1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2020 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 *******************************************************************/ 23 24 #include <linux/blkdev.h> 25 #include <linux/pci.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <linux/lockdep.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_cmnd.h> 33 #include <scsi/scsi_device.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_transport_fc.h> 36 #include <scsi/fc/fc_fs.h> 37 #include <linux/aer.h> 38 #ifdef CONFIG_X86 39 #include <asm/set_memory.h> 40 #endif 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_crtn.h" 52 #include "lpfc_logmsg.h" 53 #include "lpfc_compat.h" 54 #include "lpfc_debugfs.h" 55 #include "lpfc_vport.h" 56 #include "lpfc_version.h" 57 58 /* There are only four IOCB completion types. */ 59 typedef enum _lpfc_iocb_type { 60 LPFC_UNKNOWN_IOCB, 61 LPFC_UNSOL_IOCB, 62 LPFC_SOL_IOCB, 63 LPFC_ABORT_IOCB 64 } lpfc_iocb_type; 65 66 67 /* Provide function prototypes local to this module. */ 68 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 69 uint32_t); 70 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 71 uint8_t *, uint32_t *); 72 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 73 struct lpfc_iocbq *); 74 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 75 struct hbq_dmabuf *); 76 static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 77 struct hbq_dmabuf *dmabuf); 78 static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, 79 struct lpfc_queue *cq, struct lpfc_cqe *cqe); 80 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 81 int); 82 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, 83 struct lpfc_queue *eq, 84 struct lpfc_eqe *eqe); 85 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 86 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 87 static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); 88 static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, 89 struct lpfc_queue *cq, 90 struct lpfc_cqe *cqe); 91 92 static IOCB_t * 93 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 94 { 95 return &iocbq->iocb; 96 } 97 98 #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) 99 /** 100 * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function 101 * @srcp: Source memory pointer. 102 * @destp: Destination memory pointer. 103 * @cnt: Number of words required to be copied. 104 * Must be a multiple of sizeof(uint64_t) 105 * 106 * This function is used for copying data between driver memory 107 * and the SLI WQ. This function also changes the endianness 108 * of each word if native endianness is different from SLI 109 * endianness. This function can be called with or without 110 * lock. 111 **/ 112 static void 113 lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 114 { 115 uint64_t *src = srcp; 116 uint64_t *dest = destp; 117 int i; 118 119 for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) 120 *dest++ = *src++; 121 } 122 #else 123 #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) 124 #endif 125 126 /** 127 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 128 * @q: The Work Queue to operate on. 129 * @wqe: The work Queue Entry to put on the Work queue. 130 * 131 * This routine will copy the contents of @wqe to the next available entry on 132 * the @q. This function will then ring the Work Queue Doorbell to signal the 133 * HBA to start processing the Work Queue Entry. This function returns 0 if 134 * successful. If no entries are available on @q then this function will return 135 * -ENOMEM. 136 * The caller is expected to hold the hbalock when calling this routine. 137 **/ 138 static int 139 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) 140 { 141 union lpfc_wqe *temp_wqe; 142 struct lpfc_register doorbell; 143 uint32_t host_index; 144 uint32_t idx; 145 uint32_t i = 0; 146 uint8_t *tmp; 147 u32 if_type; 148 149 /* sanity check on queue memory */ 150 if (unlikely(!q)) 151 return -ENOMEM; 152 temp_wqe = lpfc_sli4_qe(q, q->host_index); 153 154 /* If the host has not yet processed the next entry then we are done */ 155 idx = ((q->host_index + 1) % q->entry_count); 156 if (idx == q->hba_index) { 157 q->WQ_overflow++; 158 return -EBUSY; 159 } 160 q->WQ_posted++; 161 /* set consumption flag every once in a while */ 162 if (!((q->host_index + 1) % q->notify_interval)) 163 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 164 else 165 bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); 166 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 167 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 168 lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 169 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 170 /* write to DPP aperture taking advatage of Combined Writes */ 171 tmp = (uint8_t *)temp_wqe; 172 #ifdef __raw_writeq 173 for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) 174 __raw_writeq(*((uint64_t *)(tmp + i)), 175 q->dpp_regaddr + i); 176 #else 177 for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) 178 __raw_writel(*((uint32_t *)(tmp + i)), 179 q->dpp_regaddr + i); 180 #endif 181 } 182 /* ensure WQE bcopy and DPP flushed before doorbell write */ 183 wmb(); 184 185 /* Update the host index before invoking device */ 186 host_index = q->host_index; 187 188 q->host_index = idx; 189 190 /* Ring Doorbell */ 191 doorbell.word0 = 0; 192 if (q->db_format == LPFC_DB_LIST_FORMAT) { 193 if (q->dpp_enable && q->phba->cfg_enable_dpp) { 194 bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); 195 bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); 196 bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, 197 q->dpp_id); 198 bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, 199 q->queue_id); 200 } else { 201 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 202 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 203 204 /* Leave bits <23:16> clear for if_type 6 dpp */ 205 if_type = bf_get(lpfc_sli_intf_if_type, 206 &q->phba->sli4_hba.sli_intf); 207 if (if_type != LPFC_SLI_INTF_IF_TYPE_6) 208 bf_set(lpfc_wq_db_list_fm_index, &doorbell, 209 host_index); 210 } 211 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 212 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 213 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 214 } else { 215 return -EINVAL; 216 } 217 writel(doorbell.word0, q->db_regaddr); 218 219 return 0; 220 } 221 222 /** 223 * lpfc_sli4_wq_release - Updates internal hba index for WQ 224 * @q: The Work Queue to operate on. 225 * @index: The index to advance the hba index to. 226 * 227 * This routine will update the HBA index of a queue to reflect consumption of 228 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 229 * an entry the host calls this function to update the queue's internal 230 * pointers. 231 **/ 232 static void 233 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 234 { 235 /* sanity check on queue memory */ 236 if (unlikely(!q)) 237 return; 238 239 q->hba_index = index; 240 } 241 242 /** 243 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 244 * @q: The Mailbox Queue to operate on. 245 * @wqe: The Mailbox Queue Entry to put on the Work queue. 246 * 247 * This routine will copy the contents of @mqe to the next available entry on 248 * the @q. This function will then ring the Work Queue Doorbell to signal the 249 * HBA to start processing the Work Queue Entry. This function returns 0 if 250 * successful. If no entries are available on @q then this function will return 251 * -ENOMEM. 252 * The caller is expected to hold the hbalock when calling this routine. 253 **/ 254 static uint32_t 255 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 256 { 257 struct lpfc_mqe *temp_mqe; 258 struct lpfc_register doorbell; 259 260 /* sanity check on queue memory */ 261 if (unlikely(!q)) 262 return -ENOMEM; 263 temp_mqe = lpfc_sli4_qe(q, q->host_index); 264 265 /* If the host has not yet processed the next entry then we are done */ 266 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 267 return -ENOMEM; 268 lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 269 /* Save off the mailbox pointer for completion */ 270 q->phba->mbox = (MAILBOX_t *)temp_mqe; 271 272 /* Update the host index before invoking device */ 273 q->host_index = ((q->host_index + 1) % q->entry_count); 274 275 /* Ring Doorbell */ 276 doorbell.word0 = 0; 277 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 278 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 279 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 280 return 0; 281 } 282 283 /** 284 * lpfc_sli4_mq_release - Updates internal hba index for MQ 285 * @q: The Mailbox Queue to operate on. 286 * 287 * This routine will update the HBA index of a queue to reflect consumption of 288 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 289 * an entry the host calls this function to update the queue's internal 290 * pointers. This routine returns the number of entries that were consumed by 291 * the HBA. 292 **/ 293 static uint32_t 294 lpfc_sli4_mq_release(struct lpfc_queue *q) 295 { 296 /* sanity check on queue memory */ 297 if (unlikely(!q)) 298 return 0; 299 300 /* Clear the mailbox pointer for completion */ 301 q->phba->mbox = NULL; 302 q->hba_index = ((q->hba_index + 1) % q->entry_count); 303 return 1; 304 } 305 306 /** 307 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 308 * @q: The Event Queue to get the first valid EQE from 309 * 310 * This routine will get the first valid Event Queue Entry from @q, update 311 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 312 * the Queue (no more work to do), or the Queue is full of EQEs that have been 313 * processed, but not popped back to the HBA then this routine will return NULL. 314 **/ 315 static struct lpfc_eqe * 316 lpfc_sli4_eq_get(struct lpfc_queue *q) 317 { 318 struct lpfc_eqe *eqe; 319 320 /* sanity check on queue memory */ 321 if (unlikely(!q)) 322 return NULL; 323 eqe = lpfc_sli4_qe(q, q->host_index); 324 325 /* If the next EQE is not valid then we are done */ 326 if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) 327 return NULL; 328 329 /* 330 * insert barrier for instruction interlock : data from the hardware 331 * must have the valid bit checked before it can be copied and acted 332 * upon. Speculative instructions were allowing a bcopy at the start 333 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 334 * after our return, to copy data before the valid bit check above 335 * was done. As such, some of the copied data was stale. The barrier 336 * ensures the check is before any data is copied. 337 */ 338 mb(); 339 return eqe; 340 } 341 342 /** 343 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 344 * @q: The Event Queue to disable interrupts 345 * 346 **/ 347 void 348 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 349 { 350 struct lpfc_register doorbell; 351 352 doorbell.word0 = 0; 353 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 354 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 355 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 356 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 357 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 358 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 359 } 360 361 /** 362 * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ 363 * @q: The Event Queue to disable interrupts 364 * 365 **/ 366 void 367 lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) 368 { 369 struct lpfc_register doorbell; 370 371 doorbell.word0 = 0; 372 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 373 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 374 } 375 376 /** 377 * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state 378 * @phba: adapter with EQ 379 * @q: The Event Queue that the host has completed processing for. 380 * @count: Number of elements that have been consumed 381 * @arm: Indicates whether the host wants to arms this CQ. 382 * 383 * This routine will notify the HBA, by ringing the doorbell, that count 384 * number of EQEs have been processed. The @arm parameter indicates whether 385 * the queue should be rearmed when ringing the doorbell. 386 **/ 387 void 388 lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 389 uint32_t count, bool arm) 390 { 391 struct lpfc_register doorbell; 392 393 /* sanity check on queue memory */ 394 if (unlikely(!q || (count == 0 && !arm))) 395 return; 396 397 /* ring doorbell for number popped */ 398 doorbell.word0 = 0; 399 if (arm) { 400 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 401 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 402 } 403 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 404 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 405 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 406 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 407 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 408 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 409 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 410 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 411 readl(q->phba->sli4_hba.EQDBregaddr); 412 } 413 414 /** 415 * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state 416 * @phba: adapter with EQ 417 * @q: The Event Queue that the host has completed processing for. 418 * @count: Number of elements that have been consumed 419 * @arm: Indicates whether the host wants to arms this CQ. 420 * 421 * This routine will notify the HBA, by ringing the doorbell, that count 422 * number of EQEs have been processed. The @arm parameter indicates whether 423 * the queue should be rearmed when ringing the doorbell. 424 **/ 425 void 426 lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 427 uint32_t count, bool arm) 428 { 429 struct lpfc_register doorbell; 430 431 /* sanity check on queue memory */ 432 if (unlikely(!q || (count == 0 && !arm))) 433 return; 434 435 /* ring doorbell for number popped */ 436 doorbell.word0 = 0; 437 if (arm) 438 bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); 439 bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); 440 bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); 441 writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); 442 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 443 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 444 readl(q->phba->sli4_hba.EQDBregaddr); 445 } 446 447 static void 448 __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 449 struct lpfc_eqe *eqe) 450 { 451 if (!phba->sli4_hba.pc_sli4_params.eqav) 452 bf_set_le32(lpfc_eqe_valid, eqe, 0); 453 454 eq->host_index = ((eq->host_index + 1) % eq->entry_count); 455 456 /* if the index wrapped around, toggle the valid bit */ 457 if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) 458 eq->qe_valid = (eq->qe_valid) ? 0 : 1; 459 } 460 461 static void 462 lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 463 { 464 struct lpfc_eqe *eqe = NULL; 465 u32 eq_count = 0, cq_count = 0; 466 struct lpfc_cqe *cqe = NULL; 467 struct lpfc_queue *cq = NULL, *childq = NULL; 468 int cqid = 0; 469 470 /* walk all the EQ entries and drop on the floor */ 471 eqe = lpfc_sli4_eq_get(eq); 472 while (eqe) { 473 /* Get the reference to the corresponding CQ */ 474 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 475 cq = NULL; 476 477 list_for_each_entry(childq, &eq->child_list, list) { 478 if (childq->queue_id == cqid) { 479 cq = childq; 480 break; 481 } 482 } 483 /* If CQ is valid, iterate through it and drop all the CQEs */ 484 if (cq) { 485 cqe = lpfc_sli4_cq_get(cq); 486 while (cqe) { 487 __lpfc_sli4_consume_cqe(phba, cq, cqe); 488 cq_count++; 489 cqe = lpfc_sli4_cq_get(cq); 490 } 491 /* Clear and re-arm the CQ */ 492 phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, 493 LPFC_QUEUE_REARM); 494 cq_count = 0; 495 } 496 __lpfc_sli4_consume_eqe(phba, eq, eqe); 497 eq_count++; 498 eqe = lpfc_sli4_eq_get(eq); 499 } 500 501 /* Clear and re-arm the EQ */ 502 phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); 503 } 504 505 static int 506 lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, 507 uint8_t rearm) 508 { 509 struct lpfc_eqe *eqe; 510 int count = 0, consumed = 0; 511 512 if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) 513 goto rearm_and_exit; 514 515 eqe = lpfc_sli4_eq_get(eq); 516 while (eqe) { 517 lpfc_sli4_hba_handle_eqe(phba, eq, eqe); 518 __lpfc_sli4_consume_eqe(phba, eq, eqe); 519 520 consumed++; 521 if (!(++count % eq->max_proc_limit)) 522 break; 523 524 if (!(count % eq->notify_interval)) { 525 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, 526 LPFC_QUEUE_NOARM); 527 consumed = 0; 528 } 529 530 eqe = lpfc_sli4_eq_get(eq); 531 } 532 eq->EQ_processed += count; 533 534 /* Track the max number of EQEs processed in 1 intr */ 535 if (count > eq->EQ_max_eqe) 536 eq->EQ_max_eqe = count; 537 538 eq->queue_claimed = 0; 539 540 rearm_and_exit: 541 /* Always clear the EQ. */ 542 phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); 543 544 return count; 545 } 546 547 /** 548 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 549 * @q: The Completion Queue to get the first valid CQE from 550 * 551 * This routine will get the first valid Completion Queue Entry from @q, update 552 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 553 * the Queue (no more work to do), or the Queue is full of CQEs that have been 554 * processed, but not popped back to the HBA then this routine will return NULL. 555 **/ 556 static struct lpfc_cqe * 557 lpfc_sli4_cq_get(struct lpfc_queue *q) 558 { 559 struct lpfc_cqe *cqe; 560 561 /* sanity check on queue memory */ 562 if (unlikely(!q)) 563 return NULL; 564 cqe = lpfc_sli4_qe(q, q->host_index); 565 566 /* If the next CQE is not valid then we are done */ 567 if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) 568 return NULL; 569 570 /* 571 * insert barrier for instruction interlock : data from the hardware 572 * must have the valid bit checked before it can be copied and acted 573 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 574 * instructions allowing action on content before valid bit checked, 575 * add barrier here as well. May not be needed as "content" is a 576 * single 32-bit entity here (vs multi word structure for cq's). 577 */ 578 mb(); 579 return cqe; 580 } 581 582 static void 583 __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 584 struct lpfc_cqe *cqe) 585 { 586 if (!phba->sli4_hba.pc_sli4_params.cqav) 587 bf_set_le32(lpfc_cqe_valid, cqe, 0); 588 589 cq->host_index = ((cq->host_index + 1) % cq->entry_count); 590 591 /* if the index wrapped around, toggle the valid bit */ 592 if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) 593 cq->qe_valid = (cq->qe_valid) ? 0 : 1; 594 } 595 596 /** 597 * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. 598 * @phba: the adapter with the CQ 599 * @q: The Completion Queue that the host has completed processing for. 600 * @count: the number of elements that were consumed 601 * @arm: Indicates whether the host wants to arms this CQ. 602 * 603 * This routine will notify the HBA, by ringing the doorbell, that the 604 * CQEs have been processed. The @arm parameter specifies whether the 605 * queue should be rearmed when ringing the doorbell. 606 **/ 607 void 608 lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 609 uint32_t count, bool arm) 610 { 611 struct lpfc_register doorbell; 612 613 /* sanity check on queue memory */ 614 if (unlikely(!q || (count == 0 && !arm))) 615 return; 616 617 /* ring doorbell for number popped */ 618 doorbell.word0 = 0; 619 if (arm) 620 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 621 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); 622 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 623 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 624 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 625 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 626 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 627 } 628 629 /** 630 * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. 631 * @phba: the adapter with the CQ 632 * @q: The Completion Queue that the host has completed processing for. 633 * @count: the number of elements that were consumed 634 * @arm: Indicates whether the host wants to arms this CQ. 635 * 636 * This routine will notify the HBA, by ringing the doorbell, that the 637 * CQEs have been processed. The @arm parameter specifies whether the 638 * queue should be rearmed when ringing the doorbell. 639 **/ 640 void 641 lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, 642 uint32_t count, bool arm) 643 { 644 struct lpfc_register doorbell; 645 646 /* sanity check on queue memory */ 647 if (unlikely(!q || (count == 0 && !arm))) 648 return; 649 650 /* ring doorbell for number popped */ 651 doorbell.word0 = 0; 652 if (arm) 653 bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); 654 bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); 655 bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); 656 writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); 657 } 658 659 /** 660 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 661 * @q: The Header Receive Queue to operate on. 662 * @wqe: The Receive Queue Entry to put on the Receive queue. 663 * 664 * This routine will copy the contents of @wqe to the next available entry on 665 * the @q. This function will then ring the Receive Queue Doorbell to signal the 666 * HBA to start processing the Receive Queue Entry. This function returns the 667 * index that the rqe was copied to if successful. If no entries are available 668 * on @q then this function will return -ENOMEM. 669 * The caller is expected to hold the hbalock when calling this routine. 670 **/ 671 int 672 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 673 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 674 { 675 struct lpfc_rqe *temp_hrqe; 676 struct lpfc_rqe *temp_drqe; 677 struct lpfc_register doorbell; 678 int hq_put_index; 679 int dq_put_index; 680 681 /* sanity check on queue memory */ 682 if (unlikely(!hq) || unlikely(!dq)) 683 return -ENOMEM; 684 hq_put_index = hq->host_index; 685 dq_put_index = dq->host_index; 686 temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); 687 temp_drqe = lpfc_sli4_qe(dq, dq_put_index); 688 689 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 690 return -EINVAL; 691 if (hq_put_index != dq_put_index) 692 return -EINVAL; 693 /* If the host has not yet processed the next entry then we are done */ 694 if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) 695 return -EBUSY; 696 lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 697 lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 698 699 /* Update the host index to point to the next slot */ 700 hq->host_index = ((hq_put_index + 1) % hq->entry_count); 701 dq->host_index = ((dq_put_index + 1) % dq->entry_count); 702 hq->RQ_buf_posted++; 703 704 /* Ring The Header Receive Queue Doorbell */ 705 if (!(hq->host_index % hq->notify_interval)) { 706 doorbell.word0 = 0; 707 if (hq->db_format == LPFC_DB_RING_FORMAT) { 708 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 709 hq->notify_interval); 710 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 711 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 712 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 713 hq->notify_interval); 714 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 715 hq->host_index); 716 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 717 } else { 718 return -EINVAL; 719 } 720 writel(doorbell.word0, hq->db_regaddr); 721 } 722 return hq_put_index; 723 } 724 725 /** 726 * lpfc_sli4_rq_release - Updates internal hba index for RQ 727 * @q: The Header Receive Queue to operate on. 728 * 729 * This routine will update the HBA index of a queue to reflect consumption of 730 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 731 * consumed an entry the host calls this function to update the queue's 732 * internal pointers. This routine returns the number of entries that were 733 * consumed by the HBA. 734 **/ 735 static uint32_t 736 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 737 { 738 /* sanity check on queue memory */ 739 if (unlikely(!hq) || unlikely(!dq)) 740 return 0; 741 742 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 743 return 0; 744 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 745 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 746 return 1; 747 } 748 749 /** 750 * lpfc_cmd_iocb - Get next command iocb entry in the ring 751 * @phba: Pointer to HBA context object. 752 * @pring: Pointer to driver SLI ring object. 753 * 754 * This function returns pointer to next command iocb entry 755 * in the command ring. The caller must hold hbalock to prevent 756 * other threads consume the next command iocb. 757 * SLI-2/SLI-3 provide different sized iocbs. 758 **/ 759 static inline IOCB_t * 760 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 761 { 762 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 763 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 764 } 765 766 /** 767 * lpfc_resp_iocb - Get next response iocb entry in the ring 768 * @phba: Pointer to HBA context object. 769 * @pring: Pointer to driver SLI ring object. 770 * 771 * This function returns pointer to next response iocb entry 772 * in the response ring. The caller must hold hbalock to make sure 773 * that no other thread consume the next response iocb. 774 * SLI-2/SLI-3 provide different sized iocbs. 775 **/ 776 static inline IOCB_t * 777 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 778 { 779 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 780 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 781 } 782 783 /** 784 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 785 * @phba: Pointer to HBA context object. 786 * 787 * This function is called with hbalock held. This function 788 * allocates a new driver iocb object from the iocb pool. If the 789 * allocation is successful, it returns pointer to the newly 790 * allocated iocb object else it returns NULL. 791 **/ 792 struct lpfc_iocbq * 793 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 794 { 795 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 796 struct lpfc_iocbq * iocbq = NULL; 797 798 lockdep_assert_held(&phba->hbalock); 799 800 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 801 if (iocbq) 802 phba->iocb_cnt++; 803 if (phba->iocb_cnt > phba->iocb_max) 804 phba->iocb_max = phba->iocb_cnt; 805 return iocbq; 806 } 807 808 /** 809 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 810 * @phba: Pointer to HBA context object. 811 * @xritag: XRI value. 812 * 813 * This function clears the sglq pointer from the array of acive 814 * sglq's. The xritag that is passed in is used to index into the 815 * array. Before the xritag can be used it needs to be adjusted 816 * by subtracting the xribase. 817 * 818 * Returns sglq ponter = success, NULL = Failure. 819 **/ 820 struct lpfc_sglq * 821 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 822 { 823 struct lpfc_sglq *sglq; 824 825 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 826 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 827 return sglq; 828 } 829 830 /** 831 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 832 * @phba: Pointer to HBA context object. 833 * @xritag: XRI value. 834 * 835 * This function returns the sglq pointer from the array of acive 836 * sglq's. The xritag that is passed in is used to index into the 837 * array. Before the xritag can be used it needs to be adjusted 838 * by subtracting the xribase. 839 * 840 * Returns sglq ponter = success, NULL = Failure. 841 **/ 842 struct lpfc_sglq * 843 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 844 { 845 struct lpfc_sglq *sglq; 846 847 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 848 return sglq; 849 } 850 851 /** 852 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 853 * @phba: Pointer to HBA context object. 854 * @xritag: xri used in this exchange. 855 * @rrq: The RRQ to be cleared. 856 * 857 **/ 858 void 859 lpfc_clr_rrq_active(struct lpfc_hba *phba, 860 uint16_t xritag, 861 struct lpfc_node_rrq *rrq) 862 { 863 struct lpfc_nodelist *ndlp = NULL; 864 865 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 866 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 867 868 /* The target DID could have been swapped (cable swap) 869 * we should use the ndlp from the findnode if it is 870 * available. 871 */ 872 if ((!ndlp) && rrq->ndlp) 873 ndlp = rrq->ndlp; 874 875 if (!ndlp) 876 goto out; 877 878 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 879 rrq->send_rrq = 0; 880 rrq->xritag = 0; 881 rrq->rrq_stop_time = 0; 882 } 883 out: 884 mempool_free(rrq, phba->rrq_pool); 885 } 886 887 /** 888 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 889 * @phba: Pointer to HBA context object. 890 * 891 * This function is called with hbalock held. This function 892 * Checks if stop_time (ratov from setting rrq active) has 893 * been reached, if it has and the send_rrq flag is set then 894 * it will call lpfc_send_rrq. If the send_rrq flag is not set 895 * then it will just call the routine to clear the rrq and 896 * free the rrq resource. 897 * The timer is set to the next rrq that is going to expire before 898 * leaving the routine. 899 * 900 **/ 901 void 902 lpfc_handle_rrq_active(struct lpfc_hba *phba) 903 { 904 struct lpfc_node_rrq *rrq; 905 struct lpfc_node_rrq *nextrrq; 906 unsigned long next_time; 907 unsigned long iflags; 908 LIST_HEAD(send_rrq); 909 910 spin_lock_irqsave(&phba->hbalock, iflags); 911 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 912 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 913 list_for_each_entry_safe(rrq, nextrrq, 914 &phba->active_rrq_list, list) { 915 if (time_after(jiffies, rrq->rrq_stop_time)) 916 list_move(&rrq->list, &send_rrq); 917 else if (time_before(rrq->rrq_stop_time, next_time)) 918 next_time = rrq->rrq_stop_time; 919 } 920 spin_unlock_irqrestore(&phba->hbalock, iflags); 921 if ((!list_empty(&phba->active_rrq_list)) && 922 (!(phba->pport->load_flag & FC_UNLOADING))) 923 mod_timer(&phba->rrq_tmr, next_time); 924 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 925 list_del(&rrq->list); 926 if (!rrq->send_rrq) { 927 /* this call will free the rrq */ 928 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 929 } else if (lpfc_send_rrq(phba, rrq)) { 930 /* if we send the rrq then the completion handler 931 * will clear the bit in the xribitmap. 932 */ 933 lpfc_clr_rrq_active(phba, rrq->xritag, 934 rrq); 935 } 936 } 937 } 938 939 /** 940 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 941 * @vport: Pointer to vport context object. 942 * @xri: The xri used in the exchange. 943 * @did: The targets DID for this exchange. 944 * 945 * returns NULL = rrq not found in the phba->active_rrq_list. 946 * rrq = rrq for this xri and target. 947 **/ 948 struct lpfc_node_rrq * 949 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 950 { 951 struct lpfc_hba *phba = vport->phba; 952 struct lpfc_node_rrq *rrq; 953 struct lpfc_node_rrq *nextrrq; 954 unsigned long iflags; 955 956 if (phba->sli_rev != LPFC_SLI_REV4) 957 return NULL; 958 spin_lock_irqsave(&phba->hbalock, iflags); 959 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 960 if (rrq->vport == vport && rrq->xritag == xri && 961 rrq->nlp_DID == did){ 962 list_del(&rrq->list); 963 spin_unlock_irqrestore(&phba->hbalock, iflags); 964 return rrq; 965 } 966 } 967 spin_unlock_irqrestore(&phba->hbalock, iflags); 968 return NULL; 969 } 970 971 /** 972 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 973 * @vport: Pointer to vport context object. 974 * @ndlp: Pointer to the lpfc_node_list structure. 975 * If ndlp is NULL Remove all active RRQs for this vport from the 976 * phba->active_rrq_list and clear the rrq. 977 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 978 **/ 979 void 980 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 981 982 { 983 struct lpfc_hba *phba = vport->phba; 984 struct lpfc_node_rrq *rrq; 985 struct lpfc_node_rrq *nextrrq; 986 unsigned long iflags; 987 LIST_HEAD(rrq_list); 988 989 if (phba->sli_rev != LPFC_SLI_REV4) 990 return; 991 if (!ndlp) { 992 lpfc_sli4_vport_delete_els_xri_aborted(vport); 993 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 994 } 995 spin_lock_irqsave(&phba->hbalock, iflags); 996 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 997 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 998 list_move(&rrq->list, &rrq_list); 999 spin_unlock_irqrestore(&phba->hbalock, iflags); 1000 1001 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 1002 list_del(&rrq->list); 1003 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 1004 } 1005 } 1006 1007 /** 1008 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 1009 * @phba: Pointer to HBA context object. 1010 * @ndlp: Targets nodelist pointer for this exchange. 1011 * @xritag the xri in the bitmap to test. 1012 * 1013 * This function returns: 1014 * 0 = rrq not active for this xri 1015 * 1 = rrq is valid for this xri. 1016 **/ 1017 int 1018 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1019 uint16_t xritag) 1020 { 1021 if (!ndlp) 1022 return 0; 1023 if (!ndlp->active_rrqs_xri_bitmap) 1024 return 0; 1025 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1026 return 1; 1027 else 1028 return 0; 1029 } 1030 1031 /** 1032 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 1033 * @phba: Pointer to HBA context object. 1034 * @ndlp: nodelist pointer for this target. 1035 * @xritag: xri used in this exchange. 1036 * @rxid: Remote Exchange ID. 1037 * @send_rrq: Flag used to determine if we should send rrq els cmd. 1038 * 1039 * This function takes the hbalock. 1040 * The active bit is always set in the active rrq xri_bitmap even 1041 * if there is no slot avaiable for the other rrq information. 1042 * 1043 * returns 0 rrq actived for this xri 1044 * < 0 No memory or invalid ndlp. 1045 **/ 1046 int 1047 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 1048 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 1049 { 1050 unsigned long iflags; 1051 struct lpfc_node_rrq *rrq; 1052 int empty; 1053 1054 if (!ndlp) 1055 return -EINVAL; 1056 1057 if (!phba->cfg_enable_rrq) 1058 return -EINVAL; 1059 1060 spin_lock_irqsave(&phba->hbalock, iflags); 1061 if (phba->pport->load_flag & FC_UNLOADING) { 1062 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 1063 goto out; 1064 } 1065 1066 /* 1067 * set the active bit even if there is no mem available. 1068 */ 1069 if (NLP_CHK_FREE_REQ(ndlp)) 1070 goto out; 1071 1072 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 1073 goto out; 1074 1075 if (!ndlp->active_rrqs_xri_bitmap) 1076 goto out; 1077 1078 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 1079 goto out; 1080 1081 spin_unlock_irqrestore(&phba->hbalock, iflags); 1082 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 1083 if (!rrq) { 1084 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1085 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 1086 " DID:0x%x Send:%d\n", 1087 xritag, rxid, ndlp->nlp_DID, send_rrq); 1088 return -EINVAL; 1089 } 1090 if (phba->cfg_enable_rrq == 1) 1091 rrq->send_rrq = send_rrq; 1092 else 1093 rrq->send_rrq = 0; 1094 rrq->xritag = xritag; 1095 rrq->rrq_stop_time = jiffies + 1096 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 1097 rrq->ndlp = ndlp; 1098 rrq->nlp_DID = ndlp->nlp_DID; 1099 rrq->vport = ndlp->vport; 1100 rrq->rxid = rxid; 1101 spin_lock_irqsave(&phba->hbalock, iflags); 1102 empty = list_empty(&phba->active_rrq_list); 1103 list_add_tail(&rrq->list, &phba->active_rrq_list); 1104 phba->hba_flag |= HBA_RRQ_ACTIVE; 1105 if (empty) 1106 lpfc_worker_wake_up(phba); 1107 spin_unlock_irqrestore(&phba->hbalock, iflags); 1108 return 0; 1109 out: 1110 spin_unlock_irqrestore(&phba->hbalock, iflags); 1111 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 1112 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 1113 " DID:0x%x Send:%d\n", 1114 xritag, rxid, ndlp->nlp_DID, send_rrq); 1115 return -EINVAL; 1116 } 1117 1118 /** 1119 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 1120 * @phba: Pointer to HBA context object. 1121 * @piocb: Pointer to the iocbq. 1122 * 1123 * The driver calls this function with either the nvme ls ring lock 1124 * or the fc els ring lock held depending on the iocb usage. This function 1125 * gets a new driver sglq object from the sglq list. If the list is not empty 1126 * then it is successful, it returns pointer to the newly allocated sglq 1127 * object else it returns NULL. 1128 **/ 1129 static struct lpfc_sglq * 1130 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1131 { 1132 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 1133 struct lpfc_sglq *sglq = NULL; 1134 struct lpfc_sglq *start_sglq = NULL; 1135 struct lpfc_io_buf *lpfc_cmd; 1136 struct lpfc_nodelist *ndlp; 1137 struct lpfc_sli_ring *pring = NULL; 1138 int found = 0; 1139 1140 if (piocbq->iocb_flag & LPFC_IO_NVME_LS) 1141 pring = phba->sli4_hba.nvmels_wq->pring; 1142 else 1143 pring = lpfc_phba_elsring(phba); 1144 1145 lockdep_assert_held(&pring->ring_lock); 1146 1147 if (piocbq->iocb_flag & LPFC_IO_FCP) { 1148 lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; 1149 ndlp = lpfc_cmd->rdata->pnode; 1150 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 1151 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 1152 ndlp = piocbq->context_un.ndlp; 1153 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 1154 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 1155 ndlp = NULL; 1156 else 1157 ndlp = piocbq->context_un.ndlp; 1158 } else { 1159 ndlp = piocbq->context1; 1160 } 1161 1162 spin_lock(&phba->sli4_hba.sgl_list_lock); 1163 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 1164 start_sglq = sglq; 1165 while (!found) { 1166 if (!sglq) 1167 break; 1168 if (ndlp && ndlp->active_rrqs_xri_bitmap && 1169 test_bit(sglq->sli4_lxritag, 1170 ndlp->active_rrqs_xri_bitmap)) { 1171 /* This xri has an rrq outstanding for this DID. 1172 * put it back in the list and get another xri. 1173 */ 1174 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1175 sglq = NULL; 1176 list_remove_head(lpfc_els_sgl_list, sglq, 1177 struct lpfc_sglq, list); 1178 if (sglq == start_sglq) { 1179 list_add_tail(&sglq->list, lpfc_els_sgl_list); 1180 sglq = NULL; 1181 break; 1182 } else 1183 continue; 1184 } 1185 sglq->ndlp = ndlp; 1186 found = 1; 1187 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1188 sglq->state = SGL_ALLOCATED; 1189 } 1190 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1191 return sglq; 1192 } 1193 1194 /** 1195 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 1196 * @phba: Pointer to HBA context object. 1197 * @piocb: Pointer to the iocbq. 1198 * 1199 * This function is called with the sgl_list lock held. This function 1200 * gets a new driver sglq object from the sglq list. If the 1201 * list is not empty then it is successful, it returns pointer to the newly 1202 * allocated sglq object else it returns NULL. 1203 **/ 1204 struct lpfc_sglq * 1205 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 1206 { 1207 struct list_head *lpfc_nvmet_sgl_list; 1208 struct lpfc_sglq *sglq = NULL; 1209 1210 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 1211 1212 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1213 1214 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1215 if (!sglq) 1216 return NULL; 1217 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1218 sglq->state = SGL_ALLOCATED; 1219 return sglq; 1220 } 1221 1222 /** 1223 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1224 * @phba: Pointer to HBA context object. 1225 * 1226 * This function is called with no lock held. This function 1227 * allocates a new driver iocb object from the iocb pool. If the 1228 * allocation is successful, it returns pointer to the newly 1229 * allocated iocb object else it returns NULL. 1230 **/ 1231 struct lpfc_iocbq * 1232 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1233 { 1234 struct lpfc_iocbq * iocbq = NULL; 1235 unsigned long iflags; 1236 1237 spin_lock_irqsave(&phba->hbalock, iflags); 1238 iocbq = __lpfc_sli_get_iocbq(phba); 1239 spin_unlock_irqrestore(&phba->hbalock, iflags); 1240 return iocbq; 1241 } 1242 1243 /** 1244 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1245 * @phba: Pointer to HBA context object. 1246 * @iocbq: Pointer to driver iocb object. 1247 * 1248 * This function is called with hbalock held to release driver 1249 * iocb object to the iocb pool. The iotag in the iocb object 1250 * does not change for each use of the iocb object. This function 1251 * clears all other fields of the iocb object when it is freed. 1252 * The sqlq structure that holds the xritag and phys and virtual 1253 * mappings for the scatter gather list is retrieved from the 1254 * active array of sglq. The get of the sglq pointer also clears 1255 * the entry in the array. If the status of the IO indiactes that 1256 * this IO was aborted then the sglq entry it put on the 1257 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1258 * IO has good status or fails for any other reason then the sglq 1259 * entry is added to the free list (lpfc_els_sgl_list). 1260 **/ 1261 static void 1262 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1263 { 1264 struct lpfc_sglq *sglq; 1265 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1266 unsigned long iflag = 0; 1267 struct lpfc_sli_ring *pring; 1268 1269 lockdep_assert_held(&phba->hbalock); 1270 1271 if (iocbq->sli4_xritag == NO_XRI) 1272 sglq = NULL; 1273 else 1274 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1275 1276 1277 if (sglq) { 1278 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1279 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1280 iflag); 1281 sglq->state = SGL_FREED; 1282 sglq->ndlp = NULL; 1283 list_add_tail(&sglq->list, 1284 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1285 spin_unlock_irqrestore( 1286 &phba->sli4_hba.sgl_list_lock, iflag); 1287 goto out; 1288 } 1289 1290 pring = phba->sli4_hba.els_wq->pring; 1291 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1292 (sglq->state != SGL_XRI_ABORTED)) { 1293 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1294 iflag); 1295 list_add(&sglq->list, 1296 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1297 spin_unlock_irqrestore( 1298 &phba->sli4_hba.sgl_list_lock, iflag); 1299 } else { 1300 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1301 iflag); 1302 sglq->state = SGL_FREED; 1303 sglq->ndlp = NULL; 1304 list_add_tail(&sglq->list, 1305 &phba->sli4_hba.lpfc_els_sgl_list); 1306 spin_unlock_irqrestore( 1307 &phba->sli4_hba.sgl_list_lock, iflag); 1308 1309 /* Check if TXQ queue needs to be serviced */ 1310 if (!list_empty(&pring->txq)) 1311 lpfc_worker_wake_up(phba); 1312 } 1313 } 1314 1315 out: 1316 /* 1317 * Clean all volatile data fields, preserve iotag and node struct. 1318 */ 1319 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1320 iocbq->sli4_lxritag = NO_XRI; 1321 iocbq->sli4_xritag = NO_XRI; 1322 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1323 LPFC_IO_NVME_LS); 1324 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1325 } 1326 1327 1328 /** 1329 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1330 * @phba: Pointer to HBA context object. 1331 * @iocbq: Pointer to driver iocb object. 1332 * 1333 * This function is called with hbalock held to release driver 1334 * iocb object to the iocb pool. The iotag in the iocb object 1335 * does not change for each use of the iocb object. This function 1336 * clears all other fields of the iocb object when it is freed. 1337 **/ 1338 static void 1339 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1340 { 1341 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1342 1343 lockdep_assert_held(&phba->hbalock); 1344 1345 /* 1346 * Clean all volatile data fields, preserve iotag and node struct. 1347 */ 1348 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1349 iocbq->sli4_xritag = NO_XRI; 1350 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1351 } 1352 1353 /** 1354 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1355 * @phba: Pointer to HBA context object. 1356 * @iocbq: Pointer to driver iocb object. 1357 * 1358 * This function is called with hbalock held to release driver 1359 * iocb object to the iocb pool. The iotag in the iocb object 1360 * does not change for each use of the iocb object. This function 1361 * clears all other fields of the iocb object when it is freed. 1362 **/ 1363 static void 1364 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1365 { 1366 lockdep_assert_held(&phba->hbalock); 1367 1368 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1369 phba->iocb_cnt--; 1370 } 1371 1372 /** 1373 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1374 * @phba: Pointer to HBA context object. 1375 * @iocbq: Pointer to driver iocb object. 1376 * 1377 * This function is called with no lock held to release the iocb to 1378 * iocb pool. 1379 **/ 1380 void 1381 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1382 { 1383 unsigned long iflags; 1384 1385 /* 1386 * Clean all volatile data fields, preserve iotag and node struct. 1387 */ 1388 spin_lock_irqsave(&phba->hbalock, iflags); 1389 __lpfc_sli_release_iocbq(phba, iocbq); 1390 spin_unlock_irqrestore(&phba->hbalock, iflags); 1391 } 1392 1393 /** 1394 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1395 * @phba: Pointer to HBA context object. 1396 * @iocblist: List of IOCBs. 1397 * @ulpstatus: ULP status in IOCB command field. 1398 * @ulpWord4: ULP word-4 in IOCB command field. 1399 * 1400 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1401 * on the list by invoking the complete callback function associated with the 1402 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1403 * fields. 1404 **/ 1405 void 1406 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1407 uint32_t ulpstatus, uint32_t ulpWord4) 1408 { 1409 struct lpfc_iocbq *piocb; 1410 1411 while (!list_empty(iocblist)) { 1412 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1413 if (!piocb->iocb_cmpl) { 1414 if (piocb->iocb_flag & LPFC_IO_NVME) 1415 lpfc_nvme_cancel_iocb(phba, piocb); 1416 else 1417 lpfc_sli_release_iocbq(phba, piocb); 1418 } else { 1419 piocb->iocb.ulpStatus = ulpstatus; 1420 piocb->iocb.un.ulpWord[4] = ulpWord4; 1421 (piocb->iocb_cmpl) (phba, piocb, piocb); 1422 } 1423 } 1424 return; 1425 } 1426 1427 /** 1428 * lpfc_sli_iocb_cmd_type - Get the iocb type 1429 * @iocb_cmnd: iocb command code. 1430 * 1431 * This function is called by ring event handler function to get the iocb type. 1432 * This function translates the iocb command to an iocb command type used to 1433 * decide the final disposition of each completed IOCB. 1434 * The function returns 1435 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1436 * LPFC_SOL_IOCB if it is a solicited iocb completion 1437 * LPFC_ABORT_IOCB if it is an abort iocb 1438 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1439 * 1440 * The caller is not required to hold any lock. 1441 **/ 1442 static lpfc_iocb_type 1443 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1444 { 1445 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1446 1447 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1448 return 0; 1449 1450 switch (iocb_cmnd) { 1451 case CMD_XMIT_SEQUENCE_CR: 1452 case CMD_XMIT_SEQUENCE_CX: 1453 case CMD_XMIT_BCAST_CN: 1454 case CMD_XMIT_BCAST_CX: 1455 case CMD_ELS_REQUEST_CR: 1456 case CMD_ELS_REQUEST_CX: 1457 case CMD_CREATE_XRI_CR: 1458 case CMD_CREATE_XRI_CX: 1459 case CMD_GET_RPI_CN: 1460 case CMD_XMIT_ELS_RSP_CX: 1461 case CMD_GET_RPI_CR: 1462 case CMD_FCP_IWRITE_CR: 1463 case CMD_FCP_IWRITE_CX: 1464 case CMD_FCP_IREAD_CR: 1465 case CMD_FCP_IREAD_CX: 1466 case CMD_FCP_ICMND_CR: 1467 case CMD_FCP_ICMND_CX: 1468 case CMD_FCP_TSEND_CX: 1469 case CMD_FCP_TRSP_CX: 1470 case CMD_FCP_TRECEIVE_CX: 1471 case CMD_FCP_AUTO_TRSP_CX: 1472 case CMD_ADAPTER_MSG: 1473 case CMD_ADAPTER_DUMP: 1474 case CMD_XMIT_SEQUENCE64_CR: 1475 case CMD_XMIT_SEQUENCE64_CX: 1476 case CMD_XMIT_BCAST64_CN: 1477 case CMD_XMIT_BCAST64_CX: 1478 case CMD_ELS_REQUEST64_CR: 1479 case CMD_ELS_REQUEST64_CX: 1480 case CMD_FCP_IWRITE64_CR: 1481 case CMD_FCP_IWRITE64_CX: 1482 case CMD_FCP_IREAD64_CR: 1483 case CMD_FCP_IREAD64_CX: 1484 case CMD_FCP_ICMND64_CR: 1485 case CMD_FCP_ICMND64_CX: 1486 case CMD_FCP_TSEND64_CX: 1487 case CMD_FCP_TRSP64_CX: 1488 case CMD_FCP_TRECEIVE64_CX: 1489 case CMD_GEN_REQUEST64_CR: 1490 case CMD_GEN_REQUEST64_CX: 1491 case CMD_XMIT_ELS_RSP64_CX: 1492 case DSSCMD_IWRITE64_CR: 1493 case DSSCMD_IWRITE64_CX: 1494 case DSSCMD_IREAD64_CR: 1495 case DSSCMD_IREAD64_CX: 1496 type = LPFC_SOL_IOCB; 1497 break; 1498 case CMD_ABORT_XRI_CN: 1499 case CMD_ABORT_XRI_CX: 1500 case CMD_CLOSE_XRI_CN: 1501 case CMD_CLOSE_XRI_CX: 1502 case CMD_XRI_ABORTED_CX: 1503 case CMD_ABORT_MXRI64_CN: 1504 case CMD_XMIT_BLS_RSP64_CX: 1505 type = LPFC_ABORT_IOCB; 1506 break; 1507 case CMD_RCV_SEQUENCE_CX: 1508 case CMD_RCV_ELS_REQ_CX: 1509 case CMD_RCV_SEQUENCE64_CX: 1510 case CMD_RCV_ELS_REQ64_CX: 1511 case CMD_ASYNC_STATUS: 1512 case CMD_IOCB_RCV_SEQ64_CX: 1513 case CMD_IOCB_RCV_ELS64_CX: 1514 case CMD_IOCB_RCV_CONT64_CX: 1515 case CMD_IOCB_RET_XRI64_CX: 1516 type = LPFC_UNSOL_IOCB; 1517 break; 1518 case CMD_IOCB_XMIT_MSEQ64_CR: 1519 case CMD_IOCB_XMIT_MSEQ64_CX: 1520 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1521 case CMD_IOCB_RCV_ELS_LIST64_CX: 1522 case CMD_IOCB_CLOSE_EXTENDED_CN: 1523 case CMD_IOCB_ABORT_EXTENDED_CN: 1524 case CMD_IOCB_RET_HBQE64_CN: 1525 case CMD_IOCB_FCP_IBIDIR64_CR: 1526 case CMD_IOCB_FCP_IBIDIR64_CX: 1527 case CMD_IOCB_FCP_ITASKMGT64_CX: 1528 case CMD_IOCB_LOGENTRY_CN: 1529 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1530 printk("%s - Unhandled SLI-3 Command x%x\n", 1531 __func__, iocb_cmnd); 1532 type = LPFC_UNKNOWN_IOCB; 1533 break; 1534 default: 1535 type = LPFC_UNKNOWN_IOCB; 1536 break; 1537 } 1538 1539 return type; 1540 } 1541 1542 /** 1543 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1544 * @phba: Pointer to HBA context object. 1545 * 1546 * This function is called from SLI initialization code 1547 * to configure every ring of the HBA's SLI interface. The 1548 * caller is not required to hold any lock. This function issues 1549 * a config_ring mailbox command for each ring. 1550 * This function returns zero if successful else returns a negative 1551 * error code. 1552 **/ 1553 static int 1554 lpfc_sli_ring_map(struct lpfc_hba *phba) 1555 { 1556 struct lpfc_sli *psli = &phba->sli; 1557 LPFC_MBOXQ_t *pmb; 1558 MAILBOX_t *pmbox; 1559 int i, rc, ret = 0; 1560 1561 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1562 if (!pmb) 1563 return -ENOMEM; 1564 pmbox = &pmb->u.mb; 1565 phba->link_state = LPFC_INIT_MBX_CMDS; 1566 for (i = 0; i < psli->num_rings; i++) { 1567 lpfc_config_ring(phba, i, pmb); 1568 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1569 if (rc != MBX_SUCCESS) { 1570 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1571 "0446 Adapter failed to init (%d), " 1572 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1573 "ring %d\n", 1574 rc, pmbox->mbxCommand, 1575 pmbox->mbxStatus, i); 1576 phba->link_state = LPFC_HBA_ERROR; 1577 ret = -ENXIO; 1578 break; 1579 } 1580 } 1581 mempool_free(pmb, phba->mbox_mem_pool); 1582 return ret; 1583 } 1584 1585 /** 1586 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1587 * @phba: Pointer to HBA context object. 1588 * @pring: Pointer to driver SLI ring object. 1589 * @piocb: Pointer to the driver iocb object. 1590 * 1591 * The driver calls this function with the hbalock held for SLI3 ports or 1592 * the ring lock held for SLI4 ports. The function adds the 1593 * new iocb to txcmplq of the given ring. This function always returns 1594 * 0. If this function is called for ELS ring, this function checks if 1595 * there is a vport associated with the ELS command. This function also 1596 * starts els_tmofunc timer if this is an ELS command. 1597 **/ 1598 static int 1599 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1600 struct lpfc_iocbq *piocb) 1601 { 1602 if (phba->sli_rev == LPFC_SLI_REV4) 1603 lockdep_assert_held(&pring->ring_lock); 1604 else 1605 lockdep_assert_held(&phba->hbalock); 1606 1607 BUG_ON(!piocb); 1608 1609 list_add_tail(&piocb->list, &pring->txcmplq); 1610 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1611 pring->txcmplq_cnt++; 1612 1613 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1614 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1615 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1616 BUG_ON(!piocb->vport); 1617 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1618 mod_timer(&piocb->vport->els_tmofunc, 1619 jiffies + 1620 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1621 } 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * lpfc_sli_ringtx_get - Get first element of the txq 1628 * @phba: Pointer to HBA context object. 1629 * @pring: Pointer to driver SLI ring object. 1630 * 1631 * This function is called with hbalock held to get next 1632 * iocb in txq of the given ring. If there is any iocb in 1633 * the txq, the function returns first iocb in the list after 1634 * removing the iocb from the list, else it returns NULL. 1635 **/ 1636 struct lpfc_iocbq * 1637 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1638 { 1639 struct lpfc_iocbq *cmd_iocb; 1640 1641 lockdep_assert_held(&phba->hbalock); 1642 1643 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1644 return cmd_iocb; 1645 } 1646 1647 /** 1648 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1649 * @phba: Pointer to HBA context object. 1650 * @pring: Pointer to driver SLI ring object. 1651 * 1652 * This function is called with hbalock held and the caller must post the 1653 * iocb without releasing the lock. If the caller releases the lock, 1654 * iocb slot returned by the function is not guaranteed to be available. 1655 * The function returns pointer to the next available iocb slot if there 1656 * is available slot in the ring, else it returns NULL. 1657 * If the get index of the ring is ahead of the put index, the function 1658 * will post an error attention event to the worker thread to take the 1659 * HBA to offline state. 1660 **/ 1661 static IOCB_t * 1662 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1663 { 1664 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1665 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1666 1667 lockdep_assert_held(&phba->hbalock); 1668 1669 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1670 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1671 pring->sli.sli3.next_cmdidx = 0; 1672 1673 if (unlikely(pring->sli.sli3.local_getidx == 1674 pring->sli.sli3.next_cmdidx)) { 1675 1676 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1677 1678 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1679 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1680 "0315 Ring %d issue: portCmdGet %d " 1681 "is bigger than cmd ring %d\n", 1682 pring->ringno, 1683 pring->sli.sli3.local_getidx, 1684 max_cmd_idx); 1685 1686 phba->link_state = LPFC_HBA_ERROR; 1687 /* 1688 * All error attention handlers are posted to 1689 * worker thread 1690 */ 1691 phba->work_ha |= HA_ERATT; 1692 phba->work_hs = HS_FFER3; 1693 1694 lpfc_worker_wake_up(phba); 1695 1696 return NULL; 1697 } 1698 1699 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1700 return NULL; 1701 } 1702 1703 return lpfc_cmd_iocb(phba, pring); 1704 } 1705 1706 /** 1707 * lpfc_sli_next_iotag - Get an iotag for the iocb 1708 * @phba: Pointer to HBA context object. 1709 * @iocbq: Pointer to driver iocb object. 1710 * 1711 * This function gets an iotag for the iocb. If there is no unused iotag and 1712 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1713 * array and assigns a new iotag. 1714 * The function returns the allocated iotag if successful, else returns zero. 1715 * Zero is not a valid iotag. 1716 * The caller is not required to hold any lock. 1717 **/ 1718 uint16_t 1719 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1720 { 1721 struct lpfc_iocbq **new_arr; 1722 struct lpfc_iocbq **old_arr; 1723 size_t new_len; 1724 struct lpfc_sli *psli = &phba->sli; 1725 uint16_t iotag; 1726 1727 spin_lock_irq(&phba->hbalock); 1728 iotag = psli->last_iotag; 1729 if(++iotag < psli->iocbq_lookup_len) { 1730 psli->last_iotag = iotag; 1731 psli->iocbq_lookup[iotag] = iocbq; 1732 spin_unlock_irq(&phba->hbalock); 1733 iocbq->iotag = iotag; 1734 return iotag; 1735 } else if (psli->iocbq_lookup_len < (0xffff 1736 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1737 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1738 spin_unlock_irq(&phba->hbalock); 1739 new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), 1740 GFP_KERNEL); 1741 if (new_arr) { 1742 spin_lock_irq(&phba->hbalock); 1743 old_arr = psli->iocbq_lookup; 1744 if (new_len <= psli->iocbq_lookup_len) { 1745 /* highly unprobable case */ 1746 kfree(new_arr); 1747 iotag = psli->last_iotag; 1748 if(++iotag < psli->iocbq_lookup_len) { 1749 psli->last_iotag = iotag; 1750 psli->iocbq_lookup[iotag] = iocbq; 1751 spin_unlock_irq(&phba->hbalock); 1752 iocbq->iotag = iotag; 1753 return iotag; 1754 } 1755 spin_unlock_irq(&phba->hbalock); 1756 return 0; 1757 } 1758 if (psli->iocbq_lookup) 1759 memcpy(new_arr, old_arr, 1760 ((psli->last_iotag + 1) * 1761 sizeof (struct lpfc_iocbq *))); 1762 psli->iocbq_lookup = new_arr; 1763 psli->iocbq_lookup_len = new_len; 1764 psli->last_iotag = iotag; 1765 psli->iocbq_lookup[iotag] = iocbq; 1766 spin_unlock_irq(&phba->hbalock); 1767 iocbq->iotag = iotag; 1768 kfree(old_arr); 1769 return iotag; 1770 } 1771 } else 1772 spin_unlock_irq(&phba->hbalock); 1773 1774 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1775 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1776 psli->last_iotag); 1777 1778 return 0; 1779 } 1780 1781 /** 1782 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1783 * @phba: Pointer to HBA context object. 1784 * @pring: Pointer to driver SLI ring object. 1785 * @iocb: Pointer to iocb slot in the ring. 1786 * @nextiocb: Pointer to driver iocb object which need to be 1787 * posted to firmware. 1788 * 1789 * This function is called with hbalock held to post a new iocb to 1790 * the firmware. This function copies the new iocb to ring iocb slot and 1791 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1792 * a completion call back for this iocb else the function will free the 1793 * iocb object. 1794 **/ 1795 static void 1796 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1797 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1798 { 1799 lockdep_assert_held(&phba->hbalock); 1800 /* 1801 * Set up an iotag 1802 */ 1803 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1804 1805 1806 if (pring->ringno == LPFC_ELS_RING) { 1807 lpfc_debugfs_slow_ring_trc(phba, 1808 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1809 *(((uint32_t *) &nextiocb->iocb) + 4), 1810 *(((uint32_t *) &nextiocb->iocb) + 6), 1811 *(((uint32_t *) &nextiocb->iocb) + 7)); 1812 } 1813 1814 /* 1815 * Issue iocb command to adapter 1816 */ 1817 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1818 wmb(); 1819 pring->stats.iocb_cmd++; 1820 1821 /* 1822 * If there is no completion routine to call, we can release the 1823 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1824 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1825 */ 1826 if (nextiocb->iocb_cmpl) 1827 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1828 else 1829 __lpfc_sli_release_iocbq(phba, nextiocb); 1830 1831 /* 1832 * Let the HBA know what IOCB slot will be the next one the 1833 * driver will put a command into. 1834 */ 1835 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1836 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1837 } 1838 1839 /** 1840 * lpfc_sli_update_full_ring - Update the chip attention register 1841 * @phba: Pointer to HBA context object. 1842 * @pring: Pointer to driver SLI ring object. 1843 * 1844 * The caller is not required to hold any lock for calling this function. 1845 * This function updates the chip attention bits for the ring to inform firmware 1846 * that there are pending work to be done for this ring and requests an 1847 * interrupt when there is space available in the ring. This function is 1848 * called when the driver is unable to post more iocbs to the ring due 1849 * to unavailability of space in the ring. 1850 **/ 1851 static void 1852 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1853 { 1854 int ringno = pring->ringno; 1855 1856 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1857 1858 wmb(); 1859 1860 /* 1861 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1862 * The HBA will tell us when an IOCB entry is available. 1863 */ 1864 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1865 readl(phba->CAregaddr); /* flush */ 1866 1867 pring->stats.iocb_cmd_full++; 1868 } 1869 1870 /** 1871 * lpfc_sli_update_ring - Update chip attention register 1872 * @phba: Pointer to HBA context object. 1873 * @pring: Pointer to driver SLI ring object. 1874 * 1875 * This function updates the chip attention register bit for the 1876 * given ring to inform HBA that there is more work to be done 1877 * in this ring. The caller is not required to hold any lock. 1878 **/ 1879 static void 1880 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1881 { 1882 int ringno = pring->ringno; 1883 1884 /* 1885 * Tell the HBA that there is work to do in this ring. 1886 */ 1887 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1888 wmb(); 1889 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1890 readl(phba->CAregaddr); /* flush */ 1891 } 1892 } 1893 1894 /** 1895 * lpfc_sli_resume_iocb - Process iocbs in the txq 1896 * @phba: Pointer to HBA context object. 1897 * @pring: Pointer to driver SLI ring object. 1898 * 1899 * This function is called with hbalock held to post pending iocbs 1900 * in the txq to the firmware. This function is called when driver 1901 * detects space available in the ring. 1902 **/ 1903 static void 1904 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1905 { 1906 IOCB_t *iocb; 1907 struct lpfc_iocbq *nextiocb; 1908 1909 lockdep_assert_held(&phba->hbalock); 1910 1911 /* 1912 * Check to see if: 1913 * (a) there is anything on the txq to send 1914 * (b) link is up 1915 * (c) link attention events can be processed (fcp ring only) 1916 * (d) IOCB processing is not blocked by the outstanding mbox command. 1917 */ 1918 1919 if (lpfc_is_link_up(phba) && 1920 (!list_empty(&pring->txq)) && 1921 (pring->ringno != LPFC_FCP_RING || 1922 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1923 1924 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1925 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1926 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1927 1928 if (iocb) 1929 lpfc_sli_update_ring(phba, pring); 1930 else 1931 lpfc_sli_update_full_ring(phba, pring); 1932 } 1933 1934 return; 1935 } 1936 1937 /** 1938 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1939 * @phba: Pointer to HBA context object. 1940 * @hbqno: HBQ number. 1941 * 1942 * This function is called with hbalock held to get the next 1943 * available slot for the given HBQ. If there is free slot 1944 * available for the HBQ it will return pointer to the next available 1945 * HBQ entry else it will return NULL. 1946 **/ 1947 static struct lpfc_hbq_entry * 1948 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1949 { 1950 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1951 1952 lockdep_assert_held(&phba->hbalock); 1953 1954 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1955 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1956 hbqp->next_hbqPutIdx = 0; 1957 1958 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1959 uint32_t raw_index = phba->hbq_get[hbqno]; 1960 uint32_t getidx = le32_to_cpu(raw_index); 1961 1962 hbqp->local_hbqGetIdx = getidx; 1963 1964 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1965 lpfc_printf_log(phba, KERN_ERR, 1966 LOG_SLI | LOG_VPORT, 1967 "1802 HBQ %d: local_hbqGetIdx " 1968 "%u is > than hbqp->entry_count %u\n", 1969 hbqno, hbqp->local_hbqGetIdx, 1970 hbqp->entry_count); 1971 1972 phba->link_state = LPFC_HBA_ERROR; 1973 return NULL; 1974 } 1975 1976 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1977 return NULL; 1978 } 1979 1980 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1981 hbqp->hbqPutIdx; 1982 } 1983 1984 /** 1985 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1986 * @phba: Pointer to HBA context object. 1987 * 1988 * This function is called with no lock held to free all the 1989 * hbq buffers while uninitializing the SLI interface. It also 1990 * frees the HBQ buffers returned by the firmware but not yet 1991 * processed by the upper layers. 1992 **/ 1993 void 1994 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1995 { 1996 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1997 struct hbq_dmabuf *hbq_buf; 1998 unsigned long flags; 1999 int i, hbq_count; 2000 2001 hbq_count = lpfc_sli_hbq_count(); 2002 /* Return all memory used by all HBQs */ 2003 spin_lock_irqsave(&phba->hbalock, flags); 2004 for (i = 0; i < hbq_count; ++i) { 2005 list_for_each_entry_safe(dmabuf, next_dmabuf, 2006 &phba->hbqs[i].hbq_buffer_list, list) { 2007 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 2008 list_del(&hbq_buf->dbuf.list); 2009 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 2010 } 2011 phba->hbqs[i].buffer_count = 0; 2012 } 2013 2014 /* Mark the HBQs not in use */ 2015 phba->hbq_in_use = 0; 2016 spin_unlock_irqrestore(&phba->hbalock, flags); 2017 } 2018 2019 /** 2020 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 2021 * @phba: Pointer to HBA context object. 2022 * @hbqno: HBQ number. 2023 * @hbq_buf: Pointer to HBQ buffer. 2024 * 2025 * This function is called with the hbalock held to post a 2026 * hbq buffer to the firmware. If the function finds an empty 2027 * slot in the HBQ, it will post the buffer. The function will return 2028 * pointer to the hbq entry if it successfully post the buffer 2029 * else it will return NULL. 2030 **/ 2031 static int 2032 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 2033 struct hbq_dmabuf *hbq_buf) 2034 { 2035 lockdep_assert_held(&phba->hbalock); 2036 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 2037 } 2038 2039 /** 2040 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 2041 * @phba: Pointer to HBA context object. 2042 * @hbqno: HBQ number. 2043 * @hbq_buf: Pointer to HBQ buffer. 2044 * 2045 * This function is called with the hbalock held to post a hbq buffer to the 2046 * firmware. If the function finds an empty slot in the HBQ, it will post the 2047 * buffer and place it on the hbq_buffer_list. The function will return zero if 2048 * it successfully post the buffer else it will return an error. 2049 **/ 2050 static int 2051 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 2052 struct hbq_dmabuf *hbq_buf) 2053 { 2054 struct lpfc_hbq_entry *hbqe; 2055 dma_addr_t physaddr = hbq_buf->dbuf.phys; 2056 2057 lockdep_assert_held(&phba->hbalock); 2058 /* Get next HBQ entry slot to use */ 2059 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 2060 if (hbqe) { 2061 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 2062 2063 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 2064 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 2065 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 2066 hbqe->bde.tus.f.bdeFlags = 0; 2067 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 2068 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 2069 /* Sync SLIM */ 2070 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 2071 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 2072 /* flush */ 2073 readl(phba->hbq_put + hbqno); 2074 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 2075 return 0; 2076 } else 2077 return -ENOMEM; 2078 } 2079 2080 /** 2081 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 2082 * @phba: Pointer to HBA context object. 2083 * @hbqno: HBQ number. 2084 * @hbq_buf: Pointer to HBQ buffer. 2085 * 2086 * This function is called with the hbalock held to post an RQE to the SLI4 2087 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 2088 * the hbq_buffer_list and return zero, otherwise it will return an error. 2089 **/ 2090 static int 2091 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 2092 struct hbq_dmabuf *hbq_buf) 2093 { 2094 int rc; 2095 struct lpfc_rqe hrqe; 2096 struct lpfc_rqe drqe; 2097 struct lpfc_queue *hrq; 2098 struct lpfc_queue *drq; 2099 2100 if (hbqno != LPFC_ELS_HBQ) 2101 return 1; 2102 hrq = phba->sli4_hba.hdr_rq; 2103 drq = phba->sli4_hba.dat_rq; 2104 2105 lockdep_assert_held(&phba->hbalock); 2106 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 2107 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 2108 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 2109 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 2110 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 2111 if (rc < 0) 2112 return rc; 2113 hbq_buf->tag = (rc | (hbqno << 16)); 2114 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 2115 return 0; 2116 } 2117 2118 /* HBQ for ELS and CT traffic. */ 2119 static struct lpfc_hbq_init lpfc_els_hbq = { 2120 .rn = 1, 2121 .entry_count = 256, 2122 .mask_count = 0, 2123 .profile = 0, 2124 .ring_mask = (1 << LPFC_ELS_RING), 2125 .buffer_count = 0, 2126 .init_count = 40, 2127 .add_count = 40, 2128 }; 2129 2130 /* Array of HBQs */ 2131 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 2132 &lpfc_els_hbq, 2133 }; 2134 2135 /** 2136 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 2137 * @phba: Pointer to HBA context object. 2138 * @hbqno: HBQ number. 2139 * @count: Number of HBQ buffers to be posted. 2140 * 2141 * This function is called with no lock held to post more hbq buffers to the 2142 * given HBQ. The function returns the number of HBQ buffers successfully 2143 * posted. 2144 **/ 2145 static int 2146 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 2147 { 2148 uint32_t i, posted = 0; 2149 unsigned long flags; 2150 struct hbq_dmabuf *hbq_buffer; 2151 LIST_HEAD(hbq_buf_list); 2152 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 2153 return 0; 2154 2155 if ((phba->hbqs[hbqno].buffer_count + count) > 2156 lpfc_hbq_defs[hbqno]->entry_count) 2157 count = lpfc_hbq_defs[hbqno]->entry_count - 2158 phba->hbqs[hbqno].buffer_count; 2159 if (!count) 2160 return 0; 2161 /* Allocate HBQ entries */ 2162 for (i = 0; i < count; i++) { 2163 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 2164 if (!hbq_buffer) 2165 break; 2166 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 2167 } 2168 /* Check whether HBQ is still in use */ 2169 spin_lock_irqsave(&phba->hbalock, flags); 2170 if (!phba->hbq_in_use) 2171 goto err; 2172 while (!list_empty(&hbq_buf_list)) { 2173 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2174 dbuf.list); 2175 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 2176 (hbqno << 16)); 2177 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 2178 phba->hbqs[hbqno].buffer_count++; 2179 posted++; 2180 } else 2181 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2182 } 2183 spin_unlock_irqrestore(&phba->hbalock, flags); 2184 return posted; 2185 err: 2186 spin_unlock_irqrestore(&phba->hbalock, flags); 2187 while (!list_empty(&hbq_buf_list)) { 2188 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 2189 dbuf.list); 2190 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2191 } 2192 return 0; 2193 } 2194 2195 /** 2196 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 2197 * @phba: Pointer to HBA context object. 2198 * @qno: HBQ number. 2199 * 2200 * This function posts more buffers to the HBQ. This function 2201 * is called with no lock held. The function returns the number of HBQ entries 2202 * successfully allocated. 2203 **/ 2204 int 2205 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 2206 { 2207 if (phba->sli_rev == LPFC_SLI_REV4) 2208 return 0; 2209 else 2210 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2211 lpfc_hbq_defs[qno]->add_count); 2212 } 2213 2214 /** 2215 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 2216 * @phba: Pointer to HBA context object. 2217 * @qno: HBQ queue number. 2218 * 2219 * This function is called from SLI initialization code path with 2220 * no lock held to post initial HBQ buffers to firmware. The 2221 * function returns the number of HBQ entries successfully allocated. 2222 **/ 2223 static int 2224 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2225 { 2226 if (phba->sli_rev == LPFC_SLI_REV4) 2227 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2228 lpfc_hbq_defs[qno]->entry_count); 2229 else 2230 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2231 lpfc_hbq_defs[qno]->init_count); 2232 } 2233 2234 /** 2235 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2236 * @phba: Pointer to HBA context object. 2237 * @hbqno: HBQ number. 2238 * 2239 * This function removes the first hbq buffer on an hbq list and returns a 2240 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2241 **/ 2242 static struct hbq_dmabuf * 2243 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2244 { 2245 struct lpfc_dmabuf *d_buf; 2246 2247 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2248 if (!d_buf) 2249 return NULL; 2250 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2251 } 2252 2253 /** 2254 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2255 * @phba: Pointer to HBA context object. 2256 * @hbqno: HBQ number. 2257 * 2258 * This function removes the first RQ buffer on an RQ buffer list and returns a 2259 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2260 **/ 2261 static struct rqb_dmabuf * 2262 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2263 { 2264 struct lpfc_dmabuf *h_buf; 2265 struct lpfc_rqb *rqbp; 2266 2267 rqbp = hrq->rqbp; 2268 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2269 struct lpfc_dmabuf, list); 2270 if (!h_buf) 2271 return NULL; 2272 rqbp->buffer_count--; 2273 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2274 } 2275 2276 /** 2277 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2278 * @phba: Pointer to HBA context object. 2279 * @tag: Tag of the hbq buffer. 2280 * 2281 * This function searches for the hbq buffer associated with the given tag in 2282 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2283 * otherwise it returns NULL. 2284 **/ 2285 static struct hbq_dmabuf * 2286 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2287 { 2288 struct lpfc_dmabuf *d_buf; 2289 struct hbq_dmabuf *hbq_buf; 2290 uint32_t hbqno; 2291 2292 hbqno = tag >> 16; 2293 if (hbqno >= LPFC_MAX_HBQS) 2294 return NULL; 2295 2296 spin_lock_irq(&phba->hbalock); 2297 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2298 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2299 if (hbq_buf->tag == tag) { 2300 spin_unlock_irq(&phba->hbalock); 2301 return hbq_buf; 2302 } 2303 } 2304 spin_unlock_irq(&phba->hbalock); 2305 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2306 "1803 Bad hbq tag. Data: x%x x%x\n", 2307 tag, phba->hbqs[tag >> 16].buffer_count); 2308 return NULL; 2309 } 2310 2311 /** 2312 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2313 * @phba: Pointer to HBA context object. 2314 * @hbq_buffer: Pointer to HBQ buffer. 2315 * 2316 * This function is called with hbalock. This function gives back 2317 * the hbq buffer to firmware. If the HBQ does not have space to 2318 * post the buffer, it will free the buffer. 2319 **/ 2320 void 2321 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2322 { 2323 uint32_t hbqno; 2324 2325 if (hbq_buffer) { 2326 hbqno = hbq_buffer->tag >> 16; 2327 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2328 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2329 } 2330 } 2331 2332 /** 2333 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2334 * @mbxCommand: mailbox command code. 2335 * 2336 * This function is called by the mailbox event handler function to verify 2337 * that the completed mailbox command is a legitimate mailbox command. If the 2338 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2339 * and the mailbox event handler will take the HBA offline. 2340 **/ 2341 static int 2342 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2343 { 2344 uint8_t ret; 2345 2346 switch (mbxCommand) { 2347 case MBX_LOAD_SM: 2348 case MBX_READ_NV: 2349 case MBX_WRITE_NV: 2350 case MBX_WRITE_VPARMS: 2351 case MBX_RUN_BIU_DIAG: 2352 case MBX_INIT_LINK: 2353 case MBX_DOWN_LINK: 2354 case MBX_CONFIG_LINK: 2355 case MBX_CONFIG_RING: 2356 case MBX_RESET_RING: 2357 case MBX_READ_CONFIG: 2358 case MBX_READ_RCONFIG: 2359 case MBX_READ_SPARM: 2360 case MBX_READ_STATUS: 2361 case MBX_READ_RPI: 2362 case MBX_READ_XRI: 2363 case MBX_READ_REV: 2364 case MBX_READ_LNK_STAT: 2365 case MBX_REG_LOGIN: 2366 case MBX_UNREG_LOGIN: 2367 case MBX_CLEAR_LA: 2368 case MBX_DUMP_MEMORY: 2369 case MBX_DUMP_CONTEXT: 2370 case MBX_RUN_DIAGS: 2371 case MBX_RESTART: 2372 case MBX_UPDATE_CFG: 2373 case MBX_DOWN_LOAD: 2374 case MBX_DEL_LD_ENTRY: 2375 case MBX_RUN_PROGRAM: 2376 case MBX_SET_MASK: 2377 case MBX_SET_VARIABLE: 2378 case MBX_UNREG_D_ID: 2379 case MBX_KILL_BOARD: 2380 case MBX_CONFIG_FARP: 2381 case MBX_BEACON: 2382 case MBX_LOAD_AREA: 2383 case MBX_RUN_BIU_DIAG64: 2384 case MBX_CONFIG_PORT: 2385 case MBX_READ_SPARM64: 2386 case MBX_READ_RPI64: 2387 case MBX_REG_LOGIN64: 2388 case MBX_READ_TOPOLOGY: 2389 case MBX_WRITE_WWN: 2390 case MBX_SET_DEBUG: 2391 case MBX_LOAD_EXP_ROM: 2392 case MBX_ASYNCEVT_ENABLE: 2393 case MBX_REG_VPI: 2394 case MBX_UNREG_VPI: 2395 case MBX_HEARTBEAT: 2396 case MBX_PORT_CAPABILITIES: 2397 case MBX_PORT_IOV_CONTROL: 2398 case MBX_SLI4_CONFIG: 2399 case MBX_SLI4_REQ_FTRS: 2400 case MBX_REG_FCFI: 2401 case MBX_UNREG_FCFI: 2402 case MBX_REG_VFI: 2403 case MBX_UNREG_VFI: 2404 case MBX_INIT_VPI: 2405 case MBX_INIT_VFI: 2406 case MBX_RESUME_RPI: 2407 case MBX_READ_EVENT_LOG_STATUS: 2408 case MBX_READ_EVENT_LOG: 2409 case MBX_SECURITY_MGMT: 2410 case MBX_AUTH_PORT: 2411 case MBX_ACCESS_VDATA: 2412 ret = mbxCommand; 2413 break; 2414 default: 2415 ret = MBX_SHUTDOWN; 2416 break; 2417 } 2418 return ret; 2419 } 2420 2421 /** 2422 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2423 * @phba: Pointer to HBA context object. 2424 * @pmboxq: Pointer to mailbox command. 2425 * 2426 * This is completion handler function for mailbox commands issued from 2427 * lpfc_sli_issue_mbox_wait function. This function is called by the 2428 * mailbox event handler function with no lock held. This function 2429 * will wake up thread waiting on the wait queue pointed by context1 2430 * of the mailbox. 2431 **/ 2432 void 2433 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2434 { 2435 unsigned long drvr_flag; 2436 struct completion *pmbox_done; 2437 2438 /* 2439 * If pmbox_done is empty, the driver thread gave up waiting and 2440 * continued running. 2441 */ 2442 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2443 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2444 pmbox_done = (struct completion *)pmboxq->context3; 2445 if (pmbox_done) 2446 complete(pmbox_done); 2447 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2448 return; 2449 } 2450 2451 static void 2452 __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 2453 { 2454 unsigned long iflags; 2455 2456 if (ndlp->nlp_flag & NLP_RELEASE_RPI) { 2457 lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); 2458 spin_lock_irqsave(&vport->phba->ndlp_lock, iflags); 2459 ndlp->nlp_flag &= ~NLP_RELEASE_RPI; 2460 ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; 2461 spin_unlock_irqrestore(&vport->phba->ndlp_lock, iflags); 2462 } 2463 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2464 } 2465 2466 /** 2467 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2468 * @phba: Pointer to HBA context object. 2469 * @pmb: Pointer to mailbox object. 2470 * 2471 * This function is the default mailbox completion handler. It 2472 * frees the memory resources associated with the completed mailbox 2473 * command. If the completed command is a REG_LOGIN mailbox command, 2474 * this function will issue a UREG_LOGIN to re-claim the RPI. 2475 **/ 2476 void 2477 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2478 { 2479 struct lpfc_vport *vport = pmb->vport; 2480 struct lpfc_dmabuf *mp; 2481 struct lpfc_nodelist *ndlp; 2482 struct Scsi_Host *shost; 2483 uint16_t rpi, vpi; 2484 int rc; 2485 2486 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 2487 2488 if (mp) { 2489 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2490 kfree(mp); 2491 } 2492 2493 /* 2494 * If a REG_LOGIN succeeded after node is destroyed or node 2495 * is in re-discovery driver need to cleanup the RPI. 2496 */ 2497 if (!(phba->pport->load_flag & FC_UNLOADING) && 2498 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2499 !pmb->u.mb.mbxStatus) { 2500 rpi = pmb->u.mb.un.varWords[0]; 2501 vpi = pmb->u.mb.un.varRegLogin.vpi; 2502 if (phba->sli_rev == LPFC_SLI_REV4) 2503 vpi -= phba->sli4_hba.max_cfg_param.vpi_base; 2504 lpfc_unreg_login(phba, vpi, rpi, pmb); 2505 pmb->vport = vport; 2506 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2507 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2508 if (rc != MBX_NOT_FINISHED) 2509 return; 2510 } 2511 2512 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2513 !(phba->pport->load_flag & FC_UNLOADING) && 2514 !pmb->u.mb.mbxStatus) { 2515 shost = lpfc_shost_from_vport(vport); 2516 spin_lock_irq(shost->host_lock); 2517 vport->vpi_state |= LPFC_VPI_REGISTERED; 2518 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2519 spin_unlock_irq(shost->host_lock); 2520 } 2521 2522 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2523 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2524 lpfc_nlp_put(ndlp); 2525 pmb->ctx_buf = NULL; 2526 pmb->ctx_ndlp = NULL; 2527 } 2528 2529 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2530 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 2531 2532 /* Check to see if there are any deferred events to process */ 2533 if (ndlp) { 2534 lpfc_printf_vlog( 2535 vport, 2536 KERN_INFO, LOG_MBOX | LOG_DISCOVERY, 2537 "1438 UNREG cmpl deferred mbox x%x " 2538 "on NPort x%x Data: x%x x%x %px\n", 2539 ndlp->nlp_rpi, ndlp->nlp_DID, 2540 ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp); 2541 2542 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2543 (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { 2544 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2545 ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; 2546 lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); 2547 } else { 2548 __lpfc_sli_rpi_release(vport, ndlp); 2549 } 2550 if (vport->load_flag & FC_UNLOADING) 2551 lpfc_nlp_put(ndlp); 2552 pmb->ctx_ndlp = NULL; 2553 } 2554 } 2555 2556 /* Check security permission status on INIT_LINK mailbox command */ 2557 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2558 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2559 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2560 "2860 SLI authentication is required " 2561 "for INIT_LINK but has not done yet\n"); 2562 2563 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2564 lpfc_sli4_mbox_cmd_free(phba, pmb); 2565 else 2566 mempool_free(pmb, phba->mbox_mem_pool); 2567 } 2568 /** 2569 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2570 * @phba: Pointer to HBA context object. 2571 * @pmb: Pointer to mailbox object. 2572 * 2573 * This function is the unreg rpi mailbox completion handler. It 2574 * frees the memory resources associated with the completed mailbox 2575 * command. An additional refrenece is put on the ndlp to prevent 2576 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2577 * the unreg mailbox command completes, this routine puts the 2578 * reference back. 2579 * 2580 **/ 2581 void 2582 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2583 { 2584 struct lpfc_vport *vport = pmb->vport; 2585 struct lpfc_nodelist *ndlp; 2586 2587 ndlp = pmb->ctx_ndlp; 2588 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2589 if (phba->sli_rev == LPFC_SLI_REV4 && 2590 (bf_get(lpfc_sli_intf_if_type, 2591 &phba->sli4_hba.sli_intf) >= 2592 LPFC_SLI_INTF_IF_TYPE_2)) { 2593 if (ndlp) { 2594 lpfc_printf_vlog( 2595 vport, KERN_INFO, LOG_MBOX | LOG_SLI, 2596 "0010 UNREG_LOGIN vpi:%x " 2597 "rpi:%x DID:%x defer x%x flg x%x " 2598 "map:%x %px\n", 2599 vport->vpi, ndlp->nlp_rpi, 2600 ndlp->nlp_DID, ndlp->nlp_defer_did, 2601 ndlp->nlp_flag, 2602 ndlp->nlp_usg_map, ndlp); 2603 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2604 lpfc_nlp_put(ndlp); 2605 2606 /* Check to see if there are any deferred 2607 * events to process 2608 */ 2609 if ((ndlp->nlp_flag & NLP_UNREG_INP) && 2610 (ndlp->nlp_defer_did != 2611 NLP_EVT_NOTHING_PENDING)) { 2612 lpfc_printf_vlog( 2613 vport, KERN_INFO, LOG_DISCOVERY, 2614 "4111 UNREG cmpl deferred " 2615 "clr x%x on " 2616 "NPort x%x Data: x%x x%px\n", 2617 ndlp->nlp_rpi, ndlp->nlp_DID, 2618 ndlp->nlp_defer_did, ndlp); 2619 ndlp->nlp_flag &= ~NLP_UNREG_INP; 2620 ndlp->nlp_defer_did = 2621 NLP_EVT_NOTHING_PENDING; 2622 lpfc_issue_els_plogi( 2623 vport, ndlp->nlp_DID, 0); 2624 } else { 2625 __lpfc_sli_rpi_release(vport, ndlp); 2626 } 2627 } 2628 } 2629 } 2630 2631 mempool_free(pmb, phba->mbox_mem_pool); 2632 } 2633 2634 /** 2635 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2636 * @phba: Pointer to HBA context object. 2637 * 2638 * This function is called with no lock held. This function processes all 2639 * the completed mailbox commands and gives it to upper layers. The interrupt 2640 * service routine processes mailbox completion interrupt and adds completed 2641 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2642 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2643 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2644 * function returns the mailbox commands to the upper layer by calling the 2645 * completion handler function of each mailbox. 2646 **/ 2647 int 2648 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2649 { 2650 MAILBOX_t *pmbox; 2651 LPFC_MBOXQ_t *pmb; 2652 int rc; 2653 LIST_HEAD(cmplq); 2654 2655 phba->sli.slistat.mbox_event++; 2656 2657 /* Get all completed mailboxe buffers into the cmplq */ 2658 spin_lock_irq(&phba->hbalock); 2659 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2660 spin_unlock_irq(&phba->hbalock); 2661 2662 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2663 do { 2664 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2665 if (pmb == NULL) 2666 break; 2667 2668 pmbox = &pmb->u.mb; 2669 2670 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2671 if (pmb->vport) { 2672 lpfc_debugfs_disc_trc(pmb->vport, 2673 LPFC_DISC_TRC_MBOX_VPORT, 2674 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2675 (uint32_t)pmbox->mbxCommand, 2676 pmbox->un.varWords[0], 2677 pmbox->un.varWords[1]); 2678 } 2679 else { 2680 lpfc_debugfs_disc_trc(phba->pport, 2681 LPFC_DISC_TRC_MBOX, 2682 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2683 (uint32_t)pmbox->mbxCommand, 2684 pmbox->un.varWords[0], 2685 pmbox->un.varWords[1]); 2686 } 2687 } 2688 2689 /* 2690 * It is a fatal error if unknown mbox command completion. 2691 */ 2692 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2693 MBX_SHUTDOWN) { 2694 /* Unknown mailbox command compl */ 2695 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2696 "(%d):0323 Unknown Mailbox command " 2697 "x%x (x%x/x%x) Cmpl\n", 2698 pmb->vport ? pmb->vport->vpi : 2699 LPFC_VPORT_UNKNOWN, 2700 pmbox->mbxCommand, 2701 lpfc_sli_config_mbox_subsys_get(phba, 2702 pmb), 2703 lpfc_sli_config_mbox_opcode_get(phba, 2704 pmb)); 2705 phba->link_state = LPFC_HBA_ERROR; 2706 phba->work_hs = HS_FFER3; 2707 lpfc_handle_eratt(phba); 2708 continue; 2709 } 2710 2711 if (pmbox->mbxStatus) { 2712 phba->sli.slistat.mbox_stat_err++; 2713 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2714 /* Mbox cmd cmpl error - RETRYing */ 2715 lpfc_printf_log(phba, KERN_INFO, 2716 LOG_MBOX | LOG_SLI, 2717 "(%d):0305 Mbox cmd cmpl " 2718 "error - RETRYing Data: x%x " 2719 "(x%x/x%x) x%x x%x x%x\n", 2720 pmb->vport ? pmb->vport->vpi : 2721 LPFC_VPORT_UNKNOWN, 2722 pmbox->mbxCommand, 2723 lpfc_sli_config_mbox_subsys_get(phba, 2724 pmb), 2725 lpfc_sli_config_mbox_opcode_get(phba, 2726 pmb), 2727 pmbox->mbxStatus, 2728 pmbox->un.varWords[0], 2729 pmb->vport ? pmb->vport->port_state : 2730 LPFC_VPORT_UNKNOWN); 2731 pmbox->mbxStatus = 0; 2732 pmbox->mbxOwner = OWN_HOST; 2733 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2734 if (rc != MBX_NOT_FINISHED) 2735 continue; 2736 } 2737 } 2738 2739 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2740 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2741 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " 2742 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2743 "x%x x%x x%x\n", 2744 pmb->vport ? pmb->vport->vpi : 0, 2745 pmbox->mbxCommand, 2746 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2747 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2748 pmb->mbox_cmpl, 2749 *((uint32_t *) pmbox), 2750 pmbox->un.varWords[0], 2751 pmbox->un.varWords[1], 2752 pmbox->un.varWords[2], 2753 pmbox->un.varWords[3], 2754 pmbox->un.varWords[4], 2755 pmbox->un.varWords[5], 2756 pmbox->un.varWords[6], 2757 pmbox->un.varWords[7], 2758 pmbox->un.varWords[8], 2759 pmbox->un.varWords[9], 2760 pmbox->un.varWords[10]); 2761 2762 if (pmb->mbox_cmpl) 2763 pmb->mbox_cmpl(phba,pmb); 2764 } while (1); 2765 return 0; 2766 } 2767 2768 /** 2769 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2770 * @phba: Pointer to HBA context object. 2771 * @pring: Pointer to driver SLI ring object. 2772 * @tag: buffer tag. 2773 * 2774 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2775 * is set in the tag the buffer is posted for a particular exchange, 2776 * the function will return the buffer without replacing the buffer. 2777 * If the buffer is for unsolicited ELS or CT traffic, this function 2778 * returns the buffer and also posts another buffer to the firmware. 2779 **/ 2780 static struct lpfc_dmabuf * 2781 lpfc_sli_get_buff(struct lpfc_hba *phba, 2782 struct lpfc_sli_ring *pring, 2783 uint32_t tag) 2784 { 2785 struct hbq_dmabuf *hbq_entry; 2786 2787 if (tag & QUE_BUFTAG_BIT) 2788 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2789 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2790 if (!hbq_entry) 2791 return NULL; 2792 return &hbq_entry->dbuf; 2793 } 2794 2795 /** 2796 * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer 2797 * containing a NVME LS request. 2798 * @phba: pointer to lpfc hba data structure. 2799 * @piocb: pointer to the iocbq struct representing the sequence starting 2800 * frame. 2801 * 2802 * This routine initially validates the NVME LS, validates there is a login 2803 * with the port that sent the LS, and then calls the appropriate nvme host 2804 * or target LS request handler. 2805 **/ 2806 static void 2807 lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 2808 { 2809 struct lpfc_nodelist *ndlp; 2810 struct lpfc_dmabuf *d_buf; 2811 struct hbq_dmabuf *nvmebuf; 2812 struct fc_frame_header *fc_hdr; 2813 struct lpfc_async_xchg_ctx *axchg = NULL; 2814 char *failwhy = NULL; 2815 uint32_t oxid, sid, did, fctl, size; 2816 int ret = 1; 2817 2818 d_buf = piocb->context2; 2819 2820 nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2821 fc_hdr = nvmebuf->hbuf.virt; 2822 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2823 sid = sli4_sid_from_fc_hdr(fc_hdr); 2824 did = sli4_did_from_fc_hdr(fc_hdr); 2825 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 2826 fc_hdr->fh_f_ctl[1] << 8 | 2827 fc_hdr->fh_f_ctl[2]); 2828 size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); 2829 2830 lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", 2831 oxid, size, sid); 2832 2833 if (phba->pport->load_flag & FC_UNLOADING) { 2834 failwhy = "Driver Unloading"; 2835 } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { 2836 failwhy = "NVME FC4 Disabled"; 2837 } else if (!phba->nvmet_support && !phba->pport->localport) { 2838 failwhy = "No Localport"; 2839 } else if (phba->nvmet_support && !phba->targetport) { 2840 failwhy = "No Targetport"; 2841 } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { 2842 failwhy = "Bad NVME LS R_CTL"; 2843 } else if (unlikely((fctl & 0x00FF0000) != 2844 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { 2845 failwhy = "Bad NVME LS F_CTL"; 2846 } else { 2847 axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); 2848 if (!axchg) 2849 failwhy = "No CTX memory"; 2850 } 2851 2852 if (unlikely(failwhy)) { 2853 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR, 2854 "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", 2855 sid, oxid, failwhy); 2856 goto out_fail; 2857 } 2858 2859 /* validate the source of the LS is logged in */ 2860 ndlp = lpfc_findnode_did(phba->pport, sid); 2861 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || 2862 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2863 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2864 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, 2865 "6216 NVME Unsol rcv: No ndlp: " 2866 "NPort_ID x%x oxid x%x\n", 2867 sid, oxid); 2868 goto out_fail; 2869 } 2870 2871 axchg->phba = phba; 2872 axchg->ndlp = ndlp; 2873 axchg->size = size; 2874 axchg->oxid = oxid; 2875 axchg->sid = sid; 2876 axchg->wqeq = NULL; 2877 axchg->state = LPFC_NVME_STE_LS_RCV; 2878 axchg->entry_cnt = 1; 2879 axchg->rqb_buffer = (void *)nvmebuf; 2880 axchg->hdwq = &phba->sli4_hba.hdwq[0]; 2881 axchg->payload = nvmebuf->dbuf.virt; 2882 INIT_LIST_HEAD(&axchg->list); 2883 2884 if (phba->nvmet_support) 2885 ret = lpfc_nvmet_handle_lsreq(phba, axchg); 2886 else 2887 ret = lpfc_nvme_handle_lsreq(phba, axchg); 2888 2889 /* if zero, LS was successfully handled. If non-zero, LS not handled */ 2890 if (!ret) 2891 return; 2892 2893 lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC | LOG_NVME_IOERR, 2894 "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " 2895 "NVMe%s handler failed %d\n", 2896 did, sid, oxid, 2897 (phba->nvmet_support) ? "T" : "I", ret); 2898 2899 out_fail: 2900 2901 /* recycle receive buffer */ 2902 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 2903 2904 /* If start of new exchange, abort it */ 2905 if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) 2906 ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); 2907 2908 if (ret) 2909 kfree(axchg); 2910 } 2911 2912 /** 2913 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2914 * @phba: Pointer to HBA context object. 2915 * @pring: Pointer to driver SLI ring object. 2916 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2917 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2918 * @fch_type: the type for the first frame of the sequence. 2919 * 2920 * This function is called with no lock held. This function uses the r_ctl and 2921 * type of the received sequence to find the correct callback function to call 2922 * to process the sequence. 2923 **/ 2924 static int 2925 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2926 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2927 uint32_t fch_type) 2928 { 2929 int i; 2930 2931 switch (fch_type) { 2932 case FC_TYPE_NVME: 2933 lpfc_nvme_unsol_ls_handler(phba, saveq); 2934 return 1; 2935 default: 2936 break; 2937 } 2938 2939 /* unSolicited Responses */ 2940 if (pring->prt[0].profile) { 2941 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2942 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2943 saveq); 2944 return 1; 2945 } 2946 /* We must search, based on rctl / type 2947 for the right routine */ 2948 for (i = 0; i < pring->num_mask; i++) { 2949 if ((pring->prt[i].rctl == fch_r_ctl) && 2950 (pring->prt[i].type == fch_type)) { 2951 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2952 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2953 (phba, pring, saveq); 2954 return 1; 2955 } 2956 } 2957 return 0; 2958 } 2959 2960 /** 2961 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2962 * @phba: Pointer to HBA context object. 2963 * @pring: Pointer to driver SLI ring object. 2964 * @saveq: Pointer to the unsolicited iocb. 2965 * 2966 * This function is called with no lock held by the ring event handler 2967 * when there is an unsolicited iocb posted to the response ring by the 2968 * firmware. This function gets the buffer associated with the iocbs 2969 * and calls the event handler for the ring. This function handles both 2970 * qring buffers and hbq buffers. 2971 * When the function returns 1 the caller can free the iocb object otherwise 2972 * upper layer functions will free the iocb objects. 2973 **/ 2974 static int 2975 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2976 struct lpfc_iocbq *saveq) 2977 { 2978 IOCB_t * irsp; 2979 WORD5 * w5p; 2980 uint32_t Rctl, Type; 2981 struct lpfc_iocbq *iocbq; 2982 struct lpfc_dmabuf *dmzbuf; 2983 2984 irsp = &(saveq->iocb); 2985 2986 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2987 if (pring->lpfc_sli_rcv_async_status) 2988 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2989 else 2990 lpfc_printf_log(phba, 2991 KERN_WARNING, 2992 LOG_SLI, 2993 "0316 Ring %d handler: unexpected " 2994 "ASYNC_STATUS iocb received evt_code " 2995 "0x%x\n", 2996 pring->ringno, 2997 irsp->un.asyncstat.evt_code); 2998 return 1; 2999 } 3000 3001 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 3002 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 3003 if (irsp->ulpBdeCount > 0) { 3004 dmzbuf = lpfc_sli_get_buff(phba, pring, 3005 irsp->un.ulpWord[3]); 3006 lpfc_in_buf_free(phba, dmzbuf); 3007 } 3008 3009 if (irsp->ulpBdeCount > 1) { 3010 dmzbuf = lpfc_sli_get_buff(phba, pring, 3011 irsp->unsli3.sli3Words[3]); 3012 lpfc_in_buf_free(phba, dmzbuf); 3013 } 3014 3015 if (irsp->ulpBdeCount > 2) { 3016 dmzbuf = lpfc_sli_get_buff(phba, pring, 3017 irsp->unsli3.sli3Words[7]); 3018 lpfc_in_buf_free(phba, dmzbuf); 3019 } 3020 3021 return 1; 3022 } 3023 3024 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 3025 if (irsp->ulpBdeCount != 0) { 3026 saveq->context2 = lpfc_sli_get_buff(phba, pring, 3027 irsp->un.ulpWord[3]); 3028 if (!saveq->context2) 3029 lpfc_printf_log(phba, 3030 KERN_ERR, 3031 LOG_SLI, 3032 "0341 Ring %d Cannot find buffer for " 3033 "an unsolicited iocb. tag 0x%x\n", 3034 pring->ringno, 3035 irsp->un.ulpWord[3]); 3036 } 3037 if (irsp->ulpBdeCount == 2) { 3038 saveq->context3 = lpfc_sli_get_buff(phba, pring, 3039 irsp->unsli3.sli3Words[7]); 3040 if (!saveq->context3) 3041 lpfc_printf_log(phba, 3042 KERN_ERR, 3043 LOG_SLI, 3044 "0342 Ring %d Cannot find buffer for an" 3045 " unsolicited iocb. tag 0x%x\n", 3046 pring->ringno, 3047 irsp->unsli3.sli3Words[7]); 3048 } 3049 list_for_each_entry(iocbq, &saveq->list, list) { 3050 irsp = &(iocbq->iocb); 3051 if (irsp->ulpBdeCount != 0) { 3052 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 3053 irsp->un.ulpWord[3]); 3054 if (!iocbq->context2) 3055 lpfc_printf_log(phba, 3056 KERN_ERR, 3057 LOG_SLI, 3058 "0343 Ring %d Cannot find " 3059 "buffer for an unsolicited iocb" 3060 ". tag 0x%x\n", pring->ringno, 3061 irsp->un.ulpWord[3]); 3062 } 3063 if (irsp->ulpBdeCount == 2) { 3064 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 3065 irsp->unsli3.sli3Words[7]); 3066 if (!iocbq->context3) 3067 lpfc_printf_log(phba, 3068 KERN_ERR, 3069 LOG_SLI, 3070 "0344 Ring %d Cannot find " 3071 "buffer for an unsolicited " 3072 "iocb. tag 0x%x\n", 3073 pring->ringno, 3074 irsp->unsli3.sli3Words[7]); 3075 } 3076 } 3077 } 3078 if (irsp->ulpBdeCount != 0 && 3079 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 3080 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 3081 int found = 0; 3082 3083 /* search continue save q for same XRI */ 3084 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 3085 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 3086 saveq->iocb.unsli3.rcvsli3.ox_id) { 3087 list_add_tail(&saveq->list, &iocbq->list); 3088 found = 1; 3089 break; 3090 } 3091 } 3092 if (!found) 3093 list_add_tail(&saveq->clist, 3094 &pring->iocb_continue_saveq); 3095 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 3096 list_del_init(&iocbq->clist); 3097 saveq = iocbq; 3098 irsp = &(saveq->iocb); 3099 } else 3100 return 0; 3101 } 3102 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 3103 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 3104 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 3105 Rctl = FC_RCTL_ELS_REQ; 3106 Type = FC_TYPE_ELS; 3107 } else { 3108 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 3109 Rctl = w5p->hcsw.Rctl; 3110 Type = w5p->hcsw.Type; 3111 3112 /* Firmware Workaround */ 3113 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 3114 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 3115 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 3116 Rctl = FC_RCTL_ELS_REQ; 3117 Type = FC_TYPE_ELS; 3118 w5p->hcsw.Rctl = Rctl; 3119 w5p->hcsw.Type = Type; 3120 } 3121 } 3122 3123 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 3124 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3125 "0313 Ring %d handler: unexpected Rctl x%x " 3126 "Type x%x received\n", 3127 pring->ringno, Rctl, Type); 3128 3129 return 1; 3130 } 3131 3132 /** 3133 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 3134 * @phba: Pointer to HBA context object. 3135 * @pring: Pointer to driver SLI ring object. 3136 * @prspiocb: Pointer to response iocb object. 3137 * 3138 * This function looks up the iocb_lookup table to get the command iocb 3139 * corresponding to the given response iocb using the iotag of the 3140 * response iocb. The driver calls this function with the hbalock held 3141 * for SLI3 ports or the ring lock held for SLI4 ports. 3142 * This function returns the command iocb object if it finds the command 3143 * iocb else returns NULL. 3144 **/ 3145 static struct lpfc_iocbq * 3146 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 3147 struct lpfc_sli_ring *pring, 3148 struct lpfc_iocbq *prspiocb) 3149 { 3150 struct lpfc_iocbq *cmd_iocb = NULL; 3151 uint16_t iotag; 3152 spinlock_t *temp_lock = NULL; 3153 unsigned long iflag = 0; 3154 3155 if (phba->sli_rev == LPFC_SLI_REV4) 3156 temp_lock = &pring->ring_lock; 3157 else 3158 temp_lock = &phba->hbalock; 3159 3160 spin_lock_irqsave(temp_lock, iflag); 3161 iotag = prspiocb->iocb.ulpIoTag; 3162 3163 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3164 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3165 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3166 /* remove from txcmpl queue list */ 3167 list_del_init(&cmd_iocb->list); 3168 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3169 pring->txcmplq_cnt--; 3170 spin_unlock_irqrestore(temp_lock, iflag); 3171 return cmd_iocb; 3172 } 3173 } 3174 3175 spin_unlock_irqrestore(temp_lock, iflag); 3176 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3177 "0317 iotag x%x is out of " 3178 "range: max iotag x%x wd0 x%x\n", 3179 iotag, phba->sli.last_iotag, 3180 *(((uint32_t *) &prspiocb->iocb) + 7)); 3181 return NULL; 3182 } 3183 3184 /** 3185 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 3186 * @phba: Pointer to HBA context object. 3187 * @pring: Pointer to driver SLI ring object. 3188 * @iotag: IOCB tag. 3189 * 3190 * This function looks up the iocb_lookup table to get the command iocb 3191 * corresponding to the given iotag. The driver calls this function with 3192 * the ring lock held because this function is an SLI4 port only helper. 3193 * This function returns the command iocb object if it finds the command 3194 * iocb else returns NULL. 3195 **/ 3196 static struct lpfc_iocbq * 3197 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 3198 struct lpfc_sli_ring *pring, uint16_t iotag) 3199 { 3200 struct lpfc_iocbq *cmd_iocb = NULL; 3201 spinlock_t *temp_lock = NULL; 3202 unsigned long iflag = 0; 3203 3204 if (phba->sli_rev == LPFC_SLI_REV4) 3205 temp_lock = &pring->ring_lock; 3206 else 3207 temp_lock = &phba->hbalock; 3208 3209 spin_lock_irqsave(temp_lock, iflag); 3210 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 3211 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 3212 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 3213 /* remove from txcmpl queue list */ 3214 list_del_init(&cmd_iocb->list); 3215 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 3216 pring->txcmplq_cnt--; 3217 spin_unlock_irqrestore(temp_lock, iflag); 3218 return cmd_iocb; 3219 } 3220 } 3221 3222 spin_unlock_irqrestore(temp_lock, iflag); 3223 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3224 "0372 iotag x%x lookup error: max iotag (x%x) " 3225 "iocb_flag x%x\n", 3226 iotag, phba->sli.last_iotag, 3227 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 3228 return NULL; 3229 } 3230 3231 /** 3232 * lpfc_sli_process_sol_iocb - process solicited iocb completion 3233 * @phba: Pointer to HBA context object. 3234 * @pring: Pointer to driver SLI ring object. 3235 * @saveq: Pointer to the response iocb to be processed. 3236 * 3237 * This function is called by the ring event handler for non-fcp 3238 * rings when there is a new response iocb in the response ring. 3239 * The caller is not required to hold any locks. This function 3240 * gets the command iocb associated with the response iocb and 3241 * calls the completion handler for the command iocb. If there 3242 * is no completion handler, the function will free the resources 3243 * associated with command iocb. If the response iocb is for 3244 * an already aborted command iocb, the status of the completion 3245 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 3246 * This function always returns 1. 3247 **/ 3248 static int 3249 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3250 struct lpfc_iocbq *saveq) 3251 { 3252 struct lpfc_iocbq *cmdiocbp; 3253 int rc = 1; 3254 unsigned long iflag; 3255 3256 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 3257 if (cmdiocbp) { 3258 if (cmdiocbp->iocb_cmpl) { 3259 /* 3260 * If an ELS command failed send an event to mgmt 3261 * application. 3262 */ 3263 if (saveq->iocb.ulpStatus && 3264 (pring->ringno == LPFC_ELS_RING) && 3265 (cmdiocbp->iocb.ulpCommand == 3266 CMD_ELS_REQUEST64_CR)) 3267 lpfc_send_els_failure_event(phba, 3268 cmdiocbp, saveq); 3269 3270 /* 3271 * Post all ELS completions to the worker thread. 3272 * All other are passed to the completion callback. 3273 */ 3274 if (pring->ringno == LPFC_ELS_RING) { 3275 if ((phba->sli_rev < LPFC_SLI_REV4) && 3276 (cmdiocbp->iocb_flag & 3277 LPFC_DRIVER_ABORTED)) { 3278 spin_lock_irqsave(&phba->hbalock, 3279 iflag); 3280 cmdiocbp->iocb_flag &= 3281 ~LPFC_DRIVER_ABORTED; 3282 spin_unlock_irqrestore(&phba->hbalock, 3283 iflag); 3284 saveq->iocb.ulpStatus = 3285 IOSTAT_LOCAL_REJECT; 3286 saveq->iocb.un.ulpWord[4] = 3287 IOERR_SLI_ABORTED; 3288 3289 /* Firmware could still be in progress 3290 * of DMAing payload, so don't free data 3291 * buffer till after a hbeat. 3292 */ 3293 spin_lock_irqsave(&phba->hbalock, 3294 iflag); 3295 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 3296 spin_unlock_irqrestore(&phba->hbalock, 3297 iflag); 3298 } 3299 if (phba->sli_rev == LPFC_SLI_REV4) { 3300 if (saveq->iocb_flag & 3301 LPFC_EXCHANGE_BUSY) { 3302 /* Set cmdiocb flag for the 3303 * exchange busy so sgl (xri) 3304 * will not be released until 3305 * the abort xri is received 3306 * from hba. 3307 */ 3308 spin_lock_irqsave( 3309 &phba->hbalock, iflag); 3310 cmdiocbp->iocb_flag |= 3311 LPFC_EXCHANGE_BUSY; 3312 spin_unlock_irqrestore( 3313 &phba->hbalock, iflag); 3314 } 3315 if (cmdiocbp->iocb_flag & 3316 LPFC_DRIVER_ABORTED) { 3317 /* 3318 * Clear LPFC_DRIVER_ABORTED 3319 * bit in case it was driver 3320 * initiated abort. 3321 */ 3322 spin_lock_irqsave( 3323 &phba->hbalock, iflag); 3324 cmdiocbp->iocb_flag &= 3325 ~LPFC_DRIVER_ABORTED; 3326 spin_unlock_irqrestore( 3327 &phba->hbalock, iflag); 3328 cmdiocbp->iocb.ulpStatus = 3329 IOSTAT_LOCAL_REJECT; 3330 cmdiocbp->iocb.un.ulpWord[4] = 3331 IOERR_ABORT_REQUESTED; 3332 /* 3333 * For SLI4, irsiocb contains 3334 * NO_XRI in sli_xritag, it 3335 * shall not affect releasing 3336 * sgl (xri) process. 3337 */ 3338 saveq->iocb.ulpStatus = 3339 IOSTAT_LOCAL_REJECT; 3340 saveq->iocb.un.ulpWord[4] = 3341 IOERR_SLI_ABORTED; 3342 spin_lock_irqsave( 3343 &phba->hbalock, iflag); 3344 saveq->iocb_flag |= 3345 LPFC_DELAY_MEM_FREE; 3346 spin_unlock_irqrestore( 3347 &phba->hbalock, iflag); 3348 } 3349 } 3350 } 3351 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 3352 } else 3353 lpfc_sli_release_iocbq(phba, cmdiocbp); 3354 } else { 3355 /* 3356 * Unknown initiating command based on the response iotag. 3357 * This could be the case on the ELS ring because of 3358 * lpfc_els_abort(). 3359 */ 3360 if (pring->ringno != LPFC_ELS_RING) { 3361 /* 3362 * Ring <ringno> handler: unexpected completion IoTag 3363 * <IoTag> 3364 */ 3365 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3366 "0322 Ring %d handler: " 3367 "unexpected completion IoTag x%x " 3368 "Data: x%x x%x x%x x%x\n", 3369 pring->ringno, 3370 saveq->iocb.ulpIoTag, 3371 saveq->iocb.ulpStatus, 3372 saveq->iocb.un.ulpWord[4], 3373 saveq->iocb.ulpCommand, 3374 saveq->iocb.ulpContext); 3375 } 3376 } 3377 3378 return rc; 3379 } 3380 3381 /** 3382 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 3383 * @phba: Pointer to HBA context object. 3384 * @pring: Pointer to driver SLI ring object. 3385 * 3386 * This function is called from the iocb ring event handlers when 3387 * put pointer is ahead of the get pointer for a ring. This function signal 3388 * an error attention condition to the worker thread and the worker 3389 * thread will transition the HBA to offline state. 3390 **/ 3391 static void 3392 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3393 { 3394 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3395 /* 3396 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3397 * rsp ring <portRspMax> 3398 */ 3399 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3400 "0312 Ring %d handler: portRspPut %d " 3401 "is bigger than rsp ring %d\n", 3402 pring->ringno, le32_to_cpu(pgp->rspPutInx), 3403 pring->sli.sli3.numRiocb); 3404 3405 phba->link_state = LPFC_HBA_ERROR; 3406 3407 /* 3408 * All error attention handlers are posted to 3409 * worker thread 3410 */ 3411 phba->work_ha |= HA_ERATT; 3412 phba->work_hs = HS_FFER3; 3413 3414 lpfc_worker_wake_up(phba); 3415 3416 return; 3417 } 3418 3419 /** 3420 * lpfc_poll_eratt - Error attention polling timer timeout handler 3421 * @ptr: Pointer to address of HBA context object. 3422 * 3423 * This function is invoked by the Error Attention polling timer when the 3424 * timer times out. It will check the SLI Error Attention register for 3425 * possible attention events. If so, it will post an Error Attention event 3426 * and wake up worker thread to process it. Otherwise, it will set up the 3427 * Error Attention polling timer for the next poll. 3428 **/ 3429 void lpfc_poll_eratt(struct timer_list *t) 3430 { 3431 struct lpfc_hba *phba; 3432 uint32_t eratt = 0; 3433 uint64_t sli_intr, cnt; 3434 3435 phba = from_timer(phba, t, eratt_poll); 3436 3437 /* Here we will also keep track of interrupts per sec of the hba */ 3438 sli_intr = phba->sli.slistat.sli_intr; 3439 3440 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3441 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3442 sli_intr); 3443 else 3444 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3445 3446 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3447 do_div(cnt, phba->eratt_poll_interval); 3448 phba->sli.slistat.sli_ips = cnt; 3449 3450 phba->sli.slistat.sli_prev_intr = sli_intr; 3451 3452 /* Check chip HA register for error event */ 3453 eratt = lpfc_sli_check_eratt(phba); 3454 3455 if (eratt) 3456 /* Tell the worker thread there is work to do */ 3457 lpfc_worker_wake_up(phba); 3458 else 3459 /* Restart the timer for next eratt poll */ 3460 mod_timer(&phba->eratt_poll, 3461 jiffies + 3462 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3463 return; 3464 } 3465 3466 3467 /** 3468 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3469 * @phba: Pointer to HBA context object. 3470 * @pring: Pointer to driver SLI ring object. 3471 * @mask: Host attention register mask for this ring. 3472 * 3473 * This function is called from the interrupt context when there is a ring 3474 * event for the fcp ring. The caller does not hold any lock. 3475 * The function processes each response iocb in the response ring until it 3476 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3477 * LE bit set. The function will call the completion handler of the command iocb 3478 * if the response iocb indicates a completion for a command iocb or it is 3479 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3480 * function if this is an unsolicited iocb. 3481 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3482 * to check it explicitly. 3483 */ 3484 int 3485 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3486 struct lpfc_sli_ring *pring, uint32_t mask) 3487 { 3488 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3489 IOCB_t *irsp = NULL; 3490 IOCB_t *entry = NULL; 3491 struct lpfc_iocbq *cmdiocbq = NULL; 3492 struct lpfc_iocbq rspiocbq; 3493 uint32_t status; 3494 uint32_t portRspPut, portRspMax; 3495 int rc = 1; 3496 lpfc_iocb_type type; 3497 unsigned long iflag; 3498 uint32_t rsp_cmpl = 0; 3499 3500 spin_lock_irqsave(&phba->hbalock, iflag); 3501 pring->stats.iocb_event++; 3502 3503 /* 3504 * The next available response entry should never exceed the maximum 3505 * entries. If it does, treat it as an adapter hardware error. 3506 */ 3507 portRspMax = pring->sli.sli3.numRiocb; 3508 portRspPut = le32_to_cpu(pgp->rspPutInx); 3509 if (unlikely(portRspPut >= portRspMax)) { 3510 lpfc_sli_rsp_pointers_error(phba, pring); 3511 spin_unlock_irqrestore(&phba->hbalock, iflag); 3512 return 1; 3513 } 3514 if (phba->fcp_ring_in_use) { 3515 spin_unlock_irqrestore(&phba->hbalock, iflag); 3516 return 1; 3517 } else 3518 phba->fcp_ring_in_use = 1; 3519 3520 rmb(); 3521 while (pring->sli.sli3.rspidx != portRspPut) { 3522 /* 3523 * Fetch an entry off the ring and copy it into a local data 3524 * structure. The copy involves a byte-swap since the 3525 * network byte order and pci byte orders are different. 3526 */ 3527 entry = lpfc_resp_iocb(phba, pring); 3528 phba->last_completion_time = jiffies; 3529 3530 if (++pring->sli.sli3.rspidx >= portRspMax) 3531 pring->sli.sli3.rspidx = 0; 3532 3533 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3534 (uint32_t *) &rspiocbq.iocb, 3535 phba->iocb_rsp_size); 3536 INIT_LIST_HEAD(&(rspiocbq.list)); 3537 irsp = &rspiocbq.iocb; 3538 3539 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3540 pring->stats.iocb_rsp++; 3541 rsp_cmpl++; 3542 3543 if (unlikely(irsp->ulpStatus)) { 3544 /* 3545 * If resource errors reported from HBA, reduce 3546 * queuedepths of the SCSI device. 3547 */ 3548 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3549 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3550 IOERR_NO_RESOURCES)) { 3551 spin_unlock_irqrestore(&phba->hbalock, iflag); 3552 phba->lpfc_rampdown_queue_depth(phba); 3553 spin_lock_irqsave(&phba->hbalock, iflag); 3554 } 3555 3556 /* Rsp ring <ringno> error: IOCB */ 3557 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3558 "0336 Rsp Ring %d error: IOCB Data: " 3559 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3560 pring->ringno, 3561 irsp->un.ulpWord[0], 3562 irsp->un.ulpWord[1], 3563 irsp->un.ulpWord[2], 3564 irsp->un.ulpWord[3], 3565 irsp->un.ulpWord[4], 3566 irsp->un.ulpWord[5], 3567 *(uint32_t *)&irsp->un1, 3568 *((uint32_t *)&irsp->un1 + 1)); 3569 } 3570 3571 switch (type) { 3572 case LPFC_ABORT_IOCB: 3573 case LPFC_SOL_IOCB: 3574 /* 3575 * Idle exchange closed via ABTS from port. No iocb 3576 * resources need to be recovered. 3577 */ 3578 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3579 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3580 "0333 IOCB cmd 0x%x" 3581 " processed. Skipping" 3582 " completion\n", 3583 irsp->ulpCommand); 3584 break; 3585 } 3586 3587 spin_unlock_irqrestore(&phba->hbalock, iflag); 3588 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3589 &rspiocbq); 3590 spin_lock_irqsave(&phba->hbalock, iflag); 3591 if (unlikely(!cmdiocbq)) 3592 break; 3593 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3594 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3595 if (cmdiocbq->iocb_cmpl) { 3596 spin_unlock_irqrestore(&phba->hbalock, iflag); 3597 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3598 &rspiocbq); 3599 spin_lock_irqsave(&phba->hbalock, iflag); 3600 } 3601 break; 3602 case LPFC_UNSOL_IOCB: 3603 spin_unlock_irqrestore(&phba->hbalock, iflag); 3604 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3605 spin_lock_irqsave(&phba->hbalock, iflag); 3606 break; 3607 default: 3608 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3609 char adaptermsg[LPFC_MAX_ADPTMSG]; 3610 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3611 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3612 MAX_MSG_DATA); 3613 dev_warn(&((phba->pcidev)->dev), 3614 "lpfc%d: %s\n", 3615 phba->brd_no, adaptermsg); 3616 } else { 3617 /* Unknown IOCB command */ 3618 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3619 "0334 Unknown IOCB command " 3620 "Data: x%x, x%x x%x x%x x%x\n", 3621 type, irsp->ulpCommand, 3622 irsp->ulpStatus, 3623 irsp->ulpIoTag, 3624 irsp->ulpContext); 3625 } 3626 break; 3627 } 3628 3629 /* 3630 * The response IOCB has been processed. Update the ring 3631 * pointer in SLIM. If the port response put pointer has not 3632 * been updated, sync the pgp->rspPutInx and fetch the new port 3633 * response put pointer. 3634 */ 3635 writel(pring->sli.sli3.rspidx, 3636 &phba->host_gp[pring->ringno].rspGetInx); 3637 3638 if (pring->sli.sli3.rspidx == portRspPut) 3639 portRspPut = le32_to_cpu(pgp->rspPutInx); 3640 } 3641 3642 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3643 pring->stats.iocb_rsp_full++; 3644 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3645 writel(status, phba->CAregaddr); 3646 readl(phba->CAregaddr); 3647 } 3648 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3649 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3650 pring->stats.iocb_cmd_empty++; 3651 3652 /* Force update of the local copy of cmdGetInx */ 3653 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3654 lpfc_sli_resume_iocb(phba, pring); 3655 3656 if ((pring->lpfc_sli_cmd_available)) 3657 (pring->lpfc_sli_cmd_available) (phba, pring); 3658 3659 } 3660 3661 phba->fcp_ring_in_use = 0; 3662 spin_unlock_irqrestore(&phba->hbalock, iflag); 3663 return rc; 3664 } 3665 3666 /** 3667 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3668 * @phba: Pointer to HBA context object. 3669 * @pring: Pointer to driver SLI ring object. 3670 * @rspiocbp: Pointer to driver response IOCB object. 3671 * 3672 * This function is called from the worker thread when there is a slow-path 3673 * response IOCB to process. This function chains all the response iocbs until 3674 * seeing the iocb with the LE bit set. The function will call 3675 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3676 * completion of a command iocb. The function will call the 3677 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3678 * The function frees the resources or calls the completion handler if this 3679 * iocb is an abort completion. The function returns NULL when the response 3680 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3681 * this function shall chain the iocb on to the iocb_continueq and return the 3682 * response iocb passed in. 3683 **/ 3684 static struct lpfc_iocbq * 3685 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3686 struct lpfc_iocbq *rspiocbp) 3687 { 3688 struct lpfc_iocbq *saveq; 3689 struct lpfc_iocbq *cmdiocbp; 3690 struct lpfc_iocbq *next_iocb; 3691 IOCB_t *irsp = NULL; 3692 uint32_t free_saveq; 3693 uint8_t iocb_cmd_type; 3694 lpfc_iocb_type type; 3695 unsigned long iflag; 3696 int rc; 3697 3698 spin_lock_irqsave(&phba->hbalock, iflag); 3699 /* First add the response iocb to the countinueq list */ 3700 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3701 pring->iocb_continueq_cnt++; 3702 3703 /* Now, determine whether the list is completed for processing */ 3704 irsp = &rspiocbp->iocb; 3705 if (irsp->ulpLe) { 3706 /* 3707 * By default, the driver expects to free all resources 3708 * associated with this iocb completion. 3709 */ 3710 free_saveq = 1; 3711 saveq = list_get_first(&pring->iocb_continueq, 3712 struct lpfc_iocbq, list); 3713 irsp = &(saveq->iocb); 3714 list_del_init(&pring->iocb_continueq); 3715 pring->iocb_continueq_cnt = 0; 3716 3717 pring->stats.iocb_rsp++; 3718 3719 /* 3720 * If resource errors reported from HBA, reduce 3721 * queuedepths of the SCSI device. 3722 */ 3723 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3724 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3725 IOERR_NO_RESOURCES)) { 3726 spin_unlock_irqrestore(&phba->hbalock, iflag); 3727 phba->lpfc_rampdown_queue_depth(phba); 3728 spin_lock_irqsave(&phba->hbalock, iflag); 3729 } 3730 3731 if (irsp->ulpStatus) { 3732 /* Rsp ring <ringno> error: IOCB */ 3733 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3734 "0328 Rsp Ring %d error: " 3735 "IOCB Data: " 3736 "x%x x%x x%x x%x " 3737 "x%x x%x x%x x%x " 3738 "x%x x%x x%x x%x " 3739 "x%x x%x x%x x%x\n", 3740 pring->ringno, 3741 irsp->un.ulpWord[0], 3742 irsp->un.ulpWord[1], 3743 irsp->un.ulpWord[2], 3744 irsp->un.ulpWord[3], 3745 irsp->un.ulpWord[4], 3746 irsp->un.ulpWord[5], 3747 *(((uint32_t *) irsp) + 6), 3748 *(((uint32_t *) irsp) + 7), 3749 *(((uint32_t *) irsp) + 8), 3750 *(((uint32_t *) irsp) + 9), 3751 *(((uint32_t *) irsp) + 10), 3752 *(((uint32_t *) irsp) + 11), 3753 *(((uint32_t *) irsp) + 12), 3754 *(((uint32_t *) irsp) + 13), 3755 *(((uint32_t *) irsp) + 14), 3756 *(((uint32_t *) irsp) + 15)); 3757 } 3758 3759 /* 3760 * Fetch the IOCB command type and call the correct completion 3761 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3762 * get freed back to the lpfc_iocb_list by the discovery 3763 * kernel thread. 3764 */ 3765 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3766 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3767 switch (type) { 3768 case LPFC_SOL_IOCB: 3769 spin_unlock_irqrestore(&phba->hbalock, iflag); 3770 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3771 spin_lock_irqsave(&phba->hbalock, iflag); 3772 break; 3773 3774 case LPFC_UNSOL_IOCB: 3775 spin_unlock_irqrestore(&phba->hbalock, iflag); 3776 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3777 spin_lock_irqsave(&phba->hbalock, iflag); 3778 if (!rc) 3779 free_saveq = 0; 3780 break; 3781 3782 case LPFC_ABORT_IOCB: 3783 cmdiocbp = NULL; 3784 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { 3785 spin_unlock_irqrestore(&phba->hbalock, iflag); 3786 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3787 saveq); 3788 spin_lock_irqsave(&phba->hbalock, iflag); 3789 } 3790 if (cmdiocbp) { 3791 /* Call the specified completion routine */ 3792 if (cmdiocbp->iocb_cmpl) { 3793 spin_unlock_irqrestore(&phba->hbalock, 3794 iflag); 3795 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3796 saveq); 3797 spin_lock_irqsave(&phba->hbalock, 3798 iflag); 3799 } else 3800 __lpfc_sli_release_iocbq(phba, 3801 cmdiocbp); 3802 } 3803 break; 3804 3805 case LPFC_UNKNOWN_IOCB: 3806 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3807 char adaptermsg[LPFC_MAX_ADPTMSG]; 3808 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3809 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3810 MAX_MSG_DATA); 3811 dev_warn(&((phba->pcidev)->dev), 3812 "lpfc%d: %s\n", 3813 phba->brd_no, adaptermsg); 3814 } else { 3815 /* Unknown IOCB command */ 3816 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3817 "0335 Unknown IOCB " 3818 "command Data: x%x " 3819 "x%x x%x x%x\n", 3820 irsp->ulpCommand, 3821 irsp->ulpStatus, 3822 irsp->ulpIoTag, 3823 irsp->ulpContext); 3824 } 3825 break; 3826 } 3827 3828 if (free_saveq) { 3829 list_for_each_entry_safe(rspiocbp, next_iocb, 3830 &saveq->list, list) { 3831 list_del_init(&rspiocbp->list); 3832 __lpfc_sli_release_iocbq(phba, rspiocbp); 3833 } 3834 __lpfc_sli_release_iocbq(phba, saveq); 3835 } 3836 rspiocbp = NULL; 3837 } 3838 spin_unlock_irqrestore(&phba->hbalock, iflag); 3839 return rspiocbp; 3840 } 3841 3842 /** 3843 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3844 * @phba: Pointer to HBA context object. 3845 * @pring: Pointer to driver SLI ring object. 3846 * @mask: Host attention register mask for this ring. 3847 * 3848 * This routine wraps the actual slow_ring event process routine from the 3849 * API jump table function pointer from the lpfc_hba struct. 3850 **/ 3851 void 3852 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3853 struct lpfc_sli_ring *pring, uint32_t mask) 3854 { 3855 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3856 } 3857 3858 /** 3859 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3860 * @phba: Pointer to HBA context object. 3861 * @pring: Pointer to driver SLI ring object. 3862 * @mask: Host attention register mask for this ring. 3863 * 3864 * This function is called from the worker thread when there is a ring event 3865 * for non-fcp rings. The caller does not hold any lock. The function will 3866 * remove each response iocb in the response ring and calls the handle 3867 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3868 **/ 3869 static void 3870 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3871 struct lpfc_sli_ring *pring, uint32_t mask) 3872 { 3873 struct lpfc_pgp *pgp; 3874 IOCB_t *entry; 3875 IOCB_t *irsp = NULL; 3876 struct lpfc_iocbq *rspiocbp = NULL; 3877 uint32_t portRspPut, portRspMax; 3878 unsigned long iflag; 3879 uint32_t status; 3880 3881 pgp = &phba->port_gp[pring->ringno]; 3882 spin_lock_irqsave(&phba->hbalock, iflag); 3883 pring->stats.iocb_event++; 3884 3885 /* 3886 * The next available response entry should never exceed the maximum 3887 * entries. If it does, treat it as an adapter hardware error. 3888 */ 3889 portRspMax = pring->sli.sli3.numRiocb; 3890 portRspPut = le32_to_cpu(pgp->rspPutInx); 3891 if (portRspPut >= portRspMax) { 3892 /* 3893 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3894 * rsp ring <portRspMax> 3895 */ 3896 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3897 "0303 Ring %d handler: portRspPut %d " 3898 "is bigger than rsp ring %d\n", 3899 pring->ringno, portRspPut, portRspMax); 3900 3901 phba->link_state = LPFC_HBA_ERROR; 3902 spin_unlock_irqrestore(&phba->hbalock, iflag); 3903 3904 phba->work_hs = HS_FFER3; 3905 lpfc_handle_eratt(phba); 3906 3907 return; 3908 } 3909 3910 rmb(); 3911 while (pring->sli.sli3.rspidx != portRspPut) { 3912 /* 3913 * Build a completion list and call the appropriate handler. 3914 * The process is to get the next available response iocb, get 3915 * a free iocb from the list, copy the response data into the 3916 * free iocb, insert to the continuation list, and update the 3917 * next response index to slim. This process makes response 3918 * iocb's in the ring available to DMA as fast as possible but 3919 * pays a penalty for a copy operation. Since the iocb is 3920 * only 32 bytes, this penalty is considered small relative to 3921 * the PCI reads for register values and a slim write. When 3922 * the ulpLe field is set, the entire Command has been 3923 * received. 3924 */ 3925 entry = lpfc_resp_iocb(phba, pring); 3926 3927 phba->last_completion_time = jiffies; 3928 rspiocbp = __lpfc_sli_get_iocbq(phba); 3929 if (rspiocbp == NULL) { 3930 printk(KERN_ERR "%s: out of buffers! Failing " 3931 "completion.\n", __func__); 3932 break; 3933 } 3934 3935 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3936 phba->iocb_rsp_size); 3937 irsp = &rspiocbp->iocb; 3938 3939 if (++pring->sli.sli3.rspidx >= portRspMax) 3940 pring->sli.sli3.rspidx = 0; 3941 3942 if (pring->ringno == LPFC_ELS_RING) { 3943 lpfc_debugfs_slow_ring_trc(phba, 3944 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3945 *(((uint32_t *) irsp) + 4), 3946 *(((uint32_t *) irsp) + 6), 3947 *(((uint32_t *) irsp) + 7)); 3948 } 3949 3950 writel(pring->sli.sli3.rspidx, 3951 &phba->host_gp[pring->ringno].rspGetInx); 3952 3953 spin_unlock_irqrestore(&phba->hbalock, iflag); 3954 /* Handle the response IOCB */ 3955 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3956 spin_lock_irqsave(&phba->hbalock, iflag); 3957 3958 /* 3959 * If the port response put pointer has not been updated, sync 3960 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3961 * response put pointer. 3962 */ 3963 if (pring->sli.sli3.rspidx == portRspPut) { 3964 portRspPut = le32_to_cpu(pgp->rspPutInx); 3965 } 3966 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3967 3968 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3969 /* At least one response entry has been freed */ 3970 pring->stats.iocb_rsp_full++; 3971 /* SET RxRE_RSP in Chip Att register */ 3972 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3973 writel(status, phba->CAregaddr); 3974 readl(phba->CAregaddr); /* flush */ 3975 } 3976 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3977 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3978 pring->stats.iocb_cmd_empty++; 3979 3980 /* Force update of the local copy of cmdGetInx */ 3981 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3982 lpfc_sli_resume_iocb(phba, pring); 3983 3984 if ((pring->lpfc_sli_cmd_available)) 3985 (pring->lpfc_sli_cmd_available) (phba, pring); 3986 3987 } 3988 3989 spin_unlock_irqrestore(&phba->hbalock, iflag); 3990 return; 3991 } 3992 3993 /** 3994 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3995 * @phba: Pointer to HBA context object. 3996 * @pring: Pointer to driver SLI ring object. 3997 * @mask: Host attention register mask for this ring. 3998 * 3999 * This function is called from the worker thread when there is a pending 4000 * ELS response iocb on the driver internal slow-path response iocb worker 4001 * queue. The caller does not hold any lock. The function will remove each 4002 * response iocb from the response worker queue and calls the handle 4003 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 4004 **/ 4005 static void 4006 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 4007 struct lpfc_sli_ring *pring, uint32_t mask) 4008 { 4009 struct lpfc_iocbq *irspiocbq; 4010 struct hbq_dmabuf *dmabuf; 4011 struct lpfc_cq_event *cq_event; 4012 unsigned long iflag; 4013 int count = 0; 4014 4015 spin_lock_irqsave(&phba->hbalock, iflag); 4016 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 4017 spin_unlock_irqrestore(&phba->hbalock, iflag); 4018 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 4019 /* Get the response iocb from the head of work queue */ 4020 spin_lock_irqsave(&phba->hbalock, iflag); 4021 list_remove_head(&phba->sli4_hba.sp_queue_event, 4022 cq_event, struct lpfc_cq_event, list); 4023 spin_unlock_irqrestore(&phba->hbalock, iflag); 4024 4025 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 4026 case CQE_CODE_COMPL_WQE: 4027 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 4028 cq_event); 4029 /* Translate ELS WCQE to response IOCBQ */ 4030 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 4031 irspiocbq); 4032 if (irspiocbq) 4033 lpfc_sli_sp_handle_rspiocb(phba, pring, 4034 irspiocbq); 4035 count++; 4036 break; 4037 case CQE_CODE_RECEIVE: 4038 case CQE_CODE_RECEIVE_V1: 4039 dmabuf = container_of(cq_event, struct hbq_dmabuf, 4040 cq_event); 4041 lpfc_sli4_handle_received_buffer(phba, dmabuf); 4042 count++; 4043 break; 4044 default: 4045 break; 4046 } 4047 4048 /* Limit the number of events to 64 to avoid soft lockups */ 4049 if (count == 64) 4050 break; 4051 } 4052 } 4053 4054 /** 4055 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 4056 * @phba: Pointer to HBA context object. 4057 * @pring: Pointer to driver SLI ring object. 4058 * 4059 * This function aborts all iocbs in the given ring and frees all the iocb 4060 * objects in txq. This function issues an abort iocb for all the iocb commands 4061 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4062 * the return of this function. The caller is not required to hold any locks. 4063 **/ 4064 void 4065 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 4066 { 4067 LIST_HEAD(completions); 4068 struct lpfc_iocbq *iocb, *next_iocb; 4069 4070 if (pring->ringno == LPFC_ELS_RING) { 4071 lpfc_fabric_abort_hba(phba); 4072 } 4073 4074 /* Error everything on txq and txcmplq 4075 * First do the txq. 4076 */ 4077 if (phba->sli_rev >= LPFC_SLI_REV4) { 4078 spin_lock_irq(&pring->ring_lock); 4079 list_splice_init(&pring->txq, &completions); 4080 pring->txq_cnt = 0; 4081 spin_unlock_irq(&pring->ring_lock); 4082 4083 spin_lock_irq(&phba->hbalock); 4084 /* Next issue ABTS for everything on the txcmplq */ 4085 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4086 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4087 spin_unlock_irq(&phba->hbalock); 4088 } else { 4089 spin_lock_irq(&phba->hbalock); 4090 list_splice_init(&pring->txq, &completions); 4091 pring->txq_cnt = 0; 4092 4093 /* Next issue ABTS for everything on the txcmplq */ 4094 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 4095 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 4096 spin_unlock_irq(&phba->hbalock); 4097 } 4098 4099 /* Cancel all the IOCBs from the completions list */ 4100 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 4101 IOERR_SLI_ABORTED); 4102 } 4103 4104 /** 4105 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 4106 * @phba: Pointer to HBA context object. 4107 * @pring: Pointer to driver SLI ring object. 4108 * 4109 * This function aborts all iocbs in FCP rings and frees all the iocb 4110 * objects in txq. This function issues an abort iocb for all the iocb commands 4111 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 4112 * the return of this function. The caller is not required to hold any locks. 4113 **/ 4114 void 4115 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 4116 { 4117 struct lpfc_sli *psli = &phba->sli; 4118 struct lpfc_sli_ring *pring; 4119 uint32_t i; 4120 4121 /* Look on all the FCP Rings for the iotag */ 4122 if (phba->sli_rev >= LPFC_SLI_REV4) { 4123 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4124 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4125 lpfc_sli_abort_iocb_ring(phba, pring); 4126 } 4127 } else { 4128 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4129 lpfc_sli_abort_iocb_ring(phba, pring); 4130 } 4131 } 4132 4133 /** 4134 * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring 4135 * @phba: Pointer to HBA context object. 4136 * 4137 * This function flushes all iocbs in the IO ring and frees all the iocb 4138 * objects in txq and txcmplq. This function will not issue abort iocbs 4139 * for all the iocb commands in txcmplq, they will just be returned with 4140 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 4141 * slot has been permanently disabled. 4142 **/ 4143 void 4144 lpfc_sli_flush_io_rings(struct lpfc_hba *phba) 4145 { 4146 LIST_HEAD(txq); 4147 LIST_HEAD(txcmplq); 4148 struct lpfc_sli *psli = &phba->sli; 4149 struct lpfc_sli_ring *pring; 4150 uint32_t i; 4151 struct lpfc_iocbq *piocb, *next_iocb; 4152 4153 spin_lock_irq(&phba->hbalock); 4154 if (phba->hba_flag & HBA_IOQ_FLUSH || 4155 !phba->sli4_hba.hdwq) { 4156 spin_unlock_irq(&phba->hbalock); 4157 return; 4158 } 4159 /* Indicate the I/O queues are flushed */ 4160 phba->hba_flag |= HBA_IOQ_FLUSH; 4161 spin_unlock_irq(&phba->hbalock); 4162 4163 /* Look on all the FCP Rings for the iotag */ 4164 if (phba->sli_rev >= LPFC_SLI_REV4) { 4165 for (i = 0; i < phba->cfg_hdw_queue; i++) { 4166 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 4167 4168 spin_lock_irq(&pring->ring_lock); 4169 /* Retrieve everything on txq */ 4170 list_splice_init(&pring->txq, &txq); 4171 list_for_each_entry_safe(piocb, next_iocb, 4172 &pring->txcmplq, list) 4173 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4174 /* Retrieve everything on the txcmplq */ 4175 list_splice_init(&pring->txcmplq, &txcmplq); 4176 pring->txq_cnt = 0; 4177 pring->txcmplq_cnt = 0; 4178 spin_unlock_irq(&pring->ring_lock); 4179 4180 /* Flush the txq */ 4181 lpfc_sli_cancel_iocbs(phba, &txq, 4182 IOSTAT_LOCAL_REJECT, 4183 IOERR_SLI_DOWN); 4184 /* Flush the txcmpq */ 4185 lpfc_sli_cancel_iocbs(phba, &txcmplq, 4186 IOSTAT_LOCAL_REJECT, 4187 IOERR_SLI_DOWN); 4188 } 4189 } else { 4190 pring = &psli->sli3_ring[LPFC_FCP_RING]; 4191 4192 spin_lock_irq(&phba->hbalock); 4193 /* Retrieve everything on txq */ 4194 list_splice_init(&pring->txq, &txq); 4195 list_for_each_entry_safe(piocb, next_iocb, 4196 &pring->txcmplq, list) 4197 piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 4198 /* Retrieve everything on the txcmplq */ 4199 list_splice_init(&pring->txcmplq, &txcmplq); 4200 pring->txq_cnt = 0; 4201 pring->txcmplq_cnt = 0; 4202 spin_unlock_irq(&phba->hbalock); 4203 4204 /* Flush the txq */ 4205 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 4206 IOERR_SLI_DOWN); 4207 /* Flush the txcmpq */ 4208 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 4209 IOERR_SLI_DOWN); 4210 } 4211 } 4212 4213 /** 4214 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 4215 * @phba: Pointer to HBA context object. 4216 * @mask: Bit mask to be checked. 4217 * 4218 * This function reads the host status register and compares 4219 * with the provided bit mask to check if HBA completed 4220 * the restart. This function will wait in a loop for the 4221 * HBA to complete restart. If the HBA does not restart within 4222 * 15 iterations, the function will reset the HBA again. The 4223 * function returns 1 when HBA fail to restart otherwise returns 4224 * zero. 4225 **/ 4226 static int 4227 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 4228 { 4229 uint32_t status; 4230 int i = 0; 4231 int retval = 0; 4232 4233 /* Read the HBA Host Status Register */ 4234 if (lpfc_readl(phba->HSregaddr, &status)) 4235 return 1; 4236 4237 /* 4238 * Check status register every 100ms for 5 retries, then every 4239 * 500ms for 5, then every 2.5 sec for 5, then reset board and 4240 * every 2.5 sec for 4. 4241 * Break our of the loop if errors occurred during init. 4242 */ 4243 while (((status & mask) != mask) && 4244 !(status & HS_FFERM) && 4245 i++ < 20) { 4246 4247 if (i <= 5) 4248 msleep(10); 4249 else if (i <= 10) 4250 msleep(500); 4251 else 4252 msleep(2500); 4253 4254 if (i == 15) { 4255 /* Do post */ 4256 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4257 lpfc_sli_brdrestart(phba); 4258 } 4259 /* Read the HBA Host Status Register */ 4260 if (lpfc_readl(phba->HSregaddr, &status)) { 4261 retval = 1; 4262 break; 4263 } 4264 } 4265 4266 /* Check to see if any errors occurred during init */ 4267 if ((status & HS_FFERM) || (i >= 20)) { 4268 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4269 "2751 Adapter failed to restart, " 4270 "status reg x%x, FW Data: A8 x%x AC x%x\n", 4271 status, 4272 readl(phba->MBslimaddr + 0xa8), 4273 readl(phba->MBslimaddr + 0xac)); 4274 phba->link_state = LPFC_HBA_ERROR; 4275 retval = 1; 4276 } 4277 4278 return retval; 4279 } 4280 4281 /** 4282 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 4283 * @phba: Pointer to HBA context object. 4284 * @mask: Bit mask to be checked. 4285 * 4286 * This function checks the host status register to check if HBA is 4287 * ready. This function will wait in a loop for the HBA to be ready 4288 * If the HBA is not ready , the function will will reset the HBA PCI 4289 * function again. The function returns 1 when HBA fail to be ready 4290 * otherwise returns zero. 4291 **/ 4292 static int 4293 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 4294 { 4295 uint32_t status; 4296 int retval = 0; 4297 4298 /* Read the HBA Host Status Register */ 4299 status = lpfc_sli4_post_status_check(phba); 4300 4301 if (status) { 4302 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4303 lpfc_sli_brdrestart(phba); 4304 status = lpfc_sli4_post_status_check(phba); 4305 } 4306 4307 /* Check to see if any errors occurred during init */ 4308 if (status) { 4309 phba->link_state = LPFC_HBA_ERROR; 4310 retval = 1; 4311 } else 4312 phba->sli4_hba.intr_enable = 0; 4313 4314 return retval; 4315 } 4316 4317 /** 4318 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 4319 * @phba: Pointer to HBA context object. 4320 * @mask: Bit mask to be checked. 4321 * 4322 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 4323 * from the API jump table function pointer from the lpfc_hba struct. 4324 **/ 4325 int 4326 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 4327 { 4328 return phba->lpfc_sli_brdready(phba, mask); 4329 } 4330 4331 #define BARRIER_TEST_PATTERN (0xdeadbeef) 4332 4333 /** 4334 * lpfc_reset_barrier - Make HBA ready for HBA reset 4335 * @phba: Pointer to HBA context object. 4336 * 4337 * This function is called before resetting an HBA. This function is called 4338 * with hbalock held and requests HBA to quiesce DMAs before a reset. 4339 **/ 4340 void lpfc_reset_barrier(struct lpfc_hba *phba) 4341 { 4342 uint32_t __iomem *resp_buf; 4343 uint32_t __iomem *mbox_buf; 4344 volatile uint32_t mbox; 4345 uint32_t hc_copy, ha_copy, resp_data; 4346 int i; 4347 uint8_t hdrtype; 4348 4349 lockdep_assert_held(&phba->hbalock); 4350 4351 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4352 if (hdrtype != 0x80 || 4353 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4354 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4355 return; 4356 4357 /* 4358 * Tell the other part of the chip to suspend temporarily all 4359 * its DMA activity. 4360 */ 4361 resp_buf = phba->MBslimaddr; 4362 4363 /* Disable the error attention */ 4364 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4365 return; 4366 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4367 readl(phba->HCregaddr); /* flush */ 4368 phba->link_flag |= LS_IGNORE_ERATT; 4369 4370 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4371 return; 4372 if (ha_copy & HA_ERATT) { 4373 /* Clear Chip error bit */ 4374 writel(HA_ERATT, phba->HAregaddr); 4375 phba->pport->stopped = 1; 4376 } 4377 4378 mbox = 0; 4379 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4380 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4381 4382 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4383 mbox_buf = phba->MBslimaddr; 4384 writel(mbox, mbox_buf); 4385 4386 for (i = 0; i < 50; i++) { 4387 if (lpfc_readl((resp_buf + 1), &resp_data)) 4388 return; 4389 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4390 mdelay(1); 4391 else 4392 break; 4393 } 4394 resp_data = 0; 4395 if (lpfc_readl((resp_buf + 1), &resp_data)) 4396 return; 4397 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4398 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4399 phba->pport->stopped) 4400 goto restore_hc; 4401 else 4402 goto clear_errat; 4403 } 4404 4405 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4406 resp_data = 0; 4407 for (i = 0; i < 500; i++) { 4408 if (lpfc_readl(resp_buf, &resp_data)) 4409 return; 4410 if (resp_data != mbox) 4411 mdelay(1); 4412 else 4413 break; 4414 } 4415 4416 clear_errat: 4417 4418 while (++i < 500) { 4419 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4420 return; 4421 if (!(ha_copy & HA_ERATT)) 4422 mdelay(1); 4423 else 4424 break; 4425 } 4426 4427 if (readl(phba->HAregaddr) & HA_ERATT) { 4428 writel(HA_ERATT, phba->HAregaddr); 4429 phba->pport->stopped = 1; 4430 } 4431 4432 restore_hc: 4433 phba->link_flag &= ~LS_IGNORE_ERATT; 4434 writel(hc_copy, phba->HCregaddr); 4435 readl(phba->HCregaddr); /* flush */ 4436 } 4437 4438 /** 4439 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4440 * @phba: Pointer to HBA context object. 4441 * 4442 * This function issues a kill_board mailbox command and waits for 4443 * the error attention interrupt. This function is called for stopping 4444 * the firmware processing. The caller is not required to hold any 4445 * locks. This function calls lpfc_hba_down_post function to free 4446 * any pending commands after the kill. The function will return 1 when it 4447 * fails to kill the board else will return 0. 4448 **/ 4449 int 4450 lpfc_sli_brdkill(struct lpfc_hba *phba) 4451 { 4452 struct lpfc_sli *psli; 4453 LPFC_MBOXQ_t *pmb; 4454 uint32_t status; 4455 uint32_t ha_copy; 4456 int retval; 4457 int i = 0; 4458 4459 psli = &phba->sli; 4460 4461 /* Kill HBA */ 4462 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4463 "0329 Kill HBA Data: x%x x%x\n", 4464 phba->pport->port_state, psli->sli_flag); 4465 4466 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4467 if (!pmb) 4468 return 1; 4469 4470 /* Disable the error attention */ 4471 spin_lock_irq(&phba->hbalock); 4472 if (lpfc_readl(phba->HCregaddr, &status)) { 4473 spin_unlock_irq(&phba->hbalock); 4474 mempool_free(pmb, phba->mbox_mem_pool); 4475 return 1; 4476 } 4477 status &= ~HC_ERINT_ENA; 4478 writel(status, phba->HCregaddr); 4479 readl(phba->HCregaddr); /* flush */ 4480 phba->link_flag |= LS_IGNORE_ERATT; 4481 spin_unlock_irq(&phba->hbalock); 4482 4483 lpfc_kill_board(phba, pmb); 4484 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4485 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4486 4487 if (retval != MBX_SUCCESS) { 4488 if (retval != MBX_BUSY) 4489 mempool_free(pmb, phba->mbox_mem_pool); 4490 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4491 "2752 KILL_BOARD command failed retval %d\n", 4492 retval); 4493 spin_lock_irq(&phba->hbalock); 4494 phba->link_flag &= ~LS_IGNORE_ERATT; 4495 spin_unlock_irq(&phba->hbalock); 4496 return 1; 4497 } 4498 4499 spin_lock_irq(&phba->hbalock); 4500 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4501 spin_unlock_irq(&phba->hbalock); 4502 4503 mempool_free(pmb, phba->mbox_mem_pool); 4504 4505 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4506 * attention every 100ms for 3 seconds. If we don't get ERATT after 4507 * 3 seconds we still set HBA_ERROR state because the status of the 4508 * board is now undefined. 4509 */ 4510 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4511 return 1; 4512 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4513 mdelay(100); 4514 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4515 return 1; 4516 } 4517 4518 del_timer_sync(&psli->mbox_tmo); 4519 if (ha_copy & HA_ERATT) { 4520 writel(HA_ERATT, phba->HAregaddr); 4521 phba->pport->stopped = 1; 4522 } 4523 spin_lock_irq(&phba->hbalock); 4524 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4525 psli->mbox_active = NULL; 4526 phba->link_flag &= ~LS_IGNORE_ERATT; 4527 spin_unlock_irq(&phba->hbalock); 4528 4529 lpfc_hba_down_post(phba); 4530 phba->link_state = LPFC_HBA_ERROR; 4531 4532 return ha_copy & HA_ERATT ? 0 : 1; 4533 } 4534 4535 /** 4536 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4537 * @phba: Pointer to HBA context object. 4538 * 4539 * This function resets the HBA by writing HC_INITFF to the control 4540 * register. After the HBA resets, this function resets all the iocb ring 4541 * indices. This function disables PCI layer parity checking during 4542 * the reset. 4543 * This function returns 0 always. 4544 * The caller is not required to hold any locks. 4545 **/ 4546 int 4547 lpfc_sli_brdreset(struct lpfc_hba *phba) 4548 { 4549 struct lpfc_sli *psli; 4550 struct lpfc_sli_ring *pring; 4551 uint16_t cfg_value; 4552 int i; 4553 4554 psli = &phba->sli; 4555 4556 /* Reset HBA */ 4557 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4558 "0325 Reset HBA Data: x%x x%x\n", 4559 (phba->pport) ? phba->pport->port_state : 0, 4560 psli->sli_flag); 4561 4562 /* perform board reset */ 4563 phba->fc_eventTag = 0; 4564 phba->link_events = 0; 4565 if (phba->pport) { 4566 phba->pport->fc_myDID = 0; 4567 phba->pport->fc_prevDID = 0; 4568 } 4569 4570 /* Turn off parity checking and serr during the physical reset */ 4571 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) 4572 return -EIO; 4573 4574 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4575 (cfg_value & 4576 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4577 4578 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4579 4580 /* Now toggle INITFF bit in the Host Control Register */ 4581 writel(HC_INITFF, phba->HCregaddr); 4582 mdelay(1); 4583 readl(phba->HCregaddr); /* flush */ 4584 writel(0, phba->HCregaddr); 4585 readl(phba->HCregaddr); /* flush */ 4586 4587 /* Restore PCI cmd register */ 4588 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4589 4590 /* Initialize relevant SLI info */ 4591 for (i = 0; i < psli->num_rings; i++) { 4592 pring = &psli->sli3_ring[i]; 4593 pring->flag = 0; 4594 pring->sli.sli3.rspidx = 0; 4595 pring->sli.sli3.next_cmdidx = 0; 4596 pring->sli.sli3.local_getidx = 0; 4597 pring->sli.sli3.cmdidx = 0; 4598 pring->missbufcnt = 0; 4599 } 4600 4601 phba->link_state = LPFC_WARM_START; 4602 return 0; 4603 } 4604 4605 /** 4606 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4607 * @phba: Pointer to HBA context object. 4608 * 4609 * This function resets a SLI4 HBA. This function disables PCI layer parity 4610 * checking during resets the device. The caller is not required to hold 4611 * any locks. 4612 * 4613 * This function returns 0 on success else returns negative error code. 4614 **/ 4615 int 4616 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4617 { 4618 struct lpfc_sli *psli = &phba->sli; 4619 uint16_t cfg_value; 4620 int rc = 0; 4621 4622 /* Reset HBA */ 4623 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4624 "0295 Reset HBA Data: x%x x%x x%x\n", 4625 phba->pport->port_state, psli->sli_flag, 4626 phba->hba_flag); 4627 4628 /* perform board reset */ 4629 phba->fc_eventTag = 0; 4630 phba->link_events = 0; 4631 phba->pport->fc_myDID = 0; 4632 phba->pport->fc_prevDID = 0; 4633 4634 spin_lock_irq(&phba->hbalock); 4635 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4636 phba->fcf.fcf_flag = 0; 4637 spin_unlock_irq(&phba->hbalock); 4638 4639 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4640 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4641 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4642 return rc; 4643 } 4644 4645 /* Now physically reset the device */ 4646 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4647 "0389 Performing PCI function reset!\n"); 4648 4649 /* Turn off parity checking and serr during the physical reset */ 4650 if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { 4651 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4652 "3205 PCI read Config failed\n"); 4653 return -EIO; 4654 } 4655 4656 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4657 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4658 4659 /* Perform FCoE PCI function reset before freeing queue memory */ 4660 rc = lpfc_pci_function_reset(phba); 4661 4662 /* Restore PCI cmd register */ 4663 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4664 4665 return rc; 4666 } 4667 4668 /** 4669 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4670 * @phba: Pointer to HBA context object. 4671 * 4672 * This function is called in the SLI initialization code path to 4673 * restart the HBA. The caller is not required to hold any lock. 4674 * This function writes MBX_RESTART mailbox command to the SLIM and 4675 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4676 * function to free any pending commands. The function enables 4677 * POST only during the first initialization. The function returns zero. 4678 * The function does not guarantee completion of MBX_RESTART mailbox 4679 * command before the return of this function. 4680 **/ 4681 static int 4682 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4683 { 4684 MAILBOX_t *mb; 4685 struct lpfc_sli *psli; 4686 volatile uint32_t word0; 4687 void __iomem *to_slim; 4688 uint32_t hba_aer_enabled; 4689 4690 spin_lock_irq(&phba->hbalock); 4691 4692 /* Take PCIe device Advanced Error Reporting (AER) state */ 4693 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4694 4695 psli = &phba->sli; 4696 4697 /* Restart HBA */ 4698 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4699 "0337 Restart HBA Data: x%x x%x\n", 4700 (phba->pport) ? phba->pport->port_state : 0, 4701 psli->sli_flag); 4702 4703 word0 = 0; 4704 mb = (MAILBOX_t *) &word0; 4705 mb->mbxCommand = MBX_RESTART; 4706 mb->mbxHc = 1; 4707 4708 lpfc_reset_barrier(phba); 4709 4710 to_slim = phba->MBslimaddr; 4711 writel(*(uint32_t *) mb, to_slim); 4712 readl(to_slim); /* flush */ 4713 4714 /* Only skip post after fc_ffinit is completed */ 4715 if (phba->pport && phba->pport->port_state) 4716 word0 = 1; /* This is really setting up word1 */ 4717 else 4718 word0 = 0; /* This is really setting up word1 */ 4719 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4720 writel(*(uint32_t *) mb, to_slim); 4721 readl(to_slim); /* flush */ 4722 4723 lpfc_sli_brdreset(phba); 4724 if (phba->pport) 4725 phba->pport->stopped = 0; 4726 phba->link_state = LPFC_INIT_START; 4727 phba->hba_flag = 0; 4728 spin_unlock_irq(&phba->hbalock); 4729 4730 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4731 psli->stats_start = ktime_get_seconds(); 4732 4733 /* Give the INITFF and Post time to settle. */ 4734 mdelay(100); 4735 4736 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4737 if (hba_aer_enabled) 4738 pci_disable_pcie_error_reporting(phba->pcidev); 4739 4740 lpfc_hba_down_post(phba); 4741 4742 return 0; 4743 } 4744 4745 /** 4746 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4747 * @phba: Pointer to HBA context object. 4748 * 4749 * This function is called in the SLI initialization code path to restart 4750 * a SLI4 HBA. The caller is not required to hold any lock. 4751 * At the end of the function, it calls lpfc_hba_down_post function to 4752 * free any pending commands. 4753 **/ 4754 static int 4755 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4756 { 4757 struct lpfc_sli *psli = &phba->sli; 4758 uint32_t hba_aer_enabled; 4759 int rc; 4760 4761 /* Restart HBA */ 4762 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4763 "0296 Restart HBA Data: x%x x%x\n", 4764 phba->pport->port_state, psli->sli_flag); 4765 4766 /* Take PCIe device Advanced Error Reporting (AER) state */ 4767 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4768 4769 rc = lpfc_sli4_brdreset(phba); 4770 if (rc) { 4771 phba->link_state = LPFC_HBA_ERROR; 4772 goto hba_down_queue; 4773 } 4774 4775 spin_lock_irq(&phba->hbalock); 4776 phba->pport->stopped = 0; 4777 phba->link_state = LPFC_INIT_START; 4778 phba->hba_flag = 0; 4779 spin_unlock_irq(&phba->hbalock); 4780 4781 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4782 psli->stats_start = ktime_get_seconds(); 4783 4784 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4785 if (hba_aer_enabled) 4786 pci_disable_pcie_error_reporting(phba->pcidev); 4787 4788 hba_down_queue: 4789 lpfc_hba_down_post(phba); 4790 lpfc_sli4_queue_destroy(phba); 4791 4792 return rc; 4793 } 4794 4795 /** 4796 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4797 * @phba: Pointer to HBA context object. 4798 * 4799 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4800 * API jump table function pointer from the lpfc_hba struct. 4801 **/ 4802 int 4803 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4804 { 4805 return phba->lpfc_sli_brdrestart(phba); 4806 } 4807 4808 /** 4809 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4810 * @phba: Pointer to HBA context object. 4811 * 4812 * This function is called after a HBA restart to wait for successful 4813 * restart of the HBA. Successful restart of the HBA is indicated by 4814 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4815 * iteration, the function will restart the HBA again. The function returns 4816 * zero if HBA successfully restarted else returns negative error code. 4817 **/ 4818 int 4819 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4820 { 4821 uint32_t status, i = 0; 4822 4823 /* Read the HBA Host Status Register */ 4824 if (lpfc_readl(phba->HSregaddr, &status)) 4825 return -EIO; 4826 4827 /* Check status register to see what current state is */ 4828 i = 0; 4829 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4830 4831 /* Check every 10ms for 10 retries, then every 100ms for 90 4832 * retries, then every 1 sec for 50 retires for a total of 4833 * ~60 seconds before reset the board again and check every 4834 * 1 sec for 50 retries. The up to 60 seconds before the 4835 * board ready is required by the Falcon FIPS zeroization 4836 * complete, and any reset the board in between shall cause 4837 * restart of zeroization, further delay the board ready. 4838 */ 4839 if (i++ >= 200) { 4840 /* Adapter failed to init, timeout, status reg 4841 <status> */ 4842 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4843 "0436 Adapter failed to init, " 4844 "timeout, status reg x%x, " 4845 "FW Data: A8 x%x AC x%x\n", status, 4846 readl(phba->MBslimaddr + 0xa8), 4847 readl(phba->MBslimaddr + 0xac)); 4848 phba->link_state = LPFC_HBA_ERROR; 4849 return -ETIMEDOUT; 4850 } 4851 4852 /* Check to see if any errors occurred during init */ 4853 if (status & HS_FFERM) { 4854 /* ERROR: During chipset initialization */ 4855 /* Adapter failed to init, chipset, status reg 4856 <status> */ 4857 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4858 "0437 Adapter failed to init, " 4859 "chipset, status reg x%x, " 4860 "FW Data: A8 x%x AC x%x\n", status, 4861 readl(phba->MBslimaddr + 0xa8), 4862 readl(phba->MBslimaddr + 0xac)); 4863 phba->link_state = LPFC_HBA_ERROR; 4864 return -EIO; 4865 } 4866 4867 if (i <= 10) 4868 msleep(10); 4869 else if (i <= 100) 4870 msleep(100); 4871 else 4872 msleep(1000); 4873 4874 if (i == 150) { 4875 /* Do post */ 4876 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4877 lpfc_sli_brdrestart(phba); 4878 } 4879 /* Read the HBA Host Status Register */ 4880 if (lpfc_readl(phba->HSregaddr, &status)) 4881 return -EIO; 4882 } 4883 4884 /* Check to see if any errors occurred during init */ 4885 if (status & HS_FFERM) { 4886 /* ERROR: During chipset initialization */ 4887 /* Adapter failed to init, chipset, status reg <status> */ 4888 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4889 "0438 Adapter failed to init, chipset, " 4890 "status reg x%x, " 4891 "FW Data: A8 x%x AC x%x\n", status, 4892 readl(phba->MBslimaddr + 0xa8), 4893 readl(phba->MBslimaddr + 0xac)); 4894 phba->link_state = LPFC_HBA_ERROR; 4895 return -EIO; 4896 } 4897 4898 /* Clear all interrupt enable conditions */ 4899 writel(0, phba->HCregaddr); 4900 readl(phba->HCregaddr); /* flush */ 4901 4902 /* setup host attn register */ 4903 writel(0xffffffff, phba->HAregaddr); 4904 readl(phba->HAregaddr); /* flush */ 4905 return 0; 4906 } 4907 4908 /** 4909 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4910 * 4911 * This function calculates and returns the number of HBQs required to be 4912 * configured. 4913 **/ 4914 int 4915 lpfc_sli_hbq_count(void) 4916 { 4917 return ARRAY_SIZE(lpfc_hbq_defs); 4918 } 4919 4920 /** 4921 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4922 * 4923 * This function adds the number of hbq entries in every HBQ to get 4924 * the total number of hbq entries required for the HBA and returns 4925 * the total count. 4926 **/ 4927 static int 4928 lpfc_sli_hbq_entry_count(void) 4929 { 4930 int hbq_count = lpfc_sli_hbq_count(); 4931 int count = 0; 4932 int i; 4933 4934 for (i = 0; i < hbq_count; ++i) 4935 count += lpfc_hbq_defs[i]->entry_count; 4936 return count; 4937 } 4938 4939 /** 4940 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4941 * 4942 * This function calculates amount of memory required for all hbq entries 4943 * to be configured and returns the total memory required. 4944 **/ 4945 int 4946 lpfc_sli_hbq_size(void) 4947 { 4948 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4949 } 4950 4951 /** 4952 * lpfc_sli_hbq_setup - configure and initialize HBQs 4953 * @phba: Pointer to HBA context object. 4954 * 4955 * This function is called during the SLI initialization to configure 4956 * all the HBQs and post buffers to the HBQ. The caller is not 4957 * required to hold any locks. This function will return zero if successful 4958 * else it will return negative error code. 4959 **/ 4960 static int 4961 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4962 { 4963 int hbq_count = lpfc_sli_hbq_count(); 4964 LPFC_MBOXQ_t *pmb; 4965 MAILBOX_t *pmbox; 4966 uint32_t hbqno; 4967 uint32_t hbq_entry_index; 4968 4969 /* Get a Mailbox buffer to setup mailbox 4970 * commands for HBA initialization 4971 */ 4972 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4973 4974 if (!pmb) 4975 return -ENOMEM; 4976 4977 pmbox = &pmb->u.mb; 4978 4979 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4980 phba->link_state = LPFC_INIT_MBX_CMDS; 4981 phba->hbq_in_use = 1; 4982 4983 hbq_entry_index = 0; 4984 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4985 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4986 phba->hbqs[hbqno].hbqPutIdx = 0; 4987 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4988 phba->hbqs[hbqno].entry_count = 4989 lpfc_hbq_defs[hbqno]->entry_count; 4990 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4991 hbq_entry_index, pmb); 4992 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4993 4994 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4995 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4996 mbxStatus <status>, ring <num> */ 4997 4998 lpfc_printf_log(phba, KERN_ERR, 4999 LOG_SLI | LOG_VPORT, 5000 "1805 Adapter failed to init. " 5001 "Data: x%x x%x x%x\n", 5002 pmbox->mbxCommand, 5003 pmbox->mbxStatus, hbqno); 5004 5005 phba->link_state = LPFC_HBA_ERROR; 5006 mempool_free(pmb, phba->mbox_mem_pool); 5007 return -ENXIO; 5008 } 5009 } 5010 phba->hbq_count = hbq_count; 5011 5012 mempool_free(pmb, phba->mbox_mem_pool); 5013 5014 /* Initially populate or replenish the HBQs */ 5015 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 5016 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 5017 return 0; 5018 } 5019 5020 /** 5021 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 5022 * @phba: Pointer to HBA context object. 5023 * 5024 * This function is called during the SLI initialization to configure 5025 * all the HBQs and post buffers to the HBQ. The caller is not 5026 * required to hold any locks. This function will return zero if successful 5027 * else it will return negative error code. 5028 **/ 5029 static int 5030 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 5031 { 5032 phba->hbq_in_use = 1; 5033 /** 5034 * Specific case when the MDS diagnostics is enabled and supported. 5035 * The receive buffer count is truncated to manage the incoming 5036 * traffic. 5037 **/ 5038 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) 5039 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5040 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; 5041 else 5042 phba->hbqs[LPFC_ELS_HBQ].entry_count = 5043 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 5044 phba->hbq_count = 1; 5045 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 5046 /* Initially populate or replenish the HBQs */ 5047 return 0; 5048 } 5049 5050 /** 5051 * lpfc_sli_config_port - Issue config port mailbox command 5052 * @phba: Pointer to HBA context object. 5053 * @sli_mode: sli mode - 2/3 5054 * 5055 * This function is called by the sli initialization code path 5056 * to issue config_port mailbox command. This function restarts the 5057 * HBA firmware and issues a config_port mailbox command to configure 5058 * the SLI interface in the sli mode specified by sli_mode 5059 * variable. The caller is not required to hold any locks. 5060 * The function returns 0 if successful, else returns negative error 5061 * code. 5062 **/ 5063 int 5064 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 5065 { 5066 LPFC_MBOXQ_t *pmb; 5067 uint32_t resetcount = 0, rc = 0, done = 0; 5068 5069 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5070 if (!pmb) { 5071 phba->link_state = LPFC_HBA_ERROR; 5072 return -ENOMEM; 5073 } 5074 5075 phba->sli_rev = sli_mode; 5076 while (resetcount < 2 && !done) { 5077 spin_lock_irq(&phba->hbalock); 5078 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 5079 spin_unlock_irq(&phba->hbalock); 5080 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 5081 lpfc_sli_brdrestart(phba); 5082 rc = lpfc_sli_chipset_init(phba); 5083 if (rc) 5084 break; 5085 5086 spin_lock_irq(&phba->hbalock); 5087 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 5088 spin_unlock_irq(&phba->hbalock); 5089 resetcount++; 5090 5091 /* Call pre CONFIG_PORT mailbox command initialization. A 5092 * value of 0 means the call was successful. Any other 5093 * nonzero value is a failure, but if ERESTART is returned, 5094 * the driver may reset the HBA and try again. 5095 */ 5096 rc = lpfc_config_port_prep(phba); 5097 if (rc == -ERESTART) { 5098 phba->link_state = LPFC_LINK_UNKNOWN; 5099 continue; 5100 } else if (rc) 5101 break; 5102 5103 phba->link_state = LPFC_INIT_MBX_CMDS; 5104 lpfc_config_port(phba, pmb); 5105 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 5106 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 5107 LPFC_SLI3_HBQ_ENABLED | 5108 LPFC_SLI3_CRP_ENABLED | 5109 LPFC_SLI3_DSS_ENABLED); 5110 if (rc != MBX_SUCCESS) { 5111 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5112 "0442 Adapter failed to init, mbxCmd x%x " 5113 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 5114 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 5115 spin_lock_irq(&phba->hbalock); 5116 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 5117 spin_unlock_irq(&phba->hbalock); 5118 rc = -ENXIO; 5119 } else { 5120 /* Allow asynchronous mailbox command to go through */ 5121 spin_lock_irq(&phba->hbalock); 5122 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 5123 spin_unlock_irq(&phba->hbalock); 5124 done = 1; 5125 5126 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 5127 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 5128 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 5129 "3110 Port did not grant ASABT\n"); 5130 } 5131 } 5132 if (!done) { 5133 rc = -EINVAL; 5134 goto do_prep_failed; 5135 } 5136 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 5137 if (!pmb->u.mb.un.varCfgPort.cMA) { 5138 rc = -ENXIO; 5139 goto do_prep_failed; 5140 } 5141 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 5142 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 5143 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 5144 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 5145 phba->max_vpi : phba->max_vports; 5146 5147 } else 5148 phba->max_vpi = 0; 5149 if (pmb->u.mb.un.varCfgPort.gerbm) 5150 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 5151 if (pmb->u.mb.un.varCfgPort.gcrp) 5152 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 5153 5154 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 5155 phba->port_gp = phba->mbox->us.s3_pgp.port; 5156 5157 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 5158 if (pmb->u.mb.un.varCfgPort.gbg == 0) { 5159 phba->cfg_enable_bg = 0; 5160 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 5161 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5162 "0443 Adapter did not grant " 5163 "BlockGuard\n"); 5164 } 5165 } 5166 } else { 5167 phba->hbq_get = NULL; 5168 phba->port_gp = phba->mbox->us.s2.port; 5169 phba->max_vpi = 0; 5170 } 5171 do_prep_failed: 5172 mempool_free(pmb, phba->mbox_mem_pool); 5173 return rc; 5174 } 5175 5176 5177 /** 5178 * lpfc_sli_hba_setup - SLI initialization function 5179 * @phba: Pointer to HBA context object. 5180 * 5181 * This function is the main SLI initialization function. This function 5182 * is called by the HBA initialization code, HBA reset code and HBA 5183 * error attention handler code. Caller is not required to hold any 5184 * locks. This function issues config_port mailbox command to configure 5185 * the SLI, setup iocb rings and HBQ rings. In the end the function 5186 * calls the config_port_post function to issue init_link mailbox 5187 * command and to start the discovery. The function will return zero 5188 * if successful, else it will return negative error code. 5189 **/ 5190 int 5191 lpfc_sli_hba_setup(struct lpfc_hba *phba) 5192 { 5193 uint32_t rc; 5194 int mode = 3, i; 5195 int longs; 5196 5197 switch (phba->cfg_sli_mode) { 5198 case 2: 5199 if (phba->cfg_enable_npiv) { 5200 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5201 "1824 NPIV enabled: Override sli_mode " 5202 "parameter (%d) to auto (0).\n", 5203 phba->cfg_sli_mode); 5204 break; 5205 } 5206 mode = 2; 5207 break; 5208 case 0: 5209 case 3: 5210 break; 5211 default: 5212 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5213 "1819 Unrecognized sli_mode parameter: %d.\n", 5214 phba->cfg_sli_mode); 5215 5216 break; 5217 } 5218 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 5219 5220 rc = lpfc_sli_config_port(phba, mode); 5221 5222 if (rc && phba->cfg_sli_mode == 3) 5223 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 5224 "1820 Unable to select SLI-3. " 5225 "Not supported by adapter.\n"); 5226 if (rc && mode != 2) 5227 rc = lpfc_sli_config_port(phba, 2); 5228 else if (rc && mode == 2) 5229 rc = lpfc_sli_config_port(phba, 3); 5230 if (rc) 5231 goto lpfc_sli_hba_setup_error; 5232 5233 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 5234 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 5235 rc = pci_enable_pcie_error_reporting(phba->pcidev); 5236 if (!rc) { 5237 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5238 "2709 This device supports " 5239 "Advanced Error Reporting (AER)\n"); 5240 spin_lock_irq(&phba->hbalock); 5241 phba->hba_flag |= HBA_AER_ENABLED; 5242 spin_unlock_irq(&phba->hbalock); 5243 } else { 5244 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5245 "2708 This device does not support " 5246 "Advanced Error Reporting (AER): %d\n", 5247 rc); 5248 phba->cfg_aer_support = 0; 5249 } 5250 } 5251 5252 if (phba->sli_rev == 3) { 5253 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 5254 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 5255 } else { 5256 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 5257 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 5258 phba->sli3_options = 0; 5259 } 5260 5261 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 5262 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 5263 phba->sli_rev, phba->max_vpi); 5264 rc = lpfc_sli_ring_map(phba); 5265 5266 if (rc) 5267 goto lpfc_sli_hba_setup_error; 5268 5269 /* Initialize VPIs. */ 5270 if (phba->sli_rev == LPFC_SLI_REV3) { 5271 /* 5272 * The VPI bitmask and physical ID array are allocated 5273 * and initialized once only - at driver load. A port 5274 * reset doesn't need to reinitialize this memory. 5275 */ 5276 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 5277 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 5278 phba->vpi_bmask = kcalloc(longs, 5279 sizeof(unsigned long), 5280 GFP_KERNEL); 5281 if (!phba->vpi_bmask) { 5282 rc = -ENOMEM; 5283 goto lpfc_sli_hba_setup_error; 5284 } 5285 5286 phba->vpi_ids = kcalloc(phba->max_vpi + 1, 5287 sizeof(uint16_t), 5288 GFP_KERNEL); 5289 if (!phba->vpi_ids) { 5290 kfree(phba->vpi_bmask); 5291 rc = -ENOMEM; 5292 goto lpfc_sli_hba_setup_error; 5293 } 5294 for (i = 0; i < phba->max_vpi; i++) 5295 phba->vpi_ids[i] = i; 5296 } 5297 } 5298 5299 /* Init HBQs */ 5300 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 5301 rc = lpfc_sli_hbq_setup(phba); 5302 if (rc) 5303 goto lpfc_sli_hba_setup_error; 5304 } 5305 spin_lock_irq(&phba->hbalock); 5306 phba->sli.sli_flag |= LPFC_PROCESS_LA; 5307 spin_unlock_irq(&phba->hbalock); 5308 5309 rc = lpfc_config_port_post(phba); 5310 if (rc) 5311 goto lpfc_sli_hba_setup_error; 5312 5313 return rc; 5314 5315 lpfc_sli_hba_setup_error: 5316 phba->link_state = LPFC_HBA_ERROR; 5317 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5318 "0445 Firmware initialization failed\n"); 5319 return rc; 5320 } 5321 5322 /** 5323 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 5324 * @phba: Pointer to HBA context object. 5325 * @mboxq: mailbox pointer. 5326 * This function issue a dump mailbox command to read config region 5327 * 23 and parse the records in the region and populate driver 5328 * data structure. 5329 **/ 5330 static int 5331 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 5332 { 5333 LPFC_MBOXQ_t *mboxq; 5334 struct lpfc_dmabuf *mp; 5335 struct lpfc_mqe *mqe; 5336 uint32_t data_length; 5337 int rc; 5338 5339 /* Program the default value of vlan_id and fc_map */ 5340 phba->valid_vlan = 0; 5341 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 5342 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 5343 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 5344 5345 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5346 if (!mboxq) 5347 return -ENOMEM; 5348 5349 mqe = &mboxq->u.mqe; 5350 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 5351 rc = -ENOMEM; 5352 goto out_free_mboxq; 5353 } 5354 5355 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 5356 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5357 5358 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 5359 "(%d):2571 Mailbox cmd x%x Status x%x " 5360 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5361 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5362 "CQ: x%x x%x x%x x%x\n", 5363 mboxq->vport ? mboxq->vport->vpi : 0, 5364 bf_get(lpfc_mqe_command, mqe), 5365 bf_get(lpfc_mqe_status, mqe), 5366 mqe->un.mb_words[0], mqe->un.mb_words[1], 5367 mqe->un.mb_words[2], mqe->un.mb_words[3], 5368 mqe->un.mb_words[4], mqe->un.mb_words[5], 5369 mqe->un.mb_words[6], mqe->un.mb_words[7], 5370 mqe->un.mb_words[8], mqe->un.mb_words[9], 5371 mqe->un.mb_words[10], mqe->un.mb_words[11], 5372 mqe->un.mb_words[12], mqe->un.mb_words[13], 5373 mqe->un.mb_words[14], mqe->un.mb_words[15], 5374 mqe->un.mb_words[16], mqe->un.mb_words[50], 5375 mboxq->mcqe.word0, 5376 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5377 mboxq->mcqe.trailer); 5378 5379 if (rc) { 5380 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5381 kfree(mp); 5382 rc = -EIO; 5383 goto out_free_mboxq; 5384 } 5385 data_length = mqe->un.mb_words[5]; 5386 if (data_length > DMP_RGN23_SIZE) { 5387 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5388 kfree(mp); 5389 rc = -EIO; 5390 goto out_free_mboxq; 5391 } 5392 5393 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5394 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5395 kfree(mp); 5396 rc = 0; 5397 5398 out_free_mboxq: 5399 mempool_free(mboxq, phba->mbox_mem_pool); 5400 return rc; 5401 } 5402 5403 /** 5404 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5405 * @phba: pointer to lpfc hba data structure. 5406 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5407 * @vpd: pointer to the memory to hold resulting port vpd data. 5408 * @vpd_size: On input, the number of bytes allocated to @vpd. 5409 * On output, the number of data bytes in @vpd. 5410 * 5411 * This routine executes a READ_REV SLI4 mailbox command. In 5412 * addition, this routine gets the port vpd data. 5413 * 5414 * Return codes 5415 * 0 - successful 5416 * -ENOMEM - could not allocated memory. 5417 **/ 5418 static int 5419 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5420 uint8_t *vpd, uint32_t *vpd_size) 5421 { 5422 int rc = 0; 5423 uint32_t dma_size; 5424 struct lpfc_dmabuf *dmabuf; 5425 struct lpfc_mqe *mqe; 5426 5427 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5428 if (!dmabuf) 5429 return -ENOMEM; 5430 5431 /* 5432 * Get a DMA buffer for the vpd data resulting from the READ_REV 5433 * mailbox command. 5434 */ 5435 dma_size = *vpd_size; 5436 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, 5437 &dmabuf->phys, GFP_KERNEL); 5438 if (!dmabuf->virt) { 5439 kfree(dmabuf); 5440 return -ENOMEM; 5441 } 5442 5443 /* 5444 * The SLI4 implementation of READ_REV conflicts at word1, 5445 * bits 31:16 and SLI4 adds vpd functionality not present 5446 * in SLI3. This code corrects the conflicts. 5447 */ 5448 lpfc_read_rev(phba, mboxq); 5449 mqe = &mboxq->u.mqe; 5450 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5451 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5452 mqe->un.read_rev.word1 &= 0x0000FFFF; 5453 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5454 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5455 5456 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5457 if (rc) { 5458 dma_free_coherent(&phba->pcidev->dev, dma_size, 5459 dmabuf->virt, dmabuf->phys); 5460 kfree(dmabuf); 5461 return -EIO; 5462 } 5463 5464 /* 5465 * The available vpd length cannot be bigger than the 5466 * DMA buffer passed to the port. Catch the less than 5467 * case and update the caller's size. 5468 */ 5469 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5470 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5471 5472 memcpy(vpd, dmabuf->virt, *vpd_size); 5473 5474 dma_free_coherent(&phba->pcidev->dev, dma_size, 5475 dmabuf->virt, dmabuf->phys); 5476 kfree(dmabuf); 5477 return 0; 5478 } 5479 5480 /** 5481 * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes 5482 * @phba: pointer to lpfc hba data structure. 5483 * 5484 * This routine retrieves SLI4 device physical port name this PCI function 5485 * is attached to. 5486 * 5487 * Return codes 5488 * 0 - successful 5489 * otherwise - failed to retrieve controller attributes 5490 **/ 5491 static int 5492 lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) 5493 { 5494 LPFC_MBOXQ_t *mboxq; 5495 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5496 struct lpfc_controller_attribute *cntl_attr; 5497 void *virtaddr = NULL; 5498 uint32_t alloclen, reqlen; 5499 uint32_t shdr_status, shdr_add_status; 5500 union lpfc_sli4_cfg_shdr *shdr; 5501 int rc; 5502 5503 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5504 if (!mboxq) 5505 return -ENOMEM; 5506 5507 /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ 5508 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5509 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5510 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5511 LPFC_SLI4_MBX_NEMBED); 5512 5513 if (alloclen < reqlen) { 5514 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5515 "3084 Allocated DMA memory size (%d) is " 5516 "less than the requested DMA memory size " 5517 "(%d)\n", alloclen, reqlen); 5518 rc = -ENOMEM; 5519 goto out_free_mboxq; 5520 } 5521 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5522 virtaddr = mboxq->sge_array->addr[0]; 5523 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5524 shdr = &mbx_cntl_attr->cfg_shdr; 5525 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5526 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5527 if (shdr_status || shdr_add_status || rc) { 5528 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5529 "3085 Mailbox x%x (x%x/x%x) failed, " 5530 "rc:x%x, status:x%x, add_status:x%x\n", 5531 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5532 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5533 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5534 rc, shdr_status, shdr_add_status); 5535 rc = -ENXIO; 5536 goto out_free_mboxq; 5537 } 5538 5539 cntl_attr = &mbx_cntl_attr->cntl_attr; 5540 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5541 phba->sli4_hba.lnk_info.lnk_tp = 5542 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5543 phba->sli4_hba.lnk_info.lnk_no = 5544 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5545 5546 memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); 5547 strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, 5548 sizeof(phba->BIOSVersion)); 5549 5550 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5551 "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s\n", 5552 phba->sli4_hba.lnk_info.lnk_tp, 5553 phba->sli4_hba.lnk_info.lnk_no, 5554 phba->BIOSVersion); 5555 out_free_mboxq: 5556 if (rc != MBX_TIMEOUT) { 5557 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5558 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5559 else 5560 mempool_free(mboxq, phba->mbox_mem_pool); 5561 } 5562 return rc; 5563 } 5564 5565 /** 5566 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5567 * @phba: pointer to lpfc hba data structure. 5568 * 5569 * This routine retrieves SLI4 device physical port name this PCI function 5570 * is attached to. 5571 * 5572 * Return codes 5573 * 0 - successful 5574 * otherwise - failed to retrieve physical port name 5575 **/ 5576 static int 5577 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5578 { 5579 LPFC_MBOXQ_t *mboxq; 5580 struct lpfc_mbx_get_port_name *get_port_name; 5581 uint32_t shdr_status, shdr_add_status; 5582 union lpfc_sli4_cfg_shdr *shdr; 5583 char cport_name = 0; 5584 int rc; 5585 5586 /* We assume nothing at this point */ 5587 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5588 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5589 5590 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5591 if (!mboxq) 5592 return -ENOMEM; 5593 /* obtain link type and link number via READ_CONFIG */ 5594 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5595 lpfc_sli4_read_config(phba); 5596 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5597 goto retrieve_ppname; 5598 5599 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5600 rc = lpfc_sli4_get_ctl_attr(phba); 5601 if (rc) 5602 goto out_free_mboxq; 5603 5604 retrieve_ppname: 5605 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5606 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5607 sizeof(struct lpfc_mbx_get_port_name) - 5608 sizeof(struct lpfc_sli4_cfg_mhdr), 5609 LPFC_SLI4_MBX_EMBED); 5610 get_port_name = &mboxq->u.mqe.un.get_port_name; 5611 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5612 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5613 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5614 phba->sli4_hba.lnk_info.lnk_tp); 5615 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5616 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5617 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5618 if (shdr_status || shdr_add_status || rc) { 5619 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5620 "3087 Mailbox x%x (x%x/x%x) failed: " 5621 "rc:x%x, status:x%x, add_status:x%x\n", 5622 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5623 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5624 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5625 rc, shdr_status, shdr_add_status); 5626 rc = -ENXIO; 5627 goto out_free_mboxq; 5628 } 5629 switch (phba->sli4_hba.lnk_info.lnk_no) { 5630 case LPFC_LINK_NUMBER_0: 5631 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5632 &get_port_name->u.response); 5633 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5634 break; 5635 case LPFC_LINK_NUMBER_1: 5636 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5637 &get_port_name->u.response); 5638 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5639 break; 5640 case LPFC_LINK_NUMBER_2: 5641 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5642 &get_port_name->u.response); 5643 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5644 break; 5645 case LPFC_LINK_NUMBER_3: 5646 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5647 &get_port_name->u.response); 5648 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5649 break; 5650 default: 5651 break; 5652 } 5653 5654 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5655 phba->Port[0] = cport_name; 5656 phba->Port[1] = '\0'; 5657 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5658 "3091 SLI get port name: %s\n", phba->Port); 5659 } 5660 5661 out_free_mboxq: 5662 if (rc != MBX_TIMEOUT) { 5663 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5664 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5665 else 5666 mempool_free(mboxq, phba->mbox_mem_pool); 5667 } 5668 return rc; 5669 } 5670 5671 /** 5672 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5673 * @phba: pointer to lpfc hba data structure. 5674 * 5675 * This routine is called to explicitly arm the SLI4 device's completion and 5676 * event queues 5677 **/ 5678 static void 5679 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5680 { 5681 int qidx; 5682 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 5683 struct lpfc_sli4_hdw_queue *qp; 5684 struct lpfc_queue *eq; 5685 5686 sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); 5687 sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); 5688 if (sli4_hba->nvmels_cq) 5689 sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, 5690 LPFC_QUEUE_REARM); 5691 5692 if (sli4_hba->hdwq) { 5693 /* Loop thru all Hardware Queues */ 5694 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 5695 qp = &sli4_hba->hdwq[qidx]; 5696 /* ARM the corresponding CQ */ 5697 sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, 5698 LPFC_QUEUE_REARM); 5699 } 5700 5701 /* Loop thru all IRQ vectors */ 5702 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 5703 eq = sli4_hba->hba_eq_hdl[qidx].eq; 5704 /* ARM the corresponding EQ */ 5705 sli4_hba->sli4_write_eq_db(phba, eq, 5706 0, LPFC_QUEUE_REARM); 5707 } 5708 } 5709 5710 if (phba->nvmet_support) { 5711 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5712 sli4_hba->sli4_write_cq_db(phba, 5713 sli4_hba->nvmet_cqset[qidx], 0, 5714 LPFC_QUEUE_REARM); 5715 } 5716 } 5717 } 5718 5719 /** 5720 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5721 * @phba: Pointer to HBA context object. 5722 * @type: The resource extent type. 5723 * @extnt_count: buffer to hold port available extent count. 5724 * @extnt_size: buffer to hold element count per extent. 5725 * 5726 * This function calls the port and retrievs the number of available 5727 * extents and their size for a particular extent type. 5728 * 5729 * Returns: 0 if successful. Nonzero otherwise. 5730 **/ 5731 int 5732 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5733 uint16_t *extnt_count, uint16_t *extnt_size) 5734 { 5735 int rc = 0; 5736 uint32_t length; 5737 uint32_t mbox_tmo; 5738 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5739 LPFC_MBOXQ_t *mbox; 5740 5741 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5742 if (!mbox) 5743 return -ENOMEM; 5744 5745 /* Find out how many extents are available for this resource type */ 5746 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5747 sizeof(struct lpfc_sli4_cfg_mhdr)); 5748 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5749 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5750 length, LPFC_SLI4_MBX_EMBED); 5751 5752 /* Send an extents count of 0 - the GET doesn't use it. */ 5753 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5754 LPFC_SLI4_MBX_EMBED); 5755 if (unlikely(rc)) { 5756 rc = -EIO; 5757 goto err_exit; 5758 } 5759 5760 if (!phba->sli4_hba.intr_enable) 5761 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5762 else { 5763 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5764 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5765 } 5766 if (unlikely(rc)) { 5767 rc = -EIO; 5768 goto err_exit; 5769 } 5770 5771 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5772 if (bf_get(lpfc_mbox_hdr_status, 5773 &rsrc_info->header.cfg_shdr.response)) { 5774 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5775 "2930 Failed to get resource extents " 5776 "Status 0x%x Add'l Status 0x%x\n", 5777 bf_get(lpfc_mbox_hdr_status, 5778 &rsrc_info->header.cfg_shdr.response), 5779 bf_get(lpfc_mbox_hdr_add_status, 5780 &rsrc_info->header.cfg_shdr.response)); 5781 rc = -EIO; 5782 goto err_exit; 5783 } 5784 5785 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5786 &rsrc_info->u.rsp); 5787 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5788 &rsrc_info->u.rsp); 5789 5790 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5791 "3162 Retrieved extents type-%d from port: count:%d, " 5792 "size:%d\n", type, *extnt_count, *extnt_size); 5793 5794 err_exit: 5795 mempool_free(mbox, phba->mbox_mem_pool); 5796 return rc; 5797 } 5798 5799 /** 5800 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5801 * @phba: Pointer to HBA context object. 5802 * @type: The extent type to check. 5803 * 5804 * This function reads the current available extents from the port and checks 5805 * if the extent count or extent size has changed since the last access. 5806 * Callers use this routine post port reset to understand if there is a 5807 * extent reprovisioning requirement. 5808 * 5809 * Returns: 5810 * -Error: error indicates problem. 5811 * 1: Extent count or size has changed. 5812 * 0: No changes. 5813 **/ 5814 static int 5815 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5816 { 5817 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5818 uint16_t size_diff, rsrc_ext_size; 5819 int rc = 0; 5820 struct lpfc_rsrc_blks *rsrc_entry; 5821 struct list_head *rsrc_blk_list = NULL; 5822 5823 size_diff = 0; 5824 curr_ext_cnt = 0; 5825 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5826 &rsrc_ext_cnt, 5827 &rsrc_ext_size); 5828 if (unlikely(rc)) 5829 return -EIO; 5830 5831 switch (type) { 5832 case LPFC_RSC_TYPE_FCOE_RPI: 5833 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5834 break; 5835 case LPFC_RSC_TYPE_FCOE_VPI: 5836 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5837 break; 5838 case LPFC_RSC_TYPE_FCOE_XRI: 5839 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5840 break; 5841 case LPFC_RSC_TYPE_FCOE_VFI: 5842 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5843 break; 5844 default: 5845 break; 5846 } 5847 5848 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5849 curr_ext_cnt++; 5850 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5851 size_diff++; 5852 } 5853 5854 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5855 rc = 1; 5856 5857 return rc; 5858 } 5859 5860 /** 5861 * lpfc_sli4_cfg_post_extnts - 5862 * @phba: Pointer to HBA context object. 5863 * @extnt_cnt - number of available extents. 5864 * @type - the extent type (rpi, xri, vfi, vpi). 5865 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5866 * @mbox - pointer to the caller's allocated mailbox structure. 5867 * 5868 * This function executes the extents allocation request. It also 5869 * takes care of the amount of memory needed to allocate or get the 5870 * allocated extents. It is the caller's responsibility to evaluate 5871 * the response. 5872 * 5873 * Returns: 5874 * -Error: Error value describes the condition found. 5875 * 0: if successful 5876 **/ 5877 static int 5878 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5879 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5880 { 5881 int rc = 0; 5882 uint32_t req_len; 5883 uint32_t emb_len; 5884 uint32_t alloc_len, mbox_tmo; 5885 5886 /* Calculate the total requested length of the dma memory */ 5887 req_len = extnt_cnt * sizeof(uint16_t); 5888 5889 /* 5890 * Calculate the size of an embedded mailbox. The uint32_t 5891 * accounts for extents-specific word. 5892 */ 5893 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5894 sizeof(uint32_t); 5895 5896 /* 5897 * Presume the allocation and response will fit into an embedded 5898 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5899 */ 5900 *emb = LPFC_SLI4_MBX_EMBED; 5901 if (req_len > emb_len) { 5902 req_len = extnt_cnt * sizeof(uint16_t) + 5903 sizeof(union lpfc_sli4_cfg_shdr) + 5904 sizeof(uint32_t); 5905 *emb = LPFC_SLI4_MBX_NEMBED; 5906 } 5907 5908 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5909 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5910 req_len, *emb); 5911 if (alloc_len < req_len) { 5912 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5913 "2982 Allocated DMA memory size (x%x) is " 5914 "less than the requested DMA memory " 5915 "size (x%x)\n", alloc_len, req_len); 5916 return -ENOMEM; 5917 } 5918 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5919 if (unlikely(rc)) 5920 return -EIO; 5921 5922 if (!phba->sli4_hba.intr_enable) 5923 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5924 else { 5925 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5926 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5927 } 5928 5929 if (unlikely(rc)) 5930 rc = -EIO; 5931 return rc; 5932 } 5933 5934 /** 5935 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5936 * @phba: Pointer to HBA context object. 5937 * @type: The resource extent type to allocate. 5938 * 5939 * This function allocates the number of elements for the specified 5940 * resource type. 5941 **/ 5942 static int 5943 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5944 { 5945 bool emb = false; 5946 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5947 uint16_t rsrc_id, rsrc_start, j, k; 5948 uint16_t *ids; 5949 int i, rc; 5950 unsigned long longs; 5951 unsigned long *bmask; 5952 struct lpfc_rsrc_blks *rsrc_blks; 5953 LPFC_MBOXQ_t *mbox; 5954 uint32_t length; 5955 struct lpfc_id_range *id_array = NULL; 5956 void *virtaddr = NULL; 5957 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5958 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5959 struct list_head *ext_blk_list; 5960 5961 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5962 &rsrc_cnt, 5963 &rsrc_size); 5964 if (unlikely(rc)) 5965 return -EIO; 5966 5967 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5968 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5969 "3009 No available Resource Extents " 5970 "for resource type 0x%x: Count: 0x%x, " 5971 "Size 0x%x\n", type, rsrc_cnt, 5972 rsrc_size); 5973 return -ENOMEM; 5974 } 5975 5976 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5977 "2903 Post resource extents type-0x%x: " 5978 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5979 5980 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5981 if (!mbox) 5982 return -ENOMEM; 5983 5984 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5985 if (unlikely(rc)) { 5986 rc = -EIO; 5987 goto err_exit; 5988 } 5989 5990 /* 5991 * Figure out where the response is located. Then get local pointers 5992 * to the response data. The port does not guarantee to respond to 5993 * all extents counts request so update the local variable with the 5994 * allocated count from the port. 5995 */ 5996 if (emb == LPFC_SLI4_MBX_EMBED) { 5997 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5998 id_array = &rsrc_ext->u.rsp.id[0]; 5999 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6000 } else { 6001 virtaddr = mbox->sge_array->addr[0]; 6002 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6003 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6004 id_array = &n_rsrc->id; 6005 } 6006 6007 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 6008 rsrc_id_cnt = rsrc_cnt * rsrc_size; 6009 6010 /* 6011 * Based on the resource size and count, correct the base and max 6012 * resource values. 6013 */ 6014 length = sizeof(struct lpfc_rsrc_blks); 6015 switch (type) { 6016 case LPFC_RSC_TYPE_FCOE_RPI: 6017 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6018 sizeof(unsigned long), 6019 GFP_KERNEL); 6020 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6021 rc = -ENOMEM; 6022 goto err_exit; 6023 } 6024 phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, 6025 sizeof(uint16_t), 6026 GFP_KERNEL); 6027 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6028 kfree(phba->sli4_hba.rpi_bmask); 6029 rc = -ENOMEM; 6030 goto err_exit; 6031 } 6032 6033 /* 6034 * The next_rpi was initialized with the maximum available 6035 * count but the port may allocate a smaller number. Catch 6036 * that case and update the next_rpi. 6037 */ 6038 phba->sli4_hba.next_rpi = rsrc_id_cnt; 6039 6040 /* Initialize local ptrs for common extent processing later. */ 6041 bmask = phba->sli4_hba.rpi_bmask; 6042 ids = phba->sli4_hba.rpi_ids; 6043 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 6044 break; 6045 case LPFC_RSC_TYPE_FCOE_VPI: 6046 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6047 GFP_KERNEL); 6048 if (unlikely(!phba->vpi_bmask)) { 6049 rc = -ENOMEM; 6050 goto err_exit; 6051 } 6052 phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), 6053 GFP_KERNEL); 6054 if (unlikely(!phba->vpi_ids)) { 6055 kfree(phba->vpi_bmask); 6056 rc = -ENOMEM; 6057 goto err_exit; 6058 } 6059 6060 /* Initialize local ptrs for common extent processing later. */ 6061 bmask = phba->vpi_bmask; 6062 ids = phba->vpi_ids; 6063 ext_blk_list = &phba->lpfc_vpi_blk_list; 6064 break; 6065 case LPFC_RSC_TYPE_FCOE_XRI: 6066 phba->sli4_hba.xri_bmask = kcalloc(longs, 6067 sizeof(unsigned long), 6068 GFP_KERNEL); 6069 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6070 rc = -ENOMEM; 6071 goto err_exit; 6072 } 6073 phba->sli4_hba.max_cfg_param.xri_used = 0; 6074 phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, 6075 sizeof(uint16_t), 6076 GFP_KERNEL); 6077 if (unlikely(!phba->sli4_hba.xri_ids)) { 6078 kfree(phba->sli4_hba.xri_bmask); 6079 rc = -ENOMEM; 6080 goto err_exit; 6081 } 6082 6083 /* Initialize local ptrs for common extent processing later. */ 6084 bmask = phba->sli4_hba.xri_bmask; 6085 ids = phba->sli4_hba.xri_ids; 6086 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 6087 break; 6088 case LPFC_RSC_TYPE_FCOE_VFI: 6089 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6090 sizeof(unsigned long), 6091 GFP_KERNEL); 6092 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6093 rc = -ENOMEM; 6094 goto err_exit; 6095 } 6096 phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, 6097 sizeof(uint16_t), 6098 GFP_KERNEL); 6099 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6100 kfree(phba->sli4_hba.vfi_bmask); 6101 rc = -ENOMEM; 6102 goto err_exit; 6103 } 6104 6105 /* Initialize local ptrs for common extent processing later. */ 6106 bmask = phba->sli4_hba.vfi_bmask; 6107 ids = phba->sli4_hba.vfi_ids; 6108 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 6109 break; 6110 default: 6111 /* Unsupported Opcode. Fail call. */ 6112 id_array = NULL; 6113 bmask = NULL; 6114 ids = NULL; 6115 ext_blk_list = NULL; 6116 goto err_exit; 6117 } 6118 6119 /* 6120 * Complete initializing the extent configuration with the 6121 * allocated ids assigned to this function. The bitmask serves 6122 * as an index into the array and manages the available ids. The 6123 * array just stores the ids communicated to the port via the wqes. 6124 */ 6125 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 6126 if ((i % 2) == 0) 6127 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 6128 &id_array[k]); 6129 else 6130 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 6131 &id_array[k]); 6132 6133 rsrc_blks = kzalloc(length, GFP_KERNEL); 6134 if (unlikely(!rsrc_blks)) { 6135 rc = -ENOMEM; 6136 kfree(bmask); 6137 kfree(ids); 6138 goto err_exit; 6139 } 6140 rsrc_blks->rsrc_start = rsrc_id; 6141 rsrc_blks->rsrc_size = rsrc_size; 6142 list_add_tail(&rsrc_blks->list, ext_blk_list); 6143 rsrc_start = rsrc_id; 6144 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 6145 phba->sli4_hba.io_xri_start = rsrc_start + 6146 lpfc_sli4_get_iocb_cnt(phba); 6147 } 6148 6149 while (rsrc_id < (rsrc_start + rsrc_size)) { 6150 ids[j] = rsrc_id; 6151 rsrc_id++; 6152 j++; 6153 } 6154 /* Entire word processed. Get next word.*/ 6155 if ((i % 2) == 1) 6156 k++; 6157 } 6158 err_exit: 6159 lpfc_sli4_mbox_cmd_free(phba, mbox); 6160 return rc; 6161 } 6162 6163 6164 6165 /** 6166 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 6167 * @phba: Pointer to HBA context object. 6168 * @type: the extent's type. 6169 * 6170 * This function deallocates all extents of a particular resource type. 6171 * SLI4 does not allow for deallocating a particular extent range. It 6172 * is the caller's responsibility to release all kernel memory resources. 6173 **/ 6174 static int 6175 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 6176 { 6177 int rc; 6178 uint32_t length, mbox_tmo = 0; 6179 LPFC_MBOXQ_t *mbox; 6180 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 6181 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 6182 6183 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6184 if (!mbox) 6185 return -ENOMEM; 6186 6187 /* 6188 * This function sends an embedded mailbox because it only sends the 6189 * the resource type. All extents of this type are released by the 6190 * port. 6191 */ 6192 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 6193 sizeof(struct lpfc_sli4_cfg_mhdr)); 6194 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6195 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 6196 length, LPFC_SLI4_MBX_EMBED); 6197 6198 /* Send an extents count of 0 - the dealloc doesn't use it. */ 6199 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 6200 LPFC_SLI4_MBX_EMBED); 6201 if (unlikely(rc)) { 6202 rc = -EIO; 6203 goto out_free_mbox; 6204 } 6205 if (!phba->sli4_hba.intr_enable) 6206 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6207 else { 6208 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6209 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6210 } 6211 if (unlikely(rc)) { 6212 rc = -EIO; 6213 goto out_free_mbox; 6214 } 6215 6216 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 6217 if (bf_get(lpfc_mbox_hdr_status, 6218 &dealloc_rsrc->header.cfg_shdr.response)) { 6219 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6220 "2919 Failed to release resource extents " 6221 "for type %d - Status 0x%x Add'l Status 0x%x. " 6222 "Resource memory not released.\n", 6223 type, 6224 bf_get(lpfc_mbox_hdr_status, 6225 &dealloc_rsrc->header.cfg_shdr.response), 6226 bf_get(lpfc_mbox_hdr_add_status, 6227 &dealloc_rsrc->header.cfg_shdr.response)); 6228 rc = -EIO; 6229 goto out_free_mbox; 6230 } 6231 6232 /* Release kernel memory resources for the specific type. */ 6233 switch (type) { 6234 case LPFC_RSC_TYPE_FCOE_VPI: 6235 kfree(phba->vpi_bmask); 6236 kfree(phba->vpi_ids); 6237 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6238 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6239 &phba->lpfc_vpi_blk_list, list) { 6240 list_del_init(&rsrc_blk->list); 6241 kfree(rsrc_blk); 6242 } 6243 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6244 break; 6245 case LPFC_RSC_TYPE_FCOE_XRI: 6246 kfree(phba->sli4_hba.xri_bmask); 6247 kfree(phba->sli4_hba.xri_ids); 6248 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6249 &phba->sli4_hba.lpfc_xri_blk_list, list) { 6250 list_del_init(&rsrc_blk->list); 6251 kfree(rsrc_blk); 6252 } 6253 break; 6254 case LPFC_RSC_TYPE_FCOE_VFI: 6255 kfree(phba->sli4_hba.vfi_bmask); 6256 kfree(phba->sli4_hba.vfi_ids); 6257 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6258 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6259 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 6260 list_del_init(&rsrc_blk->list); 6261 kfree(rsrc_blk); 6262 } 6263 break; 6264 case LPFC_RSC_TYPE_FCOE_RPI: 6265 /* RPI bitmask and physical id array are cleaned up earlier. */ 6266 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 6267 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 6268 list_del_init(&rsrc_blk->list); 6269 kfree(rsrc_blk); 6270 } 6271 break; 6272 default: 6273 break; 6274 } 6275 6276 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6277 6278 out_free_mbox: 6279 mempool_free(mbox, phba->mbox_mem_pool); 6280 return rc; 6281 } 6282 6283 static void 6284 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 6285 uint32_t feature) 6286 { 6287 uint32_t len; 6288 6289 len = sizeof(struct lpfc_mbx_set_feature) - 6290 sizeof(struct lpfc_sli4_cfg_mhdr); 6291 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6292 LPFC_MBOX_OPCODE_SET_FEATURES, len, 6293 LPFC_SLI4_MBX_EMBED); 6294 6295 switch (feature) { 6296 case LPFC_SET_UE_RECOVERY: 6297 bf_set(lpfc_mbx_set_feature_UER, 6298 &mbox->u.mqe.un.set_feature, 1); 6299 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 6300 mbox->u.mqe.un.set_feature.param_len = 8; 6301 break; 6302 case LPFC_SET_MDS_DIAGS: 6303 bf_set(lpfc_mbx_set_feature_mds, 6304 &mbox->u.mqe.un.set_feature, 1); 6305 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 6306 &mbox->u.mqe.un.set_feature, 1); 6307 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 6308 mbox->u.mqe.un.set_feature.param_len = 8; 6309 break; 6310 case LPFC_SET_DUAL_DUMP: 6311 bf_set(lpfc_mbx_set_feature_dd, 6312 &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); 6313 bf_set(lpfc_mbx_set_feature_ddquery, 6314 &mbox->u.mqe.un.set_feature, 0); 6315 mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; 6316 mbox->u.mqe.un.set_feature.param_len = 4; 6317 break; 6318 } 6319 6320 return; 6321 } 6322 6323 /** 6324 * lpfc_ras_stop_fwlog: Disable FW logging by the adapter 6325 * @phba: Pointer to HBA context object. 6326 * 6327 * Disable FW logging into host memory on the adapter. To 6328 * be done before reading logs from the host memory. 6329 **/ 6330 void 6331 lpfc_ras_stop_fwlog(struct lpfc_hba *phba) 6332 { 6333 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6334 6335 spin_lock_irq(&phba->hbalock); 6336 ras_fwlog->state = INACTIVE; 6337 spin_unlock_irq(&phba->hbalock); 6338 6339 /* Disable FW logging to host memory */ 6340 writel(LPFC_CTL_PDEV_CTL_DDL_RAS, 6341 phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); 6342 6343 /* Wait 10ms for firmware to stop using DMA buffer */ 6344 usleep_range(10 * 1000, 20 * 1000); 6345 } 6346 6347 /** 6348 * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. 6349 * @phba: Pointer to HBA context object. 6350 * 6351 * This function is called to free memory allocated for RAS FW logging 6352 * support in the driver. 6353 **/ 6354 void 6355 lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) 6356 { 6357 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6358 struct lpfc_dmabuf *dmabuf, *next; 6359 6360 if (!list_empty(&ras_fwlog->fwlog_buff_list)) { 6361 list_for_each_entry_safe(dmabuf, next, 6362 &ras_fwlog->fwlog_buff_list, 6363 list) { 6364 list_del(&dmabuf->list); 6365 dma_free_coherent(&phba->pcidev->dev, 6366 LPFC_RAS_MAX_ENTRY_SIZE, 6367 dmabuf->virt, dmabuf->phys); 6368 kfree(dmabuf); 6369 } 6370 } 6371 6372 if (ras_fwlog->lwpd.virt) { 6373 dma_free_coherent(&phba->pcidev->dev, 6374 sizeof(uint32_t) * 2, 6375 ras_fwlog->lwpd.virt, 6376 ras_fwlog->lwpd.phys); 6377 ras_fwlog->lwpd.virt = NULL; 6378 } 6379 6380 spin_lock_irq(&phba->hbalock); 6381 ras_fwlog->state = INACTIVE; 6382 spin_unlock_irq(&phba->hbalock); 6383 } 6384 6385 /** 6386 * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support 6387 * @phba: Pointer to HBA context object. 6388 * @fwlog_buff_count: Count of buffers to be created. 6389 * 6390 * This routine DMA memory for Log Write Position Data[LPWD] and buffer 6391 * to update FW log is posted to the adapter. 6392 * Buffer count is calculated based on module param ras_fwlog_buffsize 6393 * Size of each buffer posted to FW is 64K. 6394 **/ 6395 6396 static int 6397 lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, 6398 uint32_t fwlog_buff_count) 6399 { 6400 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6401 struct lpfc_dmabuf *dmabuf; 6402 int rc = 0, i = 0; 6403 6404 /* Initialize List */ 6405 INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); 6406 6407 /* Allocate memory for the LWPD */ 6408 ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, 6409 sizeof(uint32_t) * 2, 6410 &ras_fwlog->lwpd.phys, 6411 GFP_KERNEL); 6412 if (!ras_fwlog->lwpd.virt) { 6413 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6414 "6185 LWPD Memory Alloc Failed\n"); 6415 6416 return -ENOMEM; 6417 } 6418 6419 ras_fwlog->fw_buffcount = fwlog_buff_count; 6420 for (i = 0; i < ras_fwlog->fw_buffcount; i++) { 6421 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), 6422 GFP_KERNEL); 6423 if (!dmabuf) { 6424 rc = -ENOMEM; 6425 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6426 "6186 Memory Alloc failed FW logging"); 6427 goto free_mem; 6428 } 6429 6430 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 6431 LPFC_RAS_MAX_ENTRY_SIZE, 6432 &dmabuf->phys, GFP_KERNEL); 6433 if (!dmabuf->virt) { 6434 kfree(dmabuf); 6435 rc = -ENOMEM; 6436 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6437 "6187 DMA Alloc Failed FW logging"); 6438 goto free_mem; 6439 } 6440 dmabuf->buffer_tag = i; 6441 list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); 6442 } 6443 6444 free_mem: 6445 if (rc) 6446 lpfc_sli4_ras_dma_free(phba); 6447 6448 return rc; 6449 } 6450 6451 /** 6452 * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command 6453 * @phba: pointer to lpfc hba data structure. 6454 * @pmboxq: pointer to the driver internal queue element for mailbox command. 6455 * 6456 * Completion handler for driver's RAS MBX command to the device. 6457 **/ 6458 static void 6459 lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 6460 { 6461 MAILBOX_t *mb; 6462 union lpfc_sli4_cfg_shdr *shdr; 6463 uint32_t shdr_status, shdr_add_status; 6464 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6465 6466 mb = &pmb->u.mb; 6467 6468 shdr = (union lpfc_sli4_cfg_shdr *) 6469 &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; 6470 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 6471 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 6472 6473 if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { 6474 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 6475 "6188 FW LOG mailbox " 6476 "completed with status x%x add_status x%x," 6477 " mbx status x%x\n", 6478 shdr_status, shdr_add_status, mb->mbxStatus); 6479 6480 ras_fwlog->ras_hwsupport = false; 6481 goto disable_ras; 6482 } 6483 6484 spin_lock_irq(&phba->hbalock); 6485 ras_fwlog->state = ACTIVE; 6486 spin_unlock_irq(&phba->hbalock); 6487 mempool_free(pmb, phba->mbox_mem_pool); 6488 6489 return; 6490 6491 disable_ras: 6492 /* Free RAS DMA memory */ 6493 lpfc_sli4_ras_dma_free(phba); 6494 mempool_free(pmb, phba->mbox_mem_pool); 6495 } 6496 6497 /** 6498 * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command 6499 * @phba: pointer to lpfc hba data structure. 6500 * @fwlog_level: Logging verbosity level. 6501 * @fwlog_enable: Enable/Disable logging. 6502 * 6503 * Initialize memory and post mailbox command to enable FW logging in host 6504 * memory. 6505 **/ 6506 int 6507 lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, 6508 uint32_t fwlog_level, 6509 uint32_t fwlog_enable) 6510 { 6511 struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; 6512 struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; 6513 struct lpfc_dmabuf *dmabuf; 6514 LPFC_MBOXQ_t *mbox; 6515 uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; 6516 int rc = 0; 6517 6518 spin_lock_irq(&phba->hbalock); 6519 ras_fwlog->state = INACTIVE; 6520 spin_unlock_irq(&phba->hbalock); 6521 6522 fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * 6523 phba->cfg_ras_fwlog_buffsize); 6524 fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); 6525 6526 /* 6527 * If re-enabling FW logging support use earlier allocated 6528 * DMA buffers while posting MBX command. 6529 **/ 6530 if (!ras_fwlog->lwpd.virt) { 6531 rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); 6532 if (rc) { 6533 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6534 "6189 FW Log Memory Allocation Failed"); 6535 return rc; 6536 } 6537 } 6538 6539 /* Setup Mailbox command */ 6540 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6541 if (!mbox) { 6542 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6543 "6190 RAS MBX Alloc Failed"); 6544 rc = -ENOMEM; 6545 goto mem_free; 6546 } 6547 6548 ras_fwlog->fw_loglevel = fwlog_level; 6549 len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - 6550 sizeof(struct lpfc_sli4_cfg_mhdr)); 6551 6552 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, 6553 LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, 6554 len, LPFC_SLI4_MBX_EMBED); 6555 6556 mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; 6557 bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, 6558 fwlog_enable); 6559 bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, 6560 ras_fwlog->fw_loglevel); 6561 bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, 6562 ras_fwlog->fw_buffcount); 6563 bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, 6564 LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); 6565 6566 /* Update DMA buffer address */ 6567 list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { 6568 memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); 6569 6570 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = 6571 putPaddrLow(dmabuf->phys); 6572 6573 mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = 6574 putPaddrHigh(dmabuf->phys); 6575 } 6576 6577 /* Update LPWD address */ 6578 mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); 6579 mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); 6580 6581 spin_lock_irq(&phba->hbalock); 6582 ras_fwlog->state = REG_INPROGRESS; 6583 spin_unlock_irq(&phba->hbalock); 6584 mbox->vport = phba->pport; 6585 mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; 6586 6587 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 6588 6589 if (rc == MBX_NOT_FINISHED) { 6590 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6591 "6191 FW-Log Mailbox failed. " 6592 "status %d mbxStatus : x%x", rc, 6593 bf_get(lpfc_mqe_status, &mbox->u.mqe)); 6594 mempool_free(mbox, phba->mbox_mem_pool); 6595 rc = -EIO; 6596 goto mem_free; 6597 } else 6598 rc = 0; 6599 mem_free: 6600 if (rc) 6601 lpfc_sli4_ras_dma_free(phba); 6602 6603 return rc; 6604 } 6605 6606 /** 6607 * lpfc_sli4_ras_setup - Check if RAS supported on the adapter 6608 * @phba: Pointer to HBA context object. 6609 * 6610 * Check if RAS is supported on the adapter and initialize it. 6611 **/ 6612 void 6613 lpfc_sli4_ras_setup(struct lpfc_hba *phba) 6614 { 6615 /* Check RAS FW Log needs to be enabled or not */ 6616 if (lpfc_check_fwlog_support(phba)) 6617 return; 6618 6619 lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, 6620 LPFC_RAS_ENABLE_LOGGING); 6621 } 6622 6623 /** 6624 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 6625 * @phba: Pointer to HBA context object. 6626 * 6627 * This function allocates all SLI4 resource identifiers. 6628 **/ 6629 int 6630 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 6631 { 6632 int i, rc, error = 0; 6633 uint16_t count, base; 6634 unsigned long longs; 6635 6636 if (!phba->sli4_hba.rpi_hdrs_in_use) 6637 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 6638 if (phba->sli4_hba.extents_in_use) { 6639 /* 6640 * The port supports resource extents. The XRI, VPI, VFI, RPI 6641 * resource extent count must be read and allocated before 6642 * provisioning the resource id arrays. 6643 */ 6644 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6645 LPFC_IDX_RSRC_RDY) { 6646 /* 6647 * Extent-based resources are set - the driver could 6648 * be in a port reset. Figure out if any corrective 6649 * actions need to be taken. 6650 */ 6651 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6652 LPFC_RSC_TYPE_FCOE_VFI); 6653 if (rc != 0) 6654 error++; 6655 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6656 LPFC_RSC_TYPE_FCOE_VPI); 6657 if (rc != 0) 6658 error++; 6659 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6660 LPFC_RSC_TYPE_FCOE_XRI); 6661 if (rc != 0) 6662 error++; 6663 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 6664 LPFC_RSC_TYPE_FCOE_RPI); 6665 if (rc != 0) 6666 error++; 6667 6668 /* 6669 * It's possible that the number of resources 6670 * provided to this port instance changed between 6671 * resets. Detect this condition and reallocate 6672 * resources. Otherwise, there is no action. 6673 */ 6674 if (error) { 6675 lpfc_printf_log(phba, KERN_INFO, 6676 LOG_MBOX | LOG_INIT, 6677 "2931 Detected extent resource " 6678 "change. Reallocating all " 6679 "extents.\n"); 6680 rc = lpfc_sli4_dealloc_extent(phba, 6681 LPFC_RSC_TYPE_FCOE_VFI); 6682 rc = lpfc_sli4_dealloc_extent(phba, 6683 LPFC_RSC_TYPE_FCOE_VPI); 6684 rc = lpfc_sli4_dealloc_extent(phba, 6685 LPFC_RSC_TYPE_FCOE_XRI); 6686 rc = lpfc_sli4_dealloc_extent(phba, 6687 LPFC_RSC_TYPE_FCOE_RPI); 6688 } else 6689 return 0; 6690 } 6691 6692 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6693 if (unlikely(rc)) 6694 goto err_exit; 6695 6696 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6697 if (unlikely(rc)) 6698 goto err_exit; 6699 6700 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6701 if (unlikely(rc)) 6702 goto err_exit; 6703 6704 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6705 if (unlikely(rc)) 6706 goto err_exit; 6707 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6708 LPFC_IDX_RSRC_RDY); 6709 return rc; 6710 } else { 6711 /* 6712 * The port does not support resource extents. The XRI, VPI, 6713 * VFI, RPI resource ids were determined from READ_CONFIG. 6714 * Just allocate the bitmasks and provision the resource id 6715 * arrays. If a port reset is active, the resources don't 6716 * need any action - just exit. 6717 */ 6718 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6719 LPFC_IDX_RSRC_RDY) { 6720 lpfc_sli4_dealloc_resource_identifiers(phba); 6721 lpfc_sli4_remove_rpis(phba); 6722 } 6723 /* RPIs. */ 6724 count = phba->sli4_hba.max_cfg_param.max_rpi; 6725 if (count <= 0) { 6726 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6727 "3279 Invalid provisioning of " 6728 "rpi:%d\n", count); 6729 rc = -EINVAL; 6730 goto err_exit; 6731 } 6732 base = phba->sli4_hba.max_cfg_param.rpi_base; 6733 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6734 phba->sli4_hba.rpi_bmask = kcalloc(longs, 6735 sizeof(unsigned long), 6736 GFP_KERNEL); 6737 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6738 rc = -ENOMEM; 6739 goto err_exit; 6740 } 6741 phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), 6742 GFP_KERNEL); 6743 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6744 rc = -ENOMEM; 6745 goto free_rpi_bmask; 6746 } 6747 6748 for (i = 0; i < count; i++) 6749 phba->sli4_hba.rpi_ids[i] = base + i; 6750 6751 /* VPIs. */ 6752 count = phba->sli4_hba.max_cfg_param.max_vpi; 6753 if (count <= 0) { 6754 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6755 "3280 Invalid provisioning of " 6756 "vpi:%d\n", count); 6757 rc = -EINVAL; 6758 goto free_rpi_ids; 6759 } 6760 base = phba->sli4_hba.max_cfg_param.vpi_base; 6761 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6762 phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), 6763 GFP_KERNEL); 6764 if (unlikely(!phba->vpi_bmask)) { 6765 rc = -ENOMEM; 6766 goto free_rpi_ids; 6767 } 6768 phba->vpi_ids = kcalloc(count, sizeof(uint16_t), 6769 GFP_KERNEL); 6770 if (unlikely(!phba->vpi_ids)) { 6771 rc = -ENOMEM; 6772 goto free_vpi_bmask; 6773 } 6774 6775 for (i = 0; i < count; i++) 6776 phba->vpi_ids[i] = base + i; 6777 6778 /* XRIs. */ 6779 count = phba->sli4_hba.max_cfg_param.max_xri; 6780 if (count <= 0) { 6781 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6782 "3281 Invalid provisioning of " 6783 "xri:%d\n", count); 6784 rc = -EINVAL; 6785 goto free_vpi_ids; 6786 } 6787 base = phba->sli4_hba.max_cfg_param.xri_base; 6788 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6789 phba->sli4_hba.xri_bmask = kcalloc(longs, 6790 sizeof(unsigned long), 6791 GFP_KERNEL); 6792 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6793 rc = -ENOMEM; 6794 goto free_vpi_ids; 6795 } 6796 phba->sli4_hba.max_cfg_param.xri_used = 0; 6797 phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), 6798 GFP_KERNEL); 6799 if (unlikely(!phba->sli4_hba.xri_ids)) { 6800 rc = -ENOMEM; 6801 goto free_xri_bmask; 6802 } 6803 6804 for (i = 0; i < count; i++) 6805 phba->sli4_hba.xri_ids[i] = base + i; 6806 6807 /* VFIs. */ 6808 count = phba->sli4_hba.max_cfg_param.max_vfi; 6809 if (count <= 0) { 6810 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6811 "3282 Invalid provisioning of " 6812 "vfi:%d\n", count); 6813 rc = -EINVAL; 6814 goto free_xri_ids; 6815 } 6816 base = phba->sli4_hba.max_cfg_param.vfi_base; 6817 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6818 phba->sli4_hba.vfi_bmask = kcalloc(longs, 6819 sizeof(unsigned long), 6820 GFP_KERNEL); 6821 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6822 rc = -ENOMEM; 6823 goto free_xri_ids; 6824 } 6825 phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), 6826 GFP_KERNEL); 6827 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6828 rc = -ENOMEM; 6829 goto free_vfi_bmask; 6830 } 6831 6832 for (i = 0; i < count; i++) 6833 phba->sli4_hba.vfi_ids[i] = base + i; 6834 6835 /* 6836 * Mark all resources ready. An HBA reset doesn't need 6837 * to reset the initialization. 6838 */ 6839 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6840 LPFC_IDX_RSRC_RDY); 6841 return 0; 6842 } 6843 6844 free_vfi_bmask: 6845 kfree(phba->sli4_hba.vfi_bmask); 6846 phba->sli4_hba.vfi_bmask = NULL; 6847 free_xri_ids: 6848 kfree(phba->sli4_hba.xri_ids); 6849 phba->sli4_hba.xri_ids = NULL; 6850 free_xri_bmask: 6851 kfree(phba->sli4_hba.xri_bmask); 6852 phba->sli4_hba.xri_bmask = NULL; 6853 free_vpi_ids: 6854 kfree(phba->vpi_ids); 6855 phba->vpi_ids = NULL; 6856 free_vpi_bmask: 6857 kfree(phba->vpi_bmask); 6858 phba->vpi_bmask = NULL; 6859 free_rpi_ids: 6860 kfree(phba->sli4_hba.rpi_ids); 6861 phba->sli4_hba.rpi_ids = NULL; 6862 free_rpi_bmask: 6863 kfree(phba->sli4_hba.rpi_bmask); 6864 phba->sli4_hba.rpi_bmask = NULL; 6865 err_exit: 6866 return rc; 6867 } 6868 6869 /** 6870 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6871 * @phba: Pointer to HBA context object. 6872 * 6873 * This function allocates the number of elements for the specified 6874 * resource type. 6875 **/ 6876 int 6877 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6878 { 6879 if (phba->sli4_hba.extents_in_use) { 6880 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6881 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6882 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6883 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6884 } else { 6885 kfree(phba->vpi_bmask); 6886 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6887 kfree(phba->vpi_ids); 6888 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6889 kfree(phba->sli4_hba.xri_bmask); 6890 kfree(phba->sli4_hba.xri_ids); 6891 kfree(phba->sli4_hba.vfi_bmask); 6892 kfree(phba->sli4_hba.vfi_ids); 6893 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6894 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6895 } 6896 6897 return 0; 6898 } 6899 6900 /** 6901 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6902 * @phba: Pointer to HBA context object. 6903 * @type: The resource extent type. 6904 * @extnt_count: buffer to hold port extent count response 6905 * @extnt_size: buffer to hold port extent size response. 6906 * 6907 * This function calls the port to read the host allocated extents 6908 * for a particular type. 6909 **/ 6910 int 6911 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6912 uint16_t *extnt_cnt, uint16_t *extnt_size) 6913 { 6914 bool emb; 6915 int rc = 0; 6916 uint16_t curr_blks = 0; 6917 uint32_t req_len, emb_len; 6918 uint32_t alloc_len, mbox_tmo; 6919 struct list_head *blk_list_head; 6920 struct lpfc_rsrc_blks *rsrc_blk; 6921 LPFC_MBOXQ_t *mbox; 6922 void *virtaddr = NULL; 6923 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6924 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6925 union lpfc_sli4_cfg_shdr *shdr; 6926 6927 switch (type) { 6928 case LPFC_RSC_TYPE_FCOE_VPI: 6929 blk_list_head = &phba->lpfc_vpi_blk_list; 6930 break; 6931 case LPFC_RSC_TYPE_FCOE_XRI: 6932 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6933 break; 6934 case LPFC_RSC_TYPE_FCOE_VFI: 6935 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6936 break; 6937 case LPFC_RSC_TYPE_FCOE_RPI: 6938 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6939 break; 6940 default: 6941 return -EIO; 6942 } 6943 6944 /* Count the number of extents currently allocatd for this type. */ 6945 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6946 if (curr_blks == 0) { 6947 /* 6948 * The GET_ALLOCATED mailbox does not return the size, 6949 * just the count. The size should be just the size 6950 * stored in the current allocated block and all sizes 6951 * for an extent type are the same so set the return 6952 * value now. 6953 */ 6954 *extnt_size = rsrc_blk->rsrc_size; 6955 } 6956 curr_blks++; 6957 } 6958 6959 /* 6960 * Calculate the size of an embedded mailbox. The uint32_t 6961 * accounts for extents-specific word. 6962 */ 6963 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6964 sizeof(uint32_t); 6965 6966 /* 6967 * Presume the allocation and response will fit into an embedded 6968 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6969 */ 6970 emb = LPFC_SLI4_MBX_EMBED; 6971 req_len = emb_len; 6972 if (req_len > emb_len) { 6973 req_len = curr_blks * sizeof(uint16_t) + 6974 sizeof(union lpfc_sli4_cfg_shdr) + 6975 sizeof(uint32_t); 6976 emb = LPFC_SLI4_MBX_NEMBED; 6977 } 6978 6979 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6980 if (!mbox) 6981 return -ENOMEM; 6982 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6983 6984 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6985 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6986 req_len, emb); 6987 if (alloc_len < req_len) { 6988 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6989 "2983 Allocated DMA memory size (x%x) is " 6990 "less than the requested DMA memory " 6991 "size (x%x)\n", alloc_len, req_len); 6992 rc = -ENOMEM; 6993 goto err_exit; 6994 } 6995 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6996 if (unlikely(rc)) { 6997 rc = -EIO; 6998 goto err_exit; 6999 } 7000 7001 if (!phba->sli4_hba.intr_enable) 7002 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 7003 else { 7004 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 7005 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 7006 } 7007 7008 if (unlikely(rc)) { 7009 rc = -EIO; 7010 goto err_exit; 7011 } 7012 7013 /* 7014 * Figure out where the response is located. Then get local pointers 7015 * to the response data. The port does not guarantee to respond to 7016 * all extents counts request so update the local variable with the 7017 * allocated count from the port. 7018 */ 7019 if (emb == LPFC_SLI4_MBX_EMBED) { 7020 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 7021 shdr = &rsrc_ext->header.cfg_shdr; 7022 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 7023 } else { 7024 virtaddr = mbox->sge_array->addr[0]; 7025 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 7026 shdr = &n_rsrc->cfg_shdr; 7027 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 7028 } 7029 7030 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 7031 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 7032 "2984 Failed to read allocated resources " 7033 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 7034 type, 7035 bf_get(lpfc_mbox_hdr_status, &shdr->response), 7036 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 7037 rc = -EIO; 7038 goto err_exit; 7039 } 7040 err_exit: 7041 lpfc_sli4_mbox_cmd_free(phba, mbox); 7042 return rc; 7043 } 7044 7045 /** 7046 * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block 7047 * @phba: pointer to lpfc hba data structure. 7048 * @pring: Pointer to driver SLI ring object. 7049 * @sgl_list: linked link of sgl buffers to post 7050 * @cnt: number of linked list buffers 7051 * 7052 * This routine walks the list of buffers that have been allocated and 7053 * repost them to the port by using SGL block post. This is needed after a 7054 * pci_function_reset/warm_start or start. It attempts to construct blocks 7055 * of buffer sgls which contains contiguous xris and uses the non-embedded 7056 * SGL block post mailbox commands to post them to the port. For single 7057 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 7058 * mailbox command for posting. 7059 * 7060 * Returns: 0 = success, non-zero failure. 7061 **/ 7062 static int 7063 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 7064 struct list_head *sgl_list, int cnt) 7065 { 7066 struct lpfc_sglq *sglq_entry = NULL; 7067 struct lpfc_sglq *sglq_entry_next = NULL; 7068 struct lpfc_sglq *sglq_entry_first = NULL; 7069 int status, total_cnt; 7070 int post_cnt = 0, num_posted = 0, block_cnt = 0; 7071 int last_xritag = NO_XRI; 7072 LIST_HEAD(prep_sgl_list); 7073 LIST_HEAD(blck_sgl_list); 7074 LIST_HEAD(allc_sgl_list); 7075 LIST_HEAD(post_sgl_list); 7076 LIST_HEAD(free_sgl_list); 7077 7078 spin_lock_irq(&phba->hbalock); 7079 spin_lock(&phba->sli4_hba.sgl_list_lock); 7080 list_splice_init(sgl_list, &allc_sgl_list); 7081 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7082 spin_unlock_irq(&phba->hbalock); 7083 7084 total_cnt = cnt; 7085 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 7086 &allc_sgl_list, list) { 7087 list_del_init(&sglq_entry->list); 7088 block_cnt++; 7089 if ((last_xritag != NO_XRI) && 7090 (sglq_entry->sli4_xritag != last_xritag + 1)) { 7091 /* a hole in xri block, form a sgl posting block */ 7092 list_splice_init(&prep_sgl_list, &blck_sgl_list); 7093 post_cnt = block_cnt - 1; 7094 /* prepare list for next posting block */ 7095 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7096 block_cnt = 1; 7097 } else { 7098 /* prepare list for next posting block */ 7099 list_add_tail(&sglq_entry->list, &prep_sgl_list); 7100 /* enough sgls for non-embed sgl mbox command */ 7101 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 7102 list_splice_init(&prep_sgl_list, 7103 &blck_sgl_list); 7104 post_cnt = block_cnt; 7105 block_cnt = 0; 7106 } 7107 } 7108 num_posted++; 7109 7110 /* keep track of last sgl's xritag */ 7111 last_xritag = sglq_entry->sli4_xritag; 7112 7113 /* end of repost sgl list condition for buffers */ 7114 if (num_posted == total_cnt) { 7115 if (post_cnt == 0) { 7116 list_splice_init(&prep_sgl_list, 7117 &blck_sgl_list); 7118 post_cnt = block_cnt; 7119 } else if (block_cnt == 1) { 7120 status = lpfc_sli4_post_sgl(phba, 7121 sglq_entry->phys, 0, 7122 sglq_entry->sli4_xritag); 7123 if (!status) { 7124 /* successful, put sgl to posted list */ 7125 list_add_tail(&sglq_entry->list, 7126 &post_sgl_list); 7127 } else { 7128 /* Failure, put sgl to free list */ 7129 lpfc_printf_log(phba, KERN_WARNING, 7130 LOG_SLI, 7131 "3159 Failed to post " 7132 "sgl, xritag:x%x\n", 7133 sglq_entry->sli4_xritag); 7134 list_add_tail(&sglq_entry->list, 7135 &free_sgl_list); 7136 total_cnt--; 7137 } 7138 } 7139 } 7140 7141 /* continue until a nembed page worth of sgls */ 7142 if (post_cnt == 0) 7143 continue; 7144 7145 /* post the buffer list sgls as a block */ 7146 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 7147 post_cnt); 7148 7149 if (!status) { 7150 /* success, put sgl list to posted sgl list */ 7151 list_splice_init(&blck_sgl_list, &post_sgl_list); 7152 } else { 7153 /* Failure, put sgl list to free sgl list */ 7154 sglq_entry_first = list_first_entry(&blck_sgl_list, 7155 struct lpfc_sglq, 7156 list); 7157 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 7158 "3160 Failed to post sgl-list, " 7159 "xritag:x%x-x%x\n", 7160 sglq_entry_first->sli4_xritag, 7161 (sglq_entry_first->sli4_xritag + 7162 post_cnt - 1)); 7163 list_splice_init(&blck_sgl_list, &free_sgl_list); 7164 total_cnt -= post_cnt; 7165 } 7166 7167 /* don't reset xirtag due to hole in xri block */ 7168 if (block_cnt == 0) 7169 last_xritag = NO_XRI; 7170 7171 /* reset sgl post count for next round of posting */ 7172 post_cnt = 0; 7173 } 7174 7175 /* free the sgls failed to post */ 7176 lpfc_free_sgl_list(phba, &free_sgl_list); 7177 7178 /* push sgls posted to the available list */ 7179 if (!list_empty(&post_sgl_list)) { 7180 spin_lock_irq(&phba->hbalock); 7181 spin_lock(&phba->sli4_hba.sgl_list_lock); 7182 list_splice_init(&post_sgl_list, sgl_list); 7183 spin_unlock(&phba->sli4_hba.sgl_list_lock); 7184 spin_unlock_irq(&phba->hbalock); 7185 } else { 7186 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 7187 "3161 Failure to post sgl to port.\n"); 7188 return -EIO; 7189 } 7190 7191 /* return the number of XRIs actually posted */ 7192 return total_cnt; 7193 } 7194 7195 /** 7196 * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls 7197 * @phba: pointer to lpfc hba data structure. 7198 * 7199 * This routine walks the list of nvme buffers that have been allocated and 7200 * repost them to the port by using SGL block post. This is needed after a 7201 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine 7202 * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list 7203 * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. 7204 * 7205 * Returns: 0 = success, non-zero failure. 7206 **/ 7207 static int 7208 lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) 7209 { 7210 LIST_HEAD(post_nblist); 7211 int num_posted, rc = 0; 7212 7213 /* get all NVME buffers need to repost to a local list */ 7214 lpfc_io_buf_flush(phba, &post_nblist); 7215 7216 /* post the list of nvme buffer sgls to port if available */ 7217 if (!list_empty(&post_nblist)) { 7218 num_posted = lpfc_sli4_post_io_sgl_list( 7219 phba, &post_nblist, phba->sli4_hba.io_xri_cnt); 7220 /* failed to post any nvme buffer, return error */ 7221 if (num_posted == 0) 7222 rc = -EIO; 7223 } 7224 return rc; 7225 } 7226 7227 static void 7228 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 7229 { 7230 uint32_t len; 7231 7232 len = sizeof(struct lpfc_mbx_set_host_data) - 7233 sizeof(struct lpfc_sli4_cfg_mhdr); 7234 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 7235 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 7236 LPFC_SLI4_MBX_EMBED); 7237 7238 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 7239 mbox->u.mqe.un.set_host_data.param_len = 7240 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 7241 snprintf(mbox->u.mqe.un.set_host_data.data, 7242 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 7243 "Linux %s v"LPFC_DRIVER_VERSION, 7244 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 7245 } 7246 7247 int 7248 lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, 7249 struct lpfc_queue *drq, int count, int idx) 7250 { 7251 int rc, i; 7252 struct lpfc_rqe hrqe; 7253 struct lpfc_rqe drqe; 7254 struct lpfc_rqb *rqbp; 7255 unsigned long flags; 7256 struct rqb_dmabuf *rqb_buffer; 7257 LIST_HEAD(rqb_buf_list); 7258 7259 spin_lock_irqsave(&phba->hbalock, flags); 7260 rqbp = hrq->rqbp; 7261 for (i = 0; i < count; i++) { 7262 /* IF RQ is already full, don't bother */ 7263 if (rqbp->buffer_count + i >= rqbp->entry_count - 1) 7264 break; 7265 rqb_buffer = rqbp->rqb_alloc_buffer(phba); 7266 if (!rqb_buffer) 7267 break; 7268 rqb_buffer->hrq = hrq; 7269 rqb_buffer->drq = drq; 7270 rqb_buffer->idx = idx; 7271 list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); 7272 } 7273 while (!list_empty(&rqb_buf_list)) { 7274 list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, 7275 hbuf.list); 7276 7277 hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); 7278 hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); 7279 drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); 7280 drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); 7281 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 7282 if (rc < 0) { 7283 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7284 "6421 Cannot post to HRQ %d: %x %x %x " 7285 "DRQ %x %x\n", 7286 hrq->queue_id, 7287 hrq->host_index, 7288 hrq->hba_index, 7289 hrq->entry_count, 7290 drq->host_index, 7291 drq->hba_index); 7292 rqbp->rqb_free_buffer(phba, rqb_buffer); 7293 } else { 7294 list_add_tail(&rqb_buffer->hbuf.list, 7295 &rqbp->rqb_buffer_list); 7296 rqbp->buffer_count++; 7297 } 7298 } 7299 spin_unlock_irqrestore(&phba->hbalock, flags); 7300 return 1; 7301 } 7302 7303 /** 7304 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 7305 * @phba: Pointer to HBA context object. 7306 * 7307 * This function is the main SLI4 device initialization PCI function. This 7308 * function is called by the HBA initialization code, HBA reset code and 7309 * HBA error attention handler code. Caller is not required to hold any 7310 * locks. 7311 **/ 7312 int 7313 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 7314 { 7315 int rc, i, cnt, len, dd; 7316 LPFC_MBOXQ_t *mboxq; 7317 struct lpfc_mqe *mqe; 7318 uint8_t *vpd; 7319 uint32_t vpd_size; 7320 uint32_t ftr_rsp = 0; 7321 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 7322 struct lpfc_vport *vport = phba->pport; 7323 struct lpfc_dmabuf *mp; 7324 struct lpfc_rqb *rqbp; 7325 7326 /* Perform a PCI function reset to start from clean */ 7327 rc = lpfc_pci_function_reset(phba); 7328 if (unlikely(rc)) 7329 return -ENODEV; 7330 7331 /* Check the HBA Host Status Register for readyness */ 7332 rc = lpfc_sli4_post_status_check(phba); 7333 if (unlikely(rc)) 7334 return -ENODEV; 7335 else { 7336 spin_lock_irq(&phba->hbalock); 7337 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 7338 spin_unlock_irq(&phba->hbalock); 7339 } 7340 7341 /* 7342 * Allocate a single mailbox container for initializing the 7343 * port. 7344 */ 7345 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 7346 if (!mboxq) 7347 return -ENOMEM; 7348 7349 /* Issue READ_REV to collect vpd and FW information. */ 7350 vpd_size = SLI4_PAGE_SIZE; 7351 vpd = kzalloc(vpd_size, GFP_KERNEL); 7352 if (!vpd) { 7353 rc = -ENOMEM; 7354 goto out_free_mbox; 7355 } 7356 7357 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 7358 if (unlikely(rc)) { 7359 kfree(vpd); 7360 goto out_free_mbox; 7361 } 7362 7363 mqe = &mboxq->u.mqe; 7364 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 7365 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 7366 phba->hba_flag |= HBA_FCOE_MODE; 7367 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 7368 } else { 7369 phba->hba_flag &= ~HBA_FCOE_MODE; 7370 } 7371 7372 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 7373 LPFC_DCBX_CEE_MODE) 7374 phba->hba_flag |= HBA_FIP_SUPPORT; 7375 else 7376 phba->hba_flag &= ~HBA_FIP_SUPPORT; 7377 7378 phba->hba_flag &= ~HBA_IOQ_FLUSH; 7379 7380 if (phba->sli_rev != LPFC_SLI_REV4) { 7381 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7382 "0376 READ_REV Error. SLI Level %d " 7383 "FCoE enabled %d\n", 7384 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 7385 rc = -EIO; 7386 kfree(vpd); 7387 goto out_free_mbox; 7388 } 7389 7390 /* 7391 * Continue initialization with default values even if driver failed 7392 * to read FCoE param config regions, only read parameters if the 7393 * board is FCoE 7394 */ 7395 if (phba->hba_flag & HBA_FCOE_MODE && 7396 lpfc_sli4_read_fcoe_params(phba)) 7397 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 7398 "2570 Failed to read FCoE parameters\n"); 7399 7400 /* 7401 * Retrieve sli4 device physical port name, failure of doing it 7402 * is considered as non-fatal. 7403 */ 7404 rc = lpfc_sli4_retrieve_pport_name(phba); 7405 if (!rc) 7406 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7407 "3080 Successful retrieving SLI4 device " 7408 "physical port name: %s.\n", phba->Port); 7409 7410 rc = lpfc_sli4_get_ctl_attr(phba); 7411 if (!rc) 7412 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7413 "8351 Successful retrieving SLI4 device " 7414 "CTL ATTR\n"); 7415 7416 /* 7417 * Evaluate the read rev and vpd data. Populate the driver 7418 * state with the results. If this routine fails, the failure 7419 * is not fatal as the driver will use generic values. 7420 */ 7421 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 7422 if (unlikely(!rc)) { 7423 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7424 "0377 Error %d parsing vpd. " 7425 "Using defaults.\n", rc); 7426 rc = 0; 7427 } 7428 kfree(vpd); 7429 7430 /* Save information as VPD data */ 7431 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 7432 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 7433 7434 /* 7435 * This is because first G7 ASIC doesn't support the standard 7436 * 0x5a NVME cmd descriptor type/subtype 7437 */ 7438 if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7439 LPFC_SLI_INTF_IF_TYPE_6) && 7440 (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && 7441 (phba->vpd.rev.smRev == 0) && 7442 (phba->cfg_nvme_embed_cmd == 1)) 7443 phba->cfg_nvme_embed_cmd = 0; 7444 7445 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 7446 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 7447 &mqe->un.read_rev); 7448 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 7449 &mqe->un.read_rev); 7450 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 7451 &mqe->un.read_rev); 7452 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 7453 &mqe->un.read_rev); 7454 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 7455 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 7456 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 7457 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 7458 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 7459 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 7460 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7461 "(%d):0380 READ_REV Status x%x " 7462 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 7463 mboxq->vport ? mboxq->vport->vpi : 0, 7464 bf_get(lpfc_mqe_status, mqe), 7465 phba->vpd.rev.opFwName, 7466 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 7467 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 7468 7469 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 7470 LPFC_SLI_INTF_IF_TYPE_0) { 7471 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 7472 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7473 if (rc == MBX_SUCCESS) { 7474 phba->hba_flag |= HBA_RECOVERABLE_UE; 7475 /* Set 1Sec interval to detect UE */ 7476 phba->eratt_poll_interval = 1; 7477 phba->sli4_hba.ue_to_sr = bf_get( 7478 lpfc_mbx_set_feature_UESR, 7479 &mboxq->u.mqe.un.set_feature); 7480 phba->sli4_hba.ue_to_rp = bf_get( 7481 lpfc_mbx_set_feature_UERP, 7482 &mboxq->u.mqe.un.set_feature); 7483 } 7484 } 7485 7486 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 7487 /* Enable MDS Diagnostics only if the SLI Port supports it */ 7488 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 7489 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7490 if (rc != MBX_SUCCESS) 7491 phba->mds_diags_support = 0; 7492 } 7493 7494 /* 7495 * Discover the port's supported feature set and match it against the 7496 * hosts requests. 7497 */ 7498 lpfc_request_features(phba, mboxq); 7499 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7500 if (unlikely(rc)) { 7501 rc = -EIO; 7502 goto out_free_mbox; 7503 } 7504 7505 /* 7506 * The port must support FCP initiator mode as this is the 7507 * only mode running in the host. 7508 */ 7509 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 7510 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7511 "0378 No support for fcpi mode.\n"); 7512 ftr_rsp++; 7513 } 7514 7515 /* Performance Hints are ONLY for FCoE */ 7516 if (phba->hba_flag & HBA_FCOE_MODE) { 7517 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 7518 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 7519 else 7520 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 7521 } 7522 7523 /* 7524 * If the port cannot support the host's requested features 7525 * then turn off the global config parameters to disable the 7526 * feature in the driver. This is not a fatal error. 7527 */ 7528 if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { 7529 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { 7530 phba->cfg_enable_bg = 0; 7531 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 7532 ftr_rsp++; 7533 } 7534 } 7535 7536 if (phba->max_vpi && phba->cfg_enable_npiv && 7537 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7538 ftr_rsp++; 7539 7540 if (ftr_rsp) { 7541 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7542 "0379 Feature Mismatch Data: x%08x %08x " 7543 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 7544 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 7545 phba->cfg_enable_npiv, phba->max_vpi); 7546 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 7547 phba->cfg_enable_bg = 0; 7548 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 7549 phba->cfg_enable_npiv = 0; 7550 } 7551 7552 /* These SLI3 features are assumed in SLI4 */ 7553 spin_lock_irq(&phba->hbalock); 7554 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 7555 spin_unlock_irq(&phba->hbalock); 7556 7557 /* Always try to enable dual dump feature if we can */ 7558 lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); 7559 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7560 dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); 7561 if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) 7562 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_INIT, 7563 "6448 Dual Dump is enabled\n"); 7564 else 7565 lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, 7566 "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " 7567 "rc:x%x dd:x%x\n", 7568 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 7569 lpfc_sli_config_mbox_subsys_get( 7570 phba, mboxq), 7571 lpfc_sli_config_mbox_opcode_get( 7572 phba, mboxq), 7573 rc, dd); 7574 /* 7575 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 7576 * calls depends on these resources to complete port setup. 7577 */ 7578 rc = lpfc_sli4_alloc_resource_identifiers(phba); 7579 if (rc) { 7580 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7581 "2920 Failed to alloc Resource IDs " 7582 "rc = x%x\n", rc); 7583 goto out_free_mbox; 7584 } 7585 7586 lpfc_set_host_data(phba, mboxq); 7587 7588 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7589 if (rc) { 7590 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 7591 "2134 Failed to set host os driver version %x", 7592 rc); 7593 } 7594 7595 /* Read the port's service parameters. */ 7596 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 7597 if (rc) { 7598 phba->link_state = LPFC_HBA_ERROR; 7599 rc = -ENOMEM; 7600 goto out_free_mbox; 7601 } 7602 7603 mboxq->vport = vport; 7604 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7605 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 7606 if (rc == MBX_SUCCESS) { 7607 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 7608 rc = 0; 7609 } 7610 7611 /* 7612 * This memory was allocated by the lpfc_read_sparam routine. Release 7613 * it to the mbuf pool. 7614 */ 7615 lpfc_mbuf_free(phba, mp->virt, mp->phys); 7616 kfree(mp); 7617 mboxq->ctx_buf = NULL; 7618 if (unlikely(rc)) { 7619 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7620 "0382 READ_SPARAM command failed " 7621 "status %d, mbxStatus x%x\n", 7622 rc, bf_get(lpfc_mqe_status, mqe)); 7623 phba->link_state = LPFC_HBA_ERROR; 7624 rc = -EIO; 7625 goto out_free_mbox; 7626 } 7627 7628 lpfc_update_vport_wwn(vport); 7629 7630 /* Update the fc_host data structures with new wwn. */ 7631 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 7632 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 7633 7634 /* Create all the SLI4 queues */ 7635 rc = lpfc_sli4_queue_create(phba); 7636 if (rc) { 7637 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7638 "3089 Failed to allocate queues\n"); 7639 rc = -ENODEV; 7640 goto out_free_mbox; 7641 } 7642 /* Set up all the queues to the device */ 7643 rc = lpfc_sli4_queue_setup(phba); 7644 if (unlikely(rc)) { 7645 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7646 "0381 Error %d during queue setup.\n ", rc); 7647 goto out_stop_timers; 7648 } 7649 /* Initialize the driver internal SLI layer lists. */ 7650 lpfc_sli4_setup(phba); 7651 lpfc_sli4_queue_init(phba); 7652 7653 /* update host els xri-sgl sizes and mappings */ 7654 rc = lpfc_sli4_els_sgl_update(phba); 7655 if (unlikely(rc)) { 7656 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7657 "1400 Failed to update xri-sgl size and " 7658 "mapping: %d\n", rc); 7659 goto out_destroy_queue; 7660 } 7661 7662 /* register the els sgl pool to the port */ 7663 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 7664 phba->sli4_hba.els_xri_cnt); 7665 if (unlikely(rc < 0)) { 7666 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7667 "0582 Error %d during els sgl post " 7668 "operation\n", rc); 7669 rc = -ENODEV; 7670 goto out_destroy_queue; 7671 } 7672 phba->sli4_hba.els_xri_cnt = rc; 7673 7674 if (phba->nvmet_support) { 7675 /* update host nvmet xri-sgl sizes and mappings */ 7676 rc = lpfc_sli4_nvmet_sgl_update(phba); 7677 if (unlikely(rc)) { 7678 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7679 "6308 Failed to update nvmet-sgl size " 7680 "and mapping: %d\n", rc); 7681 goto out_destroy_queue; 7682 } 7683 7684 /* register the nvmet sgl pool to the port */ 7685 rc = lpfc_sli4_repost_sgl_list( 7686 phba, 7687 &phba->sli4_hba.lpfc_nvmet_sgl_list, 7688 phba->sli4_hba.nvmet_xri_cnt); 7689 if (unlikely(rc < 0)) { 7690 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7691 "3117 Error %d during nvmet " 7692 "sgl post\n", rc); 7693 rc = -ENODEV; 7694 goto out_destroy_queue; 7695 } 7696 phba->sli4_hba.nvmet_xri_cnt = rc; 7697 7698 /* We allocate an iocbq for every receive context SGL. 7699 * The additional allocation is for abort and ls handling. 7700 */ 7701 cnt = phba->sli4_hba.nvmet_xri_cnt + 7702 phba->sli4_hba.max_cfg_param.max_xri; 7703 } else { 7704 /* update host common xri-sgl sizes and mappings */ 7705 rc = lpfc_sli4_io_sgl_update(phba); 7706 if (unlikely(rc)) { 7707 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7708 "6082 Failed to update nvme-sgl size " 7709 "and mapping: %d\n", rc); 7710 goto out_destroy_queue; 7711 } 7712 7713 /* register the allocated common sgl pool to the port */ 7714 rc = lpfc_sli4_repost_io_sgl_list(phba); 7715 if (unlikely(rc)) { 7716 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7717 "6116 Error %d during nvme sgl post " 7718 "operation\n", rc); 7719 /* Some NVME buffers were moved to abort nvme list */ 7720 /* A pci function reset will repost them */ 7721 rc = -ENODEV; 7722 goto out_destroy_queue; 7723 } 7724 /* Each lpfc_io_buf job structure has an iocbq element. 7725 * This cnt provides for abort, els, ct and ls requests. 7726 */ 7727 cnt = phba->sli4_hba.max_cfg_param.max_xri; 7728 } 7729 7730 if (!phba->sli.iocbq_lookup) { 7731 /* Initialize and populate the iocb list per host */ 7732 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7733 "2821 initialize iocb list with %d entries\n", 7734 cnt); 7735 rc = lpfc_init_iocb_list(phba, cnt); 7736 if (rc) { 7737 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 7738 "1413 Failed to init iocb list.\n"); 7739 goto out_destroy_queue; 7740 } 7741 } 7742 7743 if (phba->nvmet_support) 7744 lpfc_nvmet_create_targetport(phba); 7745 7746 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 7747 /* Post initial buffers to all RQs created */ 7748 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 7749 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 7750 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 7751 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 7752 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 7753 rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; 7754 rqbp->buffer_count = 0; 7755 7756 lpfc_post_rq_buffer( 7757 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 7758 phba->sli4_hba.nvmet_mrq_data[i], 7759 phba->cfg_nvmet_mrq_post, i); 7760 } 7761 } 7762 7763 /* Post the rpi header region to the device. */ 7764 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 7765 if (unlikely(rc)) { 7766 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7767 "0393 Error %d during rpi post operation\n", 7768 rc); 7769 rc = -ENODEV; 7770 goto out_destroy_queue; 7771 } 7772 lpfc_sli4_node_prep(phba); 7773 7774 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 7775 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 7776 /* 7777 * The FC Port needs to register FCFI (index 0) 7778 */ 7779 lpfc_reg_fcfi(phba, mboxq); 7780 mboxq->vport = phba->pport; 7781 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7782 if (rc != MBX_SUCCESS) 7783 goto out_unset_queue; 7784 rc = 0; 7785 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 7786 &mboxq->u.mqe.un.reg_fcfi); 7787 } else { 7788 /* We are a NVME Target mode with MRQ > 1 */ 7789 7790 /* First register the FCFI */ 7791 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 7792 mboxq->vport = phba->pport; 7793 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7794 if (rc != MBX_SUCCESS) 7795 goto out_unset_queue; 7796 rc = 0; 7797 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 7798 &mboxq->u.mqe.un.reg_fcfi_mrq); 7799 7800 /* Next register the MRQs */ 7801 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 7802 mboxq->vport = phba->pport; 7803 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7804 if (rc != MBX_SUCCESS) 7805 goto out_unset_queue; 7806 rc = 0; 7807 } 7808 /* Check if the port is configured to be disabled */ 7809 lpfc_sli_read_link_ste(phba); 7810 } 7811 7812 /* Don't post more new bufs if repost already recovered 7813 * the nvme sgls. 7814 */ 7815 if (phba->nvmet_support == 0) { 7816 if (phba->sli4_hba.io_xri_cnt == 0) { 7817 len = lpfc_new_io_buf( 7818 phba, phba->sli4_hba.io_xri_max); 7819 if (len == 0) { 7820 rc = -ENOMEM; 7821 goto out_unset_queue; 7822 } 7823 7824 if (phba->cfg_xri_rebalancing) 7825 lpfc_create_multixri_pools(phba); 7826 } 7827 } else { 7828 phba->cfg_xri_rebalancing = 0; 7829 } 7830 7831 /* Allow asynchronous mailbox command to go through */ 7832 spin_lock_irq(&phba->hbalock); 7833 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7834 spin_unlock_irq(&phba->hbalock); 7835 7836 /* Post receive buffers to the device */ 7837 lpfc_sli4_rb_setup(phba); 7838 7839 /* Reset HBA FCF states after HBA reset */ 7840 phba->fcf.fcf_flag = 0; 7841 phba->fcf.current_rec.flag = 0; 7842 7843 /* Start the ELS watchdog timer */ 7844 mod_timer(&vport->els_tmofunc, 7845 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7846 7847 /* Start heart beat timer */ 7848 mod_timer(&phba->hb_tmofunc, 7849 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7850 phba->hb_outstanding = 0; 7851 phba->last_completion_time = jiffies; 7852 7853 /* start eq_delay heartbeat */ 7854 if (phba->cfg_auto_imax) 7855 queue_delayed_work(phba->wq, &phba->eq_delay_work, 7856 msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); 7857 7858 /* Start error attention (ERATT) polling timer */ 7859 mod_timer(&phba->eratt_poll, 7860 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7861 7862 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7863 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7864 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7865 if (!rc) { 7866 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7867 "2829 This device supports " 7868 "Advanced Error Reporting (AER)\n"); 7869 spin_lock_irq(&phba->hbalock); 7870 phba->hba_flag |= HBA_AER_ENABLED; 7871 spin_unlock_irq(&phba->hbalock); 7872 } else { 7873 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7874 "2830 This device does not support " 7875 "Advanced Error Reporting (AER)\n"); 7876 phba->cfg_aer_support = 0; 7877 } 7878 rc = 0; 7879 } 7880 7881 /* 7882 * The port is ready, set the host's link state to LINK_DOWN 7883 * in preparation for link interrupts. 7884 */ 7885 spin_lock_irq(&phba->hbalock); 7886 phba->link_state = LPFC_LINK_DOWN; 7887 7888 /* Check if physical ports are trunked */ 7889 if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) 7890 phba->trunk_link.link0.state = LPFC_LINK_DOWN; 7891 if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) 7892 phba->trunk_link.link1.state = LPFC_LINK_DOWN; 7893 if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) 7894 phba->trunk_link.link2.state = LPFC_LINK_DOWN; 7895 if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) 7896 phba->trunk_link.link3.state = LPFC_LINK_DOWN; 7897 spin_unlock_irq(&phba->hbalock); 7898 7899 /* Arm the CQs and then EQs on device */ 7900 lpfc_sli4_arm_cqeq_intr(phba); 7901 7902 /* Indicate device interrupt mode */ 7903 phba->sli4_hba.intr_enable = 1; 7904 7905 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7906 (phba->hba_flag & LINK_DISABLED)) { 7907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7908 "3103 Adapter Link is disabled.\n"); 7909 lpfc_down_link(phba, mboxq); 7910 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7911 if (rc != MBX_SUCCESS) { 7912 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7913 "3104 Adapter failed to issue " 7914 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7915 goto out_io_buff_free; 7916 } 7917 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7918 /* don't perform init_link on SLI4 FC port loopback test */ 7919 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7920 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7921 if (rc) 7922 goto out_io_buff_free; 7923 } 7924 } 7925 mempool_free(mboxq, phba->mbox_mem_pool); 7926 return rc; 7927 out_io_buff_free: 7928 /* Free allocated IO Buffers */ 7929 lpfc_io_free(phba); 7930 out_unset_queue: 7931 /* Unset all the queues set up in this routine when error out */ 7932 lpfc_sli4_queue_unset(phba); 7933 out_destroy_queue: 7934 lpfc_free_iocb_list(phba); 7935 lpfc_sli4_queue_destroy(phba); 7936 out_stop_timers: 7937 lpfc_stop_hba_timers(phba); 7938 out_free_mbox: 7939 mempool_free(mboxq, phba->mbox_mem_pool); 7940 return rc; 7941 } 7942 7943 /** 7944 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7945 * @ptr: context object - pointer to hba structure. 7946 * 7947 * This is the callback function for mailbox timer. The mailbox 7948 * timer is armed when a new mailbox command is issued and the timer 7949 * is deleted when the mailbox complete. The function is called by 7950 * the kernel timer code when a mailbox does not complete within 7951 * expected time. This function wakes up the worker thread to 7952 * process the mailbox timeout and returns. All the processing is 7953 * done by the worker thread function lpfc_mbox_timeout_handler. 7954 **/ 7955 void 7956 lpfc_mbox_timeout(struct timer_list *t) 7957 { 7958 struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); 7959 unsigned long iflag; 7960 uint32_t tmo_posted; 7961 7962 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7963 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7964 if (!tmo_posted) 7965 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7966 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7967 7968 if (!tmo_posted) 7969 lpfc_worker_wake_up(phba); 7970 return; 7971 } 7972 7973 /** 7974 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7975 * are pending 7976 * @phba: Pointer to HBA context object. 7977 * 7978 * This function checks if any mailbox completions are present on the mailbox 7979 * completion queue. 7980 **/ 7981 static bool 7982 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7983 { 7984 7985 uint32_t idx; 7986 struct lpfc_queue *mcq; 7987 struct lpfc_mcqe *mcqe; 7988 bool pending_completions = false; 7989 uint8_t qe_valid; 7990 7991 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7992 return false; 7993 7994 /* Check for completions on mailbox completion queue */ 7995 7996 mcq = phba->sli4_hba.mbx_cq; 7997 idx = mcq->hba_index; 7998 qe_valid = mcq->qe_valid; 7999 while (bf_get_le32(lpfc_cqe_valid, 8000 (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { 8001 mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); 8002 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 8003 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 8004 pending_completions = true; 8005 break; 8006 } 8007 idx = (idx + 1) % mcq->entry_count; 8008 if (mcq->hba_index == idx) 8009 break; 8010 8011 /* if the index wrapped around, toggle the valid bit */ 8012 if (phba->sli4_hba.pc_sli4_params.cqav && !idx) 8013 qe_valid = (qe_valid) ? 0 : 1; 8014 } 8015 return pending_completions; 8016 8017 } 8018 8019 /** 8020 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 8021 * that were missed. 8022 * @phba: Pointer to HBA context object. 8023 * 8024 * For sli4, it is possible to miss an interrupt. As such mbox completions 8025 * maybe missed causing erroneous mailbox timeouts to occur. This function 8026 * checks to see if mbox completions are on the mailbox completion queue 8027 * and will process all the completions associated with the eq for the 8028 * mailbox completion queue. 8029 **/ 8030 static bool 8031 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 8032 { 8033 struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; 8034 uint32_t eqidx; 8035 struct lpfc_queue *fpeq = NULL; 8036 struct lpfc_queue *eq; 8037 bool mbox_pending; 8038 8039 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 8040 return false; 8041 8042 /* Find the EQ associated with the mbox CQ */ 8043 if (sli4_hba->hdwq) { 8044 for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { 8045 eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; 8046 if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { 8047 fpeq = eq; 8048 break; 8049 } 8050 } 8051 } 8052 if (!fpeq) 8053 return false; 8054 8055 /* Turn off interrupts from this EQ */ 8056 8057 sli4_hba->sli4_eq_clr_intr(fpeq); 8058 8059 /* Check to see if a mbox completion is pending */ 8060 8061 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 8062 8063 /* 8064 * If a mbox completion is pending, process all the events on EQ 8065 * associated with the mbox completion queue (this could include 8066 * mailbox commands, async events, els commands, receive queue data 8067 * and fcp commands) 8068 */ 8069 8070 if (mbox_pending) 8071 /* process and rearm the EQ */ 8072 lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 8073 else 8074 /* Always clear and re-arm the EQ */ 8075 sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); 8076 8077 return mbox_pending; 8078 8079 } 8080 8081 /** 8082 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 8083 * @phba: Pointer to HBA context object. 8084 * 8085 * This function is called from worker thread when a mailbox command times out. 8086 * The caller is not required to hold any locks. This function will reset the 8087 * HBA and recover all the pending commands. 8088 **/ 8089 void 8090 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 8091 { 8092 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 8093 MAILBOX_t *mb = NULL; 8094 8095 struct lpfc_sli *psli = &phba->sli; 8096 8097 /* If the mailbox completed, process the completion and return */ 8098 if (lpfc_sli4_process_missed_mbox_completions(phba)) 8099 return; 8100 8101 if (pmbox != NULL) 8102 mb = &pmbox->u.mb; 8103 /* Check the pmbox pointer first. There is a race condition 8104 * between the mbox timeout handler getting executed in the 8105 * worklist and the mailbox actually completing. When this 8106 * race condition occurs, the mbox_active will be NULL. 8107 */ 8108 spin_lock_irq(&phba->hbalock); 8109 if (pmbox == NULL) { 8110 lpfc_printf_log(phba, KERN_WARNING, 8111 LOG_MBOX | LOG_SLI, 8112 "0353 Active Mailbox cleared - mailbox timeout " 8113 "exiting\n"); 8114 spin_unlock_irq(&phba->hbalock); 8115 return; 8116 } 8117 8118 /* Mbox cmd <mbxCommand> timeout */ 8119 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8120 "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", 8121 mb->mbxCommand, 8122 phba->pport->port_state, 8123 phba->sli.sli_flag, 8124 phba->sli.mbox_active); 8125 spin_unlock_irq(&phba->hbalock); 8126 8127 /* Setting state unknown so lpfc_sli_abort_iocb_ring 8128 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 8129 * it to fail all outstanding SCSI IO. 8130 */ 8131 spin_lock_irq(&phba->pport->work_port_lock); 8132 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 8133 spin_unlock_irq(&phba->pport->work_port_lock); 8134 spin_lock_irq(&phba->hbalock); 8135 phba->link_state = LPFC_LINK_UNKNOWN; 8136 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 8137 spin_unlock_irq(&phba->hbalock); 8138 8139 lpfc_sli_abort_fcp_rings(phba); 8140 8141 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8142 "0345 Resetting board due to mailbox timeout\n"); 8143 8144 /* Reset the HBA device */ 8145 lpfc_reset_hba(phba); 8146 } 8147 8148 /** 8149 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 8150 * @phba: Pointer to HBA context object. 8151 * @pmbox: Pointer to mailbox object. 8152 * @flag: Flag indicating how the mailbox need to be processed. 8153 * 8154 * This function is called by discovery code and HBA management code 8155 * to submit a mailbox command to firmware with SLI-3 interface spec. This 8156 * function gets the hbalock to protect the data structures. 8157 * The mailbox command can be submitted in polling mode, in which case 8158 * this function will wait in a polling loop for the completion of the 8159 * mailbox. 8160 * If the mailbox is submitted in no_wait mode (not polling) the 8161 * function will submit the command and returns immediately without waiting 8162 * for the mailbox completion. The no_wait is supported only when HBA 8163 * is in SLI2/SLI3 mode - interrupts are enabled. 8164 * The SLI interface allows only one mailbox pending at a time. If the 8165 * mailbox is issued in polling mode and there is already a mailbox 8166 * pending, then the function will return an error. If the mailbox is issued 8167 * in NO_WAIT mode and there is a mailbox pending already, the function 8168 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 8169 * The sli layer owns the mailbox object until the completion of mailbox 8170 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 8171 * return codes the caller owns the mailbox command after the return of 8172 * the function. 8173 **/ 8174 static int 8175 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 8176 uint32_t flag) 8177 { 8178 MAILBOX_t *mbx; 8179 struct lpfc_sli *psli = &phba->sli; 8180 uint32_t status, evtctr; 8181 uint32_t ha_copy, hc_copy; 8182 int i; 8183 unsigned long timeout; 8184 unsigned long drvr_flag = 0; 8185 uint32_t word0, ldata; 8186 void __iomem *to_slim; 8187 int processing_queue = 0; 8188 8189 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8190 if (!pmbox) { 8191 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8192 /* processing mbox queue from intr_handler */ 8193 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8194 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8195 return MBX_SUCCESS; 8196 } 8197 processing_queue = 1; 8198 pmbox = lpfc_mbox_get(phba); 8199 if (!pmbox) { 8200 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8201 return MBX_SUCCESS; 8202 } 8203 } 8204 8205 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 8206 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 8207 if(!pmbox->vport) { 8208 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8209 lpfc_printf_log(phba, KERN_ERR, 8210 LOG_MBOX | LOG_VPORT, 8211 "1806 Mbox x%x failed. No vport\n", 8212 pmbox->u.mb.mbxCommand); 8213 dump_stack(); 8214 goto out_not_finished; 8215 } 8216 } 8217 8218 /* If the PCI channel is in offline state, do not post mbox. */ 8219 if (unlikely(pci_channel_offline(phba->pcidev))) { 8220 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8221 goto out_not_finished; 8222 } 8223 8224 /* If HBA has a deferred error attention, fail the iocb. */ 8225 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 8226 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8227 goto out_not_finished; 8228 } 8229 8230 psli = &phba->sli; 8231 8232 mbx = &pmbox->u.mb; 8233 status = MBX_SUCCESS; 8234 8235 if (phba->link_state == LPFC_HBA_ERROR) { 8236 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8237 8238 /* Mbox command <mbxCommand> cannot issue */ 8239 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8240 "(%d):0311 Mailbox command x%x cannot " 8241 "issue Data: x%x x%x\n", 8242 pmbox->vport ? pmbox->vport->vpi : 0, 8243 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8244 goto out_not_finished; 8245 } 8246 8247 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 8248 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 8249 !(hc_copy & HC_MBINT_ENA)) { 8250 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8251 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8252 "(%d):2528 Mailbox command x%x cannot " 8253 "issue Data: x%x x%x\n", 8254 pmbox->vport ? pmbox->vport->vpi : 0, 8255 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 8256 goto out_not_finished; 8257 } 8258 } 8259 8260 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8261 /* Polling for a mbox command when another one is already active 8262 * is not allowed in SLI. Also, the driver must have established 8263 * SLI2 mode to queue and process multiple mbox commands. 8264 */ 8265 8266 if (flag & MBX_POLL) { 8267 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8268 8269 /* Mbox command <mbxCommand> cannot issue */ 8270 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8271 "(%d):2529 Mailbox command x%x " 8272 "cannot issue Data: x%x x%x\n", 8273 pmbox->vport ? pmbox->vport->vpi : 0, 8274 pmbox->u.mb.mbxCommand, 8275 psli->sli_flag, flag); 8276 goto out_not_finished; 8277 } 8278 8279 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 8280 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8281 /* Mbox command <mbxCommand> cannot issue */ 8282 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8283 "(%d):2530 Mailbox command x%x " 8284 "cannot issue Data: x%x x%x\n", 8285 pmbox->vport ? pmbox->vport->vpi : 0, 8286 pmbox->u.mb.mbxCommand, 8287 psli->sli_flag, flag); 8288 goto out_not_finished; 8289 } 8290 8291 /* Another mailbox command is still being processed, queue this 8292 * command to be processed later. 8293 */ 8294 lpfc_mbox_put(phba, pmbox); 8295 8296 /* Mbox cmd issue - BUSY */ 8297 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8298 "(%d):0308 Mbox cmd issue - BUSY Data: " 8299 "x%x x%x x%x x%x\n", 8300 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 8301 mbx->mbxCommand, 8302 phba->pport ? phba->pport->port_state : 0xff, 8303 psli->sli_flag, flag); 8304 8305 psli->slistat.mbox_busy++; 8306 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8307 8308 if (pmbox->vport) { 8309 lpfc_debugfs_disc_trc(pmbox->vport, 8310 LPFC_DISC_TRC_MBOX_VPORT, 8311 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 8312 (uint32_t)mbx->mbxCommand, 8313 mbx->un.varWords[0], mbx->un.varWords[1]); 8314 } 8315 else { 8316 lpfc_debugfs_disc_trc(phba->pport, 8317 LPFC_DISC_TRC_MBOX, 8318 "MBOX Bsy: cmd:x%x mb:x%x x%x", 8319 (uint32_t)mbx->mbxCommand, 8320 mbx->un.varWords[0], mbx->un.varWords[1]); 8321 } 8322 8323 return MBX_BUSY; 8324 } 8325 8326 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8327 8328 /* If we are not polling, we MUST be in SLI2 mode */ 8329 if (flag != MBX_POLL) { 8330 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 8331 (mbx->mbxCommand != MBX_KILL_BOARD)) { 8332 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8333 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8334 /* Mbox command <mbxCommand> cannot issue */ 8335 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8336 "(%d):2531 Mailbox command x%x " 8337 "cannot issue Data: x%x x%x\n", 8338 pmbox->vport ? pmbox->vport->vpi : 0, 8339 pmbox->u.mb.mbxCommand, 8340 psli->sli_flag, flag); 8341 goto out_not_finished; 8342 } 8343 /* timeout active mbox command */ 8344 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8345 1000); 8346 mod_timer(&psli->mbox_tmo, jiffies + timeout); 8347 } 8348 8349 /* Mailbox cmd <cmd> issue */ 8350 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8351 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 8352 "x%x\n", 8353 pmbox->vport ? pmbox->vport->vpi : 0, 8354 mbx->mbxCommand, 8355 phba->pport ? phba->pport->port_state : 0xff, 8356 psli->sli_flag, flag); 8357 8358 if (mbx->mbxCommand != MBX_HEARTBEAT) { 8359 if (pmbox->vport) { 8360 lpfc_debugfs_disc_trc(pmbox->vport, 8361 LPFC_DISC_TRC_MBOX_VPORT, 8362 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8363 (uint32_t)mbx->mbxCommand, 8364 mbx->un.varWords[0], mbx->un.varWords[1]); 8365 } 8366 else { 8367 lpfc_debugfs_disc_trc(phba->pport, 8368 LPFC_DISC_TRC_MBOX, 8369 "MBOX Send: cmd:x%x mb:x%x x%x", 8370 (uint32_t)mbx->mbxCommand, 8371 mbx->un.varWords[0], mbx->un.varWords[1]); 8372 } 8373 } 8374 8375 psli->slistat.mbox_cmd++; 8376 evtctr = psli->slistat.mbox_event; 8377 8378 /* next set own bit for the adapter and copy over command word */ 8379 mbx->mbxOwner = OWN_CHIP; 8380 8381 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8382 /* Populate mbox extension offset word. */ 8383 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 8384 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8385 = (uint8_t *)phba->mbox_ext 8386 - (uint8_t *)phba->mbox; 8387 } 8388 8389 /* Copy the mailbox extension data */ 8390 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { 8391 lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, 8392 (uint8_t *)phba->mbox_ext, 8393 pmbox->in_ext_byte_len); 8394 } 8395 /* Copy command data to host SLIM area */ 8396 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 8397 } else { 8398 /* Populate mbox extension offset word. */ 8399 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 8400 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 8401 = MAILBOX_HBA_EXT_OFFSET; 8402 8403 /* Copy the mailbox extension data */ 8404 if (pmbox->in_ext_byte_len && pmbox->ctx_buf) 8405 lpfc_memcpy_to_slim(phba->MBslimaddr + 8406 MAILBOX_HBA_EXT_OFFSET, 8407 pmbox->ctx_buf, pmbox->in_ext_byte_len); 8408 8409 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8410 /* copy command data into host mbox for cmpl */ 8411 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 8412 MAILBOX_CMD_SIZE); 8413 8414 /* First copy mbox command data to HBA SLIM, skip past first 8415 word */ 8416 to_slim = phba->MBslimaddr + sizeof (uint32_t); 8417 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 8418 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 8419 8420 /* Next copy over first word, with mbxOwner set */ 8421 ldata = *((uint32_t *)mbx); 8422 to_slim = phba->MBslimaddr; 8423 writel(ldata, to_slim); 8424 readl(to_slim); /* flush */ 8425 8426 if (mbx->mbxCommand == MBX_CONFIG_PORT) 8427 /* switch over to host mailbox */ 8428 psli->sli_flag |= LPFC_SLI_ACTIVE; 8429 } 8430 8431 wmb(); 8432 8433 switch (flag) { 8434 case MBX_NOWAIT: 8435 /* Set up reference to mailbox command */ 8436 psli->mbox_active = pmbox; 8437 /* Interrupt board to do it */ 8438 writel(CA_MBATT, phba->CAregaddr); 8439 readl(phba->CAregaddr); /* flush */ 8440 /* Don't wait for it to finish, just return */ 8441 break; 8442 8443 case MBX_POLL: 8444 /* Set up null reference to mailbox command */ 8445 psli->mbox_active = NULL; 8446 /* Interrupt board to do it */ 8447 writel(CA_MBATT, phba->CAregaddr); 8448 readl(phba->CAregaddr); /* flush */ 8449 8450 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8451 /* First read mbox status word */ 8452 word0 = *((uint32_t *)phba->mbox); 8453 word0 = le32_to_cpu(word0); 8454 } else { 8455 /* First read mbox status word */ 8456 if (lpfc_readl(phba->MBslimaddr, &word0)) { 8457 spin_unlock_irqrestore(&phba->hbalock, 8458 drvr_flag); 8459 goto out_not_finished; 8460 } 8461 } 8462 8463 /* Read the HBA Host Attention Register */ 8464 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8465 spin_unlock_irqrestore(&phba->hbalock, 8466 drvr_flag); 8467 goto out_not_finished; 8468 } 8469 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 8470 1000) + jiffies; 8471 i = 0; 8472 /* Wait for command to complete */ 8473 while (((word0 & OWN_CHIP) == OWN_CHIP) || 8474 (!(ha_copy & HA_MBATT) && 8475 (phba->link_state > LPFC_WARM_START))) { 8476 if (time_after(jiffies, timeout)) { 8477 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8478 spin_unlock_irqrestore(&phba->hbalock, 8479 drvr_flag); 8480 goto out_not_finished; 8481 } 8482 8483 /* Check if we took a mbox interrupt while we were 8484 polling */ 8485 if (((word0 & OWN_CHIP) != OWN_CHIP) 8486 && (evtctr != psli->slistat.mbox_event)) 8487 break; 8488 8489 if (i++ > 10) { 8490 spin_unlock_irqrestore(&phba->hbalock, 8491 drvr_flag); 8492 msleep(1); 8493 spin_lock_irqsave(&phba->hbalock, drvr_flag); 8494 } 8495 8496 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8497 /* First copy command data */ 8498 word0 = *((uint32_t *)phba->mbox); 8499 word0 = le32_to_cpu(word0); 8500 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 8501 MAILBOX_t *slimmb; 8502 uint32_t slimword0; 8503 /* Check real SLIM for any errors */ 8504 slimword0 = readl(phba->MBslimaddr); 8505 slimmb = (MAILBOX_t *) & slimword0; 8506 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 8507 && slimmb->mbxStatus) { 8508 psli->sli_flag &= 8509 ~LPFC_SLI_ACTIVE; 8510 word0 = slimword0; 8511 } 8512 } 8513 } else { 8514 /* First copy command data */ 8515 word0 = readl(phba->MBslimaddr); 8516 } 8517 /* Read the HBA Host Attention Register */ 8518 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 8519 spin_unlock_irqrestore(&phba->hbalock, 8520 drvr_flag); 8521 goto out_not_finished; 8522 } 8523 } 8524 8525 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 8526 /* copy results back to user */ 8527 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 8528 MAILBOX_CMD_SIZE); 8529 /* Copy the mailbox extension data */ 8530 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8531 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 8532 pmbox->ctx_buf, 8533 pmbox->out_ext_byte_len); 8534 } 8535 } else { 8536 /* First copy command data */ 8537 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 8538 MAILBOX_CMD_SIZE); 8539 /* Copy the mailbox extension data */ 8540 if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { 8541 lpfc_memcpy_from_slim( 8542 pmbox->ctx_buf, 8543 phba->MBslimaddr + 8544 MAILBOX_HBA_EXT_OFFSET, 8545 pmbox->out_ext_byte_len); 8546 } 8547 } 8548 8549 writel(HA_MBATT, phba->HAregaddr); 8550 readl(phba->HAregaddr); /* flush */ 8551 8552 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8553 status = mbx->mbxStatus; 8554 } 8555 8556 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 8557 return status; 8558 8559 out_not_finished: 8560 if (processing_queue) { 8561 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 8562 lpfc_mbox_cmpl_put(phba, pmbox); 8563 } 8564 return MBX_NOT_FINISHED; 8565 } 8566 8567 /** 8568 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 8569 * @phba: Pointer to HBA context object. 8570 * 8571 * The function blocks the posting of SLI4 asynchronous mailbox commands from 8572 * the driver internal pending mailbox queue. It will then try to wait out the 8573 * possible outstanding mailbox command before return. 8574 * 8575 * Returns: 8576 * 0 - the outstanding mailbox command completed; otherwise, the wait for 8577 * the outstanding mailbox command timed out. 8578 **/ 8579 static int 8580 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 8581 { 8582 struct lpfc_sli *psli = &phba->sli; 8583 int rc = 0; 8584 unsigned long timeout = 0; 8585 8586 /* Mark the asynchronous mailbox command posting as blocked */ 8587 spin_lock_irq(&phba->hbalock); 8588 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 8589 /* Determine how long we might wait for the active mailbox 8590 * command to be gracefully completed by firmware. 8591 */ 8592 if (phba->sli.mbox_active) 8593 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 8594 phba->sli.mbox_active) * 8595 1000) + jiffies; 8596 spin_unlock_irq(&phba->hbalock); 8597 8598 /* Make sure the mailbox is really active */ 8599 if (timeout) 8600 lpfc_sli4_process_missed_mbox_completions(phba); 8601 8602 /* Wait for the outstnading mailbox command to complete */ 8603 while (phba->sli.mbox_active) { 8604 /* Check active mailbox complete status every 2ms */ 8605 msleep(2); 8606 if (time_after(jiffies, timeout)) { 8607 /* Timeout, marked the outstanding cmd not complete */ 8608 rc = 1; 8609 break; 8610 } 8611 } 8612 8613 /* Can not cleanly block async mailbox command, fails it */ 8614 if (rc) { 8615 spin_lock_irq(&phba->hbalock); 8616 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8617 spin_unlock_irq(&phba->hbalock); 8618 } 8619 return rc; 8620 } 8621 8622 /** 8623 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 8624 * @phba: Pointer to HBA context object. 8625 * 8626 * The function unblocks and resume posting of SLI4 asynchronous mailbox 8627 * commands from the driver internal pending mailbox queue. It makes sure 8628 * that there is no outstanding mailbox command before resuming posting 8629 * asynchronous mailbox commands. If, for any reason, there is outstanding 8630 * mailbox command, it will try to wait it out before resuming asynchronous 8631 * mailbox command posting. 8632 **/ 8633 static void 8634 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 8635 { 8636 struct lpfc_sli *psli = &phba->sli; 8637 8638 spin_lock_irq(&phba->hbalock); 8639 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8640 /* Asynchronous mailbox posting is not blocked, do nothing */ 8641 spin_unlock_irq(&phba->hbalock); 8642 return; 8643 } 8644 8645 /* Outstanding synchronous mailbox command is guaranteed to be done, 8646 * successful or timeout, after timing-out the outstanding mailbox 8647 * command shall always be removed, so just unblock posting async 8648 * mailbox command and resume 8649 */ 8650 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 8651 spin_unlock_irq(&phba->hbalock); 8652 8653 /* wake up worker thread to post asynchronous mailbox command */ 8654 lpfc_worker_wake_up(phba); 8655 } 8656 8657 /** 8658 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 8659 * @phba: Pointer to HBA context object. 8660 * @mboxq: Pointer to mailbox object. 8661 * 8662 * The function waits for the bootstrap mailbox register ready bit from 8663 * port for twice the regular mailbox command timeout value. 8664 * 8665 * 0 - no timeout on waiting for bootstrap mailbox register ready. 8666 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 8667 **/ 8668 static int 8669 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8670 { 8671 uint32_t db_ready; 8672 unsigned long timeout; 8673 struct lpfc_register bmbx_reg; 8674 8675 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 8676 * 1000) + jiffies; 8677 8678 do { 8679 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 8680 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 8681 if (!db_ready) 8682 mdelay(2); 8683 8684 if (time_after(jiffies, timeout)) 8685 return MBXERR_ERROR; 8686 } while (!db_ready); 8687 8688 return 0; 8689 } 8690 8691 /** 8692 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 8693 * @phba: Pointer to HBA context object. 8694 * @mboxq: Pointer to mailbox object. 8695 * 8696 * The function posts a mailbox to the port. The mailbox is expected 8697 * to be comletely filled in and ready for the port to operate on it. 8698 * This routine executes a synchronous completion operation on the 8699 * mailbox by polling for its completion. 8700 * 8701 * The caller must not be holding any locks when calling this routine. 8702 * 8703 * Returns: 8704 * MBX_SUCCESS - mailbox posted successfully 8705 * Any of the MBX error values. 8706 **/ 8707 static int 8708 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 8709 { 8710 int rc = MBX_SUCCESS; 8711 unsigned long iflag; 8712 uint32_t mcqe_status; 8713 uint32_t mbx_cmnd; 8714 struct lpfc_sli *psli = &phba->sli; 8715 struct lpfc_mqe *mb = &mboxq->u.mqe; 8716 struct lpfc_bmbx_create *mbox_rgn; 8717 struct dma_address *dma_address; 8718 8719 /* 8720 * Only one mailbox can be active to the bootstrap mailbox region 8721 * at a time and there is no queueing provided. 8722 */ 8723 spin_lock_irqsave(&phba->hbalock, iflag); 8724 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8725 spin_unlock_irqrestore(&phba->hbalock, iflag); 8726 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8727 "(%d):2532 Mailbox command x%x (x%x/x%x) " 8728 "cannot issue Data: x%x x%x\n", 8729 mboxq->vport ? mboxq->vport->vpi : 0, 8730 mboxq->u.mb.mbxCommand, 8731 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8732 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8733 psli->sli_flag, MBX_POLL); 8734 return MBXERR_ERROR; 8735 } 8736 /* The server grabs the token and owns it until release */ 8737 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8738 phba->sli.mbox_active = mboxq; 8739 spin_unlock_irqrestore(&phba->hbalock, iflag); 8740 8741 /* wait for bootstrap mbox register for readyness */ 8742 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8743 if (rc) 8744 goto exit; 8745 /* 8746 * Initialize the bootstrap memory region to avoid stale data areas 8747 * in the mailbox post. Then copy the caller's mailbox contents to 8748 * the bmbx mailbox region. 8749 */ 8750 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 8751 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 8752 lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 8753 sizeof(struct lpfc_mqe)); 8754 8755 /* Post the high mailbox dma address to the port and wait for ready. */ 8756 dma_address = &phba->sli4_hba.bmbx.dma_address; 8757 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 8758 8759 /* wait for bootstrap mbox register for hi-address write done */ 8760 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8761 if (rc) 8762 goto exit; 8763 8764 /* Post the low mailbox dma address to the port. */ 8765 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 8766 8767 /* wait for bootstrap mbox register for low address write done */ 8768 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 8769 if (rc) 8770 goto exit; 8771 8772 /* 8773 * Read the CQ to ensure the mailbox has completed. 8774 * If so, update the mailbox status so that the upper layers 8775 * can complete the request normally. 8776 */ 8777 lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 8778 sizeof(struct lpfc_mqe)); 8779 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 8780 lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 8781 sizeof(struct lpfc_mcqe)); 8782 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 8783 /* 8784 * When the CQE status indicates a failure and the mailbox status 8785 * indicates success then copy the CQE status into the mailbox status 8786 * (and prefix it with x4000). 8787 */ 8788 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 8789 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 8790 bf_set(lpfc_mqe_status, mb, 8791 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 8792 rc = MBXERR_ERROR; 8793 } else 8794 lpfc_sli4_swap_str(phba, mboxq); 8795 8796 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8797 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 8798 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 8799 " x%x x%x CQ: x%x x%x x%x x%x\n", 8800 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8801 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8802 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8803 bf_get(lpfc_mqe_status, mb), 8804 mb->un.mb_words[0], mb->un.mb_words[1], 8805 mb->un.mb_words[2], mb->un.mb_words[3], 8806 mb->un.mb_words[4], mb->un.mb_words[5], 8807 mb->un.mb_words[6], mb->un.mb_words[7], 8808 mb->un.mb_words[8], mb->un.mb_words[9], 8809 mb->un.mb_words[10], mb->un.mb_words[11], 8810 mb->un.mb_words[12], mboxq->mcqe.word0, 8811 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 8812 mboxq->mcqe.trailer); 8813 exit: 8814 /* We are holding the token, no needed for lock when release */ 8815 spin_lock_irqsave(&phba->hbalock, iflag); 8816 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8817 phba->sli.mbox_active = NULL; 8818 spin_unlock_irqrestore(&phba->hbalock, iflag); 8819 return rc; 8820 } 8821 8822 /** 8823 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 8824 * @phba: Pointer to HBA context object. 8825 * @pmbox: Pointer to mailbox object. 8826 * @flag: Flag indicating how the mailbox need to be processed. 8827 * 8828 * This function is called by discovery code and HBA management code to submit 8829 * a mailbox command to firmware with SLI-4 interface spec. 8830 * 8831 * Return codes the caller owns the mailbox command after the return of the 8832 * function. 8833 **/ 8834 static int 8835 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 8836 uint32_t flag) 8837 { 8838 struct lpfc_sli *psli = &phba->sli; 8839 unsigned long iflags; 8840 int rc; 8841 8842 /* dump from issue mailbox command if setup */ 8843 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 8844 8845 rc = lpfc_mbox_dev_check(phba); 8846 if (unlikely(rc)) { 8847 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8848 "(%d):2544 Mailbox command x%x (x%x/x%x) " 8849 "cannot issue Data: x%x x%x\n", 8850 mboxq->vport ? mboxq->vport->vpi : 0, 8851 mboxq->u.mb.mbxCommand, 8852 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8853 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8854 psli->sli_flag, flag); 8855 goto out_not_finished; 8856 } 8857 8858 /* Detect polling mode and jump to a handler */ 8859 if (!phba->sli4_hba.intr_enable) { 8860 if (flag == MBX_POLL) 8861 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8862 else 8863 rc = -EIO; 8864 if (rc != MBX_SUCCESS) 8865 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8866 "(%d):2541 Mailbox command x%x " 8867 "(x%x/x%x) failure: " 8868 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8869 "Data: x%x x%x\n,", 8870 mboxq->vport ? mboxq->vport->vpi : 0, 8871 mboxq->u.mb.mbxCommand, 8872 lpfc_sli_config_mbox_subsys_get(phba, 8873 mboxq), 8874 lpfc_sli_config_mbox_opcode_get(phba, 8875 mboxq), 8876 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8877 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8878 bf_get(lpfc_mcqe_ext_status, 8879 &mboxq->mcqe), 8880 psli->sli_flag, flag); 8881 return rc; 8882 } else if (flag == MBX_POLL) { 8883 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8884 "(%d):2542 Try to issue mailbox command " 8885 "x%x (x%x/x%x) synchronously ahead of async " 8886 "mailbox command queue: x%x x%x\n", 8887 mboxq->vport ? mboxq->vport->vpi : 0, 8888 mboxq->u.mb.mbxCommand, 8889 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8890 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8891 psli->sli_flag, flag); 8892 /* Try to block the asynchronous mailbox posting */ 8893 rc = lpfc_sli4_async_mbox_block(phba); 8894 if (!rc) { 8895 /* Successfully blocked, now issue sync mbox cmd */ 8896 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8897 if (rc != MBX_SUCCESS) 8898 lpfc_printf_log(phba, KERN_WARNING, 8899 LOG_MBOX | LOG_SLI, 8900 "(%d):2597 Sync Mailbox command " 8901 "x%x (x%x/x%x) failure: " 8902 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8903 "Data: x%x x%x\n,", 8904 mboxq->vport ? mboxq->vport->vpi : 0, 8905 mboxq->u.mb.mbxCommand, 8906 lpfc_sli_config_mbox_subsys_get(phba, 8907 mboxq), 8908 lpfc_sli_config_mbox_opcode_get(phba, 8909 mboxq), 8910 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8911 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8912 bf_get(lpfc_mcqe_ext_status, 8913 &mboxq->mcqe), 8914 psli->sli_flag, flag); 8915 /* Unblock the async mailbox posting afterward */ 8916 lpfc_sli4_async_mbox_unblock(phba); 8917 } 8918 return rc; 8919 } 8920 8921 /* Now, interrupt mode asynchronous mailbox command */ 8922 rc = lpfc_mbox_cmd_check(phba, mboxq); 8923 if (rc) { 8924 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8925 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8926 "cannot issue Data: x%x x%x\n", 8927 mboxq->vport ? mboxq->vport->vpi : 0, 8928 mboxq->u.mb.mbxCommand, 8929 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8930 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8931 psli->sli_flag, flag); 8932 goto out_not_finished; 8933 } 8934 8935 /* Put the mailbox command to the driver internal FIFO */ 8936 psli->slistat.mbox_busy++; 8937 spin_lock_irqsave(&phba->hbalock, iflags); 8938 lpfc_mbox_put(phba, mboxq); 8939 spin_unlock_irqrestore(&phba->hbalock, iflags); 8940 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8941 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8942 "x%x (x%x/x%x) x%x x%x x%x\n", 8943 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8944 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8945 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8946 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8947 phba->pport->port_state, 8948 psli->sli_flag, MBX_NOWAIT); 8949 /* Wake up worker thread to transport mailbox command from head */ 8950 lpfc_worker_wake_up(phba); 8951 8952 return MBX_BUSY; 8953 8954 out_not_finished: 8955 return MBX_NOT_FINISHED; 8956 } 8957 8958 /** 8959 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8960 * @phba: Pointer to HBA context object. 8961 * 8962 * This function is called by worker thread to send a mailbox command to 8963 * SLI4 HBA firmware. 8964 * 8965 **/ 8966 int 8967 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8968 { 8969 struct lpfc_sli *psli = &phba->sli; 8970 LPFC_MBOXQ_t *mboxq; 8971 int rc = MBX_SUCCESS; 8972 unsigned long iflags; 8973 struct lpfc_mqe *mqe; 8974 uint32_t mbx_cmnd; 8975 8976 /* Check interrupt mode before post async mailbox command */ 8977 if (unlikely(!phba->sli4_hba.intr_enable)) 8978 return MBX_NOT_FINISHED; 8979 8980 /* Check for mailbox command service token */ 8981 spin_lock_irqsave(&phba->hbalock, iflags); 8982 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8983 spin_unlock_irqrestore(&phba->hbalock, iflags); 8984 return MBX_NOT_FINISHED; 8985 } 8986 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8987 spin_unlock_irqrestore(&phba->hbalock, iflags); 8988 return MBX_NOT_FINISHED; 8989 } 8990 if (unlikely(phba->sli.mbox_active)) { 8991 spin_unlock_irqrestore(&phba->hbalock, iflags); 8992 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8993 "0384 There is pending active mailbox cmd\n"); 8994 return MBX_NOT_FINISHED; 8995 } 8996 /* Take the mailbox command service token */ 8997 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8998 8999 /* Get the next mailbox command from head of queue */ 9000 mboxq = lpfc_mbox_get(phba); 9001 9002 /* If no more mailbox command waiting for post, we're done */ 9003 if (!mboxq) { 9004 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9005 spin_unlock_irqrestore(&phba->hbalock, iflags); 9006 return MBX_SUCCESS; 9007 } 9008 phba->sli.mbox_active = mboxq; 9009 spin_unlock_irqrestore(&phba->hbalock, iflags); 9010 9011 /* Check device readiness for posting mailbox command */ 9012 rc = lpfc_mbox_dev_check(phba); 9013 if (unlikely(rc)) 9014 /* Driver clean routine will clean up pending mailbox */ 9015 goto out_not_finished; 9016 9017 /* Prepare the mbox command to be posted */ 9018 mqe = &mboxq->u.mqe; 9019 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 9020 9021 /* Start timer for the mbox_tmo and log some mailbox post messages */ 9022 mod_timer(&psli->mbox_tmo, (jiffies + 9023 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 9024 9025 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 9026 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 9027 "x%x x%x\n", 9028 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 9029 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9030 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9031 phba->pport->port_state, psli->sli_flag); 9032 9033 if (mbx_cmnd != MBX_HEARTBEAT) { 9034 if (mboxq->vport) { 9035 lpfc_debugfs_disc_trc(mboxq->vport, 9036 LPFC_DISC_TRC_MBOX_VPORT, 9037 "MBOX Send vport: cmd:x%x mb:x%x x%x", 9038 mbx_cmnd, mqe->un.mb_words[0], 9039 mqe->un.mb_words[1]); 9040 } else { 9041 lpfc_debugfs_disc_trc(phba->pport, 9042 LPFC_DISC_TRC_MBOX, 9043 "MBOX Send: cmd:x%x mb:x%x x%x", 9044 mbx_cmnd, mqe->un.mb_words[0], 9045 mqe->un.mb_words[1]); 9046 } 9047 } 9048 psli->slistat.mbox_cmd++; 9049 9050 /* Post the mailbox command to the port */ 9051 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 9052 if (rc != MBX_SUCCESS) { 9053 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 9054 "(%d):2533 Mailbox command x%x (x%x/x%x) " 9055 "cannot issue Data: x%x x%x\n", 9056 mboxq->vport ? mboxq->vport->vpi : 0, 9057 mboxq->u.mb.mbxCommand, 9058 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 9059 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 9060 psli->sli_flag, MBX_NOWAIT); 9061 goto out_not_finished; 9062 } 9063 9064 return rc; 9065 9066 out_not_finished: 9067 spin_lock_irqsave(&phba->hbalock, iflags); 9068 if (phba->sli.mbox_active) { 9069 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 9070 __lpfc_mbox_cmpl_put(phba, mboxq); 9071 /* Release the token */ 9072 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9073 phba->sli.mbox_active = NULL; 9074 } 9075 spin_unlock_irqrestore(&phba->hbalock, iflags); 9076 9077 return MBX_NOT_FINISHED; 9078 } 9079 9080 /** 9081 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 9082 * @phba: Pointer to HBA context object. 9083 * @pmbox: Pointer to mailbox object. 9084 * @flag: Flag indicating how the mailbox need to be processed. 9085 * 9086 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 9087 * the API jump table function pointer from the lpfc_hba struct. 9088 * 9089 * Return codes the caller owns the mailbox command after the return of the 9090 * function. 9091 **/ 9092 int 9093 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 9094 { 9095 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 9096 } 9097 9098 /** 9099 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 9100 * @phba: The hba struct for which this call is being executed. 9101 * @dev_grp: The HBA PCI-Device group number. 9102 * 9103 * This routine sets up the mbox interface API function jump table in @phba 9104 * struct. 9105 * Returns: 0 - success, -ENODEV - failure. 9106 **/ 9107 int 9108 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9109 { 9110 9111 switch (dev_grp) { 9112 case LPFC_PCI_DEV_LP: 9113 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 9114 phba->lpfc_sli_handle_slow_ring_event = 9115 lpfc_sli_handle_slow_ring_event_s3; 9116 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 9117 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 9118 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 9119 break; 9120 case LPFC_PCI_DEV_OC: 9121 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 9122 phba->lpfc_sli_handle_slow_ring_event = 9123 lpfc_sli_handle_slow_ring_event_s4; 9124 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 9125 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 9126 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 9127 break; 9128 default: 9129 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9130 "1420 Invalid HBA PCI-device group: 0x%x\n", 9131 dev_grp); 9132 return -ENODEV; 9133 break; 9134 } 9135 return 0; 9136 } 9137 9138 /** 9139 * __lpfc_sli_ringtx_put - Add an iocb to the txq 9140 * @phba: Pointer to HBA context object. 9141 * @pring: Pointer to driver SLI ring object. 9142 * @piocb: Pointer to address of newly added command iocb. 9143 * 9144 * This function is called with hbalock held for SLI3 ports or 9145 * the ring lock held for SLI4 ports to add a command 9146 * iocb to the txq when SLI layer cannot submit the command iocb 9147 * to the ring. 9148 **/ 9149 void 9150 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9151 struct lpfc_iocbq *piocb) 9152 { 9153 if (phba->sli_rev == LPFC_SLI_REV4) 9154 lockdep_assert_held(&pring->ring_lock); 9155 else 9156 lockdep_assert_held(&phba->hbalock); 9157 /* Insert the caller's iocb in the txq tail for later processing. */ 9158 list_add_tail(&piocb->list, &pring->txq); 9159 } 9160 9161 /** 9162 * lpfc_sli_next_iocb - Get the next iocb in the txq 9163 * @phba: Pointer to HBA context object. 9164 * @pring: Pointer to driver SLI ring object. 9165 * @piocb: Pointer to address of newly added command iocb. 9166 * 9167 * This function is called with hbalock held before a new 9168 * iocb is submitted to the firmware. This function checks 9169 * txq to flush the iocbs in txq to Firmware before 9170 * submitting new iocbs to the Firmware. 9171 * If there are iocbs in the txq which need to be submitted 9172 * to firmware, lpfc_sli_next_iocb returns the first element 9173 * of the txq after dequeuing it from txq. 9174 * If there is no iocb in the txq then the function will return 9175 * *piocb and *piocb is set to NULL. Caller needs to check 9176 * *piocb to find if there are more commands in the txq. 9177 **/ 9178 static struct lpfc_iocbq * 9179 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 9180 struct lpfc_iocbq **piocb) 9181 { 9182 struct lpfc_iocbq * nextiocb; 9183 9184 lockdep_assert_held(&phba->hbalock); 9185 9186 nextiocb = lpfc_sli_ringtx_get(phba, pring); 9187 if (!nextiocb) { 9188 nextiocb = *piocb; 9189 *piocb = NULL; 9190 } 9191 9192 return nextiocb; 9193 } 9194 9195 /** 9196 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 9197 * @phba: Pointer to HBA context object. 9198 * @ring_number: SLI ring number to issue iocb on. 9199 * @piocb: Pointer to command iocb. 9200 * @flag: Flag indicating if this command can be put into txq. 9201 * 9202 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 9203 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 9204 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 9205 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 9206 * this function allows only iocbs for posting buffers. This function finds 9207 * next available slot in the command ring and posts the command to the 9208 * available slot and writes the port attention register to request HBA start 9209 * processing new iocb. If there is no slot available in the ring and 9210 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 9211 * the function returns IOCB_BUSY. 9212 * 9213 * This function is called with hbalock held. The function will return success 9214 * after it successfully submit the iocb to firmware or after adding to the 9215 * txq. 9216 **/ 9217 static int 9218 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 9219 struct lpfc_iocbq *piocb, uint32_t flag) 9220 { 9221 struct lpfc_iocbq *nextiocb; 9222 IOCB_t *iocb; 9223 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 9224 9225 lockdep_assert_held(&phba->hbalock); 9226 9227 if (piocb->iocb_cmpl && (!piocb->vport) && 9228 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 9229 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 9230 lpfc_printf_log(phba, KERN_ERR, 9231 LOG_SLI | LOG_VPORT, 9232 "1807 IOCB x%x failed. No vport\n", 9233 piocb->iocb.ulpCommand); 9234 dump_stack(); 9235 return IOCB_ERROR; 9236 } 9237 9238 9239 /* If the PCI channel is in offline state, do not post iocbs. */ 9240 if (unlikely(pci_channel_offline(phba->pcidev))) 9241 return IOCB_ERROR; 9242 9243 /* If HBA has a deferred error attention, fail the iocb. */ 9244 if (unlikely(phba->hba_flag & DEFER_ERATT)) 9245 return IOCB_ERROR; 9246 9247 /* 9248 * We should never get an IOCB if we are in a < LINK_DOWN state 9249 */ 9250 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 9251 return IOCB_ERROR; 9252 9253 /* 9254 * Check to see if we are blocking IOCB processing because of a 9255 * outstanding event. 9256 */ 9257 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 9258 goto iocb_busy; 9259 9260 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 9261 /* 9262 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 9263 * can be issued if the link is not up. 9264 */ 9265 switch (piocb->iocb.ulpCommand) { 9266 case CMD_GEN_REQUEST64_CR: 9267 case CMD_GEN_REQUEST64_CX: 9268 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 9269 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 9270 FC_RCTL_DD_UNSOL_CMD) || 9271 (piocb->iocb.un.genreq64.w5.hcsw.Type != 9272 MENLO_TRANSPORT_TYPE)) 9273 9274 goto iocb_busy; 9275 break; 9276 case CMD_QUE_RING_BUF_CN: 9277 case CMD_QUE_RING_BUF64_CN: 9278 /* 9279 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 9280 * completion, iocb_cmpl MUST be 0. 9281 */ 9282 if (piocb->iocb_cmpl) 9283 piocb->iocb_cmpl = NULL; 9284 /*FALLTHROUGH*/ 9285 case CMD_CREATE_XRI_CR: 9286 case CMD_CLOSE_XRI_CN: 9287 case CMD_CLOSE_XRI_CX: 9288 break; 9289 default: 9290 goto iocb_busy; 9291 } 9292 9293 /* 9294 * For FCP commands, we must be in a state where we can process link 9295 * attention events. 9296 */ 9297 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 9298 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 9299 goto iocb_busy; 9300 } 9301 9302 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 9303 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 9304 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 9305 9306 if (iocb) 9307 lpfc_sli_update_ring(phba, pring); 9308 else 9309 lpfc_sli_update_full_ring(phba, pring); 9310 9311 if (!piocb) 9312 return IOCB_SUCCESS; 9313 9314 goto out_busy; 9315 9316 iocb_busy: 9317 pring->stats.iocb_cmd_delay++; 9318 9319 out_busy: 9320 9321 if (!(flag & SLI_IOCB_RET_IOCB)) { 9322 __lpfc_sli_ringtx_put(phba, pring, piocb); 9323 return IOCB_SUCCESS; 9324 } 9325 9326 return IOCB_BUSY; 9327 } 9328 9329 /** 9330 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 9331 * @phba: Pointer to HBA context object. 9332 * @piocb: Pointer to command iocb. 9333 * @sglq: Pointer to the scatter gather queue object. 9334 * 9335 * This routine converts the bpl or bde that is in the IOCB 9336 * to a sgl list for the sli4 hardware. The physical address 9337 * of the bpl/bde is converted back to a virtual address. 9338 * If the IOCB contains a BPL then the list of BDE's is 9339 * converted to sli4_sge's. If the IOCB contains a single 9340 * BDE then it is converted to a single sli_sge. 9341 * The IOCB is still in cpu endianess so the contents of 9342 * the bpl can be used without byte swapping. 9343 * 9344 * Returns valid XRI = Success, NO_XRI = Failure. 9345 **/ 9346 static uint16_t 9347 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 9348 struct lpfc_sglq *sglq) 9349 { 9350 uint16_t xritag = NO_XRI; 9351 struct ulp_bde64 *bpl = NULL; 9352 struct ulp_bde64 bde; 9353 struct sli4_sge *sgl = NULL; 9354 struct lpfc_dmabuf *dmabuf; 9355 IOCB_t *icmd; 9356 int numBdes = 0; 9357 int i = 0; 9358 uint32_t offset = 0; /* accumulated offset in the sg request list */ 9359 int inbound = 0; /* number of sg reply entries inbound from firmware */ 9360 9361 if (!piocbq || !sglq) 9362 return xritag; 9363 9364 sgl = (struct sli4_sge *)sglq->sgl; 9365 icmd = &piocbq->iocb; 9366 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 9367 return sglq->sli4_xritag; 9368 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9369 numBdes = icmd->un.genreq64.bdl.bdeSize / 9370 sizeof(struct ulp_bde64); 9371 /* The addrHigh and addrLow fields within the IOCB 9372 * have not been byteswapped yet so there is no 9373 * need to swap them back. 9374 */ 9375 if (piocbq->context3) 9376 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 9377 else 9378 return xritag; 9379 9380 bpl = (struct ulp_bde64 *)dmabuf->virt; 9381 if (!bpl) 9382 return xritag; 9383 9384 for (i = 0; i < numBdes; i++) { 9385 /* Should already be byte swapped. */ 9386 sgl->addr_hi = bpl->addrHigh; 9387 sgl->addr_lo = bpl->addrLow; 9388 9389 sgl->word2 = le32_to_cpu(sgl->word2); 9390 if ((i+1) == numBdes) 9391 bf_set(lpfc_sli4_sge_last, sgl, 1); 9392 else 9393 bf_set(lpfc_sli4_sge_last, sgl, 0); 9394 /* swap the size field back to the cpu so we 9395 * can assign it to the sgl. 9396 */ 9397 bde.tus.w = le32_to_cpu(bpl->tus.w); 9398 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 9399 /* The offsets in the sgl need to be accumulated 9400 * separately for the request and reply lists. 9401 * The request is always first, the reply follows. 9402 */ 9403 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 9404 /* add up the reply sg entries */ 9405 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 9406 inbound++; 9407 /* first inbound? reset the offset */ 9408 if (inbound == 1) 9409 offset = 0; 9410 bf_set(lpfc_sli4_sge_offset, sgl, offset); 9411 bf_set(lpfc_sli4_sge_type, sgl, 9412 LPFC_SGE_TYPE_DATA); 9413 offset += bde.tus.f.bdeSize; 9414 } 9415 sgl->word2 = cpu_to_le32(sgl->word2); 9416 bpl++; 9417 sgl++; 9418 } 9419 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 9420 /* The addrHigh and addrLow fields of the BDE have not 9421 * been byteswapped yet so they need to be swapped 9422 * before putting them in the sgl. 9423 */ 9424 sgl->addr_hi = 9425 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 9426 sgl->addr_lo = 9427 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 9428 sgl->word2 = le32_to_cpu(sgl->word2); 9429 bf_set(lpfc_sli4_sge_last, sgl, 1); 9430 sgl->word2 = cpu_to_le32(sgl->word2); 9431 sgl->sge_len = 9432 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 9433 } 9434 return sglq->sli4_xritag; 9435 } 9436 9437 /** 9438 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 9439 * @phba: Pointer to HBA context object. 9440 * @piocb: Pointer to command iocb. 9441 * @wqe: Pointer to the work queue entry. 9442 * 9443 * This routine converts the iocb command to its Work Queue Entry 9444 * equivalent. The wqe pointer should not have any fields set when 9445 * this routine is called because it will memcpy over them. 9446 * This routine does not set the CQ_ID or the WQEC bits in the 9447 * wqe. 9448 * 9449 * Returns: 0 = Success, IOCB_ERROR = Failure. 9450 **/ 9451 static int 9452 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 9453 union lpfc_wqe128 *wqe) 9454 { 9455 uint32_t xmit_len = 0, total_len = 0; 9456 uint8_t ct = 0; 9457 uint32_t fip; 9458 uint32_t abort_tag; 9459 uint8_t command_type = ELS_COMMAND_NON_FIP; 9460 uint8_t cmnd; 9461 uint16_t xritag; 9462 uint16_t abrt_iotag; 9463 struct lpfc_iocbq *abrtiocbq; 9464 struct ulp_bde64 *bpl = NULL; 9465 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 9466 int numBdes, i; 9467 struct ulp_bde64 bde; 9468 struct lpfc_nodelist *ndlp; 9469 uint32_t *pcmd; 9470 uint32_t if_type; 9471 9472 fip = phba->hba_flag & HBA_FIP_SUPPORT; 9473 /* The fcp commands will set command type */ 9474 if (iocbq->iocb_flag & LPFC_IO_FCP) 9475 command_type = FCP_COMMAND; 9476 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 9477 command_type = ELS_COMMAND_FIP; 9478 else 9479 command_type = ELS_COMMAND_NON_FIP; 9480 9481 if (phba->fcp_embed_io) 9482 memset(wqe, 0, sizeof(union lpfc_wqe128)); 9483 /* Some of the fields are in the right position already */ 9484 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 9485 /* The ct field has moved so reset */ 9486 wqe->generic.wqe_com.word7 = 0; 9487 wqe->generic.wqe_com.word10 = 0; 9488 9489 abort_tag = (uint32_t) iocbq->iotag; 9490 xritag = iocbq->sli4_xritag; 9491 /* words0-2 bpl convert bde */ 9492 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 9493 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9494 sizeof(struct ulp_bde64); 9495 bpl = (struct ulp_bde64 *) 9496 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 9497 if (!bpl) 9498 return IOCB_ERROR; 9499 9500 /* Should already be byte swapped. */ 9501 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 9502 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 9503 /* swap the size field back to the cpu so we 9504 * can assign it to the sgl. 9505 */ 9506 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 9507 xmit_len = wqe->generic.bde.tus.f.bdeSize; 9508 total_len = 0; 9509 for (i = 0; i < numBdes; i++) { 9510 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9511 total_len += bde.tus.f.bdeSize; 9512 } 9513 } else 9514 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 9515 9516 iocbq->iocb.ulpIoTag = iocbq->iotag; 9517 cmnd = iocbq->iocb.ulpCommand; 9518 9519 switch (iocbq->iocb.ulpCommand) { 9520 case CMD_ELS_REQUEST64_CR: 9521 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 9522 ndlp = iocbq->context_un.ndlp; 9523 else 9524 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9525 if (!iocbq->iocb.ulpLe) { 9526 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9527 "2007 Only Limited Edition cmd Format" 9528 " supported 0x%x\n", 9529 iocbq->iocb.ulpCommand); 9530 return IOCB_ERROR; 9531 } 9532 9533 wqe->els_req.payload_len = xmit_len; 9534 /* Els_reguest64 has a TMO */ 9535 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 9536 iocbq->iocb.ulpTimeout); 9537 /* Need a VF for word 4 set the vf bit*/ 9538 bf_set(els_req64_vf, &wqe->els_req, 0); 9539 /* And a VFID for word 12 */ 9540 bf_set(els_req64_vfid, &wqe->els_req, 0); 9541 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9542 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9543 iocbq->iocb.ulpContext); 9544 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 9545 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 9546 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 9547 if (command_type == ELS_COMMAND_FIP) 9548 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 9549 >> LPFC_FIP_ELS_ID_SHIFT); 9550 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9551 iocbq->context2)->virt); 9552 if_type = bf_get(lpfc_sli_intf_if_type, 9553 &phba->sli4_hba.sli_intf); 9554 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9555 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 9556 *pcmd == ELS_CMD_SCR || 9557 *pcmd == ELS_CMD_RDF || 9558 *pcmd == ELS_CMD_RSCN_XMT || 9559 *pcmd == ELS_CMD_FDISC || 9560 *pcmd == ELS_CMD_LOGO || 9561 *pcmd == ELS_CMD_PLOGI)) { 9562 bf_set(els_req64_sp, &wqe->els_req, 1); 9563 bf_set(els_req64_sid, &wqe->els_req, 9564 iocbq->vport->fc_myDID); 9565 if ((*pcmd == ELS_CMD_FLOGI) && 9566 !(phba->fc_topology == 9567 LPFC_TOPOLOGY_LOOP)) 9568 bf_set(els_req64_sid, &wqe->els_req, 0); 9569 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 9570 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9571 phba->vpi_ids[iocbq->vport->vpi]); 9572 } else if (pcmd && iocbq->context1) { 9573 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 9574 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 9575 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9576 } 9577 } 9578 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 9579 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9580 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 9581 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 9582 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 9583 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 9584 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9585 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 9586 wqe->els_req.max_response_payload_len = total_len - xmit_len; 9587 break; 9588 case CMD_XMIT_SEQUENCE64_CX: 9589 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 9590 iocbq->iocb.un.ulpWord[3]); 9591 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 9592 iocbq->iocb.unsli3.rcvsli3.ox_id); 9593 /* The entire sequence is transmitted for this IOCB */ 9594 xmit_len = total_len; 9595 cmnd = CMD_XMIT_SEQUENCE64_CR; 9596 if (phba->link_flag & LS_LOOPBACK_MODE) 9597 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 9598 /* fall through */ 9599 case CMD_XMIT_SEQUENCE64_CR: 9600 /* word3 iocb=io_tag32 wqe=reserved */ 9601 wqe->xmit_sequence.rsvd3 = 0; 9602 /* word4 relative_offset memcpy */ 9603 /* word5 r_ctl/df_ctl memcpy */ 9604 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 9605 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 9606 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 9607 LPFC_WQE_IOD_WRITE); 9608 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 9609 LPFC_WQE_LENLOC_WORD12); 9610 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 9611 wqe->xmit_sequence.xmit_len = xmit_len; 9612 command_type = OTHER_COMMAND; 9613 break; 9614 case CMD_XMIT_BCAST64_CN: 9615 /* word3 iocb=iotag32 wqe=seq_payload_len */ 9616 wqe->xmit_bcast64.seq_payload_len = xmit_len; 9617 /* word4 iocb=rsvd wqe=rsvd */ 9618 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 9619 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 9620 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 9621 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9622 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 9623 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 9624 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 9625 LPFC_WQE_LENLOC_WORD3); 9626 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 9627 break; 9628 case CMD_FCP_IWRITE64_CR: 9629 command_type = FCP_COMMAND_DATA_OUT; 9630 /* word3 iocb=iotag wqe=payload_offset_len */ 9631 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9632 bf_set(payload_offset_len, &wqe->fcp_iwrite, 9633 xmit_len + sizeof(struct fcp_rsp)); 9634 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 9635 0); 9636 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9637 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9638 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 9639 iocbq->iocb.ulpFCP2Rcvy); 9640 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 9641 /* Always open the exchange */ 9642 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 9643 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 9644 LPFC_WQE_LENLOC_WORD4); 9645 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 9646 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 9647 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9648 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 9649 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 9650 if (iocbq->priority) { 9651 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9652 (iocbq->priority << 1)); 9653 } else { 9654 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 9655 (phba->cfg_XLanePriority << 1)); 9656 } 9657 } 9658 /* Note, word 10 is already initialized to 0 */ 9659 9660 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9661 if (phba->cfg_enable_pbde) 9662 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); 9663 else 9664 bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); 9665 9666 if (phba->fcp_embed_io) { 9667 struct lpfc_io_buf *lpfc_cmd; 9668 struct sli4_sge *sgl; 9669 struct fcp_cmnd *fcp_cmnd; 9670 uint32_t *ptr; 9671 9672 /* 128 byte wqe support here */ 9673 9674 lpfc_cmd = iocbq->context1; 9675 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9676 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9677 9678 /* Word 0-2 - FCP_CMND */ 9679 wqe->generic.bde.tus.f.bdeFlags = 9680 BUFF_TYPE_BDE_IMMED; 9681 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9682 wqe->generic.bde.addrHigh = 0; 9683 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9684 9685 bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); 9686 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); 9687 9688 /* Word 22-29 FCP CMND Payload */ 9689 ptr = &wqe->words[22]; 9690 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9691 } 9692 break; 9693 case CMD_FCP_IREAD64_CR: 9694 /* word3 iocb=iotag wqe=payload_offset_len */ 9695 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9696 bf_set(payload_offset_len, &wqe->fcp_iread, 9697 xmit_len + sizeof(struct fcp_rsp)); 9698 bf_set(cmd_buff_len, &wqe->fcp_iread, 9699 0); 9700 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 9701 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 9702 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 9703 iocbq->iocb.ulpFCP2Rcvy); 9704 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 9705 /* Always open the exchange */ 9706 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 9707 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 9708 LPFC_WQE_LENLOC_WORD4); 9709 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 9710 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 9711 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9712 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 9713 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 9714 if (iocbq->priority) { 9715 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9716 (iocbq->priority << 1)); 9717 } else { 9718 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 9719 (phba->cfg_XLanePriority << 1)); 9720 } 9721 } 9722 /* Note, word 10 is already initialized to 0 */ 9723 9724 /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ 9725 if (phba->cfg_enable_pbde) 9726 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); 9727 else 9728 bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); 9729 9730 if (phba->fcp_embed_io) { 9731 struct lpfc_io_buf *lpfc_cmd; 9732 struct sli4_sge *sgl; 9733 struct fcp_cmnd *fcp_cmnd; 9734 uint32_t *ptr; 9735 9736 /* 128 byte wqe support here */ 9737 9738 lpfc_cmd = iocbq->context1; 9739 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9740 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9741 9742 /* Word 0-2 - FCP_CMND */ 9743 wqe->generic.bde.tus.f.bdeFlags = 9744 BUFF_TYPE_BDE_IMMED; 9745 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9746 wqe->generic.bde.addrHigh = 0; 9747 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9748 9749 bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); 9750 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); 9751 9752 /* Word 22-29 FCP CMND Payload */ 9753 ptr = &wqe->words[22]; 9754 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9755 } 9756 break; 9757 case CMD_FCP_ICMND64_CR: 9758 /* word3 iocb=iotag wqe=payload_offset_len */ 9759 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 9760 bf_set(payload_offset_len, &wqe->fcp_icmd, 9761 xmit_len + sizeof(struct fcp_rsp)); 9762 bf_set(cmd_buff_len, &wqe->fcp_icmd, 9763 0); 9764 /* word3 iocb=IO_TAG wqe=reserved */ 9765 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 9766 /* Always open the exchange */ 9767 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 9768 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 9769 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 9770 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 9771 LPFC_WQE_LENLOC_NONE); 9772 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 9773 iocbq->iocb.ulpFCP2Rcvy); 9774 if (iocbq->iocb_flag & LPFC_IO_OAS) { 9775 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 9776 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 9777 if (iocbq->priority) { 9778 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9779 (iocbq->priority << 1)); 9780 } else { 9781 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 9782 (phba->cfg_XLanePriority << 1)); 9783 } 9784 } 9785 /* Note, word 10 is already initialized to 0 */ 9786 9787 if (phba->fcp_embed_io) { 9788 struct lpfc_io_buf *lpfc_cmd; 9789 struct sli4_sge *sgl; 9790 struct fcp_cmnd *fcp_cmnd; 9791 uint32_t *ptr; 9792 9793 /* 128 byte wqe support here */ 9794 9795 lpfc_cmd = iocbq->context1; 9796 sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; 9797 fcp_cmnd = lpfc_cmd->fcp_cmnd; 9798 9799 /* Word 0-2 - FCP_CMND */ 9800 wqe->generic.bde.tus.f.bdeFlags = 9801 BUFF_TYPE_BDE_IMMED; 9802 wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; 9803 wqe->generic.bde.addrHigh = 0; 9804 wqe->generic.bde.addrLow = 88; /* Word 22 */ 9805 9806 bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); 9807 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); 9808 9809 /* Word 22-29 FCP CMND Payload */ 9810 ptr = &wqe->words[22]; 9811 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 9812 } 9813 break; 9814 case CMD_GEN_REQUEST64_CR: 9815 /* For this command calculate the xmit length of the 9816 * request bde. 9817 */ 9818 xmit_len = 0; 9819 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 9820 sizeof(struct ulp_bde64); 9821 for (i = 0; i < numBdes; i++) { 9822 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 9823 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 9824 break; 9825 xmit_len += bde.tus.f.bdeSize; 9826 } 9827 /* word3 iocb=IO_TAG wqe=request_payload_len */ 9828 wqe->gen_req.request_payload_len = xmit_len; 9829 /* word4 iocb=parameter wqe=relative_offset memcpy */ 9830 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 9831 /* word6 context tag copied in memcpy */ 9832 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 9833 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 9834 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9835 "2015 Invalid CT %x command 0x%x\n", 9836 ct, iocbq->iocb.ulpCommand); 9837 return IOCB_ERROR; 9838 } 9839 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 9840 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 9841 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 9842 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 9843 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 9844 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 9845 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 9846 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 9847 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 9848 command_type = OTHER_COMMAND; 9849 break; 9850 case CMD_XMIT_ELS_RSP64_CX: 9851 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9852 /* words0-2 BDE memcpy */ 9853 /* word3 iocb=iotag32 wqe=response_payload_len */ 9854 wqe->xmit_els_rsp.response_payload_len = xmit_len; 9855 /* word4 */ 9856 wqe->xmit_els_rsp.word4 = 0; 9857 /* word5 iocb=rsvd wge=did */ 9858 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 9859 iocbq->iocb.un.xseq64.xmit_els_remoteID); 9860 9861 if_type = bf_get(lpfc_sli_intf_if_type, 9862 &phba->sli4_hba.sli_intf); 9863 if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { 9864 if (iocbq->vport->fc_flag & FC_PT2PT) { 9865 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9866 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9867 iocbq->vport->fc_myDID); 9868 if (iocbq->vport->fc_myDID == Fabric_DID) { 9869 bf_set(wqe_els_did, 9870 &wqe->xmit_els_rsp.wqe_dest, 0); 9871 } 9872 } 9873 } 9874 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 9875 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9876 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 9877 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 9878 iocbq->iocb.unsli3.rcvsli3.ox_id); 9879 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9880 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9881 phba->vpi_ids[iocbq->vport->vpi]); 9882 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9883 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9884 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9885 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9886 LPFC_WQE_LENLOC_WORD3); 9887 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9888 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9889 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9890 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9891 iocbq->context2)->virt); 9892 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9893 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9894 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9895 iocbq->vport->fc_myDID); 9896 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9897 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9898 phba->vpi_ids[phba->pport->vpi]); 9899 } 9900 command_type = OTHER_COMMAND; 9901 break; 9902 case CMD_CLOSE_XRI_CN: 9903 case CMD_ABORT_XRI_CN: 9904 case CMD_ABORT_XRI_CX: 9905 /* words 0-2 memcpy should be 0 rserved */ 9906 /* port will send abts */ 9907 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9908 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9909 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9910 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9911 } else 9912 fip = 0; 9913 9914 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9915 /* 9916 * The link is down, or the command was ELS_FIP 9917 * so the fw does not need to send abts 9918 * on the wire. 9919 */ 9920 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9921 else 9922 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9923 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9924 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9925 wqe->abort_cmd.rsrvd5 = 0; 9926 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9927 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9928 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9929 /* 9930 * The abort handler will send us CMD_ABORT_XRI_CN or 9931 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9932 */ 9933 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9934 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9935 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9936 LPFC_WQE_LENLOC_NONE); 9937 cmnd = CMD_ABORT_XRI_CX; 9938 command_type = OTHER_COMMAND; 9939 xritag = 0; 9940 break; 9941 case CMD_XMIT_BLS_RSP64_CX: 9942 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9943 /* As BLS ABTS RSP WQE is very different from other WQEs, 9944 * we re-construct this WQE here based on information in 9945 * iocbq from scratch. 9946 */ 9947 memset(wqe, 0, sizeof(*wqe)); 9948 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9949 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9950 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9951 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9952 LPFC_ABTS_UNSOL_INT) { 9953 /* ABTS sent by initiator to CT exchange, the 9954 * RX_ID field will be filled with the newly 9955 * allocated responder XRI. 9956 */ 9957 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9958 iocbq->sli4_xritag); 9959 } else { 9960 /* ABTS sent by responder to CT exchange, the 9961 * RX_ID field will be filled with the responder 9962 * RX_ID from ABTS. 9963 */ 9964 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9965 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9966 } 9967 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9968 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9969 9970 /* Use CT=VPI */ 9971 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9972 ndlp->nlp_DID); 9973 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9974 iocbq->iocb.ulpContext); 9975 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9976 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9977 phba->vpi_ids[phba->pport->vpi]); 9978 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9979 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9980 LPFC_WQE_LENLOC_NONE); 9981 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9982 command_type = OTHER_COMMAND; 9983 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9984 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9985 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9986 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9987 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9988 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9989 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9990 } 9991 9992 break; 9993 case CMD_SEND_FRAME: 9994 bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); 9995 bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ 9996 bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ 9997 bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); 9998 bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); 9999 bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); 10000 bf_set(wqe_xc, &wqe->generic.wqe_com, 1); 10001 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); 10002 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10003 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10004 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10005 return 0; 10006 case CMD_XRI_ABORTED_CX: 10007 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 10008 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 10009 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 10010 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 10011 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 10012 default: 10013 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10014 "2014 Invalid command 0x%x\n", 10015 iocbq->iocb.ulpCommand); 10016 return IOCB_ERROR; 10017 break; 10018 } 10019 10020 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 10021 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 10022 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 10023 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 10024 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 10025 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 10026 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 10027 LPFC_IO_DIF_INSERT); 10028 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 10029 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 10030 wqe->generic.wqe_com.abort_tag = abort_tag; 10031 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 10032 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 10033 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 10034 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10035 return 0; 10036 } 10037 10038 /** 10039 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 10040 * @phba: Pointer to HBA context object. 10041 * @ring_number: SLI ring number to issue iocb on. 10042 * @piocb: Pointer to command iocb. 10043 * @flag: Flag indicating if this command can be put into txq. 10044 * 10045 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 10046 * an iocb command to an HBA with SLI-4 interface spec. 10047 * 10048 * This function is called with ringlock held. The function will return success 10049 * after it successfully submit the iocb to firmware or after adding to the 10050 * txq. 10051 **/ 10052 static int 10053 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 10054 struct lpfc_iocbq *piocb, uint32_t flag) 10055 { 10056 struct lpfc_sglq *sglq; 10057 union lpfc_wqe128 wqe; 10058 struct lpfc_queue *wq; 10059 struct lpfc_sli_ring *pring; 10060 10061 /* Get the WQ */ 10062 if ((piocb->iocb_flag & LPFC_IO_FCP) || 10063 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10064 wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; 10065 } else { 10066 wq = phba->sli4_hba.els_wq; 10067 } 10068 10069 /* Get corresponding ring */ 10070 pring = wq->pring; 10071 10072 /* 10073 * The WQE can be either 64 or 128 bytes, 10074 */ 10075 10076 lockdep_assert_held(&pring->ring_lock); 10077 10078 if (piocb->sli4_xritag == NO_XRI) { 10079 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10080 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 10081 sglq = NULL; 10082 else { 10083 if (!list_empty(&pring->txq)) { 10084 if (!(flag & SLI_IOCB_RET_IOCB)) { 10085 __lpfc_sli_ringtx_put(phba, 10086 pring, piocb); 10087 return IOCB_SUCCESS; 10088 } else { 10089 return IOCB_BUSY; 10090 } 10091 } else { 10092 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 10093 if (!sglq) { 10094 if (!(flag & SLI_IOCB_RET_IOCB)) { 10095 __lpfc_sli_ringtx_put(phba, 10096 pring, 10097 piocb); 10098 return IOCB_SUCCESS; 10099 } else 10100 return IOCB_BUSY; 10101 } 10102 } 10103 } 10104 } else if (piocb->iocb_flag & LPFC_IO_FCP) 10105 /* These IO's already have an XRI and a mapped sgl. */ 10106 sglq = NULL; 10107 else { 10108 /* 10109 * This is a continuation of a commandi,(CX) so this 10110 * sglq is on the active list 10111 */ 10112 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 10113 if (!sglq) 10114 return IOCB_ERROR; 10115 } 10116 10117 if (sglq) { 10118 piocb->sli4_lxritag = sglq->sli4_lxritag; 10119 piocb->sli4_xritag = sglq->sli4_xritag; 10120 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 10121 return IOCB_ERROR; 10122 } 10123 10124 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) 10125 return IOCB_ERROR; 10126 10127 if (lpfc_sli4_wq_put(wq, &wqe)) 10128 return IOCB_ERROR; 10129 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 10130 10131 return 0; 10132 } 10133 10134 /** 10135 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 10136 * 10137 * This routine wraps the actual lockless version for issusing IOCB function 10138 * pointer from the lpfc_hba struct. 10139 * 10140 * Return codes: 10141 * IOCB_ERROR - Error 10142 * IOCB_SUCCESS - Success 10143 * IOCB_BUSY - Busy 10144 **/ 10145 int 10146 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10147 struct lpfc_iocbq *piocb, uint32_t flag) 10148 { 10149 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10150 } 10151 10152 /** 10153 * lpfc_sli_api_table_setup - Set up sli api function jump table 10154 * @phba: The hba struct for which this call is being executed. 10155 * @dev_grp: The HBA PCI-Device group number. 10156 * 10157 * This routine sets up the SLI interface API function jump table in @phba 10158 * struct. 10159 * Returns: 0 - success, -ENODEV - failure. 10160 **/ 10161 int 10162 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 10163 { 10164 10165 switch (dev_grp) { 10166 case LPFC_PCI_DEV_LP: 10167 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 10168 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 10169 break; 10170 case LPFC_PCI_DEV_OC: 10171 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 10172 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 10173 break; 10174 default: 10175 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10176 "1419 Invalid HBA PCI-device group: 0x%x\n", 10177 dev_grp); 10178 return -ENODEV; 10179 break; 10180 } 10181 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 10182 return 0; 10183 } 10184 10185 /** 10186 * lpfc_sli4_calc_ring - Calculates which ring to use 10187 * @phba: Pointer to HBA context object. 10188 * @piocb: Pointer to command iocb. 10189 * 10190 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 10191 * hba_wqidx, thus we need to calculate the corresponding ring. 10192 * Since ABORTS must go on the same WQ of the command they are 10193 * aborting, we use command's hba_wqidx. 10194 */ 10195 struct lpfc_sli_ring * 10196 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 10197 { 10198 struct lpfc_io_buf *lpfc_cmd; 10199 10200 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 10201 if (unlikely(!phba->sli4_hba.hdwq)) 10202 return NULL; 10203 /* 10204 * for abort iocb hba_wqidx should already 10205 * be setup based on what work queue we used. 10206 */ 10207 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 10208 lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; 10209 piocb->hba_wqidx = lpfc_cmd->hdwq_no; 10210 } 10211 return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; 10212 } else { 10213 if (unlikely(!phba->sli4_hba.els_wq)) 10214 return NULL; 10215 piocb->hba_wqidx = 0; 10216 return phba->sli4_hba.els_wq->pring; 10217 } 10218 } 10219 10220 /** 10221 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 10222 * @phba: Pointer to HBA context object. 10223 * @pring: Pointer to driver SLI ring object. 10224 * @piocb: Pointer to command iocb. 10225 * @flag: Flag indicating if this command can be put into txq. 10226 * 10227 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 10228 * function. This function gets the hbalock and calls 10229 * __lpfc_sli_issue_iocb function and will return the error returned 10230 * by __lpfc_sli_issue_iocb function. This wrapper is used by 10231 * functions which do not hold hbalock. 10232 **/ 10233 int 10234 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 10235 struct lpfc_iocbq *piocb, uint32_t flag) 10236 { 10237 struct lpfc_sli_ring *pring; 10238 struct lpfc_queue *eq; 10239 unsigned long iflags; 10240 int rc; 10241 10242 if (phba->sli_rev == LPFC_SLI_REV4) { 10243 eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; 10244 10245 pring = lpfc_sli4_calc_ring(phba, piocb); 10246 if (unlikely(pring == NULL)) 10247 return IOCB_ERROR; 10248 10249 spin_lock_irqsave(&pring->ring_lock, iflags); 10250 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10251 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10252 10253 lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); 10254 } else { 10255 /* For now, SLI2/3 will still use hbalock */ 10256 spin_lock_irqsave(&phba->hbalock, iflags); 10257 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 10258 spin_unlock_irqrestore(&phba->hbalock, iflags); 10259 } 10260 return rc; 10261 } 10262 10263 /** 10264 * lpfc_extra_ring_setup - Extra ring setup function 10265 * @phba: Pointer to HBA context object. 10266 * 10267 * This function is called while driver attaches with the 10268 * HBA to setup the extra ring. The extra ring is used 10269 * only when driver needs to support target mode functionality 10270 * or IP over FC functionalities. 10271 * 10272 * This function is called with no lock held. SLI3 only. 10273 **/ 10274 static int 10275 lpfc_extra_ring_setup( struct lpfc_hba *phba) 10276 { 10277 struct lpfc_sli *psli; 10278 struct lpfc_sli_ring *pring; 10279 10280 psli = &phba->sli; 10281 10282 /* Adjust cmd/rsp ring iocb entries more evenly */ 10283 10284 /* Take some away from the FCP ring */ 10285 pring = &psli->sli3_ring[LPFC_FCP_RING]; 10286 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10287 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10288 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10289 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10290 10291 /* and give them to the extra ring */ 10292 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 10293 10294 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10295 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10296 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10297 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10298 10299 /* Setup default profile for this ring */ 10300 pring->iotag_max = 4096; 10301 pring->num_mask = 1; 10302 pring->prt[0].profile = 0; /* Mask 0 */ 10303 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 10304 pring->prt[0].type = phba->cfg_multi_ring_type; 10305 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 10306 return 0; 10307 } 10308 10309 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 10310 * @phba: Pointer to HBA context object. 10311 * @iocbq: Pointer to iocb object. 10312 * 10313 * The async_event handler calls this routine when it receives 10314 * an ASYNC_STATUS_CN event from the port. The port generates 10315 * this event when an Abort Sequence request to an rport fails 10316 * twice in succession. The abort could be originated by the 10317 * driver or by the port. The ABTS could have been for an ELS 10318 * or FCP IO. The port only generates this event when an ABTS 10319 * fails to complete after one retry. 10320 */ 10321 static void 10322 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 10323 struct lpfc_iocbq *iocbq) 10324 { 10325 struct lpfc_nodelist *ndlp = NULL; 10326 uint16_t rpi = 0, vpi = 0; 10327 struct lpfc_vport *vport = NULL; 10328 10329 /* The rpi in the ulpContext is vport-sensitive. */ 10330 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 10331 rpi = iocbq->iocb.ulpContext; 10332 10333 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10334 "3092 Port generated ABTS async event " 10335 "on vpi %d rpi %d status 0x%x\n", 10336 vpi, rpi, iocbq->iocb.ulpStatus); 10337 10338 vport = lpfc_find_vport_by_vpid(phba, vpi); 10339 if (!vport) 10340 goto err_exit; 10341 ndlp = lpfc_findnode_rpi(vport, rpi); 10342 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 10343 goto err_exit; 10344 10345 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 10346 lpfc_sli_abts_recover_port(vport, ndlp); 10347 return; 10348 10349 err_exit: 10350 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10351 "3095 Event Context not found, no " 10352 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 10353 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 10354 vpi, rpi); 10355 } 10356 10357 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 10358 * @phba: pointer to HBA context object. 10359 * @ndlp: nodelist pointer for the impacted rport. 10360 * @axri: pointer to the wcqe containing the failed exchange. 10361 * 10362 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 10363 * port. The port generates this event when an abort exchange request to an 10364 * rport fails twice in succession with no reply. The abort could be originated 10365 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 10366 */ 10367 void 10368 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 10369 struct lpfc_nodelist *ndlp, 10370 struct sli4_wcqe_xri_aborted *axri) 10371 { 10372 struct lpfc_vport *vport; 10373 uint32_t ext_status = 0; 10374 10375 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 10376 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10377 "3115 Node Context not found, driver " 10378 "ignoring abts err event\n"); 10379 return; 10380 } 10381 10382 vport = ndlp->vport; 10383 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 10384 "3116 Port generated FCP XRI ABORT event on " 10385 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 10386 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 10387 bf_get(lpfc_wcqe_xa_xri, axri), 10388 bf_get(lpfc_wcqe_xa_status, axri), 10389 axri->parameter); 10390 10391 /* 10392 * Catch the ABTS protocol failure case. Older OCe FW releases returned 10393 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 10394 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 10395 */ 10396 ext_status = axri->parameter & IOERR_PARAM_MASK; 10397 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 10398 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 10399 lpfc_sli_abts_recover_port(vport, ndlp); 10400 } 10401 10402 /** 10403 * lpfc_sli_async_event_handler - ASYNC iocb handler function 10404 * @phba: Pointer to HBA context object. 10405 * @pring: Pointer to driver SLI ring object. 10406 * @iocbq: Pointer to iocb object. 10407 * 10408 * This function is called by the slow ring event handler 10409 * function when there is an ASYNC event iocb in the ring. 10410 * This function is called with no lock held. 10411 * Currently this function handles only temperature related 10412 * ASYNC events. The function decodes the temperature sensor 10413 * event message and posts events for the management applications. 10414 **/ 10415 static void 10416 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 10417 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 10418 { 10419 IOCB_t *icmd; 10420 uint16_t evt_code; 10421 struct temp_event temp_event_data; 10422 struct Scsi_Host *shost; 10423 uint32_t *iocb_w; 10424 10425 icmd = &iocbq->iocb; 10426 evt_code = icmd->un.asyncstat.evt_code; 10427 10428 switch (evt_code) { 10429 case ASYNC_TEMP_WARN: 10430 case ASYNC_TEMP_SAFE: 10431 temp_event_data.data = (uint32_t) icmd->ulpContext; 10432 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 10433 if (evt_code == ASYNC_TEMP_WARN) { 10434 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 10435 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10436 "0347 Adapter is very hot, please take " 10437 "corrective action. temperature : %d Celsius\n", 10438 (uint32_t) icmd->ulpContext); 10439 } else { 10440 temp_event_data.event_code = LPFC_NORMAL_TEMP; 10441 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 10442 "0340 Adapter temperature is OK now. " 10443 "temperature : %d Celsius\n", 10444 (uint32_t) icmd->ulpContext); 10445 } 10446 10447 /* Send temperature change event to applications */ 10448 shost = lpfc_shost_from_vport(phba->pport); 10449 fc_host_post_vendor_event(shost, fc_get_event_number(), 10450 sizeof(temp_event_data), (char *) &temp_event_data, 10451 LPFC_NL_VENDOR_ID); 10452 break; 10453 case ASYNC_STATUS_CN: 10454 lpfc_sli_abts_err_handler(phba, iocbq); 10455 break; 10456 default: 10457 iocb_w = (uint32_t *) icmd; 10458 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 10459 "0346 Ring %d handler: unexpected ASYNC_STATUS" 10460 " evt_code 0x%x\n" 10461 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 10462 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 10463 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 10464 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 10465 pring->ringno, icmd->un.asyncstat.evt_code, 10466 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 10467 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 10468 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 10469 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 10470 10471 break; 10472 } 10473 } 10474 10475 10476 /** 10477 * lpfc_sli4_setup - SLI ring setup function 10478 * @phba: Pointer to HBA context object. 10479 * 10480 * lpfc_sli_setup sets up rings of the SLI interface with 10481 * number of iocbs per ring and iotags. This function is 10482 * called while driver attach to the HBA and before the 10483 * interrupts are enabled. So there is no need for locking. 10484 * 10485 * This function always returns 0. 10486 **/ 10487 int 10488 lpfc_sli4_setup(struct lpfc_hba *phba) 10489 { 10490 struct lpfc_sli_ring *pring; 10491 10492 pring = phba->sli4_hba.els_wq->pring; 10493 pring->num_mask = LPFC_MAX_RING_MASK; 10494 pring->prt[0].profile = 0; /* Mask 0 */ 10495 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10496 pring->prt[0].type = FC_TYPE_ELS; 10497 pring->prt[0].lpfc_sli_rcv_unsol_event = 10498 lpfc_els_unsol_event; 10499 pring->prt[1].profile = 0; /* Mask 1 */ 10500 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10501 pring->prt[1].type = FC_TYPE_ELS; 10502 pring->prt[1].lpfc_sli_rcv_unsol_event = 10503 lpfc_els_unsol_event; 10504 pring->prt[2].profile = 0; /* Mask 2 */ 10505 /* NameServer Inquiry */ 10506 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10507 /* NameServer */ 10508 pring->prt[2].type = FC_TYPE_CT; 10509 pring->prt[2].lpfc_sli_rcv_unsol_event = 10510 lpfc_ct_unsol_event; 10511 pring->prt[3].profile = 0; /* Mask 3 */ 10512 /* NameServer response */ 10513 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10514 /* NameServer */ 10515 pring->prt[3].type = FC_TYPE_CT; 10516 pring->prt[3].lpfc_sli_rcv_unsol_event = 10517 lpfc_ct_unsol_event; 10518 return 0; 10519 } 10520 10521 /** 10522 * lpfc_sli_setup - SLI ring setup function 10523 * @phba: Pointer to HBA context object. 10524 * 10525 * lpfc_sli_setup sets up rings of the SLI interface with 10526 * number of iocbs per ring and iotags. This function is 10527 * called while driver attach to the HBA and before the 10528 * interrupts are enabled. So there is no need for locking. 10529 * 10530 * This function always returns 0. SLI3 only. 10531 **/ 10532 int 10533 lpfc_sli_setup(struct lpfc_hba *phba) 10534 { 10535 int i, totiocbsize = 0; 10536 struct lpfc_sli *psli = &phba->sli; 10537 struct lpfc_sli_ring *pring; 10538 10539 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 10540 psli->sli_flag = 0; 10541 10542 psli->iocbq_lookup = NULL; 10543 psli->iocbq_lookup_len = 0; 10544 psli->last_iotag = 0; 10545 10546 for (i = 0; i < psli->num_rings; i++) { 10547 pring = &psli->sli3_ring[i]; 10548 switch (i) { 10549 case LPFC_FCP_RING: /* ring 0 - FCP */ 10550 /* numCiocb and numRiocb are used in config_port */ 10551 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 10552 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 10553 pring->sli.sli3.numCiocb += 10554 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 10555 pring->sli.sli3.numRiocb += 10556 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 10557 pring->sli.sli3.numCiocb += 10558 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 10559 pring->sli.sli3.numRiocb += 10560 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 10561 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10562 SLI3_IOCB_CMD_SIZE : 10563 SLI2_IOCB_CMD_SIZE; 10564 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10565 SLI3_IOCB_RSP_SIZE : 10566 SLI2_IOCB_RSP_SIZE; 10567 pring->iotag_ctr = 0; 10568 pring->iotag_max = 10569 (phba->cfg_hba_queue_depth * 2); 10570 pring->fast_iotag = pring->iotag_max; 10571 pring->num_mask = 0; 10572 break; 10573 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 10574 /* numCiocb and numRiocb are used in config_port */ 10575 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 10576 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 10577 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10578 SLI3_IOCB_CMD_SIZE : 10579 SLI2_IOCB_CMD_SIZE; 10580 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10581 SLI3_IOCB_RSP_SIZE : 10582 SLI2_IOCB_RSP_SIZE; 10583 pring->iotag_max = phba->cfg_hba_queue_depth; 10584 pring->num_mask = 0; 10585 break; 10586 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 10587 /* numCiocb and numRiocb are used in config_port */ 10588 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 10589 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 10590 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 10591 SLI3_IOCB_CMD_SIZE : 10592 SLI2_IOCB_CMD_SIZE; 10593 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 10594 SLI3_IOCB_RSP_SIZE : 10595 SLI2_IOCB_RSP_SIZE; 10596 pring->fast_iotag = 0; 10597 pring->iotag_ctr = 0; 10598 pring->iotag_max = 4096; 10599 pring->lpfc_sli_rcv_async_status = 10600 lpfc_sli_async_event_handler; 10601 pring->num_mask = LPFC_MAX_RING_MASK; 10602 pring->prt[0].profile = 0; /* Mask 0 */ 10603 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 10604 pring->prt[0].type = FC_TYPE_ELS; 10605 pring->prt[0].lpfc_sli_rcv_unsol_event = 10606 lpfc_els_unsol_event; 10607 pring->prt[1].profile = 0; /* Mask 1 */ 10608 pring->prt[1].rctl = FC_RCTL_ELS_REP; 10609 pring->prt[1].type = FC_TYPE_ELS; 10610 pring->prt[1].lpfc_sli_rcv_unsol_event = 10611 lpfc_els_unsol_event; 10612 pring->prt[2].profile = 0; /* Mask 2 */ 10613 /* NameServer Inquiry */ 10614 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 10615 /* NameServer */ 10616 pring->prt[2].type = FC_TYPE_CT; 10617 pring->prt[2].lpfc_sli_rcv_unsol_event = 10618 lpfc_ct_unsol_event; 10619 pring->prt[3].profile = 0; /* Mask 3 */ 10620 /* NameServer response */ 10621 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 10622 /* NameServer */ 10623 pring->prt[3].type = FC_TYPE_CT; 10624 pring->prt[3].lpfc_sli_rcv_unsol_event = 10625 lpfc_ct_unsol_event; 10626 break; 10627 } 10628 totiocbsize += (pring->sli.sli3.numCiocb * 10629 pring->sli.sli3.sizeCiocb) + 10630 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 10631 } 10632 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 10633 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 10634 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 10635 "SLI2 SLIM Data: x%x x%lx\n", 10636 phba->brd_no, totiocbsize, 10637 (unsigned long) MAX_SLIM_IOCB_SIZE); 10638 } 10639 if (phba->cfg_multi_ring_support == 2) 10640 lpfc_extra_ring_setup(phba); 10641 10642 return 0; 10643 } 10644 10645 /** 10646 * lpfc_sli4_queue_init - Queue initialization function 10647 * @phba: Pointer to HBA context object. 10648 * 10649 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 10650 * ring. This function also initializes ring indices of each ring. 10651 * This function is called during the initialization of the SLI 10652 * interface of an HBA. 10653 * This function is called with no lock held and always returns 10654 * 1. 10655 **/ 10656 void 10657 lpfc_sli4_queue_init(struct lpfc_hba *phba) 10658 { 10659 struct lpfc_sli *psli; 10660 struct lpfc_sli_ring *pring; 10661 int i; 10662 10663 psli = &phba->sli; 10664 spin_lock_irq(&phba->hbalock); 10665 INIT_LIST_HEAD(&psli->mboxq); 10666 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10667 /* Initialize list headers for txq and txcmplq as double linked lists */ 10668 for (i = 0; i < phba->cfg_hdw_queue; i++) { 10669 pring = phba->sli4_hba.hdwq[i].io_wq->pring; 10670 pring->flag = 0; 10671 pring->ringno = LPFC_FCP_RING; 10672 pring->txcmplq_cnt = 0; 10673 INIT_LIST_HEAD(&pring->txq); 10674 INIT_LIST_HEAD(&pring->txcmplq); 10675 INIT_LIST_HEAD(&pring->iocb_continueq); 10676 spin_lock_init(&pring->ring_lock); 10677 } 10678 pring = phba->sli4_hba.els_wq->pring; 10679 pring->flag = 0; 10680 pring->ringno = LPFC_ELS_RING; 10681 pring->txcmplq_cnt = 0; 10682 INIT_LIST_HEAD(&pring->txq); 10683 INIT_LIST_HEAD(&pring->txcmplq); 10684 INIT_LIST_HEAD(&pring->iocb_continueq); 10685 spin_lock_init(&pring->ring_lock); 10686 10687 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 10688 pring = phba->sli4_hba.nvmels_wq->pring; 10689 pring->flag = 0; 10690 pring->ringno = LPFC_ELS_RING; 10691 pring->txcmplq_cnt = 0; 10692 INIT_LIST_HEAD(&pring->txq); 10693 INIT_LIST_HEAD(&pring->txcmplq); 10694 INIT_LIST_HEAD(&pring->iocb_continueq); 10695 spin_lock_init(&pring->ring_lock); 10696 } 10697 10698 spin_unlock_irq(&phba->hbalock); 10699 } 10700 10701 /** 10702 * lpfc_sli_queue_init - Queue initialization function 10703 * @phba: Pointer to HBA context object. 10704 * 10705 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 10706 * ring. This function also initializes ring indices of each ring. 10707 * This function is called during the initialization of the SLI 10708 * interface of an HBA. 10709 * This function is called with no lock held and always returns 10710 * 1. 10711 **/ 10712 void 10713 lpfc_sli_queue_init(struct lpfc_hba *phba) 10714 { 10715 struct lpfc_sli *psli; 10716 struct lpfc_sli_ring *pring; 10717 int i; 10718 10719 psli = &phba->sli; 10720 spin_lock_irq(&phba->hbalock); 10721 INIT_LIST_HEAD(&psli->mboxq); 10722 INIT_LIST_HEAD(&psli->mboxq_cmpl); 10723 /* Initialize list headers for txq and txcmplq as double linked lists */ 10724 for (i = 0; i < psli->num_rings; i++) { 10725 pring = &psli->sli3_ring[i]; 10726 pring->ringno = i; 10727 pring->sli.sli3.next_cmdidx = 0; 10728 pring->sli.sli3.local_getidx = 0; 10729 pring->sli.sli3.cmdidx = 0; 10730 INIT_LIST_HEAD(&pring->iocb_continueq); 10731 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 10732 INIT_LIST_HEAD(&pring->postbufq); 10733 pring->flag = 0; 10734 INIT_LIST_HEAD(&pring->txq); 10735 INIT_LIST_HEAD(&pring->txcmplq); 10736 spin_lock_init(&pring->ring_lock); 10737 } 10738 spin_unlock_irq(&phba->hbalock); 10739 } 10740 10741 /** 10742 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 10743 * @phba: Pointer to HBA context object. 10744 * 10745 * This routine flushes the mailbox command subsystem. It will unconditionally 10746 * flush all the mailbox commands in the three possible stages in the mailbox 10747 * command sub-system: pending mailbox command queue; the outstanding mailbox 10748 * command; and completed mailbox command queue. It is caller's responsibility 10749 * to make sure that the driver is in the proper state to flush the mailbox 10750 * command sub-system. Namely, the posting of mailbox commands into the 10751 * pending mailbox command queue from the various clients must be stopped; 10752 * either the HBA is in a state that it will never works on the outstanding 10753 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 10754 * mailbox command has been completed. 10755 **/ 10756 static void 10757 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 10758 { 10759 LIST_HEAD(completions); 10760 struct lpfc_sli *psli = &phba->sli; 10761 LPFC_MBOXQ_t *pmb; 10762 unsigned long iflag; 10763 10764 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10765 local_bh_disable(); 10766 10767 /* Flush all the mailbox commands in the mbox system */ 10768 spin_lock_irqsave(&phba->hbalock, iflag); 10769 10770 /* The pending mailbox command queue */ 10771 list_splice_init(&phba->sli.mboxq, &completions); 10772 /* The outstanding active mailbox command */ 10773 if (psli->mbox_active) { 10774 list_add_tail(&psli->mbox_active->list, &completions); 10775 psli->mbox_active = NULL; 10776 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 10777 } 10778 /* The completed mailbox command queue */ 10779 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 10780 spin_unlock_irqrestore(&phba->hbalock, iflag); 10781 10782 /* Enable softirqs again, done with phba->hbalock */ 10783 local_bh_enable(); 10784 10785 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 10786 while (!list_empty(&completions)) { 10787 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 10788 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 10789 if (pmb->mbox_cmpl) 10790 pmb->mbox_cmpl(phba, pmb); 10791 } 10792 } 10793 10794 /** 10795 * lpfc_sli_host_down - Vport cleanup function 10796 * @vport: Pointer to virtual port object. 10797 * 10798 * lpfc_sli_host_down is called to clean up the resources 10799 * associated with a vport before destroying virtual 10800 * port data structures. 10801 * This function does following operations: 10802 * - Free discovery resources associated with this virtual 10803 * port. 10804 * - Free iocbs associated with this virtual port in 10805 * the txq. 10806 * - Send abort for all iocb commands associated with this 10807 * vport in txcmplq. 10808 * 10809 * This function is called with no lock held and always returns 1. 10810 **/ 10811 int 10812 lpfc_sli_host_down(struct lpfc_vport *vport) 10813 { 10814 LIST_HEAD(completions); 10815 struct lpfc_hba *phba = vport->phba; 10816 struct lpfc_sli *psli = &phba->sli; 10817 struct lpfc_queue *qp = NULL; 10818 struct lpfc_sli_ring *pring; 10819 struct lpfc_iocbq *iocb, *next_iocb; 10820 int i; 10821 unsigned long flags = 0; 10822 uint16_t prev_pring_flag; 10823 10824 lpfc_cleanup_discovery_resources(vport); 10825 10826 spin_lock_irqsave(&phba->hbalock, flags); 10827 10828 /* 10829 * Error everything on the txq since these iocbs 10830 * have not been given to the FW yet. 10831 * Also issue ABTS for everything on the txcmplq 10832 */ 10833 if (phba->sli_rev != LPFC_SLI_REV4) { 10834 for (i = 0; i < psli->num_rings; i++) { 10835 pring = &psli->sli3_ring[i]; 10836 prev_pring_flag = pring->flag; 10837 /* Only slow rings */ 10838 if (pring->ringno == LPFC_ELS_RING) { 10839 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10840 /* Set the lpfc data pending flag */ 10841 set_bit(LPFC_DATA_READY, &phba->data_flags); 10842 } 10843 list_for_each_entry_safe(iocb, next_iocb, 10844 &pring->txq, list) { 10845 if (iocb->vport != vport) 10846 continue; 10847 list_move_tail(&iocb->list, &completions); 10848 } 10849 list_for_each_entry_safe(iocb, next_iocb, 10850 &pring->txcmplq, list) { 10851 if (iocb->vport != vport) 10852 continue; 10853 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10854 } 10855 pring->flag = prev_pring_flag; 10856 } 10857 } else { 10858 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10859 pring = qp->pring; 10860 if (!pring) 10861 continue; 10862 if (pring == phba->sli4_hba.els_wq->pring) { 10863 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10864 /* Set the lpfc data pending flag */ 10865 set_bit(LPFC_DATA_READY, &phba->data_flags); 10866 } 10867 prev_pring_flag = pring->flag; 10868 spin_lock(&pring->ring_lock); 10869 list_for_each_entry_safe(iocb, next_iocb, 10870 &pring->txq, list) { 10871 if (iocb->vport != vport) 10872 continue; 10873 list_move_tail(&iocb->list, &completions); 10874 } 10875 spin_unlock(&pring->ring_lock); 10876 list_for_each_entry_safe(iocb, next_iocb, 10877 &pring->txcmplq, list) { 10878 if (iocb->vport != vport) 10879 continue; 10880 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10881 } 10882 pring->flag = prev_pring_flag; 10883 } 10884 } 10885 spin_unlock_irqrestore(&phba->hbalock, flags); 10886 10887 /* Cancel all the IOCBs from the completions list */ 10888 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10889 IOERR_SLI_DOWN); 10890 return 1; 10891 } 10892 10893 /** 10894 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10895 * @phba: Pointer to HBA context object. 10896 * 10897 * This function cleans up all iocb, buffers, mailbox commands 10898 * while shutting down the HBA. This function is called with no 10899 * lock held and always returns 1. 10900 * This function does the following to cleanup driver resources: 10901 * - Free discovery resources for each virtual port 10902 * - Cleanup any pending fabric iocbs 10903 * - Iterate through the iocb txq and free each entry 10904 * in the list. 10905 * - Free up any buffer posted to the HBA 10906 * - Free mailbox commands in the mailbox queue. 10907 **/ 10908 int 10909 lpfc_sli_hba_down(struct lpfc_hba *phba) 10910 { 10911 LIST_HEAD(completions); 10912 struct lpfc_sli *psli = &phba->sli; 10913 struct lpfc_queue *qp = NULL; 10914 struct lpfc_sli_ring *pring; 10915 struct lpfc_dmabuf *buf_ptr; 10916 unsigned long flags = 0; 10917 int i; 10918 10919 /* Shutdown the mailbox command sub-system */ 10920 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10921 10922 lpfc_hba_down_prep(phba); 10923 10924 /* Disable softirqs, including timers from obtaining phba->hbalock */ 10925 local_bh_disable(); 10926 10927 lpfc_fabric_abort_hba(phba); 10928 10929 spin_lock_irqsave(&phba->hbalock, flags); 10930 10931 /* 10932 * Error everything on the txq since these iocbs 10933 * have not been given to the FW yet. 10934 */ 10935 if (phba->sli_rev != LPFC_SLI_REV4) { 10936 for (i = 0; i < psli->num_rings; i++) { 10937 pring = &psli->sli3_ring[i]; 10938 /* Only slow rings */ 10939 if (pring->ringno == LPFC_ELS_RING) { 10940 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10941 /* Set the lpfc data pending flag */ 10942 set_bit(LPFC_DATA_READY, &phba->data_flags); 10943 } 10944 list_splice_init(&pring->txq, &completions); 10945 } 10946 } else { 10947 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10948 pring = qp->pring; 10949 if (!pring) 10950 continue; 10951 spin_lock(&pring->ring_lock); 10952 list_splice_init(&pring->txq, &completions); 10953 spin_unlock(&pring->ring_lock); 10954 if (pring == phba->sli4_hba.els_wq->pring) { 10955 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10956 /* Set the lpfc data pending flag */ 10957 set_bit(LPFC_DATA_READY, &phba->data_flags); 10958 } 10959 } 10960 } 10961 spin_unlock_irqrestore(&phba->hbalock, flags); 10962 10963 /* Cancel all the IOCBs from the completions list */ 10964 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10965 IOERR_SLI_DOWN); 10966 10967 spin_lock_irqsave(&phba->hbalock, flags); 10968 list_splice_init(&phba->elsbuf, &completions); 10969 phba->elsbuf_cnt = 0; 10970 phba->elsbuf_prev_cnt = 0; 10971 spin_unlock_irqrestore(&phba->hbalock, flags); 10972 10973 while (!list_empty(&completions)) { 10974 list_remove_head(&completions, buf_ptr, 10975 struct lpfc_dmabuf, list); 10976 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10977 kfree(buf_ptr); 10978 } 10979 10980 /* Enable softirqs again, done with phba->hbalock */ 10981 local_bh_enable(); 10982 10983 /* Return any active mbox cmds */ 10984 del_timer_sync(&psli->mbox_tmo); 10985 10986 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10987 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10988 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10989 10990 return 1; 10991 } 10992 10993 /** 10994 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10995 * @srcp: Source memory pointer. 10996 * @destp: Destination memory pointer. 10997 * @cnt: Number of words required to be copied. 10998 * 10999 * This function is used for copying data between driver memory 11000 * and the SLI memory. This function also changes the endianness 11001 * of each word if native endianness is different from SLI 11002 * endianness. This function can be called with or without 11003 * lock. 11004 **/ 11005 void 11006 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 11007 { 11008 uint32_t *src = srcp; 11009 uint32_t *dest = destp; 11010 uint32_t ldata; 11011 int i; 11012 11013 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 11014 ldata = *src; 11015 ldata = le32_to_cpu(ldata); 11016 *dest = ldata; 11017 src++; 11018 dest++; 11019 } 11020 } 11021 11022 11023 /** 11024 * lpfc_sli_bemem_bcopy - SLI memory copy function 11025 * @srcp: Source memory pointer. 11026 * @destp: Destination memory pointer. 11027 * @cnt: Number of words required to be copied. 11028 * 11029 * This function is used for copying data between a data structure 11030 * with big endian representation to local endianness. 11031 * This function can be called with or without lock. 11032 **/ 11033 void 11034 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 11035 { 11036 uint32_t *src = srcp; 11037 uint32_t *dest = destp; 11038 uint32_t ldata; 11039 int i; 11040 11041 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 11042 ldata = *src; 11043 ldata = be32_to_cpu(ldata); 11044 *dest = ldata; 11045 src++; 11046 dest++; 11047 } 11048 } 11049 11050 /** 11051 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 11052 * @phba: Pointer to HBA context object. 11053 * @pring: Pointer to driver SLI ring object. 11054 * @mp: Pointer to driver buffer object. 11055 * 11056 * This function is called with no lock held. 11057 * It always return zero after adding the buffer to the postbufq 11058 * buffer list. 11059 **/ 11060 int 11061 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11062 struct lpfc_dmabuf *mp) 11063 { 11064 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 11065 later */ 11066 spin_lock_irq(&phba->hbalock); 11067 list_add_tail(&mp->list, &pring->postbufq); 11068 pring->postbufq_cnt++; 11069 spin_unlock_irq(&phba->hbalock); 11070 return 0; 11071 } 11072 11073 /** 11074 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 11075 * @phba: Pointer to HBA context object. 11076 * 11077 * When HBQ is enabled, buffers are searched based on tags. This function 11078 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 11079 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 11080 * does not conflict with tags of buffer posted for unsolicited events. 11081 * The function returns the allocated tag. The function is called with 11082 * no locks held. 11083 **/ 11084 uint32_t 11085 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 11086 { 11087 spin_lock_irq(&phba->hbalock); 11088 phba->buffer_tag_count++; 11089 /* 11090 * Always set the QUE_BUFTAG_BIT to distiguish between 11091 * a tag assigned by HBQ. 11092 */ 11093 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 11094 spin_unlock_irq(&phba->hbalock); 11095 return phba->buffer_tag_count; 11096 } 11097 11098 /** 11099 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 11100 * @phba: Pointer to HBA context object. 11101 * @pring: Pointer to driver SLI ring object. 11102 * @tag: Buffer tag. 11103 * 11104 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 11105 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 11106 * iocb is posted to the response ring with the tag of the buffer. 11107 * This function searches the pring->postbufq list using the tag 11108 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 11109 * iocb. If the buffer is found then lpfc_dmabuf object of the 11110 * buffer is returned to the caller else NULL is returned. 11111 * This function is called with no lock held. 11112 **/ 11113 struct lpfc_dmabuf * 11114 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11115 uint32_t tag) 11116 { 11117 struct lpfc_dmabuf *mp, *next_mp; 11118 struct list_head *slp = &pring->postbufq; 11119 11120 /* Search postbufq, from the beginning, looking for a match on tag */ 11121 spin_lock_irq(&phba->hbalock); 11122 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11123 if (mp->buffer_tag == tag) { 11124 list_del_init(&mp->list); 11125 pring->postbufq_cnt--; 11126 spin_unlock_irq(&phba->hbalock); 11127 return mp; 11128 } 11129 } 11130 11131 spin_unlock_irq(&phba->hbalock); 11132 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11133 "0402 Cannot find virtual addr for buffer tag on " 11134 "ring %d Data x%lx x%px x%px x%x\n", 11135 pring->ringno, (unsigned long) tag, 11136 slp->next, slp->prev, pring->postbufq_cnt); 11137 11138 return NULL; 11139 } 11140 11141 /** 11142 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 11143 * @phba: Pointer to HBA context object. 11144 * @pring: Pointer to driver SLI ring object. 11145 * @phys: DMA address of the buffer. 11146 * 11147 * This function searches the buffer list using the dma_address 11148 * of unsolicited event to find the driver's lpfc_dmabuf object 11149 * corresponding to the dma_address. The function returns the 11150 * lpfc_dmabuf object if a buffer is found else it returns NULL. 11151 * This function is called by the ct and els unsolicited event 11152 * handlers to get the buffer associated with the unsolicited 11153 * event. 11154 * 11155 * This function is called with no lock held. 11156 **/ 11157 struct lpfc_dmabuf * 11158 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11159 dma_addr_t phys) 11160 { 11161 struct lpfc_dmabuf *mp, *next_mp; 11162 struct list_head *slp = &pring->postbufq; 11163 11164 /* Search postbufq, from the beginning, looking for a match on phys */ 11165 spin_lock_irq(&phba->hbalock); 11166 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 11167 if (mp->phys == phys) { 11168 list_del_init(&mp->list); 11169 pring->postbufq_cnt--; 11170 spin_unlock_irq(&phba->hbalock); 11171 return mp; 11172 } 11173 } 11174 11175 spin_unlock_irq(&phba->hbalock); 11176 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11177 "0410 Cannot find virtual addr for mapped buf on " 11178 "ring %d Data x%llx x%px x%px x%x\n", 11179 pring->ringno, (unsigned long long)phys, 11180 slp->next, slp->prev, pring->postbufq_cnt); 11181 return NULL; 11182 } 11183 11184 /** 11185 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 11186 * @phba: Pointer to HBA context object. 11187 * @cmdiocb: Pointer to driver command iocb object. 11188 * @rspiocb: Pointer to driver response iocb object. 11189 * 11190 * This function is the completion handler for the abort iocbs for 11191 * ELS commands. This function is called from the ELS ring event 11192 * handler with no lock held. This function frees memory resources 11193 * associated with the abort iocb. 11194 **/ 11195 static void 11196 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11197 struct lpfc_iocbq *rspiocb) 11198 { 11199 IOCB_t *irsp = &rspiocb->iocb; 11200 uint16_t abort_iotag, abort_context; 11201 struct lpfc_iocbq *abort_iocb = NULL; 11202 11203 if (irsp->ulpStatus) { 11204 11205 /* 11206 * Assume that the port already completed and returned, or 11207 * will return the iocb. Just Log the message. 11208 */ 11209 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 11210 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 11211 11212 spin_lock_irq(&phba->hbalock); 11213 if (phba->sli_rev < LPFC_SLI_REV4) { 11214 if (irsp->ulpCommand == CMD_ABORT_XRI_CX && 11215 irsp->ulpStatus == IOSTAT_LOCAL_REJECT && 11216 irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { 11217 spin_unlock_irq(&phba->hbalock); 11218 goto release_iocb; 11219 } 11220 if (abort_iotag != 0 && 11221 abort_iotag <= phba->sli.last_iotag) 11222 abort_iocb = 11223 phba->sli.iocbq_lookup[abort_iotag]; 11224 } else 11225 /* For sli4 the abort_tag is the XRI, 11226 * so the abort routine puts the iotag of the iocb 11227 * being aborted in the context field of the abort 11228 * IOCB. 11229 */ 11230 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 11231 11232 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 11233 "0327 Cannot abort els iocb x%px " 11234 "with tag %x context %x, abort status %x, " 11235 "abort code %x\n", 11236 abort_iocb, abort_iotag, abort_context, 11237 irsp->ulpStatus, irsp->un.ulpWord[4]); 11238 11239 spin_unlock_irq(&phba->hbalock); 11240 } 11241 release_iocb: 11242 lpfc_sli_release_iocbq(phba, cmdiocb); 11243 return; 11244 } 11245 11246 /** 11247 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 11248 * @phba: Pointer to HBA context object. 11249 * @cmdiocb: Pointer to driver command iocb object. 11250 * @rspiocb: Pointer to driver response iocb object. 11251 * 11252 * The function is called from SLI ring event handler with no 11253 * lock held. This function is the completion handler for ELS commands 11254 * which are aborted. The function frees memory resources used for 11255 * the aborted ELS commands. 11256 **/ 11257 static void 11258 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11259 struct lpfc_iocbq *rspiocb) 11260 { 11261 IOCB_t *irsp = &rspiocb->iocb; 11262 11263 /* ELS cmd tag <ulpIoTag> completes */ 11264 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 11265 "0139 Ignoring ELS cmd tag x%x completion Data: " 11266 "x%x x%x x%x\n", 11267 irsp->ulpIoTag, irsp->ulpStatus, 11268 irsp->un.ulpWord[4], irsp->ulpTimeout); 11269 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 11270 lpfc_ct_free_iocb(phba, cmdiocb); 11271 else 11272 lpfc_els_free_iocb(phba, cmdiocb); 11273 return; 11274 } 11275 11276 /** 11277 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 11278 * @phba: Pointer to HBA context object. 11279 * @pring: Pointer to driver SLI ring object. 11280 * @cmdiocb: Pointer to driver command iocb object. 11281 * 11282 * This function issues an abort iocb for the provided command iocb down to 11283 * the port. Other than the case the outstanding command iocb is an abort 11284 * request, this function issues abort out unconditionally. This function is 11285 * called with hbalock held. The function returns 0 when it fails due to 11286 * memory allocation failure or when the command iocb is an abort request. 11287 **/ 11288 static int 11289 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11290 struct lpfc_iocbq *cmdiocb) 11291 { 11292 struct lpfc_vport *vport = cmdiocb->vport; 11293 struct lpfc_iocbq *abtsiocbp; 11294 IOCB_t *icmd = NULL; 11295 IOCB_t *iabt = NULL; 11296 int retval; 11297 unsigned long iflags; 11298 struct lpfc_nodelist *ndlp; 11299 11300 lockdep_assert_held(&phba->hbalock); 11301 11302 /* 11303 * There are certain command types we don't want to abort. And we 11304 * don't want to abort commands that are already in the process of 11305 * being aborted. 11306 */ 11307 icmd = &cmdiocb->iocb; 11308 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11309 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11310 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11311 return 0; 11312 11313 /* issue ABTS for this IOCB based on iotag */ 11314 abtsiocbp = __lpfc_sli_get_iocbq(phba); 11315 if (abtsiocbp == NULL) 11316 return 0; 11317 11318 /* This signals the response to set the correct status 11319 * before calling the completion handler 11320 */ 11321 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 11322 11323 iabt = &abtsiocbp->iocb; 11324 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 11325 iabt->un.acxri.abortContextTag = icmd->ulpContext; 11326 if (phba->sli_rev == LPFC_SLI_REV4) { 11327 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 11328 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 11329 } else { 11330 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 11331 if (pring->ringno == LPFC_ELS_RING) { 11332 ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); 11333 iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; 11334 } 11335 } 11336 iabt->ulpLe = 1; 11337 iabt->ulpClass = icmd->ulpClass; 11338 11339 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11340 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 11341 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 11342 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 11343 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 11344 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 11345 11346 if (phba->link_state >= LPFC_LINK_UP) 11347 iabt->ulpCommand = CMD_ABORT_XRI_CN; 11348 else 11349 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 11350 11351 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 11352 abtsiocbp->vport = vport; 11353 11354 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 11355 "0339 Abort xri x%x, original iotag x%x, " 11356 "abort cmd iotag x%x\n", 11357 iabt->un.acxri.abortIoTag, 11358 iabt->un.acxri.abortContextTag, 11359 abtsiocbp->iotag); 11360 11361 if (phba->sli_rev == LPFC_SLI_REV4) { 11362 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 11363 if (unlikely(pring == NULL)) 11364 return 0; 11365 /* Note: both hbalock and ring_lock need to be set here */ 11366 spin_lock_irqsave(&pring->ring_lock, iflags); 11367 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11368 abtsiocbp, 0); 11369 spin_unlock_irqrestore(&pring->ring_lock, iflags); 11370 } else { 11371 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 11372 abtsiocbp, 0); 11373 } 11374 11375 if (retval) 11376 __lpfc_sli_release_iocbq(phba, abtsiocbp); 11377 11378 /* 11379 * Caller to this routine should check for IOCB_ERROR 11380 * and handle it properly. This routine no longer removes 11381 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11382 */ 11383 return retval; 11384 } 11385 11386 /** 11387 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 11388 * @phba: Pointer to HBA context object. 11389 * @pring: Pointer to driver SLI ring object. 11390 * @cmdiocb: Pointer to driver command iocb object. 11391 * 11392 * This function issues an abort iocb for the provided command iocb. In case 11393 * of unloading, the abort iocb will not be issued to commands on the ELS 11394 * ring. Instead, the callback function shall be changed to those commands 11395 * so that nothing happens when them finishes. This function is called with 11396 * hbalock held. The function returns 0 when the command iocb is an abort 11397 * request. 11398 **/ 11399 int 11400 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 11401 struct lpfc_iocbq *cmdiocb) 11402 { 11403 struct lpfc_vport *vport = cmdiocb->vport; 11404 int retval = IOCB_ERROR; 11405 IOCB_t *icmd = NULL; 11406 11407 lockdep_assert_held(&phba->hbalock); 11408 11409 /* 11410 * There are certain command types we don't want to abort. And we 11411 * don't want to abort commands that are already in the process of 11412 * being aborted. 11413 */ 11414 icmd = &cmdiocb->iocb; 11415 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 11416 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 11417 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 11418 return 0; 11419 11420 if (!pring) { 11421 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11422 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11423 else 11424 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11425 goto abort_iotag_exit; 11426 } 11427 11428 /* 11429 * If we're unloading, don't abort iocb on the ELS ring, but change 11430 * the callback so that nothing happens when it finishes. 11431 */ 11432 if ((vport->load_flag & FC_UNLOADING) && 11433 (pring->ringno == LPFC_ELS_RING)) { 11434 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 11435 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 11436 else 11437 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 11438 goto abort_iotag_exit; 11439 } 11440 11441 /* Now, we try to issue the abort to the cmdiocb out */ 11442 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 11443 11444 abort_iotag_exit: 11445 /* 11446 * Caller to this routine should check for IOCB_ERROR 11447 * and handle it properly. This routine no longer removes 11448 * iocb off txcmplq and call compl in case of IOCB_ERROR. 11449 */ 11450 return retval; 11451 } 11452 11453 /** 11454 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 11455 * @phba: pointer to lpfc HBA data structure. 11456 * 11457 * This routine will abort all pending and outstanding iocbs to an HBA. 11458 **/ 11459 void 11460 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 11461 { 11462 struct lpfc_sli *psli = &phba->sli; 11463 struct lpfc_sli_ring *pring; 11464 struct lpfc_queue *qp = NULL; 11465 int i; 11466 11467 if (phba->sli_rev != LPFC_SLI_REV4) { 11468 for (i = 0; i < psli->num_rings; i++) { 11469 pring = &psli->sli3_ring[i]; 11470 lpfc_sli_abort_iocb_ring(phba, pring); 11471 } 11472 return; 11473 } 11474 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 11475 pring = qp->pring; 11476 if (!pring) 11477 continue; 11478 lpfc_sli_abort_iocb_ring(phba, pring); 11479 } 11480 } 11481 11482 /** 11483 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 11484 * @iocbq: Pointer to driver iocb object. 11485 * @vport: Pointer to driver virtual port object. 11486 * @tgt_id: SCSI ID of the target. 11487 * @lun_id: LUN ID of the scsi device. 11488 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 11489 * 11490 * This function acts as an iocb filter for functions which abort or count 11491 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 11492 * 0 if the filtering criteria is met for the given iocb and will return 11493 * 1 if the filtering criteria is not met. 11494 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 11495 * given iocb is for the SCSI device specified by vport, tgt_id and 11496 * lun_id parameter. 11497 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 11498 * given iocb is for the SCSI target specified by vport and tgt_id 11499 * parameters. 11500 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 11501 * given iocb is for the SCSI host associated with the given vport. 11502 * This function is called with no locks held. 11503 **/ 11504 static int 11505 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 11506 uint16_t tgt_id, uint64_t lun_id, 11507 lpfc_ctx_cmd ctx_cmd) 11508 { 11509 struct lpfc_io_buf *lpfc_cmd; 11510 int rc = 1; 11511 11512 if (iocbq->vport != vport) 11513 return rc; 11514 11515 if (!(iocbq->iocb_flag & LPFC_IO_FCP) || 11516 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) 11517 return rc; 11518 11519 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11520 11521 if (lpfc_cmd->pCmd == NULL) 11522 return rc; 11523 11524 switch (ctx_cmd) { 11525 case LPFC_CTX_LUN: 11526 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11527 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 11528 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 11529 rc = 0; 11530 break; 11531 case LPFC_CTX_TGT: 11532 if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && 11533 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 11534 rc = 0; 11535 break; 11536 case LPFC_CTX_HOST: 11537 rc = 0; 11538 break; 11539 default: 11540 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 11541 __func__, ctx_cmd); 11542 break; 11543 } 11544 11545 return rc; 11546 } 11547 11548 /** 11549 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 11550 * @vport: Pointer to virtual port. 11551 * @tgt_id: SCSI ID of the target. 11552 * @lun_id: LUN ID of the scsi device. 11553 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11554 * 11555 * This function returns number of FCP commands pending for the vport. 11556 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 11557 * commands pending on the vport associated with SCSI device specified 11558 * by tgt_id and lun_id parameters. 11559 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 11560 * commands pending on the vport associated with SCSI target specified 11561 * by tgt_id parameter. 11562 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 11563 * commands pending on the vport. 11564 * This function returns the number of iocbs which satisfy the filter. 11565 * This function is called without any lock held. 11566 **/ 11567 int 11568 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 11569 lpfc_ctx_cmd ctx_cmd) 11570 { 11571 struct lpfc_hba *phba = vport->phba; 11572 struct lpfc_iocbq *iocbq; 11573 int sum, i; 11574 11575 spin_lock_irq(&phba->hbalock); 11576 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 11577 iocbq = phba->sli.iocbq_lookup[i]; 11578 11579 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 11580 ctx_cmd) == 0) 11581 sum++; 11582 } 11583 spin_unlock_irq(&phba->hbalock); 11584 11585 return sum; 11586 } 11587 11588 /** 11589 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 11590 * @phba: Pointer to HBA context object 11591 * @cmdiocb: Pointer to command iocb object. 11592 * @rspiocb: Pointer to response iocb object. 11593 * 11594 * This function is called when an aborted FCP iocb completes. This 11595 * function is called by the ring event handler with no lock held. 11596 * This function frees the iocb. 11597 **/ 11598 void 11599 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 11600 struct lpfc_iocbq *rspiocb) 11601 { 11602 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11603 "3096 ABORT_XRI_CN completing on rpi x%x " 11604 "original iotag x%x, abort cmd iotag x%x " 11605 "status 0x%x, reason 0x%x\n", 11606 cmdiocb->iocb.un.acxri.abortContextTag, 11607 cmdiocb->iocb.un.acxri.abortIoTag, 11608 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 11609 rspiocb->iocb.un.ulpWord[4]); 11610 lpfc_sli_release_iocbq(phba, cmdiocb); 11611 return; 11612 } 11613 11614 /** 11615 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 11616 * @vport: Pointer to virtual port. 11617 * @pring: Pointer to driver SLI ring object. 11618 * @tgt_id: SCSI ID of the target. 11619 * @lun_id: LUN ID of the scsi device. 11620 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11621 * 11622 * This function sends an abort command for every SCSI command 11623 * associated with the given virtual port pending on the ring 11624 * filtered by lpfc_sli_validate_fcp_iocb function. 11625 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 11626 * FCP iocbs associated with lun specified by tgt_id and lun_id 11627 * parameters 11628 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 11629 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11630 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 11631 * FCP iocbs associated with virtual port. 11632 * This function returns number of iocbs it failed to abort. 11633 * This function is called with no locks held. 11634 **/ 11635 int 11636 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11637 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 11638 { 11639 struct lpfc_hba *phba = vport->phba; 11640 struct lpfc_iocbq *iocbq; 11641 struct lpfc_iocbq *abtsiocb; 11642 struct lpfc_sli_ring *pring_s4; 11643 IOCB_t *cmd = NULL; 11644 int errcnt = 0, ret_val = 0; 11645 int i; 11646 11647 /* all I/Os are in process of being flushed */ 11648 if (phba->hba_flag & HBA_IOQ_FLUSH) 11649 return errcnt; 11650 11651 for (i = 1; i <= phba->sli.last_iotag; i++) { 11652 iocbq = phba->sli.iocbq_lookup[i]; 11653 11654 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11655 abort_cmd) != 0) 11656 continue; 11657 11658 /* 11659 * If the iocbq is already being aborted, don't take a second 11660 * action, but do count it. 11661 */ 11662 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 11663 continue; 11664 11665 /* issue ABTS for this IOCB based on iotag */ 11666 abtsiocb = lpfc_sli_get_iocbq(phba); 11667 if (abtsiocb == NULL) { 11668 errcnt++; 11669 continue; 11670 } 11671 11672 /* indicate the IO is being aborted by the driver. */ 11673 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11674 11675 cmd = &iocbq->iocb; 11676 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11677 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 11678 if (phba->sli_rev == LPFC_SLI_REV4) 11679 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 11680 else 11681 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 11682 abtsiocb->iocb.ulpLe = 1; 11683 abtsiocb->iocb.ulpClass = cmd->ulpClass; 11684 abtsiocb->vport = vport; 11685 11686 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11687 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 11688 if (iocbq->iocb_flag & LPFC_IO_FCP) 11689 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 11690 if (iocbq->iocb_flag & LPFC_IO_FOF) 11691 abtsiocb->iocb_flag |= LPFC_IO_FOF; 11692 11693 if (lpfc_is_link_up(phba)) 11694 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11695 else 11696 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11697 11698 /* Setup callback routine and issue the command. */ 11699 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11700 if (phba->sli_rev == LPFC_SLI_REV4) { 11701 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11702 if (!pring_s4) 11703 continue; 11704 ret_val = lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11705 abtsiocb, 0); 11706 } else 11707 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 11708 abtsiocb, 0); 11709 if (ret_val == IOCB_ERROR) { 11710 lpfc_sli_release_iocbq(phba, abtsiocb); 11711 errcnt++; 11712 continue; 11713 } 11714 } 11715 11716 return errcnt; 11717 } 11718 11719 /** 11720 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 11721 * @vport: Pointer to virtual port. 11722 * @pring: Pointer to driver SLI ring object. 11723 * @tgt_id: SCSI ID of the target. 11724 * @lun_id: LUN ID of the scsi device. 11725 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 11726 * 11727 * This function sends an abort command for every SCSI command 11728 * associated with the given virtual port pending on the ring 11729 * filtered by lpfc_sli_validate_fcp_iocb function. 11730 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 11731 * FCP iocbs associated with lun specified by tgt_id and lun_id 11732 * parameters 11733 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 11734 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 11735 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 11736 * FCP iocbs associated with virtual port. 11737 * This function returns number of iocbs it aborted . 11738 * This function is called with no locks held right after a taskmgmt 11739 * command is sent. 11740 **/ 11741 int 11742 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 11743 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 11744 { 11745 struct lpfc_hba *phba = vport->phba; 11746 struct lpfc_io_buf *lpfc_cmd; 11747 struct lpfc_iocbq *abtsiocbq; 11748 struct lpfc_nodelist *ndlp; 11749 struct lpfc_iocbq *iocbq; 11750 IOCB_t *icmd; 11751 int sum, i, ret_val; 11752 unsigned long iflags; 11753 struct lpfc_sli_ring *pring_s4 = NULL; 11754 11755 spin_lock_irqsave(&phba->hbalock, iflags); 11756 11757 /* all I/Os are in process of being flushed */ 11758 if (phba->hba_flag & HBA_IOQ_FLUSH) { 11759 spin_unlock_irqrestore(&phba->hbalock, iflags); 11760 return 0; 11761 } 11762 sum = 0; 11763 11764 for (i = 1; i <= phba->sli.last_iotag; i++) { 11765 iocbq = phba->sli.iocbq_lookup[i]; 11766 11767 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 11768 cmd) != 0) 11769 continue; 11770 11771 /* Guard against IO completion being called at same time */ 11772 lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); 11773 spin_lock(&lpfc_cmd->buf_lock); 11774 11775 if (!lpfc_cmd->pCmd) { 11776 spin_unlock(&lpfc_cmd->buf_lock); 11777 continue; 11778 } 11779 11780 if (phba->sli_rev == LPFC_SLI_REV4) { 11781 pring_s4 = 11782 phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; 11783 if (!pring_s4) { 11784 spin_unlock(&lpfc_cmd->buf_lock); 11785 continue; 11786 } 11787 /* Note: both hbalock and ring_lock must be set here */ 11788 spin_lock(&pring_s4->ring_lock); 11789 } 11790 11791 /* 11792 * If the iocbq is already being aborted, don't take a second 11793 * action, but do count it. 11794 */ 11795 if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || 11796 !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { 11797 if (phba->sli_rev == LPFC_SLI_REV4) 11798 spin_unlock(&pring_s4->ring_lock); 11799 spin_unlock(&lpfc_cmd->buf_lock); 11800 continue; 11801 } 11802 11803 /* issue ABTS for this IOCB based on iotag */ 11804 abtsiocbq = __lpfc_sli_get_iocbq(phba); 11805 if (!abtsiocbq) { 11806 if (phba->sli_rev == LPFC_SLI_REV4) 11807 spin_unlock(&pring_s4->ring_lock); 11808 spin_unlock(&lpfc_cmd->buf_lock); 11809 continue; 11810 } 11811 11812 icmd = &iocbq->iocb; 11813 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11814 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11815 if (phba->sli_rev == LPFC_SLI_REV4) 11816 abtsiocbq->iocb.un.acxri.abortIoTag = 11817 iocbq->sli4_xritag; 11818 else 11819 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11820 abtsiocbq->iocb.ulpLe = 1; 11821 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11822 abtsiocbq->vport = vport; 11823 11824 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11825 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11826 if (iocbq->iocb_flag & LPFC_IO_FCP) 11827 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11828 if (iocbq->iocb_flag & LPFC_IO_FOF) 11829 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11830 11831 ndlp = lpfc_cmd->rdata->pnode; 11832 11833 if (lpfc_is_link_up(phba) && 11834 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11835 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11836 else 11837 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11838 11839 /* Setup callback routine and issue the command. */ 11840 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11841 11842 /* 11843 * Indicate the IO is being aborted by the driver and set 11844 * the caller's flag into the aborted IO. 11845 */ 11846 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11847 11848 if (phba->sli_rev == LPFC_SLI_REV4) { 11849 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11850 abtsiocbq, 0); 11851 spin_unlock(&pring_s4->ring_lock); 11852 } else { 11853 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11854 abtsiocbq, 0); 11855 } 11856 11857 spin_unlock(&lpfc_cmd->buf_lock); 11858 11859 if (ret_val == IOCB_ERROR) 11860 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11861 else 11862 sum++; 11863 } 11864 spin_unlock_irqrestore(&phba->hbalock, iflags); 11865 return sum; 11866 } 11867 11868 /** 11869 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11870 * @phba: Pointer to HBA context object. 11871 * @cmdiocbq: Pointer to command iocb. 11872 * @rspiocbq: Pointer to response iocb. 11873 * 11874 * This function is the completion handler for iocbs issued using 11875 * lpfc_sli_issue_iocb_wait function. This function is called by the 11876 * ring event handler function without any lock held. This function 11877 * can be called from both worker thread context and interrupt 11878 * context. This function also can be called from other thread which 11879 * cleans up the SLI layer objects. 11880 * This function copy the contents of the response iocb to the 11881 * response iocb memory object provided by the caller of 11882 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11883 * sleeps for the iocb completion. 11884 **/ 11885 static void 11886 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11887 struct lpfc_iocbq *cmdiocbq, 11888 struct lpfc_iocbq *rspiocbq) 11889 { 11890 wait_queue_head_t *pdone_q; 11891 unsigned long iflags; 11892 struct lpfc_io_buf *lpfc_cmd; 11893 11894 spin_lock_irqsave(&phba->hbalock, iflags); 11895 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11896 11897 /* 11898 * A time out has occurred for the iocb. If a time out 11899 * completion handler has been supplied, call it. Otherwise, 11900 * just free the iocbq. 11901 */ 11902 11903 spin_unlock_irqrestore(&phba->hbalock, iflags); 11904 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11905 cmdiocbq->wait_iocb_cmpl = NULL; 11906 if (cmdiocbq->iocb_cmpl) 11907 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11908 else 11909 lpfc_sli_release_iocbq(phba, cmdiocbq); 11910 return; 11911 } 11912 11913 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11914 if (cmdiocbq->context2 && rspiocbq) 11915 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11916 &rspiocbq->iocb, sizeof(IOCB_t)); 11917 11918 /* Set the exchange busy flag for task management commands */ 11919 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11920 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11921 lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, 11922 cur_iocbq); 11923 if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) 11924 lpfc_cmd->flags |= LPFC_SBUF_XBUSY; 11925 else 11926 lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; 11927 } 11928 11929 pdone_q = cmdiocbq->context_un.wait_queue; 11930 if (pdone_q) 11931 wake_up(pdone_q); 11932 spin_unlock_irqrestore(&phba->hbalock, iflags); 11933 return; 11934 } 11935 11936 /** 11937 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11938 * @phba: Pointer to HBA context object.. 11939 * @piocbq: Pointer to command iocb. 11940 * @flag: Flag to test. 11941 * 11942 * This routine grabs the hbalock and then test the iocb_flag to 11943 * see if the passed in flag is set. 11944 * Returns: 11945 * 1 if flag is set. 11946 * 0 if flag is not set. 11947 **/ 11948 static int 11949 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11950 struct lpfc_iocbq *piocbq, uint32_t flag) 11951 { 11952 unsigned long iflags; 11953 int ret; 11954 11955 spin_lock_irqsave(&phba->hbalock, iflags); 11956 ret = piocbq->iocb_flag & flag; 11957 spin_unlock_irqrestore(&phba->hbalock, iflags); 11958 return ret; 11959 11960 } 11961 11962 /** 11963 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11964 * @phba: Pointer to HBA context object.. 11965 * @pring: Pointer to sli ring. 11966 * @piocb: Pointer to command iocb. 11967 * @prspiocbq: Pointer to response iocb. 11968 * @timeout: Timeout in number of seconds. 11969 * 11970 * This function issues the iocb to firmware and waits for the 11971 * iocb to complete. The iocb_cmpl field of the shall be used 11972 * to handle iocbs which time out. If the field is NULL, the 11973 * function shall free the iocbq structure. If more clean up is 11974 * needed, the caller is expected to provide a completion function 11975 * that will provide the needed clean up. If the iocb command is 11976 * not completed within timeout seconds, the function will either 11977 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11978 * completion function set in the iocb_cmpl field and then return 11979 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11980 * resources if this function returns IOCB_TIMEDOUT. 11981 * The function waits for the iocb completion using an 11982 * non-interruptible wait. 11983 * This function will sleep while waiting for iocb completion. 11984 * So, this function should not be called from any context which 11985 * does not allow sleeping. Due to the same reason, this function 11986 * cannot be called with interrupt disabled. 11987 * This function assumes that the iocb completions occur while 11988 * this function sleep. So, this function cannot be called from 11989 * the thread which process iocb completion for this ring. 11990 * This function clears the iocb_flag of the iocb object before 11991 * issuing the iocb and the iocb completion handler sets this 11992 * flag and wakes this thread when the iocb completes. 11993 * The contents of the response iocb will be copied to prspiocbq 11994 * by the completion handler when the command completes. 11995 * This function returns IOCB_SUCCESS when success. 11996 * This function is called with no lock held. 11997 **/ 11998 int 11999 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 12000 uint32_t ring_number, 12001 struct lpfc_iocbq *piocb, 12002 struct lpfc_iocbq *prspiocbq, 12003 uint32_t timeout) 12004 { 12005 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 12006 long timeleft, timeout_req = 0; 12007 int retval = IOCB_SUCCESS; 12008 uint32_t creg_val; 12009 struct lpfc_iocbq *iocb; 12010 int txq_cnt = 0; 12011 int txcmplq_cnt = 0; 12012 struct lpfc_sli_ring *pring; 12013 unsigned long iflags; 12014 bool iocb_completed = true; 12015 12016 if (phba->sli_rev >= LPFC_SLI_REV4) 12017 pring = lpfc_sli4_calc_ring(phba, piocb); 12018 else 12019 pring = &phba->sli.sli3_ring[ring_number]; 12020 /* 12021 * If the caller has provided a response iocbq buffer, then context2 12022 * is NULL or its an error. 12023 */ 12024 if (prspiocbq) { 12025 if (piocb->context2) 12026 return IOCB_ERROR; 12027 piocb->context2 = prspiocbq; 12028 } 12029 12030 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 12031 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 12032 piocb->context_un.wait_queue = &done_q; 12033 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 12034 12035 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12036 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12037 return IOCB_ERROR; 12038 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 12039 writel(creg_val, phba->HCregaddr); 12040 readl(phba->HCregaddr); /* flush */ 12041 } 12042 12043 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 12044 SLI_IOCB_RET_IOCB); 12045 if (retval == IOCB_SUCCESS) { 12046 timeout_req = msecs_to_jiffies(timeout * 1000); 12047 timeleft = wait_event_timeout(done_q, 12048 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 12049 timeout_req); 12050 spin_lock_irqsave(&phba->hbalock, iflags); 12051 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 12052 12053 /* 12054 * IOCB timed out. Inform the wake iocb wait 12055 * completion function and set local status 12056 */ 12057 12058 iocb_completed = false; 12059 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 12060 } 12061 spin_unlock_irqrestore(&phba->hbalock, iflags); 12062 if (iocb_completed) { 12063 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12064 "0331 IOCB wake signaled\n"); 12065 /* Note: we are not indicating if the IOCB has a success 12066 * status or not - that's for the caller to check. 12067 * IOCB_SUCCESS means just that the command was sent and 12068 * completed. Not that it completed successfully. 12069 * */ 12070 } else if (timeleft == 0) { 12071 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12072 "0338 IOCB wait timeout error - no " 12073 "wake response Data x%x\n", timeout); 12074 retval = IOCB_TIMEDOUT; 12075 } else { 12076 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12077 "0330 IOCB wake NOT set, " 12078 "Data x%x x%lx\n", 12079 timeout, (timeleft / jiffies)); 12080 retval = IOCB_TIMEDOUT; 12081 } 12082 } else if (retval == IOCB_BUSY) { 12083 if (phba->cfg_log_verbose & LOG_SLI) { 12084 list_for_each_entry(iocb, &pring->txq, list) { 12085 txq_cnt++; 12086 } 12087 list_for_each_entry(iocb, &pring->txcmplq, list) { 12088 txcmplq_cnt++; 12089 } 12090 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12091 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 12092 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 12093 } 12094 return retval; 12095 } else { 12096 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12097 "0332 IOCB wait issue failed, Data x%x\n", 12098 retval); 12099 retval = IOCB_ERROR; 12100 } 12101 12102 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 12103 if (lpfc_readl(phba->HCregaddr, &creg_val)) 12104 return IOCB_ERROR; 12105 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 12106 writel(creg_val, phba->HCregaddr); 12107 readl(phba->HCregaddr); /* flush */ 12108 } 12109 12110 if (prspiocbq) 12111 piocb->context2 = NULL; 12112 12113 piocb->context_un.wait_queue = NULL; 12114 piocb->iocb_cmpl = NULL; 12115 return retval; 12116 } 12117 12118 /** 12119 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 12120 * @phba: Pointer to HBA context object. 12121 * @pmboxq: Pointer to driver mailbox object. 12122 * @timeout: Timeout in number of seconds. 12123 * 12124 * This function issues the mailbox to firmware and waits for the 12125 * mailbox command to complete. If the mailbox command is not 12126 * completed within timeout seconds, it returns MBX_TIMEOUT. 12127 * The function waits for the mailbox completion using an 12128 * interruptible wait. If the thread is woken up due to a 12129 * signal, MBX_TIMEOUT error is returned to the caller. Caller 12130 * should not free the mailbox resources, if this function returns 12131 * MBX_TIMEOUT. 12132 * This function will sleep while waiting for mailbox completion. 12133 * So, this function should not be called from any context which 12134 * does not allow sleeping. Due to the same reason, this function 12135 * cannot be called with interrupt disabled. 12136 * This function assumes that the mailbox completion occurs while 12137 * this function sleep. So, this function cannot be called from 12138 * the worker thread which processes mailbox completion. 12139 * This function is called in the context of HBA management 12140 * applications. 12141 * This function returns MBX_SUCCESS when successful. 12142 * This function is called with no lock held. 12143 **/ 12144 int 12145 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 12146 uint32_t timeout) 12147 { 12148 struct completion mbox_done; 12149 int retval; 12150 unsigned long flag; 12151 12152 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 12153 /* setup wake call as IOCB callback */ 12154 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 12155 12156 /* setup context3 field to pass wait_queue pointer to wake function */ 12157 init_completion(&mbox_done); 12158 pmboxq->context3 = &mbox_done; 12159 /* now issue the command */ 12160 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 12161 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 12162 wait_for_completion_timeout(&mbox_done, 12163 msecs_to_jiffies(timeout * 1000)); 12164 12165 spin_lock_irqsave(&phba->hbalock, flag); 12166 pmboxq->context3 = NULL; 12167 /* 12168 * if LPFC_MBX_WAKE flag is set the mailbox is completed 12169 * else do not free the resources. 12170 */ 12171 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 12172 retval = MBX_SUCCESS; 12173 } else { 12174 retval = MBX_TIMEOUT; 12175 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 12176 } 12177 spin_unlock_irqrestore(&phba->hbalock, flag); 12178 } 12179 return retval; 12180 } 12181 12182 /** 12183 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 12184 * @phba: Pointer to HBA context. 12185 * 12186 * This function is called to shutdown the driver's mailbox sub-system. 12187 * It first marks the mailbox sub-system is in a block state to prevent 12188 * the asynchronous mailbox command from issued off the pending mailbox 12189 * command queue. If the mailbox command sub-system shutdown is due to 12190 * HBA error conditions such as EEH or ERATT, this routine shall invoke 12191 * the mailbox sub-system flush routine to forcefully bring down the 12192 * mailbox sub-system. Otherwise, if it is due to normal condition (such 12193 * as with offline or HBA function reset), this routine will wait for the 12194 * outstanding mailbox command to complete before invoking the mailbox 12195 * sub-system flush routine to gracefully bring down mailbox sub-system. 12196 **/ 12197 void 12198 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 12199 { 12200 struct lpfc_sli *psli = &phba->sli; 12201 unsigned long timeout; 12202 12203 if (mbx_action == LPFC_MBX_NO_WAIT) { 12204 /* delay 100ms for port state */ 12205 msleep(100); 12206 lpfc_sli_mbox_sys_flush(phba); 12207 return; 12208 } 12209 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 12210 12211 /* Disable softirqs, including timers from obtaining phba->hbalock */ 12212 local_bh_disable(); 12213 12214 spin_lock_irq(&phba->hbalock); 12215 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 12216 12217 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 12218 /* Determine how long we might wait for the active mailbox 12219 * command to be gracefully completed by firmware. 12220 */ 12221 if (phba->sli.mbox_active) 12222 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 12223 phba->sli.mbox_active) * 12224 1000) + jiffies; 12225 spin_unlock_irq(&phba->hbalock); 12226 12227 /* Enable softirqs again, done with phba->hbalock */ 12228 local_bh_enable(); 12229 12230 while (phba->sli.mbox_active) { 12231 /* Check active mailbox complete status every 2ms */ 12232 msleep(2); 12233 if (time_after(jiffies, timeout)) 12234 /* Timeout, let the mailbox flush routine to 12235 * forcefully release active mailbox command 12236 */ 12237 break; 12238 } 12239 } else { 12240 spin_unlock_irq(&phba->hbalock); 12241 12242 /* Enable softirqs again, done with phba->hbalock */ 12243 local_bh_enable(); 12244 } 12245 12246 lpfc_sli_mbox_sys_flush(phba); 12247 } 12248 12249 /** 12250 * lpfc_sli_eratt_read - read sli-3 error attention events 12251 * @phba: Pointer to HBA context. 12252 * 12253 * This function is called to read the SLI3 device error attention registers 12254 * for possible error attention events. The caller must hold the hostlock 12255 * with spin_lock_irq(). 12256 * 12257 * This function returns 1 when there is Error Attention in the Host Attention 12258 * Register and returns 0 otherwise. 12259 **/ 12260 static int 12261 lpfc_sli_eratt_read(struct lpfc_hba *phba) 12262 { 12263 uint32_t ha_copy; 12264 12265 /* Read chip Host Attention (HA) register */ 12266 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12267 goto unplug_err; 12268 12269 if (ha_copy & HA_ERATT) { 12270 /* Read host status register to retrieve error event */ 12271 if (lpfc_sli_read_hs(phba)) 12272 goto unplug_err; 12273 12274 /* Check if there is a deferred error condition is active */ 12275 if ((HS_FFER1 & phba->work_hs) && 12276 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12277 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 12278 phba->hba_flag |= DEFER_ERATT; 12279 /* Clear all interrupt enable conditions */ 12280 writel(0, phba->HCregaddr); 12281 readl(phba->HCregaddr); 12282 } 12283 12284 /* Set the driver HA work bitmap */ 12285 phba->work_ha |= HA_ERATT; 12286 /* Indicate polling handles this ERATT */ 12287 phba->hba_flag |= HBA_ERATT_HANDLED; 12288 return 1; 12289 } 12290 return 0; 12291 12292 unplug_err: 12293 /* Set the driver HS work bitmap */ 12294 phba->work_hs |= UNPLUG_ERR; 12295 /* Set the driver HA work bitmap */ 12296 phba->work_ha |= HA_ERATT; 12297 /* Indicate polling handles this ERATT */ 12298 phba->hba_flag |= HBA_ERATT_HANDLED; 12299 return 1; 12300 } 12301 12302 /** 12303 * lpfc_sli4_eratt_read - read sli-4 error attention events 12304 * @phba: Pointer to HBA context. 12305 * 12306 * This function is called to read the SLI4 device error attention registers 12307 * for possible error attention events. The caller must hold the hostlock 12308 * with spin_lock_irq(). 12309 * 12310 * This function returns 1 when there is Error Attention in the Host Attention 12311 * Register and returns 0 otherwise. 12312 **/ 12313 static int 12314 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 12315 { 12316 uint32_t uerr_sta_hi, uerr_sta_lo; 12317 uint32_t if_type, portsmphr; 12318 struct lpfc_register portstat_reg; 12319 12320 /* 12321 * For now, use the SLI4 device internal unrecoverable error 12322 * registers for error attention. This can be changed later. 12323 */ 12324 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 12325 switch (if_type) { 12326 case LPFC_SLI_INTF_IF_TYPE_0: 12327 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 12328 &uerr_sta_lo) || 12329 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 12330 &uerr_sta_hi)) { 12331 phba->work_hs |= UNPLUG_ERR; 12332 phba->work_ha |= HA_ERATT; 12333 phba->hba_flag |= HBA_ERATT_HANDLED; 12334 return 1; 12335 } 12336 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 12337 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 12338 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12339 "1423 HBA Unrecoverable error: " 12340 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 12341 "ue_mask_lo_reg=0x%x, " 12342 "ue_mask_hi_reg=0x%x\n", 12343 uerr_sta_lo, uerr_sta_hi, 12344 phba->sli4_hba.ue_mask_lo, 12345 phba->sli4_hba.ue_mask_hi); 12346 phba->work_status[0] = uerr_sta_lo; 12347 phba->work_status[1] = uerr_sta_hi; 12348 phba->work_ha |= HA_ERATT; 12349 phba->hba_flag |= HBA_ERATT_HANDLED; 12350 return 1; 12351 } 12352 break; 12353 case LPFC_SLI_INTF_IF_TYPE_2: 12354 case LPFC_SLI_INTF_IF_TYPE_6: 12355 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 12356 &portstat_reg.word0) || 12357 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 12358 &portsmphr)){ 12359 phba->work_hs |= UNPLUG_ERR; 12360 phba->work_ha |= HA_ERATT; 12361 phba->hba_flag |= HBA_ERATT_HANDLED; 12362 return 1; 12363 } 12364 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 12365 phba->work_status[0] = 12366 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 12367 phba->work_status[1] = 12368 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 12369 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12370 "2885 Port Status Event: " 12371 "port status reg 0x%x, " 12372 "port smphr reg 0x%x, " 12373 "error 1=0x%x, error 2=0x%x\n", 12374 portstat_reg.word0, 12375 portsmphr, 12376 phba->work_status[0], 12377 phba->work_status[1]); 12378 phba->work_ha |= HA_ERATT; 12379 phba->hba_flag |= HBA_ERATT_HANDLED; 12380 return 1; 12381 } 12382 break; 12383 case LPFC_SLI_INTF_IF_TYPE_1: 12384 default: 12385 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12386 "2886 HBA Error Attention on unsupported " 12387 "if type %d.", if_type); 12388 return 1; 12389 } 12390 12391 return 0; 12392 } 12393 12394 /** 12395 * lpfc_sli_check_eratt - check error attention events 12396 * @phba: Pointer to HBA context. 12397 * 12398 * This function is called from timer soft interrupt context to check HBA's 12399 * error attention register bit for error attention events. 12400 * 12401 * This function returns 1 when there is Error Attention in the Host Attention 12402 * Register and returns 0 otherwise. 12403 **/ 12404 int 12405 lpfc_sli_check_eratt(struct lpfc_hba *phba) 12406 { 12407 uint32_t ha_copy; 12408 12409 /* If somebody is waiting to handle an eratt, don't process it 12410 * here. The brdkill function will do this. 12411 */ 12412 if (phba->link_flag & LS_IGNORE_ERATT) 12413 return 0; 12414 12415 /* Check if interrupt handler handles this ERATT */ 12416 spin_lock_irq(&phba->hbalock); 12417 if (phba->hba_flag & HBA_ERATT_HANDLED) { 12418 /* Interrupt handler has handled ERATT */ 12419 spin_unlock_irq(&phba->hbalock); 12420 return 0; 12421 } 12422 12423 /* 12424 * If there is deferred error attention, do not check for error 12425 * attention 12426 */ 12427 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12428 spin_unlock_irq(&phba->hbalock); 12429 return 0; 12430 } 12431 12432 /* If PCI channel is offline, don't process it */ 12433 if (unlikely(pci_channel_offline(phba->pcidev))) { 12434 spin_unlock_irq(&phba->hbalock); 12435 return 0; 12436 } 12437 12438 switch (phba->sli_rev) { 12439 case LPFC_SLI_REV2: 12440 case LPFC_SLI_REV3: 12441 /* Read chip Host Attention (HA) register */ 12442 ha_copy = lpfc_sli_eratt_read(phba); 12443 break; 12444 case LPFC_SLI_REV4: 12445 /* Read device Uncoverable Error (UERR) registers */ 12446 ha_copy = lpfc_sli4_eratt_read(phba); 12447 break; 12448 default: 12449 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 12450 "0299 Invalid SLI revision (%d)\n", 12451 phba->sli_rev); 12452 ha_copy = 0; 12453 break; 12454 } 12455 spin_unlock_irq(&phba->hbalock); 12456 12457 return ha_copy; 12458 } 12459 12460 /** 12461 * lpfc_intr_state_check - Check device state for interrupt handling 12462 * @phba: Pointer to HBA context. 12463 * 12464 * This inline routine checks whether a device or its PCI slot is in a state 12465 * that the interrupt should be handled. 12466 * 12467 * This function returns 0 if the device or the PCI slot is in a state that 12468 * interrupt should be handled, otherwise -EIO. 12469 */ 12470 static inline int 12471 lpfc_intr_state_check(struct lpfc_hba *phba) 12472 { 12473 /* If the pci channel is offline, ignore all the interrupts */ 12474 if (unlikely(pci_channel_offline(phba->pcidev))) 12475 return -EIO; 12476 12477 /* Update device level interrupt statistics */ 12478 phba->sli.slistat.sli_intr++; 12479 12480 /* Ignore all interrupts during initialization. */ 12481 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 12482 return -EIO; 12483 12484 return 0; 12485 } 12486 12487 /** 12488 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 12489 * @irq: Interrupt number. 12490 * @dev_id: The device context pointer. 12491 * 12492 * This function is directly called from the PCI layer as an interrupt 12493 * service routine when device with SLI-3 interface spec is enabled with 12494 * MSI-X multi-message interrupt mode and there are slow-path events in 12495 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 12496 * interrupt mode, this function is called as part of the device-level 12497 * interrupt handler. When the PCI slot is in error recovery or the HBA 12498 * is undergoing initialization, the interrupt handler will not process 12499 * the interrupt. The link attention and ELS ring attention events are 12500 * handled by the worker thread. The interrupt handler signals the worker 12501 * thread and returns for these events. This function is called without 12502 * any lock held. It gets the hbalock to access and update SLI data 12503 * structures. 12504 * 12505 * This function returns IRQ_HANDLED when interrupt is handled else it 12506 * returns IRQ_NONE. 12507 **/ 12508 irqreturn_t 12509 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 12510 { 12511 struct lpfc_hba *phba; 12512 uint32_t ha_copy, hc_copy; 12513 uint32_t work_ha_copy; 12514 unsigned long status; 12515 unsigned long iflag; 12516 uint32_t control; 12517 12518 MAILBOX_t *mbox, *pmbox; 12519 struct lpfc_vport *vport; 12520 struct lpfc_nodelist *ndlp; 12521 struct lpfc_dmabuf *mp; 12522 LPFC_MBOXQ_t *pmb; 12523 int rc; 12524 12525 /* 12526 * Get the driver's phba structure from the dev_id and 12527 * assume the HBA is not interrupting. 12528 */ 12529 phba = (struct lpfc_hba *)dev_id; 12530 12531 if (unlikely(!phba)) 12532 return IRQ_NONE; 12533 12534 /* 12535 * Stuff needs to be attented to when this function is invoked as an 12536 * individual interrupt handler in MSI-X multi-message interrupt mode 12537 */ 12538 if (phba->intr_type == MSIX) { 12539 /* Check device state for handling interrupt */ 12540 if (lpfc_intr_state_check(phba)) 12541 return IRQ_NONE; 12542 /* Need to read HA REG for slow-path events */ 12543 spin_lock_irqsave(&phba->hbalock, iflag); 12544 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12545 goto unplug_error; 12546 /* If somebody is waiting to handle an eratt don't process it 12547 * here. The brdkill function will do this. 12548 */ 12549 if (phba->link_flag & LS_IGNORE_ERATT) 12550 ha_copy &= ~HA_ERATT; 12551 /* Check the need for handling ERATT in interrupt handler */ 12552 if (ha_copy & HA_ERATT) { 12553 if (phba->hba_flag & HBA_ERATT_HANDLED) 12554 /* ERATT polling has handled ERATT */ 12555 ha_copy &= ~HA_ERATT; 12556 else 12557 /* Indicate interrupt handler handles ERATT */ 12558 phba->hba_flag |= HBA_ERATT_HANDLED; 12559 } 12560 12561 /* 12562 * If there is deferred error attention, do not check for any 12563 * interrupt. 12564 */ 12565 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12566 spin_unlock_irqrestore(&phba->hbalock, iflag); 12567 return IRQ_NONE; 12568 } 12569 12570 /* Clear up only attention source related to slow-path */ 12571 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 12572 goto unplug_error; 12573 12574 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 12575 HC_LAINT_ENA | HC_ERINT_ENA), 12576 phba->HCregaddr); 12577 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 12578 phba->HAregaddr); 12579 writel(hc_copy, phba->HCregaddr); 12580 readl(phba->HAregaddr); /* flush */ 12581 spin_unlock_irqrestore(&phba->hbalock, iflag); 12582 } else 12583 ha_copy = phba->ha_copy; 12584 12585 work_ha_copy = ha_copy & phba->work_ha_mask; 12586 12587 if (work_ha_copy) { 12588 if (work_ha_copy & HA_LATT) { 12589 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 12590 /* 12591 * Turn off Link Attention interrupts 12592 * until CLEAR_LA done 12593 */ 12594 spin_lock_irqsave(&phba->hbalock, iflag); 12595 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 12596 if (lpfc_readl(phba->HCregaddr, &control)) 12597 goto unplug_error; 12598 control &= ~HC_LAINT_ENA; 12599 writel(control, phba->HCregaddr); 12600 readl(phba->HCregaddr); /* flush */ 12601 spin_unlock_irqrestore(&phba->hbalock, iflag); 12602 } 12603 else 12604 work_ha_copy &= ~HA_LATT; 12605 } 12606 12607 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 12608 /* 12609 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 12610 * the only slow ring. 12611 */ 12612 status = (work_ha_copy & 12613 (HA_RXMASK << (4*LPFC_ELS_RING))); 12614 status >>= (4*LPFC_ELS_RING); 12615 if (status & HA_RXMASK) { 12616 spin_lock_irqsave(&phba->hbalock, iflag); 12617 if (lpfc_readl(phba->HCregaddr, &control)) 12618 goto unplug_error; 12619 12620 lpfc_debugfs_slow_ring_trc(phba, 12621 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 12622 control, status, 12623 (uint32_t)phba->sli.slistat.sli_intr); 12624 12625 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 12626 lpfc_debugfs_slow_ring_trc(phba, 12627 "ISR Disable ring:" 12628 "pwork:x%x hawork:x%x wait:x%x", 12629 phba->work_ha, work_ha_copy, 12630 (uint32_t)((unsigned long) 12631 &phba->work_waitq)); 12632 12633 control &= 12634 ~(HC_R0INT_ENA << LPFC_ELS_RING); 12635 writel(control, phba->HCregaddr); 12636 readl(phba->HCregaddr); /* flush */ 12637 } 12638 else { 12639 lpfc_debugfs_slow_ring_trc(phba, 12640 "ISR slow ring: pwork:" 12641 "x%x hawork:x%x wait:x%x", 12642 phba->work_ha, work_ha_copy, 12643 (uint32_t)((unsigned long) 12644 &phba->work_waitq)); 12645 } 12646 spin_unlock_irqrestore(&phba->hbalock, iflag); 12647 } 12648 } 12649 spin_lock_irqsave(&phba->hbalock, iflag); 12650 if (work_ha_copy & HA_ERATT) { 12651 if (lpfc_sli_read_hs(phba)) 12652 goto unplug_error; 12653 /* 12654 * Check if there is a deferred error condition 12655 * is active 12656 */ 12657 if ((HS_FFER1 & phba->work_hs) && 12658 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 12659 HS_FFER6 | HS_FFER7 | HS_FFER8) & 12660 phba->work_hs)) { 12661 phba->hba_flag |= DEFER_ERATT; 12662 /* Clear all interrupt enable conditions */ 12663 writel(0, phba->HCregaddr); 12664 readl(phba->HCregaddr); 12665 } 12666 } 12667 12668 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 12669 pmb = phba->sli.mbox_active; 12670 pmbox = &pmb->u.mb; 12671 mbox = phba->mbox; 12672 vport = pmb->vport; 12673 12674 /* First check out the status word */ 12675 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 12676 if (pmbox->mbxOwner != OWN_HOST) { 12677 spin_unlock_irqrestore(&phba->hbalock, iflag); 12678 /* 12679 * Stray Mailbox Interrupt, mbxCommand <cmd> 12680 * mbxStatus <status> 12681 */ 12682 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12683 LOG_SLI, 12684 "(%d):0304 Stray Mailbox " 12685 "Interrupt mbxCommand x%x " 12686 "mbxStatus x%x\n", 12687 (vport ? vport->vpi : 0), 12688 pmbox->mbxCommand, 12689 pmbox->mbxStatus); 12690 /* clear mailbox attention bit */ 12691 work_ha_copy &= ~HA_MBATT; 12692 } else { 12693 phba->sli.mbox_active = NULL; 12694 spin_unlock_irqrestore(&phba->hbalock, iflag); 12695 phba->last_completion_time = jiffies; 12696 del_timer(&phba->sli.mbox_tmo); 12697 if (pmb->mbox_cmpl) { 12698 lpfc_sli_pcimem_bcopy(mbox, pmbox, 12699 MAILBOX_CMD_SIZE); 12700 if (pmb->out_ext_byte_len && 12701 pmb->ctx_buf) 12702 lpfc_sli_pcimem_bcopy( 12703 phba->mbox_ext, 12704 pmb->ctx_buf, 12705 pmb->out_ext_byte_len); 12706 } 12707 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12708 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12709 12710 lpfc_debugfs_disc_trc(vport, 12711 LPFC_DISC_TRC_MBOX_VPORT, 12712 "MBOX dflt rpi: : " 12713 "status:x%x rpi:x%x", 12714 (uint32_t)pmbox->mbxStatus, 12715 pmbox->un.varWords[0], 0); 12716 12717 if (!pmbox->mbxStatus) { 12718 mp = (struct lpfc_dmabuf *) 12719 (pmb->ctx_buf); 12720 ndlp = (struct lpfc_nodelist *) 12721 pmb->ctx_ndlp; 12722 12723 /* Reg_LOGIN of dflt RPI was 12724 * successful. new lets get 12725 * rid of the RPI using the 12726 * same mbox buffer. 12727 */ 12728 lpfc_unreg_login(phba, 12729 vport->vpi, 12730 pmbox->un.varWords[0], 12731 pmb); 12732 pmb->mbox_cmpl = 12733 lpfc_mbx_cmpl_dflt_rpi; 12734 pmb->ctx_buf = mp; 12735 pmb->ctx_ndlp = ndlp; 12736 pmb->vport = vport; 12737 rc = lpfc_sli_issue_mbox(phba, 12738 pmb, 12739 MBX_NOWAIT); 12740 if (rc != MBX_BUSY) 12741 lpfc_printf_log(phba, 12742 KERN_ERR, 12743 LOG_MBOX | LOG_SLI, 12744 "0350 rc should have" 12745 "been MBX_BUSY\n"); 12746 if (rc != MBX_NOT_FINISHED) 12747 goto send_current_mbox; 12748 } 12749 } 12750 spin_lock_irqsave( 12751 &phba->pport->work_port_lock, 12752 iflag); 12753 phba->pport->work_port_events &= 12754 ~WORKER_MBOX_TMO; 12755 spin_unlock_irqrestore( 12756 &phba->pport->work_port_lock, 12757 iflag); 12758 lpfc_mbox_cmpl_put(phba, pmb); 12759 } 12760 } else 12761 spin_unlock_irqrestore(&phba->hbalock, iflag); 12762 12763 if ((work_ha_copy & HA_MBATT) && 12764 (phba->sli.mbox_active == NULL)) { 12765 send_current_mbox: 12766 /* Process next mailbox command if there is one */ 12767 do { 12768 rc = lpfc_sli_issue_mbox(phba, NULL, 12769 MBX_NOWAIT); 12770 } while (rc == MBX_NOT_FINISHED); 12771 if (rc != MBX_SUCCESS) 12772 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12773 LOG_SLI, "0349 rc should be " 12774 "MBX_SUCCESS\n"); 12775 } 12776 12777 spin_lock_irqsave(&phba->hbalock, iflag); 12778 phba->work_ha |= work_ha_copy; 12779 spin_unlock_irqrestore(&phba->hbalock, iflag); 12780 lpfc_worker_wake_up(phba); 12781 } 12782 return IRQ_HANDLED; 12783 unplug_error: 12784 spin_unlock_irqrestore(&phba->hbalock, iflag); 12785 return IRQ_HANDLED; 12786 12787 } /* lpfc_sli_sp_intr_handler */ 12788 12789 /** 12790 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 12791 * @irq: Interrupt number. 12792 * @dev_id: The device context pointer. 12793 * 12794 * This function is directly called from the PCI layer as an interrupt 12795 * service routine when device with SLI-3 interface spec is enabled with 12796 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 12797 * ring event in the HBA. However, when the device is enabled with either 12798 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 12799 * device-level interrupt handler. When the PCI slot is in error recovery 12800 * or the HBA is undergoing initialization, the interrupt handler will not 12801 * process the interrupt. The SCSI FCP fast-path ring event are handled in 12802 * the intrrupt context. This function is called without any lock held. 12803 * It gets the hbalock to access and update SLI data structures. 12804 * 12805 * This function returns IRQ_HANDLED when interrupt is handled else it 12806 * returns IRQ_NONE. 12807 **/ 12808 irqreturn_t 12809 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12810 { 12811 struct lpfc_hba *phba; 12812 uint32_t ha_copy; 12813 unsigned long status; 12814 unsigned long iflag; 12815 struct lpfc_sli_ring *pring; 12816 12817 /* Get the driver's phba structure from the dev_id and 12818 * assume the HBA is not interrupting. 12819 */ 12820 phba = (struct lpfc_hba *) dev_id; 12821 12822 if (unlikely(!phba)) 12823 return IRQ_NONE; 12824 12825 /* 12826 * Stuff needs to be attented to when this function is invoked as an 12827 * individual interrupt handler in MSI-X multi-message interrupt mode 12828 */ 12829 if (phba->intr_type == MSIX) { 12830 /* Check device state for handling interrupt */ 12831 if (lpfc_intr_state_check(phba)) 12832 return IRQ_NONE; 12833 /* Need to read HA REG for FCP ring and other ring events */ 12834 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12835 return IRQ_HANDLED; 12836 /* Clear up only attention source related to fast-path */ 12837 spin_lock_irqsave(&phba->hbalock, iflag); 12838 /* 12839 * If there is deferred error attention, do not check for 12840 * any interrupt. 12841 */ 12842 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12843 spin_unlock_irqrestore(&phba->hbalock, iflag); 12844 return IRQ_NONE; 12845 } 12846 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12847 phba->HAregaddr); 12848 readl(phba->HAregaddr); /* flush */ 12849 spin_unlock_irqrestore(&phba->hbalock, iflag); 12850 } else 12851 ha_copy = phba->ha_copy; 12852 12853 /* 12854 * Process all events on FCP ring. Take the optimized path for FCP IO. 12855 */ 12856 ha_copy &= ~(phba->work_ha_mask); 12857 12858 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12859 status >>= (4*LPFC_FCP_RING); 12860 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12861 if (status & HA_RXMASK) 12862 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12863 12864 if (phba->cfg_multi_ring_support == 2) { 12865 /* 12866 * Process all events on extra ring. Take the optimized path 12867 * for extra ring IO. 12868 */ 12869 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12870 status >>= (4*LPFC_EXTRA_RING); 12871 if (status & HA_RXMASK) { 12872 lpfc_sli_handle_fast_ring_event(phba, 12873 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12874 status); 12875 } 12876 } 12877 return IRQ_HANDLED; 12878 } /* lpfc_sli_fp_intr_handler */ 12879 12880 /** 12881 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12882 * @irq: Interrupt number. 12883 * @dev_id: The device context pointer. 12884 * 12885 * This function is the HBA device-level interrupt handler to device with 12886 * SLI-3 interface spec, called from the PCI layer when either MSI or 12887 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12888 * requires driver attention. This function invokes the slow-path interrupt 12889 * attention handling function and fast-path interrupt attention handling 12890 * function in turn to process the relevant HBA attention events. This 12891 * function is called without any lock held. It gets the hbalock to access 12892 * and update SLI data structures. 12893 * 12894 * This function returns IRQ_HANDLED when interrupt is handled, else it 12895 * returns IRQ_NONE. 12896 **/ 12897 irqreturn_t 12898 lpfc_sli_intr_handler(int irq, void *dev_id) 12899 { 12900 struct lpfc_hba *phba; 12901 irqreturn_t sp_irq_rc, fp_irq_rc; 12902 unsigned long status1, status2; 12903 uint32_t hc_copy; 12904 12905 /* 12906 * Get the driver's phba structure from the dev_id and 12907 * assume the HBA is not interrupting. 12908 */ 12909 phba = (struct lpfc_hba *) dev_id; 12910 12911 if (unlikely(!phba)) 12912 return IRQ_NONE; 12913 12914 /* Check device state for handling interrupt */ 12915 if (lpfc_intr_state_check(phba)) 12916 return IRQ_NONE; 12917 12918 spin_lock(&phba->hbalock); 12919 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12920 spin_unlock(&phba->hbalock); 12921 return IRQ_HANDLED; 12922 } 12923 12924 if (unlikely(!phba->ha_copy)) { 12925 spin_unlock(&phba->hbalock); 12926 return IRQ_NONE; 12927 } else if (phba->ha_copy & HA_ERATT) { 12928 if (phba->hba_flag & HBA_ERATT_HANDLED) 12929 /* ERATT polling has handled ERATT */ 12930 phba->ha_copy &= ~HA_ERATT; 12931 else 12932 /* Indicate interrupt handler handles ERATT */ 12933 phba->hba_flag |= HBA_ERATT_HANDLED; 12934 } 12935 12936 /* 12937 * If there is deferred error attention, do not check for any interrupt. 12938 */ 12939 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12940 spin_unlock(&phba->hbalock); 12941 return IRQ_NONE; 12942 } 12943 12944 /* Clear attention sources except link and error attentions */ 12945 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12946 spin_unlock(&phba->hbalock); 12947 return IRQ_HANDLED; 12948 } 12949 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12950 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12951 phba->HCregaddr); 12952 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12953 writel(hc_copy, phba->HCregaddr); 12954 readl(phba->HAregaddr); /* flush */ 12955 spin_unlock(&phba->hbalock); 12956 12957 /* 12958 * Invokes slow-path host attention interrupt handling as appropriate. 12959 */ 12960 12961 /* status of events with mailbox and link attention */ 12962 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12963 12964 /* status of events with ELS ring */ 12965 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12966 status2 >>= (4*LPFC_ELS_RING); 12967 12968 if (status1 || (status2 & HA_RXMASK)) 12969 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12970 else 12971 sp_irq_rc = IRQ_NONE; 12972 12973 /* 12974 * Invoke fast-path host attention interrupt handling as appropriate. 12975 */ 12976 12977 /* status of events with FCP ring */ 12978 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12979 status1 >>= (4*LPFC_FCP_RING); 12980 12981 /* status of events with extra ring */ 12982 if (phba->cfg_multi_ring_support == 2) { 12983 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12984 status2 >>= (4*LPFC_EXTRA_RING); 12985 } else 12986 status2 = 0; 12987 12988 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12989 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12990 else 12991 fp_irq_rc = IRQ_NONE; 12992 12993 /* Return device-level interrupt handling status */ 12994 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12995 } /* lpfc_sli_intr_handler */ 12996 12997 /** 12998 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12999 * @phba: pointer to lpfc hba data structure. 13000 * 13001 * This routine is invoked by the worker thread to process all the pending 13002 * SLI4 els abort xri events. 13003 **/ 13004 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 13005 { 13006 struct lpfc_cq_event *cq_event; 13007 13008 /* First, declare the els xri abort event has been handled */ 13009 spin_lock_irq(&phba->hbalock); 13010 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 13011 spin_unlock_irq(&phba->hbalock); 13012 /* Now, handle all the els xri abort events */ 13013 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 13014 /* Get the first event from the head of the event queue */ 13015 spin_lock_irq(&phba->hbalock); 13016 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 13017 cq_event, struct lpfc_cq_event, list); 13018 spin_unlock_irq(&phba->hbalock); 13019 /* Notify aborted XRI for ELS work queue */ 13020 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 13021 /* Free the event processed back to the free pool */ 13022 lpfc_sli4_cq_event_release(phba, cq_event); 13023 } 13024 } 13025 13026 /** 13027 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 13028 * @phba: pointer to lpfc hba data structure 13029 * @pIocbIn: pointer to the rspiocbq 13030 * @pIocbOut: pointer to the cmdiocbq 13031 * @wcqe: pointer to the complete wcqe 13032 * 13033 * This routine transfers the fields of a command iocbq to a response iocbq 13034 * by copying all the IOCB fields from command iocbq and transferring the 13035 * completion status information from the complete wcqe. 13036 **/ 13037 static void 13038 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 13039 struct lpfc_iocbq *pIocbIn, 13040 struct lpfc_iocbq *pIocbOut, 13041 struct lpfc_wcqe_complete *wcqe) 13042 { 13043 int numBdes, i; 13044 unsigned long iflags; 13045 uint32_t status, max_response; 13046 struct lpfc_dmabuf *dmabuf; 13047 struct ulp_bde64 *bpl, bde; 13048 size_t offset = offsetof(struct lpfc_iocbq, iocb); 13049 13050 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 13051 sizeof(struct lpfc_iocbq) - offset); 13052 /* Map WCQE parameters into irspiocb parameters */ 13053 status = bf_get(lpfc_wcqe_c_status, wcqe); 13054 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 13055 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 13056 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 13057 pIocbIn->iocb.un.fcpi.fcpi_parm = 13058 pIocbOut->iocb.un.fcpi.fcpi_parm - 13059 wcqe->total_data_placed; 13060 else 13061 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13062 else { 13063 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 13064 switch (pIocbOut->iocb.ulpCommand) { 13065 case CMD_ELS_REQUEST64_CR: 13066 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13067 bpl = (struct ulp_bde64 *)dmabuf->virt; 13068 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 13069 max_response = bde.tus.f.bdeSize; 13070 break; 13071 case CMD_GEN_REQUEST64_CR: 13072 max_response = 0; 13073 if (!pIocbOut->context3) 13074 break; 13075 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 13076 sizeof(struct ulp_bde64); 13077 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 13078 bpl = (struct ulp_bde64 *)dmabuf->virt; 13079 for (i = 0; i < numBdes; i++) { 13080 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 13081 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 13082 max_response += bde.tus.f.bdeSize; 13083 } 13084 break; 13085 default: 13086 max_response = wcqe->total_data_placed; 13087 break; 13088 } 13089 if (max_response < wcqe->total_data_placed) 13090 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 13091 else 13092 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 13093 wcqe->total_data_placed; 13094 } 13095 13096 /* Convert BG errors for completion status */ 13097 if (status == CQE_STATUS_DI_ERROR) { 13098 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 13099 13100 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 13101 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 13102 else 13103 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 13104 13105 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 13106 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 13107 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13108 BGS_GUARD_ERR_MASK; 13109 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 13110 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13111 BGS_APPTAG_ERR_MASK; 13112 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 13113 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13114 BGS_REFTAG_ERR_MASK; 13115 13116 /* Check to see if there was any good data before the error */ 13117 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 13118 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13119 BGS_HI_WATER_MARK_PRESENT_MASK; 13120 pIocbIn->iocb.unsli3.sli3_bg.bghm = 13121 wcqe->total_data_placed; 13122 } 13123 13124 /* 13125 * Set ALL the error bits to indicate we don't know what 13126 * type of error it is. 13127 */ 13128 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 13129 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 13130 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 13131 BGS_GUARD_ERR_MASK); 13132 } 13133 13134 /* Pick up HBA exchange busy condition */ 13135 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 13136 spin_lock_irqsave(&phba->hbalock, iflags); 13137 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 13138 spin_unlock_irqrestore(&phba->hbalock, iflags); 13139 } 13140 } 13141 13142 /** 13143 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 13144 * @phba: Pointer to HBA context object. 13145 * @wcqe: Pointer to work-queue completion queue entry. 13146 * 13147 * This routine handles an ELS work-queue completion event and construct 13148 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 13149 * discovery engine to handle. 13150 * 13151 * Return: Pointer to the receive IOCBQ, NULL otherwise. 13152 **/ 13153 static struct lpfc_iocbq * 13154 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 13155 struct lpfc_iocbq *irspiocbq) 13156 { 13157 struct lpfc_sli_ring *pring; 13158 struct lpfc_iocbq *cmdiocbq; 13159 struct lpfc_wcqe_complete *wcqe; 13160 unsigned long iflags; 13161 13162 pring = lpfc_phba_elsring(phba); 13163 if (unlikely(!pring)) 13164 return NULL; 13165 13166 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 13167 pring->stats.iocb_event++; 13168 /* Look up the ELS command IOCB and create pseudo response IOCB */ 13169 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13170 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13171 if (unlikely(!cmdiocbq)) { 13172 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13173 "0386 ELS complete with no corresponding " 13174 "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", 13175 wcqe->word0, wcqe->total_data_placed, 13176 wcqe->parameter, wcqe->word3); 13177 lpfc_sli_release_iocbq(phba, irspiocbq); 13178 return NULL; 13179 } 13180 13181 spin_lock_irqsave(&pring->ring_lock, iflags); 13182 /* Put the iocb back on the txcmplq */ 13183 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 13184 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13185 13186 /* Fake the irspiocbq and copy necessary response information */ 13187 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 13188 13189 return irspiocbq; 13190 } 13191 13192 inline struct lpfc_cq_event * 13193 lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) 13194 { 13195 struct lpfc_cq_event *cq_event; 13196 13197 /* Allocate a new internal CQ_EVENT entry */ 13198 cq_event = lpfc_sli4_cq_event_alloc(phba); 13199 if (!cq_event) { 13200 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13201 "0602 Failed to alloc CQ_EVENT entry\n"); 13202 return NULL; 13203 } 13204 13205 /* Move the CQE into the event */ 13206 memcpy(&cq_event->cqe, entry, size); 13207 return cq_event; 13208 } 13209 13210 /** 13211 * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event 13212 * @phba: Pointer to HBA context object. 13213 * @cqe: Pointer to mailbox completion queue entry. 13214 * 13215 * This routine process a mailbox completion queue entry with asynchronous 13216 * event. 13217 * 13218 * Return: true if work posted to worker thread, otherwise false. 13219 **/ 13220 static bool 13221 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13222 { 13223 struct lpfc_cq_event *cq_event; 13224 unsigned long iflags; 13225 13226 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13227 "0392 Async Event: word0:x%x, word1:x%x, " 13228 "word2:x%x, word3:x%x\n", mcqe->word0, 13229 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 13230 13231 cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); 13232 if (!cq_event) 13233 return false; 13234 spin_lock_irqsave(&phba->hbalock, iflags); 13235 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 13236 /* Set the async event flag */ 13237 phba->hba_flag |= ASYNC_EVENT; 13238 spin_unlock_irqrestore(&phba->hbalock, iflags); 13239 13240 return true; 13241 } 13242 13243 /** 13244 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 13245 * @phba: Pointer to HBA context object. 13246 * @cqe: Pointer to mailbox completion queue entry. 13247 * 13248 * This routine process a mailbox completion queue entry with mailbox 13249 * completion event. 13250 * 13251 * Return: true if work posted to worker thread, otherwise false. 13252 **/ 13253 static bool 13254 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 13255 { 13256 uint32_t mcqe_status; 13257 MAILBOX_t *mbox, *pmbox; 13258 struct lpfc_mqe *mqe; 13259 struct lpfc_vport *vport; 13260 struct lpfc_nodelist *ndlp; 13261 struct lpfc_dmabuf *mp; 13262 unsigned long iflags; 13263 LPFC_MBOXQ_t *pmb; 13264 bool workposted = false; 13265 int rc; 13266 13267 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 13268 if (!bf_get(lpfc_trailer_completed, mcqe)) 13269 goto out_no_mqe_complete; 13270 13271 /* Get the reference to the active mbox command */ 13272 spin_lock_irqsave(&phba->hbalock, iflags); 13273 pmb = phba->sli.mbox_active; 13274 if (unlikely(!pmb)) { 13275 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 13276 "1832 No pending MBOX command to handle\n"); 13277 spin_unlock_irqrestore(&phba->hbalock, iflags); 13278 goto out_no_mqe_complete; 13279 } 13280 spin_unlock_irqrestore(&phba->hbalock, iflags); 13281 mqe = &pmb->u.mqe; 13282 pmbox = (MAILBOX_t *)&pmb->u.mqe; 13283 mbox = phba->mbox; 13284 vport = pmb->vport; 13285 13286 /* Reset heartbeat timer */ 13287 phba->last_completion_time = jiffies; 13288 del_timer(&phba->sli.mbox_tmo); 13289 13290 /* Move mbox data to caller's mailbox region, do endian swapping */ 13291 if (pmb->mbox_cmpl && mbox) 13292 lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 13293 13294 /* 13295 * For mcqe errors, conditionally move a modified error code to 13296 * the mbox so that the error will not be missed. 13297 */ 13298 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 13299 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 13300 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 13301 bf_set(lpfc_mqe_status, mqe, 13302 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 13303 } 13304 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 13305 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 13306 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 13307 "MBOX dflt rpi: status:x%x rpi:x%x", 13308 mcqe_status, 13309 pmbox->un.varWords[0], 0); 13310 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 13311 mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); 13312 ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; 13313 /* Reg_LOGIN of dflt RPI was successful. Now lets get 13314 * RID of the PPI using the same mbox buffer. 13315 */ 13316 lpfc_unreg_login(phba, vport->vpi, 13317 pmbox->un.varWords[0], pmb); 13318 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 13319 pmb->ctx_buf = mp; 13320 pmb->ctx_ndlp = ndlp; 13321 pmb->vport = vport; 13322 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 13323 if (rc != MBX_BUSY) 13324 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 13325 LOG_SLI, "0385 rc should " 13326 "have been MBX_BUSY\n"); 13327 if (rc != MBX_NOT_FINISHED) 13328 goto send_current_mbox; 13329 } 13330 } 13331 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 13332 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 13333 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 13334 13335 /* There is mailbox completion work to do */ 13336 spin_lock_irqsave(&phba->hbalock, iflags); 13337 __lpfc_mbox_cmpl_put(phba, pmb); 13338 phba->work_ha |= HA_MBATT; 13339 spin_unlock_irqrestore(&phba->hbalock, iflags); 13340 workposted = true; 13341 13342 send_current_mbox: 13343 spin_lock_irqsave(&phba->hbalock, iflags); 13344 /* Release the mailbox command posting token */ 13345 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 13346 /* Setting active mailbox pointer need to be in sync to flag clear */ 13347 phba->sli.mbox_active = NULL; 13348 if (bf_get(lpfc_trailer_consumed, mcqe)) 13349 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13350 spin_unlock_irqrestore(&phba->hbalock, iflags); 13351 /* Wake up worker thread to post the next pending mailbox command */ 13352 lpfc_worker_wake_up(phba); 13353 return workposted; 13354 13355 out_no_mqe_complete: 13356 spin_lock_irqsave(&phba->hbalock, iflags); 13357 if (bf_get(lpfc_trailer_consumed, mcqe)) 13358 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 13359 spin_unlock_irqrestore(&phba->hbalock, iflags); 13360 return false; 13361 } 13362 13363 /** 13364 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 13365 * @phba: Pointer to HBA context object. 13366 * @cqe: Pointer to mailbox completion queue entry. 13367 * 13368 * This routine process a mailbox completion queue entry, it invokes the 13369 * proper mailbox complete handling or asynchronous event handling routine 13370 * according to the MCQE's async bit. 13371 * 13372 * Return: true if work posted to worker thread, otherwise false. 13373 **/ 13374 static bool 13375 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13376 struct lpfc_cqe *cqe) 13377 { 13378 struct lpfc_mcqe mcqe; 13379 bool workposted; 13380 13381 cq->CQ_mbox++; 13382 13383 /* Copy the mailbox MCQE and convert endian order as needed */ 13384 lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 13385 13386 /* Invoke the proper event handling routine */ 13387 if (!bf_get(lpfc_trailer_async, &mcqe)) 13388 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 13389 else 13390 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 13391 return workposted; 13392 } 13393 13394 /** 13395 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 13396 * @phba: Pointer to HBA context object. 13397 * @cq: Pointer to associated CQ 13398 * @wcqe: Pointer to work-queue completion queue entry. 13399 * 13400 * This routine handles an ELS work-queue completion event. 13401 * 13402 * Return: true if work posted to worker thread, otherwise false. 13403 **/ 13404 static bool 13405 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13406 struct lpfc_wcqe_complete *wcqe) 13407 { 13408 struct lpfc_iocbq *irspiocbq; 13409 unsigned long iflags; 13410 struct lpfc_sli_ring *pring = cq->pring; 13411 int txq_cnt = 0; 13412 int txcmplq_cnt = 0; 13413 13414 /* Check for response status */ 13415 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13416 /* Log the error status */ 13417 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13418 "0357 ELS CQE error: status=x%x: " 13419 "CQE: %08x %08x %08x %08x\n", 13420 bf_get(lpfc_wcqe_c_status, wcqe), 13421 wcqe->word0, wcqe->total_data_placed, 13422 wcqe->parameter, wcqe->word3); 13423 } 13424 13425 /* Get an irspiocbq for later ELS response processing use */ 13426 irspiocbq = lpfc_sli_get_iocbq(phba); 13427 if (!irspiocbq) { 13428 if (!list_empty(&pring->txq)) 13429 txq_cnt++; 13430 if (!list_empty(&pring->txcmplq)) 13431 txcmplq_cnt++; 13432 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13433 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 13434 "els_txcmplq_cnt=%d\n", 13435 txq_cnt, phba->iocb_cnt, 13436 txcmplq_cnt); 13437 return false; 13438 } 13439 13440 /* Save off the slow-path queue event for work thread to process */ 13441 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 13442 spin_lock_irqsave(&phba->hbalock, iflags); 13443 list_add_tail(&irspiocbq->cq_event.list, 13444 &phba->sli4_hba.sp_queue_event); 13445 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13446 spin_unlock_irqrestore(&phba->hbalock, iflags); 13447 13448 return true; 13449 } 13450 13451 /** 13452 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 13453 * @phba: Pointer to HBA context object. 13454 * @wcqe: Pointer to work-queue completion queue entry. 13455 * 13456 * This routine handles slow-path WQ entry consumed event by invoking the 13457 * proper WQ release routine to the slow-path WQ. 13458 **/ 13459 static void 13460 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 13461 struct lpfc_wcqe_release *wcqe) 13462 { 13463 /* sanity check on queue memory */ 13464 if (unlikely(!phba->sli4_hba.els_wq)) 13465 return; 13466 /* Check for the slow-path ELS work queue */ 13467 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 13468 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 13469 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13470 else 13471 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13472 "2579 Slow-path wqe consume event carries " 13473 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 13474 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 13475 phba->sli4_hba.els_wq->queue_id); 13476 } 13477 13478 /** 13479 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 13480 * @phba: Pointer to HBA context object. 13481 * @cq: Pointer to a WQ completion queue. 13482 * @wcqe: Pointer to work-queue completion queue entry. 13483 * 13484 * This routine handles an XRI abort event. 13485 * 13486 * Return: true if work posted to worker thread, otherwise false. 13487 **/ 13488 static bool 13489 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 13490 struct lpfc_queue *cq, 13491 struct sli4_wcqe_xri_aborted *wcqe) 13492 { 13493 bool workposted = false; 13494 struct lpfc_cq_event *cq_event; 13495 unsigned long iflags; 13496 13497 switch (cq->subtype) { 13498 case LPFC_IO: 13499 lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); 13500 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { 13501 /* Notify aborted XRI for NVME work queue */ 13502 if (phba->nvmet_support) 13503 lpfc_sli4_nvmet_xri_aborted(phba, wcqe); 13504 } 13505 workposted = false; 13506 break; 13507 case LPFC_NVME_LS: /* NVME LS uses ELS resources */ 13508 case LPFC_ELS: 13509 cq_event = lpfc_cq_event_setup( 13510 phba, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 13511 if (!cq_event) 13512 return false; 13513 cq_event->hdwq = cq->hdwq; 13514 spin_lock_irqsave(&phba->hbalock, iflags); 13515 list_add_tail(&cq_event->list, 13516 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 13517 /* Set the els xri abort event flag */ 13518 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 13519 spin_unlock_irqrestore(&phba->hbalock, iflags); 13520 workposted = true; 13521 break; 13522 default: 13523 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13524 "0603 Invalid CQ subtype %d: " 13525 "%08x %08x %08x %08x\n", 13526 cq->subtype, wcqe->word0, wcqe->parameter, 13527 wcqe->word2, wcqe->word3); 13528 workposted = false; 13529 break; 13530 } 13531 return workposted; 13532 } 13533 13534 #define FC_RCTL_MDS_DIAGS 0xF4 13535 13536 /** 13537 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 13538 * @phba: Pointer to HBA context object. 13539 * @rcqe: Pointer to receive-queue completion queue entry. 13540 * 13541 * This routine process a receive-queue completion queue entry. 13542 * 13543 * Return: true if work posted to worker thread, otherwise false. 13544 **/ 13545 static bool 13546 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 13547 { 13548 bool workposted = false; 13549 struct fc_frame_header *fc_hdr; 13550 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 13551 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 13552 struct lpfc_nvmet_tgtport *tgtp; 13553 struct hbq_dmabuf *dma_buf; 13554 uint32_t status, rq_id; 13555 unsigned long iflags; 13556 13557 /* sanity check on queue memory */ 13558 if (unlikely(!hrq) || unlikely(!drq)) 13559 return workposted; 13560 13561 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13562 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13563 else 13564 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13565 if (rq_id != hrq->queue_id) 13566 goto out; 13567 13568 status = bf_get(lpfc_rcqe_status, rcqe); 13569 switch (status) { 13570 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13571 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13572 "2537 Receive Frame Truncated!!\n"); 13573 /* fall through */ 13574 case FC_STATUS_RQ_SUCCESS: 13575 spin_lock_irqsave(&phba->hbalock, iflags); 13576 lpfc_sli4_rq_release(hrq, drq); 13577 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 13578 if (!dma_buf) { 13579 hrq->RQ_no_buf_found++; 13580 spin_unlock_irqrestore(&phba->hbalock, iflags); 13581 goto out; 13582 } 13583 hrq->RQ_rcv_buf++; 13584 hrq->RQ_buf_posted--; 13585 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 13586 13587 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13588 13589 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 13590 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 13591 spin_unlock_irqrestore(&phba->hbalock, iflags); 13592 /* Handle MDS Loopback frames */ 13593 lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); 13594 break; 13595 } 13596 13597 /* save off the frame for the work thread to process */ 13598 list_add_tail(&dma_buf->cq_event.list, 13599 &phba->sli4_hba.sp_queue_event); 13600 /* Frame received */ 13601 phba->hba_flag |= HBA_SP_QUEUE_EVT; 13602 spin_unlock_irqrestore(&phba->hbalock, iflags); 13603 workposted = true; 13604 break; 13605 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13606 if (phba->nvmet_support) { 13607 tgtp = phba->targetport->private; 13608 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 13609 "6402 RQE Error x%x, posted %d err_cnt " 13610 "%d: %x %x %x\n", 13611 status, hrq->RQ_buf_posted, 13612 hrq->RQ_no_posted_buf, 13613 atomic_read(&tgtp->rcv_fcp_cmd_in), 13614 atomic_read(&tgtp->rcv_fcp_cmd_out), 13615 atomic_read(&tgtp->xmt_fcp_release)); 13616 } 13617 /* fallthrough */ 13618 13619 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13620 hrq->RQ_no_posted_buf++; 13621 /* Post more buffers if possible */ 13622 spin_lock_irqsave(&phba->hbalock, iflags); 13623 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13624 spin_unlock_irqrestore(&phba->hbalock, iflags); 13625 workposted = true; 13626 break; 13627 } 13628 out: 13629 return workposted; 13630 } 13631 13632 /** 13633 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 13634 * @phba: Pointer to HBA context object. 13635 * @cq: Pointer to the completion queue. 13636 * @cqe: Pointer to a completion queue entry. 13637 * 13638 * This routine process a slow-path work-queue or receive queue completion queue 13639 * entry. 13640 * 13641 * Return: true if work posted to worker thread, otherwise false. 13642 **/ 13643 static bool 13644 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13645 struct lpfc_cqe *cqe) 13646 { 13647 struct lpfc_cqe cqevt; 13648 bool workposted = false; 13649 13650 /* Copy the work queue CQE and convert endian order if needed */ 13651 lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 13652 13653 /* Check and process for different type of WCQE and dispatch */ 13654 switch (bf_get(lpfc_cqe_code, &cqevt)) { 13655 case CQE_CODE_COMPL_WQE: 13656 /* Process the WQ/RQ complete event */ 13657 phba->last_completion_time = jiffies; 13658 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 13659 (struct lpfc_wcqe_complete *)&cqevt); 13660 break; 13661 case CQE_CODE_RELEASE_WQE: 13662 /* Process the WQ release event */ 13663 lpfc_sli4_sp_handle_rel_wcqe(phba, 13664 (struct lpfc_wcqe_release *)&cqevt); 13665 break; 13666 case CQE_CODE_XRI_ABORTED: 13667 /* Process the WQ XRI abort event */ 13668 phba->last_completion_time = jiffies; 13669 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13670 (struct sli4_wcqe_xri_aborted *)&cqevt); 13671 break; 13672 case CQE_CODE_RECEIVE: 13673 case CQE_CODE_RECEIVE_V1: 13674 /* Process the RQ event */ 13675 phba->last_completion_time = jiffies; 13676 workposted = lpfc_sli4_sp_handle_rcqe(phba, 13677 (struct lpfc_rcqe *)&cqevt); 13678 break; 13679 default: 13680 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13681 "0388 Not a valid WCQE code: x%x\n", 13682 bf_get(lpfc_cqe_code, &cqevt)); 13683 break; 13684 } 13685 return workposted; 13686 } 13687 13688 /** 13689 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 13690 * @phba: Pointer to HBA context object. 13691 * @eqe: Pointer to fast-path event queue entry. 13692 * 13693 * This routine process a event queue entry from the slow-path event queue. 13694 * It will check the MajorCode and MinorCode to determine this is for a 13695 * completion event on a completion queue, if not, an error shall be logged 13696 * and just return. Otherwise, it will get to the corresponding completion 13697 * queue and process all the entries on that completion queue, rearm the 13698 * completion queue, and then return. 13699 * 13700 **/ 13701 static void 13702 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13703 struct lpfc_queue *speq) 13704 { 13705 struct lpfc_queue *cq = NULL, *childq; 13706 uint16_t cqid; 13707 13708 /* Get the reference to the corresponding CQ */ 13709 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13710 13711 list_for_each_entry(childq, &speq->child_list, list) { 13712 if (childq->queue_id == cqid) { 13713 cq = childq; 13714 break; 13715 } 13716 } 13717 if (unlikely(!cq)) { 13718 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13719 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13720 "0365 Slow-path CQ identifier " 13721 "(%d) does not exist\n", cqid); 13722 return; 13723 } 13724 13725 /* Save EQ associated with this CQ */ 13726 cq->assoc_qp = speq; 13727 13728 if (!queue_work_on(cq->chann, phba->wq, &cq->spwork)) 13729 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13730 "0390 Cannot schedule soft IRQ " 13731 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 13732 cqid, cq->queue_id, raw_smp_processor_id()); 13733 } 13734 13735 /** 13736 * __lpfc_sli4_process_cq - Process elements of a CQ 13737 * @phba: Pointer to HBA context object. 13738 * @cq: Pointer to CQ to be processed 13739 * @handler: Routine to process each cqe 13740 * @delay: Pointer to usdelay to set in case of rescheduling of the handler 13741 * 13742 * This routine processes completion queue entries in a CQ. While a valid 13743 * queue element is found, the handler is called. During processing checks 13744 * are made for periodic doorbell writes to let the hardware know of 13745 * element consumption. 13746 * 13747 * If the max limit on cqes to process is hit, or there are no more valid 13748 * entries, the loop stops. If we processed a sufficient number of elements, 13749 * meaning there is sufficient load, rather than rearming and generating 13750 * another interrupt, a cq rescheduling delay will be set. A delay of 0 13751 * indicates no rescheduling. 13752 * 13753 * Returns True if work scheduled, False otherwise. 13754 **/ 13755 static bool 13756 __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, 13757 bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, 13758 struct lpfc_cqe *), unsigned long *delay) 13759 { 13760 struct lpfc_cqe *cqe; 13761 bool workposted = false; 13762 int count = 0, consumed = 0; 13763 bool arm = true; 13764 13765 /* default - no reschedule */ 13766 *delay = 0; 13767 13768 if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) 13769 goto rearm_and_exit; 13770 13771 /* Process all the entries to the CQ */ 13772 cq->q_flag = 0; 13773 cqe = lpfc_sli4_cq_get(cq); 13774 while (cqe) { 13775 workposted |= handler(phba, cq, cqe); 13776 __lpfc_sli4_consume_cqe(phba, cq, cqe); 13777 13778 consumed++; 13779 if (!(++count % cq->max_proc_limit)) 13780 break; 13781 13782 if (!(count % cq->notify_interval)) { 13783 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13784 LPFC_QUEUE_NOARM); 13785 consumed = 0; 13786 cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; 13787 } 13788 13789 if (count == LPFC_NVMET_CQ_NOTIFY) 13790 cq->q_flag |= HBA_NVMET_CQ_NOTIFY; 13791 13792 cqe = lpfc_sli4_cq_get(cq); 13793 } 13794 if (count >= phba->cfg_cq_poll_threshold) { 13795 *delay = 1; 13796 arm = false; 13797 } 13798 13799 /* Track the max number of CQEs processed in 1 EQ */ 13800 if (count > cq->CQ_max_cqe) 13801 cq->CQ_max_cqe = count; 13802 13803 cq->assoc_qp->EQ_cqe_cnt += count; 13804 13805 /* Catch the no cq entry condition */ 13806 if (unlikely(count == 0)) 13807 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13808 "0369 No entry from completion queue " 13809 "qid=%d\n", cq->queue_id); 13810 13811 cq->queue_claimed = 0; 13812 13813 rearm_and_exit: 13814 phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, 13815 arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); 13816 13817 return workposted; 13818 } 13819 13820 /** 13821 * lpfc_sli4_sp_process_cq - Process a slow-path event queue entry 13822 * @cq: pointer to CQ to process 13823 * 13824 * This routine calls the cq processing routine with a handler specific 13825 * to the type of queue bound to it. 13826 * 13827 * The CQ routine returns two values: the first is the calling status, 13828 * which indicates whether work was queued to the background discovery 13829 * thread. If true, the routine should wakeup the discovery thread; 13830 * the second is the delay parameter. If non-zero, rather than rearming 13831 * the CQ and yet another interrupt, the CQ handler should be queued so 13832 * that it is processed in a subsequent polling action. The value of 13833 * the delay indicates when to reschedule it. 13834 **/ 13835 static void 13836 __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) 13837 { 13838 struct lpfc_hba *phba = cq->phba; 13839 unsigned long delay; 13840 bool workposted = false; 13841 13842 /* Process and rearm the CQ */ 13843 switch (cq->type) { 13844 case LPFC_MCQ: 13845 workposted |= __lpfc_sli4_process_cq(phba, cq, 13846 lpfc_sli4_sp_handle_mcqe, 13847 &delay); 13848 break; 13849 case LPFC_WCQ: 13850 if (cq->subtype == LPFC_IO) 13851 workposted |= __lpfc_sli4_process_cq(phba, cq, 13852 lpfc_sli4_fp_handle_cqe, 13853 &delay); 13854 else 13855 workposted |= __lpfc_sli4_process_cq(phba, cq, 13856 lpfc_sli4_sp_handle_cqe, 13857 &delay); 13858 break; 13859 default: 13860 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13861 "0370 Invalid completion queue type (%d)\n", 13862 cq->type); 13863 return; 13864 } 13865 13866 if (delay) { 13867 if (!queue_delayed_work_on(cq->chann, phba->wq, 13868 &cq->sched_spwork, delay)) 13869 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13870 "0394 Cannot schedule soft IRQ " 13871 "for cqid=%d on CPU %d\n", 13872 cq->queue_id, cq->chann); 13873 } 13874 13875 /* wake up worker thread if there are works to be done */ 13876 if (workposted) 13877 lpfc_worker_wake_up(phba); 13878 } 13879 13880 /** 13881 * lpfc_sli4_sp_process_cq - slow-path work handler when started by 13882 * interrupt 13883 * @work: pointer to work element 13884 * 13885 * translates from the work handler and calls the slow-path handler. 13886 **/ 13887 static void 13888 lpfc_sli4_sp_process_cq(struct work_struct *work) 13889 { 13890 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); 13891 13892 __lpfc_sli4_sp_process_cq(cq); 13893 } 13894 13895 /** 13896 * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer 13897 * @work: pointer to work element 13898 * 13899 * translates from the work handler and calls the slow-path handler. 13900 **/ 13901 static void 13902 lpfc_sli4_dly_sp_process_cq(struct work_struct *work) 13903 { 13904 struct lpfc_queue *cq = container_of(to_delayed_work(work), 13905 struct lpfc_queue, sched_spwork); 13906 13907 __lpfc_sli4_sp_process_cq(cq); 13908 } 13909 13910 /** 13911 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 13912 * @phba: Pointer to HBA context object. 13913 * @cq: Pointer to associated CQ 13914 * @wcqe: Pointer to work-queue completion queue entry. 13915 * 13916 * This routine process a fast-path work queue completion entry from fast-path 13917 * event queue for FCP command response completion. 13918 **/ 13919 static void 13920 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13921 struct lpfc_wcqe_complete *wcqe) 13922 { 13923 struct lpfc_sli_ring *pring = cq->pring; 13924 struct lpfc_iocbq *cmdiocbq; 13925 struct lpfc_iocbq irspiocbq; 13926 unsigned long iflags; 13927 13928 /* Check for response status */ 13929 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13930 /* If resource errors reported from HBA, reduce queue 13931 * depth of the SCSI device. 13932 */ 13933 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13934 IOSTAT_LOCAL_REJECT)) && 13935 ((wcqe->parameter & IOERR_PARAM_MASK) == 13936 IOERR_NO_RESOURCES)) 13937 phba->lpfc_rampdown_queue_depth(phba); 13938 13939 /* Log the error status */ 13940 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 13941 "0373 FCP CQE error: status=x%x: " 13942 "CQE: %08x %08x %08x %08x\n", 13943 bf_get(lpfc_wcqe_c_status, wcqe), 13944 wcqe->word0, wcqe->total_data_placed, 13945 wcqe->parameter, wcqe->word3); 13946 } 13947 13948 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13949 spin_lock_irqsave(&pring->ring_lock, iflags); 13950 pring->stats.iocb_event++; 13951 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13952 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13953 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13954 if (unlikely(!cmdiocbq)) { 13955 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13956 "0374 FCP complete with no corresponding " 13957 "cmdiocb: iotag (%d)\n", 13958 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13959 return; 13960 } 13961 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13962 cmdiocbq->isr_timestamp = cq->isr_timestamp; 13963 #endif 13964 if (cmdiocbq->iocb_cmpl == NULL) { 13965 if (cmdiocbq->wqe_cmpl) { 13966 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13967 spin_lock_irqsave(&phba->hbalock, iflags); 13968 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13969 spin_unlock_irqrestore(&phba->hbalock, iflags); 13970 } 13971 13972 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13973 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13974 return; 13975 } 13976 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13977 "0375 FCP cmdiocb not callback function " 13978 "iotag: (%d)\n", 13979 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13980 return; 13981 } 13982 13983 /* Fake the irspiocb and copy necessary response information */ 13984 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13985 13986 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13987 spin_lock_irqsave(&phba->hbalock, iflags); 13988 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13989 spin_unlock_irqrestore(&phba->hbalock, iflags); 13990 } 13991 13992 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13993 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13994 } 13995 13996 /** 13997 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13998 * @phba: Pointer to HBA context object. 13999 * @cq: Pointer to completion queue. 14000 * @wcqe: Pointer to work-queue completion queue entry. 14001 * 14002 * This routine handles an fast-path WQ entry consumed event by invoking the 14003 * proper WQ release routine to the slow-path WQ. 14004 **/ 14005 static void 14006 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14007 struct lpfc_wcqe_release *wcqe) 14008 { 14009 struct lpfc_queue *childwq; 14010 bool wqid_matched = false; 14011 uint16_t hba_wqid; 14012 14013 /* Check for fast-path FCP work queue release */ 14014 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 14015 list_for_each_entry(childwq, &cq->child_list, list) { 14016 if (childwq->queue_id == hba_wqid) { 14017 lpfc_sli4_wq_release(childwq, 14018 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 14019 if (childwq->q_flag & HBA_NVMET_WQFULL) 14020 lpfc_nvmet_wqfull_process(phba, childwq); 14021 wqid_matched = true; 14022 break; 14023 } 14024 } 14025 /* Report warning log message if no match found */ 14026 if (wqid_matched != true) 14027 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14028 "2580 Fast-path wqe consume event carries " 14029 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 14030 } 14031 14032 /** 14033 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 14034 * @phba: Pointer to HBA context object. 14035 * @rcqe: Pointer to receive-queue completion queue entry. 14036 * 14037 * This routine process a receive-queue completion queue entry. 14038 * 14039 * Return: true if work posted to worker thread, otherwise false. 14040 **/ 14041 static bool 14042 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14043 struct lpfc_rcqe *rcqe) 14044 { 14045 bool workposted = false; 14046 struct lpfc_queue *hrq; 14047 struct lpfc_queue *drq; 14048 struct rqb_dmabuf *dma_buf; 14049 struct fc_frame_header *fc_hdr; 14050 struct lpfc_nvmet_tgtport *tgtp; 14051 uint32_t status, rq_id; 14052 unsigned long iflags; 14053 uint32_t fctl, idx; 14054 14055 if ((phba->nvmet_support == 0) || 14056 (phba->sli4_hba.nvmet_cqset == NULL)) 14057 return workposted; 14058 14059 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 14060 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 14061 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 14062 14063 /* sanity check on queue memory */ 14064 if (unlikely(!hrq) || unlikely(!drq)) 14065 return workposted; 14066 14067 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 14068 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 14069 else 14070 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 14071 14072 if ((phba->nvmet_support == 0) || 14073 (rq_id != hrq->queue_id)) 14074 return workposted; 14075 14076 status = bf_get(lpfc_rcqe_status, rcqe); 14077 switch (status) { 14078 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 14079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14080 "6126 Receive Frame Truncated!!\n"); 14081 /* fall through */ 14082 case FC_STATUS_RQ_SUCCESS: 14083 spin_lock_irqsave(&phba->hbalock, iflags); 14084 lpfc_sli4_rq_release(hrq, drq); 14085 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 14086 if (!dma_buf) { 14087 hrq->RQ_no_buf_found++; 14088 spin_unlock_irqrestore(&phba->hbalock, iflags); 14089 goto out; 14090 } 14091 spin_unlock_irqrestore(&phba->hbalock, iflags); 14092 hrq->RQ_rcv_buf++; 14093 hrq->RQ_buf_posted--; 14094 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 14095 14096 /* Just some basic sanity checks on FCP Command frame */ 14097 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 14098 fc_hdr->fh_f_ctl[1] << 8 | 14099 fc_hdr->fh_f_ctl[2]); 14100 if (((fctl & 14101 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 14102 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 14103 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 14104 goto drop; 14105 14106 if (fc_hdr->fh_type == FC_TYPE_FCP) { 14107 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 14108 lpfc_nvmet_unsol_fcp_event( 14109 phba, idx, dma_buf, cq->isr_timestamp, 14110 cq->q_flag & HBA_NVMET_CQ_NOTIFY); 14111 return false; 14112 } 14113 drop: 14114 lpfc_rq_buf_free(phba, &dma_buf->hbuf); 14115 break; 14116 case FC_STATUS_INSUFF_BUF_FRM_DISC: 14117 if (phba->nvmet_support) { 14118 tgtp = phba->targetport->private; 14119 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_NVME, 14120 "6401 RQE Error x%x, posted %d err_cnt " 14121 "%d: %x %x %x\n", 14122 status, hrq->RQ_buf_posted, 14123 hrq->RQ_no_posted_buf, 14124 atomic_read(&tgtp->rcv_fcp_cmd_in), 14125 atomic_read(&tgtp->rcv_fcp_cmd_out), 14126 atomic_read(&tgtp->xmt_fcp_release)); 14127 } 14128 /* fallthrough */ 14129 14130 case FC_STATUS_INSUFF_BUF_NEED_BUF: 14131 hrq->RQ_no_posted_buf++; 14132 /* Post more buffers if possible */ 14133 break; 14134 } 14135 out: 14136 return workposted; 14137 } 14138 14139 /** 14140 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 14141 * @phba: adapter with cq 14142 * @cq: Pointer to the completion queue. 14143 * @eqe: Pointer to fast-path completion queue entry. 14144 * 14145 * This routine process a fast-path work queue completion entry from fast-path 14146 * event queue for FCP command response completion. 14147 * 14148 * Return: true if work posted to worker thread, otherwise false. 14149 **/ 14150 static bool 14151 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 14152 struct lpfc_cqe *cqe) 14153 { 14154 struct lpfc_wcqe_release wcqe; 14155 bool workposted = false; 14156 14157 /* Copy the work queue CQE and convert endian order if needed */ 14158 lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 14159 14160 /* Check and process for different type of WCQE and dispatch */ 14161 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 14162 case CQE_CODE_COMPL_WQE: 14163 case CQE_CODE_NVME_ERSP: 14164 cq->CQ_wq++; 14165 /* Process the WQ complete event */ 14166 phba->last_completion_time = jiffies; 14167 if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) 14168 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 14169 (struct lpfc_wcqe_complete *)&wcqe); 14170 break; 14171 case CQE_CODE_RELEASE_WQE: 14172 cq->CQ_release_wqe++; 14173 /* Process the WQ release event */ 14174 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 14175 (struct lpfc_wcqe_release *)&wcqe); 14176 break; 14177 case CQE_CODE_XRI_ABORTED: 14178 cq->CQ_xri_aborted++; 14179 /* Process the WQ XRI abort event */ 14180 phba->last_completion_time = jiffies; 14181 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 14182 (struct sli4_wcqe_xri_aborted *)&wcqe); 14183 break; 14184 case CQE_CODE_RECEIVE_V1: 14185 case CQE_CODE_RECEIVE: 14186 phba->last_completion_time = jiffies; 14187 if (cq->subtype == LPFC_NVMET) { 14188 workposted = lpfc_sli4_nvmet_handle_rcqe( 14189 phba, cq, (struct lpfc_rcqe *)&wcqe); 14190 } 14191 break; 14192 default: 14193 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14194 "0144 Not a valid CQE code: x%x\n", 14195 bf_get(lpfc_wcqe_c_code, &wcqe)); 14196 break; 14197 } 14198 return workposted; 14199 } 14200 14201 /** 14202 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 14203 * @phba: Pointer to HBA context object. 14204 * @eqe: Pointer to fast-path event queue entry. 14205 * 14206 * This routine process a event queue entry from the fast-path event queue. 14207 * It will check the MajorCode and MinorCode to determine this is for a 14208 * completion event on a completion queue, if not, an error shall be logged 14209 * and just return. Otherwise, it will get to the corresponding completion 14210 * queue and process all the entries on the completion queue, rearm the 14211 * completion queue, and then return. 14212 **/ 14213 static void 14214 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, 14215 struct lpfc_eqe *eqe) 14216 { 14217 struct lpfc_queue *cq = NULL; 14218 uint32_t qidx = eq->hdwq; 14219 uint16_t cqid, id; 14220 14221 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 14222 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14223 "0366 Not a valid completion " 14224 "event: majorcode=x%x, minorcode=x%x\n", 14225 bf_get_le32(lpfc_eqe_major_code, eqe), 14226 bf_get_le32(lpfc_eqe_minor_code, eqe)); 14227 return; 14228 } 14229 14230 /* Get the reference to the corresponding CQ */ 14231 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 14232 14233 /* Use the fast lookup method first */ 14234 if (cqid <= phba->sli4_hba.cq_max) { 14235 cq = phba->sli4_hba.cq_lookup[cqid]; 14236 if (cq) 14237 goto work_cq; 14238 } 14239 14240 /* Next check for NVMET completion */ 14241 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 14242 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 14243 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 14244 /* Process NVMET unsol rcv */ 14245 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 14246 goto process_cq; 14247 } 14248 } 14249 14250 if (phba->sli4_hba.nvmels_cq && 14251 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 14252 /* Process NVME unsol rcv */ 14253 cq = phba->sli4_hba.nvmels_cq; 14254 } 14255 14256 /* Otherwise this is a Slow path event */ 14257 if (cq == NULL) { 14258 lpfc_sli4_sp_handle_eqe(phba, eqe, 14259 phba->sli4_hba.hdwq[qidx].hba_eq); 14260 return; 14261 } 14262 14263 process_cq: 14264 if (unlikely(cqid != cq->queue_id)) { 14265 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14266 "0368 Miss-matched fast-path completion " 14267 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 14268 cqid, cq->queue_id); 14269 return; 14270 } 14271 14272 work_cq: 14273 #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) 14274 if (phba->ktime_on) 14275 cq->isr_timestamp = ktime_get_ns(); 14276 else 14277 cq->isr_timestamp = 0; 14278 #endif 14279 if (!queue_work_on(cq->chann, phba->wq, &cq->irqwork)) 14280 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14281 "0363 Cannot schedule soft IRQ " 14282 "for CQ eqcqid=%d, cqid=%d on CPU %d\n", 14283 cqid, cq->queue_id, raw_smp_processor_id()); 14284 } 14285 14286 /** 14287 * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry 14288 * @cq: Pointer to CQ to be processed 14289 * 14290 * This routine calls the cq processing routine with the handler for 14291 * fast path CQEs. 14292 * 14293 * The CQ routine returns two values: the first is the calling status, 14294 * which indicates whether work was queued to the background discovery 14295 * thread. If true, the routine should wakeup the discovery thread; 14296 * the second is the delay parameter. If non-zero, rather than rearming 14297 * the CQ and yet another interrupt, the CQ handler should be queued so 14298 * that it is processed in a subsequent polling action. The value of 14299 * the delay indicates when to reschedule it. 14300 **/ 14301 static void 14302 __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq) 14303 { 14304 struct lpfc_hba *phba = cq->phba; 14305 unsigned long delay; 14306 bool workposted = false; 14307 14308 /* process and rearm the CQ */ 14309 workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, 14310 &delay); 14311 14312 if (delay) { 14313 if (!queue_delayed_work_on(cq->chann, phba->wq, 14314 &cq->sched_irqwork, delay)) 14315 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14316 "0367 Cannot schedule soft IRQ " 14317 "for cqid=%d on CPU %d\n", 14318 cq->queue_id, cq->chann); 14319 } 14320 14321 /* wake up worker thread if there are works to be done */ 14322 if (workposted) 14323 lpfc_worker_wake_up(phba); 14324 } 14325 14326 /** 14327 * lpfc_sli4_hba_process_cq - fast-path work handler when started by 14328 * interrupt 14329 * @work: pointer to work element 14330 * 14331 * translates from the work handler and calls the fast-path handler. 14332 **/ 14333 static void 14334 lpfc_sli4_hba_process_cq(struct work_struct *work) 14335 { 14336 struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); 14337 14338 __lpfc_sli4_hba_process_cq(cq); 14339 } 14340 14341 /** 14342 * lpfc_sli4_hba_process_cq - fast-path work handler when started by timer 14343 * @work: pointer to work element 14344 * 14345 * translates from the work handler and calls the fast-path handler. 14346 **/ 14347 static void 14348 lpfc_sli4_dly_hba_process_cq(struct work_struct *work) 14349 { 14350 struct lpfc_queue *cq = container_of(to_delayed_work(work), 14351 struct lpfc_queue, sched_irqwork); 14352 14353 __lpfc_sli4_hba_process_cq(cq); 14354 } 14355 14356 /** 14357 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 14358 * @irq: Interrupt number. 14359 * @dev_id: The device context pointer. 14360 * 14361 * This function is directly called from the PCI layer as an interrupt 14362 * service routine when device with SLI-4 interface spec is enabled with 14363 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 14364 * ring event in the HBA. However, when the device is enabled with either 14365 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 14366 * device-level interrupt handler. When the PCI slot is in error recovery 14367 * or the HBA is undergoing initialization, the interrupt handler will not 14368 * process the interrupt. The SCSI FCP fast-path ring event are handled in 14369 * the intrrupt context. This function is called without any lock held. 14370 * It gets the hbalock to access and update SLI data structures. Note that, 14371 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 14372 * equal to that of FCP CQ index. 14373 * 14374 * The link attention and ELS ring attention events are handled 14375 * by the worker thread. The interrupt handler signals the worker thread 14376 * and returns for these events. This function is called without any lock 14377 * held. It gets the hbalock to access and update SLI data structures. 14378 * 14379 * This function returns IRQ_HANDLED when interrupt is handled else it 14380 * returns IRQ_NONE. 14381 **/ 14382 irqreturn_t 14383 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 14384 { 14385 struct lpfc_hba *phba; 14386 struct lpfc_hba_eq_hdl *hba_eq_hdl; 14387 struct lpfc_queue *fpeq; 14388 unsigned long iflag; 14389 int ecount = 0; 14390 int hba_eqidx; 14391 struct lpfc_eq_intr_info *eqi; 14392 uint32_t icnt; 14393 14394 /* Get the driver's phba structure from the dev_id */ 14395 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 14396 phba = hba_eq_hdl->phba; 14397 hba_eqidx = hba_eq_hdl->idx; 14398 14399 if (unlikely(!phba)) 14400 return IRQ_NONE; 14401 if (unlikely(!phba->sli4_hba.hdwq)) 14402 return IRQ_NONE; 14403 14404 /* Get to the EQ struct associated with this vector */ 14405 fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; 14406 if (unlikely(!fpeq)) 14407 return IRQ_NONE; 14408 14409 /* Check device state for handling interrupt */ 14410 if (unlikely(lpfc_intr_state_check(phba))) { 14411 /* Check again for link_state with lock held */ 14412 spin_lock_irqsave(&phba->hbalock, iflag); 14413 if (phba->link_state < LPFC_LINK_DOWN) 14414 /* Flush, clear interrupt, and rearm the EQ */ 14415 lpfc_sli4_eqcq_flush(phba, fpeq); 14416 spin_unlock_irqrestore(&phba->hbalock, iflag); 14417 return IRQ_NONE; 14418 } 14419 14420 eqi = phba->sli4_hba.eq_info; 14421 icnt = this_cpu_inc_return(eqi->icnt); 14422 fpeq->last_cpu = raw_smp_processor_id(); 14423 14424 if (icnt > LPFC_EQD_ISR_TRIGGER && 14425 fpeq->q_flag & HBA_EQ_DELAY_CHK && 14426 phba->cfg_auto_imax && 14427 fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && 14428 phba->sli.sli_flag & LPFC_SLI_USE_EQDR) 14429 lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); 14430 14431 /* process and rearm the EQ */ 14432 ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); 14433 14434 if (unlikely(ecount == 0)) { 14435 fpeq->EQ_no_entry++; 14436 if (phba->intr_type == MSIX) 14437 /* MSI-X treated interrupt served as no EQ share INT */ 14438 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 14439 "0358 MSI-X interrupt with no EQE\n"); 14440 else 14441 /* Non MSI-X treated on interrupt as EQ share INT */ 14442 return IRQ_NONE; 14443 } 14444 14445 return IRQ_HANDLED; 14446 } /* lpfc_sli4_fp_intr_handler */ 14447 14448 /** 14449 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 14450 * @irq: Interrupt number. 14451 * @dev_id: The device context pointer. 14452 * 14453 * This function is the device-level interrupt handler to device with SLI-4 14454 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 14455 * interrupt mode is enabled and there is an event in the HBA which requires 14456 * driver attention. This function invokes the slow-path interrupt attention 14457 * handling function and fast-path interrupt attention handling function in 14458 * turn to process the relevant HBA attention events. This function is called 14459 * without any lock held. It gets the hbalock to access and update SLI data 14460 * structures. 14461 * 14462 * This function returns IRQ_HANDLED when interrupt is handled, else it 14463 * returns IRQ_NONE. 14464 **/ 14465 irqreturn_t 14466 lpfc_sli4_intr_handler(int irq, void *dev_id) 14467 { 14468 struct lpfc_hba *phba; 14469 irqreturn_t hba_irq_rc; 14470 bool hba_handled = false; 14471 int qidx; 14472 14473 /* Get the driver's phba structure from the dev_id */ 14474 phba = (struct lpfc_hba *)dev_id; 14475 14476 if (unlikely(!phba)) 14477 return IRQ_NONE; 14478 14479 /* 14480 * Invoke fast-path host attention interrupt handling as appropriate. 14481 */ 14482 for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { 14483 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 14484 &phba->sli4_hba.hba_eq_hdl[qidx]); 14485 if (hba_irq_rc == IRQ_HANDLED) 14486 hba_handled |= true; 14487 } 14488 14489 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 14490 } /* lpfc_sli4_intr_handler */ 14491 14492 void lpfc_sli4_poll_hbtimer(struct timer_list *t) 14493 { 14494 struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); 14495 struct lpfc_queue *eq; 14496 int i = 0; 14497 14498 rcu_read_lock(); 14499 14500 list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) 14501 i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); 14502 if (!list_empty(&phba->poll_list)) 14503 mod_timer(&phba->cpuhp_poll_timer, 14504 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14505 14506 rcu_read_unlock(); 14507 } 14508 14509 inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) 14510 { 14511 struct lpfc_hba *phba = eq->phba; 14512 int i = 0; 14513 14514 /* 14515 * Unlocking an irq is one of the entry point to check 14516 * for re-schedule, but we are good for io submission 14517 * path as midlayer does a get_cpu to glue us in. Flush 14518 * out the invalidate queue so we can see the updated 14519 * value for flag. 14520 */ 14521 smp_rmb(); 14522 14523 if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) 14524 /* We will not likely get the completion for the caller 14525 * during this iteration but i guess that's fine. 14526 * Future io's coming on this eq should be able to 14527 * pick it up. As for the case of single io's, they 14528 * will be handled through a sched from polling timer 14529 * function which is currently triggered every 1msec. 14530 */ 14531 i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); 14532 14533 return i; 14534 } 14535 14536 static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) 14537 { 14538 struct lpfc_hba *phba = eq->phba; 14539 14540 /* kickstart slowpath processing if needed */ 14541 if (list_empty(&phba->poll_list)) 14542 mod_timer(&phba->cpuhp_poll_timer, 14543 jiffies + msecs_to_jiffies(LPFC_POLL_HB)); 14544 14545 list_add_rcu(&eq->_poll_list, &phba->poll_list); 14546 synchronize_rcu(); 14547 } 14548 14549 static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) 14550 { 14551 struct lpfc_hba *phba = eq->phba; 14552 14553 /* Disable slowpath processing for this eq. Kick start the eq 14554 * by RE-ARMING the eq's ASAP 14555 */ 14556 list_del_rcu(&eq->_poll_list); 14557 synchronize_rcu(); 14558 14559 if (list_empty(&phba->poll_list)) 14560 del_timer_sync(&phba->cpuhp_poll_timer); 14561 } 14562 14563 void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) 14564 { 14565 struct lpfc_queue *eq, *next; 14566 14567 list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) 14568 list_del(&eq->_poll_list); 14569 14570 INIT_LIST_HEAD(&phba->poll_list); 14571 synchronize_rcu(); 14572 } 14573 14574 static inline void 14575 __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) 14576 { 14577 if (mode == eq->mode) 14578 return; 14579 /* 14580 * currently this function is only called during a hotplug 14581 * event and the cpu on which this function is executing 14582 * is going offline. By now the hotplug has instructed 14583 * the scheduler to remove this cpu from cpu active mask. 14584 * So we don't need to work about being put aside by the 14585 * scheduler for a high priority process. Yes, the inte- 14586 * rrupts could come but they are known to retire ASAP. 14587 */ 14588 14589 /* Disable polling in the fastpath */ 14590 WRITE_ONCE(eq->mode, mode); 14591 /* flush out the store buffer */ 14592 smp_wmb(); 14593 14594 /* 14595 * Add this eq to the polling list and start polling. For 14596 * a grace period both interrupt handler and poller will 14597 * try to process the eq _but_ that's fine. We have a 14598 * synchronization mechanism in place (queue_claimed) to 14599 * deal with it. This is just a draining phase for int- 14600 * errupt handler (not eq's) as we have guranteed through 14601 * barrier that all the CPUs have seen the new CQ_POLLED 14602 * state. which will effectively disable the REARMING of 14603 * the EQ. The whole idea is eq's die off eventually as 14604 * we are not rearming EQ's anymore. 14605 */ 14606 mode ? lpfc_sli4_add_to_poll_list(eq) : 14607 lpfc_sli4_remove_from_poll_list(eq); 14608 } 14609 14610 void lpfc_sli4_start_polling(struct lpfc_queue *eq) 14611 { 14612 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); 14613 } 14614 14615 void lpfc_sli4_stop_polling(struct lpfc_queue *eq) 14616 { 14617 struct lpfc_hba *phba = eq->phba; 14618 14619 __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); 14620 14621 /* Kick start for the pending io's in h/w. 14622 * Once we switch back to interrupt processing on a eq 14623 * the io path completion will only arm eq's when it 14624 * receives a completion. But since eq's are in disa- 14625 * rmed state it doesn't receive a completion. This 14626 * creates a deadlock scenaro. 14627 */ 14628 phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); 14629 } 14630 14631 /** 14632 * lpfc_sli4_queue_free - free a queue structure and associated memory 14633 * @queue: The queue structure to free. 14634 * 14635 * This function frees a queue structure and the DMAable memory used for 14636 * the host resident queue. This function must be called after destroying the 14637 * queue on the HBA. 14638 **/ 14639 void 14640 lpfc_sli4_queue_free(struct lpfc_queue *queue) 14641 { 14642 struct lpfc_dmabuf *dmabuf; 14643 14644 if (!queue) 14645 return; 14646 14647 if (!list_empty(&queue->wq_list)) 14648 list_del(&queue->wq_list); 14649 14650 while (!list_empty(&queue->page_list)) { 14651 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 14652 list); 14653 dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, 14654 dmabuf->virt, dmabuf->phys); 14655 kfree(dmabuf); 14656 } 14657 if (queue->rqbp) { 14658 lpfc_free_rq_buffer(queue->phba, queue); 14659 kfree(queue->rqbp); 14660 } 14661 14662 if (!list_empty(&queue->cpu_list)) 14663 list_del(&queue->cpu_list); 14664 14665 kfree(queue); 14666 return; 14667 } 14668 14669 /** 14670 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 14671 * @phba: The HBA that this queue is being created on. 14672 * @page_size: The size of a queue page 14673 * @entry_size: The size of each queue entry for this queue. 14674 * @entry count: The number of entries that this queue will handle. 14675 * @cpu: The cpu that will primarily utilize this queue. 14676 * 14677 * This function allocates a queue structure and the DMAable memory used for 14678 * the host resident queue. This function must be called before creating the 14679 * queue on the HBA. 14680 **/ 14681 struct lpfc_queue * 14682 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, 14683 uint32_t entry_size, uint32_t entry_count, int cpu) 14684 { 14685 struct lpfc_queue *queue; 14686 struct lpfc_dmabuf *dmabuf; 14687 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14688 uint16_t x, pgcnt; 14689 14690 if (!phba->sli4_hba.pc_sli4_params.supported) 14691 hw_page_size = page_size; 14692 14693 pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; 14694 14695 /* If needed, Adjust page count to match the max the adapter supports */ 14696 if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) 14697 pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; 14698 14699 queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), 14700 GFP_KERNEL, cpu_to_node(cpu)); 14701 if (!queue) 14702 return NULL; 14703 14704 INIT_LIST_HEAD(&queue->list); 14705 INIT_LIST_HEAD(&queue->_poll_list); 14706 INIT_LIST_HEAD(&queue->wq_list); 14707 INIT_LIST_HEAD(&queue->wqfull_list); 14708 INIT_LIST_HEAD(&queue->page_list); 14709 INIT_LIST_HEAD(&queue->child_list); 14710 INIT_LIST_HEAD(&queue->cpu_list); 14711 14712 /* Set queue parameters now. If the system cannot provide memory 14713 * resources, the free routine needs to know what was allocated. 14714 */ 14715 queue->page_count = pgcnt; 14716 queue->q_pgs = (void **)&queue[1]; 14717 queue->entry_cnt_per_pg = hw_page_size / entry_size; 14718 queue->entry_size = entry_size; 14719 queue->entry_count = entry_count; 14720 queue->page_size = hw_page_size; 14721 queue->phba = phba; 14722 14723 for (x = 0; x < queue->page_count; x++) { 14724 dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, 14725 dev_to_node(&phba->pcidev->dev)); 14726 if (!dmabuf) 14727 goto out_fail; 14728 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, 14729 hw_page_size, &dmabuf->phys, 14730 GFP_KERNEL); 14731 if (!dmabuf->virt) { 14732 kfree(dmabuf); 14733 goto out_fail; 14734 } 14735 dmabuf->buffer_tag = x; 14736 list_add_tail(&dmabuf->list, &queue->page_list); 14737 /* use lpfc_sli4_qe to index a paritcular entry in this page */ 14738 queue->q_pgs[x] = dmabuf->virt; 14739 } 14740 INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); 14741 INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); 14742 INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); 14743 INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); 14744 14745 /* notify_interval will be set during q creation */ 14746 14747 return queue; 14748 out_fail: 14749 lpfc_sli4_queue_free(queue); 14750 return NULL; 14751 } 14752 14753 /** 14754 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 14755 * @phba: HBA structure that indicates port to create a queue on. 14756 * @pci_barset: PCI BAR set flag. 14757 * 14758 * This function shall perform iomap of the specified PCI BAR address to host 14759 * memory address if not already done so and return it. The returned host 14760 * memory address can be NULL. 14761 */ 14762 static void __iomem * 14763 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 14764 { 14765 if (!phba->pcidev) 14766 return NULL; 14767 14768 switch (pci_barset) { 14769 case WQ_PCI_BAR_0_AND_1: 14770 return phba->pci_bar0_memmap_p; 14771 case WQ_PCI_BAR_2_AND_3: 14772 return phba->pci_bar2_memmap_p; 14773 case WQ_PCI_BAR_4_AND_5: 14774 return phba->pci_bar4_memmap_p; 14775 default: 14776 break; 14777 } 14778 return NULL; 14779 } 14780 14781 /** 14782 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs 14783 * @phba: HBA structure that EQs are on. 14784 * @startq: The starting EQ index to modify 14785 * @numq: The number of EQs (consecutive indexes) to modify 14786 * @usdelay: amount of delay 14787 * 14788 * This function revises the EQ delay on 1 or more EQs. The EQ delay 14789 * is set either by writing to a register (if supported by the SLI Port) 14790 * or by mailbox command. The mailbox command allows several EQs to be 14791 * updated at once. 14792 * 14793 * The @phba struct is used to send a mailbox command to HBA. The @startq 14794 * is used to get the starting EQ index to change. The @numq value is 14795 * used to specify how many consecutive EQ indexes, starting at EQ index, 14796 * are to be changed. This function is asynchronous and will wait for any 14797 * mailbox commands to finish before returning. 14798 * 14799 * On success this function will return a zero. If unable to allocate 14800 * enough memory this function will return -ENOMEM. If a mailbox command 14801 * fails this function will return -ENXIO. Note: on ENXIO, some EQs may 14802 * have had their delay multipler changed. 14803 **/ 14804 void 14805 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, 14806 uint32_t numq, uint32_t usdelay) 14807 { 14808 struct lpfc_mbx_modify_eq_delay *eq_delay; 14809 LPFC_MBOXQ_t *mbox; 14810 struct lpfc_queue *eq; 14811 int cnt = 0, rc, length; 14812 uint32_t shdr_status, shdr_add_status; 14813 uint32_t dmult; 14814 int qidx; 14815 union lpfc_sli4_cfg_shdr *shdr; 14816 14817 if (startq >= phba->cfg_irq_chann) 14818 return; 14819 14820 if (usdelay > 0xFFFF) { 14821 lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, 14822 "6429 usdelay %d too large. Scaled down to " 14823 "0xFFFF.\n", usdelay); 14824 usdelay = 0xFFFF; 14825 } 14826 14827 /* set values by EQ_DELAY register if supported */ 14828 if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { 14829 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14830 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14831 if (!eq) 14832 continue; 14833 14834 lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); 14835 14836 if (++cnt >= numq) 14837 break; 14838 } 14839 return; 14840 } 14841 14842 /* Otherwise, set values by mailbox cmd */ 14843 14844 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14845 if (!mbox) { 14846 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_FCP | LOG_NVME, 14847 "6428 Failed allocating mailbox cmd buffer." 14848 " EQ delay was not set.\n"); 14849 return; 14850 } 14851 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 14852 sizeof(struct lpfc_sli4_cfg_mhdr)); 14853 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14854 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 14855 length, LPFC_SLI4_MBX_EMBED); 14856 eq_delay = &mbox->u.mqe.un.eq_delay; 14857 14858 /* Calculate delay multiper from maximum interrupt per second */ 14859 dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; 14860 if (dmult) 14861 dmult--; 14862 if (dmult > LPFC_DMULT_MAX) 14863 dmult = LPFC_DMULT_MAX; 14864 14865 for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { 14866 eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; 14867 if (!eq) 14868 continue; 14869 eq->q_mode = usdelay; 14870 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 14871 eq_delay->u.request.eq[cnt].phase = 0; 14872 eq_delay->u.request.eq[cnt].delay_multi = dmult; 14873 14874 if (++cnt >= numq) 14875 break; 14876 } 14877 eq_delay->u.request.num_eq = cnt; 14878 14879 mbox->vport = phba->pport; 14880 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14881 mbox->ctx_buf = NULL; 14882 mbox->ctx_ndlp = NULL; 14883 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14884 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 14885 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14886 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14887 if (shdr_status || shdr_add_status || rc) { 14888 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14889 "2512 MODIFY_EQ_DELAY mailbox failed with " 14890 "status x%x add_status x%x, mbx status x%x\n", 14891 shdr_status, shdr_add_status, rc); 14892 } 14893 mempool_free(mbox, phba->mbox_mem_pool); 14894 return; 14895 } 14896 14897 /** 14898 * lpfc_eq_create - Create an Event Queue on the HBA 14899 * @phba: HBA structure that indicates port to create a queue on. 14900 * @eq: The queue structure to use to create the event queue. 14901 * @imax: The maximum interrupt per second limit. 14902 * 14903 * This function creates an event queue, as detailed in @eq, on a port, 14904 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 14905 * 14906 * The @phba struct is used to send mailbox command to HBA. The @eq struct 14907 * is used to get the entry count and entry size that are necessary to 14908 * determine the number of pages to allocate and use for this queue. This 14909 * function will send the EQ_CREATE mailbox command to the HBA to setup the 14910 * event queue. This function is asynchronous and will wait for the mailbox 14911 * command to finish before continuing. 14912 * 14913 * On success this function will return a zero. If unable to allocate enough 14914 * memory this function will return -ENOMEM. If the queue create mailbox command 14915 * fails this function will return -ENXIO. 14916 **/ 14917 int 14918 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 14919 { 14920 struct lpfc_mbx_eq_create *eq_create; 14921 LPFC_MBOXQ_t *mbox; 14922 int rc, length, status = 0; 14923 struct lpfc_dmabuf *dmabuf; 14924 uint32_t shdr_status, shdr_add_status; 14925 union lpfc_sli4_cfg_shdr *shdr; 14926 uint16_t dmult; 14927 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14928 14929 /* sanity check on queue memory */ 14930 if (!eq) 14931 return -ENODEV; 14932 if (!phba->sli4_hba.pc_sli4_params.supported) 14933 hw_page_size = SLI4_PAGE_SIZE; 14934 14935 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14936 if (!mbox) 14937 return -ENOMEM; 14938 length = (sizeof(struct lpfc_mbx_eq_create) - 14939 sizeof(struct lpfc_sli4_cfg_mhdr)); 14940 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14941 LPFC_MBOX_OPCODE_EQ_CREATE, 14942 length, LPFC_SLI4_MBX_EMBED); 14943 eq_create = &mbox->u.mqe.un.eq_create; 14944 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14945 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14946 eq->page_count); 14947 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14948 LPFC_EQE_SIZE); 14949 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14950 14951 /* Use version 2 of CREATE_EQ if eqav is set */ 14952 if (phba->sli4_hba.pc_sli4_params.eqav) { 14953 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14954 LPFC_Q_CREATE_VERSION_2); 14955 bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, 14956 phba->sli4_hba.pc_sli4_params.eqav); 14957 } 14958 14959 /* don't setup delay multiplier using EQ_CREATE */ 14960 dmult = 0; 14961 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14962 dmult); 14963 switch (eq->entry_count) { 14964 default: 14965 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14966 "0360 Unsupported EQ count. (%d)\n", 14967 eq->entry_count); 14968 if (eq->entry_count < 256) { 14969 status = -EINVAL; 14970 goto out; 14971 } 14972 /* fall through - otherwise default to smallest count */ 14973 case 256: 14974 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14975 LPFC_EQ_CNT_256); 14976 break; 14977 case 512: 14978 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14979 LPFC_EQ_CNT_512); 14980 break; 14981 case 1024: 14982 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14983 LPFC_EQ_CNT_1024); 14984 break; 14985 case 2048: 14986 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14987 LPFC_EQ_CNT_2048); 14988 break; 14989 case 4096: 14990 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14991 LPFC_EQ_CNT_4096); 14992 break; 14993 } 14994 list_for_each_entry(dmabuf, &eq->page_list, list) { 14995 memset(dmabuf->virt, 0, hw_page_size); 14996 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14997 putPaddrLow(dmabuf->phys); 14998 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14999 putPaddrHigh(dmabuf->phys); 15000 } 15001 mbox->vport = phba->pport; 15002 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15003 mbox->ctx_buf = NULL; 15004 mbox->ctx_ndlp = NULL; 15005 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15006 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15007 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15008 if (shdr_status || shdr_add_status || rc) { 15009 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15010 "2500 EQ_CREATE mailbox failed with " 15011 "status x%x add_status x%x, mbx status x%x\n", 15012 shdr_status, shdr_add_status, rc); 15013 status = -ENXIO; 15014 } 15015 eq->type = LPFC_EQ; 15016 eq->subtype = LPFC_NONE; 15017 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 15018 if (eq->queue_id == 0xFFFF) 15019 status = -ENXIO; 15020 eq->host_index = 0; 15021 eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; 15022 eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; 15023 out: 15024 mempool_free(mbox, phba->mbox_mem_pool); 15025 return status; 15026 } 15027 15028 /** 15029 * lpfc_cq_create - Create a Completion Queue on the HBA 15030 * @phba: HBA structure that indicates port to create a queue on. 15031 * @cq: The queue structure to use to create the completion queue. 15032 * @eq: The event queue to bind this completion queue to. 15033 * 15034 * This function creates a completion queue, as detailed in @wq, on a port, 15035 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 15036 * 15037 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15038 * is used to get the entry count and entry size that are necessary to 15039 * determine the number of pages to allocate and use for this queue. The @eq 15040 * is used to indicate which event queue to bind this completion queue to. This 15041 * function will send the CQ_CREATE mailbox command to the HBA to setup the 15042 * completion queue. This function is asynchronous and will wait for the mailbox 15043 * command to finish before continuing. 15044 * 15045 * On success this function will return a zero. If unable to allocate enough 15046 * memory this function will return -ENOMEM. If the queue create mailbox command 15047 * fails this function will return -ENXIO. 15048 **/ 15049 int 15050 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 15051 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 15052 { 15053 struct lpfc_mbx_cq_create *cq_create; 15054 struct lpfc_dmabuf *dmabuf; 15055 LPFC_MBOXQ_t *mbox; 15056 int rc, length, status = 0; 15057 uint32_t shdr_status, shdr_add_status; 15058 union lpfc_sli4_cfg_shdr *shdr; 15059 15060 /* sanity check on queue memory */ 15061 if (!cq || !eq) 15062 return -ENODEV; 15063 15064 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15065 if (!mbox) 15066 return -ENOMEM; 15067 length = (sizeof(struct lpfc_mbx_cq_create) - 15068 sizeof(struct lpfc_sli4_cfg_mhdr)); 15069 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15070 LPFC_MBOX_OPCODE_CQ_CREATE, 15071 length, LPFC_SLI4_MBX_EMBED); 15072 cq_create = &mbox->u.mqe.un.cq_create; 15073 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 15074 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 15075 cq->page_count); 15076 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 15077 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 15078 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15079 phba->sli4_hba.pc_sli4_params.cqv); 15080 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 15081 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 15082 (cq->page_size / SLI4_PAGE_SIZE)); 15083 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 15084 eq->queue_id); 15085 bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, 15086 phba->sli4_hba.pc_sli4_params.cqav); 15087 } else { 15088 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 15089 eq->queue_id); 15090 } 15091 switch (cq->entry_count) { 15092 case 2048: 15093 case 4096: 15094 if (phba->sli4_hba.pc_sli4_params.cqv == 15095 LPFC_Q_CREATE_VERSION_2) { 15096 cq_create->u.request.context.lpfc_cq_context_count = 15097 cq->entry_count; 15098 bf_set(lpfc_cq_context_count, 15099 &cq_create->u.request.context, 15100 LPFC_CQ_CNT_WORD7); 15101 break; 15102 } 15103 /* fall through */ 15104 default: 15105 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15106 "0361 Unsupported CQ count: " 15107 "entry cnt %d sz %d pg cnt %d\n", 15108 cq->entry_count, cq->entry_size, 15109 cq->page_count); 15110 if (cq->entry_count < 256) { 15111 status = -EINVAL; 15112 goto out; 15113 } 15114 /* fall through - otherwise default to smallest count */ 15115 case 256: 15116 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15117 LPFC_CQ_CNT_256); 15118 break; 15119 case 512: 15120 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15121 LPFC_CQ_CNT_512); 15122 break; 15123 case 1024: 15124 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 15125 LPFC_CQ_CNT_1024); 15126 break; 15127 } 15128 list_for_each_entry(dmabuf, &cq->page_list, list) { 15129 memset(dmabuf->virt, 0, cq->page_size); 15130 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15131 putPaddrLow(dmabuf->phys); 15132 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15133 putPaddrHigh(dmabuf->phys); 15134 } 15135 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15136 15137 /* The IOCTL status is embedded in the mailbox subheader. */ 15138 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15139 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15140 if (shdr_status || shdr_add_status || rc) { 15141 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15142 "2501 CQ_CREATE mailbox failed with " 15143 "status x%x add_status x%x, mbx status x%x\n", 15144 shdr_status, shdr_add_status, rc); 15145 status = -ENXIO; 15146 goto out; 15147 } 15148 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15149 if (cq->queue_id == 0xFFFF) { 15150 status = -ENXIO; 15151 goto out; 15152 } 15153 /* link the cq onto the parent eq child list */ 15154 list_add_tail(&cq->list, &eq->child_list); 15155 /* Set up completion queue's type and subtype */ 15156 cq->type = type; 15157 cq->subtype = subtype; 15158 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 15159 cq->assoc_qid = eq->queue_id; 15160 cq->assoc_qp = eq; 15161 cq->host_index = 0; 15162 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15163 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); 15164 15165 if (cq->queue_id > phba->sli4_hba.cq_max) 15166 phba->sli4_hba.cq_max = cq->queue_id; 15167 out: 15168 mempool_free(mbox, phba->mbox_mem_pool); 15169 return status; 15170 } 15171 15172 /** 15173 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 15174 * @phba: HBA structure that indicates port to create a queue on. 15175 * @cqp: The queue structure array to use to create the completion queues. 15176 * @hdwq: The hardware queue array with the EQ to bind completion queues to. 15177 * 15178 * This function creates a set of completion queue, s to support MRQ 15179 * as detailed in @cqp, on a port, 15180 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 15181 * 15182 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15183 * is used to get the entry count and entry size that are necessary to 15184 * determine the number of pages to allocate and use for this queue. The @eq 15185 * is used to indicate which event queue to bind this completion queue to. This 15186 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 15187 * completion queue. This function is asynchronous and will wait for the mailbox 15188 * command to finish before continuing. 15189 * 15190 * On success this function will return a zero. If unable to allocate enough 15191 * memory this function will return -ENOMEM. If the queue create mailbox command 15192 * fails this function will return -ENXIO. 15193 **/ 15194 int 15195 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 15196 struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, 15197 uint32_t subtype) 15198 { 15199 struct lpfc_queue *cq; 15200 struct lpfc_queue *eq; 15201 struct lpfc_mbx_cq_create_set *cq_set; 15202 struct lpfc_dmabuf *dmabuf; 15203 LPFC_MBOXQ_t *mbox; 15204 int rc, length, alloclen, status = 0; 15205 int cnt, idx, numcq, page_idx = 0; 15206 uint32_t shdr_status, shdr_add_status; 15207 union lpfc_sli4_cfg_shdr *shdr; 15208 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15209 15210 /* sanity check on queue memory */ 15211 numcq = phba->cfg_nvmet_mrq; 15212 if (!cqp || !hdwq || !numcq) 15213 return -ENODEV; 15214 15215 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15216 if (!mbox) 15217 return -ENOMEM; 15218 15219 length = sizeof(struct lpfc_mbx_cq_create_set); 15220 length += ((numcq * cqp[0]->page_count) * 15221 sizeof(struct dma_address)); 15222 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15223 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 15224 LPFC_SLI4_MBX_NEMBED); 15225 if (alloclen < length) { 15226 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15227 "3098 Allocated DMA memory size (%d) is " 15228 "less than the requested DMA memory size " 15229 "(%d)\n", alloclen, length); 15230 status = -ENOMEM; 15231 goto out; 15232 } 15233 cq_set = mbox->sge_array->addr[0]; 15234 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 15235 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 15236 15237 for (idx = 0; idx < numcq; idx++) { 15238 cq = cqp[idx]; 15239 eq = hdwq[idx].hba_eq; 15240 if (!cq || !eq) { 15241 status = -ENOMEM; 15242 goto out; 15243 } 15244 if (!phba->sli4_hba.pc_sli4_params.supported) 15245 hw_page_size = cq->page_size; 15246 15247 switch (idx) { 15248 case 0: 15249 bf_set(lpfc_mbx_cq_create_set_page_size, 15250 &cq_set->u.request, 15251 (hw_page_size / SLI4_PAGE_SIZE)); 15252 bf_set(lpfc_mbx_cq_create_set_num_pages, 15253 &cq_set->u.request, cq->page_count); 15254 bf_set(lpfc_mbx_cq_create_set_evt, 15255 &cq_set->u.request, 1); 15256 bf_set(lpfc_mbx_cq_create_set_valid, 15257 &cq_set->u.request, 1); 15258 bf_set(lpfc_mbx_cq_create_set_cqe_size, 15259 &cq_set->u.request, 0); 15260 bf_set(lpfc_mbx_cq_create_set_num_cq, 15261 &cq_set->u.request, numcq); 15262 bf_set(lpfc_mbx_cq_create_set_autovalid, 15263 &cq_set->u.request, 15264 phba->sli4_hba.pc_sli4_params.cqav); 15265 switch (cq->entry_count) { 15266 case 2048: 15267 case 4096: 15268 if (phba->sli4_hba.pc_sli4_params.cqv == 15269 LPFC_Q_CREATE_VERSION_2) { 15270 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15271 &cq_set->u.request, 15272 cq->entry_count); 15273 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15274 &cq_set->u.request, 15275 LPFC_CQ_CNT_WORD7); 15276 break; 15277 } 15278 /* fall through */ 15279 default: 15280 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15281 "3118 Bad CQ count. (%d)\n", 15282 cq->entry_count); 15283 if (cq->entry_count < 256) { 15284 status = -EINVAL; 15285 goto out; 15286 } 15287 /* fall through - otherwise default to smallest */ 15288 case 256: 15289 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15290 &cq_set->u.request, LPFC_CQ_CNT_256); 15291 break; 15292 case 512: 15293 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15294 &cq_set->u.request, LPFC_CQ_CNT_512); 15295 break; 15296 case 1024: 15297 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 15298 &cq_set->u.request, LPFC_CQ_CNT_1024); 15299 break; 15300 } 15301 bf_set(lpfc_mbx_cq_create_set_eq_id0, 15302 &cq_set->u.request, eq->queue_id); 15303 break; 15304 case 1: 15305 bf_set(lpfc_mbx_cq_create_set_eq_id1, 15306 &cq_set->u.request, eq->queue_id); 15307 break; 15308 case 2: 15309 bf_set(lpfc_mbx_cq_create_set_eq_id2, 15310 &cq_set->u.request, eq->queue_id); 15311 break; 15312 case 3: 15313 bf_set(lpfc_mbx_cq_create_set_eq_id3, 15314 &cq_set->u.request, eq->queue_id); 15315 break; 15316 case 4: 15317 bf_set(lpfc_mbx_cq_create_set_eq_id4, 15318 &cq_set->u.request, eq->queue_id); 15319 break; 15320 case 5: 15321 bf_set(lpfc_mbx_cq_create_set_eq_id5, 15322 &cq_set->u.request, eq->queue_id); 15323 break; 15324 case 6: 15325 bf_set(lpfc_mbx_cq_create_set_eq_id6, 15326 &cq_set->u.request, eq->queue_id); 15327 break; 15328 case 7: 15329 bf_set(lpfc_mbx_cq_create_set_eq_id7, 15330 &cq_set->u.request, eq->queue_id); 15331 break; 15332 case 8: 15333 bf_set(lpfc_mbx_cq_create_set_eq_id8, 15334 &cq_set->u.request, eq->queue_id); 15335 break; 15336 case 9: 15337 bf_set(lpfc_mbx_cq_create_set_eq_id9, 15338 &cq_set->u.request, eq->queue_id); 15339 break; 15340 case 10: 15341 bf_set(lpfc_mbx_cq_create_set_eq_id10, 15342 &cq_set->u.request, eq->queue_id); 15343 break; 15344 case 11: 15345 bf_set(lpfc_mbx_cq_create_set_eq_id11, 15346 &cq_set->u.request, eq->queue_id); 15347 break; 15348 case 12: 15349 bf_set(lpfc_mbx_cq_create_set_eq_id12, 15350 &cq_set->u.request, eq->queue_id); 15351 break; 15352 case 13: 15353 bf_set(lpfc_mbx_cq_create_set_eq_id13, 15354 &cq_set->u.request, eq->queue_id); 15355 break; 15356 case 14: 15357 bf_set(lpfc_mbx_cq_create_set_eq_id14, 15358 &cq_set->u.request, eq->queue_id); 15359 break; 15360 case 15: 15361 bf_set(lpfc_mbx_cq_create_set_eq_id15, 15362 &cq_set->u.request, eq->queue_id); 15363 break; 15364 } 15365 15366 /* link the cq onto the parent eq child list */ 15367 list_add_tail(&cq->list, &eq->child_list); 15368 /* Set up completion queue's type and subtype */ 15369 cq->type = type; 15370 cq->subtype = subtype; 15371 cq->assoc_qid = eq->queue_id; 15372 cq->assoc_qp = eq; 15373 cq->host_index = 0; 15374 cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; 15375 cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, 15376 cq->entry_count); 15377 cq->chann = idx; 15378 15379 rc = 0; 15380 list_for_each_entry(dmabuf, &cq->page_list, list) { 15381 memset(dmabuf->virt, 0, hw_page_size); 15382 cnt = page_idx + dmabuf->buffer_tag; 15383 cq_set->u.request.page[cnt].addr_lo = 15384 putPaddrLow(dmabuf->phys); 15385 cq_set->u.request.page[cnt].addr_hi = 15386 putPaddrHigh(dmabuf->phys); 15387 rc++; 15388 } 15389 page_idx += rc; 15390 } 15391 15392 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15393 15394 /* The IOCTL status is embedded in the mailbox subheader. */ 15395 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15396 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15397 if (shdr_status || shdr_add_status || rc) { 15398 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15399 "3119 CQ_CREATE_SET mailbox failed with " 15400 "status x%x add_status x%x, mbx status x%x\n", 15401 shdr_status, shdr_add_status, rc); 15402 status = -ENXIO; 15403 goto out; 15404 } 15405 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 15406 if (rc == 0xFFFF) { 15407 status = -ENXIO; 15408 goto out; 15409 } 15410 15411 for (idx = 0; idx < numcq; idx++) { 15412 cq = cqp[idx]; 15413 cq->queue_id = rc + idx; 15414 if (cq->queue_id > phba->sli4_hba.cq_max) 15415 phba->sli4_hba.cq_max = cq->queue_id; 15416 } 15417 15418 out: 15419 lpfc_sli4_mbox_cmd_free(phba, mbox); 15420 return status; 15421 } 15422 15423 /** 15424 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 15425 * @phba: HBA structure that indicates port to create a queue on. 15426 * @mq: The queue structure to use to create the mailbox queue. 15427 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 15428 * @cq: The completion queue to associate with this cq. 15429 * 15430 * This function provides failback (fb) functionality when the 15431 * mq_create_ext fails on older FW generations. It's purpose is identical 15432 * to mq_create_ext otherwise. 15433 * 15434 * This routine cannot fail as all attributes were previously accessed and 15435 * initialized in mq_create_ext. 15436 **/ 15437 static void 15438 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 15439 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 15440 { 15441 struct lpfc_mbx_mq_create *mq_create; 15442 struct lpfc_dmabuf *dmabuf; 15443 int length; 15444 15445 length = (sizeof(struct lpfc_mbx_mq_create) - 15446 sizeof(struct lpfc_sli4_cfg_mhdr)); 15447 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15448 LPFC_MBOX_OPCODE_MQ_CREATE, 15449 length, LPFC_SLI4_MBX_EMBED); 15450 mq_create = &mbox->u.mqe.un.mq_create; 15451 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 15452 mq->page_count); 15453 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 15454 cq->queue_id); 15455 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 15456 switch (mq->entry_count) { 15457 case 16: 15458 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15459 LPFC_MQ_RING_SIZE_16); 15460 break; 15461 case 32: 15462 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15463 LPFC_MQ_RING_SIZE_32); 15464 break; 15465 case 64: 15466 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15467 LPFC_MQ_RING_SIZE_64); 15468 break; 15469 case 128: 15470 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 15471 LPFC_MQ_RING_SIZE_128); 15472 break; 15473 } 15474 list_for_each_entry(dmabuf, &mq->page_list, list) { 15475 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15476 putPaddrLow(dmabuf->phys); 15477 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15478 putPaddrHigh(dmabuf->phys); 15479 } 15480 } 15481 15482 /** 15483 * lpfc_mq_create - Create a mailbox Queue on the HBA 15484 * @phba: HBA structure that indicates port to create a queue on. 15485 * @mq: The queue structure to use to create the mailbox queue. 15486 * @cq: The completion queue to associate with this cq. 15487 * @subtype: The queue's subtype. 15488 * 15489 * This function creates a mailbox queue, as detailed in @mq, on a port, 15490 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 15491 * 15492 * The @phba struct is used to send mailbox command to HBA. The @cq struct 15493 * is used to get the entry count and entry size that are necessary to 15494 * determine the number of pages to allocate and use for this queue. This 15495 * function will send the MQ_CREATE mailbox command to the HBA to setup the 15496 * mailbox queue. This function is asynchronous and will wait for the mailbox 15497 * command to finish before continuing. 15498 * 15499 * On success this function will return a zero. If unable to allocate enough 15500 * memory this function will return -ENOMEM. If the queue create mailbox command 15501 * fails this function will return -ENXIO. 15502 **/ 15503 int32_t 15504 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 15505 struct lpfc_queue *cq, uint32_t subtype) 15506 { 15507 struct lpfc_mbx_mq_create *mq_create; 15508 struct lpfc_mbx_mq_create_ext *mq_create_ext; 15509 struct lpfc_dmabuf *dmabuf; 15510 LPFC_MBOXQ_t *mbox; 15511 int rc, length, status = 0; 15512 uint32_t shdr_status, shdr_add_status; 15513 union lpfc_sli4_cfg_shdr *shdr; 15514 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15515 15516 /* sanity check on queue memory */ 15517 if (!mq || !cq) 15518 return -ENODEV; 15519 if (!phba->sli4_hba.pc_sli4_params.supported) 15520 hw_page_size = SLI4_PAGE_SIZE; 15521 15522 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15523 if (!mbox) 15524 return -ENOMEM; 15525 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 15526 sizeof(struct lpfc_sli4_cfg_mhdr)); 15527 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15528 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 15529 length, LPFC_SLI4_MBX_EMBED); 15530 15531 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 15532 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 15533 bf_set(lpfc_mbx_mq_create_ext_num_pages, 15534 &mq_create_ext->u.request, mq->page_count); 15535 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 15536 &mq_create_ext->u.request, 1); 15537 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 15538 &mq_create_ext->u.request, 1); 15539 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 15540 &mq_create_ext->u.request, 1); 15541 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 15542 &mq_create_ext->u.request, 1); 15543 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 15544 &mq_create_ext->u.request, 1); 15545 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 15546 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15547 phba->sli4_hba.pc_sli4_params.mqv); 15548 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 15549 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 15550 cq->queue_id); 15551 else 15552 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 15553 cq->queue_id); 15554 switch (mq->entry_count) { 15555 default: 15556 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15557 "0362 Unsupported MQ count. (%d)\n", 15558 mq->entry_count); 15559 if (mq->entry_count < 16) { 15560 status = -EINVAL; 15561 goto out; 15562 } 15563 /* fall through - otherwise default to smallest count */ 15564 case 16: 15565 bf_set(lpfc_mq_context_ring_size, 15566 &mq_create_ext->u.request.context, 15567 LPFC_MQ_RING_SIZE_16); 15568 break; 15569 case 32: 15570 bf_set(lpfc_mq_context_ring_size, 15571 &mq_create_ext->u.request.context, 15572 LPFC_MQ_RING_SIZE_32); 15573 break; 15574 case 64: 15575 bf_set(lpfc_mq_context_ring_size, 15576 &mq_create_ext->u.request.context, 15577 LPFC_MQ_RING_SIZE_64); 15578 break; 15579 case 128: 15580 bf_set(lpfc_mq_context_ring_size, 15581 &mq_create_ext->u.request.context, 15582 LPFC_MQ_RING_SIZE_128); 15583 break; 15584 } 15585 list_for_each_entry(dmabuf, &mq->page_list, list) { 15586 memset(dmabuf->virt, 0, hw_page_size); 15587 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 15588 putPaddrLow(dmabuf->phys); 15589 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 15590 putPaddrHigh(dmabuf->phys); 15591 } 15592 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15593 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15594 &mq_create_ext->u.response); 15595 if (rc != MBX_SUCCESS) { 15596 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15597 "2795 MQ_CREATE_EXT failed with " 15598 "status x%x. Failback to MQ_CREATE.\n", 15599 rc); 15600 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 15601 mq_create = &mbox->u.mqe.un.mq_create; 15602 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15603 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 15604 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 15605 &mq_create->u.response); 15606 } 15607 15608 /* The IOCTL status is embedded in the mailbox subheader. */ 15609 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15610 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15611 if (shdr_status || shdr_add_status || rc) { 15612 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15613 "2502 MQ_CREATE mailbox failed with " 15614 "status x%x add_status x%x, mbx status x%x\n", 15615 shdr_status, shdr_add_status, rc); 15616 status = -ENXIO; 15617 goto out; 15618 } 15619 if (mq->queue_id == 0xFFFF) { 15620 status = -ENXIO; 15621 goto out; 15622 } 15623 mq->type = LPFC_MQ; 15624 mq->assoc_qid = cq->queue_id; 15625 mq->subtype = subtype; 15626 mq->host_index = 0; 15627 mq->hba_index = 0; 15628 15629 /* link the mq onto the parent cq child list */ 15630 list_add_tail(&mq->list, &cq->child_list); 15631 out: 15632 mempool_free(mbox, phba->mbox_mem_pool); 15633 return status; 15634 } 15635 15636 /** 15637 * lpfc_wq_create - Create a Work Queue on the HBA 15638 * @phba: HBA structure that indicates port to create a queue on. 15639 * @wq: The queue structure to use to create the work queue. 15640 * @cq: The completion queue to bind this work queue to. 15641 * @subtype: The subtype of the work queue indicating its functionality. 15642 * 15643 * This function creates a work queue, as detailed in @wq, on a port, described 15644 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 15645 * 15646 * The @phba struct is used to send mailbox command to HBA. The @wq struct 15647 * is used to get the entry count and entry size that are necessary to 15648 * determine the number of pages to allocate and use for this queue. The @cq 15649 * is used to indicate which completion queue to bind this work queue to. This 15650 * function will send the WQ_CREATE mailbox command to the HBA to setup the 15651 * work queue. This function is asynchronous and will wait for the mailbox 15652 * command to finish before continuing. 15653 * 15654 * On success this function will return a zero. If unable to allocate enough 15655 * memory this function will return -ENOMEM. If the queue create mailbox command 15656 * fails this function will return -ENXIO. 15657 **/ 15658 int 15659 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 15660 struct lpfc_queue *cq, uint32_t subtype) 15661 { 15662 struct lpfc_mbx_wq_create *wq_create; 15663 struct lpfc_dmabuf *dmabuf; 15664 LPFC_MBOXQ_t *mbox; 15665 int rc, length, status = 0; 15666 uint32_t shdr_status, shdr_add_status; 15667 union lpfc_sli4_cfg_shdr *shdr; 15668 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15669 struct dma_address *page; 15670 void __iomem *bar_memmap_p; 15671 uint32_t db_offset; 15672 uint16_t pci_barset; 15673 uint8_t dpp_barset; 15674 uint32_t dpp_offset; 15675 unsigned long pg_addr; 15676 uint8_t wq_create_version; 15677 15678 /* sanity check on queue memory */ 15679 if (!wq || !cq) 15680 return -ENODEV; 15681 if (!phba->sli4_hba.pc_sli4_params.supported) 15682 hw_page_size = wq->page_size; 15683 15684 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15685 if (!mbox) 15686 return -ENOMEM; 15687 length = (sizeof(struct lpfc_mbx_wq_create) - 15688 sizeof(struct lpfc_sli4_cfg_mhdr)); 15689 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15690 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 15691 length, LPFC_SLI4_MBX_EMBED); 15692 wq_create = &mbox->u.mqe.un.wq_create; 15693 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 15694 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 15695 wq->page_count); 15696 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 15697 cq->queue_id); 15698 15699 /* wqv is the earliest version supported, NOT the latest */ 15700 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15701 phba->sli4_hba.pc_sli4_params.wqv); 15702 15703 if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || 15704 (wq->page_size > SLI4_PAGE_SIZE)) 15705 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15706 else 15707 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15708 15709 15710 if (phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) 15711 wq_create_version = LPFC_Q_CREATE_VERSION_1; 15712 else 15713 wq_create_version = LPFC_Q_CREATE_VERSION_0; 15714 15715 switch (wq_create_version) { 15716 case LPFC_Q_CREATE_VERSION_1: 15717 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 15718 wq->entry_count); 15719 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15720 LPFC_Q_CREATE_VERSION_1); 15721 15722 switch (wq->entry_size) { 15723 default: 15724 case 64: 15725 bf_set(lpfc_mbx_wq_create_wqe_size, 15726 &wq_create->u.request_1, 15727 LPFC_WQ_WQE_SIZE_64); 15728 break; 15729 case 128: 15730 bf_set(lpfc_mbx_wq_create_wqe_size, 15731 &wq_create->u.request_1, 15732 LPFC_WQ_WQE_SIZE_128); 15733 break; 15734 } 15735 /* Request DPP by default */ 15736 bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); 15737 bf_set(lpfc_mbx_wq_create_page_size, 15738 &wq_create->u.request_1, 15739 (wq->page_size / SLI4_PAGE_SIZE)); 15740 page = wq_create->u.request_1.page; 15741 break; 15742 default: 15743 page = wq_create->u.request.page; 15744 break; 15745 } 15746 15747 list_for_each_entry(dmabuf, &wq->page_list, list) { 15748 memset(dmabuf->virt, 0, hw_page_size); 15749 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 15750 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 15751 } 15752 15753 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15754 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 15755 15756 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15757 /* The IOCTL status is embedded in the mailbox subheader. */ 15758 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15759 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15760 if (shdr_status || shdr_add_status || rc) { 15761 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15762 "2503 WQ_CREATE mailbox failed with " 15763 "status x%x add_status x%x, mbx status x%x\n", 15764 shdr_status, shdr_add_status, rc); 15765 status = -ENXIO; 15766 goto out; 15767 } 15768 15769 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) 15770 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, 15771 &wq_create->u.response); 15772 else 15773 wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, 15774 &wq_create->u.response_1); 15775 15776 if (wq->queue_id == 0xFFFF) { 15777 status = -ENXIO; 15778 goto out; 15779 } 15780 15781 wq->db_format = LPFC_DB_LIST_FORMAT; 15782 if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { 15783 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15784 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 15785 &wq_create->u.response); 15786 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 15787 (wq->db_format != LPFC_DB_RING_FORMAT)) { 15788 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15789 "3265 WQ[%d] doorbell format " 15790 "not supported: x%x\n", 15791 wq->queue_id, wq->db_format); 15792 status = -EINVAL; 15793 goto out; 15794 } 15795 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 15796 &wq_create->u.response); 15797 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15798 pci_barset); 15799 if (!bar_memmap_p) { 15800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15801 "3263 WQ[%d] failed to memmap " 15802 "pci barset:x%x\n", 15803 wq->queue_id, pci_barset); 15804 status = -ENOMEM; 15805 goto out; 15806 } 15807 db_offset = wq_create->u.response.doorbell_offset; 15808 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 15809 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 15810 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15811 "3252 WQ[%d] doorbell offset " 15812 "not supported: x%x\n", 15813 wq->queue_id, db_offset); 15814 status = -EINVAL; 15815 goto out; 15816 } 15817 wq->db_regaddr = bar_memmap_p + db_offset; 15818 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15819 "3264 WQ[%d]: barset:x%x, offset:x%x, " 15820 "format:x%x\n", wq->queue_id, 15821 pci_barset, db_offset, wq->db_format); 15822 } else 15823 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15824 } else { 15825 /* Check if DPP was honored by the firmware */ 15826 wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, 15827 &wq_create->u.response_1); 15828 if (wq->dpp_enable) { 15829 pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, 15830 &wq_create->u.response_1); 15831 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15832 pci_barset); 15833 if (!bar_memmap_p) { 15834 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15835 "3267 WQ[%d] failed to memmap " 15836 "pci barset:x%x\n", 15837 wq->queue_id, pci_barset); 15838 status = -ENOMEM; 15839 goto out; 15840 } 15841 db_offset = wq_create->u.response_1.doorbell_offset; 15842 wq->db_regaddr = bar_memmap_p + db_offset; 15843 wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, 15844 &wq_create->u.response_1); 15845 dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, 15846 &wq_create->u.response_1); 15847 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, 15848 dpp_barset); 15849 if (!bar_memmap_p) { 15850 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15851 "3268 WQ[%d] failed to memmap " 15852 "pci barset:x%x\n", 15853 wq->queue_id, dpp_barset); 15854 status = -ENOMEM; 15855 goto out; 15856 } 15857 dpp_offset = wq_create->u.response_1.dpp_offset; 15858 wq->dpp_regaddr = bar_memmap_p + dpp_offset; 15859 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15860 "3271 WQ[%d]: barset:x%x, offset:x%x, " 15861 "dpp_id:x%x dpp_barset:x%x " 15862 "dpp_offset:x%x\n", 15863 wq->queue_id, pci_barset, db_offset, 15864 wq->dpp_id, dpp_barset, dpp_offset); 15865 15866 /* Enable combined writes for DPP aperture */ 15867 pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; 15868 #ifdef CONFIG_X86 15869 rc = set_memory_wc(pg_addr, 1); 15870 if (rc) { 15871 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15872 "3272 Cannot setup Combined " 15873 "Write on WQ[%d] - disable DPP\n", 15874 wq->queue_id); 15875 phba->cfg_enable_dpp = 0; 15876 } 15877 #else 15878 phba->cfg_enable_dpp = 0; 15879 #endif 15880 } else 15881 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 15882 } 15883 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 15884 if (wq->pring == NULL) { 15885 status = -ENOMEM; 15886 goto out; 15887 } 15888 wq->type = LPFC_WQ; 15889 wq->assoc_qid = cq->queue_id; 15890 wq->subtype = subtype; 15891 wq->host_index = 0; 15892 wq->hba_index = 0; 15893 wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; 15894 15895 /* link the wq onto the parent cq child list */ 15896 list_add_tail(&wq->list, &cq->child_list); 15897 out: 15898 mempool_free(mbox, phba->mbox_mem_pool); 15899 return status; 15900 } 15901 15902 /** 15903 * lpfc_rq_create - Create a Receive Queue on the HBA 15904 * @phba: HBA structure that indicates port to create a queue on. 15905 * @hrq: The queue structure to use to create the header receive queue. 15906 * @drq: The queue structure to use to create the data receive queue. 15907 * @cq: The completion queue to bind this work queue to. 15908 * 15909 * This function creates a receive buffer queue pair , as detailed in @hrq and 15910 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15911 * to the HBA. 15912 * 15913 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15914 * struct is used to get the entry count that is necessary to determine the 15915 * number of pages to use for this queue. The @cq is used to indicate which 15916 * completion queue to bind received buffers that are posted to these queues to. 15917 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15918 * receive queue pair. This function is asynchronous and will wait for the 15919 * mailbox command to finish before continuing. 15920 * 15921 * On success this function will return a zero. If unable to allocate enough 15922 * memory this function will return -ENOMEM. If the queue create mailbox command 15923 * fails this function will return -ENXIO. 15924 **/ 15925 int 15926 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15927 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 15928 { 15929 struct lpfc_mbx_rq_create *rq_create; 15930 struct lpfc_dmabuf *dmabuf; 15931 LPFC_MBOXQ_t *mbox; 15932 int rc, length, status = 0; 15933 uint32_t shdr_status, shdr_add_status; 15934 union lpfc_sli4_cfg_shdr *shdr; 15935 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15936 void __iomem *bar_memmap_p; 15937 uint32_t db_offset; 15938 uint16_t pci_barset; 15939 15940 /* sanity check on queue memory */ 15941 if (!hrq || !drq || !cq) 15942 return -ENODEV; 15943 if (!phba->sli4_hba.pc_sli4_params.supported) 15944 hw_page_size = SLI4_PAGE_SIZE; 15945 15946 if (hrq->entry_count != drq->entry_count) 15947 return -EINVAL; 15948 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15949 if (!mbox) 15950 return -ENOMEM; 15951 length = (sizeof(struct lpfc_mbx_rq_create) - 15952 sizeof(struct lpfc_sli4_cfg_mhdr)); 15953 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15954 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15955 length, LPFC_SLI4_MBX_EMBED); 15956 rq_create = &mbox->u.mqe.un.rq_create; 15957 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15958 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15959 phba->sli4_hba.pc_sli4_params.rqv); 15960 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15961 bf_set(lpfc_rq_context_rqe_count_1, 15962 &rq_create->u.request.context, 15963 hrq->entry_count); 15964 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 15965 bf_set(lpfc_rq_context_rqe_size, 15966 &rq_create->u.request.context, 15967 LPFC_RQE_SIZE_8); 15968 bf_set(lpfc_rq_context_page_size, 15969 &rq_create->u.request.context, 15970 LPFC_RQ_PAGE_SIZE_4096); 15971 } else { 15972 switch (hrq->entry_count) { 15973 default: 15974 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15975 "2535 Unsupported RQ count. (%d)\n", 15976 hrq->entry_count); 15977 if (hrq->entry_count < 512) { 15978 status = -EINVAL; 15979 goto out; 15980 } 15981 /* fall through - otherwise default to smallest count */ 15982 case 512: 15983 bf_set(lpfc_rq_context_rqe_count, 15984 &rq_create->u.request.context, 15985 LPFC_RQ_RING_SIZE_512); 15986 break; 15987 case 1024: 15988 bf_set(lpfc_rq_context_rqe_count, 15989 &rq_create->u.request.context, 15990 LPFC_RQ_RING_SIZE_1024); 15991 break; 15992 case 2048: 15993 bf_set(lpfc_rq_context_rqe_count, 15994 &rq_create->u.request.context, 15995 LPFC_RQ_RING_SIZE_2048); 15996 break; 15997 case 4096: 15998 bf_set(lpfc_rq_context_rqe_count, 15999 &rq_create->u.request.context, 16000 LPFC_RQ_RING_SIZE_4096); 16001 break; 16002 } 16003 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 16004 LPFC_HDR_BUF_SIZE); 16005 } 16006 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16007 cq->queue_id); 16008 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16009 hrq->page_count); 16010 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16011 memset(dmabuf->virt, 0, hw_page_size); 16012 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16013 putPaddrLow(dmabuf->phys); 16014 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16015 putPaddrHigh(dmabuf->phys); 16016 } 16017 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16018 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16019 16020 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16021 /* The IOCTL status is embedded in the mailbox subheader. */ 16022 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16023 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16024 if (shdr_status || shdr_add_status || rc) { 16025 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16026 "2504 RQ_CREATE mailbox failed with " 16027 "status x%x add_status x%x, mbx status x%x\n", 16028 shdr_status, shdr_add_status, rc); 16029 status = -ENXIO; 16030 goto out; 16031 } 16032 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16033 if (hrq->queue_id == 0xFFFF) { 16034 status = -ENXIO; 16035 goto out; 16036 } 16037 16038 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 16039 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 16040 &rq_create->u.response); 16041 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 16042 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 16043 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16044 "3262 RQ [%d] doorbell format not " 16045 "supported: x%x\n", hrq->queue_id, 16046 hrq->db_format); 16047 status = -EINVAL; 16048 goto out; 16049 } 16050 16051 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 16052 &rq_create->u.response); 16053 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 16054 if (!bar_memmap_p) { 16055 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16056 "3269 RQ[%d] failed to memmap pci " 16057 "barset:x%x\n", hrq->queue_id, 16058 pci_barset); 16059 status = -ENOMEM; 16060 goto out; 16061 } 16062 16063 db_offset = rq_create->u.response.doorbell_offset; 16064 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 16065 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 16066 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16067 "3270 RQ[%d] doorbell offset not " 16068 "supported: x%x\n", hrq->queue_id, 16069 db_offset); 16070 status = -EINVAL; 16071 goto out; 16072 } 16073 hrq->db_regaddr = bar_memmap_p + db_offset; 16074 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 16075 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 16076 "format:x%x\n", hrq->queue_id, pci_barset, 16077 db_offset, hrq->db_format); 16078 } else { 16079 hrq->db_format = LPFC_DB_RING_FORMAT; 16080 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16081 } 16082 hrq->type = LPFC_HRQ; 16083 hrq->assoc_qid = cq->queue_id; 16084 hrq->subtype = subtype; 16085 hrq->host_index = 0; 16086 hrq->hba_index = 0; 16087 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16088 16089 /* now create the data queue */ 16090 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16091 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 16092 length, LPFC_SLI4_MBX_EMBED); 16093 bf_set(lpfc_mbox_hdr_version, &shdr->request, 16094 phba->sli4_hba.pc_sli4_params.rqv); 16095 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 16096 bf_set(lpfc_rq_context_rqe_count_1, 16097 &rq_create->u.request.context, hrq->entry_count); 16098 if (subtype == LPFC_NVMET) 16099 rq_create->u.request.context.buffer_size = 16100 LPFC_NVMET_DATA_BUF_SIZE; 16101 else 16102 rq_create->u.request.context.buffer_size = 16103 LPFC_DATA_BUF_SIZE; 16104 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 16105 LPFC_RQE_SIZE_8); 16106 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 16107 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16108 } else { 16109 switch (drq->entry_count) { 16110 default: 16111 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16112 "2536 Unsupported RQ count. (%d)\n", 16113 drq->entry_count); 16114 if (drq->entry_count < 512) { 16115 status = -EINVAL; 16116 goto out; 16117 } 16118 /* fall through - otherwise default to smallest count */ 16119 case 512: 16120 bf_set(lpfc_rq_context_rqe_count, 16121 &rq_create->u.request.context, 16122 LPFC_RQ_RING_SIZE_512); 16123 break; 16124 case 1024: 16125 bf_set(lpfc_rq_context_rqe_count, 16126 &rq_create->u.request.context, 16127 LPFC_RQ_RING_SIZE_1024); 16128 break; 16129 case 2048: 16130 bf_set(lpfc_rq_context_rqe_count, 16131 &rq_create->u.request.context, 16132 LPFC_RQ_RING_SIZE_2048); 16133 break; 16134 case 4096: 16135 bf_set(lpfc_rq_context_rqe_count, 16136 &rq_create->u.request.context, 16137 LPFC_RQ_RING_SIZE_4096); 16138 break; 16139 } 16140 if (subtype == LPFC_NVMET) 16141 bf_set(lpfc_rq_context_buf_size, 16142 &rq_create->u.request.context, 16143 LPFC_NVMET_DATA_BUF_SIZE); 16144 else 16145 bf_set(lpfc_rq_context_buf_size, 16146 &rq_create->u.request.context, 16147 LPFC_DATA_BUF_SIZE); 16148 } 16149 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 16150 cq->queue_id); 16151 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 16152 drq->page_count); 16153 list_for_each_entry(dmabuf, &drq->page_list, list) { 16154 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 16155 putPaddrLow(dmabuf->phys); 16156 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 16157 putPaddrHigh(dmabuf->phys); 16158 } 16159 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 16160 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 16161 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16162 /* The IOCTL status is embedded in the mailbox subheader. */ 16163 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 16164 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16165 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16166 if (shdr_status || shdr_add_status || rc) { 16167 status = -ENXIO; 16168 goto out; 16169 } 16170 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16171 if (drq->queue_id == 0xFFFF) { 16172 status = -ENXIO; 16173 goto out; 16174 } 16175 drq->type = LPFC_DRQ; 16176 drq->assoc_qid = cq->queue_id; 16177 drq->subtype = subtype; 16178 drq->host_index = 0; 16179 drq->hba_index = 0; 16180 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16181 16182 /* link the header and data RQs onto the parent cq child list */ 16183 list_add_tail(&hrq->list, &cq->child_list); 16184 list_add_tail(&drq->list, &cq->child_list); 16185 16186 out: 16187 mempool_free(mbox, phba->mbox_mem_pool); 16188 return status; 16189 } 16190 16191 /** 16192 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 16193 * @phba: HBA structure that indicates port to create a queue on. 16194 * @hrqp: The queue structure array to use to create the header receive queues. 16195 * @drqp: The queue structure array to use to create the data receive queues. 16196 * @cqp: The completion queue array to bind these receive queues to. 16197 * 16198 * This function creates a receive buffer queue pair , as detailed in @hrq and 16199 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 16200 * to the HBA. 16201 * 16202 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 16203 * struct is used to get the entry count that is necessary to determine the 16204 * number of pages to use for this queue. The @cq is used to indicate which 16205 * completion queue to bind received buffers that are posted to these queues to. 16206 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 16207 * receive queue pair. This function is asynchronous and will wait for the 16208 * mailbox command to finish before continuing. 16209 * 16210 * On success this function will return a zero. If unable to allocate enough 16211 * memory this function will return -ENOMEM. If the queue create mailbox command 16212 * fails this function will return -ENXIO. 16213 **/ 16214 int 16215 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 16216 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 16217 uint32_t subtype) 16218 { 16219 struct lpfc_queue *hrq, *drq, *cq; 16220 struct lpfc_mbx_rq_create_v2 *rq_create; 16221 struct lpfc_dmabuf *dmabuf; 16222 LPFC_MBOXQ_t *mbox; 16223 int rc, length, alloclen, status = 0; 16224 int cnt, idx, numrq, page_idx = 0; 16225 uint32_t shdr_status, shdr_add_status; 16226 union lpfc_sli4_cfg_shdr *shdr; 16227 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 16228 16229 numrq = phba->cfg_nvmet_mrq; 16230 /* sanity check on array memory */ 16231 if (!hrqp || !drqp || !cqp || !numrq) 16232 return -ENODEV; 16233 if (!phba->sli4_hba.pc_sli4_params.supported) 16234 hw_page_size = SLI4_PAGE_SIZE; 16235 16236 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16237 if (!mbox) 16238 return -ENOMEM; 16239 16240 length = sizeof(struct lpfc_mbx_rq_create_v2); 16241 length += ((2 * numrq * hrqp[0]->page_count) * 16242 sizeof(struct dma_address)); 16243 16244 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16245 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 16246 LPFC_SLI4_MBX_NEMBED); 16247 if (alloclen < length) { 16248 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16249 "3099 Allocated DMA memory size (%d) is " 16250 "less than the requested DMA memory size " 16251 "(%d)\n", alloclen, length); 16252 status = -ENOMEM; 16253 goto out; 16254 } 16255 16256 16257 16258 rq_create = mbox->sge_array->addr[0]; 16259 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 16260 16261 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 16262 cnt = 0; 16263 16264 for (idx = 0; idx < numrq; idx++) { 16265 hrq = hrqp[idx]; 16266 drq = drqp[idx]; 16267 cq = cqp[idx]; 16268 16269 /* sanity check on queue memory */ 16270 if (!hrq || !drq || !cq) { 16271 status = -ENODEV; 16272 goto out; 16273 } 16274 16275 if (hrq->entry_count != drq->entry_count) { 16276 status = -EINVAL; 16277 goto out; 16278 } 16279 16280 if (idx == 0) { 16281 bf_set(lpfc_mbx_rq_create_num_pages, 16282 &rq_create->u.request, 16283 hrq->page_count); 16284 bf_set(lpfc_mbx_rq_create_rq_cnt, 16285 &rq_create->u.request, (numrq * 2)); 16286 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 16287 1); 16288 bf_set(lpfc_rq_context_base_cq, 16289 &rq_create->u.request.context, 16290 cq->queue_id); 16291 bf_set(lpfc_rq_context_data_size, 16292 &rq_create->u.request.context, 16293 LPFC_NVMET_DATA_BUF_SIZE); 16294 bf_set(lpfc_rq_context_hdr_size, 16295 &rq_create->u.request.context, 16296 LPFC_HDR_BUF_SIZE); 16297 bf_set(lpfc_rq_context_rqe_count_1, 16298 &rq_create->u.request.context, 16299 hrq->entry_count); 16300 bf_set(lpfc_rq_context_rqe_size, 16301 &rq_create->u.request.context, 16302 LPFC_RQE_SIZE_8); 16303 bf_set(lpfc_rq_context_page_size, 16304 &rq_create->u.request.context, 16305 (PAGE_SIZE/SLI4_PAGE_SIZE)); 16306 } 16307 rc = 0; 16308 list_for_each_entry(dmabuf, &hrq->page_list, list) { 16309 memset(dmabuf->virt, 0, hw_page_size); 16310 cnt = page_idx + dmabuf->buffer_tag; 16311 rq_create->u.request.page[cnt].addr_lo = 16312 putPaddrLow(dmabuf->phys); 16313 rq_create->u.request.page[cnt].addr_hi = 16314 putPaddrHigh(dmabuf->phys); 16315 rc++; 16316 } 16317 page_idx += rc; 16318 16319 rc = 0; 16320 list_for_each_entry(dmabuf, &drq->page_list, list) { 16321 memset(dmabuf->virt, 0, hw_page_size); 16322 cnt = page_idx + dmabuf->buffer_tag; 16323 rq_create->u.request.page[cnt].addr_lo = 16324 putPaddrLow(dmabuf->phys); 16325 rq_create->u.request.page[cnt].addr_hi = 16326 putPaddrHigh(dmabuf->phys); 16327 rc++; 16328 } 16329 page_idx += rc; 16330 16331 hrq->db_format = LPFC_DB_RING_FORMAT; 16332 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16333 hrq->type = LPFC_HRQ; 16334 hrq->assoc_qid = cq->queue_id; 16335 hrq->subtype = subtype; 16336 hrq->host_index = 0; 16337 hrq->hba_index = 0; 16338 hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16339 16340 drq->db_format = LPFC_DB_RING_FORMAT; 16341 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 16342 drq->type = LPFC_DRQ; 16343 drq->assoc_qid = cq->queue_id; 16344 drq->subtype = subtype; 16345 drq->host_index = 0; 16346 drq->hba_index = 0; 16347 drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; 16348 16349 list_add_tail(&hrq->list, &cq->child_list); 16350 list_add_tail(&drq->list, &cq->child_list); 16351 } 16352 16353 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16354 /* The IOCTL status is embedded in the mailbox subheader. */ 16355 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16356 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16357 if (shdr_status || shdr_add_status || rc) { 16358 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16359 "3120 RQ_CREATE mailbox failed with " 16360 "status x%x add_status x%x, mbx status x%x\n", 16361 shdr_status, shdr_add_status, rc); 16362 status = -ENXIO; 16363 goto out; 16364 } 16365 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 16366 if (rc == 0xFFFF) { 16367 status = -ENXIO; 16368 goto out; 16369 } 16370 16371 /* Initialize all RQs with associated queue id */ 16372 for (idx = 0; idx < numrq; idx++) { 16373 hrq = hrqp[idx]; 16374 hrq->queue_id = rc + (2 * idx); 16375 drq = drqp[idx]; 16376 drq->queue_id = rc + (2 * idx) + 1; 16377 } 16378 16379 out: 16380 lpfc_sli4_mbox_cmd_free(phba, mbox); 16381 return status; 16382 } 16383 16384 /** 16385 * lpfc_eq_destroy - Destroy an event Queue on the HBA 16386 * @eq: The queue structure associated with the queue to destroy. 16387 * 16388 * This function destroys a queue, as detailed in @eq by sending an mailbox 16389 * command, specific to the type of queue, to the HBA. 16390 * 16391 * The @eq struct is used to get the queue ID of the queue to destroy. 16392 * 16393 * On success this function will return a zero. If the queue destroy mailbox 16394 * command fails this function will return -ENXIO. 16395 **/ 16396 int 16397 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 16398 { 16399 LPFC_MBOXQ_t *mbox; 16400 int rc, length, status = 0; 16401 uint32_t shdr_status, shdr_add_status; 16402 union lpfc_sli4_cfg_shdr *shdr; 16403 16404 /* sanity check on queue memory */ 16405 if (!eq) 16406 return -ENODEV; 16407 16408 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 16409 if (!mbox) 16410 return -ENOMEM; 16411 length = (sizeof(struct lpfc_mbx_eq_destroy) - 16412 sizeof(struct lpfc_sli4_cfg_mhdr)); 16413 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16414 LPFC_MBOX_OPCODE_EQ_DESTROY, 16415 length, LPFC_SLI4_MBX_EMBED); 16416 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 16417 eq->queue_id); 16418 mbox->vport = eq->phba->pport; 16419 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16420 16421 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 16422 /* The IOCTL status is embedded in the mailbox subheader. */ 16423 shdr = (union lpfc_sli4_cfg_shdr *) 16424 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 16425 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16426 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16427 if (shdr_status || shdr_add_status || rc) { 16428 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16429 "2505 EQ_DESTROY mailbox failed with " 16430 "status x%x add_status x%x, mbx status x%x\n", 16431 shdr_status, shdr_add_status, rc); 16432 status = -ENXIO; 16433 } 16434 16435 /* Remove eq from any list */ 16436 list_del_init(&eq->list); 16437 mempool_free(mbox, eq->phba->mbox_mem_pool); 16438 return status; 16439 } 16440 16441 /** 16442 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 16443 * @cq: The queue structure associated with the queue to destroy. 16444 * 16445 * This function destroys a queue, as detailed in @cq by sending an mailbox 16446 * command, specific to the type of queue, to the HBA. 16447 * 16448 * The @cq struct is used to get the queue ID of the queue to destroy. 16449 * 16450 * On success this function will return a zero. If the queue destroy mailbox 16451 * command fails this function will return -ENXIO. 16452 **/ 16453 int 16454 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 16455 { 16456 LPFC_MBOXQ_t *mbox; 16457 int rc, length, status = 0; 16458 uint32_t shdr_status, shdr_add_status; 16459 union lpfc_sli4_cfg_shdr *shdr; 16460 16461 /* sanity check on queue memory */ 16462 if (!cq) 16463 return -ENODEV; 16464 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 16465 if (!mbox) 16466 return -ENOMEM; 16467 length = (sizeof(struct lpfc_mbx_cq_destroy) - 16468 sizeof(struct lpfc_sli4_cfg_mhdr)); 16469 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16470 LPFC_MBOX_OPCODE_CQ_DESTROY, 16471 length, LPFC_SLI4_MBX_EMBED); 16472 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 16473 cq->queue_id); 16474 mbox->vport = cq->phba->pport; 16475 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16476 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 16477 /* The IOCTL status is embedded in the mailbox subheader. */ 16478 shdr = (union lpfc_sli4_cfg_shdr *) 16479 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 16480 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16481 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16482 if (shdr_status || shdr_add_status || rc) { 16483 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16484 "2506 CQ_DESTROY mailbox failed with " 16485 "status x%x add_status x%x, mbx status x%x\n", 16486 shdr_status, shdr_add_status, rc); 16487 status = -ENXIO; 16488 } 16489 /* Remove cq from any list */ 16490 list_del_init(&cq->list); 16491 mempool_free(mbox, cq->phba->mbox_mem_pool); 16492 return status; 16493 } 16494 16495 /** 16496 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 16497 * @qm: The queue structure associated with the queue to destroy. 16498 * 16499 * This function destroys a queue, as detailed in @mq by sending an mailbox 16500 * command, specific to the type of queue, to the HBA. 16501 * 16502 * The @mq struct is used to get the queue ID of the queue to destroy. 16503 * 16504 * On success this function will return a zero. If the queue destroy mailbox 16505 * command fails this function will return -ENXIO. 16506 **/ 16507 int 16508 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 16509 { 16510 LPFC_MBOXQ_t *mbox; 16511 int rc, length, status = 0; 16512 uint32_t shdr_status, shdr_add_status; 16513 union lpfc_sli4_cfg_shdr *shdr; 16514 16515 /* sanity check on queue memory */ 16516 if (!mq) 16517 return -ENODEV; 16518 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 16519 if (!mbox) 16520 return -ENOMEM; 16521 length = (sizeof(struct lpfc_mbx_mq_destroy) - 16522 sizeof(struct lpfc_sli4_cfg_mhdr)); 16523 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 16524 LPFC_MBOX_OPCODE_MQ_DESTROY, 16525 length, LPFC_SLI4_MBX_EMBED); 16526 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 16527 mq->queue_id); 16528 mbox->vport = mq->phba->pport; 16529 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16530 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 16531 /* The IOCTL status is embedded in the mailbox subheader. */ 16532 shdr = (union lpfc_sli4_cfg_shdr *) 16533 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 16534 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16535 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16536 if (shdr_status || shdr_add_status || rc) { 16537 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16538 "2507 MQ_DESTROY mailbox failed with " 16539 "status x%x add_status x%x, mbx status x%x\n", 16540 shdr_status, shdr_add_status, rc); 16541 status = -ENXIO; 16542 } 16543 /* Remove mq from any list */ 16544 list_del_init(&mq->list); 16545 mempool_free(mbox, mq->phba->mbox_mem_pool); 16546 return status; 16547 } 16548 16549 /** 16550 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 16551 * @wq: The queue structure associated with the queue to destroy. 16552 * 16553 * This function destroys a queue, as detailed in @wq by sending an mailbox 16554 * command, specific to the type of queue, to the HBA. 16555 * 16556 * The @wq struct is used to get the queue ID of the queue to destroy. 16557 * 16558 * On success this function will return a zero. If the queue destroy mailbox 16559 * command fails this function will return -ENXIO. 16560 **/ 16561 int 16562 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 16563 { 16564 LPFC_MBOXQ_t *mbox; 16565 int rc, length, status = 0; 16566 uint32_t shdr_status, shdr_add_status; 16567 union lpfc_sli4_cfg_shdr *shdr; 16568 16569 /* sanity check on queue memory */ 16570 if (!wq) 16571 return -ENODEV; 16572 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 16573 if (!mbox) 16574 return -ENOMEM; 16575 length = (sizeof(struct lpfc_mbx_wq_destroy) - 16576 sizeof(struct lpfc_sli4_cfg_mhdr)); 16577 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16578 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 16579 length, LPFC_SLI4_MBX_EMBED); 16580 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 16581 wq->queue_id); 16582 mbox->vport = wq->phba->pport; 16583 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16584 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 16585 shdr = (union lpfc_sli4_cfg_shdr *) 16586 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 16587 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16588 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16589 if (shdr_status || shdr_add_status || rc) { 16590 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16591 "2508 WQ_DESTROY mailbox failed with " 16592 "status x%x add_status x%x, mbx status x%x\n", 16593 shdr_status, shdr_add_status, rc); 16594 status = -ENXIO; 16595 } 16596 /* Remove wq from any list */ 16597 list_del_init(&wq->list); 16598 kfree(wq->pring); 16599 wq->pring = NULL; 16600 mempool_free(mbox, wq->phba->mbox_mem_pool); 16601 return status; 16602 } 16603 16604 /** 16605 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 16606 * @rq: The queue structure associated with the queue to destroy. 16607 * 16608 * This function destroys a queue, as detailed in @rq by sending an mailbox 16609 * command, specific to the type of queue, to the HBA. 16610 * 16611 * The @rq struct is used to get the queue ID of the queue to destroy. 16612 * 16613 * On success this function will return a zero. If the queue destroy mailbox 16614 * command fails this function will return -ENXIO. 16615 **/ 16616 int 16617 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 16618 struct lpfc_queue *drq) 16619 { 16620 LPFC_MBOXQ_t *mbox; 16621 int rc, length, status = 0; 16622 uint32_t shdr_status, shdr_add_status; 16623 union lpfc_sli4_cfg_shdr *shdr; 16624 16625 /* sanity check on queue memory */ 16626 if (!hrq || !drq) 16627 return -ENODEV; 16628 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 16629 if (!mbox) 16630 return -ENOMEM; 16631 length = (sizeof(struct lpfc_mbx_rq_destroy) - 16632 sizeof(struct lpfc_sli4_cfg_mhdr)); 16633 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16634 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 16635 length, LPFC_SLI4_MBX_EMBED); 16636 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16637 hrq->queue_id); 16638 mbox->vport = hrq->phba->pport; 16639 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 16640 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 16641 /* The IOCTL status is embedded in the mailbox subheader. */ 16642 shdr = (union lpfc_sli4_cfg_shdr *) 16643 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16644 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16645 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16646 if (shdr_status || shdr_add_status || rc) { 16647 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16648 "2509 RQ_DESTROY mailbox failed with " 16649 "status x%x add_status x%x, mbx status x%x\n", 16650 shdr_status, shdr_add_status, rc); 16651 if (rc != MBX_TIMEOUT) 16652 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16653 return -ENXIO; 16654 } 16655 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 16656 drq->queue_id); 16657 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 16658 shdr = (union lpfc_sli4_cfg_shdr *) 16659 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 16660 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16661 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16662 if (shdr_status || shdr_add_status || rc) { 16663 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16664 "2510 RQ_DESTROY mailbox failed with " 16665 "status x%x add_status x%x, mbx status x%x\n", 16666 shdr_status, shdr_add_status, rc); 16667 status = -ENXIO; 16668 } 16669 list_del_init(&hrq->list); 16670 list_del_init(&drq->list); 16671 mempool_free(mbox, hrq->phba->mbox_mem_pool); 16672 return status; 16673 } 16674 16675 /** 16676 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 16677 * @phba: The virtual port for which this call being executed. 16678 * @pdma_phys_addr0: Physical address of the 1st SGL page. 16679 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 16680 * @xritag: the xritag that ties this io to the SGL pages. 16681 * 16682 * This routine will post the sgl pages for the IO that has the xritag 16683 * that is in the iocbq structure. The xritag is assigned during iocbq 16684 * creation and persists for as long as the driver is loaded. 16685 * if the caller has fewer than 256 scatter gather segments to map then 16686 * pdma_phys_addr1 should be 0. 16687 * If the caller needs to map more than 256 scatter gather segment then 16688 * pdma_phys_addr1 should be a valid physical address. 16689 * physical address for SGLs must be 64 byte aligned. 16690 * If you are going to map 2 SGL's then the first one must have 256 entries 16691 * the second sgl can have between 1 and 256 entries. 16692 * 16693 * Return codes: 16694 * 0 - Success 16695 * -ENXIO, -ENOMEM - Failure 16696 **/ 16697 int 16698 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 16699 dma_addr_t pdma_phys_addr0, 16700 dma_addr_t pdma_phys_addr1, 16701 uint16_t xritag) 16702 { 16703 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 16704 LPFC_MBOXQ_t *mbox; 16705 int rc; 16706 uint32_t shdr_status, shdr_add_status; 16707 uint32_t mbox_tmo; 16708 union lpfc_sli4_cfg_shdr *shdr; 16709 16710 if (xritag == NO_XRI) { 16711 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16712 "0364 Invalid param:\n"); 16713 return -EINVAL; 16714 } 16715 16716 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16717 if (!mbox) 16718 return -ENOMEM; 16719 16720 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16721 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 16722 sizeof(struct lpfc_mbx_post_sgl_pages) - 16723 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 16724 16725 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 16726 &mbox->u.mqe.un.post_sgl_pages; 16727 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 16728 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 16729 16730 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 16731 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 16732 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 16733 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 16734 16735 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 16736 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 16737 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 16738 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 16739 if (!phba->sli4_hba.intr_enable) 16740 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16741 else { 16742 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16743 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16744 } 16745 /* The IOCTL status is embedded in the mailbox subheader. */ 16746 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 16747 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16748 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16749 if (rc != MBX_TIMEOUT) 16750 mempool_free(mbox, phba->mbox_mem_pool); 16751 if (shdr_status || shdr_add_status || rc) { 16752 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16753 "2511 POST_SGL mailbox failed with " 16754 "status x%x add_status x%x, mbx status x%x\n", 16755 shdr_status, shdr_add_status, rc); 16756 } 16757 return 0; 16758 } 16759 16760 /** 16761 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 16762 * @phba: pointer to lpfc hba data structure. 16763 * 16764 * This routine is invoked to post rpi header templates to the 16765 * HBA consistent with the SLI-4 interface spec. This routine 16766 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 16767 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 16768 * 16769 * Returns 16770 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 16771 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 16772 **/ 16773 static uint16_t 16774 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 16775 { 16776 unsigned long xri; 16777 16778 /* 16779 * Fetch the next logical xri. Because this index is logical, 16780 * the driver starts at 0 each time. 16781 */ 16782 spin_lock_irq(&phba->hbalock); 16783 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 16784 phba->sli4_hba.max_cfg_param.max_xri, 0); 16785 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 16786 spin_unlock_irq(&phba->hbalock); 16787 return NO_XRI; 16788 } else { 16789 set_bit(xri, phba->sli4_hba.xri_bmask); 16790 phba->sli4_hba.max_cfg_param.xri_used++; 16791 } 16792 spin_unlock_irq(&phba->hbalock); 16793 return xri; 16794 } 16795 16796 /** 16797 * lpfc_sli4_free_xri - Release an xri for reuse. 16798 * @phba: pointer to lpfc hba data structure. 16799 * 16800 * This routine is invoked to release an xri to the pool of 16801 * available rpis maintained by the driver. 16802 **/ 16803 static void 16804 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16805 { 16806 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 16807 phba->sli4_hba.max_cfg_param.xri_used--; 16808 } 16809 } 16810 16811 /** 16812 * lpfc_sli4_free_xri - Release an xri for reuse. 16813 * @phba: pointer to lpfc hba data structure. 16814 * 16815 * This routine is invoked to release an xri to the pool of 16816 * available rpis maintained by the driver. 16817 **/ 16818 void 16819 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 16820 { 16821 spin_lock_irq(&phba->hbalock); 16822 __lpfc_sli4_free_xri(phba, xri); 16823 spin_unlock_irq(&phba->hbalock); 16824 } 16825 16826 /** 16827 * lpfc_sli4_next_xritag - Get an xritag for the io 16828 * @phba: Pointer to HBA context object. 16829 * 16830 * This function gets an xritag for the iocb. If there is no unused xritag 16831 * it will return 0xffff. 16832 * The function returns the allocated xritag if successful, else returns zero. 16833 * Zero is not a valid xritag. 16834 * The caller is not required to hold any lock. 16835 **/ 16836 uint16_t 16837 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 16838 { 16839 uint16_t xri_index; 16840 16841 xri_index = lpfc_sli4_alloc_xri(phba); 16842 if (xri_index == NO_XRI) 16843 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 16844 "2004 Failed to allocate XRI.last XRITAG is %d" 16845 " Max XRI is %d, Used XRI is %d\n", 16846 xri_index, 16847 phba->sli4_hba.max_cfg_param.max_xri, 16848 phba->sli4_hba.max_cfg_param.xri_used); 16849 return xri_index; 16850 } 16851 16852 /** 16853 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 16854 * @phba: pointer to lpfc hba data structure. 16855 * @post_sgl_list: pointer to els sgl entry list. 16856 * @count: number of els sgl entries on the list. 16857 * 16858 * This routine is invoked to post a block of driver's sgl pages to the 16859 * HBA using non-embedded mailbox command. No Lock is held. This routine 16860 * is only called when the driver is loading and after all IO has been 16861 * stopped. 16862 **/ 16863 static int 16864 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 16865 struct list_head *post_sgl_list, 16866 int post_cnt) 16867 { 16868 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 16869 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16870 struct sgl_page_pairs *sgl_pg_pairs; 16871 void *viraddr; 16872 LPFC_MBOXQ_t *mbox; 16873 uint32_t reqlen, alloclen, pg_pairs; 16874 uint32_t mbox_tmo; 16875 uint16_t xritag_start = 0; 16876 int rc = 0; 16877 uint32_t shdr_status, shdr_add_status; 16878 union lpfc_sli4_cfg_shdr *shdr; 16879 16880 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 16881 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16882 if (reqlen > SLI4_PAGE_SIZE) { 16883 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16884 "2559 Block sgl registration required DMA " 16885 "size (%d) great than a page\n", reqlen); 16886 return -ENOMEM; 16887 } 16888 16889 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16890 if (!mbox) 16891 return -ENOMEM; 16892 16893 /* Allocate DMA memory and set up the non-embedded mailbox command */ 16894 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 16895 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 16896 LPFC_SLI4_MBX_NEMBED); 16897 16898 if (alloclen < reqlen) { 16899 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16900 "0285 Allocated DMA memory size (%d) is " 16901 "less than the requested DMA memory " 16902 "size (%d)\n", alloclen, reqlen); 16903 lpfc_sli4_mbox_cmd_free(phba, mbox); 16904 return -ENOMEM; 16905 } 16906 /* Set up the SGL pages in the non-embedded DMA pages */ 16907 viraddr = mbox->sge_array->addr[0]; 16908 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 16909 sgl_pg_pairs = &sgl->sgl_pg_pairs; 16910 16911 pg_pairs = 0; 16912 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 16913 /* Set up the sge entry */ 16914 sgl_pg_pairs->sgl_pg0_addr_lo = 16915 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 16916 sgl_pg_pairs->sgl_pg0_addr_hi = 16917 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 16918 sgl_pg_pairs->sgl_pg1_addr_lo = 16919 cpu_to_le32(putPaddrLow(0)); 16920 sgl_pg_pairs->sgl_pg1_addr_hi = 16921 cpu_to_le32(putPaddrHigh(0)); 16922 16923 /* Keep the first xritag on the list */ 16924 if (pg_pairs == 0) 16925 xritag_start = sglq_entry->sli4_xritag; 16926 sgl_pg_pairs++; 16927 pg_pairs++; 16928 } 16929 16930 /* Complete initialization and perform endian conversion. */ 16931 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16932 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 16933 sgl->word0 = cpu_to_le32(sgl->word0); 16934 16935 if (!phba->sli4_hba.intr_enable) 16936 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16937 else { 16938 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16939 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16940 } 16941 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16942 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16943 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16944 if (rc != MBX_TIMEOUT) 16945 lpfc_sli4_mbox_cmd_free(phba, mbox); 16946 if (shdr_status || shdr_add_status || rc) { 16947 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16948 "2513 POST_SGL_BLOCK mailbox command failed " 16949 "status x%x add_status x%x mbx status x%x\n", 16950 shdr_status, shdr_add_status, rc); 16951 rc = -ENXIO; 16952 } 16953 return rc; 16954 } 16955 16956 /** 16957 * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware 16958 * @phba: pointer to lpfc hba data structure. 16959 * @nblist: pointer to nvme buffer list. 16960 * @count: number of scsi buffers on the list. 16961 * 16962 * This routine is invoked to post a block of @count scsi sgl pages from a 16963 * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. 16964 * No Lock is held. 16965 * 16966 **/ 16967 static int 16968 lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, 16969 int count) 16970 { 16971 struct lpfc_io_buf *lpfc_ncmd; 16972 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 16973 struct sgl_page_pairs *sgl_pg_pairs; 16974 void *viraddr; 16975 LPFC_MBOXQ_t *mbox; 16976 uint32_t reqlen, alloclen, pg_pairs; 16977 uint32_t mbox_tmo; 16978 uint16_t xritag_start = 0; 16979 int rc = 0; 16980 uint32_t shdr_status, shdr_add_status; 16981 dma_addr_t pdma_phys_bpl1; 16982 union lpfc_sli4_cfg_shdr *shdr; 16983 16984 /* Calculate the requested length of the dma memory */ 16985 reqlen = count * sizeof(struct sgl_page_pairs) + 16986 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 16987 if (reqlen > SLI4_PAGE_SIZE) { 16988 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 16989 "6118 Block sgl registration required DMA " 16990 "size (%d) great than a page\n", reqlen); 16991 return -ENOMEM; 16992 } 16993 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 16994 if (!mbox) { 16995 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 16996 "6119 Failed to allocate mbox cmd memory\n"); 16997 return -ENOMEM; 16998 } 16999 17000 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17001 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17002 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 17003 reqlen, LPFC_SLI4_MBX_NEMBED); 17004 17005 if (alloclen < reqlen) { 17006 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17007 "6120 Allocated DMA memory size (%d) is " 17008 "less than the requested DMA memory " 17009 "size (%d)\n", alloclen, reqlen); 17010 lpfc_sli4_mbox_cmd_free(phba, mbox); 17011 return -ENOMEM; 17012 } 17013 17014 /* Get the first SGE entry from the non-embedded DMA memory */ 17015 viraddr = mbox->sge_array->addr[0]; 17016 17017 /* Set up the SGL pages in the non-embedded DMA pages */ 17018 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 17019 sgl_pg_pairs = &sgl->sgl_pg_pairs; 17020 17021 pg_pairs = 0; 17022 list_for_each_entry(lpfc_ncmd, nblist, list) { 17023 /* Set up the sge entry */ 17024 sgl_pg_pairs->sgl_pg0_addr_lo = 17025 cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); 17026 sgl_pg_pairs->sgl_pg0_addr_hi = 17027 cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); 17028 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 17029 pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + 17030 SGL_PAGE_SIZE; 17031 else 17032 pdma_phys_bpl1 = 0; 17033 sgl_pg_pairs->sgl_pg1_addr_lo = 17034 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 17035 sgl_pg_pairs->sgl_pg1_addr_hi = 17036 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 17037 /* Keep the first xritag on the list */ 17038 if (pg_pairs == 0) 17039 xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; 17040 sgl_pg_pairs++; 17041 pg_pairs++; 17042 } 17043 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 17044 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 17045 /* Perform endian conversion if necessary */ 17046 sgl->word0 = cpu_to_le32(sgl->word0); 17047 17048 if (!phba->sli4_hba.intr_enable) { 17049 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 17050 } else { 17051 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 17052 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 17053 } 17054 shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; 17055 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17056 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17057 if (rc != MBX_TIMEOUT) 17058 lpfc_sli4_mbox_cmd_free(phba, mbox); 17059 if (shdr_status || shdr_add_status || rc) { 17060 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17061 "6125 POST_SGL_BLOCK mailbox command failed " 17062 "status x%x add_status x%x mbx status x%x\n", 17063 shdr_status, shdr_add_status, rc); 17064 rc = -ENXIO; 17065 } 17066 return rc; 17067 } 17068 17069 /** 17070 * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list 17071 * @phba: pointer to lpfc hba data structure. 17072 * @post_nblist: pointer to the nvme buffer list. 17073 * 17074 * This routine walks a list of nvme buffers that was passed in. It attempts 17075 * to construct blocks of nvme buffer sgls which contains contiguous xris and 17076 * uses the non-embedded SGL block post mailbox commands to post to the port. 17077 * For single NVME buffer sgl with non-contiguous xri, if any, it shall use 17078 * embedded SGL post mailbox command for posting. The @post_nblist passed in 17079 * must be local list, thus no lock is needed when manipulate the list. 17080 * 17081 * Returns: 0 = failure, non-zero number of successfully posted buffers. 17082 **/ 17083 int 17084 lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, 17085 struct list_head *post_nblist, int sb_count) 17086 { 17087 struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; 17088 int status, sgl_size; 17089 int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; 17090 dma_addr_t pdma_phys_sgl1; 17091 int last_xritag = NO_XRI; 17092 int cur_xritag; 17093 LIST_HEAD(prep_nblist); 17094 LIST_HEAD(blck_nblist); 17095 LIST_HEAD(nvme_nblist); 17096 17097 /* sanity check */ 17098 if (sb_count <= 0) 17099 return -EINVAL; 17100 17101 sgl_size = phba->cfg_sg_dma_buf_size; 17102 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { 17103 list_del_init(&lpfc_ncmd->list); 17104 block_cnt++; 17105 if ((last_xritag != NO_XRI) && 17106 (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { 17107 /* a hole in xri block, form a sgl posting block */ 17108 list_splice_init(&prep_nblist, &blck_nblist); 17109 post_cnt = block_cnt - 1; 17110 /* prepare list for next posting block */ 17111 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17112 block_cnt = 1; 17113 } else { 17114 /* prepare list for next posting block */ 17115 list_add_tail(&lpfc_ncmd->list, &prep_nblist); 17116 /* enough sgls for non-embed sgl mbox command */ 17117 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 17118 list_splice_init(&prep_nblist, &blck_nblist); 17119 post_cnt = block_cnt; 17120 block_cnt = 0; 17121 } 17122 } 17123 num_posting++; 17124 last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17125 17126 /* end of repost sgl list condition for NVME buffers */ 17127 if (num_posting == sb_count) { 17128 if (post_cnt == 0) { 17129 /* last sgl posting block */ 17130 list_splice_init(&prep_nblist, &blck_nblist); 17131 post_cnt = block_cnt; 17132 } else if (block_cnt == 1) { 17133 /* last single sgl with non-contiguous xri */ 17134 if (sgl_size > SGL_PAGE_SIZE) 17135 pdma_phys_sgl1 = 17136 lpfc_ncmd->dma_phys_sgl + 17137 SGL_PAGE_SIZE; 17138 else 17139 pdma_phys_sgl1 = 0; 17140 cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; 17141 status = lpfc_sli4_post_sgl( 17142 phba, lpfc_ncmd->dma_phys_sgl, 17143 pdma_phys_sgl1, cur_xritag); 17144 if (status) { 17145 /* Post error. Buffer unavailable. */ 17146 lpfc_ncmd->flags |= 17147 LPFC_SBUF_NOT_POSTED; 17148 } else { 17149 /* Post success. Bffer available. */ 17150 lpfc_ncmd->flags &= 17151 ~LPFC_SBUF_NOT_POSTED; 17152 lpfc_ncmd->status = IOSTAT_SUCCESS; 17153 num_posted++; 17154 } 17155 /* success, put on NVME buffer sgl list */ 17156 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17157 } 17158 } 17159 17160 /* continue until a nembed page worth of sgls */ 17161 if (post_cnt == 0) 17162 continue; 17163 17164 /* post block of NVME buffer list sgls */ 17165 status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, 17166 post_cnt); 17167 17168 /* don't reset xirtag due to hole in xri block */ 17169 if (block_cnt == 0) 17170 last_xritag = NO_XRI; 17171 17172 /* reset NVME buffer post count for next round of posting */ 17173 post_cnt = 0; 17174 17175 /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ 17176 while (!list_empty(&blck_nblist)) { 17177 list_remove_head(&blck_nblist, lpfc_ncmd, 17178 struct lpfc_io_buf, list); 17179 if (status) { 17180 /* Post error. Mark buffer unavailable. */ 17181 lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; 17182 } else { 17183 /* Post success, Mark buffer available. */ 17184 lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; 17185 lpfc_ncmd->status = IOSTAT_SUCCESS; 17186 num_posted++; 17187 } 17188 list_add_tail(&lpfc_ncmd->list, &nvme_nblist); 17189 } 17190 } 17191 /* Push NVME buffers with sgl posted to the available list */ 17192 lpfc_io_buf_replenish(phba, &nvme_nblist); 17193 17194 return num_posted; 17195 } 17196 17197 /** 17198 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 17199 * @phba: pointer to lpfc_hba struct that the frame was received on 17200 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17201 * 17202 * This function checks the fields in the @fc_hdr to see if the FC frame is a 17203 * valid type of frame that the LPFC driver will handle. This function will 17204 * return a zero if the frame is a valid frame or a non zero value when the 17205 * frame does not pass the check. 17206 **/ 17207 static int 17208 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 17209 { 17210 /* make rctl_names static to save stack space */ 17211 struct fc_vft_header *fc_vft_hdr; 17212 uint32_t *header = (uint32_t *) fc_hdr; 17213 17214 #define FC_RCTL_MDS_DIAGS 0xF4 17215 17216 switch (fc_hdr->fh_r_ctl) { 17217 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 17218 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 17219 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 17220 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 17221 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 17222 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 17223 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 17224 case FC_RCTL_DD_CMD_STATUS: /* command status */ 17225 case FC_RCTL_ELS_REQ: /* extended link services request */ 17226 case FC_RCTL_ELS_REP: /* extended link services reply */ 17227 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 17228 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 17229 case FC_RCTL_BA_NOP: /* basic link service NOP */ 17230 case FC_RCTL_BA_ABTS: /* basic link service abort */ 17231 case FC_RCTL_BA_RMC: /* remove connection */ 17232 case FC_RCTL_BA_ACC: /* basic accept */ 17233 case FC_RCTL_BA_RJT: /* basic reject */ 17234 case FC_RCTL_BA_PRMT: 17235 case FC_RCTL_ACK_1: /* acknowledge_1 */ 17236 case FC_RCTL_ACK_0: /* acknowledge_0 */ 17237 case FC_RCTL_P_RJT: /* port reject */ 17238 case FC_RCTL_F_RJT: /* fabric reject */ 17239 case FC_RCTL_P_BSY: /* port busy */ 17240 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 17241 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 17242 case FC_RCTL_LCR: /* link credit reset */ 17243 case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ 17244 case FC_RCTL_END: /* end */ 17245 break; 17246 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 17247 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17248 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 17249 return lpfc_fc_frame_check(phba, fc_hdr); 17250 default: 17251 goto drop; 17252 } 17253 17254 switch (fc_hdr->fh_type) { 17255 case FC_TYPE_BLS: 17256 case FC_TYPE_ELS: 17257 case FC_TYPE_FCP: 17258 case FC_TYPE_CT: 17259 case FC_TYPE_NVME: 17260 break; 17261 case FC_TYPE_IP: 17262 case FC_TYPE_ILS: 17263 default: 17264 goto drop; 17265 } 17266 17267 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 17268 "2538 Received frame rctl:x%x, type:x%x, " 17269 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 17270 fc_hdr->fh_r_ctl, fc_hdr->fh_type, 17271 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 17272 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 17273 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 17274 be32_to_cpu(header[6])); 17275 return 0; 17276 drop: 17277 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 17278 "2539 Dropped frame rctl:x%x type:x%x\n", 17279 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 17280 return 1; 17281 } 17282 17283 /** 17284 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 17285 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17286 * 17287 * This function processes the FC header to retrieve the VFI from the VF 17288 * header, if one exists. This function will return the VFI if one exists 17289 * or 0 if no VSAN Header exists. 17290 **/ 17291 static uint32_t 17292 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 17293 { 17294 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 17295 17296 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 17297 return 0; 17298 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 17299 } 17300 17301 /** 17302 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 17303 * @phba: Pointer to the HBA structure to search for the vport on 17304 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 17305 * @fcfi: The FC Fabric ID that the frame came from 17306 * 17307 * This function searches the @phba for a vport that matches the content of the 17308 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 17309 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 17310 * returns the matching vport pointer or NULL if unable to match frame to a 17311 * vport. 17312 **/ 17313 static struct lpfc_vport * 17314 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 17315 uint16_t fcfi, uint32_t did) 17316 { 17317 struct lpfc_vport **vports; 17318 struct lpfc_vport *vport = NULL; 17319 int i; 17320 17321 if (did == Fabric_DID) 17322 return phba->pport; 17323 if ((phba->pport->fc_flag & FC_PT2PT) && 17324 !(phba->link_state == LPFC_HBA_READY)) 17325 return phba->pport; 17326 17327 vports = lpfc_create_vport_work_array(phba); 17328 if (vports != NULL) { 17329 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 17330 if (phba->fcf.fcfi == fcfi && 17331 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 17332 vports[i]->fc_myDID == did) { 17333 vport = vports[i]; 17334 break; 17335 } 17336 } 17337 } 17338 lpfc_destroy_vport_work_array(phba, vports); 17339 return vport; 17340 } 17341 17342 /** 17343 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 17344 * @vport: The vport to work on. 17345 * 17346 * This function updates the receive sequence time stamp for this vport. The 17347 * receive sequence time stamp indicates the time that the last frame of the 17348 * the sequence that has been idle for the longest amount of time was received. 17349 * the driver uses this time stamp to indicate if any received sequences have 17350 * timed out. 17351 **/ 17352 static void 17353 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 17354 { 17355 struct lpfc_dmabuf *h_buf; 17356 struct hbq_dmabuf *dmabuf = NULL; 17357 17358 /* get the oldest sequence on the rcv list */ 17359 h_buf = list_get_first(&vport->rcv_buffer_list, 17360 struct lpfc_dmabuf, list); 17361 if (!h_buf) 17362 return; 17363 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17364 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 17365 } 17366 17367 /** 17368 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 17369 * @vport: The vport that the received sequences were sent to. 17370 * 17371 * This function cleans up all outstanding received sequences. This is called 17372 * by the driver when a link event or user action invalidates all the received 17373 * sequences. 17374 **/ 17375 void 17376 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 17377 { 17378 struct lpfc_dmabuf *h_buf, *hnext; 17379 struct lpfc_dmabuf *d_buf, *dnext; 17380 struct hbq_dmabuf *dmabuf = NULL; 17381 17382 /* start with the oldest sequence on the rcv list */ 17383 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17384 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17385 list_del_init(&dmabuf->hbuf.list); 17386 list_for_each_entry_safe(d_buf, dnext, 17387 &dmabuf->dbuf.list, list) { 17388 list_del_init(&d_buf->list); 17389 lpfc_in_buf_free(vport->phba, d_buf); 17390 } 17391 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17392 } 17393 } 17394 17395 /** 17396 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 17397 * @vport: The vport that the received sequences were sent to. 17398 * 17399 * This function determines whether any received sequences have timed out by 17400 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 17401 * indicates that there is at least one timed out sequence this routine will 17402 * go through the received sequences one at a time from most inactive to most 17403 * active to determine which ones need to be cleaned up. Once it has determined 17404 * that a sequence needs to be cleaned up it will simply free up the resources 17405 * without sending an abort. 17406 **/ 17407 void 17408 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 17409 { 17410 struct lpfc_dmabuf *h_buf, *hnext; 17411 struct lpfc_dmabuf *d_buf, *dnext; 17412 struct hbq_dmabuf *dmabuf = NULL; 17413 unsigned long timeout; 17414 int abort_count = 0; 17415 17416 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17417 vport->rcv_buffer_time_stamp); 17418 if (list_empty(&vport->rcv_buffer_list) || 17419 time_before(jiffies, timeout)) 17420 return; 17421 /* start with the oldest sequence on the rcv list */ 17422 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 17423 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17424 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 17425 dmabuf->time_stamp); 17426 if (time_before(jiffies, timeout)) 17427 break; 17428 abort_count++; 17429 list_del_init(&dmabuf->hbuf.list); 17430 list_for_each_entry_safe(d_buf, dnext, 17431 &dmabuf->dbuf.list, list) { 17432 list_del_init(&d_buf->list); 17433 lpfc_in_buf_free(vport->phba, d_buf); 17434 } 17435 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 17436 } 17437 if (abort_count) 17438 lpfc_update_rcv_time_stamp(vport); 17439 } 17440 17441 /** 17442 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 17443 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 17444 * 17445 * This function searches through the existing incomplete sequences that have 17446 * been sent to this @vport. If the frame matches one of the incomplete 17447 * sequences then the dbuf in the @dmabuf is added to the list of frames that 17448 * make up that sequence. If no sequence is found that matches this frame then 17449 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 17450 * This function returns a pointer to the first dmabuf in the sequence list that 17451 * the frame was linked to. 17452 **/ 17453 static struct hbq_dmabuf * 17454 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17455 { 17456 struct fc_frame_header *new_hdr; 17457 struct fc_frame_header *temp_hdr; 17458 struct lpfc_dmabuf *d_buf; 17459 struct lpfc_dmabuf *h_buf; 17460 struct hbq_dmabuf *seq_dmabuf = NULL; 17461 struct hbq_dmabuf *temp_dmabuf = NULL; 17462 uint8_t found = 0; 17463 17464 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17465 dmabuf->time_stamp = jiffies; 17466 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17467 17468 /* Use the hdr_buf to find the sequence that this frame belongs to */ 17469 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17470 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17471 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17472 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17473 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17474 continue; 17475 /* found a pending sequence that matches this frame */ 17476 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17477 break; 17478 } 17479 if (!seq_dmabuf) { 17480 /* 17481 * This indicates first frame received for this sequence. 17482 * Queue the buffer on the vport's rcv_buffer_list. 17483 */ 17484 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17485 lpfc_update_rcv_time_stamp(vport); 17486 return dmabuf; 17487 } 17488 temp_hdr = seq_dmabuf->hbuf.virt; 17489 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 17490 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17491 list_del_init(&seq_dmabuf->hbuf.list); 17492 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 17493 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17494 lpfc_update_rcv_time_stamp(vport); 17495 return dmabuf; 17496 } 17497 /* move this sequence to the tail to indicate a young sequence */ 17498 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 17499 seq_dmabuf->time_stamp = jiffies; 17500 lpfc_update_rcv_time_stamp(vport); 17501 if (list_empty(&seq_dmabuf->dbuf.list)) { 17502 temp_hdr = dmabuf->hbuf.virt; 17503 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 17504 return seq_dmabuf; 17505 } 17506 /* find the correct place in the sequence to insert this frame */ 17507 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 17508 while (!found) { 17509 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17510 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 17511 /* 17512 * If the frame's sequence count is greater than the frame on 17513 * the list then insert the frame right after this frame 17514 */ 17515 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 17516 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 17517 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 17518 found = 1; 17519 break; 17520 } 17521 17522 if (&d_buf->list == &seq_dmabuf->dbuf.list) 17523 break; 17524 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 17525 } 17526 17527 if (found) 17528 return seq_dmabuf; 17529 return NULL; 17530 } 17531 17532 /** 17533 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 17534 * @vport: pointer to a vitural port 17535 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17536 * 17537 * This function tries to abort from the partially assembed sequence, described 17538 * by the information from basic abbort @dmabuf. It checks to see whether such 17539 * partially assembled sequence held by the driver. If so, it shall free up all 17540 * the frames from the partially assembled sequence. 17541 * 17542 * Return 17543 * true -- if there is matching partially assembled sequence present and all 17544 * the frames freed with the sequence; 17545 * false -- if there is no matching partially assembled sequence present so 17546 * nothing got aborted in the lower layer driver 17547 **/ 17548 static bool 17549 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 17550 struct hbq_dmabuf *dmabuf) 17551 { 17552 struct fc_frame_header *new_hdr; 17553 struct fc_frame_header *temp_hdr; 17554 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 17555 struct hbq_dmabuf *seq_dmabuf = NULL; 17556 17557 /* Use the hdr_buf to find the sequence that matches this frame */ 17558 INIT_LIST_HEAD(&dmabuf->dbuf.list); 17559 INIT_LIST_HEAD(&dmabuf->hbuf.list); 17560 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17561 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 17562 temp_hdr = (struct fc_frame_header *)h_buf->virt; 17563 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 17564 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 17565 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 17566 continue; 17567 /* found a pending sequence that matches this frame */ 17568 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 17569 break; 17570 } 17571 17572 /* Free up all the frames from the partially assembled sequence */ 17573 if (seq_dmabuf) { 17574 list_for_each_entry_safe(d_buf, n_buf, 17575 &seq_dmabuf->dbuf.list, list) { 17576 list_del_init(&d_buf->list); 17577 lpfc_in_buf_free(vport->phba, d_buf); 17578 } 17579 return true; 17580 } 17581 return false; 17582 } 17583 17584 /** 17585 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 17586 * @vport: pointer to a vitural port 17587 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17588 * 17589 * This function tries to abort from the assembed sequence from upper level 17590 * protocol, described by the information from basic abbort @dmabuf. It 17591 * checks to see whether such pending context exists at upper level protocol. 17592 * If so, it shall clean up the pending context. 17593 * 17594 * Return 17595 * true -- if there is matching pending context of the sequence cleaned 17596 * at ulp; 17597 * false -- if there is no matching pending context of the sequence present 17598 * at ulp. 17599 **/ 17600 static bool 17601 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 17602 { 17603 struct lpfc_hba *phba = vport->phba; 17604 int handled; 17605 17606 /* Accepting abort at ulp with SLI4 only */ 17607 if (phba->sli_rev < LPFC_SLI_REV4) 17608 return false; 17609 17610 /* Register all caring upper level protocols to attend abort */ 17611 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 17612 if (handled) 17613 return true; 17614 17615 return false; 17616 } 17617 17618 /** 17619 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 17620 * @phba: Pointer to HBA context object. 17621 * @cmd_iocbq: pointer to the command iocbq structure. 17622 * @rsp_iocbq: pointer to the response iocbq structure. 17623 * 17624 * This function handles the sequence abort response iocb command complete 17625 * event. It properly releases the memory allocated to the sequence abort 17626 * accept iocb. 17627 **/ 17628 static void 17629 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 17630 struct lpfc_iocbq *cmd_iocbq, 17631 struct lpfc_iocbq *rsp_iocbq) 17632 { 17633 struct lpfc_nodelist *ndlp; 17634 17635 if (cmd_iocbq) { 17636 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 17637 lpfc_nlp_put(ndlp); 17638 lpfc_nlp_not_used(ndlp); 17639 lpfc_sli_release_iocbq(phba, cmd_iocbq); 17640 } 17641 17642 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 17643 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 17644 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17645 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 17646 rsp_iocbq->iocb.ulpStatus, 17647 rsp_iocbq->iocb.un.ulpWord[4]); 17648 } 17649 17650 /** 17651 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 17652 * @phba: Pointer to HBA context object. 17653 * @xri: xri id in transaction. 17654 * 17655 * This function validates the xri maps to the known range of XRIs allocated an 17656 * used by the driver. 17657 **/ 17658 uint16_t 17659 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 17660 uint16_t xri) 17661 { 17662 uint16_t i; 17663 17664 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 17665 if (xri == phba->sli4_hba.xri_ids[i]) 17666 return i; 17667 } 17668 return NO_XRI; 17669 } 17670 17671 /** 17672 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 17673 * @phba: Pointer to HBA context object. 17674 * @fc_hdr: pointer to a FC frame header. 17675 * 17676 * This function sends a basic response to a previous unsol sequence abort 17677 * event after aborting the sequence handling. 17678 **/ 17679 void 17680 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 17681 struct fc_frame_header *fc_hdr, bool aborted) 17682 { 17683 struct lpfc_hba *phba = vport->phba; 17684 struct lpfc_iocbq *ctiocb = NULL; 17685 struct lpfc_nodelist *ndlp; 17686 uint16_t oxid, rxid, xri, lxri; 17687 uint32_t sid, fctl; 17688 IOCB_t *icmd; 17689 int rc; 17690 17691 if (!lpfc_is_link_up(phba)) 17692 return; 17693 17694 sid = sli4_sid_from_fc_hdr(fc_hdr); 17695 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 17696 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 17697 17698 ndlp = lpfc_findnode_did(vport, sid); 17699 if (!ndlp) { 17700 ndlp = lpfc_nlp_init(vport, sid); 17701 if (!ndlp) { 17702 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17703 "1268 Failed to allocate ndlp for " 17704 "oxid:x%x SID:x%x\n", oxid, sid); 17705 return; 17706 } 17707 /* Put ndlp onto pport node list */ 17708 lpfc_enqueue_node(vport, ndlp); 17709 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 17710 /* re-setup ndlp without removing from node list */ 17711 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 17712 if (!ndlp) { 17713 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 17714 "3275 Failed to active ndlp found " 17715 "for oxid:x%x SID:x%x\n", oxid, sid); 17716 return; 17717 } 17718 } 17719 17720 /* Allocate buffer for rsp iocb */ 17721 ctiocb = lpfc_sli_get_iocbq(phba); 17722 if (!ctiocb) 17723 return; 17724 17725 /* Extract the F_CTL field from FC_HDR */ 17726 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 17727 17728 icmd = &ctiocb->iocb; 17729 icmd->un.xseq64.bdl.bdeSize = 0; 17730 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 17731 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 17732 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 17733 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 17734 17735 /* Fill in the rest of iocb fields */ 17736 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 17737 icmd->ulpBdeCount = 0; 17738 icmd->ulpLe = 1; 17739 icmd->ulpClass = CLASS3; 17740 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 17741 ctiocb->context1 = lpfc_nlp_get(ndlp); 17742 17743 ctiocb->vport = phba->pport; 17744 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 17745 ctiocb->sli4_lxritag = NO_XRI; 17746 ctiocb->sli4_xritag = NO_XRI; 17747 17748 if (fctl & FC_FC_EX_CTX) 17749 /* Exchange responder sent the abort so we 17750 * own the oxid. 17751 */ 17752 xri = oxid; 17753 else 17754 xri = rxid; 17755 lxri = lpfc_sli4_xri_inrange(phba, xri); 17756 if (lxri != NO_XRI) 17757 lpfc_set_rrq_active(phba, ndlp, lxri, 17758 (xri == oxid) ? rxid : oxid, 0); 17759 /* For BA_ABTS from exchange responder, if the logical xri with 17760 * the oxid maps to the FCP XRI range, the port no longer has 17761 * that exchange context, send a BLS_RJT. Override the IOCB for 17762 * a BA_RJT. 17763 */ 17764 if ((fctl & FC_FC_EX_CTX) && 17765 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 17766 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17767 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17768 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17769 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17770 } 17771 17772 /* If BA_ABTS failed to abort a partially assembled receive sequence, 17773 * the driver no longer has that exchange, send a BLS_RJT. Override 17774 * the IOCB for a BA_RJT. 17775 */ 17776 if (aborted == false) { 17777 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 17778 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 17779 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 17780 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 17781 } 17782 17783 if (fctl & FC_FC_EX_CTX) { 17784 /* ABTS sent by responder to CT exchange, construction 17785 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 17786 * field and RX_ID from ABTS for RX_ID field. 17787 */ 17788 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 17789 } else { 17790 /* ABTS sent by initiator to CT exchange, construction 17791 * of BA_ACC will need to allocate a new XRI as for the 17792 * XRI_TAG field. 17793 */ 17794 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 17795 } 17796 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 17797 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 17798 17799 /* Xmit CT abts response on exchange <xid> */ 17800 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 17801 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 17802 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 17803 17804 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 17805 if (rc == IOCB_ERROR) { 17806 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 17807 "2925 Failed to issue CT ABTS RSP x%x on " 17808 "xri x%x, Data x%x\n", 17809 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 17810 phba->link_state); 17811 lpfc_nlp_put(ndlp); 17812 ctiocb->context1 = NULL; 17813 lpfc_sli_release_iocbq(phba, ctiocb); 17814 } 17815 } 17816 17817 /** 17818 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 17819 * @vport: Pointer to the vport on which this sequence was received 17820 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17821 * 17822 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 17823 * receive sequence is only partially assembed by the driver, it shall abort 17824 * the partially assembled frames for the sequence. Otherwise, if the 17825 * unsolicited receive sequence has been completely assembled and passed to 17826 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 17827 * unsolicited sequence has been aborted. After that, it will issue a basic 17828 * accept to accept the abort. 17829 **/ 17830 static void 17831 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 17832 struct hbq_dmabuf *dmabuf) 17833 { 17834 struct lpfc_hba *phba = vport->phba; 17835 struct fc_frame_header fc_hdr; 17836 uint32_t fctl; 17837 bool aborted; 17838 17839 /* Make a copy of fc_hdr before the dmabuf being released */ 17840 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 17841 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 17842 17843 if (fctl & FC_FC_EX_CTX) { 17844 /* ABTS by responder to exchange, no cleanup needed */ 17845 aborted = true; 17846 } else { 17847 /* ABTS by initiator to exchange, need to do cleanup */ 17848 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 17849 if (aborted == false) 17850 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 17851 } 17852 lpfc_in_buf_free(phba, &dmabuf->dbuf); 17853 17854 if (phba->nvmet_support) { 17855 lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); 17856 return; 17857 } 17858 17859 /* Respond with BA_ACC or BA_RJT accordingly */ 17860 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 17861 } 17862 17863 /** 17864 * lpfc_seq_complete - Indicates if a sequence is complete 17865 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17866 * 17867 * This function checks the sequence, starting with the frame described by 17868 * @dmabuf, to see if all the frames associated with this sequence are present. 17869 * the frames associated with this sequence are linked to the @dmabuf using the 17870 * dbuf list. This function looks for two major things. 1) That the first frame 17871 * has a sequence count of zero. 2) There is a frame with last frame of sequence 17872 * set. 3) That there are no holes in the sequence count. The function will 17873 * return 1 when the sequence is complete, otherwise it will return 0. 17874 **/ 17875 static int 17876 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 17877 { 17878 struct fc_frame_header *hdr; 17879 struct lpfc_dmabuf *d_buf; 17880 struct hbq_dmabuf *seq_dmabuf; 17881 uint32_t fctl; 17882 int seq_count = 0; 17883 17884 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 17885 /* make sure first fame of sequence has a sequence count of zero */ 17886 if (hdr->fh_seq_cnt != seq_count) 17887 return 0; 17888 fctl = (hdr->fh_f_ctl[0] << 16 | 17889 hdr->fh_f_ctl[1] << 8 | 17890 hdr->fh_f_ctl[2]); 17891 /* If last frame of sequence we can return success. */ 17892 if (fctl & FC_FC_END_SEQ) 17893 return 1; 17894 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 17895 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17896 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17897 /* If there is a hole in the sequence count then fail. */ 17898 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 17899 return 0; 17900 fctl = (hdr->fh_f_ctl[0] << 16 | 17901 hdr->fh_f_ctl[1] << 8 | 17902 hdr->fh_f_ctl[2]); 17903 /* If last frame of sequence we can return success. */ 17904 if (fctl & FC_FC_END_SEQ) 17905 return 1; 17906 } 17907 return 0; 17908 } 17909 17910 /** 17911 * lpfc_prep_seq - Prep sequence for ULP processing 17912 * @vport: Pointer to the vport on which this sequence was received 17913 * @dmabuf: pointer to a dmabuf that describes the FC sequence 17914 * 17915 * This function takes a sequence, described by a list of frames, and creates 17916 * a list of iocbq structures to describe the sequence. This iocbq list will be 17917 * used to issue to the generic unsolicited sequence handler. This routine 17918 * returns a pointer to the first iocbq in the list. If the function is unable 17919 * to allocate an iocbq then it throw out the received frames that were not 17920 * able to be described and return a pointer to the first iocbq. If unable to 17921 * allocate any iocbqs (including the first) this function will return NULL. 17922 **/ 17923 static struct lpfc_iocbq * 17924 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 17925 { 17926 struct hbq_dmabuf *hbq_buf; 17927 struct lpfc_dmabuf *d_buf, *n_buf; 17928 struct lpfc_iocbq *first_iocbq, *iocbq; 17929 struct fc_frame_header *fc_hdr; 17930 uint32_t sid; 17931 uint32_t len, tot_len; 17932 struct ulp_bde64 *pbde; 17933 17934 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 17935 /* remove from receive buffer list */ 17936 list_del_init(&seq_dmabuf->hbuf.list); 17937 lpfc_update_rcv_time_stamp(vport); 17938 /* get the Remote Port's SID */ 17939 sid = sli4_sid_from_fc_hdr(fc_hdr); 17940 tot_len = 0; 17941 /* Get an iocbq struct to fill in. */ 17942 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 17943 if (first_iocbq) { 17944 /* Initialize the first IOCB. */ 17945 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 17946 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 17947 first_iocbq->vport = vport; 17948 17949 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 17950 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 17951 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 17952 first_iocbq->iocb.un.rcvels.parmRo = 17953 sli4_did_from_fc_hdr(fc_hdr); 17954 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 17955 } else 17956 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 17957 first_iocbq->iocb.ulpContext = NO_XRI; 17958 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 17959 be16_to_cpu(fc_hdr->fh_ox_id); 17960 /* iocbq is prepped for internal consumption. Physical vpi. */ 17961 first_iocbq->iocb.unsli3.rcvsli3.vpi = 17962 vport->phba->vpi_ids[vport->vpi]; 17963 /* put the first buffer into the first IOCBq */ 17964 tot_len = bf_get(lpfc_rcqe_length, 17965 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 17966 17967 first_iocbq->context2 = &seq_dmabuf->dbuf; 17968 first_iocbq->context3 = NULL; 17969 first_iocbq->iocb.ulpBdeCount = 1; 17970 if (tot_len > LPFC_DATA_BUF_SIZE) 17971 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 17972 LPFC_DATA_BUF_SIZE; 17973 else 17974 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 17975 17976 first_iocbq->iocb.un.rcvels.remoteID = sid; 17977 17978 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 17979 } 17980 iocbq = first_iocbq; 17981 /* 17982 * Each IOCBq can have two Buffers assigned, so go through the list 17983 * of buffers for this sequence and save two buffers in each IOCBq 17984 */ 17985 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 17986 if (!iocbq) { 17987 lpfc_in_buf_free(vport->phba, d_buf); 17988 continue; 17989 } 17990 if (!iocbq->context3) { 17991 iocbq->context3 = d_buf; 17992 iocbq->iocb.ulpBdeCount++; 17993 /* We need to get the size out of the right CQE */ 17994 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 17995 len = bf_get(lpfc_rcqe_length, 17996 &hbq_buf->cq_event.cqe.rcqe_cmpl); 17997 pbde = (struct ulp_bde64 *) 17998 &iocbq->iocb.unsli3.sli3Words[4]; 17999 if (len > LPFC_DATA_BUF_SIZE) 18000 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 18001 else 18002 pbde->tus.f.bdeSize = len; 18003 18004 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 18005 tot_len += len; 18006 } else { 18007 iocbq = lpfc_sli_get_iocbq(vport->phba); 18008 if (!iocbq) { 18009 if (first_iocbq) { 18010 first_iocbq->iocb.ulpStatus = 18011 IOSTAT_FCP_RSP_ERROR; 18012 first_iocbq->iocb.un.ulpWord[4] = 18013 IOERR_NO_RESOURCES; 18014 } 18015 lpfc_in_buf_free(vport->phba, d_buf); 18016 continue; 18017 } 18018 /* We need to get the size out of the right CQE */ 18019 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 18020 len = bf_get(lpfc_rcqe_length, 18021 &hbq_buf->cq_event.cqe.rcqe_cmpl); 18022 iocbq->context2 = d_buf; 18023 iocbq->context3 = NULL; 18024 iocbq->iocb.ulpBdeCount = 1; 18025 if (len > LPFC_DATA_BUF_SIZE) 18026 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 18027 LPFC_DATA_BUF_SIZE; 18028 else 18029 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 18030 18031 tot_len += len; 18032 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 18033 18034 iocbq->iocb.un.rcvels.remoteID = sid; 18035 list_add_tail(&iocbq->list, &first_iocbq->list); 18036 } 18037 } 18038 /* Free the sequence's header buffer */ 18039 if (!first_iocbq) 18040 lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); 18041 18042 return first_iocbq; 18043 } 18044 18045 static void 18046 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 18047 struct hbq_dmabuf *seq_dmabuf) 18048 { 18049 struct fc_frame_header *fc_hdr; 18050 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 18051 struct lpfc_hba *phba = vport->phba; 18052 18053 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 18054 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 18055 if (!iocbq) { 18056 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18057 "2707 Ring %d handler: Failed to allocate " 18058 "iocb Rctl x%x Type x%x received\n", 18059 LPFC_ELS_RING, 18060 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18061 return; 18062 } 18063 if (!lpfc_complete_unsol_iocb(phba, 18064 phba->sli4_hba.els_wq->pring, 18065 iocbq, fc_hdr->fh_r_ctl, 18066 fc_hdr->fh_type)) 18067 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18068 "2540 Ring %d handler: unexpected Rctl " 18069 "x%x Type x%x received\n", 18070 LPFC_ELS_RING, 18071 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 18072 18073 /* Free iocb created in lpfc_prep_seq */ 18074 list_for_each_entry_safe(curr_iocb, next_iocb, 18075 &iocbq->list, list) { 18076 list_del_init(&curr_iocb->list); 18077 lpfc_sli_release_iocbq(phba, curr_iocb); 18078 } 18079 lpfc_sli_release_iocbq(phba, iocbq); 18080 } 18081 18082 static void 18083 lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 18084 struct lpfc_iocbq *rspiocb) 18085 { 18086 struct lpfc_dmabuf *pcmd = cmdiocb->context2; 18087 18088 if (pcmd && pcmd->virt) 18089 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18090 kfree(pcmd); 18091 lpfc_sli_release_iocbq(phba, cmdiocb); 18092 lpfc_drain_txq(phba); 18093 } 18094 18095 static void 18096 lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, 18097 struct hbq_dmabuf *dmabuf) 18098 { 18099 struct fc_frame_header *fc_hdr; 18100 struct lpfc_hba *phba = vport->phba; 18101 struct lpfc_iocbq *iocbq = NULL; 18102 union lpfc_wqe *wqe; 18103 struct lpfc_dmabuf *pcmd = NULL; 18104 uint32_t frame_len; 18105 int rc; 18106 unsigned long iflags; 18107 18108 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18109 frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); 18110 18111 /* Send the received frame back */ 18112 iocbq = lpfc_sli_get_iocbq(phba); 18113 if (!iocbq) { 18114 /* Queue cq event and wakeup worker thread to process it */ 18115 spin_lock_irqsave(&phba->hbalock, iflags); 18116 list_add_tail(&dmabuf->cq_event.list, 18117 &phba->sli4_hba.sp_queue_event); 18118 phba->hba_flag |= HBA_SP_QUEUE_EVT; 18119 spin_unlock_irqrestore(&phba->hbalock, iflags); 18120 lpfc_worker_wake_up(phba); 18121 return; 18122 } 18123 18124 /* Allocate buffer for command payload */ 18125 pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 18126 if (pcmd) 18127 pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, 18128 &pcmd->phys); 18129 if (!pcmd || !pcmd->virt) 18130 goto exit; 18131 18132 INIT_LIST_HEAD(&pcmd->list); 18133 18134 /* copyin the payload */ 18135 memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); 18136 18137 /* fill in BDE's for command */ 18138 iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); 18139 iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); 18140 iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; 18141 iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; 18142 18143 iocbq->context2 = pcmd; 18144 iocbq->vport = vport; 18145 iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; 18146 iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 18147 18148 /* 18149 * Setup rest of the iocb as though it were a WQE 18150 * Build the SEND_FRAME WQE 18151 */ 18152 wqe = (union lpfc_wqe *)&iocbq->iocb; 18153 18154 wqe->send_frame.frame_len = frame_len; 18155 wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); 18156 wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); 18157 wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); 18158 wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); 18159 wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); 18160 wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); 18161 18162 iocbq->iocb.ulpCommand = CMD_SEND_FRAME; 18163 iocbq->iocb.ulpLe = 1; 18164 iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; 18165 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); 18166 if (rc == IOCB_ERROR) 18167 goto exit; 18168 18169 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18170 return; 18171 18172 exit: 18173 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 18174 "2023 Unable to process MDS loopback frame\n"); 18175 if (pcmd && pcmd->virt) 18176 dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); 18177 kfree(pcmd); 18178 if (iocbq) 18179 lpfc_sli_release_iocbq(phba, iocbq); 18180 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18181 } 18182 18183 /** 18184 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 18185 * @phba: Pointer to HBA context object. 18186 * 18187 * This function is called with no lock held. This function processes all 18188 * the received buffers and gives it to upper layers when a received buffer 18189 * indicates that it is the final frame in the sequence. The interrupt 18190 * service routine processes received buffers at interrupt contexts. 18191 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 18192 * appropriate receive function when the final frame in a sequence is received. 18193 **/ 18194 void 18195 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 18196 struct hbq_dmabuf *dmabuf) 18197 { 18198 struct hbq_dmabuf *seq_dmabuf; 18199 struct fc_frame_header *fc_hdr; 18200 struct lpfc_vport *vport; 18201 uint32_t fcfi; 18202 uint32_t did; 18203 18204 /* Process each received buffer */ 18205 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 18206 18207 if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || 18208 fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { 18209 vport = phba->pport; 18210 /* Handle MDS Loopback frames */ 18211 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18212 return; 18213 } 18214 18215 /* check to see if this a valid type of frame */ 18216 if (lpfc_fc_frame_check(phba, fc_hdr)) { 18217 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18218 return; 18219 } 18220 18221 if ((bf_get(lpfc_cqe_code, 18222 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 18223 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 18224 &dmabuf->cq_event.cqe.rcqe_cmpl); 18225 else 18226 fcfi = bf_get(lpfc_rcqe_fcf_id, 18227 &dmabuf->cq_event.cqe.rcqe_cmpl); 18228 18229 if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { 18230 vport = phba->pport; 18231 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 18232 "2023 MDS Loopback %d bytes\n", 18233 bf_get(lpfc_rcqe_length, 18234 &dmabuf->cq_event.cqe.rcqe_cmpl)); 18235 /* Handle MDS Loopback frames */ 18236 lpfc_sli4_handle_mds_loopback(vport, dmabuf); 18237 return; 18238 } 18239 18240 /* d_id this frame is directed to */ 18241 did = sli4_did_from_fc_hdr(fc_hdr); 18242 18243 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 18244 if (!vport) { 18245 /* throw out the frame */ 18246 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18247 return; 18248 } 18249 18250 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 18251 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 18252 (did != Fabric_DID)) { 18253 /* 18254 * Throw out the frame if we are not pt2pt. 18255 * The pt2pt protocol allows for discovery frames 18256 * to be received without a registered VPI. 18257 */ 18258 if (!(vport->fc_flag & FC_PT2PT) || 18259 (phba->link_state == LPFC_HBA_READY)) { 18260 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18261 return; 18262 } 18263 } 18264 18265 /* Handle the basic abort sequence (BA_ABTS) event */ 18266 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 18267 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 18268 return; 18269 } 18270 18271 /* Link this frame */ 18272 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 18273 if (!seq_dmabuf) { 18274 /* unable to add frame to vport - throw it out */ 18275 lpfc_in_buf_free(phba, &dmabuf->dbuf); 18276 return; 18277 } 18278 /* If not last frame in sequence continue processing frames. */ 18279 if (!lpfc_seq_complete(seq_dmabuf)) 18280 return; 18281 18282 /* Send the complete sequence to the upper layer protocol */ 18283 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 18284 } 18285 18286 /** 18287 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 18288 * @phba: pointer to lpfc hba data structure. 18289 * 18290 * This routine is invoked to post rpi header templates to the 18291 * HBA consistent with the SLI-4 interface spec. This routine 18292 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18293 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18294 * 18295 * This routine does not require any locks. It's usage is expected 18296 * to be driver load or reset recovery when the driver is 18297 * sequential. 18298 * 18299 * Return codes 18300 * 0 - successful 18301 * -EIO - The mailbox failed to complete successfully. 18302 * When this error occurs, the driver is not guaranteed 18303 * to have any rpi regions posted to the device and 18304 * must either attempt to repost the regions or take a 18305 * fatal error. 18306 **/ 18307 int 18308 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 18309 { 18310 struct lpfc_rpi_hdr *rpi_page; 18311 uint32_t rc = 0; 18312 uint16_t lrpi = 0; 18313 18314 /* SLI4 ports that support extents do not require RPI headers. */ 18315 if (!phba->sli4_hba.rpi_hdrs_in_use) 18316 goto exit; 18317 if (phba->sli4_hba.extents_in_use) 18318 return -EIO; 18319 18320 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 18321 /* 18322 * Assign the rpi headers a physical rpi only if the driver 18323 * has not initialized those resources. A port reset only 18324 * needs the headers posted. 18325 */ 18326 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 18327 LPFC_RPI_RSRC_RDY) 18328 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18329 18330 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 18331 if (rc != MBX_SUCCESS) { 18332 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18333 "2008 Error %d posting all rpi " 18334 "headers\n", rc); 18335 rc = -EIO; 18336 break; 18337 } 18338 } 18339 18340 exit: 18341 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 18342 LPFC_RPI_RSRC_RDY); 18343 return rc; 18344 } 18345 18346 /** 18347 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 18348 * @phba: pointer to lpfc hba data structure. 18349 * @rpi_page: pointer to the rpi memory region. 18350 * 18351 * This routine is invoked to post a single rpi header to the 18352 * HBA consistent with the SLI-4 interface spec. This memory region 18353 * maps up to 64 rpi context regions. 18354 * 18355 * Return codes 18356 * 0 - successful 18357 * -ENOMEM - No available memory 18358 * -EIO - The mailbox failed to complete successfully. 18359 **/ 18360 int 18361 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 18362 { 18363 LPFC_MBOXQ_t *mboxq; 18364 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 18365 uint32_t rc = 0; 18366 uint32_t shdr_status, shdr_add_status; 18367 union lpfc_sli4_cfg_shdr *shdr; 18368 18369 /* SLI4 ports that support extents do not require RPI headers. */ 18370 if (!phba->sli4_hba.rpi_hdrs_in_use) 18371 return rc; 18372 if (phba->sli4_hba.extents_in_use) 18373 return -EIO; 18374 18375 /* The port is notified of the header region via a mailbox command. */ 18376 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18377 if (!mboxq) { 18378 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18379 "2001 Unable to allocate memory for issuing " 18380 "SLI_CONFIG_SPECIAL mailbox command\n"); 18381 return -ENOMEM; 18382 } 18383 18384 /* Post all rpi memory regions to the port. */ 18385 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 18386 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18387 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 18388 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 18389 sizeof(struct lpfc_sli4_cfg_mhdr), 18390 LPFC_SLI4_MBX_EMBED); 18391 18392 18393 /* Post the physical rpi to the port for this rpi header. */ 18394 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 18395 rpi_page->start_rpi); 18396 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 18397 hdr_tmpl, rpi_page->page_count); 18398 18399 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 18400 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 18401 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18402 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 18403 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18404 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18405 if (rc != MBX_TIMEOUT) 18406 mempool_free(mboxq, phba->mbox_mem_pool); 18407 if (shdr_status || shdr_add_status || rc) { 18408 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18409 "2514 POST_RPI_HDR mailbox failed with " 18410 "status x%x add_status x%x, mbx status x%x\n", 18411 shdr_status, shdr_add_status, rc); 18412 rc = -ENXIO; 18413 } else { 18414 /* 18415 * The next_rpi stores the next logical module-64 rpi value used 18416 * to post physical rpis in subsequent rpi postings. 18417 */ 18418 spin_lock_irq(&phba->hbalock); 18419 phba->sli4_hba.next_rpi = rpi_page->next_rpi; 18420 spin_unlock_irq(&phba->hbalock); 18421 } 18422 return rc; 18423 } 18424 18425 /** 18426 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 18427 * @phba: pointer to lpfc hba data structure. 18428 * 18429 * This routine is invoked to post rpi header templates to the 18430 * HBA consistent with the SLI-4 interface spec. This routine 18431 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 18432 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 18433 * 18434 * Returns 18435 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 18436 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 18437 **/ 18438 int 18439 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 18440 { 18441 unsigned long rpi; 18442 uint16_t max_rpi, rpi_limit; 18443 uint16_t rpi_remaining, lrpi = 0; 18444 struct lpfc_rpi_hdr *rpi_hdr; 18445 unsigned long iflag; 18446 18447 /* 18448 * Fetch the next logical rpi. Because this index is logical, 18449 * the driver starts at 0 each time. 18450 */ 18451 spin_lock_irqsave(&phba->hbalock, iflag); 18452 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 18453 rpi_limit = phba->sli4_hba.next_rpi; 18454 18455 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 18456 if (rpi >= rpi_limit) 18457 rpi = LPFC_RPI_ALLOC_ERROR; 18458 else { 18459 set_bit(rpi, phba->sli4_hba.rpi_bmask); 18460 phba->sli4_hba.max_cfg_param.rpi_used++; 18461 phba->sli4_hba.rpi_count++; 18462 } 18463 lpfc_printf_log(phba, KERN_INFO, 18464 LOG_NODE | LOG_DISCOVERY, 18465 "0001 Allocated rpi:x%x max:x%x lim:x%x\n", 18466 (int) rpi, max_rpi, rpi_limit); 18467 18468 /* 18469 * Don't try to allocate more rpi header regions if the device limit 18470 * has been exhausted. 18471 */ 18472 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 18473 (phba->sli4_hba.rpi_count >= max_rpi)) { 18474 spin_unlock_irqrestore(&phba->hbalock, iflag); 18475 return rpi; 18476 } 18477 18478 /* 18479 * RPI header postings are not required for SLI4 ports capable of 18480 * extents. 18481 */ 18482 if (!phba->sli4_hba.rpi_hdrs_in_use) { 18483 spin_unlock_irqrestore(&phba->hbalock, iflag); 18484 return rpi; 18485 } 18486 18487 /* 18488 * If the driver is running low on rpi resources, allocate another 18489 * page now. Note that the next_rpi value is used because 18490 * it represents how many are actually in use whereas max_rpi notes 18491 * how many are supported max by the device. 18492 */ 18493 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 18494 spin_unlock_irqrestore(&phba->hbalock, iflag); 18495 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 18496 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 18497 if (!rpi_hdr) { 18498 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18499 "2002 Error Could not grow rpi " 18500 "count\n"); 18501 } else { 18502 lrpi = rpi_hdr->start_rpi; 18503 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 18504 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 18505 } 18506 } 18507 18508 return rpi; 18509 } 18510 18511 /** 18512 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18513 * @phba: pointer to lpfc hba data structure. 18514 * 18515 * This routine is invoked to release an rpi to the pool of 18516 * available rpis maintained by the driver. 18517 **/ 18518 static void 18519 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18520 { 18521 /* 18522 * if the rpi value indicates a prior unreg has already 18523 * been done, skip the unreg. 18524 */ 18525 if (rpi == LPFC_RPI_ALLOC_ERROR) 18526 return; 18527 18528 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 18529 phba->sli4_hba.rpi_count--; 18530 phba->sli4_hba.max_cfg_param.rpi_used--; 18531 } else { 18532 lpfc_printf_log(phba, KERN_INFO, 18533 LOG_NODE | LOG_DISCOVERY, 18534 "2016 rpi %x not inuse\n", 18535 rpi); 18536 } 18537 } 18538 18539 /** 18540 * lpfc_sli4_free_rpi - Release an rpi for reuse. 18541 * @phba: pointer to lpfc hba data structure. 18542 * 18543 * This routine is invoked to release an rpi to the pool of 18544 * available rpis maintained by the driver. 18545 **/ 18546 void 18547 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 18548 { 18549 spin_lock_irq(&phba->hbalock); 18550 __lpfc_sli4_free_rpi(phba, rpi); 18551 spin_unlock_irq(&phba->hbalock); 18552 } 18553 18554 /** 18555 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 18556 * @phba: pointer to lpfc hba data structure. 18557 * 18558 * This routine is invoked to remove the memory region that 18559 * provided rpi via a bitmask. 18560 **/ 18561 void 18562 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 18563 { 18564 kfree(phba->sli4_hba.rpi_bmask); 18565 kfree(phba->sli4_hba.rpi_ids); 18566 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 18567 } 18568 18569 /** 18570 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 18571 * @phba: pointer to lpfc hba data structure. 18572 * 18573 * This routine is invoked to remove the memory region that 18574 * provided rpi via a bitmask. 18575 **/ 18576 int 18577 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 18578 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 18579 { 18580 LPFC_MBOXQ_t *mboxq; 18581 struct lpfc_hba *phba = ndlp->phba; 18582 int rc; 18583 18584 /* The port is notified of the header region via a mailbox command. */ 18585 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18586 if (!mboxq) 18587 return -ENOMEM; 18588 18589 /* Post all rpi memory regions to the port. */ 18590 lpfc_resume_rpi(mboxq, ndlp); 18591 if (cmpl) { 18592 mboxq->mbox_cmpl = cmpl; 18593 mboxq->ctx_buf = arg; 18594 mboxq->ctx_ndlp = ndlp; 18595 } else 18596 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18597 mboxq->vport = ndlp->vport; 18598 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18599 if (rc == MBX_NOT_FINISHED) { 18600 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18601 "2010 Resume RPI Mailbox failed " 18602 "status %d, mbxStatus x%x\n", rc, 18603 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18604 mempool_free(mboxq, phba->mbox_mem_pool); 18605 return -EIO; 18606 } 18607 return 0; 18608 } 18609 18610 /** 18611 * lpfc_sli4_init_vpi - Initialize a vpi with the port 18612 * @vport: Pointer to the vport for which the vpi is being initialized 18613 * 18614 * This routine is invoked to activate a vpi with the port. 18615 * 18616 * Returns: 18617 * 0 success 18618 * -Evalue otherwise 18619 **/ 18620 int 18621 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 18622 { 18623 LPFC_MBOXQ_t *mboxq; 18624 int rc = 0; 18625 int retval = MBX_SUCCESS; 18626 uint32_t mbox_tmo; 18627 struct lpfc_hba *phba = vport->phba; 18628 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18629 if (!mboxq) 18630 return -ENOMEM; 18631 lpfc_init_vpi(phba, mboxq, vport->vpi); 18632 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 18633 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 18634 if (rc != MBX_SUCCESS) { 18635 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 18636 "2022 INIT VPI Mailbox failed " 18637 "status %d, mbxStatus x%x\n", rc, 18638 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 18639 retval = -EIO; 18640 } 18641 if (rc != MBX_TIMEOUT) 18642 mempool_free(mboxq, vport->phba->mbox_mem_pool); 18643 18644 return retval; 18645 } 18646 18647 /** 18648 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 18649 * @phba: pointer to lpfc hba data structure. 18650 * @mboxq: Pointer to mailbox object. 18651 * 18652 * This routine is invoked to manually add a single FCF record. The caller 18653 * must pass a completely initialized FCF_Record. This routine takes 18654 * care of the nonembedded mailbox operations. 18655 **/ 18656 static void 18657 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 18658 { 18659 void *virt_addr; 18660 union lpfc_sli4_cfg_shdr *shdr; 18661 uint32_t shdr_status, shdr_add_status; 18662 18663 virt_addr = mboxq->sge_array->addr[0]; 18664 /* The IOCTL status is embedded in the mailbox subheader. */ 18665 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 18666 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18667 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18668 18669 if ((shdr_status || shdr_add_status) && 18670 (shdr_status != STATUS_FCF_IN_USE)) 18671 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18672 "2558 ADD_FCF_RECORD mailbox failed with " 18673 "status x%x add_status x%x\n", 18674 shdr_status, shdr_add_status); 18675 18676 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18677 } 18678 18679 /** 18680 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 18681 * @phba: pointer to lpfc hba data structure. 18682 * @fcf_record: pointer to the initialized fcf record to add. 18683 * 18684 * This routine is invoked to manually add a single FCF record. The caller 18685 * must pass a completely initialized FCF_Record. This routine takes 18686 * care of the nonembedded mailbox operations. 18687 **/ 18688 int 18689 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 18690 { 18691 int rc = 0; 18692 LPFC_MBOXQ_t *mboxq; 18693 uint8_t *bytep; 18694 void *virt_addr; 18695 struct lpfc_mbx_sge sge; 18696 uint32_t alloc_len, req_len; 18697 uint32_t fcfindex; 18698 18699 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18700 if (!mboxq) { 18701 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18702 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 18703 return -ENOMEM; 18704 } 18705 18706 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 18707 sizeof(uint32_t); 18708 18709 /* Allocate DMA memory and set up the non-embedded mailbox command */ 18710 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 18711 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 18712 req_len, LPFC_SLI4_MBX_NEMBED); 18713 if (alloc_len < req_len) { 18714 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18715 "2523 Allocated DMA memory size (x%x) is " 18716 "less than the requested DMA memory " 18717 "size (x%x)\n", alloc_len, req_len); 18718 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18719 return -ENOMEM; 18720 } 18721 18722 /* 18723 * Get the first SGE entry from the non-embedded DMA memory. This 18724 * routine only uses a single SGE. 18725 */ 18726 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 18727 virt_addr = mboxq->sge_array->addr[0]; 18728 /* 18729 * Configure the FCF record for FCFI 0. This is the driver's 18730 * hardcoded default and gets used in nonFIP mode. 18731 */ 18732 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 18733 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 18734 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 18735 18736 /* 18737 * Copy the fcf_index and the FCF Record Data. The data starts after 18738 * the FCoE header plus word10. The data copy needs to be endian 18739 * correct. 18740 */ 18741 bytep += sizeof(uint32_t); 18742 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 18743 mboxq->vport = phba->pport; 18744 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 18745 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18746 if (rc == MBX_NOT_FINISHED) { 18747 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18748 "2515 ADD_FCF_RECORD mailbox failed with " 18749 "status 0x%x\n", rc); 18750 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18751 rc = -EIO; 18752 } else 18753 rc = 0; 18754 18755 return rc; 18756 } 18757 18758 /** 18759 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 18760 * @phba: pointer to lpfc hba data structure. 18761 * @fcf_record: pointer to the fcf record to write the default data. 18762 * @fcf_index: FCF table entry index. 18763 * 18764 * This routine is invoked to build the driver's default FCF record. The 18765 * values used are hardcoded. This routine handles memory initialization. 18766 * 18767 **/ 18768 void 18769 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 18770 struct fcf_record *fcf_record, 18771 uint16_t fcf_index) 18772 { 18773 memset(fcf_record, 0, sizeof(struct fcf_record)); 18774 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 18775 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 18776 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 18777 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 18778 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 18779 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 18780 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 18781 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 18782 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 18783 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 18784 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 18785 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 18786 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 18787 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 18788 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 18789 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 18790 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 18791 /* Set the VLAN bit map */ 18792 if (phba->valid_vlan) { 18793 fcf_record->vlan_bitmap[phba->vlan_id / 8] 18794 = 1 << (phba->vlan_id % 8); 18795 } 18796 } 18797 18798 /** 18799 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 18800 * @phba: pointer to lpfc hba data structure. 18801 * @fcf_index: FCF table entry offset. 18802 * 18803 * This routine is invoked to scan the entire FCF table by reading FCF 18804 * record and processing it one at a time starting from the @fcf_index 18805 * for initial FCF discovery or fast FCF failover rediscovery. 18806 * 18807 * Return 0 if the mailbox command is submitted successfully, none 0 18808 * otherwise. 18809 **/ 18810 int 18811 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18812 { 18813 int rc = 0, error; 18814 LPFC_MBOXQ_t *mboxq; 18815 18816 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 18817 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 18818 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18819 if (!mboxq) { 18820 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18821 "2000 Failed to allocate mbox for " 18822 "READ_FCF cmd\n"); 18823 error = -ENOMEM; 18824 goto fail_fcf_scan; 18825 } 18826 /* Construct the read FCF record mailbox command */ 18827 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18828 if (rc) { 18829 error = -EINVAL; 18830 goto fail_fcf_scan; 18831 } 18832 /* Issue the mailbox command asynchronously */ 18833 mboxq->vport = phba->pport; 18834 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 18835 18836 spin_lock_irq(&phba->hbalock); 18837 phba->hba_flag |= FCF_TS_INPROG; 18838 spin_unlock_irq(&phba->hbalock); 18839 18840 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18841 if (rc == MBX_NOT_FINISHED) 18842 error = -EIO; 18843 else { 18844 /* Reset eligible FCF count for new scan */ 18845 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 18846 phba->fcf.eligible_fcf_cnt = 0; 18847 error = 0; 18848 } 18849 fail_fcf_scan: 18850 if (error) { 18851 if (mboxq) 18852 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18853 /* FCF scan failed, clear FCF_TS_INPROG flag */ 18854 spin_lock_irq(&phba->hbalock); 18855 phba->hba_flag &= ~FCF_TS_INPROG; 18856 spin_unlock_irq(&phba->hbalock); 18857 } 18858 return error; 18859 } 18860 18861 /** 18862 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 18863 * @phba: pointer to lpfc hba data structure. 18864 * @fcf_index: FCF table entry offset. 18865 * 18866 * This routine is invoked to read an FCF record indicated by @fcf_index 18867 * and to use it for FLOGI roundrobin FCF failover. 18868 * 18869 * Return 0 if the mailbox command is submitted successfully, none 0 18870 * otherwise. 18871 **/ 18872 int 18873 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18874 { 18875 int rc = 0, error; 18876 LPFC_MBOXQ_t *mboxq; 18877 18878 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18879 if (!mboxq) { 18880 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18881 "2763 Failed to allocate mbox for " 18882 "READ_FCF cmd\n"); 18883 error = -ENOMEM; 18884 goto fail_fcf_read; 18885 } 18886 /* Construct the read FCF record mailbox command */ 18887 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18888 if (rc) { 18889 error = -EINVAL; 18890 goto fail_fcf_read; 18891 } 18892 /* Issue the mailbox command asynchronously */ 18893 mboxq->vport = phba->pport; 18894 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 18895 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18896 if (rc == MBX_NOT_FINISHED) 18897 error = -EIO; 18898 else 18899 error = 0; 18900 18901 fail_fcf_read: 18902 if (error && mboxq) 18903 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18904 return error; 18905 } 18906 18907 /** 18908 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 18909 * @phba: pointer to lpfc hba data structure. 18910 * @fcf_index: FCF table entry offset. 18911 * 18912 * This routine is invoked to read an FCF record indicated by @fcf_index to 18913 * determine whether it's eligible for FLOGI roundrobin failover list. 18914 * 18915 * Return 0 if the mailbox command is submitted successfully, none 0 18916 * otherwise. 18917 **/ 18918 int 18919 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 18920 { 18921 int rc = 0, error; 18922 LPFC_MBOXQ_t *mboxq; 18923 18924 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18925 if (!mboxq) { 18926 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 18927 "2758 Failed to allocate mbox for " 18928 "READ_FCF cmd\n"); 18929 error = -ENOMEM; 18930 goto fail_fcf_read; 18931 } 18932 /* Construct the read FCF record mailbox command */ 18933 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 18934 if (rc) { 18935 error = -EINVAL; 18936 goto fail_fcf_read; 18937 } 18938 /* Issue the mailbox command asynchronously */ 18939 mboxq->vport = phba->pport; 18940 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 18941 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 18942 if (rc == MBX_NOT_FINISHED) 18943 error = -EIO; 18944 else 18945 error = 0; 18946 18947 fail_fcf_read: 18948 if (error && mboxq) 18949 lpfc_sli4_mbox_cmd_free(phba, mboxq); 18950 return error; 18951 } 18952 18953 /** 18954 * lpfc_check_next_fcf_pri_level 18955 * phba pointer to the lpfc_hba struct for this port. 18956 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 18957 * routine when the rr_bmask is empty. The FCF indecies are put into the 18958 * rr_bmask based on their priority level. Starting from the highest priority 18959 * to the lowest. The most likely FCF candidate will be in the highest 18960 * priority group. When this routine is called it searches the fcf_pri list for 18961 * next lowest priority group and repopulates the rr_bmask with only those 18962 * fcf_indexes. 18963 * returns: 18964 * 1=success 0=failure 18965 **/ 18966 static int 18967 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 18968 { 18969 uint16_t next_fcf_pri; 18970 uint16_t last_index; 18971 struct lpfc_fcf_pri *fcf_pri; 18972 int rc; 18973 int ret = 0; 18974 18975 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 18976 LPFC_SLI4_FCF_TBL_INDX_MAX); 18977 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 18978 "3060 Last IDX %d\n", last_index); 18979 18980 /* Verify the priority list has 2 or more entries */ 18981 spin_lock_irq(&phba->hbalock); 18982 if (list_empty(&phba->fcf.fcf_pri_list) || 18983 list_is_singular(&phba->fcf.fcf_pri_list)) { 18984 spin_unlock_irq(&phba->hbalock); 18985 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 18986 "3061 Last IDX %d\n", last_index); 18987 return 0; /* Empty rr list */ 18988 } 18989 spin_unlock_irq(&phba->hbalock); 18990 18991 next_fcf_pri = 0; 18992 /* 18993 * Clear the rr_bmask and set all of the bits that are at this 18994 * priority. 18995 */ 18996 memset(phba->fcf.fcf_rr_bmask, 0, 18997 sizeof(*phba->fcf.fcf_rr_bmask)); 18998 spin_lock_irq(&phba->hbalock); 18999 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19000 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 19001 continue; 19002 /* 19003 * the 1st priority that has not FLOGI failed 19004 * will be the highest. 19005 */ 19006 if (!next_fcf_pri) 19007 next_fcf_pri = fcf_pri->fcf_rec.priority; 19008 spin_unlock_irq(&phba->hbalock); 19009 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19010 rc = lpfc_sli4_fcf_rr_index_set(phba, 19011 fcf_pri->fcf_rec.fcf_index); 19012 if (rc) 19013 return 0; 19014 } 19015 spin_lock_irq(&phba->hbalock); 19016 } 19017 /* 19018 * if next_fcf_pri was not set above and the list is not empty then 19019 * we have failed flogis on all of them. So reset flogi failed 19020 * and start at the beginning. 19021 */ 19022 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 19023 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 19024 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 19025 /* 19026 * the 1st priority that has not FLOGI failed 19027 * will be the highest. 19028 */ 19029 if (!next_fcf_pri) 19030 next_fcf_pri = fcf_pri->fcf_rec.priority; 19031 spin_unlock_irq(&phba->hbalock); 19032 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 19033 rc = lpfc_sli4_fcf_rr_index_set(phba, 19034 fcf_pri->fcf_rec.fcf_index); 19035 if (rc) 19036 return 0; 19037 } 19038 spin_lock_irq(&phba->hbalock); 19039 } 19040 } else 19041 ret = 1; 19042 spin_unlock_irq(&phba->hbalock); 19043 19044 return ret; 19045 } 19046 /** 19047 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 19048 * @phba: pointer to lpfc hba data structure. 19049 * 19050 * This routine is to get the next eligible FCF record index in a round 19051 * robin fashion. If the next eligible FCF record index equals to the 19052 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 19053 * shall be returned, otherwise, the next eligible FCF record's index 19054 * shall be returned. 19055 **/ 19056 uint16_t 19057 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 19058 { 19059 uint16_t next_fcf_index; 19060 19061 initial_priority: 19062 /* Search start from next bit of currently registered FCF index */ 19063 next_fcf_index = phba->fcf.current_rec.fcf_indx; 19064 19065 next_priority: 19066 /* Determine the next fcf index to check */ 19067 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 19068 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19069 LPFC_SLI4_FCF_TBL_INDX_MAX, 19070 next_fcf_index); 19071 19072 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 19073 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19074 /* 19075 * If we have wrapped then we need to clear the bits that 19076 * have been tested so that we can detect when we should 19077 * change the priority level. 19078 */ 19079 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 19080 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 19081 } 19082 19083 19084 /* Check roundrobin failover list empty condition */ 19085 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 19086 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 19087 /* 19088 * If next fcf index is not found check if there are lower 19089 * Priority level fcf's in the fcf_priority list. 19090 * Set up the rr_bmask with all of the avaiable fcf bits 19091 * at that level and continue the selection process. 19092 */ 19093 if (lpfc_check_next_fcf_pri_level(phba)) 19094 goto initial_priority; 19095 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 19096 "2844 No roundrobin failover FCF available\n"); 19097 19098 return LPFC_FCOE_FCF_NEXT_NONE; 19099 } 19100 19101 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 19102 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 19103 LPFC_FCF_FLOGI_FAILED) { 19104 if (list_is_singular(&phba->fcf.fcf_pri_list)) 19105 return LPFC_FCOE_FCF_NEXT_NONE; 19106 19107 goto next_priority; 19108 } 19109 19110 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19111 "2845 Get next roundrobin failover FCF (x%x)\n", 19112 next_fcf_index); 19113 19114 return next_fcf_index; 19115 } 19116 19117 /** 19118 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 19119 * @phba: pointer to lpfc hba data structure. 19120 * 19121 * This routine sets the FCF record index in to the eligible bmask for 19122 * roundrobin failover search. It checks to make sure that the index 19123 * does not go beyond the range of the driver allocated bmask dimension 19124 * before setting the bit. 19125 * 19126 * Returns 0 if the index bit successfully set, otherwise, it returns 19127 * -EINVAL. 19128 **/ 19129 int 19130 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 19131 { 19132 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19133 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19134 "2610 FCF (x%x) reached driver's book " 19135 "keeping dimension:x%x\n", 19136 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19137 return -EINVAL; 19138 } 19139 /* Set the eligible FCF record index bmask */ 19140 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19141 19142 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19143 "2790 Set FCF (x%x) to roundrobin FCF failover " 19144 "bmask\n", fcf_index); 19145 19146 return 0; 19147 } 19148 19149 /** 19150 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 19151 * @phba: pointer to lpfc hba data structure. 19152 * 19153 * This routine clears the FCF record index from the eligible bmask for 19154 * roundrobin failover search. It checks to make sure that the index 19155 * does not go beyond the range of the driver allocated bmask dimension 19156 * before clearing the bit. 19157 **/ 19158 void 19159 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 19160 { 19161 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 19162 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 19163 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19164 "2762 FCF (x%x) reached driver's book " 19165 "keeping dimension:x%x\n", 19166 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 19167 return; 19168 } 19169 /* Clear the eligible FCF record index bmask */ 19170 spin_lock_irq(&phba->hbalock); 19171 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 19172 list) { 19173 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 19174 list_del_init(&fcf_pri->list); 19175 break; 19176 } 19177 } 19178 spin_unlock_irq(&phba->hbalock); 19179 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 19180 19181 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19182 "2791 Clear FCF (x%x) from roundrobin failover " 19183 "bmask\n", fcf_index); 19184 } 19185 19186 /** 19187 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 19188 * @phba: pointer to lpfc hba data structure. 19189 * 19190 * This routine is the completion routine for the rediscover FCF table mailbox 19191 * command. If the mailbox command returned failure, it will try to stop the 19192 * FCF rediscover wait timer. 19193 **/ 19194 static void 19195 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 19196 { 19197 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19198 uint32_t shdr_status, shdr_add_status; 19199 19200 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19201 19202 shdr_status = bf_get(lpfc_mbox_hdr_status, 19203 &redisc_fcf->header.cfg_shdr.response); 19204 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19205 &redisc_fcf->header.cfg_shdr.response); 19206 if (shdr_status || shdr_add_status) { 19207 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 19208 "2746 Requesting for FCF rediscovery failed " 19209 "status x%x add_status x%x\n", 19210 shdr_status, shdr_add_status); 19211 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 19212 spin_lock_irq(&phba->hbalock); 19213 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 19214 spin_unlock_irq(&phba->hbalock); 19215 /* 19216 * CVL event triggered FCF rediscover request failed, 19217 * last resort to re-try current registered FCF entry. 19218 */ 19219 lpfc_retry_pport_discovery(phba); 19220 } else { 19221 spin_lock_irq(&phba->hbalock); 19222 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 19223 spin_unlock_irq(&phba->hbalock); 19224 /* 19225 * DEAD FCF event triggered FCF rediscover request 19226 * failed, last resort to fail over as a link down 19227 * to FCF registration. 19228 */ 19229 lpfc_sli4_fcf_dead_failthrough(phba); 19230 } 19231 } else { 19232 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 19233 "2775 Start FCF rediscover quiescent timer\n"); 19234 /* 19235 * Start FCF rediscovery wait timer for pending FCF 19236 * before rescan FCF record table. 19237 */ 19238 lpfc_fcf_redisc_wait_start_timer(phba); 19239 } 19240 19241 mempool_free(mbox, phba->mbox_mem_pool); 19242 } 19243 19244 /** 19245 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 19246 * @phba: pointer to lpfc hba data structure. 19247 * 19248 * This routine is invoked to request for rediscovery of the entire FCF table 19249 * by the port. 19250 **/ 19251 int 19252 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 19253 { 19254 LPFC_MBOXQ_t *mbox; 19255 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 19256 int rc, length; 19257 19258 /* Cancel retry delay timers to all vports before FCF rediscover */ 19259 lpfc_cancel_all_vport_retry_delay_timer(phba); 19260 19261 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19262 if (!mbox) { 19263 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19264 "2745 Failed to allocate mbox for " 19265 "requesting FCF rediscover.\n"); 19266 return -ENOMEM; 19267 } 19268 19269 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 19270 sizeof(struct lpfc_sli4_cfg_mhdr)); 19271 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 19272 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 19273 length, LPFC_SLI4_MBX_EMBED); 19274 19275 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 19276 /* Set count to 0 for invalidating the entire FCF database */ 19277 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 19278 19279 /* Issue the mailbox command asynchronously */ 19280 mbox->vport = phba->pport; 19281 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 19282 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 19283 19284 if (rc == MBX_NOT_FINISHED) { 19285 mempool_free(mbox, phba->mbox_mem_pool); 19286 return -EIO; 19287 } 19288 return 0; 19289 } 19290 19291 /** 19292 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 19293 * @phba: pointer to lpfc hba data structure. 19294 * 19295 * This function is the failover routine as a last resort to the FCF DEAD 19296 * event when driver failed to perform fast FCF failover. 19297 **/ 19298 void 19299 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 19300 { 19301 uint32_t link_state; 19302 19303 /* 19304 * Last resort as FCF DEAD event failover will treat this as 19305 * a link down, but save the link state because we don't want 19306 * it to be changed to Link Down unless it is already down. 19307 */ 19308 link_state = phba->link_state; 19309 lpfc_linkdown(phba); 19310 phba->link_state = link_state; 19311 19312 /* Unregister FCF if no devices connected to it */ 19313 lpfc_unregister_unused_fcf(phba); 19314 } 19315 19316 /** 19317 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 19318 * @phba: pointer to lpfc hba data structure. 19319 * @rgn23_data: pointer to configure region 23 data. 19320 * 19321 * This function gets SLI3 port configure region 23 data through memory dump 19322 * mailbox command. When it successfully retrieves data, the size of the data 19323 * will be returned, otherwise, 0 will be returned. 19324 **/ 19325 static uint32_t 19326 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19327 { 19328 LPFC_MBOXQ_t *pmb = NULL; 19329 MAILBOX_t *mb; 19330 uint32_t offset = 0; 19331 int rc; 19332 19333 if (!rgn23_data) 19334 return 0; 19335 19336 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19337 if (!pmb) { 19338 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19339 "2600 failed to allocate mailbox memory\n"); 19340 return 0; 19341 } 19342 mb = &pmb->u.mb; 19343 19344 do { 19345 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 19346 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 19347 19348 if (rc != MBX_SUCCESS) { 19349 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19350 "2601 failed to read config " 19351 "region 23, rc 0x%x Status 0x%x\n", 19352 rc, mb->mbxStatus); 19353 mb->un.varDmp.word_cnt = 0; 19354 } 19355 /* 19356 * dump mem may return a zero when finished or we got a 19357 * mailbox error, either way we are done. 19358 */ 19359 if (mb->un.varDmp.word_cnt == 0) 19360 break; 19361 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 19362 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 19363 19364 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 19365 rgn23_data + offset, 19366 mb->un.varDmp.word_cnt); 19367 offset += mb->un.varDmp.word_cnt; 19368 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 19369 19370 mempool_free(pmb, phba->mbox_mem_pool); 19371 return offset; 19372 } 19373 19374 /** 19375 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 19376 * @phba: pointer to lpfc hba data structure. 19377 * @rgn23_data: pointer to configure region 23 data. 19378 * 19379 * This function gets SLI4 port configure region 23 data through memory dump 19380 * mailbox command. When it successfully retrieves data, the size of the data 19381 * will be returned, otherwise, 0 will be returned. 19382 **/ 19383 static uint32_t 19384 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 19385 { 19386 LPFC_MBOXQ_t *mboxq = NULL; 19387 struct lpfc_dmabuf *mp = NULL; 19388 struct lpfc_mqe *mqe; 19389 uint32_t data_length = 0; 19390 int rc; 19391 19392 if (!rgn23_data) 19393 return 0; 19394 19395 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19396 if (!mboxq) { 19397 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19398 "3105 failed to allocate mailbox memory\n"); 19399 return 0; 19400 } 19401 19402 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 19403 goto out; 19404 mqe = &mboxq->u.mqe; 19405 mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; 19406 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 19407 if (rc) 19408 goto out; 19409 data_length = mqe->un.mb_words[5]; 19410 if (data_length == 0) 19411 goto out; 19412 if (data_length > DMP_RGN23_SIZE) { 19413 data_length = 0; 19414 goto out; 19415 } 19416 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 19417 out: 19418 mempool_free(mboxq, phba->mbox_mem_pool); 19419 if (mp) { 19420 lpfc_mbuf_free(phba, mp->virt, mp->phys); 19421 kfree(mp); 19422 } 19423 return data_length; 19424 } 19425 19426 /** 19427 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 19428 * @phba: pointer to lpfc hba data structure. 19429 * 19430 * This function read region 23 and parse TLV for port status to 19431 * decide if the user disaled the port. If the TLV indicates the 19432 * port is disabled, the hba_flag is set accordingly. 19433 **/ 19434 void 19435 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 19436 { 19437 uint8_t *rgn23_data = NULL; 19438 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 19439 uint32_t offset = 0; 19440 19441 /* Get adapter Region 23 data */ 19442 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 19443 if (!rgn23_data) 19444 goto out; 19445 19446 if (phba->sli_rev < LPFC_SLI_REV4) 19447 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 19448 else { 19449 if_type = bf_get(lpfc_sli_intf_if_type, 19450 &phba->sli4_hba.sli_intf); 19451 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 19452 goto out; 19453 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 19454 } 19455 19456 if (!data_size) 19457 goto out; 19458 19459 /* Check the region signature first */ 19460 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 19461 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19462 "2619 Config region 23 has bad signature\n"); 19463 goto out; 19464 } 19465 offset += 4; 19466 19467 /* Check the data structure version */ 19468 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 19469 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19470 "2620 Config region 23 has bad version\n"); 19471 goto out; 19472 } 19473 offset += 4; 19474 19475 /* Parse TLV entries in the region */ 19476 while (offset < data_size) { 19477 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 19478 break; 19479 /* 19480 * If the TLV is not driver specific TLV or driver id is 19481 * not linux driver id, skip the record. 19482 */ 19483 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 19484 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 19485 (rgn23_data[offset + 3] != 0)) { 19486 offset += rgn23_data[offset + 1] * 4 + 4; 19487 continue; 19488 } 19489 19490 /* Driver found a driver specific TLV in the config region */ 19491 sub_tlv_len = rgn23_data[offset + 1] * 4; 19492 offset += 4; 19493 tlv_offset = 0; 19494 19495 /* 19496 * Search for configured port state sub-TLV. 19497 */ 19498 while ((offset < data_size) && 19499 (tlv_offset < sub_tlv_len)) { 19500 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 19501 offset += 4; 19502 tlv_offset += 4; 19503 break; 19504 } 19505 if (rgn23_data[offset] != PORT_STE_TYPE) { 19506 offset += rgn23_data[offset + 1] * 4 + 4; 19507 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 19508 continue; 19509 } 19510 19511 /* This HBA contains PORT_STE configured */ 19512 if (!rgn23_data[offset + 2]) 19513 phba->hba_flag |= LINK_DISABLED; 19514 19515 goto out; 19516 } 19517 } 19518 19519 out: 19520 kfree(rgn23_data); 19521 return; 19522 } 19523 19524 /** 19525 * lpfc_wr_object - write an object to the firmware 19526 * @phba: HBA structure that indicates port to create a queue on. 19527 * @dmabuf_list: list of dmabufs to write to the port. 19528 * @size: the total byte value of the objects to write to the port. 19529 * @offset: the current offset to be used to start the transfer. 19530 * 19531 * This routine will create a wr_object mailbox command to send to the port. 19532 * the mailbox command will be constructed using the dma buffers described in 19533 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 19534 * BDEs that the imbedded mailbox can support. The @offset variable will be 19535 * used to indicate the starting offset of the transfer and will also return 19536 * the offset after the write object mailbox has completed. @size is used to 19537 * determine the end of the object and whether the eof bit should be set. 19538 * 19539 * Return 0 is successful and offset will contain the the new offset to use 19540 * for the next write. 19541 * Return negative value for error cases. 19542 **/ 19543 int 19544 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 19545 uint32_t size, uint32_t *offset) 19546 { 19547 struct lpfc_mbx_wr_object *wr_object; 19548 LPFC_MBOXQ_t *mbox; 19549 int rc = 0, i = 0; 19550 uint32_t shdr_status, shdr_add_status, shdr_change_status, shdr_csf; 19551 uint32_t mbox_tmo; 19552 struct lpfc_dmabuf *dmabuf; 19553 uint32_t written = 0; 19554 bool check_change_status = false; 19555 19556 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 19557 if (!mbox) 19558 return -ENOMEM; 19559 19560 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 19561 LPFC_MBOX_OPCODE_WRITE_OBJECT, 19562 sizeof(struct lpfc_mbx_wr_object) - 19563 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 19564 19565 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 19566 wr_object->u.request.write_offset = *offset; 19567 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 19568 wr_object->u.request.object_name[0] = 19569 cpu_to_le32(wr_object->u.request.object_name[0]); 19570 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 19571 list_for_each_entry(dmabuf, dmabuf_list, list) { 19572 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 19573 break; 19574 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 19575 wr_object->u.request.bde[i].addrHigh = 19576 putPaddrHigh(dmabuf->phys); 19577 if (written + SLI4_PAGE_SIZE >= size) { 19578 wr_object->u.request.bde[i].tus.f.bdeSize = 19579 (size - written); 19580 written += (size - written); 19581 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 19582 bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); 19583 check_change_status = true; 19584 } else { 19585 wr_object->u.request.bde[i].tus.f.bdeSize = 19586 SLI4_PAGE_SIZE; 19587 written += SLI4_PAGE_SIZE; 19588 } 19589 i++; 19590 } 19591 wr_object->u.request.bde_count = i; 19592 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 19593 if (!phba->sli4_hba.intr_enable) 19594 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 19595 else { 19596 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 19597 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 19598 } 19599 /* The IOCTL status is embedded in the mailbox subheader. */ 19600 shdr_status = bf_get(lpfc_mbox_hdr_status, 19601 &wr_object->header.cfg_shdr.response); 19602 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 19603 &wr_object->header.cfg_shdr.response); 19604 if (check_change_status) { 19605 shdr_change_status = bf_get(lpfc_wr_object_change_status, 19606 &wr_object->u.response); 19607 19608 if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || 19609 shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { 19610 shdr_csf = bf_get(lpfc_wr_object_csf, 19611 &wr_object->u.response); 19612 if (shdr_csf) 19613 shdr_change_status = 19614 LPFC_CHANGE_STATUS_PCI_RESET; 19615 } 19616 19617 switch (shdr_change_status) { 19618 case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): 19619 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19620 "3198 Firmware write complete: System " 19621 "reboot required to instantiate\n"); 19622 break; 19623 case (LPFC_CHANGE_STATUS_FW_RESET): 19624 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19625 "3199 Firmware write complete: Firmware" 19626 " reset required to instantiate\n"); 19627 break; 19628 case (LPFC_CHANGE_STATUS_PORT_MIGRATION): 19629 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19630 "3200 Firmware write complete: Port " 19631 "Migration or PCI Reset required to " 19632 "instantiate\n"); 19633 break; 19634 case (LPFC_CHANGE_STATUS_PCI_RESET): 19635 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 19636 "3201 Firmware write complete: PCI " 19637 "Reset required to instantiate\n"); 19638 break; 19639 default: 19640 break; 19641 } 19642 } 19643 if (rc != MBX_TIMEOUT) 19644 mempool_free(mbox, phba->mbox_mem_pool); 19645 if (shdr_status || shdr_add_status || rc) { 19646 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 19647 "3025 Write Object mailbox failed with " 19648 "status x%x add_status x%x, mbx status x%x\n", 19649 shdr_status, shdr_add_status, rc); 19650 rc = -ENXIO; 19651 *offset = shdr_add_status; 19652 } else 19653 *offset += wr_object->u.response.actual_write_length; 19654 return rc; 19655 } 19656 19657 /** 19658 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 19659 * @vport: pointer to vport data structure. 19660 * 19661 * This function iterate through the mailboxq and clean up all REG_LOGIN 19662 * and REG_VPI mailbox commands associated with the vport. This function 19663 * is called when driver want to restart discovery of the vport due to 19664 * a Clear Virtual Link event. 19665 **/ 19666 void 19667 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 19668 { 19669 struct lpfc_hba *phba = vport->phba; 19670 LPFC_MBOXQ_t *mb, *nextmb; 19671 struct lpfc_dmabuf *mp; 19672 struct lpfc_nodelist *ndlp; 19673 struct lpfc_nodelist *act_mbx_ndlp = NULL; 19674 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 19675 LIST_HEAD(mbox_cmd_list); 19676 uint8_t restart_loop; 19677 19678 /* Clean up internally queued mailbox commands with the vport */ 19679 spin_lock_irq(&phba->hbalock); 19680 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 19681 if (mb->vport != vport) 19682 continue; 19683 19684 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19685 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19686 continue; 19687 19688 list_del(&mb->list); 19689 list_add_tail(&mb->list, &mbox_cmd_list); 19690 } 19691 /* Clean up active mailbox command with the vport */ 19692 mb = phba->sli.mbox_active; 19693 if (mb && (mb->vport == vport)) { 19694 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 19695 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 19696 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19697 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19698 act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19699 /* Put reference count for delayed processing */ 19700 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 19701 /* Unregister the RPI when mailbox complete */ 19702 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19703 } 19704 } 19705 /* Cleanup any mailbox completions which are not yet processed */ 19706 do { 19707 restart_loop = 0; 19708 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 19709 /* 19710 * If this mailox is already processed or it is 19711 * for another vport ignore it. 19712 */ 19713 if ((mb->vport != vport) || 19714 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 19715 continue; 19716 19717 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 19718 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 19719 continue; 19720 19721 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 19722 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19723 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19724 /* Unregister the RPI when mailbox complete */ 19725 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 19726 restart_loop = 1; 19727 spin_unlock_irq(&phba->hbalock); 19728 spin_lock(shost->host_lock); 19729 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19730 spin_unlock(shost->host_lock); 19731 spin_lock_irq(&phba->hbalock); 19732 break; 19733 } 19734 } 19735 } while (restart_loop); 19736 19737 spin_unlock_irq(&phba->hbalock); 19738 19739 /* Release the cleaned-up mailbox commands */ 19740 while (!list_empty(&mbox_cmd_list)) { 19741 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 19742 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 19743 mp = (struct lpfc_dmabuf *)(mb->ctx_buf); 19744 if (mp) { 19745 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 19746 kfree(mp); 19747 } 19748 mb->ctx_buf = NULL; 19749 ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; 19750 mb->ctx_ndlp = NULL; 19751 if (ndlp) { 19752 spin_lock(shost->host_lock); 19753 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19754 spin_unlock(shost->host_lock); 19755 lpfc_nlp_put(ndlp); 19756 } 19757 } 19758 mempool_free(mb, phba->mbox_mem_pool); 19759 } 19760 19761 /* Release the ndlp with the cleaned-up active mailbox command */ 19762 if (act_mbx_ndlp) { 19763 spin_lock(shost->host_lock); 19764 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 19765 spin_unlock(shost->host_lock); 19766 lpfc_nlp_put(act_mbx_ndlp); 19767 } 19768 } 19769 19770 /** 19771 * lpfc_drain_txq - Drain the txq 19772 * @phba: Pointer to HBA context object. 19773 * 19774 * This function attempt to submit IOCBs on the txq 19775 * to the adapter. For SLI4 adapters, the txq contains 19776 * ELS IOCBs that have been deferred because the there 19777 * are no SGLs. This congestion can occur with large 19778 * vport counts during node discovery. 19779 **/ 19780 19781 uint32_t 19782 lpfc_drain_txq(struct lpfc_hba *phba) 19783 { 19784 LIST_HEAD(completions); 19785 struct lpfc_sli_ring *pring; 19786 struct lpfc_iocbq *piocbq = NULL; 19787 unsigned long iflags = 0; 19788 char *fail_msg = NULL; 19789 struct lpfc_sglq *sglq; 19790 union lpfc_wqe128 wqe; 19791 uint32_t txq_cnt = 0; 19792 struct lpfc_queue *wq; 19793 19794 if (phba->link_flag & LS_MDS_LOOPBACK) { 19795 /* MDS WQE are posted only to first WQ*/ 19796 wq = phba->sli4_hba.hdwq[0].io_wq; 19797 if (unlikely(!wq)) 19798 return 0; 19799 pring = wq->pring; 19800 } else { 19801 wq = phba->sli4_hba.els_wq; 19802 if (unlikely(!wq)) 19803 return 0; 19804 pring = lpfc_phba_elsring(phba); 19805 } 19806 19807 if (unlikely(!pring) || list_empty(&pring->txq)) 19808 return 0; 19809 19810 spin_lock_irqsave(&pring->ring_lock, iflags); 19811 list_for_each_entry(piocbq, &pring->txq, list) { 19812 txq_cnt++; 19813 } 19814 19815 if (txq_cnt > pring->txq_max) 19816 pring->txq_max = txq_cnt; 19817 19818 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19819 19820 while (!list_empty(&pring->txq)) { 19821 spin_lock_irqsave(&pring->ring_lock, iflags); 19822 19823 piocbq = lpfc_sli_ringtx_get(phba, pring); 19824 if (!piocbq) { 19825 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19826 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19827 "2823 txq empty and txq_cnt is %d\n ", 19828 txq_cnt); 19829 break; 19830 } 19831 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 19832 if (!sglq) { 19833 __lpfc_sli_ringtx_put(phba, pring, piocbq); 19834 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19835 break; 19836 } 19837 txq_cnt--; 19838 19839 /* The xri and iocb resources secured, 19840 * attempt to issue request 19841 */ 19842 piocbq->sli4_lxritag = sglq->sli4_lxritag; 19843 piocbq->sli4_xritag = sglq->sli4_xritag; 19844 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 19845 fail_msg = "to convert bpl to sgl"; 19846 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) 19847 fail_msg = "to convert iocb to wqe"; 19848 else if (lpfc_sli4_wq_put(wq, &wqe)) 19849 fail_msg = " - Wq is full"; 19850 else 19851 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 19852 19853 if (fail_msg) { 19854 /* Failed means we can't issue and need to cancel */ 19855 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 19856 "2822 IOCB failed %s iotag 0x%x " 19857 "xri 0x%x\n", 19858 fail_msg, 19859 piocbq->iotag, piocbq->sli4_xritag); 19860 list_add_tail(&piocbq->list, &completions); 19861 } 19862 spin_unlock_irqrestore(&pring->ring_lock, iflags); 19863 } 19864 19865 /* Cancel all the IOCBs that cannot be issued */ 19866 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 19867 IOERR_SLI_ABORTED); 19868 19869 return txq_cnt; 19870 } 19871 19872 /** 19873 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 19874 * @phba: Pointer to HBA context object. 19875 * @pwqe: Pointer to command WQE. 19876 * @sglq: Pointer to the scatter gather queue object. 19877 * 19878 * This routine converts the bpl or bde that is in the WQE 19879 * to a sgl list for the sli4 hardware. The physical address 19880 * of the bpl/bde is converted back to a virtual address. 19881 * If the WQE contains a BPL then the list of BDE's is 19882 * converted to sli4_sge's. If the WQE contains a single 19883 * BDE then it is converted to a single sli_sge. 19884 * The WQE is still in cpu endianness so the contents of 19885 * the bpl can be used without byte swapping. 19886 * 19887 * Returns valid XRI = Success, NO_XRI = Failure. 19888 */ 19889 static uint16_t 19890 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 19891 struct lpfc_sglq *sglq) 19892 { 19893 uint16_t xritag = NO_XRI; 19894 struct ulp_bde64 *bpl = NULL; 19895 struct ulp_bde64 bde; 19896 struct sli4_sge *sgl = NULL; 19897 struct lpfc_dmabuf *dmabuf; 19898 union lpfc_wqe128 *wqe; 19899 int numBdes = 0; 19900 int i = 0; 19901 uint32_t offset = 0; /* accumulated offset in the sg request list */ 19902 int inbound = 0; /* number of sg reply entries inbound from firmware */ 19903 uint32_t cmd; 19904 19905 if (!pwqeq || !sglq) 19906 return xritag; 19907 19908 sgl = (struct sli4_sge *)sglq->sgl; 19909 wqe = &pwqeq->wqe; 19910 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 19911 19912 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 19913 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 19914 return sglq->sli4_xritag; 19915 numBdes = pwqeq->rsvd2; 19916 if (numBdes) { 19917 /* The addrHigh and addrLow fields within the WQE 19918 * have not been byteswapped yet so there is no 19919 * need to swap them back. 19920 */ 19921 if (pwqeq->context3) 19922 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 19923 else 19924 return xritag; 19925 19926 bpl = (struct ulp_bde64 *)dmabuf->virt; 19927 if (!bpl) 19928 return xritag; 19929 19930 for (i = 0; i < numBdes; i++) { 19931 /* Should already be byte swapped. */ 19932 sgl->addr_hi = bpl->addrHigh; 19933 sgl->addr_lo = bpl->addrLow; 19934 19935 sgl->word2 = le32_to_cpu(sgl->word2); 19936 if ((i+1) == numBdes) 19937 bf_set(lpfc_sli4_sge_last, sgl, 1); 19938 else 19939 bf_set(lpfc_sli4_sge_last, sgl, 0); 19940 /* swap the size field back to the cpu so we 19941 * can assign it to the sgl. 19942 */ 19943 bde.tus.w = le32_to_cpu(bpl->tus.w); 19944 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 19945 /* The offsets in the sgl need to be accumulated 19946 * separately for the request and reply lists. 19947 * The request is always first, the reply follows. 19948 */ 19949 switch (cmd) { 19950 case CMD_GEN_REQUEST64_WQE: 19951 /* add up the reply sg entries */ 19952 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 19953 inbound++; 19954 /* first inbound? reset the offset */ 19955 if (inbound == 1) 19956 offset = 0; 19957 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19958 bf_set(lpfc_sli4_sge_type, sgl, 19959 LPFC_SGE_TYPE_DATA); 19960 offset += bde.tus.f.bdeSize; 19961 break; 19962 case CMD_FCP_TRSP64_WQE: 19963 bf_set(lpfc_sli4_sge_offset, sgl, 0); 19964 bf_set(lpfc_sli4_sge_type, sgl, 19965 LPFC_SGE_TYPE_DATA); 19966 break; 19967 case CMD_FCP_TSEND64_WQE: 19968 case CMD_FCP_TRECEIVE64_WQE: 19969 bf_set(lpfc_sli4_sge_type, sgl, 19970 bpl->tus.f.bdeFlags); 19971 if (i < 3) 19972 offset = 0; 19973 else 19974 offset += bde.tus.f.bdeSize; 19975 bf_set(lpfc_sli4_sge_offset, sgl, offset); 19976 break; 19977 } 19978 sgl->word2 = cpu_to_le32(sgl->word2); 19979 bpl++; 19980 sgl++; 19981 } 19982 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 19983 /* The addrHigh and addrLow fields of the BDE have not 19984 * been byteswapped yet so they need to be swapped 19985 * before putting them in the sgl. 19986 */ 19987 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 19988 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 19989 sgl->word2 = le32_to_cpu(sgl->word2); 19990 bf_set(lpfc_sli4_sge_last, sgl, 1); 19991 sgl->word2 = cpu_to_le32(sgl->word2); 19992 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 19993 } 19994 return sglq->sli4_xritag; 19995 } 19996 19997 /** 19998 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 19999 * @phba: Pointer to HBA context object. 20000 * @ring_number: Base sli ring number 20001 * @pwqe: Pointer to command WQE. 20002 **/ 20003 int 20004 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20005 struct lpfc_iocbq *pwqe) 20006 { 20007 union lpfc_wqe128 *wqe = &pwqe->wqe; 20008 struct lpfc_async_xchg_ctx *ctxp; 20009 struct lpfc_queue *wq; 20010 struct lpfc_sglq *sglq; 20011 struct lpfc_sli_ring *pring; 20012 unsigned long iflags; 20013 uint32_t ret = 0; 20014 20015 /* NVME_LS and NVME_LS ABTS requests. */ 20016 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 20017 pring = phba->sli4_hba.nvmels_wq->pring; 20018 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20019 qp, wq_access); 20020 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 20021 if (!sglq) { 20022 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20023 return WQE_BUSY; 20024 } 20025 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20026 pwqe->sli4_xritag = sglq->sli4_xritag; 20027 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 20028 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20029 return WQE_ERROR; 20030 } 20031 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20032 pwqe->sli4_xritag); 20033 ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); 20034 if (ret) { 20035 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20036 return ret; 20037 } 20038 20039 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20040 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20041 20042 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20043 return 0; 20044 } 20045 20046 /* NVME_FCREQ and NVME_ABTS requests */ 20047 if (pwqe->iocb_flag & LPFC_IO_NVME) { 20048 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20049 wq = qp->io_wq; 20050 pring = wq->pring; 20051 20052 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20053 20054 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20055 qp, wq_access); 20056 ret = lpfc_sli4_wq_put(wq, wqe); 20057 if (ret) { 20058 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20059 return ret; 20060 } 20061 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20062 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20063 20064 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20065 return 0; 20066 } 20067 20068 /* NVMET requests */ 20069 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 20070 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 20071 wq = qp->io_wq; 20072 pring = wq->pring; 20073 20074 ctxp = pwqe->context2; 20075 sglq = ctxp->ctxbuf->sglq; 20076 if (pwqe->sli4_xritag == NO_XRI) { 20077 pwqe->sli4_lxritag = sglq->sli4_lxritag; 20078 pwqe->sli4_xritag = sglq->sli4_xritag; 20079 } 20080 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 20081 pwqe->sli4_xritag); 20082 bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); 20083 20084 lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, 20085 qp, wq_access); 20086 ret = lpfc_sli4_wq_put(wq, wqe); 20087 if (ret) { 20088 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20089 return ret; 20090 } 20091 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 20092 spin_unlock_irqrestore(&pring->ring_lock, iflags); 20093 20094 lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); 20095 return 0; 20096 } 20097 return WQE_ERROR; 20098 } 20099 20100 #ifdef LPFC_MXP_STAT 20101 /** 20102 * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count 20103 * @phba: pointer to lpfc hba data structure. 20104 * @hwqid: belong to which HWQ. 20105 * 20106 * The purpose of this routine is to take a snapshot of pbl, pvt and busy count 20107 * 15 seconds after a test case is running. 20108 * 20109 * The user should call lpfc_debugfs_multixripools_write before running a test 20110 * case to clear stat_snapshot_taken. Then the user starts a test case. During 20111 * test case is running, stat_snapshot_taken is incremented by 1 every time when 20112 * this routine is called from heartbeat timer. When stat_snapshot_taken is 20113 * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. 20114 **/ 20115 void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) 20116 { 20117 struct lpfc_sli4_hdw_queue *qp; 20118 struct lpfc_multixri_pool *multixri_pool; 20119 struct lpfc_pvt_pool *pvt_pool; 20120 struct lpfc_pbl_pool *pbl_pool; 20121 u32 txcmplq_cnt; 20122 20123 qp = &phba->sli4_hba.hdwq[hwqid]; 20124 multixri_pool = qp->p_multixri_pool; 20125 if (!multixri_pool) 20126 return; 20127 20128 if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { 20129 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20130 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20131 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20132 20133 multixri_pool->stat_pbl_count = pbl_pool->count; 20134 multixri_pool->stat_pvt_count = pvt_pool->count; 20135 multixri_pool->stat_busy_count = txcmplq_cnt; 20136 } 20137 20138 multixri_pool->stat_snapshot_taken++; 20139 } 20140 #endif 20141 20142 /** 20143 * lpfc_adjust_pvt_pool_count - Adjust private pool count 20144 * @phba: pointer to lpfc hba data structure. 20145 * @hwqid: belong to which HWQ. 20146 * 20147 * This routine moves some XRIs from private to public pool when private pool 20148 * is not busy. 20149 **/ 20150 void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) 20151 { 20152 struct lpfc_multixri_pool *multixri_pool; 20153 u32 io_req_count; 20154 u32 prev_io_req_count; 20155 20156 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20157 if (!multixri_pool) 20158 return; 20159 io_req_count = multixri_pool->io_req_count; 20160 prev_io_req_count = multixri_pool->prev_io_req_count; 20161 20162 if (prev_io_req_count != io_req_count) { 20163 /* Private pool is busy */ 20164 multixri_pool->prev_io_req_count = io_req_count; 20165 } else { 20166 /* Private pool is not busy. 20167 * Move XRIs from private to public pool. 20168 */ 20169 lpfc_move_xri_pvt_to_pbl(phba, hwqid); 20170 } 20171 } 20172 20173 /** 20174 * lpfc_adjust_high_watermark - Adjust high watermark 20175 * @phba: pointer to lpfc hba data structure. 20176 * @hwqid: belong to which HWQ. 20177 * 20178 * This routine sets high watermark as number of outstanding XRIs, 20179 * but make sure the new value is between xri_limit/2 and xri_limit. 20180 **/ 20181 void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) 20182 { 20183 u32 new_watermark; 20184 u32 watermark_max; 20185 u32 watermark_min; 20186 u32 xri_limit; 20187 u32 txcmplq_cnt; 20188 u32 abts_io_bufs; 20189 struct lpfc_multixri_pool *multixri_pool; 20190 struct lpfc_sli4_hdw_queue *qp; 20191 20192 qp = &phba->sli4_hba.hdwq[hwqid]; 20193 multixri_pool = qp->p_multixri_pool; 20194 if (!multixri_pool) 20195 return; 20196 xri_limit = multixri_pool->xri_limit; 20197 20198 watermark_max = xri_limit; 20199 watermark_min = xri_limit / 2; 20200 20201 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20202 abts_io_bufs = qp->abts_scsi_io_bufs; 20203 abts_io_bufs += qp->abts_nvme_io_bufs; 20204 20205 new_watermark = txcmplq_cnt + abts_io_bufs; 20206 new_watermark = min(watermark_max, new_watermark); 20207 new_watermark = max(watermark_min, new_watermark); 20208 multixri_pool->pvt_pool.high_watermark = new_watermark; 20209 20210 #ifdef LPFC_MXP_STAT 20211 multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, 20212 new_watermark); 20213 #endif 20214 } 20215 20216 /** 20217 * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool 20218 * @phba: pointer to lpfc hba data structure. 20219 * @hwqid: belong to which HWQ. 20220 * 20221 * This routine is called from hearbeat timer when pvt_pool is idle. 20222 * All free XRIs are moved from private to public pool on hwqid with 2 steps. 20223 * The first step moves (all - low_watermark) amount of XRIs. 20224 * The second step moves the rest of XRIs. 20225 **/ 20226 void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) 20227 { 20228 struct lpfc_pbl_pool *pbl_pool; 20229 struct lpfc_pvt_pool *pvt_pool; 20230 struct lpfc_sli4_hdw_queue *qp; 20231 struct lpfc_io_buf *lpfc_ncmd; 20232 struct lpfc_io_buf *lpfc_ncmd_next; 20233 unsigned long iflag; 20234 struct list_head tmp_list; 20235 u32 tmp_count; 20236 20237 qp = &phba->sli4_hba.hdwq[hwqid]; 20238 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20239 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20240 tmp_count = 0; 20241 20242 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); 20243 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); 20244 20245 if (pvt_pool->count > pvt_pool->low_watermark) { 20246 /* Step 1: move (all - low_watermark) from pvt_pool 20247 * to pbl_pool 20248 */ 20249 20250 /* Move low watermark of bufs from pvt_pool to tmp_list */ 20251 INIT_LIST_HEAD(&tmp_list); 20252 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20253 &pvt_pool->list, list) { 20254 list_move_tail(&lpfc_ncmd->list, &tmp_list); 20255 tmp_count++; 20256 if (tmp_count >= pvt_pool->low_watermark) 20257 break; 20258 } 20259 20260 /* Move all bufs from pvt_pool to pbl_pool */ 20261 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20262 20263 /* Move all bufs from tmp_list to pvt_pool */ 20264 list_splice(&tmp_list, &pvt_pool->list); 20265 20266 pbl_pool->count += (pvt_pool->count - tmp_count); 20267 pvt_pool->count = tmp_count; 20268 } else { 20269 /* Step 2: move the rest from pvt_pool to pbl_pool */ 20270 list_splice_init(&pvt_pool->list, &pbl_pool->list); 20271 pbl_pool->count += pvt_pool->count; 20272 pvt_pool->count = 0; 20273 } 20274 20275 spin_unlock(&pvt_pool->lock); 20276 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20277 } 20278 20279 /** 20280 * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20281 * @phba: pointer to lpfc hba data structure 20282 * @pbl_pool: specified public free XRI pool 20283 * @pvt_pool: specified private free XRI pool 20284 * @count: number of XRIs to move 20285 * 20286 * This routine tries to move some free common bufs from the specified pbl_pool 20287 * to the specified pvt_pool. It might move less than count XRIs if there's not 20288 * enough in public pool. 20289 * 20290 * Return: 20291 * true - if XRIs are successfully moved from the specified pbl_pool to the 20292 * specified pvt_pool 20293 * false - if the specified pbl_pool is empty or locked by someone else 20294 **/ 20295 static bool 20296 _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, 20297 struct lpfc_pbl_pool *pbl_pool, 20298 struct lpfc_pvt_pool *pvt_pool, u32 count) 20299 { 20300 struct lpfc_io_buf *lpfc_ncmd; 20301 struct lpfc_io_buf *lpfc_ncmd_next; 20302 unsigned long iflag; 20303 int ret; 20304 20305 ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); 20306 if (ret) { 20307 if (pbl_pool->count) { 20308 /* Move a batch of XRIs from public to private pool */ 20309 lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); 20310 list_for_each_entry_safe(lpfc_ncmd, 20311 lpfc_ncmd_next, 20312 &pbl_pool->list, 20313 list) { 20314 list_move_tail(&lpfc_ncmd->list, 20315 &pvt_pool->list); 20316 pvt_pool->count++; 20317 pbl_pool->count--; 20318 count--; 20319 if (count == 0) 20320 break; 20321 } 20322 20323 spin_unlock(&pvt_pool->lock); 20324 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20325 return true; 20326 } 20327 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20328 } 20329 20330 return false; 20331 } 20332 20333 /** 20334 * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool 20335 * @phba: pointer to lpfc hba data structure. 20336 * @hwqid: belong to which HWQ. 20337 * @count: number of XRIs to move 20338 * 20339 * This routine tries to find some free common bufs in one of public pools with 20340 * Round Robin method. The search always starts from local hwqid, then the next 20341 * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, 20342 * a batch of free common bufs are moved to private pool on hwqid. 20343 * It might move less than count XRIs if there's not enough in public pool. 20344 **/ 20345 void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) 20346 { 20347 struct lpfc_multixri_pool *multixri_pool; 20348 struct lpfc_multixri_pool *next_multixri_pool; 20349 struct lpfc_pvt_pool *pvt_pool; 20350 struct lpfc_pbl_pool *pbl_pool; 20351 struct lpfc_sli4_hdw_queue *qp; 20352 u32 next_hwqid; 20353 u32 hwq_count; 20354 int ret; 20355 20356 qp = &phba->sli4_hba.hdwq[hwqid]; 20357 multixri_pool = qp->p_multixri_pool; 20358 pvt_pool = &multixri_pool->pvt_pool; 20359 pbl_pool = &multixri_pool->pbl_pool; 20360 20361 /* Check if local pbl_pool is available */ 20362 ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); 20363 if (ret) { 20364 #ifdef LPFC_MXP_STAT 20365 multixri_pool->local_pbl_hit_count++; 20366 #endif 20367 return; 20368 } 20369 20370 hwq_count = phba->cfg_hdw_queue; 20371 20372 /* Get the next hwqid which was found last time */ 20373 next_hwqid = multixri_pool->rrb_next_hwqid; 20374 20375 do { 20376 /* Go to next hwq */ 20377 next_hwqid = (next_hwqid + 1) % hwq_count; 20378 20379 next_multixri_pool = 20380 phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; 20381 pbl_pool = &next_multixri_pool->pbl_pool; 20382 20383 /* Check if the public free xri pool is available */ 20384 ret = _lpfc_move_xri_pbl_to_pvt( 20385 phba, qp, pbl_pool, pvt_pool, count); 20386 20387 /* Exit while-loop if success or all hwqid are checked */ 20388 } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); 20389 20390 /* Starting point for the next time */ 20391 multixri_pool->rrb_next_hwqid = next_hwqid; 20392 20393 if (!ret) { 20394 /* stats: all public pools are empty*/ 20395 multixri_pool->pbl_empty_count++; 20396 } 20397 20398 #ifdef LPFC_MXP_STAT 20399 if (ret) { 20400 if (next_hwqid == hwqid) 20401 multixri_pool->local_pbl_hit_count++; 20402 else 20403 multixri_pool->other_pbl_hit_count++; 20404 } 20405 #endif 20406 } 20407 20408 /** 20409 * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark 20410 * @phba: pointer to lpfc hba data structure. 20411 * @qp: belong to which HWQ. 20412 * 20413 * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than 20414 * low watermark. 20415 **/ 20416 void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) 20417 { 20418 struct lpfc_multixri_pool *multixri_pool; 20419 struct lpfc_pvt_pool *pvt_pool; 20420 20421 multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; 20422 pvt_pool = &multixri_pool->pvt_pool; 20423 20424 if (pvt_pool->count < pvt_pool->low_watermark) 20425 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20426 } 20427 20428 /** 20429 * lpfc_release_io_buf - Return one IO buf back to free pool 20430 * @phba: pointer to lpfc hba data structure. 20431 * @lpfc_ncmd: IO buf to be returned. 20432 * @qp: belong to which HWQ. 20433 * 20434 * This routine returns one IO buf back to free pool. If this is an urgent IO, 20435 * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, 20436 * the IO buf is returned to pbl_pool or pvt_pool based on watermark and 20437 * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to 20438 * lpfc_io_buf_list_put. 20439 **/ 20440 void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, 20441 struct lpfc_sli4_hdw_queue *qp) 20442 { 20443 unsigned long iflag; 20444 struct lpfc_pbl_pool *pbl_pool; 20445 struct lpfc_pvt_pool *pvt_pool; 20446 struct lpfc_epd_pool *epd_pool; 20447 u32 txcmplq_cnt; 20448 u32 xri_owned; 20449 u32 xri_limit; 20450 u32 abts_io_bufs; 20451 20452 /* MUST zero fields if buffer is reused by another protocol */ 20453 lpfc_ncmd->nvmeCmd = NULL; 20454 lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; 20455 lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; 20456 20457 if (phba->cfg_xpsgl && !phba->nvmet_support && 20458 !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) 20459 lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); 20460 20461 if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) 20462 lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); 20463 20464 if (phba->cfg_xri_rebalancing) { 20465 if (lpfc_ncmd->expedite) { 20466 /* Return to expedite pool */ 20467 epd_pool = &phba->epd_pool; 20468 spin_lock_irqsave(&epd_pool->lock, iflag); 20469 list_add_tail(&lpfc_ncmd->list, &epd_pool->list); 20470 epd_pool->count++; 20471 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20472 return; 20473 } 20474 20475 /* Avoid invalid access if an IO sneaks in and is being rejected 20476 * just _after_ xri pools are destroyed in lpfc_offline. 20477 * Nothing much can be done at this point. 20478 */ 20479 if (!qp->p_multixri_pool) 20480 return; 20481 20482 pbl_pool = &qp->p_multixri_pool->pbl_pool; 20483 pvt_pool = &qp->p_multixri_pool->pvt_pool; 20484 20485 txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; 20486 abts_io_bufs = qp->abts_scsi_io_bufs; 20487 abts_io_bufs += qp->abts_nvme_io_bufs; 20488 20489 xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; 20490 xri_limit = qp->p_multixri_pool->xri_limit; 20491 20492 #ifdef LPFC_MXP_STAT 20493 if (xri_owned <= xri_limit) 20494 qp->p_multixri_pool->below_limit_count++; 20495 else 20496 qp->p_multixri_pool->above_limit_count++; 20497 #endif 20498 20499 /* XRI goes to either public or private free xri pool 20500 * based on watermark and xri_limit 20501 */ 20502 if ((pvt_pool->count < pvt_pool->low_watermark) || 20503 (xri_owned < xri_limit && 20504 pvt_pool->count < pvt_pool->high_watermark)) { 20505 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, 20506 qp, free_pvt_pool); 20507 list_add_tail(&lpfc_ncmd->list, 20508 &pvt_pool->list); 20509 pvt_pool->count++; 20510 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20511 } else { 20512 lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, 20513 qp, free_pub_pool); 20514 list_add_tail(&lpfc_ncmd->list, 20515 &pbl_pool->list); 20516 pbl_pool->count++; 20517 spin_unlock_irqrestore(&pbl_pool->lock, iflag); 20518 } 20519 } else { 20520 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, 20521 qp, free_xri); 20522 list_add_tail(&lpfc_ncmd->list, 20523 &qp->lpfc_io_buf_list_put); 20524 qp->put_io_bufs++; 20525 spin_unlock_irqrestore(&qp->io_buf_list_put_lock, 20526 iflag); 20527 } 20528 } 20529 20530 /** 20531 * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool 20532 * @phba: pointer to lpfc hba data structure. 20533 * @pvt_pool: pointer to private pool data structure. 20534 * @ndlp: pointer to lpfc nodelist data structure. 20535 * 20536 * This routine tries to get one free IO buf from private pool. 20537 * 20538 * Return: 20539 * pointer to one free IO buf - if private pool is not empty 20540 * NULL - if private pool is empty 20541 **/ 20542 static struct lpfc_io_buf * 20543 lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, 20544 struct lpfc_sli4_hdw_queue *qp, 20545 struct lpfc_pvt_pool *pvt_pool, 20546 struct lpfc_nodelist *ndlp) 20547 { 20548 struct lpfc_io_buf *lpfc_ncmd; 20549 struct lpfc_io_buf *lpfc_ncmd_next; 20550 unsigned long iflag; 20551 20552 lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); 20553 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20554 &pvt_pool->list, list) { 20555 if (lpfc_test_rrq_active( 20556 phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) 20557 continue; 20558 list_del(&lpfc_ncmd->list); 20559 pvt_pool->count--; 20560 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20561 return lpfc_ncmd; 20562 } 20563 spin_unlock_irqrestore(&pvt_pool->lock, iflag); 20564 20565 return NULL; 20566 } 20567 20568 /** 20569 * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool 20570 * @phba: pointer to lpfc hba data structure. 20571 * 20572 * This routine tries to get one free IO buf from expedite pool. 20573 * 20574 * Return: 20575 * pointer to one free IO buf - if expedite pool is not empty 20576 * NULL - if expedite pool is empty 20577 **/ 20578 static struct lpfc_io_buf * 20579 lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) 20580 { 20581 struct lpfc_io_buf *lpfc_ncmd; 20582 struct lpfc_io_buf *lpfc_ncmd_next; 20583 unsigned long iflag; 20584 struct lpfc_epd_pool *epd_pool; 20585 20586 epd_pool = &phba->epd_pool; 20587 lpfc_ncmd = NULL; 20588 20589 spin_lock_irqsave(&epd_pool->lock, iflag); 20590 if (epd_pool->count > 0) { 20591 list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, 20592 &epd_pool->list, list) { 20593 list_del(&lpfc_ncmd->list); 20594 epd_pool->count--; 20595 break; 20596 } 20597 } 20598 spin_unlock_irqrestore(&epd_pool->lock, iflag); 20599 20600 return lpfc_ncmd; 20601 } 20602 20603 /** 20604 * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs 20605 * @phba: pointer to lpfc hba data structure. 20606 * @ndlp: pointer to lpfc nodelist data structure. 20607 * @hwqid: belong to which HWQ 20608 * @expedite: 1 means this request is urgent. 20609 * 20610 * This routine will do the following actions and then return a pointer to 20611 * one free IO buf. 20612 * 20613 * 1. If private free xri count is empty, move some XRIs from public to 20614 * private pool. 20615 * 2. Get one XRI from private free xri pool. 20616 * 3. If we fail to get one from pvt_pool and this is an expedite request, 20617 * get one free xri from expedite pool. 20618 * 20619 * Note: ndlp is only used on SCSI side for RRQ testing. 20620 * The caller should pass NULL for ndlp on NVME side. 20621 * 20622 * Return: 20623 * pointer to one free IO buf - if private pool is not empty 20624 * NULL - if private pool is empty 20625 **/ 20626 static struct lpfc_io_buf * 20627 lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, 20628 struct lpfc_nodelist *ndlp, 20629 int hwqid, int expedite) 20630 { 20631 struct lpfc_sli4_hdw_queue *qp; 20632 struct lpfc_multixri_pool *multixri_pool; 20633 struct lpfc_pvt_pool *pvt_pool; 20634 struct lpfc_io_buf *lpfc_ncmd; 20635 20636 qp = &phba->sli4_hba.hdwq[hwqid]; 20637 lpfc_ncmd = NULL; 20638 multixri_pool = qp->p_multixri_pool; 20639 pvt_pool = &multixri_pool->pvt_pool; 20640 multixri_pool->io_req_count++; 20641 20642 /* If pvt_pool is empty, move some XRIs from public to private pool */ 20643 if (pvt_pool->count == 0) 20644 lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); 20645 20646 /* Get one XRI from private free xri pool */ 20647 lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); 20648 20649 if (lpfc_ncmd) { 20650 lpfc_ncmd->hdwq = qp; 20651 lpfc_ncmd->hdwq_no = hwqid; 20652 } else if (expedite) { 20653 /* If we fail to get one from pvt_pool and this is an expedite 20654 * request, get one free xri from expedite pool. 20655 */ 20656 lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); 20657 } 20658 20659 return lpfc_ncmd; 20660 } 20661 20662 static inline struct lpfc_io_buf * 20663 lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) 20664 { 20665 struct lpfc_sli4_hdw_queue *qp; 20666 struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; 20667 20668 qp = &phba->sli4_hba.hdwq[idx]; 20669 list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, 20670 &qp->lpfc_io_buf_list_get, list) { 20671 if (lpfc_test_rrq_active(phba, ndlp, 20672 lpfc_cmd->cur_iocbq.sli4_lxritag)) 20673 continue; 20674 20675 if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) 20676 continue; 20677 20678 list_del_init(&lpfc_cmd->list); 20679 qp->get_io_bufs--; 20680 lpfc_cmd->hdwq = qp; 20681 lpfc_cmd->hdwq_no = idx; 20682 return lpfc_cmd; 20683 } 20684 return NULL; 20685 } 20686 20687 /** 20688 * lpfc_get_io_buf - Get one IO buffer from free pool 20689 * @phba: The HBA for which this call is being executed. 20690 * @ndlp: pointer to lpfc nodelist data structure. 20691 * @hwqid: belong to which HWQ 20692 * @expedite: 1 means this request is urgent. 20693 * 20694 * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, 20695 * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes 20696 * a IO buffer from head of @hdwq io_buf_list and returns to caller. 20697 * 20698 * Note: ndlp is only used on SCSI side for RRQ testing. 20699 * The caller should pass NULL for ndlp on NVME side. 20700 * 20701 * Return codes: 20702 * NULL - Error 20703 * Pointer to lpfc_io_buf - Success 20704 **/ 20705 struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, 20706 struct lpfc_nodelist *ndlp, 20707 u32 hwqid, int expedite) 20708 { 20709 struct lpfc_sli4_hdw_queue *qp; 20710 unsigned long iflag; 20711 struct lpfc_io_buf *lpfc_cmd; 20712 20713 qp = &phba->sli4_hba.hdwq[hwqid]; 20714 lpfc_cmd = NULL; 20715 20716 if (phba->cfg_xri_rebalancing) 20717 lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( 20718 phba, ndlp, hwqid, expedite); 20719 else { 20720 lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, 20721 qp, alloc_xri_get); 20722 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) 20723 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20724 if (!lpfc_cmd) { 20725 lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, 20726 qp, alloc_xri_put); 20727 list_splice(&qp->lpfc_io_buf_list_put, 20728 &qp->lpfc_io_buf_list_get); 20729 qp->get_io_bufs += qp->put_io_bufs; 20730 INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); 20731 qp->put_io_bufs = 0; 20732 spin_unlock(&qp->io_buf_list_put_lock); 20733 if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || 20734 expedite) 20735 lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); 20736 } 20737 spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); 20738 } 20739 20740 return lpfc_cmd; 20741 } 20742 20743 /** 20744 * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool 20745 * @phba: The HBA for which this call is being executed. 20746 * @lpfc_buf: IO buf structure to append the SGL chunk 20747 * 20748 * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, 20749 * and will allocate an SGL chunk if the pool is empty. 20750 * 20751 * Return codes: 20752 * NULL - Error 20753 * Pointer to sli4_hybrid_sgl - Success 20754 **/ 20755 struct sli4_hybrid_sgl * 20756 lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20757 { 20758 struct sli4_hybrid_sgl *list_entry = NULL; 20759 struct sli4_hybrid_sgl *tmp = NULL; 20760 struct sli4_hybrid_sgl *allocated_sgl = NULL; 20761 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20762 struct list_head *buf_list = &hdwq->sgl_list; 20763 unsigned long iflags; 20764 20765 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20766 20767 if (likely(!list_empty(buf_list))) { 20768 /* break off 1 chunk from the sgl_list */ 20769 list_for_each_entry_safe(list_entry, tmp, 20770 buf_list, list_node) { 20771 list_move_tail(&list_entry->list_node, 20772 &lpfc_buf->dma_sgl_xtra_list); 20773 break; 20774 } 20775 } else { 20776 /* allocate more */ 20777 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20778 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20779 cpu_to_node(hdwq->io_wq->chann)); 20780 if (!tmp) { 20781 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20782 "8353 error kmalloc memory for HDWQ " 20783 "%d %s\n", 20784 lpfc_buf->hdwq_no, __func__); 20785 return NULL; 20786 } 20787 20788 tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, 20789 GFP_ATOMIC, &tmp->dma_phys_sgl); 20790 if (!tmp->dma_sgl) { 20791 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20792 "8354 error pool_alloc memory for HDWQ " 20793 "%d %s\n", 20794 lpfc_buf->hdwq_no, __func__); 20795 kfree(tmp); 20796 return NULL; 20797 } 20798 20799 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20800 list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); 20801 } 20802 20803 allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, 20804 struct sli4_hybrid_sgl, 20805 list_node); 20806 20807 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20808 20809 return allocated_sgl; 20810 } 20811 20812 /** 20813 * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool 20814 * @phba: The HBA for which this call is being executed. 20815 * @lpfc_buf: IO buf structure with the SGL chunk 20816 * 20817 * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. 20818 * 20819 * Return codes: 20820 * 0 - Success 20821 * -EINVAL - Error 20822 **/ 20823 int 20824 lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) 20825 { 20826 int rc = 0; 20827 struct sli4_hybrid_sgl *list_entry = NULL; 20828 struct sli4_hybrid_sgl *tmp = NULL; 20829 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20830 struct list_head *buf_list = &hdwq->sgl_list; 20831 unsigned long iflags; 20832 20833 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20834 20835 if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { 20836 list_for_each_entry_safe(list_entry, tmp, 20837 &lpfc_buf->dma_sgl_xtra_list, 20838 list_node) { 20839 list_move_tail(&list_entry->list_node, 20840 buf_list); 20841 } 20842 } else { 20843 rc = -EINVAL; 20844 } 20845 20846 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20847 return rc; 20848 } 20849 20850 /** 20851 * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool 20852 * @phba: phba object 20853 * @hdwq: hdwq to cleanup sgl buff resources on 20854 * 20855 * This routine frees all SGL chunks of hdwq SGL chunk pool. 20856 * 20857 * Return codes: 20858 * None 20859 **/ 20860 void 20861 lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, 20862 struct lpfc_sli4_hdw_queue *hdwq) 20863 { 20864 struct list_head *buf_list = &hdwq->sgl_list; 20865 struct sli4_hybrid_sgl *list_entry = NULL; 20866 struct sli4_hybrid_sgl *tmp = NULL; 20867 unsigned long iflags; 20868 20869 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20870 20871 /* Free sgl pool */ 20872 list_for_each_entry_safe(list_entry, tmp, 20873 buf_list, list_node) { 20874 dma_pool_free(phba->lpfc_sg_dma_buf_pool, 20875 list_entry->dma_sgl, 20876 list_entry->dma_phys_sgl); 20877 list_del(&list_entry->list_node); 20878 kfree(list_entry); 20879 } 20880 20881 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20882 } 20883 20884 /** 20885 * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq 20886 * @phba: The HBA for which this call is being executed. 20887 * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer 20888 * 20889 * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, 20890 * and will allocate an CMD/RSP buffer if the pool is empty. 20891 * 20892 * Return codes: 20893 * NULL - Error 20894 * Pointer to fcp_cmd_rsp_buf - Success 20895 **/ 20896 struct fcp_cmd_rsp_buf * 20897 lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20898 struct lpfc_io_buf *lpfc_buf) 20899 { 20900 struct fcp_cmd_rsp_buf *list_entry = NULL; 20901 struct fcp_cmd_rsp_buf *tmp = NULL; 20902 struct fcp_cmd_rsp_buf *allocated_buf = NULL; 20903 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20904 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20905 unsigned long iflags; 20906 20907 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20908 20909 if (likely(!list_empty(buf_list))) { 20910 /* break off 1 chunk from the list */ 20911 list_for_each_entry_safe(list_entry, tmp, 20912 buf_list, 20913 list_node) { 20914 list_move_tail(&list_entry->list_node, 20915 &lpfc_buf->dma_cmd_rsp_list); 20916 break; 20917 } 20918 } else { 20919 /* allocate more */ 20920 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20921 tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, 20922 cpu_to_node(hdwq->io_wq->chann)); 20923 if (!tmp) { 20924 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20925 "8355 error kmalloc memory for HDWQ " 20926 "%d %s\n", 20927 lpfc_buf->hdwq_no, __func__); 20928 return NULL; 20929 } 20930 20931 tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, 20932 GFP_ATOMIC, 20933 &tmp->fcp_cmd_rsp_dma_handle); 20934 20935 if (!tmp->fcp_cmnd) { 20936 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 20937 "8356 error pool_alloc memory for HDWQ " 20938 "%d %s\n", 20939 lpfc_buf->hdwq_no, __func__); 20940 kfree(tmp); 20941 return NULL; 20942 } 20943 20944 tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + 20945 sizeof(struct fcp_cmnd)); 20946 20947 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20948 list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); 20949 } 20950 20951 allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, 20952 struct fcp_cmd_rsp_buf, 20953 list_node); 20954 20955 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20956 20957 return allocated_buf; 20958 } 20959 20960 /** 20961 * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool 20962 * @phba: The HBA for which this call is being executed. 20963 * @lpfc_buf: IO buf structure with the CMD/RSP buf 20964 * 20965 * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. 20966 * 20967 * Return codes: 20968 * 0 - Success 20969 * -EINVAL - Error 20970 **/ 20971 int 20972 lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 20973 struct lpfc_io_buf *lpfc_buf) 20974 { 20975 int rc = 0; 20976 struct fcp_cmd_rsp_buf *list_entry = NULL; 20977 struct fcp_cmd_rsp_buf *tmp = NULL; 20978 struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; 20979 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 20980 unsigned long iflags; 20981 20982 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 20983 20984 if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { 20985 list_for_each_entry_safe(list_entry, tmp, 20986 &lpfc_buf->dma_cmd_rsp_list, 20987 list_node) { 20988 list_move_tail(&list_entry->list_node, 20989 buf_list); 20990 } 20991 } else { 20992 rc = -EINVAL; 20993 } 20994 20995 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 20996 return rc; 20997 } 20998 20999 /** 21000 * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool 21001 * @phba: phba object 21002 * @hdwq: hdwq to cleanup cmd rsp buff resources on 21003 * 21004 * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. 21005 * 21006 * Return codes: 21007 * None 21008 **/ 21009 void 21010 lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, 21011 struct lpfc_sli4_hdw_queue *hdwq) 21012 { 21013 struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; 21014 struct fcp_cmd_rsp_buf *list_entry = NULL; 21015 struct fcp_cmd_rsp_buf *tmp = NULL; 21016 unsigned long iflags; 21017 21018 spin_lock_irqsave(&hdwq->hdwq_lock, iflags); 21019 21020 /* Free cmd_rsp buf pool */ 21021 list_for_each_entry_safe(list_entry, tmp, 21022 buf_list, 21023 list_node) { 21024 dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, 21025 list_entry->fcp_cmnd, 21026 list_entry->fcp_cmd_rsp_dma_handle); 21027 list_del(&list_entry->list_node); 21028 kfree(list_entry); 21029 } 21030 21031 spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); 21032 } 21033