ~LS_IGNORE_ERATT; 4525 spin_unlock_irq(&phba->hbalock); 4526 4527 lpfc_hba_down_post(phba); 4528 phba->link_state = LPFC_HBA_ERROR; 4529 4530 return ha_copy & HA_ERATT ? 0 : 1; 4531 } 4532 4533 /** 4534 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4535 * @phba: Pointer to HBA context object. 4536 * 4537 * This function resets the HBA by writing HC_INITFF to the control 4538 * register. After the HBA resets, this function resets all the iocb ring 4539 * indices. This function disables PCI layer parity checking during 4540 * the reset. 4541 * This function returns 0 always. 4542 * The caller is not required to hold any locks. 4543 **/ 4544 int 4545 lpfc_sli_brdreset(struct lpfc_hba *phba) 4546 { 4547 struct lpfc_sli *psli; 4548 struct lpfc_sli_ring *pring; 4549 uint16_t cfg_value; 4550 int i; 4551 4552 psli = &phba->sli; 4553 4554 /* Reset HBA */ 4555 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4556 "0325 Reset HBA Data: x%x x%x\n", 4557 (phba->pport) ? phba->pport->port_state : 0, 4558 psli->sli_flag); 4559 4560 /* perform board reset */ 4561 phba->fc_eventTag = 0; 4562 phba->link_events = 0; 4563 if (phba->pport) { 4564 phba->pport->fc_myDID = 0; 4565 phba->pport->fc_prevDID = 0; 4566 } 4567 4568 /* Turn off parity checking and serr during the physical reset */ 4569 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4570 return -EIO; 4571 4572 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4573 (cfg_value & 4574 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4575 4576 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4577 4578 /* Now toggle INITFF bit in the Host Control Register */ 4579 writel(HC_INITFF, phba->HCregaddr); 4580 mdelay(1); 4581 readl(phba->HCregaddr); /* flush */ 4582 writel(0, phba->HCregaddr); 4583 readl(phba->HCregaddr); /* flush */ 4584 4585 /* Restore PCI cmd register */ 4586 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4587 4588 /* Initialize relevant SLI info */ 4589 for (i = 0; i < psli->num_rings; i++) { 4590 pring = &psli->sli3_ring[i]; 4591 pring->flag = 0; 4592 pring->sli.sli3.rspidx = 0; 4593 pring->sli.sli3.next_cmdidx = 0; 4594 pring->sli.sli3.local_getidx = 0; 4595 pring->sli.sli3.cmdidx = 0; 4596 pring->missbufcnt = 0; 4597 } 4598 4599 phba->link_state = LPFC_WARM_START; 4600 return 0; 4601 } 4602 4603 /** 4604 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4605 * @phba: Pointer to HBA context object. 4606 * 4607 * This function resets a SLI4 HBA. This function disables PCI layer parity 4608 * checking during resets the device. The caller is not required to hold 4609 * any locks. 4610 * 4611 * This function returns 0 on success else returns negative error code. 4612 **/ 4613 int 4614 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4615 { 4616 struct lpfc_sli *psli = &phba->sli; 4617 uint16_t cfg_value; 4618 int rc = 0; 4619 4620 /* Reset HBA */ 4621 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4622 "0295 Reset HBA Data: x%x x%x x%x\n", 4623 phba->pport->port_state, psli->sli_flag, 4624 phba->hba_flag); 4625 4626 /* perform board reset */ 4627 phba->fc_eventTag = 0; 4628 phba->link_events = 0; 4629 phba->pport->fc_myDID = 0; 4630 phba->pport->fc_prevDID = 0; 4631 4632 spin_lock_irq(&phba->hbalock); 4633 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4634 phba->fcf.fcf_flag = 0; 4635 spin_unlock_irq(&phba->hbalock); 4636 4637 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4638 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4639 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4640 return rc; 4641 } 4642 4643 /* Now physically reset the device */ 4644 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4645 "0389 Performing PCI function reset!\n"); 4646 4647 /* Turn off parity checking and serr during the physical reset */ 4648 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4649 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4650 "3205 PCI read Config failed\n"); 4651 return -EIO; 4652 } 4653 4654 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4655 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4656 4657 /* Perform FCoE PCI function reset before freeing queue memory */ 4658 rc = lpfc_pci_function_reset(phba); 4659 4660 /* Restore PCI cmd register */ 4661 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4662 4663 return rc; 4664 } 4665 4666 /** 4667 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4668 * @phba: Pointer to HBA context object. 4669 * 4670 * This function is called in the SLI initialization code path to 4671 * restart the HBA. The caller is not required to hold any lock. 4672 * This function writes MBX_RESTART mailbox command to the SLIM and 4673 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4674 * function to free any pending commands. The function enables 4675 * POST only during the first initialization. The function returns zero. 4676 * The function does not guarantee completion of MBX_RESTART mailbox 4677 * command before the return of this function. 4678 **/ 4679 static int 4680 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4681 { 4682 MAILBOX_t *mb; 4683 struct lpfc_sli *psli; 4684 volatile uint32_t word0; 4685 void __iomem *to_slim; 4686 uint32_t hba_aer_enabled; 4687 4688 spin_lock_irq(&phba->hbalock); 4689 4690 /* Take PCIe device Advanced Error Reporting (AER) state */ 4691 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4692 4693 psli = &phba->sli; 4694 4695 /* Restart HBA */ 4696 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4697 "0337 Restart HBA Data: x%x x%x\n", 4698 (phba->pport) ? phba->pport->port_state : 0, 4699 psli->sli_flag); 4700 4701 word0 = 0; 4702 mb = (MAILBOX_t *) &word0; 4703 mb->mbxCommand = MBX_RESTART; 4704 mb->mbxHc = 1; 4705 4706 lpfc_reset_barrier(phba); 4707 4708 to_slim = phba->MBslimaddr; 4709 writel(*(uint32_t *) mb, to_slim); 4710 readl(to_slim); /* flush */ 4711 4712 /* Only skip post after fc_ffinit is completed */ 4713 if (phba->pport && phba->pport->port_state) 4714 word0 = 1; /* This is really setting up word1 */ 4715 else 4716 word0 = 0; /* This is really setting up word1 */ 4717 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4718 writel(*(uint32_t *) mb, to_slim); 4719 readl(to_slim); /* flush */ 4720 4721 lpfc_sli_brdreset(phba); 4722 if (phba->pport) 4723 phba->pport->stopped = 0; 4724 phba->link_state = LPFC_INIT_START; 4725 phba->hba_flag = 0; 4726 spin_unlock_irq(&phba->hbalock); 4727 4728 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4729 psli->stats_start = ktime_get_seconds(); 4730 4731 /* Give the INITFF and Post time to settle. */ 4732 mdelay(100); 4733 4734 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4735 if (hba_aer_enabled) 4736 pci_disable_pcie_error_reporting(phba->pcidev); 4737 4738 lpfc_hba_down_post(phba); 4739 4740 return 0; 4741 } 4742 4743 /** 4744 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4745 * @phba: Pointer to HBA context object. 4746 * 4747 * This function is called in the SLI initialization code path to restart 4748 * a SLI4 HBA. The caller is not required to hold any lock. 4749 * At the end of the function, it calls lpfc_hba_down_post function to 4750 * free any pending commands. 4751 **/ 4752 static int 4753 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4754 { 4755 struct lpfc_sli *psli = &phba->sli; 4756 uint32_t hba_aer_enabled; 4757 int rc; 4758 4759 /* Restart HBA */ 4760 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4761 "0296 Restart HBA Data: x%x x%x\n", 4762 phba->pport->port_state, psli->sli_flag); 4763 4764 /* Take PCIe device Advanced Error Reporting (AER) state */ 4765 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4766 4767 rc = lpfc_sli4_brdreset(phba); 4768 if (rc) { 4769 phba->link_state = LPFC_HBA_ERROR; 4770 goto hba_down_queue; 4771 } 4772 4773 spin_lock_irq(&phba->hbalock); 4774 phba->pport->stopped = 0; 4775 phba->link_state = LPFC_INIT_START; 4776 phba->hba_flag = 0; 4777 spin_unlock_irq(&phba->hbalock); 4778 4779 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4780 psli->stats_start = ktime_get_seconds(); 4781 4782 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4783 if (hba_aer_enabled) 4784 pci_disable_pcie_error_reporting(phba->pcidev); 4785 4786 hba_down_queue: 4787 lpfc_hba_down_post(phba); 4788 lpfc_sli4_queue_destroy(phba); 4789 4790 return rc; 4791 } 4792 4793 /** 4794 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4795 * @phba: Pointer to HBA context object. 4796 * 4797 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4798 * API jump table function pointer from the lpfc_hba struct. 4799 **/ 4800 int 4801 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4802 { 4803 return phba->lpfc_sli_brdrestart(phba); 4804 } 4805 4806 /** 4807 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4808 * @phba: Pointer to HBA context object. 4809 * 4810 * This function is called after a HBA restart to wait for successful 4811 * restart of the HBA. Successful restart of the HBA is indicated by 4812 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4813 * iteration, the function will restart the HBA again. The function returns 4814 * zero if HBA successfully restarted else returns negative error code. 4815 **/ 4816 int 4817 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4818 { 4819 uint32_t status, i = 0; 4820 4821 /* Read the HBA Host Status Register */ 4822 if (lpfc_readl(phba->HSregaddr, &status)) 4823 return -EIO; 4824 4825 /* Check status register to see what current state is */ 4826 i = 0; 4827 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4828 4829 /* Check every 10ms for 10 retries, then every 100ms for 90 4830 * retries, then every 1 sec for 50 retires for a total of 4831 * ~60 seconds before reset the board again and check every 4832 * 1 sec for 50 retries. The up to 60 seconds before the 4833 * board ready is required by the Falcon FIPS zeroization 4834 * complete, and any reset the board in between shall cause 4835 * restart of zeroization, further delay the board ready. 4836 */ 4837 if (i++ >= 200) { 4838 /* Adapter failed to init, timeout, status reg 4839 <status> */ 4840 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4841 "0436 Adapter failed to init, " 4842 "timeout, status reg x%x, " 4843 "FW Data: A8 x%x AC x%x\n", status, 4844 readl(phba->MBslimaddr + 0xa8), 4845 readl(phba->MBslimaddr + 0xac)); 4846 phba->link_state = LPFC_HBA_ERROR; 4847 return -ETIMEDOUT; 4848 } 4849 4850 /* Check to see if any errors occurred during init */ 4851 if (status & HS_FFERM) { 4852 /* ERROR: During chipset initialization */ 4853 /* Adapter failed to init, chipset, status reg 4854 <status> */ 4855 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4856 "0437 Adapter failed to init, " 4857 "chipset, status reg x%x, " 4858 "FW Data: A8 x%x AC x%x\n", status, 4859 readl(phba->MBslimaddr + 0xa8), 4860 readl(phba->MBslimaddr + 0xac)); 4861 phba->link_state = LPFC_HBA_ERROR; 4862 return -EIO; 4863 } 4864 4865 if (i <= 10) 4866 msleep(10); 4867 else if (i <= 100) 4868 msleep(100); 4869 else 4870 msleep(1000); 4871 4872 if (i == 150) { 4873 /* Do post */ 4874 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4875 lpfc_sli_brdrestart(phba); 4876 } 4877 /* Read the HBA Host Status Register */ 4878 if (lpfc_readl(phba->HSregaddr, &status)) 4879 return -EIO; 4880 } 4881 4882 /* Check to see if any errors occurred during init */ 4883 if (status & HS_FFERM) { 4884 /* ERROR: During chipset initialization */ 4885 /* Adapter failed to init, chipset, status reg <status> */ 4886 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4887 "0438 Adapter failed to init, chipset, " 4888 "status reg x%x, " 4889 "FW Data: A8 x%x AC x%x\n", status, 4890 readl(phba->MBslimaddr + 0xa8), 4891 readl(phba->MBslimaddr + 0xac)); 4892 phba->link_state = LPFC_HBA_ERROR; 4893 return -EIO; 4894 } 4895 4896 /* Clear all interrupt enable conditions */ 4897 writel(0, phba->HCregaddr); 4898 readl(phba->HCregaddr); /* flush */ 4899 4900 /* setup host attn register */ 4901 writel(0xffffffff, phba->HAregaddr); 4902 readl(phba->HAregaddr); /* flush */ 4903 return 0; 4904 } 4905 4906 /** 4907 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4908 * 4909 * This function calculates and returns the number of HBQs required to be 4910 * configured. 4911 **/ 4912 int 4913 lpfc_sli_hbq_count(void) 4914 { 4915 return ARRAY_SIZE(lpfc_hbq_defs); 4916 } 4917 4918 /** 4919 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4920 * 4921 * This function adds the number of hbq entries in every HBQ to get 4922 * the total number of hbq entries required for the HBA and returns 4923 * the total count. 4924 **/ 4925 static int 4926 lpfc_sli_hbq_entry_count(void) 4927 { 4928 int hbq_count = lpfc_sli_hbq_count(); 4929 int count = 0; 4930 int i; 4931 4932 for (i = 0; i < hbq_count; ++i) 4933 count += lpfc_hbq_defs[i]->entry_count; 4934 return count; 4935 } 4936 4937 /** 4938 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4939 * 4940 * This function calculates amount of memory required for all hbq entries 4941 * to be configured and returns the total memory required. 4942 **/ 4943 int 4944 lpfc_sli_hbq_size(void) 4945 { 4946 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4947 } 4948 4949 /** 4950 * lpfc_sli_hbq_setup - configure and initialize HBQs 4951 * @phba: Pointer to HBA context object. 4952 * 4953 * This function is called during the SLI initialization to configure 4954 * all the HBQs and post buffers to the HBQ. The caller is not 4955 * required to hold any locks. This function will return zero if successful 4956 * else it will return negative error code. 4957 **/ 4958 static int 4959 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4960 { 4961 int hbq_count = lpfc_sli_hbq_count(); 4962 LPFC_MBOXQ_t *pmb; 4963 MAILBOX_t *pmbox; 4964 uint32_t hbqno; 4965 uint32_t hbq_entry_index; 4966 4967 /* Get a Mailbox buffer to setup mailbox 4968 * commands for HBA initialization 4969 */ 4970 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4971 4972 if (!pmb) 4973 return -ENOMEM; 4974 4975 pmbox = &pmb->u.mb; 4976 4977 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4978 phba->link_state = LPFC_INIT_MBX_CMDS; 4979 phba->hbq_in_use = 1; 4980 4981 hbq_entry_index = 0; 4982 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4983 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4984 phba->hbqs[hbqno].hbqPutIdx = 0; 4985 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4986 phba->hbqs[hbqno].entry_count = 4987 lpfc_hbq_defs[hbqno]->entry_count; 4988 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4989 hbq_entry_index, pmb); 4990 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4991 4992 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4993 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4994 mbxStatus <status>, ring <num> */ 4995 4996 lpfc_printf_log(phba, KERN_ERR, 4997 LOG_SLI | LOG_VPORT, 4998 "1805 Adapter failed to init. " 4999 "Data: x%x x%x x%x\n", 5000 pmbox->mbxCommand, 5001 pmbox->mbxStatus, hbqno); 5002 5003 phba->link_state = LPFC_HBA_ERROR; 5004 mempool_free(pmb, phba->mbox_mem_pool); 5005 return -ENXIO; 5006 } 5007 } 5008 phba->hbq_count = hbq_count; 5009 5010 mempool_free(pmb, phba->mbox_mem_pool); 5011 5012 /* Initially populate or replenish the HBQs */ 5013 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5014 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5015 return 0; 5016 } 5017 5018 /** 5019 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5020 * @phba: Pointer to HBA context object. 5021 * 5022 * This function is called during the SLI initialization to configure 5023 * all the HBQs and post buffers to the HBQ. The caller is not 5024 * required to hold any locks. This function will return zero if successful 5025 * else it will return negative error code. 5026 **/ 5027 static int 5028 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5029 { 5030 phba->hbq_in_use = 1; 5031 /** 5032 * Specific case when the MDS diagnostics is enabled and supported. 5033 * The receive buffer count is truncated to manage the incoming 5034 * traffic. 5035 **/ 5036 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5037 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5038 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5039 else 5040 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5041 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5042 phba->hbq_count = 1; 5043 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5044 /* Initially populate or replenish the HBQs */ 5045 return 0; 5046 } 5047 5048 /** 5049 * lpfc_sli_config_port - Issue config port mailbox command 5050 * @phba: Pointer to HBA context object. 5051 * @sli_mode: sli mode - 2/3 5052 * 5053 * This function is called by the sli initialization code path 5054 * to issue config_port mailbox command. This function restarts the 5055 * HBA firmware and issues a config_port mailbox command to configure 5056 * the SLI interface in the sli mode specified by sli_mode 5057 * variable. The caller is not required to hold any locks. 5058 * The function returns 0 if successful, else returns negative error 5059 * code. 5060 **/ 5061 int 5062 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5063 { 5064 LPFC_MBOXQ_t *pmb; 5065 uint32_t resetcount = 0, rc = 0, done = 0; 5066 5067 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5068 if (!pmb) { 5069 phba->link_state = LPFC_HBA_ERROR; 5070 return -ENOMEM; 5071 } 5072 5073 phba->sli_rev = sli_mode; 5074 while (resetcount < 2 && !done) { 5075 spin_lock_irq(&phba->hbalock); 5076 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5077 spin_unlock_irq(&phba->hbalock); 5078 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5079 lpfc_sli_brdrestart(phba); 5080 rc = lpfc_sli_chipset_init(phba); 5081 if (rc) 5082 break; 5083 5084 spin_lock_irq(&phba->hbalock); 5085 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5086 spin_unlock_irq(&phba->hbalock); 5087 resetcount++; 5088 5089 /* Call pre CONFIG_PORT mailbox command initialization. A 5090 * value of 0 means the call was successful. Any other 5091 * nonzero value is a failure, but if ERESTART is returned, 5092 * the driver may reset the HBA and try again. 5093 */ 5094 rc = lpfc_config_port_prep(phba); 5095 if (rc == -ERESTART) { 5096 phba->link_state = LPFC_LINK_UNKNOWN; 5097 continue; 5098 } else if (rc) 5099 break; 5100 5101 phba->link_state = LPFC_INIT_MBX_CMDS; 5102 lpfc_config_port(phba, pmb); 5103 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5104 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5105 LPFC_SLI3_HBQ_ENABLED | 5106 LPFC_SLI3_CRP_ENABLED | 5107 LPFC_SLI3_DSS_ENABLED); 5108 if (rc != MBX_SUCCESS) { 5109 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5110 "0442 Adapter failed to init, mbxCmd x%x " 5111 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5112 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5113 spin_lock_irq(&phba->hbalock); 5114 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5115 spin_unlock_irq(&phba->hbalock); 5116 rc = -ENXIO; 5117 } else { 5118 /* Allow asynchronous mailbox command to go through */ 5119 spin_lock_irq(&phba->hbalock); 5120 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5121 spin_unlock_irq(&phba->hbalock); 5122 done = 1; 5123 5124 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5125 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5126 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5127 "3110 Port did not grant ASABT\n"); 5128 } 5129 } 5130 if (!done) { 5131 rc = -EINVAL; 5132 goto do_prep_failed; 5133 } 5134 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5135 if (!pmb->u.mb.un.varCfgPort.cMA) { 5136 rc = -ENXIO; 5137 goto do_prep_failed; 5138 } 5139 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5140 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5141 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5142 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5143 phba->max_vpi : phba->max_vports; 5144 5145 } else 5146 phba->max_vpi = 0; 5147 if (pmb->u.mb.un.varCfgPort.gerbm) 5148 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5149 if (pmb->u.mb.un.varCfgPort.gcrp) 5150 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5151 5152 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5153 phba->port_gp = phba->mbox->us.s3_pgp.port; 5154 5155 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5156 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5157 phba->cfg_enable_bg = 0; 5158 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5159 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5160 "0443 Adapter did not grant " 5161 "BlockGuard\n"); 5162 } 5163 } 5164 } else { 5165 phba->hbq_get = NULL; 5166 phba->port_gp = phba->mbox->us.s2.port; 5167 phba->max_vpi = 0; 5168 } 5169 do_prep_failed: 5170 mempool_free(pmb, phba->mbox_mem_pool); 5171 return rc; 5172 } 5173 5174 5175 /** 5176 * lpfc_sli_hba_setup - SLI initialization function 5177 * @phba: Pointer to HBA context object. 5178 * 5179 * This function is the main SLI initialization function. This function 5180 * is called by the HBA initialization code, HBA reset code and HBA 5181 * error attention handler code. Caller is not required to hold any 5182 * locks. This function issues config_port mailbox command to configure 5183 * the SLI, setup iocb rings and HBQ rings. In the end the function 5184 * calls the config_port_post function to issue init_link mailbox 5185 * command and to start the discovery. The function will return zero 5186 * if successful, else it will return negative error code. 5187 **/ 5188 int 5189 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5190 { 5191 uint32_t rc; 5192 int mode = 3, i; 5193 int longs; 5194 5195 switch (phba->cfg_sli_mode) { 5196 case 2: 5197 if (phba->cfg_enable_npiv) { 5198 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5199 "1824 NPIV enabled: Override sli_mode " 5200 "parameter (%d) to auto (0).\n", 5201 phba->cfg_sli_mode); 5202 break; 5203 } 5204 mode = 2; 5205 break; 5206 case 0: 5207 case 3: 5208 break; 5209 default: 5210 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5211 "1819 Unrecognized sli_mode parameter: %d.\n", 5212 phba->cfg_sli_mode); 5213 5214 break; 5215 } 5216 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5217 5218 rc = lpfc_sli_config_port(phba, mode); 5219 5220 if (rc && phba->cfg_sli_mode == 3) 5221 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5222 "1820 Unable to select SLI-3. " 5223 "Not supported by adapter.\n"); 5224 if (rc && mode != 2) 5225 rc = lpfc_sli_config_port(phba, 2); 5226 else if (rc && mode == 2) 5227 rc = lpfc_sli_config_port(phba, 3); 5228 if (rc) 5229 goto lpfc_sli_hba_setup_error; 5230 5231 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5232 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5233 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5234 if (!rc) { 5235 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5236 "2709 This device supports " 5237 "Advanced Error Reporting (AER)\n"); 5238 spin_lock_irq(&phba->hbalock); 5239 phba->hba_flag |= HBA_AER_ENABLED; 5240 spin_unlock_irq(&phba->hbalock); 5241 } else { 5242 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5243 "2708 This device does not support " 5244 "Advanced Error Reporting (AER): %d\n", 5245 rc); 5246 phba->cfg_aer_support = 0; 5247 } 5248 } 5249 5250 if (phba->sli_rev == 3) { 5251 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5252 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5253 } else { 5254 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5255 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5256 phba->sli3_options = 0; 5257 } 5258 5259 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5260 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5261 phba->sli_rev, phba->max_vpi); 5262 rc = lpfc_sli_ring_map(phba); 5263 5264 if (rc) 5265 goto lpfc_sli_hba_setup_error; 5266 5267 /* Initialize VPIs. */ 5268 if (phba->sli_rev == LPFC_SLI_REV3) { 5269 /* 5270 * The VPI bitmask and physical ID array are allocated 5271 * and initialized once only - at driver load. A port 5272 * reset doesn't need to reinitialize this memory. 5273 */ 5274 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5275 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5276 phba->vpi_bmask = kcalloc(longs, 5277 sizeof(unsigned long), 5278 GFP_KERNEL); 5279 if (!phba->vpi_bmask) { 5280 rc = -ENOMEM; 5281 goto lpfc_sli_hba_setup_error; 5282 } 5283 5284 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5285 sizeof(uint16_t), 5286 GFP_KERNEL); 5287 if (!phba->vpi_ids) { 5288 kfree(phba->vpi_bmask); 5289 rc = -ENOMEM; 5290 goto lpfc_sli_hba_setup_error; 5291 } 5292 for (i = 0; i < phba->max_vpi; i++) 5293 phba->vpi_ids[i] = i; 5294 } 5295 } 5296 5297 /* Init HBQs */ 5298 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5299 rc = lpfc_sli_hbq_setup(phba); 5300 if (rc) 5301 goto lpfc_sli_hba_setup_error; 5302 } 5303 spin_lock_irq(&phba->hbalock); 5304 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5305 spin_unlock_irq(&phba->hbalock); 5306 5307 rc = lpfc_config_port_post(phba); 5308 if (rc) 5309 goto lpfc_sli_hba_setup_error; 5310 5311 return rc; 5312 5313 lpfc_sli_hba_setup_error: 5314 phba->link_state = LPFC_HBA_ERROR; 5315 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5316 "0445 Firmware initialization failed\n"); 5317 return rc; 5318 } 5319 5320 /** 5321 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5322 * @phba: Pointer to HBA context object. 5323 * @mboxq: mailbox pointer. 5324 * This function issue a dump mailbox command to read config region 5325 * 23 and parse the records in the region and populate driver 5326 * data structure. 5327 **/ 5328 static int 5329 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5330 { 5331 LPFC_MBOXQ_t *mboxq; 5332 struct lpfc_dmabuf *mp; 5333 struct lpfc_mqe *mqe; 5334 uint32_t data_length; 5335 int rc; 5336 5337 /* Program the default value of vlan_id and fc_map */ 5338 phba->valid_vlan = 0; 5339 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5340 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5341 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5342 5343 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5344 if (!mboxq) 5345 return -ENOMEM; 5346 5347 mqe = &mboxq->u.mqe; 5348 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5349 rc = -ENOMEM; 5350 goto out_free_mboxq; 5351 } 5352 5353 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5354 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5355 5356 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5357 "(%d):2571 Mailbox cmd x%x Status x%x " 5358 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5359 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5360 "CQ: x%x x%x x%x x%x\n", 5361 mboxq->vport ? mboxq->vport->vpi : 0, 5362 bf_get(lpfc_mqe_command, mqe), 5363 bf_get(lpfc_mqe_status, mqe), 5364 mqe->un.mb_words[0], mqe->un.mb_words[1], 5365 mqe->un.mb_words[2], mqe->un.mb_words[3], 5366 mqe->un.mb_words[4], mqe->un.mb_words[5], 5367 mqe->un.mb_words[6], mqe->un.mb_words[7], 5368 mqe->un.mb_words[8], mqe->un.mb_words[9], 5369 mqe->un.mb_words[10], mqe->un.mb_words[11], 5370 mqe->un.mb_words[12], mqe->un.mb_words[13], 5371 mqe->un.mb_words[14], mqe->un.mb_words[15], 5372 mqe->un.mb_words[16], mqe->un.mb_words[50], 5373 mboxq->mcqe.word0, 5374 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5375 mboxq->mcqe.trailer); 5376 5377 if (rc) { 5378 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5379 kfree(mp); 5380 rc = -EIO; 5381 goto out_free_mboxq; 5382 } 5383 data_length = mqe->un.mb_words[5]; 5384 if (data_length > DMP_RGN23_SIZE) { 5385 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5386 kfree(mp); 5387 rc = -EIO; 5388 goto out_free_mboxq; 5389 } 5390 5391 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5392 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5393 kfree(mp); 5394 rc = 0; 5395 5396 out_free_mboxq: 5397 mempool_free(mboxq, phba->mbox_mem_pool); 5398 return rc; 5399 } 5400 5401 /** 5402 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5403 * @phba: pointer to lpfc hba data structure. 5404 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5405 * @vpd: pointer to the memory to hold resulting port vpd data. 5406 * @vpd_size: On input, the number of bytes allocated to @vpd. 5407 * On output, the number of data bytes in @vpd. 5408 * 5409 * This routine executes a READ_REV SLI4 mailbox command. In 5410 * addition, this routine gets the port vpd data. 5411 * 5412 * Return codes 5413 * 0 - successful 5414 * -ENOMEM - could not allocated memory. 5415 **/ 5416 static int 5417 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5418 uint8_t *vpd, uint32_t *vpd_size) 5419 { 5420 int rc = 0; 5421 uint32_t dma_size; 5422 struct lpfc_dmabuf *dmabuf; 5423 struct lpfc_mqe *mqe; 5424 5425 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5426 if (!dmabuf) 5427 return -ENOMEM; 5428 5429 /* 5430 * Get a DMA buffer for the vpd data resulting from the READ_REV 5431 * mailbox command. 5432 */ 5433 dma_size = *vpd_size; 5434 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5435 &dmabuf->phys, GFP_KERNEL); 5436 if (!dmabuf->virt) { 5437 kfree(dmabuf); 5438 return -ENOMEM; 5439 } 5440 5441 /* 5442 * The SLI4 implementation of READ_REV conflicts at word1, 5443 * bits 31:16 and SLI4 adds vpd functionality not present 5444 * in SLI3. This code corrects the conflicts. 5445 */ 5446 lpfc_read_rev(phba, mboxq); 5447 mqe = &mboxq->u.mqe; 5448 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5449 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5450 mqe->un.read_rev.word1 &= 0x0000FFFF; 5451 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5452 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5453 5454 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5455 if (rc) { 5456 dma_free_coherent(&phba->pcidev->dev, dma_size, 5457 dmabuf->virt, dmabuf->phys); 5458 kfree(dmabuf); 5459 return -EIO; 5460 } 5461 5462 /* 5463 * The available vpd length cannot be bigger than the 5464 * DMA buffer passed to the port. Catch the less than 5465 * case and update the caller's size. 5466 */ 5467 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5468 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5469 5470 memcpy(vpd, dmabuf->virt, *vpd_size); 5471 5472 dma_free_coherent(&phba->pcidev->dev, dma_size, 5473 dmabuf->virt, dmabuf->phys); 5474 kfree(dmabuf); 5475 return 0; 5476 } 5477 5478 /** 5479 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5480 * @phba: pointer to lpfc hba data structure. 5481 * 5482 * This routine retrieves SLI4 device physical port name this PCI function 5483 * is attached to. 5484 * 5485 * Return codes 5486 * 0 - successful 5487 * otherwise - failed to retrieve controller attributes 5488 **/ 5489 static int 5490 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5491 { 5492 LPFC_MBOXQ_t *mboxq; 5493 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5494 struct lpfc_controller_attribute *cntl_attr; 5495 void *virtaddr = NULL; 5496 uint32_t alloclen, reqlen; 5497 uint32_t shdr_status, shdr_add_status; 5498 union lpfc_sli4_cfg_shdr *shdr; 5499 int rc; 5500 5501 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5502 if (!mboxq) 5503 return -ENOMEM; 5504 5505 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5506 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5507 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5508 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5509 LPFC_SLI4_MBX_NEMBED); 5510 5511 if (alloclen < reqlen) { 5512 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5513 "3084 Allocated DMA memory size (%d) is " 5514 "less than the requested DMA memory size " 5515 "(%d)\n", alloclen, reqlen); 5516 rc = -ENOMEM; 5517 goto out_free_mboxq; 5518 } 5519 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5520 virtaddr = mboxq->sge_array->addr[0]; 5521 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5522 shdr = &mbx_cntl_attr->cfg_shdr; 5523 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5524 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5525 if (shdr_status || shdr_add_status || rc) { 5526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5527 "3085 Mailbox x%x (x%x/x%x) failed, " 5528 "rc:x%x, status:x%x, add_status:x%x\n", 5529 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5530 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5531 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5532 rc, shdr_status, shdr_add_status); 5533 rc = -ENXIO; 5534 goto out_free_mboxq; 5535 } 5536 5537 cntl_attr = &mbx_cntl_attr->cntl_attr; 5538 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5539 phba->sli4_hba.lnk_info.lnk_tp = 5540 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5541 phba->sli4_hba.lnk_info.lnk_no = 5542 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5543 5544 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5545 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5546 sizeof(phba->BIOSVersion)); 5547 5548 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5549 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5550 phba->sli4_hba.lnk_info.lnk_tp, 5551 phba->sli4_hba.lnk_info.lnk_no, 5552 phba->BIOSVersion); 5553 out_free_mboxq: 5554 if (rc != MBX_TIMEOUT) { 5555 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5556 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5557 else 5558 mempool_free(mboxq, phba->mbox_mem_pool); 5559 } 5560 return rc; 5561 } 5562 5563 /** 5564 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5565 * @phba: pointer to lpfc hba data structure. 5566 * 5567 * This routine retrieves SLI4 device physical port name this PCI function 5568 * is attached to. 5569 * 5570 * Return codes 5571 * 0 - successful 5572 * otherwise - failed to retrieve physical port name 5573 **/ 5574 static int 5575 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5576 { 5577 LPFC_MBOXQ_t *mboxq; 5578 struct lpfc_mbx_get_port_name *get_port_name; 5579 uint32_t shdr_status, shdr_add_status; 5580 union lpfc_sli4_cfg_shdr *shdr; 5581 char cport_name = 0; 5582 int rc; 5583 5584 /* We assume nothing at this point */ 5585 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5586 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5587 5588 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5589 if (!mboxq) 5590 return -ENOMEM; 5591 /* obtain link type and link number via READ_CONFIG */ 5592 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5593 lpfc_sli4_read_config(phba); 5594 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5595 goto retrieve_ppname; 5596 5597 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5598 rc = lpfc_sli4_get_ctl_attr(phba); 5599 if (rc) 5600 goto out_free_mboxq; 5601 5602 retrieve_ppname: 5603 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5604 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5605 sizeof(struct lpfc_mbx_get_port_name) - 5606 sizeof(struct lpfc_sli4_cfg_mhdr), 5607 LPFC_SLI4_MBX_EMBED); 5608 get_port_name = &mboxq->u.mqe.un.get_port_name; 5609 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5610 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5611 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5612 phba->sli4_hba.lnk_info.lnk_tp); 5613 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5614 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5615 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5616 if (shdr_status || shdr_add_status || rc) { 5617 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5618 "3087 Mailbox x%x (x%x/x%x) failed: " 5619 "rc:x%x, status:x%x, add_status:x%x\n", 5620 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5621 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5622 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5623 rc, shdr_status, shdr_add_status); 5624 rc = -ENXIO; 5625 goto out_free_mboxq; 5626 } 5627 switch (phba->sli4_hba.lnk_info.lnk_no) { 5628 case LPFC_LINK_NUMBER_0: 5629 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5630 &get_port_name->u.response); 5631 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5632 break; 5633 case LPFC_LINK_NUMBER_1: 5634 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5635 &get_port_name->u.response); 5636 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5637 break; 5638 case LPFC_LINK_NUMBER_2: 5639 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5640 &get_port_name->u.response); 5641 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5642 break; 5643 case LPFC_LINK_NUMBER_3: 5644 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5645 &get_port_name->u.response); 5646 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5647 break; 5648 default: 5649 break; 5650 } 5651 5652 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5653 phba->Port[0] = cport_name; 5654 phba->Port[1] = '\0'; 5655 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5656 "3091 SLI get port name: %s\n", phba->Port); 5657 } 5658 5659 out_free_mboxq: 5660 if (rc != MBX_TIMEOUT) { 5661 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5662 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5663 else 5664 mempool_free(mboxq, phba->mbox_mem_pool); 5665 } 5666 return rc; 5667 } 5668 5669 /** 5670 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5671 * @phba: pointer to lpfc hba data structure. 5672 * 5673 * This routine is called to explicitly arm the SLI4 device's completion and 5674 * event queues 5675 **/ 5676 static void 5677 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5678 { 5679 int qidx; 5680 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5681 struct lpfc_sli4_hdw_queue *qp; 5682 struct lpfc_queue *eq; 5683 5684 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5685 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5686 if (sli4_hba->nvmels_cq) 5687 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5688 LPFC_QUEUE_REARM); 5689 5690 if (sli4_hba->hdwq) { 5691 /* Loop thru all Hardware Queues */ 5692 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5693 qp = &sli4_hba->hdwq[qidx]; 5694 /* ARM the corresponding CQ */ 5695 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5696 LPFC_QUEUE_REARM); 5697 } 5698 5699 /* Loop thru all IRQ vectors */ 5700 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5701 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5702 /* ARM the corresponding EQ */ 5703 sli4_hba->sli4_write_eq_db(phba, eq, 5704 0, LPFC_QUEUE_REARM); 5705 } 5706 } 5707 5708 if (phba->nvmet_support) { 5709 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5710 sli4_hba->sli4_write_cq_db(phba, 5711 sli4_hba->nvmet_cqset[qidx], 0, 5712 LPFC_QUEUE_REARM); 5713 } 5714 } 5715 } 5716 5717 /** 5718 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5719 * @phba: Pointer to HBA context object. 5720 * @type: The resource extent type. 5721 * @extnt_count: buffer to hold port available extent count. 5722 * @extnt_size: buffer to hold element count per extent. 5723 * 5724 * This function calls the port and retrievs the number of available 5725 * extents and their size for a particular extent type. 5726 * 5727 * Returns: 0 if successful. Nonzero otherwise. 5728 **/ 5729 int 5730 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5731 uint16_t *extnt_count, uint16_t *extnt_size) 5732 { 5733 int rc = 0; 5734 uint32_t length; 5735 uint32_t mbox_tmo; 5736 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5737 LPFC_MBOXQ_t *mbox; 5738 5739 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5740 if (!mbox) 5741 return -ENOMEM; 5742 5743 /* Find out how many extents are available for this resource type */ 5744 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5745 sizeof(struct lpfc_sli4_cfg_mhdr)); 5746 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5747 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5748 length, LPFC_SLI4_MBX_EMBED); 5749 5750 /* Send an extents count of 0 - the GET doesn't use it. */ 5751 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5752 LPFC_SLI4_MBX_EMBED); 5753 if (unlikely(rc)) { 5754 rc = -EIO; 5755 goto err_exit; 5756 } 5757 5758 if (!phba->sli4_hba.intr_enable) 5759 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5760 else { 5761 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5762 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5763 } 5764 if (unlikely(rc)) { 5765 rc = -EIO; 5766 goto err_exit; 5767 } 5768 5769 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5770 if (bf_get(lpfc_mbox_hdr_status, 5771 &rsrc_info->header.cfg_shdr.response)) { 5772 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5773 "2930 Failed to get resource extents " 5774 "Status 0x%x Add'l Status 0x%x\n", 5775 bf_get(lpfc_mbox_hdr_status, 5776 &rsrc_info->header.cfg_shdr.response), 5777 bf_get(lpfc_mbox_hdr_add_status, 5778 &rsrc_info->header.cfg_shdr.response)); 5779 rc = -EIO; 5780 goto err_exit; 5781 } 5782 5783 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5784 &rsrc_info->u.rsp); 5785 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5786 &rsrc_info->u.rsp); 5787 5788 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5789 "3162 Retrieved extents type-%d from port: count:%d, " 5790 "size:%d\n", type, *extnt_count, *extnt_size); 5791 5792 err_exit: 5793 mempool_free(mbox, phba->mbox_mem_pool); 5794 return rc; 5795 } 5796 5797 /** 5798 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5799 * @phba: Pointer to HBA context object. 5800 * @type: The extent type to check. 5801 * 5802 * This function reads the current available extents from the port and checks 5803 * if the extent count or extent size has changed since the last access. 5804 * Callers use this routine post port reset to understand if there is a 5805 * extent reprovisioning requirement. 5806 * 5807 * Returns: 5808 * -Error: error indicates problem. 5809 * 1: Extent count or size has changed. 5810 * 0: No changes. 5811 **/ 5812 static int 5813 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5814 { 5815 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5816 uint16_t size_diff, rsrc_ext_size; 5817 int rc = 0; 5818 struct lpfc_rsrc_blks *rsrc_entry; 5819 struct list_head *rsrc_blk_list = NULL; 5820 5821 size_diff = 0; 5822 curr_ext_cnt = 0; 5823 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5824 &rsrc_ext_cnt, 5825 &rsrc_ext_size); 5826 if (unlikely(rc)) 5827 return -EIO; 5828 5829 switch (type) { 5830 case LPFC_RSC_TYPE_FCOE_RPI: 5831 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5832 break; 5833 case LPFC_RSC_TYPE_FCOE_VPI: 5834 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5835 break; 5836 case LPFC_RSC_TYPE_FCOE_XRI: 5837 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5838 break; 5839 case LPFC_RSC_TYPE_FCOE_VFI: 5840 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5841 break; 5842 default: 5843 break; 5844 } 5845 5846 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5847 curr_ext_cnt++; 5848 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5849 size_diff++; 5850 } 5851 5852 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5853 rc = 1; 5854 5855 return rc; 5856 } 5857 5858 /** 5859 * lpfc_sli4_cfg_post_extnts - 5860 * @phba: Pointer to HBA context object. 5861 * @extnt_cnt - number of available extents. 5862 * @type - the extent type (rpi, xri, vfi, vpi). 5863 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5864 * @mbox - pointer to the caller's allocated mailbox structure. 5865 * 5866 * This function executes the extents allocation request. It also 5867 * takes care of the amount of memory needed to allocate or get the 5868 * allocated extents. It is the caller's responsibility to evaluate 5869 * the response. 5870 * 5871 * Returns: 5872 * -Error: Error value describes the condition found. 5873 * 0: if successful 5874 **/ 5875 static int 5876 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5877 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5878 { 5879 int rc = 0; 5880 uint32_t req_len; 5881 uint32_t emb_len; 5882 uint32_t alloc_len, mbox_tmo; 5883 5884 /* Calculate the total requested length of the dma memory */ 5885 req_len = extnt_cnt * sizeof(uint16_t); 5886 5887 /* 5888 * Calculate the size of an embedded mailbox. The uint32_t 5889 * accounts for extents-specific word. 5890 */ 5891 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5892 sizeof(uint32_t); 5893 5894 /* 5895 * Presume the allocation and response will fit into an embedded 5896 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5897 */ 5898 *emb = LPFC_SLI4_MBX_EMBED; 5899 if (req_len > emb_len) { 5900 req_len = extnt_cnt * sizeof(uint16_t) + 5901 sizeof(union lpfc_sli4_cfg_shdr) + 5902 sizeof(uint32_t); 5903 *emb = LPFC_SLI4_MBX_NEMBED; 5904 } 5905 5906 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5907 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5908 req_len, *emb); 5909 if (alloc_len < req_len) { 5910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5911 "2982 Allocated DMA memory size (x%x) is " 5912 "less than the requested DMA memory " 5913 "size (x%x)\n", alloc_len, req_len); 5914 return -ENOMEM; 5915 } 5916 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5917 if (unlikely(rc)) 5918 return -EIO; 5919 5920 if (!phba->sli4_hba.intr_enable) 5921 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5922 else { 5923 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5924 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5925 } 5926 5927 if (unlikely(rc)) 5928 rc = -EIO; 5929 return rc; 5930 } 5931 5932 /** 5933 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5934 * @phba: Pointer to HBA context object. 5935 * @type: The resource extent type to allocate. 5936 * 5937 * This function allocates the number of elements for the specified 5938 * resource type. 5939 **/ 5940 static int 5941 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5942 { 5943 bool emb = false; 5944 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5945 uint16_t rsrc_id, rsrc_start, j, k; 5946 uint16_t *ids; 5947 int i, rc; 5948 unsigned long longs; 5949 unsigned long *bmask; 5950 struct lpfc_rsrc_blks *rsrc_blks; 5951 LPFC_MBOXQ_t *mbox; 5952 uint32_t length; 5953 struct lpfc_id_range *id_array = NULL; 5954 void *virtaddr = NULL; 5955 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5956 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5957 struct list_head *ext_blk_list; 5958 5959 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5960 &rsrc_cnt, 5961 &rsrc_size); 5962 if (unlikely(rc)) 5963 return -EIO; 5964 5965 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5966 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5967 "3009 No available Resource Extents " 5968 "for resource type 0x%x: Count: 0x%x, " 5969 "Size 0x%x\n", type, rsrc_cnt, 5970 rsrc_size); 5971 return -ENOMEM; 5972 } 5973 5974 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5975 "2903 Post resource extents type-0x%x: " 5976 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5977 5978 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5979 if (!mbox) 5980 return -ENOMEM; 5981 5982 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5983 if (unlikely(rc)) { 5984 rc = -EIO; 5985 goto err_exit; 5986 } 5987 5988 /* 5989 * Figure out where the response is located. Then get local pointers 5990 * to the response data. The port does not guarantee to respond to 5991 * all extents counts request so update the local variable with the 5992 * allocated count from the port. 5993 */ 5994 if (emb == LPFC_SLI4_MBX_EMBED) { 5995 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5996 id_array = &rsrc_ext->u.rsp.id[0]; 5997 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5998 } else { 5999 virtaddr = mbox->sge_array->addr[0]; 6000 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6001 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6002 id_array = &n_rsrc->id; 6003 } 6004 6005 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6006 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6007 6008 /* 6009 * Based on the resource size and count, correct the base and max 6010 * resource values. 6011 */ 6012 length = sizeof(struct lpfc_rsrc_blks); 6013 switch (type) { 6014 case LPFC_RSC_TYPE_FCOE_RPI: 6015 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6016 sizeof(unsigned long), 6017 GFP_KERNEL); 6018 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6019 rc = -ENOMEM; 6020 goto err_exit; 6021 } 6022 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6023 sizeof(uint16_t), 6024 GFP_KERNEL); 6025 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6026 kfree(phba->sli4_hba.rpi_bmask); 6027 rc = -ENOMEM; 6028 goto err_exit; 6029 } 6030 6031 /* 6032 * The next_rpi was initialized with the maximum available 6033 * count but the port may allocate a smaller number. Catch 6034 * that case and update the next_rpi. 6035 */ 6036 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6037 6038 /* Initialize local ptrs for common extent processing later. */ 6039 bmask = phba->sli4_hba.rpi_bmask; 6040 ids = phba->sli4_hba.rpi_ids; 6041 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6042 break; 6043 case LPFC_RSC_TYPE_FCOE_VPI: 6044 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6045 GFP_KERNEL); 6046 if (unlikely(!phba->vpi_bmask)) { 6047 rc = -ENOMEM; 6048 goto err_exit; 6049 } 6050 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6051 GFP_KERNEL); 6052 if (unlikely(!phba->vpi_ids)) { 6053 kfree(phba->vpi_bmask); 6054 rc = -ENOMEM; 6055 goto err_exit; 6056 } 6057 6058 /* Initialize local ptrs for common extent processing later. */ 6059 bmask = phba->vpi_bmask; 6060 ids = phba->vpi_ids; 6061 ext_blk_list = &phba->lpfc_vpi_blk_list; 6062 break; 6063 case LPFC_RSC_TYPE_FCOE_XRI: 6064 phba->sli4_hba.xri_bmask = kcalloc(longs, 6065 sizeof(unsigned long), 6066 GFP_KERNEL); 6067 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6068 rc = -ENOMEM; 6069 goto err_exit; 6070 } 6071 phba->sli4_hba.max_cfg_param.xri_used = 0; 6072 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6073 sizeof(uint16_t), 6074 GFP_KERNEL); 6075 if (unlikely(!phba->sli4_hba.xri_ids)) { 6076 kfree(phba->sli4_hba.xri_bmask); 6077 rc = -ENOMEM; 6078 goto err_exit; 6079 } 6080 6081 /* Initialize local ptrs for common extent processing later. */ 6082 bmask = phba->sli4_hba.xri_bmask; 6083 ids = phba->sli4_hba.xri_ids; 6084 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6085 break; 6086 case LPFC_RSC_TYPE_FCOE_VFI: 6087 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6088 sizeof(unsigned long), 6089 GFP_KERNEL); 6090 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6091 rc = -ENOMEM; 6092 goto err_exit; 6093 } 6094 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6095 sizeof(uint16_t), 6096 GFP_KERNEL); 6097 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6098 kfree(phba->sli4_hba.vfi_bmask); 6099 rc = -ENOMEM; 6100 goto err_exit; 6101 } 6102 6103 /* Initialize local ptrs for common extent processing later. */ 6104 bmask = phba->sli4_hba.vfi_bmask; 6105 ids = phba->sli4_hba.vfi_ids; 6106 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6107 break; 6108 default: 6109 /* Unsupported Opcode. Fail call. */ 6110 id_array = NULL; 6111 bmask = NULL; 6112 ids = NULL; 6113 ext_blk_list = NULL; 6114 goto err_exit; 6115 } 6116 6117 /* 6118 * Complete initializing the extent configuration with the 6119 * allocated ids assigned to this function. The bitmask serves 6120 * as an index into the array and manages the available ids. The 6121 * array just stores the ids communicated to the port via the wqes. 6122 */ 6123 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6124 if ((i % 2) == 0) 6125 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6126 &id_array[k]); 6127 else 6128 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6129 &id_array[k]); 6130 6131 rsrc_blks = kzalloc(length, GFP_KERNEL); 6132 if (unlikely(!rsrc_blks)) { 6133 rc = -ENOMEM; 6134 kfree(bmask); 6135 kfree(ids); 6136 goto err_exit; 6137 } 6138 rsrc_blks->rsrc_start = rsrc_id; 6139 rsrc_blks->rsrc_size = rsrc_size; 6140 list_add_tail(&rsrc_blks->list, ext_blk_list); 6141 rsrc_start = rsrc_id; 6142 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6143 phba->sli4_hba.io_xri_start = rsrc_start + 6144 lpfc_sli4_get_iocb_cnt(phba); 6145 } 6146 6147 while (rsrc_id < (rsrc_start + rsrc_size)) { 6148 ids[j] = rsrc_id; 6149 rsrc_id++; 6150 j++; 6151 } 6152 /* Entire word processed. Get next word.*/ 6153 if ((i % 2) == 1) 6154 k++; 6155 } 6156 err_exit: 6157 lpfc_sli4_mbox_cmd_free(phba, mbox); 6158 return rc; 6159 } 6160 6161 6162 6163 /** 6164 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6165 * @phba: Pointer to HBA context object. 6166 * @type: the extent's type. 6167 * 6168 * This function deallocates all extents of a particular resource type. 6169 * SLI4 does not allow for deallocating a particular extent range. It 6170 * is the caller's responsibility to release all kernel memory resources. 6171 **/ 6172 static int 6173 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6174 { 6175 int rc; 6176 uint32_t length, mbox_tmo = 0; 6177 LPFC_MBOXQ_t *mbox; 6178 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6179 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6180 6181 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6182 if (!mbox) 6183 return -ENOMEM; 6184 6185 /* 6186 * This function sends an embedded mailbox because it only sends the 6187 * the resource type. All extents of this type are released by the 6188 * port. 6189 */ 6190 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6191 sizeof(struct lpfc_sli4_cfg_mhdr)); 6192 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6193 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6194 length, LPFC_SLI4_MBX_EMBED); 6195 6196 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6197 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6198 LPFC_SLI4_MBX_EMBED); 6199 if (unlikely(rc)) { 6200 rc = -EIO; 6201 goto out_free_mbox; 6202 } 6203 if (!phba->sli4_hba.intr_enable) 6204 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6205 else { 6206 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6207 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6208 } 6209 if (unlikely(rc)) { 6210 rc = -EIO; 6211 goto out_free_mbox; 6212 } 6213 6214 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6215 if (bf_get(lpfc_mbox_hdr_status, 6216 &dealloc_rsrc->header.cfg_shdr.response)) { 6217 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6218 "2919 Failed to release resource extents " 6219 "for type %d - Status 0x%x Add'l Status 0x%x. " 6220 "Resource memory not released.\n", 6221 type, 6222 bf_get(lpfc_mbox_hdr_status, 6223 &dealloc_rsrc->header.cfg_shdr.response), 6224 bf_get(lpfc_mbox_hdr_add_status, 6225 &dealloc_rsrc->header.cfg_shdr.response)); 6226 rc = -EIO; 6227 goto out_free_mbox; 6228 } 6229 6230 /* Release kernel memory resources for the specific type. */ 6231 switch (type) { 6232 case LPFC_RSC_TYPE_FCOE_VPI: 6233 kfree(phba->vpi_bmask); 6234 kfree(phba->vpi_ids); 6235 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6236 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6237 &phba->lpfc_vpi_blk_list, list) { 6238 list_del_init(&rsrc_blk->list); 6239 kfree(rsrc_blk); 6240 } 6241 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6242 break; 6243 case LPFC_RSC_TYPE_FCOE_XRI: 6244 kfree(phba->sli4_hba.xri_bmask); 6245 kfree(phba->sli4_hba.xri_ids); 6246 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6247 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6248 list_del_init(&rsrc_blk->list); 6249 kfree(rsrc_blk); 6250 } 6251 break; 6252 case LPFC_RSC_TYPE_FCOE_VFI: 6253 kfree(phba->sli4_hba.vfi_bmask); 6254 kfree(phba->sli4_hba.vfi_ids); 6255 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6256 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6257 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6258 list_del_init(&rsrc_blk->list); 6259 kfree(rsrc_blk); 6260 } 6261 break; 6262 case LPFC_RSC_TYPE_FCOE_RPI: 6263 /* RPI bitmask and physical id array are cleaned up earlier. */ 6264 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6265 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6266 list_del_init(&rsrc_blk->list); 6267 kfree(rsrc_blk); 6268 } 6269 break; 6270 default: 6271 break; 6272 } 6273 6274 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6275 6276 out_free_mbox: 6277 mempool_free(mbox, phba->mbox_mem_pool); 6278 return rc; 6279 } 6280 6281 static void 6282 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6283 uint32_t feature) 6284 { 6285 uint32_t len; 6286 6287 len = sizeof(struct lpfc_mbx_set_feature) - 6288 sizeof(struct lpfc_sli4_cfg_mhdr); 6289 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6290 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6291 LPFC_SLI4_MBX_EMBED); 6292 6293 switch (feature) { 6294 case LPFC_SET_UE_RECOVERY: 6295 bf_set(lpfc_mbx_set_feature_UER, 6296 &mbox->u.mqe.un.set_feature, 1); 6297 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6298 mbox->u.mqe.un.set_feature.param_len = 8; 6299 break; 6300 case LPFC_SET_MDS_DIAGS: 6301 bf_set(lpfc_mbx_set_feature_mds, 6302 &mbox->u.mqe.un.set_feature, 1); 6303 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6304 &mbox->u.mqe.un.set_feature, 1); 6305 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6306 mbox->u.mqe.un.set_feature.param_len = 8; 6307 break; 6308 case LPFC_SET_DUAL_DUMP: 6309 bf_set(lpfc_mbx_set_feature_dd, 6310 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6311 bf_set(lpfc_mbx_set_feature_ddquery, 6312 &mbox->u.mqe.un.set_feature, 0); 6313 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6314 mbox->u.mqe.un.set_feature.param_len = 4; 6315 break; 6316 } 6317 6318 return; 6319 } 6320 6321 /** 6322 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6323 * @phba: Pointer to HBA context object. 6324 * 6325 * Disable FW logging into host memory on the adapter. To 6326 * be done before reading logs from the host memory. 6327 **/ 6328 void 6329 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6330 { 6331 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6332 6333 spin_lock_irq(&phba->hbalock); 6334 ras_fwlog->state = INACTIVE; 6335 spin_unlock_irq(&phba->hbalock); 6336 6337 /* Disable FW logging to host memory */ 6338 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6339 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6340 6341 /* Wait 10ms for firmware to stop using DMA buffer */ 6342 usleep_range(10 * 1000, 20 * 1000); 6343 } 6344 6345 /** 6346 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6347 * @phba: Pointer to HBA context object. 6348 * 6349 * This function is called to free memory allocated for RAS FW logging 6350 * support in the driver. 6351 **/ 6352 void 6353 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6354 { 6355 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6356 struct lpfc_dmabuf *dmabuf, *next; 6357 6358 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6359 list_for_each_entry_safe(dmabuf, next, 6360 &ras_fwlog->fwlog_buff_list, 6361 list) { 6362 list_del(&dmabuf->list); 6363 dma_free_coherent(&phba->pcidev->dev, 6364 LPFC_RAS_MAX_ENTRY_SIZE, 6365 dmabuf->virt, dmabuf->phys); 6366 kfree(dmabuf); 6367 } 6368 } 6369 6370 if (ras_fwlog->lwpd.virt) { 6371 dma_free_coherent(&phba->pcidev->dev, 6372 sizeof(uint32_t) * 2, 6373 ras_fwlog->lwpd.virt, 6374 ras_fwlog->lwpd.phys); 6375 ras_fwlog->lwpd.virt = NULL; 6376 } 6377 6378 spin_lock_irq(&phba->hbalock); 6379 ras_fwlog->state = INACTIVE; 6380 spin_unlock_irq(&phba->hbalock); 6381 } 6382 6383 /** 6384 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6385 * @phba: Pointer to HBA context object. 6386 * @fwlog_buff_count: Count of buffers to be created. 6387 * 6388 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6389 * to update FW log is posted to the adapter. 6390 * Buffer count is calculated based on module param ras_fwlog_buffsize 6391 * Size of each buffer posted to FW is 64K. 6392 **/ 6393 6394 static int 6395 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6396 uint32_t fwlog_buff_count) 6397 { 6398 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6399 struct lpfc_dmabuf *dmabuf; 6400 int rc = 0, i = 0; 6401 6402 /* Initialize List */ 6403 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6404 6405 /* Allocate memory for the LWPD */ 6406 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6407 sizeof(uint32_t) * 2, 6408 &ras_fwlog->lwpd.phys, 6409 GFP_KERNEL); 6410 if (!ras_fwlog->lwpd.virt) { 6411 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6412 "6185 LWPD Memory Alloc Failed\n"); 6413 6414 return -ENOMEM; 6415 } 6416 6417 ras_fwlog->fw_buffcount = fwlog_buff_count; 6418 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6419 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6420 GFP_KERNEL); 6421 if (!dmabuf) { 6422 rc = -ENOMEM; 6423 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6424 "6186 Memory Alloc failed FW logging"); 6425 goto free_mem; 6426 } 6427 6428 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6429 LPFC_RAS_MAX_ENTRY_SIZE, 6430 &dmabuf->phys, GFP_KERNEL); 6431 if (!dmabuf->virt) { 6432 kfree(dmabuf); 6433 rc = -ENOMEM; 6434 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6435 "6187 DMA Alloc Failed FW logging"); 6436 goto free_mem; 6437 } 6438 dmabuf->buffer_tag = i; 6439 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6440 } 6441 6442 free_mem: 6443 if (rc) 6444 lpfc_sli4_ras_dma_free(phba); 6445 6446 return rc; 6447 } 6448 6449 /** 6450 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6451 * @phba: pointer to lpfc hba data structure. 6452 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6453 * 6454 * Completion handler for driver's RAS MBX command to the device. 6455 **/ 6456 static void 6457 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6458 { 6459 MAILBOX_t *mb; 6460 union lpfc_sli4_cfg_shdr *shdr; 6461 uint32_t shdr_status, shdr_add_status; 6462 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6463 6464 mb = &pmb->u.mb; 6465 6466 shdr = (union lpfc_sli4_cfg_shdr *) 6467 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6468 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6469 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6470 6471 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6472 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6473 "6188 FW LOG mailbox " 6474 "completed with status x%x add_status x%x," 6475 " mbx status x%x\n", 6476 shdr_status, shdr_add_status, mb->mbxStatus); 6477 6478 ras_fwlog->ras_hwsupport = false; 6479 goto disable_ras; 6480 } 6481 6482 spin_lock_irq(&phba->hbalock); 6483 ras_fwlog->state = ACTIVE; 6484 spin_unlock_irq(&phba->hbalock); 6485 mempool_free(pmb, phba->mbox_mem_pool); 6486 6487 return; 6488 6489 disable_ras: 6490 /* Free RAS DMA memory */ 6491 lpfc_sli4_ras_dma_free(phba); 6492 mempool_free(pmb, phba->mbox_mem_pool); 6493 } 6494 6495 /** 6496 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6497 * @phba: pointer to lpfc hba data structure. 6498 * @fwlog_level: Logging verbosity level. 6499 * @fwlog_enable: Enable/Disable logging. 6500 * 6501 * Initialize memory and post mailbox command to enable FW logging in host 6502 * memory. 6503 **/ 6504 int 6505 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6506 uint32_t fwlog_level, 6507 uint32_t fwlog_enable) 6508 { 6509 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6510 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6511 struct lpfc_dmabuf *dmabuf; 6512 LPFC_MBOXQ_t *mbox; 6513 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6514 int rc = 0; 6515 6516 spin_lock_irq(&phba->hbalock); 6517 ras_fwlog->state = INACTIVE; 6518 spin_unlock_irq(&phba->hbalock); 6519 6520 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6521 phba->cfg_ras_fwlog_buffsize); 6522 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6523 6524 /* 6525 * If re-enabling FW logging support use earlier allocated 6526 * DMA buffers while posting MBX command. 6527 **/ 6528 if (!ras_fwlog->lwpd.virt) { 6529 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6530 if (rc) { 6531 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6532 "6189 FW Log Memory Allocation Failed"); 6533 return rc; 6534 } 6535 } 6536 6537 /* Setup Mailbox command */ 6538 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6539 if (!mbox) { 6540 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6541 "6190 RAS MBX Alloc Failed"); 6542 rc = -ENOMEM; 6543 goto mem_free; 6544 } 6545 6546 ras_fwlog->fw_loglevel = fwlog_level; 6547 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6548 sizeof(struct lpfc_sli4_cfg_mhdr)); 6549 6550 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6551 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6552 len, LPFC_SLI4_MBX_EMBED); 6553 6554 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6555 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6556 fwlog_enable); 6557 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6558 ras_fwlog->fw_loglevel); 6559 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6560 ras_fwlog->fw_buffcount); 6561 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6562 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6563 6564 /* Update DMA buffer address */ 6565 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6566 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6567 6568 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6569 putPaddrLow(dmabuf->phys); 6570 6571 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6572 putPaddrHigh(dmabuf->phys); 6573 } 6574 6575 /* Update LPWD address */ 6576 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6577 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6578 6579 spin_lock_irq(&phba->hbalock); 6580 ras_fwlog->state = REG_INPROGRESS; 6581 spin_unlock_irq(&phba->hbalock); 6582 mbox->vport = phba->pport; 6583 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6584 6585 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6586 6587 if (rc == MBX_NOT_FINISHED) { 6588 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6589 "6191 FW-Log Mailbox failed. " 6590 "status %d mbxStatus : x%x", rc, 6591 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6592 mempool_free(mbox, phba->mbox_mem_pool); 6593 rc = -EIO; 6594 goto mem_free; 6595 } else 6596 rc = 0; 6597 mem_free: 6598 if (rc) 6599 lpfc_sli4_ras_dma_free(phba); 6600 6601 return rc; 6602 } 6603 6604 /** 6605 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6606 * @phba: Pointer to HBA context object. 6607 * 6608 * Check if RAS is supported on the adapter and initialize it. 6609 **/ 6610 void 6611 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6612 { 6613 /* Check RAS FW Log needs to be enabled or not */ 6614 if (lpfc_check_fwlog_support(phba)) 6615 return; 6616 6617 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6618 LPFC_RAS_ENABLE_LOGGING); 6619 } 6620 6621 /** 6622 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6623 * @phba: Pointer to HBA context object. 6624 * 6625 * This function allocates all SLI4 resource identifiers. 6626 **/ 6627 int 6628 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6629 { 6630 int i, rc, error = 0; 6631 uint16_t count, base; 6632 unsigned long longs; 6633 6634 if (!phba->sli4_hba.rpi_hdrs_in_use) 6635 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6636 if (phba->sli4_hba.extents_in_use) { 6637 /* 6638 * The port supports resource extents. The XRI, VPI, VFI, RPI 6639 * resource extent count must be read and allocated before 6640 * provisioning the resource id arrays. 6641 */ 6642 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6643 LPFC_IDX_RSRC_RDY) { 6644 /* 6645 * Extent-based resources are set - the driver could 6646 * be in a port reset. Figure out if any corrective 6647 * actions need to be taken. 6648 */ 6649 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6650 LPFC_RSC_TYPE_FCOE_VFI); 6651 if (rc != 0) 6652 error++; 6653 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6654 LPFC_RSC_TYPE_FCOE_VPI); 6655 if (rc != 0) 6656 error++; 6657 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6658 LPFC_RSC_TYPE_FCOE_XRI); 6659 if (rc != 0) 6660 error++; 6661 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6662 LPFC_RSC_TYPE_FCOE_RPI); 6663 if (rc != 0) 6664 error++; 6665 6666 /* 6667 * It's possible that the number of resources 6668 * provided to this port instance changed between 6669 * resets. Detect this condition and reallocate 6670 * resources. Otherwise, there is no action. 6671 */ 6672 if (error) { 6673 lpfc_printf_log(phba, KERN_INFO, 6674 LOG_MBOX | LOG_INIT, 6675 "2931 Detected extent resource " 6676 "change. Reallocating all " 6677 "extents.\n"); 6678 rc = lpfc_sli4_dealloc_extent(phba, 6679 LPFC_RSC_TYPE_FCOE_VFI); 6680 rc = lpfc_sli4_dealloc_extent(phba, 6681 LPFC_RSC_TYPE_FCOE_VPI); 6682 rc = lpfc_sli4_dealloc_extent(phba, 6683 LPFC_RSC_TYPE_FCOE_XRI); 6684 rc = lpfc_sli4_dealloc_extent(phba, 6685 LPFC_RSC_TYPE_FCOE_RPI); 6686 } else 6687 return 0; 6688 } 6689 6690 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6691 if (unlikely(rc)) 6692 goto err_exit; 6693 6694 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6695 if (unlikely(rc)) 6696 goto err_exit; 6697 6698 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6699 if (unlikely(rc)) 6700 goto err_exit; 6701 6702 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6703 if (unlikely(rc)) 6704 goto err_exit; 6705 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6706 LPFC_IDX_RSRC_RDY); 6707 return rc; 6708 } else { 6709 /* 6710 * The port does not support resource extents. The XRI, VPI, 6711 * VFI, RPI resource ids were determined from READ_CONFIG. 6712 * Just allocate the bitmasks and provision the resource id 6713 * arrays. If a port reset is active, the resources don't 6714 * need any action - just exit. 6715 */ 6716 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6717 LPFC_IDX_RSRC_RDY) { 6718 lpfc_sli4_dealloc_resource_identifiers(phba); 6719 lpfc_sli4_remove_rpis(phba); 6720 } 6721 /* RPIs. */ 6722 count = phba->sli4_hba.max_cfg_param.max_rpi; 6723 if (count <= 0) { 6724 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6725 "3279 Invalid provisioning of " 6726 "rpi:%d\n", count); 6727 rc = -EINVAL; 6728 goto err_exit; 6729 } 6730 base = phba->sli4_hba.max_cfg_param.rpi_base; 6731 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6732 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6733 sizeof(unsigned long), 6734 GFP_KERNEL); 6735 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6736 rc = -ENOMEM; 6737 goto err_exit; 6738 } 6739 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6740 GFP_KERNEL); 6741 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6742 rc = -ENOMEM; 6743 goto free_rpi_bmask; 6744 } 6745 6746 for (i = 0; i < count; i++) 6747 phba->sli4_hba.rpi_ids[i] = base + i; 6748 6749 /* VPIs. */ 6750 count = phba->sli4_hba.max_cfg_param.max_vpi; 6751 if (count <= 0) { 6752 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6753 "3280 Invalid provisioning of " 6754 "vpi:%d\n", count); 6755 rc = -EINVAL; 6756 goto free_rpi_ids; 6757 } 6758 base = phba->sli4_hba.max_cfg_param.vpi_base; 6759 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6760 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6761 GFP_KERNEL); 6762 if (unlikely(!phba->vpi_bmask)) { 6763 rc = -ENOMEM; 6764 goto free_rpi_ids; 6765 } 6766 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6767 GFP_KERNEL); 6768 if (unlikely(!phba->vpi_ids)) { 6769 rc = -ENOMEM; 6770 goto free_vpi_bmask; 6771 } 6772 6773 for (i = 0; i < count; i++) 6774 phba->vpi_ids[i] = base + i; 6775 6776 /* XRIs. */ 6777 count = phba->sli4_hba.max_cfg_param.max_xri; 6778 if (count <= 0) { 6779 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6780 "3281 Invalid provisioning of " 6781 "xri:%d\n", count); 6782 rc = -EINVAL; 6783 goto free_vpi_ids; 6784 } 6785 base = phba->sli4_hba.max_cfg_param.xri_base; 6786 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6787 phba->sli4_hba.xri_bmask = kcalloc(longs, 6788 sizeof(unsigned long), 6789 GFP_KERNEL); 6790 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6791 rc = -ENOMEM; 6792 goto free_vpi_ids; 6793 } 6794 phba->sli4_hba.max_cfg_param.xri_used = 0; 6795 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6796 GFP_KERNEL); 6797 if (unlikely(!phba->sli4_hba.xri_ids)) { 6798 rc = -ENOMEM; 6799 goto free_xri_bmask; 6800 } 6801 6802 for (i = 0; i < count; i++) 6803 phba->sli4_hba.xri_ids[i] = base + i; 6804 6805 /* VFIs. */ 6806 count = phba->sli4_hba.max_cfg_param.max_vfi; 6807 if (count <= 0) { 6808 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6809 "3282 Invalid provisioning of " 6810 "vfi:%d\n", count); 6811 rc = -EINVAL; 6812 goto free_xri_ids; 6813 } 6814 base = phba->sli4_hba.max_cfg_param.vfi_base; 6815 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6816 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6817 sizeof(unsigned long), 6818 GFP_KERNEL); 6819 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6820 rc = -ENOMEM; 6821 goto free_xri_ids; 6822 } 6823 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6824 GFP_KERNEL); 6825 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6826 rc = -ENOMEM; 6827 goto free_vfi_bmask; 6828 } 6829 6830 for (i = 0; i < count; i++) 6831 phba->sli4_hba.vfi_ids[i] = base + i; 6832 6833 /* 6834 * Mark all resources ready. An HBA reset doesn't need 6835 * to reset the initialization. 6836 */ 6837 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6838 LPFC_IDX_RSRC_RDY); 6839 return 0; 6840 } 6841 6842 free_vfi_bmask: 6843 kfree(phba->sli4_hba.vfi_bmask); 6844 phba->sli4_hba.vfi_bmask = NULL; 6845 free_xri_ids: 6846 kfree(phba->sli4_hba.xri_ids); 6847 phba->sli4_hba.xri_ids = NULL; 6848 free_xri_bmask: 6849 kfree(phba->sli4_hba.xri_bmask); 6850 phba->sli4_hba.xri_bmask = NULL; 6851 free_vpi_ids: 6852 kfree(phba->vpi_ids); 6853 phba->vpi_ids = NULL; 6854 free_vpi_bmask: 6855 kfree(phba->vpi_bmask); 6856 phba->vpi_bmask = NULL; 6857 free_rpi_ids: 6858 kfree(phba->sli4_hba.rpi_ids); 6859 phba->sli4_hba.rpi_ids = NULL; 6860 free_rpi_bmask: 6861 kfree(phba->sli4_hba.rpi_bmask); 6862 phba->sli4_hba.rpi_bmask = NULL; 6863 err_exit: 6864 return rc; 6865 } 6866 6867 /** 6868 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6869 * @phba: Pointer to HBA context object. 6870 * 6871 * This function allocates the number of elements for the specified 6872 * resource type. 6873 **/ 6874 int 6875 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6876 { 6877 if (phba->sli4_hba.extents_in_use) { 6878 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6879 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6880 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6881 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6882 } else { 6883 kfree(phba->vpi_bmask); 6884 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6885 kfree(phba->vpi_ids); 6886 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6887 kfree(phba->sli4_hba.xri_bmask); 6888 kfree(phba->sli4_hba.xri_ids); 6889 kfree(phba->sli4_hba.vfi_bmask); 6890 kfree(phba->sli4_hba.vfi_ids); 6891 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6892 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6893 } 6894 6895 return 0; 6896 } 6897 6898 /** 6899 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6900 * @phba: Pointer to HBA context object. 6901 * @type: The resource extent type. 6902 * @extnt_count: buffer to hold port extent count response 6903 * @extnt_size: buffer to hold port extent size response. 6904 * 6905 * This function calls the port to read the host allocated extents 6906 * for a particular type. 6907 **/ 6908 int 6909 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6910 uint16_t *extnt_cnt, uint16_t *extnt_size) 6911 { 6912 bool emb; 6913 int rc = 0; 6914 uint16_t curr_blks = 0; 6915 uint32_t req_len, emb_len; 6916 uint32_t alloc_len, mbox_tmo; 6917 struct list_head *blk_list_head; 6918 struct lpfc_rsrc_blks *rsrc_blk; 6919 LPFC_MBOXQ_t *mbox; 6920 void *virtaddr = NULL; 6921 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6922 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6923 union lpfc_sli4_cfg_shdr *shdr; 6924 6925 switch (type) { 6926 case LPFC_RSC_TYPE_FCOE_VPI: 6927 blk_list_head = &phba->lpfc_vpi_blk_list; 6928 break; 6929 case LPFC_RSC_TYPE_FCOE_XRI: 6930 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6931 break; 6932 case LPFC_RSC_TYPE_FCOE_VFI: 6933 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6934 break; 6935 case LPFC_RSC_TYPE_FCOE_RPI: 6936 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6937 break; 6938 default: 6939 return -EIO; 6940 } 6941 6942 /* Count the number of extents currently allocatd for this type. */ 6943 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6944 if (curr_blks == 0) { 6945 /* 6946 * The GET_ALLOCATED mailbox does not return the size, 6947 * just the count. The size should be just the size 6948 * stored in the current allocated block and all sizes 6949 * for an extent type are the same so set the return 6950 * value now. 6951 */ 6952 *extnt_size = rsrc_blk->rsrc_size; 6953 } 6954 curr_blks++; 6955 } 6956 6957 /* 6958 * Calculate the size of an embedded mailbox. The uint32_t 6959 * accounts for extents-specific word. 6960 */ 6961 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6962 sizeof(uint32_t); 6963 6964 /* 6965 * Presume the allocation and response will fit into an embedded 6966 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6967 */ 6968 emb = LPFC_SLI4_MBX_EMBED; 6969 req_len = emb_len; 6970 if (req_len > emb_len) { 6971 req_len = curr_blks * sizeof(uint16_t) + 6972 sizeof(union lpfc_sli4_cfg_shdr) + 6973 sizeof(uint32_t); 6974 emb = LPFC_SLI4_MBX_NEMBED; 6975 } 6976 6977 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6978 if (!mbox) 6979 return -ENOMEM; 6980 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6981 6982 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6983 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6984 req_len, emb); 6985 if (alloc_len < req_len) { 6986 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6987 "2983 Allocated DMA memory size (x%x) is " 6988 "less than the requested DMA memory " 6989 "size (x%x)\n", alloc_len, req_len); 6990 rc = -ENOMEM; 6991 goto err_exit; 6992 } 6993 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6994 if (unlikely(rc)) { 6995 rc = -EIO; 6996 goto err_exit; 6997 } 6998 6999 if (!phba->sli4_hba.intr_enable) 7000 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7001 else { 7002 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7003 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7004 } 7005 7006 if (unlikely(rc)) { 7007 rc = -EIO; 7008 goto err_exit; 7009 } 7010 7011 /* 7012 * Figure out where the response is located. Then get local pointers 7013 * to the response data. The port does not guarantee to respond to 7014 * all extents counts request so update the local variable with the 7015 * allocated count from the port. 7016 */ 7017 if (emb == LPFC_SLI4_MBX_EMBED) { 7018 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7019 shdr = &rsrc_ext->header.cfg_shdr; 7020 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7021 } else { 7022 virtaddr = mbox->sge_array->addr[0]; 7023 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7024 shdr = &n_rsrc->cfg_shdr; 7025 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7026 } 7027 7028 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7029 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 7030 "2984 Failed to read allocated resources " 7031 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7032 type, 7033 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7034 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7035 rc = -EIO; 7036 goto err_exit; 7037 } 7038 err_exit: 7039 lpfc_sli4_mbox_cmd_free(phba, mbox); 7040 return rc; 7041 } 7042 7043 /** 7044 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7045 * @phba: pointer to lpfc hba data structure. 7046 * @pring: Pointer to driver SLI ring object. 7047 * @sgl_list: linked link of sgl buffers to post 7048 * @cnt: number of linked list buffers 7049 * 7050 * This routine walks the list of buffers that have been allocated and 7051 * repost them to the port by using SGL block post. This is needed after a 7052 * pci_function_reset/warm_start or start. It attempts to construct blocks 7053 * of buffer sgls which contains contiguous xris and uses the non-embedded 7054 * SGL block post mailbox commands to post them to the port. For single 7055 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7056 * mailbox command for posting. 7057 * 7058 * Returns: 0 = success, non-zero failure. 7059 **/ 7060 static int 7061 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7062 struct list_head *sgl_list, int cnt) 7063 { 7064 struct lpfc_sglq *sglq_entry = NULL; 7065 struct lpfc_sglq *sglq_entry_next = NULL; 7066 struct lpfc_sglq *sglq_entry_first = NULL; 7067 int status, total_cnt; 7068 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7069 int last_xritag = NO_XRI; 7070 LIST_HEAD(prep_sgl_list); 7071 LIST_HEAD(blck_sgl_list); 7072 LIST_HEAD(allc_sgl_list); 7073 LIST_HEAD(post_sgl_list); 7074 LIST_HEAD(free_sgl_list); 7075 7076 spin_lock_irq(&phba->hbalock); 7077 spin_lock(&phba->sli4_hba.sgl_list_lock); 7078 list_splice_init(sgl_list, &allc_sgl_list); 7079 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7080 spin_unlock_irq(&phba->hbalock); 7081 7082 total_cnt = cnt; 7083 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7084 &allc_sgl_list, list) { 7085 list_del_init(&sglq_entry->list); 7086 block_cnt++; 7087 if ((last_xritag != NO_XRI) && 7088 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7089 /* a hole in xri block, form a sgl posting block */ 7090 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7091 post_cnt = block_cnt - 1; 7092 /* prepare list for next posting block */ 7093 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7094 block_cnt = 1; 7095 } else { 7096 /* prepare list for next posting block */ 7097 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7098 /* enough sgls for non-embed sgl mbox command */ 7099 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7100 list_splice_init(&prep_sgl_list, 7101 &blck_sgl_list); 7102 post_cnt = block_cnt; 7103 block_cnt = 0; 7104 } 7105 } 7106 num_posted++; 7107 7108 /* keep track of last sgl's xritag */ 7109 last_xritag = sglq_entry->sli4_xritag; 7110 7111 /* end of repost sgl list condition for buffers */ 7112 if (num_posted == total_cnt) { 7113 if (post_cnt == 0) { 7114 list_splice_init(&prep_sgl_list, 7115 &blck_sgl_list); 7116 post_cnt = block_cnt; 7117 } else if (block_cnt == 1) { 7118 status = lpfc_sli4_post_sgl(phba, 7119 sglq_entry->phys, 0, 7120 sglq_entry->sli4_xritag); 7121 if (!status) { 7122 /* successful, put sgl to posted list */ 7123 list_add_tail(&sglq_entry->list, 7124 &post_sgl_list); 7125 } else { 7126 /* Failure, put sgl to free list */ 7127 lpfc_printf_log(phba, KERN_WARNING, 7128 LOG_SLI, 7129 "3159 Failed to post " 7130 "sgl, xritag:x%x\n", 7131 sglq_entry->sli4_xritag); 7132 list_add_tail(&sglq_entry->list, 7133 &free_sgl_list); 7134 total_cnt--; 7135 } 7136 } 7137 } 7138 7139 /* continue until a nembed page worth of sgls */ 7140 if (post_cnt == 0) 7141 continue; 7142 7143 /* post the buffer list sgls as a block */ 7144 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7145 post_cnt); 7146 7147 if (!status) { 7148 /* success, put sgl list to posted sgl list */ 7149 list_splice_init(&blck_sgl_list, &post_sgl_list); 7150 } else { 7151 /* Failure, put sgl list to free sgl list */ 7152 sglq_entry_first = list_first_entry(&blck_sgl_list, 7153 struct lpfc_sglq, 7154 list); 7155 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7156 "3160 Failed to post sgl-list, " 7157 "xritag:x%x-x%x\n", 7158 sglq_entry_first->sli4_xritag, 7159 (sglq_entry_first->sli4_xritag + 7160 post_cnt - 1)); 7161 list_splice_init(&blck_sgl_list, &free_sgl_list); 7162 total_cnt -= post_cnt; 7163 } 7164 7165 /* don't reset xirtag due to hole in xri block */ 7166 if (block_cnt == 0) 7167 last_xritag = NO_XRI; 7168 7169 /* reset sgl post count for next round of posting */ 7170 post_cnt = 0; 7171 } 7172 7173 /* free the sgls failed to post */ 7174 lpfc_free_sgl_list(phba, &free_sgl_list); 7175 7176 /* push sgls posted to the available list */ 7177 if (!list_empty(&post_sgl_list)) { 7178 spin_lock_irq(&phba->hbalock); 7179 spin_lock(&phba->sli4_hba.sgl_list_lock); 7180 list_splice_init(&post_sgl_list, sgl_list); 7181 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7182 spin_unlock_irq(&phba->hbalock); 7183 } else { 7184 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7185 "3161 Failure to post sgl to port.\n"); 7186 return -EIO; 7187 } 7188 7189 /* return the number of XRIs actually posted */ 7190 return total_cnt; 7191 } 7192 7193 /** 7194 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7195 * @phba: pointer to lpfc hba data structure. 7196 * 7197 * This routine walks the list of nvme buffers that have been allocated and 7198 * repost them to the port by using SGL block post. This is needed after a 7199 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7200 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7201 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7202 * 7203 * Returns: 0 = success, non-zero failure. 7204 **/ 7205 static int 7206 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7207 { 7208 LIST_HEAD(post_nblist); 7209 int num_posted, rc = 0; 7210 7211 /* get all NVME buffers need to repost to a local list */ 7212 lpfc_io_buf_flush(phba, &post_nblist); 7213 7214 /* post the list of nvme buffer sgls to port if available */ 7215 if (!list_empty(&post_nblist)) { 7216 num_posted = lpfc_sli4_post_io_sgl_list( 7217 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7218 /* failed to post any nvme buffer, return error */ 7219 if (num_posted == 0) 7220 rc = -EIO; 7221 } 7222 return rc; 7223 } 7224 7225 static void 7226 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7227 { 7228 uint32_t len; 7229 7230 len = sizeof(struct lpfc_mbx_set_host_data) - 7231 sizeof(struct lpfc_sli4_cfg_mhdr); 7232 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7233 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7234 LPFC_SLI4_MBX_EMBED); 7235 7236 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7237 mbox->u.mqe.un.set_host_data.param_len = 7238 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7239 snprintf(mbox->u.mqe.un.set_host_data.data, 7240 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7241 "Linux %s v"LPFC_DRIVER_VERSION, 7242 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7243 } 7244 7245 int 7246 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7247 struct lpfc_queue *drq, int count, int idx) 7248 { 7249 int rc, i; 7250 struct lpfc_rqe hrqe; 7251 struct lpfc_rqe drqe; 7252 struct lpfc_rqb *rqbp; 7253 unsigned long flags; 7254 struct rqb_dmabuf *rqb_buffer; 7255 LIST_HEAD(rqb_buf_list); 7256 7257 spin_lock_irqsave(&phba->hbalock, flags); 7258 rqbp = hrq->rqbp; 7259 for (i = 0; i < count; i++) { 7260 /* IF RQ is already full, don't bother */ 7261 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7262 break; 7263 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7264 if (!rqb_buffer) 7265 break; 7266 rqb_buffer->hrq = hrq; 7267 rqb_buffer->drq = drq; 7268 rqb_buffer->idx = idx; 7269 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7270 } 7271 while (!list_empty(&rqb_buf_list)) { 7272 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7273 hbuf.list); 7274 7275 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7276 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7277 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7278 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7279 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7280 if (rc < 0) { 7281 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7282 "6421 Cannot post to HRQ %d: %x %x %x " 7283 "DRQ %x %x\n", 7284 hrq->queue_id, 7285 hrq->host_index, 7286 hrq->hba_index, 7287 hrq->entry_count, 7288 drq->host_index, 7289 drq->hba_index); 7290 rqbp->rqb_free_buffer(phba, rqb_buffer); 7291 } else { 7292 list_add_tail(&rqb_buffer->hbuf.list, 7293 &rqbp->rqb_buffer_list); 7294 rqbp->buffer_count++; 7295 } 7296 } 7297 spin_unlock_irqrestore(&phba->hbalock, flags); 7298 return 1; 7299 } 7300 7301 /** 7302 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7303 * @phba: Pointer to HBA context object. 7304 * 7305 * This function is the main SLI4 device initialization PCI function. This 7306 * function is called by the HBA initialization code, HBA reset code and 7307 * HBA error attention handler code. Caller is not required to hold any 7308 * locks. 7309 **/ 7310 int 7311 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7312 { 7313 int rc, i, cnt, len, dd; 7314 LPFC_MBOXQ_t *mboxq; 7315 struct lpfc_mqe *mqe; 7316 uint8_t *vpd; 7317 uint32_t vpd_size; 7318 uint32_t ftr_rsp = 0; 7319 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7320 struct lpfc_vport *vport = phba->pport; 7321 struct lpfc_dmabuf *mp; 7322 struct lpfc_rqb *rqbp; 7323 7324 /* Perform a PCI function reset to start from clean */ 7325 rc = lpfc_pci_function_reset(phba); 7326 if (unlikely(rc)) 7327 return -ENODEV; 7328 7329 /* Check the HBA Host Status Register for readyness */ 7330 rc = lpfc_sli4_post_status_check(phba); 7331 if (unlikely(rc)) 7332 return -ENODEV; 7333 else { 7334 spin_lock_irq(&phba->hbalock); 7335 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7336 spin_unlock_irq(&phba->hbalock); 7337 } 7338 7339 /* 7340 * Allocate a single mailbox container for initializing the 7341 * port. 7342 */ 7343 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7344 if (!mboxq) 7345 return -ENOMEM; 7346 7347 /* Issue READ_REV to collect vpd and FW information. */ 7348 vpd_size = SLI4_PAGE_SIZE; 7349 vpd = kzalloc(vpd_size, GFP_KERNEL); 7350 if (!vpd) { 7351 rc = -ENOMEM; 7352 goto out_free_mbox; 7353 } 7354 7355 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7356 if (unlikely(rc)) { 7357 kfree(vpd); 7358 goto out_free_mbox; 7359 } 7360 7361 mqe = &mboxq->u.mqe; 7362 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7363 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7364 phba->hba_flag |= HBA_FCOE_MODE; 7365 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7366 } else { 7367 phba->hba_flag &= ~HBA_FCOE_MODE; 7368 } 7369 7370 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7371 LPFC_DCBX_CEE_MODE) 7372 phba->hba_flag |= HBA_FIP_SUPPORT; 7373 else 7374 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7375 7376 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7377 7378 if (phba->sli_rev != LPFC_SLI_REV4) { 7379 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7380 "0376 READ_REV Error. SLI Level %d " 7381 "FCoE enabled %d\n", 7382 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7383 rc = -EIO; 7384 kfree(vpd); 7385 goto out_free_mbox; 7386 } 7387 7388 /* 7389 * Continue initialization with default values even if driver failed 7390 * to read FCoE param config regions, only read parameters if the 7391 * board is FCoE 7392 */ 7393 if (phba->hba_flag & HBA_FCOE_MODE && 7394 lpfc_sli4_read_fcoe_params(phba)) 7395 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7396 "2570 Failed to read FCoE parameters\n"); 7397 7398 /* 7399 * Retrieve sli4 device physical port name, failure of doing it 7400 * is considered as non-fatal. 7401 */ 7402 rc = lpfc_sli4_retrieve_pport_name(phba); 7403 if (!rc) 7404 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7405 "3080 Successful retrieving SLI4 device " 7406 "physical port name: %s.\n", phba->Port); 7407 7408 rc = lpfc_sli4_get_ctl_attr(phba); 7409 if (!rc) 7410 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7411 "8351 Successful retrieving SLI4 device " 7412 "CTL ATTR\n"); 7413 7414 /* 7415 * Evaluate the read rev and vpd data. Populate the driver 7416 * state with the results. If this routine fails, the failure 7417 * is not fatal as the driver will use generic values. 7418 */ 7419 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7420 if (unlikely(!rc)) { 7421 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7422 "0377 Error %d parsing vpd. " 7423 "Using defaults.\n", rc); 7424 rc = 0; 7425 } 7426 kfree(vpd); 7427 7428 /* Save information as VPD data */ 7429 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7430 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7431 7432 /* 7433 * This is because first G7 ASIC doesn't support the standard 7434 * 0x5a NVME cmd descriptor type/subtype 7435 */ 7436 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7437 LPFC_SLI_INTF_IF_TYPE_6) && 7438 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7439 (phba->vpd.rev.smRev == 0) && 7440 (phba->cfg_nvme_embed_cmd == 1)) 7441 phba->cfg_nvme_embed_cmd = 0; 7442 7443 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7444 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7445 &mqe->un.read_rev); 7446 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7447 &mqe->un.read_rev); 7448 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7449 &mqe->un.read_rev); 7450 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7451 &mqe->un.read_rev); 7452 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7453 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7454 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7455 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7456 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7457 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7458 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7459 "(%d):0380 READ_REV Status x%x " 7460 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7461 mboxq->vport ? mboxq->vport->vpi : 0, 7462 bf_get(lpfc_mqe_status, mqe), 7463 phba->vpd.rev.opFwName, 7464 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7465 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7466 7467 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7468 LPFC_SLI_INTF_IF_TYPE_0) { 7469 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7470 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7471 if (rc == MBX_SUCCESS) { 7472 phba->hba_flag |= HBA_RECOVERABLE_UE; 7473 /* Set 1Sec interval to detect UE */ 7474 phba->eratt_poll_interval = 1; 7475 phba->sli4_hba.ue_to_sr = bf_get( 7476 lpfc_mbx_set_feature_UESR, 7477 &mboxq->u.mqe.un.set_feature); 7478 phba->sli4_hba.ue_to_rp = bf_get( 7479 lpfc_mbx_set_feature_UERP, 7480 &mboxq->u.mqe.un.set_feature); 7481 } 7482 } 7483 7484 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7485 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7486 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7487 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7488 if (rc != MBX_SUCCESS) 7489 phba->mds_diags_support = 0; 7490 } 7491 7492 /* 7493 * Discover the port's supported feature set and match it against the 7494 * hosts requests. 7495 */ 7496 lpfc_request_features(phba, mboxq); 7497 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7498 if (unlikely(rc)) { 7499 rc = -EIO; 7500 goto out_free_mbox; 7501 } 7502 7503 /* 7504 * The port must support FCP initiator mode as this is the 7505 * only mode running in the host. 7506 */ 7507 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7508 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7509 "0378 No support for fcpi mode.\n"); 7510 ftr_rsp++; 7511 } 7512 7513 /* Performance Hints are ONLY for FCoE */ 7514 if (phba->hba_flag & HBA_FCOE_MODE) { 7515 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7516 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7517 else 7518 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7519 } 7520 7521 /* 7522 * If the port cannot support the host's requested features 7523 * then turn off the global config parameters to disable the 7524 * feature in the driver. This is not a fatal error. 7525 */ 7526 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7527 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7528 phba->cfg_enable_bg = 0; 7529 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7530 ftr_rsp++; 7531 } 7532 } 7533 7534 if (phba->max_vpi && phba->cfg_enable_npiv && 7535 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7536 ftr_rsp++; 7537 7538 if (ftr_rsp) { 7539 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7540 "0379 Feature Mismatch Data: x%08x %08x " 7541 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7542 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7543 phba->cfg_enable_npiv, phba->max_vpi); 7544 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7545 phba->cfg_enable_bg = 0; 7546 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7547 phba->cfg_enable_npiv = 0; 7548 } 7549 7550 /* These SLI3 features are assumed in SLI4 */ 7551 spin_lock_irq(&phba->hbalock); 7552 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7553 spin_unlock_irq(&phba->hbalock); 7554 7555 /* Always try to enable dual dump feature if we can */ 7556 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7557 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7558 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7559 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7560 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT, 7561 "6448 Dual Dump is enabled\n"); 7562 else 7563 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7564 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7565 "rc:x%x dd:x%x\n", 7566 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7567 lpfc_sli_config_mbox_subsys_get( 7568 phba, mboxq), 7569 lpfc_sli_config_mbox_opcode_get( 7570 phba, mboxq), 7571 rc, dd); 7572 /* 7573 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7574 * calls depends on these resources to complete port setup. 7575 */ 7576 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7577 if (rc) { 7578 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7579 "2920 Failed to alloc Resource IDs " 7580 "rc = x%x\n", rc); 7581 goto out_free_mbox; 7582 } 7583 7584 lpfc_set_host_data(phba, mboxq); 7585 7586 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7587 if (rc) { 7588 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7589 "2134 Failed to set host os driver version %x", 7590 rc); 7591 } 7592 7593 /* Read the port's service parameters. */ 7594 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7595 if (rc) { 7596 phba->link_state = LPFC_HBA_ERROR; 7597 rc = -ENOMEM; 7598 goto out_free_mbox; 7599 } 7600 7601 mboxq->vport = vport; 7602 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7603 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7604 if (rc == MBX_SUCCESS) { 7605 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7606 rc = 0; 7607 } 7608 7609 /* 7610 * This memory was allocated by the lpfc_read_sparam routine. Release 7611 * it to the mbuf pool. 7612 */ 7613 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7614 kfree(mp); 7615 mboxq->ctx_buf = NULL; 7616 if (unlikely(rc)) { 7617 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7618 "0382 READ_SPARAM command failed " 7619 "status %d, mbxStatus x%x\n", 7620 rc, bf_get(lpfc_mqe_status, mqe)); 7621 phba->link_state = LPFC_HBA_ERROR; 7622 rc = -EIO; 7623 goto out_free_mbox; 7624 } 7625 7626 lpfc_update_vport_wwn(vport); 7627 7628 /* Update the fc_host data structures with new wwn. */ 7629 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7630 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7631 7632 /* Create all the SLI4 queues */ 7633 rc = lpfc_sli4_queue_create(phba); 7634 if (rc) { 7635 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7636 "3089 Failed to allocate queues\n"); 7637 rc = -ENODEV; 7638 goto out_free_mbox; 7639 } 7640 /* Set up all the queues to the device */ 7641 rc = lpfc_sli4_queue_setup(phba); 7642 if (unlikely(rc)) { 7643 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7644 "0381 Error %d during queue setup.\n ", rc); 7645 goto out_stop_timers; 7646 } 7647 /* Initialize the driver internal SLI layer lists. */ 7648 lpfc_sli4_setup(phba); 7649 lpfc_sli4_queue_init(phba); 7650 7651 /* update host els xri-sgl sizes and mappings */ 7652 rc = lpfc_sli4_els_sgl_update(phba); 7653 if (unlikely(rc)) { 7654 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7655 "1400 Failed to update xri-sgl size and " 7656 "mapping: %d\n", rc); 7657 goto out_destroy_queue; 7658 } 7659 7660 /* register the els sgl pool to the port */ 7661 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7662 phba->sli4_hba.els_xri_cnt); 7663 if (unlikely(rc < 0)) { 7664 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7665 "0582 Error %d during els sgl post " 7666 "operation\n", rc); 7667 rc = -ENODEV; 7668 goto out_destroy_queue; 7669 } 7670 phba->sli4_hba.els_xri_cnt = rc; 7671 7672 if (phba->nvmet_support) { 7673 /* update host nvmet xri-sgl sizes and mappings */ 7674 rc = lpfc_sli4_nvmet_sgl_update(phba); 7675 if (unlikely(rc)) { 7676 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7677 "6308 Failed to update nvmet-sgl size " 7678 "and mapping: %d\n", rc); 7679 goto out_destroy_queue; 7680 } 7681 7682 /* register the nvmet sgl pool to the port */ 7683 rc = lpfc_sli4_repost_sgl_list( 7684 phba, 7685 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7686 phba->sli4_hba.nvmet_xri_cnt); 7687 if (unlikely(rc < 0)) { 7688 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7689 "3117 Error %d during nvmet " 7690 "sgl post\n", rc); 7691 rc = -ENODEV; 7692 goto out_destroy_queue; 7693 } 7694 phba->sli4_hba.nvmet_xri_cnt = rc; 7695 7696 /* We allocate an iocbq for every receive context SGL. 7697 * The additional allocation is for abort and ls handling. 7698 */ 7699 cnt = phba->sli4_hba.nvmet_xri_cnt + 7700 phba->sli4_hba.max_cfg_param.max_xri; 7701 } else { 7702 /* update host common xri-sgl sizes and mappings */ 7703 rc = lpfc_sli4_io_sgl_update(phba); 7704 if (unlikely(rc)) { 7705 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7706 "6082 Failed to update nvme-sgl size " 7707 "and mapping: %d\n", rc); 7708 goto out_destroy_queue; 7709 } 7710 7711 /* register the allocated common sgl pool to the port */ 7712 rc = lpfc_sli4_repost_io_sgl_list(phba); 7713 if (unlikely(rc)) { 7714 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7715 "6116 Error %d during nvme sgl post " 7716 "operation\n", rc); 7717 /* Some NVME buffers were moved to abort nvme list */ 7718 /* A pci function reset will repost them */ 7719 rc = -ENODEV; 7720 goto out_destroy_queue; 7721 } 7722 /* Each lpfc_io_buf job structure has an iocbq element. 7723 * This cnt provides for abort, els, ct and ls requests. 7724 */ 7725 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7726 } 7727 7728 if (!phba->sli.iocbq_lookup) { 7729 /* Initialize and populate the iocb list per host */ 7730 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7731 "2821 initialize iocb list with %d entries\n", 7732 cnt); 7733 rc = lpfc_init_iocb_list(phba, cnt); 7734 if (rc) { 7735 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7736 "1413 Failed to init iocb list.\n"); 7737 goto out_destroy_queue; 7738 } 7739 } 7740 7741 if (phba->nvmet_support) 7742 lpfc_nvmet_create_targetport(phba); 7743 7744 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7745 /* Post initial buffers to all RQs created */ 7746 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7747 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7748 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7749 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7750 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7751 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7752 rqbp->buffer_count = 0; 7753 7754 lpfc_post_rq_buffer( 7755 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7756 phba->sli4_hba.nvmet_mrq_data[i], 7757 phba->cfg_nvmet_mrq_post, i); 7758 } 7759 } 7760 7761 /* Post the rpi header region to the device. */ 7762 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7763 if (unlikely(rc)) { 7764 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7765 "0393 Error %d during rpi post operation\n", 7766 rc); 7767 rc = -ENODEV; 7768 goto out_destroy_queue; 7769 } 7770 lpfc_sli4_node_prep(phba); 7771 7772 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7773 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7774 /* 7775 * The FC Port needs to register FCFI (index 0) 7776 */ 7777 lpfc_reg_fcfi(phba, mboxq); 7778 mboxq->vport = phba->pport; 7779 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7780 if (rc != MBX_SUCCESS) 7781 goto out_unset_queue; 7782 rc = 0; 7783 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7784 &mboxq->u.mqe.un.reg_fcfi); 7785 } else { 7786 /* We are a NVME Target mode with MRQ > 1 */ 7787 7788 /* First register the FCFI */ 7789 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7790 mboxq->vport = phba->pport; 7791 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7792 if (rc != MBX_SUCCESS) 7793 goto out_unset_queue; 7794 rc = 0; 7795 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7796 &mboxq->u.mqe.un.reg_fcfi_mrq); 7797 7798 /* Next register the MRQs */ 7799 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7800 mboxq->vport = phba->pport; 7801 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7802 if (rc != MBX_SUCCESS) 7803 goto out_unset_queue; 7804 rc = 0; 7805 } 7806 /* Check if the port is configured to be disabled */ 7807 lpfc_sli_read_link_ste(phba); 7808 } 7809 7810 /* Don't post more new bufs if repost already recovered 7811 * the nvme sgls. 7812 */ 7813 if (phba->nvmet_support == 0) { 7814 if (phba->sli4_hba.io_xri_cnt == 0) { 7815 len = lpfc_new_io_buf( 7816 phba, phba->sli4_hba.io_xri_max); 7817 if (len == 0) { 7818 rc = -ENOMEM; 7819 goto out_unset_queue; 7820 } 7821 7822 if (phba->cfg_xri_rebalancing) 7823 lpfc_create_multixri_pools(phba); 7824 } 7825 } else { 7826 phba->cfg_xri_rebalancing = 0; 7827 } 7828 7829 /* Allow asynchronous mailbox command to go through */ 7830 spin_lock_irq(&phba->hbalock); 7831 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7832 spin_unlock_irq(&phba->hbalock); 7833 7834 /* Post receive buffers to the device */ 7835 lpfc_sli4_rb_setup(phba); 7836 7837 /* Reset HBA FCF states after HBA reset */ 7838 phba->fcf.fcf_flag = 0; 7839 phba->fcf.current_rec.flag = 0; 7840 7841 /* Start the ELS watchdog timer */ 7842 mod_timer(&vport->els_tmofunc, 7843 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7844 7845 /* Start heart beat timer */ 7846 mod_timer(&phba->hb_tmofunc, 7847 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7848 phba->hb_outstanding = 0; 7849 phba->last_completion_time = jiffies; 7850 7851 /* start eq_delay heartbeat */ 7852 if (phba->cfg_auto_imax) 7853 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7854 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7855 7856 /* Start error attention (ERATT) polling timer */ 7857 mod_timer(&phba->eratt_poll, 7858 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7859 7860 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7861 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7862 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7863 if (!rc) { 7864 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7865 "2829 This device supports " 7866 "Advanced Error Reporting (AER)\n"); 7867 spin_lock_irq(&phba->hbalock); 7868 phba->hba_flag |= HBA_AER_ENABLED; 7869 spin_unlock_irq(&phba->hbalock); 7870 } else { 7871 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7872 "2830 This device does not support " 7873 "Advanced Error Reporting (AER)\n"); 7874 phba->cfg_aer_support = 0; 7875 } 7876 rc = 0; 7877 } 7878 7879 /* 7880 * The port is ready, set the host's link state to LINK_DOWN 7881 * in preparation for link interrupts. 7882 */ 7883 spin_lock_irq(&phba->hbalock); 7884 phba->link_state = LPFC_LINK_DOWN; 7885 7886 /* Check if physical ports are trunked */ 7887 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7888 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7889 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7890 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7891 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7892 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7893 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7894 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7895 spin_unlock_irq(&phba->hbalock); 7896 7897 /* Arm the CQs and then EQs on device */ 7898 lpfc_sli4_arm_cqeq_intr(phba); 7899 7900 /* Indicate device interrupt mode */ 7901 phba->sli4_hba.intr_enable = 1; 7902 7903 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7904 (phba->hba_flag & LINK_DISABLED)) { 7905 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7906 "3103 Adapter Link is disabled.\n"); 7907 lpfc_down_link(phba, mboxq); 7908 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7909 if (rc != MBX_SUCCESS) { 7910 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7911 "3104 Adapter failed to issue " 7912 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7913 goto out_io_buff_free; 7914 } 7915 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7916 /* don't perform init_link on SLI4 FC port loopback test */ 7917 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7918 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7919 if (rc) 7920 goto out_io_buff_free; 7921 } 7922 } 7923 mempool_free(mboxq, phba->mbox_mem_pool); 7924 return rc; 7925 out_io_buff_free: 7926 /* Free allocated IO Buffers */ 7927 lpfc_io_free(phba); 7928 out_unset_queue: 7929 /* Unset all the queues set up in this routine when error out */ 7930 lpfc_sli4_queue_unset(phba); 7931 out_destroy_queue: 7932 lpfc_free_iocb_list(phba); 7933 lpfc_sli4_queue_destroy(phba); 7934 out_stop_timers: 7935 lpfc_stop_hba_timers(phba); 7936 out_free_mbox: 7937 mempool_free(mboxq, phba->mbox_mem_pool); 7938 return rc; 7939 } 7940 7941 /** 7942 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7943 * @ptr: context object - pointer to hba structure. 7944 * 7945 * This is the callback function for mailbox timer. The mailbox 7946 * timer is armed when a new mailbox command is issued and the timer 7947 * is deleted when the mailbox complete. The function is called by 7948 * the kernel timer code when a mailbox does not complete within 7949 * expected time. This function wakes up the worker thread to 7950 * process the mailbox timeout and returns. All the processing is 7951 * done by the worker thread function lpfc_mbox_timeout_handler. 7952 **/ 7953 void 7954 lpfc_mbox_timeout(struct timer_list *t) 7955 { 7956 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7957 unsigned long iflag; 7958 uint32_t tmo_posted; 7959 7960 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7961 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7962 if (!tmo_posted) 7963 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7964 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7965 7966 if (!tmo_posted) 7967 lpfc_worker_wake_up(phba); 7968 return; 7969 } 7970 7971 /** 7972 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7973 * are pending 7974 * @phba: Pointer to HBA context object. 7975 * 7976 * This function checks if any mailbox completions are present on the mailbox 7977 * completion queue. 7978 **/ 7979 static bool 7980 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7981 { 7982 7983 uint32_t idx; 7984 struct lpfc_queue *mcq; 7985 struct lpfc_mcqe *mcqe; 7986 bool pending_completions = false; 7987 uint8_t qe_valid; 7988 7989 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7990 return false; 7991 7992 /* Check for completions on mailbox completion queue */ 7993 7994 mcq = phba->sli4_hba.mbx_cq; 7995 idx = mcq->hba_index; 7996 qe_valid = mcq->qe_valid; 7997 while (bf_get_le32(lpfc_cqe_valid, 7998 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 7999 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8000 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8001 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8002 pending_completions = true; 8003 break; 8004 } 8005 idx = (idx + 1) % mcq->entry_count; 8006 if (mcq->hba_index == idx) 8007 break; 8008 8009 /* if the index wrapped around, toggle the valid bit */ 8010 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8011 qe_valid = (qe_valid) ? 0 : 1; 8012 } 8013 return pending_completions; 8014 8015 } 8016 8017 /** 8018 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8019 * that were missed. 8020 * @phba: Pointer to HBA context object. 8021 * 8022 * For sli4, it is possible to miss an interrupt. As such mbox completions 8023 * maybe missed causing erroneous mailbox timeouts to occur. This function 8024 * checks to see if mbox completions are on the mailbox completion queue 8025 * and will process all the completions associated with the eq for the 8026 * mailbox completion queue. 8027 **/ 8028 static bool 8029 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8030 { 8031 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8032 uint32_t eqidx; 8033 struct lpfc_queue *fpeq = NULL; 8034 struct lpfc_queue *eq; 8035 bool mbox_pending; 8036 8037 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8038 return false; 8039 8040 /* Find the EQ associated with the mbox CQ */ 8041 if (sli4_hba->hdwq) { 8042 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8043 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8044 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8045 fpeq = eq; 8046 break; 8047 } 8048 } 8049 } 8050 if (!fpeq) 8051 return false; 8052 8053 /* Turn off interrupts from this EQ */ 8054 8055 sli4_hba->sli4_eq_clr_intr(fpeq); 8056 8057 /* Check to see if a mbox completion is pending */ 8058 8059 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8060 8061 /* 8062 * If a mbox completion is pending, process all the events on EQ 8063 * associated with the mbox completion queue (this could include 8064 * mailbox commands, async events, els commands, receive queue data 8065 * and fcp commands) 8066 */ 8067 8068 if (mbox_pending) 8069 /* process and rearm the EQ */ 8070 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8071 else 8072 /* Always clear and re-arm the EQ */ 8073 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8074 8075 return mbox_pending; 8076 8077 } 8078 8079 /** 8080 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8081 * @phba: Pointer to HBA context object. 8082 * 8083 * This function is called from worker thread when a mailbox command times out. 8084 * The caller is not required to hold any locks. This function will reset the 8085 * HBA and recover all the pending commands. 8086 **/ 8087 void 8088 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8089 { 8090 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8091 MAILBOX_t *mb = NULL; 8092 8093 struct lpfc_sli *psli = &phba->sli; 8094 8095 /* If the mailbox completed, process the completion and return */ 8096 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8097 return; 8098 8099 if (pmbox != NULL) 8100 mb = &pmbox->u.mb; 8101 /* Check the pmbox pointer first. There is a race condition 8102 * between the mbox timeout handler getting executed in the 8103 * worklist and the mailbox actually completing. When this 8104 * race condition occurs, the mbox_active will be NULL. 8105 */ 8106 spin_lock_irq(&phba->hbalock); 8107 if (pmbox == NULL) { 8108 lpfc_printf_log(phba, KERN_WARNING, 8109 LOG_MBOX | LOG_SLI, 8110 "0353 Active Mailbox cleared - mailbox timeout " 8111 "exiting\n"); 8112 spin_unlock_irq(&phba->hbalock); 8113 return; 8114 } 8115 8116 /* Mbox cmd <mbxCommand> timeout */ 8117 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8118 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8119 mb->mbxCommand, 8120 phba->pport->port_state, 8121 phba->sli.sli_flag, 8122 phba->sli.mbox_active); 8123 spin_unlock_irq(&phba->hbalock); 8124 8125 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8126 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8127 * it to fail all outstanding SCSI IO. 8128 */ 8129 spin_lock_irq(&phba->pport->work_port_lock); 8130 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8131 spin_unlock_irq(&phba->pport->work_port_lock); 8132 spin_lock_irq(&phba->hbalock); 8133 phba->link_state = LPFC_LINK_UNKNOWN; 8134 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8135 spin_unlock_irq(&phba->hbalock); 8136 8137 lpfc_sli_abort_fcp_rings(phba); 8138 8139 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8140 "0345 Resetting board due to mailbox timeout\n"); 8141 8142 /* Reset the HBA device */ 8143 lpfc_reset_hba(phba); 8144 } 8145 8146 /** 8147 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8148 * @phba: Pointer to HBA context object. 8149 * @pmbox: Pointer to mailbox object. 8150 * @flag: Flag indicating how the mailbox need to be processed. 8151 * 8152 * This function is called by discovery code and HBA management code 8153 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8154 * function gets the hbalock to protect the data structures. 8155 * The mailbox command can be submitted in polling mode, in which case 8156 * this function will wait in a polling loop for the completion of the 8157 * mailbox. 8158 * If the mailbox is submitted in no_wait mode (not polling) the 8159 * function will submit the command and returns immediately without waiting 8160 * for the mailbox completion. The no_wait is supported only when HBA 8161 * is in SLI2/SLI3 mode - interrupts are enabled. 8162 * The SLI interface allows only one mailbox pending at a time. If the 8163 * mailbox is issued in polling mode and there is already a mailbox 8164 * pending, then the function will return an error. If the mailbox is issued 8165 * in NO_WAIT mode and there is a mailbox pending already, the function 8166 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8167 * The sli layer owns the mailbox object until the completion of mailbox 8168 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8169 * return codes the caller owns the mailbox command after the return of 8170 * the function. 8171 **/ 8172 static int 8173 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8174 uint32_t flag) 8175 { 8176 MAILBOX_t *mbx; 8177 struct lpfc_sli *psli = &phba->sli; 8178 uint32_t status, evtctr; 8179 uint32_t ha_copy, hc_copy; 8180 int i; 8181 unsigned long timeout; 8182 unsigned long drvr_flag = 0; 8183 uint32_t word0, ldata; 8184 void __iomem *to_slim; 8185 int processing_queue = 0; 8186 8187 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8188 if (!pmbox) { 8189 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8190 /* processing mbox queue from intr_handler */ 8191 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8192 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8193 return MBX_SUCCESS; 8194 } 8195 processing_queue = 1; 8196 pmbox = lpfc_mbox_get(phba); 8197 if (!pmbox) { 8198 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8199 return MBX_SUCCESS; 8200 } 8201 } 8202 8203 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8204 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8205 if(!pmbox->vport) { 8206 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8207 lpfc_printf_log(phba, KERN_ERR, 8208 LOG_MBOX | LOG_VPORT, 8209 "1806 Mbox x%x failed. No vport\n", 8210 pmbox->u.mb.mbxCommand); 8211 dump_stack(); 8212 goto out_not_finished; 8213 } 8214 } 8215 8216 /* If the PCI channel is in offline state, do not post mbox. */ 8217 if (unlikely(pci_channel_offline(phba->pcidev))) { 8218 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8219 goto out_not_finished; 8220 } 8221 8222 /* If HBA has a deferred error attention, fail the iocb. */ 8223 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8224 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8225 goto out_not_finished; 8226 } 8227 8228 psli = &phba->sli; 8229 8230 mbx = &pmbox->u.mb; 8231 status = MBX_SUCCESS; 8232 8233 if (phba->link_state == LPFC_HBA_ERROR) { 8234 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8235 8236 /* Mbox command <mbxCommand> cannot issue */ 8237 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8238 "(%d):0311 Mailbox command x%x cannot " 8239 "issue Data: x%x x%x\n", 8240 pmbox->vport ? pmbox->vport->vpi : 0, 8241 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8242 goto out_not_finished; 8243 } 8244 8245 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8246 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8247 !(hc_copy & HC_MBINT_ENA)) { 8248 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8249 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8250 "(%d):2528 Mailbox command x%x cannot " 8251 "issue Data: x%x x%x\n", 8252 pmbox->vport ? pmbox->vport->vpi : 0, 8253 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8254 goto out_not_finished; 8255 } 8256 } 8257 8258 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8259 /* Polling for a mbox command when another one is already active 8260 * is not allowed in SLI. Also, the driver must have established 8261 * SLI2 mode to queue and process multiple mbox commands. 8262 */ 8263 8264 if (flag & MBX_POLL) { 8265 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8266 8267 /* Mbox command <mbxCommand> cannot issue */ 8268 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8269 "(%d):2529 Mailbox command x%x " 8270 "cannot issue Data: x%x x%x\n", 8271 pmbox->vport ? pmbox->vport->vpi : 0, 8272 pmbox->u.mb.mbxCommand, 8273 psli->sli_flag, flag); 8274 goto out_not_finished; 8275 } 8276 8277 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8278 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8279 /* Mbox command <mbxCommand> cannot issue */ 8280 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8281 "(%d):2530 Mailbox command x%x " 8282 "cannot issue Data: x%x x%x\n", 8283 pmbox->vport ? pmbox->vport->vpi : 0, 8284 pmbox->u.mb.mbxCommand, 8285 psli->sli_flag, flag); 8286 goto out_not_finished; 8287 } 8288 8289 /* Another mailbox command is still being processed, queue this 8290 * command to be processed later. 8291 */ 8292 lpfc_mbox_put(phba, pmbox); 8293 8294 /* Mbox cmd issue - BUSY */ 8295 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8296 "(%d):0308 Mbox cmd issue - BUSY Data: " 8297 "x%x x%x x%x x%x\n", 8298 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8299 mbx->mbxCommand, 8300 phba->pport ? phba->pport->port_state : 0xff, 8301 psli->sli_flag, flag); 8302 8303 psli->slistat.mbox_busy++; 8304 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8305 8306 if (pmbox->vport) { 8307 lpfc_debugfs_disc_trc(pmbox->vport, 8308 LPFC_DISC_TRC_MBOX_VPORT, 8309 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8310 (uint32_t)mbx->mbxCommand, 8311 mbx->un.varWords[0], mbx->un.varWords[1]); 8312 } 8313 else { 8314 lpfc_debugfs_disc_trc(phba->pport, 8315 LPFC_DISC_TRC_MBOX, 8316 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8317 (uint32_t)mbx->mbxCommand, 8318 mbx->un.varWords[0], mbx->un.varWords[1]); 8319 } 8320 8321 return MBX_BUSY; 8322 } 8323 8324 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8325 8326 /* If we are not polling, we MUST be in SLI2 mode */ 8327 if (flag != MBX_POLL) { 8328 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8329 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8330 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8331 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8332 /* Mbox command <mbxCommand> cannot issue */ 8333 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8334 "(%d):2531 Mailbox command x%x " 8335 "cannot issue Data: x%x x%x\n", 8336 pmbox->vport ? pmbox->vport->vpi : 0, 8337 pmbox->u.mb.mbxCommand, 8338 psli->sli_flag, flag); 8339 goto out_not_finished; 8340 } 8341 /* timeout active mbox command */ 8342 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8343 1000); 8344 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8345 } 8346 8347 /* Mailbox cmd <cmd> issue */ 8348 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8349 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8350 "x%x\n", 8351 pmbox->vport ? pmbox->vport->vpi : 0, 8352 mbx->mbxCommand, 8353 phba->pport ? phba->pport->port_state : 0xff, 8354 psli->sli_flag, flag); 8355 8356 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8357 if (pmbox->vport) { 8358 lpfc_debugfs_disc_trc(pmbox->vport, 8359 LPFC_DISC_TRC_MBOX_VPORT, 8360 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8361 (uint32_t)mbx->mbxCommand, 8362 mbx->un.varWords[0], mbx->un.varWords[1]); 8363 } 8364 else { 8365 lpfc_debugfs_disc_trc(phba->pport, 8366 LPFC_DISC_TRC_MBOX, 8367 "MBOX Send: cmd:x%x mb:x%x x%x", 8368 (uint32_t)mbx->mbxCommand, 8369 mbx->un.varWords[0], mbx->un.varWords[1]); 8370 } 8371 } 8372 8373 psli->slistat.mbox_cmd++; 8374 evtctr = psli->slistat.mbox_event; 8375 8376 /* next set own bit for the adapter and copy over command word */ 8377 mbx->mbxOwner = OWN_CHIP; 8378 8379 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8380 /* Populate mbox extension offset word. */ 8381 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8382 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8383 = (uint8_t *)phba->mbox_ext 8384 - (uint8_t *)phba->mbox; 8385 } 8386 8387 /* Copy the mailbox extension data */ 8388 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8389 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8390 (uint8_t *)phba->mbox_ext, 8391 pmbox->in_ext_byte_len); 8392 } 8393 /* Copy command data to host SLIM area */ 8394 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8395 } else { 8396 /* Populate mbox extension offset word. */ 8397 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8398 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8399 = MAILBOX_HBA_EXT_OFFSET; 8400 8401 /* Copy the mailbox extension data */ 8402 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8403 lpfc_memcpy_to_slim(phba->MBslimaddr + 8404 MAILBOX_HBA_EXT_OFFSET, 8405 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8406 8407 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8408 /* copy command data into host mbox for cmpl */ 8409 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8410 MAILBOX_CMD_SIZE); 8411 8412 /* First copy mbox command data to HBA SLIM, skip past first 8413 word */ 8414 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8415 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8416 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8417 8418 /* Next copy over first word, with mbxOwner set */ 8419 ldata = *((uint32_t *)mbx); 8420 to_slim = phba->MBslimaddr; 8421 writel(ldata, to_slim); 8422 readl(to_slim); /* flush */ 8423 8424 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8425 /* switch over to host mailbox */ 8426 psli->sli_flag |= LPFC_SLI_ACTIVE; 8427 } 8428 8429 wmb(); 8430 8431 switch (flag) { 8432 case MBX_NOWAIT: 8433 /* Set up reference to mailbox command */ 8434 psli->mbox_active = pmbox; 8435 /* Interrupt board to do it */ 8436 writel(CA_MBATT, phba->CAregaddr); 8437 readl(phba->CAregaddr); /* flush */ 8438 /* Don't wait for it to finish, just return */ 8439 break; 8440 8441 case MBX_POLL: 8442 /* Set up null reference to mailbox command */ 8443 psli->mbox_active = NULL; 8444 /* Interrupt board to do it */ 8445 writel(CA_MBATT, phba->CAregaddr); 8446 readl(phba->CAregaddr); /* flush */ 8447 8448 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8449 /* First read mbox status word */ 8450 word0 = *((uint32_t *)phba->mbox); 8451 word0 = le32_to_cpu(word0); 8452 } else { 8453 /* First read mbox status word */ 8454 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8455 spin_unlock_irqrestore(&phba->hbalock, 8456 drvr_flag); 8457 goto out_not_finished; 8458 } 8459 } 8460 8461 /* Read the HBA Host Attention Register */ 8462 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8463 spin_unlock_irqrestore(&phba->hbalock, 8464 drvr_flag); 8465 goto out_not_finished; 8466 } 8467 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8468 1000) + jiffies; 8469 i = 0; 8470 /* Wait for command to complete */ 8471 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8472 (!(ha_copy & HA_MBATT) && 8473 (phba->link_state > LPFC_WARM_START))) { 8474 if (time_after(jiffies, timeout)) { 8475 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8476 spin_unlock_irqrestore(&phba->hbalock, 8477 drvr_flag); 8478 goto out_not_finished; 8479 } 8480 8481 /* Check if we took a mbox interrupt while we were 8482 polling */ 8483 if (((word0 & OWN_CHIP) != OWN_CHIP) 8484 && (evtctr != psli->slistat.mbox_event)) 8485 break; 8486 8487 if (i++ > 10) { 8488 spin_unlock_irqrestore(&phba->hbalock, 8489 drvr_flag); 8490 msleep(1); 8491 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8492 } 8493 8494 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8495 /* First copy command data */ 8496 word0 = *((uint32_t *)phba->mbox); 8497 word0 = le32_to_cpu(word0); 8498 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8499 MAILBOX_t *slimmb; 8500 uint32_t slimword0; 8501 /* Check real SLIM for any errors */ 8502 slimword0 = readl(phba->MBslimaddr); 8503 slimmb = (MAILBOX_t *) & slimword0; 8504 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8505 && slimmb->mbxStatus) { 8506 psli->sli_flag &= 8507 ~LPFC_SLI_ACTIVE; 8508 word0 = slimword0; 8509 } 8510 } 8511 } else { 8512 /* First copy command data */ 8513 word0 = readl(phba->MBslimaddr); 8514 } 8515 /* Read the HBA Host Attention Register */ 8516 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8517 spin_unlock_irqrestore(&phba->hbalock, 8518 drvr_flag); 8519 goto out_not_finished; 8520 } 8521 } 8522 8523 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8524 /* copy results back to user */ 8525 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8526 MAILBOX_CMD_SIZE); 8527 /* Copy the mailbox extension data */ 8528 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8529 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8530 pmbox->ctx_buf, 8531 pmbox->out_ext_byte_len); 8532 } 8533 } else { 8534 /* First copy command data */ 8535 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8536 MAILBOX_CMD_SIZE); 8537 /* Copy the mailbox extension data */ 8538 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8539 lpfc_memcpy_from_slim( 8540 pmbox->ctx_buf, 8541 phba->MBslimaddr + 8542 MAILBOX_HBA_EXT_OFFSET, 8543 pmbox->out_ext_byte_len); 8544 } 8545 } 8546 8547 writel(HA_MBATT, phba->HAregaddr); 8548 readl(phba->HAregaddr); /* flush */ 8549 8550 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8551 status = mbx->mbxStatus; 8552 } 8553 8554 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8555 return status; 8556 8557 out_not_finished: 8558 if (processing_queue) { 8559 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8560 lpfc_mbox_cmpl_put(phba, pmbox); 8561 } 8562 return MBX_NOT_FINISHED; 8563 } 8564 8565 /** 8566 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8567 * @phba: Pointer to HBA context object. 8568 * 8569 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8570 * the driver internal pending mailbox queue. It will then try to wait out the 8571 * possible outstanding mailbox command before return. 8572 * 8573 * Returns: 8574 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8575 * the outstanding mailbox command timed out. 8576 **/ 8577 static int 8578 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8579 { 8580 struct lpfc_sli *psli = &phba->sli; 8581 int rc = 0; 8582 unsigned long timeout = 0; 8583 8584 /* Mark the asynchronous mailbox command posting as blocked */ 8585 spin_lock_irq(&phba->hbalock); 8586 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8587 /* Determine how long we might wait for the active mailbox 8588 * command to be gracefully completed by firmware. 8589 */ 8590 if (phba->sli.mbox_active) 8591 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8592 phba->sli.mbox_active) * 8593 1000) + jiffies; 8594 spin_unlock_irq(&phba->hbalock); 8595 8596 /* Make sure the mailbox is really active */ 8597 if (timeout) 8598 lpfc_sli4_process_missed_mbox_completions(phba); 8599 8600 /* Wait for the outstnading mailbox command to complete */ 8601 while (phba->sli.mbox_active) { 8602 /* Check active mailbox complete status every 2ms */ 8603 msleep(2); 8604 if (time_after(jiffies, timeout)) { 8605 /* Timeout, marked the outstanding cmd not complete */ 8606 rc = 1; 8607 break; 8608 } 8609 } 8610 8611 /* Can not cleanly block async mailbox command, fails it */ 8612 if (rc) { 8613 spin_lock_irq(&phba->hbalock); 8614 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8615 spin_unlock_irq(&phba->hbalock); 8616 } 8617 return rc; 8618 } 8619 8620 /** 8621 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8622 * @phba: Pointer to HBA context object. 8623 * 8624 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8625 * commands from the driver internal pending mailbox queue. It makes sure 8626 * that there is no outstanding mailbox command before resuming posting 8627 * asynchronous mailbox commands. If, for any reason, there is outstanding 8628 * mailbox command, it will try to wait it out before resuming asynchronous 8629 * mailbox command posting. 8630 **/ 8631 static void 8632 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8633 { 8634 struct lpfc_sli *psli = &phba->sli; 8635 8636 spin_lock_irq(&phba->hbalock); 8637 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8638 /* Asynchronous mailbox posting is not blocked, do nothing */ 8639 spin_unlock_irq(&phba->hbalock); 8640 return; 8641 } 8642 8643 /* Outstanding synchronous mailbox command is guaranteed to be done, 8644 * successful or timeout, after timing-out the outstanding mailbox 8645 * command shall always be removed, so just unblock posting async 8646 * mailbox command and resume 8647 */ 8648 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8649 spin_unlock_irq(&phba->hbalock); 8650 8651 /* wake up worker thread to post asynchronous mailbox command */ 8652 lpfc_worker_wake_up(phba); 8653 } 8654 8655 /** 8656 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8657 * @phba: Pointer to HBA context object. 8658 * @mboxq: Pointer to mailbox object. 8659 * 8660 * The function waits for the bootstrap mailbox register ready bit from 8661 * port for twice the regular mailbox command timeout value. 8662 * 8663 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8664 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8665 **/ 8666 static int 8667 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8668 { 8669 uint32_t db_ready; 8670 unsigned long timeout; 8671 struct lpfc_register bmbx_reg; 8672 8673 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8674 * 1000) + jiffies; 8675 8676 do { 8677 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8678 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8679 if (!db_ready) 8680 mdelay(2); 8681 8682 if (time_after(jiffies, timeout)) 8683 return MBXERR_ERROR; 8684 } while (!db_ready); 8685 8686 return 0; 8687 } 8688 8689 /** 8690 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8691 * @phba: Pointer to HBA context object. 8692 * @mboxq: Pointer to mailbox object. 8693 * 8694 * The function posts a mailbox to the port. The mailbox is expected 8695 * to be comletely filled in and ready for the port to operate on it. 8696 * This routine executes a synchronous completion operation on the 8697 * mailbox by polling for its completion. 8698 * 8699 * The caller must not be holding any locks when calling this routine. 8700 * 8701 * Returns: 8702 * MBX_SUCCESS - mailbox posted successfully 8703 * Any of the MBX error values. 8704 **/ 8705 static int 8706 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8707 { 8708 int rc = MBX_SUCCESS; 8709 unsigned long iflag; 8710 uint32_t mcqe_status; 8711 uint32_t mbx_cmnd; 8712 struct lpfc_sli *psli = &phba->sli; 8713 struct lpfc_mqe *mb = &mboxq->u.mqe; 8714 struct lpfc_bmbx_create *mbox_rgn; 8715 struct dma_address *dma_address; 8716 8717 /* 8718 * Only one mailbox can be active to the bootstrap mailbox region 8719 * at a time and there is no queueing provided. 8720 */ 8721 spin_lock_irqsave(&phba->hbalock, iflag); 8722 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8723 spin_unlock_irqrestore(&phba->hbalock, iflag); 8724 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8725 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8726 "cannot issue Data: x%x x%x\n", 8727 mboxq->vport ? mboxq->vport->vpi : 0, 8728 mboxq->u.mb.mbxCommand, 8729 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8730 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8731 psli->sli_flag, MBX_POLL); 8732 return MBXERR_ERROR; 8733 } 8734 /* The server grabs the token and owns it until release */ 8735 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8736 phba->sli.mbox_active = mboxq; 8737 spin_unlock_irqrestore(&phba->hbalock, iflag); 8738 8739 /* wait for bootstrap mbox register for readyness */ 8740 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8741 if (rc) 8742 goto exit; 8743 /* 8744 * Initialize the bootstrap memory region to avoid stale data areas 8745 * in the mailbox post. Then copy the caller's mailbox contents to 8746 * the bmbx mailbox region. 8747 */ 8748 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8749 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8750 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8751 sizeof(struct lpfc_mqe)); 8752 8753 /* Post the high mailbox dma address to the port and wait for ready. */ 8754 dma_address = &phba->sli4_hba.bmbx.dma_address; 8755 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8756 8757 /* wait for bootstrap mbox register for hi-address write done */ 8758 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8759 if (rc) 8760 goto exit; 8761 8762 /* Post the low mailbox dma address to the port. */ 8763 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8764 8765 /* wait for bootstrap mbox register for low address write done */ 8766 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8767 if (rc) 8768 goto exit; 8769 8770 /* 8771 * Read the CQ to ensure the mailbox has completed. 8772 * If so, update the mailbox status so that the upper layers 8773 * can complete the request normally. 8774 */ 8775 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8776 sizeof(struct lpfc_mqe)); 8777 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8778 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8779 sizeof(struct lpfc_mcqe)); 8780 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8781 /* 8782 * When the CQE status indicates a failure and the mailbox status 8783 * indicates success then copy the CQE status into the mailbox status 8784 * (and prefix it with x4000). 8785 */ 8786 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8787 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8788 bf_set(lpfc_mqe_status, mb, 8789 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8790 rc = MBXERR_ERROR; 8791 } else 8792 lpfc_sli4_swap_str(phba, mboxq); 8793 8794 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8795 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8796 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8797 " x%x x%x CQ: x%x x%x x%x x%x\n", 8798 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8799 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8800 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8801 bf_get(lpfc_mqe_status, mb), 8802 mb->un.mb_words[0], mb->un.mb_words[1], 8803 mb->un.mb_words[2], mb->un.mb_words[3], 8804 mb->un.mb_words[4], mb->un.mb_words[5], 8805 mb->un.mb_words[6], mb->un.mb_words[7], 8806 mb->un.mb_words[8], mb->un.mb_words[9], 8807 mb->un.mb_words[10], mb->un.mb_words[11], 8808 mb->un.mb_words[12], mboxq->mcqe.word0, 8809 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8810 mboxq->mcqe.trailer); 8811 exit: 8812 /* We are holding the token, no needed for lock when release */ 8813 spin_lock_irqsave(&phba->hbalock, iflag); 8814 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8815 phba->sli.mbox_active = NULL; 8816 spin_unlock_irqrestore(&phba->hbalock, iflag); 8817 return rc; 8818 } 8819 8820 /** 8821 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8822 * @phba: Pointer to HBA context object. 8823 * @pmbox: Pointer to mailbox object. 8824 * @flag: Flag indicating how the mailbox need to be processed. 8825 * 8826 * This function is called by discovery code and HBA management code to submit 8827 * a mailbox command to firmware with SLI-4 interface spec. 8828 * 8829 * Return codes the caller owns the mailbox command after the return of the 8830 * function. 8831 **/ 8832 static int 8833 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8834 uint32_t flag) 8835 { 8836 struct lpfc_sli *psli = &phba->sli; 8837 unsigned long iflags; 8838 int rc; 8839 8840 /* dump from issue mailbox command if setup */ 8841 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8842 8843 rc = lpfc_mbox_dev_check(phba); 8844 if (unlikely(rc)) { 8845 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8846 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8847 "cannot issue Data: x%x x%x\n", 8848 mboxq->vport ? mboxq->vport->vpi : 0, 8849 mboxq->u.mb.mbxCommand, 8850 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8851 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8852 psli->sli_flag, flag); 8853 goto out_not_finished; 8854 } 8855 8856 /* Detect polling mode and jump to a handler */ 8857 if (!phba->sli4_hba.intr_enable) { 8858 if (flag == MBX_POLL) 8859 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8860 else 8861 rc = -EIO; 8862 if (rc != MBX_SUCCESS) 8863 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8864 "(%d):2541 Mailbox command x%x " 8865 "(x%x/x%x) failure: " 8866 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8867 "Data: x%x x%x\n,", 8868 mboxq->vport ? mboxq->vport->vpi : 0, 8869 mboxq->u.mb.mbxCommand, 8870 lpfc_sli_config_mbox_subsys_get(phba, 8871 mboxq), 8872 lpfc_sli_config_mbox_opcode_get(phba, 8873 mboxq), 8874 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8875 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8876 bf_get(lpfc_mcqe_ext_status, 8877 &mboxq->mcqe), 8878 psli->sli_flag, flag); 8879 return rc; 8880 } else if (flag == MBX_POLL) { 8881 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8882 "(%d):2542 Try to issue mailbox command " 8883 "x%x (x%x/x%x) synchronously ahead of async " 8884 "mailbox command queue: x%x x%x\n", 8885 mboxq->vport ? mboxq->vport->vpi : 0, 8886 mboxq->u.mb.mbxCommand, 8887 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8888 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8889 psli->sli_flag, flag); 8890 /* Try to block the asynchronous mailbox posting */ 8891 rc = lpfc_sli4_async_mbox_block(phba); 8892 if (!rc) { 8893 /* Successfully blocked, now issue sync mbox cmd */ 8894 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8895 if (rc != MBX_SUCCESS) 8896 lpfc_printf_log(phba, KERN_WARNING, 8897 LOG_MBOX | LOG_SLI, 8898 "(%d):2597 Sync Mailbox command " 8899 "x%x (x%x/x%x) failure: " 8900 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8901 "Data: x%x x%x\n,", 8902 mboxq->vport ? mboxq->vport->vpi : 0, 8903 mboxq->u.mb.mbxCommand, 8904 lpfc_sli_config_mbox_subsys_get(phba, 8905 mboxq), 8906 lpfc_sli_config_mbox_opcode_get(phba, 8907 mboxq), 8908 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8909 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8910 bf_get(lpfc_mcqe_ext_status, 8911 &mboxq->mcqe), 8912 psli->sli_flag, flag); 8913 /* Unblock the async mailbox posting afterward */ 8914 lpfc_sli4_async_mbox_unblock(phba); 8915 } 8916 return rc; 8917 } 8918 8919 /* Now, interrupt mode asynchronous mailbox command */ 8920 rc = lpfc_mbox_cmd_check(phba, mboxq); 8921 if (rc) { 8922 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8923 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8924 "cannot issue Data: x%x x%x\n", 8925 mboxq->vport ? mboxq->vport->vpi : 0, 8926 mboxq->u.mb.mbxCommand, 8927 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8928 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8929 psli->sli_flag, flag); 8930 goto out_not_finished; 8931 } 8932 8933 /* Put the mailbox command to the driver internal FIFO */ 8934 psli->slistat.mbox_busy++; 8935 spin_lock_irqsave(&phba->hbalock, iflags); 8936 lpfc_mbox_put(phba, mboxq); 8937 spin_unlock_irqrestore(&phba->hbalock, iflags); 8938 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8939 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8940 "x%x (x%x/x%x) x%x x%x x%x\n", 8941 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8942 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8943 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8944 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8945 phba->pport->port_state, 8946 psli->sli_flag, MBX_NOWAIT); 8947 /* Wake up worker thread to transport mailbox command from head */ 8948 lpfc_worker_wake_up(phba); 8949 8950 return MBX_BUSY; 8951 8952 out_not_finished: 8953 return MBX_NOT_FINISHED; 8954 } 8955 8956 /** 8957 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8958 * @phba: Pointer to HBA context object. 8959 * 8960 * This function is called by worker thread to send a mailbox command to 8961 * SLI4 HBA firmware. 8962 * 8963 **/ 8964 int 8965 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8966 { 8967 struct lpfc_sli *psli = &phba->sli; 8968 LPFC_MBOXQ_t *mboxq; 8969 int rc = MBX_SUCCESS; 8970 unsigned long iflags; 8971 struct lpfc_mqe *mqe; 8972 uint32_t mbx_cmnd; 8973 8974 /* Check interrupt mode before post async mailbox command */ 8975 if (unlikely(!phba->sli4_hba.intr_enable)) 8976 return MBX_NOT_FINISHED; 8977 8978 /* Check for mailbox command service token */ 8979 spin_lock_irqsave(&phba->hbalock, iflags); 8980 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8981 spin_unlock_irqrestore(&phba->hbalock, iflags); 8982 return MBX_NOT_FINISHED; 8983 } 8984 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8985 spin_unlock_irqrestore(&phba->hbalock, iflags); 8986 return MBX_NOT_FINISHED; 8987 } 8988 if (unlikely(phba->sli.mbox_active)) { 8989 spin_unlock_irqrestore(&phba->hbalock, iflags); 8990 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8991 "0384 There is pending active mailbox cmd\n"); 8992 return MBX_NOT_FINISHED; 8993 } 8994 /* Take the mailbox command service token */ 8995 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8996 8997 /* Get the next mailbox command from head of queue */ 8998 mboxq = lpfc_mbox_get(phba); 8999 9000 /* If no more mailbox command waiting for post, we're done */ 9001 if (!mboxq) { 9002 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9003 spin_unlock_irqrestore(&phba->hbalock, iflags); 9004 return MBX_SUCCESS; 9005 } 9006 phba->sli.mbox_active = mboxq; 9007 spin_unlock_irqrestore(&phba->hbalock, iflags); 9008 9009 /* Check device readiness for posting mailbox command */ 9010 rc = lpfc_mbox_dev_check(phba); 9011 if (unlikely(rc)) 9012 /* Driver clean routine will clean up pending mailbox */ 9013 goto out_not_finished; 9014 9015 /* Prepare the mbox command to be posted */ 9016 mqe = &mboxq->u.mqe; 9017 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9018 9019 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9020 mod_timer(&psli->mbox_tmo, (jiffies + 9021 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9022 9023 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9024 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9025 "x%x x%x\n", 9026 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9027 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9028 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9029 phba->pport->port_state, psli->sli_flag); 9030 9031 if (mbx_cmnd != MBX_HEARTBEAT) { 9032 if (mboxq->vport) { 9033 lpfc_debugfs_disc_trc(mboxq->vport, 9034 LPFC_DISC_TRC_MBOX_VPORT, 9035 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9036 mbx_cmnd, mqe->un.mb_words[0], 9037 mqe->un.mb_words[1]); 9038 } else { 9039 lpfc_debugfs_disc_trc(phba->pport, 9040 LPFC_DISC_TRC_MBOX, 9041 "MBOX Send: cmd:x%x mb:x%x x%x", 9042 mbx_cmnd, mqe->un.mb_words[0], 9043 mqe->un.mb_words[1]); 9044 } 9045 } 9046 psli->slistat.mbox_cmd++; 9047 9048 /* Post the mailbox command to the port */ 9049 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9050 if (rc != MBX_SUCCESS) { 9051 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 9052 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9053 "cannot issue Data: x%x x%x\n", 9054 mboxq->vport ? mboxq->vport->vpi : 0, 9055 mboxq->u.mb.mbxCommand, 9056 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9057 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9058 psli->sli_flag, MBX_NOWAIT); 9059 goto out_not_finished; 9060 } 9061 9062 return rc; 9063 9064 out_not_finished: 9065 spin_lock_irqsave(&phba->hbalock, iflags); 9066 if (phba->sli.mbox_active) { 9067 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9068 __lpfc_mbox_cmpl_put(phba, mboxq); 9069 /* Release the token */ 9070 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9071 phba->sli.mbox_active = NULL; 9072 } 9073 spin_unlock_irqrestore(&phba->hbalock, iflags); 9074 9075 return MBX_NOT_FINISHED; 9076 } 9077 9078 /** 9079 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9080 * @phba: Pointer to HBA context object. 9081 * @pmbox: Pointer to mailbox object. 9082 * @flag: Flag indicating how the mailbox need to be processed. 9083 * 9084 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9085 * the API jump table function pointer from the lpfc_hba struct. 9086 * 9087 * Return codes the caller owns the mailbox command after the return of the 9088 * function. 9089 **/ 9090 int 9091 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9092 { 9093 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9094 } 9095 9096 /** 9097 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9098 * @phba: The hba struct for which this call is being executed. 9099 * @dev_grp: The HBA PCI-Device group number. 9100 * 9101 * This routine sets up the mbox interface API function jump table in @phba 9102 * struct. 9103 * Returns: 0 - success, -ENODEV - failure. 9104 **/ 9105 int 9106 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9107 { 9108 9109 switch (dev_grp) { 9110 case LPFC_PCI_DEV_LP: 9111 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9112 phba->lpfc_sli_handle_slow_ring_event = 9113 lpfc_sli_handle_slow_ring_event_s3; 9114 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9115 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9116 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9117 break; 9118 case LPFC_PCI_DEV_OC: 9119 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9120 phba->lpfc_sli_handle_slow_ring_event = 9121 lpfc_sli_handle_slow_ring_event_s4; 9122 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9123 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9124 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9125 break; 9126 default: 9127 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9128 "1420 Invalid HBA PCI-device group: 0x%x\n", 9129 dev_grp); 9130 return -ENODEV; 9131 break; 9132 } 9133 return 0; 9134 } 9135 9136 /** 9137 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9138 * @phba: Pointer to HBA context object. 9139 * @pring: Pointer to driver SLI ring object. 9140 * @piocb: Pointer to address of newly added command iocb. 9141 * 9142 * This function is called with hbalock held for SLI3 ports or 9143 * the ring lock held for SLI4 ports to add a command 9144 * iocb to the txq when SLI layer cannot submit the command iocb 9145 * to the ring. 9146 **/ 9147 void 9148 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9149 struct lpfc_iocbq *piocb) 9150 { 9151 if (phba->sli_rev == LPFC_SLI_REV4) 9152 lockdep_assert_held(&pring->ring_lock); 9153 else 9154 lockdep_assert_held(&phba->hbalock); 9155 /* Insert the caller's iocb in the txq tail for later processing. */ 9156 list_add_tail(&piocb->list, &pring->txq); 9157 } 9158 9159 /** 9160 * lpfc_sli_next_iocb - Get the next iocb in the txq 9161 * @phba: Pointer to HBA context object. 9162 * @pring: Pointer to driver SLI ring object. 9163 * @piocb: Pointer to address of newly added command iocb. 9164 * 9165 * This function is called with hbalock held before a new 9166 * iocb is submitted to the firmware. This function checks 9167 * txq to flush the iocbs in txq to Firmware before 9168 * submitting new iocbs to the Firmware. 9169 * If there are iocbs in the txq which need to be submitted 9170 * to firmware, lpfc_sli_next_iocb returns the first element 9171 * of the txq after dequeuing it from txq. 9172 * If there is no iocb in the txq then the function will return 9173 * *piocb and *piocb is set to NULL. Caller needs to check 9174 * *piocb to find if there are more commands in the txq. 9175 **/ 9176 static struct lpfc_iocbq * 9177 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9178 struct lpfc_iocbq **piocb) 9179 { 9180 struct lpfc_iocbq * nextiocb; 9181 9182 lockdep_assert_held(&phba->hbalock); 9183 9184 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9185 if (!nextiocb) { 9186 nextiocb = *piocb; 9187 *piocb = NULL; 9188 } 9189 9190 return nextiocb; 9191 } 9192 9193 /** 9194 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9195 * @phba: Pointer to HBA context object. 9196 * @ring_number: SLI ring number to issue iocb on. 9197 * @piocb: Pointer to command iocb. 9198 * @flag: Flag indicating if this command can be put into txq. 9199 * 9200 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9201 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9202 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9203 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9204 * this function allows only iocbs for posting buffers. This function finds 9205 * next available slot in the command ring and posts the command to the 9206 * available slot and writes the port attention register to request HBA start 9207 * processing new iocb. If there is no slot available in the ring and 9208 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9209 * the function returns IOCB_BUSY. 9210 * 9211 * This function is called with hbalock held. The function will return success 9212 * after it successfully submit the iocb to firmware or after adding to the 9213 * txq. 9214 **/ 9215 static int 9216 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9217 struct lpfc_iocbq *piocb, uint32_t flag) 9218 { 9219 struct lpfc_iocbq *nextiocb; 9220 IOCB_t *iocb; 9221 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9222 9223 lockdep_assert_held(&phba->hbalock); 9224 9225 if (piocb->iocb_cmpl && (!piocb->vport) && 9226 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9227 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9228 lpfc_printf_log(phba, KERN_ERR, 9229 LOG_SLI | LOG_VPORT, 9230 "1807 IOCB x%x failed. No vport\n", 9231 piocb->iocb.ulpCommand); 9232 dump_stack(); 9233 return IOCB_ERROR; 9234 } 9235 9236 9237 /* If the PCI channel is in offline state, do not post iocbs. */ 9238 if (unlikely(pci_channel_offline(phba->pcidev))) 9239 return IOCB_ERROR; 9240 9241 /* If HBA has a deferred error attention, fail the iocb. */ 9242 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9243 return IOCB_ERROR; 9244 9245 /* 9246 * We should never get an IOCB if we are in a < LINK_DOWN state 9247 */ 9248 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9249 return IOCB_ERROR; 9250 9251 /* 9252 * Check to see if we are blocking IOCB processing because of a 9253 * outstanding event. 9254 */ 9255 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9256 goto iocb_busy; 9257 9258 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9259 /* 9260 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9261 * can be issued if the link is not up. 9262 */ 9263 switch (piocb->iocb.ulpCommand) { 9264 case CMD_GEN_REQUEST64_CR: 9265 case CMD_GEN_REQUEST64_CX: 9266 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9267 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9268 FC_RCTL_DD_UNSOL_CMD) || 9269 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9270 MENLO_TRANSPORT_TYPE)) 9271 9272 goto iocb_busy; 9273 break; 9274 case CMD_QUE_RING_BUF_CN: 9275 case CMD_QUE_RING_BUF64_CN: 9276 /* 9277 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9278 * completion, iocb_cmpl MUST be 0. 9279 */ 9280 if (piocb->iocb_cmpl) 9281 piocb->iocb_cmpl = NULL; 9282 /*FALLTHROUGH*/ 9283 case CMD_CREATE_XRI_CR: 9284 case CMD_CLOSE_XRI_CN: 9285 case CMD_CLOSE_XRI_CX: 9286 break; 9287 default: 9288 goto iocb_busy; 9289 } 9290 9291 /* 9292 * For FCP commands, we must be in a state where we can process link 9293 * attention events. 9294 */ 9295 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9296 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9297 goto iocb_busy; 9298 } 9299 9300 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9301 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9302 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9303 9304 if (iocb) 9305 lpfc_sli_update_ring(phba, pring); 9306 else 9307 lpfc_sli_update_full_ring(phba, pring); 9308 9309 if (!piocb) 9310 return IOCB_SUCCESS; 9311 9312 goto out_busy; 9313 9314 iocb_busy: 9315 pring->stats.iocb_cmd_delay++; 9316 9317 out_busy: 9318 9319 if (!(flag & SLI_IOCB_RET_IOCB)) { 9320 __lpfc_sli_ringtx_put(phba, pring, piocb); 9321 return IOCB_SUCCESS; 9322 } 9323 9324 return IOCB_BUSY; 9325 } 9326 9327 /** 9328 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9329 * @phba: Pointer to HBA context object. 9330 * @piocb: Pointer to command iocb. 9331 * @sglq: Pointer to the scatter gather queue object. 9332 * 9333 * This routine converts the bpl or bde that is in the IOCB 9334 * to a sgl list for the sli4 hardware. The physical address 9335 * of the bpl/bde is converted back to a virtual address. 9336 * If the IOCB contains a BPL then the list of BDE's is 9337 * converted to sli4_sge's. If the IOCB contains a single 9338 * BDE then it is converted to a single sli_sge. 9339 * The IOCB is still in cpu endianess so the contents of 9340 * the bpl can be used without byte swapping. 9341 * 9342 * Returns valid XRI = Success, NO_XRI = Failure. 9343 **/ 9344 static uint16_t 9345 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9346 struct lpfc_sglq *sglq) 9347 { 9348 uint16_t xritag = NO_XRI; 9349 struct ulp_bde64 *bpl = NULL; 9350 struct ulp_bde64 bde; 9351 struct sli4_sge *sgl = NULL; 9352 struct lpfc_dmabuf *dmabuf; 9353 IOCB_t *icmd; 9354 int numBdes = 0; 9355 int i = 0; 9356 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9357 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9358 9359 if (!piocbq || !sglq) 9360 return xritag; 9361 9362 sgl = (struct sli4_sge *)sglq->sgl; 9363 icmd = &piocbq->iocb; 9364 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9365 return sglq->sli4_xritag; 9366 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9367 numBdes = icmd->un.genreq64.bdl.bdeSize / 9368 sizeof(struct ulp_bde64); 9369 /* The addrHigh and addrLow fields within the IOCB 9370 * have not been byteswapped yet so there is no 9371 * need to swap them back. 9372 */ 9373 if (piocbq->context3) 9374 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9375 else 9376 return xritag; 9377 9378 bpl = (struct ulp_bde64 *)dmabuf->virt; 9379 if (!bpl) 9380 return xritag; 9381 9382 for (i = 0; i < numBdes; i++) { 9383 /* Should already be byte swapped. */ 9384 sgl->addr_hi = bpl->addrHigh; 9385 sgl->addr_lo = bpl->addrLow; 9386 9387 sgl->word2 = le32_to_cpu(sgl->word2); 9388 if ((i+1) == numBdes) 9389 bf_set(lpfc_sli4_sge_last, sgl, 1); 9390 else 9391 bf_set(lpfc_sli4_sge_last, sgl, 0); 9392 /* swap the size field back to the cpu so we 9393 * can assign it to the sgl. 9394 */ 9395 bde.tus.w = le32_to_cpu(bpl->tus.w); 9396 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9397 /* The offsets in the sgl need to be accumulated 9398 * separately for the request and reply lists. 9399 * The request is always first, the reply follows. 9400 */ 9401 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9402 /* add up the reply sg entries */ 9403 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9404 inbound++; 9405 /* first inbound? reset the offset */ 9406 if (inbound == 1) 9407 offset = 0; 9408 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9409 bf_set(lpfc_sli4_sge_type, sgl, 9410 LPFC_SGE_TYPE_DATA); 9411 offset += bde.tus.f.bdeSize; 9412 } 9413 sgl->word2 = cpu_to_le32(sgl->word2); 9414 bpl++; 9415 sgl++; 9416 } 9417 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9418 /* The addrHigh and addrLow fields of the BDE have not 9419 * been byteswapped yet so they need to be swapped 9420 * before putting them in the sgl. 9421 */ 9422 sgl->addr_hi = 9423 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9424 sgl->addr_lo = 9425 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9426 sgl->word2 = le32_to_cpu(sgl->word2); 9427 bf_set(lpfc_sli4_sge_last, sgl, 1); 9428 sgl->word2 = cpu_to_le32(sgl->word2); 9429 sgl->sge_len = 9430 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9431 } 9432 return sglq->sli4_xritag; 9433 } 9434 9435 /** 9436 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9437 * @phba: Pointer to HBA context object. 9438 * @piocb: Pointer to command iocb. 9439 * @wqe: Pointer to the work queue entry. 9440 * 9441 * This routine converts the iocb command to its Work Queue Entry 9442 * equivalent. The wqe pointer should not have any fields set when 9443 * this routine is called because it will memcpy over them. 9444 * This routine does not set the CQ_ID or the WQEC bits in the 9445 * wqe. 9446 * 9447 * Returns: 0 = Success, IOCB_ERROR = Failure. 9448 **/ 9449 static int 9450 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9451 union lpfc_wqe128 *wqe) 9452 { 9453 uint32_t xmit_len = 0, total_len = 0; 9454 uint8_t ct = 0; 9455 uint32_t fip; 9456 uint32_t abort_tag; 9457 uint8_t command_type = ELS_COMMAND_NON_FIP; 9458 uint8_t cmnd; 9459 uint16_t xritag; 9460 uint16_t abrt_iotag; 9461 struct lpfc_iocbq *abrtiocbq; 9462 struct ulp_bde64 *bpl = NULL; 9463 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9464 int numBdes, i; 9465 struct ulp_bde64 bde; 9466 struct lpfc_nodelist *ndlp; 9467 uint32_t *pcmd; 9468 uint32_t if_type; 9469 9470 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9471 /* The fcp commands will set command type */ 9472 if (iocbq->iocb_flag & LPFC_IO_FCP) 9473 command_type = FCP_COMMAND; 9474 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9475 command_type = ELS_COMMAND_FIP; 9476 else 9477 command_type = ELS_COMMAND_NON_FIP; 9478 9479 if (phba->fcp_embed_io) 9480 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9481 /* Some of the fields are in the right position already */ 9482 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9483 /* The ct field has moved so reset */ 9484 wqe->generic.wqe_com.word7 = 0; 9485 wqe->generic.wqe_com.word10 = 0; 9486 9487 abort_tag = (uint32_t) iocbq->iotag; 9488 xritag = iocbq->sli4_xritag; 9489 /* words0-2 bpl convert bde */ 9490 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9491 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9492 sizeof(struct ulp_bde64); 9493 bpl = (struct ulp_bde64 *) 9494 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9495 if (!bpl) 9496 return IOCB_ERROR; 9497 9498 /* Should already be byte swapped. */ 9499 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9500 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9501 /* swap the size field back to the cpu so we 9502 * can assign it to the sgl. 9503 */ 9504 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9505 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9506 total_len = 0; 9507 for (i = 0; i < numBdes; i++) { 9508 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9509 total_len += bde.tus.f.bdeSize; 9510 } 9511 } else 9512 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9513 9514 iocbq->iocb.ulpIoTag = iocbq->iotag; 9515 cmnd = iocbq->iocb.ulpCommand; 9516 9517 switch (iocbq->iocb.ulpCommand) { 9518 case CMD_ELS_REQUEST64_CR: 9519 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9520 ndlp = iocbq->context_un.ndlp; 9521 else 9522 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9523 if (!iocbq->iocb.ulpLe) { 9524 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9525 "2007 Only Limited Edition cmd Format" 9526 " supported 0x%x\n", 9527 iocbq->iocb.ulpCommand); 9528 return IOCB_ERROR; 9529 } 9530 9531 wqe->els_req.payload_len = xmit_len; 9532 /* Els_reguest64 has a TMO */ 9533 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9534 iocbq->iocb.ulpTimeout); 9535 /* Need a VF for word 4 set the vf bit*/ 9536 bf_set(els_req64_vf, &wqe->els_req, 0); 9537 /* And a VFID for word 12 */ 9538 bf_set(els_req64_vfid, &wqe->els_req, 0); 9539 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9540 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9541 iocbq->iocb.ulpContext); 9542 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9543 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9544 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9545 if (command_type == ELS_COMMAND_FIP) 9546 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9547 >> LPFC_FIP_ELS_ID_SHIFT); 9548 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9549 iocbq->context2)->virt); 9550 if_type = bf_get(lpfc_sli_intf_if_type, 9551 &phba->sli4_hba.sli_intf); 9552 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9553 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9554 *pcmd == ELS_CMD_SCR || 9555 *pcmd == ELS_CMD_RDF || 9556 *pcmd == ELS_CMD_RSCN_XMT || 9557 *pcmd == ELS_CMD_FDISC || 9558 *pcmd == ELS_CMD_LOGO || 9559 *pcmd == ELS_CMD_PLOGI)) { 9560 bf_set(els_req64_sp, &wqe->els_req, 1); 9561 bf_set(els_req64_sid, &wqe->els_req, 9562 iocbq->vport->fc_myDID); 9563 if ((*pcmd == ELS_CMD_FLOGI) && 9564 !(phba->fc_topology == 9565 LPFC_TOPOLOGY_LOOP)) 9566 bf_set(els_req64_sid, &wqe->els_req, 0); 9567 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9568 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9569 phba->vpi_ids[iocbq->vport->vpi]); 9570 } else if (pcmd && iocbq->context1) { 9571 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9572 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9573 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9574 } 9575 } 9576 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9577 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9578 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9579 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9580 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9581 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9582 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9583 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9584 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9585 break; 9586 case CMD_XMIT_SEQUENCE64_CX: 9587 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9588 iocbq->iocb.un.ulpWord[3]); 9589 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9590 iocbq->iocb.unsli3.rcvsli3.ox_id); 9591 /* The entire sequence is transmitted for this IOCB */ 9592 xmit_len = total_len; 9593 cmnd = CMD_XMIT_SEQUENCE64_CR; 9594 if (phba->link_flag & LS_LOOPBACK_MODE) 9595 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9596 /* fall through */ 9597 case CMD_XMIT_SEQUENCE64_CR: 9598 /* word3 iocb=io_tag32 wqe=reserved */ 9599 wqe->xmit_sequence.rsvd3 = 0; 9600 /* word4 relative_offset memcpy */ 9601 /* word5 r_ctl/df_ctl memcpy */ 9602 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9603 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9604 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9605 LPFC_WQE_IOD_WRITE); 9606 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9607 LPFC_WQE_LENLOC_WORD12); 9608 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9609 wqe->xmit_sequence.xmit_len = xmit_len; 9610 command_type = OTHER_COMMAND; 9611 break; 9612 case CMD_XMIT_BCAST64_CN: 9613 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9614 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9615 /* word4 iocb=rsvd wqe=rsvd */ 9616 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9617 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9618 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9619 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9620 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9621 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9622 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9623 LPFC_WQE_LENLOC_WORD3); 9624 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9625 break; 9626 case CMD_FCP_IWRITE64_CR: 9627 command_type = FCP_COMMAND_DATA_OUT; 9628 /* word3 iocb=iotag wqe=payload_offset_len */ 9629 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9630 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9631 xmit_len + sizeof(struct fcp_rsp)); 9632 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9633 0); 9634 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9635 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9636 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9637 iocbq->iocb.ulpFCP2Rcvy); 9638 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9639 /* Always open the exchange */ 9640 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9641 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9642 LPFC_WQE_LENLOC_WORD4); 9643 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9644 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9645 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9646 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9647 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9648 if (iocbq->priority) { 9649 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9650 (iocbq->priority << 1)); 9651 } else { 9652 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9653 (phba->cfg_XLanePriority << 1)); 9654 } 9655 } 9656 /* Note, word 10 is already initialized to 0 */ 9657 9658 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9659 if (phba->cfg_enable_pbde) 9660 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9661 else 9662 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9663 9664 if (phba->fcp_embed_io) { 9665 struct lpfc_io_buf *lpfc_cmd; 9666 struct sli4_sge *sgl; 9667 struct fcp_cmnd *fcp_cmnd; 9668 uint32_t *ptr; 9669 9670 /* 128 byte wqe support here */ 9671 9672 lpfc_cmd = iocbq->context1; 9673 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9674 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9675 9676 /* Word 0-2 - FCP_CMND */ 9677 wqe->generic.bde.tus.f.bdeFlags = 9678 BUFF_TYPE_BDE_IMMED; 9679 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9680 wqe->generic.bde.addrHigh = 0; 9681 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9682 9683 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9684 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9685 9686 /* Word 22-29 FCP CMND Payload */ 9687 ptr = &wqe->words[22]; 9688 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9689 } 9690 break; 9691 case CMD_FCP_IREAD64_CR: 9692 /* word3 iocb=iotag wqe=payload_offset_len */ 9693 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9694 bf_set(payload_offset_len, &wqe->fcp_iread, 9695 xmit_len + sizeof(struct fcp_rsp)); 9696 bf_set(cmd_buff_len, &wqe->fcp_iread, 9697 0); 9698 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9699 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9700 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9701 iocbq->iocb.ulpFCP2Rcvy); 9702 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9703 /* Always open the exchange */ 9704 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9705 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9706 LPFC_WQE_LENLOC_WORD4); 9707 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9708 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9709 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9710 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9711 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9712 if (iocbq->priority) { 9713 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9714 (iocbq->priority << 1)); 9715 } else { 9716 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9717 (phba->cfg_XLanePriority << 1)); 9718 } 9719 } 9720 /* Note, word 10 is already initialized to 0 */ 9721 9722 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9723 if (phba->cfg_enable_pbde) 9724 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9725 else 9726 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9727 9728 if (phba->fcp_embed_io) { 9729 struct lpfc_io_buf *lpfc_cmd; 9730 struct sli4_sge *sgl; 9731 struct fcp_cmnd *fcp_cmnd; 9732 uint32_t *ptr; 9733 9734 /* 128 byte wqe support here */ 9735 9736 lpfc_cmd = iocbq->context1; 9737 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9738 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9739 9740 /* Word 0-2 - FCP_CMND */ 9741 wqe->generic.bde.tus.f.bdeFlags = 9742 BUFF_TYPE_BDE_IMMED; 9743 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9744 wqe->generic.bde.addrHigh = 0; 9745 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9746 9747 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9748 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9749 9750 /* Word 22-29 FCP CMND Payload */ 9751 ptr = &wqe->words[22]; 9752 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9753 } 9754 break; 9755 case CMD_FCP_ICMND64_CR: 9756 /* word3 iocb=iotag wqe=payload_offset_len */ 9757 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9758 bf_set(payload_offset_len, &wqe->fcp_icmd, 9759 xmit_len + sizeof(struct fcp_rsp)); 9760 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9761 0); 9762 /* word3 iocb=IO_TAG wqe=reserved */ 9763 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9764 /* Always open the exchange */ 9765 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9766 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9767 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9768 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9769 LPFC_WQE_LENLOC_NONE); 9770 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9771 iocbq->iocb.ulpFCP2Rcvy); 9772 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9773 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9774 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9775 if (iocbq->priority) { 9776 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9777 (iocbq->priority << 1)); 9778 } else { 9779 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9780 (phba->cfg_XLanePriority << 1)); 9781 } 9782 } 9783 /* Note, word 10 is already initialized to 0 */ 9784 9785 if (phba->fcp_embed_io) { 9786 struct lpfc_io_buf *lpfc_cmd; 9787 struct sli4_sge *sgl; 9788 struct fcp_cmnd *fcp_cmnd; 9789 uint32_t *ptr; 9790 9791 /* 128 byte wqe support here */ 9792 9793 lpfc_cmd = iocbq->context1; 9794 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9795 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9796 9797 /* Word 0-2 - FCP_CMND */ 9798 wqe->generic.bde.tus.f.bdeFlags = 9799 BUFF_TYPE_BDE_IMMED; 9800 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9801 wqe->generic.bde.addrHigh = 0; 9802 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9803 9804 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9805 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9806 9807 /* Word 22-29 FCP CMND Payload */ 9808 ptr = &wqe->words[22]; 9809 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9810 } 9811 break; 9812 case CMD_GEN_REQUEST64_CR: 9813 /* For this command calculate the xmit length of the 9814 * request bde. 9815 */ 9816 xmit_len = 0; 9817 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9818 sizeof(struct ulp_bde64); 9819 for (i = 0; i < numBdes; i++) { 9820 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9821 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9822 break; 9823 xmit_len += bde.tus.f.bdeSize; 9824 } 9825 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9826 wqe->gen_req.request_payload_len = xmit_len; 9827 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9828 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9829 /* word6 context tag copied in memcpy */ 9830 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9831 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9832 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9833 "2015 Invalid CT %x command 0x%x\n", 9834 ct, iocbq->iocb.ulpCommand); 9835 return IOCB_ERROR; 9836 } 9837 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9838 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9839 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9840 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9841 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9842 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9843 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9844 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9845 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9846 command_type = OTHER_COMMAND; 9847 break; 9848 case CMD_XMIT_ELS_RSP64_CX: 9849 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9850 /* words0-2 BDE memcpy */ 9851 /* word3 iocb=iotag32 wqe=response_payload_len */ 9852 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9853 /* word4 */ 9854 wqe->xmit_els_rsp.word4 = 0; 9855 /* word5 iocb=rsvd wge=did */ 9856 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9857 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9858 9859 if_type = bf_get(lpfc_sli_intf_if_type, 9860 &phba->sli4_hba.sli_intf); 9861 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9862 if (iocbq->vport->fc_flag & FC_PT2PT) { 9863 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9864 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9865 iocbq->vport->fc_myDID); 9866 if (iocbq->vport->fc_myDID == Fabric_DID) { 9867 bf_set(wqe_els_did, 9868 &wqe->xmit_els_rsp.wqe_dest, 0); 9869 } 9870 } 9871 } 9872 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9873 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9874 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9875 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9876 iocbq->iocb.unsli3.rcvsli3.ox_id); 9877 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9878 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9879 phba->vpi_ids[iocbq->vport->vpi]); 9880 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9881 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9882 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9883 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9884 LPFC_WQE_LENLOC_WORD3); 9885 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9886 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9887 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9888 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9889 iocbq->context2)->virt); 9890 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9891 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9892 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9893 iocbq->vport->fc_myDID); 9894 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9895 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9896 phba->vpi_ids[phba->pport->vpi]); 9897 } 9898 command_type = OTHER_COMMAND; 9899 break; 9900 case CMD_CLOSE_XRI_CN: 9901 case CMD_ABORT_XRI_CN: 9902 case CMD_ABORT_XRI_CX: 9903 /* words 0-2 memcpy should be 0 rserved */ 9904 /* port will send abts */ 9905 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9906 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9907 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9908 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9909 } else 9910 fip = 0; 9911 9912 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9913 /* 9914 * The link is down, or the command was ELS_FIP 9915 * so the fw does not need to send abts 9916 * on the wire. 9917 */ 9918 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9919 else 9920 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9921 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9922 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9923 wqe->abort_cmd.rsrvd5 = 0; 9924 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9925 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9926 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9927 /* 9928 * The abort handler will send us CMD_ABORT_XRI_CN or 9929 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9930 */ 9931 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9932 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9933 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9934 LPFC_WQE_LENLOC_NONE); 9935 cmnd = CMD_ABORT_XRI_CX; 9936 command_type = OTHER_COMMAND; 9937 xritag = 0; 9938 break; 9939 case CMD_XMIT_BLS_RSP64_CX: 9940 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9941 /* As BLS ABTS RSP WQE is very different from other WQEs, 9942 * we re-construct this WQE here based on information in 9943 * iocbq from scratch. 9944 */ 9945 memset(wqe, 0, sizeof(*wqe)); 9946 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9947 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9948 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9949 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9950 LPFC_ABTS_UNSOL_INT) { 9951 /* ABTS sent by initiator to CT exchange, the 9952 * RX_ID field will be filled with the newly 9953 * allocated responder XRI. 9954 */ 9955 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9956 iocbq->sli4_xritag); 9957 } else { 9958 /* ABTS sent by responder to CT exchange, the 9959 * RX_ID field will be filled with the responder 9960 * RX_ID from ABTS. 9961 */ 9962 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9963 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9964 } 9965 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9966 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9967 9968 /* Use CT=VPI */ 9969 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9970 ndlp->nlp_DID); 9971 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9972 iocbq->iocb.ulpContext); 9973 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9974 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9975 phba->vpi_ids[phba->pport->vpi]); 9976 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9977 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9978 LPFC_WQE_LENLOC_NONE); 9979 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9980 command_type = OTHER_COMMAND; 9981 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9982 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9983 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9984 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9985 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9986 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9987 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9988 } 9989 9990 break; 9991 case CMD_SEND_FRAME: 9992 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 9993 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 9994 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 9995 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 9996 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 9997 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 9998 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 9999 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10000 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10001 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10002 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10003 return 0; 10004 case CMD_XRI_ABORTED_CX: 10005 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10006 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10007 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10008 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10009 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10010 default: 10011 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10012 "2014 Invalid command 0x%x\n", 10013 iocbq->iocb.ulpCommand); 10014 return IOCB_ERROR; 10015 break; 10016 } 10017 10018 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10019 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10020 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10021 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10022 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10023 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10024 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10025 LPFC_IO_DIF_INSERT); 10026 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10027 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10028 wqe->generic.wqe_com.abort_tag = abort_tag; 10029 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10030 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10031 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10032 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10033 return 0; 10034 } 10035 10036 /** 10037 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10038 * @phba: Pointer to HBA context object. 10039 * @ring_number: SLI ring number to issue iocb on. 10040 * @piocb: Pointer to command iocb. 10041 * @flag: Flag indicating if this command can be put into txq. 10042 * 10043 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10044 * an iocb command to an HBA with SLI-4 interface spec. 10045 * 10046 * This function is called with ringlock held. The function will return success 10047 * after it successfully submit the iocb to firmware or after adding to the 10048 * txq. 10049 **/ 10050 static int 10051 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10052 struct lpfc_iocbq *piocb, uint32_t flag) 10053 { 10054 struct lpfc_sglq *sglq; 10055 union lpfc_wqe128 wqe; 10056 struct lpfc_queue *wq; 10057 struct lpfc_sli_ring *pring; 10058 10059 /* Get the WQ */ 10060 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10061 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10062 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10063 } else { 10064 wq = phba->sli4_hba.els_wq; 10065 } 10066 10067 /* Get corresponding ring */ 10068 pring = wq->pring; 10069 10070 /* 10071 * The WQE can be either 64 or 128 bytes, 10072 */ 10073 10074 lockdep_assert_held(&pring->ring_lock); 10075 10076 if (piocb->sli4_xritag == NO_XRI) { 10077 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10078 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10079 sglq = NULL; 10080 else { 10081 if (!list_empty(&pring->txq)) { 10082 if (!(flag & SLI_IOCB_RET_IOCB)) { 10083 __lpfc_sli_ringtx_put(phba, 10084 pring, piocb); 10085 return IOCB_SUCCESS; 10086 } else { 10087 return IOCB_BUSY; 10088 } 10089 } else { 10090 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10091 if (!sglq) { 10092 if (!(flag & SLI_IOCB_RET_IOCB)) { 10093 __lpfc_sli_ringtx_put(phba, 10094 pring, 10095 piocb); 10096 return IOCB_SUCCESS; 10097 } else 10098 return IOCB_BUSY; 10099 } 10100 } 10101 } 10102 } else if (piocb->iocb_flag & LPFC_IO_FCP) 10103 /* These IO's already have an XRI and a mapped sgl. */ 10104 sglq = NULL; 10105 else { 10106 /* 10107 * This is a continuation of a commandi,(CX) so this 10108 * sglq is on the active list 10109 */ 10110 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10111 if (!sglq) 10112 return IOCB_ERROR; 10113 } 10114 10115 if (sglq) { 10116 piocb->sli4_lxritag = sglq->sli4_lxritag; 10117 piocb->sli4_xritag = sglq->sli4_xritag; 10118 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10119 return IOCB_ERROR; 10120 } 10121 10122 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10123 return IOCB_ERROR; 10124 10125 if (lpfc_sli4_wq_put(wq, &wqe)) 10126 return IOCB_ERROR; 10127 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10128 10129 return 0; 10130 } 10131 10132 /** 10133 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10134 * 10135 * This routine wraps the actual lockless version for issusing IOCB function 10136 * pointer from the lpfc_hba struct. 10137 * 10138 * Return codes: 10139 * IOCB_ERROR - Error 10140 * IOCB_SUCCESS - Success 10141 * IOCB_BUSY - Busy 10142 **/ 10143 int 10144 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10145 struct lpfc_iocbq *piocb, uint32_t flag) 10146 { 10147 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10148 } 10149 10150 /** 10151 * lpfc_sli_api_table_setup - Set up sli api function jump table 10152 * @phba: The hba struct for which this call is being executed. 10153 * @dev_grp: The HBA PCI-Device group number. 10154 * 10155 * This routine sets up the SLI interface API function jump table in @phba 10156 * struct. 10157 * Returns: 0 - success, -ENODEV - failure. 10158 **/ 10159 int 10160 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10161 { 10162 10163 switch (dev_grp) { 10164 case LPFC_PCI_DEV_LP: 10165 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10166 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10167 break; 10168 case LPFC_PCI_DEV_OC: 10169 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10170 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10171 break; 10172 default: 10173 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10174 "1419 Invalid HBA PCI-device group: 0x%x\n", 10175 dev_grp); 10176 return -ENODEV; 10177 break; 10178 } 10179 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10180 return 0; 10181 } 10182 10183 /** 10184 * lpfc_sli4_calc_ring - Calculates which ring to use 10185 * @phba: Pointer to HBA context object. 10186 * @piocb: Pointer to command iocb. 10187 * 10188 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10189 * hba_wqidx, thus we need to calculate the corresponding ring. 10190 * Since ABORTS must go on the same WQ of the command they are 10191 * aborting, we use command's hba_wqidx. 10192 */ 10193 struct lpfc_sli_ring * 10194 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10195 { 10196 struct lpfc_io_buf *lpfc_cmd; 10197 10198 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10199 if (unlikely(!phba->sli4_hba.hdwq)) 10200 return NULL; 10201 /* 10202 * for abort iocb hba_wqidx should already 10203 * be setup based on what work queue we used. 10204 */ 10205 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10206 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10207 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10208 } 10209 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10210 } else { 10211 if (unlikely(!phba->sli4_hba.els_wq)) 10212 return NULL; 10213 piocb->hba_wqidx = 0; 10214 return phba->sli4_hba.els_wq->pring; 10215 } 10216 } 10217 10218 /** 10219 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10220 * @phba: Pointer to HBA context object. 10221 * @pring: Pointer to driver SLI ring object. 10222 * @piocb: Pointer to command iocb. 10223 * @flag: Flag indicating if this command can be put into txq. 10224 * 10225 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10226 * function. This function gets the hbalock and calls 10227 * __lpfc_sli_issue_iocb function and will return the error returned 10228 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10229 * functions which do not hold hbalock. 10230 **/ 10231 int 10232 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10233 struct lpfc_iocbq *piocb, uint32_t flag) 10234 { 10235 struct lpfc_sli_ring *pring; 10236 struct lpfc_queue *eq; 10237 unsigned long iflags; 10238 int rc; 10239 10240 if (phba->sli_rev == LPFC_SLI_REV4) { 10241 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10242 10243 pring = lpfc_sli4_calc_ring(phba, piocb); 10244 if (unlikely(pring == NULL)) 10245 return IOCB_ERROR; 10246 10247 spin_lock_irqsave(&pring->ring_lock, iflags); 10248 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10249 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10250 10251 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10252 } else { 10253 /* For now, SLI2/3 will still use hbalock */ 10254 spin_lock_irqsave(&phba->hbalock, iflags); 10255 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10256 spin_unlock_irqrestore(&phba->hbalock, iflags); 10257 } 10258 return rc; 10259 } 10260 10261 /** 10262 * lpfc_extra_ring_setup - Extra ring setup function 10263 * @phba: Pointer to HBA context object. 10264 * 10265 * This function is called while driver attaches with the 10266 * HBA to setup the extra ring. The extra ring is used 10267 * only when driver needs to support target mode functionality 10268 * or IP over FC functionalities. 10269 * 10270 * This function is called with no lock held. SLI3 only. 10271 **/ 10272 static int 10273 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10274 { 10275 struct lpfc_sli *psli; 10276 struct lpfc_sli_ring *pring; 10277 10278 psli = &phba->sli; 10279 10280 /* Adjust cmd/rsp ring iocb entries more evenly */ 10281 10282 /* Take some away from the FCP ring */ 10283 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10284 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10285 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10286 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10287 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10288 10289 /* and give them to the extra ring */ 10290 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10291 10292 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10293 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10294 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10295 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10296 10297 /* Setup default profile for this ring */ 10298 pring->iotag_max = 4096; 10299 pring->num_mask = 1; 10300 pring->prt[0].profile = 0; /* Mask 0 */ 10301 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10302 pring->prt[0].type = phba->cfg_multi_ring_type; 10303 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10304 return 0; 10305 } 10306 10307 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10308 * @phba: Pointer to HBA context object. 10309 * @iocbq: Pointer to iocb object. 10310 * 10311 * The async_event handler calls this routine when it receives 10312 * an ASYNC_STATUS_CN event from the port. The port generates 10313 * this event when an Abort Sequence request to an rport fails 10314 * twice in succession. The abort could be originated by the 10315 * driver or by the port. The ABTS could have been for an ELS 10316 * or FCP IO. The port only generates this event when an ABTS 10317 * fails to complete after one retry. 10318 */ 10319 static void 10320 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10321 struct lpfc_iocbq *iocbq) 10322 { 10323 struct lpfc_nodelist *ndlp = NULL; 10324 uint16_t rpi = 0, vpi = 0; 10325 struct lpfc_vport *vport = NULL; 10326 10327 /* The rpi in the ulpContext is vport-sensitive. */ 10328 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10329 rpi = iocbq->iocb.ulpContext; 10330 10331 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10332 "3092 Port generated ABTS async event " 10333 "on vpi %d rpi %d status 0x%x\n", 10334 vpi, rpi, iocbq->iocb.ulpStatus); 10335 10336 vport = lpfc_find_vport_by_vpid(phba, vpi); 10337 if (!vport) 10338 goto err_exit; 10339 ndlp = lpfc_findnode_rpi(vport, rpi); 10340 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10341 goto err_exit; 10342 10343 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10344 lpfc_sli_abts_recover_port(vport, ndlp); 10345 return; 10346 10347 err_exit: 10348 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10349 "3095 Event Context not found, no " 10350 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10351 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10352 vpi, rpi); 10353 } 10354 10355 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10356 * @phba: pointer to HBA context object. 10357 * @ndlp: nodelist pointer for the impacted rport. 10358 * @axri: pointer to the wcqe containing the failed exchange. 10359 * 10360 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10361 * port. The port generates this event when an abort exchange request to an 10362 * rport fails twice in succession with no reply. The abort could be originated 10363 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10364 */ 10365 void 10366 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10367 struct lpfc_nodelist *ndlp, 10368 struct sli4_wcqe_xri_aborted *axri) 10369 { 10370 struct lpfc_vport *vport; 10371 uint32_t ext_status = 0; 10372 10373 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10374 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10375 "3115 Node Context not found, driver " 10376 "ignoring abts err event\n"); 10377 return; 10378 } 10379 10380 vport = ndlp->vport; 10381 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10382 "3116 Port generated FCP XRI ABORT event on " 10383 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10384 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10385 bf_get(lpfc_wcqe_xa_xri, axri), 10386 bf_get(lpfc_wcqe_xa_status, axri), 10387 axri->parameter); 10388 10389 /* 10390 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10391 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10392 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10393 */ 10394 ext_status = axri->parameter & IOERR_PARAM_MASK; 10395 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10396 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10397 lpfc_sli_abts_recover_port(vport, ndlp); 10398 } 10399 10400 /** 10401 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10402 * @phba: Pointer to HBA context object. 10403 * @pring: Pointer to driver SLI ring object. 10404 * @iocbq: Pointer to iocb object. 10405 * 10406 * This function is called by the slow ring event handler 10407 * function when there is an ASYNC event iocb in the ring. 10408 * This function is called with no lock held. 10409 * Currently this function handles only temperature related 10410 * ASYNC events. The function decodes the temperature sensor 10411 * event message and posts events for the management applications. 10412 **/ 10413 static void 10414 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10415 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10416 { 10417 IOCB_t *icmd; 10418 uint16_t evt_code; 10419 struct temp_event temp_event_data; 10420 struct Scsi_Host *shost; 10421 uint32_t *iocb_w; 10422 10423 icmd = &iocbq->iocb; 10424 evt_code = icmd->un.asyncstat.evt_code; 10425 10426 switch (evt_code) { 10427 case ASYNC_TEMP_WARN: 10428 case ASYNC_TEMP_SAFE: 10429 temp_event_data.data = (uint32_t) icmd->ulpContext; 10430 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10431 if (evt_code == ASYNC_TEMP_WARN) { 10432 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10433 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10434 "0347 Adapter is very hot, please take " 10435 "corrective action. temperature : %d Celsius\n", 10436 (uint32_t) icmd->ulpContext); 10437 } else { 10438 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10439 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10440 "0340 Adapter temperature is OK now. " 10441 "temperature : %d Celsius\n", 10442 (uint32_t) icmd->ulpContext); 10443 } 10444 10445 /* Send temperature change event to applications */ 10446 shost = lpfc_shost_from_vport(phba->pport); 10447 fc_host_post_vendor_event(shost, fc_get_event_number(), 10448 sizeof(temp_event_data), (char *) &temp_event_data, 10449 LPFC_NL_VENDOR_ID); 10450 break; 10451 case ASYNC_STATUS_CN: 10452 lpfc_sli_abts_err_handler(phba, iocbq); 10453 break; 10454 default: 10455 iocb_w = (uint32_t *) icmd; 10456 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10457 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10458 " evt_code 0x%x\n" 10459 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10460 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10461 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10462 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10463 pring->ringno, icmd->un.asyncstat.evt_code, 10464 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10465 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10466 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10467 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10468 10469 break; 10470 } 10471 } 10472 10473 10474 /** 10475 * lpfc_sli4_setup - SLI ring setup function 10476 * @phba: Pointer to HBA context object. 10477 * 10478 * lpfc_sli_setup sets up rings of the SLI interface with 10479 * number of iocbs per ring and iotags. This function is 10480 * called while driver attach to the HBA and before the 10481 * interrupts are enabled. So there is no need for locking. 10482 * 10483 * This function always returns 0. 10484 **/ 10485 int 10486 lpfc_sli4_setup(struct lpfc_hba *phba) 10487 { 10488 struct lpfc_sli_ring *pring; 10489 10490 pring = phba->sli4_hba.els_wq->pring; 10491 pring->num_mask = LPFC_MAX_RING_MASK; 10492 pring->prt[0].profile = 0; /* Mask 0 */ 10493 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10494 pring->prt[0].type = FC_TYPE_ELS; 10495 pring->prt[0].lpfc_sli_rcv_unsol_event = 10496 lpfc_els_unsol_event; 10497 pring->prt[1].profile = 0; /* Mask 1 */ 10498 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10499 pring->prt[1].type = FC_TYPE_ELS; 10500 pring->prt[1].lpfc_sli_rcv_unsol_event = 10501 lpfc_els_unsol_event; 10502 pring->prt[2].profile = 0; /* Mask 2 */ 10503 /* NameServer Inquiry */ 10504 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10505 /* NameServer */ 10506 pring->prt[2].type = FC_TYPE_CT; 10507 pring->prt[2].lpfc_sli_rcv_unsol_event = 10508 lpfc_ct_unsol_event; 10509 pring->prt[3].profile = 0; /* Mask 3 */ 10510 /* NameServer response */ 10511 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10512 /* NameServer */ 10513 pring->prt[3].type = FC_TYPE_CT; 10514 pring->prt[3].lpfc_sli_rcv_unsol_event = 10515 lpfc_ct_unsol_event; 10516 return 0; 10517 } 10518 10519 /** 10520 * lpfc_sli_setup - SLI ring setup function 10521 * @phba: Pointer to HBA context object. 10522 * 10523 * lpfc_sli_setup sets up rings of the SLI interface with 10524 * number of iocbs per ring and iotags. This function is 10525 * called while driver attach to the HBA and before the 10526 * interrupts are enabled. So there is no need for locking. 10527 * 10528 * This function always returns 0. SLI3 only. 10529 **/ 10530 int 10531 lpfc_sli_setup(struct lpfc_hba *phba) 10532 { 10533 int i, totiocbsize = 0; 10534 struct lpfc_sli *psli = &phba->sli; 10535 struct lpfc_sli_ring *pring; 10536 10537 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10538 psli->sli_flag = 0; 10539 10540 psli->iocbq_lookup = NULL; 10541 psli->iocbq_lookup_len = 0; 10542 psli->last_iotag = 0; 10543 10544 for (i = 0; i < psli->num_rings; i++) { 10545 pring = &psli->sli3_ring[i]; 10546 switch (i) { 10547 case LPFC_FCP_RING: /* ring 0 - FCP */ 10548 /* numCiocb and numRiocb are used in config_port */ 10549 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10550 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10551 pring->sli.sli3.numCiocb += 10552 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10553 pring->sli.sli3.numRiocb += 10554 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10555 pring->sli.sli3.numCiocb += 10556 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10557 pring->sli.sli3.numRiocb += 10558 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10559 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10560 SLI3_IOCB_CMD_SIZE : 10561 SLI2_IOCB_CMD_SIZE; 10562 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10563 SLI3_IOCB_RSP_SIZE : 10564 SLI2_IOCB_RSP_SIZE; 10565 pring->iotag_ctr = 0; 10566 pring->iotag_max = 10567 (phba->cfg_hba_queue_depth * 2); 10568 pring->fast_iotag = pring->iotag_max; 10569 pring->num_mask = 0; 10570 break; 10571 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10572 /* numCiocb and numRiocb are used in config_port */ 10573 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10574 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10575 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10576 SLI3_IOCB_CMD_SIZE : 10577 SLI2_IOCB_CMD_SIZE; 10578 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10579 SLI3_IOCB_RSP_SIZE : 10580 SLI2_IOCB_RSP_SIZE; 10581 pring->iotag_max = phba->cfg_hba_queue_depth; 10582 pring->num_mask = 0; 10583 break; 10584 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10585 /* numCiocb and numRiocb are used in config_port */ 10586 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10587 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10588 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10589 SLI3_IOCB_CMD_SIZE : 10590 SLI2_IOCB_CMD_SIZE; 10591 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10592 SLI3_IOCB_RSP_SIZE : 10593 SLI2_IOCB_RSP_SIZE; 10594 pring->fast_iotag = 0; 10595 pring->iotag_ctr = 0; 10596 pring->iotag_max = 4096; 10597 pring->lpfc_sli_rcv_async_status = 10598 lpfc_sli_async_event_handler; 10599 pring->num_mask = LPFC_MAX_RING_MASK; 10600 pring->prt[0].profile = 0; /* Mask 0 */ 10601 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10602 pring->prt[0].type = FC_TYPE_ELS; 10603 pring->prt[0].lpfc_sli_rcv_unsol_event = 10604 lpfc_els_unsol_event; 10605 pring->prt[1].profile = 0; /* Mask 1 */ 10606 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10607 pring->prt[1].type = FC_TYPE_ELS; 10608 pring->prt[1].lpfc_sli_rcv_unsol_event = 10609 lpfc_els_unsol_event; 10610 pring->prt[2].profile = 0; /* Mask 2 */ 10611 /* NameServer Inquiry */ 10612 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10613 /* NameServer */ 10614 pring->prt[2].type = FC_TYPE_CT; 10615 pring->prt[2].lpfc_sli_rcv_unsol_event = 10616 lpfc_ct_unsol_event; 10617 pring->prt[3].profile = 0; /* Mask 3 */ 10618 /* NameServer response */ 10619 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10620 /* NameServer */ 10621 pring->prt[3].type = FC_TYPE_CT; 10622 pring->prt[3].lpfc_sli_rcv_unsol_event = 10623 lpfc_ct_unsol_event; 10624 break; 10625 } 10626 totiocbsize += (pring->sli.sli3.numCiocb * 10627 pring->sli.sli3.sizeCiocb) + 10628 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10629 } 10630 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10631 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10632 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10633 "SLI2 SLIM Data: x%x x%lx\n", 10634 phba->brd_no, totiocbsize, 10635 (unsigned long) MAX_SLIM_IOCB_SIZE); 10636 } 10637 if (phba->cfg_multi_ring_support == 2) 10638 lpfc_extra_ring_setup(phba); 10639 10640 return 0; 10641 } 10642 10643 /** 10644 * lpfc_sli4_queue_init - Queue initialization function 10645 * @phba: Pointer to HBA context object. 10646 * 10647 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10648 * ring. This function also initializes ring indices of each ring. 10649 * This function is called during the initialization of the SLI 10650 * interface of an HBA. 10651 * This function is called with no lock held and always returns 10652 * 1. 10653 **/ 10654 void 10655 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10656 { 10657 struct lpfc_sli *psli; 10658 struct lpfc_sli_ring *pring; 10659 int i; 10660 10661 psli = &phba->sli; 10662 spin_lock_irq(&phba->hbalock); 10663 INIT_LIST_HEAD(&psli->mboxq); 10664 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10665 /* Initialize list headers for txq and txcmplq as double linked lists */ 10666 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10667 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10668 pring->flag = 0; 10669 pring->ringno = LPFC_FCP_RING; 10670 pring->txcmplq_cnt = 0; 10671 INIT_LIST_HEAD(&pring->txq); 10672 INIT_LIST_HEAD(&pring->txcmplq); 10673 INIT_LIST_HEAD(&pring->iocb_continueq); 10674 spin_lock_init(&pring->ring_lock); 10675 } 10676 pring = phba->sli4_hba.els_wq->pring; 10677 pring->flag = 0; 10678 pring->ringno = LPFC_ELS_RING; 10679 pring->txcmplq_cnt = 0; 10680 INIT_LIST_HEAD(&pring->txq); 10681 INIT_LIST_HEAD(&pring->txcmplq); 10682 INIT_LIST_HEAD(&pring->iocb_continueq); 10683 spin_lock_init(&pring->ring_lock); 10684 10685 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10686 pring = phba->sli4_hba.nvmels_wq->pring; 10687 pring->flag = 0; 10688 pring->ringno = LPFC_ELS_RING; 10689 pring->txcmplq_cnt = 0; 10690 INIT_LIST_HEAD(&pring->txq); 10691 INIT_LIST_HEAD(&pring->txcmplq); 10692 INIT_LIST_HEAD(&pring->iocb_continueq); 10693 spin_lock_init(&pring->ring_lock); 10694 } 10695 10696 spin_unlock_irq(&phba->hbalock); 10697 } 10698 10699 /** 10700 * lpfc_sli_queue_init - Queue initialization function 10701 * @phba: Pointer to HBA context object. 10702 * 10703 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10704 * ring. This function also initializes ring indices of each ring. 10705 * This function is called during the initialization of the SLI 10706 * interface of an HBA. 10707 * This function is called with no lock held and always returns 10708 * 1. 10709 **/ 10710 void 10711 lpfc_sli_queue_init(struct lpfc_hba *phba) 10712 { 10713 struct lpfc_sli *psli; 10714 struct lpfc_sli_ring *pring; 10715 int i; 10716 10717 psli = &phba->sli; 10718 spin_lock_irq(&phba->hbalock); 10719 INIT_LIST_HEAD(&psli->mboxq); 10720 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10721 /* Initialize list headers for txq and txcmplq as double linked lists */ 10722 for (i = 0; i < psli->num_rings; i++) { 10723 pring = &psli->sli3_ring[i]; 10724 pring->ringno = i; 10725 pring->sli.sli3.next_cmdidx = 0; 10726 pring->sli.sli3.local_getidx = 0; 10727 pring->sli.sli3.cmdidx = 0; 10728 INIT_LIST_HEAD(&pring->iocb_continueq); 10729 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10730 INIT_LIST_HEAD(&pring->postbufq); 10731 pring->flag = 0; 10732 INIT_LIST_HEAD(&pring->txq); 10733 INIT_LIST_HEAD(&pring->txcmplq); 10734 spin_lock_init(&pring->ring_lock); 10735 } 10736 spin_unlock_irq(&phba->hbalock); 10737 } 10738 10739 /** 10740 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10741 * @phba: Pointer to HBA context object. 10742 * 10743 * This routine flushes the mailbox command subsystem. It will unconditionally 10744 * flush all the mailbox commands in the three possible stages in the mailbox 10745 * command sub-system: pending mailbox command queue; the outstanding mailbox 10746 * command; and completed mailbox command queue. It is caller's responsibility 10747 * to make sure that the driver is in the proper state to flush the mailbox 10748 * command sub-system. Namely, the posting of mailbox commands into the 10749 * pending mailbox command queue from the various clients must be stopped; 10750 * either the HBA is in a state that it will never works on the outstanding 10751 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10752 * mailbox command has been completed. 10753 **/ 10754 static void 10755 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10756 { 10757 LIST_HEAD(completions); 10758 struct lpfc_sli *psli = &phba->sli; 10759 LPFC_MBOXQ_t *pmb; 10760 unsigned long iflag; 10761 10762 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10763 local_bh_disable(); 10764 10765 /* Flush all the mailbox commands in the mbox system */ 10766 spin_lock_irqsave(&phba->hbalock, iflag); 10767 10768 /* The pending mailbox command queue */ 10769 list_splice_init(&phba->sli.mboxq, &completions); 10770 /* The outstanding active mailbox command */ 10771 if (psli->mbox_active) { 10772 list_add_tail(&psli->mbox_active->list, &completions); 10773 psli->mbox_active = NULL; 10774 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10775 } 10776 /* The completed mailbox command queue */ 10777 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10778 spin_unlock_irqrestore(&phba->hbalock, iflag); 10779 10780 /* Enable softirqs again, done with phba->hbalock */ 10781 local_bh_enable(); 10782 10783 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10784 while (!list_empty(&completions)) { 10785 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10786 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10787 if (pmb->mbox_cmpl) 10788 pmb->mbox_cmpl(phba, pmb); 10789 } 10790 } 10791 10792 /** 10793 * lpfc_sli_host_down - Vport cleanup function 10794 * @vport: Pointer to virtual port object. 10795 * 10796 * lpfc_sli_host_down is called to clean up the resources 10797 * associated with a vport before destroying virtual 10798 * port data structures. 10799 * This function does following operations: 10800 * - Free discovery resources associated with this virtual 10801 * port. 10802 * - Free iocbs associated with this virtual port in 10803 * the txq. 10804 * - Send abort for all iocb commands associated with this 10805 * vport in txcmplq. 10806 * 10807 * This function is called with no lock held and always returns 1. 10808 **/ 10809 int 10810 lpfc_sli_host_down(struct lpfc_vport *vport) 10811 { 10812 LIST_HEAD(completions); 10813 struct lpfc_hba *phba = vport->phba; 10814 struct lpfc_sli *psli = &phba->sli; 10815 struct lpfc_queue *qp = NULL; 10816 struct lpfc_sli_ring *pring; 10817 struct lpfc_iocbq *iocb, *next_iocb; 10818 int i; 10819 unsigned long flags = 0; 10820 uint16_t prev_pring_flag; 10821 10822 lpfc_cleanup_discovery_resources(vport); 10823 10824 spin_lock_irqsave(&phba->hbalock, flags); 10825 10826 /* 10827 * Error everything on the txq since these iocbs 10828 * have not been given to the FW yet. 10829 * Also issue ABTS for everything on the txcmplq 10830 */ 10831 if (phba->sli_rev != LPFC_SLI_REV4) { 10832 for (i = 0; i < psli->num_rings; i++) { 10833 pring = &psli->sli3_ring[i]; 10834 prev_pring_flag = pring->flag; 10835 /* Only slow rings */ 10836 if (pring->ringno == LPFC_ELS_RING) { 10837 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10838 /* Set the lpfc data pending flag */ 10839 set_bit(LPFC_DATA_READY, &phba->data_flags); 10840 } 10841 list_for_each_entry_safe(iocb, next_iocb, 10842 &pring->txq, list) { 10843 if (iocb->vport != vport) 10844 continue; 10845 list_move_tail(&iocb->list, &completions); 10846 } 10847 list_for_each_entry_safe(iocb, next_iocb, 10848 &pring->txcmplq, list) { 10849 if (iocb->vport != vport) 10850 continue; 10851 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10852 } 10853 pring->flag = prev_pring_flag; 10854 } 10855 } else { 10856 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10857 pring = qp->pring; 10858 if (!pring) 10859 continue; 10860 if (pring == phba->sli4_hba.els_wq->pring) { 10861 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10862 /* Set the lpfc data pending flag */ 10863 set_bit(LPFC_DATA_READY, &phba->data_flags); 10864 } 10865 prev_pring_flag = pring->flag; 10866 spin_lock(&pring->ring_lock); 10867 list_for_each_entry_safe(iocb, next_iocb, 10868 &pring->txq, list) { 10869 if (iocb->vport != vport) 10870 continue; 10871 list_move_tail(&iocb->list, &completions); 10872 } 10873 spin_unlock(&pring->ring_lock); 10874 list_for_each_entry_safe(iocb, next_iocb, 10875 &pring->txcmplq, list) { 10876 if (iocb->vport != vport) 10877 continue; 10878 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10879 } 10880 pring->flag = prev_pring_flag; 10881 } 10882 } 10883 spin_unlock_irqrestore(&phba->hbalock, flags); 10884 10885 /* Cancel all the IOCBs from the completions list */ 10886 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10887 IOERR_SLI_DOWN); 10888 return 1; 10889 } 10890 10891 /** 10892 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10893 * @phba: Pointer to HBA context object. 10894 * 10895 * This function cleans up all iocb, buffers, mailbox commands 10896 * while shutting down the HBA. This function is called with no 10897 * lock held and always returns 1. 10898 * This function does the following to cleanup driver resources: 10899 * - Free discovery resources for each virtual port 10900 * - Cleanup any pending fabric iocbs 10901 * - Iterate through the iocb txq and free each entry 10902 * in the list. 10903 * - Free up any buffer posted to the HBA 10904 * - Free mailbox commands in the mailbox queue. 10905 **/ 10906 int 10907 lpfc_sli_hba_down(struct lpfc_hba *phba) 10908 { 10909 LIST_HEAD(completions); 10910 struct lpfc_sli *psli = &phba->sli; 10911 struct lpfc_queue *qp = NULL; 10912 struct lpfc_sli_ring *pring; 10913 struct lpfc_dmabuf *buf_ptr; 10914 unsigned long flags = 0; 10915 int i; 10916 10917 /* Shutdown the mailbox command sub-system */ 10918 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10919 10920 lpfc_hba_down_prep(phba); 10921 10922 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10923 local_bh_disable(); 10924 10925 lpfc_fabric_abort_hba(phba); 10926 10927 spin_lock_irqsave(&phba->hbalock, flags); 10928 10929 /* 10930 * Error everything on the txq since these iocbs 10931 * have not been given to the FW yet. 10932 */ 10933 if (phba->sli_rev != LPFC_SLI_REV4) { 10934 for (i = 0; i < psli->num_rings; i++) { 10935 pring = &psli->sli3_ring[i]; 10936 /* Only slow rings */ 10937 if (pring->ringno == LPFC_ELS_RING) { 10938 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10939 /* Set the lpfc data pending flag */ 10940 set_bit(LPFC_DATA_READY, &phba->data_flags); 10941 } 10942 list_splice_init(&pring->txq, &completions); 10943 } 10944 } else { 10945 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10946 pring = qp->pring; 10947 if (!pring) 10948 continue; 10949 spin_lock(&pring->ring_lock); 10950 list_splice_init(&pring->txq, &completions); 10951 spin_unlock(&pring->ring_lock); 10952 if (pring == phba->sli4_hba.els_wq->pring) { 10953 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10954 /* Set the lpfc data pending flag */ 10955 set_bit(LPFC_DATA_READY, &phba->data_flags); 10956 } 10957 } 10958 } 10959 spin_unlock_irqrestore(&phba->hbalock, flags); 10960 10961 /* Cancel all the IOCBs from the completions list */ 10962 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10963 IOERR_SLI_DOWN); 10964 10965 spin_lock_irqsave(&phba->hbalock, flags); 10966 list_splice_init(&phba->elsbuf, &completions); 10967 phba->elsbuf_cnt = 0; 10968 phba->elsbuf_prev_cnt = 0; 10969 spin_unlock_irqrestore(&phba->hbalock, flags); 10970 10971 while (!list_empty(&completions)) { 10972 list_remove_head(&completions, buf_ptr, 10973 struct lpfc_dmabuf, list); 10974 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10975 kfree(buf_ptr); 10976 } 10977 10978 /* Enable softirqs again, done with phba->hbalock */ 10979 local_bh_enable(); 10980 10981 /* Return any active mbox cmds */ 10982 del_timer_sync(&psli->mbox_tmo); 10983 10984 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10985 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10986 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10987 10988 return 1; 10989 } 10990 10991 /** 10992 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10993 * @srcp: Source memory pointer. 10994 * @destp: Destination memory pointer. 10995 * @cnt: Number of words required to be copied. 10996 * 10997 * This function is used for copying data between driver memory 10998 * and the SLI memory. This function also changes the endianness 10999 * of each word if native endianness is different from SLI 11000 * endianness. This function can be called with or without 11001 * lock. 11002 **/ 11003 void 11004 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11005 { 11006 uint32_t *src = srcp; 11007 uint32_t *dest = destp; 11008 uint32_t ldata; 11009 int i; 11010 11011 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11012 ldata = *src; 11013 ldata = le32_to_cpu(ldata); 11014 *dest = ldata; 11015 src++; 11016 dest++; 11017 } 11018 } 11019 11020 11021 /** 11022 * lpfc_sli_bemem_bcopy - SLI memory copy function 11023 * @srcp: Source memory pointer. 11024 * @destp: Destination memory pointer. 11025 * @cnt: Number of words required to be copied. 11026 * 11027 * This function is used for copying data between a data structure 11028 * with big endian representation to local endianness. 11029 * This function can be called with or without lock. 11030 **/ 11031 void 11032 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11033 { 11034 uint32_t *src = srcp; 11035 uint32_t *dest = destp; 11036 uint32_t ldata; 11037 int i; 11038 11039 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11040 ldata = *src; 11041 ldata = be32_to_cpu(ldata); 11042 *dest = ldata; 11043 src++; 11044 dest++; 11045 } 11046 } 11047 11048 /** 11049 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11050 * @phba: Pointer to HBA context object. 11051 * @pring: Pointer to driver SLI ring object. 11052 * @mp: Pointer to driver buffer object. 11053 * 11054 * This function is called with no lock held. 11055 * It always return zero after adding the buffer to the postbufq 11056 * buffer list. 11057 **/ 11058 int 11059 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11060 struct lpfc_dmabuf *mp) 11061 { 11062 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11063 later */ 11064 spin_lock_irq(&phba->hbalock); 11065 list_add_tail(&mp->list, &pring->postbufq); 11066 pring->postbufq_cnt++; 11067 spin_unlock_irq(&phba->hbalock); 11068 return 0; 11069 } 11070 11071 /** 11072 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11073 * @phba: Pointer to HBA context object. 11074 * 11075 * When HBQ is enabled, buffers are searched based on tags. This function 11076 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11077 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11078 * does not conflict with tags of buffer posted for unsolicited events. 11079 * The function returns the allocated tag. The function is called with 11080 * no locks held. 11081 **/ 11082 uint32_t 11083 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11084 { 11085 spin_lock_irq(&phba->hbalock); 11086 phba->buffer_tag_count++; 11087 /* 11088 * Always set the QUE_BUFTAG_BIT to distiguish between 11089 * a tag assigned by HBQ. 11090 */ 11091 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11092 spin_unlock_irq(&phba->hbalock); 11093 return phba->buffer_tag_count; 11094 } 11095 11096 /** 11097 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11098 * @phba: Pointer to HBA context object. 11099 * @pring: Pointer to driver SLI ring object. 11100 * @tag: Buffer tag. 11101 * 11102 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11103 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11104 * iocb is posted to the response ring with the tag of the buffer. 11105 * This function searches the pring->postbufq list using the tag 11106 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11107 * iocb. If the buffer is found then lpfc_dmabuf object of the 11108 * buffer is returned to the caller else NULL is returned. 11109 * This function is called with no lock held. 11110 **/ 11111 struct lpfc_dmabuf * 11112 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11113 uint32_t tag) 11114 { 11115 struct lpfc_dmabuf *mp, *next_mp; 11116 struct list_head *slp = &pring->postbufq; 11117 11118 /* Search postbufq, from the beginning, looking for a match on tag */ 11119 spin_lock_irq(&phba->hbalock); 11120 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11121 if (mp->buffer_tag == tag) { 11122 list_del_init(&mp->list); 11123 pring->postbufq_cnt--; 11124 spin_unlock_irq(&phba->hbalock); 11125 return mp; 11126 } 11127 } 11128 11129 spin_unlock_irq(&phba->hbalock); 11130 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11131 "0402 Cannot find virtual addr for buffer tag on " 11132 "ring %d Data x%lx x%px x%px x%x\n", 11133 pring->ringno, (unsigned long) tag, 11134 slp->next, slp->prev, pring->postbufq_cnt); 11135 11136 return NULL; 11137 } 11138 11139 /** 11140 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11141 * @phba: Pointer to HBA context object. 11142 * @pring: Pointer to driver SLI ring object. 11143 * @phys: DMA address of the buffer. 11144 * 11145 * This function searches the buffer list using the dma_address 11146 * of unsolicited event to find the driver's lpfc_dmabuf object 11147 * corresponding to the dma_address. The function returns the 11148 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11149 * This function is called by the ct and els unsolicited event 11150 * handlers to get the buffer associated with the unsolicited 11151 * event. 11152 * 11153 * This function is called with no lock held. 11154 **/ 11155 struct lpfc_dmabuf * 11156 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11157 dma_addr_t phys) 11158 { 11159 struct lpfc_dmabuf *mp, *next_mp; 11160 struct list_head *slp = &pring->postbufq; 11161 11162 /* Search postbufq, from the beginning, looking for a match on phys */ 11163 spin_lock_irq(&phba->hbalock); 11164 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11165 if (mp->phys == phys) { 11166 list_del_init(&mp->list); 11167 pring->postbufq_cnt--; 11168 spin_unlock_irq(&phba->hbalock); 11169 return mp; 11170 } 11171 } 11172 11173 spin_unlock_irq(&phba->hbalock); 11174 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11175 "0410 Cannot find virtual addr for mapped buf on " 11176 "ring %d Data x%llx x%px x%px x%x\n", 11177 pring->ringno, (unsigned long long)phys, 11178 slp->next, slp->prev, pring->postbufq_cnt); 11179 return NULL; 11180 } 11181 11182 /** 11183 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11184 * @phba: Pointer to HBA context object. 11185 * @cmdiocb: Pointer to driver command iocb object. 11186 * @rspiocb: Pointer to driver response iocb object. 11187 * 11188 * This function is the completion handler for the abort iocbs for 11189 * ELS commands. This function is called from the ELS ring event 11190 * handler with no lock held. This function frees memory resources 11191 * associated with the abort iocb. 11192 **/ 11193 static void 11194 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11195 struct lpfc_iocbq *rspiocb) 11196 { 11197 IOCB_t *irsp = &rspiocb->iocb; 11198 uint16_t abort_iotag, abort_context; 11199 struct lpfc_iocbq *abort_iocb = NULL; 11200 11201 if (irsp->ulpStatus) { 11202 11203 /* 11204 * Assume that the port already completed and returned, or 11205 * will return the iocb. Just Log the message. 11206 */ 11207 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11208 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11209 11210 spin_lock_irq(&phba->hbalock); 11211 if (phba->sli_rev < LPFC_SLI_REV4) { 11212 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11213 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11214 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11215 spin_unlock_irq(&phba->hbalock); 11216 goto release_iocb; 11217 } 11218 if (abort_iotag != 0 && 11219 abort_iotag <= phba->sli.last_iotag) 11220 abort_iocb = 11221 phba->sli.iocbq_lookup[abort_iotag]; 11222 } else 11223 /* For sli4 the abort_tag is the XRI, 11224 * so the abort routine puts the iotag of the iocb 11225 * being aborted in the context field of the abort 11226 * IOCB. 11227 */ 11228 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11229 11230 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11231 "0327 Cannot abort els iocb x%px " 11232 "with tag %x context %x, abort status %x, " 11233 "abort code %x\n", 11234 abort_iocb, abort_iotag, abort_context, 11235 irsp->ulpStatus, irsp->un.ulpWord[4]); 11236 11237 spin_unlock_irq(&phba->hbalock); 11238 } 11239 release_iocb: 11240 lpfc_sli_release_iocbq(phba, cmdiocb); 11241 return; 11242 } 11243 11244 /** 11245 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11246 * @phba: Pointer to HBA context object. 11247 * @cmdiocb: Pointer to driver command iocb object. 11248 * @rspiocb: Pointer to driver response iocb object. 11249 * 11250 * The function is called from SLI ring event handler with no 11251 * lock held. This function is the completion handler for ELS commands 11252 * which are aborted. The function frees memory resources used for 11253 * the aborted ELS commands. 11254 **/ 11255 static void 11256 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11257 struct lpfc_iocbq *rspiocb) 11258 { 11259 IOCB_t *irsp = &rspiocb->iocb; 11260 11261 /* ELS cmd tag <ulpIoTag> completes */ 11262 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11263 "0139 Ignoring ELS cmd tag x%x completion Data: " 11264 "x%x x%x x%x\n", 11265 irsp->ulpIoTag, irsp->ulpStatus, 11266 irsp->un.ulpWord[4], irsp->ulpTimeout); 11267 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11268 lpfc_ct_free_iocb(phba, cmdiocb); 11269 else 11270 lpfc_els_free_iocb(phba, cmdiocb); 11271 return; 11272 } 11273 11274 /** 11275 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11276 * @phba: Pointer to HBA context object. 11277 * @pring: Pointer to driver SLI ring object. 11278 * @cmdiocb: Pointer to driver command iocb object. 11279 * 11280 * This function issues an abort iocb for the provided command iocb down to 11281 * the port. Other than the case the outstanding command iocb is an abort 11282 * request, this function issues abort out unconditionally. This function is 11283 * called with hbalock held. The function returns 0 when it fails due to 11284 * memory allocation failure or when the command iocb is an abort request. 11285 * The hbalock is asserted held in the code path calling this routine. 11286 **/ 11287 static int 11288 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11289 struct lpfc_iocbq *cmdiocb) 11290 { 11291 struct lpfc_vport *vport = cmdiocb->vport; 11292 struct lpfc_iocbq *abtsiocbp; 11293 IOCB_t *icmd = NULL; 11294 IOCB_t *iabt = NULL; 11295 int retval; 11296 unsigned long iflags; 11297 struct lpfc_nodelist *ndlp; 11298 11299 /* 11300 * There are certain command types we don't want to abort. And we 11301 * don't want to abort commands that are already in the process of 11302 * being aborted. 11303 */ 11304 icmd = &cmdiocb->iocb; 11305 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11306 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11307 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11308 return 0; 11309 11310 /* issue ABTS for this IOCB based on iotag */ 11311 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11312 if (abtsiocbp == NULL) 11313 return 0; 11314 11315 /* This signals the response to set the correct status 11316 * before calling the completion handler 11317 */ 11318 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11319 11320 iabt = &abtsiocbp->iocb; 11321 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11322 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11323 if (phba->sli_rev == LPFC_SLI_REV4) { 11324 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11325 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11326 } else { 11327 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11328 if (pring->ringno == LPFC_ELS_RING) { 11329 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11330 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11331 } 11332 } 11333 iabt->ulpLe = 1; 11334 iabt->ulpClass = icmd->ulpClass; 11335 11336 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11337 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11338 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11339 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11340 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11341 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11342 11343 if (phba->link_state >= LPFC_LINK_UP) 11344 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11345 else 11346 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11347 11348 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11349 abtsiocbp->vport = vport; 11350 11351 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11352 "0339 Abort xri x%x, original iotag x%x, " 11353 "abort cmd iotag x%x\n", 11354 iabt->un.acxri.abortIoTag, 11355 iabt->un.acxri.abortContextTag, 11356 abtsiocbp->iotag); 11357 11358 if (phba->sli_rev == LPFC_SLI_REV4) { 11359 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11360 if (unlikely(pring == NULL)) 11361 return 0; 11362 /* Note: both hbalock and ring_lock need to be set here */ 11363 spin_lock_irqsave(&pring->ring_lock, iflags); 11364 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11365 abtsiocbp, 0); 11366 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11367 } else { 11368 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11369 abtsiocbp, 0); 11370 } 11371 11372 if (retval) 11373 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11374 11375 /* 11376 * Caller to this routine should check for IOCB_ERROR 11377 * and handle it properly. This routine no longer removes 11378 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11379 */ 11380 return retval; 11381 } 11382 11383 /** 11384 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11385 * @phba: Pointer to HBA context object. 11386 * @pring: Pointer to driver SLI ring object. 11387 * @cmdiocb: Pointer to driver command iocb object. 11388 * 11389 * This function issues an abort iocb for the provided command iocb. In case 11390 * of unloading, the abort iocb will not be issued to commands on the ELS 11391 * ring. Instead, the callback function shall be changed to those commands 11392 * so that nothing happens when them finishes. This function is called with 11393 * hbalock held. The function returns 0 when the command iocb is an abort 11394 * request. 11395 **/ 11396 int 11397 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11398 struct lpfc_iocbq *cmdiocb) 11399 { 11400 struct lpfc_vport *vport = cmdiocb->vport; 11401 int retval = IOCB_ERROR; 11402 IOCB_t *icmd = NULL; 11403 11404 lockdep_assert_held(&phba->hbalock); 11405 11406 /* 11407 * There are certain command types we don't want to abort. And we 11408 * don't want to abort commands that are already in the process of 11409 * being aborted. 11410 */ 11411 icmd = &cmdiocb->iocb; 11412 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11413 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11414 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11415 return 0; 11416 11417 if (!pring) { 11418 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11419 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11420 else 11421 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11422 goto abort_iotag_exit; 11423 } 11424 11425 /* 11426 * If we're unloading, don't abort iocb on the ELS ring, but change 11427 * the callback so that nothing happens when it finishes. 11428 */ 11429 if ((vport->load_flag & FC_UNLOADING) && 11430 (pring->ringno == LPFC_ELS_RING)) { 11431 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11432 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11433 else 11434 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11435 goto abort_iotag_exit; 11436 } 11437 11438 /* Now, we try to issue the abort to the cmdiocb out */ 11439 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11440 11441 abort_iotag_exit: 11442 /* 11443 * Caller to this routine should check for IOCB_ERROR 11444 * and handle it properly. This routine no longer removes 11445 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11446 */ 11447 return retval; 11448 } 11449 11450 /** 11451 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11452 * @phba: pointer to lpfc HBA data structure. 11453 * 11454 * This routine will abort all pending and outstanding iocbs to an HBA. 11455 **/ 11456 void 11457 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11458 { 11459 struct lpfc_sli *psli = &phba->sli; 11460 struct lpfc_sli_ring *pring; 11461 struct lpfc_queue *qp = NULL; 11462 int i; 11463 11464 if (phba->sli_rev != LPFC_SLI_REV4) { 11465 for (i = 0; i < psli->num_rings; i++) { 11466 pring = &psli->sli3_ring[i]; 11467 lpfc_sli_abort_iocb_ring(phba, pring); 11468 } 11469 return; 11470 } 11471 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11472 pring = qp->pring; 11473 if (!pring) 11474 continue; 11475 lpfc_sli_abort_iocb_ring(phba, pring); 11476 } 11477 } 11478 11479 /** 11480 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11481 * @iocbq: Pointer to driver iocb object. 11482 * @vport: Pointer to driver virtual port object. 11483 * @tgt_id: SCSI ID of the target. 11484 * @lun_id: LUN ID of the scsi device. 11485 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11486 * 11487 * This function acts as an iocb filter for functions which abort or count 11488 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11489 * 0 if the filtering criteria is met for the given iocb and will return 11490 * 1 if the filtering criteria is not met. 11491 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11492 * given iocb is for the SCSI device specified by vport, tgt_id and 11493 * lun_id parameter. 11494 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11495 * given iocb is for the SCSI target specified by vport and tgt_id 11496 * parameters. 11497 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11498 * given iocb is for the SCSI host associated with the given vport. 11499 * This function is called with no locks held. 11500 **/ 11501 static int 11502 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11503 uint16_t tgt_id, uint64_t lun_id, 11504 lpfc_ctx_cmd ctx_cmd) 11505 { 11506 struct lpfc_io_buf *lpfc_cmd; 11507 int rc = 1; 11508 11509 if (iocbq->vport != vport) 11510 return rc; 11511 11512 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11513 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11514 return rc; 11515 11516 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11517 11518 if (lpfc_cmd->pCmd == NULL) 11519 return rc; 11520 11521 switch (ctx_cmd) { 11522 case LPFC_CTX_LUN: 11523 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11524 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11525 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11526 rc = 0; 11527 break; 11528 case LPFC_CTX_TGT: 11529 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11530 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11531 rc = 0; 11532 break; 11533 case LPFC_CTX_HOST: 11534 rc = 0; 11535 break; 11536 default: 11537 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11538 __func__, ctx_cmd); 11539 break; 11540 } 11541 11542 return rc; 11543 } 11544 11545 /** 11546 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11547 * @vport: Pointer to virtual port. 11548 * @tgt_id: SCSI ID of the target. 11549 * @lun_id: LUN ID of the scsi device. 11550 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11551 * 11552 * This function returns number of FCP commands pending for the vport. 11553 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11554 * commands pending on the vport associated with SCSI device specified 11555 * by tgt_id and lun_id parameters. 11556 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11557 * commands pending on the vport associated with SCSI target specified 11558 * by tgt_id parameter. 11559 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11560 * commands pending on the vport. 11561 * This function returns the number of iocbs which satisfy the filter. 11562 * This function is called without any lock held. 11563 **/ 11564 int 11565 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11566 lpfc_ctx_cmd ctx_cmd) 11567 { 11568 struct lpfc_hba *phba = vport->phba; 11569 struct lpfc_iocbq *iocbq; 11570 int sum, i; 11571 11572 spin_lock_irq(&phba->hbalock); 11573 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11574 iocbq = phba->sli.iocbq_lookup[i]; 11575 11576 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11577 ctx_cmd) == 0) 11578 sum++; 11579 } 11580 spin_unlock_irq(&phba->hbalock); 11581 11582 return sum; 11583 } 11584 11585 /** 11586 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11587 * @phba: Pointer to HBA context object 11588 * @cmdiocb: Pointer to command iocb object. 11589 * @rspiocb: Pointer to response iocb object. 11590 * 11591 * This function is called when an aborted FCP iocb completes. This 11592 * function is called by the ring event handler with no lock held. 11593 * This function frees the iocb. 11594 **/ 11595 void 11596 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11597 struct lpfc_iocbq *rspiocb) 11598 { 11599 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11600 "3096 ABORT_XRI_CN completing on rpi x%x " 11601 "original iotag x%x, abort cmd iotag x%x " 11602 "status 0x%x, reason 0x%x\n", 11603 cmdiocb->iocb.un.acxri.abortContextTag, 11604 cmdiocb->iocb.un.acxri.abortIoTag, 11605 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11606 rspiocb->iocb.un.ulpWord[4]); 11607 lpfc_sli_release_iocbq(phba, cmdiocb); 11608 return; 11609 } 11610 11611 /** 11612 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11613 * @vport: Pointer to virtual port. 11614 * @pring: Pointer to driver SLI ring object. 11615 * @tgt_id: SCSI ID of the target. 11616 * @lun_id: LUN ID of the scsi device. 11617 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11618 * 11619 * This function sends an abort command for every SCSI command 11620 * associated with the given virtual port pending on the ring 11621 * filtered by lpfc_sli_validate_fcp_iocb function. 11622 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11623 * FCP iocbs associated with lun specified by tgt_id and lun_id 11624 * parameters 11625 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11626 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11627 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11628 * FCP iocbs associated with virtual port. 11629 * This function returns number of iocbs it failed to abort. 11630 * This function is called with no locks held. 11631 **/ 11632 int 11633 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11634 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11635 { 11636 struct lpfc_hba *phba = vport->phba; 11637 struct lpfc_iocbq *iocbq; 11638 struct lpfc_iocbq *abtsiocb; 11639 struct lpfc_sli_ring *pring_s4; 11640 IOCB_t *cmd = NULL; 11641 int errcnt = 0, ret_val = 0; 11642 int i; 11643 11644 /* all I/Os are in process of being flushed */ 11645 if (phba->hba_flag & HBA_IOQ_FLUSH) 11646 return errcnt; 11647 11648 for (i = 1; i <= phba->sli.last_iotag; i++) { 11649 iocbq = phba->sli.iocbq_lookup[i]; 11650 11651 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11652 abort_cmd) != 0) 11653 continue; 11654 11655 /* 11656 * If the iocbq is already being aborted, don't take a second 11657 * action, but do count it. 11658 */ 11659 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11660 continue; 11661 11662 /* issue ABTS for this IOCB based on iotag */ 11663 abtsiocb = lpfc_sli_get_iocbq(phba); 11664 if (abtsiocb == NULL) { 11665 errcnt++; 11666 continue; 11667 } 11668 11669 /* indicate the IO is being aborted by the driver. */ 11670 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11671 11672 cmd = &iocbq->iocb; 11673 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11674 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11675 if (phba->sli_rev == LPFC_SLI_REV4) 11676 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11677 else 11678 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11679 abtsiocb->iocb.ulpLe = 1; 11680 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11681 abtsiocb->vport = vport; 11682 11683 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11684 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11685 if (iocbq->iocb_flag & LPFC_IO_FCP) 11686 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11687 if (iocbq->iocb_flag & LPFC_IO_FOF) 11688 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11689 11690 if (lpfc_is_link_up(phba)) 11691 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11692 else 11693 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11694 11695 /* Setup callback routine and issue the command. */ 11696 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11697 if (phba->sli_rev == LPFC_SLI_REV4) { 11698 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11699 if (!pring_s4) 11700 continue; 11701 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11702 abtsiocb, 0); 11703 } else 11704 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11705 abtsiocb, 0); 11706 if (ret_val == IOCB_ERROR) { 11707 lpfc_sli_release_iocbq(phba, abtsiocb); 11708 errcnt++; 11709 continue; 11710 } 11711 } 11712 11713 return errcnt; 11714 } 11715 11716 /** 11717 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11718 * @vport: Pointer to virtual port. 11719 * @pring: Pointer to driver SLI ring object. 11720 * @tgt_id: SCSI ID of the target. 11721 * @lun_id: LUN ID of the scsi device. 11722 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11723 * 11724 * This function sends an abort command for every SCSI command 11725 * associated with the given virtual port pending on the ring 11726 * filtered by lpfc_sli_validate_fcp_iocb function. 11727 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11728 * FCP iocbs associated with lun specified by tgt_id and lun_id 11729 * parameters 11730 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11731 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11732 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11733 * FCP iocbs associated with virtual port. 11734 * This function returns number of iocbs it aborted . 11735 * This function is called with no locks held right after a taskmgmt 11736 * command is sent. 11737 **/ 11738 int 11739 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11740 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11741 { 11742 struct lpfc_hba *phba = vport->phba; 11743 struct lpfc_io_buf *lpfc_cmd; 11744 struct lpfc_iocbq *abtsiocbq; 11745 struct lpfc_nodelist *ndlp; 11746 struct lpfc_iocbq *iocbq; 11747 IOCB_t *icmd; 11748 int sum, i, ret_val; 11749 unsigned long iflags; 11750 struct lpfc_sli_ring *pring_s4 = NULL; 11751 11752 spin_lock_irqsave(&phba->hbalock, iflags); 11753 11754 /* all I/Os are in process of being flushed */ 11755 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11756 spin_unlock_irqrestore(&phba->hbalock, iflags); 11757 return 0; 11758 } 11759 sum = 0; 11760 11761 for (i = 1; i <= phba->sli.last_iotag; i++) { 11762 iocbq = phba->sli.iocbq_lookup[i]; 11763 11764 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11765 cmd) != 0) 11766 continue; 11767 11768 /* Guard against IO completion being called at same time */ 11769 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11770 spin_lock(&lpfc_cmd->buf_lock); 11771 11772 if (!lpfc_cmd->pCmd) { 11773 spin_unlock(&lpfc_cmd->buf_lock); 11774 continue; 11775 } 11776 11777 if (phba->sli_rev == LPFC_SLI_REV4) { 11778 pring_s4 = 11779 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11780 if (!pring_s4) { 11781 spin_unlock(&lpfc_cmd->buf_lock); 11782 continue; 11783 } 11784 /* Note: both hbalock and ring_lock must be set here */ 11785 spin_lock(&pring_s4->ring_lock); 11786 } 11787 11788 /* 11789 * If the iocbq is already being aborted, don't take a second 11790 * action, but do count it. 11791 */ 11792 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11793 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11794 if (phba->sli_rev == LPFC_SLI_REV4) 11795 spin_unlock(&pring_s4->ring_lock); 11796 spin_unlock(&lpfc_cmd->buf_lock); 11797 continue; 11798 } 11799 11800 /* issue ABTS for this IOCB based on iotag */ 11801 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11802 if (!abtsiocbq) { 11803 if (phba->sli_rev == LPFC_SLI_REV4) 11804 spin_unlock(&pring_s4->ring_lock); 11805 spin_unlock(&lpfc_cmd->buf_lock); 11806 continue; 11807 } 11808 11809 icmd = &iocbq->iocb; 11810 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11811 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11812 if (phba->sli_rev == LPFC_SLI_REV4) 11813 abtsiocbq->iocb.un.acxri.abortIoTag = 11814 iocbq->sli4_xritag; 11815 else 11816 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11817 abtsiocbq->iocb.ulpLe = 1; 11818 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11819 abtsiocbq->vport = vport; 11820 11821 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11822 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11823 if (iocbq->iocb_flag & LPFC_IO_FCP) 11824 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11825 if (iocbq->iocb_flag & LPFC_IO_FOF) 11826 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11827 11828 ndlp = lpfc_cmd->rdata->pnode; 11829 11830 if (lpfc_is_link_up(phba) && 11831 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11832 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11833 else 11834 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11835 11836 /* Setup callback routine and issue the command. */ 11837 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11838 11839 /* 11840 * Indicate the IO is being aborted by the driver and set 11841 * the caller's flag into the aborted IO. 11842 */ 11843 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11844 11845 if (phba->sli_rev == LPFC_SLI_REV4) { 11846 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11847 abtsiocbq, 0); 11848 spin_unlock(&pring_s4->ring_lock); 11849 } else { 11850 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11851 abtsiocbq, 0); 11852 } 11853 11854 spin_unlock(&lpfc_cmd->buf_lock); 11855 11856 if (ret_val == IOCB_ERROR) 11857 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11858 else 11859 sum++; 11860 } 11861 spin_unlock_irqrestore(&phba->hbalock, iflags); 11862 return sum; 11863 } 11864 11865 /** 11866 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11867 * @phba: Pointer to HBA context object. 11868 * @cmdiocbq: Pointer to command iocb. 11869 * @rspiocbq: Pointer to response iocb. 11870 * 11871 * This function is the completion handler for iocbs issued using 11872 * lpfc_sli_issue_iocb_wait function. This function is called by the 11873 * ring event handler function without any lock held. This function 11874 * can be called from both worker thread context and interrupt 11875 * context. This function also can be called from other thread which 11876 * cleans up the SLI layer objects. 11877 * This function copy the contents of the response iocb to the 11878 * response iocb memory object provided by the caller of 11879 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11880 * sleeps for the iocb completion. 11881 **/ 11882 static void 11883 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11884 struct lpfc_iocbq *cmdiocbq, 11885 struct lpfc_iocbq *rspiocbq) 11886 { 11887 wait_queue_head_t *pdone_q; 11888 unsigned long iflags; 11889 struct lpfc_io_buf *lpfc_cmd; 11890 11891 spin_lock_irqsave(&phba->hbalock, iflags); 11892 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11893 11894 /* 11895 * A time out has occurred for the iocb. If a time out 11896 * completion handler has been supplied, call it. Otherwise, 11897 * just free the iocbq. 11898 */ 11899 11900 spin_unlock_irqrestore(&phba->hbalock, iflags); 11901 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11902 cmdiocbq->wait_iocb_cmpl = NULL; 11903 if (cmdiocbq->iocb_cmpl) 11904 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11905 else 11906 lpfc_sli_release_iocbq(phba, cmdiocbq); 11907 return; 11908 } 11909 11910 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11911 if (cmdiocbq->context2 && rspiocbq) 11912 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11913 &rspiocbq->iocb, sizeof(IOCB_t)); 11914 11915 /* Set the exchange busy flag for task management commands */ 11916 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11917 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11918 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 11919 cur_iocbq); 11920 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 11921 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 11922 else 11923 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 11924 } 11925 11926 pdone_q = cmdiocbq->context_un.wait_queue; 11927 if (pdone_q) 11928 wake_up(pdone_q); 11929 spin_unlock_irqrestore(&phba->hbalock, iflags); 11930 return; 11931 } 11932 11933 /** 11934 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11935 * @phba: Pointer to HBA context object.. 11936 * @piocbq: Pointer to command iocb. 11937 * @flag: Flag to test. 11938 * 11939 * This routine grabs the hbalock and then test the iocb_flag to 11940 * see if the passed in flag is set. 11941 * Returns: 11942 * 1 if flag is set. 11943 * 0 if flag is not set. 11944 **/ 11945 static int 11946 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11947 struct lpfc_iocbq *piocbq, uint32_t flag) 11948 { 11949 unsigned long iflags; 11950 int ret; 11951 11952 spin_lock_irqsave(&phba->hbalock, iflags); 11953 ret = piocbq->iocb_flag & flag; 11954 spin_unlock_irqrestore(&phba->hbalock, iflags); 11955 return ret; 11956 11957 } 11958 11959 /** 11960 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11961 * @phba: Pointer to HBA context object.. 11962 * @pring: Pointer to sli ring. 11963 * @piocb: Pointer to command iocb. 11964 * @prspiocbq: Pointer to response iocb. 11965 * @timeout: Timeout in number of seconds. 11966 * 11967 * This function issues the iocb to firmware and waits for the 11968 * iocb to complete. The iocb_cmpl field of the shall be used 11969 * to handle iocbs which time out. If the field is NULL, the 11970 * function shall free the iocbq structure. If more clean up is 11971 * needed, the caller is expected to provide a completion function 11972 * that will provide the needed clean up. If the iocb command is 11973 * not completed within timeout seconds, the function will either 11974 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11975 * completion function set in the iocb_cmpl field and then return 11976 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11977 * resources if this function returns IOCB_TIMEDOUT. 11978 * The function waits for the iocb completion using an 11979 * non-interruptible wait. 11980 * This function will sleep while waiting for iocb completion. 11981 * So, this function should not be called from any context which 11982 * does not allow sleeping. Due to the same reason, this function 11983 * cannot be called with interrupt disabled. 11984 * This function assumes that the iocb completions occur while 11985 * this function sleep. So, this function cannot be called from 11986 * the thread which process iocb completion for this ring. 11987 * This function clears the iocb_flag of the iocb object before 11988 * issuing the iocb and the iocb completion handler sets this 11989 * flag and wakes this thread when the iocb completes. 11990 * The contents of the response iocb will be copied to prspiocbq 11991 * by the completion handler when the command completes. 11992 * This function returns IOCB_SUCCESS when success. 11993 * This function is called with no lock held. 11994 **/ 11995 int 11996 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11997 uint32_t ring_number, 11998 struct lpfc_iocbq *piocb, 11999 struct lpfc_iocbq *prspiocbq, 12000 uint32_t timeout) 12001 { 12002 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12003 long timeleft, timeout_req = 0; 12004 int retval = IOCB_SUCCESS; 12005 uint32_t creg_val; 12006 struct lpfc_iocbq *iocb; 12007 int txq_cnt = 0; 12008 int txcmplq_cnt = 0; 12009 struct lpfc_sli_ring *pring; 12010 unsigned long iflags; 12011 bool iocb_completed = true; 12012 12013 if (phba->sli_rev >= LPFC_SLI_REV4) 12014 pring = lpfc_sli4_calc_ring(phba, piocb); 12015 else 12016 pring = &phba->sli.sli3_ring[ring_number]; 12017 /* 12018 * If the caller has provided a response iocbq buffer, then context2 12019 * is NULL or its an error. 12020 */ 12021 if (prspiocbq) { 12022 if (piocb->context2) 12023 return IOCB_ERROR; 12024 piocb->context2 = prspiocbq; 12025 } 12026 12027 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12028 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12029 piocb->context_un.wait_queue = &done_q; 12030 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12031 12032 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12033 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12034 return IOCB_ERROR; 12035 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12036 writel(creg_val, phba->HCregaddr); 12037 readl(phba->HCregaddr); /* flush */ 12038 } 12039 12040 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12041 SLI_IOCB_RET_IOCB); 12042 if (retval == IOCB_SUCCESS) { 12043 timeout_req = msecs_to_jiffies(timeout * 1000); 12044 timeleft = wait_event_timeout(done_q, 12045 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12046 timeout_req); 12047 spin_lock_irqsave(&phba->hbalock, iflags); 12048 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12049 12050 /* 12051 * IOCB timed out. Inform the wake iocb wait 12052 * completion function and set local status 12053 */ 12054 12055 iocb_completed = false; 12056 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12057 } 12058 spin_unlock_irqrestore(&phba->hbalock, iflags); 12059 if (iocb_completed) { 12060 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12061 "0331 IOCB wake signaled\n"); 12062 /* Note: we are not indicating if the IOCB has a success 12063 * status or not - that's for the caller to check. 12064 * IOCB_SUCCESS means just that the command was sent and 12065 * completed. Not that it completed successfully. 12066 * */ 12067 } else if (timeleft == 0) { 12068 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12069 "0338 IOCB wait timeout error - no " 12070 "wake response Data x%x\n", timeout); 12071 retval = IOCB_TIMEDOUT; 12072 } else { 12073 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12074 "0330 IOCB wake NOT set, " 12075 "Data x%x x%lx\n", 12076 timeout, (timeleft / jiffies)); 12077 retval = IOCB_TIMEDOUT; 12078 } 12079 } else if (retval == IOCB_BUSY) { 12080 if (phba->cfg_log_verbose & LOG_SLI) { 12081 list_for_each_entry(iocb, &pring->txq, list) { 12082 txq_cnt++; 12083 } 12084 list_for_each_entry(iocb, &pring->txcmplq, list) { 12085 txcmplq_cnt++; 12086 } 12087 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12088 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12089 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12090 } 12091 return retval; 12092 } else { 12093 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12094 "0332 IOCB wait issue failed, Data x%x\n", 12095 retval); 12096 retval = IOCB_ERROR; 12097 } 12098 12099 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12100 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12101 return IOCB_ERROR; 12102 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12103 writel(creg_val, phba->HCregaddr); 12104 readl(phba->HCregaddr); /* flush */ 12105 } 12106 12107 if (prspiocbq) 12108 piocb->context2 = NULL; 12109 12110 piocb->context_un.wait_queue = NULL; 12111 piocb->iocb_cmpl = NULL; 12112 return retval; 12113 } 12114 12115 /** 12116 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12117 * @phba: Pointer to HBA context object. 12118 * @pmboxq: Pointer to driver mailbox object. 12119 * @timeout: Timeout in number of seconds. 12120 * 12121 * This function issues the mailbox to firmware and waits for the 12122 * mailbox command to complete. If the mailbox command is not 12123 * completed within timeout seconds, it returns MBX_TIMEOUT. 12124 * The function waits for the mailbox completion using an 12125 * interruptible wait. If the thread is woken up due to a 12126 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12127 * should not free the mailbox resources, if this function returns 12128 * MBX_TIMEOUT. 12129 * This function will sleep while waiting for mailbox completion. 12130 * So, this function should not be called from any context which 12131 * does not allow sleeping. Due to the same reason, this function 12132 * cannot be called with interrupt disabled. 12133 * This function assumes that the mailbox completion occurs while 12134 * this function sleep. So, this function cannot be called from 12135 * the worker thread which processes mailbox completion. 12136 * This function is called in the context of HBA management 12137 * applications. 12138 * This function returns MBX_SUCCESS when successful. 12139 * This function is called with no lock held. 12140 **/ 12141 int 12142 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12143 uint32_t timeout) 12144 { 12145 struct completion mbox_done; 12146 int retval; 12147 unsigned long flag; 12148 12149 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12150 /* setup wake call as IOCB callback */ 12151 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12152 12153 /* setup context3 field to pass wait_queue pointer to wake function */ 12154 init_completion(&mbox_done); 12155 pmboxq->context3 = &mbox_done; 12156 /* now issue the command */ 12157 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12158 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12159 wait_for_completion_timeout(&mbox_done, 12160 msecs_to_jiffies(timeout * 1000)); 12161 12162 spin_lock_irqsave(&phba->hbalock, flag); 12163 pmboxq->context3 = NULL; 12164 /* 12165 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12166 * else do not free the resources. 12167 */ 12168 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12169 retval = MBX_SUCCESS; 12170 } else { 12171 retval = MBX_TIMEOUT; 12172 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12173 } 12174 spin_unlock_irqrestore(&phba->hbalock, flag); 12175 } 12176 return retval; 12177 } 12178 12179 /** 12180 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12181 * @phba: Pointer to HBA context. 12182 * 12183 * This function is called to shutdown the driver's mailbox sub-system. 12184 * It first marks the mailbox sub-system is in a block state to prevent 12185 * the asynchronous mailbox command from issued off the pending mailbox 12186 * command queue. If the mailbox command sub-system shutdown is due to 12187 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12188 * the mailbox sub-system flush routine to forcefully bring down the 12189 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12190 * as with offline or HBA function reset), this routine will wait for the 12191 * outstanding mailbox command to complete before invoking the mailbox 12192 * sub-system flush routine to gracefully bring down mailbox sub-system. 12193 **/ 12194 void 12195 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12196 { 12197 struct lpfc_sli *psli = &phba->sli; 12198 unsigned long timeout; 12199 12200 if (mbx_action == LPFC_MBX_NO_WAIT) { 12201 /* delay 100ms for port state */ 12202 msleep(100); 12203 lpfc_sli_mbox_sys_flush(phba); 12204 return; 12205 } 12206 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12207 12208 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12209 local_bh_disable(); 12210 12211 spin_lock_irq(&phba->hbalock); 12212 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12213 12214 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12215 /* Determine how long we might wait for the active mailbox 12216 * command to be gracefully completed by firmware. 12217 */ 12218 if (phba->sli.mbox_active) 12219 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12220 phba->sli.mbox_active) * 12221 1000) + jiffies; 12222 spin_unlock_irq(&phba->hbalock); 12223 12224 /* Enable softirqs again, done with phba->hbalock */ 12225 local_bh_enable(); 12226 12227 while (phba->sli.mbox_active) { 12228 /* Check active mailbox complete status every 2ms */ 12229 msleep(2); 12230 if (time_after(jiffies, timeout)) 12231 /* Timeout, let the mailbox flush routine to 12232 * forcefully release active mailbox command 12233 */ 12234 break; 12235 } 12236 } else { 12237 spin_unlock_irq(&phba->hbalock); 12238 12239 /* Enable softirqs again, done with phba->hbalock */ 12240 local_bh_enable(); 12241 } 12242 12243 lpfc_sli_mbox_sys_flush(phba); 12244 } 12245 12246 /** 12247 * lpfc_sli_eratt_read - read sli-3 error attention events 12248 * @phba: Pointer to HBA context. 12249 * 12250 * This function is called to read the SLI3 device error attention registers 12251 * for possible error attention events. The caller must hold the hostlock 12252 * with spin_lock_irq(). 12253 * 12254 * This function returns 1 when there is Error Attention in the Host Attention 12255 * Register and returns 0 otherwise. 12256 **/ 12257 static int 12258 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12259 { 12260 uint32_t ha_copy; 12261 12262 /* Read chip Host Attention (HA) register */ 12263 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12264 goto unplug_err; 12265 12266 if (ha_copy & HA_ERATT) { 12267 /* Read host status register to retrieve error event */ 12268 if (lpfc_sli_read_hs(phba)) 12269 goto unplug_err; 12270 12271 /* Check if there is a deferred error condition is active */ 12272 if ((HS_FFER1 & phba->work_hs) && 12273 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12274 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12275 phba->hba_flag |= DEFER_ERATT; 12276 /* Clear all interrupt enable conditions */ 12277 writel(0, phba->HCregaddr); 12278 readl(phba->HCregaddr); 12279 } 12280 12281 /* Set the driver HA work bitmap */ 12282 phba->work_ha |= HA_ERATT; 12283 /* Indicate polling handles this ERATT */ 12284 phba->hba_flag |= HBA_ERATT_HANDLED; 12285 return 1; 12286 } 12287 return 0; 12288 12289 unplug_err: 12290 /* Set the driver HS work bitmap */ 12291 phba->work_hs |= UNPLUG_ERR; 12292 /* Set the driver HA work bitmap */ 12293 phba->work_ha |= HA_ERATT; 12294 /* Indicate polling handles this ERATT */ 12295 phba->hba_flag |= HBA_ERATT_HANDLED; 12296 return 1; 12297 } 12298 12299 /** 12300 * lpfc_sli4_eratt_read - read sli-4 error attention events 12301 * @phba: Pointer to HBA context. 12302 * 12303 * This function is called to read the SLI4 device error attention registers 12304 * for possible error attention events. The caller must hold the hostlock 12305 * with spin_lock_irq(). 12306 * 12307 * This function returns 1 when there is Error Attention in the Host Attention 12308 * Register and returns 0 otherwise. 12309 **/ 12310 static int 12311 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12312 { 12313 uint32_t uerr_sta_hi, uerr_sta_lo; 12314 uint32_t if_type, portsmphr; 12315 struct lpfc_register portstat_reg; 12316 12317 /* 12318 * For now, use the SLI4 device internal unrecoverable error 12319 * registers for error attention. This can be changed later. 12320 */ 12321 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12322 switch (if_type) { 12323 case LPFC_SLI_INTF_IF_TYPE_0: 12324 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12325 &uerr_sta_lo) || 12326 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12327 &uerr_sta_hi)) { 12328 phba->work_hs |= UNPLUG_ERR; 12329 phba->work_ha |= HA_ERATT; 12330 phba->hba_flag |= HBA_ERATT_HANDLED; 12331 return 1; 12332 } 12333 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12334 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12335 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12336 "1423 HBA Unrecoverable error: " 12337 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12338 "ue_mask_lo_reg=0x%x, " 12339 "ue_mask_hi_reg=0x%x\n", 12340 uerr_sta_lo, uerr_sta_hi, 12341 phba->sli4_hba.ue_mask_lo, 12342 phba->sli4_hba.ue_mask_hi); 12343 phba->work_status[0] = uerr_sta_lo; 12344 phba->work_status[1] = uerr_sta_hi; 12345 phba->work_ha |= HA_ERATT; 12346 phba->hba_flag |= HBA_ERATT_HANDLED; 12347 return 1; 12348 } 12349 break; 12350 case LPFC_SLI_INTF_IF_TYPE_2: 12351 case LPFC_SLI_INTF_IF_TYPE_6: 12352 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12353 &portstat_reg.word0) || 12354 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12355 &portsmphr)){ 12356 phba->work_hs |= UNPLUG_ERR; 12357 phba->work_ha |= HA_ERATT; 12358 phba->hba_flag |= HBA_ERATT_HANDLED; 12359 return 1; 12360 } 12361 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12362 phba->work_status[0] = 12363 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12364 phba->work_status[1] = 12365 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12366 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12367 "2885 Port Status Event: " 12368 "port status reg 0x%x, " 12369 "port smphr reg 0x%x, " 12370 "error 1=0x%x, error 2=0x%x\n", 12371 portstat_reg.word0, 12372 portsmphr, 12373 phba->work_status[0], 12374 phba->work_status[1]); 12375 phba->work_ha |= HA_ERATT; 12376 phba->hba_flag |= HBA_ERATT_HANDLED; 12377 return 1; 12378 } 12379 break; 12380 case LPFC_SLI_INTF_IF_TYPE_1: 12381 default: 12382 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12383 "2886 HBA Error Attention on unsupported " 12384 "if type %d.", if_type); 12385 return 1; 12386 } 12387 12388 return 0; 12389 } 12390 12391 /** 12392 * lpfc_sli_check_eratt - check error attention events 12393 * @phba: Pointer to HBA context. 12394 * 12395 * This function is called from timer soft interrupt context to check HBA's 12396 * error attention register bit for error attention events. 12397 * 12398 * This function returns 1 when there is Error Attention in the Host Attention 12399 * Register and returns 0 otherwise. 12400 **/ 12401 int 12402 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12403 { 12404 uint32_t ha_copy; 12405 12406 /* If somebody is waiting to handle an eratt, don't process it 12407 * here. The brdkill function will do this. 12408 */ 12409 if (phba->link_flag & LS_IGNORE_ERATT) 12410 return 0; 12411 12412 /* Check if interrupt handler handles this ERATT */ 12413 spin_lock_irq(&phba->hbalock); 12414 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12415 /* Interrupt handler has handled ERATT */ 12416 spin_unlock_irq(&phba->hbalock); 12417 return 0; 12418 } 12419 12420 /* 12421 * If there is deferred error attention, do not check for error 12422 * attention 12423 */ 12424 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12425 spin_unlock_irq(&phba->hbalock); 12426 return 0; 12427 } 12428 12429 /* If PCI channel is offline, don't process it */ 12430 if (unlikely(pci_channel_offline(phba->pcidev))) { 12431 spin_unlock_irq(&phba->hbalock); 12432 return 0; 12433 } 12434 12435 switch (phba->sli_rev) { 12436 case LPFC_SLI_REV2: 12437 case LPFC_SLI_REV3: 12438 /* Read chip Host Attention (HA) register */ 12439 ha_copy = lpfc_sli_eratt_read(phba); 12440 break; 12441 case LPFC_SLI_REV4: 12442 /* Read device Uncoverable Error (UERR) registers */ 12443 ha_copy = lpfc_sli4_eratt_read(phba); 12444 break; 12445 default: 12446 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12447 "0299 Invalid SLI revision (%d)\n", 12448 phba->sli_rev); 12449 ha_copy = 0; 12450 break; 12451 } 12452 spin_unlock_irq(&phba->hbalock); 12453 12454 return ha_copy; 12455 } 12456 12457 /** 12458 * lpfc_intr_state_check - Check device state for interrupt handling 12459 * @phba: Pointer to HBA context. 12460 * 12461 * This inline routine checks whether a device or its PCI slot is in a state 12462 * that the interrupt should be handled. 12463 * 12464 * This function returns 0 if the device or the PCI slot is in a state that 12465 * interrupt should be handled, otherwise -EIO. 12466 */ 12467 static inline int 12468 lpfc_intr_state_check(struct lpfc_hba *phba) 12469 { 12470 /* If the pci channel is offline, ignore all the interrupts */ 12471 if (unlikely(pci_channel_offline(phba->pcidev))) 12472 return -EIO; 12473 12474 /* Update device level interrupt statistics */ 12475 phba->sli.slistat.sli_intr++; 12476 12477 /* Ignore all interrupts during initialization. */ 12478 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12479 return -EIO; 12480 12481 return 0; 12482 } 12483 12484 /** 12485 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12486 * @irq: Interrupt number. 12487 * @dev_id: The device context pointer. 12488 * 12489 * This function is directly called from the PCI layer as an interrupt 12490 * service routine when device with SLI-3 interface spec is enabled with 12491 * MSI-X multi-message interrupt mode and there are slow-path events in 12492 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12493 * interrupt mode, this function is called as part of the device-level 12494 * interrupt handler. When the PCI slot is in error recovery or the HBA 12495 * is undergoing initialization, the interrupt handler will not process 12496 * the interrupt. The link attention and ELS ring attention events are 12497 * handled by the worker thread. The interrupt handler signals the worker 12498 * thread and returns for these events. This function is called without 12499 * any lock held. It gets the hbalock to access and update SLI data 12500 * structures. 12501 * 12502 * This function returns IRQ_HANDLED when interrupt is handled else it 12503 * returns IRQ_NONE. 12504 **/ 12505 irqreturn_t 12506 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12507 { 12508 struct lpfc_hba *phba; 12509 uint32_t ha_copy, hc_copy; 12510 uint32_t work_ha_copy; 12511 unsigned long status; 12512 unsigned long iflag; 12513 uint32_t control; 12514 12515 MAILBOX_t *mbox, *pmbox; 12516 struct lpfc_vport *vport; 12517 struct lpfc_nodelist *ndlp; 12518 struct lpfc_dmabuf *mp; 12519 LPFC_MBOXQ_t *pmb; 12520 int rc; 12521 12522 /* 12523 * Get the driver's phba structure from the dev_id and 12524 * assume the HBA is not interrupting. 12525 */ 12526 phba = (struct lpfc_hba *)dev_id; 12527 12528 if (unlikely(!phba)) 12529 return IRQ_NONE; 12530 12531 /* 12532 * Stuff needs to be attented to when this function is invoked as an 12533 * individual interrupt handler in MSI-X multi-message interrupt mode 12534 */ 12535 if (phba->intr_type == MSIX) { 12536 /* Check device state for handling interrupt */ 12537 if (lpfc_intr_state_check(phba)) 12538 return IRQ_NONE; 12539 /* Need to read HA REG for slow-path events */ 12540 spin_lock_irqsave(&phba->hbalock, iflag); 12541 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12542 goto unplug_error; 12543 /* If somebody is waiting to handle an eratt don't process it 12544 * here. The brdkill function will do this. 12545 */ 12546 if (phba->link_flag & LS_IGNORE_ERATT) 12547 ha_copy &= ~HA_ERATT; 12548 /* Check the need for handling ERATT in interrupt handler */ 12549 if (ha_copy & HA_ERATT) { 12550 if (phba->hba_flag & HBA_ERATT_HANDLED) 12551 /* ERATT polling has handled ERATT */ 12552 ha_copy &= ~HA_ERATT; 12553 else 12554 /* Indicate interrupt handler handles ERATT */ 12555 phba->hba_flag |= HBA_ERATT_HANDLED; 12556 } 12557 12558 /* 12559 * If there is deferred error attention, do not check for any 12560 * interrupt. 12561 */ 12562 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12563 spin_unlock_irqrestore(&phba->hbalock, iflag); 12564 return IRQ_NONE; 12565 } 12566 12567 /* Clear up only attention source related to slow-path */ 12568 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12569 goto unplug_error; 12570 12571 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12572 HC_LAINT_ENA | HC_ERINT_ENA), 12573 phba->HCregaddr); 12574 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12575 phba->HAregaddr); 12576 writel(hc_copy, phba->HCregaddr); 12577 readl(phba->HAregaddr); /* flush */ 12578 spin_unlock_irqrestore(&phba->hbalock, iflag); 12579 } else 12580 ha_copy = phba->ha_copy; 12581 12582 work_ha_copy = ha_copy & phba->work_ha_mask; 12583 12584 if (work_ha_copy) { 12585 if (work_ha_copy & HA_LATT) { 12586 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12587 /* 12588 * Turn off Link Attention interrupts 12589 * until CLEAR_LA done 12590 */ 12591 spin_lock_irqsave(&phba->hbalock, iflag); 12592 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12593 if (lpfc_readl(phba->HCregaddr, &control)) 12594 goto unplug_error; 12595 control &= ~HC_LAINT_ENA; 12596 writel(control, phba->HCregaddr); 12597 readl(phba->HCregaddr); /* flush */ 12598 spin_unlock_irqrestore(&phba->hbalock, iflag); 12599 } 12600 else 12601 work_ha_copy &= ~HA_LATT; 12602 } 12603 12604 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12605 /* 12606 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12607 * the only slow ring. 12608 */ 12609 status = (work_ha_copy & 12610 (HA_RXMASK << (4*LPFC_ELS_RING))); 12611 status >>= (4*LPFC_ELS_RING); 12612 if (status & HA_RXMASK) { 12613 spin_lock_irqsave(&phba->hbalock, iflag); 12614 if (lpfc_readl(phba->HCregaddr, &control)) 12615 goto unplug_error; 12616 12617 lpfc_debugfs_slow_ring_trc(phba, 12618 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12619 control, status, 12620 (uint32_t)phba->sli.slistat.sli_intr); 12621 12622 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12623 lpfc_debugfs_slow_ring_trc(phba, 12624 "ISR Disable ring:" 12625 "pwork:x%x hawork:x%x wait:x%x", 12626 phba->work_ha, work_ha_copy, 12627 (uint32_t)((unsigned long) 12628 &phba->work_waitq)); 12629 12630 control &= 12631 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12632 writel(control, phba->HCregaddr); 12633 readl(phba->HCregaddr); /* flush */ 12634 } 12635 else { 12636 lpfc_debugfs_slow_ring_trc(phba, 12637 "ISR slow ring: pwork:" 12638 "x%x hawork:x%x wait:x%x", 12639 phba->work_ha, work_ha_copy, 12640 (uint32_t)((unsigned long) 12641 &phba->work_waitq)); 12642 } 12643 spin_unlock_irqrestore(&phba->hbalock, iflag); 12644 } 12645 } 12646 spin_lock_irqsave(&phba->hbalock, iflag); 12647 if (work_ha_copy & HA_ERATT) { 12648 if (lpfc_sli_read_hs(phba)) 12649 goto unplug_error; 12650 /* 12651 * Check if there is a deferred error condition 12652 * is active 12653 */ 12654 if ((HS_FFER1 & phba->work_hs) && 12655 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12656 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12657 phba->work_hs)) { 12658 phba->hba_flag |= DEFER_ERATT; 12659 /* Clear all interrupt enable conditions */ 12660 writel(0, phba->HCregaddr); 12661 readl(phba->HCregaddr); 12662 } 12663 } 12664 12665 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12666 pmb = phba->sli.mbox_active; 12667 pmbox = &pmb->u.mb; 12668 mbox = phba->mbox; 12669 vport = pmb->vport; 12670 12671 /* First check out the status word */ 12672 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12673 if (pmbox->mbxOwner != OWN_HOST) { 12674 spin_unlock_irqrestore(&phba->hbalock, iflag); 12675 /* 12676 * Stray Mailbox Interrupt, mbxCommand <cmd> 12677 * mbxStatus <status> 12678 */ 12679 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12680 LOG_SLI, 12681 "(%d):0304 Stray Mailbox " 12682 "Interrupt mbxCommand x%x " 12683 "mbxStatus x%x\n", 12684 (vport ? vport->vpi : 0), 12685 pmbox->mbxCommand, 12686 pmbox->mbxStatus); 12687 /* clear mailbox attention bit */ 12688 work_ha_copy &= ~HA_MBATT; 12689 } else { 12690 phba->sli.mbox_active = NULL; 12691 spin_unlock_irqrestore(&phba->hbalock, iflag); 12692 phba->last_completion_time = jiffies; 12693 del_timer(&phba->sli.mbox_tmo); 12694 if (pmb->mbox_cmpl) { 12695 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12696 MAILBOX_CMD_SIZE); 12697 if (pmb->out_ext_byte_len && 12698 pmb->ctx_buf) 12699 lpfc_sli_pcimem_bcopy( 12700 phba->mbox_ext, 12701 pmb->ctx_buf, 12702 pmb->out_ext_byte_len); 12703 } 12704 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12705 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12706 12707 lpfc_debugfs_disc_trc(vport, 12708 LPFC_DISC_TRC_MBOX_VPORT, 12709 "MBOX dflt rpi: : " 12710 "status:x%x rpi:x%x", 12711 (uint32_t)pmbox->mbxStatus, 12712 pmbox->un.varWords[0], 0); 12713 12714 if (!pmbox->mbxStatus) { 12715 mp = (struct lpfc_dmabuf *) 12716 (pmb->ctx_buf); 12717 ndlp = (struct lpfc_nodelist *) 12718 pmb->ctx_ndlp; 12719 12720 /* Reg_LOGIN of dflt RPI was 12721 * successful. new lets get 12722 * rid of the RPI using the 12723 * same mbox buffer. 12724 */ 12725 lpfc_unreg_login(phba, 12726 vport->vpi, 12727 pmbox->un.varWords[0], 12728 pmb); 12729 pmb->mbox_cmpl = 12730 lpfc_mbx_cmpl_dflt_rpi; 12731 pmb->ctx_buf = mp; 12732 pmb->ctx_ndlp = ndlp; 12733 pmb->vport = vport; 12734 rc = lpfc_sli_issue_mbox(phba, 12735 pmb, 12736 MBX_NOWAIT); 12737 if (rc != MBX_BUSY) 12738 lpfc_printf_log(phba, 12739 KERN_ERR, 12740 LOG_MBOX | LOG_SLI, 12741 "0350 rc should have" 12742 "been MBX_BUSY\n"); 12743 if (rc != MBX_NOT_FINISHED) 12744 goto send_current_mbox; 12745 } 12746 } 12747 spin_lock_irqsave( 12748 &phba->pport->work_port_lock, 12749 iflag); 12750 phba->pport->work_port_events &= 12751 ~WORKER_MBOX_TMO; 12752 spin_unlock_irqrestore( 12753 &phba->pport->work_port_lock, 12754 iflag); 12755 lpfc_mbox_cmpl_put(phba, pmb); 12756 } 12757 } else 12758 spin_unlock_irqrestore(&phba->hbalock, iflag); 12759 12760 if ((work_ha_copy & HA_MBATT) && 12761 (phba->sli.mbox_active == NULL)) { 12762 send_current_mbox: 12763 /* Process next mailbox command if there is one */ 12764 do { 12765 rc = lpfc_sli_issue_mbox(phba, NULL, 12766 MBX_NOWAIT); 12767 } while (rc == MBX_NOT_FINISHED); 12768 if (rc != MBX_SUCCESS) 12769 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12770 LOG_SLI, "0349 rc should be " 12771 "MBX_SUCCESS\n"); 12772 } 12773 12774 spin_lock_irqsave(&phba->hbalock, iflag); 12775 phba->work_ha |= work_ha_copy; 12776 spin_unlock_irqrestore(&phba->hbalock, iflag); 12777 lpfc_worker_wake_up(phba); 12778 } 12779 return IRQ_HANDLED; 12780 unplug_error: 12781 spin_unlock_irqrestore(&phba->hbalock, iflag); 12782 return IRQ_HANDLED; 12783 12784 } /* lpfc_sli_sp_intr_handler */ 12785 12786 /** 12787 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12788 * @irq: Interrupt number. 12789 * @dev_id: The device context pointer. 12790 * 12791 * This function is directly called from the PCI layer as an interrupt 12792 * service routine when device with SLI-3 interface spec is enabled with 12793 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12794 * ring event in the HBA. However, when the device is enabled with either 12795 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12796 * device-level interrupt handler. When the PCI slot is in error recovery 12797 * or the HBA is undergoing initialization, the interrupt handler will not 12798 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12799 * the intrrupt context. This function is called without any lock held. 12800 * It gets the hbalock to access and update SLI data structures. 12801 * 12802 * This function returns IRQ_HANDLED when interrupt is handled else it 12803 * returns IRQ_NONE. 12804 **/ 12805 irqreturn_t 12806 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12807 { 12808 struct lpfc_hba *phba; 12809 uint32_t ha_copy; 12810 unsigned long status; 12811 unsigned long iflag; 12812 struct lpfc_sli_ring *pring; 12813 12814 /* Get the driver's phba structure from the dev_id and 12815 * assume the HBA is not interrupting. 12816 */ 12817 phba = (struct lpfc_hba *) dev_id; 12818 12819 if (unlikely(!phba)) 12820 return IRQ_NONE; 12821 12822 /* 12823 * Stuff needs to be attented to when this function is invoked as an 12824 * individual interrupt handler in MSI-X multi-message interrupt mode 12825 */ 12826 if (phba->intr_type == MSIX) { 12827 /* Check device state for handling interrupt */ 12828 if (lpfc_intr_state_check(phba)) 12829 return IRQ_NONE; 12830 /* Need to read HA REG for FCP ring and other ring events */ 12831 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12832 return IRQ_HANDLED; 12833 /* Clear up only attention source related to fast-path */ 12834 spin_lock_irqsave(&phba->hbalock, iflag); 12835 /* 12836 * If there is deferred error attention, do not check for 12837 * any interrupt. 12838 */ 12839 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12840 spin_unlock_irqrestore(&phba->hbalock, iflag); 12841 return IRQ_NONE; 12842 } 12843 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12844 phba->HAregaddr); 12845 readl(phba->HAregaddr); /* flush */ 12846 spin_unlock_irqrestore(&phba->hbalock, iflag); 12847 } else 12848 ha_copy = phba->ha_copy; 12849 12850 /* 12851 * Process all events on FCP ring. Take the optimized path for FCP IO. 12852 */ 12853 ha_copy &= ~(phba->work_ha_mask); 12854 12855 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12856 status >>= (4*LPFC_FCP_RING); 12857 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12858 if (status & HA_RXMASK) 12859 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12860 12861 if (phba->cfg_multi_ring_support == 2) { 12862 /* 12863 * Process all events on extra ring. Take the optimized path 12864 * for extra ring IO. 12865 */ 12866 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12867 status >>= (4*LPFC_EXTRA_RING); 12868 if (status & HA_RXMASK) { 12869 lpfc_sli_handle_fast_ring_event(phba, 12870 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12871 status); 12872 } 12873 } 12874 return IRQ_HANDLED; 12875 } /* lpfc_sli_fp_intr_handler */ 12876 12877 /** 12878 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12879 * @irq: Interrupt number. 12880 * @dev_id: The device context pointer. 12881 * 12882 * This function is the HBA device-level interrupt handler to device with 12883 * SLI-3 interface spec, called from the PCI layer when either MSI or 12884 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12885 * requires driver attention. This function invokes the slow-path interrupt 12886 * attention handling function and fast-path interrupt attention handling 12887 * function in turn to process the relevant HBA attention events. This 12888 * function is called without any lock held. It gets the hbalock to access 12889 * and update SLI data structures. 12890 * 12891 * This function returns IRQ_HANDLED when interrupt is handled, else it 12892 * returns IRQ_NONE. 12893 **/ 12894 irqreturn_t 12895 lpfc_sli_intr_handler(int irq, void *dev_id) 12896 { 12897 struct lpfc_hba *phba; 12898 irqreturn_t sp_irq_rc, fp_irq_rc; 12899 unsigned long status1, status2; 12900 uint32_t hc_copy; 12901 12902 /* 12903 * Get the driver's phba structure from the dev_id and 12904 * assume the HBA is not interrupting. 12905 */ 12906 phba = (struct lpfc_hba *) dev_id; 12907 12908 if (unlikely(!phba)) 12909 return IRQ_NONE; 12910 12911 /* Check device state for handling interrupt */ 12912 if (lpfc_intr_state_check(phba)) 12913 return IRQ_NONE; 12914 12915 spin_lock(&phba->hbalock); 12916 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12917 spin_unlock(&phba->hbalock); 12918 return IRQ_HANDLED; 12919 } 12920 12921 if (unlikely(!phba->ha_copy)) { 12922 spin_unlock(&phba->hbalock); 12923 return IRQ_NONE; 12924 } else if (phba->ha_copy & HA_ERATT) { 12925 if (phba->hba_flag & HBA_ERATT_HANDLED) 12926 /* ERATT polling has handled ERATT */ 12927 phba->ha_copy &= ~HA_ERATT; 12928 else 12929 /* Indicate interrupt handler handles ERATT */ 12930 phba->hba_flag |= HBA_ERATT_HANDLED; 12931 } 12932 12933 /* 12934 * If there is deferred error attention, do not check for any interrupt. 12935 */ 12936 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12937 spin_unlock(&phba->hbalock); 12938 return IRQ_NONE; 12939 } 12940 12941 /* Clear attention sources except link and error attentions */ 12942 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12943 spin_unlock(&phba->hbalock); 12944 return IRQ_HANDLED; 12945 } 12946 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12947 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12948 phba->HCregaddr); 12949 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12950 writel(hc_copy, phba->HCregaddr); 12951 readl(phba->HAregaddr); /* flush */ 12952 spin_unlock(&phba->hbalock); 12953 12954 /* 12955 * Invokes slow-path host attention interrupt handling as appropriate. 12956 */ 12957 12958 /* status of events with mailbox and link attention */ 12959 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12960 12961 /* status of events with ELS ring */ 12962 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12963 status2 >>= (4*LPFC_ELS_RING); 12964 12965 if (status1 || (status2 & HA_RXMASK)) 12966 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12967 else 12968 sp_irq_rc = IRQ_NONE; 12969 12970 /* 12971 * Invoke fast-path host attention interrupt handling as appropriate. 12972 */ 12973 12974 /* status of events with FCP ring */ 12975 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12976 status1 >>= (4*LPFC_FCP_RING); 12977 12978 /* status of events with extra ring */ 12979 if (phba->cfg_multi_ring_support == 2) { 12980 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12981 status2 >>= (4*LPFC_EXTRA_RING); 12982 } else 12983 status2 = 0; 12984 12985 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12986 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12987 else 12988 fp_irq_rc = IRQ_NONE; 12989 12990 /* Return device-level interrupt handling status */ 12991 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12992 } /* lpfc_sli_intr_handler */ 12993 12994 /** 12995 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12996 * @phba: pointer to lpfc hba data structure. 12997 * 12998 * This routine is invoked by the worker thread to process all the pending 12999 * SLI4 els abort xri events. 13000 **/ 13001 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13002 { 13003 struct lpfc_cq_event *cq_event; 13004 13005 /* First, declare the els xri abort event has been handled */ 13006 spin_lock_irq(&phba->hbalock); 13007 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13008 spin_unlock_irq(&phba->hbalock); 13009 /* Now, handle all the els xri abort events */ 13010 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13011 /* Get the first event from the head of the event queue */ 13012 spin_lock_irq(&phba->hbalock); 13013 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13014 cq_event, struct lpfc_cq_event, list); 13015 spin_unlock_irq(&phba->hbalock); 13016 /* Notify aborted XRI for ELS work queue */ 13017 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13018 /* Free the event processed back to the free pool */ 13019 lpfc_sli4_cq_event_release(phba, cq_event); 13020 } 13021 } 13022 13023 /** 13024 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13025 * @phba: pointer to lpfc hba data structure 13026 * @pIocbIn: pointer to the rspiocbq 13027 * @pIocbOut: pointer to the cmdiocbq 13028 * @wcqe: pointer to the complete wcqe 13029 * 13030 * This routine transfers the fields of a command iocbq to a response iocbq 13031 * by copying all the IOCB fields from command iocbq and transferring the 13032 * completion status information from the complete wcqe. 13033 **/ 13034 static void 13035 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13036 struct lpfc_iocbq *pIocbIn, 13037 struct lpfc_iocbq *pIocbOut, 13038 struct lpfc_wcqe_complete *wcqe) 13039 { 13040 int numBdes, i; 13041 unsigned long iflags; 13042 uint32_t status, max_response; 13043 struct lpfc_dmabuf *dmabuf; 13044 struct ulp_bde64 *bpl, bde; 13045 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13046 13047 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13048 sizeof(struct lpfc_iocbq) - offset); 13049 /* Map WCQE parameters into irspiocb parameters */ 13050 status = bf_get(lpfc_wcqe_c_status, wcqe); 13051 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13052 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13053 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13054 pIocbIn->iocb.un.fcpi.fcpi_parm = 13055 pIocbOut->iocb.un.fcpi.fcpi_parm - 13056 wcqe->total_data_placed; 13057 else 13058 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13059 else { 13060 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13061 switch (pIocbOut->iocb.ulpCommand) { 13062 case CMD_ELS_REQUEST64_CR: 13063 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13064 bpl = (struct ulp_bde64 *)dmabuf->virt; 13065 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13066 max_response = bde.tus.f.bdeSize; 13067 break; 13068 case CMD_GEN_REQUEST64_CR: 13069 max_response = 0; 13070 if (!pIocbOut->context3) 13071 break; 13072 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13073 sizeof(struct ulp_bde64); 13074 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13075 bpl = (struct ulp_bde64 *)dmabuf->virt; 13076 for (i = 0; i < numBdes; i++) { 13077 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13078 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13079 max_response += bde.tus.f.bdeSize; 13080 } 13081 break; 13082 default: 13083 max_response = wcqe->total_data_placed; 13084 break; 13085 } 13086 if (max_response < wcqe->total_data_placed) 13087 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13088 else 13089 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13090 wcqe->total_data_placed; 13091 } 13092 13093 /* Convert BG errors for completion status */ 13094 if (status == CQE_STATUS_DI_ERROR) { 13095 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13096 13097 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13098 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13099 else 13100 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13101 13102 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13103 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13104 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13105 BGS_GUARD_ERR_MASK; 13106 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13107 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13108 BGS_APPTAG_ERR_MASK; 13109 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13110 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13111 BGS_REFTAG_ERR_MASK; 13112 13113 /* Check to see if there was any good data before the error */ 13114 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13115 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13116 BGS_HI_WATER_MARK_PRESENT_MASK; 13117 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13118 wcqe->total_data_placed; 13119 } 13120 13121 /* 13122 * Set ALL the error bits to indicate we don't know what 13123 * type of error it is. 13124 */ 13125 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13126 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13127 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13128 BGS_GUARD_ERR_MASK); 13129 } 13130 13131 /* Pick up HBA exchange busy condition */ 13132 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13133 spin_lock_irqsave(&phba->hbalock, iflags); 13134 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13135 spin_unlock_irqrestore(&phba->hbalock, iflags); 13136 } 13137 } 13138 13139 /** 13140 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13141 * @phba: Pointer to HBA context object. 13142 * @wcqe: Pointer to work-queue completion queue entry. 13143 * 13144 * This routine handles an ELS work-queue completion event and construct 13145 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13146 * discovery engine to handle. 13147 * 13148 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13149 **/ 13150 static struct lpfc_iocbq * 13151 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13152 struct lpfc_iocbq *irspiocbq) 13153 { 13154 struct lpfc_sli_ring *pring; 13155 struct lpfc_iocbq *cmdiocbq; 13156 struct lpfc_wcqe_complete *wcqe; 13157 unsigned long iflags; 13158 13159 pring = lpfc_phba_elsring(phba); 13160 if (unlikely(!pring)) 13161 return NULL; 13162 13163 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13164 pring->stats.iocb_event++; 13165 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13166 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13167 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13168 if (unlikely(!cmdiocbq)) { 13169 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13170 "0386 ELS complete with no corresponding " 13171 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13172 wcqe->word0, wcqe->total_data_placed, 13173 wcqe->parameter, wcqe->word3); 13174 lpfc_sli_release_iocbq(phba, irspiocbq); 13175 return NULL; 13176 } 13177 13178 spin_lock_irqsave(&pring->ring_lock, iflags); 13179 /* Put the iocb back on the txcmplq */ 13180 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13181 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13182 13183 /* Fake the irspiocbq and copy necessary response information */ 13184 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13185 13186 return irspiocbq; 13187 } 13188 13189 inline struct lpfc_cq_event * 13190 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13191 { 13192 struct lpfc_cq_event *cq_event; 13193 13194 /* Allocate a new internal CQ_EVENT entry */ 13195 cq_event = lpfc_sli4_cq_event_alloc(phba); 13196 if (!cq_event) { 13197 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13198 "0602 Failed to alloc CQ_EVENT entry\n"); 13199 return NULL; 13200 } 13201 13202 /* Move the CQE into the event */ 13203 memcpy(&cq_event->cqe, entry, size); 13204 return cq_event; 13205 } 13206 13207 /** 13208 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13209 * @phba: Pointer to HBA context object. 13210 * @cqe: Pointer to mailbox completion queue entry. 13211 * 13212 * This routine process a mailbox completion queue entry with asynchronous 13213 * event. 13214 * 13215 * Return: true if work posted to worker thread, otherwise false. 13216 **/ 13217 static bool 13218 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13219 { 13220 struct lpfc_cq_event *cq_event; 13221 unsigned long iflags; 13222 13223 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13224 "0392 Async Event: word0:x%x, word1:x%x, " 13225 "word2:x%x, word3:x%x\n", mcqe->word0, 13226 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13227 13228 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13229 if (!cq_event) 13230 return false; 13231 spin_lock_irqsave(&phba->hbalock, iflags); 13232 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13233 /* Set the async event flag */ 13234 phba->hba_flag |= ASYNC_EVENT; 13235 spin_unlock_irqrestore(&phba->hbalock, iflags); 13236 13237 return true; 13238 } 13239 13240 /** 13241 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13242 * @phba: Pointer to HBA context object. 13243 * @cqe: Pointer to mailbox completion queue entry. 13244 * 13245 * This routine process a mailbox completion queue entry with mailbox 13246 * completion event. 13247 * 13248 * Return: true if work posted to worker thread, otherwise false. 13249 **/ 13250 static bool 13251 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13252 { 13253 uint32_t mcqe_status; 13254 MAILBOX_t *mbox, *pmbox; 13255 struct lpfc_mqe *mqe; 13256 struct lpfc_vport *vport; 13257 struct lpfc_nodelist *ndlp; 13258 struct lpfc_dmabuf *mp; 13259 unsigned long iflags; 13260 LPFC_MBOXQ_t *pmb; 13261 bool workposted = false; 13262 int rc; 13263 13264 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13265 if (!bf_get(lpfc_trailer_completed, mcqe)) 13266 goto out_no_mqe_complete; 13267 13268 /* Get the reference to the active mbox command */ 13269 spin_lock_irqsave(&phba->hbalock, iflags); 13270 pmb = phba->sli.mbox_active; 13271 if (unlikely(!pmb)) { 13272 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13273 "1832 No pending MBOX command to handle\n"); 13274 spin_unlock_irqrestore(&phba->hbalock, iflags); 13275 goto out_no_mqe_complete; 13276 } 13277 spin_unlock_irqrestore(&phba->hbalock, iflags); 13278 mqe = &pmb->u.mqe; 13279 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13280 mbox = phba->mbox; 13281 vport = pmb->vport; 13282 13283 /* Reset heartbeat timer */ 13284 phba->last_completion_time = jiffies; 13285 del_timer(&phba->sli.mbox_tmo); 13286 13287 /* Move mbox data to caller's mailbox region, do endian swapping */ 13288 if (pmb->mbox_cmpl && mbox) 13289 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13290 13291 /* 13292 * For mcqe errors, conditionally move a modified error code to 13293 * the mbox so that the error will not be missed. 13294 */ 13295 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13296 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13297 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13298 bf_set(lpfc_mqe_status, mqe, 13299 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13300 } 13301 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13302 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13303 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13304 "MBOX dflt rpi: status:x%x rpi:x%x", 13305 mcqe_status, 13306 pmbox->un.varWords[0], 0); 13307 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13308 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13309 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13310 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13311 * RID of the PPI using the same mbox buffer. 13312 */ 13313 lpfc_unreg_login(phba, vport->vpi, 13314 pmbox->un.varWords[0], pmb); 13315 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13316 pmb->ctx_buf = mp; 13317 pmb->ctx_ndlp = ndlp; 13318 pmb->vport = vport; 13319 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13320 if (rc != MBX_BUSY) 13321 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13322 LOG_SLI, "0385 rc should " 13323 "have been MBX_BUSY\n"); 13324 if (rc != MBX_NOT_FINISHED) 13325 goto send_current_mbox; 13326 } 13327 } 13328 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13329 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13330 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13331 13332 /* There is mailbox completion work to do */ 13333 spin_lock_irqsave(&phba->hbalock, iflags); 13334 __lpfc_mbox_cmpl_put(phba, pmb); 13335 phba->work_ha |= HA_MBATT; 13336 spin_unlock_irqrestore(&phba->hbalock, iflags); 13337 workposted = true; 13338 13339 send_current_mbox: 13340 spin_lock_irqsave(&phba->hbalock, iflags); 13341 /* Release the mailbox command posting token */ 13342 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13343 /* Setting active mailbox pointer need to be in sync to flag clear */ 13344 phba->sli.mbox_active = NULL; 13345 if (bf_get(lpfc_trailer_consumed, mcqe)) 13346 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13347 spin_unlock_irqrestore(&phba->hbalock, iflags); 13348 /* Wake up worker thread to post the next pending mailbox command */ 13349 lpfc_worker_wake_up(phba); 13350 return workposted; 13351 13352 out_no_mqe_complete: 13353 spin_lock_irqsave(&phba->hbalock, iflags); 13354 if (bf_get(lpfc_trailer_consumed, mcqe)) 13355 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13356 spin_unlock_irqrestore(&phba->hbalock, iflags); 13357 return false; 13358 } 13359 13360 /** 13361 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13362 * @phba: Pointer to HBA context object. 13363 * @cqe: Pointer to mailbox completion queue entry. 13364 * 13365 * This routine process a mailbox completion queue entry, it invokes the 13366 * proper mailbox complete handling or asynchronous event handling routine 13367 * according to the MCQE's async bit. 13368 * 13369 * Return: true if work posted to worker thread, otherwise false. 13370 **/ 13371 static bool 13372 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13373 struct lpfc_cqe *cqe) 13374 { 13375 struct lpfc_mcqe mcqe; 13376 bool workposted; 13377 13378 cq->CQ_mbox++; 13379 13380 /* Copy the mailbox MCQE and convert endian order as needed */ 13381 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13382 13383 /* Invoke the proper event handling routine */ 13384 if (!bf_get(lpfc_trailer_async, &mcqe)) 13385 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13386 else 13387 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13388 return workposted; 13389 } 13390 13391 /** 13392 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13393 * @phba: Pointer to HBA context object. 13394 * @cq: Pointer to associated CQ 13395 * @wcqe: Pointer to work-queue completion queue entry. 13396 * 13397 * This routine handles an ELS work-queue completion event. 13398 * 13399 * Return: true if work posted to worker thread, otherwise false. 13400 **/ 13401 static bool 13402 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13403 struct lpfc_wcqe_complete *wcqe) 13404 { 13405 struct lpfc_iocbq *irspiocbq; 13406 unsigned long iflags; 13407 struct lpfc_sli_ring *pring = cq->pring; 13408 int txq_cnt = 0; 13409 int txcmplq_cnt = 0; 13410 13411 /* Check for response status */ 13412 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13413 /* Log the error status */ 13414 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13415 "0357 ELS CQE error: status=x%x: " 13416 "CQE: %08x %08x %08x %08x\n", 13417 bf_get(lpfc_wcqe_c_status, wcqe), 13418 wcqe->word0, wcqe->total_data_placed, 13419 wcqe->parameter, wcqe->word3); 13420 } 13421 13422 /* Get an irspiocbq for later ELS response processing use */ 13423 irspiocbq = lpfc_sli_get_iocbq(phba); 13424 if (!irspiocbq) { 13425 if (!list_empty(&pring->txq)) 13426 txq_cnt++; 13427 if (!list_empty(&pring->txcmplq)) 13428 txcmplq_cnt++; 13429 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13430 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13431 "els_txcmplq_cnt=%d\n", 13432 txq_cnt, phba->iocb_cnt, 13433 txcmplq_cnt); 13434 return false; 13435 } 13436 13437 /* Save off the slow-path queue event for work thread to process */ 13438 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13439 spin_lock_irqsave(&phba->hbalock, iflags); 13440 list_add_tail(&irspiocbq->cq_event.list, 13441 &phba->sli4_hba.sp_queue_event); 13442 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13443 spin_unlock_irqrestore(&phba->hbalock, iflags); 13444 13445 return true; 13446 } 13447 13448 /** 13449 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13450 * @phba: Pointer to HBA context object. 13451 * @wcqe: Pointer to work-queue completion queue entry. 13452 * 13453 * This routine handles slow-path WQ entry consumed event by invoking the 13454 * proper WQ release routine to the slow-path WQ. 13455 **/ 13456 static void 13457 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13458 struct lpfc_wcqe_release *wcqe) 13459 { 13460 /* sanity check on queue memory */ 13461 if (unlikely(!phba->sli4_hba.els_wq)) 13462 return; 13463 /* Check for the slow-path ELS work queue */ 13464 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13465 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13466 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13467 else 13468 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13469 "2579 Slow-path wqe consume event carries " 13470 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13471 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13472 phba->sli4_hba.els_wq->queue_id); 13473 } 13474 13475 /** 13476 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13477 * @phba: Pointer to HBA context object. 13478 * @cq: Pointer to a WQ completion queue. 13479 * @wcqe: Pointer to work-queue completion queue entry. 13480 * 13481 * This routine handles an XRI abort event. 13482 * 13483 * Return: true if work posted to worker thread, otherwise false. 13484 **/ 13485 static bool 13486 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13487 struct lpfc_queue *cq, 13488 struct sli4_wcqe_xri_aborted *wcqe) 13489 { 13490 bool workposted = false; 13491 struct lpfc_cq_event *cq_event; 13492 unsigned long iflags; 13493 13494 switch (cq->subtype) { 13495 case LPFC_IO: 13496 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13497 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13498 /* Notify aborted XRI for NVME work queue */ 13499 if (phba->nvmet_support) 13500 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13501 } 13502 workposted = false; 13503 break; 13504 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13505 case LPFC_ELS: 13506 cq_event = lpfc_cq_event_setup( 13507 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13508 if (!cq_event) 13509 return false; 13510 cq_event->hdwq = cq->hdwq; 13511 spin_lock_irqsave(&phba->hbalock, iflags); 13512 list_add_tail(&cq_event->list, 13513 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13514 /* Set the els xri abort event flag */ 13515 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13516 spin_unlock_irqrestore(&phba->hbalock, iflags); 13517 workposted = true; 13518 break; 13519 default: 13520 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13521 "0603 Invalid CQ subtype %d: " 13522 "%08x %08x %08x %08x\n", 13523 cq->subtype, wcqe->word0, wcqe->parameter, 13524 wcqe->word2, wcqe->word3); 13525 workposted = false; 13526 break; 13527 } 13528 return workposted; 13529 } 13530 13531 #define FC_RCTL_MDS_DIAGS 0xF4 13532 13533 /** 13534 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13535 * @phba: Pointer to HBA context object. 13536 * @rcqe: Pointer to receive-queue completion queue entry. 13537 * 13538 * This routine process a receive-queue completion queue entry. 13539 * 13540 * Return: true if work posted to worker thread, otherwise false. 13541 **/ 13542 static bool 13543 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13544 { 13545 bool workposted = false; 13546 struct fc_frame_header *fc_hdr; 13547 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13548 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13549 struct lpfc_nvmet_tgtport *tgtp; 13550 struct hbq_dmabuf *dma_buf; 13551 uint32_t status, rq_id; 13552 unsigned long iflags; 13553 13554 /* sanity check on queue memory */ 13555 if (unlikely(!hrq) || unlikely(!drq)) 13556 return workposted; 13557 13558 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13559 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13560 else 13561 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13562 if (rq_id != hrq->queue_id) 13563 goto out; 13564 13565 status = bf_get(lpfc_rcqe_status, rcqe); 13566 switch (status) { 13567 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13568 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13569 "2537 Receive Frame Truncated!!\n"); 13570 /* fall through */ 13571 case FC_STATUS_RQ_SUCCESS: 13572 spin_lock_irqsave(&phba->hbalock, iflags); 13573 lpfc_sli4_rq_release(hrq, drq); 13574 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13575 if (!dma_buf) { 13576 hrq->RQ_no_buf_found++; 13577 spin_unlock_irqrestore(&phba->hbalock, iflags); 13578 goto out; 13579 } 13580 hrq->RQ_rcv_buf++; 13581 hrq->RQ_buf_posted--; 13582 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13583 13584 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13585 13586 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13587 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13588 spin_unlock_irqrestore(&phba->hbalock, iflags); 13589 /* Handle MDS Loopback frames */ 13590 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13591 break; 13592 } 13593 13594 /* save off the frame for the work thread to process */ 13595 list_add_tail(&dma_buf->cq_event.list, 13596 &phba->sli4_hba.sp_queue_event); 13597 /* Frame received */ 13598 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13599 spin_unlock_irqrestore(&phba->hbalock, iflags); 13600 workposted = true; 13601 break; 13602 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13603 if (phba->nvmet_support) { 13604 tgtp = phba->targetport->private; 13605 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13606 "6402 RQE Error x%x, posted %d err_cnt " 13607 "%d: %x %x %x\n", 13608 status, hrq->RQ_buf_posted, 13609 hrq->RQ_no_posted_buf, 13610 atomic_read(&tgtp->rcv_fcp_cmd_in), 13611 atomic_read(&tgtp->rcv_fcp_cmd_out), 13612 atomic_read(&tgtp->xmt_fcp_release)); 13613 } 13614 /* fallthrough */ 13615 13616 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13617 hrq->RQ_no_posted_buf++; 13618 /* Post more buffers if possible */ 13619 spin_lock_irqsave(&phba->hbalock, iflags); 13620 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13621 spin_unlock_irqrestore(&phba->hbalock, iflags); 13622 workposted = true; 13623 break; 13624 } 13625 out: 13626 return workposted; 13627 } 13628 13629 /** 13630 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13631 * @phba: Pointer to HBA context object. 13632 * @cq: Pointer to the completion queue. 13633 * @cqe: Pointer to a completion queue entry. 13634 * 13635 * This routine process a slow-path work-queue or receive queue completion queue 13636 * entry. 13637 * 13638 * Return: true if work posted to worker thread, otherwise false. 13639 **/ 13640 static bool 13641 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13642 struct lpfc_cqe *cqe) 13643 { 13644 struct lpfc_cqe cqevt; 13645 bool workposted = false; 13646 13647 /* Copy the work queue CQE and convert endian order if needed */ 13648 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13649 13650 /* Check and process for different type of WCQE and dispatch */ 13651 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13652 case CQE_CODE_COMPL_WQE: 13653 /* Process the WQ/RQ complete event */ 13654 phba->last_completion_time = jiffies; 13655 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13656 (struct lpfc_wcqe_complete *)&cqevt); 13657 break; 13658 case CQE_CODE_RELEASE_WQE: 13659 /* Process the WQ release event */ 13660 lpfc_sli4_sp_handle_rel_wcqe(phba, 13661 (struct lpfc_wcqe_release *)&cqevt); 13662 break; 13663 case CQE_CODE_XRI_ABORTED: 13664 /* Process the WQ XRI abort event */ 13665 phba->last_completion_time = jiffies; 13666 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13667 (struct sli4_wcqe_xri_aborted *)&cqevt); 13668 break; 13669 case CQE_CODE_RECEIVE: 13670 case CQE_CODE_RECEIVE_V1: 13671 /* Process the RQ event */ 13672 phba->last_completion_time = jiffies; 13673 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13674 (struct lpfc_rcqe *)&cqevt); 13675 break; 13676 default: 13677 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13678 "0388 Not a valid WCQE code: x%x\n", 13679 bf_get(lpfc_cqe_code, &cqevt)); 13680 break; 13681 } 13682 return workposted; 13683 } 13684 13685 /** 13686 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13687 * @phba: Pointer to HBA context object. 13688 * @eqe: Pointer to fast-path event queue entry. 13689 * 13690 * This routine process a event queue entry from the slow-path event queue. 13691 * It will check the MajorCode and MinorCode to determine this is for a 13692 * completion event on a completion queue, if not, an error shall be logged 13693 * and just return. Otherwise, it will get to the corresponding completion 13694 * queue and process all the entries on that completion queue, rearm the 13695 * completion queue, and then return. 13696 * 13697 **/ 13698 static void 13699 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13700 struct lpfc_queue *speq) 13701 { 13702 struct lpfc_queue *cq = NULL, *childq; 13703 uint16_t cqid; 13704 13705 /* Get the reference to the corresponding CQ */ 13706 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13707 13708 list_for_each_entry(childq, &speq->child_list, list) { 13709 if (childq->queue_id == cqid) { 13710 cq = childq; 13711 break; 13712 } 13713 } 13714 if (unlikely(!cq)) { 13715 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13716 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13717 "0365 Slow-path CQ identifier " 13718 "(%d) does not exist\n", cqid); 13719 return; 13720 } 13721 13722 /* Save EQ associated with this CQ */ 13723 cq->assoc_qp = speq; 13724 13725 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork)) 13726 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13727 "0390 Cannot schedule soft IRQ " 13728 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13729 cqid, cq->queue_id, raw_smp_processor_id()); 13730 } 13731 13732 /** 13733 * __lpfc_sli4_process_cq - Process elements of a CQ 13734 * @phba: Pointer to HBA context object. 13735 * @cq: Pointer to CQ to be processed 13736 * @handler: Routine to process each cqe 13737 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13738 * 13739 * This routine processes completion queue entries in a CQ. While a valid 13740 * queue element is found, the handler is called. During processing checks 13741 * are made for periodic doorbell writes to let the hardware know of 13742 * element consumption. 13743 * 13744 * If the max limit on cqes to process is hit, or there are no more valid 13745 * entries, the loop stops. If we processed a sufficient number of elements, 13746 * meaning there is sufficient load, rather than rearming and generating 13747 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13748 * indicates no rescheduling. 13749 * 13750 * Returns True if work scheduled, False otherwise. 13751 **/ 13752 static bool 13753 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13754 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13755 struct lpfc_cqe *), unsigned long *delay) 13756 { 13757 struct lpfc_cqe *cqe; 13758 bool workposted = false; 13759 int count = 0, consumed = 0; 13760 bool arm = true; 13761 13762 /* default - no reschedule */ 13763 *delay = 0; 13764 13765 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13766 goto rearm_and_exit; 13767 13768 /* Process all the entries to the CQ */ 13769 cq->q_flag = 0; 13770 cqe = lpfc_sli4_cq_get(cq); 13771 while (cqe) { 13772 workposted |= handler(phba, cq, cqe); 13773 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13774 13775 consumed++; 13776 if (!(++count % cq->max_proc_limit)) 13777 break; 13778 13779 if (!(count % cq->notify_interval)) { 13780 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13781 LPFC_QUEUE_NOARM); 13782 consumed = 0; 13783 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13784 } 13785 13786 if (count == LPFC_NVMET_CQ_NOTIFY) 13787 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13788 13789 cqe = lpfc_sli4_cq_get(cq); 13790 } 13791 if (count >= phba->cfg_cq_poll_threshold) { 13792 *delay = 1; 13793 arm = false; 13794 } 13795 13796 /* Track the max number of CQEs processed in 1 EQ */ 13797 if (count > cq->CQ_max_cqe) 13798 cq->CQ_max_cqe = count; 13799 13800 cq->assoc_qp->EQ_cqe_cnt += count; 13801 13802 /* Catch the no cq entry condition */ 13803 if (unlikely(count == 0)) 13804 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13805 "0369 No entry from completion queue " 13806 "qid=%d\n", cq->queue_id); 13807 13808 xchg(&cq->queue_claimed, 0); 13809 13810 rearm_and_exit: 13811 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13812 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13813 13814 return workposted; 13815 } 13816 13817 /** 13818 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13819 * @cq: pointer to CQ to process 13820 * 13821 * This routine calls the cq processing routine with a handler specific 13822 * to the type of queue bound to it. 13823 * 13824 * The CQ routine returns two values: the first is the calling status, 13825 * which indicates whether work was queued to the background discovery 13826 * thread. If true, the routine should wakeup the discovery thread; 13827 * the second is the delay parameter. If non-zero, rather than rearming 13828 * the CQ and yet another interrupt, the CQ handler should be queued so 13829 * that it is processed in a subsequent polling action. The value of 13830 * the delay indicates when to reschedule it. 13831 **/ 13832 static void 13833 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13834 { 13835 struct lpfc_hba *phba = cq->phba; 13836 unsigned long delay; 13837 bool workposted = false; 13838 13839 /* Process and rearm the CQ */ 13840 switch (cq->type) { 13841 case LPFC_MCQ: 13842 workposted |= __lpfc_sli4_process_cq(phba, cq, 13843 lpfc_sli4_sp_handle_mcqe, 13844 &delay); 13845 break; 13846 case LPFC_WCQ: 13847 if (cq->subtype == LPFC_IO) 13848 workposted |= __lpfc_sli4_process_cq(phba, cq, 13849 lpfc_sli4_fp_handle_cqe, 13850 &delay); 13851 else 13852 workposted |= __lpfc_sli4_process_cq(phba, cq, 13853 lpfc_sli4_sp_handle_cqe, 13854 &delay); 13855 break; 13856 default: 13857 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13858 "0370 Invalid completion queue type (%d)\n", 13859 cq->type); 13860 return; 13861 } 13862 13863 if (delay) { 13864 if (!queue_delayed_work_on(cq->chann, phba->wq, 13865 &cq->sched_spwork, delay)) 13866 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13867 "0394 Cannot schedule soft IRQ " 13868 "for cqid=%d on CPU %d\n", 13869 cq->queue_id, cq->chann); 13870 } 13871 13872 /* wake up worker thread if there are works to be done */ 13873 if (workposted) 13874 lpfc_worker_wake_up(phba); 13875 } 13876 13877 /** 13878 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 13879 * interrupt 13880 * @work: pointer to work element 13881 * 13882 * translates from the work handler and calls the slow-path handler. 13883 **/ 13884 static void 13885 lpfc_sli4_sp_process_cq(struct work_struct *work) 13886 { 13887 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 13888 13889 __lpfc_sli4_sp_process_cq(cq); 13890 } 13891 13892 /** 13893 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 13894 * @work: pointer to work element 13895 * 13896 * translates from the work handler and calls the slow-path handler. 13897 **/ 13898 static void 13899 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 13900 { 13901 struct lpfc_queue *cq = container_of(to_delayed_work(work), 13902 struct lpfc_queue, sched_spwork); 13903 13904 __lpfc_sli4_sp_process_cq(cq); 13905 } 13906 13907 /** 13908 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13909 * @phba: Pointer to HBA context object. 13910 * @cq: Pointer to associated CQ 13911 * @wcqe: Pointer to work-queue completion queue entry. 13912 * 13913 * This routine process a fast-path work queue completion entry from fast-path 13914 * event queue for FCP command response completion. 13915 **/ 13916 static void 13917 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13918 struct lpfc_wcqe_complete *wcqe) 13919 { 13920 struct lpfc_sli_ring *pring = cq->pring; 13921 struct lpfc_iocbq *cmdiocbq; 13922 struct lpfc_iocbq irspiocbq; 13923 unsigned long iflags; 13924 13925 /* Check for response status */ 13926 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13927 /* If resource errors reported from HBA, reduce queue 13928 * depth of the SCSI device. 13929 */ 13930 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13931 IOSTAT_LOCAL_REJECT)) && 13932 ((wcqe->parameter & IOERR_PARAM_MASK) == 13933 IOERR_NO_RESOURCES)) 13934 phba->lpfc_rampdown_queue_depth(phba); 13935 13936 /* Log the error status */ 13937 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13938 "0373 FCP CQE error: status=x%x: " 13939 "CQE: %08x %08x %08x %08x\n", 13940 bf_get(lpfc_wcqe_c_status, wcqe), 13941 wcqe->word0, wcqe->total_data_placed, 13942 wcqe->parameter, wcqe->word3); 13943 } 13944 13945 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13946 spin_lock_irqsave(&pring->ring_lock, iflags); 13947 pring->stats.iocb_event++; 13948 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13949 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13950 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13951 if (unlikely(!cmdiocbq)) { 13952 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13953 "0374 FCP complete with no corresponding " 13954 "cmdiocb: iotag (%d)\n", 13955 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13956 return; 13957 } 13958 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13959 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13960 #endif 13961 if (cmdiocbq->iocb_cmpl == NULL) { 13962 if (cmdiocbq->wqe_cmpl) { 13963 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13964 spin_lock_irqsave(&phba->hbalock, iflags); 13965 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13966 spin_unlock_irqrestore(&phba->hbalock, iflags); 13967 } 13968 13969 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13970 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13971 return; 13972 } 13973 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13974 "0375 FCP cmdiocb not callback function " 13975 "iotag: (%d)\n", 13976 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13977 return; 13978 } 13979 13980 /* Fake the irspiocb and copy necessary response information */ 13981 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13982 13983 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13984 spin_lock_irqsave(&phba->hbalock, iflags); 13985 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13986 spin_unlock_irqrestore(&phba->hbalock, iflags); 13987 } 13988 13989 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13990 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13991 } 13992 13993 /** 13994 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13995 * @phba: Pointer to HBA context object. 13996 * @cq: Pointer to completion queue. 13997 * @wcqe: Pointer to work-queue completion queue entry. 13998 * 13999 * This routine handles an fast-path WQ entry consumed event by invoking the 14000 * proper WQ release routine to the slow-path WQ. 14001 **/ 14002 static void 14003 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14004 struct lpfc_wcqe_release *wcqe) 14005 { 14006 struct lpfc_queue *childwq; 14007 bool wqid_matched = false; 14008 uint16_t hba_wqid; 14009 14010 /* Check for fast-path FCP work queue release */ 14011 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14012 list_for_each_entry(childwq, &cq->child_list, list) { 14013 if (childwq->queue_id == hba_wqid) { 14014 lpfc_sli4_wq_release(childwq, 14015 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14016 if (childwq->q_flag & HBA_NVMET_WQFULL) 14017 lpfc_nvmet_wqfull_process(phba, childwq); 14018 wqid_matched = true; 14019 break; 14020 } 14021 } 14022 /* Report warning log message if no match found */ 14023 if (wqid_matched != true) 14024 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14025 "2580 Fast-path wqe consume event carries " 14026 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14027 } 14028 14029 /** 14030 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14031 * @phba: Pointer to HBA context object. 14032 * @rcqe: Pointer to receive-queue completion queue entry. 14033 * 14034 * This routine process a receive-queue completion queue entry. 14035 * 14036 * Return: true if work posted to worker thread, otherwise false. 14037 **/ 14038 static bool 14039 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14040 struct lpfc_rcqe *rcqe) 14041 { 14042 bool workposted = false; 14043 struct lpfc_queue *hrq; 14044 struct lpfc_queue *drq; 14045 struct rqb_dmabuf *dma_buf; 14046 struct fc_frame_header *fc_hdr; 14047 struct lpfc_nvmet_tgtport *tgtp; 14048 uint32_t status, rq_id; 14049 unsigned long iflags; 14050 uint32_t fctl, idx; 14051 14052 if ((phba->nvmet_support == 0) || 14053 (phba->sli4_hba.nvmet_cqset == NULL)) 14054 return workposted; 14055 14056 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14057 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14058 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14059 14060 /* sanity check on queue memory */ 14061 if (unlikely(!hrq) || unlikely(!drq)) 14062 return workposted; 14063 14064 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14065 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14066 else 14067 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14068 14069 if ((phba->nvmet_support == 0) || 14070 (rq_id != hrq->queue_id)) 14071 return workposted; 14072 14073 status = bf_get(lpfc_rcqe_status, rcqe); 14074 switch (status) { 14075 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14076 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14077 "6126 Receive Frame Truncated!!\n"); 14078 /* fall through */ 14079 case FC_STATUS_RQ_SUCCESS: 14080 spin_lock_irqsave(&phba->hbalock, iflags); 14081 lpfc_sli4_rq_release(hrq, drq); 14082 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14083 if (!dma_buf) { 14084 hrq->RQ_no_buf_found++; 14085 spin_unlock_irqrestore(&phba->hbalock, iflags); 14086 goto out; 14087 } 14088 spin_unlock_irqrestore(&phba->hbalock, iflags); 14089 hrq->RQ_rcv_buf++; 14090 hrq->RQ_buf_posted--; 14091 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14092 14093 /* Just some basic sanity checks on FCP Command frame */ 14094 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14095 fc_hdr->fh_f_ctl[1] << 8 | 14096 fc_hdr->fh_f_ctl[2]); 14097 if (((fctl & 14098 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14099 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14100 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14101 goto drop; 14102 14103 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14104 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14105 lpfc_nvmet_unsol_fcp_event( 14106 phba, idx, dma_buf, cq->isr_timestamp, 14107 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14108 return false; 14109 } 14110 drop: 14111 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14112 break; 14113 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14114 if (phba->nvmet_support) { 14115 tgtp = phba->targetport->private; 14116 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 14117 "6401 RQE Error x%x, posted %d err_cnt " 14118 "%d: %x %x %x\n", 14119 status, hrq->RQ_buf_posted, 14120 hrq->RQ_no_posted_buf, 14121 atomic_read(&tgtp->rcv_fcp_cmd_in), 14122 atomic_read(&tgtp->rcv_fcp_cmd_out), 14123 atomic_read(&tgtp->xmt_fcp_release)); 14124 } 14125 /* fallthrough */ 14126 14127 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14128 hrq->RQ_no_posted_buf++; 14129 /* Post more buffers if possible */ 14130 break; 14131 } 14132 out: 14133 return workposted; 14134 } 14135 14136 /** 14137 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14138 * @phba: adapter with cq 14139 * @cq: Pointer to the completion queue. 14140 * @eqe: Pointer to fast-path completion queue entry. 14141 * 14142 * This routine process a fast-path work queue completion entry from fast-path 14143 * event queue for FCP command response completion. 14144 * 14145 * Return: true if work posted to worker thread, otherwise false. 14146 **/ 14147 static bool 14148 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14149 struct lpfc_cqe *cqe) 14150 { 14151 struct lpfc_wcqe_release wcqe; 14152 bool workposted = false; 14153 14154 /* Copy the work queue CQE and convert endian order if needed */ 14155 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14156 14157 /* Check and process for different type of WCQE and dispatch */ 14158 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14159 case CQE_CODE_COMPL_WQE: 14160 case CQE_CODE_NVME_ERSP: 14161 cq->CQ_wq++; 14162 /* Process the WQ complete event */ 14163 phba->last_completion_time = jiffies; 14164 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14165 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14166 (struct lpfc_wcqe_complete *)&wcqe); 14167 break; 14168 case CQE_CODE_RELEASE_WQE: 14169 cq->CQ_release_wqe++; 14170 /* Process the WQ release event */ 14171 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14172 (struct lpfc_wcqe_release *)&wcqe); 14173 break; 14174 case CQE_CODE_XRI_ABORTED: 14175 cq->CQ_xri_aborted++; 14176 /* Process the WQ XRI abort event */ 14177 phba->last_completion_time = jiffies; 14178 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14179 (struct sli4_wcqe_xri_aborted *)&wcqe); 14180 break; 14181 case CQE_CODE_RECEIVE_V1: 14182 case CQE_CODE_RECEIVE: 14183 phba->last_completion_time = jiffies; 14184 if (cq->subtype == LPFC_NVMET) { 14185 workposted = lpfc_sli4_nvmet_handle_rcqe( 14186 phba, cq, (struct lpfc_rcqe *)&wcqe); 14187 } 14188 break; 14189 default: 14190 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14191 "0144 Not a valid CQE code: x%x\n", 14192 bf_get(lpfc_wcqe_c_code, &wcqe)); 14193 break; 14194 } 14195 return workposted; 14196 } 14197 14198 /** 14199 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14200 * @phba: Pointer to HBA context object. 14201 * @eqe: Pointer to fast-path event queue entry. 14202 * 14203 * This routine process a event queue entry from the fast-path event queue. 14204 * It will check the MajorCode and MinorCode to determine this is for a 14205 * completion event on a completion queue, if not, an error shall be logged 14206 * and just return. Otherwise, it will get to the corresponding completion 14207 * queue and process all the entries on the completion queue, rearm the 14208 * completion queue, and then return. 14209 **/ 14210 static void 14211 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14212 struct lpfc_eqe *eqe) 14213 { 14214 struct lpfc_queue *cq = NULL; 14215 uint32_t qidx = eq->hdwq; 14216 uint16_t cqid, id; 14217 14218 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14219 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14220 "0366 Not a valid completion " 14221 "event: majorcode=x%x, minorcode=x%x\n", 14222 bf_get_le32(lpfc_eqe_major_code, eqe), 14223 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14224 return; 14225 } 14226 14227 /* Get the reference to the corresponding CQ */ 14228 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14229 14230 /* Use the fast lookup method first */ 14231 if (cqid <= phba->sli4_hba.cq_max) { 14232 cq = phba->sli4_hba.cq_lookup[cqid]; 14233 if (cq) 14234 goto work_cq; 14235 } 14236 14237 /* Next check for NVMET completion */ 14238 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14239 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14240 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14241 /* Process NVMET unsol rcv */ 14242 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14243 goto process_cq; 14244 } 14245 } 14246 14247 if (phba->sli4_hba.nvmels_cq && 14248 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14249 /* Process NVME unsol rcv */ 14250 cq = phba->sli4_hba.nvmels_cq; 14251 } 14252 14253 /* Otherwise this is a Slow path event */ 14254 if (cq == NULL) { 14255 lpfc_sli4_sp_handle_eqe(phba, eqe, 14256 phba->sli4_hba.hdwq[qidx].hba_eq); 14257 return; 14258 } 14259 14260 process_cq: 14261 if (unlikely(cqid != cq->queue_id)) { 14262 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14263 "0368 Miss-matched fast-path completion " 14264 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14265 cqid, cq->queue_id); 14266 return; 14267 } 14268 14269 work_cq: 14270 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14271 if (phba->ktime_on) 14272 cq->isr_timestamp = ktime_get_ns(); 14273 else 14274 cq->isr_timestamp = 0; 14275 #endif 14276 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork)) 14277 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14278 "0363 Cannot schedule soft IRQ " 14279 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14280 cqid, cq->queue_id, raw_smp_processor_id()); 14281 } 14282 14283 /** 14284 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14285 * @cq: Pointer to CQ to be processed 14286 * 14287 * This routine calls the cq processing routine with the handler for 14288 * fast path CQEs. 14289 * 14290 * The CQ routine returns two values: the first is the calling status, 14291 * which indicates whether work was queued to the background discovery 14292 * thread. If true, the routine should wakeup the discovery thread; 14293 * the second is the delay parameter. If non-zero, rather than rearming 14294 * the CQ and yet another interrupt, the CQ handler should be queued so 14295 * that it is processed in a subsequent polling action. The value of 14296 * the delay indicates when to reschedule it. 14297 **/ 14298 static void 14299 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 14300 { 14301 struct lpfc_hba *phba = cq->phba; 14302 unsigned long delay; 14303 bool workposted = false; 14304 14305 /* process and rearm the CQ */ 14306 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14307 &delay); 14308 14309 if (delay) { 14310 if (!queue_delayed_work_on(cq->chann, phba->wq, 14311 &cq->sched_irqwork, delay)) 14312 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14313 "0367 Cannot schedule soft IRQ " 14314 "for cqid=%d on CPU %d\n", 14315 cq->queue_id, cq->chann); 14316 } 14317 14318 /* wake up worker thread if there are works to be done */ 14319 if (workposted) 14320 lpfc_worker_wake_up(phba); 14321 } 14322 14323 /** 14324 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14325 * interrupt 14326 * @work: pointer to work element 14327 * 14328 * translates from the work handler and calls the fast-path handler. 14329 **/ 14330 static void 14331 lpfc_sli4_hba_process_cq(struct work_struct *work) 14332 { 14333 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14334 14335 __lpfc_sli4_hba_process_cq(cq); 14336 } 14337 14338 /** 14339 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14340 * @work: pointer to work element 14341 * 14342 * translates from the work handler and calls the fast-path handler. 14343 **/ 14344 static void 14345 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14346 { 14347 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14348 struct lpfc_queue, sched_irqwork); 14349 14350 __lpfc_sli4_hba_process_cq(cq); 14351 } 14352 14353 /** 14354 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14355 * @irq: Interrupt number. 14356 * @dev_id: The device context pointer. 14357 * 14358 * This function is directly called from the PCI layer as an interrupt 14359 * service routine when device with SLI-4 interface spec is enabled with 14360 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14361 * ring event in the HBA. However, when the device is enabled with either 14362 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14363 * device-level interrupt handler. When the PCI slot is in error recovery 14364 * or the HBA is undergoing initialization, the interrupt handler will not 14365 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14366 * the intrrupt context. This function is called without any lock held. 14367 * It gets the hbalock to access and update SLI data structures. Note that, 14368 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14369 * equal to that of FCP CQ index. 14370 * 14371 * The link attention and ELS ring attention events are handled 14372 * by the worker thread. The interrupt handler signals the worker thread 14373 * and returns for these events. This function is called without any lock 14374 * held. It gets the hbalock to access and update SLI data structures. 14375 * 14376 * This function returns IRQ_HANDLED when interrupt is handled else it 14377 * returns IRQ_NONE. 14378 **/ 14379 irqreturn_t 14380 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14381 { 14382 struct lpfc_hba *phba; 14383 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14384 struct lpfc_queue *fpeq; 14385 unsigned long iflag; 14386 int ecount = 0; 14387 int hba_eqidx; 14388 struct lpfc_eq_intr_info *eqi; 14389 14390 /* Get the driver's phba structure from the dev_id */ 14391 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14392 phba = hba_eq_hdl->phba; 14393 hba_eqidx = hba_eq_hdl->idx; 14394 14395 if (unlikely(!phba)) 14396 return IRQ_NONE; 14397 if (unlikely(!phba->sli4_hba.hdwq)) 14398 return IRQ_NONE; 14399 14400 /* Get to the EQ struct associated with this vector */ 14401 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14402 if (unlikely(!fpeq)) 14403 return IRQ_NONE; 14404 14405 /* Check device state for handling interrupt */ 14406 if (unlikely(lpfc_intr_state_check(phba))) { 14407 /* Check again for link_state with lock held */ 14408 spin_lock_irqsave(&phba->hbalock, iflag); 14409 if (phba->link_state < LPFC_LINK_DOWN) 14410 /* Flush, clear interrupt, and rearm the EQ */ 14411 lpfc_sli4_eqcq_flush(phba, fpeq); 14412 spin_unlock_irqrestore(&phba->hbalock, iflag); 14413 return IRQ_NONE; 14414 } 14415 14416 eqi = this_cpu_ptr(phba->sli4_hba.eq_info); 14417 eqi->icnt++; 14418 14419 fpeq->last_cpu = raw_smp_processor_id(); 14420 14421 if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && 14422 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14423 phba->cfg_auto_imax && 14424 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14425 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14426 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14427 14428 /* process and rearm the EQ */ 14429 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14430 14431 if (unlikely(ecount == 0)) { 14432 fpeq->EQ_no_entry++; 14433 if (phba->intr_type == MSIX) 14434 /* MSI-X treated interrupt served as no EQ share INT */ 14435 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14436 "0358 MSI-X interrupt with no EQE\n"); 14437 else 14438 /* Non MSI-X treated on interrupt as EQ share INT */ 14439 return IRQ_NONE; 14440 } 14441 14442 return IRQ_HANDLED; 14443 } /* lpfc_sli4_fp_intr_handler */ 14444 14445 /** 14446 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14447 * @irq: Interrupt number. 14448 * @dev_id: The device context pointer. 14449 * 14450 * This function is the device-level interrupt handler to device with SLI-4 14451 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14452 * interrupt mode is enabled and there is an event in the HBA which requires 14453 * driver attention. This function invokes the slow-path interrupt attention 14454 * handling function and fast-path interrupt attention handling function in 14455 * turn to process the relevant HBA attention events. This function is called 14456 * without any lock held. It gets the hbalock to access and update SLI data 14457 * structures. 14458 * 14459 * This function returns IRQ_HANDLED when interrupt is handled, else it 14460 * returns IRQ_NONE. 14461 **/ 14462 irqreturn_t 14463 lpfc_sli4_intr_handler(int irq, void *dev_id) 14464 { 14465 struct lpfc_hba *phba; 14466 irqreturn_t hba_irq_rc; 14467 bool hba_handled = false; 14468 int qidx; 14469 14470 /* Get the driver's phba structure from the dev_id */ 14471 phba = (struct lpfc_hba *)dev_id; 14472 14473 if (unlikely(!phba)) 14474 return IRQ_NONE; 14475 14476 /* 14477 * Invoke fast-path host attention interrupt handling as appropriate. 14478 */ 14479 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14480 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14481 &phba->sli4_hba.hba_eq_hdl[qidx]); 14482 if (hba_irq_rc == IRQ_HANDLED) 14483 hba_handled |= true; 14484 } 14485 14486 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14487 } /* lpfc_sli4_intr_handler */ 14488 14489 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14490 { 14491 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14492 struct lpfc_queue *eq; 14493 int i = 0; 14494 14495 rcu_read_lock(); 14496 14497 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14498 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14499 if (!list_empty(&phba->poll_list)) 14500 mod_timer(&phba->cpuhp_poll_timer, 14501 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14502 14503 rcu_read_unlock(); 14504 } 14505 14506 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14507 { 14508 struct lpfc_hba *phba = eq->phba; 14509 int i = 0; 14510 14511 /* 14512 * Unlocking an irq is one of the entry point to check 14513 * for re-schedule, but we are good for io submission 14514 * path as midlayer does a get_cpu to glue us in. Flush 14515 * out the invalidate queue so we can see the updated 14516 * value for flag. 14517 */ 14518 smp_rmb(); 14519 14520 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14521 /* We will not likely get the completion for the caller 14522 * during this iteration but i guess that's fine. 14523 * Future io's coming on this eq should be able to 14524 * pick it up. As for the case of single io's, they 14525 * will be handled through a sched from polling timer 14526 * function which is currently triggered every 1msec. 14527 */ 14528 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14529 14530 return i; 14531 } 14532 14533 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14534 { 14535 struct lpfc_hba *phba = eq->phba; 14536 14537 /* kickstart slowpath processing if needed */ 14538 if (list_empty(&phba->poll_list)) 14539 mod_timer(&phba->cpuhp_poll_timer, 14540 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14541 14542 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14543 synchronize_rcu(); 14544 } 14545 14546 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14547 { 14548 struct lpfc_hba *phba = eq->phba; 14549 14550 /* Disable slowpath processing for this eq. Kick start the eq 14551 * by RE-ARMING the eq's ASAP 14552 */ 14553 list_del_rcu(&eq->_poll_list); 14554 synchronize_rcu(); 14555 14556 if (list_empty(&phba->poll_list)) 14557 del_timer_sync(&phba->cpuhp_poll_timer); 14558 } 14559 14560 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14561 { 14562 struct lpfc_queue *eq, *next; 14563 14564 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14565 list_del(&eq->_poll_list); 14566 14567 INIT_LIST_HEAD(&phba->poll_list); 14568 synchronize_rcu(); 14569 } 14570 14571 static inline void 14572 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14573 { 14574 if (mode == eq->mode) 14575 return; 14576 /* 14577 * currently this function is only called during a hotplug 14578 * event and the cpu on which this function is executing 14579 * is going offline. By now the hotplug has instructed 14580 * the scheduler to remove this cpu from cpu active mask. 14581 * So we don't need to work about being put aside by the 14582 * scheduler for a high priority process. Yes, the inte- 14583 * rrupts could come but they are known to retire ASAP. 14584 */ 14585 14586 /* Disable polling in the fastpath */ 14587 WRITE_ONCE(eq->mode, mode); 14588 /* flush out the store buffer */ 14589 smp_wmb(); 14590 14591 /* 14592 * Add this eq to the polling list and start polling. For 14593 * a grace period both interrupt handler and poller will 14594 * try to process the eq _but_ that's fine. We have a 14595 * synchronization mechanism in place (queue_claimed) to 14596 * deal with it. This is just a draining phase for int- 14597 * errupt handler (not eq's) as we have guranteed through 14598 * barrier that all the CPUs have seen the new CQ_POLLED 14599 * state. which will effectively disable the REARMING of 14600 * the EQ. The whole idea is eq's die off eventually as 14601 * we are not rearming EQ's anymore. 14602 */ 14603 mode ? lpfc_sli4_add_to_poll_list(eq) : 14604 lpfc_sli4_remove_from_poll_list(eq); 14605 } 14606 14607 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14608 { 14609 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14610 } 14611 14612 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14613 { 14614 struct lpfc_hba *phba = eq->phba; 14615 14616 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14617 14618 /* Kick start for the pending io's in h/w. 14619 * Once we switch back to interrupt processing on a eq 14620 * the io path completion will only arm eq's when it 14621 * receives a completion. But since eq's are in disa- 14622 * rmed state it doesn't receive a completion. This 14623 * creates a deadlock scenaro. 14624 */ 14625 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14626 } 14627 14628 /** 14629 * lpfc_sli4_queue_free - free a queue structure and associated memory 14630 * @queue: The queue structure to free. 14631 * 14632 * This function frees a queue structure and the DMAable memory used for 14633 * the host resident queue. This function must be called after destroying the 14634 * queue on the HBA. 14635 **/ 14636 void 14637 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14638 { 14639 struct lpfc_dmabuf *dmabuf; 14640 14641 if (!queue) 14642 return; 14643 14644 if (!list_empty(&queue->wq_list)) 14645 list_del(&queue->wq_list); 14646 14647 while (!list_empty(&queue->page_list)) { 14648 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14649 list); 14650 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14651 dmabuf->virt, dmabuf->phys); 14652 kfree(dmabuf); 14653 } 14654 if (queue->rqbp) { 14655 lpfc_free_rq_buffer(queue->phba, queue); 14656 kfree(queue->rqbp); 14657 } 14658 14659 if (!list_empty(&queue->cpu_list)) 14660 list_del(&queue->cpu_list); 14661 14662 kfree(queue); 14663 return; 14664 } 14665 14666 /** 14667 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14668 * @phba: The HBA that this queue is being created on. 14669 * @page_size: The size of a queue page 14670 * @entry_size: The size of each queue entry for this queue. 14671 * @entry count: The number of entries that this queue will handle. 14672 * @cpu: The cpu that will primarily utilize this queue. 14673 * 14674 * This function allocates a queue structure and the DMAable memory used for 14675 * the host resident queue. This function must be called before creating the 14676 * queue on the HBA. 14677 **/ 14678 struct lpfc_queue * 14679 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14680 uint32_t entry_size, uint32_t entry_count, int cpu) 14681 { 14682 struct lpfc_queue *queue; 14683 struct lpfc_dmabuf *dmabuf; 14684 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14685 uint16_t x, pgcnt; 14686 14687 if (!phba->sli4_hba.pc_sli4_params.supported) 14688 hw_page_size = page_size; 14689 14690 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14691 14692 /* If needed, Adjust page count to match the max the adapter supports */ 14693 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14694 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14695 14696 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14697 GFP_KERNEL, cpu_to_node(cpu)); 14698 if (!queue) 14699 return NULL; 14700 14701 INIT_LIST_HEAD(&queue->list); 14702 INIT_LIST_HEAD(&queue->_poll_list); 14703 INIT_LIST_HEAD(&queue->wq_list); 14704 INIT_LIST_HEAD(&queue->wqfull_list); 14705 INIT_LIST_HEAD(&queue->page_list); 14706 INIT_LIST_HEAD(&queue->child_list); 14707 INIT_LIST_HEAD(&queue->cpu_list); 14708 14709 /* Set queue parameters now. If the system cannot provide memory 14710 * resources, the free routine needs to know what was allocated. 14711 */ 14712 queue->page_count = pgcnt; 14713 queue->q_pgs = (void **)&queue[1]; 14714 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14715 queue->entry_size = entry_size; 14716 queue->entry_count = entry_count; 14717 queue->page_size = hw_page_size; 14718 queue->phba = phba; 14719 14720 for (x = 0; x < queue->page_count; x++) { 14721 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14722 dev_to_node(&phba->pcidev->dev)); 14723 if (!dmabuf) 14724 goto out_fail; 14725 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14726 hw_page_size, &dmabuf->phys, 14727 GFP_KERNEL); 14728 if (!dmabuf->virt) { 14729 kfree(dmabuf); 14730 goto out_fail; 14731 } 14732 dmabuf->buffer_tag = x; 14733 list_add_tail(&dmabuf->list, &queue->page_list); 14734 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14735 queue->q_pgs[x] = dmabuf->virt; 14736 } 14737 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14738 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14739 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14740 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14741 14742 /* notify_interval will be set during q creation */ 14743 14744 return queue; 14745 out_fail: 14746 lpfc_sli4_queue_free(queue); 14747 return NULL; 14748 } 14749 14750 /** 14751 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14752 * @phba: HBA structure that indicates port to create a queue on. 14753 * @pci_barset: PCI BAR set flag. 14754 * 14755 * This function shall perform iomap of the specified PCI BAR address to host 14756 * memory address if not already done so and return it. The returned host 14757 * memory address can be NULL. 14758 */ 14759 static void __iomem * 14760 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14761 { 14762 if (!phba->pcidev) 14763 return NULL; 14764 14765 switch (pci_barset) { 14766 case WQ_PCI_BAR_0_AND_1: 14767 return phba->pci_bar0_memmap_p; 14768 case WQ_PCI_BAR_2_AND_3: 14769 return phba->pci_bar2_memmap_p; 14770 case WQ_PCI_BAR_4_AND_5: 14771 return phba->pci_bar4_memmap_p; 14772 default: 14773 break; 14774 } 14775 return NULL; 14776 } 14777 14778 /** 14779 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14780 * @phba: HBA structure that EQs are on. 14781 * @startq: The starting EQ index to modify 14782 * @numq: The number of EQs (consecutive indexes) to modify 14783 * @usdelay: amount of delay 14784 * 14785 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14786 * is set either by writing to a register (if supported by the SLI Port) 14787 * or by mailbox command. The mailbox command allows several EQs to be 14788 * updated at once. 14789 * 14790 * The @phba struct is used to send a mailbox command to HBA. The @startq 14791 * is used to get the starting EQ index to change. The @numq value is 14792 * used to specify how many consecutive EQ indexes, starting at EQ index, 14793 * are to be changed. This function is asynchronous and will wait for any 14794 * mailbox commands to finish before returning. 14795 * 14796 * On success this function will return a zero. If unable to allocate 14797 * enough memory this function will return -ENOMEM. If a mailbox command 14798 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14799 * have had their delay multipler changed. 14800 **/ 14801 void 14802 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14803 uint32_t numq, uint32_t usdelay) 14804 { 14805 struct lpfc_mbx_modify_eq_delay *eq_delay; 14806 LPFC_MBOXQ_t *mbox; 14807 struct lpfc_queue *eq; 14808 int cnt = 0, rc, length; 14809 uint32_t shdr_status, shdr_add_status; 14810 uint32_t dmult; 14811 int qidx; 14812 union lpfc_sli4_cfg_shdr *shdr; 14813 14814 if (startq >= phba->cfg_irq_chann) 14815 return; 14816 14817 if (usdelay > 0xFFFF) { 14818 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 14819 "6429 usdelay %d too large. Scaled down to " 14820 "0xFFFF.\n", usdelay); 14821 usdelay = 0xFFFF; 14822 } 14823 14824 /* set values by EQ_DELAY register if supported */ 14825 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14826 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14827 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14828 if (!eq) 14829 continue; 14830 14831 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 14832 14833 if (++cnt >= numq) 14834 break; 14835 } 14836 return; 14837 } 14838 14839 /* Otherwise, set values by mailbox cmd */ 14840 14841 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14842 if (!mbox) { 14843 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME, 14844 "6428 Failed allocating mailbox cmd buffer." 14845 " EQ delay was not set.\n"); 14846 return; 14847 } 14848 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14849 sizeof(struct lpfc_sli4_cfg_mhdr)); 14850 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14851 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14852 length, LPFC_SLI4_MBX_EMBED); 14853 eq_delay = &mbox->u.mqe.un.eq_delay; 14854 14855 /* Calculate delay multiper from maximum interrupt per second */ 14856 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 14857 if (dmult) 14858 dmult--; 14859 if (dmult > LPFC_DMULT_MAX) 14860 dmult = LPFC_DMULT_MAX; 14861 14862 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14863 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14864 if (!eq) 14865 continue; 14866 eq->q_mode = usdelay; 14867 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14868 eq_delay->u.request.eq[cnt].phase = 0; 14869 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14870 14871 if (++cnt >= numq) 14872 break; 14873 } 14874 eq_delay->u.request.num_eq = cnt; 14875 14876 mbox->vport = phba->pport; 14877 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14878 mbox->ctx_buf = NULL; 14879 mbox->ctx_ndlp = NULL; 14880 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14881 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14882 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14883 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14884 if (shdr_status || shdr_add_status || rc) { 14885 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14886 "2512 MODIFY_EQ_DELAY mailbox failed with " 14887 "status x%x add_status x%x, mbx status x%x\n", 14888 shdr_status, shdr_add_status, rc); 14889 } 14890 mempool_free(mbox, phba->mbox_mem_pool); 14891 return; 14892 } 14893 14894 /** 14895 * lpfc_eq_create - Create an Event Queue on the HBA 14896 * @phba: HBA structure that indicates port to create a queue on. 14897 * @eq: The queue structure to use to create the event queue. 14898 * @imax: The maximum interrupt per second limit. 14899 * 14900 * This function creates an event queue, as detailed in @eq, on a port, 14901 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14902 * 14903 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14904 * is used to get the entry count and entry size that are necessary to 14905 * determine the number of pages to allocate and use for this queue. This 14906 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14907 * event queue. This function is asynchronous and will wait for the mailbox 14908 * command to finish before continuing. 14909 * 14910 * On success this function will return a zero. If unable to allocate enough 14911 * memory this function will return -ENOMEM. If the queue create mailbox command 14912 * fails this function will return -ENXIO. 14913 **/ 14914 int 14915 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14916 { 14917 struct lpfc_mbx_eq_create *eq_create; 14918 LPFC_MBOXQ_t *mbox; 14919 int rc, length, status = 0; 14920 struct lpfc_dmabuf *dmabuf; 14921 uint32_t shdr_status, shdr_add_status; 14922 union lpfc_sli4_cfg_shdr *shdr; 14923 uint16_t dmult; 14924 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14925 14926 /* sanity check on queue memory */ 14927 if (!eq) 14928 return -ENODEV; 14929 if (!phba->sli4_hba.pc_sli4_params.supported) 14930 hw_page_size = SLI4_PAGE_SIZE; 14931 14932 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14933 if (!mbox) 14934 return -ENOMEM; 14935 length = (sizeof(struct lpfc_mbx_eq_create) - 14936 sizeof(struct lpfc_sli4_cfg_mhdr)); 14937 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14938 LPFC_MBOX_OPCODE_EQ_CREATE, 14939 length, LPFC_SLI4_MBX_EMBED); 14940 eq_create = &mbox->u.mqe.un.eq_create; 14941 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14942 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14943 eq->page_count); 14944 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14945 LPFC_EQE_SIZE); 14946 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14947 14948 /* Use version 2 of CREATE_EQ if eqav is set */ 14949 if (phba->sli4_hba.pc_sli4_params.eqav) { 14950 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14951 LPFC_Q_CREATE_VERSION_2); 14952 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14953 phba->sli4_hba.pc_sli4_params.eqav); 14954 } 14955 14956 /* don't setup delay multiplier using EQ_CREATE */ 14957 dmult = 0; 14958 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14959 dmult); 14960 switch (eq->entry_count) { 14961 default: 14962 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14963 "0360 Unsupported EQ count. (%d)\n", 14964 eq->entry_count); 14965 if (eq->entry_count < 256) { 14966 status = -EINVAL; 14967 goto out; 14968 } 14969 /* fall through - otherwise default to smallest count */ 14970 case 256: 14971 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14972 LPFC_EQ_CNT_256); 14973 break; 14974 case 512: 14975 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14976 LPFC_EQ_CNT_512); 14977 break; 14978 case 1024: 14979 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14980 LPFC_EQ_CNT_1024); 14981 break; 14982 case 2048: 14983 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14984 LPFC_EQ_CNT_2048); 14985 break; 14986 case 4096: 14987 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14988 LPFC_EQ_CNT_4096); 14989 break; 14990 } 14991 list_for_each_entry(dmabuf, &eq->page_list, list) { 14992 memset(dmabuf->virt, 0, hw_page_size); 14993 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14994 putPaddrLow(dmabuf->phys); 14995 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14996 putPaddrHigh(dmabuf->phys); 14997 } 14998 mbox->vport = phba->pport; 14999 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15000 mbox->ctx_buf = NULL; 15001 mbox->ctx_ndlp = NULL; 15002 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15003 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15004 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15005 if (shdr_status || shdr_add_status || rc) { 15006 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15007 "2500 EQ_CREATE mailbox failed with " 15008 "status x%x add_status x%x, mbx status x%x\n", 15009 shdr_status, shdr_add_status, rc); 15010 status = -ENXIO; 15011 } 15012 eq->type = LPFC_EQ; 15013 eq->subtype = LPFC_NONE; 15014 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15015 if (eq->queue_id == 0xFFFF) 15016 status = -ENXIO; 15017 eq->host_index = 0; 15018 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15019 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15020 out: 15021 mempool_free(mbox, phba->mbox_mem_pool); 15022 return status; 15023 } 15024 15025 /** 15026 * lpfc_cq_create - Create a Completion Queue on the HBA 15027 * @phba: HBA structure that indicates port to create a queue on. 15028 * @cq: The queue structure to use to create the completion queue. 15029 * @eq: The event queue to bind this completion queue to. 15030 * 15031 * This function creates a completion queue, as detailed in @wq, on a port, 15032 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15033 * 15034 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15035 * is used to get the entry count and entry size that are necessary to 15036 * determine the number of pages to allocate and use for this queue. The @eq 15037 * is used to indicate which event queue to bind this completion queue to. This 15038 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15039 * completion queue. This function is asynchronous and will wait for the mailbox 15040 * command to finish before continuing. 15041 * 15042 * On success this function will return a zero. If unable to allocate enough 15043 * memory this function will return -ENOMEM. If the queue create mailbox command 15044 * fails this function will return -ENXIO. 15045 **/ 15046 int 15047 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15048 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15049 { 15050 struct lpfc_mbx_cq_create *cq_create; 15051 struct lpfc_dmabuf *dmabuf; 15052 LPFC_MBOXQ_t *mbox; 15053 int rc, length, status = 0; 15054 uint32_t shdr_status, shdr_add_status; 15055 union lpfc_sli4_cfg_shdr *shdr; 15056 15057 /* sanity check on queue memory */ 15058 if (!cq || !eq) 15059 return -ENODEV; 15060 15061 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15062 if (!mbox) 15063 return -ENOMEM; 15064 length = (sizeof(struct lpfc_mbx_cq_create) - 15065 sizeof(struct lpfc_sli4_cfg_mhdr)); 15066 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15067 LPFC_MBOX_OPCODE_CQ_CREATE, 15068 length, LPFC_SLI4_MBX_EMBED); 15069 cq_create = &mbox->u.mqe.un.cq_create; 15070 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15071 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15072 cq->page_count); 15073 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15074 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15075 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15076 phba->sli4_hba.pc_sli4_params.cqv); 15077 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15078 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15079 (cq->page_size / SLI4_PAGE_SIZE)); 15080 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15081 eq->queue_id); 15082 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15083 phba->sli4_hba.pc_sli4_params.cqav); 15084 } else { 15085 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15086 eq->queue_id); 15087 } 15088 switch (cq->entry_count) { 15089 case 2048: 15090 case 4096: 15091 if (phba->sli4_hba.pc_sli4_params.cqv == 15092 LPFC_Q_CREATE_VERSION_2) { 15093 cq_create->u.request.context.lpfc_cq_context_count = 15094 cq->entry_count; 15095 bf_set(lpfc_cq_context_count, 15096 &cq_create->u.request.context, 15097 LPFC_CQ_CNT_WORD7); 15098 break; 15099 } 15100 /* fall through */ 15101 default: 15102 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15103 "0361 Unsupported CQ count: " 15104 "entry cnt %d sz %d pg cnt %d\n", 15105 cq->entry_count, cq->entry_size, 15106 cq->page_count); 15107 if (cq->entry_count < 256) { 15108 status = -EINVAL; 15109 goto out; 15110 } 15111 /* fall through - otherwise default to smallest count */ 15112 case 256: 15113 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15114 LPFC_CQ_CNT_256); 15115 break; 15116 case 512: 15117 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15118 LPFC_CQ_CNT_512); 15119 break; 15120 case 1024: 15121 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15122 LPFC_CQ_CNT_1024); 15123 break; 15124 } 15125 list_for_each_entry(dmabuf, &cq->page_list, list) { 15126 memset(dmabuf->virt, 0, cq->page_size); 15127 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15128 putPaddrLow(dmabuf->phys); 15129 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15130 putPaddrHigh(dmabuf->phys); 15131 } 15132 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15133 15134 /* The IOCTL status is embedded in the mailbox subheader. */ 15135 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15136 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15137 if (shdr_status || shdr_add_status || rc) { 15138 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15139 "2501 CQ_CREATE mailbox failed with " 15140 "status x%x add_status x%x, mbx status x%x\n", 15141 shdr_status, shdr_add_status, rc); 15142 status = -ENXIO; 15143 goto out; 15144 } 15145 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15146 if (cq->queue_id == 0xFFFF) { 15147 status = -ENXIO; 15148 goto out; 15149 } 15150 /* link the cq onto the parent eq child list */ 15151 list_add_tail(&cq->list, &eq->child_list); 15152 /* Set up completion queue's type and subtype */ 15153 cq->type = type; 15154 cq->subtype = subtype; 15155 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15156 cq->assoc_qid = eq->queue_id; 15157 cq->assoc_qp = eq; 15158 cq->host_index = 0; 15159 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15160 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15161 15162 if (cq->queue_id > phba->sli4_hba.cq_max) 15163 phba->sli4_hba.cq_max = cq->queue_id; 15164 out: 15165 mempool_free(mbox, phba->mbox_mem_pool); 15166 return status; 15167 } 15168 15169 /** 15170 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15171 * @phba: HBA structure that indicates port to create a queue on. 15172 * @cqp: The queue structure array to use to create the completion queues. 15173 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15174 * 15175 * This function creates a set of completion queue, s to support MRQ 15176 * as detailed in @cqp, on a port, 15177 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15178 * 15179 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15180 * is used to get the entry count and entry size that are necessary to 15181 * determine the number of pages to allocate and use for this queue. The @eq 15182 * is used to indicate which event queue to bind this completion queue to. This 15183 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15184 * completion queue. This function is asynchronous and will wait for the mailbox 15185 * command to finish before continuing. 15186 * 15187 * On success this function will return a zero. If unable to allocate enough 15188 * memory this function will return -ENOMEM. If the queue create mailbox command 15189 * fails this function will return -ENXIO. 15190 **/ 15191 int 15192 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15193 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15194 uint32_t subtype) 15195 { 15196 struct lpfc_queue *cq; 15197 struct lpfc_queue *eq; 15198 struct lpfc_mbx_cq_create_set *cq_set; 15199 struct lpfc_dmabuf *dmabuf; 15200 LPFC_MBOXQ_t *mbox; 15201 int rc, length, alloclen, status = 0; 15202 int cnt, idx, numcq, page_idx = 0; 15203 uint32_t shdr_status, shdr_add_status; 15204 union lpfc_sli4_cfg_shdr *shdr; 15205 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15206 15207 /* sanity check on queue memory */ 15208 numcq = phba->cfg_nvmet_mrq; 15209 if (!cqp || !hdwq || !numcq) 15210 return -ENODEV; 15211 15212 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15213 if (!mbox) 15214 return -ENOMEM; 15215 15216 length = sizeof(struct lpfc_mbx_cq_create_set); 15217 length += ((numcq * cqp[0]->page_count) * 15218 sizeof(struct dma_address)); 15219 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15220 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15221 LPFC_SLI4_MBX_NEMBED); 15222 if (alloclen < length) { 15223 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15224 "3098 Allocated DMA memory size (%d) is " 15225 "less than the requested DMA memory size " 15226 "(%d)\n", alloclen, length); 15227 status = -ENOMEM; 15228 goto out; 15229 } 15230 cq_set = mbox->sge_array->addr[0]; 15231 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15232 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15233 15234 for (idx = 0; idx < numcq; idx++) { 15235 cq = cqp[idx]; 15236 eq = hdwq[idx].hba_eq; 15237 if (!cq || !eq) { 15238 status = -ENOMEM; 15239 goto out; 15240 } 15241 if (!phba->sli4_hba.pc_sli4_params.supported) 15242 hw_page_size = cq->page_size; 15243 15244 switch (idx) { 15245 case 0: 15246 bf_set(lpfc_mbx_cq_create_set_page_size, 15247 &cq_set->u.request, 15248 (hw_page_size / SLI4_PAGE_SIZE)); 15249 bf_set(lpfc_mbx_cq_create_set_num_pages, 15250 &cq_set->u.request, cq->page_count); 15251 bf_set(lpfc_mbx_cq_create_set_evt, 15252 &cq_set->u.request, 1); 15253 bf_set(lpfc_mbx_cq_create_set_valid, 15254 &cq_set->u.request, 1); 15255 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15256 &cq_set->u.request, 0); 15257 bf_set(lpfc_mbx_cq_create_set_num_cq, 15258 &cq_set->u.request, numcq); 15259 bf_set(lpfc_mbx_cq_create_set_autovalid, 15260 &cq_set->u.request, 15261 phba->sli4_hba.pc_sli4_params.cqav); 15262 switch (cq->entry_count) { 15263 case 2048: 15264 case 4096: 15265 if (phba->sli4_hba.pc_sli4_params.cqv == 15266 LPFC_Q_CREATE_VERSION_2) { 15267 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15268 &cq_set->u.request, 15269 cq->entry_count); 15270 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15271 &cq_set->u.request, 15272 LPFC_CQ_CNT_WORD7); 15273 break; 15274 } 15275 /* fall through */ 15276 default: 15277 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15278 "3118 Bad CQ count. (%d)\n", 15279 cq->entry_count); 15280 if (cq->entry_count < 256) { 15281 status = -EINVAL; 15282 goto out; 15283 } 15284 /* fall through - otherwise default to smallest */ 15285 case 256: 15286 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15287 &cq_set->u.request, LPFC_CQ_CNT_256); 15288 break; 15289 case 512: 15290 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15291 &cq_set->u.request, LPFC_CQ_CNT_512); 15292 break; 15293 case 1024: 15294 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15295 &cq_set->u.request, LPFC_CQ_CNT_1024); 15296 break; 15297 } 15298 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15299 &cq_set->u.request, eq->queue_id); 15300 break; 15301 case 1: 15302 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15303 &cq_set->u.request, eq->queue_id); 15304 break; 15305 case 2: 15306 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15307 &cq_set->u.request, eq->queue_id); 15308 break; 15309 case 3: 15310 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15311 &cq_set->u.request, eq->queue_id); 15312 break; 15313 case 4: 15314 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15315 &cq_set->u.request, eq->queue_id); 15316 break; 15317 case 5: 15318 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15319 &cq_set->u.request, eq->queue_id); 15320 break; 15321 case 6: 15322 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15323 &cq_set->u.request, eq->queue_id); 15324 break; 15325 case 7: 15326 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15327 &cq_set->u.request, eq->queue_id); 15328 break; 15329 case 8: 15330 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15331 &cq_set->u.request, eq->queue_id); 15332 break; 15333 case 9: 15334 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15335 &cq_set->u.request, eq->queue_id); 15336 break; 15337 case 10: 15338 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15339 &cq_set->u.request, eq->queue_id); 15340 break; 15341 case 11: 15342 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15343 &cq_set->u.request, eq->queue_id); 15344 break; 15345 case 12: 15346 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15347 &cq_set->u.request, eq->queue_id); 15348 break; 15349 case 13: 15350 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15351 &cq_set->u.request, eq->queue_id); 15352 break; 15353 case 14: 15354 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15355 &cq_set->u.request, eq->queue_id); 15356 break; 15357 case 15: 15358 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15359 &cq_set->u.request, eq->queue_id); 15360 break; 15361 } 15362 15363 /* link the cq onto the parent eq child list */ 15364 list_add_tail(&cq->list, &eq->child_list); 15365 /* Set up completion queue's type and subtype */ 15366 cq->type = type; 15367 cq->subtype = subtype; 15368 cq->assoc_qid = eq->queue_id; 15369 cq->assoc_qp = eq; 15370 cq->host_index = 0; 15371 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15372 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15373 cq->entry_count); 15374 cq->chann = idx; 15375 15376 rc = 0; 15377 list_for_each_entry(dmabuf, &cq->page_list, list) { 15378 memset(dmabuf->virt, 0, hw_page_size); 15379 cnt = page_idx + dmabuf->buffer_tag; 15380 cq_set->u.request.page[cnt].addr_lo = 15381 putPaddrLow(dmabuf->phys); 15382 cq_set->u.request.page[cnt].addr_hi = 15383 putPaddrHigh(dmabuf->phys); 15384 rc++; 15385 } 15386 page_idx += rc; 15387 } 15388 15389 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15390 15391 /* The IOCTL status is embedded in the mailbox subheader. */ 15392 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15393 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15394 if (shdr_status || shdr_add_status || rc) { 15395 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15396 "3119 CQ_CREATE_SET mailbox failed with " 15397 "status x%x add_status x%x, mbx status x%x\n", 15398 shdr_status, shdr_add_status, rc); 15399 status = -ENXIO; 15400 goto out; 15401 } 15402 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15403 if (rc == 0xFFFF) { 15404 status = -ENXIO; 15405 goto out; 15406 } 15407 15408 for (idx = 0; idx < numcq; idx++) { 15409 cq = cqp[idx]; 15410 cq->queue_id = rc + idx; 15411 if (cq->queue_id > phba->sli4_hba.cq_max) 15412 phba->sli4_hba.cq_max = cq->queue_id; 15413 } 15414 15415 out: 15416 lpfc_sli4_mbox_cmd_free(phba, mbox); 15417 return status; 15418 } 15419 15420 /** 15421 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15422 * @phba: HBA structure that indicates port to create a queue on. 15423 * @mq: The queue structure to use to create the mailbox queue. 15424 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15425 * @cq: The completion queue to associate with this cq. 15426 * 15427 * This function provides failback (fb) functionality when the 15428 * mq_create_ext fails on older FW generations. It's purpose is identical 15429 * to mq_create_ext otherwise. 15430 * 15431 * This routine cannot fail as all attributes were previously accessed and 15432 * initialized in mq_create_ext. 15433 **/ 15434 static void 15435 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15436 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15437 { 15438 struct lpfc_mbx_mq_create *mq_create; 15439 struct lpfc_dmabuf *dmabuf; 15440 int length; 15441 15442 length = (sizeof(struct lpfc_mbx_mq_create) - 15443 sizeof(struct lpfc_sli4_cfg_mhdr)); 15444 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15445 LPFC_MBOX_OPCODE_MQ_CREATE, 15446 length, LPFC_SLI4_MBX_EMBED); 15447 mq_create = &mbox->u.mqe.un.mq_create; 15448 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15449 mq->page_count); 15450 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15451 cq->queue_id); 15452 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15453 switch (mq->entry_count) { 15454 case 16: 15455 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15456 LPFC_MQ_RING_SIZE_16); 15457 break; 15458 case 32: 15459 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15460 LPFC_MQ_RING_SIZE_32); 15461 break; 15462 case 64: 15463 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15464 LPFC_MQ_RING_SIZE_64); 15465 break; 15466 case 128: 15467 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15468 LPFC_MQ_RING_SIZE_128); 15469 break; 15470 } 15471 list_for_each_entry(dmabuf, &mq->page_list, list) { 15472 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15473 putPaddrLow(dmabuf->phys); 15474 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15475 putPaddrHigh(dmabuf->phys); 15476 } 15477 } 15478 15479 /** 15480 * lpfc_mq_create - Create a mailbox Queue on the HBA 15481 * @phba: HBA structure that indicates port to create a queue on. 15482 * @mq: The queue structure to use to create the mailbox queue. 15483 * @cq: The completion queue to associate with this cq. 15484 * @subtype: The queue's subtype. 15485 * 15486 * This function creates a mailbox queue, as detailed in @mq, on a port, 15487 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15488 * 15489 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15490 * is used to get the entry count and entry size that are necessary to 15491 * determine the number of pages to allocate and use for this queue. This 15492 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15493 * mailbox queue. This function is asynchronous and will wait for the mailbox 15494 * command to finish before continuing. 15495 * 15496 * On success this function will return a zero. If unable to allocate enough 15497 * memory this function will return -ENOMEM. If the queue create mailbox command 15498 * fails this function will return -ENXIO. 15499 **/ 15500 int32_t 15501 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15502 struct lpfc_queue *cq, uint32_t subtype) 15503 { 15504 struct lpfc_mbx_mq_create *mq_create; 15505 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15506 struct lpfc_dmabuf *dmabuf; 15507 LPFC_MBOXQ_t *mbox; 15508 int rc, length, status = 0; 15509 uint32_t shdr_status, shdr_add_status; 15510 union lpfc_sli4_cfg_shdr *shdr; 15511 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15512 15513 /* sanity check on queue memory */ 15514 if (!mq || !cq) 15515 return -ENODEV; 15516 if (!phba->sli4_hba.pc_sli4_params.supported) 15517 hw_page_size = SLI4_PAGE_SIZE; 15518 15519 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15520 if (!mbox) 15521 return -ENOMEM; 15522 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15523 sizeof(struct lpfc_sli4_cfg_mhdr)); 15524 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15525 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15526 length, LPFC_SLI4_MBX_EMBED); 15527 15528 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15529 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15530 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15531 &mq_create_ext->u.request, mq->page_count); 15532 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15533 &mq_create_ext->u.request, 1); 15534 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15535 &mq_create_ext->u.request, 1); 15536 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15537 &mq_create_ext->u.request, 1); 15538 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15539 &mq_create_ext->u.request, 1); 15540 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15541 &mq_create_ext->u.request, 1); 15542 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15543 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15544 phba->sli4_hba.pc_sli4_params.mqv); 15545 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15546 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15547 cq->queue_id); 15548 else 15549 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15550 cq->queue_id); 15551 switch (mq->entry_count) { 15552 default: 15553 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15554 "0362 Unsupported MQ count. (%d)\n", 15555 mq->entry_count); 15556 if (mq->entry_count < 16) { 15557 status = -EINVAL; 15558 goto out; 15559 } 15560 /* fall through - otherwise default to smallest count */ 15561 case 16: 15562 bf_set(lpfc_mq_context_ring_size, 15563 &mq_create_ext->u.request.context, 15564 LPFC_MQ_RING_SIZE_16); 15565 break; 15566 case 32: 15567 bf_set(lpfc_mq_context_ring_size, 15568 &mq_create_ext->u.request.context, 15569 LPFC_MQ_RING_SIZE_32); 15570 break; 15571 case 64: 15572 bf_set(lpfc_mq_context_ring_size, 15573 &mq_create_ext->u.request.context, 15574 LPFC_MQ_RING_SIZE_64); 15575 break; 15576 case 128: 15577 bf_set(lpfc_mq_context_ring_size, 15578 &mq_create_ext->u.request.context, 15579 LPFC_MQ_RING_SIZE_128); 15580 break; 15581 } 15582 list_for_each_entry(dmabuf, &mq->page_list, list) { 15583 memset(dmabuf->virt, 0, hw_page_size); 15584 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15585 putPaddrLow(dmabuf->phys); 15586 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15587 putPaddrHigh(dmabuf->phys); 15588 } 15589 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15590 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15591 &mq_create_ext->u.response); 15592 if (rc != MBX_SUCCESS) { 15593 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15594 "2795 MQ_CREATE_EXT failed with " 15595 "status x%x. Failback to MQ_CREATE.\n", 15596 rc); 15597 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15598 mq_create = &mbox->u.mqe.un.mq_create; 15599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15600 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15601 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15602 &mq_create->u.response); 15603 } 15604 15605 /* The IOCTL status is embedded in the mailbox subheader. */ 15606 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15607 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15608 if (shdr_status || shdr_add_status || rc) { 15609 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15610 "2502 MQ_CREATE mailbox failed with " 15611 "status x%x add_status x%x, mbx status x%x\n", 15612 shdr_status, shdr_add_status, rc); 15613 status = -ENXIO; 15614 goto out; 15615 } 15616 if (mq->queue_id == 0xFFFF) { 15617 status = -ENXIO; 15618 goto out; 15619 } 15620 mq->type = LPFC_MQ; 15621 mq->assoc_qid = cq->queue_id; 15622 mq->subtype = subtype; 15623 mq->host_index = 0; 15624 mq->hba_index = 0; 15625 15626 /* link the mq onto the parent cq child list */ 15627 list_add_tail(&mq->list, &cq->child_list); 15628 out: 15629 mempool_free(mbox, phba->mbox_mem_pool); 15630 return status; 15631 } 15632 15633 /** 15634 * lpfc_wq_create - Create a Work Queue on the HBA 15635 * @phba: HBA structure that indicates port to create a queue on. 15636 * @wq: The queue structure to use to create the work queue. 15637 * @cq: The completion queue to bind this work queue to. 15638 * @subtype: The subtype of the work queue indicating its functionality. 15639 * 15640 * This function creates a work queue, as detailed in @wq, on a port, described 15641 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15642 * 15643 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15644 * is used to get the entry count and entry size that are necessary to 15645 * determine the number of pages to allocate and use for this queue. The @cq 15646 * is used to indicate which completion queue to bind this work queue to. This 15647 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15648 * work queue. This function is asynchronous and will wait for the mailbox 15649 * command to finish before continuing. 15650 * 15651 * On success this function will return a zero. If unable to allocate enough 15652 * memory this function will return -ENOMEM. If the queue create mailbox command 15653 * fails this function will return -ENXIO. 15654 **/ 15655 int 15656 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15657 struct lpfc_queue *cq, uint32_t subtype) 15658 { 15659 struct lpfc_mbx_wq_create *wq_create; 15660 struct lpfc_dmabuf *dmabuf; 15661 LPFC_MBOXQ_t *mbox; 15662 int rc, length, status = 0; 15663 uint32_t shdr_status, shdr_add_status; 15664 union lpfc_sli4_cfg_shdr *shdr; 15665 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15666 struct dma_address *page; 15667 void __iomem *bar_memmap_p; 15668 uint32_t db_offset; 15669 uint16_t pci_barset; 15670 uint8_t dpp_barset; 15671 uint32_t dpp_offset; 15672 unsigned long pg_addr; 15673 uint8_t wq_create_version; 15674 15675 /* sanity check on queue memory */ 15676 if (!wq || !cq) 15677 return -ENODEV; 15678 if (!phba->sli4_hba.pc_sli4_params.supported) 15679 hw_page_size = wq->page_size; 15680 15681 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15682 if (!mbox) 15683 return -ENOMEM; 15684 length = (sizeof(struct lpfc_mbx_wq_create) - 15685 sizeof(struct lpfc_sli4_cfg_mhdr)); 15686 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15687 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15688 length, LPFC_SLI4_MBX_EMBED); 15689 wq_create = &mbox->u.mqe.un.wq_create; 15690 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15691 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15692 wq->page_count); 15693 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15694 cq->queue_id); 15695 15696 /* wqv is the earliest version supported, NOT the latest */ 15697 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15698 phba->sli4_hba.pc_sli4_params.wqv); 15699 15700 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15701 (wq->page_size > SLI4_PAGE_SIZE)) 15702 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15703 else 15704 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15705 15706 15707 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15708 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15709 else 15710 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15711 15712 switch (wq_create_version) { 15713 case LPFC_Q_CREATE_VERSION_1: 15714 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15715 wq->entry_count); 15716 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15717 LPFC_Q_CREATE_VERSION_1); 15718 15719 switch (wq->entry_size) { 15720 default: 15721 case 64: 15722 bf_set(lpfc_mbx_wq_create_wqe_size, 15723 &wq_create->u.request_1, 15724 LPFC_WQ_WQE_SIZE_64); 15725 break; 15726 case 128: 15727 bf_set(lpfc_mbx_wq_create_wqe_size, 15728 &wq_create->u.request_1, 15729 LPFC_WQ_WQE_SIZE_128); 15730 break; 15731 } 15732 /* Request DPP by default */ 15733 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15734 bf_set(lpfc_mbx_wq_create_page_size, 15735 &wq_create->u.request_1, 15736 (wq->page_size / SLI4_PAGE_SIZE)); 15737 page = wq_create->u.request_1.page; 15738 break; 15739 default: 15740 page = wq_create->u.request.page; 15741 break; 15742 } 15743 15744 list_for_each_entry(dmabuf, &wq->page_list, list) { 15745 memset(dmabuf->virt, 0, hw_page_size); 15746 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15747 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15748 } 15749 15750 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15751 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15752 15753 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15754 /* The IOCTL status is embedded in the mailbox subheader. */ 15755 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15756 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15757 if (shdr_status || shdr_add_status || rc) { 15758 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15759 "2503 WQ_CREATE mailbox failed with " 15760 "status x%x add_status x%x, mbx status x%x\n", 15761 shdr_status, shdr_add_status, rc); 15762 status = -ENXIO; 15763 goto out; 15764 } 15765 15766 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15767 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15768 &wq_create->u.response); 15769 else 15770 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15771 &wq_create->u.response_1); 15772 15773 if (wq->queue_id == 0xFFFF) { 15774 status = -ENXIO; 15775 goto out; 15776 } 15777 15778 wq->db_format = LPFC_DB_LIST_FORMAT; 15779 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15780 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15781 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15782 &wq_create->u.response); 15783 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15784 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15785 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15786 "3265 WQ[%d] doorbell format " 15787 "not supported: x%x\n", 15788 wq->queue_id, wq->db_format); 15789 status = -EINVAL; 15790 goto out; 15791 } 15792 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15793 &wq_create->u.response); 15794 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15795 pci_barset); 15796 if (!bar_memmap_p) { 15797 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15798 "3263 WQ[%d] failed to memmap " 15799 "pci barset:x%x\n", 15800 wq->queue_id, pci_barset); 15801 status = -ENOMEM; 15802 goto out; 15803 } 15804 db_offset = wq_create->u.response.doorbell_offset; 15805 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15806 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15807 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15808 "3252 WQ[%d] doorbell offset " 15809 "not supported: x%x\n", 15810 wq->queue_id, db_offset); 15811 status = -EINVAL; 15812 goto out; 15813 } 15814 wq->db_regaddr = bar_memmap_p + db_offset; 15815 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15816 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15817 "format:x%x\n", wq->queue_id, 15818 pci_barset, db_offset, wq->db_format); 15819 } else 15820 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15821 } else { 15822 /* Check if DPP was honored by the firmware */ 15823 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15824 &wq_create->u.response_1); 15825 if (wq->dpp_enable) { 15826 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15827 &wq_create->u.response_1); 15828 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15829 pci_barset); 15830 if (!bar_memmap_p) { 15831 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15832 "3267 WQ[%d] failed to memmap " 15833 "pci barset:x%x\n", 15834 wq->queue_id, pci_barset); 15835 status = -ENOMEM; 15836 goto out; 15837 } 15838 db_offset = wq_create->u.response_1.doorbell_offset; 15839 wq->db_regaddr = bar_memmap_p + db_offset; 15840 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15841 &wq_create->u.response_1); 15842 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15843 &wq_create->u.response_1); 15844 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15845 dpp_barset); 15846 if (!bar_memmap_p) { 15847 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15848 "3268 WQ[%d] failed to memmap " 15849 "pci barset:x%x\n", 15850 wq->queue_id, dpp_barset); 15851 status = -ENOMEM; 15852 goto out; 15853 } 15854 dpp_offset = wq_create->u.response_1.dpp_offset; 15855 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15856 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15857 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15858 "dpp_id:x%x dpp_barset:x%x " 15859 "dpp_offset:x%x\n", 15860 wq->queue_id, pci_barset, db_offset, 15861 wq->dpp_id, dpp_barset, dpp_offset); 15862 15863 /* Enable combined writes for DPP aperture */ 15864 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15865 #ifdef CONFIG_X86 15866 rc = set_memory_wc(pg_addr, 1); 15867 if (rc) { 15868 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15869 "3272 Cannot setup Combined " 15870 "Write on WQ[%d] - disable DPP\n", 15871 wq->queue_id); 15872 phba->cfg_enable_dpp = 0; 15873 } 15874 #else 15875 phba->cfg_enable_dpp = 0; 15876 #endif 15877 } else 15878 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15879 } 15880 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15881 if (wq->pring == NULL) { 15882 status = -ENOMEM; 15883 goto out; 15884 } 15885 wq->type = LPFC_WQ; 15886 wq->assoc_qid = cq->queue_id; 15887 wq->subtype = subtype; 15888 wq->host_index = 0; 15889 wq->hba_index = 0; 15890 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 15891 15892 /* link the wq onto the parent cq child list */ 15893 list_add_tail(&wq->list, &cq->child_list); 15894 out: 15895 mempool_free(mbox, phba->mbox_mem_pool); 15896 return status; 15897 } 15898 15899 /** 15900 * lpfc_rq_create - Create a Receive Queue on the HBA 15901 * @phba: HBA structure that indicates port to create a queue on. 15902 * @hrq: The queue structure to use to create the header receive queue. 15903 * @drq: The queue structure to use to create the data receive queue. 15904 * @cq: The completion queue to bind this work queue to. 15905 * 15906 * This function creates a receive buffer queue pair , as detailed in @hrq and 15907 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15908 * to the HBA. 15909 * 15910 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15911 * struct is used to get the entry count that is necessary to determine the 15912 * number of pages to use for this queue. The @cq is used to indicate which 15913 * completion queue to bind received buffers that are posted to these queues to. 15914 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15915 * receive queue pair. This function is asynchronous and will wait for the 15916 * mailbox command to finish before continuing. 15917 * 15918 * On success this function will return a zero. If unable to allocate enough 15919 * memory this function will return -ENOMEM. If the queue create mailbox command 15920 * fails this function will return -ENXIO. 15921 **/ 15922 int 15923 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15924 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15925 { 15926 struct lpfc_mbx_rq_create *rq_create; 15927 struct lpfc_dmabuf *dmabuf; 15928 LPFC_MBOXQ_t *mbox; 15929 int rc, length, status = 0; 15930 uint32_t shdr_status, shdr_add_status; 15931 union lpfc_sli4_cfg_shdr *shdr; 15932 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15933 void __iomem *bar_memmap_p; 15934 uint32_t db_offset; 15935 uint16_t pci_barset; 15936 15937 /* sanity check on queue memory */ 15938 if (!hrq || !drq || !cq) 15939 return -ENODEV; 15940 if (!phba->sli4_hba.pc_sli4_params.supported) 15941 hw_page_size = SLI4_PAGE_SIZE; 15942 15943 if (hrq->entry_count != drq->entry_count) 15944 return -EINVAL; 15945 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15946 if (!mbox) 15947 return -ENOMEM; 15948 length = (sizeof(struct lpfc_mbx_rq_create) - 15949 sizeof(struct lpfc_sli4_cfg_mhdr)); 15950 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15951 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15952 length, LPFC_SLI4_MBX_EMBED); 15953 rq_create = &mbox->u.mqe.un.rq_create; 15954 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15955 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15956 phba->sli4_hba.pc_sli4_params.rqv); 15957 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15958 bf_set(lpfc_rq_context_rqe_count_1, 15959 &rq_create->u.request.context, 15960 hrq->entry_count); 15961 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15962 bf_set(lpfc_rq_context_rqe_size, 15963 &rq_create->u.request.context, 15964 LPFC_RQE_SIZE_8); 15965 bf_set(lpfc_rq_context_page_size, 15966 &rq_create->u.request.context, 15967 LPFC_RQ_PAGE_SIZE_4096); 15968 } else { 15969 switch (hrq->entry_count) { 15970 default: 15971 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15972 "2535 Unsupported RQ count. (%d)\n", 15973 hrq->entry_count); 15974 if (hrq->entry_count < 512) { 15975 status = -EINVAL; 15976 goto out; 15977 } 15978 /* fall through - otherwise default to smallest count */ 15979 case 512: 15980 bf_set(lpfc_rq_context_rqe_count, 15981 &rq_create->u.request.context, 15982 LPFC_RQ_RING_SIZE_512); 15983 break; 15984 case 1024: 15985 bf_set(lpfc_rq_context_rqe_count, 15986 &rq_create->u.request.context, 15987 LPFC_RQ_RING_SIZE_1024); 15988 break; 15989 case 2048: 15990 bf_set(lpfc_rq_context_rqe_count, 15991 &rq_create->u.request.context, 15992 LPFC_RQ_RING_SIZE_2048); 15993 break; 15994 case 4096: 15995 bf_set(lpfc_rq_context_rqe_count, 15996 &rq_create->u.request.context, 15997 LPFC_RQ_RING_SIZE_4096); 15998 break; 15999 } 16000 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16001 LPFC_HDR_BUF_SIZE); 16002 } 16003 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16004 cq->queue_id); 16005 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16006 hrq->page_count); 16007 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16008 memset(dmabuf->virt, 0, hw_page_size); 16009 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16010 putPaddrLow(dmabuf->phys); 16011 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16012 putPaddrHigh(dmabuf->phys); 16013 } 16014 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16015 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16016 16017 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16018 /* The IOCTL status is embedded in the mailbox subheader. */ 16019 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16020 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16021 if (shdr_status || shdr_add_status || rc) { 16022 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16023 "2504 RQ_CREATE mailbox failed with " 16024 "status x%x add_status x%x, mbx status x%x\n", 16025 shdr_status, shdr_add_status, rc); 16026 status = -ENXIO; 16027 goto out; 16028 } 16029 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16030 if (hrq->queue_id == 0xFFFF) { 16031 status = -ENXIO; 16032 goto out; 16033 } 16034 16035 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16036 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16037 &rq_create->u.response); 16038 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16039 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16040 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16041 "3262 RQ [%d] doorbell format not " 16042 "supported: x%x\n", hrq->queue_id, 16043 hrq->db_format); 16044 status = -EINVAL; 16045 goto out; 16046 } 16047 16048 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16049 &rq_create->u.response); 16050 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16051 if (!bar_memmap_p) { 16052 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16053 "3269 RQ[%d] failed to memmap pci " 16054 "barset:x%x\n", hrq->queue_id, 16055 pci_barset); 16056 status = -ENOMEM; 16057 goto out; 16058 } 16059 16060 db_offset = rq_create->u.response.doorbell_offset; 16061 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16062 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16063 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16064 "3270 RQ[%d] doorbell offset not " 16065 "supported: x%x\n", hrq->queue_id, 16066 db_offset); 16067 status = -EINVAL; 16068 goto out; 16069 } 16070 hrq->db_regaddr = bar_memmap_p + db_offset; 16071 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16072 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16073 "format:x%x\n", hrq->queue_id, pci_barset, 16074 db_offset, hrq->db_format); 16075 } else { 16076 hrq->db_format = LPFC_DB_RING_FORMAT; 16077 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16078 } 16079 hrq->type = LPFC_HRQ; 16080 hrq->assoc_qid = cq->queue_id; 16081 hrq->subtype = subtype; 16082 hrq->host_index = 0; 16083 hrq->hba_index = 0; 16084 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16085 16086 /* now create the data queue */ 16087 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16088 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16089 length, LPFC_SLI4_MBX_EMBED); 16090 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16091 phba->sli4_hba.pc_sli4_params.rqv); 16092 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16093 bf_set(lpfc_rq_context_rqe_count_1, 16094 &rq_create->u.request.context, hrq->entry_count); 16095 if (subtype == LPFC_NVMET) 16096 rq_create->u.request.context.buffer_size = 16097 LPFC_NVMET_DATA_BUF_SIZE; 16098 else 16099 rq_create->u.request.context.buffer_size = 16100 LPFC_DATA_BUF_SIZE; 16101 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16102 LPFC_RQE_SIZE_8); 16103 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16104 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16105 } else { 16106 switch (drq->entry_count) { 16107 default: 16108 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16109 "2536 Unsupported RQ count. (%d)\n", 16110 drq->entry_count); 16111 if (drq->entry_count < 512) { 16112 status = -EINVAL; 16113 goto out; 16114 } 16115 /* fall through - otherwise default to smallest count */ 16116 case 512: 16117 bf_set(lpfc_rq_context_rqe_count, 16118 &rq_create->u.request.context, 16119 LPFC_RQ_RING_SIZE_512); 16120 break; 16121 case 1024: 16122 bf_set(lpfc_rq_context_rqe_count, 16123 &rq_create->u.request.context, 16124 LPFC_RQ_RING_SIZE_1024); 16125 break; 16126 case 2048: 16127 bf_set(lpfc_rq_context_rqe_count, 16128 &rq_create->u.request.context, 16129 LPFC_RQ_RING_SIZE_2048); 16130 break; 16131 case 4096: 16132 bf_set(lpfc_rq_context_rqe_count, 16133 &rq_create->u.request.context, 16134 LPFC_RQ_RING_SIZE_4096); 16135 break; 16136 } 16137 if (subtype == LPFC_NVMET) 16138 bf_set(lpfc_rq_context_buf_size, 16139 &rq_create->u.request.context, 16140 LPFC_NVMET_DATA_BUF_SIZE); 16141 else 16142 bf_set(lpfc_rq_context_buf_size, 16143 &rq_create->u.request.context, 16144 LPFC_DATA_BUF_SIZE); 16145 } 16146 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16147 cq->queue_id); 16148 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16149 drq->page_count); 16150 list_for_each_entry(dmabuf, &drq->page_list, list) { 16151 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16152 putPaddrLow(dmabuf->phys); 16153 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16154 putPaddrHigh(dmabuf->phys); 16155 } 16156 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16157 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16158 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16159 /* The IOCTL status is embedded in the mailbox subheader. */ 16160 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16161 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16162 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16163 if (shdr_status || shdr_add_status || rc) { 16164 status = -ENXIO; 16165 goto out; 16166 } 16167 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16168 if (drq->queue_id == 0xFFFF) { 16169 status = -ENXIO; 16170 goto out; 16171 } 16172 drq->type = LPFC_DRQ; 16173 drq->assoc_qid = cq->queue_id; 16174 drq->subtype = subtype; 16175 drq->host_index = 0; 16176 drq->hba_index = 0; 16177 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16178 16179 /* link the header and data RQs onto the parent cq child list */ 16180 list_add_tail(&hrq->list, &cq->child_list); 16181 list_add_tail(&drq->list, &cq->child_list); 16182 16183 out: 16184 mempool_free(mbox, phba->mbox_mem_pool); 16185 return status; 16186 } 16187 16188 /** 16189 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16190 * @phba: HBA structure that indicates port to create a queue on. 16191 * @hrqp: The queue structure array to use to create the header receive queues. 16192 * @drqp: The queue structure array to use to create the data receive queues. 16193 * @cqp: The completion queue array to bind these receive queues to. 16194 * 16195 * This function creates a receive buffer queue pair , as detailed in @hrq and 16196 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16197 * to the HBA. 16198 * 16199 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16200 * struct is used to get the entry count that is necessary to determine the 16201 * number of pages to use for this queue. The @cq is used to indicate which 16202 * completion queue to bind received buffers that are posted to these queues to. 16203 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16204 * receive queue pair. This function is asynchronous and will wait for the 16205 * mailbox command to finish before continuing. 16206 * 16207 * On success this function will return a zero. If unable to allocate enough 16208 * memory this function will return -ENOMEM. If the queue create mailbox command 16209 * fails this function will return -ENXIO. 16210 **/ 16211 int 16212 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16213 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16214 uint32_t subtype) 16215 { 16216 struct lpfc_queue *hrq, *drq, *cq; 16217 struct lpfc_mbx_rq_create_v2 *rq_create; 16218 struct lpfc_dmabuf *dmabuf; 16219 LPFC_MBOXQ_t *mbox; 16220 int rc, length, alloclen, status = 0; 16221 int cnt, idx, numrq, page_idx = 0; 16222 uint32_t shdr_status, shdr_add_status; 16223 union lpfc_sli4_cfg_shdr *shdr; 16224 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16225 16226 numrq = phba->cfg_nvmet_mrq; 16227 /* sanity check on array memory */ 16228 if (!hrqp || !drqp || !cqp || !numrq) 16229 return -ENODEV; 16230 if (!phba->sli4_hba.pc_sli4_params.supported) 16231 hw_page_size = SLI4_PAGE_SIZE; 16232 16233 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16234 if (!mbox) 16235 return -ENOMEM; 16236 16237 length = sizeof(struct lpfc_mbx_rq_create_v2); 16238 length += ((2 * numrq * hrqp[0]->page_count) * 16239 sizeof(struct dma_address)); 16240 16241 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16242 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16243 LPFC_SLI4_MBX_NEMBED); 16244 if (alloclen < length) { 16245 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16246 "3099 Allocated DMA memory size (%d) is " 16247 "less than the requested DMA memory size " 16248 "(%d)\n", alloclen, length); 16249 status = -ENOMEM; 16250 goto out; 16251 } 16252 16253 16254 16255 rq_create = mbox->sge_array->addr[0]; 16256 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16257 16258 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16259 cnt = 0; 16260 16261 for (idx = 0; idx < numrq; idx++) { 16262 hrq = hrqp[idx]; 16263 drq = drqp[idx]; 16264 cq = cqp[idx]; 16265 16266 /* sanity check on queue memory */ 16267 if (!hrq || !drq || !cq) { 16268 status = -ENODEV; 16269 goto out; 16270 } 16271 16272 if (hrq->entry_count != drq->entry_count) { 16273 status = -EINVAL; 16274 goto out; 16275 } 16276 16277 if (idx == 0) { 16278 bf_set(lpfc_mbx_rq_create_num_pages, 16279 &rq_create->u.request, 16280 hrq->page_count); 16281 bf_set(lpfc_mbx_rq_create_rq_cnt, 16282 &rq_create->u.request, (numrq * 2)); 16283 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16284 1); 16285 bf_set(lpfc_rq_context_base_cq, 16286 &rq_create->u.request.context, 16287 cq->queue_id); 16288 bf_set(lpfc_rq_context_data_size, 16289 &rq_create->u.request.context, 16290 LPFC_NVMET_DATA_BUF_SIZE); 16291 bf_set(lpfc_rq_context_hdr_size, 16292 &rq_create->u.request.context, 16293 LPFC_HDR_BUF_SIZE); 16294 bf_set(lpfc_rq_context_rqe_count_1, 16295 &rq_create->u.request.context, 16296 hrq->entry_count); 16297 bf_set(lpfc_rq_context_rqe_size, 16298 &rq_create->u.request.context, 16299 LPFC_RQE_SIZE_8); 16300 bf_set(lpfc_rq_context_page_size, 16301 &rq_create->u.request.context, 16302 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16303 } 16304 rc = 0; 16305 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16306 memset(dmabuf->virt, 0, hw_page_size); 16307 cnt = page_idx + dmabuf->buffer_tag; 16308 rq_create->u.request.page[cnt].addr_lo = 16309 putPaddrLow(dmabuf->phys); 16310 rq_create->u.request.page[cnt].addr_hi = 16311 putPaddrHigh(dmabuf->phys); 16312 rc++; 16313 } 16314 page_idx += rc; 16315 16316 rc = 0; 16317 list_for_each_entry(dmabuf, &drq->page_list, list) { 16318 memset(dmabuf->virt, 0, hw_page_size); 16319 cnt = page_idx + dmabuf->buffer_tag; 16320 rq_create->u.request.page[cnt].addr_lo = 16321 putPaddrLow(dmabuf->phys); 16322 rq_create->u.request.page[cnt].addr_hi = 16323 putPaddrHigh(dmabuf->phys); 16324 rc++; 16325 } 16326 page_idx += rc; 16327 16328 hrq->db_format = LPFC_DB_RING_FORMAT; 16329 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16330 hrq->type = LPFC_HRQ; 16331 hrq->assoc_qid = cq->queue_id; 16332 hrq->subtype = subtype; 16333 hrq->host_index = 0; 16334 hrq->hba_index = 0; 16335 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16336 16337 drq->db_format = LPFC_DB_RING_FORMAT; 16338 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16339 drq->type = LPFC_DRQ; 16340 drq->assoc_qid = cq->queue_id; 16341 drq->subtype = subtype; 16342 drq->host_index = 0; 16343 drq->hba_index = 0; 16344 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16345 16346 list_add_tail(&hrq->list, &cq->child_list); 16347 list_add_tail(&drq->list, &cq->child_list); 16348 } 16349 16350 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16351 /* The IOCTL status is embedded in the mailbox subheader. */ 16352 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16353 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16354 if (shdr_status || shdr_add_status || rc) { 16355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16356 "3120 RQ_CREATE mailbox failed with " 16357 "status x%x add_status x%x, mbx status x%x\n", 16358 shdr_status, shdr_add_status, rc); 16359 status = -ENXIO; 16360 goto out; 16361 } 16362 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16363 if (rc == 0xFFFF) { 16364 status = -ENXIO; 16365 goto out; 16366 } 16367 16368 /* Initialize all RQs with associated queue id */ 16369 for (idx = 0; idx < numrq; idx++) { 16370 hrq = hrqp[idx]; 16371 hrq->queue_id = rc + (2 * idx); 16372 drq = drqp[idx]; 16373 drq->queue_id = rc + (2 * idx) + 1; 16374 } 16375 16376 out: 16377 lpfc_sli4_mbox_cmd_free(phba, mbox); 16378 return status; 16379 } 16380 16381 /** 16382 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16383 * @eq: The queue structure associated with the queue to destroy. 16384 * 16385 * This function destroys a queue, as detailed in @eq by sending an mailbox 16386 * command, specific to the type of queue, to the HBA. 16387 * 16388 * The @eq struct is used to get the queue ID of the queue to destroy. 16389 * 16390 * On success this function will return a zero. If the queue destroy mailbox 16391 * command fails this function will return -ENXIO. 16392 **/ 16393 int 16394 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16395 { 16396 LPFC_MBOXQ_t *mbox; 16397 int rc, length, status = 0; 16398 uint32_t shdr_status, shdr_add_status; 16399 union lpfc_sli4_cfg_shdr *shdr; 16400 16401 /* sanity check on queue memory */ 16402 if (!eq) 16403 return -ENODEV; 16404 16405 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16406 if (!mbox) 16407 return -ENOMEM; 16408 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16409 sizeof(struct lpfc_sli4_cfg_mhdr)); 16410 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16411 LPFC_MBOX_OPCODE_EQ_DESTROY, 16412 length, LPFC_SLI4_MBX_EMBED); 16413 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16414 eq->queue_id); 16415 mbox->vport = eq->phba->pport; 16416 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16417 16418 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16419 /* The IOCTL status is embedded in the mailbox subheader. */ 16420 shdr = (union lpfc_sli4_cfg_shdr *) 16421 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16422 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16423 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16424 if (shdr_status || shdr_add_status || rc) { 16425 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16426 "2505 EQ_DESTROY mailbox failed with " 16427 "status x%x add_status x%x, mbx status x%x\n", 16428 shdr_status, shdr_add_status, rc); 16429 status = -ENXIO; 16430 } 16431 16432 /* Remove eq from any list */ 16433 list_del_init(&eq->list); 16434 mempool_free(mbox, eq->phba->mbox_mem_pool); 16435 return status; 16436 } 16437 16438 /** 16439 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16440 * @cq: The queue structure associated with the queue to destroy. 16441 * 16442 * This function destroys a queue, as detailed in @cq by sending an mailbox 16443 * command, specific to the type of queue, to the HBA. 16444 * 16445 * The @cq struct is used to get the queue ID of the queue to destroy. 16446 * 16447 * On success this function will return a zero. If the queue destroy mailbox 16448 * command fails this function will return -ENXIO. 16449 **/ 16450 int 16451 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16452 { 16453 LPFC_MBOXQ_t *mbox; 16454 int rc, length, status = 0; 16455 uint32_t shdr_status, shdr_add_status; 16456 union lpfc_sli4_cfg_shdr *shdr; 16457 16458 /* sanity check on queue memory */ 16459 if (!cq) 16460 return -ENODEV; 16461 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16462 if (!mbox) 16463 return -ENOMEM; 16464 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16465 sizeof(struct lpfc_sli4_cfg_mhdr)); 16466 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16467 LPFC_MBOX_OPCODE_CQ_DESTROY, 16468 length, LPFC_SLI4_MBX_EMBED); 16469 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16470 cq->queue_id); 16471 mbox->vport = cq->phba->pport; 16472 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16473 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16474 /* The IOCTL status is embedded in the mailbox subheader. */ 16475 shdr = (union lpfc_sli4_cfg_shdr *) 16476 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16477 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16478 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16479 if (shdr_status || shdr_add_status || rc) { 16480 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16481 "2506 CQ_DESTROY mailbox failed with " 16482 "status x%x add_status x%x, mbx status x%x\n", 16483 shdr_status, shdr_add_status, rc); 16484 status = -ENXIO; 16485 } 16486 /* Remove cq from any list */ 16487 list_del_init(&cq->list); 16488 mempool_free(mbox, cq->phba->mbox_mem_pool); 16489 return status; 16490 } 16491 16492 /** 16493 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16494 * @qm: The queue structure associated with the queue to destroy. 16495 * 16496 * This function destroys a queue, as detailed in @mq by sending an mailbox 16497 * command, specific to the type of queue, to the HBA. 16498 * 16499 * The @mq struct is used to get the queue ID of the queue to destroy. 16500 * 16501 * On success this function will return a zero. If the queue destroy mailbox 16502 * command fails this function will return -ENXIO. 16503 **/ 16504 int 16505 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16506 { 16507 LPFC_MBOXQ_t *mbox; 16508 int rc, length, status = 0; 16509 uint32_t shdr_status, shdr_add_status; 16510 union lpfc_sli4_cfg_shdr *shdr; 16511 16512 /* sanity check on queue memory */ 16513 if (!mq) 16514 return -ENODEV; 16515 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16516 if (!mbox) 16517 return -ENOMEM; 16518 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16519 sizeof(struct lpfc_sli4_cfg_mhdr)); 16520 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16521 LPFC_MBOX_OPCODE_MQ_DESTROY, 16522 length, LPFC_SLI4_MBX_EMBED); 16523 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16524 mq->queue_id); 16525 mbox->vport = mq->phba->pport; 16526 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16527 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16528 /* The IOCTL status is embedded in the mailbox subheader. */ 16529 shdr = (union lpfc_sli4_cfg_shdr *) 16530 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16531 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16532 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16533 if (shdr_status || shdr_add_status || rc) { 16534 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16535 "2507 MQ_DESTROY mailbox failed with " 16536 "status x%x add_status x%x, mbx status x%x\n", 16537 shdr_status, shdr_add_status, rc); 16538 status = -ENXIO; 16539 } 16540 /* Remove mq from any list */ 16541 list_del_init(&mq->list); 16542 mempool_free(mbox, mq->phba->mbox_mem_pool); 16543 return status; 16544 } 16545 16546 /** 16547 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16548 * @wq: The queue structure associated with the queue to destroy. 16549 * 16550 * This function destroys a queue, as detailed in @wq by sending an mailbox 16551 * command, specific to the type of queue, to the HBA. 16552 * 16553 * The @wq struct is used to get the queue ID of the queue to destroy. 16554 * 16555 * On success this function will return a zero. If the queue destroy mailbox 16556 * command fails this function will return -ENXIO. 16557 **/ 16558 int 16559 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16560 { 16561 LPFC_MBOXQ_t *mbox; 16562 int rc, length, status = 0; 16563 uint32_t shdr_status, shdr_add_status; 16564 union lpfc_sli4_cfg_shdr *shdr; 16565 16566 /* sanity check on queue memory */ 16567 if (!wq) 16568 return -ENODEV; 16569 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16570 if (!mbox) 16571 return -ENOMEM; 16572 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16573 sizeof(struct lpfc_sli4_cfg_mhdr)); 16574 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16575 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16576 length, LPFC_SLI4_MBX_EMBED); 16577 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16578 wq->queue_id); 16579 mbox->vport = wq->phba->pport; 16580 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16581 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16582 shdr = (union lpfc_sli4_cfg_shdr *) 16583 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16584 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16585 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16586 if (shdr_status || shdr_add_status || rc) { 16587 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16588 "2508 WQ_DESTROY mailbox failed with " 16589 "status x%x add_status x%x, mbx status x%x\n", 16590 shdr_status, shdr_add_status, rc); 16591 status = -ENXIO; 16592 } 16593 /* Remove wq from any list */ 16594 list_del_init(&wq->list); 16595 kfree(wq->pring); 16596 wq->pring = NULL; 16597 mempool_free(mbox, wq->phba->mbox_mem_pool); 16598 return status; 16599 } 16600 16601 /** 16602 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16603 * @rq: The queue structure associated with the queue to destroy. 16604 * 16605 * This function destroys a queue, as detailed in @rq by sending an mailbox 16606 * command, specific to the type of queue, to the HBA. 16607 * 16608 * The @rq struct is used to get the queue ID of the queue to destroy. 16609 * 16610 * On success this function will return a zero. If the queue destroy mailbox 16611 * command fails this function will return -ENXIO. 16612 **/ 16613 int 16614 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16615 struct lpfc_queue *drq) 16616 { 16617 LPFC_MBOXQ_t *mbox; 16618 int rc, length, status = 0; 16619 uint32_t shdr_status, shdr_add_status; 16620 union lpfc_sli4_cfg_shdr *shdr; 16621 16622 /* sanity check on queue memory */ 16623 if (!hrq || !drq) 16624 return -ENODEV; 16625 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16626 if (!mbox) 16627 return -ENOMEM; 16628 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16629 sizeof(struct lpfc_sli4_cfg_mhdr)); 16630 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16631 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16632 length, LPFC_SLI4_MBX_EMBED); 16633 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16634 hrq->queue_id); 16635 mbox->vport = hrq->phba->pport; 16636 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16637 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16638 /* The IOCTL status is embedded in the mailbox subheader. */ 16639 shdr = (union lpfc_sli4_cfg_shdr *) 16640 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16641 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16642 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16643 if (shdr_status || shdr_add_status || rc) { 16644 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16645 "2509 RQ_DESTROY mailbox failed with " 16646 "status x%x add_status x%x, mbx status x%x\n", 16647 shdr_status, shdr_add_status, rc); 16648 if (rc != MBX_TIMEOUT) 16649 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16650 return -ENXIO; 16651 } 16652 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16653 drq->queue_id); 16654 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16655 shdr = (union lpfc_sli4_cfg_shdr *) 16656 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16657 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16658 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16659 if (shdr_status || shdr_add_status || rc) { 16660 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16661 "2510 RQ_DESTROY mailbox failed with " 16662 "status x%x add_status x%x, mbx status x%x\n", 16663 shdr_status, shdr_add_status, rc); 16664 status = -ENXIO; 16665 } 16666 list_del_init(&hrq->list); 16667 list_del_init(&drq->list); 16668 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16669 return status; 16670 } 16671 16672 /** 16673 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16674 * @phba: The virtual port for which this call being executed. 16675 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16676 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16677 * @xritag: the xritag that ties this io to the SGL pages. 16678 * 16679 * This routine will post the sgl pages for the IO that has the xritag 16680 * that is in the iocbq structure. The xritag is assigned during iocbq 16681 * creation and persists for as long as the driver is loaded. 16682 * if the caller has fewer than 256 scatter gather segments to map then 16683 * pdma_phys_addr1 should be 0. 16684 * If the caller needs to map more than 256 scatter gather segment then 16685 * pdma_phys_addr1 should be a valid physical address. 16686 * physical address for SGLs must be 64 byte aligned. 16687 * If you are going to map 2 SGL's then the first one must have 256 entries 16688 * the second sgl can have between 1 and 256 entries. 16689 * 16690 * Return codes: 16691 * 0 - Success 16692 * -ENXIO, -ENOMEM - Failure 16693 **/ 16694 int 16695 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16696 dma_addr_t pdma_phys_addr0, 16697 dma_addr_t pdma_phys_addr1, 16698 uint16_t xritag) 16699 { 16700 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16701 LPFC_MBOXQ_t *mbox; 16702 int rc; 16703 uint32_t shdr_status, shdr_add_status; 16704 uint32_t mbox_tmo; 16705 union lpfc_sli4_cfg_shdr *shdr; 16706 16707 if (xritag == NO_XRI) { 16708 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16709 "0364 Invalid param:\n"); 16710 return -EINVAL; 16711 } 16712 16713 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16714 if (!mbox) 16715 return -ENOMEM; 16716 16717 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16718 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16719 sizeof(struct lpfc_mbx_post_sgl_pages) - 16720 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16721 16722 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16723 &mbox->u.mqe.un.post_sgl_pages; 16724 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16725 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16726 16727 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16728 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16729 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16730 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16731 16732 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16733 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16734 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16735 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16736 if (!phba->sli4_hba.intr_enable) 16737 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16738 else { 16739 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16740 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16741 } 16742 /* The IOCTL status is embedded in the mailbox subheader. */ 16743 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16744 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16745 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16746 if (rc != MBX_TIMEOUT) 16747 mempool_free(mbox, phba->mbox_mem_pool); 16748 if (shdr_status || shdr_add_status || rc) { 16749 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16750 "2511 POST_SGL mailbox failed with " 16751 "status x%x add_status x%x, mbx status x%x\n", 16752 shdr_status, shdr_add_status, rc); 16753 } 16754 return 0; 16755 } 16756 16757 /** 16758 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16759 * @phba: pointer to lpfc hba data structure. 16760 * 16761 * This routine is invoked to post rpi header templates to the 16762 * HBA consistent with the SLI-4 interface spec. This routine 16763 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16764 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16765 * 16766 * Returns 16767 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16768 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16769 **/ 16770 static uint16_t 16771 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16772 { 16773 unsigned long xri; 16774 16775 /* 16776 * Fetch the next logical xri. Because this index is logical, 16777 * the driver starts at 0 each time. 16778 */ 16779 spin_lock_irq(&phba->hbalock); 16780 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16781 phba->sli4_hba.max_cfg_param.max_xri, 0); 16782 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16783 spin_unlock_irq(&phba->hbalock); 16784 return NO_XRI; 16785 } else { 16786 set_bit(xri, phba->sli4_hba.xri_bmask); 16787 phba->sli4_hba.max_cfg_param.xri_used++; 16788 } 16789 spin_unlock_irq(&phba->hbalock); 16790 return xri; 16791 } 16792 16793 /** 16794 * lpfc_sli4_free_xri - Release an xri for reuse. 16795 * @phba: pointer to lpfc hba data structure. 16796 * 16797 * This routine is invoked to release an xri to the pool of 16798 * available rpis maintained by the driver. 16799 **/ 16800 static void 16801 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16802 { 16803 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16804 phba->sli4_hba.max_cfg_param.xri_used--; 16805 } 16806 } 16807 16808 /** 16809 * lpfc_sli4_free_xri - Release an xri for reuse. 16810 * @phba: pointer to lpfc hba data structure. 16811 * 16812 * This routine is invoked to release an xri to the pool of 16813 * available rpis maintained by the driver. 16814 **/ 16815 void 16816 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16817 { 16818 spin_lock_irq(&phba->hbalock); 16819 __lpfc_sli4_free_xri(phba, xri); 16820 spin_unlock_irq(&phba->hbalock); 16821 } 16822 16823 /** 16824 * lpfc_sli4_next_xritag - Get an xritag for the io 16825 * @phba: Pointer to HBA context object. 16826 * 16827 * This function gets an xritag for the iocb. If there is no unused xritag 16828 * it will return 0xffff. 16829 * The function returns the allocated xritag if successful, else returns zero. 16830 * Zero is not a valid xritag. 16831 * The caller is not required to hold any lock. 16832 **/ 16833 uint16_t 16834 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16835 { 16836 uint16_t xri_index; 16837 16838 xri_index = lpfc_sli4_alloc_xri(phba); 16839 if (xri_index == NO_XRI) 16840 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16841 "2004 Failed to allocate XRI.last XRITAG is %d" 16842 " Max XRI is %d, Used XRI is %d\n", 16843 xri_index, 16844 phba->sli4_hba.max_cfg_param.max_xri, 16845 phba->sli4_hba.max_cfg_param.xri_used); 16846 return xri_index; 16847 } 16848 16849 /** 16850 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16851 * @phba: pointer to lpfc hba data structure. 16852 * @post_sgl_list: pointer to els sgl entry list. 16853 * @count: number of els sgl entries on the list. 16854 * 16855 * This routine is invoked to post a block of driver's sgl pages to the 16856 * HBA using non-embedded mailbox command. No Lock is held. This routine 16857 * is only called when the driver is loading and after all IO has been 16858 * stopped. 16859 **/ 16860 static int 16861 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16862 struct list_head *post_sgl_list, 16863 int post_cnt) 16864 { 16865 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16866 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16867 struct sgl_page_pairs *sgl_pg_pairs; 16868 void *viraddr; 16869 LPFC_MBOXQ_t *mbox; 16870 uint32_t reqlen, alloclen, pg_pairs; 16871 uint32_t mbox_tmo; 16872 uint16_t xritag_start = 0; 16873 int rc = 0; 16874 uint32_t shdr_status, shdr_add_status; 16875 union lpfc_sli4_cfg_shdr *shdr; 16876 16877 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16878 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16879 if (reqlen > SLI4_PAGE_SIZE) { 16880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16881 "2559 Block sgl registration required DMA " 16882 "size (%d) great than a page\n", reqlen); 16883 return -ENOMEM; 16884 } 16885 16886 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16887 if (!mbox) 16888 return -ENOMEM; 16889 16890 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16891 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16892 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16893 LPFC_SLI4_MBX_NEMBED); 16894 16895 if (alloclen < reqlen) { 16896 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16897 "0285 Allocated DMA memory size (%d) is " 16898 "less than the requested DMA memory " 16899 "size (%d)\n", alloclen, reqlen); 16900 lpfc_sli4_mbox_cmd_free(phba, mbox); 16901 return -ENOMEM; 16902 } 16903 /* Set up the SGL pages in the non-embedded DMA pages */ 16904 viraddr = mbox->sge_array->addr[0]; 16905 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16906 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16907 16908 pg_pairs = 0; 16909 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16910 /* Set up the sge entry */ 16911 sgl_pg_pairs->sgl_pg0_addr_lo = 16912 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16913 sgl_pg_pairs->sgl_pg0_addr_hi = 16914 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16915 sgl_pg_pairs->sgl_pg1_addr_lo = 16916 cpu_to_le32(putPaddrLow(0)); 16917 sgl_pg_pairs->sgl_pg1_addr_hi = 16918 cpu_to_le32(putPaddrHigh(0)); 16919 16920 /* Keep the first xritag on the list */ 16921 if (pg_pairs == 0) 16922 xritag_start = sglq_entry->sli4_xritag; 16923 sgl_pg_pairs++; 16924 pg_pairs++; 16925 } 16926 16927 /* Complete initialization and perform endian conversion. */ 16928 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16929 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16930 sgl->word0 = cpu_to_le32(sgl->word0); 16931 16932 if (!phba->sli4_hba.intr_enable) 16933 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16934 else { 16935 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16936 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16937 } 16938 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16939 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16940 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16941 if (rc != MBX_TIMEOUT) 16942 lpfc_sli4_mbox_cmd_free(phba, mbox); 16943 if (shdr_status || shdr_add_status || rc) { 16944 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16945 "2513 POST_SGL_BLOCK mailbox command failed " 16946 "status x%x add_status x%x mbx status x%x\n", 16947 shdr_status, shdr_add_status, rc); 16948 rc = -ENXIO; 16949 } 16950 return rc; 16951 } 16952 16953 /** 16954 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 16955 * @phba: pointer to lpfc hba data structure. 16956 * @nblist: pointer to nvme buffer list. 16957 * @count: number of scsi buffers on the list. 16958 * 16959 * This routine is invoked to post a block of @count scsi sgl pages from a 16960 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 16961 * No Lock is held. 16962 * 16963 **/ 16964 static int 16965 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 16966 int count) 16967 { 16968 struct lpfc_io_buf *lpfc_ncmd; 16969 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16970 struct sgl_page_pairs *sgl_pg_pairs; 16971 void *viraddr; 16972 LPFC_MBOXQ_t *mbox; 16973 uint32_t reqlen, alloclen, pg_pairs; 16974 uint32_t mbox_tmo; 16975 uint16_t xritag_start = 0; 16976 int rc = 0; 16977 uint32_t shdr_status, shdr_add_status; 16978 dma_addr_t pdma_phys_bpl1; 16979 union lpfc_sli4_cfg_shdr *shdr; 16980 16981 /* Calculate the requested length of the dma memory */ 16982 reqlen = count * sizeof(struct sgl_page_pairs) + 16983 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16984 if (reqlen > SLI4_PAGE_SIZE) { 16985 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16986 "6118 Block sgl registration required DMA " 16987 "size (%d) great than a page\n", reqlen); 16988 return -ENOMEM; 16989 } 16990 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16991 if (!mbox) { 16992 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16993 "6119 Failed to allocate mbox cmd memory\n"); 16994 return -ENOMEM; 16995 } 16996 16997 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16998 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16999 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17000 reqlen, LPFC_SLI4_MBX_NEMBED); 17001 17002 if (alloclen < reqlen) { 17003 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17004 "6120 Allocated DMA memory size (%d) is " 17005 "less than the requested DMA memory " 17006 "size (%d)\n", alloclen, reqlen); 17007 lpfc_sli4_mbox_cmd_free(phba, mbox); 17008 return -ENOMEM; 17009 } 17010 17011 /* Get the first SGE entry from the non-embedded DMA memory */ 17012 viraddr = mbox->sge_array->addr[0]; 17013 17014 /* Set up the SGL pages in the non-embedded DMA pages */ 17015 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17016 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17017 17018 pg_pairs = 0; 17019 list_for_each_entry(lpfc_ncmd, nblist, list) { 17020 /* Set up the sge entry */ 17021 sgl_pg_pairs->sgl_pg0_addr_lo = 17022 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17023 sgl_pg_pairs->sgl_pg0_addr_hi = 17024 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17025 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17026 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17027 SGL_PAGE_SIZE; 17028 else 17029 pdma_phys_bpl1 = 0; 17030 sgl_pg_pairs->sgl_pg1_addr_lo = 17031 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17032 sgl_pg_pairs->sgl_pg1_addr_hi = 17033 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17034 /* Keep the first xritag on the list */ 17035 if (pg_pairs == 0) 17036 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17037 sgl_pg_pairs++; 17038 pg_pairs++; 17039 } 17040 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17041 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17042 /* Perform endian conversion if necessary */ 17043 sgl->word0 = cpu_to_le32(sgl->word0); 17044 17045 if (!phba->sli4_hba.intr_enable) { 17046 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17047 } else { 17048 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17049 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17050 } 17051 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17052 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17053 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17054 if (rc != MBX_TIMEOUT) 17055 lpfc_sli4_mbox_cmd_free(phba, mbox); 17056 if (shdr_status || shdr_add_status || rc) { 17057 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17058 "6125 POST_SGL_BLOCK mailbox command failed " 17059 "status x%x add_status x%x mbx status x%x\n", 17060 shdr_status, shdr_add_status, rc); 17061 rc = -ENXIO; 17062 } 17063 return rc; 17064 } 17065 17066 /** 17067 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17068 * @phba: pointer to lpfc hba data structure. 17069 * @post_nblist: pointer to the nvme buffer list. 17070 * 17071 * This routine walks a list of nvme buffers that was passed in. It attempts 17072 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17073 * uses the non-embedded SGL block post mailbox commands to post to the port. 17074 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17075 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17076 * must be local list, thus no lock is needed when manipulate the list. 17077 * 17078 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17079 **/ 17080 int 17081 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17082 struct list_head *post_nblist, int sb_count) 17083 { 17084 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17085 int status, sgl_size; 17086 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17087 dma_addr_t pdma_phys_sgl1; 17088 int last_xritag = NO_XRI; 17089 int cur_xritag; 17090 LIST_HEAD(prep_nblist); 17091 LIST_HEAD(blck_nblist); 17092 LIST_HEAD(nvme_nblist); 17093 17094 /* sanity check */ 17095 if (sb_count <= 0) 17096 return -EINVAL; 17097 17098 sgl_size = phba->cfg_sg_dma_buf_size; 17099 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17100 list_del_init(&lpfc_ncmd->list); 17101 block_cnt++; 17102 if ((last_xritag != NO_XRI) && 17103 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17104 /* a hole in xri block, form a sgl posting block */ 17105 list_splice_init(&prep_nblist, &blck_nblist); 17106 post_cnt = block_cnt - 1; 17107 /* prepare list for next posting block */ 17108 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17109 block_cnt = 1; 17110 } else { 17111 /* prepare list for next posting block */ 17112 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17113 /* enough sgls for non-embed sgl mbox command */ 17114 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17115 list_splice_init(&prep_nblist, &blck_nblist); 17116 post_cnt = block_cnt; 17117 block_cnt = 0; 17118 } 17119 } 17120 num_posting++; 17121 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17122 17123 /* end of repost sgl list condition for NVME buffers */ 17124 if (num_posting == sb_count) { 17125 if (post_cnt == 0) { 17126 /* last sgl posting block */ 17127 list_splice_init(&prep_nblist, &blck_nblist); 17128 post_cnt = block_cnt; 17129 } else if (block_cnt == 1) { 17130 /* last single sgl with non-contiguous xri */ 17131 if (sgl_size > SGL_PAGE_SIZE) 17132 pdma_phys_sgl1 = 17133 lpfc_ncmd->dma_phys_sgl + 17134 SGL_PAGE_SIZE; 17135 else 17136 pdma_phys_sgl1 = 0; 17137 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17138 status = lpfc_sli4_post_sgl( 17139 phba, lpfc_ncmd->dma_phys_sgl, 17140 pdma_phys_sgl1, cur_xritag); 17141 if (status) { 17142 /* Post error. Buffer unavailable. */ 17143 lpfc_ncmd->flags |= 17144 LPFC_SBUF_NOT_POSTED; 17145 } else { 17146 /* Post success. Bffer available. */ 17147 lpfc_ncmd->flags &= 17148 ~LPFC_SBUF_NOT_POSTED; 17149 lpfc_ncmd->status = IOSTAT_SUCCESS; 17150 num_posted++; 17151 } 17152 /* success, put on NVME buffer sgl list */ 17153 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17154 } 17155 } 17156 17157 /* continue until a nembed page worth of sgls */ 17158 if (post_cnt == 0) 17159 continue; 17160 17161 /* post block of NVME buffer list sgls */ 17162 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17163 post_cnt); 17164 17165 /* don't reset xirtag due to hole in xri block */ 17166 if (block_cnt == 0) 17167 last_xritag = NO_XRI; 17168 17169 /* reset NVME buffer post count for next round of posting */ 17170 post_cnt = 0; 17171 17172 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17173 while (!list_empty(&blck_nblist)) { 17174 list_remove_head(&blck_nblist, lpfc_ncmd, 17175 struct lpfc_io_buf, list); 17176 if (status) { 17177 /* Post error. Mark buffer unavailable. */ 17178 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17179 } else { 17180 /* Post success, Mark buffer available. */ 17181 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17182 lpfc_ncmd->status = IOSTAT_SUCCESS; 17183 num_posted++; 17184 } 17185 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17186 } 17187 } 17188 /* Push NVME buffers with sgl posted to the available list */ 17189 lpfc_io_buf_replenish(phba, &nvme_nblist); 17190 17191 return num_posted; 17192 } 17193 17194 /** 17195 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17196 * @phba: pointer to lpfc_hba struct that the frame was received on 17197 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17198 * 17199 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17200 * valid type of frame that the LPFC driver will handle. This function will 17201 * return a zero if the frame is a valid frame or a non zero value when the 17202 * frame does not pass the check. 17203 **/ 17204 static int 17205 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17206 { 17207 /* make rctl_names static to save stack space */ 17208 struct fc_vft_header *fc_vft_hdr; 17209 uint32_t *header = (uint32_t *) fc_hdr; 17210 17211 #define FC_RCTL_MDS_DIAGS 0xF4 17212 17213 switch (fc_hdr->fh_r_ctl) { 17214 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17215 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17216 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17217 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17218 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17219 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17220 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17221 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17222 case FC_RCTL_ELS_REQ: /* extended link services request */ 17223 case FC_RCTL_ELS_REP: /* extended link services reply */ 17224 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17225 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17226 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17227 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17228 case FC_RCTL_BA_RMC: /* remove connection */ 17229 case FC_RCTL_BA_ACC: /* basic accept */ 17230 case FC_RCTL_BA_RJT: /* basic reject */ 17231 case FC_RCTL_BA_PRMT: 17232 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17233 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17234 case FC_RCTL_P_RJT: /* port reject */ 17235 case FC_RCTL_F_RJT: /* fabric reject */ 17236 case FC_RCTL_P_BSY: /* port busy */ 17237 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17238 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17239 case FC_RCTL_LCR: /* link credit reset */ 17240 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17241 case FC_RCTL_END: /* end */ 17242 break; 17243 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17244 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17245 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17246 return lpfc_fc_frame_check(phba, fc_hdr); 17247 default: 17248 goto drop; 17249 } 17250 17251 switch (fc_hdr->fh_type) { 17252 case FC_TYPE_BLS: 17253 case FC_TYPE_ELS: 17254 case FC_TYPE_FCP: 17255 case FC_TYPE_CT: 17256 case FC_TYPE_NVME: 17257 break; 17258 case FC_TYPE_IP: 17259 case FC_TYPE_ILS: 17260 default: 17261 goto drop; 17262 } 17263 17264 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17265 "2538 Received frame rctl:x%x, type:x%x, " 17266 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17267 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17268 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17269 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17270 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17271 be32_to_cpu(header[6])); 17272 return 0; 17273 drop: 17274 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17275 "2539 Dropped frame rctl:x%x type:x%x\n", 17276 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17277 return 1; 17278 } 17279 17280 /** 17281 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17282 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17283 * 17284 * This function processes the FC header to retrieve the VFI from the VF 17285 * header, if one exists. This function will return the VFI if one exists 17286 * or 0 if no VSAN Header exists. 17287 **/ 17288 static uint32_t 17289 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17290 { 17291 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17292 17293 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17294 return 0; 17295 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17296 } 17297 17298 /** 17299 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17300 * @phba: Pointer to the HBA structure to search for the vport on 17301 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17302 * @fcfi: The FC Fabric ID that the frame came from 17303 * 17304 * This function searches the @phba for a vport that matches the content of the 17305 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17306 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17307 * returns the matching vport pointer or NULL if unable to match frame to a 17308 * vport. 17309 **/ 17310 static struct lpfc_vport * 17311 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17312 uint16_t fcfi, uint32_t did) 17313 { 17314 struct lpfc_vport **vports; 17315 struct lpfc_vport *vport = NULL; 17316 int i; 17317 17318 if (did == Fabric_DID) 17319 return phba->pport; 17320 if ((phba->pport->fc_flag & FC_PT2PT) && 17321 !(phba->link_state == LPFC_HBA_READY)) 17322 return phba->pport; 17323 17324 vports = lpfc_create_vport_work_array(phba); 17325 if (vports != NULL) { 17326 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17327 if (phba->fcf.fcfi == fcfi && 17328 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17329 vports[i]->fc_myDID == did) { 17330 vport = vports[i]; 17331 break; 17332 } 17333 } 17334 } 17335 lpfc_destroy_vport_work_array(phba, vports); 17336 return vport; 17337 } 17338 17339 /** 17340 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17341 * @vport: The vport to work on. 17342 * 17343 * This function updates the receive sequence time stamp for this vport. The 17344 * receive sequence time stamp indicates the time that the last frame of the 17345 * the sequence that has been idle for the longest amount of time was received. 17346 * the driver uses this time stamp to indicate if any received sequences have 17347 * timed out. 17348 **/ 17349 static void 17350 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17351 { 17352 struct lpfc_dmabuf *h_buf; 17353 struct hbq_dmabuf *dmabuf = NULL; 17354 17355 /* get the oldest sequence on the rcv list */ 17356 h_buf = list_get_first(&vport->rcv_buffer_list, 17357 struct lpfc_dmabuf, list); 17358 if (!h_buf) 17359 return; 17360 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17361 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17362 } 17363 17364 /** 17365 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17366 * @vport: The vport that the received sequences were sent to. 17367 * 17368 * This function cleans up all outstanding received sequences. This is called 17369 * by the driver when a link event or user action invalidates all the received 17370 * sequences. 17371 **/ 17372 void 17373 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17374 { 17375 struct lpfc_dmabuf *h_buf, *hnext; 17376 struct lpfc_dmabuf *d_buf, *dnext; 17377 struct hbq_dmabuf *dmabuf = NULL; 17378 17379 /* start with the oldest sequence on the rcv list */ 17380 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17381 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17382 list_del_init(&dmabuf->hbuf.list); 17383 list_for_each_entry_safe(d_buf, dnext, 17384 &dmabuf->dbuf.list, list) { 17385 list_del_init(&d_buf->list); 17386 lpfc_in_buf_free(vport->phba, d_buf); 17387 } 17388 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17389 } 17390 } 17391 17392 /** 17393 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17394 * @vport: The vport that the received sequences were sent to. 17395 * 17396 * This function determines whether any received sequences have timed out by 17397 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17398 * indicates that there is at least one timed out sequence this routine will 17399 * go through the received sequences one at a time from most inactive to most 17400 * active to determine which ones need to be cleaned up. Once it has determined 17401 * that a sequence needs to be cleaned up it will simply free up the resources 17402 * without sending an abort. 17403 **/ 17404 void 17405 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17406 { 17407 struct lpfc_dmabuf *h_buf, *hnext; 17408 struct lpfc_dmabuf *d_buf, *dnext; 17409 struct hbq_dmabuf *dmabuf = NULL; 17410 unsigned long timeout; 17411 int abort_count = 0; 17412 17413 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17414 vport->rcv_buffer_time_stamp); 17415 if (list_empty(&vport->rcv_buffer_list) || 17416 time_before(jiffies, timeout)) 17417 return; 17418 /* start with the oldest sequence on the rcv list */ 17419 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17420 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17421 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17422 dmabuf->time_stamp); 17423 if (time_before(jiffies, timeout)) 17424 break; 17425 abort_count++; 17426 list_del_init(&dmabuf->hbuf.list); 17427 list_for_each_entry_safe(d_buf, dnext, 17428 &dmabuf->dbuf.list, list) { 17429 list_del_init(&d_buf->list); 17430 lpfc_in_buf_free(vport->phba, d_buf); 17431 } 17432 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17433 } 17434 if (abort_count) 17435 lpfc_update_rcv_time_stamp(vport); 17436 } 17437 17438 /** 17439 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17440 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17441 * 17442 * This function searches through the existing incomplete sequences that have 17443 * been sent to this @vport. If the frame matches one of the incomplete 17444 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17445 * make up that sequence. If no sequence is found that matches this frame then 17446 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17447 * This function returns a pointer to the first dmabuf in the sequence list that 17448 * the frame was linked to. 17449 **/ 17450 static struct hbq_dmabuf * 17451 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17452 { 17453 struct fc_frame_header *new_hdr; 17454 struct fc_frame_header *temp_hdr; 17455 struct lpfc_dmabuf *d_buf; 17456 struct lpfc_dmabuf *h_buf; 17457 struct hbq_dmabuf *seq_dmabuf = NULL; 17458 struct hbq_dmabuf *temp_dmabuf = NULL; 17459 uint8_t found = 0; 17460 17461 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17462 dmabuf->time_stamp = jiffies; 17463 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17464 17465 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17466 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17467 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17468 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17469 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17470 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17471 continue; 17472 /* found a pending sequence that matches this frame */ 17473 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17474 break; 17475 } 17476 if (!seq_dmabuf) { 17477 /* 17478 * This indicates first frame received for this sequence. 17479 * Queue the buffer on the vport's rcv_buffer_list. 17480 */ 17481 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17482 lpfc_update_rcv_time_stamp(vport); 17483 return dmabuf; 17484 } 17485 temp_hdr = seq_dmabuf->hbuf.virt; 17486 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17487 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17488 list_del_init(&seq_dmabuf->hbuf.list); 17489 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17490 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17491 lpfc_update_rcv_time_stamp(vport); 17492 return dmabuf; 17493 } 17494 /* move this sequence to the tail to indicate a young sequence */ 17495 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17496 seq_dmabuf->time_stamp = jiffies; 17497 lpfc_update_rcv_time_stamp(vport); 17498 if (list_empty(&seq_dmabuf->dbuf.list)) { 17499 temp_hdr = dmabuf->hbuf.virt; 17500 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17501 return seq_dmabuf; 17502 } 17503 /* find the correct place in the sequence to insert this frame */ 17504 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17505 while (!found) { 17506 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17507 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17508 /* 17509 * If the frame's sequence count is greater than the frame on 17510 * the list then insert the frame right after this frame 17511 */ 17512 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17513 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17514 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17515 found = 1; 17516 break; 17517 } 17518 17519 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17520 break; 17521 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17522 } 17523 17524 if (found) 17525 return seq_dmabuf; 17526 return NULL; 17527 } 17528 17529 /** 17530 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17531 * @vport: pointer to a vitural port 17532 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17533 * 17534 * This function tries to abort from the partially assembed sequence, described 17535 * by the information from basic abbort @dmabuf. It checks to see whether such 17536 * partially assembled sequence held by the driver. If so, it shall free up all 17537 * the frames from the partially assembled sequence. 17538 * 17539 * Return 17540 * true -- if there is matching partially assembled sequence present and all 17541 * the frames freed with the sequence; 17542 * false -- if there is no matching partially assembled sequence present so 17543 * nothing got aborted in the lower layer driver 17544 **/ 17545 static bool 17546 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17547 struct hbq_dmabuf *dmabuf) 17548 { 17549 struct fc_frame_header *new_hdr; 17550 struct fc_frame_header *temp_hdr; 17551 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17552 struct hbq_dmabuf *seq_dmabuf = NULL; 17553 17554 /* Use the hdr_buf to find the sequence that matches this frame */ 17555 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17556 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17557 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17558 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17559 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17560 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17561 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17562 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17563 continue; 17564 /* found a pending sequence that matches this frame */ 17565 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17566 break; 17567 } 17568 17569 /* Free up all the frames from the partially assembled sequence */ 17570 if (seq_dmabuf) { 17571 list_for_each_entry_safe(d_buf, n_buf, 17572 &seq_dmabuf->dbuf.list, list) { 17573 list_del_init(&d_buf->list); 17574 lpfc_in_buf_free(vport->phba, d_buf); 17575 } 17576 return true; 17577 } 17578 return false; 17579 } 17580 17581 /** 17582 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17583 * @vport: pointer to a vitural port 17584 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17585 * 17586 * This function tries to abort from the assembed sequence from upper level 17587 * protocol, described by the information from basic abbort @dmabuf. It 17588 * checks to see whether such pending context exists at upper level protocol. 17589 * If so, it shall clean up the pending context. 17590 * 17591 * Return 17592 * true -- if there is matching pending context of the sequence cleaned 17593 * at ulp; 17594 * false -- if there is no matching pending context of the sequence present 17595 * at ulp. 17596 **/ 17597 static bool 17598 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17599 { 17600 struct lpfc_hba *phba = vport->phba; 17601 int handled; 17602 17603 /* Accepting abort at ulp with SLI4 only */ 17604 if (phba->sli_rev < LPFC_SLI_REV4) 17605 return false; 17606 17607 /* Register all caring upper level protocols to attend abort */ 17608 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17609 if (handled) 17610 return true; 17611 17612 return false; 17613 } 17614 17615 /** 17616 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17617 * @phba: Pointer to HBA context object. 17618 * @cmd_iocbq: pointer to the command iocbq structure. 17619 * @rsp_iocbq: pointer to the response iocbq structure. 17620 * 17621 * This function handles the sequence abort response iocb command complete 17622 * event. It properly releases the memory allocated to the sequence abort 17623 * accept iocb. 17624 **/ 17625 static void 17626 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17627 struct lpfc_iocbq *cmd_iocbq, 17628 struct lpfc_iocbq *rsp_iocbq) 17629 { 17630 struct lpfc_nodelist *ndlp; 17631 17632 if (cmd_iocbq) { 17633 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17634 lpfc_nlp_put(ndlp); 17635 lpfc_nlp_not_used(ndlp); 17636 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17637 } 17638 17639 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17640 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17641 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17642 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17643 rsp_iocbq->iocb.ulpStatus, 17644 rsp_iocbq->iocb.un.ulpWord[4]); 17645 } 17646 17647 /** 17648 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17649 * @phba: Pointer to HBA context object. 17650 * @xri: xri id in transaction. 17651 * 17652 * This function validates the xri maps to the known range of XRIs allocated an 17653 * used by the driver. 17654 **/ 17655 uint16_t 17656 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17657 uint16_t xri) 17658 { 17659 uint16_t i; 17660 17661 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17662 if (xri == phba->sli4_hba.xri_ids[i]) 17663 return i; 17664 } 17665 return NO_XRI; 17666 } 17667 17668 /** 17669 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17670 * @phba: Pointer to HBA context object. 17671 * @fc_hdr: pointer to a FC frame header. 17672 * 17673 * This function sends a basic response to a previous unsol sequence abort 17674 * event after aborting the sequence handling. 17675 **/ 17676 void 17677 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17678 struct fc_frame_header *fc_hdr, bool aborted) 17679 { 17680 struct lpfc_hba *phba = vport->phba; 17681 struct lpfc_iocbq *ctiocb = NULL; 17682 struct lpfc_nodelist *ndlp; 17683 uint16_t oxid, rxid, xri, lxri; 17684 uint32_t sid, fctl; 17685 IOCB_t *icmd; 17686 int rc; 17687 17688 if (!lpfc_is_link_up(phba)) 17689 return; 17690 17691 sid = sli4_sid_from_fc_hdr(fc_hdr); 17692 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17693 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17694 17695 ndlp = lpfc_findnode_did(vport, sid); 17696 if (!ndlp) { 17697 ndlp = lpfc_nlp_init(vport, sid); 17698 if (!ndlp) { 17699 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17700 "1268 Failed to allocate ndlp for " 17701 "oxid:x%x SID:x%x\n", oxid, sid); 17702 return; 17703 } 17704 /* Put ndlp onto pport node list */ 17705 lpfc_enqueue_node(vport, ndlp); 17706 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17707 /* re-setup ndlp without removing from node list */ 17708 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17709 if (!ndlp) { 17710 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17711 "3275 Failed to active ndlp found " 17712 "for oxid:x%x SID:x%x\n", oxid, sid); 17713 return; 17714 } 17715 } 17716 17717 /* Allocate buffer for rsp iocb */ 17718 ctiocb = lpfc_sli_get_iocbq(phba); 17719 if (!ctiocb) 17720 return; 17721 17722 /* Extract the F_CTL field from FC_HDR */ 17723 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17724 17725 icmd = &ctiocb->iocb; 17726 icmd->un.xseq64.bdl.bdeSize = 0; 17727 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17728 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17729 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17730 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17731 17732 /* Fill in the rest of iocb fields */ 17733 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17734 icmd->ulpBdeCount = 0; 17735 icmd->ulpLe = 1; 17736 icmd->ulpClass = CLASS3; 17737 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17738 ctiocb->context1 = lpfc_nlp_get(ndlp); 17739 17740 ctiocb->vport = phba->pport; 17741 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17742 ctiocb->sli4_lxritag = NO_XRI; 17743 ctiocb->sli4_xritag = NO_XRI; 17744 17745 if (fctl & FC_FC_EX_CTX) 17746 /* Exchange responder sent the abort so we 17747 * own the oxid. 17748 */ 17749 xri = oxid; 17750 else 17751 xri = rxid; 17752 lxri = lpfc_sli4_xri_inrange(phba, xri); 17753 if (lxri != NO_XRI) 17754 lpfc_set_rrq_active(phba, ndlp, lxri, 17755 (xri == oxid) ? rxid : oxid, 0); 17756 /* For BA_ABTS from exchange responder, if the logical xri with 17757 * the oxid maps to the FCP XRI range, the port no longer has 17758 * that exchange context, send a BLS_RJT. Override the IOCB for 17759 * a BA_RJT. 17760 */ 17761 if ((fctl & FC_FC_EX_CTX) && 17762 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17763 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17764 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17765 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17766 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17767 } 17768 17769 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17770 * the driver no longer has that exchange, send a BLS_RJT. Override 17771 * the IOCB for a BA_RJT. 17772 */ 17773 if (aborted == false) { 17774 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17775 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17776 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17777 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17778 } 17779 17780 if (fctl & FC_FC_EX_CTX) { 17781 /* ABTS sent by responder to CT exchange, construction 17782 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17783 * field and RX_ID from ABTS for RX_ID field. 17784 */ 17785 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17786 } else { 17787 /* ABTS sent by initiator to CT exchange, construction 17788 * of BA_ACC will need to allocate a new XRI as for the 17789 * XRI_TAG field. 17790 */ 17791 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17792 } 17793 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17794 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17795 17796 /* Xmit CT abts response on exchange <xid> */ 17797 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17798 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17799 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17800 17801 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17802 if (rc == IOCB_ERROR) { 17803 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17804 "2925 Failed to issue CT ABTS RSP x%x on " 17805 "xri x%x, Data x%x\n", 17806 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17807 phba->link_state); 17808 lpfc_nlp_put(ndlp); 17809 ctiocb->context1 = NULL; 17810 lpfc_sli_release_iocbq(phba, ctiocb); 17811 } 17812 } 17813 17814 /** 17815 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17816 * @vport: Pointer to the vport on which this sequence was received 17817 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17818 * 17819 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17820 * receive sequence is only partially assembed by the driver, it shall abort 17821 * the partially assembled frames for the sequence. Otherwise, if the 17822 * unsolicited receive sequence has been completely assembled and passed to 17823 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17824 * unsolicited sequence has been aborted. After that, it will issue a basic 17825 * accept to accept the abort. 17826 **/ 17827 static void 17828 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17829 struct hbq_dmabuf *dmabuf) 17830 { 17831 struct lpfc_hba *phba = vport->phba; 17832 struct fc_frame_header fc_hdr; 17833 uint32_t fctl; 17834 bool aborted; 17835 17836 /* Make a copy of fc_hdr before the dmabuf being released */ 17837 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17838 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17839 17840 if (fctl & FC_FC_EX_CTX) { 17841 /* ABTS by responder to exchange, no cleanup needed */ 17842 aborted = true; 17843 } else { 17844 /* ABTS by initiator to exchange, need to do cleanup */ 17845 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17846 if (aborted == false) 17847 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17848 } 17849 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17850 17851 if (phba->nvmet_support) { 17852 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17853 return; 17854 } 17855 17856 /* Respond with BA_ACC or BA_RJT accordingly */ 17857 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17858 } 17859 17860 /** 17861 * lpfc_seq_complete - Indicates if a sequence is complete 17862 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17863 * 17864 * This function checks the sequence, starting with the frame described by 17865 * @dmabuf, to see if all the frames associated with this sequence are present. 17866 * the frames associated with this sequence are linked to the @dmabuf using the 17867 * dbuf list. This function looks for two major things. 1) That the first frame 17868 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17869 * set. 3) That there are no holes in the sequence count. The function will 17870 * return 1 when the sequence is complete, otherwise it will return 0. 17871 **/ 17872 static int 17873 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17874 { 17875 struct fc_frame_header *hdr; 17876 struct lpfc_dmabuf *d_buf; 17877 struct hbq_dmabuf *seq_dmabuf; 17878 uint32_t fctl; 17879 int seq_count = 0; 17880 17881 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17882 /* make sure first fame of sequence has a sequence count of zero */ 17883 if (hdr->fh_seq_cnt != seq_count) 17884 return 0; 17885 fctl = (hdr->fh_f_ctl[0] << 16 | 17886 hdr->fh_f_ctl[1] << 8 | 17887 hdr->fh_f_ctl[2]); 17888 /* If last frame of sequence we can return success. */ 17889 if (fctl & FC_FC_END_SEQ) 17890 return 1; 17891 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17892 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17893 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17894 /* If there is a hole in the sequence count then fail. */ 17895 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17896 return 0; 17897 fctl = (hdr->fh_f_ctl[0] << 16 | 17898 hdr->fh_f_ctl[1] << 8 | 17899 hdr->fh_f_ctl[2]); 17900 /* If last frame of sequence we can return success. */ 17901 if (fctl & FC_FC_END_SEQ) 17902 return 1; 17903 } 17904 return 0; 17905 } 17906 17907 /** 17908 * lpfc_prep_seq - Prep sequence for ULP processing 17909 * @vport: Pointer to the vport on which this sequence was received 17910 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17911 * 17912 * This function takes a sequence, described by a list of frames, and creates 17913 * a list of iocbq structures to describe the sequence. This iocbq list will be 17914 * used to issue to the generic unsolicited sequence handler. This routine 17915 * returns a pointer to the first iocbq in the list. If the function is unable 17916 * to allocate an iocbq then it throw out the received frames that were not 17917 * able to be described and return a pointer to the first iocbq. If unable to 17918 * allocate any iocbqs (including the first) this function will return NULL. 17919 **/ 17920 static struct lpfc_iocbq * 17921 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17922 { 17923 struct hbq_dmabuf *hbq_buf; 17924 struct lpfc_dmabuf *d_buf, *n_buf; 17925 struct lpfc_iocbq *first_iocbq, *iocbq; 17926 struct fc_frame_header *fc_hdr; 17927 uint32_t sid; 17928 uint32_t len, tot_len; 17929 struct ulp_bde64 *pbde; 17930 17931 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17932 /* remove from receive buffer list */ 17933 list_del_init(&seq_dmabuf->hbuf.list); 17934 lpfc_update_rcv_time_stamp(vport); 17935 /* get the Remote Port's SID */ 17936 sid = sli4_sid_from_fc_hdr(fc_hdr); 17937 tot_len = 0; 17938 /* Get an iocbq struct to fill in. */ 17939 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17940 if (first_iocbq) { 17941 /* Initialize the first IOCB. */ 17942 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17943 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17944 first_iocbq->vport = vport; 17945 17946 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17947 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17948 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17949 first_iocbq->iocb.un.rcvels.parmRo = 17950 sli4_did_from_fc_hdr(fc_hdr); 17951 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17952 } else 17953 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17954 first_iocbq->iocb.ulpContext = NO_XRI; 17955 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17956 be16_to_cpu(fc_hdr->fh_ox_id); 17957 /* iocbq is prepped for internal consumption. Physical vpi. */ 17958 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17959 vport->phba->vpi_ids[vport->vpi]; 17960 /* put the first buffer into the first IOCBq */ 17961 tot_len = bf_get(lpfc_rcqe_length, 17962 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17963 17964 first_iocbq->context2 = &seq_dmabuf->dbuf; 17965 first_iocbq->context3 = NULL; 17966 first_iocbq->iocb.ulpBdeCount = 1; 17967 if (tot_len > LPFC_DATA_BUF_SIZE) 17968 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17969 LPFC_DATA_BUF_SIZE; 17970 else 17971 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17972 17973 first_iocbq->iocb.un.rcvels.remoteID = sid; 17974 17975 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17976 } 17977 iocbq = first_iocbq; 17978 /* 17979 * Each IOCBq can have two Buffers assigned, so go through the list 17980 * of buffers for this sequence and save two buffers in each IOCBq 17981 */ 17982 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17983 if (!iocbq) { 17984 lpfc_in_buf_free(vport->phba, d_buf); 17985 continue; 17986 } 17987 if (!iocbq->context3) { 17988 iocbq->context3 = d_buf; 17989 iocbq->iocb.ulpBdeCount++; 17990 /* We need to get the size out of the right CQE */ 17991 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17992 len = bf_get(lpfc_rcqe_length, 17993 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17994 pbde = (struct ulp_bde64 *) 17995 &iocbq->iocb.unsli3.sli3Words[4]; 17996 if (len > LPFC_DATA_BUF_SIZE) 17997 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 17998 else 17999 pbde->tus.f.bdeSize = len; 18000 18001 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18002 tot_len += len; 18003 } else { 18004 iocbq = lpfc_sli_get_iocbq(vport->phba); 18005 if (!iocbq) { 18006 if (first_iocbq) { 18007 first_iocbq->iocb.ulpStatus = 18008 IOSTAT_FCP_RSP_ERROR; 18009 first_iocbq->iocb.un.ulpWord[4] = 18010 IOERR_NO_RESOURCES; 18011 } 18012 lpfc_in_buf_free(vport->phba, d_buf); 18013 continue; 18014 } 18015 /* We need to get the size out of the right CQE */ 18016 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18017 len = bf_get(lpfc_rcqe_length, 18018 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18019 iocbq->context2 = d_buf; 18020 iocbq->context3 = NULL; 18021 iocbq->iocb.ulpBdeCount = 1; 18022 if (len > LPFC_DATA_BUF_SIZE) 18023 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18024 LPFC_DATA_BUF_SIZE; 18025 else 18026 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18027 18028 tot_len += len; 18029 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18030 18031 iocbq->iocb.un.rcvels.remoteID = sid; 18032 list_add_tail(&iocbq->list, &first_iocbq->list); 18033 } 18034 } 18035 /* Free the sequence's header buffer */ 18036 if (!first_iocbq) 18037 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18038 18039 return first_iocbq; 18040 } 18041 18042 static void 18043 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18044 struct hbq_dmabuf *seq_dmabuf) 18045 { 18046 struct fc_frame_header *fc_hdr; 18047 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18048 struct lpfc_hba *phba = vport->phba; 18049 18050 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18051 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18052 if (!iocbq) { 18053 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18054 "2707 Ring %d handler: Failed to allocate " 18055 "iocb Rctl x%x Type x%x received\n", 18056 LPFC_ELS_RING, 18057 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18058 return; 18059 } 18060 if (!lpfc_complete_unsol_iocb(phba, 18061 phba->sli4_hba.els_wq->pring, 18062 iocbq, fc_hdr->fh_r_ctl, 18063 fc_hdr->fh_type)) 18064 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18065 "2540 Ring %d handler: unexpected Rctl " 18066 "x%x Type x%x received\n", 18067 LPFC_ELS_RING, 18068 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18069 18070 /* Free iocb created in lpfc_prep_seq */ 18071 list_for_each_entry_safe(curr_iocb, next_iocb, 18072 &iocbq->list, list) { 18073 list_del_init(&curr_iocb->list); 18074 lpfc_sli_release_iocbq(phba, curr_iocb); 18075 } 18076 lpfc_sli_release_iocbq(phba, iocbq); 18077 } 18078 18079 static void 18080 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18081 struct lpfc_iocbq *rspiocb) 18082 { 18083 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18084 18085 if (pcmd && pcmd->virt) 18086 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18087 kfree(pcmd); 18088 lpfc_sli_release_iocbq(phba, cmdiocb); 18089 lpfc_drain_txq(phba); 18090 } 18091 18092 static void 18093 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18094 struct hbq_dmabuf *dmabuf) 18095 { 18096 struct fc_frame_header *fc_hdr; 18097 struct lpfc_hba *phba = vport->phba; 18098 struct lpfc_iocbq *iocbq = NULL; 18099 union lpfc_wqe *wqe; 18100 struct lpfc_dmabuf *pcmd = NULL; 18101 uint32_t frame_len; 18102 int rc; 18103 unsigned long iflags; 18104 18105 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18106 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18107 18108 /* Send the received frame back */ 18109 iocbq = lpfc_sli_get_iocbq(phba); 18110 if (!iocbq) { 18111 /* Queue cq event and wakeup worker thread to process it */ 18112 spin_lock_irqsave(&phba->hbalock, iflags); 18113 list_add_tail(&dmabuf->cq_event.list, 18114 &phba->sli4_hba.sp_queue_event); 18115 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18116 spin_unlock_irqrestore(&phba->hbalock, iflags); 18117 lpfc_worker_wake_up(phba); 18118 return; 18119 } 18120 18121 /* Allocate buffer for command payload */ 18122 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18123 if (pcmd) 18124 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18125 &pcmd->phys); 18126 if (!pcmd || !pcmd->virt) 18127 goto exit; 18128 18129 INIT_LIST_HEAD(&pcmd->list); 18130 18131 /* copyin the payload */ 18132 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18133 18134 /* fill in BDE's for command */ 18135 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18136 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18137 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18138 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18139 18140 iocbq->context2 = pcmd; 18141 iocbq->vport = vport; 18142 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18143 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18144 18145 /* 18146 * Setup rest of the iocb as though it were a WQE 18147 * Build the SEND_FRAME WQE 18148 */ 18149 wqe = (union lpfc_wqe *)&iocbq->iocb; 18150 18151 wqe->send_frame.frame_len = frame_len; 18152 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18153 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18154 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18155 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18156 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18157 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18158 18159 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18160 iocbq->iocb.ulpLe = 1; 18161 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18162 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18163 if (rc == IOCB_ERROR) 18164 goto exit; 18165 18166 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18167 return; 18168 18169 exit: 18170 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18171 "2023 Unable to process MDS loopback frame\n"); 18172 if (pcmd && pcmd->virt) 18173 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18174 kfree(pcmd); 18175 if (iocbq) 18176 lpfc_sli_release_iocbq(phba, iocbq); 18177 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18178 } 18179 18180 /** 18181 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18182 * @phba: Pointer to HBA context object. 18183 * 18184 * This function is called with no lock held. This function processes all 18185 * the received buffers and gives it to upper layers when a received buffer 18186 * indicates that it is the final frame in the sequence. The interrupt 18187 * service routine processes received buffers at interrupt contexts. 18188 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18189 * appropriate receive function when the final frame in a sequence is received. 18190 **/ 18191 void 18192 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18193 struct hbq_dmabuf *dmabuf) 18194 { 18195 struct hbq_dmabuf *seq_dmabuf; 18196 struct fc_frame_header *fc_hdr; 18197 struct lpfc_vport *vport; 18198 uint32_t fcfi; 18199 uint32_t did; 18200 18201 /* Process each received buffer */ 18202 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18203 18204 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18205 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18206 vport = phba->pport; 18207 /* Handle MDS Loopback frames */ 18208 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18209 return; 18210 } 18211 18212 /* check to see if this a valid type of frame */ 18213 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18214 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18215 return; 18216 } 18217 18218 if ((bf_get(lpfc_cqe_code, 18219 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18220 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18221 &dmabuf->cq_event.cqe.rcqe_cmpl); 18222 else 18223 fcfi = bf_get(lpfc_rcqe_fcf_id, 18224 &dmabuf->cq_event.cqe.rcqe_cmpl); 18225 18226 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18227 vport = phba->pport; 18228 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18229 "2023 MDS Loopback %d bytes\n", 18230 bf_get(lpfc_rcqe_length, 18231 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18232 /* Handle MDS Loopback frames */ 18233 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18234 return; 18235 } 18236 18237 /* d_id this frame is directed to */ 18238 did = sli4_did_from_fc_hdr(fc_hdr); 18239 18240 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18241 if (!vport) { 18242 /* throw out the frame */ 18243 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18244 return; 18245 } 18246 18247 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18248 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18249 (did != Fabric_DID)) { 18250 /* 18251 * Throw out the frame if we are not pt2pt. 18252 * The pt2pt protocol allows for discovery frames 18253 * to be received without a registered VPI. 18254 */ 18255 if (!(vport->fc_flag & FC_PT2PT) || 18256 (phba->link_state == LPFC_HBA_READY)) { 18257 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18258 return; 18259 } 18260 } 18261 18262 /* Handle the basic abort sequence (BA_ABTS) event */ 18263 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18264 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18265 return; 18266 } 18267 18268 /* Link this frame */ 18269 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18270 if (!seq_dmabuf) { 18271 /* unable to add frame to vport - throw it out */ 18272 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18273 return; 18274 } 18275 /* If not last frame in sequence continue processing frames. */ 18276 if (!lpfc_seq_complete(seq_dmabuf)) 18277 return; 18278 18279 /* Send the complete sequence to the upper layer protocol */ 18280 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18281 } 18282 18283 /** 18284 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18285 * @phba: pointer to lpfc hba data structure. 18286 * 18287 * This routine is invoked to post rpi header templates to the 18288 * HBA consistent with the SLI-4 interface spec. This routine 18289 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18290 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18291 * 18292 * This routine does not require any locks. It's usage is expected 18293 * to be driver load or reset recovery when the driver is 18294 * sequential. 18295 * 18296 * Return codes 18297 * 0 - successful 18298 * -EIO - The mailbox failed to complete successfully. 18299 * When this error occurs, the driver is not guaranteed 18300 * to have any rpi regions posted to the device and 18301 * must either attempt to repost the regions or take a 18302 * fatal error. 18303 **/ 18304 int 18305 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18306 { 18307 struct lpfc_rpi_hdr *rpi_page; 18308 uint32_t rc = 0; 18309 uint16_t lrpi = 0; 18310 18311 /* SLI4 ports that support extents do not require RPI headers. */ 18312 if (!phba->sli4_hba.rpi_hdrs_in_use) 18313 goto exit; 18314 if (phba->sli4_hba.extents_in_use) 18315 return -EIO; 18316 18317 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18318 /* 18319 * Assign the rpi headers a physical rpi only if the driver 18320 * has not initialized those resources. A port reset only 18321 * needs the headers posted. 18322 */ 18323 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18324 LPFC_RPI_RSRC_RDY) 18325 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18326 18327 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18328 if (rc != MBX_SUCCESS) { 18329 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18330 "2008 Error %d posting all rpi " 18331 "headers\n", rc); 18332 rc = -EIO; 18333 break; 18334 } 18335 } 18336 18337 exit: 18338 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18339 LPFC_RPI_RSRC_RDY); 18340 return rc; 18341 } 18342 18343 /** 18344 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18345 * @phba: pointer to lpfc hba data structure. 18346 * @rpi_page: pointer to the rpi memory region. 18347 * 18348 * This routine is invoked to post a single rpi header to the 18349 * HBA consistent with the SLI-4 interface spec. This memory region 18350 * maps up to 64 rpi context regions. 18351 * 18352 * Return codes 18353 * 0 - successful 18354 * -ENOMEM - No available memory 18355 * -EIO - The mailbox failed to complete successfully. 18356 **/ 18357 int 18358 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18359 { 18360 LPFC_MBOXQ_t *mboxq; 18361 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18362 uint32_t rc = 0; 18363 uint32_t shdr_status, shdr_add_status; 18364 union lpfc_sli4_cfg_shdr *shdr; 18365 18366 /* SLI4 ports that support extents do not require RPI headers. */ 18367 if (!phba->sli4_hba.rpi_hdrs_in_use) 18368 return rc; 18369 if (phba->sli4_hba.extents_in_use) 18370 return -EIO; 18371 18372 /* The port is notified of the header region via a mailbox command. */ 18373 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18374 if (!mboxq) { 18375 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18376 "2001 Unable to allocate memory for issuing " 18377 "SLI_CONFIG_SPECIAL mailbox command\n"); 18378 return -ENOMEM; 18379 } 18380 18381 /* Post all rpi memory regions to the port. */ 18382 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18383 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18384 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18385 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18386 sizeof(struct lpfc_sli4_cfg_mhdr), 18387 LPFC_SLI4_MBX_EMBED); 18388 18389 18390 /* Post the physical rpi to the port for this rpi header. */ 18391 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18392 rpi_page->start_rpi); 18393 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18394 hdr_tmpl, rpi_page->page_count); 18395 18396 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18397 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18398 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18399 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18400 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18401 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18402 if (rc != MBX_TIMEOUT) 18403 mempool_free(mboxq, phba->mbox_mem_pool); 18404 if (shdr_status || shdr_add_status || rc) { 18405 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18406 "2514 POST_RPI_HDR mailbox failed with " 18407 "status x%x add_status x%x, mbx status x%x\n", 18408 shdr_status, shdr_add_status, rc); 18409 rc = -ENXIO; 18410 } else { 18411 /* 18412 * The next_rpi stores the next logical module-64 rpi value used 18413 * to post physical rpis in subsequent rpi postings. 18414 */ 18415 spin_lock_irq(&phba->hbalock); 18416 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18417 spin_unlock_irq(&phba->hbalock); 18418 } 18419 return rc; 18420 } 18421 18422 /** 18423 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18424 * @phba: pointer to lpfc hba data structure. 18425 * 18426 * This routine is invoked to post rpi header templates to the 18427 * HBA consistent with the SLI-4 interface spec. This routine 18428 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18429 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18430 * 18431 * Returns 18432 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18433 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18434 **/ 18435 int 18436 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18437 { 18438 unsigned long rpi; 18439 uint16_t max_rpi, rpi_limit; 18440 uint16_t rpi_remaining, lrpi = 0; 18441 struct lpfc_rpi_hdr *rpi_hdr; 18442 unsigned long iflag; 18443 18444 /* 18445 * Fetch the next logical rpi. Because this index is logical, 18446 * the driver starts at 0 each time. 18447 */ 18448 spin_lock_irqsave(&phba->hbalock, iflag); 18449 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18450 rpi_limit = phba->sli4_hba.next_rpi; 18451 18452 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18453 if (rpi >= rpi_limit) 18454 rpi = LPFC_RPI_ALLOC_ERROR; 18455 else { 18456 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18457 phba->sli4_hba.max_cfg_param.rpi_used++; 18458 phba->sli4_hba.rpi_count++; 18459 } 18460 lpfc_printf_log(phba, KERN_INFO, 18461 LOG_NODE | LOG_DISCOVERY, 18462 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18463 (int) rpi, max_rpi, rpi_limit); 18464 18465 /* 18466 * Don't try to allocate more rpi header regions if the device limit 18467 * has been exhausted. 18468 */ 18469 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18470 (phba->sli4_hba.rpi_count >= max_rpi)) { 18471 spin_unlock_irqrestore(&phba->hbalock, iflag); 18472 return rpi; 18473 } 18474 18475 /* 18476 * RPI header postings are not required for SLI4 ports capable of 18477 * extents. 18478 */ 18479 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18480 spin_unlock_irqrestore(&phba->hbalock, iflag); 18481 return rpi; 18482 } 18483 18484 /* 18485 * If the driver is running low on rpi resources, allocate another 18486 * page now. Note that the next_rpi value is used because 18487 * it represents how many are actually in use whereas max_rpi notes 18488 * how many are supported max by the device. 18489 */ 18490 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18491 spin_unlock_irqrestore(&phba->hbalock, iflag); 18492 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18493 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18494 if (!rpi_hdr) { 18495 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18496 "2002 Error Could not grow rpi " 18497 "count\n"); 18498 } else { 18499 lrpi = rpi_hdr->start_rpi; 18500 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18501 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18502 } 18503 } 18504 18505 return rpi; 18506 } 18507 18508 /** 18509 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18510 * @phba: pointer to lpfc hba data structure. 18511 * 18512 * This routine is invoked to release an rpi to the pool of 18513 * available rpis maintained by the driver. 18514 **/ 18515 static void 18516 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18517 { 18518 /* 18519 * if the rpi value indicates a prior unreg has already 18520 * been done, skip the unreg. 18521 */ 18522 if (rpi == LPFC_RPI_ALLOC_ERROR) 18523 return; 18524 18525 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18526 phba->sli4_hba.rpi_count--; 18527 phba->sli4_hba.max_cfg_param.rpi_used--; 18528 } else { 18529 lpfc_printf_log(phba, KERN_INFO, 18530 LOG_NODE | LOG_DISCOVERY, 18531 "2016 rpi %x not inuse\n", 18532 rpi); 18533 } 18534 } 18535 18536 /** 18537 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18538 * @phba: pointer to lpfc hba data structure. 18539 * 18540 * This routine is invoked to release an rpi to the pool of 18541 * available rpis maintained by the driver. 18542 **/ 18543 void 18544 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18545 { 18546 spin_lock_irq(&phba->hbalock); 18547 __lpfc_sli4_free_rpi(phba, rpi); 18548 spin_unlock_irq(&phba->hbalock); 18549 } 18550 18551 /** 18552 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18553 * @phba: pointer to lpfc hba data structure. 18554 * 18555 * This routine is invoked to remove the memory region that 18556 * provided rpi via a bitmask. 18557 **/ 18558 void 18559 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18560 { 18561 kfree(phba->sli4_hba.rpi_bmask); 18562 kfree(phba->sli4_hba.rpi_ids); 18563 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18564 } 18565 18566 /** 18567 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18568 * @phba: pointer to lpfc hba data structure. 18569 * 18570 * This routine is invoked to remove the memory region that 18571 * provided rpi via a bitmask. 18572 **/ 18573 int 18574 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18575 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18576 { 18577 LPFC_MBOXQ_t *mboxq; 18578 struct lpfc_hba *phba = ndlp->phba; 18579 int rc; 18580 18581 /* The port is notified of the header region via a mailbox command. */ 18582 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18583 if (!mboxq) 18584 return -ENOMEM; 18585 18586 /* Post all rpi memory regions to the port. */ 18587 lpfc_resume_rpi(mboxq, ndlp); 18588 if (cmpl) { 18589 mboxq->mbox_cmpl = cmpl; 18590 mboxq->ctx_buf = arg; 18591 mboxq->ctx_ndlp = ndlp; 18592 } else 18593 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18594 mboxq->vport = ndlp->vport; 18595 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18596 if (rc == MBX_NOT_FINISHED) { 18597 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18598 "2010 Resume RPI Mailbox failed " 18599 "status %d, mbxStatus x%x\n", rc, 18600 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18601 mempool_free(mboxq, phba->mbox_mem_pool); 18602 return -EIO; 18603 } 18604 return 0; 18605 } 18606 18607 /** 18608 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18609 * @vport: Pointer to the vport for which the vpi is being initialized 18610 * 18611 * This routine is invoked to activate a vpi with the port. 18612 * 18613 * Returns: 18614 * 0 success 18615 * -Evalue otherwise 18616 **/ 18617 int 18618 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18619 { 18620 LPFC_MBOXQ_t *mboxq; 18621 int rc = 0; 18622 int retval = MBX_SUCCESS; 18623 uint32_t mbox_tmo; 18624 struct lpfc_hba *phba = vport->phba; 18625 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18626 if (!mboxq) 18627 return -ENOMEM; 18628 lpfc_init_vpi(phba, mboxq, vport->vpi); 18629 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18630 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18631 if (rc != MBX_SUCCESS) { 18632 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18633 "2022 INIT VPI Mailbox failed " 18634 "status %d, mbxStatus x%x\n", rc, 18635 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18636 retval = -EIO; 18637 } 18638 if (rc != MBX_TIMEOUT) 18639 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18640 18641 return retval; 18642 } 18643 18644 /** 18645 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18646 * @phba: pointer to lpfc hba data structure. 18647 * @mboxq: Pointer to mailbox object. 18648 * 18649 * This routine is invoked to manually add a single FCF record. The caller 18650 * must pass a completely initialized FCF_Record. This routine takes 18651 * care of the nonembedded mailbox operations. 18652 **/ 18653 static void 18654 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18655 { 18656 void *virt_addr; 18657 union lpfc_sli4_cfg_shdr *shdr; 18658 uint32_t shdr_status, shdr_add_status; 18659 18660 virt_addr = mboxq->sge_array->addr[0]; 18661 /* The IOCTL status is embedded in the mailbox subheader. */ 18662 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18663 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18664 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18665 18666 if ((shdr_status || shdr_add_status) && 18667 (shdr_status != STATUS_FCF_IN_USE)) 18668 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18669 "2558 ADD_FCF_RECORD mailbox failed with " 18670 "status x%x add_status x%x\n", 18671 shdr_status, shdr_add_status); 18672 18673 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18674 } 18675 18676 /** 18677 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18678 * @phba: pointer to lpfc hba data structure. 18679 * @fcf_record: pointer to the initialized fcf record to add. 18680 * 18681 * This routine is invoked to manually add a single FCF record. The caller 18682 * must pass a completely initialized FCF_Record. This routine takes 18683 * care of the nonembedded mailbox operations. 18684 **/ 18685 int 18686 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18687 { 18688 int rc = 0; 18689 LPFC_MBOXQ_t *mboxq; 18690 uint8_t *bytep; 18691 void *virt_addr; 18692 struct lpfc_mbx_sge sge; 18693 uint32_t alloc_len, req_len; 18694 uint32_t fcfindex; 18695 18696 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18697 if (!mboxq) { 18698 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18699 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18700 return -ENOMEM; 18701 } 18702 18703 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18704 sizeof(uint32_t); 18705 18706 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18707 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18708 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18709 req_len, LPFC_SLI4_MBX_NEMBED); 18710 if (alloc_len < req_len) { 18711 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18712 "2523 Allocated DMA memory size (x%x) is " 18713 "less than the requested DMA memory " 18714 "size (x%x)\n", alloc_len, req_len); 18715 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18716 return -ENOMEM; 18717 } 18718 18719 /* 18720 * Get the first SGE entry from the non-embedded DMA memory. This 18721 * routine only uses a single SGE. 18722 */ 18723 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18724 virt_addr = mboxq->sge_array->addr[0]; 18725 /* 18726 * Configure the FCF record for FCFI 0. This is the driver's 18727 * hardcoded default and gets used in nonFIP mode. 18728 */ 18729 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18730 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18731 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18732 18733 /* 18734 * Copy the fcf_index and the FCF Record Data. The data starts after 18735 * the FCoE header plus word10. The data copy needs to be endian 18736 * correct. 18737 */ 18738 bytep += sizeof(uint32_t); 18739 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18740 mboxq->vport = phba->pport; 18741 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18742 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18743 if (rc == MBX_NOT_FINISHED) { 18744 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18745 "2515 ADD_FCF_RECORD mailbox failed with " 18746 "status 0x%x\n", rc); 18747 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18748 rc = -EIO; 18749 } else 18750 rc = 0; 18751 18752 return rc; 18753 } 18754 18755 /** 18756 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18757 * @phba: pointer to lpfc hba data structure. 18758 * @fcf_record: pointer to the fcf record to write the default data. 18759 * @fcf_index: FCF table entry index. 18760 * 18761 * This routine is invoked to build the driver's default FCF record. The 18762 * values used are hardcoded. This routine handles memory initialization. 18763 * 18764 **/ 18765 void 18766 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18767 struct fcf_record *fcf_record, 18768 uint16_t fcf_index) 18769 { 18770 memset(fcf_record, 0, sizeof(struct fcf_record)); 18771 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18772 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18773 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18774 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18775 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18776 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18777 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18778 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18779 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18780 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18781 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18782 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18783 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18784 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18785 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18786 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18787 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18788 /* Set the VLAN bit map */ 18789 if (phba->valid_vlan) { 18790 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18791 = 1 << (phba->vlan_id % 8); 18792 } 18793 } 18794 18795 /** 18796 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18797 * @phba: pointer to lpfc hba data structure. 18798 * @fcf_index: FCF table entry offset. 18799 * 18800 * This routine is invoked to scan the entire FCF table by reading FCF 18801 * record and processing it one at a time starting from the @fcf_index 18802 * for initial FCF discovery or fast FCF failover rediscovery. 18803 * 18804 * Return 0 if the mailbox command is submitted successfully, none 0 18805 * otherwise. 18806 **/ 18807 int 18808 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18809 { 18810 int rc = 0, error; 18811 LPFC_MBOXQ_t *mboxq; 18812 18813 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18814 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18815 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18816 if (!mboxq) { 18817 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18818 "2000 Failed to allocate mbox for " 18819 "READ_FCF cmd\n"); 18820 error = -ENOMEM; 18821 goto fail_fcf_scan; 18822 } 18823 /* Construct the read FCF record mailbox command */ 18824 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18825 if (rc) { 18826 error = -EINVAL; 18827 goto fail_fcf_scan; 18828 } 18829 /* Issue the mailbox command asynchronously */ 18830 mboxq->vport = phba->pport; 18831 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18832 18833 spin_lock_irq(&phba->hbalock); 18834 phba->hba_flag |= FCF_TS_INPROG; 18835 spin_unlock_irq(&phba->hbalock); 18836 18837 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18838 if (rc == MBX_NOT_FINISHED) 18839 error = -EIO; 18840 else { 18841 /* Reset eligible FCF count for new scan */ 18842 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18843 phba->fcf.eligible_fcf_cnt = 0; 18844 error = 0; 18845 } 18846 fail_fcf_scan: 18847 if (error) { 18848 if (mboxq) 18849 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18850 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18851 spin_lock_irq(&phba->hbalock); 18852 phba->hba_flag &= ~FCF_TS_INPROG; 18853 spin_unlock_irq(&phba->hbalock); 18854 } 18855 return error; 18856 } 18857 18858 /** 18859 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18860 * @phba: pointer to lpfc hba data structure. 18861 * @fcf_index: FCF table entry offset. 18862 * 18863 * This routine is invoked to read an FCF record indicated by @fcf_index 18864 * and to use it for FLOGI roundrobin FCF failover. 18865 * 18866 * Return 0 if the mailbox command is submitted successfully, none 0 18867 * otherwise. 18868 **/ 18869 int 18870 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18871 { 18872 int rc = 0, error; 18873 LPFC_MBOXQ_t *mboxq; 18874 18875 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18876 if (!mboxq) { 18877 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18878 "2763 Failed to allocate mbox for " 18879 "READ_FCF cmd\n"); 18880 error = -ENOMEM; 18881 goto fail_fcf_read; 18882 } 18883 /* Construct the read FCF record mailbox command */ 18884 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18885 if (rc) { 18886 error = -EINVAL; 18887 goto fail_fcf_read; 18888 } 18889 /* Issue the mailbox command asynchronously */ 18890 mboxq->vport = phba->pport; 18891 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18892 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18893 if (rc == MBX_NOT_FINISHED) 18894 error = -EIO; 18895 else 18896 error = 0; 18897 18898 fail_fcf_read: 18899 if (error && mboxq) 18900 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18901 return error; 18902 } 18903 18904 /** 18905 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18906 * @phba: pointer to lpfc hba data structure. 18907 * @fcf_index: FCF table entry offset. 18908 * 18909 * This routine is invoked to read an FCF record indicated by @fcf_index to 18910 * determine whether it's eligible for FLOGI roundrobin failover list. 18911 * 18912 * Return 0 if the mailbox command is submitted successfully, none 0 18913 * otherwise. 18914 **/ 18915 int 18916 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18917 { 18918 int rc = 0, error; 18919 LPFC_MBOXQ_t *mboxq; 18920 18921 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18922 if (!mboxq) { 18923 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18924 "2758 Failed to allocate mbox for " 18925 "READ_FCF cmd\n"); 18926 error = -ENOMEM; 18927 goto fail_fcf_read; 18928 } 18929 /* Construct the read FCF record mailbox command */ 18930 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18931 if (rc) { 18932 error = -EINVAL; 18933 goto fail_fcf_read; 18934 } 18935 /* Issue the mailbox command asynchronously */ 18936 mboxq->vport = phba->pport; 18937 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18938 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18939 if (rc == MBX_NOT_FINISHED) 18940 error = -EIO; 18941 else 18942 error = 0; 18943 18944 fail_fcf_read: 18945 if (error && mboxq) 18946 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18947 return error; 18948 } 18949 18950 /** 18951 * lpfc_check_next_fcf_pri_level 18952 * phba pointer to the lpfc_hba struct for this port. 18953 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18954 * routine when the rr_bmask is empty. The FCF indecies are put into the 18955 * rr_bmask based on their priority level. Starting from the highest priority 18956 * to the lowest. The most likely FCF candidate will be in the highest 18957 * priority group. When this routine is called it searches the fcf_pri list for 18958 * next lowest priority group and repopulates the rr_bmask with only those 18959 * fcf_indexes. 18960 * returns: 18961 * 1=success 0=failure 18962 **/ 18963 static int 18964 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18965 { 18966 uint16_t next_fcf_pri; 18967 uint16_t last_index; 18968 struct lpfc_fcf_pri *fcf_pri; 18969 int rc; 18970 int ret = 0; 18971 18972 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18973 LPFC_SLI4_FCF_TBL_INDX_MAX); 18974 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18975 "3060 Last IDX %d\n", last_index); 18976 18977 /* Verify the priority list has 2 or more entries */ 18978 spin_lock_irq(&phba->hbalock); 18979 if (list_empty(&phba->fcf.fcf_pri_list) || 18980 list_is_singular(&phba->fcf.fcf_pri_list)) { 18981 spin_unlock_irq(&phba->hbalock); 18982 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18983 "3061 Last IDX %d\n", last_index); 18984 return 0; /* Empty rr list */ 18985 } 18986 spin_unlock_irq(&phba->hbalock); 18987 18988 next_fcf_pri = 0; 18989 /* 18990 * Clear the rr_bmask and set all of the bits that are at this 18991 * priority. 18992 */ 18993 memset(phba->fcf.fcf_rr_bmask, 0, 18994 sizeof(*phba->fcf.fcf_rr_bmask)); 18995 spin_lock_irq(&phba->hbalock); 18996 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 18997 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 18998 continue; 18999 /* 19000 * the 1st priority that has not FLOGI failed 19001 * will be the highest. 19002 */ 19003 if (!next_fcf_pri) 19004 next_fcf_pri = fcf_pri->fcf_rec.priority; 19005 spin_unlock_irq(&phba->hbalock); 19006 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19007 rc = lpfc_sli4_fcf_rr_index_set(phba, 19008 fcf_pri->fcf_rec.fcf_index); 19009 if (rc) 19010 return 0; 19011 } 19012 spin_lock_irq(&phba->hbalock); 19013 } 19014 /* 19015 * if next_fcf_pri was not set above and the list is not empty then 19016 * we have failed flogis on all of them. So reset flogi failed 19017 * and start at the beginning. 19018 */ 19019 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19020 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19021 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19022 /* 19023 * the 1st priority that has not FLOGI failed 19024 * will be the highest. 19025 */ 19026 if (!next_fcf_pri) 19027 next_fcf_pri = fcf_pri->fcf_rec.priority; 19028 spin_unlock_irq(&phba->hbalock); 19029 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19030 rc = lpfc_sli4_fcf_rr_index_set(phba, 19031 fcf_pri->fcf_rec.fcf_index); 19032 if (rc) 19033 return 0; 19034 } 19035 spin_lock_irq(&phba->hbalock); 19036 } 19037 } else 19038 ret = 1; 19039 spin_unlock_irq(&phba->hbalock); 19040 19041 return ret; 19042 } 19043 /** 19044 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19045 * @phba: pointer to lpfc hba data structure. 19046 * 19047 * This routine is to get the next eligible FCF record index in a round 19048 * robin fashion. If the next eligible FCF record index equals to the 19049 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19050 * shall be returned, otherwise, the next eligible FCF record's index 19051 * shall be returned. 19052 **/ 19053 uint16_t 19054 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19055 { 19056 uint16_t next_fcf_index; 19057 19058 initial_priority: 19059 /* Search start from next bit of currently registered FCF index */ 19060 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19061 19062 next_priority: 19063 /* Determine the next fcf index to check */ 19064 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19065 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19066 LPFC_SLI4_FCF_TBL_INDX_MAX, 19067 next_fcf_index); 19068 19069 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19070 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19071 /* 19072 * If we have wrapped then we need to clear the bits that 19073 * have been tested so that we can detect when we should 19074 * change the priority level. 19075 */ 19076 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19077 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19078 } 19079 19080 19081 /* Check roundrobin failover list empty condition */ 19082 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19083 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19084 /* 19085 * If next fcf index is not found check if there are lower 19086 * Priority level fcf's in the fcf_priority list. 19087 * Set up the rr_bmask with all of the avaiable fcf bits 19088 * at that level and continue the selection process. 19089 */ 19090 if (lpfc_check_next_fcf_pri_level(phba)) 19091 goto initial_priority; 19092 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19093 "2844 No roundrobin failover FCF available\n"); 19094 19095 return LPFC_FCOE_FCF_NEXT_NONE; 19096 } 19097 19098 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19099 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19100 LPFC_FCF_FLOGI_FAILED) { 19101 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19102 return LPFC_FCOE_FCF_NEXT_NONE; 19103 19104 goto next_priority; 19105 } 19106 19107 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19108 "2845 Get next roundrobin failover FCF (x%x)\n", 19109 next_fcf_index); 19110 19111 return next_fcf_index; 19112 } 19113 19114 /** 19115 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19116 * @phba: pointer to lpfc hba data structure. 19117 * 19118 * This routine sets the FCF record index in to the eligible bmask for 19119 * roundrobin failover search. It checks to make sure that the index 19120 * does not go beyond the range of the driver allocated bmask dimension 19121 * before setting the bit. 19122 * 19123 * Returns 0 if the index bit successfully set, otherwise, it returns 19124 * -EINVAL. 19125 **/ 19126 int 19127 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19128 { 19129 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19130 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19131 "2610 FCF (x%x) reached driver's book " 19132 "keeping dimension:x%x\n", 19133 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19134 return -EINVAL; 19135 } 19136 /* Set the eligible FCF record index bmask */ 19137 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19138 19139 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19140 "2790 Set FCF (x%x) to roundrobin FCF failover " 19141 "bmask\n", fcf_index); 19142 19143 return 0; 19144 } 19145 19146 /** 19147 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19148 * @phba: pointer to lpfc hba data structure. 19149 * 19150 * This routine clears the FCF record index from the eligible bmask for 19151 * roundrobin failover search. It checks to make sure that the index 19152 * does not go beyond the range of the driver allocated bmask dimension 19153 * before clearing the bit. 19154 **/ 19155 void 19156 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19157 { 19158 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19159 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19160 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19161 "2762 FCF (x%x) reached driver's book " 19162 "keeping dimension:x%x\n", 19163 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19164 return; 19165 } 19166 /* Clear the eligible FCF record index bmask */ 19167 spin_lock_irq(&phba->hbalock); 19168 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19169 list) { 19170 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19171 list_del_init(&fcf_pri->list); 19172 break; 19173 } 19174 } 19175 spin_unlock_irq(&phba->hbalock); 19176 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19177 19178 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19179 "2791 Clear FCF (x%x) from roundrobin failover " 19180 "bmask\n", fcf_index); 19181 } 19182 19183 /** 19184 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19185 * @phba: pointer to lpfc hba data structure. 19186 * 19187 * This routine is the completion routine for the rediscover FCF table mailbox 19188 * command. If the mailbox command returned failure, it will try to stop the 19189 * FCF rediscover wait timer. 19190 **/ 19191 static void 19192 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19193 { 19194 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19195 uint32_t shdr_status, shdr_add_status; 19196 19197 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19198 19199 shdr_status = bf_get(lpfc_mbox_hdr_status, 19200 &redisc_fcf->header.cfg_shdr.response); 19201 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19202 &redisc_fcf->header.cfg_shdr.response); 19203 if (shdr_status || shdr_add_status) { 19204 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19205 "2746 Requesting for FCF rediscovery failed " 19206 "status x%x add_status x%x\n", 19207 shdr_status, shdr_add_status); 19208 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19209 spin_lock_irq(&phba->hbalock); 19210 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19211 spin_unlock_irq(&phba->hbalock); 19212 /* 19213 * CVL event triggered FCF rediscover request failed, 19214 * last resort to re-try current registered FCF entry. 19215 */ 19216 lpfc_retry_pport_discovery(phba); 19217 } else { 19218 spin_lock_irq(&phba->hbalock); 19219 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19220 spin_unlock_irq(&phba->hbalock); 19221 /* 19222 * DEAD FCF event triggered FCF rediscover request 19223 * failed, last resort to fail over as a link down 19224 * to FCF registration. 19225 */ 19226 lpfc_sli4_fcf_dead_failthrough(phba); 19227 } 19228 } else { 19229 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19230 "2775 Start FCF rediscover quiescent timer\n"); 19231 /* 19232 * Start FCF rediscovery wait timer for pending FCF 19233 * before rescan FCF record table. 19234 */ 19235 lpfc_fcf_redisc_wait_start_timer(phba); 19236 } 19237 19238 mempool_free(mbox, phba->mbox_mem_pool); 19239 } 19240 19241 /** 19242 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19243 * @phba: pointer to lpfc hba data structure. 19244 * 19245 * This routine is invoked to request for rediscovery of the entire FCF table 19246 * by the port. 19247 **/ 19248 int 19249 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19250 { 19251 LPFC_MBOXQ_t *mbox; 19252 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19253 int rc, length; 19254 19255 /* Cancel retry delay timers to all vports before FCF rediscover */ 19256 lpfc_cancel_all_vport_retry_delay_timer(phba); 19257 19258 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19259 if (!mbox) { 19260 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19261 "2745 Failed to allocate mbox for " 19262 "requesting FCF rediscover.\n"); 19263 return -ENOMEM; 19264 } 19265 19266 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19267 sizeof(struct lpfc_sli4_cfg_mhdr)); 19268 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19269 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19270 length, LPFC_SLI4_MBX_EMBED); 19271 19272 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19273 /* Set count to 0 for invalidating the entire FCF database */ 19274 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19275 19276 /* Issue the mailbox command asynchronously */ 19277 mbox->vport = phba->pport; 19278 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19279 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19280 19281 if (rc == MBX_NOT_FINISHED) { 19282 mempool_free(mbox, phba->mbox_mem_pool); 19283 return -EIO; 19284 } 19285 return 0; 19286 } 19287 19288 /** 19289 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19290 * @phba: pointer to lpfc hba data structure. 19291 * 19292 * This function is the failover routine as a last resort to the FCF DEAD 19293 * event when driver failed to perform fast FCF failover. 19294 **/ 19295 void 19296 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19297 { 19298 uint32_t link_state; 19299 19300 /* 19301 * Last resort as FCF DEAD event failover will treat this as 19302 * a link down, but save the link state because we don't want 19303 * it to be changed to Link Down unless it is already down. 19304 */ 19305 link_state = phba->link_state; 19306 lpfc_linkdown(phba); 19307 phba->link_state = link_state; 19308 19309 /* Unregister FCF if no devices connected to it */ 19310 lpfc_unregister_unused_fcf(phba); 19311 } 19312 19313 /** 19314 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19315 * @phba: pointer to lpfc hba data structure. 19316 * @rgn23_data: pointer to configure region 23 data. 19317 * 19318 * This function gets SLI3 port configure region 23 data through memory dump 19319 * mailbox command. When it successfully retrieves data, the size of the data 19320 * will be returned, otherwise, 0 will be returned. 19321 **/ 19322 static uint32_t 19323 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19324 { 19325 LPFC_MBOXQ_t *pmb = NULL; 19326 MAILBOX_t *mb; 19327 uint32_t offset = 0; 19328 int rc; 19329 19330 if (!rgn23_data) 19331 return 0; 19332 19333 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19334 if (!pmb) { 19335 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19336 "2600 failed to allocate mailbox memory\n"); 19337 return 0; 19338 } 19339 mb = &pmb->u.mb; 19340 19341 do { 19342 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19343 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19344 19345 if (rc != MBX_SUCCESS) { 19346 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19347 "2601 failed to read config " 19348 "region 23, rc 0x%x Status 0x%x\n", 19349 rc, mb->mbxStatus); 19350 mb->un.varDmp.word_cnt = 0; 19351 } 19352 /* 19353 * dump mem may return a zero when finished or we got a 19354 * mailbox error, either way we are done. 19355 */ 19356 if (mb->un.varDmp.word_cnt == 0) 19357 break; 19358 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19359 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19360 19361 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19362 rgn23_data + offset, 19363 mb->un.varDmp.word_cnt); 19364 offset += mb->un.varDmp.word_cnt; 19365 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19366 19367 mempool_free(pmb, phba->mbox_mem_pool); 19368 return offset; 19369 } 19370 19371 /** 19372 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19373 * @phba: pointer to lpfc hba data structure. 19374 * @rgn23_data: pointer to configure region 23 data. 19375 * 19376 * This function gets SLI4 port configure region 23 data through memory dump 19377 * mailbox command. When it successfully retrieves data, the size of the data 19378 * will be returned, otherwise, 0 will be returned. 19379 **/ 19380 static uint32_t 19381 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19382 { 19383 LPFC_MBOXQ_t *mboxq = NULL; 19384 struct lpfc_dmabuf *mp = NULL; 19385 struct lpfc_mqe *mqe; 19386 uint32_t data_length = 0; 19387 int rc; 19388 19389 if (!rgn23_data) 19390 return 0; 19391 19392 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19393 if (!mboxq) { 19394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19395 "3105 failed to allocate mailbox memory\n"); 19396 return 0; 19397 } 19398 19399 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19400 goto out; 19401 mqe = &mboxq->u.mqe; 19402 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19403 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19404 if (rc) 19405 goto out; 19406 data_length = mqe->un.mb_words[5]; 19407 if (data_length == 0) 19408 goto out; 19409 if (data_length > DMP_RGN23_SIZE) { 19410 data_length = 0; 19411 goto out; 19412 } 19413 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19414 out: 19415 mempool_free(mboxq, phba->mbox_mem_pool); 19416 if (mp) { 19417 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19418 kfree(mp); 19419 } 19420 return data_length; 19421 } 19422 19423 /** 19424 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19425 * @phba: pointer to lpfc hba data structure. 19426 * 19427 * This function read region 23 and parse TLV for port status to 19428 * decide if the user disaled the port. If the TLV indicates the 19429 * port is disabled, the hba_flag is set accordingly. 19430 **/ 19431 void 19432 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19433 { 19434 uint8_t *rgn23_data = NULL; 19435 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19436 uint32_t offset = 0; 19437 19438 /* Get adapter Region 23 data */ 19439 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19440 if (!rgn23_data) 19441 goto out; 19442 19443 if (phba->sli_rev < LPFC_SLI_REV4) 19444 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19445 else { 19446 if_type = bf_get(lpfc_sli_intf_if_type, 19447 &phba->sli4_hba.sli_intf); 19448 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19449 goto out; 19450 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19451 } 19452 19453 if (!data_size) 19454 goto out; 19455 19456 /* Check the region signature first */ 19457 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19458 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19459 "2619 Config region 23 has bad signature\n"); 19460 goto out; 19461 } 19462 offset += 4; 19463 19464 /* Check the data structure version */ 19465 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19466 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19467 "2620 Config region 23 has bad version\n"); 19468 goto out; 19469 } 19470 offset += 4; 19471 19472 /* Parse TLV entries in the region */ 19473 while (offset < data_size) { 19474 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19475 break; 19476 /* 19477 * If the TLV is not driver specific TLV or driver id is 19478 * not linux driver id, skip the record. 19479 */ 19480 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19481 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19482 (rgn23_data[offset + 3] != 0)) { 19483 offset += rgn23_data[offset + 1] * 4 + 4; 19484 continue; 19485 } 19486 19487 /* Driver found a driver specific TLV in the config region */ 19488 sub_tlv_len = rgn23_data[offset + 1] * 4; 19489 offset += 4; 19490 tlv_offset = 0; 19491 19492 /* 19493 * Search for configured port state sub-TLV. 19494 */ 19495 while ((offset < data_size) && 19496 (tlv_offset < sub_tlv_len)) { 19497 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19498 offset += 4; 19499 tlv_offset += 4; 19500 break; 19501 } 19502 if (rgn23_data[offset] != PORT_STE_TYPE) { 19503 offset += rgn23_data[offset + 1] * 4 + 4; 19504 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19505 continue; 19506 } 19507 19508 /* This HBA contains PORT_STE configured */ 19509 if (!rgn23_data[offset + 2]) 19510 phba->hba_flag |= LINK_DISABLED; 19511 19512 goto out; 19513 } 19514 } 19515 19516 out: 19517 kfree(rgn23_data); 19518 return; 19519 } 19520 19521 /** 19522 * lpfc_wr_object - write an object to the firmware 19523 * @phba: HBA structure that indicates port to create a queue on. 19524 * @dmabuf_list: list of dmabufs to write to the port. 19525 * @size: the total byte value of the objects to write to the port. 19526 * @offset: the current offset to be used to start the transfer. 19527 * 19528 * This routine will create a wr_object mailbox command to send to the port. 19529 * the mailbox command will be constructed using the dma buffers described in 19530 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19531 * BDEs that the imbedded mailbox can support. The @offset variable will be 19532 * used to indicate the starting offset of the transfer and will also return 19533 * the offset after the write object mailbox has completed. @size is used to 19534 * determine the end of the object and whether the eof bit should be set. 19535 * 19536 * Return 0 is successful and offset will contain the the new offset to use 19537 * for the next write. 19538 * Return negative value for error cases. 19539 **/ 19540 int 19541 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19542 uint32_t size, uint32_t *offset) 19543 { 19544 struct lpfc_mbx_wr_object *wr_object; 19545 LPFC_MBOXQ_t *mbox; 19546 int rc = 0, i = 0; 19547 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19548 uint32_t mbox_tmo; 19549 struct lpfc_dmabuf *dmabuf; 19550 uint32_t written = 0; 19551 bool check_change_status = false; 19552 19553 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19554 if (!mbox) 19555 return -ENOMEM; 19556 19557 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19558 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19559 sizeof(struct lpfc_mbx_wr_object) - 19560 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19561 19562 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19563 wr_object->u.request.write_offset = *offset; 19564 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19565 wr_object->u.request.object_name[0] = 19566 cpu_to_le32(wr_object->u.request.object_name[0]); 19567 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19568 list_for_each_entry(dmabuf, dmabuf_list, list) { 19569 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19570 break; 19571 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19572 wr_object->u.request.bde[i].addrHigh = 19573 putPaddrHigh(dmabuf->phys); 19574 if (written + SLI4_PAGE_SIZE >= size) { 19575 wr_object->u.request.bde[i].tus.f.bdeSize = 19576 (size - written); 19577 written += (size - written); 19578 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19579 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19580 check_change_status = true; 19581 } else { 19582 wr_object->u.request.bde[i].tus.f.bdeSize = 19583 SLI4_PAGE_SIZE; 19584 written += SLI4_PAGE_SIZE; 19585 } 19586 i++; 19587 } 19588 wr_object->u.request.bde_count = i; 19589 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19590 if (!phba->sli4_hba.intr_enable) 19591 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19592 else { 19593 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19594 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19595 } 19596 /* The IOCTL status is embedded in the mailbox subheader. */ 19597 shdr_status = bf_get(lpfc_mbox_hdr_status, 19598 &wr_object->header.cfg_shdr.response); 19599 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19600 &wr_object->header.cfg_shdr.response); 19601 if (check_change_status) { 19602 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19603 &wr_object->u.response); 19604 19605 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 19606 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 19607 shdr_csf = bf_get(lpfc_wr_object_csf, 19608 &wr_object->u.response); 19609 if (shdr_csf) 19610 shdr_change_status = 19611 LPFC_CHANGE_STATUS_PCI_RESET; 19612 } 19613 19614 switch (shdr_change_status) { 19615 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19616 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19617 "3198 Firmware write complete: System " 19618 "reboot required to instantiate\n"); 19619 break; 19620 case (LPFC_CHANGE_STATUS_FW_RESET): 19621 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19622 "3199 Firmware write complete: Firmware" 19623 " reset required to instantiate\n"); 19624 break; 19625 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19626 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19627 "3200 Firmware write complete: Port " 19628 "Migration or PCI Reset required to " 19629 "instantiate\n"); 19630 break; 19631 case (LPFC_CHANGE_STATUS_PCI_RESET): 19632 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19633 "3201 Firmware write complete: PCI " 19634 "Reset required to instantiate\n"); 19635 break; 19636 default: 19637 break; 19638 } 19639 } 19640 if (rc != MBX_TIMEOUT) 19641 mempool_free(mbox, phba->mbox_mem_pool); 19642 if (shdr_status || shdr_add_status || rc) { 19643 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19644 "3025 Write Object mailbox failed with " 19645 "status x%x add_status x%x, mbx status x%x\n", 19646 shdr_status, shdr_add_status, rc); 19647 rc = -ENXIO; 19648 *offset = shdr_add_status; 19649 } else 19650 *offset += wr_object->u.response.actual_write_length; 19651 return rc; 19652 } 19653 19654 /** 19655 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19656 * @vport: pointer to vport data structure. 19657 * 19658 * This function iterate through the mailboxq and clean up all REG_LOGIN 19659 * and REG_VPI mailbox commands associated with the vport. This function 19660 * is called when driver want to restart discovery of the vport due to 19661 * a Clear Virtual Link event. 19662 **/ 19663 void 19664 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19665 { 19666 struct lpfc_hba *phba = vport->phba; 19667 LPFC_MBOXQ_t *mb, *nextmb; 19668 struct lpfc_dmabuf *mp; 19669 struct lpfc_nodelist *ndlp; 19670 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19671 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19672 LIST_HEAD(mbox_cmd_list); 19673 uint8_t restart_loop; 19674 19675 /* Clean up internally queued mailbox commands with the vport */ 19676 spin_lock_irq(&phba->hbalock); 19677 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19678 if (mb->vport != vport) 19679 continue; 19680 19681 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19682 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19683 continue; 19684 19685 list_del(&mb->list); 19686 list_add_tail(&mb->list, &mbox_cmd_list); 19687 } 19688 /* Clean up active mailbox command with the vport */ 19689 mb = phba->sli.mbox_active; 19690 if (mb && (mb->vport == vport)) { 19691 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19692 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19693 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19694 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19695 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19696 /* Put reference count for delayed processing */ 19697 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19698 /* Unregister the RPI when mailbox complete */ 19699 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19700 } 19701 } 19702 /* Cleanup any mailbox completions which are not yet processed */ 19703 do { 19704 restart_loop = 0; 19705 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19706 /* 19707 * If this mailox is already processed or it is 19708 * for another vport ignore it. 19709 */ 19710 if ((mb->vport != vport) || 19711 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19712 continue; 19713 19714 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19715 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19716 continue; 19717 19718 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19719 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19720 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19721 /* Unregister the RPI when mailbox complete */ 19722 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19723 restart_loop = 1; 19724 spin_unlock_irq(&phba->hbalock); 19725 spin_lock(shost->host_lock); 19726 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19727 spin_unlock(shost->host_lock); 19728 spin_lock_irq(&phba->hbalock); 19729 break; 19730 } 19731 } 19732 } while (restart_loop); 19733 19734 spin_unlock_irq(&phba->hbalock); 19735 19736 /* Release the cleaned-up mailbox commands */ 19737 while (!list_empty(&mbox_cmd_list)) { 19738 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19739 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19740 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19741 if (mp) { 19742 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19743 kfree(mp); 19744 } 19745 mb->ctx_buf = NULL; 19746 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19747 mb->ctx_ndlp = NULL; 19748 if (ndlp) { 19749 spin_lock(shost->host_lock); 19750 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19751 spin_unlock(shost->host_lock); 19752 lpfc_nlp_put(ndlp); 19753 } 19754 } 19755 mempool_free(mb, phba->mbox_mem_pool); 19756 } 19757 19758 /* Release the ndlp with the cleaned-up active mailbox command */ 19759 if (act_mbx_ndlp) { 19760 spin_lock(shost->host_lock); 19761 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19762 spin_unlock(shost->host_lock); 19763 lpfc_nlp_put(act_mbx_ndlp); 19764 } 19765 } 19766 19767 /** 19768 * lpfc_drain_txq - Drain the txq 19769 * @phba: Pointer to HBA context object. 19770 * 19771 * This function attempt to submit IOCBs on the txq 19772 * to the adapter. For SLI4 adapters, the txq contains 19773 * ELS IOCBs that have been deferred because the there 19774 * are no SGLs. This congestion can occur with large 19775 * vport counts during node discovery. 19776 **/ 19777 19778 uint32_t 19779 lpfc_drain_txq(struct lpfc_hba *phba) 19780 { 19781 LIST_HEAD(completions); 19782 struct lpfc_sli_ring *pring; 19783 struct lpfc_iocbq *piocbq = NULL; 19784 unsigned long iflags = 0; 19785 char *fail_msg = NULL; 19786 struct lpfc_sglq *sglq; 19787 union lpfc_wqe128 wqe; 19788 uint32_t txq_cnt = 0; 19789 struct lpfc_queue *wq; 19790 19791 if (phba->link_flag & LS_MDS_LOOPBACK) { 19792 /* MDS WQE are posted only to first WQ*/ 19793 wq = phba->sli4_hba.hdwq[0].io_wq; 19794 if (unlikely(!wq)) 19795 return 0; 19796 pring = wq->pring; 19797 } else { 19798 wq = phba->sli4_hba.els_wq; 19799 if (unlikely(!wq)) 19800 return 0; 19801 pring = lpfc_phba_elsring(phba); 19802 } 19803 19804 if (unlikely(!pring) || list_empty(&pring->txq)) 19805 return 0; 19806 19807 spin_lock_irqsave(&pring->ring_lock, iflags); 19808 list_for_each_entry(piocbq, &pring->txq, list) { 19809 txq_cnt++; 19810 } 19811 19812 if (txq_cnt > pring->txq_max) 19813 pring->txq_max = txq_cnt; 19814 19815 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19816 19817 while (!list_empty(&pring->txq)) { 19818 spin_lock_irqsave(&pring->ring_lock, iflags); 19819 19820 piocbq = lpfc_sli_ringtx_get(phba, pring); 19821 if (!piocbq) { 19822 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19823 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19824 "2823 txq empty and txq_cnt is %d\n ", 19825 txq_cnt); 19826 break; 19827 } 19828 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19829 if (!sglq) { 19830 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19831 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19832 break; 19833 } 19834 txq_cnt--; 19835 19836 /* The xri and iocb resources secured, 19837 * attempt to issue request 19838 */ 19839 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19840 piocbq->sli4_xritag = sglq->sli4_xritag; 19841 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19842 fail_msg = "to convert bpl to sgl"; 19843 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19844 fail_msg = "to convert iocb to wqe"; 19845 else if (lpfc_sli4_wq_put(wq, &wqe)) 19846 fail_msg = " - Wq is full"; 19847 else 19848 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19849 19850 if (fail_msg) { 19851 /* Failed means we can't issue and need to cancel */ 19852 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19853 "2822 IOCB failed %s iotag 0x%x " 19854 "xri 0x%x\n", 19855 fail_msg, 19856 piocbq->iotag, piocbq->sli4_xritag); 19857 list_add_tail(&piocbq->list, &completions); 19858 } 19859 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19860 } 19861 19862 /* Cancel all the IOCBs that cannot be issued */ 19863 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19864 IOERR_SLI_ABORTED); 19865 19866 return txq_cnt; 19867 } 19868 19869 /** 19870 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19871 * @phba: Pointer to HBA context object. 19872 * @pwqe: Pointer to command WQE. 19873 * @sglq: Pointer to the scatter gather queue object. 19874 * 19875 * This routine converts the bpl or bde that is in the WQE 19876 * to a sgl list for the sli4 hardware. The physical address 19877 * of the bpl/bde is converted back to a virtual address. 19878 * If the WQE contains a BPL then the list of BDE's is 19879 * converted to sli4_sge's. If the WQE contains a single 19880 * BDE then it is converted to a single sli_sge. 19881 * The WQE is still in cpu endianness so the contents of 19882 * the bpl can be used without byte swapping. 19883 * 19884 * Returns valid XRI = Success, NO_XRI = Failure. 19885 */ 19886 static uint16_t 19887 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19888 struct lpfc_sglq *sglq) 19889 { 19890 uint16_t xritag = NO_XRI; 19891 struct ulp_bde64 *bpl = NULL; 19892 struct ulp_bde64 bde; 19893 struct sli4_sge *sgl = NULL; 19894 struct lpfc_dmabuf *dmabuf; 19895 union lpfc_wqe128 *wqe; 19896 int numBdes = 0; 19897 int i = 0; 19898 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19899 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19900 uint32_t cmd; 19901 19902 if (!pwqeq || !sglq) 19903 return xritag; 19904 19905 sgl = (struct sli4_sge *)sglq->sgl; 19906 wqe = &pwqeq->wqe; 19907 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19908 19909 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19910 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19911 return sglq->sli4_xritag; 19912 numBdes = pwqeq->rsvd2; 19913 if (numBdes) { 19914 /* The addrHigh and addrLow fields within the WQE 19915 * have not been byteswapped yet so there is no 19916 * need to swap them back. 19917 */ 19918 if (pwqeq->context3) 19919 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19920 else 19921 return xritag; 19922 19923 bpl = (struct ulp_bde64 *)dmabuf->virt; 19924 if (!bpl) 19925 return xritag; 19926 19927 for (i = 0; i < numBdes; i++) { 19928 /* Should already be byte swapped. */ 19929 sgl->addr_hi = bpl->addrHigh; 19930 sgl->addr_lo = bpl->addrLow; 19931 19932 sgl->word2 = le32_to_cpu(sgl->word2); 19933 if ((i+1) == numBdes) 19934 bf_set(lpfc_sli4_sge_last, sgl, 1); 19935 else 19936 bf_set(lpfc_sli4_sge_last, sgl, 0); 19937 /* swap the size field back to the cpu so we 19938 * can assign it to the sgl. 19939 */ 19940 bde.tus.w = le32_to_cpu(bpl->tus.w); 19941 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19942 /* The offsets in the sgl need to be accumulated 19943 * separately for the request and reply lists. 19944 * The request is always first, the reply follows. 19945 */ 19946 switch (cmd) { 19947 case CMD_GEN_REQUEST64_WQE: 19948 /* add up the reply sg entries */ 19949 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19950 inbound++; 19951 /* first inbound? reset the offset */ 19952 if (inbound == 1) 19953 offset = 0; 19954 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19955 bf_set(lpfc_sli4_sge_type, sgl, 19956 LPFC_SGE_TYPE_DATA); 19957 offset += bde.tus.f.bdeSize; 19958 break; 19959 case CMD_FCP_TRSP64_WQE: 19960 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19961 bf_set(lpfc_sli4_sge_type, sgl, 19962 LPFC_SGE_TYPE_DATA); 19963 break; 19964 case CMD_FCP_TSEND64_WQE: 19965 case CMD_FCP_TRECEIVE64_WQE: 19966 bf_set(lpfc_sli4_sge_type, sgl, 19967 bpl->tus.f.bdeFlags); 19968 if (i < 3) 19969 offset = 0; 19970 else 19971 offset += bde.tus.f.bdeSize; 19972 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19973 break; 19974 } 19975 sgl->word2 = cpu_to_le32(sgl->word2); 19976 bpl++; 19977 sgl++; 19978 } 19979 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19980 /* The addrHigh and addrLow fields of the BDE have not 19981 * been byteswapped yet so they need to be swapped 19982 * before putting them in the sgl. 19983 */ 19984 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19985 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19986 sgl->word2 = le32_to_cpu(sgl->word2); 19987 bf_set(lpfc_sli4_sge_last, sgl, 1); 19988 sgl->word2 = cpu_to_le32(sgl->word2); 19989 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19990 } 19991 return sglq->sli4_xritag; 19992 } 19993 19994 /** 19995 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19996 * @phba: Pointer to HBA context object. 19997 * @ring_number: Base sli ring number 19998 * @pwqe: Pointer to command WQE. 19999 **/ 20000 int 20001 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20002 struct lpfc_iocbq *pwqe) 20003 { 20004 union lpfc_wqe128 *wqe = &pwqe->wqe; 20005 struct lpfc_async_xchg_ctx *ctxp; 20006 struct lpfc_queue *wq; 20007 struct lpfc_sglq *sglq; 20008 struct lpfc_sli_ring *pring; 20009 unsigned long iflags; 20010 uint32_t ret = 0; 20011 20012 /* NVME_LS and NVME_LS ABTS requests. */ 20013 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20014 pring = phba->sli4_hba.nvmels_wq->pring; 20015 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20016 qp, wq_access); 20017 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20018 if (!sglq) { 20019 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20020 return WQE_BUSY; 20021 } 20022 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20023 pwqe->sli4_xritag = sglq->sli4_xritag; 20024 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20025 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20026 return WQE_ERROR; 20027 } 20028 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20029 pwqe->sli4_xritag); 20030 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20031 if (ret) { 20032 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20033 return ret; 20034 } 20035 20036 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20037 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20038 20039 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20040 return 0; 20041 } 20042 20043 /* NVME_FCREQ and NVME_ABTS requests */ 20044 if (pwqe->iocb_flag & LPFC_IO_NVME) { 20045 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20046 wq = qp->io_wq; 20047 pring = wq->pring; 20048 20049 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20050 20051 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20052 qp, wq_access); 20053 ret = lpfc_sli4_wq_put(wq, wqe); 20054 if (ret) { 20055 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20056 return ret; 20057 } 20058 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20059 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20060 20061 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20062 return 0; 20063 } 20064 20065 /* NVMET requests */ 20066 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20067 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20068 wq = qp->io_wq; 20069 pring = wq->pring; 20070 20071 ctxp = pwqe->context2; 20072 sglq = ctxp->ctxbuf->sglq; 20073 if (pwqe->sli4_xritag == NO_XRI) { 20074 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20075 pwqe->sli4_xritag = sglq->sli4_xritag; 20076 } 20077 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20078 pwqe->sli4_xritag); 20079 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20080 20081 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20082 qp, wq_access); 20083 ret = lpfc_sli4_wq_put(wq, wqe); 20084 if (ret) { 20085 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20086 return ret; 20087 } 20088 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20089 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20090 20091 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20092 return 0; 20093 } 20094 return WQE_ERROR; 20095 } 20096 20097 #ifdef LPFC_MXP_STAT 20098 /** 20099 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20100 * @phba: pointer to lpfc hba data structure. 20101 * @hwqid: belong to which HWQ. 20102 * 20103 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20104 * 15 seconds after a test case is running. 20105 * 20106 * The user should call lpfc_debugfs_multixripools_write before running a test 20107 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20108 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20109 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20110 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20111 **/ 20112 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20113 { 20114 struct lpfc_sli4_hdw_queue *qp; 20115 struct lpfc_multixri_pool *multixri_pool; 20116 struct lpfc_pvt_pool *pvt_pool; 20117 struct lpfc_pbl_pool *pbl_pool; 20118 u32 txcmplq_cnt; 20119 20120 qp = &phba->sli4_hba.hdwq[hwqid]; 20121 multixri_pool = qp->p_multixri_pool; 20122 if (!multixri_pool) 20123 return; 20124 20125 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20126 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20127 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20128 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20129 20130 multixri_pool->stat_pbl_count = pbl_pool->count; 20131 multixri_pool->stat_pvt_count = pvt_pool->count; 20132 multixri_pool->stat_busy_count = txcmplq_cnt; 20133 } 20134 20135 multixri_pool->stat_snapshot_taken++; 20136 } 20137 #endif 20138 20139 /** 20140 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20141 * @phba: pointer to lpfc hba data structure. 20142 * @hwqid: belong to which HWQ. 20143 * 20144 * This routine moves some XRIs from private to public pool when private pool 20145 * is not busy. 20146 **/ 20147 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20148 { 20149 struct lpfc_multixri_pool *multixri_pool; 20150 u32 io_req_count; 20151 u32 prev_io_req_count; 20152 20153 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20154 if (!multixri_pool) 20155 return; 20156 io_req_count = multixri_pool->io_req_count; 20157 prev_io_req_count = multixri_pool->prev_io_req_count; 20158 20159 if (prev_io_req_count != io_req_count) { 20160 /* Private pool is busy */ 20161 multixri_pool->prev_io_req_count = io_req_count; 20162 } else { 20163 /* Private pool is not busy. 20164 * Move XRIs from private to public pool. 20165 */ 20166 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20167 } 20168 } 20169 20170 /** 20171 * lpfc_adjust_high_watermark - Adjust high watermark 20172 * @phba: pointer to lpfc hba data structure. 20173 * @hwqid: belong to which HWQ. 20174 * 20175 * This routine sets high watermark as number of outstanding XRIs, 20176 * but make sure the new value is between xri_limit/2 and xri_limit. 20177 **/ 20178 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20179 { 20180 u32 new_watermark; 20181 u32 watermark_max; 20182 u32 watermark_min; 20183 u32 xri_limit; 20184 u32 txcmplq_cnt; 20185 u32 abts_io_bufs; 20186 struct lpfc_multixri_pool *multixri_pool; 20187 struct lpfc_sli4_hdw_queue *qp; 20188 20189 qp = &phba->sli4_hba.hdwq[hwqid]; 20190 multixri_pool = qp->p_multixri_pool; 20191 if (!multixri_pool) 20192 return; 20193 xri_limit = multixri_pool->xri_limit; 20194 20195 watermark_max = xri_limit; 20196 watermark_min = xri_limit / 2; 20197 20198 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20199 abts_io_bufs = qp->abts_scsi_io_bufs; 20200 abts_io_bufs += qp->abts_nvme_io_bufs; 20201 20202 new_watermark = txcmplq_cnt + abts_io_bufs; 20203 new_watermark = min(watermark_max, new_watermark); 20204 new_watermark = max(watermark_min, new_watermark); 20205 multixri_pool->pvt_pool.high_watermark = new_watermark; 20206 20207 #ifdef LPFC_MXP_STAT 20208 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20209 new_watermark); 20210 #endif 20211 } 20212 20213 /** 20214 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20215 * @phba: pointer to lpfc hba data structure. 20216 * @hwqid: belong to which HWQ. 20217 * 20218 * This routine is called from hearbeat timer when pvt_pool is idle. 20219 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20220 * The first step moves (all - low_watermark) amount of XRIs. 20221 * The second step moves the rest of XRIs. 20222 **/ 20223 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20224 { 20225 struct lpfc_pbl_pool *pbl_pool; 20226 struct lpfc_pvt_pool *pvt_pool; 20227 struct lpfc_sli4_hdw_queue *qp; 20228 struct lpfc_io_buf *lpfc_ncmd; 20229 struct lpfc_io_buf *lpfc_ncmd_next; 20230 unsigned long iflag; 20231 struct list_head tmp_list; 20232 u32 tmp_count; 20233 20234 qp = &phba->sli4_hba.hdwq[hwqid]; 20235 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20236 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20237 tmp_count = 0; 20238 20239 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20240 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20241 20242 if (pvt_pool->count > pvt_pool->low_watermark) { 20243 /* Step 1: move (all - low_watermark) from pvt_pool 20244 * to pbl_pool 20245 */ 20246 20247 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20248 INIT_LIST_HEAD(&tmp_list); 20249 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20250 &pvt_pool->list, list) { 20251 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20252 tmp_count++; 20253 if (tmp_count >= pvt_pool->low_watermark) 20254 break; 20255 } 20256 20257 /* Move all bufs from pvt_pool to pbl_pool */ 20258 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20259 20260 /* Move all bufs from tmp_list to pvt_pool */ 20261 list_splice(&tmp_list, &pvt_pool->list); 20262 20263 pbl_pool->count += (pvt_pool->count - tmp_count); 20264 pvt_pool->count = tmp_count; 20265 } else { 20266 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20267 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20268 pbl_pool->count += pvt_pool->count; 20269 pvt_pool->count = 0; 20270 } 20271 20272 spin_unlock(&pvt_pool->lock); 20273 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20274 } 20275 20276 /** 20277 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20278 * @phba: pointer to lpfc hba data structure 20279 * @pbl_pool: specified public free XRI pool 20280 * @pvt_pool: specified private free XRI pool 20281 * @count: number of XRIs to move 20282 * 20283 * This routine tries to move some free common bufs from the specified pbl_pool 20284 * to the specified pvt_pool. It might move less than count XRIs if there's not 20285 * enough in public pool. 20286 * 20287 * Return: 20288 * true - if XRIs are successfully moved from the specified pbl_pool to the 20289 * specified pvt_pool 20290 * false - if the specified pbl_pool is empty or locked by someone else 20291 **/ 20292 static bool 20293 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20294 struct lpfc_pbl_pool *pbl_pool, 20295 struct lpfc_pvt_pool *pvt_pool, u32 count) 20296 { 20297 struct lpfc_io_buf *lpfc_ncmd; 20298 struct lpfc_io_buf *lpfc_ncmd_next; 20299 unsigned long iflag; 20300 int ret; 20301 20302 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20303 if (ret) { 20304 if (pbl_pool->count) { 20305 /* Move a batch of XRIs from public to private pool */ 20306 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20307 list_for_each_entry_safe(lpfc_ncmd, 20308 lpfc_ncmd_next, 20309 &pbl_pool->list, 20310 list) { 20311 list_move_tail(&lpfc_ncmd->list, 20312 &pvt_pool->list); 20313 pvt_pool->count++; 20314 pbl_pool->count--; 20315 count--; 20316 if (count == 0) 20317 break; 20318 } 20319 20320 spin_unlock(&pvt_pool->lock); 20321 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20322 return true; 20323 } 20324 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20325 } 20326 20327 return false; 20328 } 20329 20330 /** 20331 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20332 * @phba: pointer to lpfc hba data structure. 20333 * @hwqid: belong to which HWQ. 20334 * @count: number of XRIs to move 20335 * 20336 * This routine tries to find some free common bufs in one of public pools with 20337 * Round Robin method. The search always starts from local hwqid, then the next 20338 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20339 * a batch of free common bufs are moved to private pool on hwqid. 20340 * It might move less than count XRIs if there's not enough in public pool. 20341 **/ 20342 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20343 { 20344 struct lpfc_multixri_pool *multixri_pool; 20345 struct lpfc_multixri_pool *next_multixri_pool; 20346 struct lpfc_pvt_pool *pvt_pool; 20347 struct lpfc_pbl_pool *pbl_pool; 20348 struct lpfc_sli4_hdw_queue *qp; 20349 u32 next_hwqid; 20350 u32 hwq_count; 20351 int ret; 20352 20353 qp = &phba->sli4_hba.hdwq[hwqid]; 20354 multixri_pool = qp->p_multixri_pool; 20355 pvt_pool = &multixri_pool->pvt_pool; 20356 pbl_pool = &multixri_pool->pbl_pool; 20357 20358 /* Check if local pbl_pool is available */ 20359 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20360 if (ret) { 20361 #ifdef LPFC_MXP_STAT 20362 multixri_pool->local_pbl_hit_count++; 20363 #endif 20364 return; 20365 } 20366 20367 hwq_count = phba->cfg_hdw_queue; 20368 20369 /* Get the next hwqid which was found last time */ 20370 next_hwqid = multixri_pool->rrb_next_hwqid; 20371 20372 do { 20373 /* Go to next hwq */ 20374 next_hwqid = (next_hwqid + 1) % hwq_count; 20375 20376 next_multixri_pool = 20377 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20378 pbl_pool = &next_multixri_pool->pbl_pool; 20379 20380 /* Check if the public free xri pool is available */ 20381 ret = _lpfc_move_xri_pbl_to_pvt( 20382 phba, qp, pbl_pool, pvt_pool, count); 20383 20384 /* Exit while-loop if success or all hwqid are checked */ 20385 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20386 20387 /* Starting point for the next time */ 20388 multixri_pool->rrb_next_hwqid = next_hwqid; 20389 20390 if (!ret) { 20391 /* stats: all public pools are empty*/ 20392 multixri_pool->pbl_empty_count++; 20393 } 20394 20395 #ifdef LPFC_MXP_STAT 20396 if (ret) { 20397 if (next_hwqid == hwqid) 20398 multixri_pool->local_pbl_hit_count++; 20399 else 20400 multixri_pool->other_pbl_hit_count++; 20401 } 20402 #endif 20403 } 20404 20405 /** 20406 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20407 * @phba: pointer to lpfc hba data structure. 20408 * @qp: belong to which HWQ. 20409 * 20410 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20411 * low watermark. 20412 **/ 20413 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20414 { 20415 struct lpfc_multixri_pool *multixri_pool; 20416 struct lpfc_pvt_pool *pvt_pool; 20417 20418 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20419 pvt_pool = &multixri_pool->pvt_pool; 20420 20421 if (pvt_pool->count < pvt_pool->low_watermark) 20422 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20423 } 20424 20425 /** 20426 * lpfc_release_io_buf - Return one IO buf back to free pool 20427 * @phba: pointer to lpfc hba data structure. 20428 * @lpfc_ncmd: IO buf to be returned. 20429 * @qp: belong to which HWQ. 20430 * 20431 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20432 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20433 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20434 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20435 * lpfc_io_buf_list_put. 20436 **/ 20437 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20438 struct lpfc_sli4_hdw_queue *qp) 20439 { 20440 unsigned long iflag; 20441 struct lpfc_pbl_pool *pbl_pool; 20442 struct lpfc_pvt_pool *pvt_pool; 20443 struct lpfc_epd_pool *epd_pool; 20444 u32 txcmplq_cnt; 20445 u32 xri_owned; 20446 u32 xri_limit; 20447 u32 abts_io_bufs; 20448 20449 /* MUST zero fields if buffer is reused by another protocol */ 20450 lpfc_ncmd->nvmeCmd = NULL; 20451 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20452 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20453 20454 if (phba->cfg_xpsgl && !phba->nvmet_support && 20455 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20456 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20457 20458 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20459 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20460 20461 if (phba->cfg_xri_rebalancing) { 20462 if (lpfc_ncmd->expedite) { 20463 /* Return to expedite pool */ 20464 epd_pool = &phba->epd_pool; 20465 spin_lock_irqsave(&epd_pool->lock, iflag); 20466 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20467 epd_pool->count++; 20468 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20469 return; 20470 } 20471 20472 /* Avoid invalid access if an IO sneaks in and is being rejected 20473 * just _after_ xri pools are destroyed in lpfc_offline. 20474 * Nothing much can be done at this point. 20475 */ 20476 if (!qp->p_multixri_pool) 20477 return; 20478 20479 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20480 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20481 20482 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20483 abts_io_bufs = qp->abts_scsi_io_bufs; 20484 abts_io_bufs += qp->abts_nvme_io_bufs; 20485 20486 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20487 xri_limit = qp->p_multixri_pool->xri_limit; 20488 20489 #ifdef LPFC_MXP_STAT 20490 if (xri_owned <= xri_limit) 20491 qp->p_multixri_pool->below_limit_count++; 20492 else 20493 qp->p_multixri_pool->above_limit_count++; 20494 #endif 20495 20496 /* XRI goes to either public or private free xri pool 20497 * based on watermark and xri_limit 20498 */ 20499 if ((pvt_pool->count < pvt_pool->low_watermark) || 20500 (xri_owned < xri_limit && 20501 pvt_pool->count < pvt_pool->high_watermark)) { 20502 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20503 qp, free_pvt_pool); 20504 list_add_tail(&lpfc_ncmd->list, 20505 &pvt_pool->list); 20506 pvt_pool->count++; 20507 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20508 } else { 20509 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20510 qp, free_pub_pool); 20511 list_add_tail(&lpfc_ncmd->list, 20512 &pbl_pool->list); 20513 pbl_pool->count++; 20514 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20515 } 20516 } else { 20517 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20518 qp, free_xri); 20519 list_add_tail(&lpfc_ncmd->list, 20520 &qp->lpfc_io_buf_list_put); 20521 qp->put_io_bufs++; 20522 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20523 iflag); 20524 } 20525 } 20526 20527 /** 20528 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20529 * @phba: pointer to lpfc hba data structure. 20530 * @pvt_pool: pointer to private pool data structure. 20531 * @ndlp: pointer to lpfc nodelist data structure. 20532 * 20533 * This routine tries to get one free IO buf from private pool. 20534 * 20535 * Return: 20536 * pointer to one free IO buf - if private pool is not empty 20537 * NULL - if private pool is empty 20538 **/ 20539 static struct lpfc_io_buf * 20540 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20541 struct lpfc_sli4_hdw_queue *qp, 20542 struct lpfc_pvt_pool *pvt_pool, 20543 struct lpfc_nodelist *ndlp) 20544 { 20545 struct lpfc_io_buf *lpfc_ncmd; 20546 struct lpfc_io_buf *lpfc_ncmd_next; 20547 unsigned long iflag; 20548 20549 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20550 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20551 &pvt_pool->list, list) { 20552 if (lpfc_test_rrq_active( 20553 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20554 continue; 20555 list_del(&lpfc_ncmd->list); 20556 pvt_pool->count--; 20557 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20558 return lpfc_ncmd; 20559 } 20560 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20561 20562 return NULL; 20563 } 20564 20565 /** 20566 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20567 * @phba: pointer to lpfc hba data structure. 20568 * 20569 * This routine tries to get one free IO buf from expedite pool. 20570 * 20571 * Return: 20572 * pointer to one free IO buf - if expedite pool is not empty 20573 * NULL - if expedite pool is empty 20574 **/ 20575 static struct lpfc_io_buf * 20576 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20577 { 20578 struct lpfc_io_buf *lpfc_ncmd; 20579 struct lpfc_io_buf *lpfc_ncmd_next; 20580 unsigned long iflag; 20581 struct lpfc_epd_pool *epd_pool; 20582 20583 epd_pool = &phba->epd_pool; 20584 lpfc_ncmd = NULL; 20585 20586 spin_lock_irqsave(&epd_pool->lock, iflag); 20587 if (epd_pool->count > 0) { 20588 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20589 &epd_pool->list, list) { 20590 list_del(&lpfc_ncmd->list); 20591 epd_pool->count--; 20592 break; 20593 } 20594 } 20595 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20596 20597 return lpfc_ncmd; 20598 } 20599 20600 /** 20601 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20602 * @phba: pointer to lpfc hba data structure. 20603 * @ndlp: pointer to lpfc nodelist data structure. 20604 * @hwqid: belong to which HWQ 20605 * @expedite: 1 means this request is urgent. 20606 * 20607 * This routine will do the following actions and then return a pointer to 20608 * one free IO buf. 20609 * 20610 * 1. If private free xri count is empty, move some XRIs from public to 20611 * private pool. 20612 * 2. Get one XRI from private free xri pool. 20613 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20614 * get one free xri from expedite pool. 20615 * 20616 * Note: ndlp is only used on SCSI side for RRQ testing. 20617 * The caller should pass NULL for ndlp on NVME side. 20618 * 20619 * Return: 20620 * pointer to one free IO buf - if private pool is not empty 20621 * NULL - if private pool is empty 20622 **/ 20623 static struct lpfc_io_buf * 20624 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20625 struct lpfc_nodelist *ndlp, 20626 int hwqid, int expedite) 20627 { 20628 struct lpfc_sli4_hdw_queue *qp; 20629 struct lpfc_multixri_pool *multixri_pool; 20630 struct lpfc_pvt_pool *pvt_pool; 20631 struct lpfc_io_buf *lpfc_ncmd; 20632 20633 qp = &phba->sli4_hba.hdwq[hwqid]; 20634 lpfc_ncmd = NULL; 20635 multixri_pool = qp->p_multixri_pool; 20636 pvt_pool = &multixri_pool->pvt_pool; 20637 multixri_pool->io_req_count++; 20638 20639 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20640 if (pvt_pool->count == 0) 20641 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20642 20643 /* Get one XRI from private free xri pool */ 20644 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20645 20646 if (lpfc_ncmd) { 20647 lpfc_ncmd->hdwq = qp; 20648 lpfc_ncmd->hdwq_no = hwqid; 20649 } else if (expedite) { 20650 /* If we fail to get one from pvt_pool and this is an expedite 20651 * request, get one free xri from expedite pool. 20652 */ 20653 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20654 } 20655 20656 return lpfc_ncmd; 20657 } 20658 20659 static inline struct lpfc_io_buf * 20660 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20661 { 20662 struct lpfc_sli4_hdw_queue *qp; 20663 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20664 20665 qp = &phba->sli4_hba.hdwq[idx]; 20666 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20667 &qp->lpfc_io_buf_list_get, list) { 20668 if (lpfc_test_rrq_active(phba, ndlp, 20669 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20670 continue; 20671 20672 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20673 continue; 20674 20675 list_del_init(&lpfc_cmd->list); 20676 qp->get_io_bufs--; 20677 lpfc_cmd->hdwq = qp; 20678 lpfc_cmd->hdwq_no = idx; 20679 return lpfc_cmd; 20680 } 20681 return NULL; 20682 } 20683 20684 /** 20685 * lpfc_get_io_buf - Get one IO buffer from free pool 20686 * @phba: The HBA for which this call is being executed. 20687 * @ndlp: pointer to lpfc nodelist data structure. 20688 * @hwqid: belong to which HWQ 20689 * @expedite: 1 means this request is urgent. 20690 * 20691 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20692 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20693 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20694 * 20695 * Note: ndlp is only used on SCSI side for RRQ testing. 20696 * The caller should pass NULL for ndlp on NVME side. 20697 * 20698 * Return codes: 20699 * NULL - Error 20700 * Pointer to lpfc_io_buf - Success 20701 **/ 20702 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20703 struct lpfc_nodelist *ndlp, 20704 u32 hwqid, int expedite) 20705 { 20706 struct lpfc_sli4_hdw_queue *qp; 20707 unsigned long iflag; 20708 struct lpfc_io_buf *lpfc_cmd; 20709 20710 qp = &phba->sli4_hba.hdwq[hwqid]; 20711 lpfc_cmd = NULL; 20712 20713 if (phba->cfg_xri_rebalancing) 20714 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20715 phba, ndlp, hwqid, expedite); 20716 else { 20717 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20718 qp, alloc_xri_get); 20719 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20720 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20721 if (!lpfc_cmd) { 20722 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20723 qp, alloc_xri_put); 20724 list_splice(&qp->lpfc_io_buf_list_put, 20725 &qp->lpfc_io_buf_list_get); 20726 qp->get_io_bufs += qp->put_io_bufs; 20727 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20728 qp->put_io_bufs = 0; 20729 spin_unlock(&qp->io_buf_list_put_lock); 20730 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20731 expedite) 20732 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20733 } 20734 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20735 } 20736 20737 return lpfc_cmd; 20738 } 20739 20740 /** 20741 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20742 * @phba: The HBA for which this call is being executed. 20743 * @lpfc_buf: IO buf structure to append the SGL chunk 20744 * 20745 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20746 * and will allocate an SGL chunk if the pool is empty. 20747 * 20748 * Return codes: 20749 * NULL - Error 20750 * Pointer to sli4_hybrid_sgl - Success 20751 **/ 20752 struct sli4_hybrid_sgl * 20753 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20754 { 20755 struct sli4_hybrid_sgl *list_entry = NULL; 20756 struct sli4_hybrid_sgl *tmp = NULL; 20757 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20758 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20759 struct list_head *buf_list = &hdwq->sgl_list; 20760 unsigned long iflags; 20761 20762 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20763 20764 if (likely(!list_empty(buf_list))) { 20765 /* break off 1 chunk from the sgl_list */ 20766 list_for_each_entry_safe(list_entry, tmp, 20767 buf_list, list_node) { 20768 list_move_tail(&list_entry->list_node, 20769 &lpfc_buf->dma_sgl_xtra_list); 20770 break; 20771 } 20772 } else { 20773 /* allocate more */ 20774 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20775 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20776 cpu_to_node(hdwq->io_wq->chann)); 20777 if (!tmp) { 20778 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20779 "8353 error kmalloc memory for HDWQ " 20780 "%d %s\n", 20781 lpfc_buf->hdwq_no, __func__); 20782 return NULL; 20783 } 20784 20785 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 20786 GFP_ATOMIC, &tmp->dma_phys_sgl); 20787 if (!tmp->dma_sgl) { 20788 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20789 "8354 error pool_alloc memory for HDWQ " 20790 "%d %s\n", 20791 lpfc_buf->hdwq_no, __func__); 20792 kfree(tmp); 20793 return NULL; 20794 } 20795 20796 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20797 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 20798 } 20799 20800 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 20801 struct sli4_hybrid_sgl, 20802 list_node); 20803 20804 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20805 20806 return allocated_sgl; 20807 } 20808 20809 /** 20810 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 20811 * @phba: The HBA for which this call is being executed. 20812 * @lpfc_buf: IO buf structure with the SGL chunk 20813 * 20814 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 20815 * 20816 * Return codes: 20817 * 0 - Success 20818 * -EINVAL - Error 20819 **/ 20820 int 20821 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20822 { 20823 int rc = 0; 20824 struct sli4_hybrid_sgl *list_entry = NULL; 20825 struct sli4_hybrid_sgl *tmp = NULL; 20826 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20827 struct list_head *buf_list = &hdwq->sgl_list; 20828 unsigned long iflags; 20829 20830 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20831 20832 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 20833 list_for_each_entry_safe(list_entry, tmp, 20834 &lpfc_buf->dma_sgl_xtra_list, 20835 list_node) { 20836 list_move_tail(&list_entry->list_node, 20837 buf_list); 20838 } 20839 } else { 20840 rc = -EINVAL; 20841 } 20842 20843 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20844 return rc; 20845 } 20846 20847 /** 20848 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 20849 * @phba: phba object 20850 * @hdwq: hdwq to cleanup sgl buff resources on 20851 * 20852 * This routine frees all SGL chunks of hdwq SGL chunk pool. 20853 * 20854 * Return codes: 20855 * None 20856 **/ 20857 void 20858 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 20859 struct lpfc_sli4_hdw_queue *hdwq) 20860 { 20861 struct list_head *buf_list = &hdwq->sgl_list; 20862 struct sli4_hybrid_sgl *list_entry = NULL; 20863 struct sli4_hybrid_sgl *tmp = NULL; 20864 unsigned long iflags; 20865 20866 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20867 20868 /* Free sgl pool */ 20869 list_for_each_entry_safe(list_entry, tmp, 20870 buf_list, list_node) { 20871 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 20872 list_entry->dma_sgl, 20873 list_entry->dma_phys_sgl); 20874 list_del(&list_entry->list_node); 20875 kfree(list_entry); 20876 } 20877 20878 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20879 } 20880 20881 /** 20882 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 20883 * @phba: The HBA for which this call is being executed. 20884 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 20885 * 20886 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 20887 * and will allocate an CMD/RSP buffer if the pool is empty. 20888 * 20889 * Return codes: 20890 * NULL - Error 20891 * Pointer to fcp_cmd_rsp_buf - Success 20892 **/ 20893 struct fcp_cmd_rsp_buf * 20894 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20895 struct lpfc_io_buf *lpfc_buf) 20896 { 20897 struct fcp_cmd_rsp_buf *list_entry = NULL; 20898 struct fcp_cmd_rsp_buf *tmp = NULL; 20899 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 20900 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20901 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20902 unsigned long iflags; 20903 20904 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20905 20906 if (likely(!list_empty(buf_list))) { 20907 /* break off 1 chunk from the list */ 20908 list_for_each_entry_safe(list_entry, tmp, 20909 buf_list, 20910 list_node) { 20911 list_move_tail(&list_entry->list_node, 20912 &lpfc_buf->dma_cmd_rsp_list); 20913 break; 20914 } 20915 } else { 20916 /* allocate more */ 20917 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20918 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20919 cpu_to_node(hdwq->io_wq->chann)); 20920 if (!tmp) { 20921 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20922 "8355 error kmalloc memory for HDWQ " 20923 "%d %s\n", 20924 lpfc_buf->hdwq_no, __func__); 20925 return NULL; 20926 } 20927 20928 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 20929 GFP_ATOMIC, 20930 &tmp->fcp_cmd_rsp_dma_handle); 20931 20932 if (!tmp->fcp_cmnd) { 20933 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20934 "8356 error pool_alloc memory for HDWQ " 20935 "%d %s\n", 20936 lpfc_buf->hdwq_no, __func__); 20937 kfree(tmp); 20938 return NULL; 20939 } 20940 20941 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 20942 sizeof(struct fcp_cmnd)); 20943 20944 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20945 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 20946 } 20947 20948 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 20949 struct fcp_cmd_rsp_buf, 20950 list_node); 20951 20952 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20953 20954 return allocated_buf; 20955 } 20956 20957 /** 20958 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 20959 * @phba: The HBA for which this call is being executed. 20960 * @lpfc_buf: IO buf structure with the CMD/RSP buf 20961 * 20962 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 20963 * 20964 * Return codes: 20965 * 0 - Success 20966 * -EINVAL - Error 20967 **/ 20968 int 20969 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20970 struct lpfc_io_buf *lpfc_buf) 20971 { 20972 int rc = 0; 20973 struct fcp_cmd_rsp_buf *list_entry = NULL; 20974 struct fcp_cmd_rsp_buf *tmp = NULL; 20975 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20976 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20977 unsigned long iflags; 20978 20979 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20980 20981 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 20982 list_for_each_entry_safe(list_entry, tmp, 20983 &lpfc_buf->dma_cmd_rsp_list, 20984 list_node) { 20985 list_move_tail(&list_entry->list_node, 20986 buf_list); 20987 } 20988 } else { 20989 rc = -EINVAL; 20990 } 20991 20992 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20993 return rc; 20994 } 20995 20996 /** 20997 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 20998 * @phba: phba object 20999 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21000 * 21001 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21002 * 21003 * Return codes: 21004 * None 21005 **/ 21006 void 21007 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21008 struct lpfc_sli4_hdw_queue *hdwq) 21009 { 21010 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21011 struct fcp_cmd_rsp_buf *list_entry = NULL; 21012 struct fcp_cmd_rsp_buf *tmp = NULL; 21013 unsigned long iflags; 21014 21015 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21016 21017 /* Free cmd_rsp buf pool */ 21018 list_for_each_entry_safe(list_entry, tmp, 21019 buf_list, 21020 list_node) { 21021 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21022 list_entry->fcp_cmnd, 21023 list_entry->fcp_cmd_rsp_dma_handle); 21024 list_del(&list_entry->list_node); 21025 kfree(list_entry); 21026 } 21027 21028 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21029 } 21030