1 2 /******************************************************************* 3 * This file is part of the Emulex Linux Device Driver for * 4 * Fibre Channel Host Bus Adapters. * 5 * Copyright (C) 2017 Broadcom. All Rights Reserved. The term * 6 * “Broadcom” refers to Broadcom Limited and/or its subsidiaries. * 7 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 8 * EMULEX and SLI are trademarks of Emulex. * 9 * www.broadcom.com * 10 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 11 * * 12 * This program is free software; you can redistribute it and/or * 13 * modify it under the terms of version 2 of the GNU General * 14 * Public License as published by the Free Software Foundation. * 15 * This program is distributed in the hope that it will be useful. * 16 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 17 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 18 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 19 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 20 * TO BE LEGALLY INVALID. See the GNU General Public License for * 21 * more details, a copy of which can be found in the file COPYING * 22 * included with this package. * 23 *******************************************************************/ 24 25 #include <linux/blkdev.h> 26 #include <linux/pci.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/lockdep.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 #include <linux/aer.h> 39 40 #include <linux/nvme-fc-driver.h> 41 42 #include "lpfc_hw4.h" 43 #include "lpfc_hw.h" 44 #include "lpfc_sli.h" 45 #include "lpfc_sli4.h" 46 #include "lpfc_nl.h" 47 #include "lpfc_disc.h" 48 #include "lpfc.h" 49 #include "lpfc_scsi.h" 50 #include "lpfc_nvme.h" 51 #include "lpfc_nvmet.h" 52 #include "lpfc_crtn.h" 53 #include "lpfc_logmsg.h" 54 #include "lpfc_compat.h" 55 #include "lpfc_debugfs.h" 56 #include "lpfc_vport.h" 57 #include "lpfc_version.h" 58 59 /* There are only four IOCB completion types. */ 60 typedef enum _lpfc_iocb_type { 61 LPFC_UNKNOWN_IOCB, 62 LPFC_UNSOL_IOCB, 63 LPFC_SOL_IOCB, 64 LPFC_ABORT_IOCB 65 } lpfc_iocb_type; 66 67 68 /* Provide function prototypes local to this module. */ 69 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, 70 uint32_t); 71 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, 72 uint8_t *, uint32_t *); 73 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, 74 struct lpfc_iocbq *); 75 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, 76 struct hbq_dmabuf *); 77 static int lpfc_sli4_fp_handle_cqe(struct lpfc_hba *, struct lpfc_queue *, 78 struct lpfc_cqe *); 79 static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, 80 int); 81 static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *, struct lpfc_eqe *, 82 uint32_t); 83 static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); 84 static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); 85 static int lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, 86 struct lpfc_sli_ring *pring, 87 struct lpfc_iocbq *cmdiocb); 88 89 static IOCB_t * 90 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) 91 { 92 return &iocbq->iocb; 93 } 94 95 /** 96 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue 97 * @q: The Work Queue to operate on. 98 * @wqe: The work Queue Entry to put on the Work queue. 99 * 100 * This routine will copy the contents of @wqe to the next available entry on 101 * the @q. This function will then ring the Work Queue Doorbell to signal the 102 * HBA to start processing the Work Queue Entry. This function returns 0 if 103 * successful. If no entries are available on @q then this function will return 104 * -ENOMEM. 105 * The caller is expected to hold the hbalock when calling this routine. 106 **/ 107 static uint32_t 108 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe) 109 { 110 union lpfc_wqe *temp_wqe; 111 struct lpfc_register doorbell; 112 uint32_t host_index; 113 uint32_t idx; 114 115 /* sanity check on queue memory */ 116 if (unlikely(!q)) 117 return -ENOMEM; 118 temp_wqe = q->qe[q->host_index].wqe; 119 120 /* If the host has not yet processed the next entry then we are done */ 121 idx = ((q->host_index + 1) % q->entry_count); 122 if (idx == q->hba_index) { 123 q->WQ_overflow++; 124 return -ENOMEM; 125 } 126 q->WQ_posted++; 127 /* set consumption flag every once in a while */ 128 if (!((q->host_index + 1) % q->entry_repost)) 129 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); 130 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) 131 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); 132 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size); 133 /* ensure WQE bcopy flushed before doorbell write */ 134 wmb(); 135 136 /* Update the host index before invoking device */ 137 host_index = q->host_index; 138 139 q->host_index = idx; 140 141 /* Ring Doorbell */ 142 doorbell.word0 = 0; 143 if (q->db_format == LPFC_DB_LIST_FORMAT) { 144 bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); 145 bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); 146 bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); 147 } else if (q->db_format == LPFC_DB_RING_FORMAT) { 148 bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); 149 bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); 150 } else { 151 return -EINVAL; 152 } 153 writel(doorbell.word0, q->db_regaddr); 154 155 return 0; 156 } 157 158 /** 159 * lpfc_sli4_wq_release - Updates internal hba index for WQ 160 * @q: The Work Queue to operate on. 161 * @index: The index to advance the hba index to. 162 * 163 * This routine will update the HBA index of a queue to reflect consumption of 164 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed 165 * an entry the host calls this function to update the queue's internal 166 * pointers. This routine returns the number of entries that were consumed by 167 * the HBA. 168 **/ 169 static uint32_t 170 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) 171 { 172 uint32_t released = 0; 173 174 /* sanity check on queue memory */ 175 if (unlikely(!q)) 176 return 0; 177 178 if (q->hba_index == index) 179 return 0; 180 do { 181 q->hba_index = ((q->hba_index + 1) % q->entry_count); 182 released++; 183 } while (q->hba_index != index); 184 return released; 185 } 186 187 /** 188 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue 189 * @q: The Mailbox Queue to operate on. 190 * @wqe: The Mailbox Queue Entry to put on the Work queue. 191 * 192 * This routine will copy the contents of @mqe to the next available entry on 193 * the @q. This function will then ring the Work Queue Doorbell to signal the 194 * HBA to start processing the Work Queue Entry. This function returns 0 if 195 * successful. If no entries are available on @q then this function will return 196 * -ENOMEM. 197 * The caller is expected to hold the hbalock when calling this routine. 198 **/ 199 static uint32_t 200 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) 201 { 202 struct lpfc_mqe *temp_mqe; 203 struct lpfc_register doorbell; 204 205 /* sanity check on queue memory */ 206 if (unlikely(!q)) 207 return -ENOMEM; 208 temp_mqe = q->qe[q->host_index].mqe; 209 210 /* If the host has not yet processed the next entry then we are done */ 211 if (((q->host_index + 1) % q->entry_count) == q->hba_index) 212 return -ENOMEM; 213 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size); 214 /* Save off the mailbox pointer for completion */ 215 q->phba->mbox = (MAILBOX_t *)temp_mqe; 216 217 /* Update the host index before invoking device */ 218 q->host_index = ((q->host_index + 1) % q->entry_count); 219 220 /* Ring Doorbell */ 221 doorbell.word0 = 0; 222 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); 223 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); 224 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); 225 return 0; 226 } 227 228 /** 229 * lpfc_sli4_mq_release - Updates internal hba index for MQ 230 * @q: The Mailbox Queue to operate on. 231 * 232 * This routine will update the HBA index of a queue to reflect consumption of 233 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed 234 * an entry the host calls this function to update the queue's internal 235 * pointers. This routine returns the number of entries that were consumed by 236 * the HBA. 237 **/ 238 static uint32_t 239 lpfc_sli4_mq_release(struct lpfc_queue *q) 240 { 241 /* sanity check on queue memory */ 242 if (unlikely(!q)) 243 return 0; 244 245 /* Clear the mailbox pointer for completion */ 246 q->phba->mbox = NULL; 247 q->hba_index = ((q->hba_index + 1) % q->entry_count); 248 return 1; 249 } 250 251 /** 252 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ 253 * @q: The Event Queue to get the first valid EQE from 254 * 255 * This routine will get the first valid Event Queue Entry from @q, update 256 * the queue's internal hba index, and return the EQE. If no valid EQEs are in 257 * the Queue (no more work to do), or the Queue is full of EQEs that have been 258 * processed, but not popped back to the HBA then this routine will return NULL. 259 **/ 260 static struct lpfc_eqe * 261 lpfc_sli4_eq_get(struct lpfc_queue *q) 262 { 263 struct lpfc_eqe *eqe; 264 uint32_t idx; 265 266 /* sanity check on queue memory */ 267 if (unlikely(!q)) 268 return NULL; 269 eqe = q->qe[q->hba_index].eqe; 270 271 /* If the next EQE is not valid then we are done */ 272 if (!bf_get_le32(lpfc_eqe_valid, eqe)) 273 return NULL; 274 /* If the host has not yet processed the next entry then we are done */ 275 idx = ((q->hba_index + 1) % q->entry_count); 276 if (idx == q->host_index) 277 return NULL; 278 279 q->hba_index = idx; 280 281 /* 282 * insert barrier for instruction interlock : data from the hardware 283 * must have the valid bit checked before it can be copied and acted 284 * upon. Speculative instructions were allowing a bcopy at the start 285 * of lpfc_sli4_fp_handle_wcqe(), which is called immediately 286 * after our return, to copy data before the valid bit check above 287 * was done. As such, some of the copied data was stale. The barrier 288 * ensures the check is before any data is copied. 289 */ 290 mb(); 291 return eqe; 292 } 293 294 /** 295 * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ 296 * @q: The Event Queue to disable interrupts 297 * 298 **/ 299 static inline void 300 lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) 301 { 302 struct lpfc_register doorbell; 303 304 doorbell.word0 = 0; 305 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 306 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 307 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 308 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 309 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 310 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 311 } 312 313 /** 314 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ 315 * @q: The Event Queue that the host has completed processing for. 316 * @arm: Indicates whether the host wants to arms this CQ. 317 * 318 * This routine will mark all Event Queue Entries on @q, from the last 319 * known completed entry to the last entry that was processed, as completed 320 * by clearing the valid bit for each completion queue entry. Then it will 321 * notify the HBA, by ringing the doorbell, that the EQEs have been processed. 322 * The internal host index in the @q will be updated by this routine to indicate 323 * that the host has finished processing the entries. The @arm parameter 324 * indicates that the queue should be rearmed when ringing the doorbell. 325 * 326 * This function will return the number of EQEs that were popped. 327 **/ 328 uint32_t 329 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm) 330 { 331 uint32_t released = 0; 332 struct lpfc_eqe *temp_eqe; 333 struct lpfc_register doorbell; 334 335 /* sanity check on queue memory */ 336 if (unlikely(!q)) 337 return 0; 338 339 /* while there are valid entries */ 340 while (q->hba_index != q->host_index) { 341 temp_eqe = q->qe[q->host_index].eqe; 342 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0); 343 released++; 344 q->host_index = ((q->host_index + 1) % q->entry_count); 345 } 346 if (unlikely(released == 0 && !arm)) 347 return 0; 348 349 /* ring doorbell for number popped */ 350 doorbell.word0 = 0; 351 if (arm) { 352 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 353 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); 354 } 355 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 356 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); 357 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, 358 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); 359 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); 360 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 361 /* PCI read to flush PCI pipeline on re-arming for INTx mode */ 362 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) 363 readl(q->phba->sli4_hba.EQCQDBregaddr); 364 return released; 365 } 366 367 /** 368 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ 369 * @q: The Completion Queue to get the first valid CQE from 370 * 371 * This routine will get the first valid Completion Queue Entry from @q, update 372 * the queue's internal hba index, and return the CQE. If no valid CQEs are in 373 * the Queue (no more work to do), or the Queue is full of CQEs that have been 374 * processed, but not popped back to the HBA then this routine will return NULL. 375 **/ 376 static struct lpfc_cqe * 377 lpfc_sli4_cq_get(struct lpfc_queue *q) 378 { 379 struct lpfc_cqe *cqe; 380 uint32_t idx; 381 382 /* sanity check on queue memory */ 383 if (unlikely(!q)) 384 return NULL; 385 386 /* If the next CQE is not valid then we are done */ 387 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe)) 388 return NULL; 389 /* If the host has not yet processed the next entry then we are done */ 390 idx = ((q->hba_index + 1) % q->entry_count); 391 if (idx == q->host_index) 392 return NULL; 393 394 cqe = q->qe[q->hba_index].cqe; 395 q->hba_index = idx; 396 397 /* 398 * insert barrier for instruction interlock : data from the hardware 399 * must have the valid bit checked before it can be copied and acted 400 * upon. Given what was seen in lpfc_sli4_cq_get() of speculative 401 * instructions allowing action on content before valid bit checked, 402 * add barrier here as well. May not be needed as "content" is a 403 * single 32-bit entity here (vs multi word structure for cq's). 404 */ 405 mb(); 406 return cqe; 407 } 408 409 /** 410 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ 411 * @q: The Completion Queue that the host has completed processing for. 412 * @arm: Indicates whether the host wants to arms this CQ. 413 * 414 * This routine will mark all Completion queue entries on @q, from the last 415 * known completed entry to the last entry that was processed, as completed 416 * by clearing the valid bit for each completion queue entry. Then it will 417 * notify the HBA, by ringing the doorbell, that the CQEs have been processed. 418 * The internal host index in the @q will be updated by this routine to indicate 419 * that the host has finished processing the entries. The @arm parameter 420 * indicates that the queue should be rearmed when ringing the doorbell. 421 * 422 * This function will return the number of CQEs that were released. 423 **/ 424 uint32_t 425 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm) 426 { 427 uint32_t released = 0; 428 struct lpfc_cqe *temp_qe; 429 struct lpfc_register doorbell; 430 431 /* sanity check on queue memory */ 432 if (unlikely(!q)) 433 return 0; 434 /* while there are valid entries */ 435 while (q->hba_index != q->host_index) { 436 temp_qe = q->qe[q->host_index].cqe; 437 bf_set_le32(lpfc_cqe_valid, temp_qe, 0); 438 released++; 439 q->host_index = ((q->host_index + 1) % q->entry_count); 440 } 441 if (unlikely(released == 0 && !arm)) 442 return 0; 443 444 /* ring doorbell for number popped */ 445 doorbell.word0 = 0; 446 if (arm) 447 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); 448 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released); 449 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); 450 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, 451 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); 452 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); 453 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr); 454 return released; 455 } 456 457 /** 458 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue 459 * @q: The Header Receive Queue to operate on. 460 * @wqe: The Receive Queue Entry to put on the Receive queue. 461 * 462 * This routine will copy the contents of @wqe to the next available entry on 463 * the @q. This function will then ring the Receive Queue Doorbell to signal the 464 * HBA to start processing the Receive Queue Entry. This function returns the 465 * index that the rqe was copied to if successful. If no entries are available 466 * on @q then this function will return -ENOMEM. 467 * The caller is expected to hold the hbalock when calling this routine. 468 **/ 469 int 470 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, 471 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) 472 { 473 struct lpfc_rqe *temp_hrqe; 474 struct lpfc_rqe *temp_drqe; 475 struct lpfc_register doorbell; 476 int put_index; 477 478 /* sanity check on queue memory */ 479 if (unlikely(!hq) || unlikely(!dq)) 480 return -ENOMEM; 481 put_index = hq->host_index; 482 temp_hrqe = hq->qe[hq->host_index].rqe; 483 temp_drqe = dq->qe[dq->host_index].rqe; 484 485 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) 486 return -EINVAL; 487 if (hq->host_index != dq->host_index) 488 return -EINVAL; 489 /* If the host has not yet processed the next entry then we are done */ 490 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index) 491 return -EBUSY; 492 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); 493 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); 494 495 /* Update the host index to point to the next slot */ 496 hq->host_index = ((hq->host_index + 1) % hq->entry_count); 497 dq->host_index = ((dq->host_index + 1) % dq->entry_count); 498 499 /* Ring The Header Receive Queue Doorbell */ 500 if (!(hq->host_index % hq->entry_repost)) { 501 doorbell.word0 = 0; 502 if (hq->db_format == LPFC_DB_RING_FORMAT) { 503 bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, 504 hq->entry_repost); 505 bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); 506 } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { 507 bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, 508 hq->entry_repost); 509 bf_set(lpfc_rq_db_list_fm_index, &doorbell, 510 hq->host_index); 511 bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); 512 } else { 513 return -EINVAL; 514 } 515 writel(doorbell.word0, hq->db_regaddr); 516 } 517 return put_index; 518 } 519 520 /** 521 * lpfc_sli4_rq_release - Updates internal hba index for RQ 522 * @q: The Header Receive Queue to operate on. 523 * 524 * This routine will update the HBA index of a queue to reflect consumption of 525 * one Receive Queue Entry by the HBA. When the HBA indicates that it has 526 * consumed an entry the host calls this function to update the queue's 527 * internal pointers. This routine returns the number of entries that were 528 * consumed by the HBA. 529 **/ 530 static uint32_t 531 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) 532 { 533 /* sanity check on queue memory */ 534 if (unlikely(!hq) || unlikely(!dq)) 535 return 0; 536 537 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) 538 return 0; 539 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); 540 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); 541 return 1; 542 } 543 544 /** 545 * lpfc_cmd_iocb - Get next command iocb entry in the ring 546 * @phba: Pointer to HBA context object. 547 * @pring: Pointer to driver SLI ring object. 548 * 549 * This function returns pointer to next command iocb entry 550 * in the command ring. The caller must hold hbalock to prevent 551 * other threads consume the next command iocb. 552 * SLI-2/SLI-3 provide different sized iocbs. 553 **/ 554 static inline IOCB_t * 555 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 556 { 557 return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + 558 pring->sli.sli3.cmdidx * phba->iocb_cmd_size); 559 } 560 561 /** 562 * lpfc_resp_iocb - Get next response iocb entry in the ring 563 * @phba: Pointer to HBA context object. 564 * @pring: Pointer to driver SLI ring object. 565 * 566 * This function returns pointer to next response iocb entry 567 * in the response ring. The caller must hold hbalock to make sure 568 * that no other thread consume the next response iocb. 569 * SLI-2/SLI-3 provide different sized iocbs. 570 **/ 571 static inline IOCB_t * 572 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 573 { 574 return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + 575 pring->sli.sli3.rspidx * phba->iocb_rsp_size); 576 } 577 578 /** 579 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 580 * @phba: Pointer to HBA context object. 581 * 582 * This function is called with hbalock held. This function 583 * allocates a new driver iocb object from the iocb pool. If the 584 * allocation is successful, it returns pointer to the newly 585 * allocated iocb object else it returns NULL. 586 **/ 587 struct lpfc_iocbq * 588 __lpfc_sli_get_iocbq(struct lpfc_hba *phba) 589 { 590 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; 591 struct lpfc_iocbq * iocbq = NULL; 592 593 lockdep_assert_held(&phba->hbalock); 594 595 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); 596 if (iocbq) 597 phba->iocb_cnt++; 598 if (phba->iocb_cnt > phba->iocb_max) 599 phba->iocb_max = phba->iocb_cnt; 600 return iocbq; 601 } 602 603 /** 604 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. 605 * @phba: Pointer to HBA context object. 606 * @xritag: XRI value. 607 * 608 * This function clears the sglq pointer from the array of acive 609 * sglq's. The xritag that is passed in is used to index into the 610 * array. Before the xritag can be used it needs to be adjusted 611 * by subtracting the xribase. 612 * 613 * Returns sglq ponter = success, NULL = Failure. 614 **/ 615 struct lpfc_sglq * 616 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 617 { 618 struct lpfc_sglq *sglq; 619 620 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 621 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; 622 return sglq; 623 } 624 625 /** 626 * __lpfc_get_active_sglq - Get the active sglq for this XRI. 627 * @phba: Pointer to HBA context object. 628 * @xritag: XRI value. 629 * 630 * This function returns the sglq pointer from the array of acive 631 * sglq's. The xritag that is passed in is used to index into the 632 * array. Before the xritag can be used it needs to be adjusted 633 * by subtracting the xribase. 634 * 635 * Returns sglq ponter = success, NULL = Failure. 636 **/ 637 struct lpfc_sglq * 638 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) 639 { 640 struct lpfc_sglq *sglq; 641 642 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; 643 return sglq; 644 } 645 646 /** 647 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. 648 * @phba: Pointer to HBA context object. 649 * @xritag: xri used in this exchange. 650 * @rrq: The RRQ to be cleared. 651 * 652 **/ 653 void 654 lpfc_clr_rrq_active(struct lpfc_hba *phba, 655 uint16_t xritag, 656 struct lpfc_node_rrq *rrq) 657 { 658 struct lpfc_nodelist *ndlp = NULL; 659 660 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp)) 661 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); 662 663 /* The target DID could have been swapped (cable swap) 664 * we should use the ndlp from the findnode if it is 665 * available. 666 */ 667 if ((!ndlp) && rrq->ndlp) 668 ndlp = rrq->ndlp; 669 670 if (!ndlp) 671 goto out; 672 673 if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { 674 rrq->send_rrq = 0; 675 rrq->xritag = 0; 676 rrq->rrq_stop_time = 0; 677 } 678 out: 679 mempool_free(rrq, phba->rrq_pool); 680 } 681 682 /** 683 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. 684 * @phba: Pointer to HBA context object. 685 * 686 * This function is called with hbalock held. This function 687 * Checks if stop_time (ratov from setting rrq active) has 688 * been reached, if it has and the send_rrq flag is set then 689 * it will call lpfc_send_rrq. If the send_rrq flag is not set 690 * then it will just call the routine to clear the rrq and 691 * free the rrq resource. 692 * The timer is set to the next rrq that is going to expire before 693 * leaving the routine. 694 * 695 **/ 696 void 697 lpfc_handle_rrq_active(struct lpfc_hba *phba) 698 { 699 struct lpfc_node_rrq *rrq; 700 struct lpfc_node_rrq *nextrrq; 701 unsigned long next_time; 702 unsigned long iflags; 703 LIST_HEAD(send_rrq); 704 705 spin_lock_irqsave(&phba->hbalock, iflags); 706 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 707 next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 708 list_for_each_entry_safe(rrq, nextrrq, 709 &phba->active_rrq_list, list) { 710 if (time_after(jiffies, rrq->rrq_stop_time)) 711 list_move(&rrq->list, &send_rrq); 712 else if (time_before(rrq->rrq_stop_time, next_time)) 713 next_time = rrq->rrq_stop_time; 714 } 715 spin_unlock_irqrestore(&phba->hbalock, iflags); 716 if ((!list_empty(&phba->active_rrq_list)) && 717 (!(phba->pport->load_flag & FC_UNLOADING))) 718 mod_timer(&phba->rrq_tmr, next_time); 719 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { 720 list_del(&rrq->list); 721 if (!rrq->send_rrq) 722 /* this call will free the rrq */ 723 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 724 else if (lpfc_send_rrq(phba, rrq)) { 725 /* if we send the rrq then the completion handler 726 * will clear the bit in the xribitmap. 727 */ 728 lpfc_clr_rrq_active(phba, rrq->xritag, 729 rrq); 730 } 731 } 732 } 733 734 /** 735 * lpfc_get_active_rrq - Get the active RRQ for this exchange. 736 * @vport: Pointer to vport context object. 737 * @xri: The xri used in the exchange. 738 * @did: The targets DID for this exchange. 739 * 740 * returns NULL = rrq not found in the phba->active_rrq_list. 741 * rrq = rrq for this xri and target. 742 **/ 743 struct lpfc_node_rrq * 744 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) 745 { 746 struct lpfc_hba *phba = vport->phba; 747 struct lpfc_node_rrq *rrq; 748 struct lpfc_node_rrq *nextrrq; 749 unsigned long iflags; 750 751 if (phba->sli_rev != LPFC_SLI_REV4) 752 return NULL; 753 spin_lock_irqsave(&phba->hbalock, iflags); 754 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { 755 if (rrq->vport == vport && rrq->xritag == xri && 756 rrq->nlp_DID == did){ 757 list_del(&rrq->list); 758 spin_unlock_irqrestore(&phba->hbalock, iflags); 759 return rrq; 760 } 761 } 762 spin_unlock_irqrestore(&phba->hbalock, iflags); 763 return NULL; 764 } 765 766 /** 767 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. 768 * @vport: Pointer to vport context object. 769 * @ndlp: Pointer to the lpfc_node_list structure. 770 * If ndlp is NULL Remove all active RRQs for this vport from the 771 * phba->active_rrq_list and clear the rrq. 772 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. 773 **/ 774 void 775 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) 776 777 { 778 struct lpfc_hba *phba = vport->phba; 779 struct lpfc_node_rrq *rrq; 780 struct lpfc_node_rrq *nextrrq; 781 unsigned long iflags; 782 LIST_HEAD(rrq_list); 783 784 if (phba->sli_rev != LPFC_SLI_REV4) 785 return; 786 if (!ndlp) { 787 lpfc_sli4_vport_delete_els_xri_aborted(vport); 788 lpfc_sli4_vport_delete_fcp_xri_aborted(vport); 789 } 790 spin_lock_irqsave(&phba->hbalock, iflags); 791 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) 792 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp)) 793 list_move(&rrq->list, &rrq_list); 794 spin_unlock_irqrestore(&phba->hbalock, iflags); 795 796 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { 797 list_del(&rrq->list); 798 lpfc_clr_rrq_active(phba, rrq->xritag, rrq); 799 } 800 } 801 802 /** 803 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. 804 * @phba: Pointer to HBA context object. 805 * @ndlp: Targets nodelist pointer for this exchange. 806 * @xritag the xri in the bitmap to test. 807 * 808 * This function is called with hbalock held. This function 809 * returns 0 = rrq not active for this xri 810 * 1 = rrq is valid for this xri. 811 **/ 812 int 813 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 814 uint16_t xritag) 815 { 816 lockdep_assert_held(&phba->hbalock); 817 if (!ndlp) 818 return 0; 819 if (!ndlp->active_rrqs_xri_bitmap) 820 return 0; 821 if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 822 return 1; 823 else 824 return 0; 825 } 826 827 /** 828 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. 829 * @phba: Pointer to HBA context object. 830 * @ndlp: nodelist pointer for this target. 831 * @xritag: xri used in this exchange. 832 * @rxid: Remote Exchange ID. 833 * @send_rrq: Flag used to determine if we should send rrq els cmd. 834 * 835 * This function takes the hbalock. 836 * The active bit is always set in the active rrq xri_bitmap even 837 * if there is no slot avaiable for the other rrq information. 838 * 839 * returns 0 rrq actived for this xri 840 * < 0 No memory or invalid ndlp. 841 **/ 842 int 843 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, 844 uint16_t xritag, uint16_t rxid, uint16_t send_rrq) 845 { 846 unsigned long iflags; 847 struct lpfc_node_rrq *rrq; 848 int empty; 849 850 if (!ndlp) 851 return -EINVAL; 852 853 if (!phba->cfg_enable_rrq) 854 return -EINVAL; 855 856 spin_lock_irqsave(&phba->hbalock, iflags); 857 if (phba->pport->load_flag & FC_UNLOADING) { 858 phba->hba_flag &= ~HBA_RRQ_ACTIVE; 859 goto out; 860 } 861 862 /* 863 * set the active bit even if there is no mem available. 864 */ 865 if (NLP_CHK_FREE_REQ(ndlp)) 866 goto out; 867 868 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) 869 goto out; 870 871 if (!ndlp->active_rrqs_xri_bitmap) 872 goto out; 873 874 if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) 875 goto out; 876 877 spin_unlock_irqrestore(&phba->hbalock, iflags); 878 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL); 879 if (!rrq) { 880 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 881 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" 882 " DID:0x%x Send:%d\n", 883 xritag, rxid, ndlp->nlp_DID, send_rrq); 884 return -EINVAL; 885 } 886 if (phba->cfg_enable_rrq == 1) 887 rrq->send_rrq = send_rrq; 888 else 889 rrq->send_rrq = 0; 890 rrq->xritag = xritag; 891 rrq->rrq_stop_time = jiffies + 892 msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); 893 rrq->ndlp = ndlp; 894 rrq->nlp_DID = ndlp->nlp_DID; 895 rrq->vport = ndlp->vport; 896 rrq->rxid = rxid; 897 spin_lock_irqsave(&phba->hbalock, iflags); 898 empty = list_empty(&phba->active_rrq_list); 899 list_add_tail(&rrq->list, &phba->active_rrq_list); 900 phba->hba_flag |= HBA_RRQ_ACTIVE; 901 if (empty) 902 lpfc_worker_wake_up(phba); 903 spin_unlock_irqrestore(&phba->hbalock, iflags); 904 return 0; 905 out: 906 spin_unlock_irqrestore(&phba->hbalock, iflags); 907 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 908 "2921 Can't set rrq active xri:0x%x rxid:0x%x" 909 " DID:0x%x Send:%d\n", 910 xritag, rxid, ndlp->nlp_DID, send_rrq); 911 return -EINVAL; 912 } 913 914 /** 915 * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool 916 * @phba: Pointer to HBA context object. 917 * @piocb: Pointer to the iocbq. 918 * 919 * This function is called with the ring lock held. This function 920 * gets a new driver sglq object from the sglq list. If the 921 * list is not empty then it is successful, it returns pointer to the newly 922 * allocated sglq object else it returns NULL. 923 **/ 924 static struct lpfc_sglq * 925 __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 926 { 927 struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; 928 struct lpfc_sglq *sglq = NULL; 929 struct lpfc_sglq *start_sglq = NULL; 930 struct lpfc_scsi_buf *lpfc_cmd; 931 struct lpfc_nodelist *ndlp; 932 int found = 0; 933 934 lockdep_assert_held(&phba->hbalock); 935 936 if (piocbq->iocb_flag & LPFC_IO_FCP) { 937 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1; 938 ndlp = lpfc_cmd->rdata->pnode; 939 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && 940 !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { 941 ndlp = piocbq->context_un.ndlp; 942 } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { 943 if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) 944 ndlp = NULL; 945 else 946 ndlp = piocbq->context_un.ndlp; 947 } else { 948 ndlp = piocbq->context1; 949 } 950 951 spin_lock(&phba->sli4_hba.sgl_list_lock); 952 list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); 953 start_sglq = sglq; 954 while (!found) { 955 if (!sglq) 956 break; 957 if (ndlp && ndlp->active_rrqs_xri_bitmap && 958 test_bit(sglq->sli4_lxritag, 959 ndlp->active_rrqs_xri_bitmap)) { 960 /* This xri has an rrq outstanding for this DID. 961 * put it back in the list and get another xri. 962 */ 963 list_add_tail(&sglq->list, lpfc_els_sgl_list); 964 sglq = NULL; 965 list_remove_head(lpfc_els_sgl_list, sglq, 966 struct lpfc_sglq, list); 967 if (sglq == start_sglq) { 968 sglq = NULL; 969 break; 970 } else 971 continue; 972 } 973 sglq->ndlp = ndlp; 974 found = 1; 975 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 976 sglq->state = SGL_ALLOCATED; 977 } 978 spin_unlock(&phba->sli4_hba.sgl_list_lock); 979 return sglq; 980 } 981 982 /** 983 * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool 984 * @phba: Pointer to HBA context object. 985 * @piocb: Pointer to the iocbq. 986 * 987 * This function is called with the sgl_list lock held. This function 988 * gets a new driver sglq object from the sglq list. If the 989 * list is not empty then it is successful, it returns pointer to the newly 990 * allocated sglq object else it returns NULL. 991 **/ 992 struct lpfc_sglq * 993 __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) 994 { 995 struct list_head *lpfc_nvmet_sgl_list; 996 struct lpfc_sglq *sglq = NULL; 997 998 lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; 999 1000 lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); 1001 1002 list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); 1003 if (!sglq) 1004 return NULL; 1005 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; 1006 sglq->state = SGL_ALLOCATED; 1007 return sglq; 1008 } 1009 1010 /** 1011 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool 1012 * @phba: Pointer to HBA context object. 1013 * 1014 * This function is called with no lock held. This function 1015 * allocates a new driver iocb object from the iocb pool. If the 1016 * allocation is successful, it returns pointer to the newly 1017 * allocated iocb object else it returns NULL. 1018 **/ 1019 struct lpfc_iocbq * 1020 lpfc_sli_get_iocbq(struct lpfc_hba *phba) 1021 { 1022 struct lpfc_iocbq * iocbq = NULL; 1023 unsigned long iflags; 1024 1025 spin_lock_irqsave(&phba->hbalock, iflags); 1026 iocbq = __lpfc_sli_get_iocbq(phba); 1027 spin_unlock_irqrestore(&phba->hbalock, iflags); 1028 return iocbq; 1029 } 1030 1031 /** 1032 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool 1033 * @phba: Pointer to HBA context object. 1034 * @iocbq: Pointer to driver iocb object. 1035 * 1036 * This function is called with hbalock held to release driver 1037 * iocb object to the iocb pool. The iotag in the iocb object 1038 * does not change for each use of the iocb object. This function 1039 * clears all other fields of the iocb object when it is freed. 1040 * The sqlq structure that holds the xritag and phys and virtual 1041 * mappings for the scatter gather list is retrieved from the 1042 * active array of sglq. The get of the sglq pointer also clears 1043 * the entry in the array. If the status of the IO indiactes that 1044 * this IO was aborted then the sglq entry it put on the 1045 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the 1046 * IO has good status or fails for any other reason then the sglq 1047 * entry is added to the free list (lpfc_els_sgl_list). 1048 **/ 1049 static void 1050 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1051 { 1052 struct lpfc_sglq *sglq; 1053 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1054 unsigned long iflag = 0; 1055 struct lpfc_sli_ring *pring; 1056 1057 lockdep_assert_held(&phba->hbalock); 1058 1059 if (iocbq->sli4_xritag == NO_XRI) 1060 sglq = NULL; 1061 else 1062 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); 1063 1064 1065 if (sglq) { 1066 if (iocbq->iocb_flag & LPFC_IO_NVMET) { 1067 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1068 iflag); 1069 sglq->state = SGL_FREED; 1070 sglq->ndlp = NULL; 1071 list_add_tail(&sglq->list, 1072 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1073 spin_unlock_irqrestore( 1074 &phba->sli4_hba.sgl_list_lock, iflag); 1075 goto out; 1076 } 1077 1078 pring = phba->sli4_hba.els_wq->pring; 1079 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && 1080 (sglq->state != SGL_XRI_ABORTED)) { 1081 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1082 iflag); 1083 list_add(&sglq->list, 1084 &phba->sli4_hba.lpfc_abts_els_sgl_list); 1085 spin_unlock_irqrestore( 1086 &phba->sli4_hba.sgl_list_lock, iflag); 1087 } else { 1088 spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, 1089 iflag); 1090 sglq->state = SGL_FREED; 1091 sglq->ndlp = NULL; 1092 list_add_tail(&sglq->list, 1093 &phba->sli4_hba.lpfc_els_sgl_list); 1094 spin_unlock_irqrestore( 1095 &phba->sli4_hba.sgl_list_lock, iflag); 1096 1097 /* Check if TXQ queue needs to be serviced */ 1098 if (!list_empty(&pring->txq)) 1099 lpfc_worker_wake_up(phba); 1100 } 1101 } 1102 1103 out: 1104 /* 1105 * Clean all volatile data fields, preserve iotag and node struct. 1106 */ 1107 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1108 iocbq->sli4_lxritag = NO_XRI; 1109 iocbq->sli4_xritag = NO_XRI; 1110 iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | 1111 LPFC_IO_NVME_LS); 1112 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1113 } 1114 1115 1116 /** 1117 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool 1118 * @phba: Pointer to HBA context object. 1119 * @iocbq: Pointer to driver iocb object. 1120 * 1121 * This function is called with hbalock held to release driver 1122 * iocb object to the iocb pool. The iotag in the iocb object 1123 * does not change for each use of the iocb object. This function 1124 * clears all other fields of the iocb object when it is freed. 1125 **/ 1126 static void 1127 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1128 { 1129 size_t start_clean = offsetof(struct lpfc_iocbq, iocb); 1130 1131 lockdep_assert_held(&phba->hbalock); 1132 1133 /* 1134 * Clean all volatile data fields, preserve iotag and node struct. 1135 */ 1136 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); 1137 iocbq->sli4_xritag = NO_XRI; 1138 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); 1139 } 1140 1141 /** 1142 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool 1143 * @phba: Pointer to HBA context object. 1144 * @iocbq: Pointer to driver iocb object. 1145 * 1146 * This function is called with hbalock held to release driver 1147 * iocb object to the iocb pool. The iotag in the iocb object 1148 * does not change for each use of the iocb object. This function 1149 * clears all other fields of the iocb object when it is freed. 1150 **/ 1151 static void 1152 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1153 { 1154 lockdep_assert_held(&phba->hbalock); 1155 1156 phba->__lpfc_sli_release_iocbq(phba, iocbq); 1157 phba->iocb_cnt--; 1158 } 1159 1160 /** 1161 * lpfc_sli_release_iocbq - Release iocb to the iocb pool 1162 * @phba: Pointer to HBA context object. 1163 * @iocbq: Pointer to driver iocb object. 1164 * 1165 * This function is called with no lock held to release the iocb to 1166 * iocb pool. 1167 **/ 1168 void 1169 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1170 { 1171 unsigned long iflags; 1172 1173 /* 1174 * Clean all volatile data fields, preserve iotag and node struct. 1175 */ 1176 spin_lock_irqsave(&phba->hbalock, iflags); 1177 __lpfc_sli_release_iocbq(phba, iocbq); 1178 spin_unlock_irqrestore(&phba->hbalock, iflags); 1179 } 1180 1181 /** 1182 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. 1183 * @phba: Pointer to HBA context object. 1184 * @iocblist: List of IOCBs. 1185 * @ulpstatus: ULP status in IOCB command field. 1186 * @ulpWord4: ULP word-4 in IOCB command field. 1187 * 1188 * This function is called with a list of IOCBs to cancel. It cancels the IOCB 1189 * on the list by invoking the complete callback function associated with the 1190 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond 1191 * fields. 1192 **/ 1193 void 1194 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, 1195 uint32_t ulpstatus, uint32_t ulpWord4) 1196 { 1197 struct lpfc_iocbq *piocb; 1198 1199 while (!list_empty(iocblist)) { 1200 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); 1201 if (!piocb->iocb_cmpl) 1202 lpfc_sli_release_iocbq(phba, piocb); 1203 else { 1204 piocb->iocb.ulpStatus = ulpstatus; 1205 piocb->iocb.un.ulpWord[4] = ulpWord4; 1206 (piocb->iocb_cmpl) (phba, piocb, piocb); 1207 } 1208 } 1209 return; 1210 } 1211 1212 /** 1213 * lpfc_sli_iocb_cmd_type - Get the iocb type 1214 * @iocb_cmnd: iocb command code. 1215 * 1216 * This function is called by ring event handler function to get the iocb type. 1217 * This function translates the iocb command to an iocb command type used to 1218 * decide the final disposition of each completed IOCB. 1219 * The function returns 1220 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb 1221 * LPFC_SOL_IOCB if it is a solicited iocb completion 1222 * LPFC_ABORT_IOCB if it is an abort iocb 1223 * LPFC_UNSOL_IOCB if it is an unsolicited iocb 1224 * 1225 * The caller is not required to hold any lock. 1226 **/ 1227 static lpfc_iocb_type 1228 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) 1229 { 1230 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; 1231 1232 if (iocb_cmnd > CMD_MAX_IOCB_CMD) 1233 return 0; 1234 1235 switch (iocb_cmnd) { 1236 case CMD_XMIT_SEQUENCE_CR: 1237 case CMD_XMIT_SEQUENCE_CX: 1238 case CMD_XMIT_BCAST_CN: 1239 case CMD_XMIT_BCAST_CX: 1240 case CMD_ELS_REQUEST_CR: 1241 case CMD_ELS_REQUEST_CX: 1242 case CMD_CREATE_XRI_CR: 1243 case CMD_CREATE_XRI_CX: 1244 case CMD_GET_RPI_CN: 1245 case CMD_XMIT_ELS_RSP_CX: 1246 case CMD_GET_RPI_CR: 1247 case CMD_FCP_IWRITE_CR: 1248 case CMD_FCP_IWRITE_CX: 1249 case CMD_FCP_IREAD_CR: 1250 case CMD_FCP_IREAD_CX: 1251 case CMD_FCP_ICMND_CR: 1252 case CMD_FCP_ICMND_CX: 1253 case CMD_FCP_TSEND_CX: 1254 case CMD_FCP_TRSP_CX: 1255 case CMD_FCP_TRECEIVE_CX: 1256 case CMD_FCP_AUTO_TRSP_CX: 1257 case CMD_ADAPTER_MSG: 1258 case CMD_ADAPTER_DUMP: 1259 case CMD_XMIT_SEQUENCE64_CR: 1260 case CMD_XMIT_SEQUENCE64_CX: 1261 case CMD_XMIT_BCAST64_CN: 1262 case CMD_XMIT_BCAST64_CX: 1263 case CMD_ELS_REQUEST64_CR: 1264 case CMD_ELS_REQUEST64_CX: 1265 case CMD_FCP_IWRITE64_CR: 1266 case CMD_FCP_IWRITE64_CX: 1267 case CMD_FCP_IREAD64_CR: 1268 case CMD_FCP_IREAD64_CX: 1269 case CMD_FCP_ICMND64_CR: 1270 case CMD_FCP_ICMND64_CX: 1271 case CMD_FCP_TSEND64_CX: 1272 case CMD_FCP_TRSP64_CX: 1273 case CMD_FCP_TRECEIVE64_CX: 1274 case CMD_GEN_REQUEST64_CR: 1275 case CMD_GEN_REQUEST64_CX: 1276 case CMD_XMIT_ELS_RSP64_CX: 1277 case DSSCMD_IWRITE64_CR: 1278 case DSSCMD_IWRITE64_CX: 1279 case DSSCMD_IREAD64_CR: 1280 case DSSCMD_IREAD64_CX: 1281 type = LPFC_SOL_IOCB; 1282 break; 1283 case CMD_ABORT_XRI_CN: 1284 case CMD_ABORT_XRI_CX: 1285 case CMD_CLOSE_XRI_CN: 1286 case CMD_CLOSE_XRI_CX: 1287 case CMD_XRI_ABORTED_CX: 1288 case CMD_ABORT_MXRI64_CN: 1289 case CMD_XMIT_BLS_RSP64_CX: 1290 type = LPFC_ABORT_IOCB; 1291 break; 1292 case CMD_RCV_SEQUENCE_CX: 1293 case CMD_RCV_ELS_REQ_CX: 1294 case CMD_RCV_SEQUENCE64_CX: 1295 case CMD_RCV_ELS_REQ64_CX: 1296 case CMD_ASYNC_STATUS: 1297 case CMD_IOCB_RCV_SEQ64_CX: 1298 case CMD_IOCB_RCV_ELS64_CX: 1299 case CMD_IOCB_RCV_CONT64_CX: 1300 case CMD_IOCB_RET_XRI64_CX: 1301 type = LPFC_UNSOL_IOCB; 1302 break; 1303 case CMD_IOCB_XMIT_MSEQ64_CR: 1304 case CMD_IOCB_XMIT_MSEQ64_CX: 1305 case CMD_IOCB_RCV_SEQ_LIST64_CX: 1306 case CMD_IOCB_RCV_ELS_LIST64_CX: 1307 case CMD_IOCB_CLOSE_EXTENDED_CN: 1308 case CMD_IOCB_ABORT_EXTENDED_CN: 1309 case CMD_IOCB_RET_HBQE64_CN: 1310 case CMD_IOCB_FCP_IBIDIR64_CR: 1311 case CMD_IOCB_FCP_IBIDIR64_CX: 1312 case CMD_IOCB_FCP_ITASKMGT64_CX: 1313 case CMD_IOCB_LOGENTRY_CN: 1314 case CMD_IOCB_LOGENTRY_ASYNC_CN: 1315 printk("%s - Unhandled SLI-3 Command x%x\n", 1316 __func__, iocb_cmnd); 1317 type = LPFC_UNKNOWN_IOCB; 1318 break; 1319 default: 1320 type = LPFC_UNKNOWN_IOCB; 1321 break; 1322 } 1323 1324 return type; 1325 } 1326 1327 /** 1328 * lpfc_sli_ring_map - Issue config_ring mbox for all rings 1329 * @phba: Pointer to HBA context object. 1330 * 1331 * This function is called from SLI initialization code 1332 * to configure every ring of the HBA's SLI interface. The 1333 * caller is not required to hold any lock. This function issues 1334 * a config_ring mailbox command for each ring. 1335 * This function returns zero if successful else returns a negative 1336 * error code. 1337 **/ 1338 static int 1339 lpfc_sli_ring_map(struct lpfc_hba *phba) 1340 { 1341 struct lpfc_sli *psli = &phba->sli; 1342 LPFC_MBOXQ_t *pmb; 1343 MAILBOX_t *pmbox; 1344 int i, rc, ret = 0; 1345 1346 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 1347 if (!pmb) 1348 return -ENOMEM; 1349 pmbox = &pmb->u.mb; 1350 phba->link_state = LPFC_INIT_MBX_CMDS; 1351 for (i = 0; i < psli->num_rings; i++) { 1352 lpfc_config_ring(phba, i, pmb); 1353 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 1354 if (rc != MBX_SUCCESS) { 1355 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 1356 "0446 Adapter failed to init (%d), " 1357 "mbxCmd x%x CFG_RING, mbxStatus x%x, " 1358 "ring %d\n", 1359 rc, pmbox->mbxCommand, 1360 pmbox->mbxStatus, i); 1361 phba->link_state = LPFC_HBA_ERROR; 1362 ret = -ENXIO; 1363 break; 1364 } 1365 } 1366 mempool_free(pmb, phba->mbox_mem_pool); 1367 return ret; 1368 } 1369 1370 /** 1371 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq 1372 * @phba: Pointer to HBA context object. 1373 * @pring: Pointer to driver SLI ring object. 1374 * @piocb: Pointer to the driver iocb object. 1375 * 1376 * This function is called with hbalock held. The function adds the 1377 * new iocb to txcmplq of the given ring. This function always returns 1378 * 0. If this function is called for ELS ring, this function checks if 1379 * there is a vport associated with the ELS command. This function also 1380 * starts els_tmofunc timer if this is an ELS command. 1381 **/ 1382 static int 1383 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1384 struct lpfc_iocbq *piocb) 1385 { 1386 lockdep_assert_held(&phba->hbalock); 1387 1388 BUG_ON(!piocb); 1389 1390 list_add_tail(&piocb->list, &pring->txcmplq); 1391 piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; 1392 1393 if ((unlikely(pring->ringno == LPFC_ELS_RING)) && 1394 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 1395 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 1396 BUG_ON(!piocb->vport); 1397 if (!(piocb->vport->load_flag & FC_UNLOADING)) 1398 mod_timer(&piocb->vport->els_tmofunc, 1399 jiffies + 1400 msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * lpfc_sli_ringtx_get - Get first element of the txq 1408 * @phba: Pointer to HBA context object. 1409 * @pring: Pointer to driver SLI ring object. 1410 * 1411 * This function is called with hbalock held to get next 1412 * iocb in txq of the given ring. If there is any iocb in 1413 * the txq, the function returns first iocb in the list after 1414 * removing the iocb from the list, else it returns NULL. 1415 **/ 1416 struct lpfc_iocbq * 1417 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1418 { 1419 struct lpfc_iocbq *cmd_iocb; 1420 1421 lockdep_assert_held(&phba->hbalock); 1422 1423 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); 1424 return cmd_iocb; 1425 } 1426 1427 /** 1428 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring 1429 * @phba: Pointer to HBA context object. 1430 * @pring: Pointer to driver SLI ring object. 1431 * 1432 * This function is called with hbalock held and the caller must post the 1433 * iocb without releasing the lock. If the caller releases the lock, 1434 * iocb slot returned by the function is not guaranteed to be available. 1435 * The function returns pointer to the next available iocb slot if there 1436 * is available slot in the ring, else it returns NULL. 1437 * If the get index of the ring is ahead of the put index, the function 1438 * will post an error attention event to the worker thread to take the 1439 * HBA to offline state. 1440 **/ 1441 static IOCB_t * 1442 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1443 { 1444 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 1445 uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; 1446 1447 lockdep_assert_held(&phba->hbalock); 1448 1449 if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && 1450 (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) 1451 pring->sli.sli3.next_cmdidx = 0; 1452 1453 if (unlikely(pring->sli.sli3.local_getidx == 1454 pring->sli.sli3.next_cmdidx)) { 1455 1456 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 1457 1458 if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { 1459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 1460 "0315 Ring %d issue: portCmdGet %d " 1461 "is bigger than cmd ring %d\n", 1462 pring->ringno, 1463 pring->sli.sli3.local_getidx, 1464 max_cmd_idx); 1465 1466 phba->link_state = LPFC_HBA_ERROR; 1467 /* 1468 * All error attention handlers are posted to 1469 * worker thread 1470 */ 1471 phba->work_ha |= HA_ERATT; 1472 phba->work_hs = HS_FFER3; 1473 1474 lpfc_worker_wake_up(phba); 1475 1476 return NULL; 1477 } 1478 1479 if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) 1480 return NULL; 1481 } 1482 1483 return lpfc_cmd_iocb(phba, pring); 1484 } 1485 1486 /** 1487 * lpfc_sli_next_iotag - Get an iotag for the iocb 1488 * @phba: Pointer to HBA context object. 1489 * @iocbq: Pointer to driver iocb object. 1490 * 1491 * This function gets an iotag for the iocb. If there is no unused iotag and 1492 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup 1493 * array and assigns a new iotag. 1494 * The function returns the allocated iotag if successful, else returns zero. 1495 * Zero is not a valid iotag. 1496 * The caller is not required to hold any lock. 1497 **/ 1498 uint16_t 1499 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) 1500 { 1501 struct lpfc_iocbq **new_arr; 1502 struct lpfc_iocbq **old_arr; 1503 size_t new_len; 1504 struct lpfc_sli *psli = &phba->sli; 1505 uint16_t iotag; 1506 1507 spin_lock_irq(&phba->hbalock); 1508 iotag = psli->last_iotag; 1509 if(++iotag < psli->iocbq_lookup_len) { 1510 psli->last_iotag = iotag; 1511 psli->iocbq_lookup[iotag] = iocbq; 1512 spin_unlock_irq(&phba->hbalock); 1513 iocbq->iotag = iotag; 1514 return iotag; 1515 } else if (psli->iocbq_lookup_len < (0xffff 1516 - LPFC_IOCBQ_LOOKUP_INCREMENT)) { 1517 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; 1518 spin_unlock_irq(&phba->hbalock); 1519 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *), 1520 GFP_KERNEL); 1521 if (new_arr) { 1522 spin_lock_irq(&phba->hbalock); 1523 old_arr = psli->iocbq_lookup; 1524 if (new_len <= psli->iocbq_lookup_len) { 1525 /* highly unprobable case */ 1526 kfree(new_arr); 1527 iotag = psli->last_iotag; 1528 if(++iotag < psli->iocbq_lookup_len) { 1529 psli->last_iotag = iotag; 1530 psli->iocbq_lookup[iotag] = iocbq; 1531 spin_unlock_irq(&phba->hbalock); 1532 iocbq->iotag = iotag; 1533 return iotag; 1534 } 1535 spin_unlock_irq(&phba->hbalock); 1536 return 0; 1537 } 1538 if (psli->iocbq_lookup) 1539 memcpy(new_arr, old_arr, 1540 ((psli->last_iotag + 1) * 1541 sizeof (struct lpfc_iocbq *))); 1542 psli->iocbq_lookup = new_arr; 1543 psli->iocbq_lookup_len = new_len; 1544 psli->last_iotag = iotag; 1545 psli->iocbq_lookup[iotag] = iocbq; 1546 spin_unlock_irq(&phba->hbalock); 1547 iocbq->iotag = iotag; 1548 kfree(old_arr); 1549 return iotag; 1550 } 1551 } else 1552 spin_unlock_irq(&phba->hbalock); 1553 1554 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 1555 "0318 Failed to allocate IOTAG.last IOTAG is %d\n", 1556 psli->last_iotag); 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * lpfc_sli_submit_iocb - Submit an iocb to the firmware 1563 * @phba: Pointer to HBA context object. 1564 * @pring: Pointer to driver SLI ring object. 1565 * @iocb: Pointer to iocb slot in the ring. 1566 * @nextiocb: Pointer to driver iocb object which need to be 1567 * posted to firmware. 1568 * 1569 * This function is called with hbalock held to post a new iocb to 1570 * the firmware. This function copies the new iocb to ring iocb slot and 1571 * updates the ring pointers. It adds the new iocb to txcmplq if there is 1572 * a completion call back for this iocb else the function will free the 1573 * iocb object. 1574 **/ 1575 static void 1576 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 1577 IOCB_t *iocb, struct lpfc_iocbq *nextiocb) 1578 { 1579 lockdep_assert_held(&phba->hbalock); 1580 /* 1581 * Set up an iotag 1582 */ 1583 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; 1584 1585 1586 if (pring->ringno == LPFC_ELS_RING) { 1587 lpfc_debugfs_slow_ring_trc(phba, 1588 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", 1589 *(((uint32_t *) &nextiocb->iocb) + 4), 1590 *(((uint32_t *) &nextiocb->iocb) + 6), 1591 *(((uint32_t *) &nextiocb->iocb) + 7)); 1592 } 1593 1594 /* 1595 * Issue iocb command to adapter 1596 */ 1597 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); 1598 wmb(); 1599 pring->stats.iocb_cmd++; 1600 1601 /* 1602 * If there is no completion routine to call, we can release the 1603 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, 1604 * that have no rsp ring completion, iocb_cmpl MUST be NULL. 1605 */ 1606 if (nextiocb->iocb_cmpl) 1607 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); 1608 else 1609 __lpfc_sli_release_iocbq(phba, nextiocb); 1610 1611 /* 1612 * Let the HBA know what IOCB slot will be the next one the 1613 * driver will put a command into. 1614 */ 1615 pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; 1616 writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); 1617 } 1618 1619 /** 1620 * lpfc_sli_update_full_ring - Update the chip attention register 1621 * @phba: Pointer to HBA context object. 1622 * @pring: Pointer to driver SLI ring object. 1623 * 1624 * The caller is not required to hold any lock for calling this function. 1625 * This function updates the chip attention bits for the ring to inform firmware 1626 * that there are pending work to be done for this ring and requests an 1627 * interrupt when there is space available in the ring. This function is 1628 * called when the driver is unable to post more iocbs to the ring due 1629 * to unavailability of space in the ring. 1630 **/ 1631 static void 1632 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1633 { 1634 int ringno = pring->ringno; 1635 1636 pring->flag |= LPFC_CALL_RING_AVAILABLE; 1637 1638 wmb(); 1639 1640 /* 1641 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. 1642 * The HBA will tell us when an IOCB entry is available. 1643 */ 1644 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); 1645 readl(phba->CAregaddr); /* flush */ 1646 1647 pring->stats.iocb_cmd_full++; 1648 } 1649 1650 /** 1651 * lpfc_sli_update_ring - Update chip attention register 1652 * @phba: Pointer to HBA context object. 1653 * @pring: Pointer to driver SLI ring object. 1654 * 1655 * This function updates the chip attention register bit for the 1656 * given ring to inform HBA that there is more work to be done 1657 * in this ring. The caller is not required to hold any lock. 1658 **/ 1659 static void 1660 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1661 { 1662 int ringno = pring->ringno; 1663 1664 /* 1665 * Tell the HBA that there is work to do in this ring. 1666 */ 1667 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { 1668 wmb(); 1669 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); 1670 readl(phba->CAregaddr); /* flush */ 1671 } 1672 } 1673 1674 /** 1675 * lpfc_sli_resume_iocb - Process iocbs in the txq 1676 * @phba: Pointer to HBA context object. 1677 * @pring: Pointer to driver SLI ring object. 1678 * 1679 * This function is called with hbalock held to post pending iocbs 1680 * in the txq to the firmware. This function is called when driver 1681 * detects space available in the ring. 1682 **/ 1683 static void 1684 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 1685 { 1686 IOCB_t *iocb; 1687 struct lpfc_iocbq *nextiocb; 1688 1689 lockdep_assert_held(&phba->hbalock); 1690 1691 /* 1692 * Check to see if: 1693 * (a) there is anything on the txq to send 1694 * (b) link is up 1695 * (c) link attention events can be processed (fcp ring only) 1696 * (d) IOCB processing is not blocked by the outstanding mbox command. 1697 */ 1698 1699 if (lpfc_is_link_up(phba) && 1700 (!list_empty(&pring->txq)) && 1701 (pring->ringno != LPFC_FCP_RING || 1702 phba->sli.sli_flag & LPFC_PROCESS_LA)) { 1703 1704 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 1705 (nextiocb = lpfc_sli_ringtx_get(phba, pring))) 1706 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 1707 1708 if (iocb) 1709 lpfc_sli_update_ring(phba, pring); 1710 else 1711 lpfc_sli_update_full_ring(phba, pring); 1712 } 1713 1714 return; 1715 } 1716 1717 /** 1718 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ 1719 * @phba: Pointer to HBA context object. 1720 * @hbqno: HBQ number. 1721 * 1722 * This function is called with hbalock held to get the next 1723 * available slot for the given HBQ. If there is free slot 1724 * available for the HBQ it will return pointer to the next available 1725 * HBQ entry else it will return NULL. 1726 **/ 1727 static struct lpfc_hbq_entry * 1728 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) 1729 { 1730 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1731 1732 lockdep_assert_held(&phba->hbalock); 1733 1734 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && 1735 ++hbqp->next_hbqPutIdx >= hbqp->entry_count) 1736 hbqp->next_hbqPutIdx = 0; 1737 1738 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { 1739 uint32_t raw_index = phba->hbq_get[hbqno]; 1740 uint32_t getidx = le32_to_cpu(raw_index); 1741 1742 hbqp->local_hbqGetIdx = getidx; 1743 1744 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { 1745 lpfc_printf_log(phba, KERN_ERR, 1746 LOG_SLI | LOG_VPORT, 1747 "1802 HBQ %d: local_hbqGetIdx " 1748 "%u is > than hbqp->entry_count %u\n", 1749 hbqno, hbqp->local_hbqGetIdx, 1750 hbqp->entry_count); 1751 1752 phba->link_state = LPFC_HBA_ERROR; 1753 return NULL; 1754 } 1755 1756 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) 1757 return NULL; 1758 } 1759 1760 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + 1761 hbqp->hbqPutIdx; 1762 } 1763 1764 /** 1765 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers 1766 * @phba: Pointer to HBA context object. 1767 * 1768 * This function is called with no lock held to free all the 1769 * hbq buffers while uninitializing the SLI interface. It also 1770 * frees the HBQ buffers returned by the firmware but not yet 1771 * processed by the upper layers. 1772 **/ 1773 void 1774 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) 1775 { 1776 struct lpfc_dmabuf *dmabuf, *next_dmabuf; 1777 struct hbq_dmabuf *hbq_buf; 1778 unsigned long flags; 1779 int i, hbq_count; 1780 1781 hbq_count = lpfc_sli_hbq_count(); 1782 /* Return all memory used by all HBQs */ 1783 spin_lock_irqsave(&phba->hbalock, flags); 1784 for (i = 0; i < hbq_count; ++i) { 1785 list_for_each_entry_safe(dmabuf, next_dmabuf, 1786 &phba->hbqs[i].hbq_buffer_list, list) { 1787 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); 1788 list_del(&hbq_buf->dbuf.list); 1789 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); 1790 } 1791 phba->hbqs[i].buffer_count = 0; 1792 } 1793 1794 /* Mark the HBQs not in use */ 1795 phba->hbq_in_use = 0; 1796 spin_unlock_irqrestore(&phba->hbalock, flags); 1797 } 1798 1799 /** 1800 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware 1801 * @phba: Pointer to HBA context object. 1802 * @hbqno: HBQ number. 1803 * @hbq_buf: Pointer to HBQ buffer. 1804 * 1805 * This function is called with the hbalock held to post a 1806 * hbq buffer to the firmware. If the function finds an empty 1807 * slot in the HBQ, it will post the buffer. The function will return 1808 * pointer to the hbq entry if it successfully post the buffer 1809 * else it will return NULL. 1810 **/ 1811 static int 1812 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, 1813 struct hbq_dmabuf *hbq_buf) 1814 { 1815 lockdep_assert_held(&phba->hbalock); 1816 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); 1817 } 1818 1819 /** 1820 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware 1821 * @phba: Pointer to HBA context object. 1822 * @hbqno: HBQ number. 1823 * @hbq_buf: Pointer to HBQ buffer. 1824 * 1825 * This function is called with the hbalock held to post a hbq buffer to the 1826 * firmware. If the function finds an empty slot in the HBQ, it will post the 1827 * buffer and place it on the hbq_buffer_list. The function will return zero if 1828 * it successfully post the buffer else it will return an error. 1829 **/ 1830 static int 1831 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, 1832 struct hbq_dmabuf *hbq_buf) 1833 { 1834 struct lpfc_hbq_entry *hbqe; 1835 dma_addr_t physaddr = hbq_buf->dbuf.phys; 1836 1837 lockdep_assert_held(&phba->hbalock); 1838 /* Get next HBQ entry slot to use */ 1839 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); 1840 if (hbqe) { 1841 struct hbq_s *hbqp = &phba->hbqs[hbqno]; 1842 1843 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); 1844 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); 1845 hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; 1846 hbqe->bde.tus.f.bdeFlags = 0; 1847 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); 1848 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); 1849 /* Sync SLIM */ 1850 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; 1851 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); 1852 /* flush */ 1853 readl(phba->hbq_put + hbqno); 1854 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); 1855 return 0; 1856 } else 1857 return -ENOMEM; 1858 } 1859 1860 /** 1861 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware 1862 * @phba: Pointer to HBA context object. 1863 * @hbqno: HBQ number. 1864 * @hbq_buf: Pointer to HBQ buffer. 1865 * 1866 * This function is called with the hbalock held to post an RQE to the SLI4 1867 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to 1868 * the hbq_buffer_list and return zero, otherwise it will return an error. 1869 **/ 1870 static int 1871 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, 1872 struct hbq_dmabuf *hbq_buf) 1873 { 1874 int rc; 1875 struct lpfc_rqe hrqe; 1876 struct lpfc_rqe drqe; 1877 struct lpfc_queue *hrq; 1878 struct lpfc_queue *drq; 1879 1880 if (hbqno != LPFC_ELS_HBQ) 1881 return 1; 1882 hrq = phba->sli4_hba.hdr_rq; 1883 drq = phba->sli4_hba.dat_rq; 1884 1885 lockdep_assert_held(&phba->hbalock); 1886 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); 1887 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); 1888 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); 1889 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); 1890 rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); 1891 if (rc < 0) 1892 return rc; 1893 hbq_buf->tag = (rc | (hbqno << 16)); 1894 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); 1895 return 0; 1896 } 1897 1898 /* HBQ for ELS and CT traffic. */ 1899 static struct lpfc_hbq_init lpfc_els_hbq = { 1900 .rn = 1, 1901 .entry_count = 256, 1902 .mask_count = 0, 1903 .profile = 0, 1904 .ring_mask = (1 << LPFC_ELS_RING), 1905 .buffer_count = 0, 1906 .init_count = 40, 1907 .add_count = 40, 1908 }; 1909 1910 /* Array of HBQs */ 1911 struct lpfc_hbq_init *lpfc_hbq_defs[] = { 1912 &lpfc_els_hbq, 1913 }; 1914 1915 /** 1916 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ 1917 * @phba: Pointer to HBA context object. 1918 * @hbqno: HBQ number. 1919 * @count: Number of HBQ buffers to be posted. 1920 * 1921 * This function is called with no lock held to post more hbq buffers to the 1922 * given HBQ. The function returns the number of HBQ buffers successfully 1923 * posted. 1924 **/ 1925 static int 1926 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) 1927 { 1928 uint32_t i, posted = 0; 1929 unsigned long flags; 1930 struct hbq_dmabuf *hbq_buffer; 1931 LIST_HEAD(hbq_buf_list); 1932 if (!phba->hbqs[hbqno].hbq_alloc_buffer) 1933 return 0; 1934 1935 if ((phba->hbqs[hbqno].buffer_count + count) > 1936 lpfc_hbq_defs[hbqno]->entry_count) 1937 count = lpfc_hbq_defs[hbqno]->entry_count - 1938 phba->hbqs[hbqno].buffer_count; 1939 if (!count) 1940 return 0; 1941 /* Allocate HBQ entries */ 1942 for (i = 0; i < count; i++) { 1943 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); 1944 if (!hbq_buffer) 1945 break; 1946 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); 1947 } 1948 /* Check whether HBQ is still in use */ 1949 spin_lock_irqsave(&phba->hbalock, flags); 1950 if (!phba->hbq_in_use) 1951 goto err; 1952 while (!list_empty(&hbq_buf_list)) { 1953 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1954 dbuf.list); 1955 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | 1956 (hbqno << 16)); 1957 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { 1958 phba->hbqs[hbqno].buffer_count++; 1959 posted++; 1960 } else 1961 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1962 } 1963 spin_unlock_irqrestore(&phba->hbalock, flags); 1964 return posted; 1965 err: 1966 spin_unlock_irqrestore(&phba->hbalock, flags); 1967 while (!list_empty(&hbq_buf_list)) { 1968 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, 1969 dbuf.list); 1970 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 1971 } 1972 return 0; 1973 } 1974 1975 /** 1976 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware 1977 * @phba: Pointer to HBA context object. 1978 * @qno: HBQ number. 1979 * 1980 * This function posts more buffers to the HBQ. This function 1981 * is called with no lock held. The function returns the number of HBQ entries 1982 * successfully allocated. 1983 **/ 1984 int 1985 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) 1986 { 1987 if (phba->sli_rev == LPFC_SLI_REV4) 1988 return 0; 1989 else 1990 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 1991 lpfc_hbq_defs[qno]->add_count); 1992 } 1993 1994 /** 1995 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ 1996 * @phba: Pointer to HBA context object. 1997 * @qno: HBQ queue number. 1998 * 1999 * This function is called from SLI initialization code path with 2000 * no lock held to post initial HBQ buffers to firmware. The 2001 * function returns the number of HBQ entries successfully allocated. 2002 **/ 2003 static int 2004 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) 2005 { 2006 if (phba->sli_rev == LPFC_SLI_REV4) 2007 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2008 lpfc_hbq_defs[qno]->entry_count); 2009 else 2010 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, 2011 lpfc_hbq_defs[qno]->init_count); 2012 } 2013 2014 /** 2015 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list 2016 * @phba: Pointer to HBA context object. 2017 * @hbqno: HBQ number. 2018 * 2019 * This function removes the first hbq buffer on an hbq list and returns a 2020 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2021 **/ 2022 static struct hbq_dmabuf * 2023 lpfc_sli_hbqbuf_get(struct list_head *rb_list) 2024 { 2025 struct lpfc_dmabuf *d_buf; 2026 2027 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); 2028 if (!d_buf) 2029 return NULL; 2030 return container_of(d_buf, struct hbq_dmabuf, dbuf); 2031 } 2032 2033 /** 2034 * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list 2035 * @phba: Pointer to HBA context object. 2036 * @hbqno: HBQ number. 2037 * 2038 * This function removes the first RQ buffer on an RQ buffer list and returns a 2039 * pointer to that buffer. If it finds no buffers on the list it returns NULL. 2040 **/ 2041 static struct rqb_dmabuf * 2042 lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) 2043 { 2044 struct lpfc_dmabuf *h_buf; 2045 struct lpfc_rqb *rqbp; 2046 2047 rqbp = hrq->rqbp; 2048 list_remove_head(&rqbp->rqb_buffer_list, h_buf, 2049 struct lpfc_dmabuf, list); 2050 if (!h_buf) 2051 return NULL; 2052 rqbp->buffer_count--; 2053 return container_of(h_buf, struct rqb_dmabuf, hbuf); 2054 } 2055 2056 /** 2057 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag 2058 * @phba: Pointer to HBA context object. 2059 * @tag: Tag of the hbq buffer. 2060 * 2061 * This function searches for the hbq buffer associated with the given tag in 2062 * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer 2063 * otherwise it returns NULL. 2064 **/ 2065 static struct hbq_dmabuf * 2066 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) 2067 { 2068 struct lpfc_dmabuf *d_buf; 2069 struct hbq_dmabuf *hbq_buf; 2070 uint32_t hbqno; 2071 2072 hbqno = tag >> 16; 2073 if (hbqno >= LPFC_MAX_HBQS) 2074 return NULL; 2075 2076 spin_lock_irq(&phba->hbalock); 2077 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { 2078 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 2079 if (hbq_buf->tag == tag) { 2080 spin_unlock_irq(&phba->hbalock); 2081 return hbq_buf; 2082 } 2083 } 2084 spin_unlock_irq(&phba->hbalock); 2085 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, 2086 "1803 Bad hbq tag. Data: x%x x%x\n", 2087 tag, phba->hbqs[tag >> 16].buffer_count); 2088 return NULL; 2089 } 2090 2091 /** 2092 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware 2093 * @phba: Pointer to HBA context object. 2094 * @hbq_buffer: Pointer to HBQ buffer. 2095 * 2096 * This function is called with hbalock. This function gives back 2097 * the hbq buffer to firmware. If the HBQ does not have space to 2098 * post the buffer, it will free the buffer. 2099 **/ 2100 void 2101 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) 2102 { 2103 uint32_t hbqno; 2104 2105 if (hbq_buffer) { 2106 hbqno = hbq_buffer->tag >> 16; 2107 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) 2108 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); 2109 } 2110 } 2111 2112 /** 2113 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox 2114 * @mbxCommand: mailbox command code. 2115 * 2116 * This function is called by the mailbox event handler function to verify 2117 * that the completed mailbox command is a legitimate mailbox command. If the 2118 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN 2119 * and the mailbox event handler will take the HBA offline. 2120 **/ 2121 static int 2122 lpfc_sli_chk_mbx_command(uint8_t mbxCommand) 2123 { 2124 uint8_t ret; 2125 2126 switch (mbxCommand) { 2127 case MBX_LOAD_SM: 2128 case MBX_READ_NV: 2129 case MBX_WRITE_NV: 2130 case MBX_WRITE_VPARMS: 2131 case MBX_RUN_BIU_DIAG: 2132 case MBX_INIT_LINK: 2133 case MBX_DOWN_LINK: 2134 case MBX_CONFIG_LINK: 2135 case MBX_CONFIG_RING: 2136 case MBX_RESET_RING: 2137 case MBX_READ_CONFIG: 2138 case MBX_READ_RCONFIG: 2139 case MBX_READ_SPARM: 2140 case MBX_READ_STATUS: 2141 case MBX_READ_RPI: 2142 case MBX_READ_XRI: 2143 case MBX_READ_REV: 2144 case MBX_READ_LNK_STAT: 2145 case MBX_REG_LOGIN: 2146 case MBX_UNREG_LOGIN: 2147 case MBX_CLEAR_LA: 2148 case MBX_DUMP_MEMORY: 2149 case MBX_DUMP_CONTEXT: 2150 case MBX_RUN_DIAGS: 2151 case MBX_RESTART: 2152 case MBX_UPDATE_CFG: 2153 case MBX_DOWN_LOAD: 2154 case MBX_DEL_LD_ENTRY: 2155 case MBX_RUN_PROGRAM: 2156 case MBX_SET_MASK: 2157 case MBX_SET_VARIABLE: 2158 case MBX_UNREG_D_ID: 2159 case MBX_KILL_BOARD: 2160 case MBX_CONFIG_FARP: 2161 case MBX_BEACON: 2162 case MBX_LOAD_AREA: 2163 case MBX_RUN_BIU_DIAG64: 2164 case MBX_CONFIG_PORT: 2165 case MBX_READ_SPARM64: 2166 case MBX_READ_RPI64: 2167 case MBX_REG_LOGIN64: 2168 case MBX_READ_TOPOLOGY: 2169 case MBX_WRITE_WWN: 2170 case MBX_SET_DEBUG: 2171 case MBX_LOAD_EXP_ROM: 2172 case MBX_ASYNCEVT_ENABLE: 2173 case MBX_REG_VPI: 2174 case MBX_UNREG_VPI: 2175 case MBX_HEARTBEAT: 2176 case MBX_PORT_CAPABILITIES: 2177 case MBX_PORT_IOV_CONTROL: 2178 case MBX_SLI4_CONFIG: 2179 case MBX_SLI4_REQ_FTRS: 2180 case MBX_REG_FCFI: 2181 case MBX_UNREG_FCFI: 2182 case MBX_REG_VFI: 2183 case MBX_UNREG_VFI: 2184 case MBX_INIT_VPI: 2185 case MBX_INIT_VFI: 2186 case MBX_RESUME_RPI: 2187 case MBX_READ_EVENT_LOG_STATUS: 2188 case MBX_READ_EVENT_LOG: 2189 case MBX_SECURITY_MGMT: 2190 case MBX_AUTH_PORT: 2191 case MBX_ACCESS_VDATA: 2192 ret = mbxCommand; 2193 break; 2194 default: 2195 ret = MBX_SHUTDOWN; 2196 break; 2197 } 2198 return ret; 2199 } 2200 2201 /** 2202 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler 2203 * @phba: Pointer to HBA context object. 2204 * @pmboxq: Pointer to mailbox command. 2205 * 2206 * This is completion handler function for mailbox commands issued from 2207 * lpfc_sli_issue_mbox_wait function. This function is called by the 2208 * mailbox event handler function with no lock held. This function 2209 * will wake up thread waiting on the wait queue pointed by context1 2210 * of the mailbox. 2211 **/ 2212 void 2213 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) 2214 { 2215 wait_queue_head_t *pdone_q; 2216 unsigned long drvr_flag; 2217 2218 /* 2219 * If pdone_q is empty, the driver thread gave up waiting and 2220 * continued running. 2221 */ 2222 pmboxq->mbox_flag |= LPFC_MBX_WAKE; 2223 spin_lock_irqsave(&phba->hbalock, drvr_flag); 2224 pdone_q = (wait_queue_head_t *) pmboxq->context1; 2225 if (pdone_q) 2226 wake_up_interruptible(pdone_q); 2227 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 2228 return; 2229 } 2230 2231 2232 /** 2233 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler 2234 * @phba: Pointer to HBA context object. 2235 * @pmb: Pointer to mailbox object. 2236 * 2237 * This function is the default mailbox completion handler. It 2238 * frees the memory resources associated with the completed mailbox 2239 * command. If the completed command is a REG_LOGIN mailbox command, 2240 * this function will issue a UREG_LOGIN to re-claim the RPI. 2241 **/ 2242 void 2243 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2244 { 2245 struct lpfc_vport *vport = pmb->vport; 2246 struct lpfc_dmabuf *mp; 2247 struct lpfc_nodelist *ndlp; 2248 struct Scsi_Host *shost; 2249 uint16_t rpi, vpi; 2250 int rc; 2251 2252 mp = (struct lpfc_dmabuf *) (pmb->context1); 2253 2254 if (mp) { 2255 lpfc_mbuf_free(phba, mp->virt, mp->phys); 2256 kfree(mp); 2257 } 2258 2259 /* 2260 * If a REG_LOGIN succeeded after node is destroyed or node 2261 * is in re-discovery driver need to cleanup the RPI. 2262 */ 2263 if (!(phba->pport->load_flag & FC_UNLOADING) && 2264 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && 2265 !pmb->u.mb.mbxStatus) { 2266 rpi = pmb->u.mb.un.varWords[0]; 2267 vpi = pmb->u.mb.un.varRegLogin.vpi; 2268 lpfc_unreg_login(phba, vpi, rpi, pmb); 2269 pmb->vport = vport; 2270 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 2271 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2272 if (rc != MBX_NOT_FINISHED) 2273 return; 2274 } 2275 2276 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && 2277 !(phba->pport->load_flag & FC_UNLOADING) && 2278 !pmb->u.mb.mbxStatus) { 2279 shost = lpfc_shost_from_vport(vport); 2280 spin_lock_irq(shost->host_lock); 2281 vport->vpi_state |= LPFC_VPI_REGISTERED; 2282 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; 2283 spin_unlock_irq(shost->host_lock); 2284 } 2285 2286 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 2287 ndlp = (struct lpfc_nodelist *)pmb->context2; 2288 lpfc_nlp_put(ndlp); 2289 pmb->context2 = NULL; 2290 } 2291 2292 /* Check security permission status on INIT_LINK mailbox command */ 2293 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && 2294 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) 2295 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2296 "2860 SLI authentication is required " 2297 "for INIT_LINK but has not done yet\n"); 2298 2299 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) 2300 lpfc_sli4_mbox_cmd_free(phba, pmb); 2301 else 2302 mempool_free(pmb, phba->mbox_mem_pool); 2303 } 2304 /** 2305 * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler 2306 * @phba: Pointer to HBA context object. 2307 * @pmb: Pointer to mailbox object. 2308 * 2309 * This function is the unreg rpi mailbox completion handler. It 2310 * frees the memory resources associated with the completed mailbox 2311 * command. An additional refrenece is put on the ndlp to prevent 2312 * lpfc_nlp_release from freeing the rpi bit in the bitmask before 2313 * the unreg mailbox command completes, this routine puts the 2314 * reference back. 2315 * 2316 **/ 2317 void 2318 lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) 2319 { 2320 struct lpfc_vport *vport = pmb->vport; 2321 struct lpfc_nodelist *ndlp; 2322 2323 ndlp = pmb->context1; 2324 if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { 2325 if (phba->sli_rev == LPFC_SLI_REV4 && 2326 (bf_get(lpfc_sli_intf_if_type, 2327 &phba->sli4_hba.sli_intf) == 2328 LPFC_SLI_INTF_IF_TYPE_2)) { 2329 if (ndlp) { 2330 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 2331 "0010 UNREG_LOGIN vpi:%x " 2332 "rpi:%x DID:%x map:%x %p\n", 2333 vport->vpi, ndlp->nlp_rpi, 2334 ndlp->nlp_DID, 2335 ndlp->nlp_usg_map, ndlp); 2336 ndlp->nlp_flag &= ~NLP_LOGO_ACC; 2337 lpfc_nlp_put(ndlp); 2338 } 2339 } 2340 } 2341 2342 mempool_free(pmb, phba->mbox_mem_pool); 2343 } 2344 2345 /** 2346 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware 2347 * @phba: Pointer to HBA context object. 2348 * 2349 * This function is called with no lock held. This function processes all 2350 * the completed mailbox commands and gives it to upper layers. The interrupt 2351 * service routine processes mailbox completion interrupt and adds completed 2352 * mailbox commands to the mboxq_cmpl queue and signals the worker thread. 2353 * Worker thread call lpfc_sli_handle_mb_event, which will return the 2354 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This 2355 * function returns the mailbox commands to the upper layer by calling the 2356 * completion handler function of each mailbox. 2357 **/ 2358 int 2359 lpfc_sli_handle_mb_event(struct lpfc_hba *phba) 2360 { 2361 MAILBOX_t *pmbox; 2362 LPFC_MBOXQ_t *pmb; 2363 int rc; 2364 LIST_HEAD(cmplq); 2365 2366 phba->sli.slistat.mbox_event++; 2367 2368 /* Get all completed mailboxe buffers into the cmplq */ 2369 spin_lock_irq(&phba->hbalock); 2370 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); 2371 spin_unlock_irq(&phba->hbalock); 2372 2373 /* Get a Mailbox buffer to setup mailbox commands for callback */ 2374 do { 2375 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); 2376 if (pmb == NULL) 2377 break; 2378 2379 pmbox = &pmb->u.mb; 2380 2381 if (pmbox->mbxCommand != MBX_HEARTBEAT) { 2382 if (pmb->vport) { 2383 lpfc_debugfs_disc_trc(pmb->vport, 2384 LPFC_DISC_TRC_MBOX_VPORT, 2385 "MBOX cmpl vport: cmd:x%x mb:x%x x%x", 2386 (uint32_t)pmbox->mbxCommand, 2387 pmbox->un.varWords[0], 2388 pmbox->un.varWords[1]); 2389 } 2390 else { 2391 lpfc_debugfs_disc_trc(phba->pport, 2392 LPFC_DISC_TRC_MBOX, 2393 "MBOX cmpl: cmd:x%x mb:x%x x%x", 2394 (uint32_t)pmbox->mbxCommand, 2395 pmbox->un.varWords[0], 2396 pmbox->un.varWords[1]); 2397 } 2398 } 2399 2400 /* 2401 * It is a fatal error if unknown mbox command completion. 2402 */ 2403 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == 2404 MBX_SHUTDOWN) { 2405 /* Unknown mailbox command compl */ 2406 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 2407 "(%d):0323 Unknown Mailbox command " 2408 "x%x (x%x/x%x) Cmpl\n", 2409 pmb->vport ? pmb->vport->vpi : 0, 2410 pmbox->mbxCommand, 2411 lpfc_sli_config_mbox_subsys_get(phba, 2412 pmb), 2413 lpfc_sli_config_mbox_opcode_get(phba, 2414 pmb)); 2415 phba->link_state = LPFC_HBA_ERROR; 2416 phba->work_hs = HS_FFER3; 2417 lpfc_handle_eratt(phba); 2418 continue; 2419 } 2420 2421 if (pmbox->mbxStatus) { 2422 phba->sli.slistat.mbox_stat_err++; 2423 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { 2424 /* Mbox cmd cmpl error - RETRYing */ 2425 lpfc_printf_log(phba, KERN_INFO, 2426 LOG_MBOX | LOG_SLI, 2427 "(%d):0305 Mbox cmd cmpl " 2428 "error - RETRYing Data: x%x " 2429 "(x%x/x%x) x%x x%x x%x\n", 2430 pmb->vport ? pmb->vport->vpi : 0, 2431 pmbox->mbxCommand, 2432 lpfc_sli_config_mbox_subsys_get(phba, 2433 pmb), 2434 lpfc_sli_config_mbox_opcode_get(phba, 2435 pmb), 2436 pmbox->mbxStatus, 2437 pmbox->un.varWords[0], 2438 pmb->vport->port_state); 2439 pmbox->mbxStatus = 0; 2440 pmbox->mbxOwner = OWN_HOST; 2441 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 2442 if (rc != MBX_NOT_FINISHED) 2443 continue; 2444 } 2445 } 2446 2447 /* Mailbox cmd <cmd> Cmpl <cmpl> */ 2448 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 2449 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p " 2450 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 2451 "x%x x%x x%x\n", 2452 pmb->vport ? pmb->vport->vpi : 0, 2453 pmbox->mbxCommand, 2454 lpfc_sli_config_mbox_subsys_get(phba, pmb), 2455 lpfc_sli_config_mbox_opcode_get(phba, pmb), 2456 pmb->mbox_cmpl, 2457 *((uint32_t *) pmbox), 2458 pmbox->un.varWords[0], 2459 pmbox->un.varWords[1], 2460 pmbox->un.varWords[2], 2461 pmbox->un.varWords[3], 2462 pmbox->un.varWords[4], 2463 pmbox->un.varWords[5], 2464 pmbox->un.varWords[6], 2465 pmbox->un.varWords[7], 2466 pmbox->un.varWords[8], 2467 pmbox->un.varWords[9], 2468 pmbox->un.varWords[10]); 2469 2470 if (pmb->mbox_cmpl) 2471 pmb->mbox_cmpl(phba,pmb); 2472 } while (1); 2473 return 0; 2474 } 2475 2476 /** 2477 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag 2478 * @phba: Pointer to HBA context object. 2479 * @pring: Pointer to driver SLI ring object. 2480 * @tag: buffer tag. 2481 * 2482 * This function is called with no lock held. When QUE_BUFTAG_BIT bit 2483 * is set in the tag the buffer is posted for a particular exchange, 2484 * the function will return the buffer without replacing the buffer. 2485 * If the buffer is for unsolicited ELS or CT traffic, this function 2486 * returns the buffer and also posts another buffer to the firmware. 2487 **/ 2488 static struct lpfc_dmabuf * 2489 lpfc_sli_get_buff(struct lpfc_hba *phba, 2490 struct lpfc_sli_ring *pring, 2491 uint32_t tag) 2492 { 2493 struct hbq_dmabuf *hbq_entry; 2494 2495 if (tag & QUE_BUFTAG_BIT) 2496 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); 2497 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); 2498 if (!hbq_entry) 2499 return NULL; 2500 return &hbq_entry->dbuf; 2501 } 2502 2503 /** 2504 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence 2505 * @phba: Pointer to HBA context object. 2506 * @pring: Pointer to driver SLI ring object. 2507 * @saveq: Pointer to the iocbq struct representing the sequence starting frame. 2508 * @fch_r_ctl: the r_ctl for the first frame of the sequence. 2509 * @fch_type: the type for the first frame of the sequence. 2510 * 2511 * This function is called with no lock held. This function uses the r_ctl and 2512 * type of the received sequence to find the correct callback function to call 2513 * to process the sequence. 2514 **/ 2515 static int 2516 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2517 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, 2518 uint32_t fch_type) 2519 { 2520 int i; 2521 2522 switch (fch_type) { 2523 case FC_TYPE_NVME: 2524 lpfc_nvmet_unsol_ls_event(phba, pring, saveq); 2525 return 1; 2526 default: 2527 break; 2528 } 2529 2530 /* unSolicited Responses */ 2531 if (pring->prt[0].profile) { 2532 if (pring->prt[0].lpfc_sli_rcv_unsol_event) 2533 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, 2534 saveq); 2535 return 1; 2536 } 2537 /* We must search, based on rctl / type 2538 for the right routine */ 2539 for (i = 0; i < pring->num_mask; i++) { 2540 if ((pring->prt[i].rctl == fch_r_ctl) && 2541 (pring->prt[i].type == fch_type)) { 2542 if (pring->prt[i].lpfc_sli_rcv_unsol_event) 2543 (pring->prt[i].lpfc_sli_rcv_unsol_event) 2544 (phba, pring, saveq); 2545 return 1; 2546 } 2547 } 2548 return 0; 2549 } 2550 2551 /** 2552 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler 2553 * @phba: Pointer to HBA context object. 2554 * @pring: Pointer to driver SLI ring object. 2555 * @saveq: Pointer to the unsolicited iocb. 2556 * 2557 * This function is called with no lock held by the ring event handler 2558 * when there is an unsolicited iocb posted to the response ring by the 2559 * firmware. This function gets the buffer associated with the iocbs 2560 * and calls the event handler for the ring. This function handles both 2561 * qring buffers and hbq buffers. 2562 * When the function returns 1 the caller can free the iocb object otherwise 2563 * upper layer functions will free the iocb objects. 2564 **/ 2565 static int 2566 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2567 struct lpfc_iocbq *saveq) 2568 { 2569 IOCB_t * irsp; 2570 WORD5 * w5p; 2571 uint32_t Rctl, Type; 2572 struct lpfc_iocbq *iocbq; 2573 struct lpfc_dmabuf *dmzbuf; 2574 2575 irsp = &(saveq->iocb); 2576 2577 if (irsp->ulpCommand == CMD_ASYNC_STATUS) { 2578 if (pring->lpfc_sli_rcv_async_status) 2579 pring->lpfc_sli_rcv_async_status(phba, pring, saveq); 2580 else 2581 lpfc_printf_log(phba, 2582 KERN_WARNING, 2583 LOG_SLI, 2584 "0316 Ring %d handler: unexpected " 2585 "ASYNC_STATUS iocb received evt_code " 2586 "0x%x\n", 2587 pring->ringno, 2588 irsp->un.asyncstat.evt_code); 2589 return 1; 2590 } 2591 2592 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && 2593 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { 2594 if (irsp->ulpBdeCount > 0) { 2595 dmzbuf = lpfc_sli_get_buff(phba, pring, 2596 irsp->un.ulpWord[3]); 2597 lpfc_in_buf_free(phba, dmzbuf); 2598 } 2599 2600 if (irsp->ulpBdeCount > 1) { 2601 dmzbuf = lpfc_sli_get_buff(phba, pring, 2602 irsp->unsli3.sli3Words[3]); 2603 lpfc_in_buf_free(phba, dmzbuf); 2604 } 2605 2606 if (irsp->ulpBdeCount > 2) { 2607 dmzbuf = lpfc_sli_get_buff(phba, pring, 2608 irsp->unsli3.sli3Words[7]); 2609 lpfc_in_buf_free(phba, dmzbuf); 2610 } 2611 2612 return 1; 2613 } 2614 2615 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 2616 if (irsp->ulpBdeCount != 0) { 2617 saveq->context2 = lpfc_sli_get_buff(phba, pring, 2618 irsp->un.ulpWord[3]); 2619 if (!saveq->context2) 2620 lpfc_printf_log(phba, 2621 KERN_ERR, 2622 LOG_SLI, 2623 "0341 Ring %d Cannot find buffer for " 2624 "an unsolicited iocb. tag 0x%x\n", 2625 pring->ringno, 2626 irsp->un.ulpWord[3]); 2627 } 2628 if (irsp->ulpBdeCount == 2) { 2629 saveq->context3 = lpfc_sli_get_buff(phba, pring, 2630 irsp->unsli3.sli3Words[7]); 2631 if (!saveq->context3) 2632 lpfc_printf_log(phba, 2633 KERN_ERR, 2634 LOG_SLI, 2635 "0342 Ring %d Cannot find buffer for an" 2636 " unsolicited iocb. tag 0x%x\n", 2637 pring->ringno, 2638 irsp->unsli3.sli3Words[7]); 2639 } 2640 list_for_each_entry(iocbq, &saveq->list, list) { 2641 irsp = &(iocbq->iocb); 2642 if (irsp->ulpBdeCount != 0) { 2643 iocbq->context2 = lpfc_sli_get_buff(phba, pring, 2644 irsp->un.ulpWord[3]); 2645 if (!iocbq->context2) 2646 lpfc_printf_log(phba, 2647 KERN_ERR, 2648 LOG_SLI, 2649 "0343 Ring %d Cannot find " 2650 "buffer for an unsolicited iocb" 2651 ". tag 0x%x\n", pring->ringno, 2652 irsp->un.ulpWord[3]); 2653 } 2654 if (irsp->ulpBdeCount == 2) { 2655 iocbq->context3 = lpfc_sli_get_buff(phba, pring, 2656 irsp->unsli3.sli3Words[7]); 2657 if (!iocbq->context3) 2658 lpfc_printf_log(phba, 2659 KERN_ERR, 2660 LOG_SLI, 2661 "0344 Ring %d Cannot find " 2662 "buffer for an unsolicited " 2663 "iocb. tag 0x%x\n", 2664 pring->ringno, 2665 irsp->unsli3.sli3Words[7]); 2666 } 2667 } 2668 } 2669 if (irsp->ulpBdeCount != 0 && 2670 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || 2671 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { 2672 int found = 0; 2673 2674 /* search continue save q for same XRI */ 2675 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { 2676 if (iocbq->iocb.unsli3.rcvsli3.ox_id == 2677 saveq->iocb.unsli3.rcvsli3.ox_id) { 2678 list_add_tail(&saveq->list, &iocbq->list); 2679 found = 1; 2680 break; 2681 } 2682 } 2683 if (!found) 2684 list_add_tail(&saveq->clist, 2685 &pring->iocb_continue_saveq); 2686 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { 2687 list_del_init(&iocbq->clist); 2688 saveq = iocbq; 2689 irsp = &(saveq->iocb); 2690 } else 2691 return 0; 2692 } 2693 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || 2694 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || 2695 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { 2696 Rctl = FC_RCTL_ELS_REQ; 2697 Type = FC_TYPE_ELS; 2698 } else { 2699 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); 2700 Rctl = w5p->hcsw.Rctl; 2701 Type = w5p->hcsw.Type; 2702 2703 /* Firmware Workaround */ 2704 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && 2705 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || 2706 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { 2707 Rctl = FC_RCTL_ELS_REQ; 2708 Type = FC_TYPE_ELS; 2709 w5p->hcsw.Rctl = Rctl; 2710 w5p->hcsw.Type = Type; 2711 } 2712 } 2713 2714 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) 2715 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2716 "0313 Ring %d handler: unexpected Rctl x%x " 2717 "Type x%x received\n", 2718 pring->ringno, Rctl, Type); 2719 2720 return 1; 2721 } 2722 2723 /** 2724 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb 2725 * @phba: Pointer to HBA context object. 2726 * @pring: Pointer to driver SLI ring object. 2727 * @prspiocb: Pointer to response iocb object. 2728 * 2729 * This function looks up the iocb_lookup table to get the command iocb 2730 * corresponding to the given response iocb using the iotag of the 2731 * response iocb. This function is called with the hbalock held. 2732 * This function returns the command iocb object if it finds the command 2733 * iocb else returns NULL. 2734 **/ 2735 static struct lpfc_iocbq * 2736 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, 2737 struct lpfc_sli_ring *pring, 2738 struct lpfc_iocbq *prspiocb) 2739 { 2740 struct lpfc_iocbq *cmd_iocb = NULL; 2741 uint16_t iotag; 2742 lockdep_assert_held(&phba->hbalock); 2743 2744 iotag = prspiocb->iocb.ulpIoTag; 2745 2746 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2747 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2748 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2749 /* remove from txcmpl queue list */ 2750 list_del_init(&cmd_iocb->list); 2751 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2752 return cmd_iocb; 2753 } 2754 } 2755 2756 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2757 "0317 iotag x%x is out of " 2758 "range: max iotag x%x wd0 x%x\n", 2759 iotag, phba->sli.last_iotag, 2760 *(((uint32_t *) &prspiocb->iocb) + 7)); 2761 return NULL; 2762 } 2763 2764 /** 2765 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag 2766 * @phba: Pointer to HBA context object. 2767 * @pring: Pointer to driver SLI ring object. 2768 * @iotag: IOCB tag. 2769 * 2770 * This function looks up the iocb_lookup table to get the command iocb 2771 * corresponding to the given iotag. This function is called with the 2772 * hbalock held. 2773 * This function returns the command iocb object if it finds the command 2774 * iocb else returns NULL. 2775 **/ 2776 static struct lpfc_iocbq * 2777 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, 2778 struct lpfc_sli_ring *pring, uint16_t iotag) 2779 { 2780 struct lpfc_iocbq *cmd_iocb = NULL; 2781 2782 lockdep_assert_held(&phba->hbalock); 2783 if (iotag != 0 && iotag <= phba->sli.last_iotag) { 2784 cmd_iocb = phba->sli.iocbq_lookup[iotag]; 2785 if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { 2786 /* remove from txcmpl queue list */ 2787 list_del_init(&cmd_iocb->list); 2788 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; 2789 return cmd_iocb; 2790 } 2791 } 2792 2793 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2794 "0372 iotag x%x lookup error: max iotag (x%x) " 2795 "iocb_flag x%x\n", 2796 iotag, phba->sli.last_iotag, 2797 cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); 2798 return NULL; 2799 } 2800 2801 /** 2802 * lpfc_sli_process_sol_iocb - process solicited iocb completion 2803 * @phba: Pointer to HBA context object. 2804 * @pring: Pointer to driver SLI ring object. 2805 * @saveq: Pointer to the response iocb to be processed. 2806 * 2807 * This function is called by the ring event handler for non-fcp 2808 * rings when there is a new response iocb in the response ring. 2809 * The caller is not required to hold any locks. This function 2810 * gets the command iocb associated with the response iocb and 2811 * calls the completion handler for the command iocb. If there 2812 * is no completion handler, the function will free the resources 2813 * associated with command iocb. If the response iocb is for 2814 * an already aborted command iocb, the status of the completion 2815 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. 2816 * This function always returns 1. 2817 **/ 2818 static int 2819 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 2820 struct lpfc_iocbq *saveq) 2821 { 2822 struct lpfc_iocbq *cmdiocbp; 2823 int rc = 1; 2824 unsigned long iflag; 2825 2826 /* Based on the iotag field, get the cmd IOCB from the txcmplq */ 2827 spin_lock_irqsave(&phba->hbalock, iflag); 2828 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); 2829 spin_unlock_irqrestore(&phba->hbalock, iflag); 2830 2831 if (cmdiocbp) { 2832 if (cmdiocbp->iocb_cmpl) { 2833 /* 2834 * If an ELS command failed send an event to mgmt 2835 * application. 2836 */ 2837 if (saveq->iocb.ulpStatus && 2838 (pring->ringno == LPFC_ELS_RING) && 2839 (cmdiocbp->iocb.ulpCommand == 2840 CMD_ELS_REQUEST64_CR)) 2841 lpfc_send_els_failure_event(phba, 2842 cmdiocbp, saveq); 2843 2844 /* 2845 * Post all ELS completions to the worker thread. 2846 * All other are passed to the completion callback. 2847 */ 2848 if (pring->ringno == LPFC_ELS_RING) { 2849 if ((phba->sli_rev < LPFC_SLI_REV4) && 2850 (cmdiocbp->iocb_flag & 2851 LPFC_DRIVER_ABORTED)) { 2852 spin_lock_irqsave(&phba->hbalock, 2853 iflag); 2854 cmdiocbp->iocb_flag &= 2855 ~LPFC_DRIVER_ABORTED; 2856 spin_unlock_irqrestore(&phba->hbalock, 2857 iflag); 2858 saveq->iocb.ulpStatus = 2859 IOSTAT_LOCAL_REJECT; 2860 saveq->iocb.un.ulpWord[4] = 2861 IOERR_SLI_ABORTED; 2862 2863 /* Firmware could still be in progress 2864 * of DMAing payload, so don't free data 2865 * buffer till after a hbeat. 2866 */ 2867 spin_lock_irqsave(&phba->hbalock, 2868 iflag); 2869 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; 2870 spin_unlock_irqrestore(&phba->hbalock, 2871 iflag); 2872 } 2873 if (phba->sli_rev == LPFC_SLI_REV4) { 2874 if (saveq->iocb_flag & 2875 LPFC_EXCHANGE_BUSY) { 2876 /* Set cmdiocb flag for the 2877 * exchange busy so sgl (xri) 2878 * will not be released until 2879 * the abort xri is received 2880 * from hba. 2881 */ 2882 spin_lock_irqsave( 2883 &phba->hbalock, iflag); 2884 cmdiocbp->iocb_flag |= 2885 LPFC_EXCHANGE_BUSY; 2886 spin_unlock_irqrestore( 2887 &phba->hbalock, iflag); 2888 } 2889 if (cmdiocbp->iocb_flag & 2890 LPFC_DRIVER_ABORTED) { 2891 /* 2892 * Clear LPFC_DRIVER_ABORTED 2893 * bit in case it was driver 2894 * initiated abort. 2895 */ 2896 spin_lock_irqsave( 2897 &phba->hbalock, iflag); 2898 cmdiocbp->iocb_flag &= 2899 ~LPFC_DRIVER_ABORTED; 2900 spin_unlock_irqrestore( 2901 &phba->hbalock, iflag); 2902 cmdiocbp->iocb.ulpStatus = 2903 IOSTAT_LOCAL_REJECT; 2904 cmdiocbp->iocb.un.ulpWord[4] = 2905 IOERR_ABORT_REQUESTED; 2906 /* 2907 * For SLI4, irsiocb contains 2908 * NO_XRI in sli_xritag, it 2909 * shall not affect releasing 2910 * sgl (xri) process. 2911 */ 2912 saveq->iocb.ulpStatus = 2913 IOSTAT_LOCAL_REJECT; 2914 saveq->iocb.un.ulpWord[4] = 2915 IOERR_SLI_ABORTED; 2916 spin_lock_irqsave( 2917 &phba->hbalock, iflag); 2918 saveq->iocb_flag |= 2919 LPFC_DELAY_MEM_FREE; 2920 spin_unlock_irqrestore( 2921 &phba->hbalock, iflag); 2922 } 2923 } 2924 } 2925 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); 2926 } else 2927 lpfc_sli_release_iocbq(phba, cmdiocbp); 2928 } else { 2929 /* 2930 * Unknown initiating command based on the response iotag. 2931 * This could be the case on the ELS ring because of 2932 * lpfc_els_abort(). 2933 */ 2934 if (pring->ringno != LPFC_ELS_RING) { 2935 /* 2936 * Ring <ringno> handler: unexpected completion IoTag 2937 * <IoTag> 2938 */ 2939 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 2940 "0322 Ring %d handler: " 2941 "unexpected completion IoTag x%x " 2942 "Data: x%x x%x x%x x%x\n", 2943 pring->ringno, 2944 saveq->iocb.ulpIoTag, 2945 saveq->iocb.ulpStatus, 2946 saveq->iocb.un.ulpWord[4], 2947 saveq->iocb.ulpCommand, 2948 saveq->iocb.ulpContext); 2949 } 2950 } 2951 2952 return rc; 2953 } 2954 2955 /** 2956 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler 2957 * @phba: Pointer to HBA context object. 2958 * @pring: Pointer to driver SLI ring object. 2959 * 2960 * This function is called from the iocb ring event handlers when 2961 * put pointer is ahead of the get pointer for a ring. This function signal 2962 * an error attention condition to the worker thread and the worker 2963 * thread will transition the HBA to offline state. 2964 **/ 2965 static void 2966 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 2967 { 2968 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 2969 /* 2970 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 2971 * rsp ring <portRspMax> 2972 */ 2973 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 2974 "0312 Ring %d handler: portRspPut %d " 2975 "is bigger than rsp ring %d\n", 2976 pring->ringno, le32_to_cpu(pgp->rspPutInx), 2977 pring->sli.sli3.numRiocb); 2978 2979 phba->link_state = LPFC_HBA_ERROR; 2980 2981 /* 2982 * All error attention handlers are posted to 2983 * worker thread 2984 */ 2985 phba->work_ha |= HA_ERATT; 2986 phba->work_hs = HS_FFER3; 2987 2988 lpfc_worker_wake_up(phba); 2989 2990 return; 2991 } 2992 2993 /** 2994 * lpfc_poll_eratt - Error attention polling timer timeout handler 2995 * @ptr: Pointer to address of HBA context object. 2996 * 2997 * This function is invoked by the Error Attention polling timer when the 2998 * timer times out. It will check the SLI Error Attention register for 2999 * possible attention events. If so, it will post an Error Attention event 3000 * and wake up worker thread to process it. Otherwise, it will set up the 3001 * Error Attention polling timer for the next poll. 3002 **/ 3003 void lpfc_poll_eratt(unsigned long ptr) 3004 { 3005 struct lpfc_hba *phba; 3006 uint32_t eratt = 0; 3007 uint64_t sli_intr, cnt; 3008 3009 phba = (struct lpfc_hba *)ptr; 3010 3011 /* Here we will also keep track of interrupts per sec of the hba */ 3012 sli_intr = phba->sli.slistat.sli_intr; 3013 3014 if (phba->sli.slistat.sli_prev_intr > sli_intr) 3015 cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + 3016 sli_intr); 3017 else 3018 cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); 3019 3020 /* 64-bit integer division not supported on 32-bit x86 - use do_div */ 3021 do_div(cnt, phba->eratt_poll_interval); 3022 phba->sli.slistat.sli_ips = cnt; 3023 3024 phba->sli.slistat.sli_prev_intr = sli_intr; 3025 3026 /* Check chip HA register for error event */ 3027 eratt = lpfc_sli_check_eratt(phba); 3028 3029 if (eratt) 3030 /* Tell the worker thread there is work to do */ 3031 lpfc_worker_wake_up(phba); 3032 else 3033 /* Restart the timer for next eratt poll */ 3034 mod_timer(&phba->eratt_poll, 3035 jiffies + 3036 msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 3037 return; 3038 } 3039 3040 3041 /** 3042 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring 3043 * @phba: Pointer to HBA context object. 3044 * @pring: Pointer to driver SLI ring object. 3045 * @mask: Host attention register mask for this ring. 3046 * 3047 * This function is called from the interrupt context when there is a ring 3048 * event for the fcp ring. The caller does not hold any lock. 3049 * The function processes each response iocb in the response ring until it 3050 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with 3051 * LE bit set. The function will call the completion handler of the command iocb 3052 * if the response iocb indicates a completion for a command iocb or it is 3053 * an abort completion. The function will call lpfc_sli_process_unsol_iocb 3054 * function if this is an unsolicited iocb. 3055 * This routine presumes LPFC_FCP_RING handling and doesn't bother 3056 * to check it explicitly. 3057 */ 3058 int 3059 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, 3060 struct lpfc_sli_ring *pring, uint32_t mask) 3061 { 3062 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; 3063 IOCB_t *irsp = NULL; 3064 IOCB_t *entry = NULL; 3065 struct lpfc_iocbq *cmdiocbq = NULL; 3066 struct lpfc_iocbq rspiocbq; 3067 uint32_t status; 3068 uint32_t portRspPut, portRspMax; 3069 int rc = 1; 3070 lpfc_iocb_type type; 3071 unsigned long iflag; 3072 uint32_t rsp_cmpl = 0; 3073 3074 spin_lock_irqsave(&phba->hbalock, iflag); 3075 pring->stats.iocb_event++; 3076 3077 /* 3078 * The next available response entry should never exceed the maximum 3079 * entries. If it does, treat it as an adapter hardware error. 3080 */ 3081 portRspMax = pring->sli.sli3.numRiocb; 3082 portRspPut = le32_to_cpu(pgp->rspPutInx); 3083 if (unlikely(portRspPut >= portRspMax)) { 3084 lpfc_sli_rsp_pointers_error(phba, pring); 3085 spin_unlock_irqrestore(&phba->hbalock, iflag); 3086 return 1; 3087 } 3088 if (phba->fcp_ring_in_use) { 3089 spin_unlock_irqrestore(&phba->hbalock, iflag); 3090 return 1; 3091 } else 3092 phba->fcp_ring_in_use = 1; 3093 3094 rmb(); 3095 while (pring->sli.sli3.rspidx != portRspPut) { 3096 /* 3097 * Fetch an entry off the ring and copy it into a local data 3098 * structure. The copy involves a byte-swap since the 3099 * network byte order and pci byte orders are different. 3100 */ 3101 entry = lpfc_resp_iocb(phba, pring); 3102 phba->last_completion_time = jiffies; 3103 3104 if (++pring->sli.sli3.rspidx >= portRspMax) 3105 pring->sli.sli3.rspidx = 0; 3106 3107 lpfc_sli_pcimem_bcopy((uint32_t *) entry, 3108 (uint32_t *) &rspiocbq.iocb, 3109 phba->iocb_rsp_size); 3110 INIT_LIST_HEAD(&(rspiocbq.list)); 3111 irsp = &rspiocbq.iocb; 3112 3113 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); 3114 pring->stats.iocb_rsp++; 3115 rsp_cmpl++; 3116 3117 if (unlikely(irsp->ulpStatus)) { 3118 /* 3119 * If resource errors reported from HBA, reduce 3120 * queuedepths of the SCSI device. 3121 */ 3122 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3123 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3124 IOERR_NO_RESOURCES)) { 3125 spin_unlock_irqrestore(&phba->hbalock, iflag); 3126 phba->lpfc_rampdown_queue_depth(phba); 3127 spin_lock_irqsave(&phba->hbalock, iflag); 3128 } 3129 3130 /* Rsp ring <ringno> error: IOCB */ 3131 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3132 "0336 Rsp Ring %d error: IOCB Data: " 3133 "x%x x%x x%x x%x x%x x%x x%x x%x\n", 3134 pring->ringno, 3135 irsp->un.ulpWord[0], 3136 irsp->un.ulpWord[1], 3137 irsp->un.ulpWord[2], 3138 irsp->un.ulpWord[3], 3139 irsp->un.ulpWord[4], 3140 irsp->un.ulpWord[5], 3141 *(uint32_t *)&irsp->un1, 3142 *((uint32_t *)&irsp->un1 + 1)); 3143 } 3144 3145 switch (type) { 3146 case LPFC_ABORT_IOCB: 3147 case LPFC_SOL_IOCB: 3148 /* 3149 * Idle exchange closed via ABTS from port. No iocb 3150 * resources need to be recovered. 3151 */ 3152 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { 3153 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 3154 "0333 IOCB cmd 0x%x" 3155 " processed. Skipping" 3156 " completion\n", 3157 irsp->ulpCommand); 3158 break; 3159 } 3160 3161 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, 3162 &rspiocbq); 3163 if (unlikely(!cmdiocbq)) 3164 break; 3165 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) 3166 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 3167 if (cmdiocbq->iocb_cmpl) { 3168 spin_unlock_irqrestore(&phba->hbalock, iflag); 3169 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, 3170 &rspiocbq); 3171 spin_lock_irqsave(&phba->hbalock, iflag); 3172 } 3173 break; 3174 case LPFC_UNSOL_IOCB: 3175 spin_unlock_irqrestore(&phba->hbalock, iflag); 3176 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); 3177 spin_lock_irqsave(&phba->hbalock, iflag); 3178 break; 3179 default: 3180 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3181 char adaptermsg[LPFC_MAX_ADPTMSG]; 3182 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3183 memcpy(&adaptermsg[0], (uint8_t *) irsp, 3184 MAX_MSG_DATA); 3185 dev_warn(&((phba->pcidev)->dev), 3186 "lpfc%d: %s\n", 3187 phba->brd_no, adaptermsg); 3188 } else { 3189 /* Unknown IOCB command */ 3190 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3191 "0334 Unknown IOCB command " 3192 "Data: x%x, x%x x%x x%x x%x\n", 3193 type, irsp->ulpCommand, 3194 irsp->ulpStatus, 3195 irsp->ulpIoTag, 3196 irsp->ulpContext); 3197 } 3198 break; 3199 } 3200 3201 /* 3202 * The response IOCB has been processed. Update the ring 3203 * pointer in SLIM. If the port response put pointer has not 3204 * been updated, sync the pgp->rspPutInx and fetch the new port 3205 * response put pointer. 3206 */ 3207 writel(pring->sli.sli3.rspidx, 3208 &phba->host_gp[pring->ringno].rspGetInx); 3209 3210 if (pring->sli.sli3.rspidx == portRspPut) 3211 portRspPut = le32_to_cpu(pgp->rspPutInx); 3212 } 3213 3214 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { 3215 pring->stats.iocb_rsp_full++; 3216 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3217 writel(status, phba->CAregaddr); 3218 readl(phba->CAregaddr); 3219 } 3220 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3221 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3222 pring->stats.iocb_cmd_empty++; 3223 3224 /* Force update of the local copy of cmdGetInx */ 3225 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3226 lpfc_sli_resume_iocb(phba, pring); 3227 3228 if ((pring->lpfc_sli_cmd_available)) 3229 (pring->lpfc_sli_cmd_available) (phba, pring); 3230 3231 } 3232 3233 phba->fcp_ring_in_use = 0; 3234 spin_unlock_irqrestore(&phba->hbalock, iflag); 3235 return rc; 3236 } 3237 3238 /** 3239 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb 3240 * @phba: Pointer to HBA context object. 3241 * @pring: Pointer to driver SLI ring object. 3242 * @rspiocbp: Pointer to driver response IOCB object. 3243 * 3244 * This function is called from the worker thread when there is a slow-path 3245 * response IOCB to process. This function chains all the response iocbs until 3246 * seeing the iocb with the LE bit set. The function will call 3247 * lpfc_sli_process_sol_iocb function if the response iocb indicates a 3248 * completion of a command iocb. The function will call the 3249 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. 3250 * The function frees the resources or calls the completion handler if this 3251 * iocb is an abort completion. The function returns NULL when the response 3252 * iocb has the LE bit set and all the chained iocbs are processed, otherwise 3253 * this function shall chain the iocb on to the iocb_continueq and return the 3254 * response iocb passed in. 3255 **/ 3256 static struct lpfc_iocbq * 3257 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 3258 struct lpfc_iocbq *rspiocbp) 3259 { 3260 struct lpfc_iocbq *saveq; 3261 struct lpfc_iocbq *cmdiocbp; 3262 struct lpfc_iocbq *next_iocb; 3263 IOCB_t *irsp = NULL; 3264 uint32_t free_saveq; 3265 uint8_t iocb_cmd_type; 3266 lpfc_iocb_type type; 3267 unsigned long iflag; 3268 int rc; 3269 3270 spin_lock_irqsave(&phba->hbalock, iflag); 3271 /* First add the response iocb to the countinueq list */ 3272 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); 3273 pring->iocb_continueq_cnt++; 3274 3275 /* Now, determine whether the list is completed for processing */ 3276 irsp = &rspiocbp->iocb; 3277 if (irsp->ulpLe) { 3278 /* 3279 * By default, the driver expects to free all resources 3280 * associated with this iocb completion. 3281 */ 3282 free_saveq = 1; 3283 saveq = list_get_first(&pring->iocb_continueq, 3284 struct lpfc_iocbq, list); 3285 irsp = &(saveq->iocb); 3286 list_del_init(&pring->iocb_continueq); 3287 pring->iocb_continueq_cnt = 0; 3288 3289 pring->stats.iocb_rsp++; 3290 3291 /* 3292 * If resource errors reported from HBA, reduce 3293 * queuedepths of the SCSI device. 3294 */ 3295 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && 3296 ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == 3297 IOERR_NO_RESOURCES)) { 3298 spin_unlock_irqrestore(&phba->hbalock, iflag); 3299 phba->lpfc_rampdown_queue_depth(phba); 3300 spin_lock_irqsave(&phba->hbalock, iflag); 3301 } 3302 3303 if (irsp->ulpStatus) { 3304 /* Rsp ring <ringno> error: IOCB */ 3305 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 3306 "0328 Rsp Ring %d error: " 3307 "IOCB Data: " 3308 "x%x x%x x%x x%x " 3309 "x%x x%x x%x x%x " 3310 "x%x x%x x%x x%x " 3311 "x%x x%x x%x x%x\n", 3312 pring->ringno, 3313 irsp->un.ulpWord[0], 3314 irsp->un.ulpWord[1], 3315 irsp->un.ulpWord[2], 3316 irsp->un.ulpWord[3], 3317 irsp->un.ulpWord[4], 3318 irsp->un.ulpWord[5], 3319 *(((uint32_t *) irsp) + 6), 3320 *(((uint32_t *) irsp) + 7), 3321 *(((uint32_t *) irsp) + 8), 3322 *(((uint32_t *) irsp) + 9), 3323 *(((uint32_t *) irsp) + 10), 3324 *(((uint32_t *) irsp) + 11), 3325 *(((uint32_t *) irsp) + 12), 3326 *(((uint32_t *) irsp) + 13), 3327 *(((uint32_t *) irsp) + 14), 3328 *(((uint32_t *) irsp) + 15)); 3329 } 3330 3331 /* 3332 * Fetch the IOCB command type and call the correct completion 3333 * routine. Solicited and Unsolicited IOCBs on the ELS ring 3334 * get freed back to the lpfc_iocb_list by the discovery 3335 * kernel thread. 3336 */ 3337 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; 3338 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); 3339 switch (type) { 3340 case LPFC_SOL_IOCB: 3341 spin_unlock_irqrestore(&phba->hbalock, iflag); 3342 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); 3343 spin_lock_irqsave(&phba->hbalock, iflag); 3344 break; 3345 3346 case LPFC_UNSOL_IOCB: 3347 spin_unlock_irqrestore(&phba->hbalock, iflag); 3348 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); 3349 spin_lock_irqsave(&phba->hbalock, iflag); 3350 if (!rc) 3351 free_saveq = 0; 3352 break; 3353 3354 case LPFC_ABORT_IOCB: 3355 cmdiocbp = NULL; 3356 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) 3357 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, 3358 saveq); 3359 if (cmdiocbp) { 3360 /* Call the specified completion routine */ 3361 if (cmdiocbp->iocb_cmpl) { 3362 spin_unlock_irqrestore(&phba->hbalock, 3363 iflag); 3364 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, 3365 saveq); 3366 spin_lock_irqsave(&phba->hbalock, 3367 iflag); 3368 } else 3369 __lpfc_sli_release_iocbq(phba, 3370 cmdiocbp); 3371 } 3372 break; 3373 3374 case LPFC_UNKNOWN_IOCB: 3375 if (irsp->ulpCommand == CMD_ADAPTER_MSG) { 3376 char adaptermsg[LPFC_MAX_ADPTMSG]; 3377 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); 3378 memcpy(&adaptermsg[0], (uint8_t *)irsp, 3379 MAX_MSG_DATA); 3380 dev_warn(&((phba->pcidev)->dev), 3381 "lpfc%d: %s\n", 3382 phba->brd_no, adaptermsg); 3383 } else { 3384 /* Unknown IOCB command */ 3385 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3386 "0335 Unknown IOCB " 3387 "command Data: x%x " 3388 "x%x x%x x%x\n", 3389 irsp->ulpCommand, 3390 irsp->ulpStatus, 3391 irsp->ulpIoTag, 3392 irsp->ulpContext); 3393 } 3394 break; 3395 } 3396 3397 if (free_saveq) { 3398 list_for_each_entry_safe(rspiocbp, next_iocb, 3399 &saveq->list, list) { 3400 list_del_init(&rspiocbp->list); 3401 __lpfc_sli_release_iocbq(phba, rspiocbp); 3402 } 3403 __lpfc_sli_release_iocbq(phba, saveq); 3404 } 3405 rspiocbp = NULL; 3406 } 3407 spin_unlock_irqrestore(&phba->hbalock, iflag); 3408 return rspiocbp; 3409 } 3410 3411 /** 3412 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs 3413 * @phba: Pointer to HBA context object. 3414 * @pring: Pointer to driver SLI ring object. 3415 * @mask: Host attention register mask for this ring. 3416 * 3417 * This routine wraps the actual slow_ring event process routine from the 3418 * API jump table function pointer from the lpfc_hba struct. 3419 **/ 3420 void 3421 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, 3422 struct lpfc_sli_ring *pring, uint32_t mask) 3423 { 3424 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); 3425 } 3426 3427 /** 3428 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings 3429 * @phba: Pointer to HBA context object. 3430 * @pring: Pointer to driver SLI ring object. 3431 * @mask: Host attention register mask for this ring. 3432 * 3433 * This function is called from the worker thread when there is a ring event 3434 * for non-fcp rings. The caller does not hold any lock. The function will 3435 * remove each response iocb in the response ring and calls the handle 3436 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3437 **/ 3438 static void 3439 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, 3440 struct lpfc_sli_ring *pring, uint32_t mask) 3441 { 3442 struct lpfc_pgp *pgp; 3443 IOCB_t *entry; 3444 IOCB_t *irsp = NULL; 3445 struct lpfc_iocbq *rspiocbp = NULL; 3446 uint32_t portRspPut, portRspMax; 3447 unsigned long iflag; 3448 uint32_t status; 3449 3450 pgp = &phba->port_gp[pring->ringno]; 3451 spin_lock_irqsave(&phba->hbalock, iflag); 3452 pring->stats.iocb_event++; 3453 3454 /* 3455 * The next available response entry should never exceed the maximum 3456 * entries. If it does, treat it as an adapter hardware error. 3457 */ 3458 portRspMax = pring->sli.sli3.numRiocb; 3459 portRspPut = le32_to_cpu(pgp->rspPutInx); 3460 if (portRspPut >= portRspMax) { 3461 /* 3462 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than 3463 * rsp ring <portRspMax> 3464 */ 3465 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 3466 "0303 Ring %d handler: portRspPut %d " 3467 "is bigger than rsp ring %d\n", 3468 pring->ringno, portRspPut, portRspMax); 3469 3470 phba->link_state = LPFC_HBA_ERROR; 3471 spin_unlock_irqrestore(&phba->hbalock, iflag); 3472 3473 phba->work_hs = HS_FFER3; 3474 lpfc_handle_eratt(phba); 3475 3476 return; 3477 } 3478 3479 rmb(); 3480 while (pring->sli.sli3.rspidx != portRspPut) { 3481 /* 3482 * Build a completion list and call the appropriate handler. 3483 * The process is to get the next available response iocb, get 3484 * a free iocb from the list, copy the response data into the 3485 * free iocb, insert to the continuation list, and update the 3486 * next response index to slim. This process makes response 3487 * iocb's in the ring available to DMA as fast as possible but 3488 * pays a penalty for a copy operation. Since the iocb is 3489 * only 32 bytes, this penalty is considered small relative to 3490 * the PCI reads for register values and a slim write. When 3491 * the ulpLe field is set, the entire Command has been 3492 * received. 3493 */ 3494 entry = lpfc_resp_iocb(phba, pring); 3495 3496 phba->last_completion_time = jiffies; 3497 rspiocbp = __lpfc_sli_get_iocbq(phba); 3498 if (rspiocbp == NULL) { 3499 printk(KERN_ERR "%s: out of buffers! Failing " 3500 "completion.\n", __func__); 3501 break; 3502 } 3503 3504 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, 3505 phba->iocb_rsp_size); 3506 irsp = &rspiocbp->iocb; 3507 3508 if (++pring->sli.sli3.rspidx >= portRspMax) 3509 pring->sli.sli3.rspidx = 0; 3510 3511 if (pring->ringno == LPFC_ELS_RING) { 3512 lpfc_debugfs_slow_ring_trc(phba, 3513 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", 3514 *(((uint32_t *) irsp) + 4), 3515 *(((uint32_t *) irsp) + 6), 3516 *(((uint32_t *) irsp) + 7)); 3517 } 3518 3519 writel(pring->sli.sli3.rspidx, 3520 &phba->host_gp[pring->ringno].rspGetInx); 3521 3522 spin_unlock_irqrestore(&phba->hbalock, iflag); 3523 /* Handle the response IOCB */ 3524 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); 3525 spin_lock_irqsave(&phba->hbalock, iflag); 3526 3527 /* 3528 * If the port response put pointer has not been updated, sync 3529 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port 3530 * response put pointer. 3531 */ 3532 if (pring->sli.sli3.rspidx == portRspPut) { 3533 portRspPut = le32_to_cpu(pgp->rspPutInx); 3534 } 3535 } /* while (pring->sli.sli3.rspidx != portRspPut) */ 3536 3537 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { 3538 /* At least one response entry has been freed */ 3539 pring->stats.iocb_rsp_full++; 3540 /* SET RxRE_RSP in Chip Att register */ 3541 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); 3542 writel(status, phba->CAregaddr); 3543 readl(phba->CAregaddr); /* flush */ 3544 } 3545 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { 3546 pring->flag &= ~LPFC_CALL_RING_AVAILABLE; 3547 pring->stats.iocb_cmd_empty++; 3548 3549 /* Force update of the local copy of cmdGetInx */ 3550 pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); 3551 lpfc_sli_resume_iocb(phba, pring); 3552 3553 if ((pring->lpfc_sli_cmd_available)) 3554 (pring->lpfc_sli_cmd_available) (phba, pring); 3555 3556 } 3557 3558 spin_unlock_irqrestore(&phba->hbalock, iflag); 3559 return; 3560 } 3561 3562 /** 3563 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events 3564 * @phba: Pointer to HBA context object. 3565 * @pring: Pointer to driver SLI ring object. 3566 * @mask: Host attention register mask for this ring. 3567 * 3568 * This function is called from the worker thread when there is a pending 3569 * ELS response iocb on the driver internal slow-path response iocb worker 3570 * queue. The caller does not hold any lock. The function will remove each 3571 * response iocb from the response worker queue and calls the handle 3572 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. 3573 **/ 3574 static void 3575 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, 3576 struct lpfc_sli_ring *pring, uint32_t mask) 3577 { 3578 struct lpfc_iocbq *irspiocbq; 3579 struct hbq_dmabuf *dmabuf; 3580 struct lpfc_cq_event *cq_event; 3581 unsigned long iflag; 3582 3583 spin_lock_irqsave(&phba->hbalock, iflag); 3584 phba->hba_flag &= ~HBA_SP_QUEUE_EVT; 3585 spin_unlock_irqrestore(&phba->hbalock, iflag); 3586 while (!list_empty(&phba->sli4_hba.sp_queue_event)) { 3587 /* Get the response iocb from the head of work queue */ 3588 spin_lock_irqsave(&phba->hbalock, iflag); 3589 list_remove_head(&phba->sli4_hba.sp_queue_event, 3590 cq_event, struct lpfc_cq_event, list); 3591 spin_unlock_irqrestore(&phba->hbalock, iflag); 3592 3593 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { 3594 case CQE_CODE_COMPL_WQE: 3595 irspiocbq = container_of(cq_event, struct lpfc_iocbq, 3596 cq_event); 3597 /* Translate ELS WCQE to response IOCBQ */ 3598 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, 3599 irspiocbq); 3600 if (irspiocbq) 3601 lpfc_sli_sp_handle_rspiocb(phba, pring, 3602 irspiocbq); 3603 break; 3604 case CQE_CODE_RECEIVE: 3605 case CQE_CODE_RECEIVE_V1: 3606 dmabuf = container_of(cq_event, struct hbq_dmabuf, 3607 cq_event); 3608 lpfc_sli4_handle_received_buffer(phba, dmabuf); 3609 break; 3610 default: 3611 break; 3612 } 3613 } 3614 } 3615 3616 /** 3617 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring 3618 * @phba: Pointer to HBA context object. 3619 * @pring: Pointer to driver SLI ring object. 3620 * 3621 * This function aborts all iocbs in the given ring and frees all the iocb 3622 * objects in txq. This function issues an abort iocb for all the iocb commands 3623 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3624 * the return of this function. The caller is not required to hold any locks. 3625 **/ 3626 void 3627 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3628 { 3629 LIST_HEAD(completions); 3630 struct lpfc_iocbq *iocb, *next_iocb; 3631 3632 if (pring->ringno == LPFC_ELS_RING) { 3633 lpfc_fabric_abort_hba(phba); 3634 } 3635 3636 /* Error everything on txq and txcmplq 3637 * First do the txq. 3638 */ 3639 if (phba->sli_rev >= LPFC_SLI_REV4) { 3640 spin_lock_irq(&pring->ring_lock); 3641 list_splice_init(&pring->txq, &completions); 3642 pring->txq_cnt = 0; 3643 spin_unlock_irq(&pring->ring_lock); 3644 3645 spin_lock_irq(&phba->hbalock); 3646 /* Next issue ABTS for everything on the txcmplq */ 3647 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3648 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3649 spin_unlock_irq(&phba->hbalock); 3650 } else { 3651 spin_lock_irq(&phba->hbalock); 3652 list_splice_init(&pring->txq, &completions); 3653 pring->txq_cnt = 0; 3654 3655 /* Next issue ABTS for everything on the txcmplq */ 3656 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3657 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 3658 spin_unlock_irq(&phba->hbalock); 3659 } 3660 3661 /* Cancel all the IOCBs from the completions list */ 3662 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 3663 IOERR_SLI_ABORTED); 3664 } 3665 3666 /** 3667 * lpfc_sli_abort_wqe_ring - Abort all iocbs in the ring 3668 * @phba: Pointer to HBA context object. 3669 * @pring: Pointer to driver SLI ring object. 3670 * 3671 * This function aborts all iocbs in the given ring and frees all the iocb 3672 * objects in txq. This function issues an abort iocb for all the iocb commands 3673 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3674 * the return of this function. The caller is not required to hold any locks. 3675 **/ 3676 void 3677 lpfc_sli_abort_wqe_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) 3678 { 3679 LIST_HEAD(completions); 3680 struct lpfc_iocbq *iocb, *next_iocb; 3681 3682 if (pring->ringno == LPFC_ELS_RING) 3683 lpfc_fabric_abort_hba(phba); 3684 3685 spin_lock_irq(&phba->hbalock); 3686 /* Next issue ABTS for everything on the txcmplq */ 3687 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) 3688 lpfc_sli4_abort_nvme_io(phba, pring, iocb); 3689 spin_unlock_irq(&phba->hbalock); 3690 } 3691 3692 3693 /** 3694 * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings 3695 * @phba: Pointer to HBA context object. 3696 * @pring: Pointer to driver SLI ring object. 3697 * 3698 * This function aborts all iocbs in FCP rings and frees all the iocb 3699 * objects in txq. This function issues an abort iocb for all the iocb commands 3700 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before 3701 * the return of this function. The caller is not required to hold any locks. 3702 **/ 3703 void 3704 lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) 3705 { 3706 struct lpfc_sli *psli = &phba->sli; 3707 struct lpfc_sli_ring *pring; 3708 uint32_t i; 3709 3710 /* Look on all the FCP Rings for the iotag */ 3711 if (phba->sli_rev >= LPFC_SLI_REV4) { 3712 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3713 pring = phba->sli4_hba.fcp_wq[i]->pring; 3714 lpfc_sli_abort_iocb_ring(phba, pring); 3715 } 3716 } else { 3717 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3718 lpfc_sli_abort_iocb_ring(phba, pring); 3719 } 3720 } 3721 3722 /** 3723 * lpfc_sli_abort_nvme_rings - Abort all wqes in all NVME rings 3724 * @phba: Pointer to HBA context object. 3725 * 3726 * This function aborts all wqes in NVME rings. This function issues an 3727 * abort wqe for all the outstanding IO commands in txcmplq. The iocbs in 3728 * the txcmplq is not guaranteed to complete before the return of this 3729 * function. The caller is not required to hold any locks. 3730 **/ 3731 void 3732 lpfc_sli_abort_nvme_rings(struct lpfc_hba *phba) 3733 { 3734 struct lpfc_sli_ring *pring; 3735 uint32_t i; 3736 3737 if (phba->sli_rev < LPFC_SLI_REV4) 3738 return; 3739 3740 /* Abort all IO on each NVME ring. */ 3741 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3742 pring = phba->sli4_hba.nvme_wq[i]->pring; 3743 lpfc_sli_abort_wqe_ring(phba, pring); 3744 } 3745 } 3746 3747 3748 /** 3749 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring 3750 * @phba: Pointer to HBA context object. 3751 * 3752 * This function flushes all iocbs in the fcp ring and frees all the iocb 3753 * objects in txq and txcmplq. This function will not issue abort iocbs 3754 * for all the iocb commands in txcmplq, they will just be returned with 3755 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3756 * slot has been permanently disabled. 3757 **/ 3758 void 3759 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba) 3760 { 3761 LIST_HEAD(txq); 3762 LIST_HEAD(txcmplq); 3763 struct lpfc_sli *psli = &phba->sli; 3764 struct lpfc_sli_ring *pring; 3765 uint32_t i; 3766 3767 spin_lock_irq(&phba->hbalock); 3768 /* Indicate the I/O queues are flushed */ 3769 phba->hba_flag |= HBA_FCP_IOQ_FLUSH; 3770 spin_unlock_irq(&phba->hbalock); 3771 3772 /* Look on all the FCP Rings for the iotag */ 3773 if (phba->sli_rev >= LPFC_SLI_REV4) { 3774 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 3775 pring = phba->sli4_hba.fcp_wq[i]->pring; 3776 3777 spin_lock_irq(&pring->ring_lock); 3778 /* Retrieve everything on txq */ 3779 list_splice_init(&pring->txq, &txq); 3780 /* Retrieve everything on the txcmplq */ 3781 list_splice_init(&pring->txcmplq, &txcmplq); 3782 pring->txq_cnt = 0; 3783 pring->txcmplq_cnt = 0; 3784 spin_unlock_irq(&pring->ring_lock); 3785 3786 /* Flush the txq */ 3787 lpfc_sli_cancel_iocbs(phba, &txq, 3788 IOSTAT_LOCAL_REJECT, 3789 IOERR_SLI_DOWN); 3790 /* Flush the txcmpq */ 3791 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3792 IOSTAT_LOCAL_REJECT, 3793 IOERR_SLI_DOWN); 3794 } 3795 } else { 3796 pring = &psli->sli3_ring[LPFC_FCP_RING]; 3797 3798 spin_lock_irq(&phba->hbalock); 3799 /* Retrieve everything on txq */ 3800 list_splice_init(&pring->txq, &txq); 3801 /* Retrieve everything on the txcmplq */ 3802 list_splice_init(&pring->txcmplq, &txcmplq); 3803 pring->txq_cnt = 0; 3804 pring->txcmplq_cnt = 0; 3805 spin_unlock_irq(&phba->hbalock); 3806 3807 /* Flush the txq */ 3808 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, 3809 IOERR_SLI_DOWN); 3810 /* Flush the txcmpq */ 3811 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, 3812 IOERR_SLI_DOWN); 3813 } 3814 } 3815 3816 /** 3817 * lpfc_sli_flush_nvme_rings - flush all wqes in the nvme rings 3818 * @phba: Pointer to HBA context object. 3819 * 3820 * This function flushes all wqes in the nvme rings and frees all resources 3821 * in the txcmplq. This function does not issue abort wqes for the IO 3822 * commands in txcmplq, they will just be returned with 3823 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI 3824 * slot has been permanently disabled. 3825 **/ 3826 void 3827 lpfc_sli_flush_nvme_rings(struct lpfc_hba *phba) 3828 { 3829 LIST_HEAD(txcmplq); 3830 struct lpfc_sli_ring *pring; 3831 uint32_t i; 3832 3833 if (phba->sli_rev < LPFC_SLI_REV4) 3834 return; 3835 3836 /* Hint to other driver operations that a flush is in progress. */ 3837 spin_lock_irq(&phba->hbalock); 3838 phba->hba_flag |= HBA_NVME_IOQ_FLUSH; 3839 spin_unlock_irq(&phba->hbalock); 3840 3841 /* Cycle through all NVME rings and complete each IO with 3842 * a local driver reason code. This is a flush so no 3843 * abort exchange to FW. 3844 */ 3845 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 3846 pring = phba->sli4_hba.nvme_wq[i]->pring; 3847 3848 /* Retrieve everything on the txcmplq */ 3849 spin_lock_irq(&pring->ring_lock); 3850 list_splice_init(&pring->txcmplq, &txcmplq); 3851 pring->txcmplq_cnt = 0; 3852 spin_unlock_irq(&pring->ring_lock); 3853 3854 /* Flush the txcmpq &&&PAE */ 3855 lpfc_sli_cancel_iocbs(phba, &txcmplq, 3856 IOSTAT_LOCAL_REJECT, 3857 IOERR_SLI_DOWN); 3858 } 3859 } 3860 3861 /** 3862 * lpfc_sli_brdready_s3 - Check for sli3 host ready status 3863 * @phba: Pointer to HBA context object. 3864 * @mask: Bit mask to be checked. 3865 * 3866 * This function reads the host status register and compares 3867 * with the provided bit mask to check if HBA completed 3868 * the restart. This function will wait in a loop for the 3869 * HBA to complete restart. If the HBA does not restart within 3870 * 15 iterations, the function will reset the HBA again. The 3871 * function returns 1 when HBA fail to restart otherwise returns 3872 * zero. 3873 **/ 3874 static int 3875 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) 3876 { 3877 uint32_t status; 3878 int i = 0; 3879 int retval = 0; 3880 3881 /* Read the HBA Host Status Register */ 3882 if (lpfc_readl(phba->HSregaddr, &status)) 3883 return 1; 3884 3885 /* 3886 * Check status register every 100ms for 5 retries, then every 3887 * 500ms for 5, then every 2.5 sec for 5, then reset board and 3888 * every 2.5 sec for 4. 3889 * Break our of the loop if errors occurred during init. 3890 */ 3891 while (((status & mask) != mask) && 3892 !(status & HS_FFERM) && 3893 i++ < 20) { 3894 3895 if (i <= 5) 3896 msleep(10); 3897 else if (i <= 10) 3898 msleep(500); 3899 else 3900 msleep(2500); 3901 3902 if (i == 15) { 3903 /* Do post */ 3904 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3905 lpfc_sli_brdrestart(phba); 3906 } 3907 /* Read the HBA Host Status Register */ 3908 if (lpfc_readl(phba->HSregaddr, &status)) { 3909 retval = 1; 3910 break; 3911 } 3912 } 3913 3914 /* Check to see if any errors occurred during init */ 3915 if ((status & HS_FFERM) || (i >= 20)) { 3916 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 3917 "2751 Adapter failed to restart, " 3918 "status reg x%x, FW Data: A8 x%x AC x%x\n", 3919 status, 3920 readl(phba->MBslimaddr + 0xa8), 3921 readl(phba->MBslimaddr + 0xac)); 3922 phba->link_state = LPFC_HBA_ERROR; 3923 retval = 1; 3924 } 3925 3926 return retval; 3927 } 3928 3929 /** 3930 * lpfc_sli_brdready_s4 - Check for sli4 host ready status 3931 * @phba: Pointer to HBA context object. 3932 * @mask: Bit mask to be checked. 3933 * 3934 * This function checks the host status register to check if HBA is 3935 * ready. This function will wait in a loop for the HBA to be ready 3936 * If the HBA is not ready , the function will will reset the HBA PCI 3937 * function again. The function returns 1 when HBA fail to be ready 3938 * otherwise returns zero. 3939 **/ 3940 static int 3941 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) 3942 { 3943 uint32_t status; 3944 int retval = 0; 3945 3946 /* Read the HBA Host Status Register */ 3947 status = lpfc_sli4_post_status_check(phba); 3948 3949 if (status) { 3950 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 3951 lpfc_sli_brdrestart(phba); 3952 status = lpfc_sli4_post_status_check(phba); 3953 } 3954 3955 /* Check to see if any errors occurred during init */ 3956 if (status) { 3957 phba->link_state = LPFC_HBA_ERROR; 3958 retval = 1; 3959 } else 3960 phba->sli4_hba.intr_enable = 0; 3961 3962 return retval; 3963 } 3964 3965 /** 3966 * lpfc_sli_brdready - Wrapper func for checking the hba readyness 3967 * @phba: Pointer to HBA context object. 3968 * @mask: Bit mask to be checked. 3969 * 3970 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine 3971 * from the API jump table function pointer from the lpfc_hba struct. 3972 **/ 3973 int 3974 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) 3975 { 3976 return phba->lpfc_sli_brdready(phba, mask); 3977 } 3978 3979 #define BARRIER_TEST_PATTERN (0xdeadbeef) 3980 3981 /** 3982 * lpfc_reset_barrier - Make HBA ready for HBA reset 3983 * @phba: Pointer to HBA context object. 3984 * 3985 * This function is called before resetting an HBA. This function is called 3986 * with hbalock held and requests HBA to quiesce DMAs before a reset. 3987 **/ 3988 void lpfc_reset_barrier(struct lpfc_hba *phba) 3989 { 3990 uint32_t __iomem *resp_buf; 3991 uint32_t __iomem *mbox_buf; 3992 volatile uint32_t mbox; 3993 uint32_t hc_copy, ha_copy, resp_data; 3994 int i; 3995 uint8_t hdrtype; 3996 3997 lockdep_assert_held(&phba->hbalock); 3998 3999 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); 4000 if (hdrtype != 0x80 || 4001 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && 4002 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) 4003 return; 4004 4005 /* 4006 * Tell the other part of the chip to suspend temporarily all 4007 * its DMA activity. 4008 */ 4009 resp_buf = phba->MBslimaddr; 4010 4011 /* Disable the error attention */ 4012 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 4013 return; 4014 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); 4015 readl(phba->HCregaddr); /* flush */ 4016 phba->link_flag |= LS_IGNORE_ERATT; 4017 4018 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4019 return; 4020 if (ha_copy & HA_ERATT) { 4021 /* Clear Chip error bit */ 4022 writel(HA_ERATT, phba->HAregaddr); 4023 phba->pport->stopped = 1; 4024 } 4025 4026 mbox = 0; 4027 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; 4028 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; 4029 4030 writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); 4031 mbox_buf = phba->MBslimaddr; 4032 writel(mbox, mbox_buf); 4033 4034 for (i = 0; i < 50; i++) { 4035 if (lpfc_readl((resp_buf + 1), &resp_data)) 4036 return; 4037 if (resp_data != ~(BARRIER_TEST_PATTERN)) 4038 mdelay(1); 4039 else 4040 break; 4041 } 4042 resp_data = 0; 4043 if (lpfc_readl((resp_buf + 1), &resp_data)) 4044 return; 4045 if (resp_data != ~(BARRIER_TEST_PATTERN)) { 4046 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || 4047 phba->pport->stopped) 4048 goto restore_hc; 4049 else 4050 goto clear_errat; 4051 } 4052 4053 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; 4054 resp_data = 0; 4055 for (i = 0; i < 500; i++) { 4056 if (lpfc_readl(resp_buf, &resp_data)) 4057 return; 4058 if (resp_data != mbox) 4059 mdelay(1); 4060 else 4061 break; 4062 } 4063 4064 clear_errat: 4065 4066 while (++i < 500) { 4067 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4068 return; 4069 if (!(ha_copy & HA_ERATT)) 4070 mdelay(1); 4071 else 4072 break; 4073 } 4074 4075 if (readl(phba->HAregaddr) & HA_ERATT) { 4076 writel(HA_ERATT, phba->HAregaddr); 4077 phba->pport->stopped = 1; 4078 } 4079 4080 restore_hc: 4081 phba->link_flag &= ~LS_IGNORE_ERATT; 4082 writel(hc_copy, phba->HCregaddr); 4083 readl(phba->HCregaddr); /* flush */ 4084 } 4085 4086 /** 4087 * lpfc_sli_brdkill - Issue a kill_board mailbox command 4088 * @phba: Pointer to HBA context object. 4089 * 4090 * This function issues a kill_board mailbox command and waits for 4091 * the error attention interrupt. This function is called for stopping 4092 * the firmware processing. The caller is not required to hold any 4093 * locks. This function calls lpfc_hba_down_post function to free 4094 * any pending commands after the kill. The function will return 1 when it 4095 * fails to kill the board else will return 0. 4096 **/ 4097 int 4098 lpfc_sli_brdkill(struct lpfc_hba *phba) 4099 { 4100 struct lpfc_sli *psli; 4101 LPFC_MBOXQ_t *pmb; 4102 uint32_t status; 4103 uint32_t ha_copy; 4104 int retval; 4105 int i = 0; 4106 4107 psli = &phba->sli; 4108 4109 /* Kill HBA */ 4110 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4111 "0329 Kill HBA Data: x%x x%x\n", 4112 phba->pport->port_state, psli->sli_flag); 4113 4114 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4115 if (!pmb) 4116 return 1; 4117 4118 /* Disable the error attention */ 4119 spin_lock_irq(&phba->hbalock); 4120 if (lpfc_readl(phba->HCregaddr, &status)) { 4121 spin_unlock_irq(&phba->hbalock); 4122 mempool_free(pmb, phba->mbox_mem_pool); 4123 return 1; 4124 } 4125 status &= ~HC_ERINT_ENA; 4126 writel(status, phba->HCregaddr); 4127 readl(phba->HCregaddr); /* flush */ 4128 phba->link_flag |= LS_IGNORE_ERATT; 4129 spin_unlock_irq(&phba->hbalock); 4130 4131 lpfc_kill_board(phba, pmb); 4132 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 4133 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 4134 4135 if (retval != MBX_SUCCESS) { 4136 if (retval != MBX_BUSY) 4137 mempool_free(pmb, phba->mbox_mem_pool); 4138 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 4139 "2752 KILL_BOARD command failed retval %d\n", 4140 retval); 4141 spin_lock_irq(&phba->hbalock); 4142 phba->link_flag &= ~LS_IGNORE_ERATT; 4143 spin_unlock_irq(&phba->hbalock); 4144 return 1; 4145 } 4146 4147 spin_lock_irq(&phba->hbalock); 4148 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 4149 spin_unlock_irq(&phba->hbalock); 4150 4151 mempool_free(pmb, phba->mbox_mem_pool); 4152 4153 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error 4154 * attention every 100ms for 3 seconds. If we don't get ERATT after 4155 * 3 seconds we still set HBA_ERROR state because the status of the 4156 * board is now undefined. 4157 */ 4158 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4159 return 1; 4160 while ((i++ < 30) && !(ha_copy & HA_ERATT)) { 4161 mdelay(100); 4162 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 4163 return 1; 4164 } 4165 4166 del_timer_sync(&psli->mbox_tmo); 4167 if (ha_copy & HA_ERATT) { 4168 writel(HA_ERATT, phba->HAregaddr); 4169 phba->pport->stopped = 1; 4170 } 4171 spin_lock_irq(&phba->hbalock); 4172 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4173 psli->mbox_active = NULL; 4174 phba->link_flag &= ~LS_IGNORE_ERATT; 4175 spin_unlock_irq(&phba->hbalock); 4176 4177 lpfc_hba_down_post(phba); 4178 phba->link_state = LPFC_HBA_ERROR; 4179 4180 return ha_copy & HA_ERATT ? 0 : 1; 4181 } 4182 4183 /** 4184 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA 4185 * @phba: Pointer to HBA context object. 4186 * 4187 * This function resets the HBA by writing HC_INITFF to the control 4188 * register. After the HBA resets, this function resets all the iocb ring 4189 * indices. This function disables PCI layer parity checking during 4190 * the reset. 4191 * This function returns 0 always. 4192 * The caller is not required to hold any locks. 4193 **/ 4194 int 4195 lpfc_sli_brdreset(struct lpfc_hba *phba) 4196 { 4197 struct lpfc_sli *psli; 4198 struct lpfc_sli_ring *pring; 4199 uint16_t cfg_value; 4200 int i; 4201 4202 psli = &phba->sli; 4203 4204 /* Reset HBA */ 4205 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4206 "0325 Reset HBA Data: x%x x%x\n", 4207 phba->pport->port_state, psli->sli_flag); 4208 4209 /* perform board reset */ 4210 phba->fc_eventTag = 0; 4211 phba->link_events = 0; 4212 phba->pport->fc_myDID = 0; 4213 phba->pport->fc_prevDID = 0; 4214 4215 /* Turn off parity checking and serr during the physical reset */ 4216 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4217 pci_write_config_word(phba->pcidev, PCI_COMMAND, 4218 (cfg_value & 4219 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4220 4221 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); 4222 4223 /* Now toggle INITFF bit in the Host Control Register */ 4224 writel(HC_INITFF, phba->HCregaddr); 4225 mdelay(1); 4226 readl(phba->HCregaddr); /* flush */ 4227 writel(0, phba->HCregaddr); 4228 readl(phba->HCregaddr); /* flush */ 4229 4230 /* Restore PCI cmd register */ 4231 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4232 4233 /* Initialize relevant SLI info */ 4234 for (i = 0; i < psli->num_rings; i++) { 4235 pring = &psli->sli3_ring[i]; 4236 pring->flag = 0; 4237 pring->sli.sli3.rspidx = 0; 4238 pring->sli.sli3.next_cmdidx = 0; 4239 pring->sli.sli3.local_getidx = 0; 4240 pring->sli.sli3.cmdidx = 0; 4241 pring->missbufcnt = 0; 4242 } 4243 4244 phba->link_state = LPFC_WARM_START; 4245 return 0; 4246 } 4247 4248 /** 4249 * lpfc_sli4_brdreset - Reset a sli-4 HBA 4250 * @phba: Pointer to HBA context object. 4251 * 4252 * This function resets a SLI4 HBA. This function disables PCI layer parity 4253 * checking during resets the device. The caller is not required to hold 4254 * any locks. 4255 * 4256 * This function returns 0 always. 4257 **/ 4258 int 4259 lpfc_sli4_brdreset(struct lpfc_hba *phba) 4260 { 4261 struct lpfc_sli *psli = &phba->sli; 4262 uint16_t cfg_value; 4263 int rc = 0; 4264 4265 /* Reset HBA */ 4266 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4267 "0295 Reset HBA Data: x%x x%x x%x\n", 4268 phba->pport->port_state, psli->sli_flag, 4269 phba->hba_flag); 4270 4271 /* perform board reset */ 4272 phba->fc_eventTag = 0; 4273 phba->link_events = 0; 4274 phba->pport->fc_myDID = 0; 4275 phba->pport->fc_prevDID = 0; 4276 4277 spin_lock_irq(&phba->hbalock); 4278 psli->sli_flag &= ~(LPFC_PROCESS_LA); 4279 phba->fcf.fcf_flag = 0; 4280 spin_unlock_irq(&phba->hbalock); 4281 4282 /* SLI4 INTF 2: if FW dump is being taken skip INIT_PORT */ 4283 if (phba->hba_flag & HBA_FW_DUMP_OP) { 4284 phba->hba_flag &= ~HBA_FW_DUMP_OP; 4285 return rc; 4286 } 4287 4288 /* Now physically reset the device */ 4289 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4290 "0389 Performing PCI function reset!\n"); 4291 4292 /* Turn off parity checking and serr during the physical reset */ 4293 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value); 4294 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & 4295 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); 4296 4297 /* Perform FCoE PCI function reset before freeing queue memory */ 4298 rc = lpfc_pci_function_reset(phba); 4299 lpfc_sli4_queue_destroy(phba); 4300 4301 /* Restore PCI cmd register */ 4302 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); 4303 4304 return rc; 4305 } 4306 4307 /** 4308 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba 4309 * @phba: Pointer to HBA context object. 4310 * 4311 * This function is called in the SLI initialization code path to 4312 * restart the HBA. The caller is not required to hold any lock. 4313 * This function writes MBX_RESTART mailbox command to the SLIM and 4314 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post 4315 * function to free any pending commands. The function enables 4316 * POST only during the first initialization. The function returns zero. 4317 * The function does not guarantee completion of MBX_RESTART mailbox 4318 * command before the return of this function. 4319 **/ 4320 static int 4321 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) 4322 { 4323 MAILBOX_t *mb; 4324 struct lpfc_sli *psli; 4325 volatile uint32_t word0; 4326 void __iomem *to_slim; 4327 uint32_t hba_aer_enabled; 4328 4329 spin_lock_irq(&phba->hbalock); 4330 4331 /* Take PCIe device Advanced Error Reporting (AER) state */ 4332 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4333 4334 psli = &phba->sli; 4335 4336 /* Restart HBA */ 4337 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4338 "0337 Restart HBA Data: x%x x%x\n", 4339 phba->pport->port_state, psli->sli_flag); 4340 4341 word0 = 0; 4342 mb = (MAILBOX_t *) &word0; 4343 mb->mbxCommand = MBX_RESTART; 4344 mb->mbxHc = 1; 4345 4346 lpfc_reset_barrier(phba); 4347 4348 to_slim = phba->MBslimaddr; 4349 writel(*(uint32_t *) mb, to_slim); 4350 readl(to_slim); /* flush */ 4351 4352 /* Only skip post after fc_ffinit is completed */ 4353 if (phba->pport->port_state) 4354 word0 = 1; /* This is really setting up word1 */ 4355 else 4356 word0 = 0; /* This is really setting up word1 */ 4357 to_slim = phba->MBslimaddr + sizeof (uint32_t); 4358 writel(*(uint32_t *) mb, to_slim); 4359 readl(to_slim); /* flush */ 4360 4361 lpfc_sli_brdreset(phba); 4362 phba->pport->stopped = 0; 4363 phba->link_state = LPFC_INIT_START; 4364 phba->hba_flag = 0; 4365 spin_unlock_irq(&phba->hbalock); 4366 4367 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4368 psli->stats_start = get_seconds(); 4369 4370 /* Give the INITFF and Post time to settle. */ 4371 mdelay(100); 4372 4373 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4374 if (hba_aer_enabled) 4375 pci_disable_pcie_error_reporting(phba->pcidev); 4376 4377 lpfc_hba_down_post(phba); 4378 4379 return 0; 4380 } 4381 4382 /** 4383 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba 4384 * @phba: Pointer to HBA context object. 4385 * 4386 * This function is called in the SLI initialization code path to restart 4387 * a SLI4 HBA. The caller is not required to hold any lock. 4388 * At the end of the function, it calls lpfc_hba_down_post function to 4389 * free any pending commands. 4390 **/ 4391 static int 4392 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) 4393 { 4394 struct lpfc_sli *psli = &phba->sli; 4395 uint32_t hba_aer_enabled; 4396 int rc; 4397 4398 /* Restart HBA */ 4399 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 4400 "0296 Restart HBA Data: x%x x%x\n", 4401 phba->pport->port_state, psli->sli_flag); 4402 4403 /* Take PCIe device Advanced Error Reporting (AER) state */ 4404 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; 4405 4406 rc = lpfc_sli4_brdreset(phba); 4407 4408 spin_lock_irq(&phba->hbalock); 4409 phba->pport->stopped = 0; 4410 phba->link_state = LPFC_INIT_START; 4411 phba->hba_flag = 0; 4412 spin_unlock_irq(&phba->hbalock); 4413 4414 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); 4415 psli->stats_start = get_seconds(); 4416 4417 /* Reset HBA AER if it was enabled, note hba_flag was reset above */ 4418 if (hba_aer_enabled) 4419 pci_disable_pcie_error_reporting(phba->pcidev); 4420 4421 lpfc_hba_down_post(phba); 4422 4423 return rc; 4424 } 4425 4426 /** 4427 * lpfc_sli_brdrestart - Wrapper func for restarting hba 4428 * @phba: Pointer to HBA context object. 4429 * 4430 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the 4431 * API jump table function pointer from the lpfc_hba struct. 4432 **/ 4433 int 4434 lpfc_sli_brdrestart(struct lpfc_hba *phba) 4435 { 4436 return phba->lpfc_sli_brdrestart(phba); 4437 } 4438 4439 /** 4440 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart 4441 * @phba: Pointer to HBA context object. 4442 * 4443 * This function is called after a HBA restart to wait for successful 4444 * restart of the HBA. Successful restart of the HBA is indicated by 4445 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 4446 * iteration, the function will restart the HBA again. The function returns 4447 * zero if HBA successfully restarted else returns negative error code. 4448 **/ 4449 static int 4450 lpfc_sli_chipset_init(struct lpfc_hba *phba) 4451 { 4452 uint32_t status, i = 0; 4453 4454 /* Read the HBA Host Status Register */ 4455 if (lpfc_readl(phba->HSregaddr, &status)) 4456 return -EIO; 4457 4458 /* Check status register to see what current state is */ 4459 i = 0; 4460 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { 4461 4462 /* Check every 10ms for 10 retries, then every 100ms for 90 4463 * retries, then every 1 sec for 50 retires for a total of 4464 * ~60 seconds before reset the board again and check every 4465 * 1 sec for 50 retries. The up to 60 seconds before the 4466 * board ready is required by the Falcon FIPS zeroization 4467 * complete, and any reset the board in between shall cause 4468 * restart of zeroization, further delay the board ready. 4469 */ 4470 if (i++ >= 200) { 4471 /* Adapter failed to init, timeout, status reg 4472 <status> */ 4473 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4474 "0436 Adapter failed to init, " 4475 "timeout, status reg x%x, " 4476 "FW Data: A8 x%x AC x%x\n", status, 4477 readl(phba->MBslimaddr + 0xa8), 4478 readl(phba->MBslimaddr + 0xac)); 4479 phba->link_state = LPFC_HBA_ERROR; 4480 return -ETIMEDOUT; 4481 } 4482 4483 /* Check to see if any errors occurred during init */ 4484 if (status & HS_FFERM) { 4485 /* ERROR: During chipset initialization */ 4486 /* Adapter failed to init, chipset, status reg 4487 <status> */ 4488 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4489 "0437 Adapter failed to init, " 4490 "chipset, status reg x%x, " 4491 "FW Data: A8 x%x AC x%x\n", status, 4492 readl(phba->MBslimaddr + 0xa8), 4493 readl(phba->MBslimaddr + 0xac)); 4494 phba->link_state = LPFC_HBA_ERROR; 4495 return -EIO; 4496 } 4497 4498 if (i <= 10) 4499 msleep(10); 4500 else if (i <= 100) 4501 msleep(100); 4502 else 4503 msleep(1000); 4504 4505 if (i == 150) { 4506 /* Do post */ 4507 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4508 lpfc_sli_brdrestart(phba); 4509 } 4510 /* Read the HBA Host Status Register */ 4511 if (lpfc_readl(phba->HSregaddr, &status)) 4512 return -EIO; 4513 } 4514 4515 /* Check to see if any errors occurred during init */ 4516 if (status & HS_FFERM) { 4517 /* ERROR: During chipset initialization */ 4518 /* Adapter failed to init, chipset, status reg <status> */ 4519 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4520 "0438 Adapter failed to init, chipset, " 4521 "status reg x%x, " 4522 "FW Data: A8 x%x AC x%x\n", status, 4523 readl(phba->MBslimaddr + 0xa8), 4524 readl(phba->MBslimaddr + 0xac)); 4525 phba->link_state = LPFC_HBA_ERROR; 4526 return -EIO; 4527 } 4528 4529 /* Clear all interrupt enable conditions */ 4530 writel(0, phba->HCregaddr); 4531 readl(phba->HCregaddr); /* flush */ 4532 4533 /* setup host attn register */ 4534 writel(0xffffffff, phba->HAregaddr); 4535 readl(phba->HAregaddr); /* flush */ 4536 return 0; 4537 } 4538 4539 /** 4540 * lpfc_sli_hbq_count - Get the number of HBQs to be configured 4541 * 4542 * This function calculates and returns the number of HBQs required to be 4543 * configured. 4544 **/ 4545 int 4546 lpfc_sli_hbq_count(void) 4547 { 4548 return ARRAY_SIZE(lpfc_hbq_defs); 4549 } 4550 4551 /** 4552 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries 4553 * 4554 * This function adds the number of hbq entries in every HBQ to get 4555 * the total number of hbq entries required for the HBA and returns 4556 * the total count. 4557 **/ 4558 static int 4559 lpfc_sli_hbq_entry_count(void) 4560 { 4561 int hbq_count = lpfc_sli_hbq_count(); 4562 int count = 0; 4563 int i; 4564 4565 for (i = 0; i < hbq_count; ++i) 4566 count += lpfc_hbq_defs[i]->entry_count; 4567 return count; 4568 } 4569 4570 /** 4571 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries 4572 * 4573 * This function calculates amount of memory required for all hbq entries 4574 * to be configured and returns the total memory required. 4575 **/ 4576 int 4577 lpfc_sli_hbq_size(void) 4578 { 4579 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); 4580 } 4581 4582 /** 4583 * lpfc_sli_hbq_setup - configure and initialize HBQs 4584 * @phba: Pointer to HBA context object. 4585 * 4586 * This function is called during the SLI initialization to configure 4587 * all the HBQs and post buffers to the HBQ. The caller is not 4588 * required to hold any locks. This function will return zero if successful 4589 * else it will return negative error code. 4590 **/ 4591 static int 4592 lpfc_sli_hbq_setup(struct lpfc_hba *phba) 4593 { 4594 int hbq_count = lpfc_sli_hbq_count(); 4595 LPFC_MBOXQ_t *pmb; 4596 MAILBOX_t *pmbox; 4597 uint32_t hbqno; 4598 uint32_t hbq_entry_index; 4599 4600 /* Get a Mailbox buffer to setup mailbox 4601 * commands for HBA initialization 4602 */ 4603 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4604 4605 if (!pmb) 4606 return -ENOMEM; 4607 4608 pmbox = &pmb->u.mb; 4609 4610 /* Initialize the struct lpfc_sli_hbq structure for each hbq */ 4611 phba->link_state = LPFC_INIT_MBX_CMDS; 4612 phba->hbq_in_use = 1; 4613 4614 hbq_entry_index = 0; 4615 for (hbqno = 0; hbqno < hbq_count; ++hbqno) { 4616 phba->hbqs[hbqno].next_hbqPutIdx = 0; 4617 phba->hbqs[hbqno].hbqPutIdx = 0; 4618 phba->hbqs[hbqno].local_hbqGetIdx = 0; 4619 phba->hbqs[hbqno].entry_count = 4620 lpfc_hbq_defs[hbqno]->entry_count; 4621 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], 4622 hbq_entry_index, pmb); 4623 hbq_entry_index += phba->hbqs[hbqno].entry_count; 4624 4625 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { 4626 /* Adapter failed to init, mbxCmd <cmd> CFG_RING, 4627 mbxStatus <status>, ring <num> */ 4628 4629 lpfc_printf_log(phba, KERN_ERR, 4630 LOG_SLI | LOG_VPORT, 4631 "1805 Adapter failed to init. " 4632 "Data: x%x x%x x%x\n", 4633 pmbox->mbxCommand, 4634 pmbox->mbxStatus, hbqno); 4635 4636 phba->link_state = LPFC_HBA_ERROR; 4637 mempool_free(pmb, phba->mbox_mem_pool); 4638 return -ENXIO; 4639 } 4640 } 4641 phba->hbq_count = hbq_count; 4642 4643 mempool_free(pmb, phba->mbox_mem_pool); 4644 4645 /* Initially populate or replenish the HBQs */ 4646 for (hbqno = 0; hbqno < hbq_count; ++hbqno) 4647 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); 4648 return 0; 4649 } 4650 4651 /** 4652 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA 4653 * @phba: Pointer to HBA context object. 4654 * 4655 * This function is called during the SLI initialization to configure 4656 * all the HBQs and post buffers to the HBQ. The caller is not 4657 * required to hold any locks. This function will return zero if successful 4658 * else it will return negative error code. 4659 **/ 4660 static int 4661 lpfc_sli4_rb_setup(struct lpfc_hba *phba) 4662 { 4663 phba->hbq_in_use = 1; 4664 phba->hbqs[LPFC_ELS_HBQ].entry_count = 4665 lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; 4666 phba->hbq_count = 1; 4667 lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); 4668 /* Initially populate or replenish the HBQs */ 4669 return 0; 4670 } 4671 4672 /** 4673 * lpfc_sli_config_port - Issue config port mailbox command 4674 * @phba: Pointer to HBA context object. 4675 * @sli_mode: sli mode - 2/3 4676 * 4677 * This function is called by the sli initialization code path 4678 * to issue config_port mailbox command. This function restarts the 4679 * HBA firmware and issues a config_port mailbox command to configure 4680 * the SLI interface in the sli mode specified by sli_mode 4681 * variable. The caller is not required to hold any locks. 4682 * The function returns 0 if successful, else returns negative error 4683 * code. 4684 **/ 4685 int 4686 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) 4687 { 4688 LPFC_MBOXQ_t *pmb; 4689 uint32_t resetcount = 0, rc = 0, done = 0; 4690 4691 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4692 if (!pmb) { 4693 phba->link_state = LPFC_HBA_ERROR; 4694 return -ENOMEM; 4695 } 4696 4697 phba->sli_rev = sli_mode; 4698 while (resetcount < 2 && !done) { 4699 spin_lock_irq(&phba->hbalock); 4700 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; 4701 spin_unlock_irq(&phba->hbalock); 4702 phba->pport->port_state = LPFC_VPORT_UNKNOWN; 4703 lpfc_sli_brdrestart(phba); 4704 rc = lpfc_sli_chipset_init(phba); 4705 if (rc) 4706 break; 4707 4708 spin_lock_irq(&phba->hbalock); 4709 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 4710 spin_unlock_irq(&phba->hbalock); 4711 resetcount++; 4712 4713 /* Call pre CONFIG_PORT mailbox command initialization. A 4714 * value of 0 means the call was successful. Any other 4715 * nonzero value is a failure, but if ERESTART is returned, 4716 * the driver may reset the HBA and try again. 4717 */ 4718 rc = lpfc_config_port_prep(phba); 4719 if (rc == -ERESTART) { 4720 phba->link_state = LPFC_LINK_UNKNOWN; 4721 continue; 4722 } else if (rc) 4723 break; 4724 4725 phba->link_state = LPFC_INIT_MBX_CMDS; 4726 lpfc_config_port(phba, pmb); 4727 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 4728 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | 4729 LPFC_SLI3_HBQ_ENABLED | 4730 LPFC_SLI3_CRP_ENABLED | 4731 LPFC_SLI3_BG_ENABLED | 4732 LPFC_SLI3_DSS_ENABLED); 4733 if (rc != MBX_SUCCESS) { 4734 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4735 "0442 Adapter failed to init, mbxCmd x%x " 4736 "CONFIG_PORT, mbxStatus x%x Data: x%x\n", 4737 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); 4738 spin_lock_irq(&phba->hbalock); 4739 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; 4740 spin_unlock_irq(&phba->hbalock); 4741 rc = -ENXIO; 4742 } else { 4743 /* Allow asynchronous mailbox command to go through */ 4744 spin_lock_irq(&phba->hbalock); 4745 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 4746 spin_unlock_irq(&phba->hbalock); 4747 done = 1; 4748 4749 if ((pmb->u.mb.un.varCfgPort.casabt == 1) && 4750 (pmb->u.mb.un.varCfgPort.gasabt == 0)) 4751 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 4752 "3110 Port did not grant ASABT\n"); 4753 } 4754 } 4755 if (!done) { 4756 rc = -EINVAL; 4757 goto do_prep_failed; 4758 } 4759 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { 4760 if (!pmb->u.mb.un.varCfgPort.cMA) { 4761 rc = -ENXIO; 4762 goto do_prep_failed; 4763 } 4764 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { 4765 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; 4766 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; 4767 phba->max_vports = (phba->max_vpi > phba->max_vports) ? 4768 phba->max_vpi : phba->max_vports; 4769 4770 } else 4771 phba->max_vpi = 0; 4772 phba->fips_level = 0; 4773 phba->fips_spec_rev = 0; 4774 if (pmb->u.mb.un.varCfgPort.gdss) { 4775 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED; 4776 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level; 4777 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev; 4778 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4779 "2850 Security Crypto Active. FIPS x%d " 4780 "(Spec Rev: x%d)", 4781 phba->fips_level, phba->fips_spec_rev); 4782 } 4783 if (pmb->u.mb.un.varCfgPort.sec_err) { 4784 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4785 "2856 Config Port Security Crypto " 4786 "Error: x%x ", 4787 pmb->u.mb.un.varCfgPort.sec_err); 4788 } 4789 if (pmb->u.mb.un.varCfgPort.gerbm) 4790 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; 4791 if (pmb->u.mb.un.varCfgPort.gcrp) 4792 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; 4793 4794 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; 4795 phba->port_gp = phba->mbox->us.s3_pgp.port; 4796 4797 if (phba->cfg_enable_bg) { 4798 if (pmb->u.mb.un.varCfgPort.gbg) 4799 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 4800 else 4801 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4802 "0443 Adapter did not grant " 4803 "BlockGuard\n"); 4804 } 4805 } else { 4806 phba->hbq_get = NULL; 4807 phba->port_gp = phba->mbox->us.s2.port; 4808 phba->max_vpi = 0; 4809 } 4810 do_prep_failed: 4811 mempool_free(pmb, phba->mbox_mem_pool); 4812 return rc; 4813 } 4814 4815 4816 /** 4817 * lpfc_sli_hba_setup - SLI initialization function 4818 * @phba: Pointer to HBA context object. 4819 * 4820 * This function is the main SLI initialization function. This function 4821 * is called by the HBA initialization code, HBA reset code and HBA 4822 * error attention handler code. Caller is not required to hold any 4823 * locks. This function issues config_port mailbox command to configure 4824 * the SLI, setup iocb rings and HBQ rings. In the end the function 4825 * calls the config_port_post function to issue init_link mailbox 4826 * command and to start the discovery. The function will return zero 4827 * if successful, else it will return negative error code. 4828 **/ 4829 int 4830 lpfc_sli_hba_setup(struct lpfc_hba *phba) 4831 { 4832 uint32_t rc; 4833 int mode = 3, i; 4834 int longs; 4835 4836 switch (phba->cfg_sli_mode) { 4837 case 2: 4838 if (phba->cfg_enable_npiv) { 4839 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4840 "1824 NPIV enabled: Override sli_mode " 4841 "parameter (%d) to auto (0).\n", 4842 phba->cfg_sli_mode); 4843 break; 4844 } 4845 mode = 2; 4846 break; 4847 case 0: 4848 case 3: 4849 break; 4850 default: 4851 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4852 "1819 Unrecognized sli_mode parameter: %d.\n", 4853 phba->cfg_sli_mode); 4854 4855 break; 4856 } 4857 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 4858 4859 rc = lpfc_sli_config_port(phba, mode); 4860 4861 if (rc && phba->cfg_sli_mode == 3) 4862 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT, 4863 "1820 Unable to select SLI-3. " 4864 "Not supported by adapter.\n"); 4865 if (rc && mode != 2) 4866 rc = lpfc_sli_config_port(phba, 2); 4867 else if (rc && mode == 2) 4868 rc = lpfc_sli_config_port(phba, 3); 4869 if (rc) 4870 goto lpfc_sli_hba_setup_error; 4871 4872 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 4873 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 4874 rc = pci_enable_pcie_error_reporting(phba->pcidev); 4875 if (!rc) { 4876 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4877 "2709 This device supports " 4878 "Advanced Error Reporting (AER)\n"); 4879 spin_lock_irq(&phba->hbalock); 4880 phba->hba_flag |= HBA_AER_ENABLED; 4881 spin_unlock_irq(&phba->hbalock); 4882 } else { 4883 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4884 "2708 This device does not support " 4885 "Advanced Error Reporting (AER): %d\n", 4886 rc); 4887 phba->cfg_aer_support = 0; 4888 } 4889 } 4890 4891 if (phba->sli_rev == 3) { 4892 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; 4893 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; 4894 } else { 4895 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; 4896 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; 4897 phba->sli3_options = 0; 4898 } 4899 4900 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 4901 "0444 Firmware in SLI %x mode. Max_vpi %d\n", 4902 phba->sli_rev, phba->max_vpi); 4903 rc = lpfc_sli_ring_map(phba); 4904 4905 if (rc) 4906 goto lpfc_sli_hba_setup_error; 4907 4908 /* Initialize VPIs. */ 4909 if (phba->sli_rev == LPFC_SLI_REV3) { 4910 /* 4911 * The VPI bitmask and physical ID array are allocated 4912 * and initialized once only - at driver load. A port 4913 * reset doesn't need to reinitialize this memory. 4914 */ 4915 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { 4916 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; 4917 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long), 4918 GFP_KERNEL); 4919 if (!phba->vpi_bmask) { 4920 rc = -ENOMEM; 4921 goto lpfc_sli_hba_setup_error; 4922 } 4923 4924 phba->vpi_ids = kzalloc( 4925 (phba->max_vpi+1) * sizeof(uint16_t), 4926 GFP_KERNEL); 4927 if (!phba->vpi_ids) { 4928 kfree(phba->vpi_bmask); 4929 rc = -ENOMEM; 4930 goto lpfc_sli_hba_setup_error; 4931 } 4932 for (i = 0; i < phba->max_vpi; i++) 4933 phba->vpi_ids[i] = i; 4934 } 4935 } 4936 4937 /* Init HBQs */ 4938 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { 4939 rc = lpfc_sli_hbq_setup(phba); 4940 if (rc) 4941 goto lpfc_sli_hba_setup_error; 4942 } 4943 spin_lock_irq(&phba->hbalock); 4944 phba->sli.sli_flag |= LPFC_PROCESS_LA; 4945 spin_unlock_irq(&phba->hbalock); 4946 4947 rc = lpfc_config_port_post(phba); 4948 if (rc) 4949 goto lpfc_sli_hba_setup_error; 4950 4951 return rc; 4952 4953 lpfc_sli_hba_setup_error: 4954 phba->link_state = LPFC_HBA_ERROR; 4955 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 4956 "0445 Firmware initialization failed\n"); 4957 return rc; 4958 } 4959 4960 /** 4961 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region 4962 * @phba: Pointer to HBA context object. 4963 * @mboxq: mailbox pointer. 4964 * This function issue a dump mailbox command to read config region 4965 * 23 and parse the records in the region and populate driver 4966 * data structure. 4967 **/ 4968 static int 4969 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) 4970 { 4971 LPFC_MBOXQ_t *mboxq; 4972 struct lpfc_dmabuf *mp; 4973 struct lpfc_mqe *mqe; 4974 uint32_t data_length; 4975 int rc; 4976 4977 /* Program the default value of vlan_id and fc_map */ 4978 phba->valid_vlan = 0; 4979 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; 4980 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; 4981 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; 4982 4983 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 4984 if (!mboxq) 4985 return -ENOMEM; 4986 4987 mqe = &mboxq->u.mqe; 4988 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { 4989 rc = -ENOMEM; 4990 goto out_free_mboxq; 4991 } 4992 4993 mp = (struct lpfc_dmabuf *) mboxq->context1; 4994 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 4995 4996 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 4997 "(%d):2571 Mailbox cmd x%x Status x%x " 4998 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " 4999 "x%x x%x x%x x%x x%x x%x x%x x%x x%x " 5000 "CQ: x%x x%x x%x x%x\n", 5001 mboxq->vport ? mboxq->vport->vpi : 0, 5002 bf_get(lpfc_mqe_command, mqe), 5003 bf_get(lpfc_mqe_status, mqe), 5004 mqe->un.mb_words[0], mqe->un.mb_words[1], 5005 mqe->un.mb_words[2], mqe->un.mb_words[3], 5006 mqe->un.mb_words[4], mqe->un.mb_words[5], 5007 mqe->un.mb_words[6], mqe->un.mb_words[7], 5008 mqe->un.mb_words[8], mqe->un.mb_words[9], 5009 mqe->un.mb_words[10], mqe->un.mb_words[11], 5010 mqe->un.mb_words[12], mqe->un.mb_words[13], 5011 mqe->un.mb_words[14], mqe->un.mb_words[15], 5012 mqe->un.mb_words[16], mqe->un.mb_words[50], 5013 mboxq->mcqe.word0, 5014 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 5015 mboxq->mcqe.trailer); 5016 5017 if (rc) { 5018 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5019 kfree(mp); 5020 rc = -EIO; 5021 goto out_free_mboxq; 5022 } 5023 data_length = mqe->un.mb_words[5]; 5024 if (data_length > DMP_RGN23_SIZE) { 5025 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5026 kfree(mp); 5027 rc = -EIO; 5028 goto out_free_mboxq; 5029 } 5030 5031 lpfc_parse_fcoe_conf(phba, mp->virt, data_length); 5032 lpfc_mbuf_free(phba, mp->virt, mp->phys); 5033 kfree(mp); 5034 rc = 0; 5035 5036 out_free_mboxq: 5037 mempool_free(mboxq, phba->mbox_mem_pool); 5038 return rc; 5039 } 5040 5041 /** 5042 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data 5043 * @phba: pointer to lpfc hba data structure. 5044 * @mboxq: pointer to the LPFC_MBOXQ_t structure. 5045 * @vpd: pointer to the memory to hold resulting port vpd data. 5046 * @vpd_size: On input, the number of bytes allocated to @vpd. 5047 * On output, the number of data bytes in @vpd. 5048 * 5049 * This routine executes a READ_REV SLI4 mailbox command. In 5050 * addition, this routine gets the port vpd data. 5051 * 5052 * Return codes 5053 * 0 - successful 5054 * -ENOMEM - could not allocated memory. 5055 **/ 5056 static int 5057 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 5058 uint8_t *vpd, uint32_t *vpd_size) 5059 { 5060 int rc = 0; 5061 uint32_t dma_size; 5062 struct lpfc_dmabuf *dmabuf; 5063 struct lpfc_mqe *mqe; 5064 5065 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 5066 if (!dmabuf) 5067 return -ENOMEM; 5068 5069 /* 5070 * Get a DMA buffer for the vpd data resulting from the READ_REV 5071 * mailbox command. 5072 */ 5073 dma_size = *vpd_size; 5074 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, dma_size, 5075 &dmabuf->phys, GFP_KERNEL); 5076 if (!dmabuf->virt) { 5077 kfree(dmabuf); 5078 return -ENOMEM; 5079 } 5080 5081 /* 5082 * The SLI4 implementation of READ_REV conflicts at word1, 5083 * bits 31:16 and SLI4 adds vpd functionality not present 5084 * in SLI3. This code corrects the conflicts. 5085 */ 5086 lpfc_read_rev(phba, mboxq); 5087 mqe = &mboxq->u.mqe; 5088 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); 5089 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); 5090 mqe->un.read_rev.word1 &= 0x0000FFFF; 5091 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); 5092 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); 5093 5094 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5095 if (rc) { 5096 dma_free_coherent(&phba->pcidev->dev, dma_size, 5097 dmabuf->virt, dmabuf->phys); 5098 kfree(dmabuf); 5099 return -EIO; 5100 } 5101 5102 /* 5103 * The available vpd length cannot be bigger than the 5104 * DMA buffer passed to the port. Catch the less than 5105 * case and update the caller's size. 5106 */ 5107 if (mqe->un.read_rev.avail_vpd_len < *vpd_size) 5108 *vpd_size = mqe->un.read_rev.avail_vpd_len; 5109 5110 memcpy(vpd, dmabuf->virt, *vpd_size); 5111 5112 dma_free_coherent(&phba->pcidev->dev, dma_size, 5113 dmabuf->virt, dmabuf->phys); 5114 kfree(dmabuf); 5115 return 0; 5116 } 5117 5118 /** 5119 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name 5120 * @phba: pointer to lpfc hba data structure. 5121 * 5122 * This routine retrieves SLI4 device physical port name this PCI function 5123 * is attached to. 5124 * 5125 * Return codes 5126 * 0 - successful 5127 * otherwise - failed to retrieve physical port name 5128 **/ 5129 static int 5130 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) 5131 { 5132 LPFC_MBOXQ_t *mboxq; 5133 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; 5134 struct lpfc_controller_attribute *cntl_attr; 5135 struct lpfc_mbx_get_port_name *get_port_name; 5136 void *virtaddr = NULL; 5137 uint32_t alloclen, reqlen; 5138 uint32_t shdr_status, shdr_add_status; 5139 union lpfc_sli4_cfg_shdr *shdr; 5140 char cport_name = 0; 5141 int rc; 5142 5143 /* We assume nothing at this point */ 5144 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5145 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; 5146 5147 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5148 if (!mboxq) 5149 return -ENOMEM; 5150 /* obtain link type and link number via READ_CONFIG */ 5151 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; 5152 lpfc_sli4_read_config(phba); 5153 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) 5154 goto retrieve_ppname; 5155 5156 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ 5157 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); 5158 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5159 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, 5160 LPFC_SLI4_MBX_NEMBED); 5161 if (alloclen < reqlen) { 5162 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 5163 "3084 Allocated DMA memory size (%d) is " 5164 "less than the requested DMA memory size " 5165 "(%d)\n", alloclen, reqlen); 5166 rc = -ENOMEM; 5167 goto out_free_mboxq; 5168 } 5169 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5170 virtaddr = mboxq->sge_array->addr[0]; 5171 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; 5172 shdr = &mbx_cntl_attr->cfg_shdr; 5173 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5174 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5175 if (shdr_status || shdr_add_status || rc) { 5176 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5177 "3085 Mailbox x%x (x%x/x%x) failed, " 5178 "rc:x%x, status:x%x, add_status:x%x\n", 5179 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5180 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5181 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5182 rc, shdr_status, shdr_add_status); 5183 rc = -ENXIO; 5184 goto out_free_mboxq; 5185 } 5186 cntl_attr = &mbx_cntl_attr->cntl_attr; 5187 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; 5188 phba->sli4_hba.lnk_info.lnk_tp = 5189 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); 5190 phba->sli4_hba.lnk_info.lnk_no = 5191 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); 5192 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5193 "3086 lnk_type:%d, lnk_numb:%d\n", 5194 phba->sli4_hba.lnk_info.lnk_tp, 5195 phba->sli4_hba.lnk_info.lnk_no); 5196 5197 retrieve_ppname: 5198 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, 5199 LPFC_MBOX_OPCODE_GET_PORT_NAME, 5200 sizeof(struct lpfc_mbx_get_port_name) - 5201 sizeof(struct lpfc_sli4_cfg_mhdr), 5202 LPFC_SLI4_MBX_EMBED); 5203 get_port_name = &mboxq->u.mqe.un.get_port_name; 5204 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; 5205 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); 5206 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, 5207 phba->sli4_hba.lnk_info.lnk_tp); 5208 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 5209 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 5210 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 5211 if (shdr_status || shdr_add_status || rc) { 5212 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 5213 "3087 Mailbox x%x (x%x/x%x) failed: " 5214 "rc:x%x, status:x%x, add_status:x%x\n", 5215 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 5216 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 5217 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 5218 rc, shdr_status, shdr_add_status); 5219 rc = -ENXIO; 5220 goto out_free_mboxq; 5221 } 5222 switch (phba->sli4_hba.lnk_info.lnk_no) { 5223 case LPFC_LINK_NUMBER_0: 5224 cport_name = bf_get(lpfc_mbx_get_port_name_name0, 5225 &get_port_name->u.response); 5226 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5227 break; 5228 case LPFC_LINK_NUMBER_1: 5229 cport_name = bf_get(lpfc_mbx_get_port_name_name1, 5230 &get_port_name->u.response); 5231 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5232 break; 5233 case LPFC_LINK_NUMBER_2: 5234 cport_name = bf_get(lpfc_mbx_get_port_name_name2, 5235 &get_port_name->u.response); 5236 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5237 break; 5238 case LPFC_LINK_NUMBER_3: 5239 cport_name = bf_get(lpfc_mbx_get_port_name_name3, 5240 &get_port_name->u.response); 5241 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; 5242 break; 5243 default: 5244 break; 5245 } 5246 5247 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { 5248 phba->Port[0] = cport_name; 5249 phba->Port[1] = '\0'; 5250 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5251 "3091 SLI get port name: %s\n", phba->Port); 5252 } 5253 5254 out_free_mboxq: 5255 if (rc != MBX_TIMEOUT) { 5256 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) 5257 lpfc_sli4_mbox_cmd_free(phba, mboxq); 5258 else 5259 mempool_free(mboxq, phba->mbox_mem_pool); 5260 } 5261 return rc; 5262 } 5263 5264 /** 5265 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues 5266 * @phba: pointer to lpfc hba data structure. 5267 * 5268 * This routine is called to explicitly arm the SLI4 device's completion and 5269 * event queues 5270 **/ 5271 static void 5272 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) 5273 { 5274 int qidx; 5275 5276 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM); 5277 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM); 5278 if (phba->sli4_hba.nvmels_cq) 5279 lpfc_sli4_cq_release(phba->sli4_hba.nvmels_cq, 5280 LPFC_QUEUE_REARM); 5281 5282 if (phba->sli4_hba.fcp_cq) 5283 for (qidx = 0; qidx < phba->cfg_fcp_io_channel; qidx++) 5284 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[qidx], 5285 LPFC_QUEUE_REARM); 5286 5287 if (phba->sli4_hba.nvme_cq) 5288 for (qidx = 0; qidx < phba->cfg_nvme_io_channel; qidx++) 5289 lpfc_sli4_cq_release(phba->sli4_hba.nvme_cq[qidx], 5290 LPFC_QUEUE_REARM); 5291 5292 if (phba->cfg_fof) 5293 lpfc_sli4_cq_release(phba->sli4_hba.oas_cq, LPFC_QUEUE_REARM); 5294 5295 if (phba->sli4_hba.hba_eq) 5296 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) 5297 lpfc_sli4_eq_release(phba->sli4_hba.hba_eq[qidx], 5298 LPFC_QUEUE_REARM); 5299 5300 if (phba->nvmet_support) { 5301 for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { 5302 lpfc_sli4_cq_release( 5303 phba->sli4_hba.nvmet_cqset[qidx], 5304 LPFC_QUEUE_REARM); 5305 } 5306 } 5307 5308 if (phba->cfg_fof) 5309 lpfc_sli4_eq_release(phba->sli4_hba.fof_eq, LPFC_QUEUE_REARM); 5310 } 5311 5312 /** 5313 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. 5314 * @phba: Pointer to HBA context object. 5315 * @type: The resource extent type. 5316 * @extnt_count: buffer to hold port available extent count. 5317 * @extnt_size: buffer to hold element count per extent. 5318 * 5319 * This function calls the port and retrievs the number of available 5320 * extents and their size for a particular extent type. 5321 * 5322 * Returns: 0 if successful. Nonzero otherwise. 5323 **/ 5324 int 5325 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, 5326 uint16_t *extnt_count, uint16_t *extnt_size) 5327 { 5328 int rc = 0; 5329 uint32_t length; 5330 uint32_t mbox_tmo; 5331 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; 5332 LPFC_MBOXQ_t *mbox; 5333 5334 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5335 if (!mbox) 5336 return -ENOMEM; 5337 5338 /* Find out how many extents are available for this resource type */ 5339 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - 5340 sizeof(struct lpfc_sli4_cfg_mhdr)); 5341 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5342 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, 5343 length, LPFC_SLI4_MBX_EMBED); 5344 5345 /* Send an extents count of 0 - the GET doesn't use it. */ 5346 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5347 LPFC_SLI4_MBX_EMBED); 5348 if (unlikely(rc)) { 5349 rc = -EIO; 5350 goto err_exit; 5351 } 5352 5353 if (!phba->sli4_hba.intr_enable) 5354 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5355 else { 5356 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5357 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5358 } 5359 if (unlikely(rc)) { 5360 rc = -EIO; 5361 goto err_exit; 5362 } 5363 5364 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; 5365 if (bf_get(lpfc_mbox_hdr_status, 5366 &rsrc_info->header.cfg_shdr.response)) { 5367 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5368 "2930 Failed to get resource extents " 5369 "Status 0x%x Add'l Status 0x%x\n", 5370 bf_get(lpfc_mbox_hdr_status, 5371 &rsrc_info->header.cfg_shdr.response), 5372 bf_get(lpfc_mbox_hdr_add_status, 5373 &rsrc_info->header.cfg_shdr.response)); 5374 rc = -EIO; 5375 goto err_exit; 5376 } 5377 5378 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, 5379 &rsrc_info->u.rsp); 5380 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, 5381 &rsrc_info->u.rsp); 5382 5383 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 5384 "3162 Retrieved extents type-%d from port: count:%d, " 5385 "size:%d\n", type, *extnt_count, *extnt_size); 5386 5387 err_exit: 5388 mempool_free(mbox, phba->mbox_mem_pool); 5389 return rc; 5390 } 5391 5392 /** 5393 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. 5394 * @phba: Pointer to HBA context object. 5395 * @type: The extent type to check. 5396 * 5397 * This function reads the current available extents from the port and checks 5398 * if the extent count or extent size has changed since the last access. 5399 * Callers use this routine post port reset to understand if there is a 5400 * extent reprovisioning requirement. 5401 * 5402 * Returns: 5403 * -Error: error indicates problem. 5404 * 1: Extent count or size has changed. 5405 * 0: No changes. 5406 **/ 5407 static int 5408 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) 5409 { 5410 uint16_t curr_ext_cnt, rsrc_ext_cnt; 5411 uint16_t size_diff, rsrc_ext_size; 5412 int rc = 0; 5413 struct lpfc_rsrc_blks *rsrc_entry; 5414 struct list_head *rsrc_blk_list = NULL; 5415 5416 size_diff = 0; 5417 curr_ext_cnt = 0; 5418 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5419 &rsrc_ext_cnt, 5420 &rsrc_ext_size); 5421 if (unlikely(rc)) 5422 return -EIO; 5423 5424 switch (type) { 5425 case LPFC_RSC_TYPE_FCOE_RPI: 5426 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5427 break; 5428 case LPFC_RSC_TYPE_FCOE_VPI: 5429 rsrc_blk_list = &phba->lpfc_vpi_blk_list; 5430 break; 5431 case LPFC_RSC_TYPE_FCOE_XRI: 5432 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5433 break; 5434 case LPFC_RSC_TYPE_FCOE_VFI: 5435 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5436 break; 5437 default: 5438 break; 5439 } 5440 5441 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { 5442 curr_ext_cnt++; 5443 if (rsrc_entry->rsrc_size != rsrc_ext_size) 5444 size_diff++; 5445 } 5446 5447 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) 5448 rc = 1; 5449 5450 return rc; 5451 } 5452 5453 /** 5454 * lpfc_sli4_cfg_post_extnts - 5455 * @phba: Pointer to HBA context object. 5456 * @extnt_cnt - number of available extents. 5457 * @type - the extent type (rpi, xri, vfi, vpi). 5458 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation. 5459 * @mbox - pointer to the caller's allocated mailbox structure. 5460 * 5461 * This function executes the extents allocation request. It also 5462 * takes care of the amount of memory needed to allocate or get the 5463 * allocated extents. It is the caller's responsibility to evaluate 5464 * the response. 5465 * 5466 * Returns: 5467 * -Error: Error value describes the condition found. 5468 * 0: if successful 5469 **/ 5470 static int 5471 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, 5472 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) 5473 { 5474 int rc = 0; 5475 uint32_t req_len; 5476 uint32_t emb_len; 5477 uint32_t alloc_len, mbox_tmo; 5478 5479 /* Calculate the total requested length of the dma memory */ 5480 req_len = extnt_cnt * sizeof(uint16_t); 5481 5482 /* 5483 * Calculate the size of an embedded mailbox. The uint32_t 5484 * accounts for extents-specific word. 5485 */ 5486 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 5487 sizeof(uint32_t); 5488 5489 /* 5490 * Presume the allocation and response will fit into an embedded 5491 * mailbox. If not true, reconfigure to a non-embedded mailbox. 5492 */ 5493 *emb = LPFC_SLI4_MBX_EMBED; 5494 if (req_len > emb_len) { 5495 req_len = extnt_cnt * sizeof(uint16_t) + 5496 sizeof(union lpfc_sli4_cfg_shdr) + 5497 sizeof(uint32_t); 5498 *emb = LPFC_SLI4_MBX_NEMBED; 5499 } 5500 5501 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5502 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, 5503 req_len, *emb); 5504 if (alloc_len < req_len) { 5505 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 5506 "2982 Allocated DMA memory size (x%x) is " 5507 "less than the requested DMA memory " 5508 "size (x%x)\n", alloc_len, req_len); 5509 return -ENOMEM; 5510 } 5511 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); 5512 if (unlikely(rc)) 5513 return -EIO; 5514 5515 if (!phba->sli4_hba.intr_enable) 5516 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5517 else { 5518 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5519 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5520 } 5521 5522 if (unlikely(rc)) 5523 rc = -EIO; 5524 return rc; 5525 } 5526 5527 /** 5528 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. 5529 * @phba: Pointer to HBA context object. 5530 * @type: The resource extent type to allocate. 5531 * 5532 * This function allocates the number of elements for the specified 5533 * resource type. 5534 **/ 5535 static int 5536 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) 5537 { 5538 bool emb = false; 5539 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; 5540 uint16_t rsrc_id, rsrc_start, j, k; 5541 uint16_t *ids; 5542 int i, rc; 5543 unsigned long longs; 5544 unsigned long *bmask; 5545 struct lpfc_rsrc_blks *rsrc_blks; 5546 LPFC_MBOXQ_t *mbox; 5547 uint32_t length; 5548 struct lpfc_id_range *id_array = NULL; 5549 void *virtaddr = NULL; 5550 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 5551 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 5552 struct list_head *ext_blk_list; 5553 5554 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, 5555 &rsrc_cnt, 5556 &rsrc_size); 5557 if (unlikely(rc)) 5558 return -EIO; 5559 5560 if ((rsrc_cnt == 0) || (rsrc_size == 0)) { 5561 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5562 "3009 No available Resource Extents " 5563 "for resource type 0x%x: Count: 0x%x, " 5564 "Size 0x%x\n", type, rsrc_cnt, 5565 rsrc_size); 5566 return -ENOMEM; 5567 } 5568 5569 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, 5570 "2903 Post resource extents type-0x%x: " 5571 "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); 5572 5573 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5574 if (!mbox) 5575 return -ENOMEM; 5576 5577 rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); 5578 if (unlikely(rc)) { 5579 rc = -EIO; 5580 goto err_exit; 5581 } 5582 5583 /* 5584 * Figure out where the response is located. Then get local pointers 5585 * to the response data. The port does not guarantee to respond to 5586 * all extents counts request so update the local variable with the 5587 * allocated count from the port. 5588 */ 5589 if (emb == LPFC_SLI4_MBX_EMBED) { 5590 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 5591 id_array = &rsrc_ext->u.rsp.id[0]; 5592 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 5593 } else { 5594 virtaddr = mbox->sge_array->addr[0]; 5595 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 5596 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 5597 id_array = &n_rsrc->id; 5598 } 5599 5600 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; 5601 rsrc_id_cnt = rsrc_cnt * rsrc_size; 5602 5603 /* 5604 * Based on the resource size and count, correct the base and max 5605 * resource values. 5606 */ 5607 length = sizeof(struct lpfc_rsrc_blks); 5608 switch (type) { 5609 case LPFC_RSC_TYPE_FCOE_RPI: 5610 phba->sli4_hba.rpi_bmask = kzalloc(longs * 5611 sizeof(unsigned long), 5612 GFP_KERNEL); 5613 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 5614 rc = -ENOMEM; 5615 goto err_exit; 5616 } 5617 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt * 5618 sizeof(uint16_t), 5619 GFP_KERNEL); 5620 if (unlikely(!phba->sli4_hba.rpi_ids)) { 5621 kfree(phba->sli4_hba.rpi_bmask); 5622 rc = -ENOMEM; 5623 goto err_exit; 5624 } 5625 5626 /* 5627 * The next_rpi was initialized with the maximum available 5628 * count but the port may allocate a smaller number. Catch 5629 * that case and update the next_rpi. 5630 */ 5631 phba->sli4_hba.next_rpi = rsrc_id_cnt; 5632 5633 /* Initialize local ptrs for common extent processing later. */ 5634 bmask = phba->sli4_hba.rpi_bmask; 5635 ids = phba->sli4_hba.rpi_ids; 5636 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; 5637 break; 5638 case LPFC_RSC_TYPE_FCOE_VPI: 5639 phba->vpi_bmask = kzalloc(longs * 5640 sizeof(unsigned long), 5641 GFP_KERNEL); 5642 if (unlikely(!phba->vpi_bmask)) { 5643 rc = -ENOMEM; 5644 goto err_exit; 5645 } 5646 phba->vpi_ids = kzalloc(rsrc_id_cnt * 5647 sizeof(uint16_t), 5648 GFP_KERNEL); 5649 if (unlikely(!phba->vpi_ids)) { 5650 kfree(phba->vpi_bmask); 5651 rc = -ENOMEM; 5652 goto err_exit; 5653 } 5654 5655 /* Initialize local ptrs for common extent processing later. */ 5656 bmask = phba->vpi_bmask; 5657 ids = phba->vpi_ids; 5658 ext_blk_list = &phba->lpfc_vpi_blk_list; 5659 break; 5660 case LPFC_RSC_TYPE_FCOE_XRI: 5661 phba->sli4_hba.xri_bmask = kzalloc(longs * 5662 sizeof(unsigned long), 5663 GFP_KERNEL); 5664 if (unlikely(!phba->sli4_hba.xri_bmask)) { 5665 rc = -ENOMEM; 5666 goto err_exit; 5667 } 5668 phba->sli4_hba.max_cfg_param.xri_used = 0; 5669 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt * 5670 sizeof(uint16_t), 5671 GFP_KERNEL); 5672 if (unlikely(!phba->sli4_hba.xri_ids)) { 5673 kfree(phba->sli4_hba.xri_bmask); 5674 rc = -ENOMEM; 5675 goto err_exit; 5676 } 5677 5678 /* Initialize local ptrs for common extent processing later. */ 5679 bmask = phba->sli4_hba.xri_bmask; 5680 ids = phba->sli4_hba.xri_ids; 5681 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; 5682 break; 5683 case LPFC_RSC_TYPE_FCOE_VFI: 5684 phba->sli4_hba.vfi_bmask = kzalloc(longs * 5685 sizeof(unsigned long), 5686 GFP_KERNEL); 5687 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 5688 rc = -ENOMEM; 5689 goto err_exit; 5690 } 5691 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt * 5692 sizeof(uint16_t), 5693 GFP_KERNEL); 5694 if (unlikely(!phba->sli4_hba.vfi_ids)) { 5695 kfree(phba->sli4_hba.vfi_bmask); 5696 rc = -ENOMEM; 5697 goto err_exit; 5698 } 5699 5700 /* Initialize local ptrs for common extent processing later. */ 5701 bmask = phba->sli4_hba.vfi_bmask; 5702 ids = phba->sli4_hba.vfi_ids; 5703 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; 5704 break; 5705 default: 5706 /* Unsupported Opcode. Fail call. */ 5707 id_array = NULL; 5708 bmask = NULL; 5709 ids = NULL; 5710 ext_blk_list = NULL; 5711 goto err_exit; 5712 } 5713 5714 /* 5715 * Complete initializing the extent configuration with the 5716 * allocated ids assigned to this function. The bitmask serves 5717 * as an index into the array and manages the available ids. The 5718 * array just stores the ids communicated to the port via the wqes. 5719 */ 5720 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { 5721 if ((i % 2) == 0) 5722 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, 5723 &id_array[k]); 5724 else 5725 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, 5726 &id_array[k]); 5727 5728 rsrc_blks = kzalloc(length, GFP_KERNEL); 5729 if (unlikely(!rsrc_blks)) { 5730 rc = -ENOMEM; 5731 kfree(bmask); 5732 kfree(ids); 5733 goto err_exit; 5734 } 5735 rsrc_blks->rsrc_start = rsrc_id; 5736 rsrc_blks->rsrc_size = rsrc_size; 5737 list_add_tail(&rsrc_blks->list, ext_blk_list); 5738 rsrc_start = rsrc_id; 5739 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { 5740 phba->sli4_hba.scsi_xri_start = rsrc_start + 5741 lpfc_sli4_get_iocb_cnt(phba); 5742 phba->sli4_hba.nvme_xri_start = 5743 phba->sli4_hba.scsi_xri_start + 5744 phba->sli4_hba.scsi_xri_max; 5745 } 5746 5747 while (rsrc_id < (rsrc_start + rsrc_size)) { 5748 ids[j] = rsrc_id; 5749 rsrc_id++; 5750 j++; 5751 } 5752 /* Entire word processed. Get next word.*/ 5753 if ((i % 2) == 1) 5754 k++; 5755 } 5756 err_exit: 5757 lpfc_sli4_mbox_cmd_free(phba, mbox); 5758 return rc; 5759 } 5760 5761 5762 5763 /** 5764 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. 5765 * @phba: Pointer to HBA context object. 5766 * @type: the extent's type. 5767 * 5768 * This function deallocates all extents of a particular resource type. 5769 * SLI4 does not allow for deallocating a particular extent range. It 5770 * is the caller's responsibility to release all kernel memory resources. 5771 **/ 5772 static int 5773 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) 5774 { 5775 int rc; 5776 uint32_t length, mbox_tmo = 0; 5777 LPFC_MBOXQ_t *mbox; 5778 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; 5779 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; 5780 5781 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 5782 if (!mbox) 5783 return -ENOMEM; 5784 5785 /* 5786 * This function sends an embedded mailbox because it only sends the 5787 * the resource type. All extents of this type are released by the 5788 * port. 5789 */ 5790 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - 5791 sizeof(struct lpfc_sli4_cfg_mhdr)); 5792 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5793 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, 5794 length, LPFC_SLI4_MBX_EMBED); 5795 5796 /* Send an extents count of 0 - the dealloc doesn't use it. */ 5797 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, 5798 LPFC_SLI4_MBX_EMBED); 5799 if (unlikely(rc)) { 5800 rc = -EIO; 5801 goto out_free_mbox; 5802 } 5803 if (!phba->sli4_hba.intr_enable) 5804 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 5805 else { 5806 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 5807 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 5808 } 5809 if (unlikely(rc)) { 5810 rc = -EIO; 5811 goto out_free_mbox; 5812 } 5813 5814 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; 5815 if (bf_get(lpfc_mbox_hdr_status, 5816 &dealloc_rsrc->header.cfg_shdr.response)) { 5817 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 5818 "2919 Failed to release resource extents " 5819 "for type %d - Status 0x%x Add'l Status 0x%x. " 5820 "Resource memory not released.\n", 5821 type, 5822 bf_get(lpfc_mbox_hdr_status, 5823 &dealloc_rsrc->header.cfg_shdr.response), 5824 bf_get(lpfc_mbox_hdr_add_status, 5825 &dealloc_rsrc->header.cfg_shdr.response)); 5826 rc = -EIO; 5827 goto out_free_mbox; 5828 } 5829 5830 /* Release kernel memory resources for the specific type. */ 5831 switch (type) { 5832 case LPFC_RSC_TYPE_FCOE_VPI: 5833 kfree(phba->vpi_bmask); 5834 kfree(phba->vpi_ids); 5835 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5836 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5837 &phba->lpfc_vpi_blk_list, list) { 5838 list_del_init(&rsrc_blk->list); 5839 kfree(rsrc_blk); 5840 } 5841 phba->sli4_hba.max_cfg_param.vpi_used = 0; 5842 break; 5843 case LPFC_RSC_TYPE_FCOE_XRI: 5844 kfree(phba->sli4_hba.xri_bmask); 5845 kfree(phba->sli4_hba.xri_ids); 5846 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5847 &phba->sli4_hba.lpfc_xri_blk_list, list) { 5848 list_del_init(&rsrc_blk->list); 5849 kfree(rsrc_blk); 5850 } 5851 break; 5852 case LPFC_RSC_TYPE_FCOE_VFI: 5853 kfree(phba->sli4_hba.vfi_bmask); 5854 kfree(phba->sli4_hba.vfi_ids); 5855 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5856 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5857 &phba->sli4_hba.lpfc_vfi_blk_list, list) { 5858 list_del_init(&rsrc_blk->list); 5859 kfree(rsrc_blk); 5860 } 5861 break; 5862 case LPFC_RSC_TYPE_FCOE_RPI: 5863 /* RPI bitmask and physical id array are cleaned up earlier. */ 5864 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, 5865 &phba->sli4_hba.lpfc_rpi_blk_list, list) { 5866 list_del_init(&rsrc_blk->list); 5867 kfree(rsrc_blk); 5868 } 5869 break; 5870 default: 5871 break; 5872 } 5873 5874 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 5875 5876 out_free_mbox: 5877 mempool_free(mbox, phba->mbox_mem_pool); 5878 return rc; 5879 } 5880 5881 static void 5882 lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, 5883 uint32_t feature) 5884 { 5885 uint32_t len; 5886 5887 len = sizeof(struct lpfc_mbx_set_feature) - 5888 sizeof(struct lpfc_sli4_cfg_mhdr); 5889 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 5890 LPFC_MBOX_OPCODE_SET_FEATURES, len, 5891 LPFC_SLI4_MBX_EMBED); 5892 5893 switch (feature) { 5894 case LPFC_SET_UE_RECOVERY: 5895 bf_set(lpfc_mbx_set_feature_UER, 5896 &mbox->u.mqe.un.set_feature, 1); 5897 mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; 5898 mbox->u.mqe.un.set_feature.param_len = 8; 5899 break; 5900 case LPFC_SET_MDS_DIAGS: 5901 bf_set(lpfc_mbx_set_feature_mds, 5902 &mbox->u.mqe.un.set_feature, 1); 5903 bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, 5904 &mbox->u.mqe.un.set_feature, 0); 5905 mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; 5906 mbox->u.mqe.un.set_feature.param_len = 8; 5907 break; 5908 } 5909 5910 return; 5911 } 5912 5913 /** 5914 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. 5915 * @phba: Pointer to HBA context object. 5916 * 5917 * This function allocates all SLI4 resource identifiers. 5918 **/ 5919 int 5920 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) 5921 { 5922 int i, rc, error = 0; 5923 uint16_t count, base; 5924 unsigned long longs; 5925 5926 if (!phba->sli4_hba.rpi_hdrs_in_use) 5927 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 5928 if (phba->sli4_hba.extents_in_use) { 5929 /* 5930 * The port supports resource extents. The XRI, VPI, VFI, RPI 5931 * resource extent count must be read and allocated before 5932 * provisioning the resource id arrays. 5933 */ 5934 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 5935 LPFC_IDX_RSRC_RDY) { 5936 /* 5937 * Extent-based resources are set - the driver could 5938 * be in a port reset. Figure out if any corrective 5939 * actions need to be taken. 5940 */ 5941 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5942 LPFC_RSC_TYPE_FCOE_VFI); 5943 if (rc != 0) 5944 error++; 5945 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5946 LPFC_RSC_TYPE_FCOE_VPI); 5947 if (rc != 0) 5948 error++; 5949 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5950 LPFC_RSC_TYPE_FCOE_XRI); 5951 if (rc != 0) 5952 error++; 5953 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, 5954 LPFC_RSC_TYPE_FCOE_RPI); 5955 if (rc != 0) 5956 error++; 5957 5958 /* 5959 * It's possible that the number of resources 5960 * provided to this port instance changed between 5961 * resets. Detect this condition and reallocate 5962 * resources. Otherwise, there is no action. 5963 */ 5964 if (error) { 5965 lpfc_printf_log(phba, KERN_INFO, 5966 LOG_MBOX | LOG_INIT, 5967 "2931 Detected extent resource " 5968 "change. Reallocating all " 5969 "extents.\n"); 5970 rc = lpfc_sli4_dealloc_extent(phba, 5971 LPFC_RSC_TYPE_FCOE_VFI); 5972 rc = lpfc_sli4_dealloc_extent(phba, 5973 LPFC_RSC_TYPE_FCOE_VPI); 5974 rc = lpfc_sli4_dealloc_extent(phba, 5975 LPFC_RSC_TYPE_FCOE_XRI); 5976 rc = lpfc_sli4_dealloc_extent(phba, 5977 LPFC_RSC_TYPE_FCOE_RPI); 5978 } else 5979 return 0; 5980 } 5981 5982 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 5983 if (unlikely(rc)) 5984 goto err_exit; 5985 5986 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 5987 if (unlikely(rc)) 5988 goto err_exit; 5989 5990 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 5991 if (unlikely(rc)) 5992 goto err_exit; 5993 5994 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 5995 if (unlikely(rc)) 5996 goto err_exit; 5997 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 5998 LPFC_IDX_RSRC_RDY); 5999 return rc; 6000 } else { 6001 /* 6002 * The port does not support resource extents. The XRI, VPI, 6003 * VFI, RPI resource ids were determined from READ_CONFIG. 6004 * Just allocate the bitmasks and provision the resource id 6005 * arrays. If a port reset is active, the resources don't 6006 * need any action - just exit. 6007 */ 6008 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == 6009 LPFC_IDX_RSRC_RDY) { 6010 lpfc_sli4_dealloc_resource_identifiers(phba); 6011 lpfc_sli4_remove_rpis(phba); 6012 } 6013 /* RPIs. */ 6014 count = phba->sli4_hba.max_cfg_param.max_rpi; 6015 if (count <= 0) { 6016 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6017 "3279 Invalid provisioning of " 6018 "rpi:%d\n", count); 6019 rc = -EINVAL; 6020 goto err_exit; 6021 } 6022 base = phba->sli4_hba.max_cfg_param.rpi_base; 6023 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6024 phba->sli4_hba.rpi_bmask = kzalloc(longs * 6025 sizeof(unsigned long), 6026 GFP_KERNEL); 6027 if (unlikely(!phba->sli4_hba.rpi_bmask)) { 6028 rc = -ENOMEM; 6029 goto err_exit; 6030 } 6031 phba->sli4_hba.rpi_ids = kzalloc(count * 6032 sizeof(uint16_t), 6033 GFP_KERNEL); 6034 if (unlikely(!phba->sli4_hba.rpi_ids)) { 6035 rc = -ENOMEM; 6036 goto free_rpi_bmask; 6037 } 6038 6039 for (i = 0; i < count; i++) 6040 phba->sli4_hba.rpi_ids[i] = base + i; 6041 6042 /* VPIs. */ 6043 count = phba->sli4_hba.max_cfg_param.max_vpi; 6044 if (count <= 0) { 6045 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6046 "3280 Invalid provisioning of " 6047 "vpi:%d\n", count); 6048 rc = -EINVAL; 6049 goto free_rpi_ids; 6050 } 6051 base = phba->sli4_hba.max_cfg_param.vpi_base; 6052 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6053 phba->vpi_bmask = kzalloc(longs * 6054 sizeof(unsigned long), 6055 GFP_KERNEL); 6056 if (unlikely(!phba->vpi_bmask)) { 6057 rc = -ENOMEM; 6058 goto free_rpi_ids; 6059 } 6060 phba->vpi_ids = kzalloc(count * 6061 sizeof(uint16_t), 6062 GFP_KERNEL); 6063 if (unlikely(!phba->vpi_ids)) { 6064 rc = -ENOMEM; 6065 goto free_vpi_bmask; 6066 } 6067 6068 for (i = 0; i < count; i++) 6069 phba->vpi_ids[i] = base + i; 6070 6071 /* XRIs. */ 6072 count = phba->sli4_hba.max_cfg_param.max_xri; 6073 if (count <= 0) { 6074 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6075 "3281 Invalid provisioning of " 6076 "xri:%d\n", count); 6077 rc = -EINVAL; 6078 goto free_vpi_ids; 6079 } 6080 base = phba->sli4_hba.max_cfg_param.xri_base; 6081 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6082 phba->sli4_hba.xri_bmask = kzalloc(longs * 6083 sizeof(unsigned long), 6084 GFP_KERNEL); 6085 if (unlikely(!phba->sli4_hba.xri_bmask)) { 6086 rc = -ENOMEM; 6087 goto free_vpi_ids; 6088 } 6089 phba->sli4_hba.max_cfg_param.xri_used = 0; 6090 phba->sli4_hba.xri_ids = kzalloc(count * 6091 sizeof(uint16_t), 6092 GFP_KERNEL); 6093 if (unlikely(!phba->sli4_hba.xri_ids)) { 6094 rc = -ENOMEM; 6095 goto free_xri_bmask; 6096 } 6097 6098 for (i = 0; i < count; i++) 6099 phba->sli4_hba.xri_ids[i] = base + i; 6100 6101 /* VFIs. */ 6102 count = phba->sli4_hba.max_cfg_param.max_vfi; 6103 if (count <= 0) { 6104 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6105 "3282 Invalid provisioning of " 6106 "vfi:%d\n", count); 6107 rc = -EINVAL; 6108 goto free_xri_ids; 6109 } 6110 base = phba->sli4_hba.max_cfg_param.vfi_base; 6111 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; 6112 phba->sli4_hba.vfi_bmask = kzalloc(longs * 6113 sizeof(unsigned long), 6114 GFP_KERNEL); 6115 if (unlikely(!phba->sli4_hba.vfi_bmask)) { 6116 rc = -ENOMEM; 6117 goto free_xri_ids; 6118 } 6119 phba->sli4_hba.vfi_ids = kzalloc(count * 6120 sizeof(uint16_t), 6121 GFP_KERNEL); 6122 if (unlikely(!phba->sli4_hba.vfi_ids)) { 6123 rc = -ENOMEM; 6124 goto free_vfi_bmask; 6125 } 6126 6127 for (i = 0; i < count; i++) 6128 phba->sli4_hba.vfi_ids[i] = base + i; 6129 6130 /* 6131 * Mark all resources ready. An HBA reset doesn't need 6132 * to reset the initialization. 6133 */ 6134 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 6135 LPFC_IDX_RSRC_RDY); 6136 return 0; 6137 } 6138 6139 free_vfi_bmask: 6140 kfree(phba->sli4_hba.vfi_bmask); 6141 phba->sli4_hba.vfi_bmask = NULL; 6142 free_xri_ids: 6143 kfree(phba->sli4_hba.xri_ids); 6144 phba->sli4_hba.xri_ids = NULL; 6145 free_xri_bmask: 6146 kfree(phba->sli4_hba.xri_bmask); 6147 phba->sli4_hba.xri_bmask = NULL; 6148 free_vpi_ids: 6149 kfree(phba->vpi_ids); 6150 phba->vpi_ids = NULL; 6151 free_vpi_bmask: 6152 kfree(phba->vpi_bmask); 6153 phba->vpi_bmask = NULL; 6154 free_rpi_ids: 6155 kfree(phba->sli4_hba.rpi_ids); 6156 phba->sli4_hba.rpi_ids = NULL; 6157 free_rpi_bmask: 6158 kfree(phba->sli4_hba.rpi_bmask); 6159 phba->sli4_hba.rpi_bmask = NULL; 6160 err_exit: 6161 return rc; 6162 } 6163 6164 /** 6165 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. 6166 * @phba: Pointer to HBA context object. 6167 * 6168 * This function allocates the number of elements for the specified 6169 * resource type. 6170 **/ 6171 int 6172 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) 6173 { 6174 if (phba->sli4_hba.extents_in_use) { 6175 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); 6176 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); 6177 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); 6178 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); 6179 } else { 6180 kfree(phba->vpi_bmask); 6181 phba->sli4_hba.max_cfg_param.vpi_used = 0; 6182 kfree(phba->vpi_ids); 6183 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6184 kfree(phba->sli4_hba.xri_bmask); 6185 kfree(phba->sli4_hba.xri_ids); 6186 kfree(phba->sli4_hba.vfi_bmask); 6187 kfree(phba->sli4_hba.vfi_ids); 6188 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6189 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 6190 } 6191 6192 return 0; 6193 } 6194 6195 /** 6196 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. 6197 * @phba: Pointer to HBA context object. 6198 * @type: The resource extent type. 6199 * @extnt_count: buffer to hold port extent count response 6200 * @extnt_size: buffer to hold port extent size response. 6201 * 6202 * This function calls the port to read the host allocated extents 6203 * for a particular type. 6204 **/ 6205 int 6206 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, 6207 uint16_t *extnt_cnt, uint16_t *extnt_size) 6208 { 6209 bool emb; 6210 int rc = 0; 6211 uint16_t curr_blks = 0; 6212 uint32_t req_len, emb_len; 6213 uint32_t alloc_len, mbox_tmo; 6214 struct list_head *blk_list_head; 6215 struct lpfc_rsrc_blks *rsrc_blk; 6216 LPFC_MBOXQ_t *mbox; 6217 void *virtaddr = NULL; 6218 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; 6219 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; 6220 union lpfc_sli4_cfg_shdr *shdr; 6221 6222 switch (type) { 6223 case LPFC_RSC_TYPE_FCOE_VPI: 6224 blk_list_head = &phba->lpfc_vpi_blk_list; 6225 break; 6226 case LPFC_RSC_TYPE_FCOE_XRI: 6227 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; 6228 break; 6229 case LPFC_RSC_TYPE_FCOE_VFI: 6230 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; 6231 break; 6232 case LPFC_RSC_TYPE_FCOE_RPI: 6233 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; 6234 break; 6235 default: 6236 return -EIO; 6237 } 6238 6239 /* Count the number of extents currently allocatd for this type. */ 6240 list_for_each_entry(rsrc_blk, blk_list_head, list) { 6241 if (curr_blks == 0) { 6242 /* 6243 * The GET_ALLOCATED mailbox does not return the size, 6244 * just the count. The size should be just the size 6245 * stored in the current allocated block and all sizes 6246 * for an extent type are the same so set the return 6247 * value now. 6248 */ 6249 *extnt_size = rsrc_blk->rsrc_size; 6250 } 6251 curr_blks++; 6252 } 6253 6254 /* 6255 * Calculate the size of an embedded mailbox. The uint32_t 6256 * accounts for extents-specific word. 6257 */ 6258 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - 6259 sizeof(uint32_t); 6260 6261 /* 6262 * Presume the allocation and response will fit into an embedded 6263 * mailbox. If not true, reconfigure to a non-embedded mailbox. 6264 */ 6265 emb = LPFC_SLI4_MBX_EMBED; 6266 req_len = emb_len; 6267 if (req_len > emb_len) { 6268 req_len = curr_blks * sizeof(uint16_t) + 6269 sizeof(union lpfc_sli4_cfg_shdr) + 6270 sizeof(uint32_t); 6271 emb = LPFC_SLI4_MBX_NEMBED; 6272 } 6273 6274 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6275 if (!mbox) 6276 return -ENOMEM; 6277 memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); 6278 6279 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6280 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, 6281 req_len, emb); 6282 if (alloc_len < req_len) { 6283 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6284 "2983 Allocated DMA memory size (x%x) is " 6285 "less than the requested DMA memory " 6286 "size (x%x)\n", alloc_len, req_len); 6287 rc = -ENOMEM; 6288 goto err_exit; 6289 } 6290 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); 6291 if (unlikely(rc)) { 6292 rc = -EIO; 6293 goto err_exit; 6294 } 6295 6296 if (!phba->sli4_hba.intr_enable) 6297 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 6298 else { 6299 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 6300 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 6301 } 6302 6303 if (unlikely(rc)) { 6304 rc = -EIO; 6305 goto err_exit; 6306 } 6307 6308 /* 6309 * Figure out where the response is located. Then get local pointers 6310 * to the response data. The port does not guarantee to respond to 6311 * all extents counts request so update the local variable with the 6312 * allocated count from the port. 6313 */ 6314 if (emb == LPFC_SLI4_MBX_EMBED) { 6315 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; 6316 shdr = &rsrc_ext->header.cfg_shdr; 6317 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); 6318 } else { 6319 virtaddr = mbox->sge_array->addr[0]; 6320 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; 6321 shdr = &n_rsrc->cfg_shdr; 6322 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); 6323 } 6324 6325 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { 6326 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, 6327 "2984 Failed to read allocated resources " 6328 "for type %d - Status 0x%x Add'l Status 0x%x.\n", 6329 type, 6330 bf_get(lpfc_mbox_hdr_status, &shdr->response), 6331 bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); 6332 rc = -EIO; 6333 goto err_exit; 6334 } 6335 err_exit: 6336 lpfc_sli4_mbox_cmd_free(phba, mbox); 6337 return rc; 6338 } 6339 6340 /** 6341 * lpfc_sli4_repost_sgl_list - Repsot the buffers sgl pages as block 6342 * @phba: pointer to lpfc hba data structure. 6343 * @pring: Pointer to driver SLI ring object. 6344 * @sgl_list: linked link of sgl buffers to post 6345 * @cnt: number of linked list buffers 6346 * 6347 * This routine walks the list of buffers that have been allocated and 6348 * repost them to the port by using SGL block post. This is needed after a 6349 * pci_function_reset/warm_start or start. It attempts to construct blocks 6350 * of buffer sgls which contains contiguous xris and uses the non-embedded 6351 * SGL block post mailbox commands to post them to the port. For single 6352 * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post 6353 * mailbox command for posting. 6354 * 6355 * Returns: 0 = success, non-zero failure. 6356 **/ 6357 static int 6358 lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, 6359 struct list_head *sgl_list, int cnt) 6360 { 6361 struct lpfc_sglq *sglq_entry = NULL; 6362 struct lpfc_sglq *sglq_entry_next = NULL; 6363 struct lpfc_sglq *sglq_entry_first = NULL; 6364 int status, total_cnt; 6365 int post_cnt = 0, num_posted = 0, block_cnt = 0; 6366 int last_xritag = NO_XRI; 6367 LIST_HEAD(prep_sgl_list); 6368 LIST_HEAD(blck_sgl_list); 6369 LIST_HEAD(allc_sgl_list); 6370 LIST_HEAD(post_sgl_list); 6371 LIST_HEAD(free_sgl_list); 6372 6373 spin_lock_irq(&phba->hbalock); 6374 spin_lock(&phba->sli4_hba.sgl_list_lock); 6375 list_splice_init(sgl_list, &allc_sgl_list); 6376 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6377 spin_unlock_irq(&phba->hbalock); 6378 6379 total_cnt = cnt; 6380 list_for_each_entry_safe(sglq_entry, sglq_entry_next, 6381 &allc_sgl_list, list) { 6382 list_del_init(&sglq_entry->list); 6383 block_cnt++; 6384 if ((last_xritag != NO_XRI) && 6385 (sglq_entry->sli4_xritag != last_xritag + 1)) { 6386 /* a hole in xri block, form a sgl posting block */ 6387 list_splice_init(&prep_sgl_list, &blck_sgl_list); 6388 post_cnt = block_cnt - 1; 6389 /* prepare list for next posting block */ 6390 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6391 block_cnt = 1; 6392 } else { 6393 /* prepare list for next posting block */ 6394 list_add_tail(&sglq_entry->list, &prep_sgl_list); 6395 /* enough sgls for non-embed sgl mbox command */ 6396 if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { 6397 list_splice_init(&prep_sgl_list, 6398 &blck_sgl_list); 6399 post_cnt = block_cnt; 6400 block_cnt = 0; 6401 } 6402 } 6403 num_posted++; 6404 6405 /* keep track of last sgl's xritag */ 6406 last_xritag = sglq_entry->sli4_xritag; 6407 6408 /* end of repost sgl list condition for buffers */ 6409 if (num_posted == total_cnt) { 6410 if (post_cnt == 0) { 6411 list_splice_init(&prep_sgl_list, 6412 &blck_sgl_list); 6413 post_cnt = block_cnt; 6414 } else if (block_cnt == 1) { 6415 status = lpfc_sli4_post_sgl(phba, 6416 sglq_entry->phys, 0, 6417 sglq_entry->sli4_xritag); 6418 if (!status) { 6419 /* successful, put sgl to posted list */ 6420 list_add_tail(&sglq_entry->list, 6421 &post_sgl_list); 6422 } else { 6423 /* Failure, put sgl to free list */ 6424 lpfc_printf_log(phba, KERN_WARNING, 6425 LOG_SLI, 6426 "3159 Failed to post " 6427 "sgl, xritag:x%x\n", 6428 sglq_entry->sli4_xritag); 6429 list_add_tail(&sglq_entry->list, 6430 &free_sgl_list); 6431 total_cnt--; 6432 } 6433 } 6434 } 6435 6436 /* continue until a nembed page worth of sgls */ 6437 if (post_cnt == 0) 6438 continue; 6439 6440 /* post the buffer list sgls as a block */ 6441 status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, 6442 post_cnt); 6443 6444 if (!status) { 6445 /* success, put sgl list to posted sgl list */ 6446 list_splice_init(&blck_sgl_list, &post_sgl_list); 6447 } else { 6448 /* Failure, put sgl list to free sgl list */ 6449 sglq_entry_first = list_first_entry(&blck_sgl_list, 6450 struct lpfc_sglq, 6451 list); 6452 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 6453 "3160 Failed to post sgl-list, " 6454 "xritag:x%x-x%x\n", 6455 sglq_entry_first->sli4_xritag, 6456 (sglq_entry_first->sli4_xritag + 6457 post_cnt - 1)); 6458 list_splice_init(&blck_sgl_list, &free_sgl_list); 6459 total_cnt -= post_cnt; 6460 } 6461 6462 /* don't reset xirtag due to hole in xri block */ 6463 if (block_cnt == 0) 6464 last_xritag = NO_XRI; 6465 6466 /* reset sgl post count for next round of posting */ 6467 post_cnt = 0; 6468 } 6469 6470 /* free the sgls failed to post */ 6471 lpfc_free_sgl_list(phba, &free_sgl_list); 6472 6473 /* push sgls posted to the available list */ 6474 if (!list_empty(&post_sgl_list)) { 6475 spin_lock_irq(&phba->hbalock); 6476 spin_lock(&phba->sli4_hba.sgl_list_lock); 6477 list_splice_init(&post_sgl_list, sgl_list); 6478 spin_unlock(&phba->sli4_hba.sgl_list_lock); 6479 spin_unlock_irq(&phba->hbalock); 6480 } else { 6481 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 6482 "3161 Failure to post sgl to port.\n"); 6483 return -EIO; 6484 } 6485 6486 /* return the number of XRIs actually posted */ 6487 return total_cnt; 6488 } 6489 6490 void 6491 lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 6492 { 6493 uint32_t len; 6494 6495 len = sizeof(struct lpfc_mbx_set_host_data) - 6496 sizeof(struct lpfc_sli4_cfg_mhdr); 6497 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 6498 LPFC_MBOX_OPCODE_SET_HOST_DATA, len, 6499 LPFC_SLI4_MBX_EMBED); 6500 6501 mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; 6502 mbox->u.mqe.un.set_host_data.param_len = 6503 LPFC_HOST_OS_DRIVER_VERSION_SIZE; 6504 snprintf(mbox->u.mqe.un.set_host_data.data, 6505 LPFC_HOST_OS_DRIVER_VERSION_SIZE, 6506 "Linux %s v"LPFC_DRIVER_VERSION, 6507 (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); 6508 } 6509 6510 /** 6511 * lpfc_sli4_hba_setup - SLI4 device initialization PCI function 6512 * @phba: Pointer to HBA context object. 6513 * 6514 * This function is the main SLI4 device initialization PCI function. This 6515 * function is called by the HBA initialization code, HBA reset code and 6516 * HBA error attention handler code. Caller is not required to hold any 6517 * locks. 6518 **/ 6519 int 6520 lpfc_sli4_hba_setup(struct lpfc_hba *phba) 6521 { 6522 int rc, i; 6523 LPFC_MBOXQ_t *mboxq; 6524 struct lpfc_mqe *mqe; 6525 uint8_t *vpd; 6526 uint32_t vpd_size; 6527 uint32_t ftr_rsp = 0; 6528 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); 6529 struct lpfc_vport *vport = phba->pport; 6530 struct lpfc_dmabuf *mp; 6531 struct lpfc_rqb *rqbp; 6532 6533 /* Perform a PCI function reset to start from clean */ 6534 rc = lpfc_pci_function_reset(phba); 6535 if (unlikely(rc)) 6536 return -ENODEV; 6537 6538 /* Check the HBA Host Status Register for readyness */ 6539 rc = lpfc_sli4_post_status_check(phba); 6540 if (unlikely(rc)) 6541 return -ENODEV; 6542 else { 6543 spin_lock_irq(&phba->hbalock); 6544 phba->sli.sli_flag |= LPFC_SLI_ACTIVE; 6545 spin_unlock_irq(&phba->hbalock); 6546 } 6547 6548 /* 6549 * Allocate a single mailbox container for initializing the 6550 * port. 6551 */ 6552 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 6553 if (!mboxq) 6554 return -ENOMEM; 6555 6556 /* Issue READ_REV to collect vpd and FW information. */ 6557 vpd_size = SLI4_PAGE_SIZE; 6558 vpd = kzalloc(vpd_size, GFP_KERNEL); 6559 if (!vpd) { 6560 rc = -ENOMEM; 6561 goto out_free_mbox; 6562 } 6563 6564 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); 6565 if (unlikely(rc)) { 6566 kfree(vpd); 6567 goto out_free_mbox; 6568 } 6569 6570 mqe = &mboxq->u.mqe; 6571 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); 6572 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { 6573 phba->hba_flag |= HBA_FCOE_MODE; 6574 phba->fcp_embed_io = 0; /* SLI4 FC support only */ 6575 } else { 6576 phba->hba_flag &= ~HBA_FCOE_MODE; 6577 } 6578 6579 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == 6580 LPFC_DCBX_CEE_MODE) 6581 phba->hba_flag |= HBA_FIP_SUPPORT; 6582 else 6583 phba->hba_flag &= ~HBA_FIP_SUPPORT; 6584 6585 phba->hba_flag &= ~HBA_FCP_IOQ_FLUSH; 6586 6587 if (phba->sli_rev != LPFC_SLI_REV4) { 6588 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6589 "0376 READ_REV Error. SLI Level %d " 6590 "FCoE enabled %d\n", 6591 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); 6592 rc = -EIO; 6593 kfree(vpd); 6594 goto out_free_mbox; 6595 } 6596 6597 /* 6598 * Continue initialization with default values even if driver failed 6599 * to read FCoE param config regions, only read parameters if the 6600 * board is FCoE 6601 */ 6602 if (phba->hba_flag & HBA_FCOE_MODE && 6603 lpfc_sli4_read_fcoe_params(phba)) 6604 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, 6605 "2570 Failed to read FCoE parameters\n"); 6606 6607 /* 6608 * Retrieve sli4 device physical port name, failure of doing it 6609 * is considered as non-fatal. 6610 */ 6611 rc = lpfc_sli4_retrieve_pport_name(phba); 6612 if (!rc) 6613 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6614 "3080 Successful retrieving SLI4 device " 6615 "physical port name: %s.\n", phba->Port); 6616 6617 /* 6618 * Evaluate the read rev and vpd data. Populate the driver 6619 * state with the results. If this routine fails, the failure 6620 * is not fatal as the driver will use generic values. 6621 */ 6622 rc = lpfc_parse_vpd(phba, vpd, vpd_size); 6623 if (unlikely(!rc)) { 6624 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6625 "0377 Error %d parsing vpd. " 6626 "Using defaults.\n", rc); 6627 rc = 0; 6628 } 6629 kfree(vpd); 6630 6631 /* Save information as VPD data */ 6632 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; 6633 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; 6634 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; 6635 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, 6636 &mqe->un.read_rev); 6637 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, 6638 &mqe->un.read_rev); 6639 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, 6640 &mqe->un.read_rev); 6641 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, 6642 &mqe->un.read_rev); 6643 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; 6644 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); 6645 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; 6646 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); 6647 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; 6648 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); 6649 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 6650 "(%d):0380 READ_REV Status x%x " 6651 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", 6652 mboxq->vport ? mboxq->vport->vpi : 0, 6653 bf_get(lpfc_mqe_status, mqe), 6654 phba->vpd.rev.opFwName, 6655 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, 6656 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); 6657 6658 /* Reset the DFT_LUN_Q_DEPTH to (max xri >> 3) */ 6659 rc = (phba->sli4_hba.max_cfg_param.max_xri >> 3); 6660 if (phba->pport->cfg_lun_queue_depth > rc) { 6661 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 6662 "3362 LUN queue depth changed from %d to %d\n", 6663 phba->pport->cfg_lun_queue_depth, rc); 6664 phba->pport->cfg_lun_queue_depth = rc; 6665 } 6666 6667 if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == 6668 LPFC_SLI_INTF_IF_TYPE_0) { 6669 lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); 6670 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6671 if (rc == MBX_SUCCESS) { 6672 phba->hba_flag |= HBA_RECOVERABLE_UE; 6673 /* Set 1Sec interval to detect UE */ 6674 phba->eratt_poll_interval = 1; 6675 phba->sli4_hba.ue_to_sr = bf_get( 6676 lpfc_mbx_set_feature_UESR, 6677 &mboxq->u.mqe.un.set_feature); 6678 phba->sli4_hba.ue_to_rp = bf_get( 6679 lpfc_mbx_set_feature_UERP, 6680 &mboxq->u.mqe.un.set_feature); 6681 } 6682 } 6683 6684 if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { 6685 /* Enable MDS Diagnostics only if the SLI Port supports it */ 6686 lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); 6687 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6688 if (rc != MBX_SUCCESS) 6689 phba->mds_diags_support = 0; 6690 } 6691 6692 /* 6693 * Discover the port's supported feature set and match it against the 6694 * hosts requests. 6695 */ 6696 lpfc_request_features(phba, mboxq); 6697 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6698 if (unlikely(rc)) { 6699 rc = -EIO; 6700 goto out_free_mbox; 6701 } 6702 6703 /* 6704 * The port must support FCP initiator mode as this is the 6705 * only mode running in the host. 6706 */ 6707 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { 6708 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6709 "0378 No support for fcpi mode.\n"); 6710 ftr_rsp++; 6711 } 6712 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) 6713 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; 6714 else 6715 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; 6716 /* 6717 * If the port cannot support the host's requested features 6718 * then turn off the global config parameters to disable the 6719 * feature in the driver. This is not a fatal error. 6720 */ 6721 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; 6722 if (phba->cfg_enable_bg) { 6723 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)) 6724 phba->sli3_options |= LPFC_SLI3_BG_ENABLED; 6725 else 6726 ftr_rsp++; 6727 } 6728 6729 if (phba->max_vpi && phba->cfg_enable_npiv && 6730 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6731 ftr_rsp++; 6732 6733 if (ftr_rsp) { 6734 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6735 "0379 Feature Mismatch Data: x%08x %08x " 6736 "x%x x%x x%x\n", mqe->un.req_ftrs.word2, 6737 mqe->un.req_ftrs.word3, phba->cfg_enable_bg, 6738 phba->cfg_enable_npiv, phba->max_vpi); 6739 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) 6740 phba->cfg_enable_bg = 0; 6741 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) 6742 phba->cfg_enable_npiv = 0; 6743 } 6744 6745 /* These SLI3 features are assumed in SLI4 */ 6746 spin_lock_irq(&phba->hbalock); 6747 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); 6748 spin_unlock_irq(&phba->hbalock); 6749 6750 /* 6751 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent 6752 * calls depends on these resources to complete port setup. 6753 */ 6754 rc = lpfc_sli4_alloc_resource_identifiers(phba); 6755 if (rc) { 6756 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6757 "2920 Failed to alloc Resource IDs " 6758 "rc = x%x\n", rc); 6759 goto out_free_mbox; 6760 } 6761 6762 lpfc_set_host_data(phba, mboxq); 6763 6764 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6765 if (rc) { 6766 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 6767 "2134 Failed to set host os driver version %x", 6768 rc); 6769 } 6770 6771 /* Read the port's service parameters. */ 6772 rc = lpfc_read_sparam(phba, mboxq, vport->vpi); 6773 if (rc) { 6774 phba->link_state = LPFC_HBA_ERROR; 6775 rc = -ENOMEM; 6776 goto out_free_mbox; 6777 } 6778 6779 mboxq->vport = vport; 6780 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6781 mp = (struct lpfc_dmabuf *) mboxq->context1; 6782 if (rc == MBX_SUCCESS) { 6783 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); 6784 rc = 0; 6785 } 6786 6787 /* 6788 * This memory was allocated by the lpfc_read_sparam routine. Release 6789 * it to the mbuf pool. 6790 */ 6791 lpfc_mbuf_free(phba, mp->virt, mp->phys); 6792 kfree(mp); 6793 mboxq->context1 = NULL; 6794 if (unlikely(rc)) { 6795 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6796 "0382 READ_SPARAM command failed " 6797 "status %d, mbxStatus x%x\n", 6798 rc, bf_get(lpfc_mqe_status, mqe)); 6799 phba->link_state = LPFC_HBA_ERROR; 6800 rc = -EIO; 6801 goto out_free_mbox; 6802 } 6803 6804 lpfc_update_vport_wwn(vport); 6805 6806 /* Update the fc_host data structures with new wwn. */ 6807 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); 6808 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); 6809 6810 /* Create all the SLI4 queues */ 6811 rc = lpfc_sli4_queue_create(phba); 6812 if (rc) { 6813 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 6814 "3089 Failed to allocate queues\n"); 6815 rc = -ENODEV; 6816 goto out_free_mbox; 6817 } 6818 /* Set up all the queues to the device */ 6819 rc = lpfc_sli4_queue_setup(phba); 6820 if (unlikely(rc)) { 6821 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6822 "0381 Error %d during queue setup.\n ", rc); 6823 goto out_stop_timers; 6824 } 6825 /* Initialize the driver internal SLI layer lists. */ 6826 lpfc_sli4_setup(phba); 6827 lpfc_sli4_queue_init(phba); 6828 6829 /* update host els xri-sgl sizes and mappings */ 6830 rc = lpfc_sli4_els_sgl_update(phba); 6831 if (unlikely(rc)) { 6832 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6833 "1400 Failed to update xri-sgl size and " 6834 "mapping: %d\n", rc); 6835 goto out_destroy_queue; 6836 } 6837 6838 /* register the els sgl pool to the port */ 6839 rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, 6840 phba->sli4_hba.els_xri_cnt); 6841 if (unlikely(rc < 0)) { 6842 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6843 "0582 Error %d during els sgl post " 6844 "operation\n", rc); 6845 rc = -ENODEV; 6846 goto out_destroy_queue; 6847 } 6848 phba->sli4_hba.els_xri_cnt = rc; 6849 6850 if (phba->nvmet_support) { 6851 /* update host nvmet xri-sgl sizes and mappings */ 6852 rc = lpfc_sli4_nvmet_sgl_update(phba); 6853 if (unlikely(rc)) { 6854 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6855 "6308 Failed to update nvmet-sgl size " 6856 "and mapping: %d\n", rc); 6857 goto out_destroy_queue; 6858 } 6859 6860 /* register the nvmet sgl pool to the port */ 6861 rc = lpfc_sli4_repost_sgl_list( 6862 phba, 6863 &phba->sli4_hba.lpfc_nvmet_sgl_list, 6864 phba->sli4_hba.nvmet_xri_cnt); 6865 if (unlikely(rc < 0)) { 6866 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6867 "3117 Error %d during nvmet " 6868 "sgl post\n", rc); 6869 rc = -ENODEV; 6870 goto out_destroy_queue; 6871 } 6872 phba->sli4_hba.nvmet_xri_cnt = rc; 6873 lpfc_nvmet_create_targetport(phba); 6874 } else { 6875 /* update host scsi xri-sgl sizes and mappings */ 6876 rc = lpfc_sli4_scsi_sgl_update(phba); 6877 if (unlikely(rc)) { 6878 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6879 "6309 Failed to update scsi-sgl size " 6880 "and mapping: %d\n", rc); 6881 goto out_destroy_queue; 6882 } 6883 6884 /* update host nvme xri-sgl sizes and mappings */ 6885 rc = lpfc_sli4_nvme_sgl_update(phba); 6886 if (unlikely(rc)) { 6887 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6888 "6082 Failed to update nvme-sgl size " 6889 "and mapping: %d\n", rc); 6890 goto out_destroy_queue; 6891 } 6892 } 6893 6894 if (phba->nvmet_support && phba->cfg_nvmet_mrq) { 6895 6896 /* Post initial buffers to all RQs created */ 6897 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 6898 rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; 6899 INIT_LIST_HEAD(&rqbp->rqb_buffer_list); 6900 rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; 6901 rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; 6902 rqbp->entry_count = 256; 6903 rqbp->buffer_count = 0; 6904 6905 /* Divide by 4 and round down to multiple of 16 */ 6906 rc = (phba->cfg_nvmet_mrq_post >> 2) & 0xfff8; 6907 phba->sli4_hba.nvmet_mrq_hdr[i]->entry_repost = rc; 6908 phba->sli4_hba.nvmet_mrq_data[i]->entry_repost = rc; 6909 6910 lpfc_post_rq_buffer( 6911 phba, phba->sli4_hba.nvmet_mrq_hdr[i], 6912 phba->sli4_hba.nvmet_mrq_data[i], 6913 phba->cfg_nvmet_mrq_post); 6914 } 6915 } 6916 6917 if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { 6918 /* register the allocated scsi sgl pool to the port */ 6919 rc = lpfc_sli4_repost_scsi_sgl_list(phba); 6920 if (unlikely(rc)) { 6921 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6922 "0383 Error %d during scsi sgl post " 6923 "operation\n", rc); 6924 /* Some Scsi buffers were moved to abort scsi list */ 6925 /* A pci function reset will repost them */ 6926 rc = -ENODEV; 6927 goto out_destroy_queue; 6928 } 6929 } 6930 6931 if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && 6932 (phba->nvmet_support == 0)) { 6933 6934 /* register the allocated nvme sgl pool to the port */ 6935 rc = lpfc_repost_nvme_sgl_list(phba); 6936 if (unlikely(rc)) { 6937 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6938 "6116 Error %d during nvme sgl post " 6939 "operation\n", rc); 6940 /* Some NVME buffers were moved to abort nvme list */ 6941 /* A pci function reset will repost them */ 6942 rc = -ENODEV; 6943 goto out_destroy_queue; 6944 } 6945 } 6946 6947 /* Post the rpi header region to the device. */ 6948 rc = lpfc_sli4_post_all_rpi_hdrs(phba); 6949 if (unlikely(rc)) { 6950 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 6951 "0393 Error %d during rpi post operation\n", 6952 rc); 6953 rc = -ENODEV; 6954 goto out_destroy_queue; 6955 } 6956 lpfc_sli4_node_prep(phba); 6957 6958 if (!(phba->hba_flag & HBA_FCOE_MODE)) { 6959 if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { 6960 /* 6961 * The FC Port needs to register FCFI (index 0) 6962 */ 6963 lpfc_reg_fcfi(phba, mboxq); 6964 mboxq->vport = phba->pport; 6965 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6966 if (rc != MBX_SUCCESS) 6967 goto out_unset_queue; 6968 rc = 0; 6969 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, 6970 &mboxq->u.mqe.un.reg_fcfi); 6971 } else { 6972 /* We are a NVME Target mode with MRQ > 1 */ 6973 6974 /* First register the FCFI */ 6975 lpfc_reg_fcfi_mrq(phba, mboxq, 0); 6976 mboxq->vport = phba->pport; 6977 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6978 if (rc != MBX_SUCCESS) 6979 goto out_unset_queue; 6980 rc = 0; 6981 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, 6982 &mboxq->u.mqe.un.reg_fcfi_mrq); 6983 6984 /* Next register the MRQs */ 6985 lpfc_reg_fcfi_mrq(phba, mboxq, 1); 6986 mboxq->vport = phba->pport; 6987 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 6988 if (rc != MBX_SUCCESS) 6989 goto out_unset_queue; 6990 rc = 0; 6991 } 6992 /* Check if the port is configured to be disabled */ 6993 lpfc_sli_read_link_ste(phba); 6994 } 6995 6996 /* Arm the CQs and then EQs on device */ 6997 lpfc_sli4_arm_cqeq_intr(phba); 6998 6999 /* Indicate device interrupt mode */ 7000 phba->sli4_hba.intr_enable = 1; 7001 7002 /* Allow asynchronous mailbox command to go through */ 7003 spin_lock_irq(&phba->hbalock); 7004 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7005 spin_unlock_irq(&phba->hbalock); 7006 7007 /* Post receive buffers to the device */ 7008 lpfc_sli4_rb_setup(phba); 7009 7010 /* Reset HBA FCF states after HBA reset */ 7011 phba->fcf.fcf_flag = 0; 7012 phba->fcf.current_rec.flag = 0; 7013 7014 /* Start the ELS watchdog timer */ 7015 mod_timer(&vport->els_tmofunc, 7016 jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); 7017 7018 /* Start heart beat timer */ 7019 mod_timer(&phba->hb_tmofunc, 7020 jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); 7021 phba->hb_outstanding = 0; 7022 phba->last_completion_time = jiffies; 7023 7024 /* Start error attention (ERATT) polling timer */ 7025 mod_timer(&phba->eratt_poll, 7026 jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); 7027 7028 /* Enable PCIe device Advanced Error Reporting (AER) if configured */ 7029 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { 7030 rc = pci_enable_pcie_error_reporting(phba->pcidev); 7031 if (!rc) { 7032 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7033 "2829 This device supports " 7034 "Advanced Error Reporting (AER)\n"); 7035 spin_lock_irq(&phba->hbalock); 7036 phba->hba_flag |= HBA_AER_ENABLED; 7037 spin_unlock_irq(&phba->hbalock); 7038 } else { 7039 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 7040 "2830 This device does not support " 7041 "Advanced Error Reporting (AER)\n"); 7042 phba->cfg_aer_support = 0; 7043 } 7044 rc = 0; 7045 } 7046 7047 /* 7048 * The port is ready, set the host's link state to LINK_DOWN 7049 * in preparation for link interrupts. 7050 */ 7051 spin_lock_irq(&phba->hbalock); 7052 phba->link_state = LPFC_LINK_DOWN; 7053 spin_unlock_irq(&phba->hbalock); 7054 if (!(phba->hba_flag & HBA_FCOE_MODE) && 7055 (phba->hba_flag & LINK_DISABLED)) { 7056 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7057 "3103 Adapter Link is disabled.\n"); 7058 lpfc_down_link(phba, mboxq); 7059 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 7060 if (rc != MBX_SUCCESS) { 7061 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI, 7062 "3104 Adapter failed to issue " 7063 "DOWN_LINK mbox cmd, rc:x%x\n", rc); 7064 goto out_unset_queue; 7065 } 7066 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { 7067 /* don't perform init_link on SLI4 FC port loopback test */ 7068 if (!(phba->link_flag & LS_LOOPBACK_MODE)) { 7069 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); 7070 if (rc) 7071 goto out_unset_queue; 7072 } 7073 } 7074 mempool_free(mboxq, phba->mbox_mem_pool); 7075 return rc; 7076 out_unset_queue: 7077 /* Unset all the queues set up in this routine when error out */ 7078 lpfc_sli4_queue_unset(phba); 7079 out_destroy_queue: 7080 lpfc_sli4_queue_destroy(phba); 7081 out_stop_timers: 7082 lpfc_stop_hba_timers(phba); 7083 out_free_mbox: 7084 mempool_free(mboxq, phba->mbox_mem_pool); 7085 return rc; 7086 } 7087 7088 /** 7089 * lpfc_mbox_timeout - Timeout call back function for mbox timer 7090 * @ptr: context object - pointer to hba structure. 7091 * 7092 * This is the callback function for mailbox timer. The mailbox 7093 * timer is armed when a new mailbox command is issued and the timer 7094 * is deleted when the mailbox complete. The function is called by 7095 * the kernel timer code when a mailbox does not complete within 7096 * expected time. This function wakes up the worker thread to 7097 * process the mailbox timeout and returns. All the processing is 7098 * done by the worker thread function lpfc_mbox_timeout_handler. 7099 **/ 7100 void 7101 lpfc_mbox_timeout(unsigned long ptr) 7102 { 7103 struct lpfc_hba *phba = (struct lpfc_hba *) ptr; 7104 unsigned long iflag; 7105 uint32_t tmo_posted; 7106 7107 spin_lock_irqsave(&phba->pport->work_port_lock, iflag); 7108 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; 7109 if (!tmo_posted) 7110 phba->pport->work_port_events |= WORKER_MBOX_TMO; 7111 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); 7112 7113 if (!tmo_posted) 7114 lpfc_worker_wake_up(phba); 7115 return; 7116 } 7117 7118 /** 7119 * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions 7120 * are pending 7121 * @phba: Pointer to HBA context object. 7122 * 7123 * This function checks if any mailbox completions are present on the mailbox 7124 * completion queue. 7125 **/ 7126 static bool 7127 lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) 7128 { 7129 7130 uint32_t idx; 7131 struct lpfc_queue *mcq; 7132 struct lpfc_mcqe *mcqe; 7133 bool pending_completions = false; 7134 7135 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7136 return false; 7137 7138 /* Check for completions on mailbox completion queue */ 7139 7140 mcq = phba->sli4_hba.mbx_cq; 7141 idx = mcq->hba_index; 7142 while (bf_get_le32(lpfc_cqe_valid, mcq->qe[idx].cqe)) { 7143 mcqe = (struct lpfc_mcqe *)mcq->qe[idx].cqe; 7144 if (bf_get_le32(lpfc_trailer_completed, mcqe) && 7145 (!bf_get_le32(lpfc_trailer_async, mcqe))) { 7146 pending_completions = true; 7147 break; 7148 } 7149 idx = (idx + 1) % mcq->entry_count; 7150 if (mcq->hba_index == idx) 7151 break; 7152 } 7153 return pending_completions; 7154 7155 } 7156 7157 /** 7158 * lpfc_sli4_process_missed_mbox_completions - process mbox completions 7159 * that were missed. 7160 * @phba: Pointer to HBA context object. 7161 * 7162 * For sli4, it is possible to miss an interrupt. As such mbox completions 7163 * maybe missed causing erroneous mailbox timeouts to occur. This function 7164 * checks to see if mbox completions are on the mailbox completion queue 7165 * and will process all the completions associated with the eq for the 7166 * mailbox completion queue. 7167 **/ 7168 bool 7169 lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) 7170 { 7171 7172 uint32_t eqidx; 7173 struct lpfc_queue *fpeq = NULL; 7174 struct lpfc_eqe *eqe; 7175 bool mbox_pending; 7176 7177 if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) 7178 return false; 7179 7180 /* Find the eq associated with the mcq */ 7181 7182 if (phba->sli4_hba.hba_eq) 7183 for (eqidx = 0; eqidx < phba->io_channel_irqs; eqidx++) 7184 if (phba->sli4_hba.hba_eq[eqidx]->queue_id == 7185 phba->sli4_hba.mbx_cq->assoc_qid) { 7186 fpeq = phba->sli4_hba.hba_eq[eqidx]; 7187 break; 7188 } 7189 if (!fpeq) 7190 return false; 7191 7192 /* Turn off interrupts from this EQ */ 7193 7194 lpfc_sli4_eq_clr_intr(fpeq); 7195 7196 /* Check to see if a mbox completion is pending */ 7197 7198 mbox_pending = lpfc_sli4_mbox_completions_pending(phba); 7199 7200 /* 7201 * If a mbox completion is pending, process all the events on EQ 7202 * associated with the mbox completion queue (this could include 7203 * mailbox commands, async events, els commands, receive queue data 7204 * and fcp commands) 7205 */ 7206 7207 if (mbox_pending) 7208 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 7209 lpfc_sli4_hba_handle_eqe(phba, eqe, eqidx); 7210 fpeq->EQ_processed++; 7211 } 7212 7213 /* Always clear and re-arm the EQ */ 7214 7215 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 7216 7217 return mbox_pending; 7218 7219 } 7220 7221 /** 7222 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout 7223 * @phba: Pointer to HBA context object. 7224 * 7225 * This function is called from worker thread when a mailbox command times out. 7226 * The caller is not required to hold any locks. This function will reset the 7227 * HBA and recover all the pending commands. 7228 **/ 7229 void 7230 lpfc_mbox_timeout_handler(struct lpfc_hba *phba) 7231 { 7232 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; 7233 MAILBOX_t *mb = NULL; 7234 7235 struct lpfc_sli *psli = &phba->sli; 7236 7237 /* If the mailbox completed, process the completion and return */ 7238 if (lpfc_sli4_process_missed_mbox_completions(phba)) 7239 return; 7240 7241 if (pmbox != NULL) 7242 mb = &pmbox->u.mb; 7243 /* Check the pmbox pointer first. There is a race condition 7244 * between the mbox timeout handler getting executed in the 7245 * worklist and the mailbox actually completing. When this 7246 * race condition occurs, the mbox_active will be NULL. 7247 */ 7248 spin_lock_irq(&phba->hbalock); 7249 if (pmbox == NULL) { 7250 lpfc_printf_log(phba, KERN_WARNING, 7251 LOG_MBOX | LOG_SLI, 7252 "0353 Active Mailbox cleared - mailbox timeout " 7253 "exiting\n"); 7254 spin_unlock_irq(&phba->hbalock); 7255 return; 7256 } 7257 7258 /* Mbox cmd <mbxCommand> timeout */ 7259 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7260 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n", 7261 mb->mbxCommand, 7262 phba->pport->port_state, 7263 phba->sli.sli_flag, 7264 phba->sli.mbox_active); 7265 spin_unlock_irq(&phba->hbalock); 7266 7267 /* Setting state unknown so lpfc_sli_abort_iocb_ring 7268 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing 7269 * it to fail all outstanding SCSI IO. 7270 */ 7271 spin_lock_irq(&phba->pport->work_port_lock); 7272 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 7273 spin_unlock_irq(&phba->pport->work_port_lock); 7274 spin_lock_irq(&phba->hbalock); 7275 phba->link_state = LPFC_LINK_UNKNOWN; 7276 psli->sli_flag &= ~LPFC_SLI_ACTIVE; 7277 spin_unlock_irq(&phba->hbalock); 7278 7279 lpfc_sli_abort_fcp_rings(phba); 7280 7281 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7282 "0345 Resetting board due to mailbox timeout\n"); 7283 7284 /* Reset the HBA device */ 7285 lpfc_reset_hba(phba); 7286 } 7287 7288 /** 7289 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware 7290 * @phba: Pointer to HBA context object. 7291 * @pmbox: Pointer to mailbox object. 7292 * @flag: Flag indicating how the mailbox need to be processed. 7293 * 7294 * This function is called by discovery code and HBA management code 7295 * to submit a mailbox command to firmware with SLI-3 interface spec. This 7296 * function gets the hbalock to protect the data structures. 7297 * The mailbox command can be submitted in polling mode, in which case 7298 * this function will wait in a polling loop for the completion of the 7299 * mailbox. 7300 * If the mailbox is submitted in no_wait mode (not polling) the 7301 * function will submit the command and returns immediately without waiting 7302 * for the mailbox completion. The no_wait is supported only when HBA 7303 * is in SLI2/SLI3 mode - interrupts are enabled. 7304 * The SLI interface allows only one mailbox pending at a time. If the 7305 * mailbox is issued in polling mode and there is already a mailbox 7306 * pending, then the function will return an error. If the mailbox is issued 7307 * in NO_WAIT mode and there is a mailbox pending already, the function 7308 * will return MBX_BUSY after queuing the mailbox into mailbox queue. 7309 * The sli layer owns the mailbox object until the completion of mailbox 7310 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other 7311 * return codes the caller owns the mailbox command after the return of 7312 * the function. 7313 **/ 7314 static int 7315 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, 7316 uint32_t flag) 7317 { 7318 MAILBOX_t *mbx; 7319 struct lpfc_sli *psli = &phba->sli; 7320 uint32_t status, evtctr; 7321 uint32_t ha_copy, hc_copy; 7322 int i; 7323 unsigned long timeout; 7324 unsigned long drvr_flag = 0; 7325 uint32_t word0, ldata; 7326 void __iomem *to_slim; 7327 int processing_queue = 0; 7328 7329 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7330 if (!pmbox) { 7331 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7332 /* processing mbox queue from intr_handler */ 7333 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7334 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7335 return MBX_SUCCESS; 7336 } 7337 processing_queue = 1; 7338 pmbox = lpfc_mbox_get(phba); 7339 if (!pmbox) { 7340 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7341 return MBX_SUCCESS; 7342 } 7343 } 7344 7345 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && 7346 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { 7347 if(!pmbox->vport) { 7348 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7349 lpfc_printf_log(phba, KERN_ERR, 7350 LOG_MBOX | LOG_VPORT, 7351 "1806 Mbox x%x failed. No vport\n", 7352 pmbox->u.mb.mbxCommand); 7353 dump_stack(); 7354 goto out_not_finished; 7355 } 7356 } 7357 7358 /* If the PCI channel is in offline state, do not post mbox. */ 7359 if (unlikely(pci_channel_offline(phba->pcidev))) { 7360 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7361 goto out_not_finished; 7362 } 7363 7364 /* If HBA has a deferred error attention, fail the iocb. */ 7365 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 7366 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7367 goto out_not_finished; 7368 } 7369 7370 psli = &phba->sli; 7371 7372 mbx = &pmbox->u.mb; 7373 status = MBX_SUCCESS; 7374 7375 if (phba->link_state == LPFC_HBA_ERROR) { 7376 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7377 7378 /* Mbox command <mbxCommand> cannot issue */ 7379 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7380 "(%d):0311 Mailbox command x%x cannot " 7381 "issue Data: x%x x%x\n", 7382 pmbox->vport ? pmbox->vport->vpi : 0, 7383 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7384 goto out_not_finished; 7385 } 7386 7387 if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { 7388 if (lpfc_readl(phba->HCregaddr, &hc_copy) || 7389 !(hc_copy & HC_MBINT_ENA)) { 7390 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7391 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7392 "(%d):2528 Mailbox command x%x cannot " 7393 "issue Data: x%x x%x\n", 7394 pmbox->vport ? pmbox->vport->vpi : 0, 7395 pmbox->u.mb.mbxCommand, psli->sli_flag, flag); 7396 goto out_not_finished; 7397 } 7398 } 7399 7400 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7401 /* Polling for a mbox command when another one is already active 7402 * is not allowed in SLI. Also, the driver must have established 7403 * SLI2 mode to queue and process multiple mbox commands. 7404 */ 7405 7406 if (flag & MBX_POLL) { 7407 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7408 7409 /* Mbox command <mbxCommand> cannot issue */ 7410 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7411 "(%d):2529 Mailbox command x%x " 7412 "cannot issue Data: x%x x%x\n", 7413 pmbox->vport ? pmbox->vport->vpi : 0, 7414 pmbox->u.mb.mbxCommand, 7415 psli->sli_flag, flag); 7416 goto out_not_finished; 7417 } 7418 7419 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { 7420 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7421 /* Mbox command <mbxCommand> cannot issue */ 7422 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7423 "(%d):2530 Mailbox command x%x " 7424 "cannot issue Data: x%x x%x\n", 7425 pmbox->vport ? pmbox->vport->vpi : 0, 7426 pmbox->u.mb.mbxCommand, 7427 psli->sli_flag, flag); 7428 goto out_not_finished; 7429 } 7430 7431 /* Another mailbox command is still being processed, queue this 7432 * command to be processed later. 7433 */ 7434 lpfc_mbox_put(phba, pmbox); 7435 7436 /* Mbox cmd issue - BUSY */ 7437 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7438 "(%d):0308 Mbox cmd issue - BUSY Data: " 7439 "x%x x%x x%x x%x\n", 7440 pmbox->vport ? pmbox->vport->vpi : 0xffffff, 7441 mbx->mbxCommand, phba->pport->port_state, 7442 psli->sli_flag, flag); 7443 7444 psli->slistat.mbox_busy++; 7445 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7446 7447 if (pmbox->vport) { 7448 lpfc_debugfs_disc_trc(pmbox->vport, 7449 LPFC_DISC_TRC_MBOX_VPORT, 7450 "MBOX Bsy vport: cmd:x%x mb:x%x x%x", 7451 (uint32_t)mbx->mbxCommand, 7452 mbx->un.varWords[0], mbx->un.varWords[1]); 7453 } 7454 else { 7455 lpfc_debugfs_disc_trc(phba->pport, 7456 LPFC_DISC_TRC_MBOX, 7457 "MBOX Bsy: cmd:x%x mb:x%x x%x", 7458 (uint32_t)mbx->mbxCommand, 7459 mbx->un.varWords[0], mbx->un.varWords[1]); 7460 } 7461 7462 return MBX_BUSY; 7463 } 7464 7465 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7466 7467 /* If we are not polling, we MUST be in SLI2 mode */ 7468 if (flag != MBX_POLL) { 7469 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && 7470 (mbx->mbxCommand != MBX_KILL_BOARD)) { 7471 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7472 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7473 /* Mbox command <mbxCommand> cannot issue */ 7474 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7475 "(%d):2531 Mailbox command x%x " 7476 "cannot issue Data: x%x x%x\n", 7477 pmbox->vport ? pmbox->vport->vpi : 0, 7478 pmbox->u.mb.mbxCommand, 7479 psli->sli_flag, flag); 7480 goto out_not_finished; 7481 } 7482 /* timeout active mbox command */ 7483 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7484 1000); 7485 mod_timer(&psli->mbox_tmo, jiffies + timeout); 7486 } 7487 7488 /* Mailbox cmd <cmd> issue */ 7489 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7490 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " 7491 "x%x\n", 7492 pmbox->vport ? pmbox->vport->vpi : 0, 7493 mbx->mbxCommand, phba->pport->port_state, 7494 psli->sli_flag, flag); 7495 7496 if (mbx->mbxCommand != MBX_HEARTBEAT) { 7497 if (pmbox->vport) { 7498 lpfc_debugfs_disc_trc(pmbox->vport, 7499 LPFC_DISC_TRC_MBOX_VPORT, 7500 "MBOX Send vport: cmd:x%x mb:x%x x%x", 7501 (uint32_t)mbx->mbxCommand, 7502 mbx->un.varWords[0], mbx->un.varWords[1]); 7503 } 7504 else { 7505 lpfc_debugfs_disc_trc(phba->pport, 7506 LPFC_DISC_TRC_MBOX, 7507 "MBOX Send: cmd:x%x mb:x%x x%x", 7508 (uint32_t)mbx->mbxCommand, 7509 mbx->un.varWords[0], mbx->un.varWords[1]); 7510 } 7511 } 7512 7513 psli->slistat.mbox_cmd++; 7514 evtctr = psli->slistat.mbox_event; 7515 7516 /* next set own bit for the adapter and copy over command word */ 7517 mbx->mbxOwner = OWN_CHIP; 7518 7519 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7520 /* Populate mbox extension offset word. */ 7521 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { 7522 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7523 = (uint8_t *)phba->mbox_ext 7524 - (uint8_t *)phba->mbox; 7525 } 7526 7527 /* Copy the mailbox extension data */ 7528 if (pmbox->in_ext_byte_len && pmbox->context2) { 7529 lpfc_sli_pcimem_bcopy(pmbox->context2, 7530 (uint8_t *)phba->mbox_ext, 7531 pmbox->in_ext_byte_len); 7532 } 7533 /* Copy command data to host SLIM area */ 7534 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); 7535 } else { 7536 /* Populate mbox extension offset word. */ 7537 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) 7538 *(((uint32_t *)mbx) + pmbox->mbox_offset_word) 7539 = MAILBOX_HBA_EXT_OFFSET; 7540 7541 /* Copy the mailbox extension data */ 7542 if (pmbox->in_ext_byte_len && pmbox->context2) 7543 lpfc_memcpy_to_slim(phba->MBslimaddr + 7544 MAILBOX_HBA_EXT_OFFSET, 7545 pmbox->context2, pmbox->in_ext_byte_len); 7546 7547 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7548 /* copy command data into host mbox for cmpl */ 7549 lpfc_sli_pcimem_bcopy(mbx, phba->mbox, 7550 MAILBOX_CMD_SIZE); 7551 7552 /* First copy mbox command data to HBA SLIM, skip past first 7553 word */ 7554 to_slim = phba->MBslimaddr + sizeof (uint32_t); 7555 lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], 7556 MAILBOX_CMD_SIZE - sizeof (uint32_t)); 7557 7558 /* Next copy over first word, with mbxOwner set */ 7559 ldata = *((uint32_t *)mbx); 7560 to_slim = phba->MBslimaddr; 7561 writel(ldata, to_slim); 7562 readl(to_slim); /* flush */ 7563 7564 if (mbx->mbxCommand == MBX_CONFIG_PORT) 7565 /* switch over to host mailbox */ 7566 psli->sli_flag |= LPFC_SLI_ACTIVE; 7567 } 7568 7569 wmb(); 7570 7571 switch (flag) { 7572 case MBX_NOWAIT: 7573 /* Set up reference to mailbox command */ 7574 psli->mbox_active = pmbox; 7575 /* Interrupt board to do it */ 7576 writel(CA_MBATT, phba->CAregaddr); 7577 readl(phba->CAregaddr); /* flush */ 7578 /* Don't wait for it to finish, just return */ 7579 break; 7580 7581 case MBX_POLL: 7582 /* Set up null reference to mailbox command */ 7583 psli->mbox_active = NULL; 7584 /* Interrupt board to do it */ 7585 writel(CA_MBATT, phba->CAregaddr); 7586 readl(phba->CAregaddr); /* flush */ 7587 7588 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7589 /* First read mbox status word */ 7590 word0 = *((uint32_t *)phba->mbox); 7591 word0 = le32_to_cpu(word0); 7592 } else { 7593 /* First read mbox status word */ 7594 if (lpfc_readl(phba->MBslimaddr, &word0)) { 7595 spin_unlock_irqrestore(&phba->hbalock, 7596 drvr_flag); 7597 goto out_not_finished; 7598 } 7599 } 7600 7601 /* Read the HBA Host Attention Register */ 7602 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7603 spin_unlock_irqrestore(&phba->hbalock, 7604 drvr_flag); 7605 goto out_not_finished; 7606 } 7607 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 7608 1000) + jiffies; 7609 i = 0; 7610 /* Wait for command to complete */ 7611 while (((word0 & OWN_CHIP) == OWN_CHIP) || 7612 (!(ha_copy & HA_MBATT) && 7613 (phba->link_state > LPFC_WARM_START))) { 7614 if (time_after(jiffies, timeout)) { 7615 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7616 spin_unlock_irqrestore(&phba->hbalock, 7617 drvr_flag); 7618 goto out_not_finished; 7619 } 7620 7621 /* Check if we took a mbox interrupt while we were 7622 polling */ 7623 if (((word0 & OWN_CHIP) != OWN_CHIP) 7624 && (evtctr != psli->slistat.mbox_event)) 7625 break; 7626 7627 if (i++ > 10) { 7628 spin_unlock_irqrestore(&phba->hbalock, 7629 drvr_flag); 7630 msleep(1); 7631 spin_lock_irqsave(&phba->hbalock, drvr_flag); 7632 } 7633 7634 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7635 /* First copy command data */ 7636 word0 = *((uint32_t *)phba->mbox); 7637 word0 = le32_to_cpu(word0); 7638 if (mbx->mbxCommand == MBX_CONFIG_PORT) { 7639 MAILBOX_t *slimmb; 7640 uint32_t slimword0; 7641 /* Check real SLIM for any errors */ 7642 slimword0 = readl(phba->MBslimaddr); 7643 slimmb = (MAILBOX_t *) & slimword0; 7644 if (((slimword0 & OWN_CHIP) != OWN_CHIP) 7645 && slimmb->mbxStatus) { 7646 psli->sli_flag &= 7647 ~LPFC_SLI_ACTIVE; 7648 word0 = slimword0; 7649 } 7650 } 7651 } else { 7652 /* First copy command data */ 7653 word0 = readl(phba->MBslimaddr); 7654 } 7655 /* Read the HBA Host Attention Register */ 7656 if (lpfc_readl(phba->HAregaddr, &ha_copy)) { 7657 spin_unlock_irqrestore(&phba->hbalock, 7658 drvr_flag); 7659 goto out_not_finished; 7660 } 7661 } 7662 7663 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 7664 /* copy results back to user */ 7665 lpfc_sli_pcimem_bcopy(phba->mbox, mbx, 7666 MAILBOX_CMD_SIZE); 7667 /* Copy the mailbox extension data */ 7668 if (pmbox->out_ext_byte_len && pmbox->context2) { 7669 lpfc_sli_pcimem_bcopy(phba->mbox_ext, 7670 pmbox->context2, 7671 pmbox->out_ext_byte_len); 7672 } 7673 } else { 7674 /* First copy command data */ 7675 lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, 7676 MAILBOX_CMD_SIZE); 7677 /* Copy the mailbox extension data */ 7678 if (pmbox->out_ext_byte_len && pmbox->context2) { 7679 lpfc_memcpy_from_slim(pmbox->context2, 7680 phba->MBslimaddr + 7681 MAILBOX_HBA_EXT_OFFSET, 7682 pmbox->out_ext_byte_len); 7683 } 7684 } 7685 7686 writel(HA_MBATT, phba->HAregaddr); 7687 readl(phba->HAregaddr); /* flush */ 7688 7689 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7690 status = mbx->mbxStatus; 7691 } 7692 7693 spin_unlock_irqrestore(&phba->hbalock, drvr_flag); 7694 return status; 7695 7696 out_not_finished: 7697 if (processing_queue) { 7698 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; 7699 lpfc_mbox_cmpl_put(phba, pmbox); 7700 } 7701 return MBX_NOT_FINISHED; 7702 } 7703 7704 /** 7705 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command 7706 * @phba: Pointer to HBA context object. 7707 * 7708 * The function blocks the posting of SLI4 asynchronous mailbox commands from 7709 * the driver internal pending mailbox queue. It will then try to wait out the 7710 * possible outstanding mailbox command before return. 7711 * 7712 * Returns: 7713 * 0 - the outstanding mailbox command completed; otherwise, the wait for 7714 * the outstanding mailbox command timed out. 7715 **/ 7716 static int 7717 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) 7718 { 7719 struct lpfc_sli *psli = &phba->sli; 7720 int rc = 0; 7721 unsigned long timeout = 0; 7722 7723 /* Mark the asynchronous mailbox command posting as blocked */ 7724 spin_lock_irq(&phba->hbalock); 7725 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 7726 /* Determine how long we might wait for the active mailbox 7727 * command to be gracefully completed by firmware. 7728 */ 7729 if (phba->sli.mbox_active) 7730 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 7731 phba->sli.mbox_active) * 7732 1000) + jiffies; 7733 spin_unlock_irq(&phba->hbalock); 7734 7735 /* Make sure the mailbox is really active */ 7736 if (timeout) 7737 lpfc_sli4_process_missed_mbox_completions(phba); 7738 7739 /* Wait for the outstnading mailbox command to complete */ 7740 while (phba->sli.mbox_active) { 7741 /* Check active mailbox complete status every 2ms */ 7742 msleep(2); 7743 if (time_after(jiffies, timeout)) { 7744 /* Timeout, marked the outstanding cmd not complete */ 7745 rc = 1; 7746 break; 7747 } 7748 } 7749 7750 /* Can not cleanly block async mailbox command, fails it */ 7751 if (rc) { 7752 spin_lock_irq(&phba->hbalock); 7753 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7754 spin_unlock_irq(&phba->hbalock); 7755 } 7756 return rc; 7757 } 7758 7759 /** 7760 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command 7761 * @phba: Pointer to HBA context object. 7762 * 7763 * The function unblocks and resume posting of SLI4 asynchronous mailbox 7764 * commands from the driver internal pending mailbox queue. It makes sure 7765 * that there is no outstanding mailbox command before resuming posting 7766 * asynchronous mailbox commands. If, for any reason, there is outstanding 7767 * mailbox command, it will try to wait it out before resuming asynchronous 7768 * mailbox command posting. 7769 **/ 7770 static void 7771 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) 7772 { 7773 struct lpfc_sli *psli = &phba->sli; 7774 7775 spin_lock_irq(&phba->hbalock); 7776 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 7777 /* Asynchronous mailbox posting is not blocked, do nothing */ 7778 spin_unlock_irq(&phba->hbalock); 7779 return; 7780 } 7781 7782 /* Outstanding synchronous mailbox command is guaranteed to be done, 7783 * successful or timeout, after timing-out the outstanding mailbox 7784 * command shall always be removed, so just unblock posting async 7785 * mailbox command and resume 7786 */ 7787 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; 7788 spin_unlock_irq(&phba->hbalock); 7789 7790 /* wake up worker thread to post asynchronlous mailbox command */ 7791 lpfc_worker_wake_up(phba); 7792 } 7793 7794 /** 7795 * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready 7796 * @phba: Pointer to HBA context object. 7797 * @mboxq: Pointer to mailbox object. 7798 * 7799 * The function waits for the bootstrap mailbox register ready bit from 7800 * port for twice the regular mailbox command timeout value. 7801 * 7802 * 0 - no timeout on waiting for bootstrap mailbox register ready. 7803 * MBXERR_ERROR - wait for bootstrap mailbox register timed out. 7804 **/ 7805 static int 7806 lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7807 { 7808 uint32_t db_ready; 7809 unsigned long timeout; 7810 struct lpfc_register bmbx_reg; 7811 7812 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) 7813 * 1000) + jiffies; 7814 7815 do { 7816 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); 7817 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); 7818 if (!db_ready) 7819 msleep(2); 7820 7821 if (time_after(jiffies, timeout)) 7822 return MBXERR_ERROR; 7823 } while (!db_ready); 7824 7825 return 0; 7826 } 7827 7828 /** 7829 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox 7830 * @phba: Pointer to HBA context object. 7831 * @mboxq: Pointer to mailbox object. 7832 * 7833 * The function posts a mailbox to the port. The mailbox is expected 7834 * to be comletely filled in and ready for the port to operate on it. 7835 * This routine executes a synchronous completion operation on the 7836 * mailbox by polling for its completion. 7837 * 7838 * The caller must not be holding any locks when calling this routine. 7839 * 7840 * Returns: 7841 * MBX_SUCCESS - mailbox posted successfully 7842 * Any of the MBX error values. 7843 **/ 7844 static int 7845 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 7846 { 7847 int rc = MBX_SUCCESS; 7848 unsigned long iflag; 7849 uint32_t mcqe_status; 7850 uint32_t mbx_cmnd; 7851 struct lpfc_sli *psli = &phba->sli; 7852 struct lpfc_mqe *mb = &mboxq->u.mqe; 7853 struct lpfc_bmbx_create *mbox_rgn; 7854 struct dma_address *dma_address; 7855 7856 /* 7857 * Only one mailbox can be active to the bootstrap mailbox region 7858 * at a time and there is no queueing provided. 7859 */ 7860 spin_lock_irqsave(&phba->hbalock, iflag); 7861 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 7862 spin_unlock_irqrestore(&phba->hbalock, iflag); 7863 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7864 "(%d):2532 Mailbox command x%x (x%x/x%x) " 7865 "cannot issue Data: x%x x%x\n", 7866 mboxq->vport ? mboxq->vport->vpi : 0, 7867 mboxq->u.mb.mbxCommand, 7868 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7869 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7870 psli->sli_flag, MBX_POLL); 7871 return MBXERR_ERROR; 7872 } 7873 /* The server grabs the token and owns it until release */ 7874 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 7875 phba->sli.mbox_active = mboxq; 7876 spin_unlock_irqrestore(&phba->hbalock, iflag); 7877 7878 /* wait for bootstrap mbox register for readyness */ 7879 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7880 if (rc) 7881 goto exit; 7882 7883 /* 7884 * Initialize the bootstrap memory region to avoid stale data areas 7885 * in the mailbox post. Then copy the caller's mailbox contents to 7886 * the bmbx mailbox region. 7887 */ 7888 mbx_cmnd = bf_get(lpfc_mqe_command, mb); 7889 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); 7890 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, 7891 sizeof(struct lpfc_mqe)); 7892 7893 /* Post the high mailbox dma address to the port and wait for ready. */ 7894 dma_address = &phba->sli4_hba.bmbx.dma_address; 7895 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); 7896 7897 /* wait for bootstrap mbox register for hi-address write done */ 7898 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7899 if (rc) 7900 goto exit; 7901 7902 /* Post the low mailbox dma address to the port. */ 7903 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); 7904 7905 /* wait for bootstrap mbox register for low address write done */ 7906 rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); 7907 if (rc) 7908 goto exit; 7909 7910 /* 7911 * Read the CQ to ensure the mailbox has completed. 7912 * If so, update the mailbox status so that the upper layers 7913 * can complete the request normally. 7914 */ 7915 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, 7916 sizeof(struct lpfc_mqe)); 7917 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; 7918 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, 7919 sizeof(struct lpfc_mcqe)); 7920 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); 7921 /* 7922 * When the CQE status indicates a failure and the mailbox status 7923 * indicates success then copy the CQE status into the mailbox status 7924 * (and prefix it with x4000). 7925 */ 7926 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 7927 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) 7928 bf_set(lpfc_mqe_status, mb, 7929 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 7930 rc = MBXERR_ERROR; 7931 } else 7932 lpfc_sli4_swap_str(phba, mboxq); 7933 7934 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 7935 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " 7936 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" 7937 " x%x x%x CQ: x%x x%x x%x x%x\n", 7938 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 7939 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7940 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7941 bf_get(lpfc_mqe_status, mb), 7942 mb->un.mb_words[0], mb->un.mb_words[1], 7943 mb->un.mb_words[2], mb->un.mb_words[3], 7944 mb->un.mb_words[4], mb->un.mb_words[5], 7945 mb->un.mb_words[6], mb->un.mb_words[7], 7946 mb->un.mb_words[8], mb->un.mb_words[9], 7947 mb->un.mb_words[10], mb->un.mb_words[11], 7948 mb->un.mb_words[12], mboxq->mcqe.word0, 7949 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, 7950 mboxq->mcqe.trailer); 7951 exit: 7952 /* We are holding the token, no needed for lock when release */ 7953 spin_lock_irqsave(&phba->hbalock, iflag); 7954 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 7955 phba->sli.mbox_active = NULL; 7956 spin_unlock_irqrestore(&phba->hbalock, iflag); 7957 return rc; 7958 } 7959 7960 /** 7961 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware 7962 * @phba: Pointer to HBA context object. 7963 * @pmbox: Pointer to mailbox object. 7964 * @flag: Flag indicating how the mailbox need to be processed. 7965 * 7966 * This function is called by discovery code and HBA management code to submit 7967 * a mailbox command to firmware with SLI-4 interface spec. 7968 * 7969 * Return codes the caller owns the mailbox command after the return of the 7970 * function. 7971 **/ 7972 static int 7973 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, 7974 uint32_t flag) 7975 { 7976 struct lpfc_sli *psli = &phba->sli; 7977 unsigned long iflags; 7978 int rc; 7979 7980 /* dump from issue mailbox command if setup */ 7981 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); 7982 7983 rc = lpfc_mbox_dev_check(phba); 7984 if (unlikely(rc)) { 7985 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 7986 "(%d):2544 Mailbox command x%x (x%x/x%x) " 7987 "cannot issue Data: x%x x%x\n", 7988 mboxq->vport ? mboxq->vport->vpi : 0, 7989 mboxq->u.mb.mbxCommand, 7990 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 7991 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 7992 psli->sli_flag, flag); 7993 goto out_not_finished; 7994 } 7995 7996 /* Detect polling mode and jump to a handler */ 7997 if (!phba->sli4_hba.intr_enable) { 7998 if (flag == MBX_POLL) 7999 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8000 else 8001 rc = -EIO; 8002 if (rc != MBX_SUCCESS) 8003 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8004 "(%d):2541 Mailbox command x%x " 8005 "(x%x/x%x) failure: " 8006 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8007 "Data: x%x x%x\n,", 8008 mboxq->vport ? mboxq->vport->vpi : 0, 8009 mboxq->u.mb.mbxCommand, 8010 lpfc_sli_config_mbox_subsys_get(phba, 8011 mboxq), 8012 lpfc_sli_config_mbox_opcode_get(phba, 8013 mboxq), 8014 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8015 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8016 bf_get(lpfc_mcqe_ext_status, 8017 &mboxq->mcqe), 8018 psli->sli_flag, flag); 8019 return rc; 8020 } else if (flag == MBX_POLL) { 8021 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, 8022 "(%d):2542 Try to issue mailbox command " 8023 "x%x (x%x/x%x) synchronously ahead of async" 8024 "mailbox command queue: x%x x%x\n", 8025 mboxq->vport ? mboxq->vport->vpi : 0, 8026 mboxq->u.mb.mbxCommand, 8027 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8028 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8029 psli->sli_flag, flag); 8030 /* Try to block the asynchronous mailbox posting */ 8031 rc = lpfc_sli4_async_mbox_block(phba); 8032 if (!rc) { 8033 /* Successfully blocked, now issue sync mbox cmd */ 8034 rc = lpfc_sli4_post_sync_mbox(phba, mboxq); 8035 if (rc != MBX_SUCCESS) 8036 lpfc_printf_log(phba, KERN_WARNING, 8037 LOG_MBOX | LOG_SLI, 8038 "(%d):2597 Sync Mailbox command " 8039 "x%x (x%x/x%x) failure: " 8040 "mqe_sta: x%x mcqe_sta: x%x/x%x " 8041 "Data: x%x x%x\n,", 8042 mboxq->vport ? mboxq->vport->vpi : 0, 8043 mboxq->u.mb.mbxCommand, 8044 lpfc_sli_config_mbox_subsys_get(phba, 8045 mboxq), 8046 lpfc_sli_config_mbox_opcode_get(phba, 8047 mboxq), 8048 bf_get(lpfc_mqe_status, &mboxq->u.mqe), 8049 bf_get(lpfc_mcqe_status, &mboxq->mcqe), 8050 bf_get(lpfc_mcqe_ext_status, 8051 &mboxq->mcqe), 8052 psli->sli_flag, flag); 8053 /* Unblock the async mailbox posting afterward */ 8054 lpfc_sli4_async_mbox_unblock(phba); 8055 } 8056 return rc; 8057 } 8058 8059 /* Now, interrupt mode asynchrous mailbox command */ 8060 rc = lpfc_mbox_cmd_check(phba, mboxq); 8061 if (rc) { 8062 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8063 "(%d):2543 Mailbox command x%x (x%x/x%x) " 8064 "cannot issue Data: x%x x%x\n", 8065 mboxq->vport ? mboxq->vport->vpi : 0, 8066 mboxq->u.mb.mbxCommand, 8067 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8068 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8069 psli->sli_flag, flag); 8070 goto out_not_finished; 8071 } 8072 8073 /* Put the mailbox command to the driver internal FIFO */ 8074 psli->slistat.mbox_busy++; 8075 spin_lock_irqsave(&phba->hbalock, iflags); 8076 lpfc_mbox_put(phba, mboxq); 8077 spin_unlock_irqrestore(&phba->hbalock, iflags); 8078 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8079 "(%d):0354 Mbox cmd issue - Enqueue Data: " 8080 "x%x (x%x/x%x) x%x x%x x%x\n", 8081 mboxq->vport ? mboxq->vport->vpi : 0xffffff, 8082 bf_get(lpfc_mqe_command, &mboxq->u.mqe), 8083 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8084 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8085 phba->pport->port_state, 8086 psli->sli_flag, MBX_NOWAIT); 8087 /* Wake up worker thread to transport mailbox command from head */ 8088 lpfc_worker_wake_up(phba); 8089 8090 return MBX_BUSY; 8091 8092 out_not_finished: 8093 return MBX_NOT_FINISHED; 8094 } 8095 8096 /** 8097 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device 8098 * @phba: Pointer to HBA context object. 8099 * 8100 * This function is called by worker thread to send a mailbox command to 8101 * SLI4 HBA firmware. 8102 * 8103 **/ 8104 int 8105 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) 8106 { 8107 struct lpfc_sli *psli = &phba->sli; 8108 LPFC_MBOXQ_t *mboxq; 8109 int rc = MBX_SUCCESS; 8110 unsigned long iflags; 8111 struct lpfc_mqe *mqe; 8112 uint32_t mbx_cmnd; 8113 8114 /* Check interrupt mode before post async mailbox command */ 8115 if (unlikely(!phba->sli4_hba.intr_enable)) 8116 return MBX_NOT_FINISHED; 8117 8118 /* Check for mailbox command service token */ 8119 spin_lock_irqsave(&phba->hbalock, iflags); 8120 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { 8121 spin_unlock_irqrestore(&phba->hbalock, iflags); 8122 return MBX_NOT_FINISHED; 8123 } 8124 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { 8125 spin_unlock_irqrestore(&phba->hbalock, iflags); 8126 return MBX_NOT_FINISHED; 8127 } 8128 if (unlikely(phba->sli.mbox_active)) { 8129 spin_unlock_irqrestore(&phba->hbalock, iflags); 8130 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8131 "0384 There is pending active mailbox cmd\n"); 8132 return MBX_NOT_FINISHED; 8133 } 8134 /* Take the mailbox command service token */ 8135 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; 8136 8137 /* Get the next mailbox command from head of queue */ 8138 mboxq = lpfc_mbox_get(phba); 8139 8140 /* If no more mailbox command waiting for post, we're done */ 8141 if (!mboxq) { 8142 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8143 spin_unlock_irqrestore(&phba->hbalock, iflags); 8144 return MBX_SUCCESS; 8145 } 8146 phba->sli.mbox_active = mboxq; 8147 spin_unlock_irqrestore(&phba->hbalock, iflags); 8148 8149 /* Check device readiness for posting mailbox command */ 8150 rc = lpfc_mbox_dev_check(phba); 8151 if (unlikely(rc)) 8152 /* Driver clean routine will clean up pending mailbox */ 8153 goto out_not_finished; 8154 8155 /* Prepare the mbox command to be posted */ 8156 mqe = &mboxq->u.mqe; 8157 mbx_cmnd = bf_get(lpfc_mqe_command, mqe); 8158 8159 /* Start timer for the mbox_tmo and log some mailbox post messages */ 8160 mod_timer(&psli->mbox_tmo, (jiffies + 8161 msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); 8162 8163 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, 8164 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " 8165 "x%x x%x\n", 8166 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, 8167 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8168 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8169 phba->pport->port_state, psli->sli_flag); 8170 8171 if (mbx_cmnd != MBX_HEARTBEAT) { 8172 if (mboxq->vport) { 8173 lpfc_debugfs_disc_trc(mboxq->vport, 8174 LPFC_DISC_TRC_MBOX_VPORT, 8175 "MBOX Send vport: cmd:x%x mb:x%x x%x", 8176 mbx_cmnd, mqe->un.mb_words[0], 8177 mqe->un.mb_words[1]); 8178 } else { 8179 lpfc_debugfs_disc_trc(phba->pport, 8180 LPFC_DISC_TRC_MBOX, 8181 "MBOX Send: cmd:x%x mb:x%x x%x", 8182 mbx_cmnd, mqe->un.mb_words[0], 8183 mqe->un.mb_words[1]); 8184 } 8185 } 8186 psli->slistat.mbox_cmd++; 8187 8188 /* Post the mailbox command to the port */ 8189 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); 8190 if (rc != MBX_SUCCESS) { 8191 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, 8192 "(%d):2533 Mailbox command x%x (x%x/x%x) " 8193 "cannot issue Data: x%x x%x\n", 8194 mboxq->vport ? mboxq->vport->vpi : 0, 8195 mboxq->u.mb.mbxCommand, 8196 lpfc_sli_config_mbox_subsys_get(phba, mboxq), 8197 lpfc_sli_config_mbox_opcode_get(phba, mboxq), 8198 psli->sli_flag, MBX_NOWAIT); 8199 goto out_not_finished; 8200 } 8201 8202 return rc; 8203 8204 out_not_finished: 8205 spin_lock_irqsave(&phba->hbalock, iflags); 8206 if (phba->sli.mbox_active) { 8207 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; 8208 __lpfc_mbox_cmpl_put(phba, mboxq); 8209 /* Release the token */ 8210 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 8211 phba->sli.mbox_active = NULL; 8212 } 8213 spin_unlock_irqrestore(&phba->hbalock, iflags); 8214 8215 return MBX_NOT_FINISHED; 8216 } 8217 8218 /** 8219 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command 8220 * @phba: Pointer to HBA context object. 8221 * @pmbox: Pointer to mailbox object. 8222 * @flag: Flag indicating how the mailbox need to be processed. 8223 * 8224 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from 8225 * the API jump table function pointer from the lpfc_hba struct. 8226 * 8227 * Return codes the caller owns the mailbox command after the return of the 8228 * function. 8229 **/ 8230 int 8231 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) 8232 { 8233 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); 8234 } 8235 8236 /** 8237 * lpfc_mbox_api_table_setup - Set up mbox api function jump table 8238 * @phba: The hba struct for which this call is being executed. 8239 * @dev_grp: The HBA PCI-Device group number. 8240 * 8241 * This routine sets up the mbox interface API function jump table in @phba 8242 * struct. 8243 * Returns: 0 - success, -ENODEV - failure. 8244 **/ 8245 int 8246 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 8247 { 8248 8249 switch (dev_grp) { 8250 case LPFC_PCI_DEV_LP: 8251 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; 8252 phba->lpfc_sli_handle_slow_ring_event = 8253 lpfc_sli_handle_slow_ring_event_s3; 8254 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; 8255 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; 8256 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; 8257 break; 8258 case LPFC_PCI_DEV_OC: 8259 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; 8260 phba->lpfc_sli_handle_slow_ring_event = 8261 lpfc_sli_handle_slow_ring_event_s4; 8262 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; 8263 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; 8264 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; 8265 break; 8266 default: 8267 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 8268 "1420 Invalid HBA PCI-device group: 0x%x\n", 8269 dev_grp); 8270 return -ENODEV; 8271 break; 8272 } 8273 return 0; 8274 } 8275 8276 /** 8277 * __lpfc_sli_ringtx_put - Add an iocb to the txq 8278 * @phba: Pointer to HBA context object. 8279 * @pring: Pointer to driver SLI ring object. 8280 * @piocb: Pointer to address of newly added command iocb. 8281 * 8282 * This function is called with hbalock held to add a command 8283 * iocb to the txq when SLI layer cannot submit the command iocb 8284 * to the ring. 8285 **/ 8286 void 8287 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8288 struct lpfc_iocbq *piocb) 8289 { 8290 lockdep_assert_held(&phba->hbalock); 8291 /* Insert the caller's iocb in the txq tail for later processing. */ 8292 list_add_tail(&piocb->list, &pring->txq); 8293 } 8294 8295 /** 8296 * lpfc_sli_next_iocb - Get the next iocb in the txq 8297 * @phba: Pointer to HBA context object. 8298 * @pring: Pointer to driver SLI ring object. 8299 * @piocb: Pointer to address of newly added command iocb. 8300 * 8301 * This function is called with hbalock held before a new 8302 * iocb is submitted to the firmware. This function checks 8303 * txq to flush the iocbs in txq to Firmware before 8304 * submitting new iocbs to the Firmware. 8305 * If there are iocbs in the txq which need to be submitted 8306 * to firmware, lpfc_sli_next_iocb returns the first element 8307 * of the txq after dequeuing it from txq. 8308 * If there is no iocb in the txq then the function will return 8309 * *piocb and *piocb is set to NULL. Caller needs to check 8310 * *piocb to find if there are more commands in the txq. 8311 **/ 8312 static struct lpfc_iocbq * 8313 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 8314 struct lpfc_iocbq **piocb) 8315 { 8316 struct lpfc_iocbq * nextiocb; 8317 8318 lockdep_assert_held(&phba->hbalock); 8319 8320 nextiocb = lpfc_sli_ringtx_get(phba, pring); 8321 if (!nextiocb) { 8322 nextiocb = *piocb; 8323 *piocb = NULL; 8324 } 8325 8326 return nextiocb; 8327 } 8328 8329 /** 8330 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb 8331 * @phba: Pointer to HBA context object. 8332 * @ring_number: SLI ring number to issue iocb on. 8333 * @piocb: Pointer to command iocb. 8334 * @flag: Flag indicating if this command can be put into txq. 8335 * 8336 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue 8337 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is 8338 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT 8339 * flag is turned on, the function returns IOCB_ERROR. When the link is down, 8340 * this function allows only iocbs for posting buffers. This function finds 8341 * next available slot in the command ring and posts the command to the 8342 * available slot and writes the port attention register to request HBA start 8343 * processing new iocb. If there is no slot available in the ring and 8344 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise 8345 * the function returns IOCB_BUSY. 8346 * 8347 * This function is called with hbalock held. The function will return success 8348 * after it successfully submit the iocb to firmware or after adding to the 8349 * txq. 8350 **/ 8351 static int 8352 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, 8353 struct lpfc_iocbq *piocb, uint32_t flag) 8354 { 8355 struct lpfc_iocbq *nextiocb; 8356 IOCB_t *iocb; 8357 struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; 8358 8359 lockdep_assert_held(&phba->hbalock); 8360 8361 if (piocb->iocb_cmpl && (!piocb->vport) && 8362 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && 8363 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { 8364 lpfc_printf_log(phba, KERN_ERR, 8365 LOG_SLI | LOG_VPORT, 8366 "1807 IOCB x%x failed. No vport\n", 8367 piocb->iocb.ulpCommand); 8368 dump_stack(); 8369 return IOCB_ERROR; 8370 } 8371 8372 8373 /* If the PCI channel is in offline state, do not post iocbs. */ 8374 if (unlikely(pci_channel_offline(phba->pcidev))) 8375 return IOCB_ERROR; 8376 8377 /* If HBA has a deferred error attention, fail the iocb. */ 8378 if (unlikely(phba->hba_flag & DEFER_ERATT)) 8379 return IOCB_ERROR; 8380 8381 /* 8382 * We should never get an IOCB if we are in a < LINK_DOWN state 8383 */ 8384 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 8385 return IOCB_ERROR; 8386 8387 /* 8388 * Check to see if we are blocking IOCB processing because of a 8389 * outstanding event. 8390 */ 8391 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) 8392 goto iocb_busy; 8393 8394 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { 8395 /* 8396 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF 8397 * can be issued if the link is not up. 8398 */ 8399 switch (piocb->iocb.ulpCommand) { 8400 case CMD_GEN_REQUEST64_CR: 8401 case CMD_GEN_REQUEST64_CX: 8402 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || 8403 (piocb->iocb.un.genreq64.w5.hcsw.Rctl != 8404 FC_RCTL_DD_UNSOL_CMD) || 8405 (piocb->iocb.un.genreq64.w5.hcsw.Type != 8406 MENLO_TRANSPORT_TYPE)) 8407 8408 goto iocb_busy; 8409 break; 8410 case CMD_QUE_RING_BUF_CN: 8411 case CMD_QUE_RING_BUF64_CN: 8412 /* 8413 * For IOCBs, like QUE_RING_BUF, that have no rsp ring 8414 * completion, iocb_cmpl MUST be 0. 8415 */ 8416 if (piocb->iocb_cmpl) 8417 piocb->iocb_cmpl = NULL; 8418 /*FALLTHROUGH*/ 8419 case CMD_CREATE_XRI_CR: 8420 case CMD_CLOSE_XRI_CN: 8421 case CMD_CLOSE_XRI_CX: 8422 break; 8423 default: 8424 goto iocb_busy; 8425 } 8426 8427 /* 8428 * For FCP commands, we must be in a state where we can process link 8429 * attention events. 8430 */ 8431 } else if (unlikely(pring->ringno == LPFC_FCP_RING && 8432 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { 8433 goto iocb_busy; 8434 } 8435 8436 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && 8437 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) 8438 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); 8439 8440 if (iocb) 8441 lpfc_sli_update_ring(phba, pring); 8442 else 8443 lpfc_sli_update_full_ring(phba, pring); 8444 8445 if (!piocb) 8446 return IOCB_SUCCESS; 8447 8448 goto out_busy; 8449 8450 iocb_busy: 8451 pring->stats.iocb_cmd_delay++; 8452 8453 out_busy: 8454 8455 if (!(flag & SLI_IOCB_RET_IOCB)) { 8456 __lpfc_sli_ringtx_put(phba, pring, piocb); 8457 return IOCB_SUCCESS; 8458 } 8459 8460 return IOCB_BUSY; 8461 } 8462 8463 /** 8464 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. 8465 * @phba: Pointer to HBA context object. 8466 * @piocb: Pointer to command iocb. 8467 * @sglq: Pointer to the scatter gather queue object. 8468 * 8469 * This routine converts the bpl or bde that is in the IOCB 8470 * to a sgl list for the sli4 hardware. The physical address 8471 * of the bpl/bde is converted back to a virtual address. 8472 * If the IOCB contains a BPL then the list of BDE's is 8473 * converted to sli4_sge's. If the IOCB contains a single 8474 * BDE then it is converted to a single sli_sge. 8475 * The IOCB is still in cpu endianess so the contents of 8476 * the bpl can be used without byte swapping. 8477 * 8478 * Returns valid XRI = Success, NO_XRI = Failure. 8479 **/ 8480 static uint16_t 8481 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, 8482 struct lpfc_sglq *sglq) 8483 { 8484 uint16_t xritag = NO_XRI; 8485 struct ulp_bde64 *bpl = NULL; 8486 struct ulp_bde64 bde; 8487 struct sli4_sge *sgl = NULL; 8488 struct lpfc_dmabuf *dmabuf; 8489 IOCB_t *icmd; 8490 int numBdes = 0; 8491 int i = 0; 8492 uint32_t offset = 0; /* accumulated offset in the sg request list */ 8493 int inbound = 0; /* number of sg reply entries inbound from firmware */ 8494 8495 if (!piocbq || !sglq) 8496 return xritag; 8497 8498 sgl = (struct sli4_sge *)sglq->sgl; 8499 icmd = &piocbq->iocb; 8500 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) 8501 return sglq->sli4_xritag; 8502 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8503 numBdes = icmd->un.genreq64.bdl.bdeSize / 8504 sizeof(struct ulp_bde64); 8505 /* The addrHigh and addrLow fields within the IOCB 8506 * have not been byteswapped yet so there is no 8507 * need to swap them back. 8508 */ 8509 if (piocbq->context3) 8510 dmabuf = (struct lpfc_dmabuf *)piocbq->context3; 8511 else 8512 return xritag; 8513 8514 bpl = (struct ulp_bde64 *)dmabuf->virt; 8515 if (!bpl) 8516 return xritag; 8517 8518 for (i = 0; i < numBdes; i++) { 8519 /* Should already be byte swapped. */ 8520 sgl->addr_hi = bpl->addrHigh; 8521 sgl->addr_lo = bpl->addrLow; 8522 8523 sgl->word2 = le32_to_cpu(sgl->word2); 8524 if ((i+1) == numBdes) 8525 bf_set(lpfc_sli4_sge_last, sgl, 1); 8526 else 8527 bf_set(lpfc_sli4_sge_last, sgl, 0); 8528 /* swap the size field back to the cpu so we 8529 * can assign it to the sgl. 8530 */ 8531 bde.tus.w = le32_to_cpu(bpl->tus.w); 8532 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 8533 /* The offsets in the sgl need to be accumulated 8534 * separately for the request and reply lists. 8535 * The request is always first, the reply follows. 8536 */ 8537 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { 8538 /* add up the reply sg entries */ 8539 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 8540 inbound++; 8541 /* first inbound? reset the offset */ 8542 if (inbound == 1) 8543 offset = 0; 8544 bf_set(lpfc_sli4_sge_offset, sgl, offset); 8545 bf_set(lpfc_sli4_sge_type, sgl, 8546 LPFC_SGE_TYPE_DATA); 8547 offset += bde.tus.f.bdeSize; 8548 } 8549 sgl->word2 = cpu_to_le32(sgl->word2); 8550 bpl++; 8551 sgl++; 8552 } 8553 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { 8554 /* The addrHigh and addrLow fields of the BDE have not 8555 * been byteswapped yet so they need to be swapped 8556 * before putting them in the sgl. 8557 */ 8558 sgl->addr_hi = 8559 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); 8560 sgl->addr_lo = 8561 cpu_to_le32(icmd->un.genreq64.bdl.addrLow); 8562 sgl->word2 = le32_to_cpu(sgl->word2); 8563 bf_set(lpfc_sli4_sge_last, sgl, 1); 8564 sgl->word2 = cpu_to_le32(sgl->word2); 8565 sgl->sge_len = 8566 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); 8567 } 8568 return sglq->sli4_xritag; 8569 } 8570 8571 /** 8572 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry. 8573 * @phba: Pointer to HBA context object. 8574 * @piocb: Pointer to command iocb. 8575 * @wqe: Pointer to the work queue entry. 8576 * 8577 * This routine converts the iocb command to its Work Queue Entry 8578 * equivalent. The wqe pointer should not have any fields set when 8579 * this routine is called because it will memcpy over them. 8580 * This routine does not set the CQ_ID or the WQEC bits in the 8581 * wqe. 8582 * 8583 * Returns: 0 = Success, IOCB_ERROR = Failure. 8584 **/ 8585 static int 8586 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, 8587 union lpfc_wqe *wqe) 8588 { 8589 uint32_t xmit_len = 0, total_len = 0; 8590 uint8_t ct = 0; 8591 uint32_t fip; 8592 uint32_t abort_tag; 8593 uint8_t command_type = ELS_COMMAND_NON_FIP; 8594 uint8_t cmnd; 8595 uint16_t xritag; 8596 uint16_t abrt_iotag; 8597 struct lpfc_iocbq *abrtiocbq; 8598 struct ulp_bde64 *bpl = NULL; 8599 uint32_t els_id = LPFC_ELS_ID_DEFAULT; 8600 int numBdes, i; 8601 struct ulp_bde64 bde; 8602 struct lpfc_nodelist *ndlp; 8603 uint32_t *pcmd; 8604 uint32_t if_type; 8605 8606 fip = phba->hba_flag & HBA_FIP_SUPPORT; 8607 /* The fcp commands will set command type */ 8608 if (iocbq->iocb_flag & LPFC_IO_FCP) 8609 command_type = FCP_COMMAND; 8610 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) 8611 command_type = ELS_COMMAND_FIP; 8612 else 8613 command_type = ELS_COMMAND_NON_FIP; 8614 8615 if (phba->fcp_embed_io) 8616 memset(wqe, 0, sizeof(union lpfc_wqe128)); 8617 /* Some of the fields are in the right position already */ 8618 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); 8619 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */ 8620 wqe->generic.wqe_com.word10 = 0; 8621 8622 abort_tag = (uint32_t) iocbq->iotag; 8623 xritag = iocbq->sli4_xritag; 8624 /* words0-2 bpl convert bde */ 8625 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { 8626 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8627 sizeof(struct ulp_bde64); 8628 bpl = (struct ulp_bde64 *) 8629 ((struct lpfc_dmabuf *)iocbq->context3)->virt; 8630 if (!bpl) 8631 return IOCB_ERROR; 8632 8633 /* Should already be byte swapped. */ 8634 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); 8635 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); 8636 /* swap the size field back to the cpu so we 8637 * can assign it to the sgl. 8638 */ 8639 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); 8640 xmit_len = wqe->generic.bde.tus.f.bdeSize; 8641 total_len = 0; 8642 for (i = 0; i < numBdes; i++) { 8643 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8644 total_len += bde.tus.f.bdeSize; 8645 } 8646 } else 8647 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; 8648 8649 iocbq->iocb.ulpIoTag = iocbq->iotag; 8650 cmnd = iocbq->iocb.ulpCommand; 8651 8652 switch (iocbq->iocb.ulpCommand) { 8653 case CMD_ELS_REQUEST64_CR: 8654 if (iocbq->iocb_flag & LPFC_IO_LIBDFC) 8655 ndlp = iocbq->context_un.ndlp; 8656 else 8657 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8658 if (!iocbq->iocb.ulpLe) { 8659 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8660 "2007 Only Limited Edition cmd Format" 8661 " supported 0x%x\n", 8662 iocbq->iocb.ulpCommand); 8663 return IOCB_ERROR; 8664 } 8665 8666 wqe->els_req.payload_len = xmit_len; 8667 /* Els_reguest64 has a TMO */ 8668 bf_set(wqe_tmo, &wqe->els_req.wqe_com, 8669 iocbq->iocb.ulpTimeout); 8670 /* Need a VF for word 4 set the vf bit*/ 8671 bf_set(els_req64_vf, &wqe->els_req, 0); 8672 /* And a VFID for word 12 */ 8673 bf_set(els_req64_vfid, &wqe->els_req, 0); 8674 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8675 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8676 iocbq->iocb.ulpContext); 8677 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); 8678 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); 8679 /* CCP CCPE PV PRI in word10 were set in the memcpy */ 8680 if (command_type == ELS_COMMAND_FIP) 8681 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) 8682 >> LPFC_FIP_ELS_ID_SHIFT); 8683 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 8684 iocbq->context2)->virt); 8685 if_type = bf_get(lpfc_sli_intf_if_type, 8686 &phba->sli4_hba.sli_intf); 8687 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8688 if (pcmd && (*pcmd == ELS_CMD_FLOGI || 8689 *pcmd == ELS_CMD_SCR || 8690 *pcmd == ELS_CMD_FDISC || 8691 *pcmd == ELS_CMD_LOGO || 8692 *pcmd == ELS_CMD_PLOGI)) { 8693 bf_set(els_req64_sp, &wqe->els_req, 1); 8694 bf_set(els_req64_sid, &wqe->els_req, 8695 iocbq->vport->fc_myDID); 8696 if ((*pcmd == ELS_CMD_FLOGI) && 8697 !(phba->fc_topology == 8698 LPFC_TOPOLOGY_LOOP)) 8699 bf_set(els_req64_sid, &wqe->els_req, 0); 8700 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); 8701 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8702 phba->vpi_ids[iocbq->vport->vpi]); 8703 } else if (pcmd && iocbq->context1) { 8704 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); 8705 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, 8706 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8707 } 8708 } 8709 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, 8710 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 8711 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); 8712 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); 8713 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); 8714 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); 8715 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8716 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); 8717 wqe->els_req.max_response_payload_len = total_len - xmit_len; 8718 break; 8719 case CMD_XMIT_SEQUENCE64_CX: 8720 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 8721 iocbq->iocb.un.ulpWord[3]); 8722 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, 8723 iocbq->iocb.unsli3.rcvsli3.ox_id); 8724 /* The entire sequence is transmitted for this IOCB */ 8725 xmit_len = total_len; 8726 cmnd = CMD_XMIT_SEQUENCE64_CR; 8727 if (phba->link_flag & LS_LOOPBACK_MODE) 8728 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); 8729 case CMD_XMIT_SEQUENCE64_CR: 8730 /* word3 iocb=io_tag32 wqe=reserved */ 8731 wqe->xmit_sequence.rsvd3 = 0; 8732 /* word4 relative_offset memcpy */ 8733 /* word5 r_ctl/df_ctl memcpy */ 8734 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 8735 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 8736 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, 8737 LPFC_WQE_IOD_WRITE); 8738 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 8739 LPFC_WQE_LENLOC_WORD12); 8740 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 8741 wqe->xmit_sequence.xmit_len = xmit_len; 8742 command_type = OTHER_COMMAND; 8743 break; 8744 case CMD_XMIT_BCAST64_CN: 8745 /* word3 iocb=iotag32 wqe=seq_payload_len */ 8746 wqe->xmit_bcast64.seq_payload_len = xmit_len; 8747 /* word4 iocb=rsvd wqe=rsvd */ 8748 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ 8749 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ 8750 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, 8751 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8752 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); 8753 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); 8754 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, 8755 LPFC_WQE_LENLOC_WORD3); 8756 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); 8757 break; 8758 case CMD_FCP_IWRITE64_CR: 8759 command_type = FCP_COMMAND_DATA_OUT; 8760 /* word3 iocb=iotag wqe=payload_offset_len */ 8761 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8762 bf_set(payload_offset_len, &wqe->fcp_iwrite, 8763 xmit_len + sizeof(struct fcp_rsp)); 8764 bf_set(cmd_buff_len, &wqe->fcp_iwrite, 8765 0); 8766 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8767 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8768 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, 8769 iocbq->iocb.ulpFCP2Rcvy); 8770 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); 8771 /* Always open the exchange */ 8772 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); 8773 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, 8774 LPFC_WQE_LENLOC_WORD4); 8775 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); 8776 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); 8777 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8778 bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); 8779 bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); 8780 if (iocbq->priority) { 8781 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8782 (iocbq->priority << 1)); 8783 } else { 8784 bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, 8785 (phba->cfg_XLanePriority << 1)); 8786 } 8787 } 8788 /* Note, word 10 is already initialized to 0 */ 8789 8790 if (phba->fcp_embed_io) { 8791 struct lpfc_scsi_buf *lpfc_cmd; 8792 struct sli4_sge *sgl; 8793 union lpfc_wqe128 *wqe128; 8794 struct fcp_cmnd *fcp_cmnd; 8795 uint32_t *ptr; 8796 8797 /* 128 byte wqe support here */ 8798 wqe128 = (union lpfc_wqe128 *)wqe; 8799 8800 lpfc_cmd = iocbq->context1; 8801 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8802 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8803 8804 /* Word 0-2 - FCP_CMND */ 8805 wqe128->generic.bde.tus.f.bdeFlags = 8806 BUFF_TYPE_BDE_IMMED; 8807 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8808 wqe128->generic.bde.addrHigh = 0; 8809 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8810 8811 bf_set(wqe_wqes, &wqe128->fcp_iwrite.wqe_com, 1); 8812 8813 /* Word 22-29 FCP CMND Payload */ 8814 ptr = &wqe128->words[22]; 8815 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8816 } 8817 break; 8818 case CMD_FCP_IREAD64_CR: 8819 /* word3 iocb=iotag wqe=payload_offset_len */ 8820 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8821 bf_set(payload_offset_len, &wqe->fcp_iread, 8822 xmit_len + sizeof(struct fcp_rsp)); 8823 bf_set(cmd_buff_len, &wqe->fcp_iread, 8824 0); 8825 /* word4 iocb=parameter wqe=total_xfer_length memcpy */ 8826 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ 8827 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, 8828 iocbq->iocb.ulpFCP2Rcvy); 8829 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); 8830 /* Always open the exchange */ 8831 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); 8832 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, 8833 LPFC_WQE_LENLOC_WORD4); 8834 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); 8835 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); 8836 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8837 bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); 8838 bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); 8839 if (iocbq->priority) { 8840 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8841 (iocbq->priority << 1)); 8842 } else { 8843 bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, 8844 (phba->cfg_XLanePriority << 1)); 8845 } 8846 } 8847 /* Note, word 10 is already initialized to 0 */ 8848 8849 if (phba->fcp_embed_io) { 8850 struct lpfc_scsi_buf *lpfc_cmd; 8851 struct sli4_sge *sgl; 8852 union lpfc_wqe128 *wqe128; 8853 struct fcp_cmnd *fcp_cmnd; 8854 uint32_t *ptr; 8855 8856 /* 128 byte wqe support here */ 8857 wqe128 = (union lpfc_wqe128 *)wqe; 8858 8859 lpfc_cmd = iocbq->context1; 8860 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8861 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8862 8863 /* Word 0-2 - FCP_CMND */ 8864 wqe128->generic.bde.tus.f.bdeFlags = 8865 BUFF_TYPE_BDE_IMMED; 8866 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8867 wqe128->generic.bde.addrHigh = 0; 8868 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8869 8870 bf_set(wqe_wqes, &wqe128->fcp_iread.wqe_com, 1); 8871 8872 /* Word 22-29 FCP CMND Payload */ 8873 ptr = &wqe128->words[22]; 8874 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8875 } 8876 break; 8877 case CMD_FCP_ICMND64_CR: 8878 /* word3 iocb=iotag wqe=payload_offset_len */ 8879 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ 8880 bf_set(payload_offset_len, &wqe->fcp_icmd, 8881 xmit_len + sizeof(struct fcp_rsp)); 8882 bf_set(cmd_buff_len, &wqe->fcp_icmd, 8883 0); 8884 /* word3 iocb=IO_TAG wqe=reserved */ 8885 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); 8886 /* Always open the exchange */ 8887 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); 8888 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); 8889 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); 8890 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, 8891 LPFC_WQE_LENLOC_NONE); 8892 bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, 8893 iocbq->iocb.ulpFCP2Rcvy); 8894 if (iocbq->iocb_flag & LPFC_IO_OAS) { 8895 bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); 8896 bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); 8897 if (iocbq->priority) { 8898 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8899 (iocbq->priority << 1)); 8900 } else { 8901 bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, 8902 (phba->cfg_XLanePriority << 1)); 8903 } 8904 } 8905 /* Note, word 10 is already initialized to 0 */ 8906 8907 if (phba->fcp_embed_io) { 8908 struct lpfc_scsi_buf *lpfc_cmd; 8909 struct sli4_sge *sgl; 8910 union lpfc_wqe128 *wqe128; 8911 struct fcp_cmnd *fcp_cmnd; 8912 uint32_t *ptr; 8913 8914 /* 128 byte wqe support here */ 8915 wqe128 = (union lpfc_wqe128 *)wqe; 8916 8917 lpfc_cmd = iocbq->context1; 8918 sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; 8919 fcp_cmnd = lpfc_cmd->fcp_cmnd; 8920 8921 /* Word 0-2 - FCP_CMND */ 8922 wqe128->generic.bde.tus.f.bdeFlags = 8923 BUFF_TYPE_BDE_IMMED; 8924 wqe128->generic.bde.tus.f.bdeSize = sgl->sge_len; 8925 wqe128->generic.bde.addrHigh = 0; 8926 wqe128->generic.bde.addrLow = 88; /* Word 22 */ 8927 8928 bf_set(wqe_wqes, &wqe128->fcp_icmd.wqe_com, 1); 8929 8930 /* Word 22-29 FCP CMND Payload */ 8931 ptr = &wqe128->words[22]; 8932 memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); 8933 } 8934 break; 8935 case CMD_GEN_REQUEST64_CR: 8936 /* For this command calculate the xmit length of the 8937 * request bde. 8938 */ 8939 xmit_len = 0; 8940 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / 8941 sizeof(struct ulp_bde64); 8942 for (i = 0; i < numBdes; i++) { 8943 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 8944 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 8945 break; 8946 xmit_len += bde.tus.f.bdeSize; 8947 } 8948 /* word3 iocb=IO_TAG wqe=request_payload_len */ 8949 wqe->gen_req.request_payload_len = xmit_len; 8950 /* word4 iocb=parameter wqe=relative_offset memcpy */ 8951 /* word5 [rctl, type, df_ctl, la] copied in memcpy */ 8952 /* word6 context tag copied in memcpy */ 8953 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { 8954 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); 8955 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 8956 "2015 Invalid CT %x command 0x%x\n", 8957 ct, iocbq->iocb.ulpCommand); 8958 return IOCB_ERROR; 8959 } 8960 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); 8961 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); 8962 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); 8963 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); 8964 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); 8965 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); 8966 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); 8967 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); 8968 wqe->gen_req.max_response_payload_len = total_len - xmit_len; 8969 command_type = OTHER_COMMAND; 8970 break; 8971 case CMD_XMIT_ELS_RSP64_CX: 8972 ndlp = (struct lpfc_nodelist *)iocbq->context1; 8973 /* words0-2 BDE memcpy */ 8974 /* word3 iocb=iotag32 wqe=response_payload_len */ 8975 wqe->xmit_els_rsp.response_payload_len = xmit_len; 8976 /* word4 */ 8977 wqe->xmit_els_rsp.word4 = 0; 8978 /* word5 iocb=rsvd wge=did */ 8979 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 8980 iocbq->iocb.un.xseq64.xmit_els_remoteID); 8981 8982 if_type = bf_get(lpfc_sli_intf_if_type, 8983 &phba->sli4_hba.sli_intf); 8984 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) { 8985 if (iocbq->vport->fc_flag & FC_PT2PT) { 8986 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 8987 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 8988 iocbq->vport->fc_myDID); 8989 if (iocbq->vport->fc_myDID == Fabric_DID) { 8990 bf_set(wqe_els_did, 8991 &wqe->xmit_els_rsp.wqe_dest, 0); 8992 } 8993 } 8994 } 8995 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 8996 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 8997 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); 8998 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, 8999 iocbq->iocb.unsli3.rcvsli3.ox_id); 9000 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) 9001 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9002 phba->vpi_ids[iocbq->vport->vpi]); 9003 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); 9004 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); 9005 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); 9006 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, 9007 LPFC_WQE_LENLOC_WORD3); 9008 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); 9009 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, 9010 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 9011 pcmd = (uint32_t *) (((struct lpfc_dmabuf *) 9012 iocbq->context2)->virt); 9013 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { 9014 bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); 9015 bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, 9016 iocbq->vport->fc_myDID); 9017 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); 9018 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, 9019 phba->vpi_ids[phba->pport->vpi]); 9020 } 9021 command_type = OTHER_COMMAND; 9022 break; 9023 case CMD_CLOSE_XRI_CN: 9024 case CMD_ABORT_XRI_CN: 9025 case CMD_ABORT_XRI_CX: 9026 /* words 0-2 memcpy should be 0 rserved */ 9027 /* port will send abts */ 9028 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; 9029 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { 9030 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; 9031 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; 9032 } else 9033 fip = 0; 9034 9035 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) 9036 /* 9037 * The link is down, or the command was ELS_FIP 9038 * so the fw does not need to send abts 9039 * on the wire. 9040 */ 9041 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 9042 else 9043 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); 9044 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 9045 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ 9046 wqe->abort_cmd.rsrvd5 = 0; 9047 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, 9048 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); 9049 abort_tag = iocbq->iocb.un.acxri.abortIoTag; 9050 /* 9051 * The abort handler will send us CMD_ABORT_XRI_CN or 9052 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX 9053 */ 9054 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 9055 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 9056 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, 9057 LPFC_WQE_LENLOC_NONE); 9058 cmnd = CMD_ABORT_XRI_CX; 9059 command_type = OTHER_COMMAND; 9060 xritag = 0; 9061 break; 9062 case CMD_XMIT_BLS_RSP64_CX: 9063 ndlp = (struct lpfc_nodelist *)iocbq->context1; 9064 /* As BLS ABTS RSP WQE is very different from other WQEs, 9065 * we re-construct this WQE here based on information in 9066 * iocbq from scratch. 9067 */ 9068 memset(wqe, 0, sizeof(union lpfc_wqe)); 9069 /* OX_ID is invariable to who sent ABTS to CT exchange */ 9070 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, 9071 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); 9072 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == 9073 LPFC_ABTS_UNSOL_INT) { 9074 /* ABTS sent by initiator to CT exchange, the 9075 * RX_ID field will be filled with the newly 9076 * allocated responder XRI. 9077 */ 9078 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9079 iocbq->sli4_xritag); 9080 } else { 9081 /* ABTS sent by responder to CT exchange, the 9082 * RX_ID field will be filled with the responder 9083 * RX_ID from ABTS. 9084 */ 9085 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, 9086 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); 9087 } 9088 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); 9089 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); 9090 9091 /* Use CT=VPI */ 9092 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, 9093 ndlp->nlp_DID); 9094 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, 9095 iocbq->iocb.ulpContext); 9096 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); 9097 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, 9098 phba->vpi_ids[phba->pport->vpi]); 9099 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); 9100 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, 9101 LPFC_WQE_LENLOC_NONE); 9102 /* Overwrite the pre-set comnd type with OTHER_COMMAND */ 9103 command_type = OTHER_COMMAND; 9104 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { 9105 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, 9106 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); 9107 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, 9108 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); 9109 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, 9110 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); 9111 } 9112 9113 break; 9114 case CMD_XRI_ABORTED_CX: 9115 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ 9116 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ 9117 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ 9118 case CMD_FCP_TRSP64_CX: /* Target mode rcv */ 9119 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ 9120 default: 9121 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9122 "2014 Invalid command 0x%x\n", 9123 iocbq->iocb.ulpCommand); 9124 return IOCB_ERROR; 9125 break; 9126 } 9127 9128 if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) 9129 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); 9130 else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) 9131 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); 9132 else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) 9133 bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); 9134 iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | 9135 LPFC_IO_DIF_INSERT); 9136 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); 9137 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); 9138 wqe->generic.wqe_com.abort_tag = abort_tag; 9139 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); 9140 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); 9141 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); 9142 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 9143 return 0; 9144 } 9145 9146 /** 9147 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb 9148 * @phba: Pointer to HBA context object. 9149 * @ring_number: SLI ring number to issue iocb on. 9150 * @piocb: Pointer to command iocb. 9151 * @flag: Flag indicating if this command can be put into txq. 9152 * 9153 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue 9154 * an iocb command to an HBA with SLI-4 interface spec. 9155 * 9156 * This function is called with hbalock held. The function will return success 9157 * after it successfully submit the iocb to firmware or after adding to the 9158 * txq. 9159 **/ 9160 static int 9161 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, 9162 struct lpfc_iocbq *piocb, uint32_t flag) 9163 { 9164 struct lpfc_sglq *sglq; 9165 union lpfc_wqe *wqe; 9166 union lpfc_wqe128 wqe128; 9167 struct lpfc_queue *wq; 9168 struct lpfc_sli_ring *pring; 9169 9170 /* Get the WQ */ 9171 if ((piocb->iocb_flag & LPFC_IO_FCP) || 9172 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { 9173 if (!phba->cfg_fof || (!(piocb->iocb_flag & LPFC_IO_OAS))) 9174 wq = phba->sli4_hba.fcp_wq[piocb->hba_wqidx]; 9175 else 9176 wq = phba->sli4_hba.oas_wq; 9177 } else { 9178 wq = phba->sli4_hba.els_wq; 9179 } 9180 9181 /* Get corresponding ring */ 9182 pring = wq->pring; 9183 9184 /* 9185 * The WQE can be either 64 or 128 bytes, 9186 * so allocate space on the stack assuming the largest. 9187 */ 9188 wqe = (union lpfc_wqe *)&wqe128; 9189 9190 lockdep_assert_held(&phba->hbalock); 9191 9192 if (piocb->sli4_xritag == NO_XRI) { 9193 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 9194 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) 9195 sglq = NULL; 9196 else { 9197 if (!list_empty(&pring->txq)) { 9198 if (!(flag & SLI_IOCB_RET_IOCB)) { 9199 __lpfc_sli_ringtx_put(phba, 9200 pring, piocb); 9201 return IOCB_SUCCESS; 9202 } else { 9203 return IOCB_BUSY; 9204 } 9205 } else { 9206 sglq = __lpfc_sli_get_els_sglq(phba, piocb); 9207 if (!sglq) { 9208 if (!(flag & SLI_IOCB_RET_IOCB)) { 9209 __lpfc_sli_ringtx_put(phba, 9210 pring, 9211 piocb); 9212 return IOCB_SUCCESS; 9213 } else 9214 return IOCB_BUSY; 9215 } 9216 } 9217 } 9218 } else if (piocb->iocb_flag & LPFC_IO_FCP) 9219 /* These IO's already have an XRI and a mapped sgl. */ 9220 sglq = NULL; 9221 else { 9222 /* 9223 * This is a continuation of a commandi,(CX) so this 9224 * sglq is on the active list 9225 */ 9226 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); 9227 if (!sglq) 9228 return IOCB_ERROR; 9229 } 9230 9231 if (sglq) { 9232 piocb->sli4_lxritag = sglq->sli4_lxritag; 9233 piocb->sli4_xritag = sglq->sli4_xritag; 9234 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) 9235 return IOCB_ERROR; 9236 } 9237 9238 if (lpfc_sli4_iocb2wqe(phba, piocb, wqe)) 9239 return IOCB_ERROR; 9240 9241 if (lpfc_sli4_wq_put(wq, wqe)) 9242 return IOCB_ERROR; 9243 lpfc_sli_ringtxcmpl_put(phba, pring, piocb); 9244 9245 return 0; 9246 } 9247 9248 /** 9249 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb 9250 * 9251 * This routine wraps the actual lockless version for issusing IOCB function 9252 * pointer from the lpfc_hba struct. 9253 * 9254 * Return codes: 9255 * IOCB_ERROR - Error 9256 * IOCB_SUCCESS - Success 9257 * IOCB_BUSY - Busy 9258 **/ 9259 int 9260 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9261 struct lpfc_iocbq *piocb, uint32_t flag) 9262 { 9263 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9264 } 9265 9266 /** 9267 * lpfc_sli_api_table_setup - Set up sli api function jump table 9268 * @phba: The hba struct for which this call is being executed. 9269 * @dev_grp: The HBA PCI-Device group number. 9270 * 9271 * This routine sets up the SLI interface API function jump table in @phba 9272 * struct. 9273 * Returns: 0 - success, -ENODEV - failure. 9274 **/ 9275 int 9276 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) 9277 { 9278 9279 switch (dev_grp) { 9280 case LPFC_PCI_DEV_LP: 9281 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; 9282 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; 9283 break; 9284 case LPFC_PCI_DEV_OC: 9285 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; 9286 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; 9287 break; 9288 default: 9289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 9290 "1419 Invalid HBA PCI-device group: 0x%x\n", 9291 dev_grp); 9292 return -ENODEV; 9293 break; 9294 } 9295 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; 9296 return 0; 9297 } 9298 9299 /** 9300 * lpfc_sli4_calc_ring - Calculates which ring to use 9301 * @phba: Pointer to HBA context object. 9302 * @piocb: Pointer to command iocb. 9303 * 9304 * For SLI4 only, FCP IO can deferred to one fo many WQs, based on 9305 * hba_wqidx, thus we need to calculate the corresponding ring. 9306 * Since ABORTS must go on the same WQ of the command they are 9307 * aborting, we use command's hba_wqidx. 9308 */ 9309 struct lpfc_sli_ring * 9310 lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) 9311 { 9312 if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { 9313 if (!(phba->cfg_fof) || 9314 (!(piocb->iocb_flag & LPFC_IO_FOF))) { 9315 if (unlikely(!phba->sli4_hba.fcp_wq)) 9316 return NULL; 9317 /* 9318 * for abort iocb hba_wqidx should already 9319 * be setup based on what work queue we used. 9320 */ 9321 if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) 9322 piocb->hba_wqidx = 9323 lpfc_sli4_scmd_to_wqidx_distr(phba, 9324 piocb->context1); 9325 return phba->sli4_hba.fcp_wq[piocb->hba_wqidx]->pring; 9326 } else { 9327 if (unlikely(!phba->sli4_hba.oas_wq)) 9328 return NULL; 9329 piocb->hba_wqidx = 0; 9330 return phba->sli4_hba.oas_wq->pring; 9331 } 9332 } else { 9333 if (unlikely(!phba->sli4_hba.els_wq)) 9334 return NULL; 9335 piocb->hba_wqidx = 0; 9336 return phba->sli4_hba.els_wq->pring; 9337 } 9338 } 9339 9340 /** 9341 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb 9342 * @phba: Pointer to HBA context object. 9343 * @pring: Pointer to driver SLI ring object. 9344 * @piocb: Pointer to command iocb. 9345 * @flag: Flag indicating if this command can be put into txq. 9346 * 9347 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb 9348 * function. This function gets the hbalock and calls 9349 * __lpfc_sli_issue_iocb function and will return the error returned 9350 * by __lpfc_sli_issue_iocb function. This wrapper is used by 9351 * functions which do not hold hbalock. 9352 **/ 9353 int 9354 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, 9355 struct lpfc_iocbq *piocb, uint32_t flag) 9356 { 9357 struct lpfc_hba_eq_hdl *hba_eq_hdl; 9358 struct lpfc_sli_ring *pring; 9359 struct lpfc_queue *fpeq; 9360 struct lpfc_eqe *eqe; 9361 unsigned long iflags; 9362 int rc, idx; 9363 9364 if (phba->sli_rev == LPFC_SLI_REV4) { 9365 pring = lpfc_sli4_calc_ring(phba, piocb); 9366 if (unlikely(pring == NULL)) 9367 return IOCB_ERROR; 9368 9369 spin_lock_irqsave(&pring->ring_lock, iflags); 9370 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9371 spin_unlock_irqrestore(&pring->ring_lock, iflags); 9372 9373 if (lpfc_fcp_look_ahead && (piocb->iocb_flag & LPFC_IO_FCP)) { 9374 idx = piocb->hba_wqidx; 9375 hba_eq_hdl = &phba->sli4_hba.hba_eq_hdl[idx]; 9376 9377 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) { 9378 9379 /* Get associated EQ with this index */ 9380 fpeq = phba->sli4_hba.hba_eq[idx]; 9381 9382 /* Turn off interrupts from this EQ */ 9383 lpfc_sli4_eq_clr_intr(fpeq); 9384 9385 /* 9386 * Process all the events on FCP EQ 9387 */ 9388 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 9389 lpfc_sli4_hba_handle_eqe(phba, 9390 eqe, idx); 9391 fpeq->EQ_processed++; 9392 } 9393 9394 /* Always clear and re-arm the EQ */ 9395 lpfc_sli4_eq_release(fpeq, 9396 LPFC_QUEUE_REARM); 9397 } 9398 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 9399 } 9400 } else { 9401 /* For now, SLI2/3 will still use hbalock */ 9402 spin_lock_irqsave(&phba->hbalock, iflags); 9403 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); 9404 spin_unlock_irqrestore(&phba->hbalock, iflags); 9405 } 9406 return rc; 9407 } 9408 9409 /** 9410 * lpfc_extra_ring_setup - Extra ring setup function 9411 * @phba: Pointer to HBA context object. 9412 * 9413 * This function is called while driver attaches with the 9414 * HBA to setup the extra ring. The extra ring is used 9415 * only when driver needs to support target mode functionality 9416 * or IP over FC functionalities. 9417 * 9418 * This function is called with no lock held. SLI3 only. 9419 **/ 9420 static int 9421 lpfc_extra_ring_setup( struct lpfc_hba *phba) 9422 { 9423 struct lpfc_sli *psli; 9424 struct lpfc_sli_ring *pring; 9425 9426 psli = &phba->sli; 9427 9428 /* Adjust cmd/rsp ring iocb entries more evenly */ 9429 9430 /* Take some away from the FCP ring */ 9431 pring = &psli->sli3_ring[LPFC_FCP_RING]; 9432 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9433 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9434 pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9435 pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9436 9437 /* and give them to the extra ring */ 9438 pring = &psli->sli3_ring[LPFC_EXTRA_RING]; 9439 9440 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9441 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9442 pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9443 pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9444 9445 /* Setup default profile for this ring */ 9446 pring->iotag_max = 4096; 9447 pring->num_mask = 1; 9448 pring->prt[0].profile = 0; /* Mask 0 */ 9449 pring->prt[0].rctl = phba->cfg_multi_ring_rctl; 9450 pring->prt[0].type = phba->cfg_multi_ring_type; 9451 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; 9452 return 0; 9453 } 9454 9455 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. 9456 * @phba: Pointer to HBA context object. 9457 * @iocbq: Pointer to iocb object. 9458 * 9459 * The async_event handler calls this routine when it receives 9460 * an ASYNC_STATUS_CN event from the port. The port generates 9461 * this event when an Abort Sequence request to an rport fails 9462 * twice in succession. The abort could be originated by the 9463 * driver or by the port. The ABTS could have been for an ELS 9464 * or FCP IO. The port only generates this event when an ABTS 9465 * fails to complete after one retry. 9466 */ 9467 static void 9468 lpfc_sli_abts_err_handler(struct lpfc_hba *phba, 9469 struct lpfc_iocbq *iocbq) 9470 { 9471 struct lpfc_nodelist *ndlp = NULL; 9472 uint16_t rpi = 0, vpi = 0; 9473 struct lpfc_vport *vport = NULL; 9474 9475 /* The rpi in the ulpContext is vport-sensitive. */ 9476 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; 9477 rpi = iocbq->iocb.ulpContext; 9478 9479 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9480 "3092 Port generated ABTS async event " 9481 "on vpi %d rpi %d status 0x%x\n", 9482 vpi, rpi, iocbq->iocb.ulpStatus); 9483 9484 vport = lpfc_find_vport_by_vpid(phba, vpi); 9485 if (!vport) 9486 goto err_exit; 9487 ndlp = lpfc_findnode_rpi(vport, rpi); 9488 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) 9489 goto err_exit; 9490 9491 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) 9492 lpfc_sli_abts_recover_port(vport, ndlp); 9493 return; 9494 9495 err_exit: 9496 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9497 "3095 Event Context not found, no " 9498 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", 9499 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, 9500 vpi, rpi); 9501 } 9502 9503 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. 9504 * @phba: pointer to HBA context object. 9505 * @ndlp: nodelist pointer for the impacted rport. 9506 * @axri: pointer to the wcqe containing the failed exchange. 9507 * 9508 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the 9509 * port. The port generates this event when an abort exchange request to an 9510 * rport fails twice in succession with no reply. The abort could be originated 9511 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. 9512 */ 9513 void 9514 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, 9515 struct lpfc_nodelist *ndlp, 9516 struct sli4_wcqe_xri_aborted *axri) 9517 { 9518 struct lpfc_vport *vport; 9519 uint32_t ext_status = 0; 9520 9521 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { 9522 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 9523 "3115 Node Context not found, driver " 9524 "ignoring abts err event\n"); 9525 return; 9526 } 9527 9528 vport = ndlp->vport; 9529 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 9530 "3116 Port generated FCP XRI ABORT event on " 9531 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", 9532 ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], 9533 bf_get(lpfc_wcqe_xa_xri, axri), 9534 bf_get(lpfc_wcqe_xa_status, axri), 9535 axri->parameter); 9536 9537 /* 9538 * Catch the ABTS protocol failure case. Older OCe FW releases returned 9539 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and 9540 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. 9541 */ 9542 ext_status = axri->parameter & IOERR_PARAM_MASK; 9543 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && 9544 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) 9545 lpfc_sli_abts_recover_port(vport, ndlp); 9546 } 9547 9548 /** 9549 * lpfc_sli_async_event_handler - ASYNC iocb handler function 9550 * @phba: Pointer to HBA context object. 9551 * @pring: Pointer to driver SLI ring object. 9552 * @iocbq: Pointer to iocb object. 9553 * 9554 * This function is called by the slow ring event handler 9555 * function when there is an ASYNC event iocb in the ring. 9556 * This function is called with no lock held. 9557 * Currently this function handles only temperature related 9558 * ASYNC events. The function decodes the temperature sensor 9559 * event message and posts events for the management applications. 9560 **/ 9561 static void 9562 lpfc_sli_async_event_handler(struct lpfc_hba * phba, 9563 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) 9564 { 9565 IOCB_t *icmd; 9566 uint16_t evt_code; 9567 struct temp_event temp_event_data; 9568 struct Scsi_Host *shost; 9569 uint32_t *iocb_w; 9570 9571 icmd = &iocbq->iocb; 9572 evt_code = icmd->un.asyncstat.evt_code; 9573 9574 switch (evt_code) { 9575 case ASYNC_TEMP_WARN: 9576 case ASYNC_TEMP_SAFE: 9577 temp_event_data.data = (uint32_t) icmd->ulpContext; 9578 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; 9579 if (evt_code == ASYNC_TEMP_WARN) { 9580 temp_event_data.event_code = LPFC_THRESHOLD_TEMP; 9581 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9582 "0347 Adapter is very hot, please take " 9583 "corrective action. temperature : %d Celsius\n", 9584 (uint32_t) icmd->ulpContext); 9585 } else { 9586 temp_event_data.event_code = LPFC_NORMAL_TEMP; 9587 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP, 9588 "0340 Adapter temperature is OK now. " 9589 "temperature : %d Celsius\n", 9590 (uint32_t) icmd->ulpContext); 9591 } 9592 9593 /* Send temperature change event to applications */ 9594 shost = lpfc_shost_from_vport(phba->pport); 9595 fc_host_post_vendor_event(shost, fc_get_event_number(), 9596 sizeof(temp_event_data), (char *) &temp_event_data, 9597 LPFC_NL_VENDOR_ID); 9598 break; 9599 case ASYNC_STATUS_CN: 9600 lpfc_sli_abts_err_handler(phba, iocbq); 9601 break; 9602 default: 9603 iocb_w = (uint32_t *) icmd; 9604 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 9605 "0346 Ring %d handler: unexpected ASYNC_STATUS" 9606 " evt_code 0x%x\n" 9607 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" 9608 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" 9609 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" 9610 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", 9611 pring->ringno, icmd->un.asyncstat.evt_code, 9612 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], 9613 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], 9614 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], 9615 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); 9616 9617 break; 9618 } 9619 } 9620 9621 9622 /** 9623 * lpfc_sli4_setup - SLI ring setup function 9624 * @phba: Pointer to HBA context object. 9625 * 9626 * lpfc_sli_setup sets up rings of the SLI interface with 9627 * number of iocbs per ring and iotags. This function is 9628 * called while driver attach to the HBA and before the 9629 * interrupts are enabled. So there is no need for locking. 9630 * 9631 * This function always returns 0. 9632 **/ 9633 int 9634 lpfc_sli4_setup(struct lpfc_hba *phba) 9635 { 9636 struct lpfc_sli_ring *pring; 9637 9638 pring = phba->sli4_hba.els_wq->pring; 9639 pring->num_mask = LPFC_MAX_RING_MASK; 9640 pring->prt[0].profile = 0; /* Mask 0 */ 9641 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9642 pring->prt[0].type = FC_TYPE_ELS; 9643 pring->prt[0].lpfc_sli_rcv_unsol_event = 9644 lpfc_els_unsol_event; 9645 pring->prt[1].profile = 0; /* Mask 1 */ 9646 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9647 pring->prt[1].type = FC_TYPE_ELS; 9648 pring->prt[1].lpfc_sli_rcv_unsol_event = 9649 lpfc_els_unsol_event; 9650 pring->prt[2].profile = 0; /* Mask 2 */ 9651 /* NameServer Inquiry */ 9652 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9653 /* NameServer */ 9654 pring->prt[2].type = FC_TYPE_CT; 9655 pring->prt[2].lpfc_sli_rcv_unsol_event = 9656 lpfc_ct_unsol_event; 9657 pring->prt[3].profile = 0; /* Mask 3 */ 9658 /* NameServer response */ 9659 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9660 /* NameServer */ 9661 pring->prt[3].type = FC_TYPE_CT; 9662 pring->prt[3].lpfc_sli_rcv_unsol_event = 9663 lpfc_ct_unsol_event; 9664 return 0; 9665 } 9666 9667 /** 9668 * lpfc_sli_setup - SLI ring setup function 9669 * @phba: Pointer to HBA context object. 9670 * 9671 * lpfc_sli_setup sets up rings of the SLI interface with 9672 * number of iocbs per ring and iotags. This function is 9673 * called while driver attach to the HBA and before the 9674 * interrupts are enabled. So there is no need for locking. 9675 * 9676 * This function always returns 0. SLI3 only. 9677 **/ 9678 int 9679 lpfc_sli_setup(struct lpfc_hba *phba) 9680 { 9681 int i, totiocbsize = 0; 9682 struct lpfc_sli *psli = &phba->sli; 9683 struct lpfc_sli_ring *pring; 9684 9685 psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; 9686 psli->sli_flag = 0; 9687 9688 psli->iocbq_lookup = NULL; 9689 psli->iocbq_lookup_len = 0; 9690 psli->last_iotag = 0; 9691 9692 for (i = 0; i < psli->num_rings; i++) { 9693 pring = &psli->sli3_ring[i]; 9694 switch (i) { 9695 case LPFC_FCP_RING: /* ring 0 - FCP */ 9696 /* numCiocb and numRiocb are used in config_port */ 9697 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; 9698 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; 9699 pring->sli.sli3.numCiocb += 9700 SLI2_IOCB_CMD_R1XTRA_ENTRIES; 9701 pring->sli.sli3.numRiocb += 9702 SLI2_IOCB_RSP_R1XTRA_ENTRIES; 9703 pring->sli.sli3.numCiocb += 9704 SLI2_IOCB_CMD_R3XTRA_ENTRIES; 9705 pring->sli.sli3.numRiocb += 9706 SLI2_IOCB_RSP_R3XTRA_ENTRIES; 9707 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9708 SLI3_IOCB_CMD_SIZE : 9709 SLI2_IOCB_CMD_SIZE; 9710 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9711 SLI3_IOCB_RSP_SIZE : 9712 SLI2_IOCB_RSP_SIZE; 9713 pring->iotag_ctr = 0; 9714 pring->iotag_max = 9715 (phba->cfg_hba_queue_depth * 2); 9716 pring->fast_iotag = pring->iotag_max; 9717 pring->num_mask = 0; 9718 break; 9719 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ 9720 /* numCiocb and numRiocb are used in config_port */ 9721 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; 9722 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; 9723 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9724 SLI3_IOCB_CMD_SIZE : 9725 SLI2_IOCB_CMD_SIZE; 9726 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9727 SLI3_IOCB_RSP_SIZE : 9728 SLI2_IOCB_RSP_SIZE; 9729 pring->iotag_max = phba->cfg_hba_queue_depth; 9730 pring->num_mask = 0; 9731 break; 9732 case LPFC_ELS_RING: /* ring 2 - ELS / CT */ 9733 /* numCiocb and numRiocb are used in config_port */ 9734 pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; 9735 pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; 9736 pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? 9737 SLI3_IOCB_CMD_SIZE : 9738 SLI2_IOCB_CMD_SIZE; 9739 pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? 9740 SLI3_IOCB_RSP_SIZE : 9741 SLI2_IOCB_RSP_SIZE; 9742 pring->fast_iotag = 0; 9743 pring->iotag_ctr = 0; 9744 pring->iotag_max = 4096; 9745 pring->lpfc_sli_rcv_async_status = 9746 lpfc_sli_async_event_handler; 9747 pring->num_mask = LPFC_MAX_RING_MASK; 9748 pring->prt[0].profile = 0; /* Mask 0 */ 9749 pring->prt[0].rctl = FC_RCTL_ELS_REQ; 9750 pring->prt[0].type = FC_TYPE_ELS; 9751 pring->prt[0].lpfc_sli_rcv_unsol_event = 9752 lpfc_els_unsol_event; 9753 pring->prt[1].profile = 0; /* Mask 1 */ 9754 pring->prt[1].rctl = FC_RCTL_ELS_REP; 9755 pring->prt[1].type = FC_TYPE_ELS; 9756 pring->prt[1].lpfc_sli_rcv_unsol_event = 9757 lpfc_els_unsol_event; 9758 pring->prt[2].profile = 0; /* Mask 2 */ 9759 /* NameServer Inquiry */ 9760 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; 9761 /* NameServer */ 9762 pring->prt[2].type = FC_TYPE_CT; 9763 pring->prt[2].lpfc_sli_rcv_unsol_event = 9764 lpfc_ct_unsol_event; 9765 pring->prt[3].profile = 0; /* Mask 3 */ 9766 /* NameServer response */ 9767 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; 9768 /* NameServer */ 9769 pring->prt[3].type = FC_TYPE_CT; 9770 pring->prt[3].lpfc_sli_rcv_unsol_event = 9771 lpfc_ct_unsol_event; 9772 break; 9773 } 9774 totiocbsize += (pring->sli.sli3.numCiocb * 9775 pring->sli.sli3.sizeCiocb) + 9776 (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); 9777 } 9778 if (totiocbsize > MAX_SLIM_IOCB_SIZE) { 9779 /* Too many cmd / rsp ring entries in SLI2 SLIM */ 9780 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " 9781 "SLI2 SLIM Data: x%x x%lx\n", 9782 phba->brd_no, totiocbsize, 9783 (unsigned long) MAX_SLIM_IOCB_SIZE); 9784 } 9785 if (phba->cfg_multi_ring_support == 2) 9786 lpfc_extra_ring_setup(phba); 9787 9788 return 0; 9789 } 9790 9791 /** 9792 * lpfc_sli4_queue_init - Queue initialization function 9793 * @phba: Pointer to HBA context object. 9794 * 9795 * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each 9796 * ring. This function also initializes ring indices of each ring. 9797 * This function is called during the initialization of the SLI 9798 * interface of an HBA. 9799 * This function is called with no lock held and always returns 9800 * 1. 9801 **/ 9802 void 9803 lpfc_sli4_queue_init(struct lpfc_hba *phba) 9804 { 9805 struct lpfc_sli *psli; 9806 struct lpfc_sli_ring *pring; 9807 int i; 9808 9809 psli = &phba->sli; 9810 spin_lock_irq(&phba->hbalock); 9811 INIT_LIST_HEAD(&psli->mboxq); 9812 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9813 /* Initialize list headers for txq and txcmplq as double linked lists */ 9814 for (i = 0; i < phba->cfg_fcp_io_channel; i++) { 9815 pring = phba->sli4_hba.fcp_wq[i]->pring; 9816 pring->flag = 0; 9817 pring->ringno = LPFC_FCP_RING; 9818 INIT_LIST_HEAD(&pring->txq); 9819 INIT_LIST_HEAD(&pring->txcmplq); 9820 INIT_LIST_HEAD(&pring->iocb_continueq); 9821 spin_lock_init(&pring->ring_lock); 9822 } 9823 for (i = 0; i < phba->cfg_nvme_io_channel; i++) { 9824 pring = phba->sli4_hba.nvme_wq[i]->pring; 9825 pring->flag = 0; 9826 pring->ringno = LPFC_FCP_RING; 9827 INIT_LIST_HEAD(&pring->txq); 9828 INIT_LIST_HEAD(&pring->txcmplq); 9829 INIT_LIST_HEAD(&pring->iocb_continueq); 9830 spin_lock_init(&pring->ring_lock); 9831 } 9832 pring = phba->sli4_hba.els_wq->pring; 9833 pring->flag = 0; 9834 pring->ringno = LPFC_ELS_RING; 9835 INIT_LIST_HEAD(&pring->txq); 9836 INIT_LIST_HEAD(&pring->txcmplq); 9837 INIT_LIST_HEAD(&pring->iocb_continueq); 9838 spin_lock_init(&pring->ring_lock); 9839 9840 if (phba->cfg_nvme_io_channel) { 9841 pring = phba->sli4_hba.nvmels_wq->pring; 9842 pring->flag = 0; 9843 pring->ringno = LPFC_ELS_RING; 9844 INIT_LIST_HEAD(&pring->txq); 9845 INIT_LIST_HEAD(&pring->txcmplq); 9846 INIT_LIST_HEAD(&pring->iocb_continueq); 9847 spin_lock_init(&pring->ring_lock); 9848 } 9849 9850 if (phba->cfg_fof) { 9851 pring = phba->sli4_hba.oas_wq->pring; 9852 pring->flag = 0; 9853 pring->ringno = LPFC_FCP_RING; 9854 INIT_LIST_HEAD(&pring->txq); 9855 INIT_LIST_HEAD(&pring->txcmplq); 9856 INIT_LIST_HEAD(&pring->iocb_continueq); 9857 spin_lock_init(&pring->ring_lock); 9858 } 9859 9860 spin_unlock_irq(&phba->hbalock); 9861 } 9862 9863 /** 9864 * lpfc_sli_queue_init - Queue initialization function 9865 * @phba: Pointer to HBA context object. 9866 * 9867 * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each 9868 * ring. This function also initializes ring indices of each ring. 9869 * This function is called during the initialization of the SLI 9870 * interface of an HBA. 9871 * This function is called with no lock held and always returns 9872 * 1. 9873 **/ 9874 void 9875 lpfc_sli_queue_init(struct lpfc_hba *phba) 9876 { 9877 struct lpfc_sli *psli; 9878 struct lpfc_sli_ring *pring; 9879 int i; 9880 9881 psli = &phba->sli; 9882 spin_lock_irq(&phba->hbalock); 9883 INIT_LIST_HEAD(&psli->mboxq); 9884 INIT_LIST_HEAD(&psli->mboxq_cmpl); 9885 /* Initialize list headers for txq and txcmplq as double linked lists */ 9886 for (i = 0; i < psli->num_rings; i++) { 9887 pring = &psli->sli3_ring[i]; 9888 pring->ringno = i; 9889 pring->sli.sli3.next_cmdidx = 0; 9890 pring->sli.sli3.local_getidx = 0; 9891 pring->sli.sli3.cmdidx = 0; 9892 INIT_LIST_HEAD(&pring->iocb_continueq); 9893 INIT_LIST_HEAD(&pring->iocb_continue_saveq); 9894 INIT_LIST_HEAD(&pring->postbufq); 9895 pring->flag = 0; 9896 INIT_LIST_HEAD(&pring->txq); 9897 INIT_LIST_HEAD(&pring->txcmplq); 9898 spin_lock_init(&pring->ring_lock); 9899 } 9900 spin_unlock_irq(&phba->hbalock); 9901 } 9902 9903 /** 9904 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system 9905 * @phba: Pointer to HBA context object. 9906 * 9907 * This routine flushes the mailbox command subsystem. It will unconditionally 9908 * flush all the mailbox commands in the three possible stages in the mailbox 9909 * command sub-system: pending mailbox command queue; the outstanding mailbox 9910 * command; and completed mailbox command queue. It is caller's responsibility 9911 * to make sure that the driver is in the proper state to flush the mailbox 9912 * command sub-system. Namely, the posting of mailbox commands into the 9913 * pending mailbox command queue from the various clients must be stopped; 9914 * either the HBA is in a state that it will never works on the outstanding 9915 * mailbox command (such as in EEH or ERATT conditions) or the outstanding 9916 * mailbox command has been completed. 9917 **/ 9918 static void 9919 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) 9920 { 9921 LIST_HEAD(completions); 9922 struct lpfc_sli *psli = &phba->sli; 9923 LPFC_MBOXQ_t *pmb; 9924 unsigned long iflag; 9925 9926 /* Flush all the mailbox commands in the mbox system */ 9927 spin_lock_irqsave(&phba->hbalock, iflag); 9928 /* The pending mailbox command queue */ 9929 list_splice_init(&phba->sli.mboxq, &completions); 9930 /* The outstanding active mailbox command */ 9931 if (psli->mbox_active) { 9932 list_add_tail(&psli->mbox_active->list, &completions); 9933 psli->mbox_active = NULL; 9934 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 9935 } 9936 /* The completed mailbox command queue */ 9937 list_splice_init(&phba->sli.mboxq_cmpl, &completions); 9938 spin_unlock_irqrestore(&phba->hbalock, iflag); 9939 9940 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ 9941 while (!list_empty(&completions)) { 9942 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); 9943 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; 9944 if (pmb->mbox_cmpl) 9945 pmb->mbox_cmpl(phba, pmb); 9946 } 9947 } 9948 9949 /** 9950 * lpfc_sli_host_down - Vport cleanup function 9951 * @vport: Pointer to virtual port object. 9952 * 9953 * lpfc_sli_host_down is called to clean up the resources 9954 * associated with a vport before destroying virtual 9955 * port data structures. 9956 * This function does following operations: 9957 * - Free discovery resources associated with this virtual 9958 * port. 9959 * - Free iocbs associated with this virtual port in 9960 * the txq. 9961 * - Send abort for all iocb commands associated with this 9962 * vport in txcmplq. 9963 * 9964 * This function is called with no lock held and always returns 1. 9965 **/ 9966 int 9967 lpfc_sli_host_down(struct lpfc_vport *vport) 9968 { 9969 LIST_HEAD(completions); 9970 struct lpfc_hba *phba = vport->phba; 9971 struct lpfc_sli *psli = &phba->sli; 9972 struct lpfc_queue *qp = NULL; 9973 struct lpfc_sli_ring *pring; 9974 struct lpfc_iocbq *iocb, *next_iocb; 9975 int i; 9976 unsigned long flags = 0; 9977 uint16_t prev_pring_flag; 9978 9979 lpfc_cleanup_discovery_resources(vport); 9980 9981 spin_lock_irqsave(&phba->hbalock, flags); 9982 9983 /* 9984 * Error everything on the txq since these iocbs 9985 * have not been given to the FW yet. 9986 * Also issue ABTS for everything on the txcmplq 9987 */ 9988 if (phba->sli_rev != LPFC_SLI_REV4) { 9989 for (i = 0; i < psli->num_rings; i++) { 9990 pring = &psli->sli3_ring[i]; 9991 prev_pring_flag = pring->flag; 9992 /* Only slow rings */ 9993 if (pring->ringno == LPFC_ELS_RING) { 9994 pring->flag |= LPFC_DEFERRED_RING_EVENT; 9995 /* Set the lpfc data pending flag */ 9996 set_bit(LPFC_DATA_READY, &phba->data_flags); 9997 } 9998 list_for_each_entry_safe(iocb, next_iocb, 9999 &pring->txq, list) { 10000 if (iocb->vport != vport) 10001 continue; 10002 list_move_tail(&iocb->list, &completions); 10003 } 10004 list_for_each_entry_safe(iocb, next_iocb, 10005 &pring->txcmplq, list) { 10006 if (iocb->vport != vport) 10007 continue; 10008 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10009 } 10010 pring->flag = prev_pring_flag; 10011 } 10012 } else { 10013 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10014 pring = qp->pring; 10015 if (!pring) 10016 continue; 10017 if (pring == phba->sli4_hba.els_wq->pring) { 10018 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10019 /* Set the lpfc data pending flag */ 10020 set_bit(LPFC_DATA_READY, &phba->data_flags); 10021 } 10022 prev_pring_flag = pring->flag; 10023 spin_lock_irq(&pring->ring_lock); 10024 list_for_each_entry_safe(iocb, next_iocb, 10025 &pring->txq, list) { 10026 if (iocb->vport != vport) 10027 continue; 10028 list_move_tail(&iocb->list, &completions); 10029 } 10030 spin_unlock_irq(&pring->ring_lock); 10031 list_for_each_entry_safe(iocb, next_iocb, 10032 &pring->txcmplq, list) { 10033 if (iocb->vport != vport) 10034 continue; 10035 lpfc_sli_issue_abort_iotag(phba, pring, iocb); 10036 } 10037 pring->flag = prev_pring_flag; 10038 } 10039 } 10040 spin_unlock_irqrestore(&phba->hbalock, flags); 10041 10042 /* Cancel all the IOCBs from the completions list */ 10043 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10044 IOERR_SLI_DOWN); 10045 return 1; 10046 } 10047 10048 /** 10049 * lpfc_sli_hba_down - Resource cleanup function for the HBA 10050 * @phba: Pointer to HBA context object. 10051 * 10052 * This function cleans up all iocb, buffers, mailbox commands 10053 * while shutting down the HBA. This function is called with no 10054 * lock held and always returns 1. 10055 * This function does the following to cleanup driver resources: 10056 * - Free discovery resources for each virtual port 10057 * - Cleanup any pending fabric iocbs 10058 * - Iterate through the iocb txq and free each entry 10059 * in the list. 10060 * - Free up any buffer posted to the HBA 10061 * - Free mailbox commands in the mailbox queue. 10062 **/ 10063 int 10064 lpfc_sli_hba_down(struct lpfc_hba *phba) 10065 { 10066 LIST_HEAD(completions); 10067 struct lpfc_sli *psli = &phba->sli; 10068 struct lpfc_queue *qp = NULL; 10069 struct lpfc_sli_ring *pring; 10070 struct lpfc_dmabuf *buf_ptr; 10071 unsigned long flags = 0; 10072 int i; 10073 10074 /* Shutdown the mailbox command sub-system */ 10075 lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); 10076 10077 lpfc_hba_down_prep(phba); 10078 10079 lpfc_fabric_abort_hba(phba); 10080 10081 spin_lock_irqsave(&phba->hbalock, flags); 10082 10083 /* 10084 * Error everything on the txq since these iocbs 10085 * have not been given to the FW yet. 10086 */ 10087 if (phba->sli_rev != LPFC_SLI_REV4) { 10088 for (i = 0; i < psli->num_rings; i++) { 10089 pring = &psli->sli3_ring[i]; 10090 /* Only slow rings */ 10091 if (pring->ringno == LPFC_ELS_RING) { 10092 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10093 /* Set the lpfc data pending flag */ 10094 set_bit(LPFC_DATA_READY, &phba->data_flags); 10095 } 10096 list_splice_init(&pring->txq, &completions); 10097 } 10098 } else { 10099 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10100 pring = qp->pring; 10101 if (!pring) 10102 continue; 10103 spin_lock_irq(&pring->ring_lock); 10104 list_splice_init(&pring->txq, &completions); 10105 spin_unlock_irq(&pring->ring_lock); 10106 if (pring == phba->sli4_hba.els_wq->pring) { 10107 pring->flag |= LPFC_DEFERRED_RING_EVENT; 10108 /* Set the lpfc data pending flag */ 10109 set_bit(LPFC_DATA_READY, &phba->data_flags); 10110 } 10111 } 10112 } 10113 spin_unlock_irqrestore(&phba->hbalock, flags); 10114 10115 /* Cancel all the IOCBs from the completions list */ 10116 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 10117 IOERR_SLI_DOWN); 10118 10119 spin_lock_irqsave(&phba->hbalock, flags); 10120 list_splice_init(&phba->elsbuf, &completions); 10121 phba->elsbuf_cnt = 0; 10122 phba->elsbuf_prev_cnt = 0; 10123 spin_unlock_irqrestore(&phba->hbalock, flags); 10124 10125 while (!list_empty(&completions)) { 10126 list_remove_head(&completions, buf_ptr, 10127 struct lpfc_dmabuf, list); 10128 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); 10129 kfree(buf_ptr); 10130 } 10131 10132 /* Return any active mbox cmds */ 10133 del_timer_sync(&psli->mbox_tmo); 10134 10135 spin_lock_irqsave(&phba->pport->work_port_lock, flags); 10136 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 10137 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); 10138 10139 return 1; 10140 } 10141 10142 /** 10143 * lpfc_sli_pcimem_bcopy - SLI memory copy function 10144 * @srcp: Source memory pointer. 10145 * @destp: Destination memory pointer. 10146 * @cnt: Number of words required to be copied. 10147 * 10148 * This function is used for copying data between driver memory 10149 * and the SLI memory. This function also changes the endianness 10150 * of each word if native endianness is different from SLI 10151 * endianness. This function can be called with or without 10152 * lock. 10153 **/ 10154 void 10155 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) 10156 { 10157 uint32_t *src = srcp; 10158 uint32_t *dest = destp; 10159 uint32_t ldata; 10160 int i; 10161 10162 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { 10163 ldata = *src; 10164 ldata = le32_to_cpu(ldata); 10165 *dest = ldata; 10166 src++; 10167 dest++; 10168 } 10169 } 10170 10171 10172 /** 10173 * lpfc_sli_bemem_bcopy - SLI memory copy function 10174 * @srcp: Source memory pointer. 10175 * @destp: Destination memory pointer. 10176 * @cnt: Number of words required to be copied. 10177 * 10178 * This function is used for copying data between a data structure 10179 * with big endian representation to local endianness. 10180 * This function can be called with or without lock. 10181 **/ 10182 void 10183 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) 10184 { 10185 uint32_t *src = srcp; 10186 uint32_t *dest = destp; 10187 uint32_t ldata; 10188 int i; 10189 10190 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { 10191 ldata = *src; 10192 ldata = be32_to_cpu(ldata); 10193 *dest = ldata; 10194 src++; 10195 dest++; 10196 } 10197 } 10198 10199 /** 10200 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq 10201 * @phba: Pointer to HBA context object. 10202 * @pring: Pointer to driver SLI ring object. 10203 * @mp: Pointer to driver buffer object. 10204 * 10205 * This function is called with no lock held. 10206 * It always return zero after adding the buffer to the postbufq 10207 * buffer list. 10208 **/ 10209 int 10210 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10211 struct lpfc_dmabuf *mp) 10212 { 10213 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up 10214 later */ 10215 spin_lock_irq(&phba->hbalock); 10216 list_add_tail(&mp->list, &pring->postbufq); 10217 pring->postbufq_cnt++; 10218 spin_unlock_irq(&phba->hbalock); 10219 return 0; 10220 } 10221 10222 /** 10223 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer 10224 * @phba: Pointer to HBA context object. 10225 * 10226 * When HBQ is enabled, buffers are searched based on tags. This function 10227 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The 10228 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag 10229 * does not conflict with tags of buffer posted for unsolicited events. 10230 * The function returns the allocated tag. The function is called with 10231 * no locks held. 10232 **/ 10233 uint32_t 10234 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) 10235 { 10236 spin_lock_irq(&phba->hbalock); 10237 phba->buffer_tag_count++; 10238 /* 10239 * Always set the QUE_BUFTAG_BIT to distiguish between 10240 * a tag assigned by HBQ. 10241 */ 10242 phba->buffer_tag_count |= QUE_BUFTAG_BIT; 10243 spin_unlock_irq(&phba->hbalock); 10244 return phba->buffer_tag_count; 10245 } 10246 10247 /** 10248 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag 10249 * @phba: Pointer to HBA context object. 10250 * @pring: Pointer to driver SLI ring object. 10251 * @tag: Buffer tag. 10252 * 10253 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq 10254 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX 10255 * iocb is posted to the response ring with the tag of the buffer. 10256 * This function searches the pring->postbufq list using the tag 10257 * to find buffer associated with CMD_IOCB_RET_XRI64_CX 10258 * iocb. If the buffer is found then lpfc_dmabuf object of the 10259 * buffer is returned to the caller else NULL is returned. 10260 * This function is called with no lock held. 10261 **/ 10262 struct lpfc_dmabuf * 10263 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10264 uint32_t tag) 10265 { 10266 struct lpfc_dmabuf *mp, *next_mp; 10267 struct list_head *slp = &pring->postbufq; 10268 10269 /* Search postbufq, from the beginning, looking for a match on tag */ 10270 spin_lock_irq(&phba->hbalock); 10271 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10272 if (mp->buffer_tag == tag) { 10273 list_del_init(&mp->list); 10274 pring->postbufq_cnt--; 10275 spin_unlock_irq(&phba->hbalock); 10276 return mp; 10277 } 10278 } 10279 10280 spin_unlock_irq(&phba->hbalock); 10281 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10282 "0402 Cannot find virtual addr for buffer tag on " 10283 "ring %d Data x%lx x%p x%p x%x\n", 10284 pring->ringno, (unsigned long) tag, 10285 slp->next, slp->prev, pring->postbufq_cnt); 10286 10287 return NULL; 10288 } 10289 10290 /** 10291 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events 10292 * @phba: Pointer to HBA context object. 10293 * @pring: Pointer to driver SLI ring object. 10294 * @phys: DMA address of the buffer. 10295 * 10296 * This function searches the buffer list using the dma_address 10297 * of unsolicited event to find the driver's lpfc_dmabuf object 10298 * corresponding to the dma_address. The function returns the 10299 * lpfc_dmabuf object if a buffer is found else it returns NULL. 10300 * This function is called by the ct and els unsolicited event 10301 * handlers to get the buffer associated with the unsolicited 10302 * event. 10303 * 10304 * This function is called with no lock held. 10305 **/ 10306 struct lpfc_dmabuf * 10307 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10308 dma_addr_t phys) 10309 { 10310 struct lpfc_dmabuf *mp, *next_mp; 10311 struct list_head *slp = &pring->postbufq; 10312 10313 /* Search postbufq, from the beginning, looking for a match on phys */ 10314 spin_lock_irq(&phba->hbalock); 10315 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { 10316 if (mp->phys == phys) { 10317 list_del_init(&mp->list); 10318 pring->postbufq_cnt--; 10319 spin_unlock_irq(&phba->hbalock); 10320 return mp; 10321 } 10322 } 10323 10324 spin_unlock_irq(&phba->hbalock); 10325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 10326 "0410 Cannot find virtual addr for mapped buf on " 10327 "ring %d Data x%llx x%p x%p x%x\n", 10328 pring->ringno, (unsigned long long)phys, 10329 slp->next, slp->prev, pring->postbufq_cnt); 10330 return NULL; 10331 } 10332 10333 /** 10334 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs 10335 * @phba: Pointer to HBA context object. 10336 * @cmdiocb: Pointer to driver command iocb object. 10337 * @rspiocb: Pointer to driver response iocb object. 10338 * 10339 * This function is the completion handler for the abort iocbs for 10340 * ELS commands. This function is called from the ELS ring event 10341 * handler with no lock held. This function frees memory resources 10342 * associated with the abort iocb. 10343 **/ 10344 static void 10345 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10346 struct lpfc_iocbq *rspiocb) 10347 { 10348 IOCB_t *irsp = &rspiocb->iocb; 10349 uint16_t abort_iotag, abort_context; 10350 struct lpfc_iocbq *abort_iocb = NULL; 10351 10352 if (irsp->ulpStatus) { 10353 10354 /* 10355 * Assume that the port already completed and returned, or 10356 * will return the iocb. Just Log the message. 10357 */ 10358 abort_context = cmdiocb->iocb.un.acxri.abortContextTag; 10359 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; 10360 10361 spin_lock_irq(&phba->hbalock); 10362 if (phba->sli_rev < LPFC_SLI_REV4) { 10363 if (abort_iotag != 0 && 10364 abort_iotag <= phba->sli.last_iotag) 10365 abort_iocb = 10366 phba->sli.iocbq_lookup[abort_iotag]; 10367 } else 10368 /* For sli4 the abort_tag is the XRI, 10369 * so the abort routine puts the iotag of the iocb 10370 * being aborted in the context field of the abort 10371 * IOCB. 10372 */ 10373 abort_iocb = phba->sli.iocbq_lookup[abort_context]; 10374 10375 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, 10376 "0327 Cannot abort els iocb %p " 10377 "with tag %x context %x, abort status %x, " 10378 "abort code %x\n", 10379 abort_iocb, abort_iotag, abort_context, 10380 irsp->ulpStatus, irsp->un.ulpWord[4]); 10381 10382 spin_unlock_irq(&phba->hbalock); 10383 } 10384 lpfc_sli_release_iocbq(phba, cmdiocb); 10385 return; 10386 } 10387 10388 /** 10389 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command 10390 * @phba: Pointer to HBA context object. 10391 * @cmdiocb: Pointer to driver command iocb object. 10392 * @rspiocb: Pointer to driver response iocb object. 10393 * 10394 * The function is called from SLI ring event handler with no 10395 * lock held. This function is the completion handler for ELS commands 10396 * which are aborted. The function frees memory resources used for 10397 * the aborted ELS commands. 10398 **/ 10399 static void 10400 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10401 struct lpfc_iocbq *rspiocb) 10402 { 10403 IOCB_t *irsp = &rspiocb->iocb; 10404 10405 /* ELS cmd tag <ulpIoTag> completes */ 10406 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 10407 "0139 Ignoring ELS cmd tag x%x completion Data: " 10408 "x%x x%x x%x\n", 10409 irsp->ulpIoTag, irsp->ulpStatus, 10410 irsp->un.ulpWord[4], irsp->ulpTimeout); 10411 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) 10412 lpfc_ct_free_iocb(phba, cmdiocb); 10413 else 10414 lpfc_els_free_iocb(phba, cmdiocb); 10415 return; 10416 } 10417 10418 /** 10419 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb 10420 * @phba: Pointer to HBA context object. 10421 * @pring: Pointer to driver SLI ring object. 10422 * @cmdiocb: Pointer to driver command iocb object. 10423 * 10424 * This function issues an abort iocb for the provided command iocb down to 10425 * the port. Other than the case the outstanding command iocb is an abort 10426 * request, this function issues abort out unconditionally. This function is 10427 * called with hbalock held. The function returns 0 when it fails due to 10428 * memory allocation failure or when the command iocb is an abort request. 10429 **/ 10430 static int 10431 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10432 struct lpfc_iocbq *cmdiocb) 10433 { 10434 struct lpfc_vport *vport = cmdiocb->vport; 10435 struct lpfc_iocbq *abtsiocbp; 10436 IOCB_t *icmd = NULL; 10437 IOCB_t *iabt = NULL; 10438 int retval; 10439 unsigned long iflags; 10440 10441 lockdep_assert_held(&phba->hbalock); 10442 10443 /* 10444 * There are certain command types we don't want to abort. And we 10445 * don't want to abort commands that are already in the process of 10446 * being aborted. 10447 */ 10448 icmd = &cmdiocb->iocb; 10449 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10450 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10451 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10452 return 0; 10453 10454 /* issue ABTS for this IOCB based on iotag */ 10455 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10456 if (abtsiocbp == NULL) 10457 return 0; 10458 10459 /* This signals the response to set the correct status 10460 * before calling the completion handler 10461 */ 10462 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10463 10464 iabt = &abtsiocbp->iocb; 10465 iabt->un.acxri.abortType = ABORT_TYPE_ABTS; 10466 iabt->un.acxri.abortContextTag = icmd->ulpContext; 10467 if (phba->sli_rev == LPFC_SLI_REV4) { 10468 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; 10469 iabt->un.acxri.abortContextTag = cmdiocb->iotag; 10470 } 10471 else 10472 iabt->un.acxri.abortIoTag = icmd->ulpIoTag; 10473 iabt->ulpLe = 1; 10474 iabt->ulpClass = icmd->ulpClass; 10475 10476 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10477 abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; 10478 if (cmdiocb->iocb_flag & LPFC_IO_FCP) 10479 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX; 10480 if (cmdiocb->iocb_flag & LPFC_IO_FOF) 10481 abtsiocbp->iocb_flag |= LPFC_IO_FOF; 10482 10483 if (phba->link_state >= LPFC_LINK_UP) 10484 iabt->ulpCommand = CMD_ABORT_XRI_CN; 10485 else 10486 iabt->ulpCommand = CMD_CLOSE_XRI_CN; 10487 10488 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; 10489 abtsiocbp->vport = vport; 10490 10491 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, 10492 "0339 Abort xri x%x, original iotag x%x, " 10493 "abort cmd iotag x%x\n", 10494 iabt->un.acxri.abortIoTag, 10495 iabt->un.acxri.abortContextTag, 10496 abtsiocbp->iotag); 10497 10498 if (phba->sli_rev == LPFC_SLI_REV4) { 10499 pring = lpfc_sli4_calc_ring(phba, abtsiocbp); 10500 if (unlikely(pring == NULL)) 10501 return 0; 10502 /* Note: both hbalock and ring_lock need to be set here */ 10503 spin_lock_irqsave(&pring->ring_lock, iflags); 10504 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10505 abtsiocbp, 0); 10506 spin_unlock_irqrestore(&pring->ring_lock, iflags); 10507 } else { 10508 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, 10509 abtsiocbp, 0); 10510 } 10511 10512 if (retval) 10513 __lpfc_sli_release_iocbq(phba, abtsiocbp); 10514 10515 /* 10516 * Caller to this routine should check for IOCB_ERROR 10517 * and handle it properly. This routine no longer removes 10518 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10519 */ 10520 return retval; 10521 } 10522 10523 /** 10524 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb 10525 * @phba: Pointer to HBA context object. 10526 * @pring: Pointer to driver SLI ring object. 10527 * @cmdiocb: Pointer to driver command iocb object. 10528 * 10529 * This function issues an abort iocb for the provided command iocb. In case 10530 * of unloading, the abort iocb will not be issued to commands on the ELS 10531 * ring. Instead, the callback function shall be changed to those commands 10532 * so that nothing happens when them finishes. This function is called with 10533 * hbalock held. The function returns 0 when the command iocb is an abort 10534 * request. 10535 **/ 10536 int 10537 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10538 struct lpfc_iocbq *cmdiocb) 10539 { 10540 struct lpfc_vport *vport = cmdiocb->vport; 10541 int retval = IOCB_ERROR; 10542 IOCB_t *icmd = NULL; 10543 10544 lockdep_assert_held(&phba->hbalock); 10545 10546 /* 10547 * There are certain command types we don't want to abort. And we 10548 * don't want to abort commands that are already in the process of 10549 * being aborted. 10550 */ 10551 icmd = &cmdiocb->iocb; 10552 if (icmd->ulpCommand == CMD_ABORT_XRI_CN || 10553 icmd->ulpCommand == CMD_CLOSE_XRI_CN || 10554 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10555 return 0; 10556 10557 /* 10558 * If we're unloading, don't abort iocb on the ELS ring, but change 10559 * the callback so that nothing happens when it finishes. 10560 */ 10561 if ((vport->load_flag & FC_UNLOADING) && 10562 (pring->ringno == LPFC_ELS_RING)) { 10563 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) 10564 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; 10565 else 10566 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; 10567 goto abort_iotag_exit; 10568 } 10569 10570 /* Now, we try to issue the abort to the cmdiocb out */ 10571 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb); 10572 10573 abort_iotag_exit: 10574 /* 10575 * Caller to this routine should check for IOCB_ERROR 10576 * and handle it properly. This routine no longer removes 10577 * iocb off txcmplq and call compl in case of IOCB_ERROR. 10578 */ 10579 return retval; 10580 } 10581 10582 /** 10583 * lpfc_sli4_abort_nvme_io - Issue abort for a command iocb 10584 * @phba: Pointer to HBA context object. 10585 * @pring: Pointer to driver SLI ring object. 10586 * @cmdiocb: Pointer to driver command iocb object. 10587 * 10588 * This function issues an abort iocb for the provided command iocb down to 10589 * the port. Other than the case the outstanding command iocb is an abort 10590 * request, this function issues abort out unconditionally. This function is 10591 * called with hbalock held. The function returns 0 when it fails due to 10592 * memory allocation failure or when the command iocb is an abort request. 10593 **/ 10594 static int 10595 lpfc_sli4_abort_nvme_io(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, 10596 struct lpfc_iocbq *cmdiocb) 10597 { 10598 struct lpfc_vport *vport = cmdiocb->vport; 10599 struct lpfc_iocbq *abtsiocbp; 10600 union lpfc_wqe *abts_wqe; 10601 int retval; 10602 10603 /* 10604 * There are certain command types we don't want to abort. And we 10605 * don't want to abort commands that are already in the process of 10606 * being aborted. 10607 */ 10608 if (cmdiocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || 10609 cmdiocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN || 10610 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0) 10611 return 0; 10612 10613 /* issue ABTS for this io based on iotag */ 10614 abtsiocbp = __lpfc_sli_get_iocbq(phba); 10615 if (abtsiocbp == NULL) 10616 return 0; 10617 10618 /* This signals the response to set the correct status 10619 * before calling the completion handler 10620 */ 10621 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; 10622 10623 /* Complete prepping the abort wqe and issue to the FW. */ 10624 abts_wqe = &abtsiocbp->wqe; 10625 bf_set(abort_cmd_ia, &abts_wqe->abort_cmd, 0); 10626 bf_set(abort_cmd_criteria, &abts_wqe->abort_cmd, T_XRI_TAG); 10627 10628 /* Explicitly set reserved fields to zero.*/ 10629 abts_wqe->abort_cmd.rsrvd4 = 0; 10630 abts_wqe->abort_cmd.rsrvd5 = 0; 10631 10632 /* WQE Common - word 6. Context is XRI tag. Set 0. */ 10633 bf_set(wqe_xri_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10634 bf_set(wqe_ctxt_tag, &abts_wqe->abort_cmd.wqe_com, 0); 10635 10636 /* word 7 */ 10637 bf_set(wqe_ct, &abts_wqe->abort_cmd.wqe_com, 0); 10638 bf_set(wqe_cmnd, &abts_wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 10639 bf_set(wqe_class, &abts_wqe->abort_cmd.wqe_com, 10640 cmdiocb->iocb.ulpClass); 10641 10642 /* word 8 - tell the FW to abort the IO associated with this 10643 * outstanding exchange ID. 10644 */ 10645 abts_wqe->abort_cmd.wqe_com.abort_tag = cmdiocb->sli4_xritag; 10646 10647 /* word 9 - this is the iotag for the abts_wqe completion. */ 10648 bf_set(wqe_reqtag, &abts_wqe->abort_cmd.wqe_com, 10649 abtsiocbp->iotag); 10650 10651 /* word 10 */ 10652 bf_set(wqe_wqid, &abts_wqe->abort_cmd.wqe_com, cmdiocb->hba_wqidx); 10653 bf_set(wqe_qosd, &abts_wqe->abort_cmd.wqe_com, 1); 10654 bf_set(wqe_lenloc, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 10655 10656 /* word 11 */ 10657 bf_set(wqe_cmd_type, &abts_wqe->abort_cmd.wqe_com, OTHER_COMMAND); 10658 bf_set(wqe_wqec, &abts_wqe->abort_cmd.wqe_com, 1); 10659 bf_set(wqe_cqid, &abts_wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 10660 10661 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10662 abtsiocbp->iocb_flag |= LPFC_IO_NVME; 10663 abtsiocbp->vport = vport; 10664 abtsiocbp->wqe_cmpl = lpfc_nvme_abort_fcreq_cmpl; 10665 retval = lpfc_sli4_issue_wqe(phba, LPFC_FCP_RING, abtsiocbp); 10666 if (retval == IOCB_ERROR) { 10667 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10668 "6147 Failed abts issue_wqe with status x%x " 10669 "for oxid x%x\n", 10670 retval, cmdiocb->sli4_xritag); 10671 lpfc_sli_release_iocbq(phba, abtsiocbp); 10672 return retval; 10673 } 10674 10675 lpfc_printf_vlog(vport, KERN_ERR, LOG_NVME, 10676 "6148 Drv Abort NVME Request Issued for " 10677 "ox_id x%x on reqtag x%x\n", 10678 cmdiocb->sli4_xritag, 10679 abtsiocbp->iotag); 10680 10681 return retval; 10682 } 10683 10684 /** 10685 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. 10686 * @phba: pointer to lpfc HBA data structure. 10687 * 10688 * This routine will abort all pending and outstanding iocbs to an HBA. 10689 **/ 10690 void 10691 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) 10692 { 10693 struct lpfc_sli *psli = &phba->sli; 10694 struct lpfc_sli_ring *pring; 10695 struct lpfc_queue *qp = NULL; 10696 int i; 10697 10698 if (phba->sli_rev != LPFC_SLI_REV4) { 10699 for (i = 0; i < psli->num_rings; i++) { 10700 pring = &psli->sli3_ring[i]; 10701 lpfc_sli_abort_iocb_ring(phba, pring); 10702 } 10703 return; 10704 } 10705 list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { 10706 pring = qp->pring; 10707 if (!pring) 10708 continue; 10709 lpfc_sli_abort_iocb_ring(phba, pring); 10710 } 10711 } 10712 10713 /** 10714 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN 10715 * @iocbq: Pointer to driver iocb object. 10716 * @vport: Pointer to driver virtual port object. 10717 * @tgt_id: SCSI ID of the target. 10718 * @lun_id: LUN ID of the scsi device. 10719 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST 10720 * 10721 * This function acts as an iocb filter for functions which abort or count 10722 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return 10723 * 0 if the filtering criteria is met for the given iocb and will return 10724 * 1 if the filtering criteria is not met. 10725 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the 10726 * given iocb is for the SCSI device specified by vport, tgt_id and 10727 * lun_id parameter. 10728 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the 10729 * given iocb is for the SCSI target specified by vport and tgt_id 10730 * parameters. 10731 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the 10732 * given iocb is for the SCSI host associated with the given vport. 10733 * This function is called with no locks held. 10734 **/ 10735 static int 10736 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, 10737 uint16_t tgt_id, uint64_t lun_id, 10738 lpfc_ctx_cmd ctx_cmd) 10739 { 10740 struct lpfc_scsi_buf *lpfc_cmd; 10741 int rc = 1; 10742 10743 if (!(iocbq->iocb_flag & LPFC_IO_FCP)) 10744 return rc; 10745 10746 if (iocbq->vport != vport) 10747 return rc; 10748 10749 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 10750 10751 if (lpfc_cmd->pCmd == NULL) 10752 return rc; 10753 10754 switch (ctx_cmd) { 10755 case LPFC_CTX_LUN: 10756 if ((lpfc_cmd->rdata->pnode) && 10757 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && 10758 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) 10759 rc = 0; 10760 break; 10761 case LPFC_CTX_TGT: 10762 if ((lpfc_cmd->rdata->pnode) && 10763 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) 10764 rc = 0; 10765 break; 10766 case LPFC_CTX_HOST: 10767 rc = 0; 10768 break; 10769 default: 10770 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", 10771 __func__, ctx_cmd); 10772 break; 10773 } 10774 10775 return rc; 10776 } 10777 10778 /** 10779 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending 10780 * @vport: Pointer to virtual port. 10781 * @tgt_id: SCSI ID of the target. 10782 * @lun_id: LUN ID of the scsi device. 10783 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10784 * 10785 * This function returns number of FCP commands pending for the vport. 10786 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP 10787 * commands pending on the vport associated with SCSI device specified 10788 * by tgt_id and lun_id parameters. 10789 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP 10790 * commands pending on the vport associated with SCSI target specified 10791 * by tgt_id parameter. 10792 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP 10793 * commands pending on the vport. 10794 * This function returns the number of iocbs which satisfy the filter. 10795 * This function is called without any lock held. 10796 **/ 10797 int 10798 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, 10799 lpfc_ctx_cmd ctx_cmd) 10800 { 10801 struct lpfc_hba *phba = vport->phba; 10802 struct lpfc_iocbq *iocbq; 10803 int sum, i; 10804 10805 spin_lock_irq(&phba->hbalock); 10806 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { 10807 iocbq = phba->sli.iocbq_lookup[i]; 10808 10809 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id, 10810 ctx_cmd) == 0) 10811 sum++; 10812 } 10813 spin_unlock_irq(&phba->hbalock); 10814 10815 return sum; 10816 } 10817 10818 /** 10819 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs 10820 * @phba: Pointer to HBA context object 10821 * @cmdiocb: Pointer to command iocb object. 10822 * @rspiocb: Pointer to response iocb object. 10823 * 10824 * This function is called when an aborted FCP iocb completes. This 10825 * function is called by the ring event handler with no lock held. 10826 * This function frees the iocb. 10827 **/ 10828 void 10829 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, 10830 struct lpfc_iocbq *rspiocb) 10831 { 10832 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 10833 "3096 ABORT_XRI_CN completing on rpi x%x " 10834 "original iotag x%x, abort cmd iotag x%x " 10835 "status 0x%x, reason 0x%x\n", 10836 cmdiocb->iocb.un.acxri.abortContextTag, 10837 cmdiocb->iocb.un.acxri.abortIoTag, 10838 cmdiocb->iotag, rspiocb->iocb.ulpStatus, 10839 rspiocb->iocb.un.ulpWord[4]); 10840 lpfc_sli_release_iocbq(phba, cmdiocb); 10841 return; 10842 } 10843 10844 /** 10845 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN 10846 * @vport: Pointer to virtual port. 10847 * @pring: Pointer to driver SLI ring object. 10848 * @tgt_id: SCSI ID of the target. 10849 * @lun_id: LUN ID of the scsi device. 10850 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10851 * 10852 * This function sends an abort command for every SCSI command 10853 * associated with the given virtual port pending on the ring 10854 * filtered by lpfc_sli_validate_fcp_iocb function. 10855 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the 10856 * FCP iocbs associated with lun specified by tgt_id and lun_id 10857 * parameters 10858 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the 10859 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10860 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all 10861 * FCP iocbs associated with virtual port. 10862 * This function returns number of iocbs it failed to abort. 10863 * This function is called with no locks held. 10864 **/ 10865 int 10866 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10867 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd) 10868 { 10869 struct lpfc_hba *phba = vport->phba; 10870 struct lpfc_iocbq *iocbq; 10871 struct lpfc_iocbq *abtsiocb; 10872 IOCB_t *cmd = NULL; 10873 int errcnt = 0, ret_val = 0; 10874 int i; 10875 10876 for (i = 1; i <= phba->sli.last_iotag; i++) { 10877 iocbq = phba->sli.iocbq_lookup[i]; 10878 10879 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10880 abort_cmd) != 0) 10881 continue; 10882 10883 /* 10884 * If the iocbq is already being aborted, don't take a second 10885 * action, but do count it. 10886 */ 10887 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10888 continue; 10889 10890 /* issue ABTS for this IOCB based on iotag */ 10891 abtsiocb = lpfc_sli_get_iocbq(phba); 10892 if (abtsiocb == NULL) { 10893 errcnt++; 10894 continue; 10895 } 10896 10897 /* indicate the IO is being aborted by the driver. */ 10898 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 10899 10900 cmd = &iocbq->iocb; 10901 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 10902 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext; 10903 if (phba->sli_rev == LPFC_SLI_REV4) 10904 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; 10905 else 10906 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag; 10907 abtsiocb->iocb.ulpLe = 1; 10908 abtsiocb->iocb.ulpClass = cmd->ulpClass; 10909 abtsiocb->vport = vport; 10910 10911 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 10912 abtsiocb->hba_wqidx = iocbq->hba_wqidx; 10913 if (iocbq->iocb_flag & LPFC_IO_FCP) 10914 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; 10915 if (iocbq->iocb_flag & LPFC_IO_FOF) 10916 abtsiocb->iocb_flag |= LPFC_IO_FOF; 10917 10918 if (lpfc_is_link_up(phba)) 10919 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN; 10920 else 10921 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 10922 10923 /* Setup callback routine and issue the command. */ 10924 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 10925 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno, 10926 abtsiocb, 0); 10927 if (ret_val == IOCB_ERROR) { 10928 lpfc_sli_release_iocbq(phba, abtsiocb); 10929 errcnt++; 10930 continue; 10931 } 10932 } 10933 10934 return errcnt; 10935 } 10936 10937 /** 10938 * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN 10939 * @vport: Pointer to virtual port. 10940 * @pring: Pointer to driver SLI ring object. 10941 * @tgt_id: SCSI ID of the target. 10942 * @lun_id: LUN ID of the scsi device. 10943 * @taskmgmt_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. 10944 * 10945 * This function sends an abort command for every SCSI command 10946 * associated with the given virtual port pending on the ring 10947 * filtered by lpfc_sli_validate_fcp_iocb function. 10948 * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the 10949 * FCP iocbs associated with lun specified by tgt_id and lun_id 10950 * parameters 10951 * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the 10952 * FCP iocbs associated with SCSI target specified by tgt_id parameter. 10953 * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all 10954 * FCP iocbs associated with virtual port. 10955 * This function returns number of iocbs it aborted . 10956 * This function is called with no locks held right after a taskmgmt 10957 * command is sent. 10958 **/ 10959 int 10960 lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, 10961 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) 10962 { 10963 struct lpfc_hba *phba = vport->phba; 10964 struct lpfc_scsi_buf *lpfc_cmd; 10965 struct lpfc_iocbq *abtsiocbq; 10966 struct lpfc_nodelist *ndlp; 10967 struct lpfc_iocbq *iocbq; 10968 IOCB_t *icmd; 10969 int sum, i, ret_val; 10970 unsigned long iflags; 10971 struct lpfc_sli_ring *pring_s4; 10972 10973 spin_lock_irq(&phba->hbalock); 10974 10975 /* all I/Os are in process of being flushed */ 10976 if (phba->hba_flag & HBA_FCP_IOQ_FLUSH) { 10977 spin_unlock_irq(&phba->hbalock); 10978 return 0; 10979 } 10980 sum = 0; 10981 10982 for (i = 1; i <= phba->sli.last_iotag; i++) { 10983 iocbq = phba->sli.iocbq_lookup[i]; 10984 10985 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, 10986 cmd) != 0) 10987 continue; 10988 10989 /* 10990 * If the iocbq is already being aborted, don't take a second 10991 * action, but do count it. 10992 */ 10993 if (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) 10994 continue; 10995 10996 /* issue ABTS for this IOCB based on iotag */ 10997 abtsiocbq = __lpfc_sli_get_iocbq(phba); 10998 if (abtsiocbq == NULL) 10999 continue; 11000 11001 icmd = &iocbq->iocb; 11002 abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; 11003 abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; 11004 if (phba->sli_rev == LPFC_SLI_REV4) 11005 abtsiocbq->iocb.un.acxri.abortIoTag = 11006 iocbq->sli4_xritag; 11007 else 11008 abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; 11009 abtsiocbq->iocb.ulpLe = 1; 11010 abtsiocbq->iocb.ulpClass = icmd->ulpClass; 11011 abtsiocbq->vport = vport; 11012 11013 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 11014 abtsiocbq->hba_wqidx = iocbq->hba_wqidx; 11015 if (iocbq->iocb_flag & LPFC_IO_FCP) 11016 abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; 11017 if (iocbq->iocb_flag & LPFC_IO_FOF) 11018 abtsiocbq->iocb_flag |= LPFC_IO_FOF; 11019 11020 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); 11021 ndlp = lpfc_cmd->rdata->pnode; 11022 11023 if (lpfc_is_link_up(phba) && 11024 (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) 11025 abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; 11026 else 11027 abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; 11028 11029 /* Setup callback routine and issue the command. */ 11030 abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; 11031 11032 /* 11033 * Indicate the IO is being aborted by the driver and set 11034 * the caller's flag into the aborted IO. 11035 */ 11036 iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; 11037 11038 if (phba->sli_rev == LPFC_SLI_REV4) { 11039 pring_s4 = lpfc_sli4_calc_ring(phba, iocbq); 11040 if (pring_s4 == NULL) 11041 continue; 11042 /* Note: both hbalock and ring_lock must be set here */ 11043 spin_lock_irqsave(&pring_s4->ring_lock, iflags); 11044 ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, 11045 abtsiocbq, 0); 11046 spin_unlock_irqrestore(&pring_s4->ring_lock, iflags); 11047 } else { 11048 ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, 11049 abtsiocbq, 0); 11050 } 11051 11052 11053 if (ret_val == IOCB_ERROR) 11054 __lpfc_sli_release_iocbq(phba, abtsiocbq); 11055 else 11056 sum++; 11057 } 11058 spin_unlock_irq(&phba->hbalock); 11059 return sum; 11060 } 11061 11062 /** 11063 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler 11064 * @phba: Pointer to HBA context object. 11065 * @cmdiocbq: Pointer to command iocb. 11066 * @rspiocbq: Pointer to response iocb. 11067 * 11068 * This function is the completion handler for iocbs issued using 11069 * lpfc_sli_issue_iocb_wait function. This function is called by the 11070 * ring event handler function without any lock held. This function 11071 * can be called from both worker thread context and interrupt 11072 * context. This function also can be called from other thread which 11073 * cleans up the SLI layer objects. 11074 * This function copy the contents of the response iocb to the 11075 * response iocb memory object provided by the caller of 11076 * lpfc_sli_issue_iocb_wait and then wakes up the thread which 11077 * sleeps for the iocb completion. 11078 **/ 11079 static void 11080 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, 11081 struct lpfc_iocbq *cmdiocbq, 11082 struct lpfc_iocbq *rspiocbq) 11083 { 11084 wait_queue_head_t *pdone_q; 11085 unsigned long iflags; 11086 struct lpfc_scsi_buf *lpfc_cmd; 11087 11088 spin_lock_irqsave(&phba->hbalock, iflags); 11089 if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { 11090 11091 /* 11092 * A time out has occurred for the iocb. If a time out 11093 * completion handler has been supplied, call it. Otherwise, 11094 * just free the iocbq. 11095 */ 11096 11097 spin_unlock_irqrestore(&phba->hbalock, iflags); 11098 cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; 11099 cmdiocbq->wait_iocb_cmpl = NULL; 11100 if (cmdiocbq->iocb_cmpl) 11101 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); 11102 else 11103 lpfc_sli_release_iocbq(phba, cmdiocbq); 11104 return; 11105 } 11106 11107 cmdiocbq->iocb_flag |= LPFC_IO_WAKE; 11108 if (cmdiocbq->context2 && rspiocbq) 11109 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, 11110 &rspiocbq->iocb, sizeof(IOCB_t)); 11111 11112 /* Set the exchange busy flag for task management commands */ 11113 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && 11114 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { 11115 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf, 11116 cur_iocbq); 11117 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY; 11118 } 11119 11120 pdone_q = cmdiocbq->context_un.wait_queue; 11121 if (pdone_q) 11122 wake_up(pdone_q); 11123 spin_unlock_irqrestore(&phba->hbalock, iflags); 11124 return; 11125 } 11126 11127 /** 11128 * lpfc_chk_iocb_flg - Test IOCB flag with lock held. 11129 * @phba: Pointer to HBA context object.. 11130 * @piocbq: Pointer to command iocb. 11131 * @flag: Flag to test. 11132 * 11133 * This routine grabs the hbalock and then test the iocb_flag to 11134 * see if the passed in flag is set. 11135 * Returns: 11136 * 1 if flag is set. 11137 * 0 if flag is not set. 11138 **/ 11139 static int 11140 lpfc_chk_iocb_flg(struct lpfc_hba *phba, 11141 struct lpfc_iocbq *piocbq, uint32_t flag) 11142 { 11143 unsigned long iflags; 11144 int ret; 11145 11146 spin_lock_irqsave(&phba->hbalock, iflags); 11147 ret = piocbq->iocb_flag & flag; 11148 spin_unlock_irqrestore(&phba->hbalock, iflags); 11149 return ret; 11150 11151 } 11152 11153 /** 11154 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands 11155 * @phba: Pointer to HBA context object.. 11156 * @pring: Pointer to sli ring. 11157 * @piocb: Pointer to command iocb. 11158 * @prspiocbq: Pointer to response iocb. 11159 * @timeout: Timeout in number of seconds. 11160 * 11161 * This function issues the iocb to firmware and waits for the 11162 * iocb to complete. The iocb_cmpl field of the shall be used 11163 * to handle iocbs which time out. If the field is NULL, the 11164 * function shall free the iocbq structure. If more clean up is 11165 * needed, the caller is expected to provide a completion function 11166 * that will provide the needed clean up. If the iocb command is 11167 * not completed within timeout seconds, the function will either 11168 * free the iocbq structure (if iocb_cmpl == NULL) or execute the 11169 * completion function set in the iocb_cmpl field and then return 11170 * a status of IOCB_TIMEDOUT. The caller should not free the iocb 11171 * resources if this function returns IOCB_TIMEDOUT. 11172 * The function waits for the iocb completion using an 11173 * non-interruptible wait. 11174 * This function will sleep while waiting for iocb completion. 11175 * So, this function should not be called from any context which 11176 * does not allow sleeping. Due to the same reason, this function 11177 * cannot be called with interrupt disabled. 11178 * This function assumes that the iocb completions occur while 11179 * this function sleep. So, this function cannot be called from 11180 * the thread which process iocb completion for this ring. 11181 * This function clears the iocb_flag of the iocb object before 11182 * issuing the iocb and the iocb completion handler sets this 11183 * flag and wakes this thread when the iocb completes. 11184 * The contents of the response iocb will be copied to prspiocbq 11185 * by the completion handler when the command completes. 11186 * This function returns IOCB_SUCCESS when success. 11187 * This function is called with no lock held. 11188 **/ 11189 int 11190 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, 11191 uint32_t ring_number, 11192 struct lpfc_iocbq *piocb, 11193 struct lpfc_iocbq *prspiocbq, 11194 uint32_t timeout) 11195 { 11196 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11197 long timeleft, timeout_req = 0; 11198 int retval = IOCB_SUCCESS; 11199 uint32_t creg_val; 11200 struct lpfc_iocbq *iocb; 11201 int txq_cnt = 0; 11202 int txcmplq_cnt = 0; 11203 struct lpfc_sli_ring *pring; 11204 unsigned long iflags; 11205 bool iocb_completed = true; 11206 11207 if (phba->sli_rev >= LPFC_SLI_REV4) 11208 pring = lpfc_sli4_calc_ring(phba, piocb); 11209 else 11210 pring = &phba->sli.sli3_ring[ring_number]; 11211 /* 11212 * If the caller has provided a response iocbq buffer, then context2 11213 * is NULL or its an error. 11214 */ 11215 if (prspiocbq) { 11216 if (piocb->context2) 11217 return IOCB_ERROR; 11218 piocb->context2 = prspiocbq; 11219 } 11220 11221 piocb->wait_iocb_cmpl = piocb->iocb_cmpl; 11222 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; 11223 piocb->context_un.wait_queue = &done_q; 11224 piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); 11225 11226 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11227 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11228 return IOCB_ERROR; 11229 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); 11230 writel(creg_val, phba->HCregaddr); 11231 readl(phba->HCregaddr); /* flush */ 11232 } 11233 11234 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, 11235 SLI_IOCB_RET_IOCB); 11236 if (retval == IOCB_SUCCESS) { 11237 timeout_req = msecs_to_jiffies(timeout * 1000); 11238 timeleft = wait_event_timeout(done_q, 11239 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), 11240 timeout_req); 11241 spin_lock_irqsave(&phba->hbalock, iflags); 11242 if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { 11243 11244 /* 11245 * IOCB timed out. Inform the wake iocb wait 11246 * completion function and set local status 11247 */ 11248 11249 iocb_completed = false; 11250 piocb->iocb_flag |= LPFC_IO_WAKE_TMO; 11251 } 11252 spin_unlock_irqrestore(&phba->hbalock, iflags); 11253 if (iocb_completed) { 11254 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11255 "0331 IOCB wake signaled\n"); 11256 /* Note: we are not indicating if the IOCB has a success 11257 * status or not - that's for the caller to check. 11258 * IOCB_SUCCESS means just that the command was sent and 11259 * completed. Not that it completed successfully. 11260 * */ 11261 } else if (timeleft == 0) { 11262 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11263 "0338 IOCB wait timeout error - no " 11264 "wake response Data x%x\n", timeout); 11265 retval = IOCB_TIMEDOUT; 11266 } else { 11267 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 11268 "0330 IOCB wake NOT set, " 11269 "Data x%x x%lx\n", 11270 timeout, (timeleft / jiffies)); 11271 retval = IOCB_TIMEDOUT; 11272 } 11273 } else if (retval == IOCB_BUSY) { 11274 if (phba->cfg_log_verbose & LOG_SLI) { 11275 list_for_each_entry(iocb, &pring->txq, list) { 11276 txq_cnt++; 11277 } 11278 list_for_each_entry(iocb, &pring->txcmplq, list) { 11279 txcmplq_cnt++; 11280 } 11281 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11282 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", 11283 phba->iocb_cnt, txq_cnt, txcmplq_cnt); 11284 } 11285 return retval; 11286 } else { 11287 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 11288 "0332 IOCB wait issue failed, Data x%x\n", 11289 retval); 11290 retval = IOCB_ERROR; 11291 } 11292 11293 if (phba->cfg_poll & DISABLE_FCP_RING_INT) { 11294 if (lpfc_readl(phba->HCregaddr, &creg_val)) 11295 return IOCB_ERROR; 11296 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); 11297 writel(creg_val, phba->HCregaddr); 11298 readl(phba->HCregaddr); /* flush */ 11299 } 11300 11301 if (prspiocbq) 11302 piocb->context2 = NULL; 11303 11304 piocb->context_un.wait_queue = NULL; 11305 piocb->iocb_cmpl = NULL; 11306 return retval; 11307 } 11308 11309 /** 11310 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox 11311 * @phba: Pointer to HBA context object. 11312 * @pmboxq: Pointer to driver mailbox object. 11313 * @timeout: Timeout in number of seconds. 11314 * 11315 * This function issues the mailbox to firmware and waits for the 11316 * mailbox command to complete. If the mailbox command is not 11317 * completed within timeout seconds, it returns MBX_TIMEOUT. 11318 * The function waits for the mailbox completion using an 11319 * interruptible wait. If the thread is woken up due to a 11320 * signal, MBX_TIMEOUT error is returned to the caller. Caller 11321 * should not free the mailbox resources, if this function returns 11322 * MBX_TIMEOUT. 11323 * This function will sleep while waiting for mailbox completion. 11324 * So, this function should not be called from any context which 11325 * does not allow sleeping. Due to the same reason, this function 11326 * cannot be called with interrupt disabled. 11327 * This function assumes that the mailbox completion occurs while 11328 * this function sleep. So, this function cannot be called from 11329 * the worker thread which processes mailbox completion. 11330 * This function is called in the context of HBA management 11331 * applications. 11332 * This function returns MBX_SUCCESS when successful. 11333 * This function is called with no lock held. 11334 **/ 11335 int 11336 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, 11337 uint32_t timeout) 11338 { 11339 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); 11340 MAILBOX_t *mb = NULL; 11341 int retval; 11342 unsigned long flag; 11343 11344 /* The caller might set context1 for extended buffer */ 11345 if (pmboxq->context1) 11346 mb = (MAILBOX_t *)pmboxq->context1; 11347 11348 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; 11349 /* setup wake call as IOCB callback */ 11350 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; 11351 /* setup context field to pass wait_queue pointer to wake function */ 11352 pmboxq->context1 = &done_q; 11353 11354 /* now issue the command */ 11355 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); 11356 if (retval == MBX_BUSY || retval == MBX_SUCCESS) { 11357 wait_event_interruptible_timeout(done_q, 11358 pmboxq->mbox_flag & LPFC_MBX_WAKE, 11359 msecs_to_jiffies(timeout * 1000)); 11360 11361 spin_lock_irqsave(&phba->hbalock, flag); 11362 /* restore the possible extended buffer for free resource */ 11363 pmboxq->context1 = (uint8_t *)mb; 11364 /* 11365 * if LPFC_MBX_WAKE flag is set the mailbox is completed 11366 * else do not free the resources. 11367 */ 11368 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { 11369 retval = MBX_SUCCESS; 11370 } else { 11371 retval = MBX_TIMEOUT; 11372 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 11373 } 11374 spin_unlock_irqrestore(&phba->hbalock, flag); 11375 } else { 11376 /* restore the possible extended buffer for free resource */ 11377 pmboxq->context1 = (uint8_t *)mb; 11378 } 11379 11380 return retval; 11381 } 11382 11383 /** 11384 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system 11385 * @phba: Pointer to HBA context. 11386 * 11387 * This function is called to shutdown the driver's mailbox sub-system. 11388 * It first marks the mailbox sub-system is in a block state to prevent 11389 * the asynchronous mailbox command from issued off the pending mailbox 11390 * command queue. If the mailbox command sub-system shutdown is due to 11391 * HBA error conditions such as EEH or ERATT, this routine shall invoke 11392 * the mailbox sub-system flush routine to forcefully bring down the 11393 * mailbox sub-system. Otherwise, if it is due to normal condition (such 11394 * as with offline or HBA function reset), this routine will wait for the 11395 * outstanding mailbox command to complete before invoking the mailbox 11396 * sub-system flush routine to gracefully bring down mailbox sub-system. 11397 **/ 11398 void 11399 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) 11400 { 11401 struct lpfc_sli *psli = &phba->sli; 11402 unsigned long timeout; 11403 11404 if (mbx_action == LPFC_MBX_NO_WAIT) { 11405 /* delay 100ms for port state */ 11406 msleep(100); 11407 lpfc_sli_mbox_sys_flush(phba); 11408 return; 11409 } 11410 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; 11411 11412 spin_lock_irq(&phba->hbalock); 11413 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; 11414 11415 if (psli->sli_flag & LPFC_SLI_ACTIVE) { 11416 /* Determine how long we might wait for the active mailbox 11417 * command to be gracefully completed by firmware. 11418 */ 11419 if (phba->sli.mbox_active) 11420 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, 11421 phba->sli.mbox_active) * 11422 1000) + jiffies; 11423 spin_unlock_irq(&phba->hbalock); 11424 11425 while (phba->sli.mbox_active) { 11426 /* Check active mailbox complete status every 2ms */ 11427 msleep(2); 11428 if (time_after(jiffies, timeout)) 11429 /* Timeout, let the mailbox flush routine to 11430 * forcefully release active mailbox command 11431 */ 11432 break; 11433 } 11434 } else 11435 spin_unlock_irq(&phba->hbalock); 11436 11437 lpfc_sli_mbox_sys_flush(phba); 11438 } 11439 11440 /** 11441 * lpfc_sli_eratt_read - read sli-3 error attention events 11442 * @phba: Pointer to HBA context. 11443 * 11444 * This function is called to read the SLI3 device error attention registers 11445 * for possible error attention events. The caller must hold the hostlock 11446 * with spin_lock_irq(). 11447 * 11448 * This function returns 1 when there is Error Attention in the Host Attention 11449 * Register and returns 0 otherwise. 11450 **/ 11451 static int 11452 lpfc_sli_eratt_read(struct lpfc_hba *phba) 11453 { 11454 uint32_t ha_copy; 11455 11456 /* Read chip Host Attention (HA) register */ 11457 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11458 goto unplug_err; 11459 11460 if (ha_copy & HA_ERATT) { 11461 /* Read host status register to retrieve error event */ 11462 if (lpfc_sli_read_hs(phba)) 11463 goto unplug_err; 11464 11465 /* Check if there is a deferred error condition is active */ 11466 if ((HS_FFER1 & phba->work_hs) && 11467 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11468 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { 11469 phba->hba_flag |= DEFER_ERATT; 11470 /* Clear all interrupt enable conditions */ 11471 writel(0, phba->HCregaddr); 11472 readl(phba->HCregaddr); 11473 } 11474 11475 /* Set the driver HA work bitmap */ 11476 phba->work_ha |= HA_ERATT; 11477 /* Indicate polling handles this ERATT */ 11478 phba->hba_flag |= HBA_ERATT_HANDLED; 11479 return 1; 11480 } 11481 return 0; 11482 11483 unplug_err: 11484 /* Set the driver HS work bitmap */ 11485 phba->work_hs |= UNPLUG_ERR; 11486 /* Set the driver HA work bitmap */ 11487 phba->work_ha |= HA_ERATT; 11488 /* Indicate polling handles this ERATT */ 11489 phba->hba_flag |= HBA_ERATT_HANDLED; 11490 return 1; 11491 } 11492 11493 /** 11494 * lpfc_sli4_eratt_read - read sli-4 error attention events 11495 * @phba: Pointer to HBA context. 11496 * 11497 * This function is called to read the SLI4 device error attention registers 11498 * for possible error attention events. The caller must hold the hostlock 11499 * with spin_lock_irq(). 11500 * 11501 * This function returns 1 when there is Error Attention in the Host Attention 11502 * Register and returns 0 otherwise. 11503 **/ 11504 static int 11505 lpfc_sli4_eratt_read(struct lpfc_hba *phba) 11506 { 11507 uint32_t uerr_sta_hi, uerr_sta_lo; 11508 uint32_t if_type, portsmphr; 11509 struct lpfc_register portstat_reg; 11510 11511 /* 11512 * For now, use the SLI4 device internal unrecoverable error 11513 * registers for error attention. This can be changed later. 11514 */ 11515 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); 11516 switch (if_type) { 11517 case LPFC_SLI_INTF_IF_TYPE_0: 11518 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, 11519 &uerr_sta_lo) || 11520 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, 11521 &uerr_sta_hi)) { 11522 phba->work_hs |= UNPLUG_ERR; 11523 phba->work_ha |= HA_ERATT; 11524 phba->hba_flag |= HBA_ERATT_HANDLED; 11525 return 1; 11526 } 11527 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || 11528 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { 11529 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11530 "1423 HBA Unrecoverable error: " 11531 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " 11532 "ue_mask_lo_reg=0x%x, " 11533 "ue_mask_hi_reg=0x%x\n", 11534 uerr_sta_lo, uerr_sta_hi, 11535 phba->sli4_hba.ue_mask_lo, 11536 phba->sli4_hba.ue_mask_hi); 11537 phba->work_status[0] = uerr_sta_lo; 11538 phba->work_status[1] = uerr_sta_hi; 11539 phba->work_ha |= HA_ERATT; 11540 phba->hba_flag |= HBA_ERATT_HANDLED; 11541 return 1; 11542 } 11543 break; 11544 case LPFC_SLI_INTF_IF_TYPE_2: 11545 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, 11546 &portstat_reg.word0) || 11547 lpfc_readl(phba->sli4_hba.PSMPHRregaddr, 11548 &portsmphr)){ 11549 phba->work_hs |= UNPLUG_ERR; 11550 phba->work_ha |= HA_ERATT; 11551 phba->hba_flag |= HBA_ERATT_HANDLED; 11552 return 1; 11553 } 11554 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { 11555 phba->work_status[0] = 11556 readl(phba->sli4_hba.u.if_type2.ERR1regaddr); 11557 phba->work_status[1] = 11558 readl(phba->sli4_hba.u.if_type2.ERR2regaddr); 11559 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11560 "2885 Port Status Event: " 11561 "port status reg 0x%x, " 11562 "port smphr reg 0x%x, " 11563 "error 1=0x%x, error 2=0x%x\n", 11564 portstat_reg.word0, 11565 portsmphr, 11566 phba->work_status[0], 11567 phba->work_status[1]); 11568 phba->work_ha |= HA_ERATT; 11569 phba->hba_flag |= HBA_ERATT_HANDLED; 11570 return 1; 11571 } 11572 break; 11573 case LPFC_SLI_INTF_IF_TYPE_1: 11574 default: 11575 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11576 "2886 HBA Error Attention on unsupported " 11577 "if type %d.", if_type); 11578 return 1; 11579 } 11580 11581 return 0; 11582 } 11583 11584 /** 11585 * lpfc_sli_check_eratt - check error attention events 11586 * @phba: Pointer to HBA context. 11587 * 11588 * This function is called from timer soft interrupt context to check HBA's 11589 * error attention register bit for error attention events. 11590 * 11591 * This function returns 1 when there is Error Attention in the Host Attention 11592 * Register and returns 0 otherwise. 11593 **/ 11594 int 11595 lpfc_sli_check_eratt(struct lpfc_hba *phba) 11596 { 11597 uint32_t ha_copy; 11598 11599 /* If somebody is waiting to handle an eratt, don't process it 11600 * here. The brdkill function will do this. 11601 */ 11602 if (phba->link_flag & LS_IGNORE_ERATT) 11603 return 0; 11604 11605 /* Check if interrupt handler handles this ERATT */ 11606 spin_lock_irq(&phba->hbalock); 11607 if (phba->hba_flag & HBA_ERATT_HANDLED) { 11608 /* Interrupt handler has handled ERATT */ 11609 spin_unlock_irq(&phba->hbalock); 11610 return 0; 11611 } 11612 11613 /* 11614 * If there is deferred error attention, do not check for error 11615 * attention 11616 */ 11617 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11618 spin_unlock_irq(&phba->hbalock); 11619 return 0; 11620 } 11621 11622 /* If PCI channel is offline, don't process it */ 11623 if (unlikely(pci_channel_offline(phba->pcidev))) { 11624 spin_unlock_irq(&phba->hbalock); 11625 return 0; 11626 } 11627 11628 switch (phba->sli_rev) { 11629 case LPFC_SLI_REV2: 11630 case LPFC_SLI_REV3: 11631 /* Read chip Host Attention (HA) register */ 11632 ha_copy = lpfc_sli_eratt_read(phba); 11633 break; 11634 case LPFC_SLI_REV4: 11635 /* Read device Uncoverable Error (UERR) registers */ 11636 ha_copy = lpfc_sli4_eratt_read(phba); 11637 break; 11638 default: 11639 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 11640 "0299 Invalid SLI revision (%d)\n", 11641 phba->sli_rev); 11642 ha_copy = 0; 11643 break; 11644 } 11645 spin_unlock_irq(&phba->hbalock); 11646 11647 return ha_copy; 11648 } 11649 11650 /** 11651 * lpfc_intr_state_check - Check device state for interrupt handling 11652 * @phba: Pointer to HBA context. 11653 * 11654 * This inline routine checks whether a device or its PCI slot is in a state 11655 * that the interrupt should be handled. 11656 * 11657 * This function returns 0 if the device or the PCI slot is in a state that 11658 * interrupt should be handled, otherwise -EIO. 11659 */ 11660 static inline int 11661 lpfc_intr_state_check(struct lpfc_hba *phba) 11662 { 11663 /* If the pci channel is offline, ignore all the interrupts */ 11664 if (unlikely(pci_channel_offline(phba->pcidev))) 11665 return -EIO; 11666 11667 /* Update device level interrupt statistics */ 11668 phba->sli.slistat.sli_intr++; 11669 11670 /* Ignore all interrupts during initialization. */ 11671 if (unlikely(phba->link_state < LPFC_LINK_DOWN)) 11672 return -EIO; 11673 11674 return 0; 11675 } 11676 11677 /** 11678 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device 11679 * @irq: Interrupt number. 11680 * @dev_id: The device context pointer. 11681 * 11682 * This function is directly called from the PCI layer as an interrupt 11683 * service routine when device with SLI-3 interface spec is enabled with 11684 * MSI-X multi-message interrupt mode and there are slow-path events in 11685 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ 11686 * interrupt mode, this function is called as part of the device-level 11687 * interrupt handler. When the PCI slot is in error recovery or the HBA 11688 * is undergoing initialization, the interrupt handler will not process 11689 * the interrupt. The link attention and ELS ring attention events are 11690 * handled by the worker thread. The interrupt handler signals the worker 11691 * thread and returns for these events. This function is called without 11692 * any lock held. It gets the hbalock to access and update SLI data 11693 * structures. 11694 * 11695 * This function returns IRQ_HANDLED when interrupt is handled else it 11696 * returns IRQ_NONE. 11697 **/ 11698 irqreturn_t 11699 lpfc_sli_sp_intr_handler(int irq, void *dev_id) 11700 { 11701 struct lpfc_hba *phba; 11702 uint32_t ha_copy, hc_copy; 11703 uint32_t work_ha_copy; 11704 unsigned long status; 11705 unsigned long iflag; 11706 uint32_t control; 11707 11708 MAILBOX_t *mbox, *pmbox; 11709 struct lpfc_vport *vport; 11710 struct lpfc_nodelist *ndlp; 11711 struct lpfc_dmabuf *mp; 11712 LPFC_MBOXQ_t *pmb; 11713 int rc; 11714 11715 /* 11716 * Get the driver's phba structure from the dev_id and 11717 * assume the HBA is not interrupting. 11718 */ 11719 phba = (struct lpfc_hba *)dev_id; 11720 11721 if (unlikely(!phba)) 11722 return IRQ_NONE; 11723 11724 /* 11725 * Stuff needs to be attented to when this function is invoked as an 11726 * individual interrupt handler in MSI-X multi-message interrupt mode 11727 */ 11728 if (phba->intr_type == MSIX) { 11729 /* Check device state for handling interrupt */ 11730 if (lpfc_intr_state_check(phba)) 11731 return IRQ_NONE; 11732 /* Need to read HA REG for slow-path events */ 11733 spin_lock_irqsave(&phba->hbalock, iflag); 11734 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 11735 goto unplug_error; 11736 /* If somebody is waiting to handle an eratt don't process it 11737 * here. The brdkill function will do this. 11738 */ 11739 if (phba->link_flag & LS_IGNORE_ERATT) 11740 ha_copy &= ~HA_ERATT; 11741 /* Check the need for handling ERATT in interrupt handler */ 11742 if (ha_copy & HA_ERATT) { 11743 if (phba->hba_flag & HBA_ERATT_HANDLED) 11744 /* ERATT polling has handled ERATT */ 11745 ha_copy &= ~HA_ERATT; 11746 else 11747 /* Indicate interrupt handler handles ERATT */ 11748 phba->hba_flag |= HBA_ERATT_HANDLED; 11749 } 11750 11751 /* 11752 * If there is deferred error attention, do not check for any 11753 * interrupt. 11754 */ 11755 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 11756 spin_unlock_irqrestore(&phba->hbalock, iflag); 11757 return IRQ_NONE; 11758 } 11759 11760 /* Clear up only attention source related to slow-path */ 11761 if (lpfc_readl(phba->HCregaddr, &hc_copy)) 11762 goto unplug_error; 11763 11764 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | 11765 HC_LAINT_ENA | HC_ERINT_ENA), 11766 phba->HCregaddr); 11767 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), 11768 phba->HAregaddr); 11769 writel(hc_copy, phba->HCregaddr); 11770 readl(phba->HAregaddr); /* flush */ 11771 spin_unlock_irqrestore(&phba->hbalock, iflag); 11772 } else 11773 ha_copy = phba->ha_copy; 11774 11775 work_ha_copy = ha_copy & phba->work_ha_mask; 11776 11777 if (work_ha_copy) { 11778 if (work_ha_copy & HA_LATT) { 11779 if (phba->sli.sli_flag & LPFC_PROCESS_LA) { 11780 /* 11781 * Turn off Link Attention interrupts 11782 * until CLEAR_LA done 11783 */ 11784 spin_lock_irqsave(&phba->hbalock, iflag); 11785 phba->sli.sli_flag &= ~LPFC_PROCESS_LA; 11786 if (lpfc_readl(phba->HCregaddr, &control)) 11787 goto unplug_error; 11788 control &= ~HC_LAINT_ENA; 11789 writel(control, phba->HCregaddr); 11790 readl(phba->HCregaddr); /* flush */ 11791 spin_unlock_irqrestore(&phba->hbalock, iflag); 11792 } 11793 else 11794 work_ha_copy &= ~HA_LATT; 11795 } 11796 11797 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { 11798 /* 11799 * Turn off Slow Rings interrupts, LPFC_ELS_RING is 11800 * the only slow ring. 11801 */ 11802 status = (work_ha_copy & 11803 (HA_RXMASK << (4*LPFC_ELS_RING))); 11804 status >>= (4*LPFC_ELS_RING); 11805 if (status & HA_RXMASK) { 11806 spin_lock_irqsave(&phba->hbalock, iflag); 11807 if (lpfc_readl(phba->HCregaddr, &control)) 11808 goto unplug_error; 11809 11810 lpfc_debugfs_slow_ring_trc(phba, 11811 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", 11812 control, status, 11813 (uint32_t)phba->sli.slistat.sli_intr); 11814 11815 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { 11816 lpfc_debugfs_slow_ring_trc(phba, 11817 "ISR Disable ring:" 11818 "pwork:x%x hawork:x%x wait:x%x", 11819 phba->work_ha, work_ha_copy, 11820 (uint32_t)((unsigned long) 11821 &phba->work_waitq)); 11822 11823 control &= 11824 ~(HC_R0INT_ENA << LPFC_ELS_RING); 11825 writel(control, phba->HCregaddr); 11826 readl(phba->HCregaddr); /* flush */ 11827 } 11828 else { 11829 lpfc_debugfs_slow_ring_trc(phba, 11830 "ISR slow ring: pwork:" 11831 "x%x hawork:x%x wait:x%x", 11832 phba->work_ha, work_ha_copy, 11833 (uint32_t)((unsigned long) 11834 &phba->work_waitq)); 11835 } 11836 spin_unlock_irqrestore(&phba->hbalock, iflag); 11837 } 11838 } 11839 spin_lock_irqsave(&phba->hbalock, iflag); 11840 if (work_ha_copy & HA_ERATT) { 11841 if (lpfc_sli_read_hs(phba)) 11842 goto unplug_error; 11843 /* 11844 * Check if there is a deferred error condition 11845 * is active 11846 */ 11847 if ((HS_FFER1 & phba->work_hs) && 11848 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | 11849 HS_FFER6 | HS_FFER7 | HS_FFER8) & 11850 phba->work_hs)) { 11851 phba->hba_flag |= DEFER_ERATT; 11852 /* Clear all interrupt enable conditions */ 11853 writel(0, phba->HCregaddr); 11854 readl(phba->HCregaddr); 11855 } 11856 } 11857 11858 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { 11859 pmb = phba->sli.mbox_active; 11860 pmbox = &pmb->u.mb; 11861 mbox = phba->mbox; 11862 vport = pmb->vport; 11863 11864 /* First check out the status word */ 11865 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); 11866 if (pmbox->mbxOwner != OWN_HOST) { 11867 spin_unlock_irqrestore(&phba->hbalock, iflag); 11868 /* 11869 * Stray Mailbox Interrupt, mbxCommand <cmd> 11870 * mbxStatus <status> 11871 */ 11872 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11873 LOG_SLI, 11874 "(%d):0304 Stray Mailbox " 11875 "Interrupt mbxCommand x%x " 11876 "mbxStatus x%x\n", 11877 (vport ? vport->vpi : 0), 11878 pmbox->mbxCommand, 11879 pmbox->mbxStatus); 11880 /* clear mailbox attention bit */ 11881 work_ha_copy &= ~HA_MBATT; 11882 } else { 11883 phba->sli.mbox_active = NULL; 11884 spin_unlock_irqrestore(&phba->hbalock, iflag); 11885 phba->last_completion_time = jiffies; 11886 del_timer(&phba->sli.mbox_tmo); 11887 if (pmb->mbox_cmpl) { 11888 lpfc_sli_pcimem_bcopy(mbox, pmbox, 11889 MAILBOX_CMD_SIZE); 11890 if (pmb->out_ext_byte_len && 11891 pmb->context2) 11892 lpfc_sli_pcimem_bcopy( 11893 phba->mbox_ext, 11894 pmb->context2, 11895 pmb->out_ext_byte_len); 11896 } 11897 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 11898 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 11899 11900 lpfc_debugfs_disc_trc(vport, 11901 LPFC_DISC_TRC_MBOX_VPORT, 11902 "MBOX dflt rpi: : " 11903 "status:x%x rpi:x%x", 11904 (uint32_t)pmbox->mbxStatus, 11905 pmbox->un.varWords[0], 0); 11906 11907 if (!pmbox->mbxStatus) { 11908 mp = (struct lpfc_dmabuf *) 11909 (pmb->context1); 11910 ndlp = (struct lpfc_nodelist *) 11911 pmb->context2; 11912 11913 /* Reg_LOGIN of dflt RPI was 11914 * successful. new lets get 11915 * rid of the RPI using the 11916 * same mbox buffer. 11917 */ 11918 lpfc_unreg_login(phba, 11919 vport->vpi, 11920 pmbox->un.varWords[0], 11921 pmb); 11922 pmb->mbox_cmpl = 11923 lpfc_mbx_cmpl_dflt_rpi; 11924 pmb->context1 = mp; 11925 pmb->context2 = ndlp; 11926 pmb->vport = vport; 11927 rc = lpfc_sli_issue_mbox(phba, 11928 pmb, 11929 MBX_NOWAIT); 11930 if (rc != MBX_BUSY) 11931 lpfc_printf_log(phba, 11932 KERN_ERR, 11933 LOG_MBOX | LOG_SLI, 11934 "0350 rc should have" 11935 "been MBX_BUSY\n"); 11936 if (rc != MBX_NOT_FINISHED) 11937 goto send_current_mbox; 11938 } 11939 } 11940 spin_lock_irqsave( 11941 &phba->pport->work_port_lock, 11942 iflag); 11943 phba->pport->work_port_events &= 11944 ~WORKER_MBOX_TMO; 11945 spin_unlock_irqrestore( 11946 &phba->pport->work_port_lock, 11947 iflag); 11948 lpfc_mbox_cmpl_put(phba, pmb); 11949 } 11950 } else 11951 spin_unlock_irqrestore(&phba->hbalock, iflag); 11952 11953 if ((work_ha_copy & HA_MBATT) && 11954 (phba->sli.mbox_active == NULL)) { 11955 send_current_mbox: 11956 /* Process next mailbox command if there is one */ 11957 do { 11958 rc = lpfc_sli_issue_mbox(phba, NULL, 11959 MBX_NOWAIT); 11960 } while (rc == MBX_NOT_FINISHED); 11961 if (rc != MBX_SUCCESS) 11962 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 11963 LOG_SLI, "0349 rc should be " 11964 "MBX_SUCCESS\n"); 11965 } 11966 11967 spin_lock_irqsave(&phba->hbalock, iflag); 11968 phba->work_ha |= work_ha_copy; 11969 spin_unlock_irqrestore(&phba->hbalock, iflag); 11970 lpfc_worker_wake_up(phba); 11971 } 11972 return IRQ_HANDLED; 11973 unplug_error: 11974 spin_unlock_irqrestore(&phba->hbalock, iflag); 11975 return IRQ_HANDLED; 11976 11977 } /* lpfc_sli_sp_intr_handler */ 11978 11979 /** 11980 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. 11981 * @irq: Interrupt number. 11982 * @dev_id: The device context pointer. 11983 * 11984 * This function is directly called from the PCI layer as an interrupt 11985 * service routine when device with SLI-3 interface spec is enabled with 11986 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 11987 * ring event in the HBA. However, when the device is enabled with either 11988 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 11989 * device-level interrupt handler. When the PCI slot is in error recovery 11990 * or the HBA is undergoing initialization, the interrupt handler will not 11991 * process the interrupt. The SCSI FCP fast-path ring event are handled in 11992 * the intrrupt context. This function is called without any lock held. 11993 * It gets the hbalock to access and update SLI data structures. 11994 * 11995 * This function returns IRQ_HANDLED when interrupt is handled else it 11996 * returns IRQ_NONE. 11997 **/ 11998 irqreturn_t 11999 lpfc_sli_fp_intr_handler(int irq, void *dev_id) 12000 { 12001 struct lpfc_hba *phba; 12002 uint32_t ha_copy; 12003 unsigned long status; 12004 unsigned long iflag; 12005 struct lpfc_sli_ring *pring; 12006 12007 /* Get the driver's phba structure from the dev_id and 12008 * assume the HBA is not interrupting. 12009 */ 12010 phba = (struct lpfc_hba *) dev_id; 12011 12012 if (unlikely(!phba)) 12013 return IRQ_NONE; 12014 12015 /* 12016 * Stuff needs to be attented to when this function is invoked as an 12017 * individual interrupt handler in MSI-X multi-message interrupt mode 12018 */ 12019 if (phba->intr_type == MSIX) { 12020 /* Check device state for handling interrupt */ 12021 if (lpfc_intr_state_check(phba)) 12022 return IRQ_NONE; 12023 /* Need to read HA REG for FCP ring and other ring events */ 12024 if (lpfc_readl(phba->HAregaddr, &ha_copy)) 12025 return IRQ_HANDLED; 12026 /* Clear up only attention source related to fast-path */ 12027 spin_lock_irqsave(&phba->hbalock, iflag); 12028 /* 12029 * If there is deferred error attention, do not check for 12030 * any interrupt. 12031 */ 12032 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12033 spin_unlock_irqrestore(&phba->hbalock, iflag); 12034 return IRQ_NONE; 12035 } 12036 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), 12037 phba->HAregaddr); 12038 readl(phba->HAregaddr); /* flush */ 12039 spin_unlock_irqrestore(&phba->hbalock, iflag); 12040 } else 12041 ha_copy = phba->ha_copy; 12042 12043 /* 12044 * Process all events on FCP ring. Take the optimized path for FCP IO. 12045 */ 12046 ha_copy &= ~(phba->work_ha_mask); 12047 12048 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12049 status >>= (4*LPFC_FCP_RING); 12050 pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; 12051 if (status & HA_RXMASK) 12052 lpfc_sli_handle_fast_ring_event(phba, pring, status); 12053 12054 if (phba->cfg_multi_ring_support == 2) { 12055 /* 12056 * Process all events on extra ring. Take the optimized path 12057 * for extra ring IO. 12058 */ 12059 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12060 status >>= (4*LPFC_EXTRA_RING); 12061 if (status & HA_RXMASK) { 12062 lpfc_sli_handle_fast_ring_event(phba, 12063 &phba->sli.sli3_ring[LPFC_EXTRA_RING], 12064 status); 12065 } 12066 } 12067 return IRQ_HANDLED; 12068 } /* lpfc_sli_fp_intr_handler */ 12069 12070 /** 12071 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device 12072 * @irq: Interrupt number. 12073 * @dev_id: The device context pointer. 12074 * 12075 * This function is the HBA device-level interrupt handler to device with 12076 * SLI-3 interface spec, called from the PCI layer when either MSI or 12077 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which 12078 * requires driver attention. This function invokes the slow-path interrupt 12079 * attention handling function and fast-path interrupt attention handling 12080 * function in turn to process the relevant HBA attention events. This 12081 * function is called without any lock held. It gets the hbalock to access 12082 * and update SLI data structures. 12083 * 12084 * This function returns IRQ_HANDLED when interrupt is handled, else it 12085 * returns IRQ_NONE. 12086 **/ 12087 irqreturn_t 12088 lpfc_sli_intr_handler(int irq, void *dev_id) 12089 { 12090 struct lpfc_hba *phba; 12091 irqreturn_t sp_irq_rc, fp_irq_rc; 12092 unsigned long status1, status2; 12093 uint32_t hc_copy; 12094 12095 /* 12096 * Get the driver's phba structure from the dev_id and 12097 * assume the HBA is not interrupting. 12098 */ 12099 phba = (struct lpfc_hba *) dev_id; 12100 12101 if (unlikely(!phba)) 12102 return IRQ_NONE; 12103 12104 /* Check device state for handling interrupt */ 12105 if (lpfc_intr_state_check(phba)) 12106 return IRQ_NONE; 12107 12108 spin_lock(&phba->hbalock); 12109 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { 12110 spin_unlock(&phba->hbalock); 12111 return IRQ_HANDLED; 12112 } 12113 12114 if (unlikely(!phba->ha_copy)) { 12115 spin_unlock(&phba->hbalock); 12116 return IRQ_NONE; 12117 } else if (phba->ha_copy & HA_ERATT) { 12118 if (phba->hba_flag & HBA_ERATT_HANDLED) 12119 /* ERATT polling has handled ERATT */ 12120 phba->ha_copy &= ~HA_ERATT; 12121 else 12122 /* Indicate interrupt handler handles ERATT */ 12123 phba->hba_flag |= HBA_ERATT_HANDLED; 12124 } 12125 12126 /* 12127 * If there is deferred error attention, do not check for any interrupt. 12128 */ 12129 if (unlikely(phba->hba_flag & DEFER_ERATT)) { 12130 spin_unlock(&phba->hbalock); 12131 return IRQ_NONE; 12132 } 12133 12134 /* Clear attention sources except link and error attentions */ 12135 if (lpfc_readl(phba->HCregaddr, &hc_copy)) { 12136 spin_unlock(&phba->hbalock); 12137 return IRQ_HANDLED; 12138 } 12139 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA 12140 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), 12141 phba->HCregaddr); 12142 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); 12143 writel(hc_copy, phba->HCregaddr); 12144 readl(phba->HAregaddr); /* flush */ 12145 spin_unlock(&phba->hbalock); 12146 12147 /* 12148 * Invokes slow-path host attention interrupt handling as appropriate. 12149 */ 12150 12151 /* status of events with mailbox and link attention */ 12152 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); 12153 12154 /* status of events with ELS ring */ 12155 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); 12156 status2 >>= (4*LPFC_ELS_RING); 12157 12158 if (status1 || (status2 & HA_RXMASK)) 12159 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); 12160 else 12161 sp_irq_rc = IRQ_NONE; 12162 12163 /* 12164 * Invoke fast-path host attention interrupt handling as appropriate. 12165 */ 12166 12167 /* status of events with FCP ring */ 12168 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); 12169 status1 >>= (4*LPFC_FCP_RING); 12170 12171 /* status of events with extra ring */ 12172 if (phba->cfg_multi_ring_support == 2) { 12173 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); 12174 status2 >>= (4*LPFC_EXTRA_RING); 12175 } else 12176 status2 = 0; 12177 12178 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) 12179 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); 12180 else 12181 fp_irq_rc = IRQ_NONE; 12182 12183 /* Return device-level interrupt handling status */ 12184 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; 12185 } /* lpfc_sli_intr_handler */ 12186 12187 /** 12188 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event 12189 * @phba: pointer to lpfc hba data structure. 12190 * 12191 * This routine is invoked by the worker thread to process all the pending 12192 * SLI4 FCP abort XRI events. 12193 **/ 12194 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba) 12195 { 12196 struct lpfc_cq_event *cq_event; 12197 12198 /* First, declare the fcp xri abort event has been handled */ 12199 spin_lock_irq(&phba->hbalock); 12200 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT; 12201 spin_unlock_irq(&phba->hbalock); 12202 /* Now, handle all the fcp xri abort events */ 12203 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) { 12204 /* Get the first event from the head of the event queue */ 12205 spin_lock_irq(&phba->hbalock); 12206 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue, 12207 cq_event, struct lpfc_cq_event, list); 12208 spin_unlock_irq(&phba->hbalock); 12209 /* Notify aborted XRI for FCP work queue */ 12210 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12211 /* Free the event processed back to the free pool */ 12212 lpfc_sli4_cq_event_release(phba, cq_event); 12213 } 12214 } 12215 12216 /** 12217 * lpfc_sli4_nvme_xri_abort_event_proc - Process nvme xri abort event 12218 * @phba: pointer to lpfc hba data structure. 12219 * 12220 * This routine is invoked by the worker thread to process all the pending 12221 * SLI4 NVME abort XRI events. 12222 **/ 12223 void lpfc_sli4_nvme_xri_abort_event_proc(struct lpfc_hba *phba) 12224 { 12225 struct lpfc_cq_event *cq_event; 12226 12227 /* First, declare the fcp xri abort event has been handled */ 12228 spin_lock_irq(&phba->hbalock); 12229 phba->hba_flag &= ~NVME_XRI_ABORT_EVENT; 12230 spin_unlock_irq(&phba->hbalock); 12231 /* Now, handle all the fcp xri abort events */ 12232 while (!list_empty(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue)) { 12233 /* Get the first event from the head of the event queue */ 12234 spin_lock_irq(&phba->hbalock); 12235 list_remove_head(&phba->sli4_hba.sp_nvme_xri_aborted_work_queue, 12236 cq_event, struct lpfc_cq_event, list); 12237 spin_unlock_irq(&phba->hbalock); 12238 /* Notify aborted XRI for NVME work queue */ 12239 if (phba->nvmet_support) { 12240 lpfc_sli4_nvmet_xri_aborted(phba, 12241 &cq_event->cqe.wcqe_axri); 12242 } else { 12243 lpfc_sli4_nvme_xri_aborted(phba, 12244 &cq_event->cqe.wcqe_axri); 12245 } 12246 /* Free the event processed back to the free pool */ 12247 lpfc_sli4_cq_event_release(phba, cq_event); 12248 } 12249 } 12250 12251 /** 12252 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event 12253 * @phba: pointer to lpfc hba data structure. 12254 * 12255 * This routine is invoked by the worker thread to process all the pending 12256 * SLI4 els abort xri events. 12257 **/ 12258 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) 12259 { 12260 struct lpfc_cq_event *cq_event; 12261 12262 /* First, declare the els xri abort event has been handled */ 12263 spin_lock_irq(&phba->hbalock); 12264 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; 12265 spin_unlock_irq(&phba->hbalock); 12266 /* Now, handle all the els xri abort events */ 12267 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { 12268 /* Get the first event from the head of the event queue */ 12269 spin_lock_irq(&phba->hbalock); 12270 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, 12271 cq_event, struct lpfc_cq_event, list); 12272 spin_unlock_irq(&phba->hbalock); 12273 /* Notify aborted XRI for ELS work queue */ 12274 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); 12275 /* Free the event processed back to the free pool */ 12276 lpfc_sli4_cq_event_release(phba, cq_event); 12277 } 12278 } 12279 12280 /** 12281 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn 12282 * @phba: pointer to lpfc hba data structure 12283 * @pIocbIn: pointer to the rspiocbq 12284 * @pIocbOut: pointer to the cmdiocbq 12285 * @wcqe: pointer to the complete wcqe 12286 * 12287 * This routine transfers the fields of a command iocbq to a response iocbq 12288 * by copying all the IOCB fields from command iocbq and transferring the 12289 * completion status information from the complete wcqe. 12290 **/ 12291 static void 12292 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, 12293 struct lpfc_iocbq *pIocbIn, 12294 struct lpfc_iocbq *pIocbOut, 12295 struct lpfc_wcqe_complete *wcqe) 12296 { 12297 int numBdes, i; 12298 unsigned long iflags; 12299 uint32_t status, max_response; 12300 struct lpfc_dmabuf *dmabuf; 12301 struct ulp_bde64 *bpl, bde; 12302 size_t offset = offsetof(struct lpfc_iocbq, iocb); 12303 12304 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, 12305 sizeof(struct lpfc_iocbq) - offset); 12306 /* Map WCQE parameters into irspiocb parameters */ 12307 status = bf_get(lpfc_wcqe_c_status, wcqe); 12308 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); 12309 if (pIocbOut->iocb_flag & LPFC_IO_FCP) 12310 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) 12311 pIocbIn->iocb.un.fcpi.fcpi_parm = 12312 pIocbOut->iocb.un.fcpi.fcpi_parm - 12313 wcqe->total_data_placed; 12314 else 12315 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12316 else { 12317 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; 12318 switch (pIocbOut->iocb.ulpCommand) { 12319 case CMD_ELS_REQUEST64_CR: 12320 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12321 bpl = (struct ulp_bde64 *)dmabuf->virt; 12322 bde.tus.w = le32_to_cpu(bpl[1].tus.w); 12323 max_response = bde.tus.f.bdeSize; 12324 break; 12325 case CMD_GEN_REQUEST64_CR: 12326 max_response = 0; 12327 if (!pIocbOut->context3) 12328 break; 12329 numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ 12330 sizeof(struct ulp_bde64); 12331 dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; 12332 bpl = (struct ulp_bde64 *)dmabuf->virt; 12333 for (i = 0; i < numBdes; i++) { 12334 bde.tus.w = le32_to_cpu(bpl[i].tus.w); 12335 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) 12336 max_response += bde.tus.f.bdeSize; 12337 } 12338 break; 12339 default: 12340 max_response = wcqe->total_data_placed; 12341 break; 12342 } 12343 if (max_response < wcqe->total_data_placed) 12344 pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; 12345 else 12346 pIocbIn->iocb.un.genreq64.bdl.bdeSize = 12347 wcqe->total_data_placed; 12348 } 12349 12350 /* Convert BG errors for completion status */ 12351 if (status == CQE_STATUS_DI_ERROR) { 12352 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; 12353 12354 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) 12355 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; 12356 else 12357 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; 12358 12359 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; 12360 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ 12361 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12362 BGS_GUARD_ERR_MASK; 12363 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ 12364 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12365 BGS_APPTAG_ERR_MASK; 12366 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ 12367 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12368 BGS_REFTAG_ERR_MASK; 12369 12370 /* Check to see if there was any good data before the error */ 12371 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { 12372 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12373 BGS_HI_WATER_MARK_PRESENT_MASK; 12374 pIocbIn->iocb.unsli3.sli3_bg.bghm = 12375 wcqe->total_data_placed; 12376 } 12377 12378 /* 12379 * Set ALL the error bits to indicate we don't know what 12380 * type of error it is. 12381 */ 12382 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) 12383 pIocbIn->iocb.unsli3.sli3_bg.bgstat |= 12384 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | 12385 BGS_GUARD_ERR_MASK); 12386 } 12387 12388 /* Pick up HBA exchange busy condition */ 12389 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 12390 spin_lock_irqsave(&phba->hbalock, iflags); 12391 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; 12392 spin_unlock_irqrestore(&phba->hbalock, iflags); 12393 } 12394 } 12395 12396 /** 12397 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe 12398 * @phba: Pointer to HBA context object. 12399 * @wcqe: Pointer to work-queue completion queue entry. 12400 * 12401 * This routine handles an ELS work-queue completion event and construct 12402 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common 12403 * discovery engine to handle. 12404 * 12405 * Return: Pointer to the receive IOCBQ, NULL otherwise. 12406 **/ 12407 static struct lpfc_iocbq * 12408 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, 12409 struct lpfc_iocbq *irspiocbq) 12410 { 12411 struct lpfc_sli_ring *pring; 12412 struct lpfc_iocbq *cmdiocbq; 12413 struct lpfc_wcqe_complete *wcqe; 12414 unsigned long iflags; 12415 12416 pring = lpfc_phba_elsring(phba); 12417 12418 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; 12419 spin_lock_irqsave(&pring->ring_lock, iflags); 12420 pring->stats.iocb_event++; 12421 /* Look up the ELS command IOCB and create pseudo response IOCB */ 12422 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 12423 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12424 /* Put the iocb back on the txcmplq */ 12425 lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); 12426 spin_unlock_irqrestore(&pring->ring_lock, iflags); 12427 12428 if (unlikely(!cmdiocbq)) { 12429 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12430 "0386 ELS complete with no corresponding " 12431 "cmdiocb: iotag (%d)\n", 12432 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 12433 lpfc_sli_release_iocbq(phba, irspiocbq); 12434 return NULL; 12435 } 12436 12437 /* Fake the irspiocbq and copy necessary response information */ 12438 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); 12439 12440 return irspiocbq; 12441 } 12442 12443 /** 12444 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event 12445 * @phba: Pointer to HBA context object. 12446 * @cqe: Pointer to mailbox completion queue entry. 12447 * 12448 * This routine process a mailbox completion queue entry with asynchrous 12449 * event. 12450 * 12451 * Return: true if work posted to worker thread, otherwise false. 12452 **/ 12453 static bool 12454 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12455 { 12456 struct lpfc_cq_event *cq_event; 12457 unsigned long iflags; 12458 12459 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 12460 "0392 Async Event: word0:x%x, word1:x%x, " 12461 "word2:x%x, word3:x%x\n", mcqe->word0, 12462 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); 12463 12464 /* Allocate a new internal CQ_EVENT entry */ 12465 cq_event = lpfc_sli4_cq_event_alloc(phba); 12466 if (!cq_event) { 12467 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12468 "0394 Failed to allocate CQ_EVENT entry\n"); 12469 return false; 12470 } 12471 12472 /* Move the CQE into an asynchronous event entry */ 12473 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe)); 12474 spin_lock_irqsave(&phba->hbalock, iflags); 12475 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); 12476 /* Set the async event flag */ 12477 phba->hba_flag |= ASYNC_EVENT; 12478 spin_unlock_irqrestore(&phba->hbalock, iflags); 12479 12480 return true; 12481 } 12482 12483 /** 12484 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event 12485 * @phba: Pointer to HBA context object. 12486 * @cqe: Pointer to mailbox completion queue entry. 12487 * 12488 * This routine process a mailbox completion queue entry with mailbox 12489 * completion event. 12490 * 12491 * Return: true if work posted to worker thread, otherwise false. 12492 **/ 12493 static bool 12494 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) 12495 { 12496 uint32_t mcqe_status; 12497 MAILBOX_t *mbox, *pmbox; 12498 struct lpfc_mqe *mqe; 12499 struct lpfc_vport *vport; 12500 struct lpfc_nodelist *ndlp; 12501 struct lpfc_dmabuf *mp; 12502 unsigned long iflags; 12503 LPFC_MBOXQ_t *pmb; 12504 bool workposted = false; 12505 int rc; 12506 12507 /* If not a mailbox complete MCQE, out by checking mailbox consume */ 12508 if (!bf_get(lpfc_trailer_completed, mcqe)) 12509 goto out_no_mqe_complete; 12510 12511 /* Get the reference to the active mbox command */ 12512 spin_lock_irqsave(&phba->hbalock, iflags); 12513 pmb = phba->sli.mbox_active; 12514 if (unlikely(!pmb)) { 12515 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, 12516 "1832 No pending MBOX command to handle\n"); 12517 spin_unlock_irqrestore(&phba->hbalock, iflags); 12518 goto out_no_mqe_complete; 12519 } 12520 spin_unlock_irqrestore(&phba->hbalock, iflags); 12521 mqe = &pmb->u.mqe; 12522 pmbox = (MAILBOX_t *)&pmb->u.mqe; 12523 mbox = phba->mbox; 12524 vport = pmb->vport; 12525 12526 /* Reset heartbeat timer */ 12527 phba->last_completion_time = jiffies; 12528 del_timer(&phba->sli.mbox_tmo); 12529 12530 /* Move mbox data to caller's mailbox region, do endian swapping */ 12531 if (pmb->mbox_cmpl && mbox) 12532 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); 12533 12534 /* 12535 * For mcqe errors, conditionally move a modified error code to 12536 * the mbox so that the error will not be missed. 12537 */ 12538 mcqe_status = bf_get(lpfc_mcqe_status, mcqe); 12539 if (mcqe_status != MB_CQE_STATUS_SUCCESS) { 12540 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) 12541 bf_set(lpfc_mqe_status, mqe, 12542 (LPFC_MBX_ERROR_RANGE | mcqe_status)); 12543 } 12544 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { 12545 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; 12546 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, 12547 "MBOX dflt rpi: status:x%x rpi:x%x", 12548 mcqe_status, 12549 pmbox->un.varWords[0], 0); 12550 if (mcqe_status == MB_CQE_STATUS_SUCCESS) { 12551 mp = (struct lpfc_dmabuf *)(pmb->context1); 12552 ndlp = (struct lpfc_nodelist *)pmb->context2; 12553 /* Reg_LOGIN of dflt RPI was successful. Now lets get 12554 * RID of the PPI using the same mbox buffer. 12555 */ 12556 lpfc_unreg_login(phba, vport->vpi, 12557 pmbox->un.varWords[0], pmb); 12558 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; 12559 pmb->context1 = mp; 12560 pmb->context2 = ndlp; 12561 pmb->vport = vport; 12562 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); 12563 if (rc != MBX_BUSY) 12564 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | 12565 LOG_SLI, "0385 rc should " 12566 "have been MBX_BUSY\n"); 12567 if (rc != MBX_NOT_FINISHED) 12568 goto send_current_mbox; 12569 } 12570 } 12571 spin_lock_irqsave(&phba->pport->work_port_lock, iflags); 12572 phba->pport->work_port_events &= ~WORKER_MBOX_TMO; 12573 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); 12574 12575 /* There is mailbox completion work to do */ 12576 spin_lock_irqsave(&phba->hbalock, iflags); 12577 __lpfc_mbox_cmpl_put(phba, pmb); 12578 phba->work_ha |= HA_MBATT; 12579 spin_unlock_irqrestore(&phba->hbalock, iflags); 12580 workposted = true; 12581 12582 send_current_mbox: 12583 spin_lock_irqsave(&phba->hbalock, iflags); 12584 /* Release the mailbox command posting token */ 12585 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; 12586 /* Setting active mailbox pointer need to be in sync to flag clear */ 12587 phba->sli.mbox_active = NULL; 12588 spin_unlock_irqrestore(&phba->hbalock, iflags); 12589 /* Wake up worker thread to post the next pending mailbox command */ 12590 lpfc_worker_wake_up(phba); 12591 out_no_mqe_complete: 12592 if (bf_get(lpfc_trailer_consumed, mcqe)) 12593 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); 12594 return workposted; 12595 } 12596 12597 /** 12598 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry 12599 * @phba: Pointer to HBA context object. 12600 * @cqe: Pointer to mailbox completion queue entry. 12601 * 12602 * This routine process a mailbox completion queue entry, it invokes the 12603 * proper mailbox complete handling or asynchrous event handling routine 12604 * according to the MCQE's async bit. 12605 * 12606 * Return: true if work posted to worker thread, otherwise false. 12607 **/ 12608 static bool 12609 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe) 12610 { 12611 struct lpfc_mcqe mcqe; 12612 bool workposted; 12613 12614 /* Copy the mailbox MCQE and convert endian order as needed */ 12615 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); 12616 12617 /* Invoke the proper event handling routine */ 12618 if (!bf_get(lpfc_trailer_async, &mcqe)) 12619 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); 12620 else 12621 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); 12622 return workposted; 12623 } 12624 12625 /** 12626 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event 12627 * @phba: Pointer to HBA context object. 12628 * @cq: Pointer to associated CQ 12629 * @wcqe: Pointer to work-queue completion queue entry. 12630 * 12631 * This routine handles an ELS work-queue completion event. 12632 * 12633 * Return: true if work posted to worker thread, otherwise false. 12634 **/ 12635 static bool 12636 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12637 struct lpfc_wcqe_complete *wcqe) 12638 { 12639 struct lpfc_iocbq *irspiocbq; 12640 unsigned long iflags; 12641 struct lpfc_sli_ring *pring = cq->pring; 12642 int txq_cnt = 0; 12643 int txcmplq_cnt = 0; 12644 int fcp_txcmplq_cnt = 0; 12645 12646 /* Get an irspiocbq for later ELS response processing use */ 12647 irspiocbq = lpfc_sli_get_iocbq(phba); 12648 if (!irspiocbq) { 12649 if (!list_empty(&pring->txq)) 12650 txq_cnt++; 12651 if (!list_empty(&pring->txcmplq)) 12652 txcmplq_cnt++; 12653 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12654 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " 12655 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n", 12656 txq_cnt, phba->iocb_cnt, 12657 fcp_txcmplq_cnt, 12658 txcmplq_cnt); 12659 return false; 12660 } 12661 12662 /* Save off the slow-path queue event for work thread to process */ 12663 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); 12664 spin_lock_irqsave(&phba->hbalock, iflags); 12665 list_add_tail(&irspiocbq->cq_event.list, 12666 &phba->sli4_hba.sp_queue_event); 12667 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12668 spin_unlock_irqrestore(&phba->hbalock, iflags); 12669 12670 return true; 12671 } 12672 12673 /** 12674 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event 12675 * @phba: Pointer to HBA context object. 12676 * @wcqe: Pointer to work-queue completion queue entry. 12677 * 12678 * This routine handles slow-path WQ entry consumed event by invoking the 12679 * proper WQ release routine to the slow-path WQ. 12680 **/ 12681 static void 12682 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, 12683 struct lpfc_wcqe_release *wcqe) 12684 { 12685 /* sanity check on queue memory */ 12686 if (unlikely(!phba->sli4_hba.els_wq)) 12687 return; 12688 /* Check for the slow-path ELS work queue */ 12689 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) 12690 lpfc_sli4_wq_release(phba->sli4_hba.els_wq, 12691 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 12692 else 12693 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 12694 "2579 Slow-path wqe consume event carries " 12695 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", 12696 bf_get(lpfc_wcqe_r_wqe_index, wcqe), 12697 phba->sli4_hba.els_wq->queue_id); 12698 } 12699 12700 /** 12701 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event 12702 * @phba: Pointer to HBA context object. 12703 * @cq: Pointer to a WQ completion queue. 12704 * @wcqe: Pointer to work-queue completion queue entry. 12705 * 12706 * This routine handles an XRI abort event. 12707 * 12708 * Return: true if work posted to worker thread, otherwise false. 12709 **/ 12710 static bool 12711 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, 12712 struct lpfc_queue *cq, 12713 struct sli4_wcqe_xri_aborted *wcqe) 12714 { 12715 bool workposted = false; 12716 struct lpfc_cq_event *cq_event; 12717 unsigned long iflags; 12718 12719 /* Allocate a new internal CQ_EVENT entry */ 12720 cq_event = lpfc_sli4_cq_event_alloc(phba); 12721 if (!cq_event) { 12722 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12723 "0602 Failed to allocate CQ_EVENT entry\n"); 12724 return false; 12725 } 12726 12727 /* Move the CQE into the proper xri abort event list */ 12728 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted)); 12729 switch (cq->subtype) { 12730 case LPFC_FCP: 12731 spin_lock_irqsave(&phba->hbalock, iflags); 12732 list_add_tail(&cq_event->list, 12733 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue); 12734 /* Set the fcp xri abort event flag */ 12735 phba->hba_flag |= FCP_XRI_ABORT_EVENT; 12736 spin_unlock_irqrestore(&phba->hbalock, iflags); 12737 workposted = true; 12738 break; 12739 case LPFC_ELS: 12740 spin_lock_irqsave(&phba->hbalock, iflags); 12741 list_add_tail(&cq_event->list, 12742 &phba->sli4_hba.sp_els_xri_aborted_work_queue); 12743 /* Set the els xri abort event flag */ 12744 phba->hba_flag |= ELS_XRI_ABORT_EVENT; 12745 spin_unlock_irqrestore(&phba->hbalock, iflags); 12746 workposted = true; 12747 break; 12748 case LPFC_NVME: 12749 spin_lock_irqsave(&phba->hbalock, iflags); 12750 list_add_tail(&cq_event->list, 12751 &phba->sli4_hba.sp_nvme_xri_aborted_work_queue); 12752 /* Set the nvme xri abort event flag */ 12753 phba->hba_flag |= NVME_XRI_ABORT_EVENT; 12754 spin_unlock_irqrestore(&phba->hbalock, iflags); 12755 workposted = true; 12756 break; 12757 default: 12758 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12759 "0603 Invalid CQ subtype %d: " 12760 "%08x %08x %08x %08x\n", 12761 cq->subtype, wcqe->word0, wcqe->parameter, 12762 wcqe->word2, wcqe->word3); 12763 lpfc_sli4_cq_event_release(phba, cq_event); 12764 workposted = false; 12765 break; 12766 } 12767 return workposted; 12768 } 12769 12770 /** 12771 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry 12772 * @phba: Pointer to HBA context object. 12773 * @rcqe: Pointer to receive-queue completion queue entry. 12774 * 12775 * This routine process a receive-queue completion queue entry. 12776 * 12777 * Return: true if work posted to worker thread, otherwise false. 12778 **/ 12779 static bool 12780 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) 12781 { 12782 bool workposted = false; 12783 struct fc_frame_header *fc_hdr; 12784 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; 12785 struct lpfc_queue *drq = phba->sli4_hba.dat_rq; 12786 struct hbq_dmabuf *dma_buf; 12787 uint32_t status, rq_id; 12788 unsigned long iflags; 12789 12790 /* sanity check on queue memory */ 12791 if (unlikely(!hrq) || unlikely(!drq)) 12792 return workposted; 12793 12794 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 12795 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 12796 else 12797 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 12798 if (rq_id != hrq->queue_id) 12799 goto out; 12800 12801 status = bf_get(lpfc_rcqe_status, rcqe); 12802 switch (status) { 12803 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 12804 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12805 "2537 Receive Frame Truncated!!\n"); 12806 hrq->RQ_buf_trunc++; 12807 case FC_STATUS_RQ_SUCCESS: 12808 lpfc_sli4_rq_release(hrq, drq); 12809 spin_lock_irqsave(&phba->hbalock, iflags); 12810 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); 12811 if (!dma_buf) { 12812 hrq->RQ_no_buf_found++; 12813 spin_unlock_irqrestore(&phba->hbalock, iflags); 12814 goto out; 12815 } 12816 hrq->RQ_rcv_buf++; 12817 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); 12818 12819 /* If a NVME LS event (type 0x28), treat it as Fast path */ 12820 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 12821 12822 /* save off the frame for the word thread to process */ 12823 list_add_tail(&dma_buf->cq_event.list, 12824 &phba->sli4_hba.sp_queue_event); 12825 /* Frame received */ 12826 phba->hba_flag |= HBA_SP_QUEUE_EVT; 12827 spin_unlock_irqrestore(&phba->hbalock, iflags); 12828 workposted = true; 12829 break; 12830 case FC_STATUS_INSUFF_BUF_NEED_BUF: 12831 case FC_STATUS_INSUFF_BUF_FRM_DISC: 12832 hrq->RQ_no_posted_buf++; 12833 /* Post more buffers if possible */ 12834 spin_lock_irqsave(&phba->hbalock, iflags); 12835 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 12836 spin_unlock_irqrestore(&phba->hbalock, iflags); 12837 workposted = true; 12838 break; 12839 } 12840 out: 12841 return workposted; 12842 } 12843 12844 /** 12845 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry 12846 * @phba: Pointer to HBA context object. 12847 * @cq: Pointer to the completion queue. 12848 * @wcqe: Pointer to a completion queue entry. 12849 * 12850 * This routine process a slow-path work-queue or receive queue completion queue 12851 * entry. 12852 * 12853 * Return: true if work posted to worker thread, otherwise false. 12854 **/ 12855 static bool 12856 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 12857 struct lpfc_cqe *cqe) 12858 { 12859 struct lpfc_cqe cqevt; 12860 bool workposted = false; 12861 12862 /* Copy the work queue CQE and convert endian order if needed */ 12863 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); 12864 12865 /* Check and process for different type of WCQE and dispatch */ 12866 switch (bf_get(lpfc_cqe_code, &cqevt)) { 12867 case CQE_CODE_COMPL_WQE: 12868 /* Process the WQ/RQ complete event */ 12869 phba->last_completion_time = jiffies; 12870 workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, 12871 (struct lpfc_wcqe_complete *)&cqevt); 12872 break; 12873 case CQE_CODE_RELEASE_WQE: 12874 /* Process the WQ release event */ 12875 lpfc_sli4_sp_handle_rel_wcqe(phba, 12876 (struct lpfc_wcqe_release *)&cqevt); 12877 break; 12878 case CQE_CODE_XRI_ABORTED: 12879 /* Process the WQ XRI abort event */ 12880 phba->last_completion_time = jiffies; 12881 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 12882 (struct sli4_wcqe_xri_aborted *)&cqevt); 12883 break; 12884 case CQE_CODE_RECEIVE: 12885 case CQE_CODE_RECEIVE_V1: 12886 /* Process the RQ event */ 12887 phba->last_completion_time = jiffies; 12888 workposted = lpfc_sli4_sp_handle_rcqe(phba, 12889 (struct lpfc_rcqe *)&cqevt); 12890 break; 12891 default: 12892 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12893 "0388 Not a valid WCQE code: x%x\n", 12894 bf_get(lpfc_cqe_code, &cqevt)); 12895 break; 12896 } 12897 return workposted; 12898 } 12899 12900 /** 12901 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry 12902 * @phba: Pointer to HBA context object. 12903 * @eqe: Pointer to fast-path event queue entry. 12904 * 12905 * This routine process a event queue entry from the slow-path event queue. 12906 * It will check the MajorCode and MinorCode to determine this is for a 12907 * completion event on a completion queue, if not, an error shall be logged 12908 * and just return. Otherwise, it will get to the corresponding completion 12909 * queue and process all the entries on that completion queue, rearm the 12910 * completion queue, and then return. 12911 * 12912 **/ 12913 static void 12914 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 12915 struct lpfc_queue *speq) 12916 { 12917 struct lpfc_queue *cq = NULL, *childq; 12918 struct lpfc_cqe *cqe; 12919 bool workposted = false; 12920 int ecount = 0; 12921 uint16_t cqid; 12922 12923 /* Get the reference to the corresponding CQ */ 12924 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 12925 12926 list_for_each_entry(childq, &speq->child_list, list) { 12927 if (childq->queue_id == cqid) { 12928 cq = childq; 12929 break; 12930 } 12931 } 12932 if (unlikely(!cq)) { 12933 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 12934 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12935 "0365 Slow-path CQ identifier " 12936 "(%d) does not exist\n", cqid); 12937 return; 12938 } 12939 12940 /* Save EQ associated with this CQ */ 12941 cq->assoc_qp = speq; 12942 12943 /* Process all the entries to the CQ */ 12944 switch (cq->type) { 12945 case LPFC_MCQ: 12946 while ((cqe = lpfc_sli4_cq_get(cq))) { 12947 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe); 12948 if (!(++ecount % cq->entry_repost)) 12949 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12950 cq->CQ_mbox++; 12951 } 12952 break; 12953 case LPFC_WCQ: 12954 while ((cqe = lpfc_sli4_cq_get(cq))) { 12955 if ((cq->subtype == LPFC_FCP) || 12956 (cq->subtype == LPFC_NVME)) 12957 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, 12958 cqe); 12959 else 12960 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq, 12961 cqe); 12962 if (!(++ecount % cq->entry_repost)) 12963 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 12964 } 12965 12966 /* Track the max number of CQEs processed in 1 EQ */ 12967 if (ecount > cq->CQ_max_cqe) 12968 cq->CQ_max_cqe = ecount; 12969 break; 12970 default: 12971 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12972 "0370 Invalid completion queue type (%d)\n", 12973 cq->type); 12974 return; 12975 } 12976 12977 /* Catch the no cq entry condition, log an error */ 12978 if (unlikely(ecount == 0)) 12979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 12980 "0371 No entry from the CQ: identifier " 12981 "(x%x), type (%d)\n", cq->queue_id, cq->type); 12982 12983 /* In any case, flash and re-arm the RCQ */ 12984 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 12985 12986 /* wake up worker thread if there are works to be done */ 12987 if (workposted) 12988 lpfc_worker_wake_up(phba); 12989 } 12990 12991 /** 12992 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry 12993 * @phba: Pointer to HBA context object. 12994 * @cq: Pointer to associated CQ 12995 * @wcqe: Pointer to work-queue completion queue entry. 12996 * 12997 * This routine process a fast-path work queue completion entry from fast-path 12998 * event queue for FCP command response completion. 12999 **/ 13000 static void 13001 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13002 struct lpfc_wcqe_complete *wcqe) 13003 { 13004 struct lpfc_sli_ring *pring = cq->pring; 13005 struct lpfc_iocbq *cmdiocbq; 13006 struct lpfc_iocbq irspiocbq; 13007 unsigned long iflags; 13008 13009 /* Check for response status */ 13010 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { 13011 /* If resource errors reported from HBA, reduce queue 13012 * depth of the SCSI device. 13013 */ 13014 if (((bf_get(lpfc_wcqe_c_status, wcqe) == 13015 IOSTAT_LOCAL_REJECT)) && 13016 ((wcqe->parameter & IOERR_PARAM_MASK) == 13017 IOERR_NO_RESOURCES)) 13018 phba->lpfc_rampdown_queue_depth(phba); 13019 13020 /* Log the error status */ 13021 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13022 "0373 FCP complete error: status=x%x, " 13023 "hw_status=x%x, total_data_specified=%d, " 13024 "parameter=x%x, word3=x%x\n", 13025 bf_get(lpfc_wcqe_c_status, wcqe), 13026 bf_get(lpfc_wcqe_c_hw_status, wcqe), 13027 wcqe->total_data_placed, wcqe->parameter, 13028 wcqe->word3); 13029 } 13030 13031 /* Look up the FCP command IOCB and create pseudo response IOCB */ 13032 spin_lock_irqsave(&pring->ring_lock, iflags); 13033 pring->stats.iocb_event++; 13034 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, 13035 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13036 spin_unlock_irqrestore(&pring->ring_lock, iflags); 13037 if (unlikely(!cmdiocbq)) { 13038 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13039 "0374 FCP complete with no corresponding " 13040 "cmdiocb: iotag (%d)\n", 13041 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13042 return; 13043 } 13044 13045 if (cq->assoc_qp) 13046 cmdiocbq->isr_timestamp = 13047 cq->assoc_qp->isr_timestamp; 13048 13049 if (cmdiocbq->iocb_cmpl == NULL) { 13050 if (cmdiocbq->wqe_cmpl) { 13051 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13052 spin_lock_irqsave(&phba->hbalock, iflags); 13053 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13054 spin_unlock_irqrestore(&phba->hbalock, iflags); 13055 } 13056 13057 /* Pass the cmd_iocb and the wcqe to the upper layer */ 13058 (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); 13059 return; 13060 } 13061 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13062 "0375 FCP cmdiocb not callback function " 13063 "iotag: (%d)\n", 13064 bf_get(lpfc_wcqe_c_request_tag, wcqe)); 13065 return; 13066 } 13067 13068 /* Fake the irspiocb and copy necessary response information */ 13069 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); 13070 13071 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { 13072 spin_lock_irqsave(&phba->hbalock, iflags); 13073 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; 13074 spin_unlock_irqrestore(&phba->hbalock, iflags); 13075 } 13076 13077 /* Pass the cmd_iocb and the rsp state to the upper layer */ 13078 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); 13079 } 13080 13081 /** 13082 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event 13083 * @phba: Pointer to HBA context object. 13084 * @cq: Pointer to completion queue. 13085 * @wcqe: Pointer to work-queue completion queue entry. 13086 * 13087 * This routine handles an fast-path WQ entry consumed event by invoking the 13088 * proper WQ release routine to the slow-path WQ. 13089 **/ 13090 static void 13091 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13092 struct lpfc_wcqe_release *wcqe) 13093 { 13094 struct lpfc_queue *childwq; 13095 bool wqid_matched = false; 13096 uint16_t hba_wqid; 13097 13098 /* Check for fast-path FCP work queue release */ 13099 hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); 13100 list_for_each_entry(childwq, &cq->child_list, list) { 13101 if (childwq->queue_id == hba_wqid) { 13102 lpfc_sli4_wq_release(childwq, 13103 bf_get(lpfc_wcqe_r_wqe_index, wcqe)); 13104 wqid_matched = true; 13105 break; 13106 } 13107 } 13108 /* Report warning log message if no match found */ 13109 if (wqid_matched != true) 13110 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13111 "2580 Fast-path wqe consume event carries " 13112 "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); 13113 } 13114 13115 /** 13116 * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry 13117 * @phba: Pointer to HBA context object. 13118 * @rcqe: Pointer to receive-queue completion queue entry. 13119 * 13120 * This routine process a receive-queue completion queue entry. 13121 * 13122 * Return: true if work posted to worker thread, otherwise false. 13123 **/ 13124 static bool 13125 lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13126 struct lpfc_rcqe *rcqe) 13127 { 13128 bool workposted = false; 13129 struct lpfc_queue *hrq; 13130 struct lpfc_queue *drq; 13131 struct rqb_dmabuf *dma_buf; 13132 struct fc_frame_header *fc_hdr; 13133 uint32_t status, rq_id; 13134 unsigned long iflags; 13135 uint32_t fctl, idx; 13136 13137 if ((phba->nvmet_support == 0) || 13138 (phba->sli4_hba.nvmet_cqset == NULL)) 13139 return workposted; 13140 13141 idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; 13142 hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; 13143 drq = phba->sli4_hba.nvmet_mrq_data[idx]; 13144 13145 /* sanity check on queue memory */ 13146 if (unlikely(!hrq) || unlikely(!drq)) 13147 return workposted; 13148 13149 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) 13150 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); 13151 else 13152 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); 13153 13154 if ((phba->nvmet_support == 0) || 13155 (rq_id != hrq->queue_id)) 13156 return workposted; 13157 13158 status = bf_get(lpfc_rcqe_status, rcqe); 13159 switch (status) { 13160 case FC_STATUS_RQ_BUF_LEN_EXCEEDED: 13161 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13162 "6126 Receive Frame Truncated!!\n"); 13163 hrq->RQ_buf_trunc++; 13164 break; 13165 case FC_STATUS_RQ_SUCCESS: 13166 lpfc_sli4_rq_release(hrq, drq); 13167 spin_lock_irqsave(&phba->hbalock, iflags); 13168 dma_buf = lpfc_sli_rqbuf_get(phba, hrq); 13169 if (!dma_buf) { 13170 hrq->RQ_no_buf_found++; 13171 spin_unlock_irqrestore(&phba->hbalock, iflags); 13172 goto out; 13173 } 13174 spin_unlock_irqrestore(&phba->hbalock, iflags); 13175 hrq->RQ_rcv_buf++; 13176 fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; 13177 13178 /* Just some basic sanity checks on FCP Command frame */ 13179 fctl = (fc_hdr->fh_f_ctl[0] << 16 | 13180 fc_hdr->fh_f_ctl[1] << 8 | 13181 fc_hdr->fh_f_ctl[2]); 13182 if (((fctl & 13183 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != 13184 (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || 13185 (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ 13186 goto drop; 13187 13188 if (fc_hdr->fh_type == FC_TYPE_FCP) { 13189 dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); 13190 lpfc_nvmet_unsol_fcp_event( 13191 phba, phba->sli4_hba.els_wq->pring, dma_buf, 13192 cq->assoc_qp->isr_timestamp); 13193 return false; 13194 } 13195 drop: 13196 lpfc_in_buf_free(phba, &dma_buf->dbuf); 13197 break; 13198 case FC_STATUS_INSUFF_BUF_NEED_BUF: 13199 case FC_STATUS_INSUFF_BUF_FRM_DISC: 13200 hrq->RQ_no_posted_buf++; 13201 /* Post more buffers if possible */ 13202 spin_lock_irqsave(&phba->hbalock, iflags); 13203 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; 13204 spin_unlock_irqrestore(&phba->hbalock, iflags); 13205 workposted = true; 13206 break; 13207 } 13208 out: 13209 return workposted; 13210 } 13211 13212 /** 13213 * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry 13214 * @cq: Pointer to the completion queue. 13215 * @eqe: Pointer to fast-path completion queue entry. 13216 * 13217 * This routine process a fast-path work queue completion entry from fast-path 13218 * event queue for FCP command response completion. 13219 **/ 13220 static int 13221 lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, 13222 struct lpfc_cqe *cqe) 13223 { 13224 struct lpfc_wcqe_release wcqe; 13225 bool workposted = false; 13226 13227 /* Copy the work queue CQE and convert endian order if needed */ 13228 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); 13229 13230 /* Check and process for different type of WCQE and dispatch */ 13231 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { 13232 case CQE_CODE_COMPL_WQE: 13233 case CQE_CODE_NVME_ERSP: 13234 cq->CQ_wq++; 13235 /* Process the WQ complete event */ 13236 phba->last_completion_time = jiffies; 13237 if ((cq->subtype == LPFC_FCP) || (cq->subtype == LPFC_NVME)) 13238 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13239 (struct lpfc_wcqe_complete *)&wcqe); 13240 if (cq->subtype == LPFC_NVME_LS) 13241 lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, 13242 (struct lpfc_wcqe_complete *)&wcqe); 13243 break; 13244 case CQE_CODE_RELEASE_WQE: 13245 cq->CQ_release_wqe++; 13246 /* Process the WQ release event */ 13247 lpfc_sli4_fp_handle_rel_wcqe(phba, cq, 13248 (struct lpfc_wcqe_release *)&wcqe); 13249 break; 13250 case CQE_CODE_XRI_ABORTED: 13251 cq->CQ_xri_aborted++; 13252 /* Process the WQ XRI abort event */ 13253 phba->last_completion_time = jiffies; 13254 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, 13255 (struct sli4_wcqe_xri_aborted *)&wcqe); 13256 break; 13257 case CQE_CODE_RECEIVE_V1: 13258 case CQE_CODE_RECEIVE: 13259 phba->last_completion_time = jiffies; 13260 if (cq->subtype == LPFC_NVMET) { 13261 workposted = lpfc_sli4_nvmet_handle_rcqe( 13262 phba, cq, (struct lpfc_rcqe *)&wcqe); 13263 } 13264 break; 13265 default: 13266 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13267 "0144 Not a valid CQE code: x%x\n", 13268 bf_get(lpfc_wcqe_c_code, &wcqe)); 13269 break; 13270 } 13271 return workposted; 13272 } 13273 13274 /** 13275 * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry 13276 * @phba: Pointer to HBA context object. 13277 * @eqe: Pointer to fast-path event queue entry. 13278 * 13279 * This routine process a event queue entry from the fast-path event queue. 13280 * It will check the MajorCode and MinorCode to determine this is for a 13281 * completion event on a completion queue, if not, an error shall be logged 13282 * and just return. Otherwise, it will get to the corresponding completion 13283 * queue and process all the entries on the completion queue, rearm the 13284 * completion queue, and then return. 13285 **/ 13286 static void 13287 lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, 13288 uint32_t qidx) 13289 { 13290 struct lpfc_queue *cq = NULL; 13291 struct lpfc_cqe *cqe; 13292 bool workposted = false; 13293 uint16_t cqid, id; 13294 int ecount = 0; 13295 13296 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13297 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13298 "0366 Not a valid completion " 13299 "event: majorcode=x%x, minorcode=x%x\n", 13300 bf_get_le32(lpfc_eqe_major_code, eqe), 13301 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13302 return; 13303 } 13304 13305 /* Get the reference to the corresponding CQ */ 13306 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13307 13308 if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { 13309 id = phba->sli4_hba.nvmet_cqset[0]->queue_id; 13310 if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { 13311 /* Process NVMET unsol rcv */ 13312 cq = phba->sli4_hba.nvmet_cqset[cqid - id]; 13313 goto process_cq; 13314 } 13315 } 13316 13317 if (phba->sli4_hba.nvme_cq_map && 13318 (cqid == phba->sli4_hba.nvme_cq_map[qidx])) { 13319 /* Process NVME / NVMET command completion */ 13320 cq = phba->sli4_hba.nvme_cq[qidx]; 13321 goto process_cq; 13322 } 13323 13324 if (phba->sli4_hba.fcp_cq_map && 13325 (cqid == phba->sli4_hba.fcp_cq_map[qidx])) { 13326 /* Process FCP command completion */ 13327 cq = phba->sli4_hba.fcp_cq[qidx]; 13328 goto process_cq; 13329 } 13330 13331 if (phba->sli4_hba.nvmels_cq && 13332 (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { 13333 /* Process NVME unsol rcv */ 13334 cq = phba->sli4_hba.nvmels_cq; 13335 } 13336 13337 /* Otherwise this is a Slow path event */ 13338 if (cq == NULL) { 13339 lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hba_eq[qidx]); 13340 return; 13341 } 13342 13343 process_cq: 13344 if (unlikely(cqid != cq->queue_id)) { 13345 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13346 "0368 Miss-matched fast-path completion " 13347 "queue identifier: eqcqid=%d, fcpcqid=%d\n", 13348 cqid, cq->queue_id); 13349 return; 13350 } 13351 13352 /* Save EQ associated with this CQ */ 13353 cq->assoc_qp = phba->sli4_hba.hba_eq[qidx]; 13354 13355 /* Process all the entries to the CQ */ 13356 while ((cqe = lpfc_sli4_cq_get(cq))) { 13357 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13358 if (!(++ecount % cq->entry_repost)) 13359 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13360 } 13361 13362 /* Track the max number of CQEs processed in 1 EQ */ 13363 if (ecount > cq->CQ_max_cqe) 13364 cq->CQ_max_cqe = ecount; 13365 13366 /* Catch the no cq entry condition */ 13367 if (unlikely(ecount == 0)) 13368 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13369 "0369 No entry from fast-path completion " 13370 "queue fcpcqid=%d\n", cq->queue_id); 13371 13372 /* In any case, flash and re-arm the CQ */ 13373 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13374 13375 /* wake up worker thread if there are works to be done */ 13376 if (workposted) 13377 lpfc_worker_wake_up(phba); 13378 } 13379 13380 static void 13381 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) 13382 { 13383 struct lpfc_eqe *eqe; 13384 13385 /* walk all the EQ entries and drop on the floor */ 13386 while ((eqe = lpfc_sli4_eq_get(eq))) 13387 ; 13388 13389 /* Clear and re-arm the EQ */ 13390 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13391 } 13392 13393 13394 /** 13395 * lpfc_sli4_fof_handle_eqe - Process a Flash Optimized Fabric event queue 13396 * entry 13397 * @phba: Pointer to HBA context object. 13398 * @eqe: Pointer to fast-path event queue entry. 13399 * 13400 * This routine process a event queue entry from the Flash Optimized Fabric 13401 * event queue. It will check the MajorCode and MinorCode to determine this 13402 * is for a completion event on a completion queue, if not, an error shall be 13403 * logged and just return. Otherwise, it will get to the corresponding 13404 * completion queue and process all the entries on the completion queue, rearm 13405 * the completion queue, and then return. 13406 **/ 13407 static void 13408 lpfc_sli4_fof_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe) 13409 { 13410 struct lpfc_queue *cq; 13411 struct lpfc_cqe *cqe; 13412 bool workposted = false; 13413 uint16_t cqid; 13414 int ecount = 0; 13415 13416 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { 13417 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13418 "9147 Not a valid completion " 13419 "event: majorcode=x%x, minorcode=x%x\n", 13420 bf_get_le32(lpfc_eqe_major_code, eqe), 13421 bf_get_le32(lpfc_eqe_minor_code, eqe)); 13422 return; 13423 } 13424 13425 /* Get the reference to the corresponding CQ */ 13426 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); 13427 13428 /* Next check for OAS */ 13429 cq = phba->sli4_hba.oas_cq; 13430 if (unlikely(!cq)) { 13431 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) 13432 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13433 "9148 OAS completion queue " 13434 "does not exist\n"); 13435 return; 13436 } 13437 13438 if (unlikely(cqid != cq->queue_id)) { 13439 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13440 "9149 Miss-matched fast-path compl " 13441 "queue id: eqcqid=%d, fcpcqid=%d\n", 13442 cqid, cq->queue_id); 13443 return; 13444 } 13445 13446 /* Process all the entries to the OAS CQ */ 13447 while ((cqe = lpfc_sli4_cq_get(cq))) { 13448 workposted |= lpfc_sli4_fp_handle_cqe(phba, cq, cqe); 13449 if (!(++ecount % cq->entry_repost)) 13450 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM); 13451 } 13452 13453 /* Track the max number of CQEs processed in 1 EQ */ 13454 if (ecount > cq->CQ_max_cqe) 13455 cq->CQ_max_cqe = ecount; 13456 13457 /* Catch the no cq entry condition */ 13458 if (unlikely(ecount == 0)) 13459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13460 "9153 No entry from fast-path completion " 13461 "queue fcpcqid=%d\n", cq->queue_id); 13462 13463 /* In any case, flash and re-arm the CQ */ 13464 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM); 13465 13466 /* wake up worker thread if there are works to be done */ 13467 if (workposted) 13468 lpfc_worker_wake_up(phba); 13469 } 13470 13471 /** 13472 * lpfc_sli4_fof_intr_handler - HBA interrupt handler to SLI-4 device 13473 * @irq: Interrupt number. 13474 * @dev_id: The device context pointer. 13475 * 13476 * This function is directly called from the PCI layer as an interrupt 13477 * service routine when device with SLI-4 interface spec is enabled with 13478 * MSI-X multi-message interrupt mode and there is a Flash Optimized Fabric 13479 * IOCB ring event in the HBA. However, when the device is enabled with either 13480 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13481 * device-level interrupt handler. When the PCI slot is in error recovery 13482 * or the HBA is undergoing initialization, the interrupt handler will not 13483 * process the interrupt. The Flash Optimized Fabric ring event are handled in 13484 * the intrrupt context. This function is called without any lock held. 13485 * It gets the hbalock to access and update SLI data structures. Note that, 13486 * the EQ to CQ are one-to-one map such that the EQ index is 13487 * equal to that of CQ index. 13488 * 13489 * This function returns IRQ_HANDLED when interrupt is handled else it 13490 * returns IRQ_NONE. 13491 **/ 13492 irqreturn_t 13493 lpfc_sli4_fof_intr_handler(int irq, void *dev_id) 13494 { 13495 struct lpfc_hba *phba; 13496 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13497 struct lpfc_queue *eq; 13498 struct lpfc_eqe *eqe; 13499 unsigned long iflag; 13500 int ecount = 0; 13501 13502 /* Get the driver's phba structure from the dev_id */ 13503 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13504 phba = hba_eq_hdl->phba; 13505 13506 if (unlikely(!phba)) 13507 return IRQ_NONE; 13508 13509 /* Get to the EQ struct associated with this vector */ 13510 eq = phba->sli4_hba.fof_eq; 13511 if (unlikely(!eq)) 13512 return IRQ_NONE; 13513 13514 /* Check device state for handling interrupt */ 13515 if (unlikely(lpfc_intr_state_check(phba))) { 13516 eq->EQ_badstate++; 13517 /* Check again for link_state with lock held */ 13518 spin_lock_irqsave(&phba->hbalock, iflag); 13519 if (phba->link_state < LPFC_LINK_DOWN) 13520 /* Flush, clear interrupt, and rearm the EQ */ 13521 lpfc_sli4_eq_flush(phba, eq); 13522 spin_unlock_irqrestore(&phba->hbalock, iflag); 13523 return IRQ_NONE; 13524 } 13525 13526 /* 13527 * Process all the event on FCP fast-path EQ 13528 */ 13529 while ((eqe = lpfc_sli4_eq_get(eq))) { 13530 lpfc_sli4_fof_handle_eqe(phba, eqe); 13531 if (!(++ecount % eq->entry_repost)) 13532 lpfc_sli4_eq_release(eq, LPFC_QUEUE_NOARM); 13533 eq->EQ_processed++; 13534 } 13535 13536 /* Track the max number of EQEs processed in 1 intr */ 13537 if (ecount > eq->EQ_max_eqe) 13538 eq->EQ_max_eqe = ecount; 13539 13540 13541 if (unlikely(ecount == 0)) { 13542 eq->EQ_no_entry++; 13543 13544 if (phba->intr_type == MSIX) 13545 /* MSI-X treated interrupt served as no EQ share INT */ 13546 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13547 "9145 MSI-X interrupt with no EQE\n"); 13548 else { 13549 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 13550 "9146 ISR interrupt with no EQE\n"); 13551 /* Non MSI-X treated on interrupt as EQ share INT */ 13552 return IRQ_NONE; 13553 } 13554 } 13555 /* Always clear and re-arm the fast-path EQ */ 13556 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM); 13557 return IRQ_HANDLED; 13558 } 13559 13560 /** 13561 * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device 13562 * @irq: Interrupt number. 13563 * @dev_id: The device context pointer. 13564 * 13565 * This function is directly called from the PCI layer as an interrupt 13566 * service routine when device with SLI-4 interface spec is enabled with 13567 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB 13568 * ring event in the HBA. However, when the device is enabled with either 13569 * MSI or Pin-IRQ interrupt mode, this function is called as part of the 13570 * device-level interrupt handler. When the PCI slot is in error recovery 13571 * or the HBA is undergoing initialization, the interrupt handler will not 13572 * process the interrupt. The SCSI FCP fast-path ring event are handled in 13573 * the intrrupt context. This function is called without any lock held. 13574 * It gets the hbalock to access and update SLI data structures. Note that, 13575 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is 13576 * equal to that of FCP CQ index. 13577 * 13578 * The link attention and ELS ring attention events are handled 13579 * by the worker thread. The interrupt handler signals the worker thread 13580 * and returns for these events. This function is called without any lock 13581 * held. It gets the hbalock to access and update SLI data structures. 13582 * 13583 * This function returns IRQ_HANDLED when interrupt is handled else it 13584 * returns IRQ_NONE. 13585 **/ 13586 irqreturn_t 13587 lpfc_sli4_hba_intr_handler(int irq, void *dev_id) 13588 { 13589 struct lpfc_hba *phba; 13590 struct lpfc_hba_eq_hdl *hba_eq_hdl; 13591 struct lpfc_queue *fpeq; 13592 struct lpfc_eqe *eqe; 13593 unsigned long iflag; 13594 int ecount = 0; 13595 int hba_eqidx; 13596 13597 /* Get the driver's phba structure from the dev_id */ 13598 hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; 13599 phba = hba_eq_hdl->phba; 13600 hba_eqidx = hba_eq_hdl->idx; 13601 13602 if (unlikely(!phba)) 13603 return IRQ_NONE; 13604 if (unlikely(!phba->sli4_hba.hba_eq)) 13605 return IRQ_NONE; 13606 13607 /* Get to the EQ struct associated with this vector */ 13608 fpeq = phba->sli4_hba.hba_eq[hba_eqidx]; 13609 if (unlikely(!fpeq)) 13610 return IRQ_NONE; 13611 13612 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 13613 if (phba->ktime_on) 13614 fpeq->isr_timestamp = ktime_get_ns(); 13615 #endif 13616 13617 if (lpfc_fcp_look_ahead) { 13618 if (atomic_dec_and_test(&hba_eq_hdl->hba_eq_in_use)) 13619 lpfc_sli4_eq_clr_intr(fpeq); 13620 else { 13621 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13622 return IRQ_NONE; 13623 } 13624 } 13625 13626 /* Check device state for handling interrupt */ 13627 if (unlikely(lpfc_intr_state_check(phba))) { 13628 fpeq->EQ_badstate++; 13629 /* Check again for link_state with lock held */ 13630 spin_lock_irqsave(&phba->hbalock, iflag); 13631 if (phba->link_state < LPFC_LINK_DOWN) 13632 /* Flush, clear interrupt, and rearm the EQ */ 13633 lpfc_sli4_eq_flush(phba, fpeq); 13634 spin_unlock_irqrestore(&phba->hbalock, iflag); 13635 if (lpfc_fcp_look_ahead) 13636 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13637 return IRQ_NONE; 13638 } 13639 13640 /* 13641 * Process all the event on FCP fast-path EQ 13642 */ 13643 while ((eqe = lpfc_sli4_eq_get(fpeq))) { 13644 if (eqe == NULL) 13645 break; 13646 13647 lpfc_sli4_hba_handle_eqe(phba, eqe, hba_eqidx); 13648 if (!(++ecount % fpeq->entry_repost)) 13649 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM); 13650 fpeq->EQ_processed++; 13651 } 13652 13653 /* Track the max number of EQEs processed in 1 intr */ 13654 if (ecount > fpeq->EQ_max_eqe) 13655 fpeq->EQ_max_eqe = ecount; 13656 13657 /* Always clear and re-arm the fast-path EQ */ 13658 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM); 13659 13660 if (unlikely(ecount == 0)) { 13661 fpeq->EQ_no_entry++; 13662 13663 if (lpfc_fcp_look_ahead) { 13664 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13665 return IRQ_NONE; 13666 } 13667 13668 if (phba->intr_type == MSIX) 13669 /* MSI-X treated interrupt served as no EQ share INT */ 13670 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 13671 "0358 MSI-X interrupt with no EQE\n"); 13672 else 13673 /* Non MSI-X treated on interrupt as EQ share INT */ 13674 return IRQ_NONE; 13675 } 13676 13677 if (lpfc_fcp_look_ahead) 13678 atomic_inc(&hba_eq_hdl->hba_eq_in_use); 13679 13680 return IRQ_HANDLED; 13681 } /* lpfc_sli4_fp_intr_handler */ 13682 13683 /** 13684 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device 13685 * @irq: Interrupt number. 13686 * @dev_id: The device context pointer. 13687 * 13688 * This function is the device-level interrupt handler to device with SLI-4 13689 * interface spec, called from the PCI layer when either MSI or Pin-IRQ 13690 * interrupt mode is enabled and there is an event in the HBA which requires 13691 * driver attention. This function invokes the slow-path interrupt attention 13692 * handling function and fast-path interrupt attention handling function in 13693 * turn to process the relevant HBA attention events. This function is called 13694 * without any lock held. It gets the hbalock to access and update SLI data 13695 * structures. 13696 * 13697 * This function returns IRQ_HANDLED when interrupt is handled, else it 13698 * returns IRQ_NONE. 13699 **/ 13700 irqreturn_t 13701 lpfc_sli4_intr_handler(int irq, void *dev_id) 13702 { 13703 struct lpfc_hba *phba; 13704 irqreturn_t hba_irq_rc; 13705 bool hba_handled = false; 13706 int qidx; 13707 13708 /* Get the driver's phba structure from the dev_id */ 13709 phba = (struct lpfc_hba *)dev_id; 13710 13711 if (unlikely(!phba)) 13712 return IRQ_NONE; 13713 13714 /* 13715 * Invoke fast-path host attention interrupt handling as appropriate. 13716 */ 13717 for (qidx = 0; qidx < phba->io_channel_irqs; qidx++) { 13718 hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, 13719 &phba->sli4_hba.hba_eq_hdl[qidx]); 13720 if (hba_irq_rc == IRQ_HANDLED) 13721 hba_handled |= true; 13722 } 13723 13724 if (phba->cfg_fof) { 13725 hba_irq_rc = lpfc_sli4_fof_intr_handler(irq, 13726 &phba->sli4_hba.hba_eq_hdl[qidx]); 13727 if (hba_irq_rc == IRQ_HANDLED) 13728 hba_handled |= true; 13729 } 13730 13731 return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; 13732 } /* lpfc_sli4_intr_handler */ 13733 13734 /** 13735 * lpfc_sli4_queue_free - free a queue structure and associated memory 13736 * @queue: The queue structure to free. 13737 * 13738 * This function frees a queue structure and the DMAable memory used for 13739 * the host resident queue. This function must be called after destroying the 13740 * queue on the HBA. 13741 **/ 13742 void 13743 lpfc_sli4_queue_free(struct lpfc_queue *queue) 13744 { 13745 struct lpfc_dmabuf *dmabuf; 13746 13747 if (!queue) 13748 return; 13749 13750 while (!list_empty(&queue->page_list)) { 13751 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, 13752 list); 13753 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE, 13754 dmabuf->virt, dmabuf->phys); 13755 kfree(dmabuf); 13756 } 13757 if (queue->rqbp) { 13758 lpfc_free_rq_buffer(queue->phba, queue); 13759 kfree(queue->rqbp); 13760 } 13761 kfree(queue->pring); 13762 kfree(queue); 13763 return; 13764 } 13765 13766 /** 13767 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure 13768 * @phba: The HBA that this queue is being created on. 13769 * @entry_size: The size of each queue entry for this queue. 13770 * @entry count: The number of entries that this queue will handle. 13771 * 13772 * This function allocates a queue structure and the DMAable memory used for 13773 * the host resident queue. This function must be called before creating the 13774 * queue on the HBA. 13775 **/ 13776 struct lpfc_queue * 13777 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size, 13778 uint32_t entry_count) 13779 { 13780 struct lpfc_queue *queue; 13781 struct lpfc_dmabuf *dmabuf; 13782 int x, total_qe_count; 13783 void *dma_pointer; 13784 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13785 13786 if (!phba->sli4_hba.pc_sli4_params.supported) 13787 hw_page_size = SLI4_PAGE_SIZE; 13788 13789 queue = kzalloc(sizeof(struct lpfc_queue) + 13790 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL); 13791 if (!queue) 13792 return NULL; 13793 queue->page_count = (ALIGN(entry_size * entry_count, 13794 hw_page_size))/hw_page_size; 13795 13796 /* If needed, Adjust page count to match the max the adapter supports */ 13797 if (queue->page_count > phba->sli4_hba.pc_sli4_params.wqpcnt) 13798 queue->page_count = phba->sli4_hba.pc_sli4_params.wqpcnt; 13799 13800 INIT_LIST_HEAD(&queue->list); 13801 INIT_LIST_HEAD(&queue->wq_list); 13802 INIT_LIST_HEAD(&queue->page_list); 13803 INIT_LIST_HEAD(&queue->child_list); 13804 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) { 13805 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); 13806 if (!dmabuf) 13807 goto out_fail; 13808 dmabuf->virt = dma_zalloc_coherent(&phba->pcidev->dev, 13809 hw_page_size, &dmabuf->phys, 13810 GFP_KERNEL); 13811 if (!dmabuf->virt) { 13812 kfree(dmabuf); 13813 goto out_fail; 13814 } 13815 dmabuf->buffer_tag = x; 13816 list_add_tail(&dmabuf->list, &queue->page_list); 13817 /* initialize queue's entry array */ 13818 dma_pointer = dmabuf->virt; 13819 for (; total_qe_count < entry_count && 13820 dma_pointer < (hw_page_size + dmabuf->virt); 13821 total_qe_count++, dma_pointer += entry_size) { 13822 queue->qe[total_qe_count].address = dma_pointer; 13823 } 13824 } 13825 queue->entry_size = entry_size; 13826 queue->entry_count = entry_count; 13827 13828 /* 13829 * entry_repost is calculated based on the number of entries in the 13830 * queue. This works out except for RQs. If buffers are NOT initially 13831 * posted for every RQE, entry_repost should be adjusted accordingly. 13832 */ 13833 queue->entry_repost = (entry_count >> 3); 13834 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST) 13835 queue->entry_repost = LPFC_QUEUE_MIN_REPOST; 13836 queue->phba = phba; 13837 13838 return queue; 13839 out_fail: 13840 lpfc_sli4_queue_free(queue); 13841 return NULL; 13842 } 13843 13844 /** 13845 * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory 13846 * @phba: HBA structure that indicates port to create a queue on. 13847 * @pci_barset: PCI BAR set flag. 13848 * 13849 * This function shall perform iomap of the specified PCI BAR address to host 13850 * memory address if not already done so and return it. The returned host 13851 * memory address can be NULL. 13852 */ 13853 static void __iomem * 13854 lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) 13855 { 13856 if (!phba->pcidev) 13857 return NULL; 13858 13859 switch (pci_barset) { 13860 case WQ_PCI_BAR_0_AND_1: 13861 return phba->pci_bar0_memmap_p; 13862 case WQ_PCI_BAR_2_AND_3: 13863 return phba->pci_bar2_memmap_p; 13864 case WQ_PCI_BAR_4_AND_5: 13865 return phba->pci_bar4_memmap_p; 13866 default: 13867 break; 13868 } 13869 return NULL; 13870 } 13871 13872 /** 13873 * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on FCP EQs 13874 * @phba: HBA structure that indicates port to create a queue on. 13875 * @startq: The starting FCP EQ to modify 13876 * 13877 * This function sends an MODIFY_EQ_DELAY mailbox command to the HBA. 13878 * The command allows up to LPFC_MAX_EQ_DELAY_EQID_CNT EQ ID's to be 13879 * updated in one mailbox command. 13880 * 13881 * The @phba struct is used to send mailbox command to HBA. The @startq 13882 * is used to get the starting FCP EQ to change. 13883 * This function is asynchronous and will wait for the mailbox 13884 * command to finish before continuing. 13885 * 13886 * On success this function will return a zero. If unable to allocate enough 13887 * memory this function will return -ENOMEM. If the queue create mailbox command 13888 * fails this function will return -ENXIO. 13889 **/ 13890 int 13891 lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq) 13892 { 13893 struct lpfc_mbx_modify_eq_delay *eq_delay; 13894 LPFC_MBOXQ_t *mbox; 13895 struct lpfc_queue *eq; 13896 int cnt, rc, length, status = 0; 13897 uint32_t shdr_status, shdr_add_status; 13898 uint32_t result; 13899 int qidx; 13900 union lpfc_sli4_cfg_shdr *shdr; 13901 uint16_t dmult; 13902 13903 if (startq >= phba->io_channel_irqs) 13904 return 0; 13905 13906 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13907 if (!mbox) 13908 return -ENOMEM; 13909 length = (sizeof(struct lpfc_mbx_modify_eq_delay) - 13910 sizeof(struct lpfc_sli4_cfg_mhdr)); 13911 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13912 LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, 13913 length, LPFC_SLI4_MBX_EMBED); 13914 eq_delay = &mbox->u.mqe.un.eq_delay; 13915 13916 /* Calculate delay multiper from maximum interrupt per second */ 13917 result = phba->cfg_fcp_imax / phba->io_channel_irqs; 13918 if (result > LPFC_DMULT_CONST || result == 0) 13919 dmult = 0; 13920 else 13921 dmult = LPFC_DMULT_CONST/result - 1; 13922 13923 cnt = 0; 13924 for (qidx = startq; qidx < phba->io_channel_irqs; qidx++) { 13925 eq = phba->sli4_hba.hba_eq[qidx]; 13926 if (!eq) 13927 continue; 13928 eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; 13929 eq_delay->u.request.eq[cnt].phase = 0; 13930 eq_delay->u.request.eq[cnt].delay_multi = dmult; 13931 cnt++; 13932 if (cnt >= LPFC_MAX_EQ_DELAY_EQID_CNT) 13933 break; 13934 } 13935 eq_delay->u.request.num_eq = cnt; 13936 13937 mbox->vport = phba->pport; 13938 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 13939 mbox->context1 = NULL; 13940 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 13941 shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; 13942 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 13943 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 13944 if (shdr_status || shdr_add_status || rc) { 13945 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 13946 "2512 MODIFY_EQ_DELAY mailbox failed with " 13947 "status x%x add_status x%x, mbx status x%x\n", 13948 shdr_status, shdr_add_status, rc); 13949 status = -ENXIO; 13950 } 13951 mempool_free(mbox, phba->mbox_mem_pool); 13952 return status; 13953 } 13954 13955 /** 13956 * lpfc_eq_create - Create an Event Queue on the HBA 13957 * @phba: HBA structure that indicates port to create a queue on. 13958 * @eq: The queue structure to use to create the event queue. 13959 * @imax: The maximum interrupt per second limit. 13960 * 13961 * This function creates an event queue, as detailed in @eq, on a port, 13962 * described by @phba by sending an EQ_CREATE mailbox command to the HBA. 13963 * 13964 * The @phba struct is used to send mailbox command to HBA. The @eq struct 13965 * is used to get the entry count and entry size that are necessary to 13966 * determine the number of pages to allocate and use for this queue. This 13967 * function will send the EQ_CREATE mailbox command to the HBA to setup the 13968 * event queue. This function is asynchronous and will wait for the mailbox 13969 * command to finish before continuing. 13970 * 13971 * On success this function will return a zero. If unable to allocate enough 13972 * memory this function will return -ENOMEM. If the queue create mailbox command 13973 * fails this function will return -ENXIO. 13974 **/ 13975 int 13976 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) 13977 { 13978 struct lpfc_mbx_eq_create *eq_create; 13979 LPFC_MBOXQ_t *mbox; 13980 int rc, length, status = 0; 13981 struct lpfc_dmabuf *dmabuf; 13982 uint32_t shdr_status, shdr_add_status; 13983 union lpfc_sli4_cfg_shdr *shdr; 13984 uint16_t dmult; 13985 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 13986 13987 /* sanity check on queue memory */ 13988 if (!eq) 13989 return -ENODEV; 13990 if (!phba->sli4_hba.pc_sli4_params.supported) 13991 hw_page_size = SLI4_PAGE_SIZE; 13992 13993 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 13994 if (!mbox) 13995 return -ENOMEM; 13996 length = (sizeof(struct lpfc_mbx_eq_create) - 13997 sizeof(struct lpfc_sli4_cfg_mhdr)); 13998 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 13999 LPFC_MBOX_OPCODE_EQ_CREATE, 14000 length, LPFC_SLI4_MBX_EMBED); 14001 eq_create = &mbox->u.mqe.un.eq_create; 14002 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, 14003 eq->page_count); 14004 bf_set(lpfc_eq_context_size, &eq_create->u.request.context, 14005 LPFC_EQE_SIZE); 14006 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); 14007 /* don't setup delay multiplier using EQ_CREATE */ 14008 dmult = 0; 14009 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, 14010 dmult); 14011 switch (eq->entry_count) { 14012 default: 14013 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14014 "0360 Unsupported EQ count. (%d)\n", 14015 eq->entry_count); 14016 if (eq->entry_count < 256) 14017 return -EINVAL; 14018 /* otherwise default to smallest count (drop through) */ 14019 case 256: 14020 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14021 LPFC_EQ_CNT_256); 14022 break; 14023 case 512: 14024 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14025 LPFC_EQ_CNT_512); 14026 break; 14027 case 1024: 14028 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14029 LPFC_EQ_CNT_1024); 14030 break; 14031 case 2048: 14032 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14033 LPFC_EQ_CNT_2048); 14034 break; 14035 case 4096: 14036 bf_set(lpfc_eq_context_count, &eq_create->u.request.context, 14037 LPFC_EQ_CNT_4096); 14038 break; 14039 } 14040 list_for_each_entry(dmabuf, &eq->page_list, list) { 14041 memset(dmabuf->virt, 0, hw_page_size); 14042 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14043 putPaddrLow(dmabuf->phys); 14044 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14045 putPaddrHigh(dmabuf->phys); 14046 } 14047 mbox->vport = phba->pport; 14048 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 14049 mbox->context1 = NULL; 14050 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14051 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; 14052 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14053 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14054 if (shdr_status || shdr_add_status || rc) { 14055 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14056 "2500 EQ_CREATE mailbox failed with " 14057 "status x%x add_status x%x, mbx status x%x\n", 14058 shdr_status, shdr_add_status, rc); 14059 status = -ENXIO; 14060 } 14061 eq->type = LPFC_EQ; 14062 eq->subtype = LPFC_NONE; 14063 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); 14064 if (eq->queue_id == 0xFFFF) 14065 status = -ENXIO; 14066 eq->host_index = 0; 14067 eq->hba_index = 0; 14068 14069 mempool_free(mbox, phba->mbox_mem_pool); 14070 return status; 14071 } 14072 14073 /** 14074 * lpfc_cq_create - Create a Completion Queue on the HBA 14075 * @phba: HBA structure that indicates port to create a queue on. 14076 * @cq: The queue structure to use to create the completion queue. 14077 * @eq: The event queue to bind this completion queue to. 14078 * 14079 * This function creates a completion queue, as detailed in @wq, on a port, 14080 * described by @phba by sending a CQ_CREATE mailbox command to the HBA. 14081 * 14082 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14083 * is used to get the entry count and entry size that are necessary to 14084 * determine the number of pages to allocate and use for this queue. The @eq 14085 * is used to indicate which event queue to bind this completion queue to. This 14086 * function will send the CQ_CREATE mailbox command to the HBA to setup the 14087 * completion queue. This function is asynchronous and will wait for the mailbox 14088 * command to finish before continuing. 14089 * 14090 * On success this function will return a zero. If unable to allocate enough 14091 * memory this function will return -ENOMEM. If the queue create mailbox command 14092 * fails this function will return -ENXIO. 14093 **/ 14094 int 14095 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, 14096 struct lpfc_queue *eq, uint32_t type, uint32_t subtype) 14097 { 14098 struct lpfc_mbx_cq_create *cq_create; 14099 struct lpfc_dmabuf *dmabuf; 14100 LPFC_MBOXQ_t *mbox; 14101 int rc, length, status = 0; 14102 uint32_t shdr_status, shdr_add_status; 14103 union lpfc_sli4_cfg_shdr *shdr; 14104 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14105 14106 /* sanity check on queue memory */ 14107 if (!cq || !eq) 14108 return -ENODEV; 14109 if (!phba->sli4_hba.pc_sli4_params.supported) 14110 hw_page_size = SLI4_PAGE_SIZE; 14111 14112 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14113 if (!mbox) 14114 return -ENOMEM; 14115 length = (sizeof(struct lpfc_mbx_cq_create) - 14116 sizeof(struct lpfc_sli4_cfg_mhdr)); 14117 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14118 LPFC_MBOX_OPCODE_CQ_CREATE, 14119 length, LPFC_SLI4_MBX_EMBED); 14120 cq_create = &mbox->u.mqe.un.cq_create; 14121 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; 14122 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, 14123 cq->page_count); 14124 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); 14125 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); 14126 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14127 phba->sli4_hba.pc_sli4_params.cqv); 14128 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { 14129 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */ 14130 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1); 14131 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, 14132 eq->queue_id); 14133 } else { 14134 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, 14135 eq->queue_id); 14136 } 14137 switch (cq->entry_count) { 14138 default: 14139 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14140 "0361 Unsupported CQ count: " 14141 "entry cnt %d sz %d pg cnt %d repost %d\n", 14142 cq->entry_count, cq->entry_size, 14143 cq->page_count, cq->entry_repost); 14144 if (cq->entry_count < 256) { 14145 status = -EINVAL; 14146 goto out; 14147 } 14148 /* otherwise default to smallest count (drop through) */ 14149 case 256: 14150 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14151 LPFC_CQ_CNT_256); 14152 break; 14153 case 512: 14154 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14155 LPFC_CQ_CNT_512); 14156 break; 14157 case 1024: 14158 bf_set(lpfc_cq_context_count, &cq_create->u.request.context, 14159 LPFC_CQ_CNT_1024); 14160 break; 14161 } 14162 list_for_each_entry(dmabuf, &cq->page_list, list) { 14163 memset(dmabuf->virt, 0, hw_page_size); 14164 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14165 putPaddrLow(dmabuf->phys); 14166 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14167 putPaddrHigh(dmabuf->phys); 14168 } 14169 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14170 14171 /* The IOCTL status is embedded in the mailbox subheader. */ 14172 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14173 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14174 if (shdr_status || shdr_add_status || rc) { 14175 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14176 "2501 CQ_CREATE mailbox failed with " 14177 "status x%x add_status x%x, mbx status x%x\n", 14178 shdr_status, shdr_add_status, rc); 14179 status = -ENXIO; 14180 goto out; 14181 } 14182 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14183 if (cq->queue_id == 0xFFFF) { 14184 status = -ENXIO; 14185 goto out; 14186 } 14187 /* link the cq onto the parent eq child list */ 14188 list_add_tail(&cq->list, &eq->child_list); 14189 /* Set up completion queue's type and subtype */ 14190 cq->type = type; 14191 cq->subtype = subtype; 14192 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); 14193 cq->assoc_qid = eq->queue_id; 14194 cq->host_index = 0; 14195 cq->hba_index = 0; 14196 14197 out: 14198 mempool_free(mbox, phba->mbox_mem_pool); 14199 return status; 14200 } 14201 14202 /** 14203 * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ 14204 * @phba: HBA structure that indicates port to create a queue on. 14205 * @cqp: The queue structure array to use to create the completion queues. 14206 * @eqp: The event queue array to bind these completion queues to. 14207 * 14208 * This function creates a set of completion queue, s to support MRQ 14209 * as detailed in @cqp, on a port, 14210 * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. 14211 * 14212 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14213 * is used to get the entry count and entry size that are necessary to 14214 * determine the number of pages to allocate and use for this queue. The @eq 14215 * is used to indicate which event queue to bind this completion queue to. This 14216 * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the 14217 * completion queue. This function is asynchronous and will wait for the mailbox 14218 * command to finish before continuing. 14219 * 14220 * On success this function will return a zero. If unable to allocate enough 14221 * memory this function will return -ENOMEM. If the queue create mailbox command 14222 * fails this function will return -ENXIO. 14223 **/ 14224 int 14225 lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, 14226 struct lpfc_queue **eqp, uint32_t type, uint32_t subtype) 14227 { 14228 struct lpfc_queue *cq; 14229 struct lpfc_queue *eq; 14230 struct lpfc_mbx_cq_create_set *cq_set; 14231 struct lpfc_dmabuf *dmabuf; 14232 LPFC_MBOXQ_t *mbox; 14233 int rc, length, alloclen, status = 0; 14234 int cnt, idx, numcq, page_idx = 0; 14235 uint32_t shdr_status, shdr_add_status; 14236 union lpfc_sli4_cfg_shdr *shdr; 14237 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14238 14239 /* sanity check on queue memory */ 14240 numcq = phba->cfg_nvmet_mrq; 14241 if (!cqp || !eqp || !numcq) 14242 return -ENODEV; 14243 if (!phba->sli4_hba.pc_sli4_params.supported) 14244 hw_page_size = SLI4_PAGE_SIZE; 14245 14246 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14247 if (!mbox) 14248 return -ENOMEM; 14249 14250 length = sizeof(struct lpfc_mbx_cq_create_set); 14251 length += ((numcq * cqp[0]->page_count) * 14252 sizeof(struct dma_address)); 14253 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14254 LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, 14255 LPFC_SLI4_MBX_NEMBED); 14256 if (alloclen < length) { 14257 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14258 "3098 Allocated DMA memory size (%d) is " 14259 "less than the requested DMA memory size " 14260 "(%d)\n", alloclen, length); 14261 status = -ENOMEM; 14262 goto out; 14263 } 14264 cq_set = mbox->sge_array->addr[0]; 14265 shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; 14266 bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); 14267 14268 for (idx = 0; idx < numcq; idx++) { 14269 cq = cqp[idx]; 14270 eq = eqp[idx]; 14271 if (!cq || !eq) { 14272 status = -ENOMEM; 14273 goto out; 14274 } 14275 14276 switch (idx) { 14277 case 0: 14278 bf_set(lpfc_mbx_cq_create_set_page_size, 14279 &cq_set->u.request, 14280 (hw_page_size / SLI4_PAGE_SIZE)); 14281 bf_set(lpfc_mbx_cq_create_set_num_pages, 14282 &cq_set->u.request, cq->page_count); 14283 bf_set(lpfc_mbx_cq_create_set_evt, 14284 &cq_set->u.request, 1); 14285 bf_set(lpfc_mbx_cq_create_set_valid, 14286 &cq_set->u.request, 1); 14287 bf_set(lpfc_mbx_cq_create_set_cqe_size, 14288 &cq_set->u.request, 0); 14289 bf_set(lpfc_mbx_cq_create_set_num_cq, 14290 &cq_set->u.request, numcq); 14291 switch (cq->entry_count) { 14292 default: 14293 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14294 "3118 Bad CQ count. (%d)\n", 14295 cq->entry_count); 14296 if (cq->entry_count < 256) { 14297 status = -EINVAL; 14298 goto out; 14299 } 14300 /* otherwise default to smallest (drop thru) */ 14301 case 256: 14302 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14303 &cq_set->u.request, LPFC_CQ_CNT_256); 14304 break; 14305 case 512: 14306 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14307 &cq_set->u.request, LPFC_CQ_CNT_512); 14308 break; 14309 case 1024: 14310 bf_set(lpfc_mbx_cq_create_set_cqe_cnt, 14311 &cq_set->u.request, LPFC_CQ_CNT_1024); 14312 break; 14313 } 14314 bf_set(lpfc_mbx_cq_create_set_eq_id0, 14315 &cq_set->u.request, eq->queue_id); 14316 break; 14317 case 1: 14318 bf_set(lpfc_mbx_cq_create_set_eq_id1, 14319 &cq_set->u.request, eq->queue_id); 14320 break; 14321 case 2: 14322 bf_set(lpfc_mbx_cq_create_set_eq_id2, 14323 &cq_set->u.request, eq->queue_id); 14324 break; 14325 case 3: 14326 bf_set(lpfc_mbx_cq_create_set_eq_id3, 14327 &cq_set->u.request, eq->queue_id); 14328 break; 14329 case 4: 14330 bf_set(lpfc_mbx_cq_create_set_eq_id4, 14331 &cq_set->u.request, eq->queue_id); 14332 break; 14333 case 5: 14334 bf_set(lpfc_mbx_cq_create_set_eq_id5, 14335 &cq_set->u.request, eq->queue_id); 14336 break; 14337 case 6: 14338 bf_set(lpfc_mbx_cq_create_set_eq_id6, 14339 &cq_set->u.request, eq->queue_id); 14340 break; 14341 case 7: 14342 bf_set(lpfc_mbx_cq_create_set_eq_id7, 14343 &cq_set->u.request, eq->queue_id); 14344 break; 14345 case 8: 14346 bf_set(lpfc_mbx_cq_create_set_eq_id8, 14347 &cq_set->u.request, eq->queue_id); 14348 break; 14349 case 9: 14350 bf_set(lpfc_mbx_cq_create_set_eq_id9, 14351 &cq_set->u.request, eq->queue_id); 14352 break; 14353 case 10: 14354 bf_set(lpfc_mbx_cq_create_set_eq_id10, 14355 &cq_set->u.request, eq->queue_id); 14356 break; 14357 case 11: 14358 bf_set(lpfc_mbx_cq_create_set_eq_id11, 14359 &cq_set->u.request, eq->queue_id); 14360 break; 14361 case 12: 14362 bf_set(lpfc_mbx_cq_create_set_eq_id12, 14363 &cq_set->u.request, eq->queue_id); 14364 break; 14365 case 13: 14366 bf_set(lpfc_mbx_cq_create_set_eq_id13, 14367 &cq_set->u.request, eq->queue_id); 14368 break; 14369 case 14: 14370 bf_set(lpfc_mbx_cq_create_set_eq_id14, 14371 &cq_set->u.request, eq->queue_id); 14372 break; 14373 case 15: 14374 bf_set(lpfc_mbx_cq_create_set_eq_id15, 14375 &cq_set->u.request, eq->queue_id); 14376 break; 14377 } 14378 14379 /* link the cq onto the parent eq child list */ 14380 list_add_tail(&cq->list, &eq->child_list); 14381 /* Set up completion queue's type and subtype */ 14382 cq->type = type; 14383 cq->subtype = subtype; 14384 cq->assoc_qid = eq->queue_id; 14385 cq->host_index = 0; 14386 cq->hba_index = 0; 14387 14388 rc = 0; 14389 list_for_each_entry(dmabuf, &cq->page_list, list) { 14390 memset(dmabuf->virt, 0, hw_page_size); 14391 cnt = page_idx + dmabuf->buffer_tag; 14392 cq_set->u.request.page[cnt].addr_lo = 14393 putPaddrLow(dmabuf->phys); 14394 cq_set->u.request.page[cnt].addr_hi = 14395 putPaddrHigh(dmabuf->phys); 14396 rc++; 14397 } 14398 page_idx += rc; 14399 } 14400 14401 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14402 14403 /* The IOCTL status is embedded in the mailbox subheader. */ 14404 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14405 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14406 if (shdr_status || shdr_add_status || rc) { 14407 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14408 "3119 CQ_CREATE_SET mailbox failed with " 14409 "status x%x add_status x%x, mbx status x%x\n", 14410 shdr_status, shdr_add_status, rc); 14411 status = -ENXIO; 14412 goto out; 14413 } 14414 rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); 14415 if (rc == 0xFFFF) { 14416 status = -ENXIO; 14417 goto out; 14418 } 14419 14420 for (idx = 0; idx < numcq; idx++) { 14421 cq = cqp[idx]; 14422 cq->queue_id = rc + idx; 14423 } 14424 14425 out: 14426 lpfc_sli4_mbox_cmd_free(phba, mbox); 14427 return status; 14428 } 14429 14430 /** 14431 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration 14432 * @phba: HBA structure that indicates port to create a queue on. 14433 * @mq: The queue structure to use to create the mailbox queue. 14434 * @mbox: An allocated pointer to type LPFC_MBOXQ_t 14435 * @cq: The completion queue to associate with this cq. 14436 * 14437 * This function provides failback (fb) functionality when the 14438 * mq_create_ext fails on older FW generations. It's purpose is identical 14439 * to mq_create_ext otherwise. 14440 * 14441 * This routine cannot fail as all attributes were previously accessed and 14442 * initialized in mq_create_ext. 14443 **/ 14444 static void 14445 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, 14446 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) 14447 { 14448 struct lpfc_mbx_mq_create *mq_create; 14449 struct lpfc_dmabuf *dmabuf; 14450 int length; 14451 14452 length = (sizeof(struct lpfc_mbx_mq_create) - 14453 sizeof(struct lpfc_sli4_cfg_mhdr)); 14454 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14455 LPFC_MBOX_OPCODE_MQ_CREATE, 14456 length, LPFC_SLI4_MBX_EMBED); 14457 mq_create = &mbox->u.mqe.un.mq_create; 14458 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, 14459 mq->page_count); 14460 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, 14461 cq->queue_id); 14462 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); 14463 switch (mq->entry_count) { 14464 case 16: 14465 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14466 LPFC_MQ_RING_SIZE_16); 14467 break; 14468 case 32: 14469 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14470 LPFC_MQ_RING_SIZE_32); 14471 break; 14472 case 64: 14473 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14474 LPFC_MQ_RING_SIZE_64); 14475 break; 14476 case 128: 14477 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, 14478 LPFC_MQ_RING_SIZE_128); 14479 break; 14480 } 14481 list_for_each_entry(dmabuf, &mq->page_list, list) { 14482 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14483 putPaddrLow(dmabuf->phys); 14484 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14485 putPaddrHigh(dmabuf->phys); 14486 } 14487 } 14488 14489 /** 14490 * lpfc_mq_create - Create a mailbox Queue on the HBA 14491 * @phba: HBA structure that indicates port to create a queue on. 14492 * @mq: The queue structure to use to create the mailbox queue. 14493 * @cq: The completion queue to associate with this cq. 14494 * @subtype: The queue's subtype. 14495 * 14496 * This function creates a mailbox queue, as detailed in @mq, on a port, 14497 * described by @phba by sending a MQ_CREATE mailbox command to the HBA. 14498 * 14499 * The @phba struct is used to send mailbox command to HBA. The @cq struct 14500 * is used to get the entry count and entry size that are necessary to 14501 * determine the number of pages to allocate and use for this queue. This 14502 * function will send the MQ_CREATE mailbox command to the HBA to setup the 14503 * mailbox queue. This function is asynchronous and will wait for the mailbox 14504 * command to finish before continuing. 14505 * 14506 * On success this function will return a zero. If unable to allocate enough 14507 * memory this function will return -ENOMEM. If the queue create mailbox command 14508 * fails this function will return -ENXIO. 14509 **/ 14510 int32_t 14511 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, 14512 struct lpfc_queue *cq, uint32_t subtype) 14513 { 14514 struct lpfc_mbx_mq_create *mq_create; 14515 struct lpfc_mbx_mq_create_ext *mq_create_ext; 14516 struct lpfc_dmabuf *dmabuf; 14517 LPFC_MBOXQ_t *mbox; 14518 int rc, length, status = 0; 14519 uint32_t shdr_status, shdr_add_status; 14520 union lpfc_sli4_cfg_shdr *shdr; 14521 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14522 14523 /* sanity check on queue memory */ 14524 if (!mq || !cq) 14525 return -ENODEV; 14526 if (!phba->sli4_hba.pc_sli4_params.supported) 14527 hw_page_size = SLI4_PAGE_SIZE; 14528 14529 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14530 if (!mbox) 14531 return -ENOMEM; 14532 length = (sizeof(struct lpfc_mbx_mq_create_ext) - 14533 sizeof(struct lpfc_sli4_cfg_mhdr)); 14534 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 14535 LPFC_MBOX_OPCODE_MQ_CREATE_EXT, 14536 length, LPFC_SLI4_MBX_EMBED); 14537 14538 mq_create_ext = &mbox->u.mqe.un.mq_create_ext; 14539 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; 14540 bf_set(lpfc_mbx_mq_create_ext_num_pages, 14541 &mq_create_ext->u.request, mq->page_count); 14542 bf_set(lpfc_mbx_mq_create_ext_async_evt_link, 14543 &mq_create_ext->u.request, 1); 14544 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, 14545 &mq_create_ext->u.request, 1); 14546 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, 14547 &mq_create_ext->u.request, 1); 14548 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, 14549 &mq_create_ext->u.request, 1); 14550 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, 14551 &mq_create_ext->u.request, 1); 14552 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); 14553 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14554 phba->sli4_hba.pc_sli4_params.mqv); 14555 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) 14556 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, 14557 cq->queue_id); 14558 else 14559 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, 14560 cq->queue_id); 14561 switch (mq->entry_count) { 14562 default: 14563 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14564 "0362 Unsupported MQ count. (%d)\n", 14565 mq->entry_count); 14566 if (mq->entry_count < 16) { 14567 status = -EINVAL; 14568 goto out; 14569 } 14570 /* otherwise default to smallest count (drop through) */ 14571 case 16: 14572 bf_set(lpfc_mq_context_ring_size, 14573 &mq_create_ext->u.request.context, 14574 LPFC_MQ_RING_SIZE_16); 14575 break; 14576 case 32: 14577 bf_set(lpfc_mq_context_ring_size, 14578 &mq_create_ext->u.request.context, 14579 LPFC_MQ_RING_SIZE_32); 14580 break; 14581 case 64: 14582 bf_set(lpfc_mq_context_ring_size, 14583 &mq_create_ext->u.request.context, 14584 LPFC_MQ_RING_SIZE_64); 14585 break; 14586 case 128: 14587 bf_set(lpfc_mq_context_ring_size, 14588 &mq_create_ext->u.request.context, 14589 LPFC_MQ_RING_SIZE_128); 14590 break; 14591 } 14592 list_for_each_entry(dmabuf, &mq->page_list, list) { 14593 memset(dmabuf->virt, 0, hw_page_size); 14594 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = 14595 putPaddrLow(dmabuf->phys); 14596 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = 14597 putPaddrHigh(dmabuf->phys); 14598 } 14599 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14600 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14601 &mq_create_ext->u.response); 14602 if (rc != MBX_SUCCESS) { 14603 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14604 "2795 MQ_CREATE_EXT failed with " 14605 "status x%x. Failback to MQ_CREATE.\n", 14606 rc); 14607 lpfc_mq_create_fb_init(phba, mq, mbox, cq); 14608 mq_create = &mbox->u.mqe.un.mq_create; 14609 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14610 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; 14611 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, 14612 &mq_create->u.response); 14613 } 14614 14615 /* The IOCTL status is embedded in the mailbox subheader. */ 14616 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14617 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14618 if (shdr_status || shdr_add_status || rc) { 14619 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14620 "2502 MQ_CREATE mailbox failed with " 14621 "status x%x add_status x%x, mbx status x%x\n", 14622 shdr_status, shdr_add_status, rc); 14623 status = -ENXIO; 14624 goto out; 14625 } 14626 if (mq->queue_id == 0xFFFF) { 14627 status = -ENXIO; 14628 goto out; 14629 } 14630 mq->type = LPFC_MQ; 14631 mq->assoc_qid = cq->queue_id; 14632 mq->subtype = subtype; 14633 mq->host_index = 0; 14634 mq->hba_index = 0; 14635 14636 /* link the mq onto the parent cq child list */ 14637 list_add_tail(&mq->list, &cq->child_list); 14638 out: 14639 mempool_free(mbox, phba->mbox_mem_pool); 14640 return status; 14641 } 14642 14643 /** 14644 * lpfc_wq_create - Create a Work Queue on the HBA 14645 * @phba: HBA structure that indicates port to create a queue on. 14646 * @wq: The queue structure to use to create the work queue. 14647 * @cq: The completion queue to bind this work queue to. 14648 * @subtype: The subtype of the work queue indicating its functionality. 14649 * 14650 * This function creates a work queue, as detailed in @wq, on a port, described 14651 * by @phba by sending a WQ_CREATE mailbox command to the HBA. 14652 * 14653 * The @phba struct is used to send mailbox command to HBA. The @wq struct 14654 * is used to get the entry count and entry size that are necessary to 14655 * determine the number of pages to allocate and use for this queue. The @cq 14656 * is used to indicate which completion queue to bind this work queue to. This 14657 * function will send the WQ_CREATE mailbox command to the HBA to setup the 14658 * work queue. This function is asynchronous and will wait for the mailbox 14659 * command to finish before continuing. 14660 * 14661 * On success this function will return a zero. If unable to allocate enough 14662 * memory this function will return -ENOMEM. If the queue create mailbox command 14663 * fails this function will return -ENXIO. 14664 **/ 14665 int 14666 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, 14667 struct lpfc_queue *cq, uint32_t subtype) 14668 { 14669 struct lpfc_mbx_wq_create *wq_create; 14670 struct lpfc_dmabuf *dmabuf; 14671 LPFC_MBOXQ_t *mbox; 14672 int rc, length, status = 0; 14673 uint32_t shdr_status, shdr_add_status; 14674 union lpfc_sli4_cfg_shdr *shdr; 14675 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14676 struct dma_address *page; 14677 void __iomem *bar_memmap_p; 14678 uint32_t db_offset; 14679 uint16_t pci_barset; 14680 14681 /* sanity check on queue memory */ 14682 if (!wq || !cq) 14683 return -ENODEV; 14684 if (!phba->sli4_hba.pc_sli4_params.supported) 14685 hw_page_size = SLI4_PAGE_SIZE; 14686 14687 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14688 if (!mbox) 14689 return -ENOMEM; 14690 length = (sizeof(struct lpfc_mbx_wq_create) - 14691 sizeof(struct lpfc_sli4_cfg_mhdr)); 14692 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14693 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, 14694 length, LPFC_SLI4_MBX_EMBED); 14695 wq_create = &mbox->u.mqe.un.wq_create; 14696 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; 14697 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, 14698 wq->page_count); 14699 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, 14700 cq->queue_id); 14701 14702 /* wqv is the earliest version supported, NOT the latest */ 14703 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14704 phba->sli4_hba.pc_sli4_params.wqv); 14705 14706 switch (phba->sli4_hba.pc_sli4_params.wqv) { 14707 case LPFC_Q_CREATE_VERSION_0: 14708 switch (wq->entry_size) { 14709 default: 14710 case 64: 14711 /* Nothing to do, version 0 ONLY supports 64 byte */ 14712 page = wq_create->u.request.page; 14713 break; 14714 case 128: 14715 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14716 LPFC_WQ_SZ128_SUPPORT)) { 14717 status = -ERANGE; 14718 goto out; 14719 } 14720 /* If we get here the HBA MUST also support V1 and 14721 * we MUST use it 14722 */ 14723 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14724 LPFC_Q_CREATE_VERSION_1); 14725 14726 bf_set(lpfc_mbx_wq_create_wqe_count, 14727 &wq_create->u.request_1, wq->entry_count); 14728 bf_set(lpfc_mbx_wq_create_wqe_size, 14729 &wq_create->u.request_1, 14730 LPFC_WQ_WQE_SIZE_128); 14731 bf_set(lpfc_mbx_wq_create_page_size, 14732 &wq_create->u.request_1, 14733 LPFC_WQ_PAGE_SIZE_4096); 14734 page = wq_create->u.request_1.page; 14735 break; 14736 } 14737 break; 14738 case LPFC_Q_CREATE_VERSION_1: 14739 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, 14740 wq->entry_count); 14741 switch (wq->entry_size) { 14742 default: 14743 case 64: 14744 bf_set(lpfc_mbx_wq_create_wqe_size, 14745 &wq_create->u.request_1, 14746 LPFC_WQ_WQE_SIZE_64); 14747 break; 14748 case 128: 14749 if (!(phba->sli4_hba.pc_sli4_params.wqsize & 14750 LPFC_WQ_SZ128_SUPPORT)) { 14751 status = -ERANGE; 14752 goto out; 14753 } 14754 bf_set(lpfc_mbx_wq_create_wqe_size, 14755 &wq_create->u.request_1, 14756 LPFC_WQ_WQE_SIZE_128); 14757 break; 14758 } 14759 bf_set(lpfc_mbx_wq_create_page_size, 14760 &wq_create->u.request_1, 14761 LPFC_WQ_PAGE_SIZE_4096); 14762 page = wq_create->u.request_1.page; 14763 break; 14764 default: 14765 status = -ERANGE; 14766 goto out; 14767 } 14768 14769 list_for_each_entry(dmabuf, &wq->page_list, list) { 14770 memset(dmabuf->virt, 0, hw_page_size); 14771 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); 14772 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); 14773 } 14774 14775 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 14776 bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); 14777 14778 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 14779 /* The IOCTL status is embedded in the mailbox subheader. */ 14780 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 14781 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 14782 if (shdr_status || shdr_add_status || rc) { 14783 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14784 "2503 WQ_CREATE mailbox failed with " 14785 "status x%x add_status x%x, mbx status x%x\n", 14786 shdr_status, shdr_add_status, rc); 14787 status = -ENXIO; 14788 goto out; 14789 } 14790 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); 14791 if (wq->queue_id == 0xFFFF) { 14792 status = -ENXIO; 14793 goto out; 14794 } 14795 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 14796 wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, 14797 &wq_create->u.response); 14798 if ((wq->db_format != LPFC_DB_LIST_FORMAT) && 14799 (wq->db_format != LPFC_DB_RING_FORMAT)) { 14800 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14801 "3265 WQ[%d] doorbell format not " 14802 "supported: x%x\n", wq->queue_id, 14803 wq->db_format); 14804 status = -EINVAL; 14805 goto out; 14806 } 14807 pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, 14808 &wq_create->u.response); 14809 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 14810 if (!bar_memmap_p) { 14811 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14812 "3263 WQ[%d] failed to memmap pci " 14813 "barset:x%x\n", wq->queue_id, 14814 pci_barset); 14815 status = -ENOMEM; 14816 goto out; 14817 } 14818 db_offset = wq_create->u.response.doorbell_offset; 14819 if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && 14820 (db_offset != LPFC_ULP1_WQ_DOORBELL)) { 14821 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 14822 "3252 WQ[%d] doorbell offset not " 14823 "supported: x%x\n", wq->queue_id, 14824 db_offset); 14825 status = -EINVAL; 14826 goto out; 14827 } 14828 wq->db_regaddr = bar_memmap_p + db_offset; 14829 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 14830 "3264 WQ[%d]: barset:x%x, offset:x%x, " 14831 "format:x%x\n", wq->queue_id, pci_barset, 14832 db_offset, wq->db_format); 14833 } else { 14834 wq->db_format = LPFC_DB_LIST_FORMAT; 14835 wq->db_regaddr = phba->sli4_hba.WQDBregaddr; 14836 } 14837 wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); 14838 if (wq->pring == NULL) { 14839 status = -ENOMEM; 14840 goto out; 14841 } 14842 wq->type = LPFC_WQ; 14843 wq->assoc_qid = cq->queue_id; 14844 wq->subtype = subtype; 14845 wq->host_index = 0; 14846 wq->hba_index = 0; 14847 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL; 14848 14849 /* link the wq onto the parent cq child list */ 14850 list_add_tail(&wq->list, &cq->child_list); 14851 out: 14852 mempool_free(mbox, phba->mbox_mem_pool); 14853 return status; 14854 } 14855 14856 /** 14857 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ 14858 * @phba: HBA structure that indicates port to create a queue on. 14859 * @rq: The queue structure to use for the receive queue. 14860 * @qno: The associated HBQ number 14861 * 14862 * 14863 * For SLI4 we need to adjust the RQ repost value based on 14864 * the number of buffers that are initially posted to the RQ. 14865 */ 14866 void 14867 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno) 14868 { 14869 uint32_t cnt; 14870 14871 /* sanity check on queue memory */ 14872 if (!rq) 14873 return; 14874 cnt = lpfc_hbq_defs[qno]->entry_count; 14875 14876 /* Recalc repost for RQs based on buffers initially posted */ 14877 cnt = (cnt >> 3); 14878 if (cnt < LPFC_QUEUE_MIN_REPOST) 14879 cnt = LPFC_QUEUE_MIN_REPOST; 14880 14881 rq->entry_repost = cnt; 14882 } 14883 14884 /** 14885 * lpfc_rq_create - Create a Receive Queue on the HBA 14886 * @phba: HBA structure that indicates port to create a queue on. 14887 * @hrq: The queue structure to use to create the header receive queue. 14888 * @drq: The queue structure to use to create the data receive queue. 14889 * @cq: The completion queue to bind this work queue to. 14890 * 14891 * This function creates a receive buffer queue pair , as detailed in @hrq and 14892 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 14893 * to the HBA. 14894 * 14895 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 14896 * struct is used to get the entry count that is necessary to determine the 14897 * number of pages to use for this queue. The @cq is used to indicate which 14898 * completion queue to bind received buffers that are posted to these queues to. 14899 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 14900 * receive queue pair. This function is asynchronous and will wait for the 14901 * mailbox command to finish before continuing. 14902 * 14903 * On success this function will return a zero. If unable to allocate enough 14904 * memory this function will return -ENOMEM. If the queue create mailbox command 14905 * fails this function will return -ENXIO. 14906 **/ 14907 int 14908 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, 14909 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) 14910 { 14911 struct lpfc_mbx_rq_create *rq_create; 14912 struct lpfc_dmabuf *dmabuf; 14913 LPFC_MBOXQ_t *mbox; 14914 int rc, length, status = 0; 14915 uint32_t shdr_status, shdr_add_status; 14916 union lpfc_sli4_cfg_shdr *shdr; 14917 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 14918 void __iomem *bar_memmap_p; 14919 uint32_t db_offset; 14920 uint16_t pci_barset; 14921 14922 /* sanity check on queue memory */ 14923 if (!hrq || !drq || !cq) 14924 return -ENODEV; 14925 if (!phba->sli4_hba.pc_sli4_params.supported) 14926 hw_page_size = SLI4_PAGE_SIZE; 14927 14928 if (hrq->entry_count != drq->entry_count) 14929 return -EINVAL; 14930 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 14931 if (!mbox) 14932 return -ENOMEM; 14933 length = (sizeof(struct lpfc_mbx_rq_create) - 14934 sizeof(struct lpfc_sli4_cfg_mhdr)); 14935 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 14936 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 14937 length, LPFC_SLI4_MBX_EMBED); 14938 rq_create = &mbox->u.mqe.un.rq_create; 14939 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 14940 bf_set(lpfc_mbox_hdr_version, &shdr->request, 14941 phba->sli4_hba.pc_sli4_params.rqv); 14942 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 14943 bf_set(lpfc_rq_context_rqe_count_1, 14944 &rq_create->u.request.context, 14945 hrq->entry_count); 14946 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; 14947 bf_set(lpfc_rq_context_rqe_size, 14948 &rq_create->u.request.context, 14949 LPFC_RQE_SIZE_8); 14950 bf_set(lpfc_rq_context_page_size, 14951 &rq_create->u.request.context, 14952 LPFC_RQ_PAGE_SIZE_4096); 14953 } else { 14954 switch (hrq->entry_count) { 14955 default: 14956 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 14957 "2535 Unsupported RQ count. (%d)\n", 14958 hrq->entry_count); 14959 if (hrq->entry_count < 512) { 14960 status = -EINVAL; 14961 goto out; 14962 } 14963 /* otherwise default to smallest count (drop through) */ 14964 case 512: 14965 bf_set(lpfc_rq_context_rqe_count, 14966 &rq_create->u.request.context, 14967 LPFC_RQ_RING_SIZE_512); 14968 break; 14969 case 1024: 14970 bf_set(lpfc_rq_context_rqe_count, 14971 &rq_create->u.request.context, 14972 LPFC_RQ_RING_SIZE_1024); 14973 break; 14974 case 2048: 14975 bf_set(lpfc_rq_context_rqe_count, 14976 &rq_create->u.request.context, 14977 LPFC_RQ_RING_SIZE_2048); 14978 break; 14979 case 4096: 14980 bf_set(lpfc_rq_context_rqe_count, 14981 &rq_create->u.request.context, 14982 LPFC_RQ_RING_SIZE_4096); 14983 break; 14984 } 14985 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 14986 LPFC_HDR_BUF_SIZE); 14987 } 14988 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 14989 cq->queue_id); 14990 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 14991 hrq->page_count); 14992 list_for_each_entry(dmabuf, &hrq->page_list, list) { 14993 memset(dmabuf->virt, 0, hw_page_size); 14994 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 14995 putPaddrLow(dmabuf->phys); 14996 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 14997 putPaddrHigh(dmabuf->phys); 14998 } 14999 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15000 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15001 15002 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15003 /* The IOCTL status is embedded in the mailbox subheader. */ 15004 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15005 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15006 if (shdr_status || shdr_add_status || rc) { 15007 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15008 "2504 RQ_CREATE mailbox failed with " 15009 "status x%x add_status x%x, mbx status x%x\n", 15010 shdr_status, shdr_add_status, rc); 15011 status = -ENXIO; 15012 goto out; 15013 } 15014 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15015 if (hrq->queue_id == 0xFFFF) { 15016 status = -ENXIO; 15017 goto out; 15018 } 15019 15020 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { 15021 hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, 15022 &rq_create->u.response); 15023 if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && 15024 (hrq->db_format != LPFC_DB_RING_FORMAT)) { 15025 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15026 "3262 RQ [%d] doorbell format not " 15027 "supported: x%x\n", hrq->queue_id, 15028 hrq->db_format); 15029 status = -EINVAL; 15030 goto out; 15031 } 15032 15033 pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, 15034 &rq_create->u.response); 15035 bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); 15036 if (!bar_memmap_p) { 15037 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15038 "3269 RQ[%d] failed to memmap pci " 15039 "barset:x%x\n", hrq->queue_id, 15040 pci_barset); 15041 status = -ENOMEM; 15042 goto out; 15043 } 15044 15045 db_offset = rq_create->u.response.doorbell_offset; 15046 if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && 15047 (db_offset != LPFC_ULP1_RQ_DOORBELL)) { 15048 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15049 "3270 RQ[%d] doorbell offset not " 15050 "supported: x%x\n", hrq->queue_id, 15051 db_offset); 15052 status = -EINVAL; 15053 goto out; 15054 } 15055 hrq->db_regaddr = bar_memmap_p + db_offset; 15056 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 15057 "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " 15058 "format:x%x\n", hrq->queue_id, pci_barset, 15059 db_offset, hrq->db_format); 15060 } else { 15061 hrq->db_format = LPFC_DB_RING_FORMAT; 15062 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15063 } 15064 hrq->type = LPFC_HRQ; 15065 hrq->assoc_qid = cq->queue_id; 15066 hrq->subtype = subtype; 15067 hrq->host_index = 0; 15068 hrq->hba_index = 0; 15069 15070 /* now create the data queue */ 15071 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15072 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, 15073 length, LPFC_SLI4_MBX_EMBED); 15074 bf_set(lpfc_mbox_hdr_version, &shdr->request, 15075 phba->sli4_hba.pc_sli4_params.rqv); 15076 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { 15077 bf_set(lpfc_rq_context_rqe_count_1, 15078 &rq_create->u.request.context, hrq->entry_count); 15079 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; 15080 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, 15081 LPFC_RQE_SIZE_8); 15082 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, 15083 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15084 } else { 15085 switch (drq->entry_count) { 15086 default: 15087 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15088 "2536 Unsupported RQ count. (%d)\n", 15089 drq->entry_count); 15090 if (drq->entry_count < 512) { 15091 status = -EINVAL; 15092 goto out; 15093 } 15094 /* otherwise default to smallest count (drop through) */ 15095 case 512: 15096 bf_set(lpfc_rq_context_rqe_count, 15097 &rq_create->u.request.context, 15098 LPFC_RQ_RING_SIZE_512); 15099 break; 15100 case 1024: 15101 bf_set(lpfc_rq_context_rqe_count, 15102 &rq_create->u.request.context, 15103 LPFC_RQ_RING_SIZE_1024); 15104 break; 15105 case 2048: 15106 bf_set(lpfc_rq_context_rqe_count, 15107 &rq_create->u.request.context, 15108 LPFC_RQ_RING_SIZE_2048); 15109 break; 15110 case 4096: 15111 bf_set(lpfc_rq_context_rqe_count, 15112 &rq_create->u.request.context, 15113 LPFC_RQ_RING_SIZE_4096); 15114 break; 15115 } 15116 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, 15117 LPFC_DATA_BUF_SIZE); 15118 } 15119 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, 15120 cq->queue_id); 15121 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, 15122 drq->page_count); 15123 list_for_each_entry(dmabuf, &drq->page_list, list) { 15124 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = 15125 putPaddrLow(dmabuf->phys); 15126 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = 15127 putPaddrHigh(dmabuf->phys); 15128 } 15129 if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) 15130 bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); 15131 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15132 /* The IOCTL status is embedded in the mailbox subheader. */ 15133 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; 15134 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15135 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15136 if (shdr_status || shdr_add_status || rc) { 15137 status = -ENXIO; 15138 goto out; 15139 } 15140 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15141 if (drq->queue_id == 0xFFFF) { 15142 status = -ENXIO; 15143 goto out; 15144 } 15145 drq->type = LPFC_DRQ; 15146 drq->assoc_qid = cq->queue_id; 15147 drq->subtype = subtype; 15148 drq->host_index = 0; 15149 drq->hba_index = 0; 15150 15151 /* link the header and data RQs onto the parent cq child list */ 15152 list_add_tail(&hrq->list, &cq->child_list); 15153 list_add_tail(&drq->list, &cq->child_list); 15154 15155 out: 15156 mempool_free(mbox, phba->mbox_mem_pool); 15157 return status; 15158 } 15159 15160 /** 15161 * lpfc_mrq_create - Create MRQ Receive Queues on the HBA 15162 * @phba: HBA structure that indicates port to create a queue on. 15163 * @hrqp: The queue structure array to use to create the header receive queues. 15164 * @drqp: The queue structure array to use to create the data receive queues. 15165 * @cqp: The completion queue array to bind these receive queues to. 15166 * 15167 * This function creates a receive buffer queue pair , as detailed in @hrq and 15168 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command 15169 * to the HBA. 15170 * 15171 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq 15172 * struct is used to get the entry count that is necessary to determine the 15173 * number of pages to use for this queue. The @cq is used to indicate which 15174 * completion queue to bind received buffers that are posted to these queues to. 15175 * This function will send the RQ_CREATE mailbox command to the HBA to setup the 15176 * receive queue pair. This function is asynchronous and will wait for the 15177 * mailbox command to finish before continuing. 15178 * 15179 * On success this function will return a zero. If unable to allocate enough 15180 * memory this function will return -ENOMEM. If the queue create mailbox command 15181 * fails this function will return -ENXIO. 15182 **/ 15183 int 15184 lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, 15185 struct lpfc_queue **drqp, struct lpfc_queue **cqp, 15186 uint32_t subtype) 15187 { 15188 struct lpfc_queue *hrq, *drq, *cq; 15189 struct lpfc_mbx_rq_create_v2 *rq_create; 15190 struct lpfc_dmabuf *dmabuf; 15191 LPFC_MBOXQ_t *mbox; 15192 int rc, length, alloclen, status = 0; 15193 int cnt, idx, numrq, page_idx = 0; 15194 uint32_t shdr_status, shdr_add_status; 15195 union lpfc_sli4_cfg_shdr *shdr; 15196 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; 15197 15198 numrq = phba->cfg_nvmet_mrq; 15199 /* sanity check on array memory */ 15200 if (!hrqp || !drqp || !cqp || !numrq) 15201 return -ENODEV; 15202 if (!phba->sli4_hba.pc_sli4_params.supported) 15203 hw_page_size = SLI4_PAGE_SIZE; 15204 15205 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15206 if (!mbox) 15207 return -ENOMEM; 15208 15209 length = sizeof(struct lpfc_mbx_rq_create_v2); 15210 length += ((2 * numrq * hrqp[0]->page_count) * 15211 sizeof(struct dma_address)); 15212 15213 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15214 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, 15215 LPFC_SLI4_MBX_NEMBED); 15216 if (alloclen < length) { 15217 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15218 "3099 Allocated DMA memory size (%d) is " 15219 "less than the requested DMA memory size " 15220 "(%d)\n", alloclen, length); 15221 status = -ENOMEM; 15222 goto out; 15223 } 15224 15225 15226 15227 rq_create = mbox->sge_array->addr[0]; 15228 shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; 15229 15230 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); 15231 cnt = 0; 15232 15233 for (idx = 0; idx < numrq; idx++) { 15234 hrq = hrqp[idx]; 15235 drq = drqp[idx]; 15236 cq = cqp[idx]; 15237 15238 /* sanity check on queue memory */ 15239 if (!hrq || !drq || !cq) { 15240 status = -ENODEV; 15241 goto out; 15242 } 15243 15244 if (hrq->entry_count != drq->entry_count) { 15245 status = -EINVAL; 15246 goto out; 15247 } 15248 15249 if (idx == 0) { 15250 bf_set(lpfc_mbx_rq_create_num_pages, 15251 &rq_create->u.request, 15252 hrq->page_count); 15253 bf_set(lpfc_mbx_rq_create_rq_cnt, 15254 &rq_create->u.request, (numrq * 2)); 15255 bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 15256 1); 15257 bf_set(lpfc_rq_context_base_cq, 15258 &rq_create->u.request.context, 15259 cq->queue_id); 15260 bf_set(lpfc_rq_context_data_size, 15261 &rq_create->u.request.context, 15262 LPFC_DATA_BUF_SIZE); 15263 bf_set(lpfc_rq_context_hdr_size, 15264 &rq_create->u.request.context, 15265 LPFC_HDR_BUF_SIZE); 15266 bf_set(lpfc_rq_context_rqe_count_1, 15267 &rq_create->u.request.context, 15268 hrq->entry_count); 15269 bf_set(lpfc_rq_context_rqe_size, 15270 &rq_create->u.request.context, 15271 LPFC_RQE_SIZE_8); 15272 bf_set(lpfc_rq_context_page_size, 15273 &rq_create->u.request.context, 15274 (PAGE_SIZE/SLI4_PAGE_SIZE)); 15275 } 15276 rc = 0; 15277 list_for_each_entry(dmabuf, &hrq->page_list, list) { 15278 memset(dmabuf->virt, 0, hw_page_size); 15279 cnt = page_idx + dmabuf->buffer_tag; 15280 rq_create->u.request.page[cnt].addr_lo = 15281 putPaddrLow(dmabuf->phys); 15282 rq_create->u.request.page[cnt].addr_hi = 15283 putPaddrHigh(dmabuf->phys); 15284 rc++; 15285 } 15286 page_idx += rc; 15287 15288 rc = 0; 15289 list_for_each_entry(dmabuf, &drq->page_list, list) { 15290 memset(dmabuf->virt, 0, hw_page_size); 15291 cnt = page_idx + dmabuf->buffer_tag; 15292 rq_create->u.request.page[cnt].addr_lo = 15293 putPaddrLow(dmabuf->phys); 15294 rq_create->u.request.page[cnt].addr_hi = 15295 putPaddrHigh(dmabuf->phys); 15296 rc++; 15297 } 15298 page_idx += rc; 15299 15300 hrq->db_format = LPFC_DB_RING_FORMAT; 15301 hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15302 hrq->type = LPFC_HRQ; 15303 hrq->assoc_qid = cq->queue_id; 15304 hrq->subtype = subtype; 15305 hrq->host_index = 0; 15306 hrq->hba_index = 0; 15307 15308 drq->db_format = LPFC_DB_RING_FORMAT; 15309 drq->db_regaddr = phba->sli4_hba.RQDBregaddr; 15310 drq->type = LPFC_DRQ; 15311 drq->assoc_qid = cq->queue_id; 15312 drq->subtype = subtype; 15313 drq->host_index = 0; 15314 drq->hba_index = 0; 15315 15316 list_add_tail(&hrq->list, &cq->child_list); 15317 list_add_tail(&drq->list, &cq->child_list); 15318 } 15319 15320 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15321 /* The IOCTL status is embedded in the mailbox subheader. */ 15322 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15323 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15324 if (shdr_status || shdr_add_status || rc) { 15325 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15326 "3120 RQ_CREATE mailbox failed with " 15327 "status x%x add_status x%x, mbx status x%x\n", 15328 shdr_status, shdr_add_status, rc); 15329 status = -ENXIO; 15330 goto out; 15331 } 15332 rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); 15333 if (rc == 0xFFFF) { 15334 status = -ENXIO; 15335 goto out; 15336 } 15337 15338 /* Initialize all RQs with associated queue id */ 15339 for (idx = 0; idx < numrq; idx++) { 15340 hrq = hrqp[idx]; 15341 hrq->queue_id = rc + (2 * idx); 15342 drq = drqp[idx]; 15343 drq->queue_id = rc + (2 * idx) + 1; 15344 } 15345 15346 out: 15347 lpfc_sli4_mbox_cmd_free(phba, mbox); 15348 return status; 15349 } 15350 15351 /** 15352 * lpfc_eq_destroy - Destroy an event Queue on the HBA 15353 * @eq: The queue structure associated with the queue to destroy. 15354 * 15355 * This function destroys a queue, as detailed in @eq by sending an mailbox 15356 * command, specific to the type of queue, to the HBA. 15357 * 15358 * The @eq struct is used to get the queue ID of the queue to destroy. 15359 * 15360 * On success this function will return a zero. If the queue destroy mailbox 15361 * command fails this function will return -ENXIO. 15362 **/ 15363 int 15364 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) 15365 { 15366 LPFC_MBOXQ_t *mbox; 15367 int rc, length, status = 0; 15368 uint32_t shdr_status, shdr_add_status; 15369 union lpfc_sli4_cfg_shdr *shdr; 15370 15371 /* sanity check on queue memory */ 15372 if (!eq) 15373 return -ENODEV; 15374 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); 15375 if (!mbox) 15376 return -ENOMEM; 15377 length = (sizeof(struct lpfc_mbx_eq_destroy) - 15378 sizeof(struct lpfc_sli4_cfg_mhdr)); 15379 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15380 LPFC_MBOX_OPCODE_EQ_DESTROY, 15381 length, LPFC_SLI4_MBX_EMBED); 15382 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, 15383 eq->queue_id); 15384 mbox->vport = eq->phba->pport; 15385 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15386 15387 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); 15388 /* The IOCTL status is embedded in the mailbox subheader. */ 15389 shdr = (union lpfc_sli4_cfg_shdr *) 15390 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; 15391 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15392 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15393 if (shdr_status || shdr_add_status || rc) { 15394 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15395 "2505 EQ_DESTROY mailbox failed with " 15396 "status x%x add_status x%x, mbx status x%x\n", 15397 shdr_status, shdr_add_status, rc); 15398 status = -ENXIO; 15399 } 15400 15401 /* Remove eq from any list */ 15402 list_del_init(&eq->list); 15403 mempool_free(mbox, eq->phba->mbox_mem_pool); 15404 return status; 15405 } 15406 15407 /** 15408 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA 15409 * @cq: The queue structure associated with the queue to destroy. 15410 * 15411 * This function destroys a queue, as detailed in @cq by sending an mailbox 15412 * command, specific to the type of queue, to the HBA. 15413 * 15414 * The @cq struct is used to get the queue ID of the queue to destroy. 15415 * 15416 * On success this function will return a zero. If the queue destroy mailbox 15417 * command fails this function will return -ENXIO. 15418 **/ 15419 int 15420 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) 15421 { 15422 LPFC_MBOXQ_t *mbox; 15423 int rc, length, status = 0; 15424 uint32_t shdr_status, shdr_add_status; 15425 union lpfc_sli4_cfg_shdr *shdr; 15426 15427 /* sanity check on queue memory */ 15428 if (!cq) 15429 return -ENODEV; 15430 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); 15431 if (!mbox) 15432 return -ENOMEM; 15433 length = (sizeof(struct lpfc_mbx_cq_destroy) - 15434 sizeof(struct lpfc_sli4_cfg_mhdr)); 15435 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15436 LPFC_MBOX_OPCODE_CQ_DESTROY, 15437 length, LPFC_SLI4_MBX_EMBED); 15438 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, 15439 cq->queue_id); 15440 mbox->vport = cq->phba->pport; 15441 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15442 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); 15443 /* The IOCTL status is embedded in the mailbox subheader. */ 15444 shdr = (union lpfc_sli4_cfg_shdr *) 15445 &mbox->u.mqe.un.wq_create.header.cfg_shdr; 15446 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15447 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15448 if (shdr_status || shdr_add_status || rc) { 15449 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15450 "2506 CQ_DESTROY mailbox failed with " 15451 "status x%x add_status x%x, mbx status x%x\n", 15452 shdr_status, shdr_add_status, rc); 15453 status = -ENXIO; 15454 } 15455 /* Remove cq from any list */ 15456 list_del_init(&cq->list); 15457 mempool_free(mbox, cq->phba->mbox_mem_pool); 15458 return status; 15459 } 15460 15461 /** 15462 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA 15463 * @qm: The queue structure associated with the queue to destroy. 15464 * 15465 * This function destroys a queue, as detailed in @mq by sending an mailbox 15466 * command, specific to the type of queue, to the HBA. 15467 * 15468 * The @mq struct is used to get the queue ID of the queue to destroy. 15469 * 15470 * On success this function will return a zero. If the queue destroy mailbox 15471 * command fails this function will return -ENXIO. 15472 **/ 15473 int 15474 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) 15475 { 15476 LPFC_MBOXQ_t *mbox; 15477 int rc, length, status = 0; 15478 uint32_t shdr_status, shdr_add_status; 15479 union lpfc_sli4_cfg_shdr *shdr; 15480 15481 /* sanity check on queue memory */ 15482 if (!mq) 15483 return -ENODEV; 15484 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); 15485 if (!mbox) 15486 return -ENOMEM; 15487 length = (sizeof(struct lpfc_mbx_mq_destroy) - 15488 sizeof(struct lpfc_sli4_cfg_mhdr)); 15489 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 15490 LPFC_MBOX_OPCODE_MQ_DESTROY, 15491 length, LPFC_SLI4_MBX_EMBED); 15492 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, 15493 mq->queue_id); 15494 mbox->vport = mq->phba->pport; 15495 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15496 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); 15497 /* The IOCTL status is embedded in the mailbox subheader. */ 15498 shdr = (union lpfc_sli4_cfg_shdr *) 15499 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; 15500 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15501 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15502 if (shdr_status || shdr_add_status || rc) { 15503 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15504 "2507 MQ_DESTROY mailbox failed with " 15505 "status x%x add_status x%x, mbx status x%x\n", 15506 shdr_status, shdr_add_status, rc); 15507 status = -ENXIO; 15508 } 15509 /* Remove mq from any list */ 15510 list_del_init(&mq->list); 15511 mempool_free(mbox, mq->phba->mbox_mem_pool); 15512 return status; 15513 } 15514 15515 /** 15516 * lpfc_wq_destroy - Destroy a Work Queue on the HBA 15517 * @wq: The queue structure associated with the queue to destroy. 15518 * 15519 * This function destroys a queue, as detailed in @wq by sending an mailbox 15520 * command, specific to the type of queue, to the HBA. 15521 * 15522 * The @wq struct is used to get the queue ID of the queue to destroy. 15523 * 15524 * On success this function will return a zero. If the queue destroy mailbox 15525 * command fails this function will return -ENXIO. 15526 **/ 15527 int 15528 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) 15529 { 15530 LPFC_MBOXQ_t *mbox; 15531 int rc, length, status = 0; 15532 uint32_t shdr_status, shdr_add_status; 15533 union lpfc_sli4_cfg_shdr *shdr; 15534 15535 /* sanity check on queue memory */ 15536 if (!wq) 15537 return -ENODEV; 15538 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); 15539 if (!mbox) 15540 return -ENOMEM; 15541 length = (sizeof(struct lpfc_mbx_wq_destroy) - 15542 sizeof(struct lpfc_sli4_cfg_mhdr)); 15543 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15544 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, 15545 length, LPFC_SLI4_MBX_EMBED); 15546 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, 15547 wq->queue_id); 15548 mbox->vport = wq->phba->pport; 15549 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15550 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); 15551 shdr = (union lpfc_sli4_cfg_shdr *) 15552 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; 15553 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15554 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15555 if (shdr_status || shdr_add_status || rc) { 15556 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15557 "2508 WQ_DESTROY mailbox failed with " 15558 "status x%x add_status x%x, mbx status x%x\n", 15559 shdr_status, shdr_add_status, rc); 15560 status = -ENXIO; 15561 } 15562 /* Remove wq from any list */ 15563 list_del_init(&wq->list); 15564 mempool_free(mbox, wq->phba->mbox_mem_pool); 15565 return status; 15566 } 15567 15568 /** 15569 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA 15570 * @rq: The queue structure associated with the queue to destroy. 15571 * 15572 * This function destroys a queue, as detailed in @rq by sending an mailbox 15573 * command, specific to the type of queue, to the HBA. 15574 * 15575 * The @rq struct is used to get the queue ID of the queue to destroy. 15576 * 15577 * On success this function will return a zero. If the queue destroy mailbox 15578 * command fails this function will return -ENXIO. 15579 **/ 15580 int 15581 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, 15582 struct lpfc_queue *drq) 15583 { 15584 LPFC_MBOXQ_t *mbox; 15585 int rc, length, status = 0; 15586 uint32_t shdr_status, shdr_add_status; 15587 union lpfc_sli4_cfg_shdr *shdr; 15588 15589 /* sanity check on queue memory */ 15590 if (!hrq || !drq) 15591 return -ENODEV; 15592 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); 15593 if (!mbox) 15594 return -ENOMEM; 15595 length = (sizeof(struct lpfc_mbx_rq_destroy) - 15596 sizeof(struct lpfc_sli4_cfg_mhdr)); 15597 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15598 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, 15599 length, LPFC_SLI4_MBX_EMBED); 15600 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15601 hrq->queue_id); 15602 mbox->vport = hrq->phba->pport; 15603 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 15604 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); 15605 /* The IOCTL status is embedded in the mailbox subheader. */ 15606 shdr = (union lpfc_sli4_cfg_shdr *) 15607 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15608 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15609 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15610 if (shdr_status || shdr_add_status || rc) { 15611 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15612 "2509 RQ_DESTROY mailbox failed with " 15613 "status x%x add_status x%x, mbx status x%x\n", 15614 shdr_status, shdr_add_status, rc); 15615 if (rc != MBX_TIMEOUT) 15616 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15617 return -ENXIO; 15618 } 15619 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, 15620 drq->queue_id); 15621 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); 15622 shdr = (union lpfc_sli4_cfg_shdr *) 15623 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; 15624 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15625 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15626 if (shdr_status || shdr_add_status || rc) { 15627 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15628 "2510 RQ_DESTROY mailbox failed with " 15629 "status x%x add_status x%x, mbx status x%x\n", 15630 shdr_status, shdr_add_status, rc); 15631 status = -ENXIO; 15632 } 15633 list_del_init(&hrq->list); 15634 list_del_init(&drq->list); 15635 mempool_free(mbox, hrq->phba->mbox_mem_pool); 15636 return status; 15637 } 15638 15639 /** 15640 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA 15641 * @phba: The virtual port for which this call being executed. 15642 * @pdma_phys_addr0: Physical address of the 1st SGL page. 15643 * @pdma_phys_addr1: Physical address of the 2nd SGL page. 15644 * @xritag: the xritag that ties this io to the SGL pages. 15645 * 15646 * This routine will post the sgl pages for the IO that has the xritag 15647 * that is in the iocbq structure. The xritag is assigned during iocbq 15648 * creation and persists for as long as the driver is loaded. 15649 * if the caller has fewer than 256 scatter gather segments to map then 15650 * pdma_phys_addr1 should be 0. 15651 * If the caller needs to map more than 256 scatter gather segment then 15652 * pdma_phys_addr1 should be a valid physical address. 15653 * physical address for SGLs must be 64 byte aligned. 15654 * If you are going to map 2 SGL's then the first one must have 256 entries 15655 * the second sgl can have between 1 and 256 entries. 15656 * 15657 * Return codes: 15658 * 0 - Success 15659 * -ENXIO, -ENOMEM - Failure 15660 **/ 15661 int 15662 lpfc_sli4_post_sgl(struct lpfc_hba *phba, 15663 dma_addr_t pdma_phys_addr0, 15664 dma_addr_t pdma_phys_addr1, 15665 uint16_t xritag) 15666 { 15667 struct lpfc_mbx_post_sgl_pages *post_sgl_pages; 15668 LPFC_MBOXQ_t *mbox; 15669 int rc; 15670 uint32_t shdr_status, shdr_add_status; 15671 uint32_t mbox_tmo; 15672 union lpfc_sli4_cfg_shdr *shdr; 15673 15674 if (xritag == NO_XRI) { 15675 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15676 "0364 Invalid param:\n"); 15677 return -EINVAL; 15678 } 15679 15680 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15681 if (!mbox) 15682 return -ENOMEM; 15683 15684 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15685 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, 15686 sizeof(struct lpfc_mbx_post_sgl_pages) - 15687 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 15688 15689 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) 15690 &mbox->u.mqe.un.post_sgl_pages; 15691 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); 15692 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); 15693 15694 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = 15695 cpu_to_le32(putPaddrLow(pdma_phys_addr0)); 15696 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = 15697 cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); 15698 15699 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = 15700 cpu_to_le32(putPaddrLow(pdma_phys_addr1)); 15701 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = 15702 cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); 15703 if (!phba->sli4_hba.intr_enable) 15704 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15705 else { 15706 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15707 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15708 } 15709 /* The IOCTL status is embedded in the mailbox subheader. */ 15710 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; 15711 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15712 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15713 if (rc != MBX_TIMEOUT) 15714 mempool_free(mbox, phba->mbox_mem_pool); 15715 if (shdr_status || shdr_add_status || rc) { 15716 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15717 "2511 POST_SGL mailbox failed with " 15718 "status x%x add_status x%x, mbx status x%x\n", 15719 shdr_status, shdr_add_status, rc); 15720 } 15721 return 0; 15722 } 15723 15724 /** 15725 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range 15726 * @phba: pointer to lpfc hba data structure. 15727 * 15728 * This routine is invoked to post rpi header templates to the 15729 * HBA consistent with the SLI-4 interface spec. This routine 15730 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 15731 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 15732 * 15733 * Returns 15734 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 15735 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 15736 **/ 15737 static uint16_t 15738 lpfc_sli4_alloc_xri(struct lpfc_hba *phba) 15739 { 15740 unsigned long xri; 15741 15742 /* 15743 * Fetch the next logical xri. Because this index is logical, 15744 * the driver starts at 0 each time. 15745 */ 15746 spin_lock_irq(&phba->hbalock); 15747 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, 15748 phba->sli4_hba.max_cfg_param.max_xri, 0); 15749 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { 15750 spin_unlock_irq(&phba->hbalock); 15751 return NO_XRI; 15752 } else { 15753 set_bit(xri, phba->sli4_hba.xri_bmask); 15754 phba->sli4_hba.max_cfg_param.xri_used++; 15755 } 15756 spin_unlock_irq(&phba->hbalock); 15757 return xri; 15758 } 15759 15760 /** 15761 * lpfc_sli4_free_xri - Release an xri for reuse. 15762 * @phba: pointer to lpfc hba data structure. 15763 * 15764 * This routine is invoked to release an xri to the pool of 15765 * available rpis maintained by the driver. 15766 **/ 15767 static void 15768 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15769 { 15770 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { 15771 phba->sli4_hba.max_cfg_param.xri_used--; 15772 } 15773 } 15774 15775 /** 15776 * lpfc_sli4_free_xri - Release an xri for reuse. 15777 * @phba: pointer to lpfc hba data structure. 15778 * 15779 * This routine is invoked to release an xri to the pool of 15780 * available rpis maintained by the driver. 15781 **/ 15782 void 15783 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) 15784 { 15785 spin_lock_irq(&phba->hbalock); 15786 __lpfc_sli4_free_xri(phba, xri); 15787 spin_unlock_irq(&phba->hbalock); 15788 } 15789 15790 /** 15791 * lpfc_sli4_next_xritag - Get an xritag for the io 15792 * @phba: Pointer to HBA context object. 15793 * 15794 * This function gets an xritag for the iocb. If there is no unused xritag 15795 * it will return 0xffff. 15796 * The function returns the allocated xritag if successful, else returns zero. 15797 * Zero is not a valid xritag. 15798 * The caller is not required to hold any lock. 15799 **/ 15800 uint16_t 15801 lpfc_sli4_next_xritag(struct lpfc_hba *phba) 15802 { 15803 uint16_t xri_index; 15804 15805 xri_index = lpfc_sli4_alloc_xri(phba); 15806 if (xri_index == NO_XRI) 15807 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, 15808 "2004 Failed to allocate XRI.last XRITAG is %d" 15809 " Max XRI is %d, Used XRI is %d\n", 15810 xri_index, 15811 phba->sli4_hba.max_cfg_param.max_xri, 15812 phba->sli4_hba.max_cfg_param.xri_used); 15813 return xri_index; 15814 } 15815 15816 /** 15817 * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. 15818 * @phba: pointer to lpfc hba data structure. 15819 * @post_sgl_list: pointer to els sgl entry list. 15820 * @count: number of els sgl entries on the list. 15821 * 15822 * This routine is invoked to post a block of driver's sgl pages to the 15823 * HBA using non-embedded mailbox command. No Lock is held. This routine 15824 * is only called when the driver is loading and after all IO has been 15825 * stopped. 15826 **/ 15827 static int 15828 lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, 15829 struct list_head *post_sgl_list, 15830 int post_cnt) 15831 { 15832 struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; 15833 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15834 struct sgl_page_pairs *sgl_pg_pairs; 15835 void *viraddr; 15836 LPFC_MBOXQ_t *mbox; 15837 uint32_t reqlen, alloclen, pg_pairs; 15838 uint32_t mbox_tmo; 15839 uint16_t xritag_start = 0; 15840 int rc = 0; 15841 uint32_t shdr_status, shdr_add_status; 15842 union lpfc_sli4_cfg_shdr *shdr; 15843 15844 reqlen = post_cnt * sizeof(struct sgl_page_pairs) + 15845 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15846 if (reqlen > SLI4_PAGE_SIZE) { 15847 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15848 "2559 Block sgl registration required DMA " 15849 "size (%d) great than a page\n", reqlen); 15850 return -ENOMEM; 15851 } 15852 15853 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15854 if (!mbox) 15855 return -ENOMEM; 15856 15857 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15858 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15859 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15860 LPFC_SLI4_MBX_NEMBED); 15861 15862 if (alloclen < reqlen) { 15863 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15864 "0285 Allocated DMA memory size (%d) is " 15865 "less than the requested DMA memory " 15866 "size (%d)\n", alloclen, reqlen); 15867 lpfc_sli4_mbox_cmd_free(phba, mbox); 15868 return -ENOMEM; 15869 } 15870 /* Set up the SGL pages in the non-embedded DMA pages */ 15871 viraddr = mbox->sge_array->addr[0]; 15872 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15873 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15874 15875 pg_pairs = 0; 15876 list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { 15877 /* Set up the sge entry */ 15878 sgl_pg_pairs->sgl_pg0_addr_lo = 15879 cpu_to_le32(putPaddrLow(sglq_entry->phys)); 15880 sgl_pg_pairs->sgl_pg0_addr_hi = 15881 cpu_to_le32(putPaddrHigh(sglq_entry->phys)); 15882 sgl_pg_pairs->sgl_pg1_addr_lo = 15883 cpu_to_le32(putPaddrLow(0)); 15884 sgl_pg_pairs->sgl_pg1_addr_hi = 15885 cpu_to_le32(putPaddrHigh(0)); 15886 15887 /* Keep the first xritag on the list */ 15888 if (pg_pairs == 0) 15889 xritag_start = sglq_entry->sli4_xritag; 15890 sgl_pg_pairs++; 15891 pg_pairs++; 15892 } 15893 15894 /* Complete initialization and perform endian conversion. */ 15895 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 15896 bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); 15897 sgl->word0 = cpu_to_le32(sgl->word0); 15898 15899 if (!phba->sli4_hba.intr_enable) 15900 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 15901 else { 15902 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 15903 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 15904 } 15905 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 15906 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 15907 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 15908 if (rc != MBX_TIMEOUT) 15909 lpfc_sli4_mbox_cmd_free(phba, mbox); 15910 if (shdr_status || shdr_add_status || rc) { 15911 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 15912 "2513 POST_SGL_BLOCK mailbox command failed " 15913 "status x%x add_status x%x mbx status x%x\n", 15914 shdr_status, shdr_add_status, rc); 15915 rc = -ENXIO; 15916 } 15917 return rc; 15918 } 15919 15920 /** 15921 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware 15922 * @phba: pointer to lpfc hba data structure. 15923 * @sblist: pointer to scsi buffer list. 15924 * @count: number of scsi buffers on the list. 15925 * 15926 * This routine is invoked to post a block of @count scsi sgl pages from a 15927 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command. 15928 * No Lock is held. 15929 * 15930 **/ 15931 int 15932 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, 15933 struct list_head *sblist, 15934 int count) 15935 { 15936 struct lpfc_scsi_buf *psb; 15937 struct lpfc_mbx_post_uembed_sgl_page1 *sgl; 15938 struct sgl_page_pairs *sgl_pg_pairs; 15939 void *viraddr; 15940 LPFC_MBOXQ_t *mbox; 15941 uint32_t reqlen, alloclen, pg_pairs; 15942 uint32_t mbox_tmo; 15943 uint16_t xritag_start = 0; 15944 int rc = 0; 15945 uint32_t shdr_status, shdr_add_status; 15946 dma_addr_t pdma_phys_bpl1; 15947 union lpfc_sli4_cfg_shdr *shdr; 15948 15949 /* Calculate the requested length of the dma memory */ 15950 reqlen = count * sizeof(struct sgl_page_pairs) + 15951 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); 15952 if (reqlen > SLI4_PAGE_SIZE) { 15953 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, 15954 "0217 Block sgl registration required DMA " 15955 "size (%d) great than a page\n", reqlen); 15956 return -ENOMEM; 15957 } 15958 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 15959 if (!mbox) { 15960 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15961 "0283 Failed to allocate mbox cmd memory\n"); 15962 return -ENOMEM; 15963 } 15964 15965 /* Allocate DMA memory and set up the non-embedded mailbox command */ 15966 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 15967 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, 15968 LPFC_SLI4_MBX_NEMBED); 15969 15970 if (alloclen < reqlen) { 15971 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 15972 "2561 Allocated DMA memory size (%d) is " 15973 "less than the requested DMA memory " 15974 "size (%d)\n", alloclen, reqlen); 15975 lpfc_sli4_mbox_cmd_free(phba, mbox); 15976 return -ENOMEM; 15977 } 15978 15979 /* Get the first SGE entry from the non-embedded DMA memory */ 15980 viraddr = mbox->sge_array->addr[0]; 15981 15982 /* Set up the SGL pages in the non-embedded DMA pages */ 15983 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; 15984 sgl_pg_pairs = &sgl->sgl_pg_pairs; 15985 15986 pg_pairs = 0; 15987 list_for_each_entry(psb, sblist, list) { 15988 /* Set up the sge entry */ 15989 sgl_pg_pairs->sgl_pg0_addr_lo = 15990 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl)); 15991 sgl_pg_pairs->sgl_pg0_addr_hi = 15992 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl)); 15993 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) 15994 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE; 15995 else 15996 pdma_phys_bpl1 = 0; 15997 sgl_pg_pairs->sgl_pg1_addr_lo = 15998 cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); 15999 sgl_pg_pairs->sgl_pg1_addr_hi = 16000 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); 16001 /* Keep the first xritag on the list */ 16002 if (pg_pairs == 0) 16003 xritag_start = psb->cur_iocbq.sli4_xritag; 16004 sgl_pg_pairs++; 16005 pg_pairs++; 16006 } 16007 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); 16008 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); 16009 /* Perform endian conversion if necessary */ 16010 sgl->word0 = cpu_to_le32(sgl->word0); 16011 16012 if (!phba->sli4_hba.intr_enable) 16013 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 16014 else { 16015 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 16016 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 16017 } 16018 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; 16019 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 16020 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 16021 if (rc != MBX_TIMEOUT) 16022 lpfc_sli4_mbox_cmd_free(phba, mbox); 16023 if (shdr_status || shdr_add_status || rc) { 16024 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16025 "2564 POST_SGL_BLOCK mailbox command failed " 16026 "status x%x add_status x%x mbx status x%x\n", 16027 shdr_status, shdr_add_status, rc); 16028 rc = -ENXIO; 16029 } 16030 return rc; 16031 } 16032 16033 static char *lpfc_rctl_names[] = FC_RCTL_NAMES_INIT; 16034 static char *lpfc_type_names[] = FC_TYPE_NAMES_INIT; 16035 16036 /** 16037 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle 16038 * @phba: pointer to lpfc_hba struct that the frame was received on 16039 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16040 * 16041 * This function checks the fields in the @fc_hdr to see if the FC frame is a 16042 * valid type of frame that the LPFC driver will handle. This function will 16043 * return a zero if the frame is a valid frame or a non zero value when the 16044 * frame does not pass the check. 16045 **/ 16046 static int 16047 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) 16048 { 16049 /* make rctl_names static to save stack space */ 16050 struct fc_vft_header *fc_vft_hdr; 16051 uint32_t *header = (uint32_t *) fc_hdr; 16052 16053 switch (fc_hdr->fh_r_ctl) { 16054 case FC_RCTL_DD_UNCAT: /* uncategorized information */ 16055 case FC_RCTL_DD_SOL_DATA: /* solicited data */ 16056 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ 16057 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ 16058 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ 16059 case FC_RCTL_DD_DATA_DESC: /* data descriptor */ 16060 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ 16061 case FC_RCTL_DD_CMD_STATUS: /* command status */ 16062 case FC_RCTL_ELS_REQ: /* extended link services request */ 16063 case FC_RCTL_ELS_REP: /* extended link services reply */ 16064 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ 16065 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ 16066 case FC_RCTL_BA_NOP: /* basic link service NOP */ 16067 case FC_RCTL_BA_ABTS: /* basic link service abort */ 16068 case FC_RCTL_BA_RMC: /* remove connection */ 16069 case FC_RCTL_BA_ACC: /* basic accept */ 16070 case FC_RCTL_BA_RJT: /* basic reject */ 16071 case FC_RCTL_BA_PRMT: 16072 case FC_RCTL_ACK_1: /* acknowledge_1 */ 16073 case FC_RCTL_ACK_0: /* acknowledge_0 */ 16074 case FC_RCTL_P_RJT: /* port reject */ 16075 case FC_RCTL_F_RJT: /* fabric reject */ 16076 case FC_RCTL_P_BSY: /* port busy */ 16077 case FC_RCTL_F_BSY: /* fabric busy to data frame */ 16078 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ 16079 case FC_RCTL_LCR: /* link credit reset */ 16080 case FC_RCTL_END: /* end */ 16081 break; 16082 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ 16083 fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16084 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; 16085 return lpfc_fc_frame_check(phba, fc_hdr); 16086 default: 16087 goto drop; 16088 } 16089 switch (fc_hdr->fh_type) { 16090 case FC_TYPE_BLS: 16091 case FC_TYPE_ELS: 16092 case FC_TYPE_FCP: 16093 case FC_TYPE_CT: 16094 case FC_TYPE_NVME: 16095 break; 16096 case FC_TYPE_IP: 16097 case FC_TYPE_ILS: 16098 default: 16099 goto drop; 16100 } 16101 16102 lpfc_printf_log(phba, KERN_INFO, LOG_ELS, 16103 "2538 Received frame rctl:%s (x%x), type:%s (x%x), " 16104 "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", 16105 lpfc_rctl_names[fc_hdr->fh_r_ctl], fc_hdr->fh_r_ctl, 16106 lpfc_type_names[fc_hdr->fh_type], fc_hdr->fh_type, 16107 be32_to_cpu(header[0]), be32_to_cpu(header[1]), 16108 be32_to_cpu(header[2]), be32_to_cpu(header[3]), 16109 be32_to_cpu(header[4]), be32_to_cpu(header[5]), 16110 be32_to_cpu(header[6])); 16111 return 0; 16112 drop: 16113 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, 16114 "2539 Dropped frame rctl:%s type:%s\n", 16115 lpfc_rctl_names[fc_hdr->fh_r_ctl], 16116 lpfc_type_names[fc_hdr->fh_type]); 16117 return 1; 16118 } 16119 16120 /** 16121 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame 16122 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16123 * 16124 * This function processes the FC header to retrieve the VFI from the VF 16125 * header, if one exists. This function will return the VFI if one exists 16126 * or 0 if no VSAN Header exists. 16127 **/ 16128 static uint32_t 16129 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) 16130 { 16131 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; 16132 16133 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) 16134 return 0; 16135 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); 16136 } 16137 16138 /** 16139 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to 16140 * @phba: Pointer to the HBA structure to search for the vport on 16141 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) 16142 * @fcfi: The FC Fabric ID that the frame came from 16143 * 16144 * This function searches the @phba for a vport that matches the content of the 16145 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the 16146 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function 16147 * returns the matching vport pointer or NULL if unable to match frame to a 16148 * vport. 16149 **/ 16150 static struct lpfc_vport * 16151 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, 16152 uint16_t fcfi, uint32_t did) 16153 { 16154 struct lpfc_vport **vports; 16155 struct lpfc_vport *vport = NULL; 16156 int i; 16157 16158 if (did == Fabric_DID) 16159 return phba->pport; 16160 if ((phba->pport->fc_flag & FC_PT2PT) && 16161 !(phba->link_state == LPFC_HBA_READY)) 16162 return phba->pport; 16163 16164 vports = lpfc_create_vport_work_array(phba); 16165 if (vports != NULL) { 16166 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { 16167 if (phba->fcf.fcfi == fcfi && 16168 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && 16169 vports[i]->fc_myDID == did) { 16170 vport = vports[i]; 16171 break; 16172 } 16173 } 16174 } 16175 lpfc_destroy_vport_work_array(phba, vports); 16176 return vport; 16177 } 16178 16179 /** 16180 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp 16181 * @vport: The vport to work on. 16182 * 16183 * This function updates the receive sequence time stamp for this vport. The 16184 * receive sequence time stamp indicates the time that the last frame of the 16185 * the sequence that has been idle for the longest amount of time was received. 16186 * the driver uses this time stamp to indicate if any received sequences have 16187 * timed out. 16188 **/ 16189 static void 16190 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) 16191 { 16192 struct lpfc_dmabuf *h_buf; 16193 struct hbq_dmabuf *dmabuf = NULL; 16194 16195 /* get the oldest sequence on the rcv list */ 16196 h_buf = list_get_first(&vport->rcv_buffer_list, 16197 struct lpfc_dmabuf, list); 16198 if (!h_buf) 16199 return; 16200 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16201 vport->rcv_buffer_time_stamp = dmabuf->time_stamp; 16202 } 16203 16204 /** 16205 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. 16206 * @vport: The vport that the received sequences were sent to. 16207 * 16208 * This function cleans up all outstanding received sequences. This is called 16209 * by the driver when a link event or user action invalidates all the received 16210 * sequences. 16211 **/ 16212 void 16213 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) 16214 { 16215 struct lpfc_dmabuf *h_buf, *hnext; 16216 struct lpfc_dmabuf *d_buf, *dnext; 16217 struct hbq_dmabuf *dmabuf = NULL; 16218 16219 /* start with the oldest sequence on the rcv list */ 16220 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16221 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16222 list_del_init(&dmabuf->hbuf.list); 16223 list_for_each_entry_safe(d_buf, dnext, 16224 &dmabuf->dbuf.list, list) { 16225 list_del_init(&d_buf->list); 16226 lpfc_in_buf_free(vport->phba, d_buf); 16227 } 16228 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16229 } 16230 } 16231 16232 /** 16233 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. 16234 * @vport: The vport that the received sequences were sent to. 16235 * 16236 * This function determines whether any received sequences have timed out by 16237 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp 16238 * indicates that there is at least one timed out sequence this routine will 16239 * go through the received sequences one at a time from most inactive to most 16240 * active to determine which ones need to be cleaned up. Once it has determined 16241 * that a sequence needs to be cleaned up it will simply free up the resources 16242 * without sending an abort. 16243 **/ 16244 void 16245 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) 16246 { 16247 struct lpfc_dmabuf *h_buf, *hnext; 16248 struct lpfc_dmabuf *d_buf, *dnext; 16249 struct hbq_dmabuf *dmabuf = NULL; 16250 unsigned long timeout; 16251 int abort_count = 0; 16252 16253 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16254 vport->rcv_buffer_time_stamp); 16255 if (list_empty(&vport->rcv_buffer_list) || 16256 time_before(jiffies, timeout)) 16257 return; 16258 /* start with the oldest sequence on the rcv list */ 16259 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { 16260 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16261 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + 16262 dmabuf->time_stamp); 16263 if (time_before(jiffies, timeout)) 16264 break; 16265 abort_count++; 16266 list_del_init(&dmabuf->hbuf.list); 16267 list_for_each_entry_safe(d_buf, dnext, 16268 &dmabuf->dbuf.list, list) { 16269 list_del_init(&d_buf->list); 16270 lpfc_in_buf_free(vport->phba, d_buf); 16271 } 16272 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); 16273 } 16274 if (abort_count) 16275 lpfc_update_rcv_time_stamp(vport); 16276 } 16277 16278 /** 16279 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences 16280 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame 16281 * 16282 * This function searches through the existing incomplete sequences that have 16283 * been sent to this @vport. If the frame matches one of the incomplete 16284 * sequences then the dbuf in the @dmabuf is added to the list of frames that 16285 * make up that sequence. If no sequence is found that matches this frame then 16286 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list 16287 * This function returns a pointer to the first dmabuf in the sequence list that 16288 * the frame was linked to. 16289 **/ 16290 static struct hbq_dmabuf * 16291 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16292 { 16293 struct fc_frame_header *new_hdr; 16294 struct fc_frame_header *temp_hdr; 16295 struct lpfc_dmabuf *d_buf; 16296 struct lpfc_dmabuf *h_buf; 16297 struct hbq_dmabuf *seq_dmabuf = NULL; 16298 struct hbq_dmabuf *temp_dmabuf = NULL; 16299 uint8_t found = 0; 16300 16301 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16302 dmabuf->time_stamp = jiffies; 16303 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16304 16305 /* Use the hdr_buf to find the sequence that this frame belongs to */ 16306 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16307 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16308 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16309 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16310 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16311 continue; 16312 /* found a pending sequence that matches this frame */ 16313 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16314 break; 16315 } 16316 if (!seq_dmabuf) { 16317 /* 16318 * This indicates first frame received for this sequence. 16319 * Queue the buffer on the vport's rcv_buffer_list. 16320 */ 16321 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16322 lpfc_update_rcv_time_stamp(vport); 16323 return dmabuf; 16324 } 16325 temp_hdr = seq_dmabuf->hbuf.virt; 16326 if (be16_to_cpu(new_hdr->fh_seq_cnt) < 16327 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16328 list_del_init(&seq_dmabuf->hbuf.list); 16329 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); 16330 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16331 lpfc_update_rcv_time_stamp(vport); 16332 return dmabuf; 16333 } 16334 /* move this sequence to the tail to indicate a young sequence */ 16335 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); 16336 seq_dmabuf->time_stamp = jiffies; 16337 lpfc_update_rcv_time_stamp(vport); 16338 if (list_empty(&seq_dmabuf->dbuf.list)) { 16339 temp_hdr = dmabuf->hbuf.virt; 16340 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); 16341 return seq_dmabuf; 16342 } 16343 /* find the correct place in the sequence to insert this frame */ 16344 d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); 16345 while (!found) { 16346 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16347 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; 16348 /* 16349 * If the frame's sequence count is greater than the frame on 16350 * the list then insert the frame right after this frame 16351 */ 16352 if (be16_to_cpu(new_hdr->fh_seq_cnt) > 16353 be16_to_cpu(temp_hdr->fh_seq_cnt)) { 16354 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); 16355 found = 1; 16356 break; 16357 } 16358 16359 if (&d_buf->list == &seq_dmabuf->dbuf.list) 16360 break; 16361 d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); 16362 } 16363 16364 if (found) 16365 return seq_dmabuf; 16366 return NULL; 16367 } 16368 16369 /** 16370 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence 16371 * @vport: pointer to a vitural port 16372 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16373 * 16374 * This function tries to abort from the partially assembed sequence, described 16375 * by the information from basic abbort @dmabuf. It checks to see whether such 16376 * partially assembled sequence held by the driver. If so, it shall free up all 16377 * the frames from the partially assembled sequence. 16378 * 16379 * Return 16380 * true -- if there is matching partially assembled sequence present and all 16381 * the frames freed with the sequence; 16382 * false -- if there is no matching partially assembled sequence present so 16383 * nothing got aborted in the lower layer driver 16384 **/ 16385 static bool 16386 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, 16387 struct hbq_dmabuf *dmabuf) 16388 { 16389 struct fc_frame_header *new_hdr; 16390 struct fc_frame_header *temp_hdr; 16391 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; 16392 struct hbq_dmabuf *seq_dmabuf = NULL; 16393 16394 /* Use the hdr_buf to find the sequence that matches this frame */ 16395 INIT_LIST_HEAD(&dmabuf->dbuf.list); 16396 INIT_LIST_HEAD(&dmabuf->hbuf.list); 16397 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16398 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { 16399 temp_hdr = (struct fc_frame_header *)h_buf->virt; 16400 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || 16401 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || 16402 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) 16403 continue; 16404 /* found a pending sequence that matches this frame */ 16405 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); 16406 break; 16407 } 16408 16409 /* Free up all the frames from the partially assembled sequence */ 16410 if (seq_dmabuf) { 16411 list_for_each_entry_safe(d_buf, n_buf, 16412 &seq_dmabuf->dbuf.list, list) { 16413 list_del_init(&d_buf->list); 16414 lpfc_in_buf_free(vport->phba, d_buf); 16415 } 16416 return true; 16417 } 16418 return false; 16419 } 16420 16421 /** 16422 * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp 16423 * @vport: pointer to a vitural port 16424 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16425 * 16426 * This function tries to abort from the assembed sequence from upper level 16427 * protocol, described by the information from basic abbort @dmabuf. It 16428 * checks to see whether such pending context exists at upper level protocol. 16429 * If so, it shall clean up the pending context. 16430 * 16431 * Return 16432 * true -- if there is matching pending context of the sequence cleaned 16433 * at ulp; 16434 * false -- if there is no matching pending context of the sequence present 16435 * at ulp. 16436 **/ 16437 static bool 16438 lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) 16439 { 16440 struct lpfc_hba *phba = vport->phba; 16441 int handled; 16442 16443 /* Accepting abort at ulp with SLI4 only */ 16444 if (phba->sli_rev < LPFC_SLI_REV4) 16445 return false; 16446 16447 /* Register all caring upper level protocols to attend abort */ 16448 handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); 16449 if (handled) 16450 return true; 16451 16452 return false; 16453 } 16454 16455 /** 16456 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler 16457 * @phba: Pointer to HBA context object. 16458 * @cmd_iocbq: pointer to the command iocbq structure. 16459 * @rsp_iocbq: pointer to the response iocbq structure. 16460 * 16461 * This function handles the sequence abort response iocb command complete 16462 * event. It properly releases the memory allocated to the sequence abort 16463 * accept iocb. 16464 **/ 16465 static void 16466 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, 16467 struct lpfc_iocbq *cmd_iocbq, 16468 struct lpfc_iocbq *rsp_iocbq) 16469 { 16470 struct lpfc_nodelist *ndlp; 16471 16472 if (cmd_iocbq) { 16473 ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; 16474 lpfc_nlp_put(ndlp); 16475 lpfc_nlp_not_used(ndlp); 16476 lpfc_sli_release_iocbq(phba, cmd_iocbq); 16477 } 16478 16479 /* Failure means BLS ABORT RSP did not get delivered to remote node*/ 16480 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) 16481 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16482 "3154 BLS ABORT RSP failed, data: x%x/x%x\n", 16483 rsp_iocbq->iocb.ulpStatus, 16484 rsp_iocbq->iocb.un.ulpWord[4]); 16485 } 16486 16487 /** 16488 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. 16489 * @phba: Pointer to HBA context object. 16490 * @xri: xri id in transaction. 16491 * 16492 * This function validates the xri maps to the known range of XRIs allocated an 16493 * used by the driver. 16494 **/ 16495 uint16_t 16496 lpfc_sli4_xri_inrange(struct lpfc_hba *phba, 16497 uint16_t xri) 16498 { 16499 uint16_t i; 16500 16501 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { 16502 if (xri == phba->sli4_hba.xri_ids[i]) 16503 return i; 16504 } 16505 return NO_XRI; 16506 } 16507 16508 /** 16509 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort 16510 * @phba: Pointer to HBA context object. 16511 * @fc_hdr: pointer to a FC frame header. 16512 * 16513 * This function sends a basic response to a previous unsol sequence abort 16514 * event after aborting the sequence handling. 16515 **/ 16516 static void 16517 lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, 16518 struct fc_frame_header *fc_hdr, bool aborted) 16519 { 16520 struct lpfc_hba *phba = vport->phba; 16521 struct lpfc_iocbq *ctiocb = NULL; 16522 struct lpfc_nodelist *ndlp; 16523 uint16_t oxid, rxid, xri, lxri; 16524 uint32_t sid, fctl; 16525 IOCB_t *icmd; 16526 int rc; 16527 16528 if (!lpfc_is_link_up(phba)) 16529 return; 16530 16531 sid = sli4_sid_from_fc_hdr(fc_hdr); 16532 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 16533 rxid = be16_to_cpu(fc_hdr->fh_rx_id); 16534 16535 ndlp = lpfc_findnode_did(vport, sid); 16536 if (!ndlp) { 16537 ndlp = mempool_alloc(phba->nlp_mem_pool, GFP_KERNEL); 16538 if (!ndlp) { 16539 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16540 "1268 Failed to allocate ndlp for " 16541 "oxid:x%x SID:x%x\n", oxid, sid); 16542 return; 16543 } 16544 lpfc_nlp_init(vport, ndlp, sid); 16545 /* Put ndlp onto pport node list */ 16546 lpfc_enqueue_node(vport, ndlp); 16547 } else if (!NLP_CHK_NODE_ACT(ndlp)) { 16548 /* re-setup ndlp without removing from node list */ 16549 ndlp = lpfc_enable_node(vport, ndlp, NLP_STE_UNUSED_NODE); 16550 if (!ndlp) { 16551 lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, 16552 "3275 Failed to active ndlp found " 16553 "for oxid:x%x SID:x%x\n", oxid, sid); 16554 return; 16555 } 16556 } 16557 16558 /* Allocate buffer for rsp iocb */ 16559 ctiocb = lpfc_sli_get_iocbq(phba); 16560 if (!ctiocb) 16561 return; 16562 16563 /* Extract the F_CTL field from FC_HDR */ 16564 fctl = sli4_fctl_from_fc_hdr(fc_hdr); 16565 16566 icmd = &ctiocb->iocb; 16567 icmd->un.xseq64.bdl.bdeSize = 0; 16568 icmd->un.xseq64.bdl.ulpIoTag32 = 0; 16569 icmd->un.xseq64.w5.hcsw.Dfctl = 0; 16570 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; 16571 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; 16572 16573 /* Fill in the rest of iocb fields */ 16574 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; 16575 icmd->ulpBdeCount = 0; 16576 icmd->ulpLe = 1; 16577 icmd->ulpClass = CLASS3; 16578 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; 16579 ctiocb->context1 = lpfc_nlp_get(ndlp); 16580 16581 ctiocb->iocb_cmpl = NULL; 16582 ctiocb->vport = phba->pport; 16583 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; 16584 ctiocb->sli4_lxritag = NO_XRI; 16585 ctiocb->sli4_xritag = NO_XRI; 16586 16587 if (fctl & FC_FC_EX_CTX) 16588 /* Exchange responder sent the abort so we 16589 * own the oxid. 16590 */ 16591 xri = oxid; 16592 else 16593 xri = rxid; 16594 lxri = lpfc_sli4_xri_inrange(phba, xri); 16595 if (lxri != NO_XRI) 16596 lpfc_set_rrq_active(phba, ndlp, lxri, 16597 (xri == oxid) ? rxid : oxid, 0); 16598 /* For BA_ABTS from exchange responder, if the logical xri with 16599 * the oxid maps to the FCP XRI range, the port no longer has 16600 * that exchange context, send a BLS_RJT. Override the IOCB for 16601 * a BA_RJT. 16602 */ 16603 if ((fctl & FC_FC_EX_CTX) && 16604 (lxri > lpfc_sli4_get_iocb_cnt(phba))) { 16605 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16606 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16607 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16608 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16609 } 16610 16611 /* If BA_ABTS failed to abort a partially assembled receive sequence, 16612 * the driver no longer has that exchange, send a BLS_RJT. Override 16613 * the IOCB for a BA_RJT. 16614 */ 16615 if (aborted == false) { 16616 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; 16617 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); 16618 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); 16619 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); 16620 } 16621 16622 if (fctl & FC_FC_EX_CTX) { 16623 /* ABTS sent by responder to CT exchange, construction 16624 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG 16625 * field and RX_ID from ABTS for RX_ID field. 16626 */ 16627 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); 16628 } else { 16629 /* ABTS sent by initiator to CT exchange, construction 16630 * of BA_ACC will need to allocate a new XRI as for the 16631 * XRI_TAG field. 16632 */ 16633 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); 16634 } 16635 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); 16636 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); 16637 16638 /* Xmit CT abts response on exchange <xid> */ 16639 lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, 16640 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", 16641 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); 16642 16643 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); 16644 if (rc == IOCB_ERROR) { 16645 lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, 16646 "2925 Failed to issue CT ABTS RSP x%x on " 16647 "xri x%x, Data x%x\n", 16648 icmd->un.xseq64.w5.hcsw.Rctl, oxid, 16649 phba->link_state); 16650 lpfc_nlp_put(ndlp); 16651 ctiocb->context1 = NULL; 16652 lpfc_sli_release_iocbq(phba, ctiocb); 16653 } 16654 } 16655 16656 /** 16657 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event 16658 * @vport: Pointer to the vport on which this sequence was received 16659 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16660 * 16661 * This function handles an SLI-4 unsolicited abort event. If the unsolicited 16662 * receive sequence is only partially assembed by the driver, it shall abort 16663 * the partially assembled frames for the sequence. Otherwise, if the 16664 * unsolicited receive sequence has been completely assembled and passed to 16665 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the 16666 * unsolicited sequence has been aborted. After that, it will issue a basic 16667 * accept to accept the abort. 16668 **/ 16669 static void 16670 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, 16671 struct hbq_dmabuf *dmabuf) 16672 { 16673 struct lpfc_hba *phba = vport->phba; 16674 struct fc_frame_header fc_hdr; 16675 uint32_t fctl; 16676 bool aborted; 16677 16678 /* Make a copy of fc_hdr before the dmabuf being released */ 16679 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); 16680 fctl = sli4_fctl_from_fc_hdr(&fc_hdr); 16681 16682 if (fctl & FC_FC_EX_CTX) { 16683 /* ABTS by responder to exchange, no cleanup needed */ 16684 aborted = true; 16685 } else { 16686 /* ABTS by initiator to exchange, need to do cleanup */ 16687 aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); 16688 if (aborted == false) 16689 aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); 16690 } 16691 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16692 16693 /* Respond with BA_ACC or BA_RJT accordingly */ 16694 lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); 16695 } 16696 16697 /** 16698 * lpfc_seq_complete - Indicates if a sequence is complete 16699 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16700 * 16701 * This function checks the sequence, starting with the frame described by 16702 * @dmabuf, to see if all the frames associated with this sequence are present. 16703 * the frames associated with this sequence are linked to the @dmabuf using the 16704 * dbuf list. This function looks for two major things. 1) That the first frame 16705 * has a sequence count of zero. 2) There is a frame with last frame of sequence 16706 * set. 3) That there are no holes in the sequence count. The function will 16707 * return 1 when the sequence is complete, otherwise it will return 0. 16708 **/ 16709 static int 16710 lpfc_seq_complete(struct hbq_dmabuf *dmabuf) 16711 { 16712 struct fc_frame_header *hdr; 16713 struct lpfc_dmabuf *d_buf; 16714 struct hbq_dmabuf *seq_dmabuf; 16715 uint32_t fctl; 16716 int seq_count = 0; 16717 16718 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16719 /* make sure first fame of sequence has a sequence count of zero */ 16720 if (hdr->fh_seq_cnt != seq_count) 16721 return 0; 16722 fctl = (hdr->fh_f_ctl[0] << 16 | 16723 hdr->fh_f_ctl[1] << 8 | 16724 hdr->fh_f_ctl[2]); 16725 /* If last frame of sequence we can return success. */ 16726 if (fctl & FC_FC_END_SEQ) 16727 return 1; 16728 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { 16729 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16730 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16731 /* If there is a hole in the sequence count then fail. */ 16732 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) 16733 return 0; 16734 fctl = (hdr->fh_f_ctl[0] << 16 | 16735 hdr->fh_f_ctl[1] << 8 | 16736 hdr->fh_f_ctl[2]); 16737 /* If last frame of sequence we can return success. */ 16738 if (fctl & FC_FC_END_SEQ) 16739 return 1; 16740 } 16741 return 0; 16742 } 16743 16744 /** 16745 * lpfc_prep_seq - Prep sequence for ULP processing 16746 * @vport: Pointer to the vport on which this sequence was received 16747 * @dmabuf: pointer to a dmabuf that describes the FC sequence 16748 * 16749 * This function takes a sequence, described by a list of frames, and creates 16750 * a list of iocbq structures to describe the sequence. This iocbq list will be 16751 * used to issue to the generic unsolicited sequence handler. This routine 16752 * returns a pointer to the first iocbq in the list. If the function is unable 16753 * to allocate an iocbq then it throw out the received frames that were not 16754 * able to be described and return a pointer to the first iocbq. If unable to 16755 * allocate any iocbqs (including the first) this function will return NULL. 16756 **/ 16757 static struct lpfc_iocbq * 16758 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) 16759 { 16760 struct hbq_dmabuf *hbq_buf; 16761 struct lpfc_dmabuf *d_buf, *n_buf; 16762 struct lpfc_iocbq *first_iocbq, *iocbq; 16763 struct fc_frame_header *fc_hdr; 16764 uint32_t sid; 16765 uint32_t len, tot_len; 16766 struct ulp_bde64 *pbde; 16767 16768 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16769 /* remove from receive buffer list */ 16770 list_del_init(&seq_dmabuf->hbuf.list); 16771 lpfc_update_rcv_time_stamp(vport); 16772 /* get the Remote Port's SID */ 16773 sid = sli4_sid_from_fc_hdr(fc_hdr); 16774 tot_len = 0; 16775 /* Get an iocbq struct to fill in. */ 16776 first_iocbq = lpfc_sli_get_iocbq(vport->phba); 16777 if (first_iocbq) { 16778 /* Initialize the first IOCB. */ 16779 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; 16780 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; 16781 first_iocbq->vport = vport; 16782 16783 /* Check FC Header to see what TYPE of frame we are rcv'ing */ 16784 if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { 16785 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; 16786 first_iocbq->iocb.un.rcvels.parmRo = 16787 sli4_did_from_fc_hdr(fc_hdr); 16788 first_iocbq->iocb.ulpPU = PARM_NPIV_DID; 16789 } else 16790 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; 16791 first_iocbq->iocb.ulpContext = NO_XRI; 16792 first_iocbq->iocb.unsli3.rcvsli3.ox_id = 16793 be16_to_cpu(fc_hdr->fh_ox_id); 16794 /* iocbq is prepped for internal consumption. Physical vpi. */ 16795 first_iocbq->iocb.unsli3.rcvsli3.vpi = 16796 vport->phba->vpi_ids[vport->vpi]; 16797 /* put the first buffer into the first IOCBq */ 16798 tot_len = bf_get(lpfc_rcqe_length, 16799 &seq_dmabuf->cq_event.cqe.rcqe_cmpl); 16800 16801 first_iocbq->context2 = &seq_dmabuf->dbuf; 16802 first_iocbq->context3 = NULL; 16803 first_iocbq->iocb.ulpBdeCount = 1; 16804 if (tot_len > LPFC_DATA_BUF_SIZE) 16805 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16806 LPFC_DATA_BUF_SIZE; 16807 else 16808 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; 16809 16810 first_iocbq->iocb.un.rcvels.remoteID = sid; 16811 16812 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16813 } 16814 iocbq = first_iocbq; 16815 /* 16816 * Each IOCBq can have two Buffers assigned, so go through the list 16817 * of buffers for this sequence and save two buffers in each IOCBq 16818 */ 16819 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { 16820 if (!iocbq) { 16821 lpfc_in_buf_free(vport->phba, d_buf); 16822 continue; 16823 } 16824 if (!iocbq->context3) { 16825 iocbq->context3 = d_buf; 16826 iocbq->iocb.ulpBdeCount++; 16827 /* We need to get the size out of the right CQE */ 16828 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16829 len = bf_get(lpfc_rcqe_length, 16830 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16831 pbde = (struct ulp_bde64 *) 16832 &iocbq->iocb.unsli3.sli3Words[4]; 16833 if (len > LPFC_DATA_BUF_SIZE) 16834 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; 16835 else 16836 pbde->tus.f.bdeSize = len; 16837 16838 iocbq->iocb.unsli3.rcvsli3.acc_len += len; 16839 tot_len += len; 16840 } else { 16841 iocbq = lpfc_sli_get_iocbq(vport->phba); 16842 if (!iocbq) { 16843 if (first_iocbq) { 16844 first_iocbq->iocb.ulpStatus = 16845 IOSTAT_FCP_RSP_ERROR; 16846 first_iocbq->iocb.un.ulpWord[4] = 16847 IOERR_NO_RESOURCES; 16848 } 16849 lpfc_in_buf_free(vport->phba, d_buf); 16850 continue; 16851 } 16852 /* We need to get the size out of the right CQE */ 16853 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); 16854 len = bf_get(lpfc_rcqe_length, 16855 &hbq_buf->cq_event.cqe.rcqe_cmpl); 16856 iocbq->context2 = d_buf; 16857 iocbq->context3 = NULL; 16858 iocbq->iocb.ulpBdeCount = 1; 16859 if (len > LPFC_DATA_BUF_SIZE) 16860 iocbq->iocb.un.cont64[0].tus.f.bdeSize = 16861 LPFC_DATA_BUF_SIZE; 16862 else 16863 iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; 16864 16865 tot_len += len; 16866 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; 16867 16868 iocbq->iocb.un.rcvels.remoteID = sid; 16869 list_add_tail(&iocbq->list, &first_iocbq->list); 16870 } 16871 } 16872 return first_iocbq; 16873 } 16874 16875 static void 16876 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, 16877 struct hbq_dmabuf *seq_dmabuf) 16878 { 16879 struct fc_frame_header *fc_hdr; 16880 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; 16881 struct lpfc_hba *phba = vport->phba; 16882 16883 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; 16884 iocbq = lpfc_prep_seq(vport, seq_dmabuf); 16885 if (!iocbq) { 16886 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16887 "2707 Ring %d handler: Failed to allocate " 16888 "iocb Rctl x%x Type x%x received\n", 16889 LPFC_ELS_RING, 16890 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16891 return; 16892 } 16893 if (!lpfc_complete_unsol_iocb(phba, 16894 phba->sli4_hba.els_wq->pring, 16895 iocbq, fc_hdr->fh_r_ctl, 16896 fc_hdr->fh_type)) 16897 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 16898 "2540 Ring %d handler: unexpected Rctl " 16899 "x%x Type x%x received\n", 16900 LPFC_ELS_RING, 16901 fc_hdr->fh_r_ctl, fc_hdr->fh_type); 16902 16903 /* Free iocb created in lpfc_prep_seq */ 16904 list_for_each_entry_safe(curr_iocb, next_iocb, 16905 &iocbq->list, list) { 16906 list_del_init(&curr_iocb->list); 16907 lpfc_sli_release_iocbq(phba, curr_iocb); 16908 } 16909 lpfc_sli_release_iocbq(phba, iocbq); 16910 } 16911 16912 /** 16913 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware 16914 * @phba: Pointer to HBA context object. 16915 * 16916 * This function is called with no lock held. This function processes all 16917 * the received buffers and gives it to upper layers when a received buffer 16918 * indicates that it is the final frame in the sequence. The interrupt 16919 * service routine processes received buffers at interrupt contexts. 16920 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the 16921 * appropriate receive function when the final frame in a sequence is received. 16922 **/ 16923 void 16924 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, 16925 struct hbq_dmabuf *dmabuf) 16926 { 16927 struct hbq_dmabuf *seq_dmabuf; 16928 struct fc_frame_header *fc_hdr; 16929 struct lpfc_vport *vport; 16930 uint32_t fcfi; 16931 uint32_t did; 16932 16933 /* Process each received buffer */ 16934 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; 16935 16936 /* check to see if this a valid type of frame */ 16937 if (lpfc_fc_frame_check(phba, fc_hdr)) { 16938 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16939 return; 16940 } 16941 16942 if ((bf_get(lpfc_cqe_code, 16943 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) 16944 fcfi = bf_get(lpfc_rcqe_fcf_id_v1, 16945 &dmabuf->cq_event.cqe.rcqe_cmpl); 16946 else 16947 fcfi = bf_get(lpfc_rcqe_fcf_id, 16948 &dmabuf->cq_event.cqe.rcqe_cmpl); 16949 16950 /* d_id this frame is directed to */ 16951 did = sli4_did_from_fc_hdr(fc_hdr); 16952 16953 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); 16954 if (!vport) { 16955 /* throw out the frame */ 16956 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16957 return; 16958 } 16959 16960 /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ 16961 if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && 16962 (did != Fabric_DID)) { 16963 /* 16964 * Throw out the frame if we are not pt2pt. 16965 * The pt2pt protocol allows for discovery frames 16966 * to be received without a registered VPI. 16967 */ 16968 if (!(vport->fc_flag & FC_PT2PT) || 16969 (phba->link_state == LPFC_HBA_READY)) { 16970 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16971 return; 16972 } 16973 } 16974 16975 /* Handle the basic abort sequence (BA_ABTS) event */ 16976 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { 16977 lpfc_sli4_handle_unsol_abort(vport, dmabuf); 16978 return; 16979 } 16980 16981 /* Link this frame */ 16982 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); 16983 if (!seq_dmabuf) { 16984 /* unable to add frame to vport - throw it out */ 16985 lpfc_in_buf_free(phba, &dmabuf->dbuf); 16986 return; 16987 } 16988 /* If not last frame in sequence continue processing frames. */ 16989 if (!lpfc_seq_complete(seq_dmabuf)) 16990 return; 16991 16992 /* Send the complete sequence to the upper layer protocol */ 16993 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); 16994 } 16995 16996 /** 16997 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port 16998 * @phba: pointer to lpfc hba data structure. 16999 * 17000 * This routine is invoked to post rpi header templates to the 17001 * HBA consistent with the SLI-4 interface spec. This routine 17002 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17003 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17004 * 17005 * This routine does not require any locks. It's usage is expected 17006 * to be driver load or reset recovery when the driver is 17007 * sequential. 17008 * 17009 * Return codes 17010 * 0 - successful 17011 * -EIO - The mailbox failed to complete successfully. 17012 * When this error occurs, the driver is not guaranteed 17013 * to have any rpi regions posted to the device and 17014 * must either attempt to repost the regions or take a 17015 * fatal error. 17016 **/ 17017 int 17018 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) 17019 { 17020 struct lpfc_rpi_hdr *rpi_page; 17021 uint32_t rc = 0; 17022 uint16_t lrpi = 0; 17023 17024 /* SLI4 ports that support extents do not require RPI headers. */ 17025 if (!phba->sli4_hba.rpi_hdrs_in_use) 17026 goto exit; 17027 if (phba->sli4_hba.extents_in_use) 17028 return -EIO; 17029 17030 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { 17031 /* 17032 * Assign the rpi headers a physical rpi only if the driver 17033 * has not initialized those resources. A port reset only 17034 * needs the headers posted. 17035 */ 17036 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != 17037 LPFC_RPI_RSRC_RDY) 17038 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17039 17040 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); 17041 if (rc != MBX_SUCCESS) { 17042 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17043 "2008 Error %d posting all rpi " 17044 "headers\n", rc); 17045 rc = -EIO; 17046 break; 17047 } 17048 } 17049 17050 exit: 17051 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 17052 LPFC_RPI_RSRC_RDY); 17053 return rc; 17054 } 17055 17056 /** 17057 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port 17058 * @phba: pointer to lpfc hba data structure. 17059 * @rpi_page: pointer to the rpi memory region. 17060 * 17061 * This routine is invoked to post a single rpi header to the 17062 * HBA consistent with the SLI-4 interface spec. This memory region 17063 * maps up to 64 rpi context regions. 17064 * 17065 * Return codes 17066 * 0 - successful 17067 * -ENOMEM - No available memory 17068 * -EIO - The mailbox failed to complete successfully. 17069 **/ 17070 int 17071 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) 17072 { 17073 LPFC_MBOXQ_t *mboxq; 17074 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; 17075 uint32_t rc = 0; 17076 uint32_t shdr_status, shdr_add_status; 17077 union lpfc_sli4_cfg_shdr *shdr; 17078 17079 /* SLI4 ports that support extents do not require RPI headers. */ 17080 if (!phba->sli4_hba.rpi_hdrs_in_use) 17081 return rc; 17082 if (phba->sli4_hba.extents_in_use) 17083 return -EIO; 17084 17085 /* The port is notified of the header region via a mailbox command. */ 17086 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17087 if (!mboxq) { 17088 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17089 "2001 Unable to allocate memory for issuing " 17090 "SLI_CONFIG_SPECIAL mailbox command\n"); 17091 return -ENOMEM; 17092 } 17093 17094 /* Post all rpi memory regions to the port. */ 17095 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; 17096 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17097 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, 17098 sizeof(struct lpfc_mbx_post_hdr_tmpl) - 17099 sizeof(struct lpfc_sli4_cfg_mhdr), 17100 LPFC_SLI4_MBX_EMBED); 17101 17102 17103 /* Post the physical rpi to the port for this rpi header. */ 17104 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, 17105 rpi_page->start_rpi); 17106 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, 17107 hdr_tmpl, rpi_page->page_count); 17108 17109 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); 17110 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); 17111 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 17112 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; 17113 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17114 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17115 if (rc != MBX_TIMEOUT) 17116 mempool_free(mboxq, phba->mbox_mem_pool); 17117 if (shdr_status || shdr_add_status || rc) { 17118 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17119 "2514 POST_RPI_HDR mailbox failed with " 17120 "status x%x add_status x%x, mbx status x%x\n", 17121 shdr_status, shdr_add_status, rc); 17122 rc = -ENXIO; 17123 } 17124 return rc; 17125 } 17126 17127 /** 17128 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range 17129 * @phba: pointer to lpfc hba data structure. 17130 * 17131 * This routine is invoked to post rpi header templates to the 17132 * HBA consistent with the SLI-4 interface spec. This routine 17133 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to 17134 * SLI4_PAGE_SIZE modulo 64 rpi context headers. 17135 * 17136 * Returns 17137 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful 17138 * LPFC_RPI_ALLOC_ERROR if no rpis are available. 17139 **/ 17140 int 17141 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) 17142 { 17143 unsigned long rpi; 17144 uint16_t max_rpi, rpi_limit; 17145 uint16_t rpi_remaining, lrpi = 0; 17146 struct lpfc_rpi_hdr *rpi_hdr; 17147 unsigned long iflag; 17148 17149 /* 17150 * Fetch the next logical rpi. Because this index is logical, 17151 * the driver starts at 0 each time. 17152 */ 17153 spin_lock_irqsave(&phba->hbalock, iflag); 17154 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; 17155 rpi_limit = phba->sli4_hba.next_rpi; 17156 17157 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); 17158 if (rpi >= rpi_limit) 17159 rpi = LPFC_RPI_ALLOC_ERROR; 17160 else { 17161 set_bit(rpi, phba->sli4_hba.rpi_bmask); 17162 phba->sli4_hba.max_cfg_param.rpi_used++; 17163 phba->sli4_hba.rpi_count++; 17164 } 17165 lpfc_printf_log(phba, KERN_INFO, LOG_SLI, 17166 "0001 rpi:%x max:%x lim:%x\n", 17167 (int) rpi, max_rpi, rpi_limit); 17168 17169 /* 17170 * Don't try to allocate more rpi header regions if the device limit 17171 * has been exhausted. 17172 */ 17173 if ((rpi == LPFC_RPI_ALLOC_ERROR) && 17174 (phba->sli4_hba.rpi_count >= max_rpi)) { 17175 spin_unlock_irqrestore(&phba->hbalock, iflag); 17176 return rpi; 17177 } 17178 17179 /* 17180 * RPI header postings are not required for SLI4 ports capable of 17181 * extents. 17182 */ 17183 if (!phba->sli4_hba.rpi_hdrs_in_use) { 17184 spin_unlock_irqrestore(&phba->hbalock, iflag); 17185 return rpi; 17186 } 17187 17188 /* 17189 * If the driver is running low on rpi resources, allocate another 17190 * page now. Note that the next_rpi value is used because 17191 * it represents how many are actually in use whereas max_rpi notes 17192 * how many are supported max by the device. 17193 */ 17194 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; 17195 spin_unlock_irqrestore(&phba->hbalock, iflag); 17196 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { 17197 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); 17198 if (!rpi_hdr) { 17199 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17200 "2002 Error Could not grow rpi " 17201 "count\n"); 17202 } else { 17203 lrpi = rpi_hdr->start_rpi; 17204 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; 17205 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); 17206 } 17207 } 17208 17209 return rpi; 17210 } 17211 17212 /** 17213 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17214 * @phba: pointer to lpfc hba data structure. 17215 * 17216 * This routine is invoked to release an rpi to the pool of 17217 * available rpis maintained by the driver. 17218 **/ 17219 static void 17220 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17221 { 17222 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { 17223 phba->sli4_hba.rpi_count--; 17224 phba->sli4_hba.max_cfg_param.rpi_used--; 17225 } 17226 } 17227 17228 /** 17229 * lpfc_sli4_free_rpi - Release an rpi for reuse. 17230 * @phba: pointer to lpfc hba data structure. 17231 * 17232 * This routine is invoked to release an rpi to the pool of 17233 * available rpis maintained by the driver. 17234 **/ 17235 void 17236 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) 17237 { 17238 spin_lock_irq(&phba->hbalock); 17239 __lpfc_sli4_free_rpi(phba, rpi); 17240 spin_unlock_irq(&phba->hbalock); 17241 } 17242 17243 /** 17244 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region 17245 * @phba: pointer to lpfc hba data structure. 17246 * 17247 * This routine is invoked to remove the memory region that 17248 * provided rpi via a bitmask. 17249 **/ 17250 void 17251 lpfc_sli4_remove_rpis(struct lpfc_hba *phba) 17252 { 17253 kfree(phba->sli4_hba.rpi_bmask); 17254 kfree(phba->sli4_hba.rpi_ids); 17255 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); 17256 } 17257 17258 /** 17259 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region 17260 * @phba: pointer to lpfc hba data structure. 17261 * 17262 * This routine is invoked to remove the memory region that 17263 * provided rpi via a bitmask. 17264 **/ 17265 int 17266 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, 17267 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) 17268 { 17269 LPFC_MBOXQ_t *mboxq; 17270 struct lpfc_hba *phba = ndlp->phba; 17271 int rc; 17272 17273 /* The port is notified of the header region via a mailbox command. */ 17274 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17275 if (!mboxq) 17276 return -ENOMEM; 17277 17278 /* Post all rpi memory regions to the port. */ 17279 lpfc_resume_rpi(mboxq, ndlp); 17280 if (cmpl) { 17281 mboxq->mbox_cmpl = cmpl; 17282 mboxq->context1 = arg; 17283 mboxq->context2 = ndlp; 17284 } else 17285 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 17286 mboxq->vport = ndlp->vport; 17287 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17288 if (rc == MBX_NOT_FINISHED) { 17289 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17290 "2010 Resume RPI Mailbox failed " 17291 "status %d, mbxStatus x%x\n", rc, 17292 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17293 mempool_free(mboxq, phba->mbox_mem_pool); 17294 return -EIO; 17295 } 17296 return 0; 17297 } 17298 17299 /** 17300 * lpfc_sli4_init_vpi - Initialize a vpi with the port 17301 * @vport: Pointer to the vport for which the vpi is being initialized 17302 * 17303 * This routine is invoked to activate a vpi with the port. 17304 * 17305 * Returns: 17306 * 0 success 17307 * -Evalue otherwise 17308 **/ 17309 int 17310 lpfc_sli4_init_vpi(struct lpfc_vport *vport) 17311 { 17312 LPFC_MBOXQ_t *mboxq; 17313 int rc = 0; 17314 int retval = MBX_SUCCESS; 17315 uint32_t mbox_tmo; 17316 struct lpfc_hba *phba = vport->phba; 17317 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17318 if (!mboxq) 17319 return -ENOMEM; 17320 lpfc_init_vpi(phba, mboxq, vport->vpi); 17321 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); 17322 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); 17323 if (rc != MBX_SUCCESS) { 17324 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI, 17325 "2022 INIT VPI Mailbox failed " 17326 "status %d, mbxStatus x%x\n", rc, 17327 bf_get(lpfc_mqe_status, &mboxq->u.mqe)); 17328 retval = -EIO; 17329 } 17330 if (rc != MBX_TIMEOUT) 17331 mempool_free(mboxq, vport->phba->mbox_mem_pool); 17332 17333 return retval; 17334 } 17335 17336 /** 17337 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. 17338 * @phba: pointer to lpfc hba data structure. 17339 * @mboxq: Pointer to mailbox object. 17340 * 17341 * This routine is invoked to manually add a single FCF record. The caller 17342 * must pass a completely initialized FCF_Record. This routine takes 17343 * care of the nonembedded mailbox operations. 17344 **/ 17345 static void 17346 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) 17347 { 17348 void *virt_addr; 17349 union lpfc_sli4_cfg_shdr *shdr; 17350 uint32_t shdr_status, shdr_add_status; 17351 17352 virt_addr = mboxq->sge_array->addr[0]; 17353 /* The IOCTL status is embedded in the mailbox subheader. */ 17354 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; 17355 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 17356 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 17357 17358 if ((shdr_status || shdr_add_status) && 17359 (shdr_status != STATUS_FCF_IN_USE)) 17360 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17361 "2558 ADD_FCF_RECORD mailbox failed with " 17362 "status x%x add_status x%x\n", 17363 shdr_status, shdr_add_status); 17364 17365 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17366 } 17367 17368 /** 17369 * lpfc_sli4_add_fcf_record - Manually add an FCF Record. 17370 * @phba: pointer to lpfc hba data structure. 17371 * @fcf_record: pointer to the initialized fcf record to add. 17372 * 17373 * This routine is invoked to manually add a single FCF record. The caller 17374 * must pass a completely initialized FCF_Record. This routine takes 17375 * care of the nonembedded mailbox operations. 17376 **/ 17377 int 17378 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) 17379 { 17380 int rc = 0; 17381 LPFC_MBOXQ_t *mboxq; 17382 uint8_t *bytep; 17383 void *virt_addr; 17384 struct lpfc_mbx_sge sge; 17385 uint32_t alloc_len, req_len; 17386 uint32_t fcfindex; 17387 17388 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17389 if (!mboxq) { 17390 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17391 "2009 Failed to allocate mbox for ADD_FCF cmd\n"); 17392 return -ENOMEM; 17393 } 17394 17395 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + 17396 sizeof(uint32_t); 17397 17398 /* Allocate DMA memory and set up the non-embedded mailbox command */ 17399 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, 17400 LPFC_MBOX_OPCODE_FCOE_ADD_FCF, 17401 req_len, LPFC_SLI4_MBX_NEMBED); 17402 if (alloc_len < req_len) { 17403 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17404 "2523 Allocated DMA memory size (x%x) is " 17405 "less than the requested DMA memory " 17406 "size (x%x)\n", alloc_len, req_len); 17407 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17408 return -ENOMEM; 17409 } 17410 17411 /* 17412 * Get the first SGE entry from the non-embedded DMA memory. This 17413 * routine only uses a single SGE. 17414 */ 17415 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); 17416 virt_addr = mboxq->sge_array->addr[0]; 17417 /* 17418 * Configure the FCF record for FCFI 0. This is the driver's 17419 * hardcoded default and gets used in nonFIP mode. 17420 */ 17421 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); 17422 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); 17423 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); 17424 17425 /* 17426 * Copy the fcf_index and the FCF Record Data. The data starts after 17427 * the FCoE header plus word10. The data copy needs to be endian 17428 * correct. 17429 */ 17430 bytep += sizeof(uint32_t); 17431 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); 17432 mboxq->vport = phba->pport; 17433 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; 17434 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17435 if (rc == MBX_NOT_FINISHED) { 17436 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17437 "2515 ADD_FCF_RECORD mailbox failed with " 17438 "status 0x%x\n", rc); 17439 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17440 rc = -EIO; 17441 } else 17442 rc = 0; 17443 17444 return rc; 17445 } 17446 17447 /** 17448 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. 17449 * @phba: pointer to lpfc hba data structure. 17450 * @fcf_record: pointer to the fcf record to write the default data. 17451 * @fcf_index: FCF table entry index. 17452 * 17453 * This routine is invoked to build the driver's default FCF record. The 17454 * values used are hardcoded. This routine handles memory initialization. 17455 * 17456 **/ 17457 void 17458 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, 17459 struct fcf_record *fcf_record, 17460 uint16_t fcf_index) 17461 { 17462 memset(fcf_record, 0, sizeof(struct fcf_record)); 17463 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; 17464 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; 17465 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; 17466 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); 17467 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); 17468 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); 17469 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); 17470 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); 17471 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); 17472 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); 17473 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); 17474 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); 17475 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); 17476 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); 17477 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); 17478 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, 17479 LPFC_FCF_FPMA | LPFC_FCF_SPMA); 17480 /* Set the VLAN bit map */ 17481 if (phba->valid_vlan) { 17482 fcf_record->vlan_bitmap[phba->vlan_id / 8] 17483 = 1 << (phba->vlan_id % 8); 17484 } 17485 } 17486 17487 /** 17488 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. 17489 * @phba: pointer to lpfc hba data structure. 17490 * @fcf_index: FCF table entry offset. 17491 * 17492 * This routine is invoked to scan the entire FCF table by reading FCF 17493 * record and processing it one at a time starting from the @fcf_index 17494 * for initial FCF discovery or fast FCF failover rediscovery. 17495 * 17496 * Return 0 if the mailbox command is submitted successfully, none 0 17497 * otherwise. 17498 **/ 17499 int 17500 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17501 { 17502 int rc = 0, error; 17503 LPFC_MBOXQ_t *mboxq; 17504 17505 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; 17506 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; 17507 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17508 if (!mboxq) { 17509 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 17510 "2000 Failed to allocate mbox for " 17511 "READ_FCF cmd\n"); 17512 error = -ENOMEM; 17513 goto fail_fcf_scan; 17514 } 17515 /* Construct the read FCF record mailbox command */ 17516 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17517 if (rc) { 17518 error = -EINVAL; 17519 goto fail_fcf_scan; 17520 } 17521 /* Issue the mailbox command asynchronously */ 17522 mboxq->vport = phba->pport; 17523 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; 17524 17525 spin_lock_irq(&phba->hbalock); 17526 phba->hba_flag |= FCF_TS_INPROG; 17527 spin_unlock_irq(&phba->hbalock); 17528 17529 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17530 if (rc == MBX_NOT_FINISHED) 17531 error = -EIO; 17532 else { 17533 /* Reset eligible FCF count for new scan */ 17534 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) 17535 phba->fcf.eligible_fcf_cnt = 0; 17536 error = 0; 17537 } 17538 fail_fcf_scan: 17539 if (error) { 17540 if (mboxq) 17541 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17542 /* FCF scan failed, clear FCF_TS_INPROG flag */ 17543 spin_lock_irq(&phba->hbalock); 17544 phba->hba_flag &= ~FCF_TS_INPROG; 17545 spin_unlock_irq(&phba->hbalock); 17546 } 17547 return error; 17548 } 17549 17550 /** 17551 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. 17552 * @phba: pointer to lpfc hba data structure. 17553 * @fcf_index: FCF table entry offset. 17554 * 17555 * This routine is invoked to read an FCF record indicated by @fcf_index 17556 * and to use it for FLOGI roundrobin FCF failover. 17557 * 17558 * Return 0 if the mailbox command is submitted successfully, none 0 17559 * otherwise. 17560 **/ 17561 int 17562 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17563 { 17564 int rc = 0, error; 17565 LPFC_MBOXQ_t *mboxq; 17566 17567 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17568 if (!mboxq) { 17569 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17570 "2763 Failed to allocate mbox for " 17571 "READ_FCF cmd\n"); 17572 error = -ENOMEM; 17573 goto fail_fcf_read; 17574 } 17575 /* Construct the read FCF record mailbox command */ 17576 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17577 if (rc) { 17578 error = -EINVAL; 17579 goto fail_fcf_read; 17580 } 17581 /* Issue the mailbox command asynchronously */ 17582 mboxq->vport = phba->pport; 17583 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; 17584 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17585 if (rc == MBX_NOT_FINISHED) 17586 error = -EIO; 17587 else 17588 error = 0; 17589 17590 fail_fcf_read: 17591 if (error && mboxq) 17592 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17593 return error; 17594 } 17595 17596 /** 17597 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. 17598 * @phba: pointer to lpfc hba data structure. 17599 * @fcf_index: FCF table entry offset. 17600 * 17601 * This routine is invoked to read an FCF record indicated by @fcf_index to 17602 * determine whether it's eligible for FLOGI roundrobin failover list. 17603 * 17604 * Return 0 if the mailbox command is submitted successfully, none 0 17605 * otherwise. 17606 **/ 17607 int 17608 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) 17609 { 17610 int rc = 0, error; 17611 LPFC_MBOXQ_t *mboxq; 17612 17613 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17614 if (!mboxq) { 17615 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, 17616 "2758 Failed to allocate mbox for " 17617 "READ_FCF cmd\n"); 17618 error = -ENOMEM; 17619 goto fail_fcf_read; 17620 } 17621 /* Construct the read FCF record mailbox command */ 17622 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); 17623 if (rc) { 17624 error = -EINVAL; 17625 goto fail_fcf_read; 17626 } 17627 /* Issue the mailbox command asynchronously */ 17628 mboxq->vport = phba->pport; 17629 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; 17630 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); 17631 if (rc == MBX_NOT_FINISHED) 17632 error = -EIO; 17633 else 17634 error = 0; 17635 17636 fail_fcf_read: 17637 if (error && mboxq) 17638 lpfc_sli4_mbox_cmd_free(phba, mboxq); 17639 return error; 17640 } 17641 17642 /** 17643 * lpfc_check_next_fcf_pri_level 17644 * phba pointer to the lpfc_hba struct for this port. 17645 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get 17646 * routine when the rr_bmask is empty. The FCF indecies are put into the 17647 * rr_bmask based on their priority level. Starting from the highest priority 17648 * to the lowest. The most likely FCF candidate will be in the highest 17649 * priority group. When this routine is called it searches the fcf_pri list for 17650 * next lowest priority group and repopulates the rr_bmask with only those 17651 * fcf_indexes. 17652 * returns: 17653 * 1=success 0=failure 17654 **/ 17655 static int 17656 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) 17657 { 17658 uint16_t next_fcf_pri; 17659 uint16_t last_index; 17660 struct lpfc_fcf_pri *fcf_pri; 17661 int rc; 17662 int ret = 0; 17663 17664 last_index = find_first_bit(phba->fcf.fcf_rr_bmask, 17665 LPFC_SLI4_FCF_TBL_INDX_MAX); 17666 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17667 "3060 Last IDX %d\n", last_index); 17668 17669 /* Verify the priority list has 2 or more entries */ 17670 spin_lock_irq(&phba->hbalock); 17671 if (list_empty(&phba->fcf.fcf_pri_list) || 17672 list_is_singular(&phba->fcf.fcf_pri_list)) { 17673 spin_unlock_irq(&phba->hbalock); 17674 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17675 "3061 Last IDX %d\n", last_index); 17676 return 0; /* Empty rr list */ 17677 } 17678 spin_unlock_irq(&phba->hbalock); 17679 17680 next_fcf_pri = 0; 17681 /* 17682 * Clear the rr_bmask and set all of the bits that are at this 17683 * priority. 17684 */ 17685 memset(phba->fcf.fcf_rr_bmask, 0, 17686 sizeof(*phba->fcf.fcf_rr_bmask)); 17687 spin_lock_irq(&phba->hbalock); 17688 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17689 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) 17690 continue; 17691 /* 17692 * the 1st priority that has not FLOGI failed 17693 * will be the highest. 17694 */ 17695 if (!next_fcf_pri) 17696 next_fcf_pri = fcf_pri->fcf_rec.priority; 17697 spin_unlock_irq(&phba->hbalock); 17698 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17699 rc = lpfc_sli4_fcf_rr_index_set(phba, 17700 fcf_pri->fcf_rec.fcf_index); 17701 if (rc) 17702 return 0; 17703 } 17704 spin_lock_irq(&phba->hbalock); 17705 } 17706 /* 17707 * if next_fcf_pri was not set above and the list is not empty then 17708 * we have failed flogis on all of them. So reset flogi failed 17709 * and start at the beginning. 17710 */ 17711 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { 17712 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { 17713 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; 17714 /* 17715 * the 1st priority that has not FLOGI failed 17716 * will be the highest. 17717 */ 17718 if (!next_fcf_pri) 17719 next_fcf_pri = fcf_pri->fcf_rec.priority; 17720 spin_unlock_irq(&phba->hbalock); 17721 if (fcf_pri->fcf_rec.priority == next_fcf_pri) { 17722 rc = lpfc_sli4_fcf_rr_index_set(phba, 17723 fcf_pri->fcf_rec.fcf_index); 17724 if (rc) 17725 return 0; 17726 } 17727 spin_lock_irq(&phba->hbalock); 17728 } 17729 } else 17730 ret = 1; 17731 spin_unlock_irq(&phba->hbalock); 17732 17733 return ret; 17734 } 17735 /** 17736 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index 17737 * @phba: pointer to lpfc hba data structure. 17738 * 17739 * This routine is to get the next eligible FCF record index in a round 17740 * robin fashion. If the next eligible FCF record index equals to the 17741 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) 17742 * shall be returned, otherwise, the next eligible FCF record's index 17743 * shall be returned. 17744 **/ 17745 uint16_t 17746 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) 17747 { 17748 uint16_t next_fcf_index; 17749 17750 initial_priority: 17751 /* Search start from next bit of currently registered FCF index */ 17752 next_fcf_index = phba->fcf.current_rec.fcf_indx; 17753 17754 next_priority: 17755 /* Determine the next fcf index to check */ 17756 next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; 17757 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17758 LPFC_SLI4_FCF_TBL_INDX_MAX, 17759 next_fcf_index); 17760 17761 /* Wrap around condition on phba->fcf.fcf_rr_bmask */ 17762 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17763 /* 17764 * If we have wrapped then we need to clear the bits that 17765 * have been tested so that we can detect when we should 17766 * change the priority level. 17767 */ 17768 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, 17769 LPFC_SLI4_FCF_TBL_INDX_MAX, 0); 17770 } 17771 17772 17773 /* Check roundrobin failover list empty condition */ 17774 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || 17775 next_fcf_index == phba->fcf.current_rec.fcf_indx) { 17776 /* 17777 * If next fcf index is not found check if there are lower 17778 * Priority level fcf's in the fcf_priority list. 17779 * Set up the rr_bmask with all of the avaiable fcf bits 17780 * at that level and continue the selection process. 17781 */ 17782 if (lpfc_check_next_fcf_pri_level(phba)) 17783 goto initial_priority; 17784 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17785 "2844 No roundrobin failover FCF available\n"); 17786 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) 17787 return LPFC_FCOE_FCF_NEXT_NONE; 17788 else { 17789 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, 17790 "3063 Only FCF available idx %d, flag %x\n", 17791 next_fcf_index, 17792 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag); 17793 return next_fcf_index; 17794 } 17795 } 17796 17797 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && 17798 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & 17799 LPFC_FCF_FLOGI_FAILED) { 17800 if (list_is_singular(&phba->fcf.fcf_pri_list)) 17801 return LPFC_FCOE_FCF_NEXT_NONE; 17802 17803 goto next_priority; 17804 } 17805 17806 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17807 "2845 Get next roundrobin failover FCF (x%x)\n", 17808 next_fcf_index); 17809 17810 return next_fcf_index; 17811 } 17812 17813 /** 17814 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index 17815 * @phba: pointer to lpfc hba data structure. 17816 * 17817 * This routine sets the FCF record index in to the eligible bmask for 17818 * roundrobin failover search. It checks to make sure that the index 17819 * does not go beyond the range of the driver allocated bmask dimension 17820 * before setting the bit. 17821 * 17822 * Returns 0 if the index bit successfully set, otherwise, it returns 17823 * -EINVAL. 17824 **/ 17825 int 17826 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) 17827 { 17828 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17829 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17830 "2610 FCF (x%x) reached driver's book " 17831 "keeping dimension:x%x\n", 17832 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17833 return -EINVAL; 17834 } 17835 /* Set the eligible FCF record index bmask */ 17836 set_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17837 17838 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17839 "2790 Set FCF (x%x) to roundrobin FCF failover " 17840 "bmask\n", fcf_index); 17841 17842 return 0; 17843 } 17844 17845 /** 17846 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index 17847 * @phba: pointer to lpfc hba data structure. 17848 * 17849 * This routine clears the FCF record index from the eligible bmask for 17850 * roundrobin failover search. It checks to make sure that the index 17851 * does not go beyond the range of the driver allocated bmask dimension 17852 * before clearing the bit. 17853 **/ 17854 void 17855 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) 17856 { 17857 struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; 17858 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { 17859 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17860 "2762 FCF (x%x) reached driver's book " 17861 "keeping dimension:x%x\n", 17862 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); 17863 return; 17864 } 17865 /* Clear the eligible FCF record index bmask */ 17866 spin_lock_irq(&phba->hbalock); 17867 list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, 17868 list) { 17869 if (fcf_pri->fcf_rec.fcf_index == fcf_index) { 17870 list_del_init(&fcf_pri->list); 17871 break; 17872 } 17873 } 17874 spin_unlock_irq(&phba->hbalock); 17875 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); 17876 17877 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17878 "2791 Clear FCF (x%x) from roundrobin failover " 17879 "bmask\n", fcf_index); 17880 } 17881 17882 /** 17883 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table 17884 * @phba: pointer to lpfc hba data structure. 17885 * 17886 * This routine is the completion routine for the rediscover FCF table mailbox 17887 * command. If the mailbox command returned failure, it will try to stop the 17888 * FCF rediscover wait timer. 17889 **/ 17890 static void 17891 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) 17892 { 17893 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17894 uint32_t shdr_status, shdr_add_status; 17895 17896 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17897 17898 shdr_status = bf_get(lpfc_mbox_hdr_status, 17899 &redisc_fcf->header.cfg_shdr.response); 17900 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, 17901 &redisc_fcf->header.cfg_shdr.response); 17902 if (shdr_status || shdr_add_status) { 17903 lpfc_printf_log(phba, KERN_ERR, LOG_FIP, 17904 "2746 Requesting for FCF rediscovery failed " 17905 "status x%x add_status x%x\n", 17906 shdr_status, shdr_add_status); 17907 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { 17908 spin_lock_irq(&phba->hbalock); 17909 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; 17910 spin_unlock_irq(&phba->hbalock); 17911 /* 17912 * CVL event triggered FCF rediscover request failed, 17913 * last resort to re-try current registered FCF entry. 17914 */ 17915 lpfc_retry_pport_discovery(phba); 17916 } else { 17917 spin_lock_irq(&phba->hbalock); 17918 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; 17919 spin_unlock_irq(&phba->hbalock); 17920 /* 17921 * DEAD FCF event triggered FCF rediscover request 17922 * failed, last resort to fail over as a link down 17923 * to FCF registration. 17924 */ 17925 lpfc_sli4_fcf_dead_failthrough(phba); 17926 } 17927 } else { 17928 lpfc_printf_log(phba, KERN_INFO, LOG_FIP, 17929 "2775 Start FCF rediscover quiescent timer\n"); 17930 /* 17931 * Start FCF rediscovery wait timer for pending FCF 17932 * before rescan FCF record table. 17933 */ 17934 lpfc_fcf_redisc_wait_start_timer(phba); 17935 } 17936 17937 mempool_free(mbox, phba->mbox_mem_pool); 17938 } 17939 17940 /** 17941 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. 17942 * @phba: pointer to lpfc hba data structure. 17943 * 17944 * This routine is invoked to request for rediscovery of the entire FCF table 17945 * by the port. 17946 **/ 17947 int 17948 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) 17949 { 17950 LPFC_MBOXQ_t *mbox; 17951 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; 17952 int rc, length; 17953 17954 /* Cancel retry delay timers to all vports before FCF rediscover */ 17955 lpfc_cancel_all_vport_retry_delay_timer(phba); 17956 17957 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 17958 if (!mbox) { 17959 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 17960 "2745 Failed to allocate mbox for " 17961 "requesting FCF rediscover.\n"); 17962 return -ENOMEM; 17963 } 17964 17965 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - 17966 sizeof(struct lpfc_sli4_cfg_mhdr)); 17967 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, 17968 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, 17969 length, LPFC_SLI4_MBX_EMBED); 17970 17971 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; 17972 /* Set count to 0 for invalidating the entire FCF database */ 17973 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); 17974 17975 /* Issue the mailbox command asynchronously */ 17976 mbox->vport = phba->pport; 17977 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; 17978 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); 17979 17980 if (rc == MBX_NOT_FINISHED) { 17981 mempool_free(mbox, phba->mbox_mem_pool); 17982 return -EIO; 17983 } 17984 return 0; 17985 } 17986 17987 /** 17988 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event 17989 * @phba: pointer to lpfc hba data structure. 17990 * 17991 * This function is the failover routine as a last resort to the FCF DEAD 17992 * event when driver failed to perform fast FCF failover. 17993 **/ 17994 void 17995 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) 17996 { 17997 uint32_t link_state; 17998 17999 /* 18000 * Last resort as FCF DEAD event failover will treat this as 18001 * a link down, but save the link state because we don't want 18002 * it to be changed to Link Down unless it is already down. 18003 */ 18004 link_state = phba->link_state; 18005 lpfc_linkdown(phba); 18006 phba->link_state = link_state; 18007 18008 /* Unregister FCF if no devices connected to it */ 18009 lpfc_unregister_unused_fcf(phba); 18010 } 18011 18012 /** 18013 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. 18014 * @phba: pointer to lpfc hba data structure. 18015 * @rgn23_data: pointer to configure region 23 data. 18016 * 18017 * This function gets SLI3 port configure region 23 data through memory dump 18018 * mailbox command. When it successfully retrieves data, the size of the data 18019 * will be returned, otherwise, 0 will be returned. 18020 **/ 18021 static uint32_t 18022 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18023 { 18024 LPFC_MBOXQ_t *pmb = NULL; 18025 MAILBOX_t *mb; 18026 uint32_t offset = 0; 18027 int rc; 18028 18029 if (!rgn23_data) 18030 return 0; 18031 18032 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18033 if (!pmb) { 18034 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18035 "2600 failed to allocate mailbox memory\n"); 18036 return 0; 18037 } 18038 mb = &pmb->u.mb; 18039 18040 do { 18041 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); 18042 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); 18043 18044 if (rc != MBX_SUCCESS) { 18045 lpfc_printf_log(phba, KERN_INFO, LOG_INIT, 18046 "2601 failed to read config " 18047 "region 23, rc 0x%x Status 0x%x\n", 18048 rc, mb->mbxStatus); 18049 mb->un.varDmp.word_cnt = 0; 18050 } 18051 /* 18052 * dump mem may return a zero when finished or we got a 18053 * mailbox error, either way we are done. 18054 */ 18055 if (mb->un.varDmp.word_cnt == 0) 18056 break; 18057 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) 18058 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; 18059 18060 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, 18061 rgn23_data + offset, 18062 mb->un.varDmp.word_cnt); 18063 offset += mb->un.varDmp.word_cnt; 18064 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); 18065 18066 mempool_free(pmb, phba->mbox_mem_pool); 18067 return offset; 18068 } 18069 18070 /** 18071 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. 18072 * @phba: pointer to lpfc hba data structure. 18073 * @rgn23_data: pointer to configure region 23 data. 18074 * 18075 * This function gets SLI4 port configure region 23 data through memory dump 18076 * mailbox command. When it successfully retrieves data, the size of the data 18077 * will be returned, otherwise, 0 will be returned. 18078 **/ 18079 static uint32_t 18080 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) 18081 { 18082 LPFC_MBOXQ_t *mboxq = NULL; 18083 struct lpfc_dmabuf *mp = NULL; 18084 struct lpfc_mqe *mqe; 18085 uint32_t data_length = 0; 18086 int rc; 18087 18088 if (!rgn23_data) 18089 return 0; 18090 18091 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18092 if (!mboxq) { 18093 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18094 "3105 failed to allocate mailbox memory\n"); 18095 return 0; 18096 } 18097 18098 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) 18099 goto out; 18100 mqe = &mboxq->u.mqe; 18101 mp = (struct lpfc_dmabuf *) mboxq->context1; 18102 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); 18103 if (rc) 18104 goto out; 18105 data_length = mqe->un.mb_words[5]; 18106 if (data_length == 0) 18107 goto out; 18108 if (data_length > DMP_RGN23_SIZE) { 18109 data_length = 0; 18110 goto out; 18111 } 18112 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); 18113 out: 18114 mempool_free(mboxq, phba->mbox_mem_pool); 18115 if (mp) { 18116 lpfc_mbuf_free(phba, mp->virt, mp->phys); 18117 kfree(mp); 18118 } 18119 return data_length; 18120 } 18121 18122 /** 18123 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. 18124 * @phba: pointer to lpfc hba data structure. 18125 * 18126 * This function read region 23 and parse TLV for port status to 18127 * decide if the user disaled the port. If the TLV indicates the 18128 * port is disabled, the hba_flag is set accordingly. 18129 **/ 18130 void 18131 lpfc_sli_read_link_ste(struct lpfc_hba *phba) 18132 { 18133 uint8_t *rgn23_data = NULL; 18134 uint32_t if_type, data_size, sub_tlv_len, tlv_offset; 18135 uint32_t offset = 0; 18136 18137 /* Get adapter Region 23 data */ 18138 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); 18139 if (!rgn23_data) 18140 goto out; 18141 18142 if (phba->sli_rev < LPFC_SLI_REV4) 18143 data_size = lpfc_sli_get_config_region23(phba, rgn23_data); 18144 else { 18145 if_type = bf_get(lpfc_sli_intf_if_type, 18146 &phba->sli4_hba.sli_intf); 18147 if (if_type == LPFC_SLI_INTF_IF_TYPE_0) 18148 goto out; 18149 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); 18150 } 18151 18152 if (!data_size) 18153 goto out; 18154 18155 /* Check the region signature first */ 18156 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { 18157 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18158 "2619 Config region 23 has bad signature\n"); 18159 goto out; 18160 } 18161 offset += 4; 18162 18163 /* Check the data structure version */ 18164 if (rgn23_data[offset] != LPFC_REGION23_VERSION) { 18165 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18166 "2620 Config region 23 has bad version\n"); 18167 goto out; 18168 } 18169 offset += 4; 18170 18171 /* Parse TLV entries in the region */ 18172 while (offset < data_size) { 18173 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) 18174 break; 18175 /* 18176 * If the TLV is not driver specific TLV or driver id is 18177 * not linux driver id, skip the record. 18178 */ 18179 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || 18180 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || 18181 (rgn23_data[offset + 3] != 0)) { 18182 offset += rgn23_data[offset + 1] * 4 + 4; 18183 continue; 18184 } 18185 18186 /* Driver found a driver specific TLV in the config region */ 18187 sub_tlv_len = rgn23_data[offset + 1] * 4; 18188 offset += 4; 18189 tlv_offset = 0; 18190 18191 /* 18192 * Search for configured port state sub-TLV. 18193 */ 18194 while ((offset < data_size) && 18195 (tlv_offset < sub_tlv_len)) { 18196 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { 18197 offset += 4; 18198 tlv_offset += 4; 18199 break; 18200 } 18201 if (rgn23_data[offset] != PORT_STE_TYPE) { 18202 offset += rgn23_data[offset + 1] * 4 + 4; 18203 tlv_offset += rgn23_data[offset + 1] * 4 + 4; 18204 continue; 18205 } 18206 18207 /* This HBA contains PORT_STE configured */ 18208 if (!rgn23_data[offset + 2]) 18209 phba->hba_flag |= LINK_DISABLED; 18210 18211 goto out; 18212 } 18213 } 18214 18215 out: 18216 kfree(rgn23_data); 18217 return; 18218 } 18219 18220 /** 18221 * lpfc_wr_object - write an object to the firmware 18222 * @phba: HBA structure that indicates port to create a queue on. 18223 * @dmabuf_list: list of dmabufs to write to the port. 18224 * @size: the total byte value of the objects to write to the port. 18225 * @offset: the current offset to be used to start the transfer. 18226 * 18227 * This routine will create a wr_object mailbox command to send to the port. 18228 * the mailbox command will be constructed using the dma buffers described in 18229 * @dmabuf_list to create a list of BDEs. This routine will fill in as many 18230 * BDEs that the imbedded mailbox can support. The @offset variable will be 18231 * used to indicate the starting offset of the transfer and will also return 18232 * the offset after the write object mailbox has completed. @size is used to 18233 * determine the end of the object and whether the eof bit should be set. 18234 * 18235 * Return 0 is successful and offset will contain the the new offset to use 18236 * for the next write. 18237 * Return negative value for error cases. 18238 **/ 18239 int 18240 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, 18241 uint32_t size, uint32_t *offset) 18242 { 18243 struct lpfc_mbx_wr_object *wr_object; 18244 LPFC_MBOXQ_t *mbox; 18245 int rc = 0, i = 0; 18246 uint32_t shdr_status, shdr_add_status; 18247 uint32_t mbox_tmo; 18248 union lpfc_sli4_cfg_shdr *shdr; 18249 struct lpfc_dmabuf *dmabuf; 18250 uint32_t written = 0; 18251 18252 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); 18253 if (!mbox) 18254 return -ENOMEM; 18255 18256 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, 18257 LPFC_MBOX_OPCODE_WRITE_OBJECT, 18258 sizeof(struct lpfc_mbx_wr_object) - 18259 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); 18260 18261 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; 18262 wr_object->u.request.write_offset = *offset; 18263 sprintf((uint8_t *)wr_object->u.request.object_name, "/"); 18264 wr_object->u.request.object_name[0] = 18265 cpu_to_le32(wr_object->u.request.object_name[0]); 18266 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); 18267 list_for_each_entry(dmabuf, dmabuf_list, list) { 18268 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) 18269 break; 18270 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); 18271 wr_object->u.request.bde[i].addrHigh = 18272 putPaddrHigh(dmabuf->phys); 18273 if (written + SLI4_PAGE_SIZE >= size) { 18274 wr_object->u.request.bde[i].tus.f.bdeSize = 18275 (size - written); 18276 written += (size - written); 18277 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); 18278 } else { 18279 wr_object->u.request.bde[i].tus.f.bdeSize = 18280 SLI4_PAGE_SIZE; 18281 written += SLI4_PAGE_SIZE; 18282 } 18283 i++; 18284 } 18285 wr_object->u.request.bde_count = i; 18286 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); 18287 if (!phba->sli4_hba.intr_enable) 18288 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); 18289 else { 18290 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); 18291 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); 18292 } 18293 /* The IOCTL status is embedded in the mailbox subheader. */ 18294 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr; 18295 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); 18296 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); 18297 if (rc != MBX_TIMEOUT) 18298 mempool_free(mbox, phba->mbox_mem_pool); 18299 if (shdr_status || shdr_add_status || rc) { 18300 lpfc_printf_log(phba, KERN_ERR, LOG_INIT, 18301 "3025 Write Object mailbox failed with " 18302 "status x%x add_status x%x, mbx status x%x\n", 18303 shdr_status, shdr_add_status, rc); 18304 rc = -ENXIO; 18305 } else 18306 *offset += wr_object->u.response.actual_write_length; 18307 return rc; 18308 } 18309 18310 /** 18311 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. 18312 * @vport: pointer to vport data structure. 18313 * 18314 * This function iterate through the mailboxq and clean up all REG_LOGIN 18315 * and REG_VPI mailbox commands associated with the vport. This function 18316 * is called when driver want to restart discovery of the vport due to 18317 * a Clear Virtual Link event. 18318 **/ 18319 void 18320 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) 18321 { 18322 struct lpfc_hba *phba = vport->phba; 18323 LPFC_MBOXQ_t *mb, *nextmb; 18324 struct lpfc_dmabuf *mp; 18325 struct lpfc_nodelist *ndlp; 18326 struct lpfc_nodelist *act_mbx_ndlp = NULL; 18327 struct Scsi_Host *shost = lpfc_shost_from_vport(vport); 18328 LIST_HEAD(mbox_cmd_list); 18329 uint8_t restart_loop; 18330 18331 /* Clean up internally queued mailbox commands with the vport */ 18332 spin_lock_irq(&phba->hbalock); 18333 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { 18334 if (mb->vport != vport) 18335 continue; 18336 18337 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18338 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18339 continue; 18340 18341 list_del(&mb->list); 18342 list_add_tail(&mb->list, &mbox_cmd_list); 18343 } 18344 /* Clean up active mailbox command with the vport */ 18345 mb = phba->sli.mbox_active; 18346 if (mb && (mb->vport == vport)) { 18347 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || 18348 (mb->u.mb.mbxCommand == MBX_REG_VPI)) 18349 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18350 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18351 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2; 18352 /* Put reference count for delayed processing */ 18353 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); 18354 /* Unregister the RPI when mailbox complete */ 18355 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18356 } 18357 } 18358 /* Cleanup any mailbox completions which are not yet processed */ 18359 do { 18360 restart_loop = 0; 18361 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { 18362 /* 18363 * If this mailox is already processed or it is 18364 * for another vport ignore it. 18365 */ 18366 if ((mb->vport != vport) || 18367 (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) 18368 continue; 18369 18370 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && 18371 (mb->u.mb.mbxCommand != MBX_REG_VPI)) 18372 continue; 18373 18374 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; 18375 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18376 ndlp = (struct lpfc_nodelist *)mb->context2; 18377 /* Unregister the RPI when mailbox complete */ 18378 mb->mbox_flag |= LPFC_MBX_IMED_UNREG; 18379 restart_loop = 1; 18380 spin_unlock_irq(&phba->hbalock); 18381 spin_lock(shost->host_lock); 18382 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18383 spin_unlock(shost->host_lock); 18384 spin_lock_irq(&phba->hbalock); 18385 break; 18386 } 18387 } 18388 } while (restart_loop); 18389 18390 spin_unlock_irq(&phba->hbalock); 18391 18392 /* Release the cleaned-up mailbox commands */ 18393 while (!list_empty(&mbox_cmd_list)) { 18394 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); 18395 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { 18396 mp = (struct lpfc_dmabuf *) (mb->context1); 18397 if (mp) { 18398 __lpfc_mbuf_free(phba, mp->virt, mp->phys); 18399 kfree(mp); 18400 } 18401 ndlp = (struct lpfc_nodelist *) mb->context2; 18402 mb->context2 = NULL; 18403 if (ndlp) { 18404 spin_lock(shost->host_lock); 18405 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18406 spin_unlock(shost->host_lock); 18407 lpfc_nlp_put(ndlp); 18408 } 18409 } 18410 mempool_free(mb, phba->mbox_mem_pool); 18411 } 18412 18413 /* Release the ndlp with the cleaned-up active mailbox command */ 18414 if (act_mbx_ndlp) { 18415 spin_lock(shost->host_lock); 18416 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; 18417 spin_unlock(shost->host_lock); 18418 lpfc_nlp_put(act_mbx_ndlp); 18419 } 18420 } 18421 18422 /** 18423 * lpfc_drain_txq - Drain the txq 18424 * @phba: Pointer to HBA context object. 18425 * 18426 * This function attempt to submit IOCBs on the txq 18427 * to the adapter. For SLI4 adapters, the txq contains 18428 * ELS IOCBs that have been deferred because the there 18429 * are no SGLs. This congestion can occur with large 18430 * vport counts during node discovery. 18431 **/ 18432 18433 uint32_t 18434 lpfc_drain_txq(struct lpfc_hba *phba) 18435 { 18436 LIST_HEAD(completions); 18437 struct lpfc_sli_ring *pring; 18438 struct lpfc_iocbq *piocbq = NULL; 18439 unsigned long iflags = 0; 18440 char *fail_msg = NULL; 18441 struct lpfc_sglq *sglq; 18442 union lpfc_wqe128 wqe128; 18443 union lpfc_wqe *wqe = (union lpfc_wqe *) &wqe128; 18444 uint32_t txq_cnt = 0; 18445 18446 pring = lpfc_phba_elsring(phba); 18447 18448 spin_lock_irqsave(&pring->ring_lock, iflags); 18449 list_for_each_entry(piocbq, &pring->txq, list) { 18450 txq_cnt++; 18451 } 18452 18453 if (txq_cnt > pring->txq_max) 18454 pring->txq_max = txq_cnt; 18455 18456 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18457 18458 while (!list_empty(&pring->txq)) { 18459 spin_lock_irqsave(&pring->ring_lock, iflags); 18460 18461 piocbq = lpfc_sli_ringtx_get(phba, pring); 18462 if (!piocbq) { 18463 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18464 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18465 "2823 txq empty and txq_cnt is %d\n ", 18466 txq_cnt); 18467 break; 18468 } 18469 sglq = __lpfc_sli_get_els_sglq(phba, piocbq); 18470 if (!sglq) { 18471 __lpfc_sli_ringtx_put(phba, pring, piocbq); 18472 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18473 break; 18474 } 18475 txq_cnt--; 18476 18477 /* The xri and iocb resources secured, 18478 * attempt to issue request 18479 */ 18480 piocbq->sli4_lxritag = sglq->sli4_lxritag; 18481 piocbq->sli4_xritag = sglq->sli4_xritag; 18482 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) 18483 fail_msg = "to convert bpl to sgl"; 18484 else if (lpfc_sli4_iocb2wqe(phba, piocbq, wqe)) 18485 fail_msg = "to convert iocb to wqe"; 18486 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, wqe)) 18487 fail_msg = " - Wq is full"; 18488 else 18489 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); 18490 18491 if (fail_msg) { 18492 /* Failed means we can't issue and need to cancel */ 18493 lpfc_printf_log(phba, KERN_ERR, LOG_SLI, 18494 "2822 IOCB failed %s iotag 0x%x " 18495 "xri 0x%x\n", 18496 fail_msg, 18497 piocbq->iotag, piocbq->sli4_xritag); 18498 list_add_tail(&piocbq->list, &completions); 18499 } 18500 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18501 } 18502 18503 /* Cancel all the IOCBs that cannot be issued */ 18504 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, 18505 IOERR_SLI_ABORTED); 18506 18507 return txq_cnt; 18508 } 18509 18510 /** 18511 * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. 18512 * @phba: Pointer to HBA context object. 18513 * @pwqe: Pointer to command WQE. 18514 * @sglq: Pointer to the scatter gather queue object. 18515 * 18516 * This routine converts the bpl or bde that is in the WQE 18517 * to a sgl list for the sli4 hardware. The physical address 18518 * of the bpl/bde is converted back to a virtual address. 18519 * If the WQE contains a BPL then the list of BDE's is 18520 * converted to sli4_sge's. If the WQE contains a single 18521 * BDE then it is converted to a single sli_sge. 18522 * The WQE is still in cpu endianness so the contents of 18523 * the bpl can be used without byte swapping. 18524 * 18525 * Returns valid XRI = Success, NO_XRI = Failure. 18526 */ 18527 static uint16_t 18528 lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, 18529 struct lpfc_sglq *sglq) 18530 { 18531 uint16_t xritag = NO_XRI; 18532 struct ulp_bde64 *bpl = NULL; 18533 struct ulp_bde64 bde; 18534 struct sli4_sge *sgl = NULL; 18535 struct lpfc_dmabuf *dmabuf; 18536 union lpfc_wqe *wqe; 18537 int numBdes = 0; 18538 int i = 0; 18539 uint32_t offset = 0; /* accumulated offset in the sg request list */ 18540 int inbound = 0; /* number of sg reply entries inbound from firmware */ 18541 uint32_t cmd; 18542 18543 if (!pwqeq || !sglq) 18544 return xritag; 18545 18546 sgl = (struct sli4_sge *)sglq->sgl; 18547 wqe = &pwqeq->wqe; 18548 pwqeq->iocb.ulpIoTag = pwqeq->iotag; 18549 18550 cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); 18551 if (cmd == CMD_XMIT_BLS_RSP64_WQE) 18552 return sglq->sli4_xritag; 18553 numBdes = pwqeq->rsvd2; 18554 if (numBdes) { 18555 /* The addrHigh and addrLow fields within the WQE 18556 * have not been byteswapped yet so there is no 18557 * need to swap them back. 18558 */ 18559 if (pwqeq->context3) 18560 dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; 18561 else 18562 return xritag; 18563 18564 bpl = (struct ulp_bde64 *)dmabuf->virt; 18565 if (!bpl) 18566 return xritag; 18567 18568 for (i = 0; i < numBdes; i++) { 18569 /* Should already be byte swapped. */ 18570 sgl->addr_hi = bpl->addrHigh; 18571 sgl->addr_lo = bpl->addrLow; 18572 18573 sgl->word2 = le32_to_cpu(sgl->word2); 18574 if ((i+1) == numBdes) 18575 bf_set(lpfc_sli4_sge_last, sgl, 1); 18576 else 18577 bf_set(lpfc_sli4_sge_last, sgl, 0); 18578 /* swap the size field back to the cpu so we 18579 * can assign it to the sgl. 18580 */ 18581 bde.tus.w = le32_to_cpu(bpl->tus.w); 18582 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); 18583 /* The offsets in the sgl need to be accumulated 18584 * separately for the request and reply lists. 18585 * The request is always first, the reply follows. 18586 */ 18587 switch (cmd) { 18588 case CMD_GEN_REQUEST64_WQE: 18589 /* add up the reply sg entries */ 18590 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) 18591 inbound++; 18592 /* first inbound? reset the offset */ 18593 if (inbound == 1) 18594 offset = 0; 18595 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18596 bf_set(lpfc_sli4_sge_type, sgl, 18597 LPFC_SGE_TYPE_DATA); 18598 offset += bde.tus.f.bdeSize; 18599 break; 18600 case CMD_FCP_TRSP64_WQE: 18601 bf_set(lpfc_sli4_sge_offset, sgl, 0); 18602 bf_set(lpfc_sli4_sge_type, sgl, 18603 LPFC_SGE_TYPE_DATA); 18604 break; 18605 case CMD_FCP_TSEND64_WQE: 18606 case CMD_FCP_TRECEIVE64_WQE: 18607 bf_set(lpfc_sli4_sge_type, sgl, 18608 bpl->tus.f.bdeFlags); 18609 if (i < 3) 18610 offset = 0; 18611 else 18612 offset += bde.tus.f.bdeSize; 18613 bf_set(lpfc_sli4_sge_offset, sgl, offset); 18614 break; 18615 } 18616 sgl->word2 = cpu_to_le32(sgl->word2); 18617 bpl++; 18618 sgl++; 18619 } 18620 } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { 18621 /* The addrHigh and addrLow fields of the BDE have not 18622 * been byteswapped yet so they need to be swapped 18623 * before putting them in the sgl. 18624 */ 18625 sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); 18626 sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); 18627 sgl->word2 = le32_to_cpu(sgl->word2); 18628 bf_set(lpfc_sli4_sge_last, sgl, 1); 18629 sgl->word2 = cpu_to_le32(sgl->word2); 18630 sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); 18631 } 18632 return sglq->sli4_xritag; 18633 } 18634 18635 /** 18636 * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) 18637 * @phba: Pointer to HBA context object. 18638 * @ring_number: Base sli ring number 18639 * @pwqe: Pointer to command WQE. 18640 **/ 18641 int 18642 lpfc_sli4_issue_wqe(struct lpfc_hba *phba, uint32_t ring_number, 18643 struct lpfc_iocbq *pwqe) 18644 { 18645 union lpfc_wqe *wqe = &pwqe->wqe; 18646 struct lpfc_nvmet_rcv_ctx *ctxp; 18647 struct lpfc_queue *wq; 18648 struct lpfc_sglq *sglq; 18649 struct lpfc_sli_ring *pring; 18650 unsigned long iflags; 18651 18652 /* NVME_LS and NVME_LS ABTS requests. */ 18653 if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { 18654 pring = phba->sli4_hba.nvmels_wq->pring; 18655 spin_lock_irqsave(&pring->ring_lock, iflags); 18656 sglq = __lpfc_sli_get_els_sglq(phba, pwqe); 18657 if (!sglq) { 18658 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18659 return WQE_BUSY; 18660 } 18661 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18662 pwqe->sli4_xritag = sglq->sli4_xritag; 18663 if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { 18664 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18665 return WQE_ERROR; 18666 } 18667 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18668 pwqe->sli4_xritag); 18669 if (lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe)) { 18670 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18671 return WQE_ERROR; 18672 } 18673 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18674 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18675 return 0; 18676 } 18677 18678 /* NVME_FCREQ and NVME_ABTS requests */ 18679 if (pwqe->iocb_flag & LPFC_IO_NVME) { 18680 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18681 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18682 18683 spin_lock_irqsave(&pring->ring_lock, iflags); 18684 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18685 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18686 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18687 if (lpfc_sli4_wq_put(wq, wqe)) { 18688 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18689 return WQE_ERROR; 18690 } 18691 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18692 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18693 return 0; 18694 } 18695 18696 /* NVMET requests */ 18697 if (pwqe->iocb_flag & LPFC_IO_NVMET) { 18698 /* Get the IO distribution (hba_wqidx) for WQ assignment. */ 18699 pring = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]->pring; 18700 18701 spin_lock_irqsave(&pring->ring_lock, iflags); 18702 ctxp = pwqe->context2; 18703 sglq = ctxp->rqb_buffer->sglq; 18704 if (pwqe->sli4_xritag == NO_XRI) { 18705 pwqe->sli4_lxritag = sglq->sli4_lxritag; 18706 pwqe->sli4_xritag = sglq->sli4_xritag; 18707 } 18708 bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, 18709 pwqe->sli4_xritag); 18710 wq = phba->sli4_hba.nvme_wq[pwqe->hba_wqidx]; 18711 bf_set(wqe_cqid, &wqe->generic.wqe_com, 18712 phba->sli4_hba.nvme_cq[pwqe->hba_wqidx]->queue_id); 18713 if (lpfc_sli4_wq_put(wq, wqe)) { 18714 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18715 return WQE_ERROR; 18716 } 18717 lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); 18718 spin_unlock_irqrestore(&pring->ring_lock, iflags); 18719 return 0; 18720 } 18721 return WQE_ERROR; 18722 } 18723